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Abstract

This thesis is concerned with electrostatic boundary problems and how their solutions behave depending
on the chosen basis of harmonic functions and the location of the fundamental singularities of the potential.
The first part deals with the method of images for simple geometries where the exact nature of the im-
age/fundamental singularity is unknown; essentially a study of analytic continuation for Laplace’s equation
in 3 dimensions. For the sphere, spheroid and cylinder, new deductions are made on the location of the images
of point charges and their linear or surface charge densities, by using different harmonic series solutions that
reveal the image. The second part looks for analytic expressions for the T-matrix for electromagnetic scattering
of simple objects in the low frequency limit. In this formalism the incident and scattered fields are expanded on
an orthogonal basis such as spherical harmonics, and the T-matrix is the transformation between the coefficients
of these series, providing the general solution of any electromagnetic scattering problem by a given particle at
a given wavelength. For the spheroid, bispherical system and torus, the natural basis of harmonic functions for
the geometry of the scatterer are used to determine T-matrix expressed in that basis, which is then transformed
onto a basis of canonical spherical harmonics via the linear relationships between different bases of harmonic
functions.
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Chapter 1
Introduction

Laplace’s equation ∇2V = 0 appears in many areas of physics, often as a basic approximation to some more
exact differential equation. In electromagnetism, Laplace’s equation appears as the static limit of Maxwell’s
equations, in acoustics as the long wave limit of the wave equation, in thermodynamics as the static limit of the
heat equation, in gravity for low mass, and in fluid dynamics when the flow is irrotational. A common question
in these areas is “what is the field of a point source in the presence of some boundary?” This field is called the
Green function for that particular boundary. For the more complex differential equations, Green functions are
only analytically solvable for very simple boundaries such as spheres and planes, but for Laplace’s equation,
analytic solutions are found for all kinds of geometries.

Laplace’s equation is well studied and there are a broad range of basis solutions, “harmonics” which suit
different geometries. In two dimensions Laplace’s equation coincides with the Cauchy Riemann equations,
the condition for a function to be analytic on the complex plane, so there is a huge range of tools to deal
with solutions to Laplace’s equation, but not all these generalize to more complex equations. By studying
new approaches and solutions to known problems, there is hope that these ideas may be generalized to more
complex equations where analytic numeric and approximate approaches are more in need.

Two of the approaches we will focus on are the method of images and the T-matrix method, both of
which apply also to the time harmonic wave equation, the Helmholtz equation. Common to these are basis
transformations of series’ of harmonic functions from one geometry to another, which we will also study in
detail. Image theory and the T-matrix method apply particularly to problems involving point sources and
conducting or dielectric particles, excited by electromagnetic radiation, where the particles are small compared
to the wavelength. This is relevant for example to surface enhanced Raman spectroscopy, a way of detecting
the Raman spectrum scattered by molecules by using the field enhancement near a particle’s surface [1]. Each
molecule has unique Raman spectral profile, so Raman spectroscopy can be used to detect the presence of a
particular molecule. But the signal is very weak, and a powerful technique to enhance this signal is to attract
them to nano-sized metallic particles which have strong electric fields near the surface. Two hot spots for this
are near tips of pointy particles such as spheroids, and in gaps between two particles (a “dimer”), where the
surface field enhancement is powerful enough to detect even single molecules [2]. To study field enhancements
mathematically can be computationally intensive for molecules close to the surface, especially when one wants
to model the effects of hundreds of these even around a simple particle such as a sphere [3].

The method of images is one way of alleviating this computational difficulty, which involves the placement
of simple electromagnetic image sources inside the particle, that act as the mirror image of the molecule and
solve the electromagnetic problem without the need for determining and evaluating fields of complex surface
charges and currents. It has been known since Kelvin in the 19th century [4], with the simple example of a
point charge near a conducting sphere. In previous work, my supervisor Eric Le Ru and I studied the field of
a point source near a dielectric sphere, where for a close source the standard solution as a series of spherical
harmonics converges slowly. We investigated spheroidal harmonics [5] and “logopoles” [6] that both mimic the
singularity of the analytic continuation of the scattered potential through the sphere – a radial line segment lying
inside. These functions can be used to construct series solutions that converge much faster than the standard
series solution of spherical harmonics.

The T-matrix method is a more modern solution established in the 1960s [7] where the electric and magnetic
fields are expanded on a basis of functions, usually spherical wave functions, and the T-matrix itself provides
the series coefficients which are used to expand the field scattered by the particle(s). The problem is shifted
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to computing the T-matrix which can be done in many ways. The advantage of the T-matrix is that there is
one T-matrix for any given object, independent of what the external field is. This is ideal for computing the
properties of clusters of particles for example in solution or the atmosphere [8]. Computing a T-matrix can
be computationally intensive, so simple approximations, for example for small particle sizes are welcome. T-
matrices may even be ill-conditioned, because the fields have different singularities depending on the geometry
of the scatterer, while spherical wave functions or any other basis have their own convergence domains and
singularities. Considering the nature of the singularity of the potential function is crucial to constructing a
well behaved solution, both in the context of image theory or the T-matrix, since it is the interplay between the
geometry of the basis functions and the location of the singularity that determines the boundary of convergence.
Much of this PhD to investigating the singularities of potentials in electrostatic problems, towards finding new
solutions which converge quickly.

1.1 Mathematical concepts

Here we briefly cover the main concepts used throughout the thesis.

1.1.1 Maxwell’s equations for static and time harmonic fields

Any electromagnetic problem obeys Maxwell’s equations, and if the electromagnetic fields are time-harmonic
(changing sinusoidally with time t and frequency ω as e−iωt) as is the case for a monochromatic light source,
then Maxwell’s equations reduce to the vector Helmholtz equation (∇2 + k2)E = 0 for the electric field E and
wavenumber k. The magnetic field also obeys the Helmholtz equation and is proportional to the electric field. If
the geometry of the scatterer is very small compared to the wavelength, as is the case for nano particles excited
by visible light, and is an approximation used frequently in this thesis, then the Helmholtz equation may be
approximated by taking k→ 0, where it reduces to Laplace’s equation ∇2V = 0 for the electric potential V
where E = −∇V . This is called the quasi-static approximation; it differs from electrostatics in that the fields
are to be post multiplied by the factor e−iωt , and the dielectric permittivity of the particle is given by its value
corresponding to that particular frequency, not its static value.

1.1.2 Green functions

We will be dealing with Green functions 1 in every chapter. In general, the Green function for a particular
inhomogeneous partial differential equation is the particular solution of the equation when the inhomogeneous
part is a delta function of one of the coordinates. In electrostatics, which is governed by the Laplace equation,
the Green function is the potential of a point charge. The concept of Green functions may also be generalized to
include boundary conditions, for example the potential of a point charge in the presence of a dielectric sphere
is sometimes called ”the Green function for a sphere”.

1.1.3 Method of images/ Image theory

The method of images is an approach to a physical problem comprised of a source potential and surface
boundary. It may provide a simple expression for the reflected potential when other methods involving series,
integrals or charges on the conductor surface are not practical. In most cases the term “method” of images is
misleading since there is no general method of finding the location of the image; usually a guess is made. The
term “method” may refer to an algorithm that places image point charges successively, determining the strength
of each charge iteratively. Smythe [9] describes the method of images as solving a problem via an ansatz of
a discrete sum of point charges, if possible. “Image theory” may then be defined as the more general concept
of placing image point, line and surface sources to solve boundary problems, without specifying a method of
determining their strength and location.

Image theory is related to the equivalence principle of electromagnetics, which states that different charge
and current distributions may produce the same electric and magnetic fields in some region. These source
distributions are then said to be equivalent. For example a point charge is equivalent to a concentric spherical

1Or “Green’s functions”, but using this phrase is problematic as it creates a tendency to write “the Green’s function”.

2



Figure 1.1: Analytic continuation of the real part of the function f (z). Red represents positive values, blue
negative. On the left, f is computed by the series ∑

∞
n=0 zn with 100 terms. The radial stripes are an artifact

due to the series diverging for |z|> 1. On the right, f is computed by an equivalent function f̄ (z) = 1/(1− z),
which reveals f across the whole complex plane.

surface with a uniform surface charge, when one considers just the region outside the sphere. So for the problem
of an isolated charge conducting sphere, the potential outside the sphere may be modeled as the potential of
a point charge at the center. The point charge is the image of the sphere for this problem (well actually one
possible image – technically any smaller concentric spherical surface with the same charge is an equivalent
source and some may claim that this is also an image, so there is some ambiguity over the definition of an
image, which we will get to soon).

Another basic example of an image is that of a point charge next to an infinite conducting plane, where the
image is another negative point charge located opposite the plane, just like an optical mirror image but with the
additional consideration of sign of charge. The analogy to optical images arises because these two cases are
the long- and short-wavelength limits of light scattering governed by the Helmholtz equation (∇2 + k2)V = 0,
where the same image solution applies regardless of wavelength. In very few cases are scattering problems for
the Helmholtz equation solvable with images, but for Laplace’s equation there are many known examples; here
is a non-exhaustive list:

• The image of a point charge in multiple parallel planes can be constructed recursively from the solution
for a single plane, resulting in an infinite series of point images [10]. The method of images can be used
for many boundaries defined by intersecting planes [11].

• The image of a point charge in a conducting sphere is a negative point charge located at the “inversion
point” of the sphere; this is known as the Kelvin point charge [9, 12, 13].

• The potential of two charged conducting spheres can be solved using an infinite series of image point
charges on the axis of the spheres [9, 12].

• For a point charge near a circular disk, naively there is no volume to put images, but an image can be
constructed by considering a second copy of the entire space attached at the disk, where the potential
of the point charge in this double space is a different function. The image is then another one of these
modified point charges located opposite the disk but in the second space [14]. This is known as the
Sommerfeld image method.

• For materials with finite permittivity, images may be stretched relative to the conducting case, for example
the image of a point charge in a dielectric sphere is a line extending radially from the center [15, 16].

1.1.4 Analytic continuation, uniqueness and existence

Image theory uses the concept of analytic continuation, which is best illustrated with a basic example. Consider
the power series f (z) =∑

∞
n=0 zn, the complex plane where z= x+ iy. This series converges only inside the circle

|z| < 1, but one can derive an equivalent expression f̄ (z) = 1/(1− z), which is equal to f (z) for |z| < 1, but
also converges for |z|> 1, and is smooth for all derivatives across the boundary |z|= 1, except for one singular

3



Figure 1.2: Schematic of the types of problems encountered in this thesis.

point at z = 1. This is illustrated in Figure 1.1. Because f̄ is analytic everywhere except its singular point and
equal to f in a sub-domain, we say that f̄ is the analytic continuation of f . The word “continuation” can be
interpreted as continuing f and all its derivatives through the boundary of divergence. The concept of analytic
continuation applies in any number of dimensions.

Two theorems will underly our investigation into image theory and throughout the thesis.

• The identity theorem basically states that any analytic function defined in some open domain in any
dimension of complex space has a unique analytic continuation defined in all space except for singular points.
An analytic function of one or more complex variables is infinitely differentiable in a neighborhood of every
point of its domain. All potential that solve Laplace’s equation or the Helmholtz equation are analytic.
• Liouville’s theorem basically states that any non-constant, bounded analytic function is singular (infinite)

at least at some point. In electrostatics, these singularities may be thought of as the charge distribution that
generates the potential function.

Many of the problems in this thesis have a boundary which divides the space R3 into two volume domains
D1 and D2 as illustrated in Figure 1.2, where the domains have different material properties which forces
the potential V (r) to be discontinuous in some way across the boundary. For the solution in D1 we write
V = V1 = V e

1 +V r
1 where V e

1 is the known excitation potential (for example a point charge or a uniform field)
and V r

1 is the potential reflected by the boundary which one must solve for. The solution in D2 is V = V2.
The complete solution is V = V1(r ∈ D1)+V2(r ∈ D2), i.e. V1 and V2 sewed together with a discontinuity at
the boundary. V e

1 is harmonic except at the locations of the sources in D1, while V r
1 is harmonic everywhere

in D1 and V2 is harmonic everywhere in D2. Now say we are particularly interested in the properties of V r
1 .

By the identity theorem, V r
1 has a unique analytic continuation through the boundary to D2. This analytic

continuation is non-physical; ultimately we do not need to know V1 in D2, but D2 is crucial to image theory
as it contains the singularity (or singularities) of V r

1 , guaranteed by Liouville’s theorem. D2 is often termed
the “image domain” of V r

1 . With these considerations, we should consider uniqueness and the definition of an
image in electrostatics. In general there may be an infinite number of equivalent sources one could place in D2
which reproduce V r

1 in D1. These may be point sources, line sources, surface sources, or even volume sources
(although these are never practical). Take again the charged conducting sphere – the field outside is equivalent
to that created by any concentric conducting sphere with the same charge and smaller radius. These may all be
viewed as possible images. In this thesis we will define the reduced image as the image which encompasses
the smallest domain. In general, any image must spatially encompass the fundamental singularity(s) due to the
identity theorem because if the potential created by an image is not identical to the analytic continuation of V
everywhere outside its source domain, then it cannot be equal V in any open region. For the conducting sphere,
the reduced image is the point charge at the center. The reduced image may contain point, line or surface
charges, but it must lie on the fundamental singularity(s) of the analytic continuation of the potential V1.

1.1.5 Complex images

Sometimes the singularity of the potential will not lie at a point or a line in real space. For example an
exact solution for an oscillating electric or magnetic dipole near a dielectric plane is to place a semi-infinite
image line current in complex space [17, 18, 19]. In electrostatics the problem of a point charge near a
wedge may be solved with a complex image [20]. In Section 3.5 we will consider the simple problem of a
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charged oblate spheroid where the potential is actually equivalent to a charged disk, which is actually finite
everywhere. Is this the smallest image that solves the problem? In fact this problem can also be solved by
placing a line of charge in complex space, of length equal to the image disk diameter. In some sense this is
a more reduced image, since it encompasses less space. This illustrates that the concept of a reduced image
depends on whether we restrict ourselves to real space or not. But the potential of any point charge located
at (x0,y0,z0) in real or complex space is actually singular on a complex cone, which can be seen from the
condition 1/

√
(x− x0)2 +(y− y0)2 +(z− z0)2 = 0. So if we are to consider multiple complex variables, the

picture of charge distributions gets complicated. In this thesis we will mostly restrict ourselves to real space.

1.1.6 Contributions to image theory

Part one of the thesis investigates boundary problems in electrostatics and acoustics to uncover new analytic
results for reduced images. Chapter 2 starts with the seemingly simple problem of a point charge located at
the center of an infinite conducting cylinder, which is arguably the simplest geometry for which the reduced
image system is unknown. For this problem we find an analytic expression for the reduced image location
and charge density. The image system is a complicated system of hollow disks which makes an exact image
solution impractical, but with knowledge of the reduced image distribution, we derive a simple approximate
image solution.

The reduced image for a point charge near a conducting spheroid is another unsolved problem, for which
we derive new image solutions in Chapter 3. The standard series solution contains spheroidal harmonics which
are singular on the focal segment of the spheroid, but this is not necessarily the nature of the image singularity.
For a distant enough source, the image lies exactly on this line segment, while for a source near the surface,
the image extends somewhat off the focus, but how exactly is unknown. For the point charge on the spheroid
axis, we find that the exact reduced image is a line segment extending somewhat outside the spheroid’s focal
segment. We also endeavor to find the reduced image of a point charge placed at the center of the spheroid, and
find that the image lies on a disk much like the image for the cylinder, being the limit of a long spheroid.

In Chapter 4 we consider a point charge near a dielectric sphere. The known expression for the reduced
image is an integral over a radial line segment, but this integral diverges if the sphere’s permittivity is less than
-1. To reconcile this problem we regularize the integral by adding image multipoles of infinite magnitude.

Then in Chapter 5 we attempt to find the image of an oscillating spherical wave (a point source that changes
sign harmonically with time) near a sphere. We derive the low frequency expansion of the image which requires
similar regularizations used in the previous chapter, and for a general frequency we apply the Watson series
transformation to provide evidence that the reduced image lies on a radial line segment.

1.1.7 Contributions to the T-matrix formalism

Part two of this thesis concerns the T-matrix approach to solving scattering problems for bounded objects.
The T-matrix approach for time harmonic scattering usually expresses the incident and scattered fields in
terms of spherical wave functions, and the T-matrix itself is the linear transformation that outputs the scattered
field series coefficients in terms of the incident coefficients [7, 8]. Normally the T-matrix for a non-spherical
scatterer is calculated numerically using the “null field” surface integral equations, but these may be numerically
unstable for example in the case of spheroids [21]. In Chapter 6 we derive computationally efficient analytic
approximations to the T-matrix for spheroids, that apply in the small-particle limit, relevant to nano-photonics.

The convergence and even existence of the T-matrix depends on both the relationship between the geometry
of the scatterer and the geometry of the harmonic basis functions. The T-matrix can be expressed on any basis of
harmonic functions, e.g. spherical, cylindrical, spheroidal... and each basis representation has its own properties
of existence and convergence. By investigating the T-matrix for different geometries in the electrostatics limit
we can obtain analytic expressions which can be used to learn about the convergence problems encountered
in full-wave electromagnetic scenarios. One main criteria is the Rayleigh hypothesis that the series for the
scattered field converges everywhere outside the particle and on its surface, which is often not true but even in
this case the T-matrix may work anyway [22]. There is uncertainty in the field of the exact conditions for the
T-matrix to converge or be computable by a particular method – does it converge for non-convex or multiply-
connected particles? Image theory is related to this concept in that the field for any scattering problem has
intrinsic singularities lying inside the scatterer which can prohibit convergence of a series for the field outside
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the scatterer. So in Chapters 7 and 8 we investigate the T-matrix for scatterers with interesting topologies:
the torus and two sphere system. T-matrices are found in their respective bases of toroidal harmonics and
bispherical harmonics. Also for the torus, the T-matrix on a spherical harmonic basis is found, and is shown
to converge outside the torus, but cannot be used to express the field inside the torus. We also find that for the
torus there are four types of T-matrices depending on the source location and region of interest of the scattered
field.

1.2 Published works

Most of the work in this thesis has been published or submitted for publication, and there are other papers that
I worked on in during the PhD that aren’t included in the thesis due a difference of scope.

1.2.1 Works from this thesis

• Chapter 3: Matt Majic, “Image theory for a sphere with negative permittivity”, Journal of Mathematical
Physics, 2019 [23].

• Chapter 5: Matt Majic, Eric C. Le Ru, “Quasistatic limit of the electric-magnetic coupling blocks of the
T-matrix for spheroids”, Journal of Quantitative Spectroscopy & Radiative Transfer, 2018 [24].

• Chapter 7: Matt Majic, “Electrostatic T-matrix for a torus on bases of toroidal and spherical harmonics”,
Journal of Quantitative Spectroscopy & Radiative Transfer, 2019 [25].

1.2.2 Other works from this PhD

• Matt Majic, Baptiste Auguié and Eric C. Le Ru., “Laplace’s equation for a point source near a sphere:
improved internal solution using spheroidal harmonics” IMA Journal of Applied Mathematics, 2018 [26].
This is an extension of another paper dealing with the external solution - here the image singularity
extends out to infinity, and so the spheroidal harmonics are transformed through radial inversion to match
this.

• Matt Majic, Luke Pratley, Dmitri Schebarchov, Walter R. C. Somerville, Baptiste Auguié and Eric C. Le
Ru, “Approximate T-matrix and optical properties of spheroidal particles to third order in size parameter”
Physical Review A, 2019 [27].
This analysed the general scattering problem for a spheroid in the small size limit, Taylor expanding the
T-matrix and extending the ‘radiative correction’ up to third order size parameter.

• Matt Majic, Eric C. Le Ru, “New class of solutions to Laplace equation: Regularized multipoles of
negative orders” Physical Review Research, 2019 [6].
The new class of functions dubbed ”logopoles” have close links with both spherical and spheroidal
harmonics. They were initially studied during my masters, and since then we have redefined them and
refined the main concepts.

• Matt Majic, Eric C. Le Ru, “Numerically stable formulation of Mie theory for an emitter close to a
sphere” Applied Optics, 2020 [28].
”Normalized Bessel functions” are applied to normalize the Mie coefficients in a way suitable for calcu-
lating the series for scattering properties of dipole emitters near the surface of a sphere.

• Matt Majic, “A surface integral approach to Poisson’s equation and analytic expressions for the gravita-
tional field of toroidal mass distributions”, Applied Numerical Mathematics, 2020 [29].
This work presents an extension of the null-field boundary integral equations for evaluating fields of
volume distributions, and derives the gravitational field of a solid torus.
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1.3 Notation

Required definitions will be given in each chapter; here is an overview of the commonly used coordinates and
functions. The basic orthogonal coordinate systems are:

• Cartesian: x,y,z

• Cylindrical: ρ =
√

x2 + y2, z, φ = atan2(y,x)

• Spherical: r =
√

x2 + y2 + z2, θ = acos
z
r
, φ ,

where atan2 is the arctangent but corrects for different quadrants in the x,y plane so that φ increases steadily
from 0 to 2π going around the z-axis.
The associated Legendre functions of the first and second kinds appear as solutions to Laplace’s equation. They
may be defined by the recurrence

(n−m+1)Pm
n+1(u) = (2n+1)uPm

n (u)− (n+m)Pm
n−1(u)

(n−m+1)Qm
n+1(u) = (2n+1)uQm

n (u)− (n+m)Qm
n−1(u) (1.1)

with the initial values for m = 0:

P0(u) = 1; Q0(u) =
1
2

ln
∣∣∣∣u+1
u−1

∣∣∣∣
P1(u) = u; Q1(u) = uQ0(u)−1.

And the functions of any integer order m≥ 0 can be defined via

Pm
n (u) = |1−u2|m/2 dmPn(u)

dum (1.2)

Qm
n (u) = |1−u2|m/2 dmQn(u)

dum (1.3)

for all u 6=±1. Some authors multiply by both Pm
n and Qm

n by (−)m for |u|< 1.
And the external and internal solid spherical harmonics are defined as

Sm
n =

(a
r

)n+1
Pm

n (cosθ)eimφ

Ŝm
n =

( r
a

)n
Pm

n (cosθ)eimφ , (1.4)

where a is some arbitrary length which can be set depending on the geometry of the problem.
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Part I

Method of images
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Chapter 2
Infinite conducting cylinder

The image of a point charge near an infinite conducting plane is a point charge located exactly opposite, with
equal and opposite charge. The image of a point charge inside or near a conducting sphere is again another
point charge located at the Kelvin inversion point, with somewhat less charge. But the image of a point charge
near or inside an infinite conducting cylinder is previously unknown, and we derive its properties here. The
simplest case which we will deal with is for the charge to be placed exactly on the cylinder axis - then there are
no variable parameters other than scaling factors. Even in this case we will find that the image is surprisingly
complex, consisting of an infinite number of rings on a disk with a complicated surface charge distribution. In
particular we manage to prove that the image disk is singular at evenly spaced concentric rings, derive a series
expression for the image charge density and find some simple and accurate approximate image solutions. The
analysis here will be useful for studying the image of a point charge in a spheroid in the next chapter, since the
cylinder is essentially an infinitely long spheroid.

2.1 Problem and series solution

Consider a point charge on the axis of a conducting infinite cylindrical tube radius 11, where the total electro-
static potential inside is V . The solution of V is derived in [30], [31], expressed as a series of Bessel functions:

V = 2
∞

∑
n=1

J0(knρ)e−kn|z|

knJ1(kn)2 (2.1)

where J0 and J1 are Bessel functions of the first kind and kn is the nth zero of J0. This series accounts for both
the point charge and the potential reflected by the cylinder. Physically the solution is only needed inside the

1In this chapter we use dimensionless coordinates, but in future chapters the coordinates have dimension.

Figure 2.1: Schematic of the source point charge, cylinder and a rough illustration of the image disk, with
positive charge in red and negative in blue. The image extends to infinity and has a near-alternating pattern
with evenly spaced singular rings.
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Figure 2.2: A cross section of the potential V showing the source charge and image disk, calculated via series
(2.1) with 500 terms, more than necessary to converge to visual accuracy. The black line at x = 1 is the cylinder.

cylinder and one simply ignores V outside, but mathematically (2.1) can be evaluated outside for any z 6= 0 to
reveal the virtual “image” of the point charge. So (2.1) provides the complete analytic continuation of V . A
schematic of the cylinder and the general structure of the image is shown in Figure 2.1, and V is plotted more
accurately in Figure 2.2 on a cut of the xz plane. The plot required many terms (500) to evaluate due to the
series being slowly convergent for small z and conditionally convergent for z = 0, meaning the sum of absolute
values diverges. The image lies on the disk ρ ≥ 2, z = 0, and also diverges on rings at ρ = 2,4,6,8 ... . The
singular rings diverge to both positive and negative values on either side, in a different way for each ring. The
types of singularity roughly repeat every 4 rings - negative on the inside, negative on the outside, positive on
the inside, positive on the outside, repeat. And the charge appears to decay gradually as ρ → ∞.

2.2 Comparison to the two planes problem

The image disk shares a similarity with the image solution for the problem of a point charge at the center of two
parallel conducting planes, lying at z =±1. For this problem the image is made of point charges located at z =
±2 with charge -1, z = ±4 with charge +1, z = ±6 with charge -1, out to infinity [10]:

Figure 2.3: Images of a point charge
between two planes.

Vplanes =
∞

∑
k=−∞

(−)k√
ρ2 +(z−2k)2

. (2.2)

These images are shown schematically in Figure 2.3. An
alternate approach using cylindrical harmonics was employed in
[30] to obtain

Vplanes =
π

2

∞

∑
n=1, odd

cos
(nπz

2

)
K0

(nπρ

2

)
. (2.3)

where K0 is the modified Bessel function of the second kind.
This result can also be obtained from the Watson transformation
[32]. This is of a similar form to (2.1), but with different Bessel
functions, and the function arguments increasing in integer
intervals instead of the zeros kn – this is to make V (z =±1) = 0
on the boundary, where cos(±nπ/2) = 0.

Later we will show that the first order approximation to the cylinder’s image rings are actually point charges
located at z =±2i,±4i,±6i.... So the image disk shares this regular pattern of singularities, but the pattern of
ring charges repeats every 4 rings, not every 2, and there is also surface charge between the rings.

In the two planes problem, the image charges can be explained intuitively by considering them two at a
time moving outwards. Each image charge induces another image of opposite sign reflected about the plane
furthest from it. But this concept does not adapt to the cylinder since there is only one surface.

2.3 Approximation of the series (2.1)

A similar series to (2.1) was encountered in Ref. [33], in computing the velocity field of an axisymmetric
jet flow confined to a semi-infinite cylinder. The authors applied Kummer’s method of series acceleration -
subtracting a similar analytic series whose terms behave the same way as the summation index goes to infinity,
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so that the remaining series converges faster. We will briefly cover this paper and its technique. They considered
a jet confined to 0 ≤ ρ ≤ 1 and z > 0, and wished to compute for example the axial component of the fluid
velocity, which is proportional to the series

Sz = 2
∞

∑
n=1

J0(knρ)cos(knz)
knJ1(kn)

. (2.4)

S
in

g
u
la

r 
co

n
e
s

Figure 2.4: Locations of the singular-
ities for a jet flow confined to a semi
infinite cylinder.

The terms decrease slowly as 1/n so convergence is conditional
and nonuniform across both ρ and z, everywhere inside the jet
- which necessitates a series acceleration technique for practical
computation. In fact, the singularities of (2.4) lie in real space - on
evenly spaced cone shaped surfaces running along the jet as shown
in Figure 2.4. This series differs to our (2.1) by one factor of J1(kn)
and e−knz→ cos(knz), and both series have similar singularities, but
in their case they were interested in singularities at integer spaced
values of z, not ρ .

The authors of [33] used the following asymptotic formulas for
n→ ∞:

kn =

(
n− 1

4

)
π +

1
8πn

+O(n−2), (2.5)

J1(kn) =
(−)n+1

π

√
2

n−1/4
+O(n−7/2), (2.6)

J0(knρ) =
(−)n

π

√
2

(n−1/4)ρ

{
sin[(n−1/4)π(ρ−1)]

− ρ−1/ρ

8(n−1/4)π
cos[((n−1/4)π(ρ−1)]

}
+O(n−5/2).

(2.7)

The series Sz could then be approximated by a simpler trigonometric
series related to the Lerch transcendent which could be evaluated
analytically. The remainder series converges much faster and is

bounded.
We now follow the same approach for our problem to extract the singularities of V . To first order in n the

series coefficients behave as

2
J0(knρ)

knJ1(kn)2 = (−)n

√
2

(n−1/4)ρ
sin[(n−1/4)π(ρ−1)]+O(n−3/2). (2.8)

The divergent part of V is then entirely contained within the order n−1/2 part, since the remaining series
converges as n−3/2 which is absolutely convergent (although it still contains discontinuities in the derivative
at ρ = 2,4,6... which can be dealt with by considering the next order in the asymptotic expansion). So the
poles of V coincide with the poles of a function Ṽ

Ṽ =
∞

∑
n=1

(−)n

√
2

nρ
sin[(n−1/4)π(ρ−1)]e−(n−1/4)πz (2.9)

for z > 0. While Ṽ does not solve Laplace’s equation, it can still be used to determine properties of V . It is
clear that

√
ρṼ is periodic in ρ with period 8, and diverges for ρ = 2,4,6... - these are the stationary points

where
√

2(−)n sin[(ρ − 1)(n− 1/4)π] = 1, which results in the divergent series ∑n≥1 n−1/2. This proves that
the singularities of V also lie on ρ = 2,4,6... and follow a repeating pattern every 4 singularities, and decrease
in magnitude moving out from the origin as 1/

√
ρ which agrees with the plot in Figure 2.2. To make further

deductions, we will rewrite Ṽ using an addition formula for the sine function and the polylogarithm of index 1
2 ,

L 1
2
(eπµ) =

∞

∑
n=1

enπµ

√
n
, (2.10)
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Figure 2.5: (a): the image approximation potential V 0
im computed up to k = 160 images showing a similar

structure to that for V . (b): the difference V −V 0
im. The black line at x = 1 is the cylinder. The same color scale

is used in both plots.

to obtain

Ṽ =
ie(iρ−i−z) π

4
√

2ρ

[
ei(ρ−1) π

2 L 1
2
(e(z−iρ)π)−L 1

2
(e(z+iρ)π)

]
, (2.11)

which is real valued. This form can be used to determine simple analytic approximations for the kth singular
ring, by noting the residue series expression for the polylogarithm [34]:

L 1
2
(eπµ) =

∞

∑
q=−∞

1√
2iq−µ

. (2.12)

For the limit approaching ring k, the terms q =±k dominate, leaving

lim
ρ→2k
z→0

Ṽ = lim
ρ→2k
z→0

ik

2
√

k

(
1√

ρ + iz−2k
+

(−)k√
ρ− iz−2k

)
. (2.13)

In Section 2.4.3 it is shown that a combination of 2 point charges located at z=±2i is an accurate approximation
to the first ring. In fact, on the z = 0 plane these point charges share the same limit as (2.13) for k = 1. From this
we can assume that similar point charges can be used to match the singularities for the higher rings. Explicit
expressions for these image point charges are

V 0
im,k =

ik√
ρ2 +(z−2ik)2

+
(−i)k√

ρ2 +(z+2ik)2
. (2.14)

It is straightforward to show that V 0
im,k matches the limits in (2.13) for any k. Then summing these together

gives an approximation for the potential V ≈V 0
im, with

V 0
im =

1
r
+

∞

∑
k=1

V 0
im,k, (2.15)

V 0
im,k are real valued and singular on the rings but also posses discontinuities on the z = 0 plane. In particular,

for k even(odd), V 0
im,k is discontinuous on the inner(outer) disk ρ < 2k (ρ > 2k). So V 0

im is discontinuous inside
the cylinder and not a practical approximation to V near z = 0. In Figure 2.5, V 0

im is plotted along with the
difference relative to V . While the difference is not negligible, it is finite everywhere. Figure 2.5 (b) shows
increasing error for the outer rings, but tests out to ρ = 1000 indicate that the error does eventually decrease,
consistent with the approximation (2.9) becoming more accurate as ρ → ∞.

By comparing the series for V 0
im to the image series solution for the two planes problem (2.2), and noting

that this is also equal to the Bessel series (2.3), we can derive with some algebra the following Bessel series for
V 0

im:

V 0
im = π

∞

∑
n=1

J0((n−1/4)πρ)e−(n−1/4)π|z| (2.16)

which more closely resembles the series (2.1), with nonuniform convergence as n−1/2 for z = 0. This series has
the same asymptotic limit as n→ ∞ as the series for both V and Ṽ .
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2.4 More solutions and approximations

There are other solutions to this problem involving different basis functions which can be used to derive
approximations.

2.4.1 Integral solution

The integral solution involves splitting the potential into V = Ve +Vr where Ve is the excitation of the point
charge and Vr is reflected by the cylinder. Ve can be expressed as an integral of cylindrical harmonics:

Ve =
1
r
=

2
π

∫
∞

0
K0(tρ)cos(tz)dt, (2.17)

where I0 and K0 are the modified Bessel functions of the first and second kinds. Vr is constructed to fit the
boundary condition V = 0 at ρ = 1 [31]:

Vr =−
2
π

∫
∞

0

K0(t)
I0(t)

I0(tρ)cos(tz)dt. (2.18)

The integrand is finite except at t → 0, t → ∞, so we can determine the physical domain where this integral
converges by analysis of the behavior of the integrand near the end points. The Bessel functions behave as

I0(t→ 0)→ 1 (2.19)

K0(t→ 0)→ log
1
t

(2.20)

I0(t→ ∞)→ et
√

2πt

(
1+

1
8t

)
(2.21)

K0(t→ ∞)→ e−t
√

π

2t

(
1− 1

8t

)
. (2.22)

Then as t → ∞ the integrand behaves as e(ρ−2)t/
√

t and converges for ρ < 2, independent of z, which is
inside a cylindrical boundary of twice the radius of the physical cylinder. This is consistent with the image
having its innermost ring at ρ = 2.

2.4.2 Spherical series solution

The integral solution may be transformed into a series of solid spherical harmonics, which will then be useful
to determine approximations to Vr. The coefficients can be obtained via the following expansion relating
cylindrical and spherical harmonics:

I0(tρ)cos(tz) =
∞

∑
n=0:2

(itr)n

n!
Pn(cosθ), (2.23)

where the notation n = 0 : 2 means n increases in steps of 2. Substituting (2.23) into the integral (2.18) and
rearranging gives

Vr =−
∞

∑
n=0:2

hn

(
ir
2

)n

Pn(cosθ), (2.24)

where

hn =
2n+1

πn!

∫
∞

0

K0(t)
I0(t)

tndt. (2.25)

Note that in [31, 35], a different expression for hn is derived, which is equivalent through partial integration
and applying the Wronskian I0(t)K′0(t)− I′0(t)K0(t) =−1/t.
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Figure 2.6: (a): approximation V (0), (b): correction V (1), (c): log10 of the relative error (V (0)+V (1)−V )/V .

2.4.3 A first order approximation

From the spherical series solution (2.24) we can find a simple approximation that happens to match the image
well. The integrand of (2.25) may be expanded for t→ ∞ as:

K0(t)
I0(t)

tn→ π

(
1− 1

4t
+O(t−2)

)
e−2ttn, (2.26)

which also is fairly accurate for small t. Because of the factor tn, as n→∞ the contributions in the integral only
come from large t. This approximation leads to hn→∞→ 1− 1

2n .
The zeroth order approximation has hn≈ 1. The first two terms for n= 0,2 are however not well represented

by this approximation so should be subtracted and the exact terms with h0 ≈ 0.8706901 h2 ≈ 0.8236450 and
added on explicitly:

V (0) =−
∞

∑
n=4:2

(
r
2i

)n

Pn(cosθ)−h0−h2r2P2(cosθ)

=
i√

ρ2 +(z+2i)2
− i√

ρ2 +(z−2i)2
+1−h0−

(
1
4
−h2

)
r2P2(cosθ), (2.27)

which is two point charges located at z =±2i that appear in V 0
im,1 (Eq. (2.14)), plus smooth terms. V (0) is real,

singular at ρ = 2, z = 0 and discontinuous across ρ ≥ 2, z = 0, as seen in Figure 2.6 (a), with surface charge
4/(ρ2− 4)3/2. Just like V 0

im1, V (0)−V is finite at the innermost ring. This approximation was also derived in
[31] but with the wrong prefactor and without correction of the n = 0,2 terms.

For the first order correction again we take off the n = 2 term:

V (1) =
∞

∑
n=4:2

1
2n

(
r
2i

)n

Pn(cosθ)

=
1
2

Re
{

log
2

2− iz+
√
−ρ2− (z+2)2

}
+

1
16

r2P2(cosθ). (2.28)
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Figure 2.7: The surface charge density σim compared to the approximation σ0
im and the electric field Ez evaluated

at z = 0.0001. Ez and σim are computed with 20,000 terms in the Bessel series (2.29) and (2.32), while σ0
im is

computed with 80 terms in the series (2.30), enough to converge to visible accuracy.

This is also discontinuous across ρ ≥ 2, z = 0. The logarithm can be derived from a coordinate transformation
applied to the expansion of a similar function in [36]. V (1) has a positive surface charge density of 1/

√
ρ2−4

on the disk ρ ≥ 2,z = 0, but also consists of negative charge at r→ ∞ so that even on the disk the potential
can be negative, as seen in Figure 2.6 (b). The potential is finite everywhere even at ρ = 2,z = 0, but diverges
logarithmically as r→ ∞.

The approximation V (0)+V (1) is very accurate for |z|. 1.5, as shown in Figure 2.6 (c). Numerical evidence
suggests that difference Vr − (V (0) +V (1)) and its low order derivatives at least are continuous across the
innermost image ring.

This seems to be the extent of these image approximations since this expansion of hn about n→ ∞ appears
to not match well for small n. Already in our approximation we have had to correct for n = 0,2, and more
corrections are likely needed for higher orders if continuing in this fashion. And unfortunately adding similar
terms for the next ring at ρ = 4 only degrades the approximation - as noted before V 0

im,2 is discontinuous across
the middle of the cylinder.

2.5 Image surface charge density

To complete the description of the image disk, we must determine its charge distribution. The surface charge is
equivalent to the discontinuity in the electric field component Ez = −∂zV across z = 0. Since the series for Ez

at z = 0 actually diverges – the terms increase as
√

n – we must instead consider the limit:

σim = 2 lim
z→0

Ez =− lim
z→0

4
∞

∑
n=1

J0(knρ)e−knz

J1(kn)2 . (2.29)

In order to calculate this limit, we can modify the series using Kummer acceleration - subtract off an
analytically known term that has a similar series expansion, so that the difference of the two series coefficients
decreases faster as n→∞. We will in fact subtract off the surface charge density of the approximation V 0

im. This
can be obtained from (2.15):

σ
0
im = 8

∞

∑
k=1

ℜ

{
ikk

(4k2−ρ2)3/2

}
(2.30)

Note that the direct substitution of z = 0 in the z-derivative of (2.14) leads to a different branch cut, while (2.30)
provides the correct limit – thanks to Carlo Beenakker on MathOverflow for this. And Eq. (2.30) is equivalent
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Figure 2.8: The surface charge density σtorus compared to the approximation σ0
torus and the electric field Ez

evaluated at z = 0.0001. Ez and σtorus are computed with 50,000 terms in the Bessel series (2.34) and (2.36),
while σ0

torus is computed with 500 terms in the series (2.35), enough to converge to visible accuracy. The plot
is truncated at x = 0.05 since the information for x < 0.05 is illegible.

to the Bessel series (2.16):

σ
0
im =− lim

z→0
2π

2
∞

∑
n=1

J0((n−1/4)πρ)e−(n−1/4)πz (2.31)

which is again divergent for z = 0, with terms increasing as
√

n. In fact, as n→ ∞, the series coefficients in
(2.29) and (2.31) have the same leading order, while their difference goes as 1/

√
n, which converges (slowly).

Combining Eqs. (2.29), (2.30) and (2.31) then gives the following convergent expression for the image surface
charge:

σim = σ
0
im−2 lim

z→0
∂z(V −V (0))

=σ
0
im−2

∞

∑
n=1

(
2

J0(knρ)

J1(kn)2 −π
2(n−1/4)J0((n−1/4)πρ)

)
(2.32)

which converges except at the rings ρ = 2,4,6,8..., and is plotted in Figure 2.7 with comparison to both the
approximation (2.30) and the numerical limit of (2.29), that is 2Ez for a very small value of z = 0.0001. All
three show a similar pattern - diverging U shaped regions of alternating sign, with relatively smooth regions in
between, which become steeper as ρ increases. For the region 0 < ρ < 2, σim is zero, while σ0

im is small but
finite in this region (V 0

im is discontinuous there). This surface charge is represented schematically in Figure 2.1
with blocks of color matching sign.

2.6 Comparison to 2D problem

The 2D analogue of our problem is an infinite line charge at the center of the cylinder. The solution to this
problem is simply Vr,line = − logρ because it is logarithmically infinite at the line charge and zero on the
cylinder surface at ρ = 1. The image actually resides at ρ = ∞. How do we reconcile this with the image for
the point charge which is singular at ρ = 2? The line charge is the limit of an infinite number of point charges
on the z-axis, and the potentials of different sources add, so we might naively expect the line to also have an
image at ρ = 2. An intuitive explanation for this is that the line charge is thinned out, since the total charge
is spread over an infinite line. The same then applies to the image; if we were to construct the image of the
line charge from the image of the point charge, we would spread the rings and disks along the z-axis to become
cylindrical surfaces with volume charge in between. But since the surface of the inner image cylinder at ρ = 2
is closed, it can be analytically continued through to reveal a more distant image, in this case all the way to
ρ = ∞.
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2.7 Charged tight torus

The problem of a point charge at the center of a cylinder has a one to one correspondence with the potential
of a charged conducting tight torus in free space. This is realized through radial inversion/ Kelvin transform,
the transformation r→ 1/r, which takes the outside of the cylinder to the inside of the torus. The potential
transforms as V (r,θ ,φ)→ 1/r V (1/r,θ ,φ), and by applying this transformation to (2.1) gives

charged tight torus

0 0.2 0.4 0.6 0.8 1 1.2

x

-0.4

-0.2

0

0.2

0.4

0.6

z

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2.9: Analytic continuation of the potential of a charged conducting tight torus as computed by (2.33).

Vtorus =
2
r

∞

∑
n=1

J0(kn(ρ/r2)e−kn|z|/r2

J1(kn)2 . (2.33)

which is plotted in Figure 2.9, and reveals a singular disk for ρ < 1/2 - we will call this singularity the ‘image’
of the torus in free space. The Kelvin transform modifies the location of the image by ρ → 1/ρ , so that the
image of the torus lies on the disk ρ < 1/2, z= 0 with singular rings located at ρ = 1/2,1/4,1/6.... To calculate
the corresponding image surface charge density σtorus, we need the limit of the electric field approaching z = 0:

σ torus = 2 lim
z→0

Ez =− lim
z→0

∞

∑
n=1

4e−kn|z|/r2

r5knJ1(kn)2

(
(kn(ρ

2− z2)+ |z|r2)J0(knρ/r2)−2kn|z|ρJ1(knρ/r2)

)
, (2.34)

but as for the cylinder, the series diverges for z = 0 (the terms increase as
√

n), so we follow the above approach
of taking the difference of two diverging series – subtracting off a function σ0

torus which has a Bessel series of
similar form to σtorus, but which has an alternate form which is well defined analytically. Such a function is

σ
0
torus =

1
ρ3

∞

∑
n=1

2π
2(n−1/4)J0((n−1/4)π/ρ) = 4

∞

∑
k=1

ℜ

{
ik/(2k)2

(ρ2−1/(2k)2)3/2

}
, (2.35)

which is in some sense a zeroth order approximation to the image charge distribution. The left series diverges
at the same rate as (2.34), but is equivalent to the series on the right which converges. Their equivalence can
be seen through similar manipulations used to derive (2.15). So a convergent expression for σtorus, with terms
decrease as 1/

√
n, is

σtorus = σ
0
torus +

1
ρ3

∞

∑
n=1

4
J0(kn/ρ)

J1(kn)2 −2π
2(n−1/4)J0((n−1/4)π/ρ). (2.36)

This is plotted in Figure 2.8, showing close agreement with the electric field evaluated at z = 0.0001, except
near the singular rings. This discrepancy has been checked to decrease as z→ 0 as it should. The magnitude of
σtorus is far higher than for the cylinder, but the surface area is also much smaller.

For more analysis on the tight torus, see [37]. The image for a non-tight torus in free space is not known
[38], and maybe this solution can provide a starting point. Also, the convergence of the T-matrix for the torus
in Chapter 7 depends on the location of this singularity.
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2.8 Eccentric point charge

For a point charge located at ρ = ρ0 with azimuthal angle φ = 0, the solution as a series of Bessel functions is
derived in [31, 39] to be (correcting a typo in [31] eq. 42):

Veccentric =2
∞

∑
m=0

∞

∑
n=1

(2−δm0)
Jm(knmρ0)Jm(knmρ)

knmJm+1(knm)2 cos(mφ)e−knm|z|, (2.37)

where knm is the nth zero of Jm. This formula converges everywhere except on z = 0 where convergence is
non-uniform (dependent on x and y). Veccentric is plotted on the plane z = 0 in Figure 2.10 to reveal the image
structure, which is extremely complicated, consisting of distorted rings which overlap chaotically.
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Figure 2.10: Potential for an eccentric point charge at x = 0.5, y = 0, in a conducting cylinder of radius 1.
Veccentric was computed up to m = 90 and n = 340, enough to converge to reveal the main features of the image,
but with some noise.

2.9 Conclusion

We have investigated the image of a point charge at the center of a conducting cylinder and found an exact
expression for the image surface charge, (2.32).

We also derived a simple and accurate approximation (2.27) which matches the inner ring of the image,
which corrects an approximation given in Ref. [31]. We then derived the next order term (2.28), and demon-
strated the accuracy of (2.27)+(2.28), which may be attributed to the similar singularities of this approximation
and the singularity of the image (2.32).

By applying the Kelvin transformation, we also derived the image charge distribution of a conducting tight
torus, (2.36).

This analysis should extend to finite cylinders by taking copies of the image disks and repeating them at
discrete heights along the z-axis, just as done for the point charge between two parallel planes. And in fact
the Bessel series solution for a spherical acoustic wave in the cylinder is mot much more complicated and
converges for z 6= 0. So it may be possible to extend the results in this chapter to the Helmholtz equation.
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Chapter 3
Conducting spheroid

The interaction of a point source near a nano-particle is prevalent in photonics and Raman spectroscopy, and
the spheroid is of interest to study being the simplest non-spherical particle. The first exact formulation of the
image of a point charge on the axis of a spheroid was in 1995 - partial success was found in [40] where the
image consisted of a line charge lying on the focal segment. A later investigation of the image solution for the
elliptic cylinder [41] revealed that the image lies on a focal strip, but if the source is close enough, a disjoint
point image must be added to the image system. In fact the potential computed by this image system gives
the full analytic continuation of the potential. In this sense the image is “reduced”, meaning the singularities
encompass the smallest possible spatial domain. But for the spheroid, the authors of [40] later realized that the
series expression for the image charge density diverges when the point charge is too close to the surface [42],
and attempted to amend the image solution by subtracting an image point charge. This point charge is a good
approximation, but unlike the case of the elliptic cylinder, the series for the charge density of this proposed
image system still diverges, just slower. The authors later studied the same problem for the dielectric spheroid
[43] and tried an approximate correction by subtracting an approximate image line segment extending from the
focal segment up to the location of the point image, to imitate the line image for the dielectric sphere. But again
the remaining series for the charge distribution still diverges, due to an incorrect assumption of its domain. For
the non-rotational ellipsoid, the first proposed image solution consisted of a point charge plus a surface charge
on an interior ellipsoid [44]. This image formulation was then presented for the particular case of the prolate
spheroid in [45]. But the spheroidal surface charge image cloaks the true form of the image lying inside; the
potential is actually finite at all but one point of the surface image, so it is theoretically possible to analytically
continue the potential within this boundary. For the non-rotational ellipsoid with Neumann boundary condition,
the first attempt at finding an image solution is in [46], where they assumed a point image plus a curved line of
image charge extending along a spheroidal coordinate line, but they still needed to correct for this by adding
a surface charge on an ellipsoidal surface that encloses the point and line image. This image formulation is
specialized for the prolate spheroid in [47].

This chapter looks at the reduced form of the image of a point charge near or inside a conducting spheroid,
and compare these problems to similar geometries - the elliptic cylinder and the circular disk. We cover the
progress made by [42] for the point charge on the axis of a prolate spheroid, and devise a series expansion
that uncovers the true form of the image, and explain why their expression for the line charge density diverges.
We also investigate the similar problem of a point charge at the center of a prolate spheroid, finding numerical
evidence that the reduced image lies on an infinitely wide, flat sheet with a hole around the spheroid. We finally
ask what it means for an image to be unique, and show a specific example where two fairly disjoint different
image solutions can solve the same problem.

The goal here is not necessarily to find a fast and accurate approximation of a potential function, but to
find its analytic continuation by any means. With knowledge of the location and charge distribution on the
fundamental singularities, it may be possible to construct efficient approximate solutions.

3.1 Elliptic cylinder - 2D analogue

For context we will first look at the 2D analogue of our spheroid problem, where it is possible to find the exact
form of the image [41]. In this problem there is an infinite uniform line charge parallel to an infinitely long
elliptic cylinder in 3D, but due to the uniformity along one coordinate, the problem is essentially 2D.
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Figure 3.1: schematic of the image solution for a line charge near a 2d elliptic cylinder.

The elliptic coordinates ξ ,η are analogous to spheroidal coordinates, with the parameter ξ describing
concentric ellipses. The conducting or dielectric elliptic cylinder is defined by ξ = ξ0, and the line charge lies
outside at ξd ,ηd . The standard solution is given by a series of elliptic cylindrical harmonics, which are simply
trigonometric and exponential functions. In terms of the image representation, there is a critical ellipse ξ = 2ξ0,
where if the source lies outside, i.e. ξd > 2ξ0, the image charge distribution then lies entirely on the focal strip,
and the image surface distribution is given as a series of trigonometric functions. But for a close source with
ξd < 2ξ0, the image system has two disjoint parts - a focal strip image plus a point image at 2ξa− ξd ,ηd ,
as depicted in Figure 3.1. The potential of these images represents the analytic continuation of the reflected
potential by the cylinder to all space. The image formulation for a spheroid is not so simple.

3.2 Point charge on axis of conducting prolate spheroid

Consider a conducting prolate spheroid of half-focal length f , half-height c and half-width a =
√

c2− f 2,
excited by a point charge located at d on the z-axis, as depicted in Figure 3.2. We will use spheroidal coordinates
ξ ,η :

ξ =

√
ρ2 +(z+ f )2 +

√
ρ2 +(z− f )2

2 f
(3.1)

η =

√
ρ2 +(z+ f )2−

√
ρ2 +(z− f )2

2 f
, (3.2)

so that the boundary of the spheroid is simply ξ = ξ0 = c/ f . The exciting potential is

Ve =
c√

ρ2 +(z−d)2
=

∞

∑
n=0

(2n+1)Qn(ξd)Pn(ξ )Pn(η). ξ < ξd (3.3)

The boundary condition is V = 0 at ξ = ξ0, where V =Ve +Vr is the total potential outside the spheroid and Vr
is the reflected potential. Using standard techniques, Vr is found to be

Vr =−
∞

∑
n=0

(2n+1)
Pn(ξ0)

Qn(ξ0)
Qn(ξd)Qn(ξ )Pn(η). (3.4)

where ξd = d/ f . We will now investigate the analytic continuation of the series (3.4) inside the spheroid.

3.2.1 Summary of progress in [42] - zeroth order approximation

The Legendre functions behave for large n as

Pn(x)→
√

1
2nπ

(x+
√

x2−1)n+1/2

(x2−1)1/4

[
1+

1
8n

(
x

x2−1
−2
)
+O(n−2)

]
|x|> 1 (3.5)

Qn(x)→
√

π

2n
(x+
√

x2−1)−n−1/2

(x2−1)1/4

[
1− 1

8n

(
x

x2−1
+2
)
+O(n−2)

]
|x|> 1 (3.6)
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which are modified first order expressions from [48]. Then the terms in the series (3.4) behave to zeroth order
for large n as

Pn(ξ0)

Qn(ξ0)
Qn(ξd) =

1√
2πn(ξ 2

d −1)1/4

((
ξ0 +

√
ξ 2

0 −1
)2

ξd +
√

ξ 2
d −1

)n[
1+O(n−1)

]
. (3.7)

If the point source is further than a critical distance, d > dc where

dc = 2
c2

f
−a, (3.8)

then the series converges in all space except the focal segment, and the corresponding image may be expressed
as a series using the Havelock formula for the prolate spheroidal harmonics.

The corresponding image line charge distribution λ can be found by applying the Havelock formula, which
essentially expresses each spheroidal harmonic in terms of a distribution of line charge on the focal segment:

λ (z) =−1
2

∞

∑
n=0

(2n+1)
Pn(ξ0)

Qn(ξ0)
Qn(ξd)Pn(z/ f ), |z|< f (3.9)

which converges if d > dc.
But for d < dc, the series (3.4) diverges inside the spheroid ξ < ξh where

ξh = (2ξ
2
0 −1)ξd−ξ0

√
ξ 2

0 −1
√

ξ 2
d −1. (3.10)

This is shown schematically in Figure 3.2, where the spheroidal series diverges inside the inner spheroid.
To work around this, the authors noted that the leading asymptotic order of the series terms in (3.4) is

similar to that for the spheroidal harmonic expansion of a point charge at z = h:

V (0) =
qh f√

ρ2 +(z−h)2
, (3.11)

=qh

∞

∑
n=0

(2n+1)Pn(ξh)Qn(ξ )Pn(η), (3.12)

where qh =− 4

√
h2− f 2

d2− f 2 .

This is the blue dot in Figure 3.2. Then (3.12) was extracted from the series (3.4) so that the remaining series
converged faster:

V ≡V ′ =Ve +V (0)−
∞

∑
n=0

(2n+1)
(

Pn(ξ0)

Qn(ξ0)
Qn(ξd)+qhPn(ξh)

)
Qn(ξ )Pn(η). (3.13)

However, the authors incorrectly assumed that the remaining image lies on the focal segment, and attempted to
write down the image charge density on this strip as:

λ (z) 6=−1
2

∞

∑
n=0

(2n+1)
(

Pn(ξ0)

Qn(ξ0)
Qn(ξd)+qhPn(ξh)

)
Pn(z/ f ), |z|< f (3.14)

But the terms increase exponentially as n→ ∞, so the series diverges. They state that this series is asymptotic,
initially converging then diverging, but it could not converge to any meaningful distribution since, as we will
see, the analytic continuation of the potential is actually singular in a region off this focus too. No charge
distribution can produce a singularity outside its support. Perhaps one could argue that the image is still valid
in some sense because it can be represented by a series of spheroidal harmonics which converges for ξ > ξh,
but then nothing is gained from this “image” representation since it is only useful to reproduce the series it was
obtained from in the first place.

1

1Note that in [42] there is a minor error in stating that the requirement that h > f (image charge lying off the focal segment) is
equivalent to d < dc. But in fact h > f and is real regardless of d < dc, as shown in Figure 3.3. Although it can happen that h > c for
some much larger d. The same for qh - it is still real for d > dc. Nevertheless, there is no point in extracting an image point charge at
z = h > f when the image lies entirely on the focal segment anyway. (In their notation c↔ a, f → c and dc→ do.)
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Figure 3.2: Schematic of the problem of a point charge near a prolate spheroid, showing the extended image
singularity in the case of a close source charge. Red represents positive charge and blue negative.
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Figure 3.3: Comparison of the height h of the image point charge in [42] to that from [45]. The height is plotted
as a function of the source charge height d, for two spheroids of very different aspect ratio. The top of the focal
segment lies at f = 1, and dc is the critical height for the source charge - the blue line is only used for d < dc.

3.2.2 Comparison to approach in [45]

In [45] the authors separated out a different image point charge, but in this case its location and charge were
chosen so as to cancel out just the n = 0 and n = 1 terms of the series (3.4) exactly.As shown in Figure 3.3, the
height of the image charge in [45] decreases faster towards the center of the spheroid, and may even lie on the
focal segment, unlike the point image from [42]. This is a good approximation in cases where the spheroidal
series converges very quickly so that the first two terms are dominant, but from the point of view of analytical
continuation, but this point charge does not appear in the reduced image.

3.2.3 Analytic continuation of the potential for close source charges

For point sources within the critical distance d < dc, the potential diverges within the spheroid ξ < ξh, which
extends along the z-axis to z=±h. We will make the intuitive guess that V is singular on the z-axis from z=− f
to h, shown in Figure 3.2; there seems no reason why the image would have to extend to z < − f , when the
image should concentrate towards the top surface as the source comes very close, mimicking the image solution
for the plane. And it is a fair assumption that the image lies on the axis, since this is the case for d > dc, as seen
in the previous section.

So we’ll define a ‘stretched’ prolate coordinate system whose focal segment lies on the z-axis from z =− f
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to h, exactly on the proposed singularity:

ξ̄ =

√
ρ2 +(z+ f )2 +

√
ρ2 +(z−h)2

f +h
(3.15)

η̄ =

√
ρ2 +(z+ f )2−

√
ρ2 +(z−h)2

f +h
, (3.16)

with the goal of expressing Vr as a series of the corresponding spheroidal harmonics. There should be no reason
for such a series to diverge anywhere except on this singularity.

In order to find such a series, we can use the transformations between spheroidal and spherical harmonics,
first transforming the series in to a sum of spherical harmonics, with the following transformation [26]:

Qn(ξ )Pn(η) =
∞

∑
p=n

p!2

2(p−n)!(p+n+1)!

(
2 f
r

)p+1

Pp(cosθ) (3.17)

then onto a basis of the stretched spheroidal harmonics [5]:(
h+ f

r′

)p+1

Pp(cosθ
′) =

∞

∑
k=p

2(−)k+p(2k+1)(k+ p)!
p!2(k− p)!

Qk(ξ̄ )Pk(η̄), (3.18)

where r′ =
√

ρ2 +(z+ f )2, cosθ ′ = (z+ f )/r′.
Then the series (3.13) may be re-expressed as

V ≡V ′′ =Ve +V (0)−
∞

∑
k=0

(2k+1)
k

∑
n=0

βkn(2n+1)
[

Qn(ξd)Pn(ξ0)

Qn(ξ0)
+qhPn(ξh)

]
Qk(ξ̄ )Pk(η̄), (3.19)

where

βkn =
k

∑
p=n

(−)p+k(k+ p)!
(k− p)!(p−n)!(p+n+1)!

(
2 f

f +h

)p+1

. (3.20)

These series suffer numerically from catastrophic cancellation, where the individual terms are large but with
alternating sign, and their magnitudes are just so that their combined sum is many orders of magnitude smaller
than the terms themselves. This cancellation is so dramatic that 15 digits is not enough precision to compute
the sum with any accuracy for k,n & 20. Fortunately βkn can instead be computed via the following stable
recurrence:

βk+1,n =
k+1

(n+ k+2)(k−n+1)

{
(2k+1)

[
2xh−

n(n+1)
k(k+1)

−1
]

βkn +
(n− k+1)(k+n)

k
βk−1,n

}
, (3.21)

xh =
2 f

h+ f

with initial values

βnn =
1

2n+1
xn+1

h (3.22)

βn+1,n =xn+2
h − xn+1

h . (3.23)

But another source of numerical instability in (3.19) lies in the sum over n, which again suffers from catastrophic
cancellation, and this time there seems no way to find an analytic stable method of computation due to the
complexity of the terms. The numerical errors become significant for higher k, depending on the geometry of
the problem.

The series for the line charge distribution (3.19) is obtained by applying the Havelock formula:

λ (z) =−
∞

∑
k=0

2k+1
2

k

∑
n=0

βkn(2n+1)
[

Qn(ξd)Pn(ξ0)

Qn(ξ0)
+qhPn(ξh)

]
Pk

(
2z+ f −h

h+ f

)
, − f ≤ z < h (3.24)
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which appears to converge as 1/k - not fast enough to obtain much detail before numerical problems appear.
Even multiple precision has been tried but offers only mild improvement due to it being impractically slow.

In Figure 3.4 the analytic continuation of the potential is plotted for three different configurations of
spheroids and point charges. The three left panels confirm numerically that V ′′ is the analytic continuation
of V ′ and therefore of V . V ′′ is smooth all the way down to the line segment − f ≤ z≤ h. The far right panels
are an attempt to get an idea of what the corresponding image line charge distribution looks like, by plotting
the potential very close to the image line singularity; the potential approaching any line of charge becomes
proportional to the line charge density. On these far right panels, the point charges Ve and V (0) are subtracted
from the total potential V ′′ since they tend to overpower the line source. These plots indicate that there are no
other point sources in the image system, unless they have a very small amount of charge. For all three plotted
configurations, the main features of the image line charge distribution are: a positive charge distribution on the
segment f ≤ z < h, which spikes at z = + f , then decreases past zero at some z . f to negative values, and
steadily decreases in magnitude as z approaches − f .

3.2.4 First order approximation

Towards the goal of making the series (3.24) converge faster so that it may be plotted accurately using double
precision, we will look for a first order approximation to subtract from the series. Ideally this is done by
analytically determining the next order in the limit of the series coefficients in (3.19), but this seems intangible.
Instead we will follow the approach used to determine V (0), considering the next order in the original series
(3.4). In that case, subtracting off V (0) from the “stretched” series (3.19) made the series converge much faster,
since the limit of series coefficients for V (0) expressed in terms of stretched spheroidal harmonics also happened
to match the limit of the coefficients for V expressed in terms of stretched spheroidal harmonics. However, this
does not happen in the following attempt to extract the next order of V .

From the expansions of the Legendre functions given in (3.6), we see that the first order goes as 1/n relative
to the zeroth, so a simple guess for the first order would be:

V (1) = ph

∞

∑
n=0

Pn(ξh)Qn(ξ )Pn(η) (3.25)

for some constant ph, which can be determined by matching the limit of the series coefficients of V (1) to those
in Vr−V (0), to be

ph =
qh

4

(
2ξ0√
ξ 2

0 −1
− ξd√

ξ 2
0 −1

− ξh√
ξ 2

0 −1

)
(3.26)

Then the series coefficients for Vr−V (0)−V (1) converge as 1/n relative to the coefficients for Vr−V (0). The
series (3.25) diverges inside the spheroid ξ ,ξh just as does the series for Vr. We can express (3.25) as a series
of the stretched spheroidal harmonics:

V (1) = phxh

∞

∑
k=0

Pn(2xh−1)Qk(ξ̄ )Pk(η̄) (3.27)

which converges everywhere except the segment − f ≤ z≤ h, and its line charge distribution can be computed
with no numerical problems. The problem is that, unlike the case for V (0), the coefficients of the series’ of
stretched spheroidal harmonics for V in (3.19) and in (3.27) do not match (numerically at least), even though
their coefficients expressed in the original series (3.4) and (3.25) do match. So unfortunately, subtracting V (1)

from Vr−V (0) has no effect on the rate of convergence of the series (3.19) or (3.24). But there may exist a first
order approximation to both series that differs in higher orders in n so that it still matches the first order in (3.4)
but may also match the first order in (3.19).

3.2.5 Off-axis source charge

For an off-axis point charge at ξd ,ηd , there is a critical spheroidal surface ξc, where for the source outside this
surface, ξd > ξc, the image lies completely on the focal segment, but for ξd < ξc the series solution diverges
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Figure 3.5: schematic of a guess of the location of the image for a point charge near a prolate spheroid,
consisting of an image point charge, a parabolic bowl, and the focus. The sign of the image charge may
not be all negative.

everywhere inside some inner spheroid. The location of the fundamental singularity/singularities is unknown.
We may let the point charge lye on y = 0. The series solution is

V =
f√

(x− xd)2 + y2 +(z− zd)2
−

∞

∑
n=0

n

∑
m=−n

(2n+1)(−)m (n−m)!2

(n+m)!2
Pm

n (ξ0)

Qm
n (ξ0)

Qm
n (ξd)Pm

n (ξd)Qm
n (ξ )P

m
n (η)eimφ .

(3.28)

It may be possible to analytically this using the Watson transformation which was applied to the time-harmonic
scattering problem for a dipole near a sphere [49, 50] - see also the Chapter 5. An initial guess is that the series
would look something like

V = ∑
ν

∞

∑
m=0

(2ν +1)Pν(ξ0)

sin(νπ)∂νQν(ξ0)
Qm

ν (ξd)Pm
ν (ηd)Qm

ν (ξ )P
m
ν (η)eimφ ? (3.29)

where ν are the complex zeros of Qm
ν (ξ ) for fixed m and ξ . The convergence of a Watson transformed series

tends to depend on a different coordinate, as seen for the sphere and cylinder - so in this case series should
hopefully depend on η instead of ξ . A plausible guess is that the image lies on the surface η = ηd ,ξ < ξh
which is a parabolic bowl, plus the focus, as shown in Figure 3.5 - this would be consistent with the on-axis
case. Then (3.29) should converge everywhere except this bowl and the focus (since Qν(ξ = 1) diverges),
giving the full analytic continuation of V . But actually evaluating (3.29) seems a nightmare - the zeros ν

are not given by an exact formula - they would likely have to be calculated by some algorithm for finding
complex zeros. Also, we find for the sphere in Chapter 5 that the Watson series is numerically unstable near
the singularity.

3.3 Point charge at center of conducting prolate spheroid

This problem is also simple enough to derive an analytic continuation for, by using basis re-expansions. Now
the excitation potential is

Ve =
f
r
=

∞

∑
n=0

(2n+1)Pn(0)Qn(ξ )Pn(η). (3.30)
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Figure 3.6: Schematic of the problem of a point charge centered in a prolate spheroid, roughly showing the
proposed disk image with singular rings that extends out to infinity. Red represents positive charge and blue
negative. Beyond the initial negative ring, the actual pattern of charge on the disk is a guess based on the
limiting case of a cylinder.

Note that for n odd, Pn(0) = 0. The total potential inside is V =Ve +Vr, where

Vr =−
∞

∑
n=0

(2n+1)
Qn(ξ0)

Pn(ξ0)
Pn(0)Pn(ξ )Pn(η), (3.31)

which converges inside a spheroidal volume with surface ξ = ξh = 2ξ 2
0 − 1. Now we want to determine the

form of the image, which must lie outside this spheroid ξ = ξh. For the similar problem of a charge located
inside a cylinder [51], the image lies on the z = 0 plane with a circular hole. So at least for thin long spheroids
we should expect a similar disk image, where the hole touches the spheroid of divergence. So we will assume
that the image lies on

ρ ≥ h = f
√

ξ 2
h −1, z = 0, (3.32)

which is depicted in Figure 3.6. Now to find a mathematical expression for the analytic continuation of Vr,
we could follow the approach for the infinite cylinder and search for an expression as a sum or integral of
cylindrical harmonics J0(kρ)e−k|z|, since this expression should converge everywhere except this image disk.
However, there isn’t a clear ansatz for this is - for the cylinder the solution is a discrete sum over k = kn,
the nth zeros of J0, but there seems no reason why Vr couldn’t be a sum over different values of k, or even
an integral over 0 ≤ k < ∞. So instead we will use different basis that also shares this plane singularity -
radially inverted irregular oblate spheroidal harmonics (RIIOSHs). These are singular on the z = 0 plane with
a hole in the middle, which can be fitted to match the assumed image domain (3.32) exactly. The RIIOSHs are
1
r

Qn(iχ̄)Pn(ζ̄ ), where χ̂, ζ̂ are radially inverted oblate spheroidal coordinates:

χ̂ =
1√
2h

√
r̂2−h2 +

√
(r̂2−h2)2 +(2hur̂)2, ζ̂ =

ur̂
hχ̂

, r̂ =
h2

r
. (3.33)

h is the focal disk radius which has been set so that the RIIOSHs are then singular on the domain (3.32). To
expand Vr in terms of RIIOSHs, we must first expand the prolate spheroidal harmonics in (3.31) in terms of
regular spherical harmonics - this expansion is well known [52]. Then we can expand the spherical harmonics
in terms of RIIOSHs. The required expansion can be obtained by applying radial inversion to a well known
transformation formula between the irregular spherical harmonics and the irregular oblate spheroidal harmonics
[52]. Inserting these expansions into (3.31) and rearranging the summation order gives

Vr =
∞

∑
k=0:2

{
k

∑
p=0:2

[
∞

∑
n=p:2

(2n+1)
Qn(ξ0)

Pn(ξ0)
Pn(0)

(−)
n−p

2 (n+ p−1)!!
p!(n− p)!!

]

× (k+ p−1)!!
p!(k− p)!!

(
h
f

)k
}

(2k+1)ik+1 h
r

Qk(iχ̂)Pk(ζ̂ ). (3.34)
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The series over n appears to converge quickly and be numerically stable (checked for p ≤ 100). But the sum
over p suffers from catastrophic cancellation like in (3.19) - the terms are only accurate for k . 44 (depending
on aspect ratio). In some regions of space - in particular inside the physical spheroid, 44 terms is enough to
converge to many digits of accuracy, and (3.34) has been checked to agree with the original series (3.31) inside
the spheroid.

3.3.1 Zeroth order approximation

We can improve the numerical stability of (3.34) slightly by considering a simple approximation to Vr, similar
to both the image charge V (0) in Sec. 3.2.1 and the image disk in [51] for the cylinder.

In addition to the limits for the Legendre functions given in (3.6), we need the limit for Pn(0):

Pn(0)→
√

2
nπ

(−)n/2
[

1− 1
4n

+O(n−2)

]
. (3.35)

Then the coefficients in the series (3.31) go as (to zeroth order):

Qn(ξ0)

Pn(ξ0)
Pn(0)→

√
2π/n(−)n/2

(ξ0 +
√

ξ 2
0 −1)2n+1

. (3.36)

We want to find a simple function that matches this limit, that when substituted in (3.31), has a simple closed
form for the corresponding series. For the infinite conducting cylinder, the zeroth order approximation is
two point charges offset on the imaginary z-axis at z = ±2i, which appears in real space as a ring/outer disk,
mimicking the exact image. So for the spheroid, the zeroth order image should be two point charges offset by
z =±ih. The spheroidal series expansion for this is easily found from the inverse distance expansion [53]:

V (0) =
ic
√

ξh√
ρ2 +(z− ih)2

− ic
√

ξh√
ρ2 +(z+ ih)2

=−2i
√

ξh

∞

∑
n=0

(2n+1)Qn(iξh)Pn(ξ )Pn(η), ξh = h/ f . (3.37)

Although not immediately apparent, the series coefficients in (3.37) have the same asymptotic limit as (3.36),

since (ξh +
√

ξ 2
h +1)n+1/2 = (ξ0 +

√
ξ 2

0 −1)2n+1. V (0) is a good approximation to Vr for fatter spheroids,

accurate to within 1% (note a constant correction term should be applied to V (0), replacing the n = 0 term in
(3.37) with the term in (3.31)).

3.3.2 First order approximation

A first order approximation can be found in a similar manner, by considering the next order in the coefficients
for the Legendre functions, which allows us to deduce the limit of the coefficients in V −V (0):

(2n+1)
[

Qn(ξ0)

Pn(ξ0)
Pn(0)−2i

√
ξhQn(ih/ f )

]
→
√

π

2n
(−)n/2 ξ 3

0

ξ
3/2
h

(
ξ0 +

√
ξ 2

0 −1
)−2n−1

√
ξ 2

0 −1
. (3.38)

Now consider the limit of

(2n+1)
∫

Qn(x)dx = Qn+1(x)−Qn−1(x) →
√

2π

n
(x2−1)1/4

(x+
√

x2−1)n+1/2
, (3.39)

which can be matched to the limit of (3.38) with x = ih/ f and the right prefactor. This leads to the first order
correction, writing Vr ≈V (0)+V (1):

V (1) =−
ξ 3

0

2ξ
3/2
h

√
ξ 2

0 −1

∞

∑
n=0

(2n+1)
∫ ih/ f

Qn(x)dx Pn(ξ )Pn(η). (3.40)
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For n = 0,
∫ ih/ f Q0(x)dx = 1− h/ f tan−1( f/h)− log(1+ f 2/h2)/2. The series for V (1) has a simple closed

form expression:

V (1) =
ξ 3

0

2ξ
3/2
h

√
ξ 2

0 −1
Re
{

log
2h

h− iz+
√

h2−2izh− r2

}
, (3.41)

which is also singular on the inverted disk ρ > h, z= 0. (3.41) can be verified by expanding (3.40) onto spherical
harmonics and comparing with the first order approximation for the cylinder in [51]. But unfortunately like in
Section 3.2.4, subtracting V (1) does not actually make the RIIOSH series converge faster.

3.3.3 Numerical improvement of (3.34)

We can now use this approximation to improve the rate of convergence of (3.34) by adding and subtracting the
two forms for V (0) in (3.37):

Vr =V (0)−
∞

∑
k=0:2

{
k

∑
p=0:2

[
∞

∑
n=p:2

(2n+1)
(

Qn(ξ0)

Pn(ξ0)
Pn(0)−2i

√
ξhQn(ih/ f )

)

× (−)
n−p

2 (n+ p−1)!!
p!(n− p)!!

]
(k+ p−1)!!
p!(k− p)!!

(
h
f

)p
}

(2k+1)ik+1 h
r

Qk(iχ̂)Pk(ζ̂ ). (3.42)

The faster convergence means (3.42) can accurately compute Vr in a larger domain relative to (3.34) before
numerical cancellations become a problem. Eq. (3.42) is plotted in Figure 3.7 for spheroids of different aspect
ratios. Numerical errors are high where χ̂ is small, near the image disk, but we can still make loose deductions
of image charge density from the plots. Vr changes sign as it moves out in the ρ direction, indicating that the
image disk charges also change sign in this way. A similar pattern is seen for the infinite cylinder, but there the
image changes sign at regularly spaced intervals, while the pattern here appears to stretch as ρ increases.

In order to prove that the image lies completely on the z = 0 plane, we would have to show that the
coefficients in either series (3.34) or (3.42) grow at a polynomial rate in k as k→ ∞, which does appear to
be true numerically for low k. But they appear far too complicated to show this analytically.

For a point charge located off-center in the prolate spheroid at some ηd , but still on the rotation axis, we can
only guess where the image lies. Plots of the standard series solutions, reveal just the edge of the image, and it
appears that this edge lies on the same coordinate line η = ηd . Perhaps the image lies on the surface η = ηd ,
ξ > ξh - an infinite parabolic curved sheet with a circular hole around the spheroid. For ηd = 0, this reduces to
the flat disk image proposed in this section, and for a point charge located at the focus η = 1, the image would
be a straight line extending up the z axis for ξ > ξh.
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Figure 3.7: Plots of the analytic continuation of V using Eq. (3.42), for spheroids of different aspect ratios,
which extend out on the x-axis to ρ = 0.2,0.4,0.7 respectively, with f = 1 in each. The series (3.42) is
computed up to k =K for two similar values of K, and these are compared to check that the series has converged
sufficiently and has not encountered numerical cancellations. Regions where the two series have converged to
less than 10% of each other have been whited-out to avoid showing this incorrect data. There is no guarantee
that the remaining plot is accurate to within 10% error, since the two series may just happen to coincide, likely
in the areas between the white blobs. The K values for each plot are - top: K = 14,20, middle: K = 24,30,
bottom: K = 34,44.
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3.4 External oblate harmonics expanded on internal spherical harmonics

On a related note, we present the following potential tool. Since the external oblate spheroidal harmonics
Qn(iχ)Pn(ζ ) are finite everywhere in space, they can actually be expanded as a series of internal spherical
harmonics. On the z-axis, χ = |z|/ f , ζ = 1, where f is the focal disk radius. We assume a regular spherical
harmonic expansion and match the coefficients of the series to hypergeometric expansion of the Qn(iχ) on the
z-axis about z = 0. Skipping the details, the result is for the azimuthally independent m = 0 functions:

in−1Qn(iχ)Pn(ζ ) =−
π

2

n

∑
k=0:2

k

∏
p=1

n− k−1+2p
p

n−k
2

∏
p=1

2p−1
2p

(
r
f

)k

Pk(cosθ)

+

( n
2

∏
p=1

2p
2p−1

)
∞

∑
k=1:2

k−3
2

∏
p=0

(2p+n+2)(2p−n−1)
(2p+2)(2p+3)

(−)
k−1

2

(
r
f

)k

Pk(cosθ)sign(z) (3.43)

for n even, and

in−1Qn(iχ)Pn(ζ ) =
π

2

n

∑
k=1:2

k

∏
p=1

n− k−1+2p
p

n−k
2

∏
p=1

2p−1
2p

(
r
f

)k

Pk(cosθ)

−
( n−1

2

∏
p=1

2p
2p+1

)
∞

∑
k=0:2

k
2−1

∏
p=0

(2p+n+1)(2p−n)
(2p+2)(2p+1)

(−)
k
2

(
r
f

)k

Pk(cosθ)sign(z) (3.44)

for n odd. (3.43) and (3.44) have been checked numerically – the left and right hand sides agree to many digits
of accuracy.

If we can determine that a function has a non-singular surface discontinuity, say on the z = 0 plane as
in the image of a point charge at the center of a spheroid, then in theory we can expand this as a series of
spherical harmonics. If we conjecture that the image has singular rings but is finite in between, then a unique
spherical harmonic series containing both interior and exterior harmonics should converge within each annulus
between the singular rings. This could then be used to obtain the surface charge density simply by evaluating
the derivative of the spherical harmonics across the surface. But it does not seem clear how to obtain a spherical
harmonic expansion about some intermediate radius. Also, this would only work if the analytic continuation of
the potential through the surface is also non-singular on the entire annulus.

3.5 Uniqueness of reduced image?

It is well known that the analytic continuation of any harmonic function is unique, but it may be multi-valued,
lying on a Riemann surface. If a function can be expressed in all space except at line and point sources,
these are the unique singularities. But as for surface discontinuities, a smooth potential defined outside any
closed surface can be analytically continued inward – in fact this is what we have done for all problems this
far – starting from a solution defined by a multipole series which converges outside a closed surface, we have
analytically continued the function inside or outside. An open surface can also be continued through, shifting
the surface discontinuity to one side. This is like the branch cut of a multivalued functions in the complex plane
- their position can be chosen to reveal a different branch of the function in a particular region.

We can demonstrate this with a specific example. Consider a grounded conducting oblate spheroid defined
by the oblate spheroidal coordinate χ = χ0, in a uniform external potential Ve = 1. The total potential VO outside
is simply the oblate spheroidal harmonic of order zero, with an offset:

VO = tan−1
χ− tan−1

χ0. (3.45)

In fact VO is finite everywhere but with discontinuous derivatives across the focal disk. One could analytically
continue VO through either side of the disk to push the discontinuity to a different surface. For example we can
construct a piece-wise function that is continuous through the disk, but at the same time equal to VO, except in
a hemisphere sub-tending from the disk:

V ′O =

{
tan−1 χ− tan−1 χ0 r ≥ 1 or z≥ 0
− tan−1 χ− tan−1 χ0 r < 1 and z > 0

(3.46)
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Figure 3.8: Two solutions for the potential of a grounded oblate spheroid with χ0 = 1.2. Left: VO, right: V ′O.

which is equal to VO outside the hemisphere z > 0,r > 1. For large enough χ0, we have V ′O = VO outside the
spheroid χ0, so V ′O is a solution to the same physical problem. VO and V ′O are plotted in Figure 3.8, inside a
conducting spheroidal surface χ0 = 1.2. The surface charge for VO is monopolar, while the surface charge for
V ′O is a double layer - positive on one side and negative on the other, resulting in a finite discontinuity in V ′O.
It can be verified analytically that all derivatives of V ′O are continuous across the focal disk, using the spherical
harmonic expansion in (3.43) for n = 0 and omitting the sign(z) factor. So for this problem the reduced image is
not unique unless we require it to have minimum surface area. In fact VO and V ′O are just parts of a multivalued
valued function, a Riemann surface of two sheets jut like the square root function in the complex plane. This
Riemann surface is continuous everywhere except the branch point on the focal ring. To view only one branch
at every point in space, a cut in real space must be made on some surface with the ring as its edge.

And there is another image solution that was briefly mentioned in Chapter 1. This is the line charge placed
in complex space. The image has a uniform charge density distributed on the imaginary z-axis from z =−i to
i. The potential V ′′O created by this image is

V ′′O =
π

2
− 1

2

1∫
−1

dv√
ρ2 +(z− iv)2

− tan−1
χ0, (3.47)

which is equal to VO. So if we allow for images to be placed in complex space, then this line segment on the
imaginary z-axis could be interpreted as the reduced image.

We can also consider Sommerfeld images. For a point source above the center of a conducting disk, the
concept of an image is more complicated since there is apparently no space to put an image. But intuitively there
should be some sort of image opposite the disk, because if the disk is very large, the problem is comparable
to a point charge near an infinite conducting plane, where the solution is a point charge on the opposite side.
This problem can be solved with the Sommerfeld image technique by considering a double Riemann space
where the disk is a branch surface joining the two spaces (or “branches”) [14, 54]. In this double space, the
Green function - potential of a point charge, is different but still expressible in terms of standard functions. The
solution is the modified source charge source plus an oppositely charged point image opposite the disk, in the
second space. When only the physical space is considered, a branch cut is taken across the disk, so the image
source disappears and is replaced by a surface charge distribution on the disk.

3.6 Conclusion

We have investigated the reduced forms of images in spheroids and provided progress for two specific problems.
For a point charge on the axis of a prolate spheroid, close to the surface, numerical analysis of the series of
stretched spheroidal harmonics (3.19) strongly suggests that the reduced image lies on the segment extending
from the lower focus up to the image point: − f < z < h. However, we cannot analytically prove that this series
actually converges everywhere except this segment.

For a point charge at the center of a prolate spheroid, we provided some numerical evidence evidence
that that the image lies on the external disk z = 0, ρ ≥ h, by expanding the potential as a series of radially
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inverted oblate spheroidal harmonics in Eq. (3.42), but the series has severe numerical problems. Future work
to improve the numerical stability of this series or evaluate it with higher precision would allow us to visualize
the image in more detail.

Ideally we want to find the form of the image for an off-axis point source, but methods of analytic continu-
ation tend to be numerically unstable as we have seen.

33



Chapter 4
Sphere with negative permittivity

The image of a point charge near a dielectric sphere has been solved by Carl Neumann and various later authors
[15, 16, 55], as a point charge at the inversion point plus some charge distribution on the line segment from the
origin to the inversion point. In electrostatics the permittivity is real and positive, and in this case the image
formulation has no problems. But the electrostatic solution is also used in nano-photonics where the quasi-static
approximation applies. The quasi-static approximation assumes a time harmonic field, where the sphere is too
small to notice the spatial oscillations, while the permittivity depends on the frequency and may be complex
(see Chapter 1). For example, the problem of a point dipole near a sphere is used to model the radiative rate of
dipolar molecules aggregated on metallic nano-particles [56] which show permittivity with large negative real
part at optical frequencies. For a sphere, there is a resonance for each multipole order n = 1,2,3..., which occur
at negative ε = εres = −1− 1/n, where mathematically the potential and electric field are infinite. Physically
these can never be achieved exactly because all materials have some absorption which gives ε an imaginary
part, but very strong field enhancements may be exploited near these resonances [57]. In particular, for silver
particles in water, the relative permittivity at low optical frequencies has ε ′ < −1 and ε ′′ . 0.2. However, the
image integral diverges for relative permittivity ε = ε ′+ iε ′′ with ε ′ < −1, even if the potential is finite. A
solution is proposed in this chapter, regularizing the image integral solution so that it reproduces the series
solution for ε ′ <−1, by adding a finite number of infinite-magnitude multipoles.

4.0.1 Problem and image solution for ε ′ >−1

Consider a point charge Q located at z= d above a sphere radius a, permittivity εi in a medium with permittivity
εo as shown in Fig. 4.1. The relative permittivity is ε = εi/εo. Using spherical (r,θ ,φ) and cylindrical (ρ,z,φ)
coordinates, the excitation potential is

Ve =V0
a
rd

; rd =
√

ρ2 +(z−d)2, V0 =
Q

4πεoa
. (4.1)

Figure 4.1: Schematic of the problem.

The total potential outside the sphere may be expressed
as Vo = Ve +Vs, where Vs is the scattered potential. Note
we have changed notation from Vr (“reflected” potential) in
previous chapters to Vs (“scattered” potential) to follow the
convention used in time harmonic scattering.

Vs may be derived by assuming a series of spherical
harmonics and determining the coefficients from the
boundary conditions Vi =Vo, ε∂rVi = ∂rVo at r = a, where
Vi is the potential inside the sphere. The solution is

Vs =−V0

∞

∑
n=0

n(ε−1)
n(ε +1)+1

(
b
r

)n+1

Pn(cosθ). (4.2)

This series is also often modified by separating an image
point charge at z = b = a2/d:

Vs =−V0
ε−1
ε +1

[
b
rb
−

∞

∑
n=0

α

n+α

(
b
r

)n+1

Pn(cosθ)

]
(4.3)
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where

rb =
√

ρ2 +(z−b)2, α = α
′+ iα ′′ =

1
ε +1

. (4.4)

Both of these series converge for r > b, and provide the solution for all α 6= 0− 1,−2...; i.e. whenever the
potential is finite. The reason then for using an alternate image solution is because these series converge very
slowly when the point charge is near the surface.

The image singularity lies inside on the line segment 0 ≤ z ≤ b, ρ = 0. Its charge distribution can be
derived by using this ansatz for the image domain, expanding the Green function in the line integral in terms of
spherical harmonics, and comparing with (4.3) [16]:

Vs =−V0
ε−1
ε +1

[
b
rb
− b

ε +1

∫ 1

0

uα−1du√
ρ2 +(z−bu)2

]
. (4.5)

The equality of the series and integral expressions comes from recognizing the generating function for the
Legendre polynomials in the integrand:

1√
ρ2 +(z−bu)2

=
∞

∑
n=0

bnun

rn+1 Pn(cosθ). (4.6)

Before investigating the image solution, we should consider what happens to the potential near the plasmon
resonances. The simplest is the “Fröhlich” resonance at ε = −2, where the dipole moment of the sphere
(the n = 1 term) diverges. The next is the quadrupole resonance at ε = −1.5, then the octopole resonance at
ε = 1.333 and so on; there are an infinite number of resonances of increasing complexity as ε →−1. Despite
this, ε =−1 itself is not a resonance – from Eq. (4.2) one can deduce that Vs(ε =−1) = 0. Of course physically
in the quasistatic approximation, ε is complex and the closest approach to any resonance will be ε =−εres+ iδ
for small δ .

But the problem with the solution (4.5) is that the integral diverges for all complex ε < −1. In the next
section we will remedy this by modifying the image expression.

4.0.2 Regularized image for ε ′ <−1

If α ′ < 0 (ε ′ < −1) the integral (4.5) diverges, due to the antiderivative being infinite at u = 0. This is clearly
seen if we substitute the expansion (4.6) into the integral - then all terms with n < −α ′ diverge. In fact the
integral would be equal to the series (4.3) if we ignored the u = 0 integration bound, but we cannot do this if
we want to make physical sense of the integral as a charge distribution. To counter this problem, we subtract
off the infinite part of the integral, that is all terms with n < −α ′. For α ′ < 0, α 6= 0,−1,−2,−3..., (the case
α = 0 is finite but should be treated separately) we may write

∞

∑
n=0

(
b
r

)n+1 1
n+α

Pn(cosθ) = lim
ν→0

[
b
∫ 1

ν

uα−1du√
ρ2 +(z−bu)2

+
b−αc

∑
n=0

νn+α

n+α

(
b
r

)n+1

Pn(cosθ)

]
. (4.7)

Where bxc is the floor of x, the largest integer ≤ ℜ{x}. As ν → 0, the integral and series both diverge, but
their difference is finite and equal to the integral evaluated at the top end point which is equal to the left hand
side. This approach of regularization has been used recently for the Stieltjes transformation, and discussed in
more detail in [58] (see their eq 2.18). The image consists of an image point charge at the inversion point, plus
a line charge, plus, if α ′ < 0 (ε ′ < −1), a finite number (b−α + 1c) of infinite-magnitude multipoles at the
origin that regularize the divergence of the line source. For α = −1/2 for instance (top center of Figure 4.3),
an image point charge at the origin is introduced with opposite sign to the line charge distribution (same sign
as the source charge). Then the correct form of the potential for α 6= 0,−1,−2... is

Vs =V0
ε−1
ε +1

[
− b

rb
+

1
ε +1

lim
ν→0

(
b
∫ 1

ν

uα−1du√
ρ2 +(z−bu)2

+
b−αc

∑
n=0

νn+α

n+α

(
b
r

)n+1

Pn(cosθ)

)]
. (4.8)

When α ′ > 0 (ε ′ > −1), the sum vanishes and the expression reduces to (4.4). The concept of a divergent
charge distribution is very common in electrostatics - for example the ideal dipole is the limit of two opposite
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Plots of the analytic continuation of the potential Vs +Ve for various ε > −1. Here there are no
infinite multipoles. Note the lower intensity scale in (d)-(f).

charges placed infinitely close together while their charge magnitude diverges so that the electric field is finite.

An interesting case is ε =−1 (|α|= ∞), where the limit as ε→−1 from below oscillates rapidly, but from
above the image can be obtained from the spherical harmonic series solution:

Vs(ε =−1) = 2V0

∞

∑
n=0

n
(

b
r

)n+1

Pn(cosθ) = 2V0
b2

r2
b

cosθb (4.9)

where θb is the colatitude from the inversion point. This is a dipole at the inversion point pointing towards the
source (seen the top left of Figure 4.2 for ε = −0.9). And for the conducting sphere, |ε| = ∞ in any direction
in the complex plane (α = 0):

Vs(|ε|= ∞) =−V0

∞

∑
n=0

(
b
r

)n+1

Pn(cosθ) =−V0
b
rb
. (4.10)

The form of the image (4.8) can be verified by plotting the spheroidal harmonic series solution [5] which
converges everywhere except the image line, for all α 6=−1,−2,−3, ... :

Vs =V0
ε−1
ε +1

[
− b

rb
+2

∞

∑
n=0

(2n+1)
n

∏
k=1

α− k
α + k

Qn(ξ̄ )Pn(η̄)

]
(4.11)

where ξ̄ =
r+ rb

b
, η̄ =

r− rb

b
.

The familiar potentials for ε ′ > −1 are plotted in Figure 4.2, and the potentials for various ε ′ < −1 are
plotted in Figure 4.3. In both figures Vs is computed with (4.11). The cases ε → ∞ (bottom right of Figure 4.2)
and ε →−∞ (top left of Figure 4.3) both produce the identical result of the Kelvin image charge found for the
conducting sphere. Figure 4.2 shows some interesting features even for ε ′ >−1, for example the image system
flip sign as ε passes through 1 (see plots for ε = 0.9,2), but there is no real difference between ε = 0.1 and
ε = −0.1. In Figure 4.3, as ε →−1 from below we see the addition of a new infinite multipole at the origin
each time ε passes a resonance εres =−1−1/n.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Plots of the analytic continuation of the potential Vs+Ve for various ε , as computed by the spheroidal
harmonic series 4.11 with a truncation order of n= 300. The grayscale has been truncated for clarity. The series
converges very slowly near the image line for ε→−1, creating the thin striped spheroidal region which should
be ignored. For ε = 1.9 (d), there are actually 2 positive lobes either side of the image line.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Real and imaginary parts of the analytic continuation of Vout =Vs +Ve for complex ε .
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Plots of the analytic continuation of the internal potential Vin as computed with the inverted
spheroidal harmonic series (4.14). A truncation order of n = 300 was chosen. The black circle near the origin
is an artifact from overflow (this gets worse for high n), and the striped areas are an artifact from the slow
convergence of the series near the image line. Note that (a),(b) have a different intensity scale. (e),(f) are real
and imaginary parts for a single complex ε .

Figure 4.5: Circles that define the number of additional
multipoles to be added to the sum in (4.8). To the right
of ε ′ =−1 there are no additional multipoles, and from
there, crossing inside each circle adds one multipole.

There is a drastic difference for ε being slightly
either side of each resonance, which is very apparent
for the plots with ε = −2.1 and ε = −1.9. The
black and white striped regions are due to the finite
truncation of the spheroidal harmonic series (higher
orders may be summed to minimise this striped
region, but this eventually introduces numerical
underflow in Qn(ξ̄ ) away from the line segment).
The spheroidal series can be proven to converge in
all space except the line segment ξ̄ = 1 by analysis
of the limit of each term as n→ ∞.

Which converges for ξ̄ > 1, although slowly for
α →−∞ (ε →−1).

For complex ε , the real and imaginary parts of Vs
are plotted for ε ′ =−1,−1.5,−2, ε ′′ = 0.5 in Figure
4.4. As mentioned above, the number of infinite-
magnitude multipoles increases by one as α ′ crosses
left of −n. The conditions α ′ =−n are equivalent to
ε ′′2 = −(ε ′+ 1)/n− (ε ′+ 1)2, which are equations
for circles in the complex plane for each n, shown in
Figure 4.5. For ε ′′ 6= 0 the potential changes smoothly as ε crosses these boundaries.
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4.0.3 Solution inside the sphere

Here the image is an integral over the semi-infinite line segment extending from the source, and now the integral
diverges at r = ∞ for α < 1 (ε < 0). We present the final results for the potential as a spherical harmonic series,
a regularised image system, and a spheroidal harmonic series [26]:

Vi =
V0a

ε +1

[
2
rd

+
1
d

∞

∑
n=0

ε−1
n(ε +1)+1

(
r
d

)n

Pn(cosθ)

]
(4.12)

=
V0a

ε +1

[
2
rd

+
ε−1

(ε +1)2 lim
ν→∞

(∫
ν

1

u−αdu√
ρ2 +(z−du)2

− a
d

b−αc+1

∑
n=0

ν−n−α

n+α

(
r
d

)n

Pn(cosθ)

)]
(4.13)

=
V0a

ε +1

[
2
rd

+(ε−1)
2
r

∞

∑
n=0

(2n+1)
n

∏
k=1

α− k
α + k

Qn(ξ̌ )Pn(η̌)

]
, (4.14)

where ξ̌ = ξ̄ (r→ a2/r), η̌ = η̄(r→ a2/r) are radially inverted offset spheroidal coordinates. This time the
regularization is a sum of infinite magnitude external multipoles. The spheroidal series (4.14) is plotted for a
range of complex ε in Figure 4.6.

The results for dipole sources are similar and presented in [23].

4.1 Conclusion

The canonical image system for a point source near a dielectric sphere has been shown to break down for
negative values of the real part of the relative permittivity. This can be fixed analytically with the addition of
regularizations in the form of infinite-magnitude multipoles (Eq. 4.8), so that the image system reproduces the
solution to the problem. However the potential created by the image system may be complicated to compute
numerically. So instead we have used the efficient spheroidal harmonic expansions of Ref. [5] which apply
for all values of ε , to visually reaffirm the existence of the additional regularizations. This has shown that the
image system changes drastically, increasing the number of positive and negative lobes as ε crosses the poles
εres =−2,−1.5,−1.33..., just as does the nature of the surface fields.
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Chapter 5
Oscillating point source near a sphere

The Helmholtz equation governing harmonic time dependent fields also exhibits image singularities, and in
fact this equation connects with the high frequency geometric optics limit, where images may be determined
using ray optics. For the conducting plane, the image of a radiating dipole is similar to that of an electrostatic
point charge, and that of a visible point object - a copy of the source object exactly opposite the plane, with
inverted charge or phase. For a conducting sphere the electrostatic image is a charge at the inversion point, and
the image for a visible object using geometric optics is given in [59], but the image for a radiating dipole of a
finite frequency near a sphere is unknown, although images have been derived in the zeroth and first order long
wavelength approximations [60].

The problem of an oscillating point source (monopole or dipole) scattering from a sphere for the Helmholtz
equation can be solved with generalized Mie theory as a series spherical wavefunctions. However the series
converges slowly for emitters close to the surface, so we would like some kind of image solution instead.

Here we attempt to determine the image of an acoustic spherical wave near a soft sphere. This problem is
similar to the electromagnetic scattering problem, but simpler – it can be used to analyze the problem with more
clarity, and the results should be extendable to the electromagnetic case. First, we assume there to be an image
spherical wave located at the standard Kelvin inversion point, and find the correct weighting of the image so
that when subtracted from the original series, the remaining series converges faster. The technique was used in
the context of a static point source near a spheroid in Chapter 3 – a point image was separated from the series
of spheroidal harmonics by subtracting terms that matched the leading order of the series coefficients, and from
these terms recognizing the expression for an offset point charge [61]. The remaining series coefficients are
messier but the series converges faster. Then towards finding a complete image system, we consider a low
frequency expansion of the potential, finding the complete image system to the second non-zero order in the
wavenumber expansion. Finally we consider the Watson transformation - a series which converges depending
on θ rather than r, and analysis of this series suggests that the image lies on a finite segment on the positive
z-axis.

5.1 Acoustic spherical wave near soft sphere

Consider a sphere radius a excited by a spherical wave on the z axis at z = d > a. The excitation potential Ve
can be expressed as a series of spherical wave functions jn(kr)Pn(cosθ) [53]:

Ve =
eikrd

ikrd
= h0(krd) =

∞

∑
n=0

(2n+1)hn(kd) jn(kr)Pn(cosθ), rd =
√

ρ2 +(z−d)2, (5.1)

where jn and hn are the spherical Bessel and Hankel functions. Writing V = Ve +Vs where Vs is scattered by
the sphere, the boundary condition for a soft scatterer is Vs =−Ve at r = a. The solution is easily shown to be

Vs =−
∞

∑
n=0

(2n+1)
jn(ka)
hn(ka)

hn(kd)hn(kr)Pn(cosθ), (5.2)

which converges for r > b = a2/d. We look to extract an image monopole at the standard Kelvin inversion
point z = b, just as is done in the static case. We want the magnitude of this image to be so that extracting it
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cancels out the leading order (in n) in the remaining series. The expansion of the image monopole is

Vimage monopole ∝
eikrb

ikrb
=

∞

∑
n=0

(2n+1) jn(kb)hn(kr)Pn(cosθ), rb =
√

ρ2 +(z−b)2. (5.3)

For n→ ∞ we have to leading order [62]:

(2n+1)
jn(ka)
hn(ka)

hn(kd) =
knbn+1

(2n−1)!!a
(1+O(1/n)) (5.4)

a
d
(2n+1) jn(kb) =

knbn+1

(2n−1)!!a
(1+O(1/n)) (5.5)

⇒ (2n+1)
jn(ka)
hn(ka)

hn(kd) =
a
d
(2n+1) jn(kb)(1+O(1/n)). (5.6)

So we weight the image in (5.3) by a/d and rewrite the potential as

Vs =−
a
d

h0(krb)−
∞

∑
n=0

(2n+1)
[

jn(ka)
hn(ka)

hn(kd)− a
d

jn(kb)
]

hn(kr)Pn(cosθ). (5.7)

The resulting series converges faster by a factor 1/n, due to the leading order being canceled, but the series
still diverges for r < b because the terms behave as (b/r)n. In the static limit the two terms in the series cancel
completely, leaving just the offset point image. We would like to make further deductions about the image, but
this approach of extracting terms seems unlikely to result in an expression that converges for r < b.

5.2 Integral equation of the first kind

A reasonable assumption for the location of the image is on the finite segment from the origin to the inversion
point of the source with some linear density λ (z). Then we may express the scattered potential as an integral
over this source:

Vs =−
∫ b

0
λ (v,ka,kd)

eikr′

ikr′
dv, (5.8)

r′ =
√

r2−2ruv+ v2, u = cosθ . (5.9)

λ may be able to be determined from the boundary condition Vs =−Ve at r = a:∫ b

0
λ (v,ka,kd)

eikr′

r′
dv =

eikrd

rd
at r = a. (5.10)

Assuming that the image lies on this segment, (5.10) should have a unique solution. This is a Fredholm equation
of the first kind, ∫ b

0
λ (v)K(u,v)dv = f (u); (5.11)

where K(v,u,ka,kd) is the kernel and f (u) is the inhomogeneous part:

K(v,u,ka,kd) =
eik
√

a2−2auv+v2

√
a2−2auv+ v2

, f (u) =
eik
√

a2−2aud+d2

√
a2−2aud +d2

. (5.12)

We should subtract the image point charge at the inversion point as in (5.7), since this would appear as a delta
function in λ . Then we would solve for some λ̄ , which is identical to λ except at v = b:∫ b

0
λ̄ (v,ka,kd)

eikr′

r′
dv =

eikrd

rd
− a

d
eikrb

rb
at r = a. (5.13)
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We can expand K and f using the offset spherical wave expansion (5.3), and subtract the inversion point
image: ∫ b

0
λ̄ (v) jn(kv)dv =

jn(ka)
hn(ka)

hn(kd)− a
d

jn(kb). (5.14)

This essentially changes the independent variable u to n.
But this approach is not practical - likely one would have to solve this numerically which is not ideal, and
integral equations of the first kind are known to be unstable. So instead, in the next section we will look at
directly extracting images from the low frequency expansion of the series.

5.3 Low frequency image system

We shall expand the series (5.2) in powers of k, assuming ka and kd are small. The expansion of the Bessel
functions for small argument read

jn(x)≈
xn

(2n+1)!!

(
1− x2

2(2n+3)
+O(x4)

)
, (5.15)

hn(x)≈− i
(2n−1)!!

xn+1

(
1+

x2

2(2n−1)
+O(x4)

)
+δn0

(
1− x2

6

)
+δn1

x
3
. (5.16)

The Kronecker deltas δnm account for the real parts of h0(x) and h1(x) being significant to this order. Then
the potential can be expanded to second order in k as

Vs =
1
k

V (0)
s +V (1)

s + kV (2)
s +O(k2)

=− ia
kdrb

+
a
d

(
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)
+

ika
d

(d−a)
(

a
r
−1
)

+
ik
2a

∞

∑
n=0

(
b
r

)n+1(d2 + r2−a2

2n−1
− a2

2n+3

)
Pn(cosθ)+O(k2). (5.17)

The k−1 and k0 terms are singular at the inversion point and the origin respectively. But the k1 term is a series
which converges only for r > b, which does not reveal the image or ”support” of the function. To find its image,
we use the result of [16] that

∞

∑
n=0

1
n+µ

(
b
r

)n+1

Pn(cosθ) =
∫ 1

0

buµ−1du√
ρ2 +(z−bu)2

ℜ{µ}> 0. (5.18)

We require the two cases µ = 3/2,−1/2. For µ = 3/2:

∞

∑
n=0

1
2n+3

(
b
r

)n+1

Pn(cosθ) =
b
2

∫ 1

0

u1/2du√
ρ2 +(z−bu)2

. (5.19)

But for µ =−1/2 the anti-derivative is singular at the endpoint u = 0. For this we can subtract the infinite part,
as done in the previous chapter:

∞

∑
n=0

1
2n−1

(
b
r

)n+1

Pn(cosθ) = lim
ν→0

[
b
2

∫ 1

ν

u−3/2du√
ρ2 +(z−bu)2

− b
r

ν
−1/2

]
. (5.20)

The right hand side is the difference between two divergent potential functions - a line source with charge
distribution ∝ z−3/2 (which has infinite total charge), and a point charge of infinite strength 2/

√
0. To check

this image distribution numerically, we express this potential as a series of offset spheroidal harmonics, as done
for the point charge near a dielectric sphere [5]:

∞

∑
n=0

µ

n+µ

(
b
r

)n+1

Pn(cosθ) = 2
∞

∑
n=0

(2n+1)
n

∏
k=1

µ− k
µ + k

Qn(ξ̄ )Pn(η̄) µ 6=−1,−2,−3... (5.21)
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where

ξ̄ =
r+ rb

b
η =

r− rb

b
. (5.22)

The foci of the spheroidal coordinate system here is on the z-axis from the origin to z = b, coinciding with the
singularity of V (2)

s . Then we have

V (2)
s =+

ia
d
(d−a)

(
a
r
−1
)
+

i
a

∞

∑
n=0

(−)n
(

a2

(2n+3)(2n−1)
+(a2−d2− r2)(2n+1)2

)
Qn(ξ̄ )Pn(η̄) (5.23)

which converges in all space except the image at ξ̄ = 1. (5.23) allows us to justify the image form of the
potential through an independent calculation of the image charge distribution. The Havelock formula expresses
the spheroidal harmonics as an integral of a source distribution over the focal line:

Qn(ξ̄ )Pn(η̄) =
b
2

∫ 1

0

Pn(2u−1)du√
ρ2 +(z−bu)2

. (5.24)

We the obtain series expressions for the image line distributions:

λ1 =
∞

∑
n=0

(−)n

(2n−1)(2n+3)
Pn(2u−1), (5.25)

λ2 =
∞

∑
n=0

(−)n(2n+1)2Pn(2u−1). (5.26)

[63] (8.922) gives λ1 = −
√

u which agrees with the integral in (5.19). For λ2, the series diverges, but we can
use the recurrence relation and generating function for the Legendre polynomials to deduce that λ2(u > 0) =
−u−3/2/2, agreeing with the integral in (5.20).

At u = 0, d
du u−1/2 diverges. This is hard to compare to the result in (5.20), but atleast shows the same form

of a u−3/2 dependence with a point source at the origin of opposite sign. This also agrees qualitatively with the
plot of the corresponding series of spheroidal harmonics (5.23) in Figure 5.1.

The main takeaway from this analysis is that the image in the low frequency limit lies on the segment
ξ̄ > 1, or 0≤ z≤ b,ρ = 0. Since the low frequency expansions of the Bessel functions only involve polynomial
coefficients in terms of n for each order, we would naturally expect that the higher orders could also be
expressible in terms of a spheroidal harmonic series similar to (5.23), with polynomial or rational coefficients
in terms on n - a series of this type converges except for ξ̄ = 1 on the singularity. This suggests that the exact
problem for any frequency is also singular on this segment only.

5.4 Watson transformation

In 1918 Watson [49] devised a way to transform the standard multipole expansion into a series that converges
faster on the sphere surface. The analysis is complicated but basically in the series for V = Ve +Vs each term
is recognized as the residue of (2ν + 1) jν (ka)hν (kr)−hν (ka) jν (kr)

hν (ka)sinνπ
hν(kd)Pν(cosθ) at ν = n, so the series can be

replaced by a contour integral that encloses all poles at n = 0,1,2,3...:

V =
∫
(2ν +1)

jν(ka)hν(kr)−hν(ka) jν(kr)
hν(ka)sinνπ

hν(kd)Pν(cosθ)dν . (5.27)

In turn this contour integral is recognized as the sum of residues over a different set of poles at hν(ka) = 0,
which occur at complex values of ν . Skipping the details, the final result is

V = π

∞

∑
s=1

(2νs +1)
jνs(ka)hνs(kd)

sin(νsπ)∂νshνs(ka)
hνs(kr)Pνs(−cosθ). (5.28)

where νs is the sth complex zero of hν(ka) = 0, ordered in increasing magnitude and ignoring zeros below the
real line. This has not been proved but has been checked numerically, and is similar to the result in [50] for a
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Figure 5.1: Comparison of the potential V computed by the Mie series (5.2) to the low frequency expansion,
computed as a series of spheroidal harmonics (5.23), for a small ka = .3. The real parts are ignored since they
are very small. The low frequency line image is revealed, along with the “divergent” point image at the origin
that regularizes the line distribution in (5.20).

different boundary condition. As a basic analytical check, we can at least see that V (r = a) = 0. The zeros of
the Hankel functions must be found as a function of ν for a fixed argument ka; only approximate formulas are
available [64, 65, 66], so a root finding algorithm must be used to acquire full accuracy. This transformation
was initially introduced to deal with the slow convergence of the multipole series, both near the surface and
in the high frequency limit. But it may also provide the analytic continuation of V inside the sphere - the rate
of convergence of the series depends primarily on θ , unlike the standard multipole series whose convergence
depends on r. If V is only singular for θ = 0 (on the z axis for z > 0), then this transformed series should
converge everywhere except θ = 0.

For context, we’ll look at the Watson transform applied to the problem of a point charge inside an infinite
conducting cylinder, where the transformed series converges everywhere except the image singularity which is
an open disk on the z = 0 plane as seen in Chapter 2. Recapitulating this result for the source charge on the
axis: the integral solution for the total potential is

Vcylinder =
2
π

∫
∞

0

I0(t)K0(tρ)−K0(t)I0(tρ)
I0(t)

cos(tz)dt, (5.29)

whose convergence depends on ρ , diverging for ρ > 2 (twice the cylinder radius). The Watson-transformed
series is [30, 31]

Vcylinder = 2
∞

∑
s=1

J0(ksρ)e−ks|z|

ksJ1(ks)2 , (5.30)

whose convergence depends on z, and converges for all z 6= 0 where the image lies. ks is the sth (real) zero of
J0(k). The series (5.30) is much easier to compute than (5.28) since the zeros are calculated as a function of the
argument - these are much better understood and many codes are available, and also only the zeroth and first
degree of the Bessel functions are needed. It seems that (5.28) is rarely computed exactly and is mostly used
for studying the high frequency limit.

Figure 5.2 plots the series (5.28). The zeros were found using the Matlab function fsolve with starting
values given by approximate formulas for the zeros in [66] (using terms up to z−5/3 – their z−7/3 term somehow
didn’t decrease the magnitude of hν ) for small s, and in [64] for large s. The Bessel functions of complex
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order could be evaluated to double precision using the CaiBessel package on file exchange, and ∂νhν(ka)
was differentiated numerically. The Legendre function was computed from its hypergeometric series. One of
the main problems is that the starting values may not be accurate enough – fsolve may find the same zeros
for different s. In Figure 5.2 the terms for each s were calculated accurately, but the series itself cannot be
calculated near the z-axis using floating point arithmetic due to catastrophic cancellation, despite the series
converging analytically as seen in the next section. The Watson series should fail in the static limit, since then
the radial eigenfunctions are rν , but aν 6= 0 for any finite ν .

5.4.1 Convergence of Watson series

The series converges slowest near θ = 0 due to the behavior of Pνs(x→−1) for large s. To derive the region
of space where the series actually converges, we attempt to find the analytic limit of the series terms in (5.28)
as s→ ∞. From inverting the limit of the z-zeros as a function of ν for large |ν | (equivalently large s) [66], we
obtain the limit of the zeros in terms of the product log function (“Lambert W function”) W (x):

νs→−
1
2
+

iπ
(
s− 1

4

)
W
((

s− 1
4

)2π

ez

) . (5.31)

This can be further simplified using the first term in the asymptotic expansion W (x)→ logx− 1/ log logx+
O(log logx/ logx) [67]:

νs→−
1
2
+π

(
s− 1

4

)[
π

2
log
((

s− 1
4
)2π

ez

)−2

+ i log
((

s− 1
4
)2π

ez

)−1
]

(5.32)

which coincides with the result of [64]. It gives mildly larger imaginary and real parts than (5.31), according
the second order −1/ log logx term. We have to be careful in taking the limit of the zeros themselves since it
is not clear how the second order terms in the approximation will affect the limits of the Bessel and Legendre
functions. For example, the limiting behavior of the Hankel functions very much depends of the argument of
ν in the complex plane - for ν → +∞ (real), it increases as the Bessel function of the second kind yν(z) , but
for ν → i∞, it increases as the Bessel function of the first kind jν(z). As noted in [64] and from inspection of
(5.32), the imaginary part of the zeros grows faster than the real part so that arg(ν)→ π/2, but the real part
still grows as s→ ∞. The limit of the spherical Bessel function jν(z) for |ν | → ∞ is, directly from its series
expression

jν(z)→
√

π/2
Γ(ν +3/2)

(
z
2

)ν

(5.33)

and the spherical Hankel function hν(z) can be obtained from the relation

hν(z) =
j−ν−1(z)− e−iπ(ν+1/2) jν(z)

isin(π(ν +1/2))
. (5.34)

The limit of hν(z) is dominated by either jν or j−ν−1, depending on z and ν . In our case we find numerically
that the jν part dominates for z = kr > a, and the j−ν part dominates for kr < a. In terms of computing the field
in the physical region outside the sphere, then we can take hν(kr)→ 2 jν(kr), whereas for inside the sphere, we
can take hν(kr)→ j−ν−1(kr)/i/sin(πν).

And for the limit for ∂νhν(ka), we can differentiate (5.34), and it appears numerically that the jν term
dominates the j−ν−1 term (proof of this is needed). With this assumption, the limit can then be simplified to

∂νhν(z)→−
(

z
2

)ν √
π/2

Γ(ν +3/2)
log
(

2ν +3
z

)
. (5.35)

The Legendre function goes as, for |ν | → ∞ [48]

Pν(−cosθ)→
√

2
πν sinθ

cos
((

ν +
1
2
)
(π−θ)− π

4

)
. (5.36)
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Figure 5.2: Comparison of the Mie series (5.2) to the Watson series (5.28) for k = 0.5 and k = 5 (looking at the
imaginary parts is sufficient). Left: the potential calculated via the Mie series is plotted in all space including
the region r < b where it diverges, using up to n = 90 terms for both both values of k. Center: the Watson series
is evaluated with up to s = 250 terms for k = 0.5, and to s = 100 for k = 5, which has not converged to any
accuracy in regions near θ = 0 – convergence is too slow for floating point computation due to overflow, but a
rough derivation at the end of this chapter suggests that the series does converge for θ > 0. Right: the relative
error between the two series, showing that the series are equal where they have converged. This shows that the
Watson series provides the analytical continuation of the potential for at least some region within the sphere
r < b.
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Then altogether the limit of the series coefficients in (5.28) is governed by

(2ν +1)
jν(ka)hν(kd)

sin(νπ)∂νhν(ka)
hν(kr)Pν(−cosθ)→

{
c1

eiνθ

Γ(ν+3/2)2

( k2dr
4

)ν logν
√

ν r > a

c2eiνθ
(d

r

)ν logν√
ν

r < a
(5.37)

for constants c1,c2.
For θ > 0, the coefficients in (5.37) decay exponentially for both r > a and r < a - for r > a this can

be shown via the Stirling approximation for the Gamma function and considering the absolute value. The
coefficients decrease to zero reasonably quickly for most values of θ , but for θ → 0, may grow extremely large,
beyond floating point precision of∼ 10300, for intermediate |ν |. These large intermediate terms make the series
impractical for studying the nature of the image numerically, since the terms must cancel to converge to a much
smaller V , but with only 15 digits of precision this is not possible.

So, with the above evidence that the series (5.28) does actually converge except at θ = 0, the image must
be confined to the segment 0 ≤ z ≤ b,ρ = 0. Determining an expression for the image is a future goal, since
(5.28) diverges on this segment.

5.5 Conclusion

We have attempted to determine the nature of the image for the problem of an acoustic spherical wave near
a soft sphere, and extracted an image spherical wave to make the remaining series converge faster. The low
frequency expansion can be expressed as a line integral over 0 ≤ z ≤ b which suggests that the image for the
exact solution also lies on this segment. The Watson series supposedly provides the full analytic continuation,
and so may be a key to determining the image density.
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Part II

Quasi-static T-matrices

48



Chapter 6
Quasi-static T-matrix for the Spheroid

The T-matrix is a widely used semi-analytic technique for the study of electromagnetic scattering by particles
[7, 68, 69, 70, 71, 8, 72], used to calculate the near and far field properties of the scattering of plane waves
or localized sources by one or more particles. In this approach, the electric and magnetic fields are expanded
as series of orthogonal basis functions, usually the vector spherical wave-functions, and the T-matrix defines
the linear relationship between the expansion coefficients of the incident and scattered fields. The T-matrix
is uniquely defined for a given particle, depending only on its shape and material properties. The T-matrix
method is computationally much faster than finite element methods, and can easily be used to obtain orientation
averaged properties, useful for particle dispersions [73], or used to study clusters, by inverting a system of T-
matrices, one for each particle [74]. The T-matrix is typically obtained from the extended boundary condition
method (EBCM), where it is calculated as a matrix division of the auxiliary Q- and P-matrices, whose elements
are calculated numerically via surface integrals of the basis functions. It may also be possible for simple shapes
to obtain the T-matrix analytically from solving the boundary problem, for example spheroidal vector wave
functions have been used to calculate the T-matrix for a spheroid [75]. The T-matrix is typically used to study
time harmonic wave phenomena in electrodynamics and acoustics governed by the scalar or vector Helmholtz
equation [8], but has recently been specified to static or quasi-static fields governed by Laplace’s equation [76,
77, 78]. For plane wave scattering, the solution for a spheroid has been expanded to 3rd order in size-parameter
in 1953 [79], and more recently in with connection to the T-matrix [27]. The 3rd order expansion for plane wave
incidence only requires the first few elements in the T-matrix corresponding to electric dipoles, quadrupoles and
octopoles, and magnetic dipoles. But for close sources, mathematically the entire T-matrix may be necessary to
compute the field to a desired order in size parameter. This is evident from considering the electrostatic problem
of a point dipole near a sphere, where the solution is given as a series of all multipoles, and the magnitude of
each multipole is equivalent to an element of the T-matrix for the sphere. This is the problem we tackle in this
chapter, but for a spheroid excited by a slowly oscillating electric or magnetic dipole.

In Ref. [80] analytic expressions were obtained for the long-wavelength limit of the T-matrix block for
electric-electric multipole coupling, T22, of a prolate spheroid. There the zeroth order in the low frequency
expansion was considered which is equivalent to an electrostatic problem. The matrix elements were deter-
mined by solving the corresponding boundary problem for Laplace’s equation using spheroidal harmonics, and
applying the expansions relating spherical/spheroidal harmonics [52, 81, 82] to express the scattered field in
terms of spherical harmonics and from there extract the entries of the T-matrix. Here we extend the approach
to the next two orders in frequency, including the blocks governing interactions between electric and magnetic
multipoles. The problem is more complicated as it can no longer be reduced to simply solving Laplace’s
equation, but analytic results can still be found. Unlike for T22, where the quasi-static limit coincides with
an exact electrostatics problem, the quasi-static limits of the other blocks are only physically meaningful as
approximations of the corresponding time harmonic problem.

In this chapter we briefly recap of the T-matrix formalism and of the main notations, then summarize
the results obtained in Ref. [80] for T22. Then we derive the quasi-static limit of T21,T12 T11 for general
axisymmetric particles and derive analytic expressions for the matrix elements. Finally we use these expressions
to derive simple conditions for the plasmon resonances in terms of generalized depolarization factors for
spheroids, and show that higher multipole resonances actually have more than one resonant wavelength.
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6.1 General approach/notations

6.1.1 T-matrix formalism

We first summarize the T-matrix formalism for electromagnetic scattering as presented in Mishchenko [83],
which solves the scattering problem of some arbitrary but known time-harmonic excitation field Ee,He incident
on some particle. We will consider a particle with finite size, homogeneous and non-magnetic, in a non-
absorbing medium. A time dependence e−iωt is implied and omitted from the notation. The permittivity inside
and outside the particle are denoted εi , εo, with their ratio ε = εi/εo and relative refractive index s =

√
ε

(possibly complex). The wavenumber inside and outside the particle are denoted ki and ko with ki = sko. The
external field creates an internal field Ei,Hi inside the scatterer and a scattered field Es,Hs, so that the field
outside the particle is Eo = Ee +Es, Ho = He +Hs. These fields satisfy the boundary conditions at the surface
of the scatterer, with n̂ the unit normal vector:

εn̂ ·Ei = n̂ ·Eo, n̂×Ei = n̂×Eo,

n̂ ·Hi = n̂ ·Ho, n̂×Hi = n̂×Ho, (6.1)

and the Sommerfeld radiation condition for the scattered field at infinity, that energy may only be radiated
outward. In the electrostatic limit this means the scattered field has no singularities outside the particle and
decreases to zero as r → ∞. The main ansatz of the T-matrix formalism is that due to the linearity of the
Helmholtz equation, the fields can be expanded as series of vector spherical wave functions:

Ee = E0 ∑
n,m

am
n RgMm

n (kor)+bm
n RgNm

n (kor), (6.2)

He = H0 ∑
n,m

am
n RgNm

n (kor)+bm
n RgMm

n (kor), (6.3)

Ei = E0 ∑
n,m

cm
n RgMm

n (kir)+dm
n RgNm

n (kir), (6.4)

Hi = H0s∑
n,m

cm
n RgNm

n (kir)+dm
n RgMm

n (kir), (6.5)

Es = E0 ∑
n,m

pm
n Mm

n (kor)+qm
n Nm

n (kor), (6.6)

Hs = H0 ∑
n,m

pm
n Nm

n (kor)+qm
n Mm

n (kor), (6.7)

where E0 is the incident electric field strength and H0 = E0ko/(iωµ0). With this ansatz, the scattered field
automatically satisfies the Sommerfeld radiation condition. M, N are the radiating spherical vector wave-
functions and RgM, RgN are the regular wave-functions, corresponding to magnetic and electric multipolar
fields, respectively. These are defined as:

Mc
nm = γ

m
n ∇× [r hn(kr)Pm

n (cosθ)eimφ ], Nc
nm =

1
k
∇×Mc

nm, (6.8)

RgMc
nm = γ

m
n ∇× [r jn(kr)Pm

n (cosθ)eimφ ], RgNc
nm =

1
k
∇×RgMc

nm, (6.9)

where γ
m
n =

√
2n+1

4πn(n+1)
(n−m)!
(n+m)!

. (6.10)

jn and hn are the spherical Bessel and Hankel functions of the first kinds. These are defined for integer n≥ 0 and
|m| ≤ n (although the n= 0 functions are not physically relevant). The associated Legendre functions Pm

n (cosθ)
are here defined without the (−)m prefactor, so our wave-functions differ by (−)m to those in appendix C of
[8].

The problem is to determine the coefficients cm
n ,d

m
n , pm

n ,q
m
n that satisfy the boundary conditions (6.1). By

linearity of Maxwell’s equations, the coefficients are related by linear expressions commonly expressed in
matrix form as: [

p
q

]
=

[
T11 T12

T21 T22

][
a
b

]
= T

[
a
b

]
, (6.11)
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which defines the T-matrix. The column vectors a, b, c, d, p and q contain am
n , bm

n cm
n , dm

n , pm
n and qm

n as
components, for all n and m. Within the EBCM, one typically also defines the P- and Q-matrices as:[

a
b

]
=

[
Q11 Q12

Q21 Q22

][
c
d

]
, (6.12)

[
p
q

]
=−

[
P11 P12

P21 P22

][
c
d

]
, (6.13)

and we also introduce the matrix R = Q−1 which is essentially the T-matrix for the internal field. Note that
Ref. [83] uses RgQ instead of P.

For axisymmetric particles (such as spheroids), a major simplification is that all matrices are decoupled for
each m, and we may therefore treat each m separately.

As an example, for an axisymmetric particle who’s surface is defined as r = r(θ), the n,k entry of the Q12

block for some m may be calculated in the null-field approach via (but we will use a different approach):

Q12
nk|m =∝

∫
π

0
dθPm

n (cosθ)Pm
k (cosθ)r(θ)hn(kor(θ))

∂

∂θ
[r(θ) jk(kir(θ))]

∂ r(θ)
∂θ

. (6.14)

Moreover, for particles with reflection symmetry with respect to the z = 0 plane (like spheroids), half of the
matrix elements are zero, namely:

A11
nk = A22

nk = 0 n+ k odd, (6.15)

A21
nk = A12

nk = 0 n+ k even, (6.16)

for A = P,Q,R,T .

6.1.2 Spheroidal coordinates

Figure 6.1: Schematics of the scattering problem for prolate and oblate spheroids.

Consider a dielectric spheroid (prolate or oblate) of semi-height c along the z-axis and semi-width a along
x,y, as in Figure 6.1. It will be convenient to define oblate spheroidal coordinates and parameters by exactly
the same formulae, since this choice means the T-matrix elements for prolate and oblate spheroids will also
have exactly the same expressions. We define the focal parameter f =

√
c2−a2. Then prolate spheroids have

c > a, half focal-length f , and oblate spheroids have a > c, focal disk radius −i f =
√

a2− c2. The spheroidal
coordinates ξ ,η are defined in terms of r+,r−, the distance from the top and bottom focal points:

ξ =
r++ r−

2 f
, η =

r+− r−

2 f

r± =
√

r2±2 f r cosθ + f 2. (6.17)
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for both prolate and oblate. For the oblate spheroid, ξ = iχ where χ is the real oblate spheroidal coordinate
from Chapter 3. ξ = ξ0 = c/

√
c2−a2 defines the surface of our scatterer. For prolate spheroidal coordinates,

ξ0 ranges from 1 (needle) to ∞ (large sphere), while for oblate coordinates, ξ0 ranges from 0 (disk) to −i∞
(large sphere).

The solution of Laplace’s equation in spheroidal harmonics involves the product of Legendre functions of
the first or second kind Pm

n (ξ )Pm
n (η), or Qm

n (ξ )P
m
n (η). Their derivatives are denoted with a prime ′.

6.1.3 Quasi-static/long-wavelength approximation

Quasi-static here means that the wavelength of the light both inside and outside the particle is long in compar-
ison to the particle size. As per Ref. [27] we shall define a size parameter X = koc, where for small particles
relative to the wavelength, X � 1 and the fields may be considered as asymptotic expansions in powers of X ,
and here we consider just the lowest two orders. This approximation also requires kic = sX � 1, so the relative
refractive index s must not be too large. This definition for X is convenient here, but as shown in Ref. [27], it is
usually more relevant to define the size parameter in terms of the radius of the sphere of equivalent volume. One
should also note that spherical Bessel functions of higher order n can be well approximated by their dominant
term (small X approximation) for up to X . n [84], so our final expressions for matrix elements for large n,k
will be valid for relatively large X .

In this analysis it is crucial to be aware of how the basis functions and matrix elements depend on X . In the
near field, X ≈ kor (using the superscript (·) notation to denote the order of the expansion in X rather than the
type of Bessel function used in the wave functions):

RgM(0)
nm = O(Xn), M(0)

nm = O(X−n−1), (6.18)

RgN(0)
nm = O(Xn−1), N(0)

nm = O(X−n−2), (6.19)

and E0 =O(X0) while H0 =O(X1). The quasistatic limit of the Q-matrix and R-matrix elements take a special
form for a spheroidal particle [85, 86] and the order of the dominant terms for all matrices are summarized
below [85, 27]:

Q11
nk = O(X [n<k](k−n+2)), Q21

nk = O(X [n<k](k−n+1)),

Q12
nk = O(X [n<k](k−n+1)), Q22

nk = O(X [n<k](k−n)), (6.20)

where [n < k] = 1 if n < k and 0 otherwise; this factor is a feature for spheroids only. For P:

P11
nk = O(Xk+n+3), P12

nk = O(Xk+n+2),

P21
nk = O(Xk+n+2), P22

nk = O(Xk+n+1). (6.21)

T has identical behavior as P, and R as Q, so:

Ri j
nk ∝ Qi j

nk and T i j
nk ∝ Pi j

nk For i, j = 1,2. (6.22)

The aim of this work is to find analytic expressions for these dominant terms for all elements of T. In the
process, we will also derive matrix elements for P, Q, and R, except for the lower triangular parts of Q and R,
because they reduce to zero as X → 0 for spheroids. Physically, the 22 block dominates the other blocks for
small sizes because we have a dielectric particle with no magnetic response (µ = µ0) – the magnetic multipoles
are only excited due to electrodynamic coupling with the electric field, which requires a non-zero frequency.

6.2 Summary for 22 blocks

The 22 matrix blocks are the most important for low frequency scattering since their matrix elements dominate
the other blocks, as per (6.22). Also, to zeroth order in wavelength, these blocks coincide (up to some
prefactors) with the analogous T-matrix for electrostatics, where electrostatic potentials are used and expanded
on bases of spherical harmonics. This chapter focuses on the other matrix blocks so we summarize the results
and point out that the details are given in Ref. [80]. The problem of a spheroid in arbitrary electrostatic
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excitation is easily solved if the incident and scattered fields are expanded in terms of spheroidal harmonics
- the scattered coefficients are simply multiplied by some constant relative to the incident coefficients. The
expansion relations between spherical harmonics and spheroidal harmonics can be used to convert the solution
in terms of spheroidal harmonics to a solution in terms of spherical harmonics, relating the coefficients of the
scattered potential linearly to those of the known incident potential. Then the T-matrix is extracted from this
linear relationship. The results for P22, Q22, R22, T22 are:

P22(0)
nk|m =−isk−1(ko f )n+k+1 Bm

n Bm
k (s

2−1)(ξ 2
0 −1)(−)m

×
min(n,k)

∑
p=|m|

enkenp(2p+1) P−m
p (ξ0)Pm′

p (ξ0)

(n− p)!!(n+ p+1)!!(k− p)!!(k+ p+1)!!
, (6.23)

Q22(0)
nk|m = sk−1

δnk + sk−1(ko f )k−n Bm
k

Bm
n
(s2−1)(ξ 2

0 −1)

×
k

∑
p=n

enkenp
(−)(p−n)/2(2p+1)(n+ p−1)!!
(p−n)!!(k− p)!!(k+ p+1)!!

Q−m
p (ξ0)Pm′

p (ξ0), (6.24)

R22(0)
nk|m = s1−n(ko f )k−n Bm

k
Bm

n

×
k

∑
p=n

enkenp
(−)(p−n)/2(2p+1)(n+ p−1)!!
(p−n)!!(k− p)!!(k+ p+1)!!

1
1+(s2−1)Lm

p (ξ0)
, (6.25)

T 22(0)
nk|m = i(ko f )n+k+1 Bm

n Bm
k (s

2−1)(ξ 2
0 −1)(−)m

×
min(n,k)

∑
p=|m|

enkenp(2p+1)
(n− p)!!(n+ p+1)!!(k− p)!!(k+ p+1)!!

P−m
p (ξ0)Pm′

p (ξ0)

1+(s2−1)Lm
p (ξ0)

, (6.26)

where

Bm
n =

1
(2n−1)!!

√
(n+1)(n+m)!(n−m)!

n(2n+1)
, (6.27)

enk =

{
1 n+ k even
0 n+ k odd

, (6.28)

and we define “generalized depolarization factors”:

Lm
n = (ξ 2

0 −1)Pm′
n (ξ0)Q−m

n (ξ0) (6.29)

which will be further discussed in Sec. 6.6.

6.3 Quasistatic limit of T21, T12

We can now derive the quasi-static limits of the matrix elements, first outlining the general approach for any
geometry, then giving analytic results for spheroids.

6.3.1 General approach

While the quasi-static limit of T22 can be found by considering the lowest order in X , solving Laplace’s
equation, the blocks T21 and T12 are zero to lowest order in X , so the next order in X must be considered.

We focus on obtaining T21, as T12 can then be obtained through

T 12
nk|m =−T 21

kn|m. (6.30)
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To extract the quasi-static limit of T21, we consider a particular excitation consisting of only magnetic
multipoles - that is

Ee = E0 ∑
nm

am
n RgM(0)

nm(kor), (6.31)

He = H0 ∑
nm

am
n RgN(0)

nm(kor). (6.32)

Furthermore, considering the orders of the spherical vector wave-functions given in (6.18)-(6.19), we will
impose that the coefficients am

n go as am
n ∝ X1−n, so that all multipole terms in the expansions are of the same

order in X , and as a result we have Ei,Hi = O(X1), with every term in the sum being O(X1). It can then be
shown that all elements of T21 will be obtainable by reduction to the lowest non-zero order of X . A physical
example where am

n ∝ X1−n is a low frequency radiating magnetic dipole located outside the scatterer. If we
instead considered a plane wave excitation, only the lowest order multipoles would be non-negligible, and we
would only obtain information about the initial rows of the matrices.

We now analyze which terms in the series of the incident and scattered fields can be neglected, taking into
account the dependence of lowest orders of the elements in T21, R21 from 6.20–6.22. The significant parts of
the internal and scattered fields to O(X1) will be

Ei = E0 ∑
n,m

cm
n RgM(0)

nm(kir)+dm
n RgN(0)

nm(kir),

Hi = sH0 ∑
n,m

cm
n RgN(0)

nm(kir),

Es = E0 ∑
n,m

qm
n N(0)

nm(kor),

Hs = O(X2). (6.33)

In the long-wavelength limit the magnetic field does not interact with the particle. The magnetic boundary
conditions are therefore solved simply by setting the internal magnetic field identical to the external field, that
is

cm
n = s−nam

n

⇔ Q11(0)
nk = δnksn, R11(0)

nk = δnks−n. (6.34)

This also means that the magnetic-multipolar part of the internal electric field is equal to the magnetic-multipolar
part of the incident electric field. However, this alone does not satisfy the electric boundary conditions, so the
problem now is to solve for the coefficients dm

n and qm
n , knowing both am

n and cm
n . For this problem the matrix

relations between the known and unknown coefficients are

q = T21a, d = R21a, (6.35)

In the long-wavelength limit the vector spherical wave functions are

RgM(0)
nm = γ

m
n

kn

(2n+1)!!
r×∇[rnPm

n (cosθ)eimφ ], (6.36)

RgN(0)
nm = γ

m
n
(n+1)kn−1

(2n+1)!!
∇[rnPm

n (cosθ)eimφ ], (6.37)

M(0)
nm = γ

m
n
(2n−1)!!

ikn+1 r×∇[r−n−1Pm
n (cosθ)eimφ ], (6.38)

N(0)
nm = γ

m
n

in(2n−1)!!
kn+2 ∇[r−n−1Pm

n (cosθ)eimφ ]. (6.39)

This means we can express the electric field as:

Ee = r×∇U, (6.40)

Ei = r×∇U−∇Vi, (6.41)

Es =−∇Vs, (6.42)

with ∇
2U = ∇

2Vi = ∇
2Vs = 0. (6.43)
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Inserting (6.40)-(6.42) into the electric boundary conditions 1:

ε∂nVi−∂nVs = (ε−1)n̂ ·Ee|S, Vi =Vs|S, (6.44)

with ∂n = n̂ ·∇. For axisymmetric particles, n̂ · φ̂= 0 leaving

n̂ ·Ee = (r× n̂) ·∇U =
n̂ · θ̂
sinθ

∂U
∂φ

. (6.45)

We can obtain expressions for T21 by solving for Vs to obtain q in terms of a, and comparing this solution with
the matrix expression (6.35).

6.3.2 Analytic expressions for spheroids

Spheroidal particles are a special case where there exists a full analytic solution to (6.44). We follow a similar
approach to Ref. [80]: solve the boundary problem in terms of spheroidal harmonics and re-express this in terms
of spherical harmonics by applying basis transformations. Explicitly, we want to solve for the potentials Vi,Vs,
knowing U . Since U , Vi, Vs satisfy Laplace’s equation, we can express them as series of spheroidal harmonics:

U = E0 ∑
n,m

Am
n Pm

n (ξ )Pm
n (η)eimφ , (6.46)

Vi = E0 ∑
n,m

Bm
n Pm

n (ξ )Pm
n (η)eimφ , (6.47)

Vs = E0 ∑
n,m

Cm
n Qm

n (ξ )P
m
n (η)eimφ . (6.48)

(The series coefficients have dimensions of length). In light of evaluating the boundary conditions, for a
spheroid we have n̂ = ξ̂, and

ξ̂ · θ̂= sinθ η√
(ξ 2−η2)(ξ 2−1)

, (6.49)

∂

∂n
=

1
f

√
ξ 2−1

ξ 2−η2
∂

∂ξ
. (6.50)

Due to their orthogonality, we can equate the coefficients of Pm
n (η) in the expansions, but there is an extra factor

of η in (6.49), which can be dealt with the following identity:

ηPm
n (η) =

(n−m+1)Pm
n+1(η)+(n+m)Pm

n−1(η)

2n+1
, (6.51)

and re-indexing the sums so that all terms contain Pm
n (η). Then the problem is solved by setting

Bm
n =

Qm
n (ξ0)

Pm
n (ξ0)

Cm
n , (6.52)

Cm
n =

i f m(ε−1)P−m
n (ξ0)

1+(s2−1)Lm
n (ξ0)

(
n−m
2n−1

Pm
n−1(ξ0)Am

n−1 +
n+m+1

2n+3
Pm

n+1(ξ0)Am
n+1

)
. (6.53)

Now we must express this solution on a spherical harmonic basis. The relevant relationships between the
spherical and spheroidal harmonics are(

r
f

)n

Pm
n (cosθ) =

n

∑
k=0

α
m
nkPm

k (ξ )Pm
k (η), (6.54)

Qm
n (ξ )P

m
n (η) =

∞

∑
k=n

β
m
nk

(
f
r

)k+1

Pm
k (cosθ), (6.55)

1The last equality comes from requiring the tangential derivatives of Vi and Vs be equal at the surface, which implies Vi and Vs are
equal up to a constant which can be neglected.
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where the coefficients αm
nk,β

m
nk are

α
m
nk =


(n+m)!(2k+1)

(n− k)!!(n+ k+1)!!
(k−m)!
(k+m)!

n≥ k

0 n < k or n+ k odd
(6.56)

β
m
nk

 (−)(n−k)/2+m (2k+1)(n+ k−1)!!
(n−m)!(k−n)!!

(k−m)!
(k+m)!

n≤ k

0 n > k or n+ k odd.
(6.57)

By substituting these expressions into the potential and electric field expressions, we find that the series
coefficients satisfy

Am
p =

∞

∑
k=p

α
m
kp

(ko f )k

(2k+1)!!
γ

m
k am

k , (6.58)

qm
n =

1
γm

n

iko(ko f )p+1

n(2n−1)!!

n

∑
p=|m|

β
m
pnCm

p . (6.59)

Combining these with the relationship between Cm
n and Am

n , we obtain an expression relating q and a which
can be compared to (6.35) to obtain T21. We can also follow a similar derivation and obtain the quasi-static
limit of R21. We can then obtain expressions for P21 and Q21 from their matrix relationships to T and R. We
have Q21 = −Q22R21Q11, which comes from the block-wise matrix inverse formula. Similarly, we can find
R12 =−R11Q12R22 and P12 =−T21Q11−T22Q21. Below we summarize the results for all matrices:

P21(0)
nk|m =(s2−1)sk Bm

n Bm
k

k+1
(ko f )n+k+2(−)mm

min(n,k+1)

∑
p=|m|

enp ek+1,p P−m
p (ξ0)×

(p+m)(k+ p+2)Pm
p−1(ξ0)+(p−m+1)(k− p+1)Pm

p+1(ξ0)

(k− p+1)!!(k+ p+2)!!(n− p)!!(n+ p+1)!!
, (6.60)

Q21(0)
nk|m =− (s2−1)sk Bm

k
Bm

n

im(ko f )k−n+1

k+1

k+1

∑
p=n

enp ek+1,p Q−m
p (ξ0)×

(−)(n−p)/2+m(p+n−1)!!
(p+m)(k+ p+2)Pm

p−1(ξ0)+(p−m+1)(k− p+1)Pm
p+1(ξ0)

(k− p+1)!!(k+ p+2)!!(p−n)!!
, (6.61)

R21(0)
nk|m =− (s2−1)

Bm
k

Bm
n

im(ko f )k−n+1

sn−1(k+1)

k+1

∑
p=n

enp ek+1,p
Q−m

p (ξ0)

1+(s2−1)Lm
p (ξ0)

×

(−)(n−p)/2+m(p+n−1)!!
(p+m)(k+ p+2)Pm

p−1(ξ0)+(p−m+1)(k− p+1)Pm
p+1(ξ0)

(k− p+1)!!(k+ p+2)!!(p−n)!!
, (6.62)

R12(0)
nk|m =− (s2−1)

Bm
k

Bm
n

im(ko f )k−n+1

snn

k+1

∑
p=n

enp ek+1,p Qm
p (ξ0)×

(−)(n−p)/2(p+n−1)!!
(k− p+1)!!(k+ p+2)!!(p−n)!!

[
(p−m)(k+ p+2)P−m

p−1(ξ0)

1+(s2−1)Lm
p−1(ξ0)

+
(p+m+1)(k− p+1)P−m

p+1(ξ0)

1+(s2−1)Lm
p+1(ξ0)

]
,

(6.63)

T 21(0)
nk|m =− (s2−1)

Bm
n Bm

k
k+1

(ko f )n+k+2(−)mm
min(n,k+1)

∑
p=|m|

enp ek+1,p
P−m

p (ξ0)

1+(s2−1)Lm
p (ξ0)

×

(p+m)(k+ p+2)Pm
p−1(ξ0)+(p−m+1)(k− p+1)Pm

p+1(ξ0)

(k− p+1)!!(k+ p+2)!!(n− p)!!(n+ p+1)!!
. (6.64)
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The expressions for P21, Q21 and R12 were simplified using the following identity:

r

∑
q=p

eqr
(−)(r−q)/2(r+q−1)!!

(q− p)!!(q+ p+1)!!(r−q)!!
=

δpr

2r+1
(6.65)

which can be extracted by expanding the Legendre polynomials in terms of monomials, then back in terms of
Legendre polynomials, and noting their orthogonality.

P12 and Q12 can be obtained through:

P12(0)
nk|m =

1
s

k+1
n+1

P21(0)
nk|m , (6.66)

Q12(0)
nk|m =

1
s

k+1
n

Q21(0)
nk|m n≤ k+1. (6.67)

which can be derived for a general axisymmetric scatterer from the integral expressions given in Refs. [80, 87].

6.4 Quasistatic limit for T11

This block determines the scattered magnetic multipole field scattered by an external magnetic multipole field.
For non-magnetic particles, this matrix is zero in the static case and only arises from non-zero frequency
interactions. We can obtain the matrix elements using a similar method to that for T21, this time formulating
the problem in terms of magnetic fields.

6.4.1 General formulation

Following the approach for T21, the matrix T11 can be found by considering an incident field of magnetic
multipoles, but here the spherical vector wave functions must be expanded to second order:

He =
∞

∑
n=m

anm[RgN(0)
nm(kor)+RgN(2)

nm(kor)], (6.68)

Hi = s
∞

∑
n=m

c(0)nm [RgN(0)
nm(kir)+RgN(2)

nm(kir)]+ c(2)nmRgN(0)
nm(kir)+dnmRgM(0)

nm(kir), (6.69)

Hs =
∞

∑
n=m

pnmN(0)
nm(kor)+qnmM(0)

nm(kor). (6.70)

This approach differs for the cases m = 0 and m 6= 0, since the off diagonal T-matrix blocks are zero for m = 0.
To lowest order, c(0)nm = s−nanm as in (6.34), and the leftmost terms in He and Hi are identical. dnm, pnm and qnm

are all kept to lowest order only. The problem is to solve for pnm and c(2)nm .
To express RgN(2)

nm with harmonic functions, we note that for a solution of the Helmholtz equation [88]

∇×∇× (rψ) = ∇[(1+ r∂r)ψ]+ rk2
ψ. (6.71)

Then we express the incident field to second order as:

He = H(0)
e +∇(k2

or2U∇
e )+ rk2

oU r
e (6.72)

where both U∇
e and U r

e satisfy Laplace’s equation. H(0)
e does not interact with the spheroid. For the other fields

we may write

Hi = H(0)
e + s2k2

o
[
∇(r2U∇

e )+ rU r
e
]
−∇UN

i +∇× (rUM
i ), (6.73)

Hs =−∇UN
s +∇× (rUM

s ). (6.74)

U∇
e and U r

e are given, and UM
i and UM

s are known from R21 and T21. This leaves us to determine the two
potentials UN

i and UN
s . For this problem it appears most straightforward to solve via just the two boundary

conditions on the magnetic field.
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6.4.2 Prolate spheroids, m = 0

For m = 0, we assume an axially symmetric incident field. T21, T12, R21 and R12 are all zero and the problem is
decoupled from any interactions between electric and magnetic multipoles. This means UM

i =UM
s = 0. Since

φ̂ ·H = 0, the boundary conditions are ξ̂ ·Hi = ξ̂ ·Ho and η̂ ·Hi = η̂ ·Ho, or in terms of the potentials:

(s2−1)k2
o f 2[

∂ξ [(ξ
2+η

2−1)U∇
e ]−ξU r

e
]
+∂ξUN

i = ∂ξUN
s , (6.75)

(s2−1)k2
o f 2[

∂η [(ξ
2+η

2−1)U∇
e ]−ηU r

e
]
+∂ηUN

i = ∂ηUN
s . (6.76)

For the second boundary condition it is convenient to integrate over η . Then we expand the fields as series of
spheroidal harmonics, apply recurrence identities for the Legendre polynomials, and re-index the summations
to express the η dependence of each term in the series as Pn(η). There is a lot of algebra so we skip to the final
result:

T 11(0)
nk|0 =−i(s2−1)(ξ 2

0 −1)(ko f )n+k+3 B0
nB0

k
k+1

min(n,k)

∑
p=0

enkenp

(n− p)!!(n+ p+1)!!(k− p)!!(k+ p+1)!!

×

{
(2p+1)

(
PpP′p

(2p+3)(2p−1)
− k

2k+3
ξ0PpPp

)
− k− p

k+ p+3
p+2

2p+3
Pp+2P′p +

n− p
n+ p+3

p+1
2p+3

PpP′p+2

− (k+3)(k−n)(p+1)(p+2)
2(2k+3)(n+ p+3)(k+ p+3)

[PpP′p+2−Pp+2P′p]

}
(6.77)

where Pp≡Pp(ξ0). Unlike the other T-matrix blocks, this has no log terms or singular points – it is a polynomial
in ξ0. Despite its appearance, one can check numerically that this expression is actually symmetric about n and
k, as it should be. None of the terms individually are symmetric, making it hard to recognise a symmetric form
of this expression. This suggests there could be simpler approach to obtaining the matrix, maybe where the 2nd

order fields are split differently to (6.72) or a combination of one electric and one magnetic boundary condition
could be applied instead.

6.4.3 Prolate spheroids, m 6= 0

For m 6= 0, the problem has the additional complication of coupling from the electric multipoles induced in
both the internal and scattered fields. In this case the boundary condition on η̂ ·H is too complicated, but the
condition for φ̂ ·H is non-zero and manageable, so we have

(s2−1)k2
o f 2[

∂ξ [(ξ
2 +η

2−1)U∇
e ]−ξU r

e
]
+

η f
ξ 2−1

∂φ [UM
s −UM

i ] =∂ξ [U
N
s −UN

i ], (6.78)

(s2−1)k2
or2U∇

e − r sinθ∂θ [UM
s −UM

i ] =∂φ [UN
s −UN

i ]. (6.79)

The derivative ∂θ can be applied directly to the spherical harmonics, which splits them into two different
orders, adding another layer of complication. All potentials are harmonic and should be expanded on a basis
of spheroidal harmonics, and then related to their corresponding expansion in spherical wave functions. The
series coefficients dm

n , qm
n for UM

i , UM
s are given by R21 and T21. The final result is:

T 11(0)
nk|m =

−i(ξ 2
0 −1)(ko f )n+k+3(n−m)!

γm
n n(2n−1)!!

n

∑
p=m

enkenp

(n− p)!!(n+ p+1)!!

{
(s2−1)γm

k
(2k+3)!!

α
m
kp

×
[
(k−n)(p−m+1)(p−m+2)(k+3)

2(2p+1)(n+ p+3)(k+ p+3)
[Pm

p Pm′
p+2−Pm

p+2Pm′
p ]− kξ0Pm

p Pm
p

]
+

k+1

∑
q=max(p−1,m)

iγm
q (ko f )q−k−1sq+1

(2q+1)!!
R21

qk|m

×
[
−
(

mPm
p

ξ 2
0 −1

+ξ0Pm′
p

q+1
m

)(
p−m
2p−1

α
m
q,p−1Pm

p−1 +
p+m+1

2p+3
αq,p+1Pm

p+1

)
+

q−m+1
m

α
m
q+1,pPm

p Pm′
p

]
+

p+1

∑
q=m

γm
q (2q−1)!!
(ko f )q+k+2 T 21

qk|m
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Figure 6.2: − log10(relative error) of the quasistatic T-matrix expressions compared to the exact solutions,
for two silver spheroids in water, on the left a generic-sized nanoparticle, and on the right an unrealistically
small particle used to demonstrate the validity of the long-wavelength expansion. The wavelength is 400 nm,
(ε =−6.4572+0.2993i)

×
[(

mPm
p

ξ 2
0 −1

−ξ0Pm′
p

q
m

)(
p−m
2p−1

β
m
q,p−1Qm

p−1 +
p+m+1

2p+3
βq,p+1Qm

p+1

)
+

q+m
m

β
m
q−1,pQm

p Pm′
p

]}
. (6.80)

Again the matrix is symmetric despite its appearance, and it is likely that simplified expressions could be found.

6.5 Evaluating and checking expressions

All matrix elements were checked against the exact results, which can be computed to a high accuracy [89, 90],
and the relative error is plotted in Figure 6.2. The radiative correction was also applied to the quasi-static T-
matrix: T→T(I−T)−1 [91], which had a noticeable increase in accuracy for larger particles. The volume-size
parameter is X̃ = k1req = k1

3
√

c2a where req is the radius of the volume equivalent sphere.
The accuracy generally improves as the size parameter X̃ decreases, indicating that the expressions are

correct, and the approximations appear to somewhat favor low aspect ratios. Accuracy increases modestly
with order, and tends to be more accurate for ε with positive real part. Practically this makes the quasi-
static approximations useful as substitutes to higher order matrix elements, where the T-matrix begins to find
numerical problems. They may also be useful as substitutes at an earlier stage in the Q- and P- matrices, so that
one does not have to evaluate the surface integrals for as many high order matrix elements. This would require
further investigation but similar accuracies are expected to that in Figure 6.2.

6.6 Depolarization factors

The T - and R-matrix expressions contain generalized depolarization factors, introduced earlier as

Lm
n (ξ ) = (ξ 2−1)Pm′

n (ξ )Q−m
n (ξ ), (6.81)

which obey the sum rule

n

∑
m=−n

Lm
n = n. (6.82)
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For n= 1 these reduce to the well known dipolar depolarization factors Lx,Ly,Lz, with sum rule Lx+Ly+Lz = 1.
We can also find surface integral expressions for the depolarization factors by comparison with the EBCM.

In the quasi-static limit of the EBCM for axisymmetric particles the diagonal elements of Q22 may be expressed
as (after some manipulation)

Q22(0)
nn|m = sn−1

{
1+(s2−1)

[
n

2n+1
− (−)m

2

∫
π

0
dθ sinθP−m

n (cosθ)
dPm

n (cosθ)

dθ

1
r(θ)

dr(θ)
dθ

]}
. (6.83)

where r(θ) defines the surface of the scatterer. Eq. (6.83) reduces to the approximate (if the internal field is
nearly uniform) dipolar responses in [92]. As r(θ) becomes constant (i.e. for a sphere), the integral goes to
zero.

For spheroids

r(θ) = c

√
ξ 2

0 −1
ξ 2

0 − cos2 θ
⇒ 1

r
dr
dθ

=− sinθ cosθ

ξ 2
0 − cos2 θ

. (6.84)

and from (6.24) we have for the diagonal

Q22
nn|m = sn−1[1+(s2−1)Lm

n ]. (6.85)

Comparing (6.85) and (6.83) we find

Lm
n =

n
2n+1

+
(−)m

2

∫
π

0
dθP−m

n
dPm

n

dθ

sin2
θ cosθ

ξ 2
0 − cos2 θ

. (6.86)

This agrees numerically with (6.81), although analytically is not obvious. We have introduced (6.86) not as a
practical device but as an extension of the integral expression in [92] for n = 1 and to highlight the connection
with the EBCM.

6.7 Quasistatic resonances

For metallic scatterers, the real part of ε is negative which can cause very strong scattered fields for particular
values of ε , depending on the geometry of the scatterer. For metals ε is wavelength dependent and these
enhancements typically occur at optical and infrared frequencies. If material losses (imaginary part of ε) are
small this results in a very strong optical response of the nanoparticle commonly referred to as a localized
surface plasmon resonance [93]. For a sphere, these resonances occur for ε =−2 for the dipolar resonance and
ε =−(n+1)/n for n-multipolar resonances, as discussed in Chapter 4.

For the spheroid, we can derive some new results for the resonance conditions by looking at the quasi-
static T-matrix elements in Equations (6.26), (6.64), (7.77), (7.78). The elements have the expression 1+(ε−
1)Lm

n (ξ0) as a denominator, so the resonances in spheroids are related to the generalized depolarization factors
Lm

n :

εres =1− 1
Lm

n (ξ0)
=

Pm
n (ξ0)Qm′

n (ξ0)

Pm′
n (ξ0)Qm

n (ξ0)
, n≥ 1, m≥ 0. (6.87)

For n = 1, this reduces to the known dipolar resonance of a spheroid [93], where excitation along z corresponds
to L0

1, and along x or y corresponds to L1
1.

The elements T i j
nk|m with n ≤ 2 or k ≤ 2 have just one resonance, and many elements share the same

resonance condition, for example T 11
11|1,T

21
21|1,T

22
22|1 all resonate at 1+(ε−1)L1

2(ξ0) = 0. These resonances are
well known from the solution of the scattering problem in spheroidal coordinates [94], but now the resonances
can be associated with their excitations from spherical multipoles through the T-matrix.

In the spherical limit, ξ0 → ∞, and the limits of the Legendre functions given in ([63], 8.776) reveal that
Lm

n (ξ0→ ∞) = n
2n+1 which leads to the small sphere resonance conditions.

In the limit of a needle, ξ0→ 1 spheroid becomes arbitrarily thin. For m = 0, an asymptotic expression of
the Legendre functions gives:

εres(ξ → 1,m = 0)
1− 2

n(n+1)
1

ξ 2
0−1

Q0(ξ0)−Hn
+1. (6.88)
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which tend to εres =−∞. For m≥ 1, the resonance conditions (6.87) all tend towards−1. For oblate spheroids,
the limit ξ0 →−0i is where the spheroid becomes a disk. We find that εres → 0 or −∞. Figure 6.3 plots the
resonance conditions (6.87) are plotted for two aspect ratios h, compared to those for a sphere and a needle. We
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Figure 6.3: Resonance conditions for ε for small prolate spheroids. The resonances are plotted for multipole
orders n,m ≤ 4 from (6.87), and compared to the corresponding resonances for a sphere and the needle limit
(6.88).

should also associate these resonances show up in each spherical multipole response in the T-matrix, and in fact
each matrix element has several resonances depending on the degree of its multipolarity. The electric-electric
element T 22

nk|m has resonances at ε = 1− 1/Lm
p for all p ≤ min(n,k) with p,n,k of the same parity. T 21

nk|m has
resonances for p ≤ min(n,k+1) with p,n of the same parity, T 12

nk|m has resonances for p ≤ min(n+1,k) with
p,k of the same parity, T 11

nk|0 has no resonances, and the form of T 11
nk|m>0 is too complex to know for sure, but

the explicit expression for T 11
11|1 in [27] shows one resonance at ε = 1−1/L1

2, which surprisingly has an index
of p = 2, which one would normally associate with quadrupoles. Compare this to the sphere where T 22

nn has
only one resonance at ε = −(n+ 1)/n, while the blocks T12 and T21 are zero, and there are no quasi-static
resonances for T 11

nn .

6.8 Conclusion

We have provided an approach to find the quasistatic limit of T for any axisymmetric particle, and in the case
of spheroids, this approach leads to analytic expressions. For non-magnetic particles, the magnetic multipole
field does not interact with the object in the static limit. This means that this interaction cannot be seen without
considering at least the lowest two orders of the spherical wave functions. The quasistatic limit of the electric
susceptibilities is obtained from an electrostatics problem, while in this limit the magnetic susceptibilities
are zero. For magnetic particles however, T11 is non-zero to the lowest order and could be obtained from a
magnetostatics problem, with very similar formalism to the electrostatics problem for T22.

In [27] the T-matrix was found to 3rd lowest order for plane wave scattering, which is O(X6) and involves
only up to multipolarity n,k = 3. The results were derived by direct Taylor expansion of the EBCM. In
contrast, here we have found the lowest non-zero order of the individual elements, by considering excitation
from a localized source where every T-matrix element is equally important. Some of the results of these two
approaches coincide, in particular the lowest orders of T 22

11|m, T 11
11|m, T 22

22|m, T 22
13|m, T 21

12|1, T 21
21|1 (and their symmetric

counterparts) for m = 0,1,2. These results were used to confirm and simplify some of the ECBM-derived
expressions.

The EBCM for spheroids in particular suffers from numerical problems in the surface integrals and matrix
inversion for matrices larger than about 20 by 20, and stable computation methods are proposed in [21, 89]. But
in the interest of computational speed for relatively small particles, the quasi-static formulas are a very good
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approximation for the matrix elements of high multipolarity [84] due to the ∼ Xn+k+2 dependence, and could
be used as substitutes to extend the matrix size when dealing with localized sources or closely packed particles.
These quasi-static approximations can be used as checks and to investigate issues in matrix inversion.

We also found simple expressions for the resonance conditions of the matrix elements, and have shown that
each spherical multipole element can have more than one resonance condition – i.e. more than one resonant
wavelength, for octopole elements and higher.

The Rayleigh hypothesis is the assumption that the series for the scattered field converges everywhere on the
particle surface [22]. It is not known exactly if this hypothesis must apply for a given particle for the T-matrix
to work, and in fact it is not true for a spheroid but the EBCM works anyway. This is investigated numerically
for spheroids in Ref. [95]. More difficult is the question of multiple particles. The applicability of the T-matrix
method for two side by side spheroids is known to fail for close spheroids, but at what distance exactly, and
are the problems numerical or analytical? [96]. The radius of convergence of a spherical wave-function series
is the same in the electrostatic limit, which can be deduced from the limit as the degree tends to infinity, so
the results for the T22 block can be used to study the convergence of the T-matrix for multiple particles, while
reducing complexity and sources of numerical error.
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Chapter 7
Electrostatic T-matrices for the Torus

The extended boundary condition method (EBCM) for calculating the T-matrix is known to be unstable for
particles with highly non-spherical shape, and much work has been done on determining conditions for the
T-matrix to be applicable [77, 97]. For the EBCM to work, the Rayleigh hypothesis is historically suggested as
criteria, which is the assumption that the series of basis functions converge on the entire surface of the particle,
although it is known that this is not necessary and weaker criteria have been suggested [77]. The EBCM may
fail or becomes highly unstable for convex particles such as red blood cells [98], let alone multiply-connected
particles such as a torus.

Using other methods, scattering by a torus has been considered analytically in the long wavelength limit us-
ing toroidal harmonics, the partially separable solutions to Laplace’s equation in toroidal coordinates. Toroidal
harmonics are a relatively new tool in computational physics due to their complexity. Also, being only partially
separable solutions makes toroidal harmonics difficult to apply to problems even involving the torus. For
conducting tori, fairly simple series solutions can be obtained in the static limit, but for dielectric tori, the
series coefficients are not explicit. The coefficients are calculated using a three step recurrence relation, with
initial values given by a continued fraction. Some specific simulations include a dielectric torus in a uniform
field [99], a conducting torus illuminated by a low frequency plane wave [100], plasmon resonances [101]
and electromagnetic trapping [102]. A detailed computational analysis of quasi-static scattering by solid and
layered tori is conducted in [103]. Semi analytical results for low frequency dipole excitation a conducting torus
have been obtained for the lowest three orders in frequency of the electric and magnetic fields, using toroidal
harmonics [104].

Spherical harmonics are far easier to compute, better known and more applicable than toroidal harmonics,
so it is of interest to obtain the T-matrix on a basis of spherical harmonics - in particular, this allows computation
of the long wavelength limit of the T-matrix for electromagnetic or acoustic scattering, which is usually
expressed on a basis of spherical wavefunctions. For the spheroid, the low frequency scattering problem has
been re-expressed with spherical harmonics and the electromagnetic T-matrix has been obtained to third order
in size parameter [80, 24, 27] by applying the series relationships between spherical and spheroidal harmonics.
But the series relationships between spherical and toroidal harmonics are more complex and virtually unknown
in the literature, except for the low degrees. For example toroidal harmonics of degree zero, corresponding
to the potential of rings of sinusoidal charge distributions, are known as series of spherical harmonics, and
spherical harmonics corresponding to point charges and dipoles are known as series of toroidal harmonics. The
relationships for all degrees and orders have been derived in a Russian paper from 1983 [105], although this
does not appear to be well known except for one other paper [106], which analyzed the electrostatic interaction
between a conducting torus and a partial spherical shell - they used the relationships to construct what is
effectively the T-matrix for the conducting torus (their equation 32), expressed on a spherical basis, as part of
the kernel of an integral equation.
We begin by investigating properties of toroidal harmonics including deriving new expressions for their source
distributions. Then we derive the T-matrix for a dielectric torus expressed on a basis of toroidal harmonics,
and then present this on a spherical harmonic basis. We derive physical quantities; extinction cross sections,
polarizabilities and resonance conditions, and finally derive asymptotic formulae for thin rings. Unlike the
previous chapter for the spheroid, we will only focus on the lowest order of the quasi-static limit, i.e. the 22
block.
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7.1 Toroidal coordinates and harmonics

Figure 7.1: Cross section of the spherical, cylindrical and toroidal coordinate systems, showing some arbitrary
coordinate surfaces.

The toroidal coordinate system uses a parameter a which defines the radius of the ”focal ring” centred at
the origin. Toroidal coordinates (ξ ,η ,φ) are then defined as

η = sign(z)arccos
r2−a2√

(r2 +a2)2−4ρ2a2
, (7.1)

ξ =
1
2

log
(ρ +a)2 + z2

(ρ−a)2 + z2 , (7.2)

β = coshξ , (7.3)

with η ∈ [−π,π], ξ ∈ [0,∞), β ∈ [1,∞). ξ and β correspond to the torus size; ξ = 0 and β = 1 is a tight torus
covering all space and ξ = β = ∞ is the focal ring. η is related to the angle from the focal ring to a point on
the torus, and its coordinate surfaces are partial spheres, as depicted in Figure 7.1.

Laplace’s equation is partially separable in toroidal coordinates, so that the solutions have an additional
prefactor. The toroidal harmonics are defined for integer n,m as

ψ
mc
n = ∆Qm

n−1/2(β )cosnη eimφ , (7.4)

ψ
ms
n = ∆Qm

n−1/2(β )sinnη eimφ , (7.5)

Ψ
mc
n = ∆Pm

n−1/2(β )cosnη eimφ , (7.6)

Ψ
ms
n = ∆Pm

n−1/2(β )sinnη eimφ , (7.7)

with ∆ =
√

2(β − cosη), (7.8)

where Pm
n−1/2 and Qm

n−1/2 are the Legendre functions of the first and second kinds. Using the superscript v to
denote c or s, we will call Ψmv

n the “ring toroidal harmonics” and ψmv
n the “axial toroidal harmonics” since they

are singular on the focal ring and z-axis respectively. There are two kinds of angular solutions: cosnη (v = c)
which are symmetric about the meridian plane and sinnη (v = s) which are antisymmetric. Compare this to
spherical harmonics which have angular solutions Pm

n (cosθ) and Qm
n (cosθ) where the second type of angular

solutions Qm
n (cosθ) are discarded due to their singularity at the poles of the sphere. Toroidal harmonics also

are non-zero for m > n, as shown in the next section this occurs (with n = 0 for example) for a single ring with
charge distribution cos(mφ). So all Ψmv

n and ψmv
n for integer n,m and v = c,s are physically applicable solutions
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- smooth on the torus surface. Toroidal harmonics of negative n or m may be defined simply through

Pm
−n−1/2 = Pm

n−1/2 P−m
n−1/2 =

Γ(n−m+ 1
2)

Γ(n+m+ 1
2)

Pm
n−1/2 (7.9)

Qm
−n−1/2 = Qm

n−1/2 Q−m
n−1/2 =

Γ(n−m+ 1
2)

Γ(n+m+ 1
2)

Qm
n−1/2. (7.10)

7.1.1 Charge distributions of ring toroidal harmonics Ψmv
n

The charge distributions that create toroidal harmonics are quite interesting. Ψmv
n are finite everywhere except

β = ∞, on the focal ring. We want to express the functions as integrals of charge distributions on this focal ring.
We start with n = 0, looking at Ψmc

0 = ∆Pm
−1/2(β )e

imφ (note that Ψms
0 = 0). The Legendre functions approaching

the ring behave as

Pm
−1/2(β → ∞)→ (2m−1)!!

(−2)mπ

√
2
β

logβ (7.11)

while ∆→
√

2β . Approaching the focal ring, 1/β becomes equal to the distance d from the ring. Compare
this to approaching infinitely close to a line source with arbitrary charge distribution, where the potential
goes as 2 logd if the charge has unit density at the point of closest approach. Denoting points on the fo-
cal ring by r′ and the observation point by r, the distance |r′ − r| in cylindrical coordinates is |r′ − r| =√

ρ2 +a2−2ρacos(φ −φ ′)+ z2. Also the charge distribution must be proportional to eimφ , so we deduce
that

Ψ
mc
0 =

(2m−1)!!
(−2)mπ

∫ 2π

0

eimφ ′adφ ′√
r2 +a2−2ρacos(φ−φ ′)

. (7.12)

We should also check the limit as r→ ∞. Here β → 1, Pn−1/2→ 1, Pm>0
n−1/2→ 0, and ∆→ 2a/r, so we can rule

out the possibility of sources at r = ∞.

The harmonics for n = 1 may be generated by application of the operators ∂z = ∂/∂ z and r∂r (see appendix
of [25] for details), so we apply these to the integral expression (7.12), first r∂r:

Ψ
mc
1 =− 1

m−1/2

(
2r

∂

∂ r
+1
)

Ψ
mc
0

=
(2m−3)!!
(−2)mπ

∫ 2π

0

a(a2− r2)eimφ ′dφ ′

(r2 +a2−2ρacos(φ−φ ′))3/2 (7.13)

The charge distribution is two oppositely charged rings on the xy-plane, one with an infinitesimally greater
radius than the other. This produces an infinitesimal charge imbalance - a net monopole moment, which is seen
in the spherical-toroidal expansions (7.44).
And for Ψms

1 :

Ψ
ms
1 =

−a
m−1/2

∂

∂ z
Ψ

mc
0

=
(2m−3)!!
(−2)mπ

∫ 2π

0

−2a2zeimφ ′dφ ′

(r2 +a2−2ρacos(φ−φ ′))3/2 (7.14)

This is the potential of two oppositely charged rings with an infinitesimal separation in the z-direction. These
charge distributions are represented in Figure 7.2.

For higher n the harmonics can be generated by repeated application of the operator r∂r. The toroidal
harmonics follow a recurrence relation involving r∂r, and this recurrence is also satisfied by coefficients cm

nk, sm
nk

relating toroidal and spherical harmonics (see (7.48) and appendix of [25]). We can then deduce the differential
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Figure 7.2: Representation of the source charge configurations for the low order ring toroidal harmonics. Red
and blue represent positive and negative charge q, and dipole moments are denoted p. For Ψ0c

1 the slightly
larger radius of the outer ring creates a finite charge δq.

operators that generate the nth order harmonic from the 0th or 1st order harmonics:

Ψ
mc
n =

(−)n

2
cm

n (r∂r)Ψ
mc
0 (7.15)

Ψ
ms
n =

(−)n+1

4
sm

n (r∂r)

r∂r +1
Ψ

ms
1 (7.16)

where cm
n (r∂r) is equal to cm

nk with k→ r∂r and similarly for sm
n . (7.16) starts from n = 1 because Ψms

0 = 0. Both
cm

n (x) and sm
n (x)/(x+1) are degree n polynomials in x.

The corresponding integral expressions for Ψmv
n are given in operator form by applying (7.15) and (7.16)

to the integral expression for Ψmc
0 (7.12) and Ψms

1 (7.14). However, explicit evaluations of these derivatives do
not appear to reveal any simple patterns. The integral expressions for Ψmv

n have been checked numerically up
to n = 3. The ring harmonics are also plotted in Figure 7.3 on the plane y = 0, which confirms these source
distributions.

Figure 7.3: Plots of the ring toroidal harmonics for n = 0,1,4 and m = 0,1,2, on a slice of the x,z plane. The
color scale is [-5,5] for n = 0,1, and [-50,50] for n = 4.
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7.1.2 Charge distributions of axial toroidal harmonics ψmv
n

Again we can determine the line charge distribution by matching it to the limit of the potential as it approaches
the line. The exact proportionality is obtained by considering that the potential near an axial line source with
unit magnitude goes as 2 logρ . The behavior of the components of the toroidal harmonics as ρ → 0 are, using
v = z/a:

lim
ρ→0

∆ =
2√

v2 +1
(7.17)

lim
ρ→0

η =sign(v)acos
v2−1
v2 +1

≡ η
′ (7.18)

lim
ρ→0

Qn−1/2(β ) = log
a
ρ
. (7.19)

Then the line source distribution of ψc
n + iψs

n is aeinη ′/
√

v2 +1 (using complex notation to deal with ψc
n and ψs

n
simultaneously):

ψ
c
n + iψs

n =
∫

∞

−∞

a einη ′dv√
v2 +1

√
ρ2 +(z−av)2

. (7.20)

And for ρ → ∞, we have ψv
n → 0 and there is no contribution from sources at ρ → ∞. This is unlike the

spherical harmonics of the second kind rnQn(cosθ), who are also singular on the z-axis, but are the difference
between a line source that produces an infinite potential and a sum of multipoles at infinity of infinite strength
[6].

For m > 0, the charge distributions are multi-line, which can be deduced from the eimφ dependence. For
example ψ1v

n has a charge distribution of two line sources infinitely close together but of opposite charge. The
behavior of the Legendre functions Qm

n−1/2(β ) is:

lim
ρ→0

Qm
n−1/2(β ) =

(−)m

2
(m−1)!

(
a(v2 +1)

ρ

)m

. (7.21)

so for m > 0 we have ψmv
n ∝ ρ−m as ρ → 0.

And in the limit ρ → ∞, we have ψmv
n ∝ ρm−1. Despite the divergence for m > 1, there is no contribution

from sources at ρ = ∞, which can be explained as follows. If sources at ρ = ∞ existed, then we could split ψmv
n

into its contributions from charges on the z-axis and at ρ = ∞. The potential due to charges at ρ = ∞, being
finite at the origin, can then be expressed as a series of regular spherical harmonics Ŝm

n = rnPm
n (cosθ)eimφ of the

same m as ψmv
n . However, Ŝm

n (ρ → ∞) ∝ ρk where k ≥ m, so it is impossible to express the ρm−1 dependence
as a series of Ŝm

n . Therefore there cannot exist charges at ρ = ∞.
We can compare ψmv

n to the potential near an m-fold line charge distribution which similarly goes as ρ−m

as ρ → 0, with integral kernel |r− r′|−2m−1. (7.21) for m > 0 also shows a non-constant z-dependence of
(v2 +1)m. Putting this together gives

ψ
mc
n + iψms

n = (2m−1)!!a
(
−aρ

2

)m

eimφ

∫
∞

−∞

(v2 +1)m−1/2einη ′

(ρ2 +(z−av)2)m+1/2 dv (7.22)

Andrews ([107]- eq. 27) proved (7.22) via direct integration for all m, and n = 0 (in his notation n↔ m). For
m = 0 the total charge is infinite. For n = m = 0 the charge decreases as v→±∞ (away from the origin), but
for all other cases, the charge increases as v→±∞. This behavior is seen in the plots in Figure 7.4.
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Figure 7.4: Plots of the axial toroidal harmonics for n = 0,1,4 and m = 0,1,2, on a slice of the x,z plane. The
focal ring radius is 1/4 the width of each plot. The color scale is [-10,10] for m = 0, [-50,50] for m = 1 and
[-500,500] for m = 2.
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Figure 7.5: Top: Parameters defining the torus including relative permittivity to the surroundings ε . Bottom:
relationships between toroidal geometry and the separable toroidal coordinate system.

7.2 T-matrix for a torus on a toroidal harmonic basis

Consider a circular torus with major radius R0, minor radius r0 and relative permittivity to the surroundings ε

as shown in Figure 7.5. The surface is defined by the aspect ratio β = β0 = R0/r0, and the focal ring radius is

a =
√

R2
0− r2

0. The torus is excited by an arbitrary external electric potential Ve, and we want to determine the
scattered potential Vs (where Vo =Ve +Vs), and internal potential Vi. The boundary conditions are:

Vi =Vo, ε
∂Vi

∂β
=

∂Vo

∂β
, at β = β0. (7.23)

The fields are assumed to be expanded in terms of toroidal harmonics as

Ve =
∞

∑
n=0

∞

∑
m=−∞

∑
v=c,s

amv
n ψ

mv
n , (7.24)

Vi =
∞

∑
n=0

∞

∑
m=−∞

∑
v=c,s

bmv
n ψ

mv
n , (7.25)

Vs =
∞

∑
n=0

∞

∑
m=−∞

∑
v=c,s

cmv
n Ψ

mv
n . (7.26)

In this section we derive the matrix relations between the incident, scattered, and internal expansion coefficients.
In general the boundary conditions are difficult to solve, and may lead to an inhomogeneous three term

recurrence relation with initial conditions given by an infinite continued fraction [99]. Instead we will use
the boundary integral equation formulation to find an analogue of the T-matrix in toroidal coordinates. The
boundary integral equations are derived from Green’s second identity on the torus surface S [76]:

ε−1
4π

∫
S

∂Vi(r′)
∂n′

1
|r− r′|

dS′ =

{
Ve(r)−Vi(r) r ∈V
−Vs(r) r /∈V.

(7.27)

where ∂/∂n′ is the derivative with respect to the surface normal and dS is the infinitesimal surface element. In
the T-matrix approach, the Green function 1/|r− r′| is expanded as a series of separable harmonics; here we
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use toroidal harmonics:

1
|r− r′|

=
1

2πa

∞

∑
m=−∞

∞

∑
n=0

∑
v=c,s

εn(−)m

{
ψmv

n (r)Ψ−m,v
n (r′) r ∈V

Ψmv
n (r)ψ−m,v

n (r′) r /∈V
(7.28)

with εn =

{
1 n = 0
2 n > 0

.

We now substitute (7.28) and the expansions of the potentials into the integral equation(7.27), and equate the
coefficients of the toroidal harmonics. For example, equating the coefficients of ψmc

n (r) for r inside the torus
leads to (dropping the integration primes):

εn(−)m ε−1
8π2a

∞

∑
k=0

∫
S

∂

∂n
{∆Qm

k−1/2(β0)[bmc
k cos(kη)+bms

k sin(kη)]}∆P−m
n−1/2(β0)cos(nη)dS = amc

n −bmc
n .

(7.29)

The sum over m has been omitted because the torus is rotationally symmetric and only terms with the same m in
the expansions of the Vi and G survive the integration. This decouples the problem for each m. Furthermore, the
integration is over an even interval of η so sin(kη)cos(nη) integrates to zero, decoupling the sine and cosine
expansion coefficients. The relationships between the expansion coefficients can be formulated with infinite
dimensional matrices. For each m ∈ Z, v = c,s, the problem is solved by the following matrix relations:

ā=Q̄b̄, c̄= P̄b̄, c̄= T̄ā (7.30)

which are analogous to the P, Q, T-matrices in the T-matrix method for scattering of waves. ā are 1×N (N being
the numerical truncation order) column vectors containing the elements amv

n for fixed m,v. When convenient
the superscripts m and v will be omitted.
For a conducting torus, ε → ∞ and the T-matrix T̄ = T̄∞ is diagonal:

T̄ ∞
nk =−

Qm
n−1/2(β0)

Pm
n−1/2(β0)

δnk (7.31)

which is equivalent to well known solutions for conducting tori, see for example [108].
For general ε , the integral equations 7.27 allow us to calculate P̄ and Q̄, while T̄ is obtained from

T̄ = P̄Q̄−1. (7.32)

We now look for analytic expressions for the matrix elements. In toroidal coordinates the normal derivative and
surface element are

∂

∂n
=
−∆2 sinhξ

2a
∂

∂β
, dS =

4a2 sinhξ

∆4 dηdφ . (7.33)

Putting these into (7.29) and simplifying leads to an integral expression for Q̄c:

Q̄mc
nk =δnk−

ε−1
2π

P−m
n−1/2(β0)εn

[
∂Qm

k−1/2(β0)

∂β0

∫
π

−π

cos(nη)cos(kη)dη +
1
2

Qm
k−1/2(β0)

∫
π

−π

cos(nη)cos(kη)

β0− cosη
dη

]
.

(7.34)

The integrals can be evaluated analytically (see appendix of [25]), and the matrix elements are then

Q̄mc
nk = δnk− (ε−1)sinh2

ξ0P−m
n−1/2(β0)

[
∂β0Qm

n−1/2(β0)δnk +
εn

2
Qm

k−1/2(β0)
e−|n−k|ξ0 + e−(n+k)ξ0

2sinhξ0

]
, (7.35)

Q̄ms
nk = δnk− (ε−1)sinh2

ξ0P−m
n−1/2(β0)

[
∂β0Qm

n−1/2(β0)δnk(1−δn0)−Qm
k−1/2(β0)

e−|n−k|ξ0− e−(n+k)ξ0

2sinhξ0

]
. (7.36)
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A similar derivation shows that P̄ is related to Q̄ by P̄ = T̄∞(Q̄− I) for all m,v. Hence the T-matrix can also be
expressed as

T̄ = T̄∞(I− Q̄−1). (7.37)

We suspect this form applies to the T-matrix for any particle whose geometry is a coordinate of a coordinate
system with partially-separable solutions to Laplace’s equation, including bispherical coordinates, as seen in
the next chapter. T̄ may be calculated via (7.32) or (7.37); both give the same numerical accuracy. To avoid
possible numerical instability in inverting Q̄m=0,c, the matrix should be transposed, inverted then transposed
back.

The static limit T-matrix for any scatterer is symmetric when expressed on a basis of normalized spherical
harmonics or wave functions. This is proved in [109] by equating solutions from two surface integral equations
similar to (7.27), given in [76]. The proof used a basis of normalized spherical harmonics but could be easily
done with any orthonormal basis. The basis functions Ψmv

n ,ψmv
n are orthogonal but not normalized - they have a

norm of Γ(n+m+ 1
2)/Γ(n−m+ 1

2)/εn. Hence the toroidal T-matrix here has the following symmetry property:

T̄ mv
kn =

εkΓ(k−m+ 1
2)Γ(n+m+ 1

2)

εnΓ(k+m+ 1
2)Γ(n−m+ 1

2)
T̄ mv

nk . (7.38)

7.2.1 Comparison to recurrence approach

Another way to solve electrostatic problems for the dielectric torus is to apply the boundary conditions in
differential form (7.23) directly to the series expansions for the potentials (7.24-7.26), to obtain a recurrence
relation for the coefficients. This has been done for a uniform electric field [99], and point charge [110]. For
arbitrary excitation, we get

cmv
n+1Λ

m
n+1− cmv

n
(
2β0Λ

m
n +(ε−1)Pm

n−1/2

)
+ cmv

n−1Λ
m
n−1

= (ε−1)
[
−amv

n+1Qm′
n+1/2 +amv

n (Qm
n−1/2 +2β0Qm′

n−1/2)−amv
n−1Qm′

n−3/2

]
where Λ

m
n = εQm′

n−1/2(β0)
Pm

n−1/2(β0)

Qm
n−1/2(β0)

−Pm′
n−1/2(β0). (7.39)

The difficulty in computing the coefficients using this scheme is finding the initial values; these are expressed
as a series of products of continued fractions. Nevertheless, we can compare this to the T-matrix approach,
combining recurrence (7.39) with the definition of the T-matrix, (7.30), we find

∞

∑
k=0

[
T̄ mv

n+1kΛ
m
n+1− T̄ mv

nk
(
2β0Λ

m
n +(ε−1)Pm

n−1/2

)
+ T̄ mv

n−1kΛ
m
n−1

]
amv

k

= (ε−1)
[
−amv

n+1Qm′
n+1/2 +amv

n (Qm
n−1/2 +2β0Qm′

n−1/2)−amv
n−1Qm′

n−3/2

]
(7.40)

which must hold for any set of coefficients amv
n . In particular if we choose an excitation with amv

n = δnp for
some p, a recurrence for the elements of the toroidal T-matrix can be found:

T̄ mv
n+1pΛ

m
n+1− T̄ mv

np
(
2β0Λ

m
n +(ε−1)Pm

n−1/2

)
+ T̄ mv

n−1pΛ
m
n−1

= (ε−1)
[
δnp(Qm

p−1/2 +2β0Qm′
p−1/2)− (δn+1p +δn−1p)Qm′

p−1/2

]
, (7.41)

which has been checked numerically.

7.3 Relationships between spherical and toroidal harmonics

In order to express the T-matrix on a basis of spherical harmonics, series relationships between spherical and
toroidal harmonics are needed. We define the regular and irregular solid spherical harmonics as:

Ŝm
n =

( r
a

)n
Pm

n (cosθ)eimφ , (7.42)

Sm
n =

(a
r

)n+1
Pm

n (cosθ)eimφ , (7.43)
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and present the following linear relationships between spherical and toroidal harmonics (see appendix of [25]):

Ψ
mc
n =

∞

∑
k=m

cm
nkP−m

k (0)

{
(−)nŜm

k r < a

Sm
k r > a

(7.44)

Ψ
ms
n =

∞

∑
k=m

sm
nkP−m

k+1(0)

{
(−)nŜm

k r < a

−Sm
k r > a

(7.45)

Ŝm
n =

1
π


Pm

n (0)
∞

∑
k=0

εk

2
c−m

kn ψ
mc
k n+m even

−Pm
n+1(0)

∞

∑
k=1

s−m
kn ψ

ms
k n+m odd

(7.46)

Sm
n =

1
π


Pm

n (0)
∞

∑
k=0

εk

2
(−)kc−m

kn ψ
mc
k n+m even

Pm
n+1(0)

∞

∑
k=1

(−)ks−m
kn ψ

ms
k n+m odd.

(7.47)

cm
nk,s

m
nk are rational numbers with many equivalent explicit forms and recurrence relations. They may be

defined by the stable recurrence:(
n−m+

1
2

)
cm

n+1,k= (2k+1)cm
nk +

(
n+m− 1

2

)
cm

n−1,k (7.48)

and the same for sm
nk. The initial values are

cm
0k =

(2m−1)!!
2m−1 , cm

1k =−
(2m−3)!!

2m−1 (2k+1),

sm
0k = 0, sm

1k =−
(2m−3)!!

2m (k+m+1). (7.49)

(the double factorial can be extended to odd negative integers via recurrence, or equivalently through the gamma
function). And for m < 0:

c−m
nk =

Γ(n−m+ 1
2)

Γ(n+m+ 1
2)

cm
nk, s−m

nk =
Γ(n−m+ 1

2)

Γ(n+m+ 1
2)

k−m+1
k+m+1

sm
nk. (7.50)

The Legendre functions at 0 are, for m ∈ Z:

Pm
n (0) =

(−)(n−m)/2 (n+m−1)!!
(n−m)!!

n+m even

0 n+m odd.
(7.51)

We should discuss the existence of these expansions. Toroidal harmonics do not follow the same notion
of internal and external as do spherical and spheroidal harmonics. We see that the ring harmonics Ψmv

m can be
written as a series of either internal or external spherical harmonics; this is due to the fact that Ψmv

m are finite
at both the origin and at r = ∞. However the axial toroidal harmonics ψmv

n are singular at both the origin
and infinity, so cannot be expanded as a series of spherical harmonics at all 1. Conversely, neither internal and
external spherical harmonics can be expressed as a series of ring harmonics Ψmv

n . This is because a series of ring
harmonics can only converge outside some toroidal boundary, and this boundary must enclose the singularities
of the function being expanded - the external spherical harmonics Sm

n are singular at the origin, so this toroidal
boundary must cover the origin and thus extend to all space, while the internal spherical harmonics Ŝm

n cannot
be expanded for a similar reason - the torus must extend to all space to cover the “singularity” at r = ∞.
However, both internal and external spherical harmonics can be expanded with axial toroidal harmonics ψmv

n ;
this is because a series of axial toroidal harmonics will converge inside some torus - for the internal spherical

1They can neither be expressed as a series of spherical harmonics of the second kind, rnQn(cosθ) or r−n−1Qn(cosθ) which are
also singular on the z axis. This is due to differences in parity about z.
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harmonics, this toroidal boundary may extend up to infinity since the functions are continuous in all space. For
external spherical harmonics the toroidal boundary may extend to the origin - so that the torus also covers all
space. To check this we can determine the boundary of convergence of expansions (7.46) and (7.47) from the
behavior of the kth term in the series as k→ ∞. The Legendre functions grow as ([62] pg 191):

lim
k→∞

Pm
k−1/2(coshξ ) =

kmekξ√
(2k−1)sinhξ

(7.52)

lim
k→∞

Qm
k−1/2(coshξ ) =

√
π(−k)me−kξ√
(2k−1)sinhξ

(7.53)

while c−m
kn and s−m

kn can be shown to grow slower than k2n+1; polynomial growth in k. The series coefficients
then decay geometrically as e−kξ , and ξ > 0 everywhere except the z-axis and r = ∞, so the series converge
everywhere, although slowly near the z axis and for large r. In these cases the series terms grow significantly
in magnitude before converging, which sacrifices accuracy because the series can only be accurate to the last
digit of the largest term in the series. This causes problems in dealing with extremely tight tori.

7.4 T-matrix on a spherical harmonic basis

7.4.1 Derivation

For any bounded scatterer, the scattered field is expandable on a basis of outgoing spherical harmonics that
converge outside the circumscribing sphere, and by linearity of Laplace’s equation, the expansion coefficients
are linearly related to the coefficients of the incident field. Therefore the T-matrix for any bounded scatterer
should exist on a basis of spherical harmonics. In fact for a torus, the incident and scattered fields may both
be expanded on interior or exterior spherical harmonics (see sec. 7.4.2). First we look at the standard case
where the external field is expanded on regular spherical harmonics and the scattered field will be expanded on
irregular harmonics. So the potentials are assumed to have the following expansions:

Ve =
∞

∑
m=−∞

∞

∑
n=|m|

Am
n Ŝm

n , (7.54)

Vs =
∞

∑
m=−∞

∞

∑
n=|m|

Cm
n Sm

n , (7.55)

equivalently the sum over n can be written in matrix notation:

Ve = ∑
m

AT Ŝ, (7.56)

Vs = ∑
m

CT S, C = TA. (7.57)

where for example A, Ŝ are 1×N (N being the numerical truncation order) column vectors containing the
elements Am

n or Ŝm
n for all n≥ 0, for a fixed m, and T is the T-matrix. The vectors and matrices start their index

from n = 0 even though the spherical harmonics are zero for n < m; this is to match the dimensionality of the
toroidal matrices which start from n = 0.

It is not possible to expand the internal potential Vi as a series of spherical harmonics, following the
discussion in Section 7.3. We know Vi may be represented as a series of toroidal harmonics ψm

n which are
singular on the z-axis, so it is a fair assumption that the analytic continuation of Vi is singular on at least
the z-axis (although technically it may be possible that a series of functions that are singular in some region
could cancel exactly resulting in a smooth function, but this seems unlikely). This singularity would prohibit
expansions in terms of both external or internal spherical harmonics since every spherical annulus would contain
singular points. This means that the P and Q matrices have no representation on a spherical basis, and therefore
it would be impossible to compute the T-matrix directly via the extended boundary method on a spherical basis.
However, since the problem can be solved using toroidal harmonics, we can use this and apply the spherical-
toroidal transformations of Section 7.3 without considering Vi.
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It will be useful to express the relationships between spherical and toroidal harmonics in matrix notation:

Ŝ = Mc
rψ

c +Ms
rψ

s, (7.58)

Ψc = Nc
i S, (7.59)

Ψs = Ns
i S, (7.60)

where the elements of matrices M and N can be determined from (7.44,7.45,7.46) to be

[Mc
r ]

m
nk =

εk

2π
Pm

n (0)c−m
kn ,

[Ms
r ]

m
nk =

−1
π

Pm
n+1(0)s

−m
kn ,

[Nc
i ]

m
nk = P−m

k (0)cm
nk,

[Ns
i ]

m
nk =−P−m

k+1(0)s
m
nk. (7.61)

The subscripts r, i stand for regular or irregular (referring to the type of spherical harmonic), and the superscripts
c,s refer to cosine or sine of η .
First the excitation potential in (7.56) must be expressed on a basis of toroidal harmonics by applying (7.58):

Ve = ∑
m

AT [Mc
rψ

c +Ms
rψ

s] (7.62)

then Vs is found via the toroidal-basis T-matrix solution (7.30):

Vs = ∑
m

AT [Mc
r(T̄

c)TΨc +Ms
r(T̄

s)TΨs]. (7.63)

Expanding the toroidal functions back into spherical harmonics with (7.60):

Vs = ∑
m

AT [Mc
r(T̄

c)T Nc
i +Ms

r(T̄
s)T Ns

i ]S. (7.64)

Comparing this to (7.57), and noting that CT = AT TT , the T-matrix is found to be

T = (Nc
i )

T T̄c(Mc
r)

T +(Ns
i )

T T̄s(Ms
r)

T . (7.65)

The v= c term (Nc
i )

T T̄c(Mc
r)

T contributes to the entries of T with only n and k both even, while (Ns
i )

T T̄s(Ms
r)

T

contributes only to entries with n and k both odd. Hence T m
nk = 0 for n+ k odd as expected for particles with

reflection symmetry about z.
Here we have not used normalized spherical basis functions, and as a consequence T is not symmetric for

m > 0. The quasi-static limit of the conventional symmetric electromagnetic T-matrix in [8] can be obtained
from:

lim
k1→0

T 22,m
nk =

−i(k1a)n+k+1

(2n−1)!!(2k−1)!!

√
(n+1)(k+1)

nk(2n+1)(2k+1)
(n+m)!(k−m)!
(n−m)!(k+m)!

T m
nk (7.66)

where k1 is the wavenumber in the surrounding medium.

7.4.2 Interior/exterior T-matrices

In the above derivation we assumed that the external potential was created by a source that could be expanded
as a series of regular spherical harmonics, but because the torus excludes the origin, the external field may come
from near the origin (for example a point source at the origin) and irregular harmonics must be used instead.
Similarly, to compute the scattered field near the origin, a regular basis must be used. The T-matrix derived
above applies only if Ve is expanded on Ŝm

m and Vs is expanded on Sm
n , and we denote this matrix T(r→ i).
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Following similar derivations, expressions for the other matrices can be found, and all four variations of these
T-matrices are

T(r→ i) = (Nc
i )

T T̄c(Mc
r)

T +(Ns
i )

T T̄s(Ms
r)

T

T(r→ r) = (Nc
r)

T T̄c(Mc
r)

T +(Ns
r)

T T̄s(Ms
r)

T

T(i→ r) = (Nc
r)

T T̄c(Mc
i )

T +(Ns
r)

T T̄s(Ms
i )

T

T(i→ i) = (Nc
i )

T T̄c(Mc
i )

T +(Ns
i )

T T̄s(Ms
i )

T (7.67)

The transformation matrices not already defined in (7.61) are

[Mc
i ]

m
nk =

εk(−)k

2π
Pm

n (0)c−m
kn ,

[Ms
i ]

m
nk =

(−)k

π
Pm

n+1(0)s
−m
kn ,

[Nc
r ]

m
nk = (−)nP−m

k (0)cm
nk,

[Ns
r ]

m
nk = (−)nP−m

k+1(0)s
m
nk. (7.68)

For example, T(r→ r) applies if the source is outside the torus’ circumscribing sphere, and if the scattered field
is to be evaluated near the hole. For a conducting torus two pairs of these T-matrices in (7.67) are identical.
Mathematically it is straightforward to show that T(i → r) = T(r → i). Physically this is due to the fact
that the problem for a conductor does not distinguish the scattered and external/incident fields - the problem
of determining the incident field from the scattered is the same as determining the scattered from the incident.
And T(r→ r) = T(i→ i), which can be shown by applying radial inversion about the sphere of radius a centred
at the origin. The geometry transforms as r→ a2/r which preserves the torus, while potentials transform as
V → (a/r)V (r→ a2/r), so Ŝm

n ↔ Sm
n . This argument only applies to the conducting torus since the permittivity

also transforms as ε → (a2/r2)ε .
From the static T-matrix we can make deductions of the applicability of the full-wave T-matrix. Since the

high order limit of the spherical wave functions tends towards the solid spherical harmonics, the boundaries
of convergence of the full wave solution are identical to that for the quasistatic solution. We note that even
with the option of interior and exterior spherical harmonics to express the scattered field, it is not possible to
compute the scattered field in an intermediate spherical annulus around the mid section of the torus r ∼ a, due
to the singularity of the scattered field. For example in the simple case of a conducting torus held at constant
potential, it can be shown that both the interior and exterior spherical harmonic solutions diverge in the annulus
a < r < R0. This is analogous to spheroids with high aspect ratio - there is a region near the spheroid where the
fields cannot be expressed using spherical basis functions.

7.5 Derived physical quantities

The T-matrix is amenable to calculate spatial fields, capacitance, polarizability, resonance conditions and cross
sections. The following results also validate the T-matrix expressions.

7.5.1 Spatial fields

To verify the boundary conditions we plot the potential induced by a point dipole for the extreme cases of a
conducting (ε →−∞) and non-conducting torus (ε = 0) in Figure 7.6. In both cases the equi-potential lines
visually satisfy the boundary conditions in (7.23). For a conducting torus the results for ε = −107 coincide
with conducting solution (7.31).

Since gold nanoparticles are often used for their field enhancements, the electric field is plotted for a gold
nano-torus in water excited by a uniform field, showing a strong field enhancement in the gap. The plots in
Figure 7.6 have also been calculated using the spherical T-matrix and spherical harmonics, to verify that both
approaches converge to the same result (at least where the spherical solution converges).
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Figure 7.6: Cross section of the equi-potential lines for a dipole located at x = 5,z = 1.5 for a torus with
R0 = 4,r0 = 1, ε = 0 or ε = −107. The contour lines are more densely spaced around small values of V
for better visualization of the interaction with the torus (although this results in a dense accumulation around
V = 0). The potential was computed using toroidal T-matrices and toroidal harmonics. Matrices were truncated
at n,m < N = 30 for ε =−107 and N = 50 (approximately 15 s computation time) for ε = 0.

7.5.2 Capacitance and dipolar response

The capacity C of a conducting torus held at a uniform potential V0 is related to T 0
00:

C = 4πε0aT 0
00, (7.69)

T 0
00 =−

2
π

∞

∑
q=0

εq
Qq−1/2(β0)

Pq−1/2(β0)
. (7.70)

And for the dipole polarizability α we consider a uniform field along a Cartesian axis, exciting dipole moment
p in a conducting torus. The polarizability is related to T 0

11,T
1

11:

pw = αwwEw, w = x,y,z, (7.71)

αzz = 4πε0a3T 0
11, (7.72)

αxx = αyy = 4πε0a3T 1
11, (7.73)
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where

T 0
11 =−

16
π

∞

∑
q=1

q2 Qq−1/2(β0)

Pq−1/2(β0)
, (7.74)

T 1
11 =

1
π

∞

∑
q=0

εq(4q2−1)
Q1

q−1/2(β0)

P1
q−1/2(β0)

. (7.75)

These results agree with [37].

7.5.3 Plasmon resonances

Figure 7.7: Relative resonant permittivities of tori of aspect ratio β0 = R0/r0. The dashed (solid) curves
correspond to the resonances of T̄c (T̄s), which are symmetric (antisymmetric) about z. Resonances are labeled
with mode number l in order of increasing ε . By convention the antisymmetric s modes start at l = 1 to match
the symmetric modes. The top left plot shows the strong resonances that only occur for T̄c. The other plots
show the next three strongest resonances for both v = c,s; these resonances tend towards ε =−1, for all values
of m,v,β0. The matrix size used in calculations ranged from N = 250 for β0 = 1.01 to N = 12 for β0 = 5.

From the explicit expressions for the toroidal matrices in (7.35,7.36), we can calculate the plasmon resonances;
the values of ε that produce V = ∞. These are labeled εmv

l for l = 0,1,2..., m = 0,1,2..., v = c,s. We have
replaced the index n with l because each resonant mode consists of all toroidal harmonics for n≥ 0. A natural
choice is to let l order these in terms of magnitude |εmv

l | (εmv
l are all real and negative), which appears to also

order the resonances in terms of resonance magnitude. εmv
l can be found from the condition det(Q̄) = 0, through
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Figure 7.8: Extinction cross sections for a sphere and gold nano-tori in water. The dielectric function of gold
was taken from Eq. (E.2) of [57], and εwater = 1.77. The radiative correction T 22,1

11 → 1/(1−T 22,1
11 ) has been

applied [114, 27] which makes a small change to the data.

εmv
l = 1− 1/λ mv

l where λ mv
l are the eigenvalues of Q̂mv and Q̄mv = I− (ε − 1)Q̂mv. This does not involve an

implicit solution because Q̂ is independent of ε .
In Figure 7.7 the conditions for resonances are plotted as a function of aspect ratio β0, and agree with the

continued fraction approach [103, 111, 112]. Also, these results confirm the discussion of [113] claiming that
m = 0 resonances exist, even though they were not obtained in [112, 111].

7.5.4 Extinction cross section

The extinction cross section is the effective area of an object in terms of how much electromagnetic radiation
is removed, either absorbed or scattered, from an incident plane wave. It may be obtained from the elements of
the full-wave T-matrix [8]. In the small particle limit, only the dominant terms T 22,m

11 for m = 0,1 contribute.
The orientation averaged extinction cross-section is relevant to suspensions of particles in solution or the
atmosphere, since these particles are often assumed to be randomly oriented. It is calculated as the sum of
the extinction in all Cartesian directions, which in terms of the T-matrix reads

lim
k1→0
〈Cext〉=−

2π

k2
1

Re{T 22,0
11 +2T 22,1

11 }, (7.76)

and we can simplify the formulas (7.65) and (7.66) for multipole order 1 to express these spherical T-matrix
elements in terms of the toroidal T-matrix elements:

lim
k1→0

T 22,0
11 =−i(k1a)3 32

3π

∞

∑
n=0

∞

∑
k=0

nk T̄ m=0,s
nk , (7.77)

lim
k1→0

T 22,1
11 = i(k1a)3 2

3π

∞

∑
n=0

∞

∑
k=0

εk(4n2−1)T̄ m=1,c
nk . (7.78)

The extinction cross-section is plotted in Figure 7.8 for various nano-tori and is consistent with results from
[102, 115, 116]. The dominant response comes from T 22,1

11 in the spherical basis, exciting the planar dipole
moment. In the toroidal basis, the largest matrix element is T̄ 1c

11 , exciting the mode Ψ1c
1 among others which are
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less pronounced. The mode 2 Ψ1c
1 is visualized in figure 7.3 (second column, center row) and corresponds to

excitation along the width of the torus, which is the l = 0,m = 1 plasmon resonance in Figure 7.7. We cannot
see the resonances for l ≥ 1 due to the considerable imaginary part of the dielectric function (another name for
the permittivity ε , which is a function of the wavelength) of gold. In Figure 7.8, T 22,0

11 is almost negligible and
has no resonance, because the torus has a more restrictive dimension along the z direction. The tighter torus
(red curve) shows a resonance in the visible range, surprisingly similar to that of a sphere, perhaps because the
surface plasmons accumulate towards the edges of the torus where the torus appears locally spherical. This
resonance shifts in to the infrared as the torus becomes thinner.

7.6 Thin ring limit

We can find analytic results for the T-matrix elements in the thin ring limit, β0→∞. The limits of the Legendre
functions are [62]

Pm
−1/2(β0)→

√
2/(πβ0)

Γ(−m+ 1
2)

[
log(8β0)−2

m

∑
p=1

1
2n−1

]
m≥ 0 (7.79)

Pm
n−1/2(β0)→

(n−1)!(2β0)
n−1/2

√
πΓ(n−m+ 1

2)
n > 0 (7.80)

Qm
n−1/2(β0)→

(−)m√πΓ(n+m+ 1
2)

n!(2β0)n+1/2 . (7.81)

(7.79) agrees with [108] but includes the sum for more accuracy. And we will need Qm
−1/2(β0) to second order:

Qm
−1/2(β0)→

π(−)m(2m−1)!!

2m
√

2β0

[
1+

4m2 +3
16β 2

0

]
(7.82)

which can be obtained from its hypergeometric function. It can be shown that the toroidal Q-matrices in this
limit are lower triangular - Q̄mc

nk = Q̄ms
nk = 0 for n < k, with

Q̄
mc

s
nk → δnk

ε +1
2

+(1−δnk)(1±δk0)
ε−1

4
Γ(k+m+ 1

2)

Γ(n+m+ 1
2)

(n−1)!
k!

n≥ k,n 6= 0

Q̄mc
00 → 1+

ε−1
β 2

0

4m2 +1
8

[
log(8β )−2

|m|

∑
p=1

1
2p−1

]
Q̄ms

00 = 1 ∀β0. (7.83)

Now we use the R-matrix R̄ = Q̄−1, which has the following limit:

R̄
m,cs
nk →

2δnk

ε +1
+(1−δnk)

(
1+ εδk0

1−δk0

)
ε−1

(ε +1)n−k+1

Γ(k+m+ 1
2)

Γ(n+m+ 1
2)

n−1

∏
p=k+1

(
ε−1

2
+ p(ε +1)

)
n≥ k,n 6= 0.

(7.84)

This expression for R̄ is the inverse of Q̄ in (7.83), i.e. ∑
∞
p=0 Q̄npR̄pk = δnk, which can be verified in Mathemat-

ica. To obtain a result for the T-matrix entry T m
00, it is also necessary to include the second order for the element

Rmc
00 :

R̄mc
00 → 1− ε−1

ε +1
2m2(ε+1)+1

4β 2
0

[
log(8β )−2

|m|

∑
p=1

1
2n−1

]
R̄ms

00 = 1 ∀β0. (7.85)

2In the context of quasistatic scattering, a harmonic function corresponds to an oscillating current or charge distribution when
multiplied by the factor e−iωt , which is a mode of vibration.
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The second order for R̄mc
00 is obtained by including the 2nd order element Qmc

01 (above the diagonal) and inverting
the matrix consisting of just the top left 2×2 block of Q̄mc. Then the T-matrix (7.86) is obtained through (7.37):

T̄ mv
nk →(−)m πΓ(n+m+ 1

2)Γ(n−m+ 1
2)

n!(n−1)!(2β0)2n (R̄mv
nk −δnk) n≥ k,n 6= 0

T̄ mc
00 →−

π2

8
ε−1
ε +1

2m2(ε +1)+1
β 2

0

T̄ ms
n0 = T̄ ms

0k = 0. (7.86)

The upper diagonal entries of T̄mv with n ≤ k can be obtained from the symmetry property (7.38). In this
limit there is just one resonance at ε = −1, consistent with the trends seen in Figure 7.7 for large β0, and the
resonance for a cylinder. All elements have been checked numerically against the exact matrix elements in
Section 7.2.
An important feature is that the top left 2×2 square of T̄mc are all order β

−2
0 , while all other entries decay more

quickly as β
−4
0 or less, meaning that both modes n = 0,1 dominate both the excitation Ve and response Vs for

each m. For T̄ms then only T ms
11 are significant.

We can now determine limits for the static dipolar polarizabilities per unit volume, to O(β−2
0 ), using

(7.77,7.78) with (7.86):

α
ring
zz → 2

ε−1
ε +1

, (7.87)

α
ring
xx →

ε +3
2

ε−1
ε +1

. (7.88)

These produce reasonable accuracy (. 10%) for aspect ratios β0 & 5, but fail when |ε|>> β0. I couldn’t find
a reference to check the polarizabilities, but an interesting comparison can be made to the polarizabilities of a
thin prolate spheroid, or needle:

α
needle
zz → ε−1, (7.89)

α
needle
xx → 2

ε−1
ε +1

. (7.90)

α
ring
zz , αneedle

xx apply when the long dimension of the wire is perpendicular to the applied electric field, and both
are of the form α⊥ = 2(ε−1)/(ε +1). On the other hand α

ring
xx and αneedle

zz both diverge as ε → ∞, where the
long dimension of the wire is aligned with the electric field. αneedle

zz is of the form α|| = ε −1. Intuitively, for
α

ring
xx the ring is half aligned perpendicular and half parallel to the incident field, so that α

ring
xx = (α⊥+α||)/2.

Numerical tests show that for very large |ε| and very thin rings, the approximate expressions for R̄m,c break
down, particularly for m = 0. For analysis of the thin ring limit for conducting tori, see [108].

7.7 Conclusion

The problem of a dielectric torus in an arbitrary electrostatic field has been solved semi-analytically using the
T-matrix, and expressions are found for the matrix elements on bases of both toroidal and spherical harmonics,
using series relationships between the harmonics. Resonant permittivities are calculated from matrix eigenval-
ues and agree with results from solving a continued fraction equation. Fully analytic asymptotic expressions
are given in both the conducting and thin ring limits. The T-matrix has been linked the time-harmonic T-matrix
governing electric multipole interactions, T22. These results demonstrate the existence of the T-matrix for such
a complex shape, at least in the small size limit. It is also found that similar T-matrices can be defined depending
on whether the source is near or far from the torus hole and whether the scattered field is to be evaluated near
or far from the origin.

One could numerically obtain the T-matrix for other ring like particles by applying the basis transformations
between spherical and toroidal harmonics and evaluating the surface integrals using toroidal harmonics.
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To extend these results to the Helmholtz equation, one would need a basis suited to the toroidal geometry but
unfortunately the Helmholtz equation is not separable in toroidal coordinates. A basis of toroidal wavefunctions
were presented in [117], although these are not orthogonal.

In the next chapter we will apply a similar analysis to the bispherical system. Bispherical and toroidal
coordinates essentially differ by a real/imaginary interchange of the focal distance, and the corresponding
harmonics differ by a shift of the separation constant by±1/2, so there are some interesting similarities in their
relationships to spherical harmonics and in the T-matrices of each geometry.
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Chapter 8
Electrostatic T-matrices for the Two Sphere System

There are several methods for calculating the electrostatic interactions of two spheres. The ”re-expansion
method” relies on spherical harmonic expansions and uses the translation relations for the spherical harmonics
to find a matrix relation between the coefficients of the incident and scattered fields [118, 119]. This method
is equivalent to the multi-particle T-matrix method where each sphere has its own T-matrix and the fields
produced by each sphere are expanded on offset spherical bases [15, 120]. The problem can also be approached
using a radial inversion transformation to make the spheres concentric, then solve the problem using spherical
harmonics [121]. The problem is also naturally formulated using bispherical harmonics which are partially
separable solutions to Laplace’s equation, based on the bispherical geometry. For perfectly conducting spheres
there is a simple analytic solution involving a series of bispherical harmonics [122]. However for dielectric
spheres, analytic solutions are complicated as the series coefficients are computed by a three-term recurrence,
with initial values computed as continued fractions [123, 124, 125, 126]. Bispherical harmonics can also be
used to solve problems with sphere-plane geometry [127, 128, 129, 130]. For conducting spheres in a time-
harmonic field, the bispherical solution can be extended to calculate the lowest few orders in a low frequency
expansion [131].

In this chapter we look at bispherical harmonics and their relationships to spherical harmonics, in terms
of radial inversion, finite sums and infinite series. Then as done for the torus, we apply the null field surface
integral equations to solve Laplace’s equation for two spheres in terms of a T-matrix with a basis of bispherical
harmonics, and find simple analytic expressions for the surface integrals in the matrix elements. The matrix
approach is used to derive a new expression for the resonance conditions of identical spheres. We then compare
the bispherical harmonic series to the offset spherical harmonic series for a point charge between two spheres.
The spherical series converges faster in the far field while the bispherical series converges faster near the surface.

8.1 Spherical and bispherical harmonics

Here we compare the spherical and bispherical coordinate systems, and their corresponding solutions to Laplace’s
equation.

8.1.1 Spherical harmonics

We define the exterior and interior spherical harmonics as:

Sm
n =

(a
r

)n+1
Pm

n (u)eimφ , (8.1)

Ŝm
n =

( r
a

)n
Pm

n (u)eimφ , (8.2)

we have included the factor a which will be set equal to the half focal length of the bispherical coordinate
system.
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Figure 8.1: Bispherical coordinate system.

8.1.2 Bispherical harmonics

We use bispherical coordinates η ,ζ ,φ ∈ [−∞,∞], [−1,1], [0,2π) with focal length f = 2a:

η = arcsinh
2az√

(r2 +a2)2− (2az)2
, (8.3)

ζ =
r2−a2√

(r2 +a2)2− (2az)2
. (8.4)

For convenience we also define

β = coshη =
r2 +a2√

(r2 +a2)2− (2az)2
. (8.5)

The bispherical coordinate system is defined along with two foci on the z-axis at z = ±a, illustrated in Figure
8.1. η =constant defines a sphere with radius asinhη and center z = acothη on the z-axis. η = 0 corresponds
to the xy-plane and η = ±∞ at the foci. ζ defines the latitude on each sphere, in particular on the z-axis, we
have ζ = 1 for |z|> a and ζ =−1 for |z|< a.
Laplace’s equation is partially separable in bispherical coordinates where the harmonics must be multiplied by
a prefactor ∆ =

√
2(β −ζ ). The relevant solutions are:

Bm
n± = ∆e±(n+1/2)ηPm

n (ζ )eimφ . (8.6)

We see that bispherical harmonics are similar in form to spherical harmonics, containing a radial part e±(n+1/2)η

and an angular part Pm
n (ζ ). Bm

n+ and Bm
n− are singular at the positive and negative foci respectively.

Solutions containing Qm
n (ζ ) are ignored since they are singular on the entire z axis, cutting through the

surfaces of the spheres. This is unlike the case of the torus where the axial toroidal harmonics, which are also
singular on the z-axis, are still useful for fields inside the torus.
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8.1.3 Radial inversion and relationships between the harmonics

Radial inversion or the Kelvin transformation is a conformal transformation in 3 dimensions where the radius
from a given center, r, is reciprocated about a given reference sphere radius, R, through x → R2/x. This
transformation is useful because it also preserves harmonicity of solutions to Laplace’s equation by including
the prefactor R/r. It is a common technique for solving problems in complicated geometries that are related
to simpler geometries through inversion, for example it was used in Ref. [121] to solve the electrostatics
problem of two spheres illuminated by a point dipole. The geometry was inverted about one of the foci of
the corresponding bispherical coordinate system; this transformation complicates the boundary conditions, but
makes the spheres concentric, allowing for the problem to be solved using spherical harmonics. We will see
that this transformation also interchanges between the spherical and bispherical harmonics themselves.
Consider two offset spherical coordinate systems (r±,u±,φ) centred at z =±a. We will apply radial inversion
about one of the foci, for example on the coordinate r+, about the radius f ≡ 2a, while u+ remains constant.
This transforms spherical to bispherical coordinates:

e±η =
r∓
r±

=
1
f

r∓

(
r±→

f 2

r±

)
, (8.7)

ζ =±u∓

(
r±→

f 2

r±

)
. (8.8)

Now we may consider the inversion of the corresponding harmonics. For the translated spherical harmonics we
will use the notation Sm

n± ≡ Sm
n (r→ r+,u→ u+). Considering the coordinate inversions in (8.8), a bispherical

harmonic is actually the inversion of an offset exterior spherical harmonic about the other focus. For example
Bm

n+ is the inversion of Ŝm
n+ about the lower focus at z = a.

Bm
n± = (∓)n+m 2n+1 f

r∓
Sm

n±

(
r∓→

f 2

r∓

)
. (8.9)

The 2n+1 arises from f n+1 = (2a)n+1, and the alternating signs arise from the symmetry of the Legendre
functions Pm

n (u) = (−)n+mPm
n (−u). A similar transformation can be realized for interior spherical harmonics,

where a bispherical harmonic that is singular at one focus is the inversion of an interior spherical harmonic
centered at the other focus:

Bm
n± =

(±)n+m

2n
f

r±
Ŝm

n±

(
r±→

f 2

r±

)
. (8.10)

The similarity of (8.9) and (8.10) is related to the fact that the bispherical harmonics treat one focus as the origin
and the other as infinity, evaluating to zero at one and diverging at the other, just as the spherical harmonics
behave near the origin and at infinity.

Using Eq. (8.10), we can translate the spherical harmonics to the other focus, and use the fact that spherical
harmonics simply transform from interior to exterior types when inverted about their own center, to obtain an
expression for the bispherical harmonics simply in terms of offset spherical harmonics. The translation relation
for the regular spherical harmonics may be found for example in Ref. [132]:

Ŝm
n± =

n

∑
k=m

(
n+m
k+m

)
(∓)n+k2n−kŜm

k±. (8.11)

Taking (8.10), translating the spherical harmonics with (8.11), then evaluating the inversion gives

2n+1Sm
n± =

n

∑
k=m

(
n+m
k+m

)
(∓)n(−)kBm

k±, (8.12)

And the inverse relation can be found by first inverting the translation (8.11), then noting relation (8.10):

Bm
n± =

n

∑
k=m

(
n+m
k+m

)
(±)k2k+1Sm

k±. (8.13)
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So bispherical harmonics are just simple linear combinations of offset spherical harmonics. Eq. (8.12) was
given in [122] for m = 0, who noted that a bispherical harmonic of order n = 0 is actually just an offset point
charge: B0

0± = f/r±.

We may also relate bispherical harmonics to spherical harmonics centered at the origin, by taking the
relationships (8.12), (8.13) and translating the spherical harmonics using a similar translation relation:

Sm
n± =

∞

∑
k=n

(∓)n+k
(

k−m
n−m

)
Sm

k . (8.14)

then by rearranging, we have the following series expansion for bispherical harmonics for r > a:

Bm
n+ =

∞

∑
k=m

2 Dm
nkSm

k , (8.15)

where we define

Dm
nk =

min(n,k)

∑
p=0

(
n+m
p+m

)(
k−m
p−m

)
2p. (8.16)

For m= 0, the series coefficients are the Delannoy numbers encountered in combinatorics [133], OEIS A008288,
which count (among other things) the number of paths on a n by k grid from (0,0) to (n,k) where the allowed
moves are either (0,1), (1,0) or (1,1). Intuitively each binomial coefficient comes from a translation of the
spherical harmonics - looking at the z-axis, this corresponds to a simple binomial expansion. The 2p arises due
to the translation of the interior spherical harmonics by twice the focal length. The series can be used to derive
new properties of the Delannoy numbers [134]. For m > 0, these coefficients do not appear to be documented,
and could be seen as a generalization of the Delannoy numbers.

The inverse relationship expressing spherical harmonics as a series of bispherical harmonics can be found
by geometric transformations. Taking the expansion Eq. (8.15) and multiplying both sides by

√
r/2a, we

notice a similarity in the forms of the left and right hand sides: both have something to the power of n+1/2,
times a Legendre function. So we can interchange between the functions simply by interchanging e±η ↔ r/a
and ζ ↔ u. In fact, for example taking the upper sign in Eq. (8.15), this transformation is equivalent to a
translation z→ z+a followed by an inversion r+→ a/r+ as depicted in Figure 8.2:

Figure 8.2: geometric transformation of r/a→ eη .

And the extra prefactor ∆
√

r/2a on the left hand side actually transforms to its own reciprocal (which can
be shown with some algebra), so the expansion can be rearranged to give:

Sm
n =

∞

∑
k=m

(−)n+kDm
nkBm

k+. z < 0 (8.17)
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So the relationships between spherical and bispherical harmonics are symmetrical. And by applying similar
translations to we can also find the relationship between the bispherical harmonics and interior spherical
harmonics:

Bm
n± =

∞

∑
k=m

2(−)n+m(±)k+mDm
nkŜm

k . r < a (8.18)

8.1.4 Comparison to toroidal-spherical expansions

We should compare these to the relationships between spherical and toroidal harmonics (7.44-7.47).
We can obtain a recurrence relation for Dm

nk by applying the partial differential operator r∂r which preserves
harmonicity of solutions to Laplace’s equation. The effect on spherical harmonics is simple:

r
∂

∂ r
Sm

k =−(k+1)Sm
k , (8.19)

while for bispherical harmonics, the effect is

2r
∂

∂ r
Bm

n± = (n+m)Bm
n−1,±− (n−m+1)Bm

n+1,±−Bm
n±, (8.20)

which can be derived using the recurrence for the associated Legendre functions: (n−m+1)Pm
n+1(ζ ) = (2n+

1)ζ Pm
n (ζ )− (n+m)Pm

n−1(ζ ).
Applying 2r∂r + 1 to the expansion (8.15), rearranging, and equating coefficients of spherical harmonics, we
get

(n−m+1)Dm
n+1,k = (2k+1)Dm

n,k +(n+m)Dm
n−1,k. (8.21)

which resembles the recurrence relation for the toroidal-spherical expansion coefficients cm
nk, sm

nk, with n→
n−1/2.

A useful tool is the univariate generating function of Dm
nk which can be found by evaluating (8.15) on the z

axis for m = 0. For m > 0 the functions go to zero on the z-axis so we divide both sides by (1−u2)m/2 and take
limits. The generating function is

∑
k≥m

Dm
knzk = 2mzm (1+ z)n−m

(1− z)n+m+1 . (8.22)

By expanding the generating function (8.22) via the binomial series for the numerator and denominator
separately, and multiplying these, it is possible to find the following alternate expression for Dm

nk:

Dm
nk =2−m

k+m

∑
p=0

(
n+m

p

)(
n+ k− p

n−m

)
. (8.23)

Inspection reveals the bispherical-spherical and toroidal-spherical coefficients are related by a shift n→ n−
1/2 and multiplied by ik (due to the change of focal length a → −ia), which matches the transformation
between bispherical and toroidal harmonics. This means that toroidal harmonics also have a type of symmetric
relationship with spherical harmonics; this is derived in [25].
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8.2 Two dielectric spheres in an arbitrary electrostatic excitation

Having presented the properties of bispherical harmonics, we now look at physical problems for the interaction
of two spheres under electrostatic excitation.

8.2.1 T-matrix/EBCM for a single sphere using bispherical harmonics

We start with the T-matrix for a single dielectric sphere, which will subsequently be used in constructing the
T-matrix solution for two spheres in Section 8.3. Consider a sphere offset above the xy-plane at η = η0,
with permittivity εi in a medium with permittivity εo. We write the total potential outside as a sum of the
excitation potential Ve and scattered potential Vs: Vo =Vs +Ve. We assume that Ve can be expressed as a series
of bispherical harmonics that are regular inside the sphere (Bm

n−) and similarly for the internal potential Vi. The
scattered potential Vs should be expanded on Bm

n+ since it must solve Laplace’s equation everywhere outside the
sphere:

Ve =
∞

∑
n=0

n

∑
m=−n

am
n Bm

n− (8.24)

Vi =
∞

∑
n=0

n

∑
m=−n

bm
n Bm

n− (8.25)

Vs =
∞

∑
n=0

n

∑
m=−n

cm
n Bm

n+. (8.26)

The boundary conditions at the surface η = η0 are

Vi =Vo, (8.27)

ε
∂Vi

∂η
=

∂Vo

∂η
, (8.28)

where ε = εi/εo. Within the EBCM, the problem is instead solved using the equivalent integral equations:

∫
s

∂Vi(r′)
∂n′⊥

G(r,r′)ds′ =

{
Ve(r)−Vi(r) r inside
−Vs(r) r outside

(8.29)

where s is the surface of the sphere and n′⊥ is the outward unit normal. The Green function has the following
expansion in bispherical coordinates [53] sec. 10.3:

G(r,r′) =
1

8πa

∞

∑
n=0

n

∑
m=−n

(−)m

{
Bm

n+(r)B
−m
n− (r′) η < η ′

Bm
n−(r)B

−m
n+ (r′) η > η ′

(8.30)

(In the notation for B−m
n− , the negative in the subscript represents e−η dependence, while the −m is a negative

integer). We then insert the expansions of the potentials and Green functions into the integral equations, and
equate the prefactors of Bm

n+(r) on both sides. This leads to (dropping integration primes):

ε−1
8πa

(−)m
∞

∑
k=m

bm
k

∫
s
ds

∂Bm
k−

∂n⊥

{
B−m

n+ = am
n −bm

n

B−m
n− =−cm

n .
(8.31)

The relations are conveniently written in matrix form, defining the Q and P matrices as

Qm
nk =

ε−1
8πa

(−)m
∫

s

∂Bm
k−

∂n⊥
B−m

n+ ds+δnk (8.32)

Pm
nk =−

ε−1
8πa

(−)m
∫

s

∂Bm
k−

∂n⊥
B−m

n− ds. (8.33)

Then the series coefficients are related by

a = Qb, c = Pb, c = Ta, with T = PQ−1. (8.34)

87



The problem can be solved independently for each m, so that a,b,c are infinitely long vectors running over n
for a fixed m, and similarly Q,P,T are 2 dimensional matrices running over n and k, with a separate matrix for
each m.
In the case of a conducting sphere where |ε| → ∞, Q and P both become infinite, while T→ T∞, with

[T∞]mnk =−e−(2n+1)|η0|δnk, (8.35)

which agrees with [124].

8.2.2 Analytic forms for integrals

We now evaluate the surface integral (8.32). Explicitly the surface normal and infinitesimal element are

ds =
−a2dζ dφ

(β −ζ )2 ,
∂

∂n⊥
=

ζ −β

a
∂

∂η
, (8.36)

so that Eq. 8.32 becomes

Qm
nk =−

ε−1
2

(n−m)!
(n+m)!

e(n−k)η0

[
sinhη0

2

∫ 1

−1

Pm
n (ζ )Pm

k (ζ )

β0−ζ
dζ −

(
k+

1
2

)∫ 1

−1
Pm

n (ζ )Pm
k (ζ )dζ

]
+δnk, (8.37)

with a similar result for P. The integral on the left can be evaluated as (see Ref. [135] - note their Pm
n (z > 1)

differ by (−)m)

1
2

∫ 1

−1

Pm
n (ζ )Pm

k (ζ )

β −ζ
dζ = (−)mPm

min(n,k)(β )Q
m
max(n,k)(β ). (8.38)

The recurrence relation on n for Qm
n (β ) is unstable in the direction of increasing n, so backward recursion

should be used instead where the initial values can be found with the modified Lentz algorithm [136]. This is a
common implementation for calculating spheroidal harmonics which contain the same functions Qm

n .
The second integral in (8.37) is simply 2δnk(n+m)!/(n−m)!/(2n+1). We then have analytic expressions

for the matrix elements of P and Q for a sphere above the xy plane (η0 > 0). For η0 < 0, the potentials are
expanded on the opposite basis functions, and the normal to the sphere changes sign. The matrices are actually
independent of the sign of η0, so we can incorporate the results for spheres above or below the xy-plane:

Qm
nk = δnk−

ε−1
2

e(n−k)|η0|
[
(−)m (n−m)!

(n+m)!
sinh |η0|Pm

min(n,k)(β0)Qm
max(n,k)(β0)−δnk

]
, (8.39)

Pm
nk =

ε−1
2

e−(n+k+1)|η0|
[
(−)m (n−m)!

(n+m)!
sinh |η0|Pm

min(n,k)(β0)Qm
max(n,k)(β0)−δnk

]
. (8.40)

Like for the torus, the matrices are related by P = T∞(Q− I), and hence

T = T∞(I−Q−1). (8.41)

Numerically (8.41) and (8.34) give the same result.

8.2.3 Plane (half space)

For a plane (η0 = 0), the limiting forms of the Legendre functions are [62]:

lim
β→1+

Pm
n (β ) =

(n+m)!
(n−m)!

1
m!

(
β −1

2

)m/2

, (8.42)

lim
β→1+

Qm
n (β ) =

(−)m(m−1)!
2

(
β −1

2

)−m/2

, m > 0 (8.43)

lim
β→1+

Q0
n(β ) =

1
2

ln
2

β −1
, (8.44)
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so the product sinh |η0|Pm
min(n,k)(β0)Qm

max(n,k)(β0) goes to zero for all n,k,m. Then we have

Qplane =
ε +1

2
I, Pplane =−

ε−1
2

I, Tplane =−
ε−1
ε +1

I, (8.45)

which agrees with [124]. These matrices are again independent of whether the half space occupies z < 0 or
z > 0. This result allows for a fully analytical treatment for a conducting sphere in a dielectric half-space.

Figure 8.3: Schematic of the problem of two spheres under electrostatic excitation. The red dotted line is not
physical; it represents some arbitrary curve of constant ζ .

8.3 T-matrix for two spheres

We now use the results of the previous section to derive the T-matrix for a two sphere or sphere-plane system.
We do not consider the case of one sphere inside the other (both above or below the xy plane), as in [137], but
this can be treated with minor modifications. Also, bispherical coordinates cannot be used to treat touching
spheres; tangent sphere coordinates may be used instead [138, 139], or equivalently transformation optics
(radial inversion about the contact point) [140]. The approach we will follow is comparable to the re-expansion
method for treating multiple spheres in spherical coordinates, where the (diagonal) T-matrix on a spherical
harmonic basis for each sphere is translated to obtain the interaction matrix of the entire system. Here with
bispherical harmonics, the T-matrix for an individual sphere is not diagonal but the basis functions are better
suited to geometry and do not need to be translated.

8.3.1 Coordinate system

Consider two spheres (or a sphere and a plane) of possibly different radii and permittivities, with centers on the
z-axis above and below the xy-plane. We must set up the appropriate bispherical coordinate system, depicted
in Figure 8.3. Depending on the sphere sizes and separation, we must place the two foci z =±a such that it is
possible that the sphere surfaces then lie at η = η+ for the upper sphere and η = η− for the lower. The plane
z = 0 may not lie directly in the center of the gap.

89



Given the diameters of the spheres D± = 2R±, and the separation between their surfaces d, the focal length
of the bispherical coordinates should be set to

a =

√
d(D++d)(D−+d)(D++D−+d)

D++D−+2d
, (8.46)

and the sphere surfaces η = η± are then given by

sinhη± =± a
R±

. (8.47)

We may also divide the gap into d = d++d− where d± is the distance from the origin to each sphere surface:

d± =
R±

coshη±−1
. (8.48)

8.3.2 General solution

Denote the potential inside each sphere by Vi+ and Vi-, and the scattered potentials by Vs+ and Vs–, so that
Vo = Ve +Vs+ +Vs–. Here Ve must be expanded on different basis functions depending on which surface we
apply the boundary integral equations to. Following the same rationale as for the single sphere in the previous
section, the potentials are expanded as

Ve = ∑
n,m

{
am

n−Bm
n− η = η+

am
n+Bm

n+ η = η−
, (8.49)

Vi± = ∑
n,m

bm
n∓Bm

n∓, (8.50)

Vs± = ∑
n,m

cm
n±Bm

n±. (8.51)

Since the scattered field from one sphere adds to the incident field for the other, the matrix relations between
the coefficients are now

b± = Q−1
± (a∓+ c∓),

c± = T±(a∓+ c∓), (8.52)

where for example Q+ is the Q-matrix for the sphere η = η+, computed from (8.39). Rearranging these we get
the scattered coefficients in terms of the known incident coefficients:

c± = (I−T±T∓)−1T±(a∓+T∓a±), (8.53)

and the internal coefficients are obtained by applying (8.41) to (8.52):

b± = a∓+ c∓− [T∞
±]
−1c±. (8.54)

These expressions provide the solution for an arbitrary external field, but one must first determine the
expansion coefficients a± for the excitation potential in bispherical coordinates - see Section 8.5 for typical
fields.

In Ref. [25], where a T-matrix was derived for a torus in terms of toroidal harmonics, a main goal was to
present the T-matrix on a basis of spherical harmonics through the linear expansions between the two basis sets.
But in this case the solution in terms of spherical harmonics can be obtained directly using the re-expansion
method.
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8.3.3 Identical spheres

The full solution (8.53) requires up to three matrix inversions, but this number can be reduced in cases of
symmetry. For two identical spheres on opposite sides of the xy-plane, we have P+ = P− = P, and similarly
for the other matrices. For incident fields symmetric about z, we can make further simplifications:

a+ = a− (8.55)

c+ = c− = T(I−T)−1a+ (8.56)

= P(Q−P)−1a+ (8.57)

b+ = b− = a++(I− [T∞]−1)c+, (8.58)

we present (8.57) as it involves only one matrix inversion. Similarly for antisymmetric fields:

a+ =−a− (8.59)

c+ =−c− =−T(I+T)−1a+ (8.60)

=−P(Q+P)−1a+ (8.61)

b+ =−b− =−a+− (I+[T∞]−1)c+. (8.62)

8.4 Plasmon resonances

Figure 8.4: Values of the permittivity corresponding to plasmon resonances of two identical spheres with
diameter D = 1, separated by a gap d. The first three resonances for each type are plotted, while higher
resonances tend towards εres = −1. As the spheres become further apart, and the resonance conditions tend
towards the values for a single sphere, εres =−1−1/n. The resonant permittivities of the “M” modes are only
greater than -1 for d . 1.2. The eigenvalues were computed with matrix sizes ranging from 40 for d ≈ 1 to 800
as d→ 0, and convergence was checked by changing the matrix size.

One advantage of this formulation is that the plasmon resonance conditions ε = εres can be obtained from
matrix eigenvalues. For a single sphere the plasmon resonances are simply εres,n = −1− 1/n, lying between
−2 and −1. Alternatively, these resonant permittivities can also be calculated from the bispherical matrix
formulation by noting that resonance occurs when Q is singular. If we write the Q-matrix as Q = I− (ε−1)Q̂,
then the resonances occur when det(I− (ε − 1)Q̂) = 0, where Q̂ is independent of ε . The resonances are
then given by εres,n = 1+1/λn where λn are the eigenvalues of Q̂. It has been checked that these eigenvalues
do in fact approach −1− 1/n as the matrix size increases. It would be interesting to prove that the infinite
matrix Q̂ has these simple eigenvalues despite containing fairly complex Legendre functions. And perhaps a
simple expression for the torus resonances in Section 7.5.3 could also be found since the torus T-matrices are
mathematically similar to the bispherical T-matrices.
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For two identical spheres, equations (8.57) and (8.61) show that resonances occur when Q+P is singular for
symmetric (s) modes (about z), and when Q−P singular for antisymmetric (a) modes. If we define Q̄s/a =

(I∓T∞)Q̂, then resonances occur at ε
s/a
res,n = 1+1/λ

s/a
n where λ

s/a
n are the eigenvalues of Q̄s/a. The size of the

shifts due to the sphere-sphere coupling is directly related to the absolute value of the elements in T∞, which
grow as β0→ 1. Some low order resonance conditions are plotted in Figure 8.4. As the spheres approach each
other, the conditions for the antisymmetric modes εa

res,n tend towards−∞. For symmetric modes, εs
res,n generally

tend towards −1 for all n, except for very close spheres with d . 0.27R (for m = 0), where “M” modes with
εres >−1 start to appear [141]. These modes have very strong electric field in the gap and can only be excited
by a localized source, for example a molecule in the gap. For non-identical spheres, the resonance condition is
det(I−T±T∓) = 0. However, for this case it does not seem to be possible to express ε explicitly in terms of the
eigenvalues; the eigenvalue problem becomes non-linear. In Ref. [126], a different matrix was used involving
a non-linear eigenvalue problem for the resonances of nonidentical spheres.

8.5 Expansions of incident fields

For convenience we provide the expansions of some basic incident fields in terms of bispherical harmonics.

8.5.1 Constant potential

A constant can be expanded onto bispherical harmonics as [53]

1 = ∆

∞

∑
n=0

e−(n+1/2)|η |Pn(ζ ). (8.63)

8.5.2 Uniform field

A uniform field in any direction can be split into x,y and z components [53]:

z
a
= sign(η)∆

∞

∑
n=0

(2n+1)e−(n+1/2)|η |Pn(ζ ), (8.64)

x+ iy
a

= 2∆

∞

∑
n=0

e−(n+1/2)|η |P1
n (ζ )e

imφ . (8.65)

8.5.3 Point charge

The expansion of a point charge is given in Eq. (8.30). In particular for a point charge at the origin, we have

a
r
= ∆

∞

∑
n=0

(−)ne−(n+1/2)|η |Pn(ζ ). (8.66)

8.5.4 Dipole

Expansions for the dipole potential in bispherical harmonics, can be derived by differentiating the expansion
of a point charge in the z and x directions. A dipole at r′ = (x0,y0,z0) can be separated into its Cartesian
components. For w = x, y or z we have

2a
w−w0

|r− r0|3
=−

∞

∑
n=0

n

∑
m=−n

(−)m


∂Bm

n−(r0)

∂w0
B−m

n+ (r) η < η
′

∂Bm
n+(r0)

∂w0
B−m

n− (r) η > η
′.

(8.67)
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Explicit forms of the derivatives are

∂Bm
n±

∂ z
=
±
2a

[(2n+1)Bm
n,±− (n+m)Bm

n−1,±− (n−m+1)Bm
n+1,±], (8.68)

∂Bm
n±

∂x
=

1
4a

[(n+m)(n+m−1)Bm−1
n−1,±−Bm+1

n−1,±

−2(n+m)(n−m+1)Bm−1
n± +2Bm+1

n± +(n−m+1)(n−m+2)Bm−1
n+1,±−Bm+1

n+1,±], (8.69)

∂Bm
n±

∂y
=

i
4a

[−(n+m)(n+m−1)Bm−1 ∗
n−1,±−Bm+1 ∗

n−1,±+2(n+m)(n−m+1)Bm−1 ∗
n± +2Bm+1 ∗

n±

− (n−m+1)(n−m+2)Bm−1 ∗
n+1,±−Bm+1 ∗

n+1,±]. (8.70)

where * denotes complex conjugate.

8.6 Comparison to re-expansion method

Here we compare the rate of convergence of the bispherical expansion to the re-expansion method based
on spherical harmonics. The re-expansion method involves expanding the potentials on two basis of offset
spherical harmonics and translating them on to the other basis using a translation matrix. This results in a linear
system similar in form to (8.52).

Firstly for two identical spheres in a uniform field, the offset spherical series converge faster than the
bispherical series in both near and far fields, especially for close spheres.

However, for a point source incident field where the spherical series tend to converge slower, the bispherical
series converge faster near the the surface. Briefly, we cover the re-expansion method for identical spheres
with a point charge midway between them [119]. Similar to Section 8.3.2, the potential outside is written as
Vo =Ve +Vs+ +Vs–, where

Ve =
R
r
, Vs± =

∞

∑
n=0

Cn±

(
R
r±

)n+1

Pn(u±). (8.71)

The coefficients Cn+ and Cn− are given by a matrix inversion:

C± = (I+M)−1W, Cn− = (−)nCn+, (8.72)

where the elements of matrices M and W are

Mnk =
n(ε−1)

n(ε +1)+1

(
n+ k

k

)
(−)n+k

(
R

2R+d

)n+k+1

,

Wnk =
n(ε−1)

n(ε +1)+1
(−)n+1

(
2R

2R+d

)n

. (8.73)

The spatial potential in one quadrant is plotted in Figure 8.5, along with the relative error for this solution
and the bispherical solution (8.57). The bispherical solution is more accurate near the surface but not in the far
field. Figure 8.6 compares the rates of convergence of the partial series for the potential at the position of the
point charge. The bispherical series converges faster at the point charge itself for a wide range of the separation
distance. Similar results are found for dipoles, where such calculations can be used for example to calculate the
decay rate modification of an emitter in the gap in the quasi-static approximation [142].
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Figure 8.5: Left: relative error in bispherical solution for a point charge located at the center of two identical
spheres with ε = 1.5 separated by a gap of 2d = 0.1R, computed with N = 20 terms. The error is compared
to the bispherical expansion with enough terms to converge in all space to an accuracy of 10−14. The radial
dark lines are from the oscillations of the Legendre functions and the bright diagonal line is where the potential
passes through zero. The arcsinh is taken (similar to a log scale) for visual purposes. Center: black/white
regions are where the spherical/bispherical solution is more accurate when truncated at N = 20. Right: same as
the left plot but for a smaller gap, computed with N = 200 terms.

Figure 8.6: Potential at the position of the point charge between two identical spheres, comparing the rate of
convergence of the bispherical and re-expansion solutions. ε = 1.5, d is the gap size and D the sphere diameters

Comparing the results of these different but equivalent approaches could yield more analytic results. The
bispherical harmonics solution for two conducting spheres is analytic in terms of a series – the T-matrix is
diagonal, while the spherical harmonic solution requires a matrix inversion. It is possible to transform between
the two bases using the expansions in Section 8.1.3 to convert the analytic bispherical solution into the spherical
solution where the spherical harmonics are centered at the center of each sphere. This gives analytic expressions
for the T-matrix elements on a spherical basis centred at the foci z = ±a in terms of a series of a product of
binomial coefficients (Eq. (8.13)) and the diagonal bispherical T-matrix (Eq. (8.35) combined with (8.53)).
The spherical harmonics can then be translated to the center of each sphere. However, the series coefficients
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can be numerically unstable to compute when alternating signs are involved.
Similarly for the single offset dielectric sphere, the T-matrix is diagonal for a basis of offset spherical

harmonics, so by converting the spherical harmonics into bispherical harmonics, this can be used to obtain a
direct series expression for the bispherical T-matrix. Again the series is unstable, and not of much practical
help since the T-matrix for a two sphere problem requires another matrix inversion anyway as per Eq. (8.53).

8.7 Conclusion

In this chapter we have investigated the many connections between spherical and bispherical harmonics in terms
of Kelvin inversion, finite sums and infinite series. Following this, analytic expressions for the electrostatic T-
matrix for two arbitrary spheres on a basis of bispherical harmonics were derived, demonstrating the versatility
of the T-matrix method for electrostatics problems. We have also derived the plasmon resonance conditions
using this formalism, which finds all types of modes including M-modes which can be excited by molecules in
the gap, and have a very strong localized field which is ideal for surface enhanced Raman spectroscopy [143].
We have also demonstrated that the bispherical T-matrix is an ideal method of computation for these situations
where molecules are located in the gap.
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Chapter 9
Conclusion

The focus of this thesis has been to derive new analytic results for image theory and the T-matrix method. For
image theory our approach has been to find the singularities of the analytic continuation of the potential and
their corresponding charge distribution, which we defined as reduced images. We found the reduced image of
a point charge in an infinite cylinder, and on the axis or inside a prolate spheroid. For the dielectric sphere,
we have modified the existing image solution to apply for all values of the permittivity, and for an oscillating
acoustic source near a sphere, found evidence that the image lies on a radial line segment. In all these cases
the exact image itself is too complex to be practical but studying these images highlights issues of convergence
and they may be used to create simpler approximate image solutions.

The image of a point source depends radically on the geometry of the boundary, in some cases like the
sphere and plane being simple, but in others like the spheroid or cylinder being extremely complex. There is
no guarantee of a simple or numerically stable expression for the image density even for analytic boundaries,
and this may be the case for the spheroid or for the spherical wave near the sphere. More progress could be in
finding just the locations of the image singularities, for example finding conditions for the image to be points,
lines or surfaces, and finding approximations or inequalities for the extent of these singularities depending on
the curvature of the boundary. A numerical method of analytic continuation would be of great use, to find even
approximate locations of the singularities of a potential function. Using this information one should be able to
solve the problem approximately by placing simple image charges on the singularity, or use the numerical data
as an initial guess for an iterated image charge algorithm.

In part two we derived analytic expressions for the T-matrix elements of a spheroid in the small size limit,
for the lowest non-zero order of all elements for electric and magnetic multipole responses. These expressions
contain what we call generalized depolarization factors which tell us the resonance conditions of each multipole
in the small size limit. For the torus we derived the T-matrices on their corresponding basis of toroidal
harmonics, and used this to calculate the plasmon resonance conditions and find simple formulae for the limit
of a thin ring. We then converted the T-matrix to a spherical basis to obtain new expressions for the quasi-static
limit of the time harmonic T-matrix. A similar analysis was made for the sphere dimer, finding the electrostatic
T-matrix on a basis of bispherical harmonics, and using this formalism to calculate the resonance conditions.
We did not have to convert the T-matrix to a spherical basis since this is best done directly via the re-expansion
method using spherical harmonics, but the bispherical harmonic T-matrix has different convergence properties
which are ideal for calculating fields near the sphere gap, a region of interest for nano-photonics and surface
enhanced Raman spectroscopy. Overall these results indicate that analytic analysis of the quasistatic T-matrix
can provide simple approximations and reveal much about the plasmon resonances of small particles. The T-
matrix method applies differently depending on the shape and topology of the particle(s). For the spheroid the
approach is relatively straightforward due to the similar nature of the spherical and spheroidal harmonics. For
the torus, while the problem is completely expressible on a toroidal harmonic basis, we have only managed to
express the reflected field on a basis of spherical harmonics; the internal field is likely singular near the origin
and at infinity and therefore cannot be expressed with spherical harmonics. So the P and Q matrices do not exist
on a spherical basis and the null field method cannot be used. The bispherical system also excludes the origin
and the internal field may well be singular between the spheres again making the null field method intractable
using a basis of spherical harmonics centered at the origin. Ultimately the convergence and existence of the T-
matrix approach is governed by the locations of the singularities of the internal and scattered fields. Extending
these results to higher order in frequency would be practical, since nano-particles used in photonics are often
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too large for the full electrostatic approximation to be very accurate.
These results are of universal interest since the Laplace operator appears in many important partial dif-

ferential equations, including the heat equation, the Navier-Stokes equation, the Schrödinger equation and the
Helmholtz equation, which are much more difficult numerically and analytically. The same concepts of analytic
continuation, image singularities and orthogonal basis expansions apply to these equations also. It would be
beneficial to extend the results of this thesis to these other differential equations, at least asymptotically, for
example in a low frequency expansion where these equations may be reduced to Laplace’s equation with more
complex boundary conditions.
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