Abstract:
Computable analysis has been well studied ever since Turing famously formalised the computable reals and computable real-valued function in 1936. However, analysis is a broad subject, and there still exist areas that have yet to be explored. For instance, Sierpinski proved that every real-valued function ƒ : ℝ → ℝ is the limit of a sequence of Darboux functions. This is an intriguing result, and the complexity of these sequences has been largely unstudied. Similarly, the Blaschke Selection Theorem, closely related to the Bolzano-Weierstrass Theorem, has great practical importance, but has not been considered from a computability theoretic perspective. The two main contributions of this thesis are: to provide some new, simple proofs of fundamental classical results (highlighting the role of ∏0/1 classes), and to use tools from effective topology to analyse the Darboux property, particularly a result by Sierpinski, and the Blaschke Selection Theorem. This thesis focuses on classical computable analysis. It does not make use of effective measure theory.