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ABSTRACT 

This doctoral thesis examines the multivariate nature of sporting performances, expressed as 

performance on context specific tasks, to develop a novel framework for constructing sport-

based rating systems, also referred to as scoring models. The intent of this framework is to 

produce reliable, robust, intuitive, and transparent ratings, regarded as meaningful, for 

performance prevalent in the sport player and team evaluation environment. In this thesis, 

Bracewell’s (2003) definition of a rating as an elegant form of dimension reduction is extended. 

Specifically, ratings are an elegant and excessive form of dimension reduction whereby a single 

numerical value provides an objective interpretation of performance. 

     The data, provided by numerous vendors, is a summary of actions and performances 

completed by an individual during the evaluation period. A literature review of rating systems 

to measure performance, revealed a set of common methodologies, which were applied to 

produce a set of rating systems that were used as pilot studies to garner a set of learnings and 

limitations surrounding the current literature. 

     By reviewing rating methodologies and developing rating systems a set of limitations and 

communalities surrounding the current literature were identified and used to develop a novel 

framework for constructing sport-based rating systems which output measures of both team and 

player-level performance. The proposed framework adopts a multi-objective ensembling 

strategy and implements five key communalities present within many rating methodologies. 

These communalities are the application of 1) dimension reduction and feature selection 

techniques, 2) feature engineering tasks, 3) a multi-objective framework, 4) time-based 

variables and 5) an ensembling procedure to produce an overall rating. 

     An ensemble approach is adopted because it assumed that sporting performances are a 

function of the significant traits affecting performance. Therefore, performance is defined as 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑓(𝑡𝑟𝑎𝑖𝑡1, … , 𝑡𝑟𝑎𝑖𝑡𝑛). Moreover, the framework is a form of model stacking 

where information from multiple models is combined to generate a more informative model. 

Rating systems built using this approach provide a meaningful quantitative interpretation 

performance during an evaluation period. These ratings measure the quality of performance 

during a specific time-interval, known as the evaluation period. 

     The framework introduces a methodical approach for constructing rating systems within the 

sporting domain, which produce meaningful ratings. Meaningful ratings must 1) yield good 

performance when data is drawn from a wide range of probability distributions that are largely 

unaffected by outliers, small departures from model assumptions and small sample sizes 

(robust), 2) be accurate and produce highly informative predictions which are well-calibrated 
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and sharp (reliable), 3) be interpretable and easy to communicate and (transparent), and 4) relate 

to real-world observable outcomes (intuitive). 

     The framework is developed to construct meaningful rating systems within the sporting 

industry to evaluate team and player performances. The approach was tested and validated by 

constructing both team and individual player-based rating systems within the cricketing context. 

The results of these systems were found to be meaningful, in that, they produced reliable, robust, 

transparent, and intuitive ratings. This ratings framework is not restricted within the sport of 

cricket to evaluate players and teams’ performances and is applicable in any sporting code where 

a summary of multivariate data is necessary to understand performance. 

     Common model evaluation metrics were found to be limited and lacked applicability when 

evaluating the effectiveness of meaningful ratings, therefore a novel evaluation metric was 

developed. The constructed metric applies a distance and magnitude-based metrics derived from 

the spherical scoring rule methodology. The distance and magnitude-based spherical (DMS) 

metric applies an analytical hierarchy process to assess the effectiveness of meaningful sport-

based ratings and accounts for forecasting difficulty on a time basis. The DMS performance 

metric quantifies elements of the decision-making process by 1) evaluating the distance between 

ratings reported by the modeller and the actual outcome or the modellers ‘true’ beliefs, 2) 

providing an indication of “good” ratings, 3) accounting for the context and the forecasting 

difficulty to which the ratings are being applied, and 4) capturing the introduction of any 

subjective human bias within sport-based rating systems. The DMS metric is shown to 

outperform conventional model evaluation metrics such as the log-loss, in specific sporting 

scenarios of varying difficulty. 
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Chapter One 

AN INTRODUCTION TO RATING SYSTEMS 

“Information is a source of learning. But unless 

it is organized, processed, and available to the 

right people in a format for decision making, it is 

a burden, not a benefit”. 

                                                            William Pollard, Physicist. 

Pollard, C. W. (2011). The Soul of the Firm. 

Illinois: The ServiceMaster Foundation. 
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1.0 INTRODUCTION 

In the recent decade there has been a significant growth in the demand for data-driven rating 

systems. This growth in demand for such data-driven models to assess behaviour, expressed as 

performance on context specific tasks, has been experienced across many industries, although 

this effect is most evident across three major industries: 1) sport, 2) finance and 3) technology. 

Specifically, the following area within each industry have received considerable academic and 

commercial attention, respectively, the evaluation of team and player performance, the 

evaluation of an applicants’ creditworthiness and repayment behaviour, and developer 

assessment – evaluating a developers’ coding ability across three dimensions technical, 

procedural and behavioural. These modelling systems quantify the effectiveness of performance 

by producing a quantitative interpretation of performance, and consequently, are referred to as 

rating systems. 

     The modelling applications of such systems have an objective of evaluating, rating, and 

forecasting performance, such as player and team performance, a loan applicants’ repayment 

behaviour and a developer’s coding ability. 

     As evidence of this growing demand, DOT Loves Data was approached by three separate 

organisations, Umano1, Penny2 and New Zealand Cricket, to develop three bespoke rating 

systems. Consequently, DOT funded this research to develop a ratings framework to construct 

rating systems that can be commercially deployed across the sporting, credit-risk, and developer 

domains and systems that output meaningful ratings. Although this research was initially funded 

to develop a ratings framework to construct sports, credit-risk, and developer-based systems, 

this thesis purely focusses on the development of a novel framework to construct rating systems 

within the sporting context, also referred to as sport-based rating systems. This is due to the 

commercial sensitivity of credit-risk and developer data, intellectual property agreements and 

non-disclosure agreements. 

     This research extends Bracewell’s (2003) definition of ratings, who stated that ratings are an 

elegant form of dimension reduction and enable the simplification of massive amounts of data 

into a single quantity. Specifically, ratings are an elegant and excessive form of dimension 

reduction whereby a numerical value provides a meaningful quantitative interpretation of 

performance. Meaningful ratings are defined as: 1) robust – the rating system must yield good 

performance where data is drawn from a wide range of probability distributions that are largely 

unaffected by outliers, small departures from model assumptions, and small sample sizes. 2) 

Reliable – ratings produce accurate and highly informative predictions which are well-calibrated 

and sharp ratings. 3) Transparent – interpretable and easy to communicate. 4) Intuitive – ratings 

 
1 A software company which evaluates a developer’s coding and programming ability. 
2 A peer-to-peer lending company. 
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must relate to real-world observable outcomes and the context to which the system is being 

applied. 

     This chapter introduces sport-based rating systems, specifically within the domain of credit 

risk application and sporting team and player-based evaluation, explains the research objectives, 

the methodologies and philosophies adopted in this thesis, and summarises the key methods and 

results surrounding rating systems. 

1.0.1 Prologue 

Invariably, when comparing attributes of players, teams, employees’, products, or services, the 

conversation revolves around rating or ranking performance and ability, or the perception of 

performance and ability. This fascination with evaluating, rating, and ranking the outcomes of 

interest, such as performance, is inherent across many disciplines, and in recent decades the 

need to objectively quantify such ratings has garnered a large amount of academic and 

commercial attention. 

     The demand for quantitative methods to assess and measure performance has exponentially 

increased within the commercial industry due to the growth of big data, machine-learning, 

artificial intelligence, and data-driven business models. A few examples are outlined below. 

     Uber, a multinational peer-to-peer ride sharing company, implements a rating system which 

evaluates driver performance on four dimensions: conversation, vehicle cleanliness, timeliness, 

and safety, and assessing passenger ‘performance’ on three dimensions: waiting times, courtesy 

and safety. This system allows both the driver and passenger to evaluate each other’s 

performance during a trip. It enables the driver to understand the “type” of passenger/s they are 

picking up and enables the passenger to understand the “type” of driver. Effectively, the driver 

and passenger can evaluate “performance”. A similar rating system is implemented by AirBnB, 

an online marketplace for arranging or offering lodgings, home stays or tourism experiences. 

Based on subjective inputs the AirBnB system allows the hostess and host to evaluate each other 

in a similar fashion. 

     Netflix, an American media services provider and production company, that implements a 

matching algorithm that evaluates the types of television series and movies that an individual 

has previously watched and based on past viewing behaviour recommends other TV shows and 

movies. Effectively, the rating system evaluates the quality of these matches using past actions. 

     FICO (FairIssac), a credit-scoring services company, is another example of an organisation 

that implements a rating system within their core services offering. FICO’s rating systems rank-

order consumers by how likely they are to pay their credit obligations as agreed (Smith, 2011). 

Effectively, FICO evaluates an applicant’s ability to repay credit-obligation and evaluating 

repayment behaviour. 
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     These are a few examples of rating systems applied within the commercial environment, 

there are many more organisation that implement data-driven rating or scoring systems within 

their core offering such as Numerix (https://numerix.com/), FindFace (https://findface.ru/), 

AlchemyAPI (https://www.ibm.com/watson/alchemy-api.html), Isograph 

(https://www.isograph.com/), FIFA player ratings (https://www.ea.com/games/fifa/fifa-

20/ratings). This growth in demand for the implementation of “rating systems” has been 

experienced across many industries, however this effect is most evident in three major 

industries: 1) sports, 2) finance and 3) technology. Specifically, evaluating team and player 

performance, evaluating an applicants’ creditworthiness and repayment behaviour, and 

developer assessment - evaluating a developer’s coding and programming ability, respectively.  

     Specifically, this thesis focuses on the development of sport-based rating systems which 

output meaningful results. The primary reasons why rating systems within the sporting 

environment are chosen to construct the ratings framework is the growing demand of such 

systems, which assess player and team performance, increases the need to measure the 

performance and validity of the underlying model. 

     The fundamental philosophy adopted in thesis continues and extends the research explored 

at the masterate level by Patel (2016) which developed an optimised player rating and team 

selection algorithm for T20 cricket. This extension is two-fold: 1) developing a framework to 

construct sport-based rating systems, at both the team and player-level, and 2) developing a 

novel performance metric to evaluate the effectiveness of sport-based rating systems. 

     This thesis contains extracts from Patel (2016), specifically sections of the literature review, 

however full references and appropriate acknowledgements have been provided where 

necessary. 

1.0.2 Research Motivation and Commercial Sensitivity 

During the research process DOT Loves Data, a data science and statistical analysis agency, 

partnered with Umano, a software company, to construct a rating algorithm which dynamically 

measures the effectiveness of developers and programmers using their technical, process and 

behavioural capability. 

     Since March 2018, the Umano product has been operationalised and deployed across several 

developer teams across different organization, primarily within the banking and finance sector. 

The deployed models have been tested and validated across many scenarios and shown to 

provide managers with invaluable insight when evaluating employee performance in real-time. 

The technical details surround the underlying Umano models will not be discussed or disclosed 

in this thesis due to commercially sensitivity, and the intellectual property being owned by 

www.umano.tech. Although, the methodology used to produce the underlying rating models is 

outlined in Chapter Three. The deployed Umano models adopted an ensemble forecasting 

https://numerix.com/
https://findface.ru/
https://www.ibm.com/watson/alchemy-api.html
https://www.isograph.com/
https://www.ea.com/games/fifa/fifa-20/ratings
https://www.ea.com/games/fifa/fifa-20/ratings
http://www.umano.tech/
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strategy applying a supervised hierarchical network-based approach to evaluate a developer’s 

technical, process and behavioural traits. Moreover, the framework applied to develop the beta 

version has been peer-reviewed and published (please see Bracewell, P. J., Patel, A. K., Blackie, 

E. J., & Boys, C. (2017). Although the beta models do not adopt the ratings framework 

constructed in Chapter Three, there are communalities with the ensemble strategy outlined in 

Chapter Three and the work published in Bracewell, Patel, Blackie & Boys (2017). 

     During the research process DOT Loves Data partnered with Penny, a peer-to-peer lending 

service, to develop an application credit-risk scorecard to dynamically produce credit-scores for 

loan applicants. Again, given the commercial sensitivity of this work, this thesis does not 

disclose the technical details surrounding the development of the deployed scorecard. 

     Finally, in May of 2018 DOT Loves Data was approached by RugbyPass 

(https://index.rugbypass.com/), the premier online destination for global rugby fans, to build a 

revolutionary rugby rating system based on individual skill executed in real-time. This rating 

system applies a unique position-and-point-based approach which allocates players points based 

on their contribution to winning, during a rugby match. The individual and team-based rating 

system has been peer-reviewed and published (please see Moore. W. E., Rooney. S. J., 

Bracewell. P.J., & Stefani. R. (2018), and Bracewell. P.J., McIvor, J., Moore, W. E., & Stefani. 

R. (2018)). 

     Therefore, given the number of commercial entities showing an appetite for rating systems, 

and the prevalence and need for commercial rating systems, DOT Loves Data funded this 

research. Given the commercial sensitivity of this work, this thesis only develops sport-based 

rating systems. Therefore, the credit-risk rating system developed for Penny nor the developer 

rating system built for Umano are disclosed. The focus of this thesis is purely on the 

development of a ratings framework to construct meaningful rating systems applicable within 

the sporting context. 

     The motivation for this research is two pronged: 1) develop a quantitative ratings framework 

to construct sport-based rating systems that output meaningful ratings and 2) construct a 

performance metric to quantify the effectiveness of meaningful sport-based ratings (please see 

Section 1.9 for more details). Based on commercial needs, the research identified the need for 

a ratings framework that produced systems which produce meaningful ratings, defined as 

reliable, robust, intuitive, and interpretable. This definition was established by DOT Loves Data 

and the interested parties. Moreover, from a technical lens the secondary research motivation 

was to develop a novel performance metric that assess the effectiveness of meaningful sport-

based rating systems.  

https://index.rugbypass.com/
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1.0.3 Publications and Contribution to Knowledge 

Throughout the research process several novel rating systems were published in academic 

journals and conference proceedings. Specifically, rating systems evaluating sporting teams and 

players, assessing a credit applicant’s credit worthiness, and assessing a developer’s coding 

ability were developed. A full list of peer-reviewed conference proceedings and journal 

publications are provided in Appendix A. These peer-reviewed publications provided the 

necessary exploratory research to identify the key elements required in a ratings framework. 

     This thesis resulted in 19 peer-reviewed publications, with 2 papers currently under review 

and 2 papers in preparation. 

     In performing an exploratory analysis and developing rating systems using current modelling 

methodologies, the communalities and limitations of the existing ratings literature are identified 

and addressed. The peer-reviewed rating systems that have been published as a result of this 

thesis have made meaningful contributions to the body of knowledge. 

     During the literature review of rating systems, specifically within sports and credit-risk 

(Chapter Two), the following limitations within the knowledge base were identified: 

• Lack of a sport-based ratings framework– given the prevalence of sport-based ratings 

within the commercial and academic environment no modelling framework or approach 

currently exists in the literature to construct meaningful sport-based rating systems.  

• Lack of meaningful rating systems – the literature echoed the sentiment expressed by 

Bracewell (2003); ratings are an elegant form of dimension reduction. Throughout this 

chapter it was shown that variable selection and dimension reduction are crucial elements 

of ratings methodologies. Although, given the loss of information during dimension 

reduction and the application of “black box” modelling techniques to produce ratings, the 

resultant ratings lack transparency and intuition, implying that results cannot be mapped 

to real-world observable outcomes. 

• No evaluation metric to assess the effectiveness of meaningful sport-based ratings – to 

evaluate the predictive accuracy of the developed rating systems commonly applied 

evaluation metrics such as log-loss, root mean square error (RMSE) and mean absolute 

error (MAE), were used. Although, given the uniqueness of sport-based rating systems, 

it is necessary to construct a specific performance metric which quantifies the 

effectiveness of meaningful sport-based ratings. 

Given the current limitations of the rating system knowledge base, the primary contribution of 

this thesis is the development of a modelling framework to construct rating systems to evaluate 

sports team and player performance. The framework is developed by constructing preliminary 

rating systems, specifically within the sporting context, identifying the communalities, 

distinctions, and limitations of these systems, and implementing and addressing these when 
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developing the ratings framework, respectively. Specifically, sports-based rating systems were 

developed to identify these commonalities, distinctions, and limitations because data is not 

commercially sensitive, readily available and accounts for a range of sporting scenarios. 

     The proposed framework (Chapter Three) adopts a multi-objective ensembling strategy. An 

ensemble approach is adopted because it assumed that performance is a function of the 

individual traits that significantly affect performance. Therefore, performance is defined as 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑓(𝑡𝑟𝑎𝑖𝑡1, … , 𝑡𝑟𝑎𝑖𝑡𝑛). Moreover, the developed framework is a form of model 

stacking where information from multiple models is combined to generate a more informative 

model. 

     Given the lack of an evaluation metric to quantify the effectiveness of sport-based ratings, 

the secondary contribution of this thesis is the construction of a novel performance metric to 

quantify the effectiveness of sport-based ratings. This novel evaluation metric, which applies 

distance and magnitude-based measure associated with spherical scoring rule methodology 

(please see Chapter Three), is shown to be a better evaluator of sport-based ratings than 

commonly used evaluation metric, such as log-loss, in certain scenarios. 

     Throughout this research the author has significantly contributed to the body of knowledge. 

Specifically, the author has developed a novel ratings framework that produces robust, reliable, 

transparent, and intuitive ratings, and validates its worth within the sporting domains. Further, 

a novel performance metric which quantifies the effectiveness of meaning sport-based ratings 

is developed. 

     Furthermore, because of this research a substantial body of novel work has been generated 

during this research process. The work has been peer-reviewed and published and includes six 

journal articles and 13 peer-reviewed conference proceedings. In addition, the papers titled 

“Estimating the expected total in the first innings of T20 cricket using gradient boosted 

learning” (Patel, Bracewell & Bracewell (2018))  and “A framework to quantify the impact of 

social engagement on data driven creative” were awarded the Neville De Mestre Prize for best 

student paper and presentation, respectively, at the 14th Australian Conference on Mathematics 

and Computers in Sport (MathSport) conference3. 

1.0.4 Software and Hardware 

Analyses and statistical programming were executed in R (R-GUI 64-bit v3.6; R Core Team, 

2018). This is an S-PLUS statistical programming environment for statistical computing and 

graphics. The choice of software was determined by the extensibility for modelling packages 

and the need for flexible object-oriented data manipulation. By using R, which is free, open-

 
3 MathSport is a special interest group of ANZIAM, the Australia New Zealand Industrial and Applied Mathematics 

organisation. 
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source and readily available over the Internet, all procedures carried out can be reviewed and 

replicated. All research was carried out on a desktop computer equipped with an Intel(R) 

Xeon(R)™ CPU 2.4HGHz (2 processors), 48GB RAM, running 64-bit Windows 7 Professional. 

1.1  IDEOLOGY 

Using objective match statistics from multiple sports, such as cricket, rugby and golf, and 

personal data from credit applicants, this thesis seeks to develop a framework for constructing 

rating systems within the sporting domain to evaluate team and player performances. The 

framework should construct sport-based rating systems which produce meaningful ratings, 

specifically reliable, robust, intuitive, and transparent ratings. 

     Techniques from multivariate analysis, ensemble forecasting strategies and machine learning 

techniques for regression and classification are implemented to develop a novel framework for 

constructing sport-based rating systems. The fundamental technique adopted in this thesis, to 

develop the ratings framework is an ensemble forecasting strategy. Birthed in meteorology, 

ensemble forecasting strategies are prevalent amongst meteorologist as they allow the use of 

many models and model uncertainties to understand a range of possibilities of future weather to 

evaluate the most likely outcomes. Moreover, atmospheric scientists have developed much of 

the underlying methodology of ensemble forecasting and the ensemble forecasting strategies 

adopted by such experts fall into one of two categories: 1) ensembles based on many different 

models and 2) ensembles based on many runs of one-computer model initialised from slightly 

different data (Kunst & Jumah, 2004).  

     Distance and magnitude-based measures associated with a proper scoring rule methodology, 

specifically a spherical rule, are used to develop a novel performance metric to quantify the 

effectiveness of meaningful sport-based performance ratings. The evaluation metric provides a 

unique way to compare ratings across different forecasting scenarios of varying forecasting 

difficulty. 

     As mentioned, this thesis develops a framework to construct meaningful rating systems by 

applying modelling methodologies prevalent within the credit risk, sporting, and the developer 

domains. Such rating systems produce a numerical interpretation of performance, which is 

defined as a function of the individual traits significantly affecting behaviour, expressed as 

performance on context specific tasks. Liu & Pentland (1999) developed an approach to model 

behaviour which considers the human as a device with many internal mental states, or traits, 

each with its own control behaviour and interstate transition probabilities. This approach is like 

that outlined in Chapter Three, whereby each trait is modelled individually, and these individual 

‘trait-based’ ratings are ensembled to produce an overall rating representing a quantitative 

interpretation of performance. 
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     A range of statistics relating to a developer’s ability and an applicants’ credit history are 

applied to construct Umano’s and Penny’s rating systems, respectively. Although, these are 

commercially sensitive and therefore details are not disclosed in this thesis. 

     As mentioned, although DOT funded this research to develop a rating framework to construct 

rating systems across multiple domains, the scope of this thesis is limited to the sporting context, 

specifically developing a framework to construct sport-based rating systems. 

     Chapter Two discusses and outlines the distinctions, communalities, and limitations between 

rating systems across the credit risk environment and the sports industry. Before developing 

rating systems and applying statistical techniques, the justification for implementing such 

procedures must be proven. Chapter Two reviews the large pool of literature supporting the 

application of statistics for assessing sports performance and evaluating a loan applicants’ 

creditworthiness. Chapter Two also introduces the importance of rating systems across the 

credit-risk and sporting domains. 

1.2 RESEARCH PROCESS 

The research process was driven by the commercial needs of DOT Loves Data to develop their 

artificial intelligence capability. Dr. Paul Bracewell, Managing Director of DOT Loves Data, 

provided invaluable feedback regarding potential models and approaches from a commercial 

and statistical perspective. 

     Due to the commercial environment and the organisations industry connections, the access 

and quality of the data available was unparalleled. With input from some of New Zealand’s top 

sporting minds, such as former Black Cap Grant Elliot and White Ferns cricket selector Jason 

Wells, credit risk expert, such as Dr. Paul Bracewell formerly a General Manager at Dun & 

Bradstreet (a company that provides commercial data, analytics and insights for business) and 

some of Australasia’s top computer scientists and developers. The insight and feedback in 

creation of the data collection process and associated systems was invaluable. Furthermore, the 

commercial involvement led to direct discussions with other top-level experts and executives 

which was necessary to ensure the resultant ratings framework and statistics were suitable for 

the consumption by decision makers. These meetings proved crucial in establishing the 

justification of adopting the proposed ratings framework and in establishing how such a 

framework can be deployed within different environment. 

     In developing the initial Umano models and Penny’s credit risk scorecard, the time pressure 

was immense, with the official beta launch of Umano and the deployment of an operationalised 

scorecard occurring simultaneously, in late March 2017, approximately four months after 

commencing analysis of the data. As mentioned, the operationalised and deployed Umano and 

Penny models are commercially sensitive, and their technical details have been excluded from 

this thesis. This initial work acted as a pilot study for the subsequent work. The knowledge 
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gained through this pilot process proved crucial when constructing the novel ratings framework. 

Specifically, the feedback received from weekly stand-ups and fortnightly retrospective 

sessions, as part of the agile development methodology used by the software developers, with 

Umano and Penny provided the necessary insight for the requirements of a rating system aimed 

at the credit risk and developer environment. 

     Prior to commencing the research process DOT had an existing relationship with a San 

Francisco based start-up, a funding platform for athletes, and New Zealand Cricket (NZC). In 

early 2016, the start-up approached DOT to identify ‘up and coming’ or ‘dark horse’ golfers in 

the Professional Golfer Association (PGA) tour. Effectively, this organisation wanted to identify 

the golfers with untapped potential and those players who were on their way to becoming 

superstars but had not yet been identified and invest monetary resources into these players. 

Therefore, to address this question DOT developed a predictive PGA performance rating 

system, which was peer-reviewed and published (please see Patel, A. K., Rooney. S. J., 

Bracewell, P. J., & Wells. J. D. (2018)). 

     Moreover, DOT was commissioned to provide a player rating and team optimisation system, 

which measured a player’s performance and selects the optimal team based on their 

performance. This work was commissioned leading up to the T20 Cricket world cup. The 

prototype of this rating and optimisation system was peer-reviewed and published (please see 

Patel, A. K., Bracewell, P. J., & Rooney, S. J. (2017)). 

     The communalities and limitations of these exploratory rating systems were identified, and 

the thesis sought to create an expert ratings framework capable of mirroring the opinions and 

observations of ‘unforgetful’ human experts from observable statistics using an ensemble 

forecasting strategy. Throughout the research process it was found that a careful balancing act 

between pure statistical methodology and creative statistics was necessary to ensure the models 

produced meaningful ratings (i.e. reliable, robust, intuitive and transparent), providing an 

appropriate quantitative interpretation of performance. 

     At this point the bilateral theme that predominates this thesis becomes evident. To fully 

understand the entirety of this work, a background of ratings system across the credit risk and 

sporting domain is required, and an understanding of the key statistics and data required needs 

to be understood. The two separate themes run parallel throughout, with the emphasis shifting 

continuously. Therefore, the material within this thesis is compartmentalised. Specific sections 

deal predominately with current rating philosophies and prevalent statistical techniques 

(Chapter Two and Chapter Three). The implementation and validation chapters (Chapter Four 

and Chapter Five) provide common ground and show how to effectively utilise the information 

generated from both a ratings and statistical perspective. 
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1.3 RATINGS FRAMEWORK 

The ratings framework developed in this thesis helps construct sport-based rating systems that 

produce reliable, robust, intuitive, and transparent ratings. The framework draws influence from 

two key fields in which rating systems have been very prevalent and experienced an increase in 

recent times: 1) credit risk scorecard and 2) sport ratings systems (Chapter Two). 

     The primary contribution of this thesis is the implementation of an ensemble forecasting 

strategy to develop an approach for constructing sport-based rating systems which produce 

meaningful ratings of behaviour, expressed as performance on context specific tasks. 

Meaningful ratings are defined as robust, reliable, transparent, and intuitive outputs. Robust 

ratings yield good performance when data is drawn from a wide range of probability 

distributions that are largely unaffected by outliers, small departures from model assumptions 

and small sample sizes. Reliable ratings are accurate and provide highly informative predictions, 

implying they are well-calibrated and sharp. Transparent ratings are interpretable and easy to 

communicate. Intuitive ratings can be mapped to real-world observable outcomes; effectively 

incorporating forecasting contextuality. 

     In this thesis, performance is defined as a function of individual traits and can be notational 

represented as 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  𝐹(𝑡𝑟𝑎𝑖𝑡1, … , 𝑡𝑟𝑎𝑖𝑡𝑛). To effectively quantify performance, 

various statistical techniques capable of dimension reduction and feature selection are applied 

to extract the traits affecting performance and the features that significantly affect these traits, 

respectively. 

     To extract meaningful ratings that provide a numerical interpretation of performance, a 

multi-objective ensemble forecasting strategy has been adopted. Specifically, an ensemble 

forecasting strategy is applied to combine forecasts derived from statistical methods that differ 

substantially and draw from different sources of information leading to improved forecasting 

accuracy. Given performance (or behaviour) is a manifestation of different traits (van Strien, 

1986; Argyle & Little, 1973; Halder, Roy & Chakraborty, 2017; Heinström, 2003) ensemble 

forecasting is an appealing modelling approach because instead of choosing a single method, a 

collection of “best” methods is selected to improve overall accuracy. 

     Given that the first task of rating systems is to identify the different traits that significantly 

affect performance expressed from the data, the problem lends itself to the field of dimension 

reduction. Assuming each dimension represents a specific trait and further, assuming there are 

multiple traits that define performance, a multi-objective approach is appropriate, where each 

modelling objective relates to a specific trait, and the outcome of each objective produces a trait-

based rating. This trait-based rating provides a numerical representation of the trait. It is 

assumed that for each trait to account for a sufficient amount of uncertainty in performance, 

different feature-types (action, context and time) across varying levels of complexity must be 

used to derive the trait-based ratings. 
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     After generating trait-based ratings for each significant trait, an ensembling forecasting 

method is used to combine the different trait ratings to produce an overall performance rating. 

This approach assumes that performance is a manifestation of individual traits, and these traits 

are measurable based on the observations of physical tasks performed in different conditions 

which are recorded as action, context, or time-based variables. This assumption has been heavily 

researched and validated within the academic literature (please see Bracewell 2003; Gonzalez, 

Mens, Colacioiu & Cazzola, 2013; Plomin, Owen & McGuffin, 1994; Delaney, Harmon & 

Ryan, 2013). 

     Ultimately, rating systems are a form of data scoring, also referred to as scoring models, a 

term commonly used within the data mining environment, which means filling in the outputs 

(Berry & Linoff, 2004). Scoring systems have been used in a range of academic fields, such as 

assessing an individual’s repayment behaviour and calculates their risk of defaulting on a line 

of credit (please see Arsovski, Markoski, Pecev, Ratgeber & Petrov, 2014; Marikkannu & 

Shanmugapriya, 2011; Pedreschi, Giannotti, Guidotti, Monreale, Pappalardo, Ruggieri & 

Turini, 2018). A wide range of statistical and data mining techniques are applied to enable 

scoring to occur (please see Kitts, Freed & Vrieze, 2000; Langley, 1997; Grady, Schryver & 

Leuze, 1999). Effectively, different characteristics and dimensions are extracted from the data 

to provide interested parties suitable ratings from which dimensions and predictions can be 

derived (Berry & Linoff, 2004). Generally, scoring or rating is associated with dimension 

reduction, aligning with Bracewell’s (2003) definition that ratings are an elegant form of 

dimension reduction; whereby high dimensional data is reduced to fewer, more manageable 

dimensions. 

     Although there is the danger of losing crucial information in the dimension reduction and 

feature selection process (Bracewell, 2003), given it is difficult for a human observer to detect 

patterns in multivariate situations (Grady et al., 1999), it is often necessary to condense a large 

number of variables into a more manageable set. This enables the identification of trends and 

patterns within the data. The danger of information loss can be managed or minimised 

techniques that eliminate the redundancies in the data by identifying the true dimensionality (i.e. 

key performance traits) of the input data. 

     Most rating systems need to produce predictive and accuracy outputs which are robust in the 

sense that they are applicable to everyone and everything within the target population 

(Bracewell, 2003). Bracewell (2003) stated that the risks associated with scoring a model are 

dependent on the intended use of the obtained information. This research extends Bracewell’s 

(2003) definition of ratings, who stated that ratings are an elegant form of dimension reduction 

and enable the simplification of massive amounts of data into a single quantity. Specifically, 

meaningful ratings are an elegant and excessive form of dimension reduction whereby a 

numerical value provides a meaningful quantitative interpretation of performance. 



15 
 

     It is a common misconception that reliability and robustness are the only requirements for 

meaningful ratings, however, if ratings do not make sense to the people who consume them or 

cannot be easily communicated, the ratings will never be used. Therefore, transparency and 

intuitiveness are also necessary. Indeed, misinterpretation of the ratings is the greatest threat to 

the success of rating systems, provided the key issues are resolved. 

     Whilst rating is an overly broad term, fundamentally, it is the ensemble forecasting approach 

that is most closely related to the development of a novel framework for constructing sport-

based rating systems assessing team and player performance. Further, it is the scoring rule 

methodology that is most closely related to the construction of a novel model evaluation metric 

to quantify the effectiveness of meaningful ratings. 

1.4 RELEVANCE OF RESEARCH 

Using the wrong ‘type’ of rating system is a common occurrence because not everyone can 

develop their own rating system. Commercial systems are difficult to assess because 

transparency and intuitiveness is usually absent, primarily because software suppliers want to 

maintain their competitive advantage and intellectual property. 

     This thesis develops an important novel framework for constructing rating systems, which 

can be applied to introduce transparency, intuition, reliability, and robustness to any rating 

system to assess performance and intends to produce a meaningful numerical interpretation of 

performance. 

     The application of analytics in the business environment has recently experienced 

tremendous growth (Henke, Bughin, Chui, Manyika, Wiseman & Sethupathy, 2016). Business 

analytics has transformed from a “nice-to-have” to a competitive advantage. “In the past few 

years, predictive analytics, has gone from a practice applied in a few niches to a competitive 

weapon with a rapidly expanding range of uses” (CGI: Predictive Analytics, 2013, p.1). 

“By using real-time data on the merchants’ transactions to build its own credit scoring 

system, Alibaba’s finance arm was able to achieve better non-performing loan ratios 

than traditional banks” (Henke, Bughin, Chui, Manyika, Saleh, Wiseman & 

Sethupathy, 2016, p. 26). 

“Many companies have implemented rule-based lead scoring models to identify which 

leads get handed over to sales teams” (Ericsson, Dansingani, O’Hair, Jackson & Edin, 

2018, p. 6). 

“Rating systems were developed to help us [Bioz] choose services and products, such 

as a hairdresser or a new car, ultimately guiding us in our evaluation of quality, 

relevance and performance…. Rating systems are based on data; they are usually 

displayed on a scale of 1 to 100. As these ratings rely on algorithms that are hard to 
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manipulate, and on measurable usage data, these ratings are both objective and 

trusted” (Lachmi, 2018, p.1). 

A key factor for the rise in business analytics is the phenomenon of big data, and its acceptance 

by senior executives as an important business enabler. The goal of insight and information 

extraction or revealing hidden patterns within big data is achievable through the application of 

mathematical and statistical techniques. Sagiroglu & Sinanc (2013) stated that modern analytics, 

characterised by improvements in computing power, reduced cost in data storage, greater access 

to various data sources and cheaper commodity hardware, requires a revolutionary step forward, 

moving away from traditional data analysis. The Transforming Data with Intelligence (TDWI) 

survey revealed that the application of advanced analytics creates better aimed marketing, 

increased business insights, client-based segmentation and recognition of sales and market 

chances. Through analytics businesses have seen the benefits described above and have also 

been able to develop analytical techniques and models that are the core of their competitive 

advantage and offerings. Moreover, these advanced analytics tools put information in the hands 

of business analysts and business users, offering significant potential to create business value 

and competitive advantage. 

     Through big data analytics, not only have businesses seen the benefits described above but 

they have also been able to develop analytical techniques and that are the core of their 

competitive advantage and core offerings. Advanced business analytics tools enable deeper 

insights and discovery that will change business assumptions (Seddon, Constantinidis, Tamm 

& Dod, 2017).  Moreover, these tools put information in the hands of business analysts and 

business users and offer significant potential to create business value ad competitive advantage 

(Pratt & White, 2018). There are many well-known organizations whose competitive advantage 

rely on powerful mathematical and statistical algorithms such as Google’s Page Rank algorithm, 

DeepMinds (https://deepmind.com/) general purpose neural network algorithms, and Facebook 

facial recognition algorithm. Without these models the business would not be able to sustain a 

competitive advantage. This increase in demand for big data analytic teams has created a high 

demand for those specialising in mathematical, statistical sciences, software engineering and 

computer scientists and data scientists as organisations seek to develop their machine learning 

and analytics capabilities, in an ever evolving data-driven environment. 

     The objective of these are data-driven and modelling intensive applications is to evaluate, 

rank, rate, or predict the performance of an individual or collection of individuals. This common 

thread dictates that the results must be robust, transparent, and meaningful (Bracewell, 2003). 

The following section will provide brief context as to why the sporting evaluation and credit 

risk environments have received considerable commercial and academic success and why they 

are experiencing growth in demand and academic attention. 

https://deepmind.com/
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1.5 COMMERCIAL RATING SYSTEMS 

1.5.1 Sporting Industry 

Within the sporting world statistical ranking and rating methodology have been heavily applied 

in the past two decades at both the individual and team level. The growth of sports analytics and 

the need for meaningful sports related statistics has emerged in recent decades due to the large 

volume of monetary resources that is increasingly invested into teams and individual players. 

Moreover, the rise in player salary caps over the last 25 years provide ample evidence of the 

growth in sports analytics, with investors, franchises, clubs, and other stakeholders wanting to 

determine the value of their investment decisions. For example, in the National Football League 

(NFL) there has been an increase of approximately 950% in player salaries since 1980’s, and an 

increase of 288% in salary cap since 1994 (Vrooman, 2012). With global sports revenue 

growing by U$145.3billion over the 2010-2015 period (Coopers, 2015), at an annual compound 

growth rate of 3.7%, and winning teams earning significantly larger revenue than that of losing 

teams, there is a strong incentive for coaches and managerial staff of sport teams to succeed. 

Additionally, “the regulated sports betting market is forecasted to reach $70 billion in 2016, 

representing a 20% increase from 2016” (Foley-Train, 2014).  

     Given the large investment of resources and stakes involved, coaches, managers and other 

stakeholders cannot solely rely on subjective views and personal beliefs to make team and player 

selections. Solutions must be augmented with objective approaches by implementing analytical 

techniques to rank, rate, evaluate and forecast selection decisions. This need to make informed 

data-driven decisions has given rise to the use of sport analytics by managers, coaches, athletes, 

and fans. Forbes (2015) claimed that the popularity of data-driven decision making in sports has 

trickled down to the fans, which are consuming more analytical content than ever. 

     To derive a deeper understanding of the requirements for a meaningful sports rating system, 

the author has undertaken significant, novel research and meaningfully contributed to the body 

of knowledge. These findings have been published and peer-reviewed publications: Patel, 

Bracewell & Rooney (2016); Patel, Bracewell & Rooney, 2017; Patel & Bracewell, 2018; Patel, 

Bracewell & Wells, 2017; Brown, Patel & Bracewell, 2017; Campbell, Bracewell, Blackie & 

Patel, 2018; Patel & Bracewell, 2017; Greer, Patel, Trowland & Bracewell, 2018; Mansell, Patel 

& Bracewell, 2018; Simmonds, Patel & Bracewell, 2018; McIvor, Patel, Hilder & Bracewell, 

2018; Patel, Bracewell, Wells & Brown, 2018; Patel, Rooney, Bracewell & Wells, 2018; 

Campbell, Patel & Bracewell, 2018; Patel, Bracewell & Bracewell, 2018; (please see Appendix 

A for a full list of the published work). These rating systems were developed prior to developing 

a ratings framework to construct sport-based rating systems and were used to understand the 

communalities, distinctions, and limitations of commonly applied practices to develop sport-

based rating systems. 
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1.5.1.1 De-regularisation of the sports betting industry 

During the research process the United States de-regularised the sports betting market and 

opened online sports betting outside the state of Nevada. This de-regularisation has 

significant implications on this thesis and makes the development of sport rating systems 

within the commercial environment extremely relevant. Therefore, this section is dedicated 

to outlining the market effects of this de-regularisation and the impact such as event has on 

this research. 

     On May 14th, 2018 the United States Supreme court removed the Professional and 

Amateur Sports Protection Act of 1992 (PASPA), which federally prohibited sports 

gambling under state law, ruling that the federal ban was unconstitutional, and opened the 

door for all states to legalize sports betting. This legalisation of sports betting will impact 

the relationships between leagues, gambling institutions, data providers, the government 

and how fans interact with games. It is expected that by 2024, approximately 70% of the 

United States will offer legal sports betting. “Reports state that the removal of the PASPA 

will lead the United States to become the largest sports betting market in the world, a 

massive high-tech industry centred on professional and amateur athletes and fuelled by 

hundreds of billions of dollars” (Silverman, 2019, p. 1). 

     The overturned PASPA (1992) legislation also opens the doors for sports bookmakers, 

new betting agencies, diverse betting options and sports-based analytics companies 

primarily driven by the influx of new customers and gambling participation in the 

marketplace. With the rising number of participants on both the demand and supply of 

sporting odds, the type of odds and the level of participation needed to identify and provide 

appealing and diverse betting options simultaneously increasing in the demand for 

intuitive, transparent, robust and reliable sports statistics, and team and player rating 

systems that are easily digestible by sports fans. 

     New entrants such as bookmakers and betting agencies must offer exotic bets, lucrative 

odds and diverse betting options to capture a significant proportion of this growing and 

sophisticated market. The rapidly expanding sports betting market and the rise in 

mathematical and statistical models to inform decision making within the sporting industry 

(both academically and commercially) highlights a need to develop a novel ratings 

framework that can be deployed across multiple sports and domains. This leads to an 

increase in a more sophisticated marketplace, supplying and demanding more informative 

sports analytics and statistics detached from subjectivity, bias and tradition.  

     Much like market finance sports bookmaking examines the environment with 

sophisticated algorithmic trading systems, running and constantly adjusting prices and 

odds as players or in-game events occur. However, unlike the financial markets, sports are 

governed by a set of physical rules and are measurable and understood (Blume, 2019, p. 
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1). “In less than one year that bookmaking has been legal in New Jersey, a number of 

European companies have swooped into offer services to the racetracks and casinos 

licensed to books sports bets. These companies offer turnkey operation complete with 

quantitative analysts, software and modelling for profiling bettors and managing risks, 

access to data from sports leagues, and worldwide pools of liquidity” (Hill, 2019, p. 1). 

     The introduction of new entrants in the sports betting market has a profound effect on 

the expected growth in revenue, within the industry, with the global gambling market 

expected to reach revenue of over USD525 billion by 2023, growing at a compound annual 

growth rate (CAGR) of approximately 4% between 2017-2023 (Cision, 2018).  Moreover, 

according Zion Market Research (2019), the global sports betting market was valued at 

approximately USD104.31 billion in 2017 and is expected to reach approximately 

USD155.49 billion by 2024, growing at a CAGR of 8.83% between 2018 to 2024. The 

expected growth in the global gambling market is driven by increasing penetration of 

online gambling and betting across the United States and European region. With 

prognosticators estimating that betting dollars could reach $287 billion, currently $4.9 

billion, and that total sportsbook revenue could reach $4.6 billion, currently $800 million, 

by 2021, there is tremendous opportunity for stakeholders to capitalize on. 

     As mentioned, the deregulation of Americas sports gambling market creates an 

opportunity to monetize, many key stakeholders see opportunities to monetize, while others 

raise concerns about the impact legalized gambling could have on the integrity of the game, 

and federal and state governments consider their roles and legislative next steps. It has been 

reported that the key will be to form relationships between gambling institutions, governing 

bodies, and leagues to share the pie and ensure integrity. This growth also underscores the 

need to develop real-time data feeds in conjunction with leagues to support real-time and 

in-game betting, particularly on mobile platforms. 

     America’s fastest growing industry with a new breed of sports gamblers are known as 

“wall-street types” and are “adept at figuring percentage odds and statistical permutations” 

(Hill, 2019). According to Hill (2019) there are two ways to make money in this business: 

1) fundamental analysis and 2) technical analysis – using finely tuned models to analyse 

the team, player ratings and odds. The growing need for tools and data to make informed 

sports betting decisions and setting odds for book makers and increase profitability for both 

parties. The benefit of model-based decision making is its lack of subjectivity and free from 

bias.  

     In 2009, the sports betting market was valued at $20 billion, however by 2016, it was 

valued at $40 billion. The American sports betting market has consecutively grown at a 

rate of approximately $10 billion per year, with a present market capitalization of between 
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$60-$73 billion. If this growth rate continues, Americas sports betting market will occupy 

an increasingly significant share of the worlds sports gambling market (Gary, 2019).  

     “Sports betting currently accounts for upwards of 40% of global gambling revenue 

around the world which is greater than any other section (inclusion of lotteries, casinos, 

poker etc.). According to the latest projections from market research firm Technavio, the 

CAGR is expected to increase by a whopping 8.62% from 2018-2022” (Chain, 2018, p. 1). 

In terms of participation, online sports betting has surpassed all other forms of gambling 

including lotteries, casinos, poker etc and currently accounts for upwards of 40% of the 

worlds global gambling revenue. “According to the latest projections from market research 

firm Technavio, the CAGR is expected to increase by 8.62% from 2018-2022” (Chain, 

2018, p. 1). 

     Charlton (2013) states that betting on NFL football experienced the largest growth in 

the sports betting industry, growing by 69% between 2009-2012. This growth was 

primarily driven by the rise of in-play betting, while gambling via electronic gaming 

machines fell 20%, from 39% to 19%, between 2009-2011, while participation in sports 

betting increased by 13% over the same period.  

     With this rapid expansion in the global sports betting market and its continued surge in 

popularity the demand for accurate and predictive sports statistics applied to derive 

sporting odds has never been so high. The sports betting industry is one of the fastest 

growing sectors in the world, and the legalization of it within the states exponentially 

increase the growth and will intellectualize sports, strengthen team and player statistics and 

the type of data collected in each sport, amongst stakeholders such as bookmakers, fans 

and sports analytics companies. There has been a rise in the number of model-based sports 

betting systems and academic literature which analyse line movement and public betting 

data to identify “smart money” bets, and automatically identify where and when to place 

lucrative bets.  

     Moreover, given analytical strategies are shared between different teams largely due to 

the high turnover rate among coaches and managers, there is rapid progression and 

implementation of various statistical analyses, which is partially responsible for the boom 

in the sports analytics industry over the past decade. One example that illustrates this lies 

in the MIT Sloan Sports Analytics Conference, an annual event that discusses recent 

developments in sports data analytics. In 2007, there were 175 attendees. However, in 

2013, there were over 2200 attendees; and 3500 attendees in 2019, this is an increase of 

over 1200%. Historically, predictive sports modelling has been accomplished through 

mathematical, theoretical models, based on human intuition and other primitive means. 

However, with the recent technological advances in modern analytics, opportunities have 

arisen for a transition into data-driven modelling. 
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     These market and industry movements highlight the need and importance of sports 

analytics and the research within rating systems presented throughout this thesis. Given 

this recent development, it has never been more pertinent to produce accurate and 

predictive sport team and player rating systems to inform decision-making surrounding 

team selection, enticing odds and analytical outputs that offer in-depth insight relative to 

traditional outputs. 

1.5.2 Financial Industry 

Due to the 2007-2008 Global Financial Crisis (GFC), in 2010-2011, the Basel committee on 

Banking Supervision introduced the Basel III framework with the intention of strengthening 

capital requirements by increasing liquidity and decreasing leveraging. This regulation changed 

the way credit scoring systems were built and the type of applicant attributes that each system 

must incorporate, increasing financial institutions demand for scoring systems that detect subtle 

changes in an applicant’s attributes, associated with probabilities of default. Most credit scoring 

systems are based on the 12-month view of historical applicants’ behaviour and an assumption 

that a customer’s future performance is like their past performance. However, during the GFC 

many applicants who were financially stable for many years ended up in financial difficulty. 

This revealed that the adopted scoring methodology was not necessarily reflective of an 

applicant’s credit worthiness and highlighted flaws in the current scoring methodology. Hand 

& Henley (1997) stated that the most widely used techniques for building scorecards are linear 

discriminant analysis, logistic regression, probit analysis, non-parametric methods, Markov 

chain models, recursive partitioning, expert systems, genetic algorithms, artificial neural 

networks and conditional independence models. These techniques are used to predict the 

probability of default in the next 6, 9, 12 or 18 months (Peussa, 2016; Bolton, 2009). 

     There exist subtle nuances in the application of statistical methods within the financial 

services sector. Specifically, given data is not missing at random, this requires an approach 

called reject inference. Moreover, to maintain interpretability and minimise the impact of 

collinearity the data fed into the model in a manner satisfying commercial constraints by 

iteratively modelling on the residuals. This thesis has derived novel applications of reject 

inference techniques and outlines work on modelling residuals published in peer-reviewed 

journals. Please see Baez-Revueltas, 2009; Einarsson, 2008; Shad & Rehman 2012; 

Anagnostopoulos & Abedi 2016; Roy, 2016; Tabagari, 2015; Torosyan, 2017; Patel et. al. 

(2017). 

     These findings have been published in peer-reviewed academic journals (please see 

Bracewell, Coomes, Nash, Rooney, Patel & Meyer, 2017; Patel, Bracewell, Gazley & 

Bracewell, 2017; Patel, Bracewell & Coomes, 2018). Please see Appendix A and the Supporting 

Publications document for full copies of the published work. 
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1.6 SUMMARY OF COMMERCIAL RATING SYSTEMS 

To successfully develop a ratings framework that is applicable within the sporting domain, the 

commonly used methodologies and statistical techniques, sector-specific terminology and 

underlying philosophies that shape these rating systems must be understood. In this section the 

key methods, the type of rating systems, important terminology and commonly used techniques 

within credit-risk and sports are summarised. 

1.6.1 Credit Risk 

Credit scoring is the term used to describe statistical methods used for classifying applicants for 

credit into good (low probability of loan defaults) and bad (high probability of loan defaults) 

classes. Such methods have become increasingly vital with the remarkable growth in consumer 

credit in recent years. Credit scoring has become one of the most successful application areas 

for statistical and operational research. 

     To measure risk, financial institutions apply statistical analysis called credit scoring to help 

make credit decisions. Credit scoring produces a numerical value known as a credit score 

measuring the likelihood of an individual ability to repay their debt sometime in the future. A 

high credit score indicates a lower likelihood of default, while a low credit score indicates a 

higher likelihood of default (i.e. an increased likelihood of not repaying the debt in the future). 

A customer with a high credit score is known as a good customer while a customer with a low 

credit score is known as a bad customer.  

     The financial industry has been utilizing statistical rating/ framework methodologies for 

many decades to evaluate consumer creditworthiness (i.e. credit risk scorecards), model 

corporate and developing scoring models for retail exposures. The financial industry regulates 

such development through the Basel Framework. “The Basel framework has three sets of 

banking regulations (Basel I, II and III) set by the Basel committee on Bank supervision, which 

provides recommendations on banking regulations regarding capital risk, market risk and 

operational risk” (Basel Committee, 2010, p.1). The framework aims to ensure that financial 

institutions have enough capital on account to meet obligations and absorb unexpected losses.  

     Such scoring models evaluate risk by applying statistical analysis so that the users can score 

an individual’s, group or businesses credit worthiness to help make decisions on the amount of 

risk to take, credit to provide, provide to promote etc. 

     Credit-scoring models are used by insurance companies, mobile phone companies, 

government departments, landlords, and their use continues to expand. Credit has existed in 

various formats for many years but in recent times consumer credit has increased in the form of 

credit cards, home loans, personal loans etc. This has resulted in a widespread use of credit 

scoring. However, there are many aspects of the methodology that have not received enough 

attention in the academic literature, due to the need for confidentiality resulting in a lack of 
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availability of datasets for investigation purposes. Both application and behavioural scoring rely 

on the development of classification tools using statistical analysis (Hand, 1981; Johnson & 

Wichen, 1998). 

     There are two main types of credit risk scorecards widely used in the finance industry: 1) 

Behavioural scorecards, and 2) Application scorecards. Broadly speaking, banks apply 

application and behavioural scoring to deal with two different types of customers requiring 

different types of decisions: 1) New customers’– should the new applicants for credit be granted? 

And 2) Existing customers’ – should the agency grant the request of an old customer to increase 

credit limit? How risky are the existing customers? What products to offer to the existing 

customers to maximize the profit? Application scoring is applied to determine the answer to the 

first question, while behavioural scoring is applied to answer the second questions. 

1.6.1.1 Application scoring 

Application scoring is more common in the literature to the point that when credit scoring 

is discussed, one automatically thinks of application scoring, however the literature on 

credit scoring is scarce due to the sensitivity in the data. Literature on behavioural scoring 

is almost non-existent. In this proposal credit scores refer to both application and 

behavioural scoring. 

1.6.1.2 Behavioural scoring 

Behavioural scoring has become an important task in the credit industry. Behavioural 

scoring has many benefits including closer monitoring of existing accounts, reductions in 

credit analysis costs, faster credit decisions and prioritizing credit collections (Brill, 1998). 

These types of scoring models aim to group customers that share similar behavioural 

patterns. Using these patterns, banks target different groups to promote new products, 

increase credit limits, target the group which will be encouraged to spend more and come 

up with strategies to manage recovery if a customer’s repayments ability turns bad. In 

behavioural scoring models, historical transaction behaviour and payments are considered 

assuming that the customers’ behaviour will be similar in the future. To model a customer’s 

behaviour, behaviour scoring models establish an association between input variables and 

an output score, which measures the probability of default. Based on these associations, a 

score is assigned to each customer and customers are clustered into group for marketing 

purposes. The typical scoring method usually involves the steps shown in Figure 1.       

     The appropriate statistical framework is ‘classification’. This is an old modelling 

paradigm with mature literature review. Approaches to binary classification are legion 

within the credit scoring discipline, as credit card applicants are either ‘good’ or ‘bad’ 

defined by the probability of default or delinquency (number of days of missed payments). 
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1.6.2 Sport-based Rating Systems 

Applying analytical techniques to quantitative sports data allow users to rank and evaluate 

player and team performances. A rank refers to ordinal placement of ratings, while “ratings 

come from a continuous scale such that the relative strength of team individual is directly 

reflected in the value of its rating” (Massey, 1997, p. 2). Early sports modelling work was based 

on ratings methodologies (Stefani, 2011). 

     In general, sport rating systems provide an objective evaluation of a team or individual based 

on prior performances and are implemented for player comparisons and improving player and 

team selection process. Generally, such systems are used by coaches, players, team managers 

and other key stakeholders. 

     Formally, a sport rating system assigns each team or individual a single numerical value 

representing a team or individual’s strength relative to the rest of the league on some 

predetermined scale (Massey, 1997). These ratings are beneficial to numerous parties, 

especially athletes, coaches and managers who utilise such systems to track and predict form, 

progress and applied as a motivational and benchmarking tool.  According to Leitner et al. 

(2010) sport ratings are typically derived by suitably aggregating a competitor’s previous 

performances and provide predictive power in forecasting future performances. Many American 

sporting franchises, such as The Oakland A’s (Baseball) and Dallas Mavericks (Basketball), 

adopt such an ideology. 

     Using a common framework, Stefani (1997) presented a survey of major world sport rating 

systems. The study stipulated that sport rating systems have 3 key steps: 1) weigh the observed 

Figure 1: Process to create credit risk scorecards 



25 
 

results – this is the most important factor in determining points for a competitor, 𝑖, in any given 

competition 𝑛, 2) combine the competitive points to produce season value, and 3) Aggregate 

the seasonal value to produce a rating. 

     The most well-known sport rating methodologies are the Bradley-Terry (1952), Elo (1978) 

and Glicko (1999) models (please see section Chapter Two for more details). 

1.6.2.1 Type of sport ranking systems 

Sorensen (2000) claimed that sport ranking systems, in general, fall into one of the two 

following categories: 1) Earned ranking systems utilise past performances to provide a 

suitable method for selecting either a winner or a set of teams that should participate in a 

play-off (Sorensen, 2000). Earned ratings are assigned an ordinal rank to produce team 

rankings. Majority of international sports such as tennis, basketball and football adopt an 

earned ranking system to produce [conference] seedings to establish play-off matchups. 2) 

Predictive ranking systems utilise past performances to build a forecasting model to predict 

future match outcomes between two teams. No internationally recognised sport adopts this 

ranking approach to determine seedings, as in practise this would not make sense and be 

problematic to implement. However, betting agencies, sport networks and analyst use such 

systems to set odds, predict margin of victory and establish winning probabilities. 

     Stefani (1997) stated sport rating systems can be separated into three further distinct 

types depending on how new ratings are calculated for each rating system: (1) Adjustive 

systems (2) Accumulative systems and (3) Subjective systems. 

1.6.2.2 Adjustive Systems 

Adjustive systems, also known as adaptive systems, “provide the best predictors for future 

performance because each adjustment follows from a predictor correction action in which 

a rating for team 𝑖, can increase, decrease or stay the same, as each new result is compared 

to each prediction based on information available prior to the competition” (Stefani, 2011, 

p.8). Such systems cause ratings to fluctuate, depending on performances, and account for 

leapfrogging. This is a situation in which a player who cannot participate due to injury, is 

exposed to being overtaken by teammates who can play more games, and therefore can 

earn more points. Adaptive rating systems are adopted by sports such as golf, cricket, chess, 

football, and rugby. According to Stefani (2011) an adaptive system for competitor, 𝑖, has 

the following form: 

𝑟𝑖
𝑛 = 𝑟𝑖

𝑛−1 + 𝑘[𝑤𝑖
𝑛 − 𝑃(𝑟𝑖

𝑛−1, 𝑟𝑗
𝑛−1, 𝑊, 𝑂𝑛−1)] (1) 

Here, 𝑟𝑖
𝑛−1 represents the rating for competitor 𝑖 after competition (i.e. match or game) 𝑛 

derived by adjusting the previous rating, 𝑟𝑖
𝑛−1, for competition 𝑖, by a multiple 𝑘. As 

mentioned previously weighing the observed result is the most important factor in 
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determining points, as a large value would make ratings respond aggressively to the error 

term in the square brackets, while a small 𝑘 would make ratings unresponsive. The 

adjustment 𝑘, depends on, 𝑤𝑖
𝑛, which represents the difference between the actual 

performance of competitor 𝑖 in competition 𝑛,  (i.e. 𝑤𝑖
𝑛), and the predicted performance 

𝑃(… ) which is based on competitor 𝑖′𝑠 previous ratings. Competitor 𝑖′𝑠 and opponent 𝑗′𝑠 

previous rating is affected by 𝑊and 𝑂𝑛−1, defined as weightings and other factors (i.e. 

money won, quality of entrants, number of skills used etc.) present in competition 𝑛 − 1, 

respectively. The weighting procedure, 𝑊, converts performances to points and varies 

across sports. For example, FIBA basketball provides weightings ranging from 0.1-5 for 

various championships (i.e. Olympic and Worlds) over an eight-year window. The ATP 

[men’s professional] and WTP [women’s professional] tennis publishes a matrix where 

each row represents final placement points for a given championship and columns 

represent the placement for each championship (Stefani, 2011). 

1.6.2.3 Accumulative Systems 

Accumulative systems are ‘running sums’ rating methods that are non-decreasing over a 

defined time-frame. These systems are predominately adopted by athletic sports such as 

gymnastics, power lifting and cycling. According to Stefani (2011) an accumulative system 

for competitor 𝑖 has the following form:  

𝑟𝑖
𝑛 = ∑ 𝑓𝑖[𝑤𝑖

𝑘, 𝑊, 𝐴, 𝑂𝑘]

𝑛

𝑘=1

(2) 

Here, 𝑟𝑖
𝑛 represents competitor 𝑖′𝑠 rating after competition 𝑛, based on past performances. 

“The function, 𝑓𝑖, for competition 𝑖 operates on 𝑤𝑖
𝑘 which is the performance of 𝑖 in 

competition 𝑘, using 𝑊, which is a weighting procedure used to convert performance to 

points” (Stefani, 1997, p.7). The performance points are adjusted by an ‘ageing’ factor, 𝐴, 

and other factors, 𝑂𝐾, for competition 𝑘. The factors 𝑊, 𝐴 𝑂𝐾 and are sport dependent on 

the sport.  

1.6.2.4 Subjective Systems 

Subjective systems consist of a panel of experts (i.e. judges) who rank the competitors and 

then combine the individual ratings to produce the overall ratings. Subjective systems are 

formally adopted by sports such as kickboxing, mixed martial arts and boxing. 

Although statistical models are utilised to evaluate many problems in the sporting industry, 

the focus of this study will purely centre on team and individual rating systems. An 

extensive review of individual and team-based rating systems can be found in Chapter Two 

(section 2.1, p.43-65). 
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1.7 RATING SYSTEMS 

Rating systems produce a single real number ([0,1]) representing a team or player’s ability to 

perform. This section provides, system definitions, common methods, and common modelling 

practices within credit-risk and sporting industry. A more comprehensive review of the sporting 

and credit-risk literature, common methods, and key modelling practices, are provided in 

Chapter Two. 

1.7.1 Sport Rating Systems 

Formally, a sports rating system assigns each team a single numerical value to represent team 

or player strength relative to the rest of the league on some predetermined scale (Massey, 1997).  

Stefani (1997) stated that sport rating systems have three steps: 1) Weigh the observed results 

to provide competition points - this is the most important factor in determining points for 

competition i for a given competition, 2) Combine the competition points to produce seasonal 

values, and 3) Aggregate the seasonal value to produce a rating.  Generally, sport rating systems 

fall into two categories: 1) Earned ranking – These systems utilise past performance to provide 

a suitable method for selecting either a winner or a set if teams that should participate in a play-

off, and 2) Predictive ranking – These systems utilises past performance to provide the best 

prediction of the outcome of future games between two teams. Additionally, Stefani (2011) 

stated that sport rating systems can be separated into three distinctive types depending on how 

new ratings are calculated for each rating system: 1) Adjustive, 2) Accumulative and 3) 

Subjective.  A potential drawback of sport rating systems are small sample sizes due to a limited 

number of contested sporting events.  To derive a deeper understanding of the requirements for 

a meaningful sports rating system, this research builds on work from: Patel, Bracewell & 

Rooney (2017); Patel, Bracewell & Wells (2017); McIvor, Patel, Hilder & Bracewell (2018), 

and Campbell, Patel & Bracewell (2018). 

1.7.2 Credit Risk Scorecards 

Application and behavioural scorecards incorporate a binary or count target variable (approval 

or non-approval, or a credit rating, respectively). However, unlike the target variable associated 

with sport rating systems, evaluating the actual ‘creditworthiness’ of an approved line of credit 

can take months to observe the true outcome. New scorecard regulations require more robust, 

dynamic, and flexible models capable of accurately measuring an applicant’s credit worthiness 

using a smaller time window of transactional data. However, a smaller time window means a 

smaller sample size of transactional data, potentially leading to poorer, less predictive credit 

ratings. There are six key steps involved when developing a scoring method: 1. Data Preparation 

> 2. Data Cleaning > 3. Variable Selection > 4. Sample Generation > 5. Model Development 

and Validation > 6. Model Approval. The first 3 steps are data processing.  These steps are 

essential in developing a scoring method; however, the literature predominately focuses on data 
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preparation, model development and validation steps. These three steps have the potential for 

improving the performance of scorecards. Various model algorithms can be used with different 

input variables to see which gives the best result. The choice of modelling objective is the 

primary key to developing scorecards since it defines a full set of technical estimation 

procedures that are used to select the best model under the objective and defines how to assess 

its validity. Data preparation and variable selection steps are especially important in credit 

scoring, and it has been found that applying new and more predictive variables can improve the 

performance of scoring models (Hand & Henley, 1997). The ‘model development and 

validation’ step is used to discriminate between ‘good’ and ‘bad’ applicants. The better the 

classifier, the better the performance of the scoring method. 

1.8 RESEARCH OBJECTIVES 

Surprisingly, given the growing application of analytics in the business environment and the 

increasing demand for rating systems to evaluate sporting performances, and assessing an 

applicant’s credit worthiness, there currently exists no known modelling framework for 

constructing rating systems within these two domains.  

     Although performance will differ across different sporting codes, it is hypothesised that some 

elementary traits exist within the data, identifiable through ‘action’, ‘context’ and ‘time’ based 

attributes. A key question is: what methods are appropriate for extracting these elementary 

traits? Given the key is to identify the traits, or the latent dimensionality of performance, it is 

suggested that the most suitable techniques will involve dimension reduction and feature 

selection. Moreover, given that performance is a function of significant traits it is suggested that 

ensemble forecasting strategies are most suitable when combining ‘trait-based’ ratings to 

produce overall performance ratings. Specifically, given the complexity, high uncertainty, and 

difficulty of modelling performance within sports, adopting an ensemble approach is 

appropriate as it produces results whose probability law of error will rapidly decrease 

(Armstrong, 2001). Provided that an approach to develop meaningful ratings can be established, 

an additional question is broached, impacting the effectiveness of the proposed rating system.  

     As this thesis focusses on sport-based rating systems, it is important that a rating specific 

model evaluation metric is developed to quantify the effectiveness of ratings produced by sport-

based rating systems, and therefore comparisons can be made between ratings from different 

rating scenarios and forecasting difficulty. There exists a gap in the literature for an evaluation 

metric that assesses the effectiveness of meaningful sport-based ratings.  

     Based on an extensive literature review (Chapter Two), peer-reviewed conference 

proceedings and journal publications (Appendix A) on  sport-based rating systems, the thesis 

formulates potent, yet achievable, research objectives, which form the basis of this research. 

The three research objectives are: 
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i. Develop a quantitative ratings framework to construct sport-based rating systems that 

output meaningful performance ratings. 

Specifically, identifying the communalities of good sport-based rating systems and convert these 

findings into a defensible operational framework relating to performance. Meaningful sport-

based ratings are reliable, robust, interpretable, and intuitive. These characteristics are defined 

as 1) Robust – the rating system must yield good performance when data is drawn from a wide 

range of probability distributions that are largely unaffected by outliers, small departures from 

model assumptions, and small sample sizes. 2) Reliable – Produce accurate and highly 

informative predictions (i.e. well-calibrated and sharp ratings). 3) Transparent – Interpretable, 

easy to communicate and break down. 4) Intuitive – must relate to real-world observable 

outcomes (i.e. contextuality). 

ii. Develop a novel evaluation metric to quantify the effectiveness of meaningful sport-

based ratings. 

Specifically, techniques such as Gini coefficients, Area under the curve (AUC), K-S, 

classification accuracy and root mean square errors are limited. Performance metrics of a 

rating system need to quantitatively align with the attributes of a ‘good’ rating system. There 

are many systems across sports, which dynamically assess performance and calculates a single 

numerical representation of performance. The issue with sport-based rating systems are that 

the rating measure may not tangibly link to the event outcome.  For example, if a player rating 

system produced a rating of 67 (out of 100) during the game, how can the accuracy of such a 

rating be evaluated? Can this rating be mapped to actual in-game events and actions? And is it 

representative of an intuitive outcome? Therefore, an evaluation metric which evaluates the 

effectiveness of sport-based ratings is necessary. 

iii. Demonstrate the applicability of the developed ratings framework and novel 

performance metric within the sporting context. 

Given this research evaluates performance the practical implications are crucial. By 

demonstrating in a real-world context, the characteristics of meaningful or ‘good’ (reliable, 

robust, transparent and intuitive) rating systems, selected through a novel performance metric 

(ii), developed as part of this thesis, this will prove the value of this body of work. 

1.9 SUMMARY OF METHODOLOGIES 

The primary technical challenge faced throughout this research was to build a ratings framework 

that output ratings of performance that adhere to the commercial requirements of meaningful 

ratings. That is, ratings that are accurate and highly informative (i.e. reliable), interpretable, and 
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easy to communicate (interpretability), and ratings that relate to real-world observable outcomes 

and the context to which the rating system is being applied (intuitive), and ratings must be 

largely unaffected by outliers, small departures from model assumptions and small sample sizes. 

Existing rating system methodologies lack the ability to produce meaningful ratings, therefore 

the research needed to develop a framework that produced reliable, robust, transparent, and 

intuitive ratings. Most rating systems account for two to three of these characteristics but not all 

four. 

     Further, through the research process it was realised that commonly used performance 

metrics were not completely suitable to evaluate the effectiveness of sport-based ratings, in that 

various performance metrics are required to evaluate their effectiveness but no single evaluation 

index can be applied across all systems and none is universally regarded as the ‘gold-standard’ 

metric to assess ratings performance. Therefore, the secondary challenge faced was the lack of 

an evaluation metric to quantify the effectiveness of meaningful sport-based ratings. 

     To successfully address these challenges and appropriately quantify and evaluate 

performance, the methods applied and the underlying philosophy that shaped the use of these 

methods form an important partnership. In this section the key methods used are summarised 

before outlining the associated philosophies that affected the creation of the various rating 

systems developed throughout this thesis. Several techniques were used to quantify and evaluate 

performance using objective multivariate data. 

1.9.1 Dimension Reduction and Feature Selection 

The core methodology adopted by the framework is the application of an ensemble forecasting 

strategy, dimension reduction and feature selection techniques. Therefore, the ratings problem 

resides in the field of information theory. 

     Ratings are an elegant and excessive form of dimension reduction (Bracewell, 2003), 

therefore dimension reduction techniques are a core functionality of the sport-based rating 

systems. The core techniques that were used for dimension reduction are outlined in Chapter 

Two and applied in Chapter Four and Five. After dimension reduction, feature selection 

techniques are applied to automatically select metrics which significantly affect performance or 

specific traits. After applying dimension reduction and feature selection, models are applied to 

derive trait-based ratings representing a quantitative interpretation of a specific trait. 

1.9.2 Feature Engineering 

Feature engineering is an important strategy when constructing rating systems. Such strategies 

extract relevant, contextual, and highly informative features which are inherently available 

within the data, and therefore expert knowledge is required to create these latent features. These 

features provide an approach to account for a large amount of uncertainty within the ratings. 
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1.9.3 Ensemble Forecasting 

The proposed ratings framework adopted a “multi-objective” ensemble forecasting strategy as 

it allows the evaluation of multiple traits (i.e. dimensions), at different layers. The different 

layers for each trait are regarded as different sources of information. Given there are multiple 

traits that significantly affect performance, the constructed framework incorporates different 

modelling objectives capturing information from the different traits which significantly affect 

performance. 

     Liu & Pentland (1999) developed an approach to model human behaviour which consider 

the human as a device with a large number of internal mental states, or traits, each with its own 

particular control behaviour and interstate transition probabilities. This approach is like the 

approach outlined in Chapter Three, whereby each trait is modelled individually, and the trait-

based rating produced by each model is ensembled to produce an overall rating representing a 

numerical interpretation of performance. 

     The ratings framework is a multi-objective ensemble forecasting strategy. The methodology 

ensures that each trait rating utilises action, context, and time-based attributes to effectively 

account for the uncertainty within each trait. These trait-based ratings are combined using an 

ensemble strategy to output a rating which provides a numeric representation of performance. 

1.9.4 Proper Scoring Rules 

Commonly used performance metrics were applied to measure the effectiveness of meaningful 

sport rating systems and during the literature review process limitations associated with 

evaluation metrics were identified. A set of criteria were identified to construct a performance 

metric to assess the effectiveness of meaningful sport ratings. A proper scoring rule 

methodology was applied to construct such an evaluation metric. Specifically, the performance 

metric applies the distance and magnitude-based measures associated with the spherical scoring 

rule with an embedded Analytical Hierarchy Process which allows the user to incorporate 

expert-based knowledge. 

1.10 KEY PHILOSOPHIES 

To fully explore the theses research objectives, several different approaches were required to 

ensure suitable information was extracted from the data using the methods detailed previously. 

These are briefly described below. 

1.10.1 Expert System Development 

The ultimate goal of this thesis is to produce a statistical framework that allows a modeller to 

develop rating systems that mimic the opinion of an unbiased expert human observer, and 

produce meaningful ratings (reliable, robust, transparent and intuitive). Therefore, the 

philosophies discussed in this section help in the attainment of this goal. 
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1.10.2 Performance ~ 𝓕(𝐭𝐫𝐚𝐢𝐭𝐢) 

To produce ratings which accurately provide a numerical representation of performance the 

traits that influence performance need to be identified and ‘correctly’ scored. The underlying 

philosophy adopted to calculate this score (i.e. ratings) has been extracted from the sociology 

and psychology literature (Heinström, 2003; Kampe, Edman, Bader, Tagdae, Karlson, 1997; 

Scharli, Ducasse, Nierstrasz and Black, 2003; Silvia, 2008). That is, sporting performance is a 

manifestation of the significant traits that affect performances. 

1.10.3 Specialisation vs. Generalisation 

In the identification of significant traits affecting team and player performance, the number of 

traits applied needed to consider the trade-off between sport-specific (too many traits) and 

generalisation (too few traits). 

1.10.4 Influence vs. Formulation 

In creating a suitable model, it is the overall influence that is of interest rather than the actual 

model formula. Transparency and intuition are crucial for promoting the rating systems and for 

this to occur, the general influence of the features involved is more important than the specific 

coefficients required to calculate the ratings. 

1.10.5 Optimal Solution 

An optimal solution is not required. A good solution in reliable, robust, intuitive, and transparent 

terms will suffice (i.e. meaningful ratings). The accuracy and predictivity of the ratings are not 

of vital significance because ratings generally will be expressed as whole numbers. 

1.10.6 Action, Context and Time 

To ensure that each trait-based rating sufficiently accounts for the uncertainty surrounding 

performance each trait ratings must be derived using a combination of action, context, and time-

based attributes. This ensures that the ensembled trait-based ratings are meaningful. 

1.10.7 Conventional Features with Creative Complex Features 

To obtain suitable models for a sport-based ratings framework which create rating systems that 

output meaningful results i.e. transparent, robust, intuitive, and reliable. To achieve such output 

characteristics conventional statistics needed to be supplemented and combined with creative 

and complex features. 

1.11 SUMMARY OF RESULTS 

This thesis shows that a dynamic multi-objective ensembling forecasting strategy is an 

advantageous methodology to implement when developing rating systems which produce 

meaningful ratings within a sporting context. 

     As an exploratory exercise a set of rating systems were developed to identify the key 

communalities amongst rating methodologies. These communalities included the application of 
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1) dimension reduction and feature selection techniques, 2) feature engineering tasks, 3) a multi-

objective framework, 4) time-based variables and 5) an ensembling mechanism to produce an 

ensembled rating of individual traits. 

     Using these findings, a ratings framework to construct sport-based rating systems was 

developed. The framework assumes that performance is a function of the traits that significantly 

affect it, and that these traits are a function of the feature-types (action, context, and time) that 

significantly affect the trait of interest. Dimension reduction identified the key traits (dimension) 

within the data, while feature selection identified the significant feature-types affecting each 

trait. Although the ratings framework is only applied within the sporting context, specifically 

within cricket, it can be applied across multiple sporting codes to evaluate both team and player 

performances. Such applications are considered outside the scope of this research. 

     The dynamic ratings approach is a form of model stacking where information from multiple 

trait-based models is combined to generate a more informative model. To address the issue of 

intuitive-results and transparency present within many rating systems, due to the application of 

“black-box” techniques, a manual approach is applied to ensure full autonomy and 

understanding of model inputs and input effects. 

     Adopting a multi-objective ensembling strategy, where each modelling objective represents 

a specific trait affecting performance, the applicability of the framework is tested against 

different sporting scenarios. These individual studies reveal that an ensembling forecasting 

strategy produces reliable, intuitive, transparent, and robust results and is an ideal strategy to 

implement when developing sport-based rating systems. 

     During the model evaluation process major problems were encountering with identifying a 

suitable performance metric to assess the effectiveness of meaningful sport rating systems. A 

novel model evaluation approach has been developed to address this problem. 

     The distance and magnitude-based spherical (DMS) performance metric was developed to 

assess the effectiveness of meaningful sport-based ratings. This approach is an evaluation index 

which accounts for forecasting difficulty, forecasting scenario and leverages expertise 

knowledge when determining the effectiveness of sport-based rating systems. The DMS 

performance metric applies distance and magnitude-based measures derived from the spherical 

scoring rule. A proper scoring rule methodology is applied because ensemble-based forecasts 

are generally assessed on two criteria: calibration and sharpness, and a metric which promotes 

such results was necessary. This resolves the issue of identifying reliable ratings, which is 

necessary to ensure rating systems are meaningful. Additionally, this method shows a great deal 

of promise as an evaluation tool for problems outside the sporting domain. 
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1.12 THESIS LAYOUT 

This thesis is constructed in two parts. Part One reviews and applies rating systems in a range 

of novel contexts relating to performance.  The communalities and limitations of these rating 

systems, within the context of rating sporting performance and credit-risk applicants’, are then 

used to create a ratings framework with wide applicability and robustness.  Validation of the 

proposed ratings framework occurs with the application to cricket at both the team and player-

level. Importantly, use and creation of multivariate techniques to extract intuitive, robust, 

reliable, and transparent performance and trait-based features for individuals is the dominant 

theme throughout this thesis. 

     The intent of this thesis structure is to communicate the underlying limitations and 

assumptions of commonly used rating techniques. This provides the necessary background to 

understand and improve upon the applicability of objectively rating performance within the 

sporting context. 

     To aid the flow of the thesis and concentrate specifically on the development of the proposed 

ratings framework, supporting material, including peer reviewed conference proceedings and 

journal publications written as a direct consequence of this research are supplied in the 

appendix. 

     Rating systems (or scoring models) within credit-risk and the sports domain are used widely 

as is demonstrated in the literature review that forms the basis of Chapter Two. Chapter Two 

examines the application of various statistical methodologies to develop rating systems across 

credit risk and sports. Using the learnings (communalities, distinctions, and limitations) from 

the literature, this thesis develops rating systems adopting the key methodologies identified in 

the literature and applies these in novel settings. This is extended to derive research objectives 

based on literature gaps and the limitations identified when extending the existing ratings 

systems to wider use cases. Appendix A includes the substantial body of novel work generated 

during this research process that has been peer-reviewed and published.  This includes six 

journal articles and 13 peer-reviewed conference proceedings. 

     To develop a novel evaluation metrics to quantify the effectiveness of meaningful sport-

based rating systems (research objectives (ii)), a review of commonly applied performance 

metrics must be conducted. Therefore, Chapter Two reviews commonly applied model 

evaluation metrics, the field in which each metric is most applied and their limitations. Chapter 

Two identifies the five key criteria that a performance metric must adopt to assess the 

effectiveness sport-based ratings: 1) sensitivity to distance, 2) sensitivity to time-dependence, 

3) evaluate  the ratings based on the entire distribution, 4) provide an incentive for well-

calibrated and sharp ratings and 5) adjust incentives based on forecasting difficulty. 

     Chapter Three focuses on developing a ratings framework for constructing sport-based rating 

systems. In this chapter Bracewell’s (2003) definition of a rating is extended. Specifically, 
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meaningful ratings are an elegant and excessive form of dimension reduction whereby a 

numerical value provides a meaningful quantitative interpretation of performance. The handling 

of the limitations and issues specific to rating systems are explored within the statistical 

framework. The core methodology adopted by the framework is the application of an ensemble 

forecasting strategy, dimension reduction and feature selection techniques. Therefore, the 

ratings problem resides in the field of information theory.  

     Given performance is defined as a function of individual traits that significantly affect 

performance, the framework develops a multi-objective approach, where each objective is 

dedicated to quantifying each individual trait, and ensembling these trait-based ratings produces 

an overall rating, representing a numerical interpretation of performance. The action, context 

and time-based attributes that significantly affect each trait are identified through dimension 

reduction and feature selection. In Chapter Three, it is stipulated that to derive meaningful trait-

based ratings, defined as intuitive, reliable, robust, and transparent, ‘action’, ‘context’ and ‘time’ 

based attributes are necessary. Further, ensembling these trait ratings produce meaningful 

performance ratings. 

     Using the scoring rule methodology (Chapter Two), Chapter Three also develops a novel 

performance metric, known as the distance and magnitude-based spherical metric, to evaluate 

the effectiveness of meaningful sport-based ratings. The developed performance metric applies 

distance and magnitude-based statistics derived from the spherical scoring rule and adopts an 

Analytical Hierarchy Process which incorporates expertise knowledge. The distance and 

magnitude-based spherical (DMS) metric is applied to the rating systems developed in Chapter 

Four and Chapter Five and is shown to be a more appropriate measure of evaluating ratings than 

traditional evaluation metrics such as the log-Loss. Further, the metric is shown to perform 

better in certain forecasting scenarios and forecasting difficulty, than traditional metrics. 

Chapter Three addresses research objectives (i) and (ii). 

     Part Two applies and validates the ratings framework and DMS performance metric 

developed in Chapter Three. Specifically, Chapter Four and Five validates these findings by 

developing two unique ratings systems within the sporting context. Incorporating the lessons 

learnt from Part One, applicable data mining methods are explored from sporting and statistical 

perspectives. Key issues influencing the methodology for quantifying performance, reliability, 

robustness, transparency, and intuition, shape the techniques explored. Moreover, the 

effectiveness of the ratings is quantified and evaluated through commonly used performance 

metrics such as the log-loss. Chapter Four and Five test the validity of the novel performance 

metric by benchmarking it against evaluation metrics such as the log-loss and applying it to the 

ratings produced by sport-based rating systems built using the ratings framework. Chapter Four 

and Five address research objective (iii). 



36 
 

     Chapter Six concludes the thesis with a detailed deliberation over the relevance and 

appropriateness of the methods and data involved, the work remaining, and answering the final 

question, namely, “What is the relevance of this work for rating systems, in particular for rating 

systems in others domains other than sport performance evaluation?” 

1.13 DISCUSSION AND CONCLUSION 

Bracewell (2003) stated that ratings are an elegant and excessive form of dimension reduction 

and that “good” ratings are reliable, contextual, and transparent. This chapter outlines the theses 

aim to extend Bracewell’s (2003), that is, meaningful ratings are an elegant and excessive form 

of dimension reduction whereby a value provides a meaningful quantitative interpretation of 

performance. Specifically, meaningful ratings should have the following characteristics: 1) 

robust – ratings must yield good performance where data is drawn from a wide range of 

probability distributions that are largely unaffected by outliers, small departures from model 

assumptions, and small sample sizes. 2) Reliable – ratings must be accurate and highly 

informative predictions that are well-calibrated and sharp. 3) Transparent – ratings must be 

interpretable and easy to communicate. 4) Intuitive – ratings should relate to real-world 

observable outcomes and the context to which the system is being applied. 

     This chapter introduced performance-based sport evaluation systems, referred to as rating 

systems. Due to the growing application of ‘big-data’ and machine-learning within the 

commercial environment, the chapter outlines, the growing commercial demand for data-driven 

rating systems to evaluate performance and identifies limitations of current industry standards 

and methodologies, specifically within sports and credit-risk. 

     Before developing the ratings framework for constructing rating systems (Chapter Three), 

this thesis develops sport-based rating systems using current methodologies (please see 

Appendix A). This development and application process identified limitations of current 

industry standards, limitations of rating methodologies and formulates potent and achievable 

research objectives. Three objectives relating to sport-based rating systems, have been 

identified: (i) develop a ratings framework to construct meaningful sport-based rating systems 

that output meaningful sport-based rating systems (Chapter 3), (ii) develop a model evaluation 

metric to quantify the effectiveness of sport-based rating systems (Chapter 3) and (iii) 

demonstrate the applicability of the developed framework and novel performance metric within 

the sporting context (Chapter 4 and Chapter 5). 

     The following chapter provides an extensive literature review of credit-risk and sport-based 

rating systems, rating methodologies and model evaluation metrics, identifies major gaps in the 

literature pertaining to these rating systems, and develops a set of rating systems using 

commonly applied statistical methodologies.
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Chapter Two 

A NOVEL LITERATURE REVIEW AND 

APPLICATION OF RATING SYSTEMS 

“The math works. Over the course of a season, 

there is some predictability to baseball. When you 

play 162 games, you eliminate a lot of random 

outcomes. There's so much data that you can 

predict - individual players' performances and 

the odds that certain strategies will pay off”.  

                Billy Beane, Moneyball (2008).  

      On the application of sports analytics in Baseball. 
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2.0 INTRODUCTION 

To achieve the research objectives outlined in chapter one, there must be a thorough 

understanding of the ratings literature, model evaluation metrics, dimension reduction and 

feature selection techniques. Given the commercial requirements of this research, rating systems 

within the sporting and credit-risk environment are reviewed. 

     This chapter provides a comprehensive review of academic literature outlining the 

application of statistical techniques and current ratings methodologies to construct rating 

systems within the sporting and credit risk environment. This chapter also reviews commonly 

applied performance metrics within industry and academia, outlines the technical details and 

limitations of each metric, and explains why certain performance metrics work well with certain 

problems and lose information in other circumstances.  

     The primary objectives are to consolidate these findings to 1) identify the key elements 

required to construct a rating system and  2) identify the ideal set of criteria and the ideal 

methodology to construct a novel performance metric to evaluate the effectiveness of 

meaningful sport-based ratings. 

     Using the findings from the literature review and common ratings methodologies, a set of 

peer-reviewed conference proceedings and journal publications are written across various 

sports. The published papers are not provided in this chapter; however, the key findings are 

summarised in this chapter and chapter three. Further, a full list of these publications can be 

found in Appendix A.  

     Section one and two provide an overview of sports rating systems and credit risk models, 

respectively, an discusses the gaps in the ratings literature. Section Three reviews commonly 

used model evaluation metrics, also known as model performance metrics. The limitations of 

each performance metric and the areas in which their application is most prevalent is also 

discussed. Section Four describes the research objectives and the gaps in the literature. Section 

Five concludes with some closing remarks and discussions the outcomes of the review. 

2.1 OVERVIEW OF SPORTS RATING SYSTEMS 

Formally, sports analytics is defined as “the management of structural historical data, the 

application of predictive analytical models that utilise such data, and the information systems 

used to inform decision makers and enable them to help their organisations in gaining a 

competitive advantage on the field of play” (Alamar & Mehrotra, 2011, p. 1). 

     The distinction between quantitative data collection, within sports, and sport analytics exists 

within its application. Quantitative [sports] data collection is the measurement and storage of 

the performances or actions of a team or a player, while analytics is the use of data to inform 

decision makers.  



43 
 

     The results generated from applying statistical techniques to sports related data are called 

sports statistics, which differs from sports analytics in the sense that sport statistics are the 

outcomes generated from the analytical techniques applied to the data. Bracewell (2003) 

claimed that sports statistics fall into one of two categories: (1) statistics that can be directly 

observed from a scoresheet, known as performance indicators, and (2) statistics that are not 

directly observed from a scoresheet, known as performance outputs. Sport statistics are utilised 

to make player selection decisions, develop training regimes, and determine optimal strategies. 

     There is a breadth of academic literature applying various statistical techniques to myriad 

sports. This chapter will review notable academic literature describing and developing sport 

rating systems, at both the team and individual level. Moreover, these analytical techniques 

allow users to rank and evaluate player and team performances. A rank refers to ordinal 

placement of ratings, while “ratings come from a continuous scale such that the relative strength 

of team individual is directly reflected in the value of its rating” (Massey, 1999, p. 2). 

     In general, sport rating systems provide an objective evaluation of a team or individual based 

on prior performances and are implemented for player comparisons and improving player and 

team selection process. 

     Formally, a sport rating system assigns each team or individual a single numerical value 

representing a team’s or individuals strengthen relative to the rest of the league on some 

predetermined scale (Massey, 1999). These ratings are beneficial to numerous parties, 

especially athletes, coaches and managers who utilise such systems to track and predict form, 

progress and applied as a motivational and benchmarking tool.  According to Leitner et al. 

(2010) sport ratings are typically derived by suitably aggregating a competitor’s previous 

performances and provide predictive power in forecasting future performances. Many American 

sporting franchises, such as The Oakland A’s (Baseball) and Dallas Mavericks (Basketball), 

adopt such a mentality and focus. 

     Using a common framework, Stefani (1997) presented a survey of major world sport rating 

systems. The study stipulated that sport rating systems have 3 key steps: 1) weigh the observed 

results – this is the most important factor in determining points for a competitor, 𝑖, in any given 

competition 𝑛, 2) combine the competitive points to produce season value; and 3) aggregate the 

seasonal value to produce a rating. 

2.1.1 Sport Rating Systems 

This section provides a brief review of academic literature outlining the application of statistical 

techniques to derive individual and team-level ratings for various sports. This section is divided 

into two sub-sections: 1) team-level sport rating systems and 2) individual-level sport ratings 

systems. 
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2.1.1.1 Team-based sport rating systems 

Team-based sport rating systems evaluate team strength, performance and or ability using 

match level statistics or apply an aggregation function to individual level performances to 

produce team-based ratings. 

      West & Lamsal (2008) developed a predictive team-based ratings model using a simple 

linear regression technique to college football data. Regressing six predictors (scoring 

margin, offensive yards per game, defensive yards per game, strength of schedule, 

defensive touchdowns per game and turnover margins) on match outcome, West & Lamsal 

(2008) built a predictive model using previous season data and ‘bowl’ game outcomes to 

establish team ratings. The amount of rating points a team received was based on the 95% 

confidence interval (c.i.) for the expected outcome for a single game, and the team ratings 

were produced by aggregating these points across all games. Applying this model to 

college bowl competition it was found that model results agreed with actual outcomes in 

59.4% (19/32) of games, and of the 13 incorrect predictions three of the confidence 

intervals included actual game outcomes.  

     Mease (2003) developed a penalized maximum likelihood approach for the ranking of 

college football teams independent of margin of victory. This ranking process attempted to 

reflect the opinion of human pollsters Applying the model to 1998 American College 

Football data and comparing the proposed model outcomes to computer-based outcomes, 

it was found that the penalized maximum likelihood approach outperformed two of the 

three [computer-based] models adopted by American College football. Moreover, the 

model produced rankings for college football teams which were highly correlated with 

expert rankings relative to BCS (bowl college series) models. 

     Dyte & Clarke (2000) developed a team-based rating method for predicting the 

distribution of scores in international soccer matches. Dyte & Clarke (2000) treated the 

number of goals scored by a team as an independent Poisson variable, dependent on FIFA 

team ratings and match venue. The Poisson regression model had two underlying 

assumptions: 1) the number of goals scored by a team in a soccer match is Poisson 

distributed and 2) it is independent of the number of goals scored by the opposing team. 

The model predictors were current team’s FIFA ratings (TR), opponent’s FIFA rating (OR) 

and a parameter (𝜈) which changed according to venue. The expected number of goals 

scored per team, 𝑚, was used to produce the marginal probabilities for each teams Poisson 

distribution of goals scored. Using the latest FIFA ratings to calculate the expected number 

of goals estimated through the regression analysis, it was possible to generate two Poisson 

random variables for every game and run a simulation for an entire tournament. Post 

simulation, the expected number of wins draws and losses for each team were calculated 

by aggregating the probabilities for each of the world cup matches. A Chi-squared test 
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showed that there was no statistical difference between the expected and observed 

numbers, indicating that the form of Poisson model used for simulation was plausible. 

     Bracewell, Forbes, Jowett & Kitson (2009) developed a Rugby-based team rating 

system, providing outputs known as ‘team Lodeings’. These outputs “measure the relative 

performance of sport teams and the competitive balance of competition” (Bracewell, 

Forbes, Jowett & Kitson, 2009, p.2). The ratings system enabled (Bracewell et al., 2009) 

to measure a team relative performance to opponents within the same division, allowing 

meaningful comparisons and effectively evaluating competition competitiveness.  

Applying the framework to the 2004 New Zealand National Provincial Rugby 

Championship revealed that the ratings engine produced suitable comparisons of team 

performance across divisions. The results revealed that the standard deviation of the ratings 

provided good representation of the competitiveness of a given sports league. Moreover, it 

was found that a competitive league results in teams having similar winning percentages, 

and therefore a smaller standard deviation. Applying the ratings across 7 different sports it 

was found that soccer was the most competitive sport, followed by Basketball and 

American football, while Rugby was found to be the least competitive. 

     Bracewell, Downs & Sewell (2014) realized that the way limited overs cricket results 

are recorded complicates the ability to generate meaningful team ratings. Therefore, 

Bracewell et al. (2014) developed a method for creating performance-based team ratings 

for cricket utilizing a margin of victory that was solely runs based. This was achieved by 

developing a method for calculating the margin of victory for when the team batting second 

wins. The method estimated the number of runs that would have been scored had the team 

batting second continued until resources (i.e. balls and wickets) were exhausted. Using the 

Duckworth & Lewis (1998) framework, a score projection was carried out if both resources 

had been exhausted using 𝑇2 =
𝐶2

𝑅2
, where 𝐶2 is team two’s actual score and 𝑅2 (the DL 

resource remaining). An F-test found that the score projections did not produce margins of 

victory that were significantly different from those produced when the team batting first 

wins. Logarithmically transformed score ratios, were used in creating team ratings which 

were regressed against the winning percentages to deduce a linear transformation that 

would increase the spread of the ratings between 0 and 1. These score ratios were then 

input into the Team Lodeings algorithm developed by Bracewell et al. (2009) to quantify 

relative performance. A correlation of 0.91 between the ratings and the International 

Cricket Council ratings indicated that the team ratings generated by the proposed 

performance-based rating system was valid. Moreover, F-test results confirmed that the 

variance of the transformed margin of victory when the team batting first wins is not 



46 
 

statistically different from the variance of the transformed margin of victory when the team 

batting second wins, indicating that the extrapolation did not introduce bias.   

     Similarly, to evaluate cricket team performance Clarke (1988) applied a dynamic 

programming model to one-day cricket to: 1) calculate the optimal scoring rate, 2) estimate 

the total number of runs to be scored in the first innings and 3) estimate the probability of 

winning in the second innings. The first innings formulation allowed the development an 

‘optimal scoring model’ outlining a team’s optimal scoring rate (i.e. runs per over) to obtain 

a given expected total, for any given number of wickets lost and balls remaining. The 

second innings formulation enabled the development of a ‘probability scoring table’ 

outlining the probability of the second innings batting team scoring the target total, for any 

given number of wickets lost and balls remaining. Results suggested that the scoring rates 

should be more uniform, and that the team batting second has an advantage.  

     Of all the team-based sports rating system, none is more famous and reputable than the 

Elo rating system. Although originally developed for rating chess players, the Elo rating 

system has been extended to many team has been adapted to a wide variety of sports, at 

both the individual (such as tennis [United, 2018; Raboin, 2013; Abstract, 2018] and golf 

[Broadie & Rendleman, 2013; Broadie, 2012; Levin, 2017]) and team-level (such as 

football [Curiel, 2018; Hvattum & Arntzen, 2009; Leitner & Hornik, 2009; Lasek, Szlávik 

& Bhulai, 2013; Goddard & Asimakopoulos, 2004]), American football (Silver, 2014), 

Basketball (Silver & Fischer-Baum, 2015), and among others. See (Aldous, 2017; Király 

& Qian, 2017; Stefani, 2009) for recent mathematical reviews. 

    An example of such an extension is Moore, Rooney, Bracewell & Stefani (2018). Moore, 

Rooney, Bracewell & Stefani (2018) measured team ratings for the 2017 super rugby 

season using the Elo model, and showed how to systematically determine all Elo model 

parameters, using an optimisation technique to achieve maximum power. This modified 

ratings model was applied to the 2017 super season rugby. The initial ratings are computed 

by fitting static ratings to the 2016 super rugby season. A logistic regression model was 

trained to predict win/ loss outcome from ratings differences with a latent parameter 𝐵 ≈

59 and home ground advantage parameter ℎ ≈ 49  ensuring the win/ loss model was 

responsive to ratings differences. The model produced an accuracy of 77%. The learning 

parameter 𝐾 was optimised for predictive performance using a three-fold cross validation 

approach with Lasso regularisation prevent over-fitting, and the inverse regularisation 

strength 𝐶 was varied. The parameters 𝐾 and 𝐶 were simultaneously optimised for 

predictive power. A clear minimum loss was found at 𝑘 = 90 and 𝐶 =  6 × 10−3.  

     Glickman (1995) introduced an evolution to the Elo system, known as the Glicko model. 

The Glicko model is derived as an approximation to a Bayesian dynamic paired comparison 

model, where each player is given an initial prior rating described by a univariate normal 



47 
 

distribution. Glicko breaks time into periods, during which skills are assumed to be 

constant, and overtime, these skills change according to a Markovian random walk. 

     The likelihood employed is the same as in Elo and under certain assumptions, Glicko 

recovers Elo as a special case (Glickman, 1995). Glicko extends the Elo system by 

computing two components: 1) rating, 𝑟𝑖, representing team 𝑖’𝑠 or player 𝑖’𝑠 strength and 

2) rating deviation, 𝑅𝐷𝑖, representing a standard deviation, which measures the uncertainty 

in a rating. The amount a players or teams rating changes depends on 𝑅𝐷. This change in 

rating is small when player or team 𝑖′𝑠 𝑅𝐷 is low, and the change in rating is high when 

their opponents’ 𝑅𝐷 is high. The 𝑅𝐷 experiences a decrease after playing a game, but 

slowly increases over-time of inactivity, and therefore, a low 𝑅𝐷 indicates that a player 

competes frequently. 

     Since inception, the Glicko model has been applied to a variety of sports such as Chess 

(Vecek, Mernik & Crepinsek, 2014; Vecek, Mernik, Filipic & Crepinsek, 2016), basketball 

(DeLong, Terveen & Srivastava, 2013; Vaziri, Dabadghao, Yih & Morin, 2018), football 

(Kharrat, Pena & McHale, 2017; Lasek, Szlávik & Bhulai, 2013; Babic, 2017), tennis 

(Ingram, 2019) and volleyball (Glickman, Hennessy & Bent, 2017). 

     Herbrich, Minka & Graepel (2007) also introduced an evolution of the Elo system, 

known as TrueSkill. The TrueSkill rating system was developed by Microsoft for their 

Xbox Live gaming platform, which measures the skill level of players in multiplayer 

games. A player’s true skill rating determines the team in which they will play for and the 

opponent they will play against. TrueSkill is a Bayesian rating system which can be viewed 

as a generalised system of the Elo system assessing a probabilistic generative model of 

match results. An intuitive random process is constructed to generate a player’s skill and 

match results, and therefore, it is unnecessary to experiment with different formulae to 

update a player’s skill rating and produce the ‘right’ player rating. The model is 

benchmarked against data and refined depending on discrepancies identified within the 

data. Once a ‘good’ model is found Bayesian inference is applied to identify the optimal 

algorithm for updating skill ratings (Herbrich, Minka & Graepel, 2007). 

     Bradley & Terry (1952) introduced a paired comparison probabilistic model predicting 

the outcome of paired comparisons. The model assumes that in a match-up between two 

players or  two teams, i and j (Bradley & Terry, 1952), the odds that i beats j is 
𝛼𝑖

𝛼𝑗
, where 

𝛼𝑖 and 𝛼𝑗 are positive parameters which represent team or player ‘ability’ or strength. 

Assuming player and team ‘abilities’ are measured on a ratio scale, the Bradley-Terry 

approach can be applied to derive the probability of competitor i beating competitor j 

(Bradley & Terry, 1952). The Bradley-Terry model has been applied to a wide variety of 

sports, both individual, such as tennis (please see McHale & Morton (2011) and team, such 
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as football (please see Leitner, Zeileis &Hornik (2010); basketball Koehler & Ridpath 

(1982); Katoh, Koyanagi, Ohnishi & Ibaraki (1992)). 

2.1.1.2 Individual-based sport rating systems 

Individual-based sport rating systems evaluate individual strength, performance and or 

ability using both individual and match level statistics produce individual player ratings. 

     Clarke (2011) applied multiple linear regression to rank tennis players using results from 

an Australian domestic doubles competition. Using indicator variables to tag individual 

players, Clarke (2011) fitted a regression model to ‘games-up per set played’ as a linear 

function of the two players involved and established model significance with an 𝑅2 = 

0.074. Next, percentage of games won by opposition and set weaknesses were added to the 

regression model,  producing a practically and statistically significant model with an 𝑅2 =

0.26. Further, using separate player ratings, a larger regression model was developed, 

incorporating a constant for home advantage. The home advantage coefficient of 0.51 was 

significant with a p-value = 0.026. The two sets of ratings had an almost perfect linear 

relationship suggesting that the method of calculating ratings provide reasonable estimates 

of a players’ relative ability. An exponential smoothing method was implemented to 

estimate a player’s end-of-season rating. A correlation of 0.85 between the exponential 

smoothed ratings and regression ratings indicated that the smoothing method produced 

reasonable results. Moreover, this result indicated that the smoothing method could give 

reasonable ratings. The smoothing constant was optimised such that the best fit to the 

predicted set of results was produced. Each refinement in the method showed an increase 

in the correlation of the end of season exponentially smoothed ratings and the least squares 

regression ratings (Clarke, 2011), reinforcing the use of exponentially smoothed ratings to 

rank tennis players. 

     Similarly, Ingram (2019) developed a tennis ranking system using a dynamic paired 

comparison model with a Gaussian Process as a prior for the time dynamics rather than a 

Markovian process. The modified Gaussian Process was applied to ATP (Association of 

Tennis Professionals) tennis matches to evaluate player performance. Ingram (2019) stated 

that even though random walk is convenient to compute, it does not allow for mean 

reversion. Using the Gaussian process allows to evaluate other player skill evolutions. 

Using the kernel functions, 𝐾, a prior can be selected to evaluate how smooth the function 

should be, how quickly it varies and how much it varies. A player’s skill was modelled as 

a combination of the radial basis function kernels with different length scales: 1) short-

term variation (80 days), 2) medium-term variation (400 days) and 3) long-term variation 

(800 days). A Hamiltonian Monte Carlo sampler Stan was applied to fit the kernel 

hyperparameters. Once the hyperparameters for the kernel was fitted, a maximum a 
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posteriori (mAP) point estimate was used. This model was fit to ATP matches from 2012 

onwards and compared against a Glicko and Elo fit from the start of the open ERA (1969) 

using log-loss and accuracy measures. The Gaussian process model was found to have the 

lowest log-loss, despite using few years of data and only using the mAP estimates. 

However, the Gaussian process had a lower accuracy than the Elo and Glicko models. 

Ingram (2019) recommended using other kernels which adopt longer time scales or less 

smooth than the RBF kernel. 

     Bracewell, Farhadieh, Jowett, Forbes & Meyer (2009) applied time series clustering to 

map the test career progression of Australian cricketing legend Sir Don Bradman, 

acknowledged as the greatest batsman of all time with an unparalleled career batting 

average of 99.94, from 80 innings. However, part of his career was interrupted as 

international cricket was suspended during World War II. Given this ‘disruption’ in his test 

career Farinaz (2009) utilised time series clustering to characterise Bradman’s test career 

and compared him to other ‘great’ batsmen to test if Bradman was denied his prime. The 

selected clustering method was based on global characteristics measures “as it does not 

require many conditions to be true before it can be utilised, relative to other clustering 

techniques” (Farinaz, 2009, p.3). Additionally, the approach clusters global features 

extracted from individual time series and can be applied on different length time series. 

The performance measure used to compare batsman was [scaled] average ‘contribution’ 

per innings. To estimate a batsmen’s performance over their career, weighted least square 

regression is used to model scaled average contribution per calendar year for all test 

batsmen, who had careers spanning 17 years, participated in 70 innings and had averages 

> 40 runs. The average contribution was scaled by the range producing a minimum of 0 

and maximum of 1. Results showed that Bradman’s career progression was most like West 

Indian legend Brian Lara, indicating that Bradman’s peak performance would have 

occurred in the 12th and 14th years of his career (1939-1941), coinciding with World War 

II. Imputing Bradman’s likely performance (i.e. batting average) from 1939-1945 It was 

estimated his batting average to be 105.41, which was significantly higher at the 5% 

significance level than Bradman’s actual average (i.e. 99.94). 

     Akhtar, Scarf & Rasool (2014) also derived cricket player and team ratings by fitting 

multinomial logistic regression models to session by session test match data to calculate 

match outcome probabilities given the match position at the end of each session t. The 

probabilities were used to measure the overall contribution each player had on match 

outcome, based on their individual contribution during each session. Additionally, a 

hypothetical position at the end-of session t was defined, in which bowlers had not taken 

any wickets, and match outcome probabilities were generated. A player’s overall 

contribution during a given session was assessed by using the difference between the 
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hypothetical match outcome probabilities and the actual match probabilities. The batting 

probability differences were observed with respect to ‘not losing’ and bowlers with respect 

to winning (Akhtar et al., 2014). The difference in probabilities were distributed to batters 

according to their share of the runs scores in session t and to bowlers according to their 

share of wickets taken the session, t (Akhtar et al. 2014). An individual i’s batting 

contribution in session t was evaluated via:     

𝐶𝑖,𝑡,𝑏𝑎𝑡 = 𝐶𝑖,𝑡,𝑏𝑎𝑡 ×
𝑟𝑖,𝑡

𝑟𝑡

(3) 

     Here, 𝑟𝑖,𝑡 is the runs scored by player i in session t and 𝑟𝑡 is the total runs scored by their 

team in session t. An individual, i, bowling contribution in session t was evaluated via:   

𝐶𝑖,𝑡,𝑏𝑜𝑤𝑙 = 𝐶𝑖,𝑡,𝑏𝑜𝑤𝑙 ×
∑ 𝑍𝑖𝑡𝑗𝛼𝑗

𝑛
𝑗=1

𝑍𝑡

(4) 

     Here, 𝑍𝑖𝑡𝑗 represents the total number of wicket taken by player 𝑖 during session t for 

wicket taking contribution 𝑗, 𝑗 = {1,2,3}, where 𝑗 =  1 corresponds to a wicket taken by 

the bowler with no fielder involvement, 𝑗 =  2 corresponds to catches taken by a fielder 

and 𝑗 =  3 corresponds to run-outs. The 𝛼𝑗 represents the share of points for a wicket 

awarded to the fielder. The net contribution of player 𝑖 in the match is the aggregated of 

contributions from all sessions.  However, it was found that the rating system took little 

account of contribution after a point when the win or draw probability of any team is close 

to unity. To overcome this problem Akhtar et al. (2014) adopted the contributions as one 

component of a weighted average rating system, while the other was raw runs and wickets 

in the match. Points gained were placed on a ‘runs-like’ scale by multiplying the net player 

contribution by the average runs per test match played 1877-2007. Team ratings for each 

nation were calculated by combining the individual player ratings, the final aggregated 

value represented the national teams overall rating. 

     Duckworth & Lewis (2005) developed real time player metrics, using the Duckworth-

Lewis methodology, to evaluate player contribution at any given stage of an innings, 

producing context-based measures. The developed metrics were: 1) batsmen average run 

contribution per unit of resources consumed and 2) bowlers’ average runs contribution per 

unit resources consumed. Applying these measures to the 2003 VB series final (Australia 

vs. England) it was shown that the Duckworth-Lewis based contribution measures were 

less susceptible to distortions compared to traditional performance metrics. 

     Individual-based sport rating systems also extends beyond players, for example, Scully 

(1994) applied survival analysis techniques to investigate manager retention rates in 



51 
 

baseball, basketball, and football. Kaplan-Meier survival curves were fitted to evaluate 

managerial survival and compare differences in survival probabilities, across the three 

sports. The results from the test indicated that the survival curves for each sport were 

statistically different from each other. Further, Scully (1994) investigated which 

distribution was most appropriate to describe the survival probabilities. The Weibull 

distribution was initially implemented with the parameters (α, β) being estimated using 

maximum likelihood estimation. In each regression model, managerial efficiency was used 

as a covariate and regressed against managerial tenure. Managerial efficiency was 

calculated as a comparison of the manager’s winning percentage with the manager’s 

maximum win percentage. Results suggested that the Weibull distribution provided an 

accurate description of managerial survival rates. The results showed a highly significant 

positive relationship between managerial efficiency and managerial tenure across all three 

sports, suggesting that the higher the proportion of games won by a manager, the longer 

the manager will stay with the team. 

     Similarly, Ohkusa (2001) also investigated factors that affect the quit behaviour of 

professional baseball players in Japan. The author considered both pitchers and batters who 

played between 1977 and 1990 and applied Cox proportional hazard methodology. The 

dependent variable was defined as the time until the player quit. Duration was defined as 

the number of years since the player entered the baseball league. Ohkusa (2001) used 

wages, productivity, and their quadratic terms as explanatory variables. Batter productivity 

was measured as the slugging rate, pitcher productivity was defined using hit rate and 

strike to walk rate. The results found that higher income discouraged quitting among both 

batters and pitchers. Among batters, higher productivity was associated with a reduction in 

probability of quitting, while, among pitchers, higher productivity was associated with an 

increase in probability of quitting. This suggested that there may be other factors at play 

such as the impact on the body. For example, for batters, high productivity may put more 

strain on the body. As such, these results would suggest that higher body impact leads to 

greater retention. 

     McHale, Scarf & Folker (2012) outlined the Premier League player performance index 

for rating the performance of football players. The ratings index is a weighted ensemble of 

six sub-indices and constructed using different regression models. The six sub-indices 

model: match outcome, point-sharing, appearance, goal-scoring, assists and clean sheets. 

Match outcome was modelled as a Poisson function of goals for and goals against which 

was determined by the number of shots and shot effectiveness of the two teams, which are 

determined by the player actions of each team. The point sharing index is a linear function 

of the number of minutes played by a player, the total number of minutes played by all 

players on their team, and the number of points the team won in a given match. The 



52 
 

appearance index divides the number of points won by all teams in the league among the 

players according to how many minutes they played. The assist index rewards points for 

each assist. Finally, the clean sheet index was modelled as a function of blocks, clearances, 

tackles won, interceptions and saves. The final index is a weighted sum of the points 

achieved in each sub-index. 

     Broadie & Rendleman (2013) investigated whether the Official World Golf Ranking 

(OWGR) system was prone to bias for the four major tours (PGA Tour, European tour, 

Japanese Tour and Asian Tour) by comparing the OWGR system with two unbiased 

methods for estimating golfer performance: 1) Score-based skill estimation (SBSE) method 

and 2) Sagarin method. The SBSE method provides a player’s mean 18-hole score played 

on a neutral course, and statistically removes all intrinsic course difficulties such as course 

setup and weather. The Sagarin method uses a player’s won-lost-tied record against other 

players when they play on the same course on the same day, and the stroke differential 

between those players, then links all players to one another based on common opponents. 

Highly correlated rankings were found between the three methods however a large 

difference depending on tour affiliation was found which illustrates the existence of bias. 

There was a clear tendency for OWGR/ SBSE ranking pairs to fall below the 45-degree 

line for non-PGA tour players and above the line for PGA tours. A similar result was found 

for OWGR/Sagarin relationship. Moreover, it was found that a golfer’s primary tour 

affiliation is the PGA tour is penalised an average of 37 OWGR rankings positions relative 

to non-PGA Tour affiliated golfers (Broadie & Rendleman, 2013). The analysis revealed 

statistically significant tour bias in the OWGR against PGA tour affiliated golfers and was 

greater among less skilled players. 

     Jackson (2016) developed a novel metric for measuring the similarity between players 

in the Australian Football League (AFL). “A players involvement in games was measured 

as a combination of event type, the current state of the game, and the location of the event 

(Jackson, 2016, p.3). The similarity between two players, 𝑖 and 𝑗, was calculated as a linear 

transformation of the vector angle between the players individual involvement vectors 𝒘𝒊 

and 𝒘𝒋. A similarity of 0% is produced for players with a vector angle of 
2

𝜋
 (completely 

orthogonal). Applying this measure to the 2015 AFL season West Coasts Jason J. Kennedy 

and GWS Giants Jeremy Cameron were the two most similar players. The measure was 

also used to identify the most unique players within the AFL. The player similarity metric 

was used to compare player efficiency relative to the 5-most similar players using: 

                                                𝐸𝐹𝐹𝑖 =
𝑥̅𝑖

1
5

∑ 𝑥̅𝑆𝑖,𝑗
5
𝑖=1

− 100%                                                  (5) 
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     Here, 𝑥̅𝑖, represents the average score per game of player 𝑖, calculated using the official 

AFL player ratings to measure player performance. 𝑆𝑖,𝑗 is the 𝑗𝑡ℎ most similar player for 

player 𝑖. The benefits of the similarity measure are that it measures player performance by 

examining player efficiency relative to similar player rather than raw average points per 

game. For example, Brisbane’s Dayne Zorko was 42nd in the 2015 AFL competition for 

average points per game, but no. 1 for similarity relative to similar players. 

     Moore, Bracewell, McIvor & Stefani (2018) developed a result-driven system for rugby 

union. Initially several logistic regression models, applying random forest selection, were 

developed, with the match outcome (win or lose) as the target variable and player actions 

as covariates. These models did not sufficiently capture the signal to noise ratio, therefore 

a ‘live odds’, i.e. the estimated probability of victory 𝑝(𝑤𝑖𝑛) for a chosen reference team 

(the home team), was applied. An ensemble of time-based logistic regression model was 

developed to train the live odds model on a set of 600 matches. The model accuracy in 

terms of log-loss improved over the course of a match, with the greatest improvement 

occurring in the last 20 minutes. Using the probability of win, positional specific metrics 

are identified through regression analysis to derive statistically and practically significant 

attributes related to within game changes to the probability of win. To derive individual 

match ratings, a player’s features are aggregated to a match-level and normalised by 

minutes played. These features were grouped by position, and for each position a linear 

transformation of the aggregated information is learnt. Next, a set of position-based 

quantile transformation are learnt to transform the match ratings into standard normal 

variables. A sigmoid function is applied to obtain match ratings in [0, 1]. An exponentially 

weighted moving average is applied to each player current rating to derive a players rating 

based on a series of matches. The odds provided by the New Zealand TAB were converted 

to probability of victory. These two statistics were compared against the ratio of victory. It 

was found that the individual-derived team ratings outperformed the TAB. 

A note on sport ratings literature 

During the research process Albert, Glickman, Swartz & Koning (2017) published a textbook 

titled “Handbook of Statistical Methods and Analyses in Sports”. This work is a comprehensive 

review of commonly applied statistical techniques and methodologies used across a multitude 

of sports such as baseball, ice-hockey, basketball, American football, soccer, golf, and cricket. 

A handful of these studies and modelling approaches have been reviewed throughout this 

literature review and were applied during the development of the rating systems. 
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2.2 OVERVIEW OF CREDIT RISK MODELS 

Credit scoring is the term used to describe statistical methods used for classifying applicants for 

credit into good (non-risky) and bad (risky) classes (Hand & Henley, 1997). Credit scoring has 

become increasingly vital with the remarkable growth in consumer credit in recent years and 

has become one of the most successful application areas for statistical and operational research. 

          There are two main types of credit risk scorecards widely used in the finance industry: 1) 

Behavioural scorecards, and 2) Application scorecards. Application scoring is applied to 

determine the answer to the first question, while behavioural scoring is applied to answer the 

second questions. Broadly speaking, banks apply application and behavioural scoring to deal 

with two different types of customers requiring different types of decisions: 1) New customers’– 

should the new applicants for credit be granted? and 2) Existing customers’ – should the agency 

grant the request of an old customer to increase credit limit? How risky are the existing 

customers? What products to offer to the existing customers to maximize the profit? 

     Application scoring refers to the scoring an applicant’s credit score using static data obtained 

from application forms and are used to decide whether to grant lines of credit for new applicants 

(Chen & Huang, 2003). Behavioural scorecards are used to analyse of existing customers 

(Setiono, Thong & Yap, 1998). The prerequisite for using a behavioural scorecard is that the 

financial institution observes and obtains data about payment behaviour on a month-by-month 

basis, so the scores are dynamic (i.e. change monthly). 

     Both application and behaviour scoring deal with classification analysis and their main 

objective is to classify customers into groups consisting of people with similar default risk 

(Lancher, Coats, Shanker, & Fant, 1995). In credit scoring, classification analysis is applied to 

categorize a new applicant as “accept “or “reject” by using characteristics such as age, income 

and marital status (Chen & Huang, 2003), whereas classification of behaviour scoring is used 

to describe the behaviour of existing customers, based on behaviour characteristics such as 

payment patterns and spending patterns, and to predict the future behaviour of existing 

customers (Setiono, et al. 1998). The standard techniques used in application scoring can be 

used for behavioural scoring. However, the data and the objective of behaviour scoring make it 

different from application scoring. 

     When credit scoring models were first introduced, the aim was to estimate future credit 

worthiness of applicants and to grant credit to those with low default risk. The underlying 

assumption for application scoring is that the creditworthiness of a customer is time dependent 

(Thomas, 2000). Application scoring models are typically built using a minimum of one year’s 

credit performance of applicants. Generally, the data for application scoring is provided by 

credit bureaus. 

     The objective of application scoring is to classify a new applicant as good (non-risky) and 

bad (risky) based on characteristics such as age, income, marital status, number of dependents 
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and employment type, whereas behavioural scoring classifies the behaviour of existing 

customers based on purchasing and payment patterns. Behavioural scoring models provide 

better information for setting credit limits, creating new products, and identifying risky 

customers. 

     Behavioural scoring models allow the user to understand their customers (i.e. debtors) 

spending and repayment patterns to minimize losses and estimates the probability that a 

customer’s credit behaviour remains in, or returns to, a satisfactory condition in the future. 

Behavioural scores therefore make use of a customer’s recent behaviour to predict if they are 

likely to default in the immediate future. A pure behavioural scoring system will only include 

variables dealing with the customers’ performance and the current values of variables from 

monthly credit bureau reports. Other behavioural systems include personal characteristics such 

as age, time with banks, residential status, as well as pure behavioural characteristics. 

     A behavioural scoring model is developed using data for a sample of customers before and 

after a point in time, including all the characteristics which describe the performance of these 

customers over this period (Thomas et al., 2004). The period before the observation time point, 

usually 6-12 months, is called the performance period, while the period after the observation 

time is the outcome period, which is usually taken as 12 months. 

     Behaviour scores are not only used to identify risky customers, they are also used in 

assigning new credit limits for good customers, marketing new products to good customers, or 

managing recovery of debt if an account turns bad. The most widely used techniques for 

building scorecards are Linear Discriminate Analysis and Linear Regression. Other techniques 

which have been applied in the industry include logistic regression, probit analysis, non-

parametric methods, mathematical programming, Markov chain models, recursive partitioning, 

expert systems, genetic algorithms, artificial neural networks, and conditional independence 

models. 

     Hand & Henley (1997) provides a brief introduction into the credit risk environment, 

summarizing the statistical classification methods found in the consumer credit scoring and 

outline the performance measurements predominately implemented to assess model accuracy. 

     Large datasets are not uncommon therefore statistically significant variables must be defined 

to produce a parsimonious model with over fitting effects. In credit scoring approaches to 

selecting characteristics (i.e. predictor variables) are commonly used: expert knowledge, 

stepwise statistical procedures, information value, discriminate analysis, regression, logistic 

regression, mathematical programming methods, recursive partitioning, expert systems, neural 

networks, smoothing parameter models and time-varying methods were mentioned as industry 

standard models. Hand & Henley (1997) identify various publications that have been 

implemented the techniques in the credit risk environment and outlines scenarios/ areas in which 

the methods have strong discriminatory power and areas of weak discriminatory power.  



56 
 

     Hand & Henley (1997) concluded that the classification method is dependent on the details 

of the problem: the data structure, the characteristics used the extent to which it is possible to 

separate the classes by using the characteristics and the objective of the classification (i.e. 

overall misclassification rate, cost-weighted misclassification rate, bad risk rate among accepted 

applicants, probability metrics).   

     The performance of a credit risk scorecard is usually assessed using divergence statistics and 

information statistics. Industry standard metrics include the Receiver Operating Characteristic 

(ROC) curve in which the true positive rate (the proportion of the true good risks that are above 

the threshold) is plotted against the false positive rate (the proportion of true bad risks that are 

above the threshold). 

2.2.1 Credit Risk Scoring Systems 

Although statistical models are utilised to evaluate many problems in the financial industry, the 

focus of this section will purely centre on credit risk scorecards. The section provides a 

comprehensive review of academic literature outlining the application of statistical techniques 

to develop application and behavioural-based scoring systems. This section has been divided 

into two sub-sections: 1) Application scoring and 2) Behavioural scoring systems. 

2.2.1.1 Application Scorecard 

Application scoring refers to the scoring an applicant’s credit score using static data 

obtained from application forms and are used to decide whether to grant lines of credit for 

new applicants (Chen & Huang, 2003). This section reviews of Application scorecards. 

     Banasik & Crook (2005) adopted an Accept-Reject (AR) augmentation model which 

used a set of predictors to determine if an applicant has been accepted or rejected and on 

the basis all applicants, accepted or not, are assigned a score. As there is a range of 

equivalent scores, applicants with similar scores were assigned to intervals or ranges, with 

each range of scores being presented by an interval wherein there are both accepted cases 

and rejected cases. In each interval the accept ratio was calculated and regarded as the 

probability of acceptance within a given interval. It was assumed that for a given interval 

that the probability of good repayment performance was equally likely among accepted 

and rejected applicants. This augmentation accept-reject technique was applied within a 

lean modelling framework, and was repeated for 23 models, one for each number of 

variables between 4 and 26. For each band and each number of variables, the total scope 

for reject inference was provided. An initial dataset containing 2540 applicants was used 

as a sample upon which an AR model was formulated and estimated. A good-bad model 

was built, using the remaining 9668 English and Welsh applicants, and adopted to assess 

the efficiency of reject inference. Two-thirds of the applicants were used to build training 

model parameters and choosing the cut-off probabilities. Bands were accumulated such 
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that each included case from the preceding band. For each band, the variable coefficients 

are calculated using the bands training sample and a cut-off point that equalized the 

predicted number of bands with that observed. Band specific coefficients and cut-offs were 

used to score and classify the hold-out cases. The results showed that there was scope for 

reject inference to improve predictions. Overall, across the five bands the scope of reject 

inference to improve predictive performance would be 5.3%. 

     Recently, there been an increase in the use of ensemble strategies, neural networks, and 

hybrid-based modelling techniques in credit-risk scorecard development. To evaluate the 

modeling power of neural networks (NN) against traditional techniques, Alabi, Issa & 

Afolayan (2013) compared the predictive power of artificial neural network against a 

discriminant analysis. The techniques were applied to a dataset composed of 200 records 

(163 goods and 37 bads), and 15 variables (9 categorical and 6 numerical; 14 independent 

and 1 dependent). The error function that the network tries to minimize during training was 

cross entropy error. Discriminant Analysis results revealed a cross validation accuracy of 

88.50%. The NN correctly classified 100% (47) of good customers and 88.9% of bad 

customers (8) and had an overall predictive accuracy of 98.2%. Given that the neural 

network model produced fewer ‘bad accepted’ (%, amount) compared to the discriminant 

analysis models, the former model achieves a lower cost of misclassification. Moreover, 

the NN model produced an overall classification greater accuracy, and therefore it was 

found to be the superior model. 

     Similarly, Ince & Aktan (2009) explored the classification performance of credit scoring 

models using traditional methods (discriminant analysis and logistic regression) and 

artificial intelligence approaches (classification and regression trees, decision trees and 

neural networks). The discriminant function produced an average correct classification of 

65.23% and 62%, across the training and testing samples, respectively. Of the 

misclassifications 31.9% were type I (good customers misclassified as bad customers) and 

43.32% were type II (bad customers misclassified as good custom). The stepwise logistic 

regression produced a training accuracy of 66.37% and testing accuracy of 62.33%, with 

42.86% type I error and 32.22% type II errors.  The neural network applied a back-

propagation algorithm and revealed a classification accuracy of 78.85% and 61.52%, 

across the training and testing sample, respectively, and produced 44.59% type I errors and 

29.25% type II errors. The decision tree adopted a 1-SE pruning procedure and the optimal 

tree was selected by using the lowest cross-validated or testing set error criteria. Decision 

tree produced a 39.88% type I errors and 32.01% type II errors. Given that type II costs are 

significantly higher than those associated with type I, it was concluded that neural networks 

significantly reduced costs associated with misclassification, compared to the other 3 
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approaches. Overall, it was found that the CART produced the best average classification 

accuracy followed by logistic regression, discriminant analysis and neural networks. 

     West (2000) investigated the accuracy of five neural network architectures (MLP: 

Multilayer Perceptron; MOE: Mixture of Experts; RBF: Radial Basis Functions; LVQ: 

Learning Vector Quantization and FAR: Fuzzy Adaptive Resonance) for credit scoring 

application and benchmarked their performance against five traditional methods (LDA, 

LR, k-nearest neighbours, kernel density estimates and decision trees. The techniques were 

applied to two separate datasets, an Australian [credit] dataset and a German [credit] 

dataset. The results revealed logistic regression to have the lowest overall credit scoring 

error (0.2370), followed by MOE (0.2434), RBF (0.2540), MLP (0.2672), LDA (0.2667), 

LVQ (0.3163), CART (0.3044), kernel density (0.3080), k-NN (0.3240) and FAR (0.4039).  

For the Australian dataset, again, results showed logistic regression to have the lowest 

credit scoring error (0.1275) followed by RBF (0.1286), MOE (0.1332), LDA (0.1404), 

MLP (0.1416), KNN (0.1420), CART (0.1502), Kernel density (0.1660), LVQ (0.1703) 

and FAR (0.2461). For the German dataset, the [top 5] model results showed MOE 

(0.2243) to be the most accurate neural network model followed by logistic regression 

(0.2370), RBF (0.2437) and ML (0.2496). Overall, the results, across both datasets, showed 

MOE, RBF, MLP and logistic regression to be superior in terms of overall errors, while 

LVQ, LDA, KNN, Kernel density and FAR and CART were labelled as inferior models. 

Results suggested that MOE and RBF networks produced fractional improvements in credit 

scoring accuracy ranging from 0.5% up to 3%, this was due to their ability to partition the 

input subspace. Moreover, it was claimed that traditional methods suffer the curse of 

dimensionality producing inferior results relative to the MOE neural network models. 

     Jensen (1992) applied a neural network using back propagation to 125 credit applicants 

to predict loan outcomes. The neural network consisted of 24 input neurons, each 

representing an applicant’s characteristics obtained from their application form, 2 hidden 

layers each consisting of 14 neurons. The output layer consisted of three neurons, one for 

each possible outcome. The models’ predictive power was subjected to two individual 

tests. The first test utilised 75 applicants to train the network, while the remaining 50 

applicants were used to evaluate the model. The network correctly classified 0%, 28.5% 

and 94.6% of delinquent loans, charged-off loans, and paid-off loans, respectively. 

Evaluating the credit scoring scheme revealed 76% of applicants were correctly classified. 

The results of the study indicated the commercial benefits and strong predictive power of 

building neural networks to evaluate credit worthiness of loan applicants. 

     Similarly, Pacelli & Azzollini (2011) compared the predictive power of two feed-

forward neural networks, that differ in activation function and model parameters, applied 

to two separate datasets containing a set of Italian manufacturing companies and financial 
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industries associated with each company. Pacelli & Azzollini (2011) objective was to 

analyse the ability of neural networks to forecast the credit risk of each Italian 

manufacturing company (i.e. safe, vulnerable, and risky). Both neural network models 

were trained through back propagation and consisting of an input layer, containing 24 

neurons, two hidden layers, and 1 output layer. Neural Network A was build using a sample 

of 273 Italian companies and their associated financial variables. After 101,470 cycles the 

network produced an error revealed a classification accuracy of 84.2% among companies 

labelled as safe, a classification accuracy of 73.9% among companies labelled as 

vulnerable. However only 34.8% of risk companies were correctly labelled. Neural 

Network B was build using a sample of 507 Italian companies and their associated financial 

variables. After 10,000 iterations the network produced an error rate = 0.3308. Results 

revealed that the model was unable to correctly classify companies, classifying all 148 

companies into the first class, and producing a validation error rate = 0.3311. 

    Len & Chen (2005) extended the application of neural networks by developing a two-

stage hybrid credit scoring model using multivariate adaptive regression splines (MARS) 

to identify significant variables and using these variables as the input node of a neural 

network model. Len & Chen (2005) hypothesized that by adopting MARS to identify the 

significant variables to input into the model: (1) the training time to build the optimal neural 

network would significantly decrease and (2) the predictive power of the neural network 

would significantly increase. The proposed model was applied to a dataset containing 510 

housing loan customers (459 good customers and 51 bad customers). A 5-fold cross 

validation (CV) scheme was adopted to evaluate the capability of the built model. The 

result of the hybrid model was compared against discriminant analysis, logistic regression, 

MARS, and neural network results. It was found that the two-stage hybrid method 

produced the highest classification accuracy (84.7%), followed by neural networks (84%), 

MARS (81%), logistic regression (76%) and discriminant analysis (75.5%). Moreover, the 

proposed model had fewer type I errors (classify good customers as bad) and type II errors 

(classify bad customers as good), therefore a lower expected cost of misclassification. The 

optimal neural network typology consisted of an input layer made up of 5 nodes, a single 

layer made up of 20 nodes and an output layer containing a single node. The top 5 

significant variables using MARS were: Monthly instalment/ monthly income, number of 

guarantors, loan types, loan amount/ house appraisal value and marital status.  

     Another example of the application of hybrid modelling strategies in application scoring 

in Bahrammirzaee (2011). Bahrammirzaee (2011) developed a hybrid intelligent system to 

produce credit scores using reasoning-transformational models. The hybrid intelligence 

system was created due to three key reasons: (1) Hybrid systems overcome the limitation 

of each individual technique, (2) A single technique is not applicable to many sub-problems 
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that a given application may have and (3) Hybrid systems encapsulate multiple information 

processing capabilities within a single architecture.  The proposed model was trained using 

100 loan applicants (50 personal and 50 corporate) and tested on a dataset with the same 

composition. The first module contained a knowledge base of personal loan applicants and 

corporate loan applicants. The knowledge was extracted from a credit ranking model 

developed by several banking experts (Bahrammirzaee, 2011). The inference engine 

applied Aristolean logic composed of 136 rules utilizing backward inference methodology. 

The output of the expert system is the score for each criterion and a final score which is the 

sum of all individual criteria (50 personal scores and 50 corporate scores). The scores 

produced by the expert system, was used as inputs to the neural network which 

implemented a back-propagation algorithm. The target scores for the neural networks were 

produced by several banking experts for each of the 100 applicants (i.e. expert scores). 

Applying the model to 50 personal and 50 corporate loan applicants, a statistically 

significant difference was established between expert system’s scores and hybrid credit 

rating system scores. Moreover, it was found that the errors (i.e. MSE, RMSE and MAD) 

produced by the hybrid system was significantly less than those produced by the expert 

system, demonstrating that the hybrid intelligence systems provide greater accuracy and 

power in credit ranking compared to expert systems. 

     Similarly, Chuang & Huang (2011) developed a hybrid credit scoring model with the 

capability of enhancing classification accuracy and reducing misclassification. The 

proposed model incorporated three key techniques, rough set theory (RST), artificial neural 

networks (ANN) and cased based reasoning (CBR). The model first integrates the RST and 

ANN model to identify the accepted and rejected applicants, CBR is then applied to detect 

type I errors i.e. rejected applicants that should have been accepted. The hybrid model 

adopts RST due to its ability to handle noise and isolate relevant attributes, reducing model-

training time and increasing classification accuracy. The hybrid model was trained, tested, 

and validated using credit card applicant data. The neural network implemented a back-

propagation algorithm, consisting of an input layer (9 nodes), a single hidden layer (5 

nodes) and an output layer (1 node). The network was trained using learning rates ranging 

from 0.01 - 0.2, momentum rates from 0.7 - 0.93 and varying lengths from 1,000 – 10,000. 

The optimal network architecture had a classification accuracy of 81.5%. Moreover, 

benchmarking the hybrid model against traditional scoring models revealed that the RST-

ANN-CBR model was the optimal model in terms of accuracy rate, least number of Type 

I and II errors, and reducing cost of misclassification. 

     Another example of the application of ensemble modelling in application scoring in 

Bahrammirzaee Bao, Lianju & Yue (2019). Bao, Lianju & Yue (2019) proposed an 

ensemble strategy integrating unsupervised learning with supervised learning at different 
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stages, for credit risk assessment. Unsupervised learning techniques were applied at two 

different stages: 1) the data clustering and 2) the consensus stage. The ensemble strategy 

determines consensus classification decisions based on the predictive outcomes produced 

by individual machine learning models. The strategy was applied to a combination of the 

German and Australian credit datasets from the UCI machine learning repository and a 

Chinese P2P enterprise. The results suggest that the cluster-based consensus model could 

obtain a more accurate and reliable classification as it achieves the best MCC of 0.542. 

Moreover, it was inferred that the strategy of combining unsupervised and supervised 

machine learning at multiple stage proved to be an effective strategy. To prove the 

effectiveness of the consensus, model the authors compared the consensus and cluster-

based models. It was found the consensus strategy helps consensus models to outperform 

the individual models. 

     Khandani, Kim & Lo (2010) applied generalized classification and regression trees 

(CART) to construct a model which forecasts credit delinquencies and defaults. To 

improve predictive power an adaptive boosting technique was adopted to address the issue 

of highly skewed proportion of good and bad realisations. The models’ predictive power 

was evaluated by assessing its ability to forecast ‘90-day-or-more’ delinquent customers 

during a 6-month period. The results showed that the average CScore among 90-day-or-

more delinquent customers (2.4% of account) was 61.2 across the 10 calibrations (model 

applied 10-fold CV) and testing periods, while those accounts that were not delinquent 

(97.6%) averaged a CScore of 1.0, indicating strong discriminatory power. The results 

showed that the average forecast among customers who were current and did not reach 

delinquency was 0.7, while the average forecast for straight roller was 10.3. Khandani et 

al. (2010) rebuilt the model by dividing the data into equally sized sets separated by the 

availability of features and performing a 10-fold cross validation (CV) on each one. The 

results revealed a significant improvement in both model precision and recall between 

groups 1 (accounts with the most missing feature) and group 2 (accounts with the fewest 

missing features). It was shown that regressing forecasted delinquencies on realized 

delinquencies produced and 𝑅2 of 85% for a 6 month and 12 month forecast horizon 

indicating that the model can generate leading indicators of deterioration in consumer 

credit worthiness. Overall, it was concluded that the regression tree model produced 

accurate credit forecasts 3-12 months in advance and yielded costs saving between 6% - 

23%. 

2.2.1.2 Behavioural Scorecard 

Behavioural scorecards are used to analyse of existing customers (Setiono, Thong & Yap, 

1998). Such scoring techniques allow financial institutions to determine for example 
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whether a customer’s credit-limit should be extended, what financial products should be 

served to various customer segments, etc. Behavioural scorecard allows for deeper analysis 

and allows creditor to mine a customer’s payment history, credit utilisation over time and 

type of financial products purchased. This section reviews Behavioural scorecards 

adopting both traditional and non-traditional techniques. 

     Given behavioural scorecards form the backbone for a lot of financial institutions, the 

amount of published literature surrounding the development of such systems is limited and 

scarce. Like application scorecard, behavioural scorecards have also experienced an 

increase in use of ensemble strategies, neural networks, and hybrid modelling strategies.  

     Previously, such modelling strategies were non-existent within the credit risk industry 

given hybrid ensemble strategies suffered from interpretability and transparency issues 

(please see: Kim, Lee, Shin, Yang, Cho, Nam, Song, Yoon & Kim, 2019; Zhang, He & 

Zhang, 2018; Bao, Lianju & Yue, 2019; Shen, Zhao, Li, Li & Meng, 2019; Papouskova & 

Hajek, 2019). Specifically, the most common ensemble strategy within the credit risk 

assessment is integrating different machine learning models for credit scoring, and one of 

the mainstream ensemble strategies is to make consensus classification decisions based on 

predictive outcomes of individual machine learning models. There are different approaches 

to perform ensemble strategy in terms of using different base learners (single classifiers or 

models) and different consensus techniques. The difference between the traditional credit 

risk research and modern more recent credit risk research focuses on implementing 

unsupervised learning techniques at different stages. 

     Fadaei-Noghani & Moatter (2017) proposed a hybrid data-mining methodology, which 

considered feature selection and the decision cost, to increase the accuracy of detecting 

fraudulent credit-card behaviour. The developed methodology adopted a feature selection 

approach which incorporated prior feature filtering and a wrapper approach using C4.5 

decision tree, and an ensemble classification is performed using cost sensitive decisions 

trees in a decision forest framework. The ensemble classifier yielded a performance 

improvement of 33% compared to Naïve Bayes, Bayesian network, ID3 and J48 classifiers. 

     Zieba and Swiatek (2012) proposed an ensemble classification method based on 

switching class labels, which switches the class of an observation according to an estimated 

probability, 𝑝(𝑖|𝑗), which represents the probability that an object in the 𝑗𝑡ℎ class will be 

switched to the 𝑖𝑡ℎ class, for credit assignment. The switching techniques addresses 

imbalanced dataset and issues with asymmetric cost matrices. The proposed method was 

found to have the lowest false negative (FN) ratio and experimental risk index (ERI) when 

benchmarked against C.45, K-NN, MLP, LR and NB classifiers. 

     Feng, Xiao, Zhong, Qiu and Dong (2018) proposed an ensemble classification method. 

The classifiers are initially selected based on classification ability and the relative costs of 
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type I and type II error in the validation set. With the selected classifiers, different 

classifiers were combined for the samples in the testing set based on their classification 

results to get an interval probability of default by using soft probability. The proposed 

method was compared with some well-known individual classifiers and ensemble 

classification methods for credit scoring, including five selective ensembles, by using ten 

real-world data sets and seven performance indicators. Through these analyses and 

statistical tests, the experimental results demonstrated the ability and efficiency of the 

proposed method to improve prediction performance against the benchmark models. 

     Kennedy et al. (2013) examined the contrasting effects of altering the performance 

period and outcome period on the stability of predictions produced by behavioural scoring 

methods. The study evaluated the efficacy of varying performance and outcome window 

sizes on the classification accuracy of a logistic regression model. Kennedy et al. (2013) 

compared performance window sizes by classifying loans over a range of fixed outcome 

window sizes and varying performance windows. These performance window sizes are: 6, 

12, and 18 months, while fixed outcome window sizes are: 3, 6, 12, 18, and 24 months. 

The study assessed classification accuracy across two behavioural scoring approaches: 1) 

Current status - this approach assigns either a ‘good’ or ‘bad’ status to consumers based 

on their account status at the end of the outcome window. 2) Worst status - This approach 

assigns either a ‘good’ or ‘bad’ status to consumer based on the account status during the 

outcome window. Comparing classification performance of varying outcome window size 

and a fixed performance window of 12 months, using a ‘worst status’ and ‘current status’ 

approach, revealed that in the ‘worst status’ scenarios a clear separation existed between 

shorter outcome windows (3, 6 and 12-months) and longer outcome windows (18 months 

and 24 months). A Kruskal-Wallis test revealed at least one significant difference between 

the results. The ‘current status’ approach revealed that a logistic regression classifier using 

“a 3-month outcome window consistently achieved the highest average class accuracy” 

(Kennedy et al. 2013, p.), followed by 6, 12, 18 and 24-month outcome windows. It was 

found that when using the worst status approach, the shorter outcome windows produce 

relatively superior average class accuracy for a 12-month performance window. The results 

found that a 3-month or 6-month outcome window produced the highest average class 

accuracy in conjunction with a performance window of 12 months using a logistic 

regression classifier. Overall Kennedy et al. (2013) revealed that a “classification task 

based on worst status approach and a longer outcome window size achieves a higher 

average class accuracy” (Kennedy et al., 2013, p. 9), using a 12-month performance 

window. 

     Unlike Kennedy (2013), Yobas & Ross (2000) conducted a comparison study 

evaluating the predictive power of linear discriminant analysis (LDA), neural networks 
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(NN), genetic algorithms (GA) and decision tress (DTs) in the classification of credit cards 

customers. The four techniques were applied to a dataset containing 1001 credit cards 

consumers. A case was declared ‘bad’ if the individual has missed at least one payment in 

the sample period and ‘good’ otherwise. The optimal neural network typology was 

identified by testing various learning and momentum rates, activation function and epoch 

numbers. A classification accuracy of 64.2% was achieved by the neural network. The 

decision tree model achieved an average accuracy of 62.3% across the 10 trees.  The GA 

model achieved an accuracy of 64.5%.  LDA results revealed that the model correctly 

classified 68.4% of the cases. Although results indicated LDA to be superior of the 3 

investigated models, Yobas et al. (2000) stated that further analysis is required as these 

results were inconsistent with results presented in other studies, and stated that factors such 

as differences in the types of individuals in the samples, differences in sample sizes, 

differences in the transformation applied to the data, could explain these inconsistencies. 

      Similarly, Hsieh (2004) applied a self-organising neural network to identify profitable 

customers and segments based on repayment behaviour, recency, frequency and monetary 

(RFM) behaviour. Using account and transition data Hsieh (2004) applied self-organising 

neural network methodology to identify customer segments based on repayment behaviour 

(i.e. transaction users, convenience users or revolver users – target scores), and RFM 

behaviour scoring predictors. Hsieh (2004) constructed a 4 × 4 SOM (self-organising map) 

to identify profitable customer segments based on previous repayment behaviour and RFM 

behavioural scoring predictors. Hsieh (2004) developed customer profiles using neural 

network (32-20-3) sensitivity analysis and an aprior association inducer. The SOM results 

showed that customers fall into three major profitability groups dispersed over 16 clusters. 

Moreover, it was found that customers with values tending towards R↓ F↑ M↑ can be 

targeted with greater accuracy. The clusters were then profiled by feature attributes 

determined using the apriori association inducer. Overall Hsieh (2004) presented a 

behavioural scoring model that enabled the user to deduce profitable and non-profitable 

customer segments from credit data. 

     Wang, Jiang, Ding & Liu (2018) proposed a novel behavioural scoring model based on 

a mixture survival analysis framework to dynamically predict the probability of default 

over time. ‘Cured’ borrows are those that never default and uncured are those that will 

eventually default at some point during the loan-term. A random forest modelling 

technique was utilised to determine whether a borrow defaults and a random survival 

forecast is introduced to model the time to default. The proposed ensemble mixture random 

forest (EMRF) model, using an averaging ensemble method, was compared against the 

mixture cure model (MCM) and the Cox proportional hazard model (Cox PH) which 

predicted the probability of default over time. The EMRF model predicted whether a 
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borrow will default, through the random forest component, and predict when they are most 

likely to default, through the random survival forecast. The model was trained on 60% of 

the data and tested on 40% was held for training. A repeated 10-fold cross validation was 

applied across the three models, probability of default was predicted for a 12-month loan 

and the time interval was one month. Across 10 individual time intervals the proposed 

EMRF model outperformed the MCM and Cox PH model 7 out of 10 times using the AUC 

performance metric, while it outperformed all models across all time interval using the K-

S statistics. 

     Thomas (2000) proposed two extensions to behavioural credit scoring models, 

producing more robust, highly improved and focussed scorecards. First, it was suggested 

incorporating current economic conditions into scoring methodologies, as an individual’s 

financial situation is dedicated by economic conditions. Given the several years’ time lag 

between transactional data collected and its use in scorecards, the model scores for each 

consumer may not be indicative of their current financial situation. It was established that 

economic variables such as unemployment claims had a major impact on default. It was 

suggested that one way to incorporate various economic conditions into a consumer’s 

credit score would be to have two scores, one for prosperous economic conditions and the 

other for failing economic conditions. However, to build a model that incorporates all the 

stages of economic conditions one would have to use old data. Second, it was suggested 

changing the overall objective of credit scoring model from ‘minimising the risk of a 

default customer’ to ‘maximising the profit a customer brings’. To build a profit scoring 

model Thomas (2000) suggested three approaches: 1) Build on existing scoring models 

which estimate default rates, attributes, and acceptance, and demographically segment the 

population according to their score and these measures. Finally establish the profitability 

of the various segments. 2) Describe profit as a linear function of categorical variables 

obtained from the application form using the regression of credit scoring. A drawback to 

this method is that almost all the data will be censored in that total profit is not known. 3) 

“Build on Markov chain approaches to behavioural scoring to develop more precise 

stochastic models of customer behaviour” (Thomas, 2000, p.166). 

     Papouskova & Hajek (2019) proposed a model which modelled the overall credit risk 

of a consumer’s loan using expected loss (EL). To model EL, three key credit parameters 

required estimation: 1) probability of default (PD), 2) loss given default (LGD) and 3) 

exposure at default (EAD). Papouskova & Hajek (2019) proposed a two-stage credit risk 

modelling approach integrating 1) class imbalance ensemble learning for predicting PD 

and 2) an EAD prediction using regression ensembles. A stacking method was applied to 

combine multiple predictive models and consisted of two steps: 1) generating a set of base 

predictions and 2) these predictions are used to train the meta-classifier or meta-regressor. 
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The results show that stacking with RF as the meta-learning algorithm outperformed the 

other classifiers on all evaluation metrics. Therefore, this method was chosen for modelling 

PD in the two-stage method. Regression modelling of EAD for the sub-population of 

default loans was applied and included the single regressors (regression tree, random forest, 

linear regression, SVR, deep neural network), homogenous (RF, Rotation Forest, Additive 

Regression, Bagging and Random Subspace) and heterogenous stacking ensemble 

methods. Overall staking with Linear regression performed best across all the evaluation 

metrics. This was preferred method for modelling EAD in the two-stage EL model, while 

Stacking with RF was selected for the second stage as the best performance. Finally, the 

two stage EL modelling in an integrated framework including stacking with RF to model 

PD and Stacking with LR to model EAD. The results showed that misclassification cost 

can decreased by using a heterogenous method with RF as a meta-classifier in modelling 

PD. 

     Similarly, Bakoben, Adams & Bellotti (2019) proposed a two-stage approach for 

determining dissimilarity between pairs of time series objects. Bakoben, Adams & Bellotti 

(2017) applied cluster analysis to the behaviour of credit-card accounts to help assess credit 

risk level. The first stage fitted a multivariate time series model 1) to characteristics the 

dynamic nature of an account and 2) to reduce data dimensionality. Stage two computes 

the dissimilarity between confidence region of the model parameters identified in stage 

one. The accounts were clustered using Euclidean distance clustering and an uncertainty-

aware clustering approach. A logistic regression model was developed to predict defaults 

and evaluates clustering performance. The default status is predicted based on cluster 

assignment and the analysis is performed on the first 2/3 of each account and forecast 

default is measured over the last 1/3 period. The logistic regression prediction and 

forecasting models based on ellipsoid clustering showed good performance in comparison 

to the models based on the outcomes of the clustering analysis which uses Euclidean 

distance and outperformed models based on the aggregated behaviours. 

2.3 AN EXPLORATION OF MODEL EVALUATION METRICS  

The secondary objective of this research is to develop a novel evaluation metric to quantify the 

effectiveness of sport-based ratings. Here, a comprehensive review of commonly used 

evaluation metrics, also known as model performance metrics, is provided. An exhaustive 

review has not been conducted as the non-reviewed performance metrics are not suitable or 

applicable when evaluating sport-based rating systems. 

     Specifically, this chapter reviews commonly applied performance metrics within industry 

and academia, outlines the technical details and limitations of each metric, and explains why 

certain performance metrics perform well within certain forecasting scenarios and lose 
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information in other circumstances. Rating systems apply different objectives depending on the 

forecasting scenario, and therefore adopt different evaluation metrics to assess model outputs. 

Throughout the literature review it was found that there exists no universal evaluation technique 

or evaluation strategy to measure the validity of meaningful sport-based rating systems. 

Therefore, the objective is to consolidate these findings to identify the ideal set of criteria and 

the ideal methodology to construct a novel performance metric to evaluate the effectiveness of 

ratings. 

     The rating systems developed and reviewed throughout this chapter have applied a myriad 

of performance metrics such as coefficient of determination, correlation, accuracy, root mean 

squared error (RMSE), Symmetric mean absolute percent error (SMAPE), mean absolute error 

(MAE), 10) Wilcoxon p-value, Spearman’s rank coefficient, area under the curve (AUC), 

Kolmogorov-Smirnov test, leave-one-out cross validation (LOOCV), logarithmic-loss, 

calibration plot – empirical probabilities vs. predicted probability, and Hosmer-Lemeshow test 

statistics. 

     The section is divided into two parts: regression and classification. This division is because 

the evaluation criteria applied to any given modelling exercise is dependent on the model type 

and the outcome variable. 

2.3.1 Regression-Based Evaluation Metrics 

Predictive models can either produce continuous or classification outputs, and the measuring 

criteria to establish the predictive power associated with these models is dependent on the type 

of outcome variable. 

     Hyndman & Koehler (2006) stated that regression-based performance metrics can be 

classified into 4 groups: 1) scale dependent, 2) percentage error, 3) relative error and 4) scale-

free error. 

     The mean squared error (MSE) is a scale dependent measuring metric which means there 

can be major variation in the scale of observations between series such that a few series with 

large values can dominate the comparisons (Chatfield, 1988). MSE can be inappropriate for 

comparing predictive accuracy on different variables or different time intervals because it is a 

scale-dependent measure. Another major drawback is that MSE is heavily influenced by large 

errors compared to small errors, because of the “squared error” effect. This squared error effect 

within the numerator “over-inflates” the mean squared error for predictions further away from 

the actual outcome. The most common shortcomings of the MSE are: 1) quadratic loss may not 

correspond to the modeller’s loss function, 2) scale dependent, implying that it depends on the 

measurement unit for the outcome of interest) and 3) vulnerable to outliers (i.e. farther distance 

from the actual outcome). MSE performs well for forecasting procedures that avoid large 

forecast failures (Armstrong, 2001). 
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     Another scale dependent metric is the root mean square error (RMSE) which is vulnerable 

to outliers in errors. Although, the measure is expressed in the same unit as the outcome variable, 

making for easier interpretations, than the MSE. While, the MSE illustrates the variance, the 

RMSE illustrates the standard deviation. The measure is the square root of the average squared 

errors, therefore, larger errors have a disproportionately larger effect on the root mean square 

error because the effect of each error on RMSE is proportional to the size of the squared error 

(Chai & Draxler, 2014). “The RMSE is an inappropriate and misinterpreted measure as it is a 

function of 3 characteristics of a set of errors, rather than of one (average error) (Willmott & 

Matsuura, 2005, p.1)”. The RMSE and MSE measure is commonly applied in the climatic and 

environmental literature. 

     The mean absolute error (MAE) is also scale dependent, and therefore cannot be compared 

across different data series. MAE measures the prediction accuracy in absolute terms and is easy 

to understand and compute. Compared to RMSE and MSE this measure is less vulnerable to 

large errors because of the absolute value characteristic. The absolute values prevent negative 

and positive errors from offsetting each other (Hyndman, 2006). The scale deficiency issue can 

be solved through percentage error measures such as mean absolute percentage error. Another 

drawback is that the MAE assumes that the mean is stable over time (Choi, Hui & Yu, 2013; 

Hyndman, 2011). Due to the absolute loss function, MAE is more sensitive to small deviations 

from 0 and less sensitive to large deviations compared to that squared loss function in MSE. 

MAE performs well for forecasting procedures that produce occasional large forecast failures, 

while performing reasonably well on average. 

     An example of scale independent metric is the mean absolute percentage error (MAPE) 

metric which allows for meaningful forecast comparisons between two models. The MAPE 

measure is a strictly positive value between [0, 100] and is a unit free measurement. 

     It suffers from two major drawbacks: First, it is infinite or undefined if there are zero values 

in the data series. Hyndman (2006) and Makridakis & Hibon (2000) stated that percentage errors 

have an extremely skewed distribution when actual values are close to zero. Second, MAPE 

penalises positive errors heavier than the penalties placed on negative errors. It can be shown 

that the MAPE is asymmetric where equal errors above the actual value result in a greater 

absolute percentage error than those below the actual value. 

     The MAPE is bounded on the low side by an error of 100% but there is no bound on the high 

side (Goodwin & Lawton, 1999), to resolve this issue Makridakis & Hibon (2000) proposed a 

symmetric MAPE (SMAPE) measure involving dividing the absolute error by the average of 

the actual observation and the forecast. Makridakis’s resolution is expressed as follows: 
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𝑆𝑀𝐴𝑃𝐸(𝑡) =
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∑
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(|𝐴𝑡| + |𝐹𝑡|)/2

𝑛

𝑡=1

 (6) 

Here, 𝐴𝑡 is the actual observation at time t, 𝐹𝑡 is the forecasted (i.e. predicted) value at time t 

and n represents time period n. The forecast, 𝐹𝑡, is likely to be zero if the actual value, 𝐴𝑡, is 

zero. Therefore, the SMAPE involves division by a number close to zero. Moreover, the 

SMAPE may produce negative values indicating an unintuitive interpretation. An advantage of 

the SMAPE is their scale independence, and therefore are frequently applied when comparing 

forecast performance across different datasets and forecasting scenarios (Goodwin & Lawton). 

     The median relative absolute error (MdRAE) is also a scale independent metric which is 

advantageous over mean-error metrics such as MSE, RMSE and MAE, and due to the absolute 

error, it is more resilient to outliers. MdRAE is found by ordering the RAE from the smallest to 

the largest, and using their middle value, or the average of the middle values, as the median. 

However, a major drawback of MdRAE is the denominator in the presence of small or zero 

errors, because applying the benchmark method is no longer possible as it involves division by 

zero, therefore leading to extremely large or infinite relative errors. 

     Hyndman and Koehler (2006) proposed the mean absolute scaled error (MASE) as a 

generally applicable measurement of forecast accuracy without the problems such as scale 

dependence and outlier vulnerability found in the other measurements. Hyndman & Koehler 

(2006) proposed scaling the errors based on the in-sample MAE. A one-period-ahead forecasts 

from each data point in the sample is made. The result of MASE is independent of the scale of 

the data. A scaled error is less than one if it arises from a better forecast than the average one-

step forecast computed in-sample. “The in-sample MAE is used in the denominator because it 

is always available and effectively scales the errors” (Hyndman & Koehler, 2006). The MASE 

can be used to compare forecast methods on a single series, because it is scale-free, to compare 

forecast accuracy across series. Moreover, MASE produces interpretable results for example, 

values greater than one indicate worse forecasts, on average, than the in-sample one-step 

forecasting of the naïve method (Hyndman & Koehler, 2006). It was claimed that in situations 

where there are vastly different scales including data which are close to zero or negative and 

intermittent demand studies, the MASE is the best available metric for forecasting accuracy. 

Although, Chen, Twycross & Garibaldi (2017) showed that the MASE can be dominated by a 

single large error, while Franses (2016) illustrated scenarios and criteria where the MASE did 

not ‘fit’ as these criteria did not imply the relevant moment properties. 

2.3.2 Classification-Based Evaluation Metrics 

The number of classification-based evaluation metrics out number that of regression-based 

metrics. This is primarily due to the ease of computing or communicating the error between the 
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actual [continuous] outcome and predicted outcome in regression models. However, in 

classification models the problem of interpretation validity is slightly more challenging as the 

distance between actual and observed outcomes is categorical. 

     There are many ways to assess the validity of a classification model and the selected method 

of assessment is dependent on the modelling objective, the outcome of interest and forecasting 

scenario. In the case of regression, the goal is to decrease the distance (i.e. error) between actual 

and predicted outcome,  while the goal of classification-based models is dependent on the 

number of outcomes and overall classifier objective such as increasing overall accuracy, 

increasing accuracy across the individual classes, or increasing precision or recall etc. In this 

section classification-based evaluation metrics are reviewed, beginning with confusion matrix-

based metrics. 

     A confusion matrix, also known as an error matrix, consists of information about the actual 

and predicted classifications created by a classification system. “A confusion matrix is a clean 

and unambiguous way to present the prediction results of a classifier” (Brownlee, 2014, p.1). 

Typically, the rows represent the predicted classes, while the columns represent the actual 

classes. The confusion matrix is widely used to measure the accuracy of classification-type 

models by applying statistical measures derived from the matrix (Table 1). 

     A confusion table is a 2×2 matrix that reports the number of true positives (i.e. power), false 

positives (Type I error), false negatives (Type II error) and true negative. Here a brief 

explanation of the performance metrics that can be derived through the confusion matrix is 

provided. 

     Accuracy is a metric which can be derived using the confusion matrix. It is expressed as a 

percentage of the number of correct classifications divided by the total number of predictions. 

Accuracy is calculated from a tally of the correctness of the classification generated by sampling 

the classified data and expressed in the form of an error matrix (Story & Congalton, 2006). 

Generally, accuracy is an unreliable evaluation metric in the presence of unbalanced data (i.e. 

classes are not represented equally), this is also known as the accuracy paradox. It suffers from 

the issue of imbalance dataset or class imbalance because a classifier built using this data will 

be geared towards classifying majority of the observations. This issue of imbalanced data can 

also lead to model overfitting. The accuracy measure can be applied across multiple disciplines 

 Actual condition 

Predicted 

condition 

Total population Positive class Negative class 

Predicted positive  True positive False positive (Type I) 

Predicted negative  False negative (Type II) True negative 

Table 1: Confusion Matrix (i.e. Error Matrix) 
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and its application can be found in many fields and is the one of most common classification 

evaluation metrics (Story & Congalton, 1986). 

     To mitigate the issue of class imbalance the Index of Balanced Accuracy (IBA) can be 

applied. Imbalanced classes occur when the ratios of prior probabilities between classes are 

significantly skewed. A two-class dataset is imbalanced when one of the classes is heavily 

under-represented relative to the other classes. 

     Another confusion matrix metric is Sensitivity, also known as recall or the true positive rate. 

Sensitivity is the number of true positive cases divided by the number of positives conditions 

(i.e. true positives + false negatives) and measures the true positive rate (Halligan, Altman & 

Mallet, 2015). It measures the classifiers ability to identify actual positives and label those 

observations as positives. Sensitivity measures the model’s ability to correctly classifies the 

number of true positives that have ‘the condition’ of interest (effectively quantifies the 

avoidance of false negatives). It is most suited for scenarios where the true negative cases are 

not of interest and having ‘the condition’ is of importance (Trevethan, 2017), and therefore is 

also known as the ‘detection rate’ in the clinical literature (please see Sano, Quarrancino, Aguas, 

Gonzalez, Harada, Krupitzki & Mordoh, 2008; Colin, Lanoir, Touzet, Meyaud-Kraemer, Bailly 

& Trepo, 2003; Rocco, Cobelli, Leon, Ferruti, Mastropasqua, Matei, Gazzano, Verweji, 

Scardino, Musi, & Djavan, 2006). 

     The ‘inverse’ of Sensitivity is Specificity, also known as the true negative rate. Specificity 

is the number of true negative cases divided by the number of negative conditions, i.e. false 

positive + true negative, (Halligan, Altman & Mallet, 2015). It measures the proportion of actual 

negative that are correctly identified, effectively quantifying the avoidance of false positives 

(Trevethan, 2017). Specificity measures a model’s ability to correctly classify the number of 

true negatives who have the condition (for example, detecting the proportion of patients 

classified as not having cancer). The specificity measure is most suited for scenarios where the 

true positives cases are not of interest and not having ‘the condition’ is of importance. Like 

sensitivity, specificity is commonly used within medical diagnostic testing (please see Altman 

& Bland, 1994; Akobeng, 2007; Altman & Bland, 1994(a)). 

     Sensitivity and Specificity individually apply true positive rates and true negative rates; 

respectively, however, Prevalence is the number of positive conditions (i.e. true positive + false 

negative) divided by the total population (Noordzij, Dekker, Zoccali & Jager, 2010).  

     Prevalence measures the proportion of positive conditions from the population. Effectively, 

measuring the frequency of positive conditions within the population. It is commonly applied 

in Epidemiology, health care providers, insurers and toxicologists, when measuring the 

proportion of the population affected by a particular medical condition, such as a disease or a 

risk factor, i.e. smoking or obesity (please see Ellickson, Bird, Orlando, Klein & McCaffrey, 

2003; Linder, Rigotti, Brawarsky, Kontos, Park, Klinger, Marinacci, Li, Haas, 2013; O’Neil, 
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2015; Bolton-Smith, Woodward, Tunstall-Pedoe & Morrison, 2000; Chen, Rennie, Cormier & 

Dosman, 2005). 

     Another classification metric, like Prevalence, which applies true positives is Precision, also 

known as the positive predictive value. Precision is the number of true positives divided by the 

number of predicted condition positive (i.e. true positives + false positives = total predicted 

positives). “Precision expresses the proportion of the data points that the classifier says were 

actually relevant” (Koehrsen, 2018, p.1). The precision represents the model bias evaluating the 

model’s tendency to output positive classes. Therefore, the precision and recall measures should 

be used when the correct identification of negative cases is unnecessary. Precision is commonly 

applied in pattern recognition (please see Lanz, Marti & Thormann, 2003; Pettersson, 2005; 

Brodersen, Ong, Stephan & Buhmann, 2010), information retrieval (Carlberger, Dalianis, 

Duneld & Knutsson; Cormack & Lynam, 2006; Holmes & McCabe, 2002) and machine 

learning classification problems (Loh, 2009; Landgrebe, 2000 & Cano, Herrera & Lozano, 

2007). 

     The disadvantage of the precision and recall measure is that neither capture information 

surrounding the model’s ability to handle negative cases (Davis & Goadrich, 2006, p. 234). 

Recall relates to positive conditions (i.e. true positives and false negatives), while precision 

relates to predicted positive conditions (i.e. true positives and false positives). These metrics 

can produce misleading results when all observations are classified as positives. 

     Averaging Precision can be viewed as finding the area under the precision-recall graph (Su, 

Yuan & Zhu, 2015). “Average precision is a measure that combines recall and precision for 

ranked retrieval results. Specifically, the average precision is the mean of the precision score 

after each relevant document is retrieved” (Su, Yuan & Zhu, 2015, p. 350). Like the precision 

measure, the average precision score is commonly applied in information and image retrieval 

and document analysis (i.e. topic modelling and sentiment analysis). It is useful when comparing 

how well different models are ordering or ranking predictions. 

     An alternative to the average precision score is the 𝐹1 score which combines the recall and 

precision using a harmonic mean. The 𝐹1 measure, also known as the balanced F-score, is a 

single value metric based on two parameters (recall and precision). The F-score combines the 

recall and precision metric using the harmonic mean. “𝐹1 score is needed when you want to seek 

a balance between precision and recall” (Shung, 2018, p.1). 𝐹1 score is a better measure to 

identify a balance between Precision and Recall because it accounts for both false positives and 

false negatives predictions avoiding the possibility of being deceived by very poor precision 

and very high recall. The 𝐹1 score is optimal when there is perfect precision and recall (i.e. 𝐹1 

score = 1) and worst when 𝐹1 score = 0,  implying that the 𝐹1 score can not be greater than 

precision (Shung, 2018). Like precision and recall the 𝐹1 score fails to capture information 

surrounding the model’s ability to handle negative cases. 
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     Like prevalence, the 𝐹1 score is commonly applied in information retrieval for assessing 

document classification and query classification performance (please see Jiang, 2009; Buttcher, 

Clarke, Yeung & Soboroff, 2007; Cao, Hu, Shen, Jiang, Sun, Chen & Yang, 2009; Li, Zhong, 

Xu & Kitsuregawa, 2012; Beitzel, Jensen, Chowdhury, Frieder, 2008) and has widely used in 

Natural Language Processing literature (please see Collobert, Weston, Bottou, Karlen, 

Kavukcuoglu & Kuksa, 2011; Maarouf, Bradbury, Baisa & Hanks, 2014; Yao, Zweig, Hwang, 

Shi & Yu, 2013; Wang, Liu, Afzal, Rastegar-Mojarad, Wang, Shen & Liu, 2018). 

     Another way to evaluate the effectiveness of a binary classifier is the Receiver Operator 

Curve (ROC). ROC is a two-dimensional graph in which true positive rate (Y), sensitivity, is 

plotted against the false positive rate (X). “It depicts the relative trade-offs between true 

positives and false positives” (Vuk & Curk, 2006, p. 90). 

     The area under the curve (AUC) is a value between 0 and 1, where a value of 1 corresponds 

to a classifier that can perfectly separate observations across the two classes, while an AUC of 

0.5 corresponds to a classifier that cannot distinguish between the two classes. This area 

represents the probability that a randomly selected case will have a higher result than a randomly 

selected control (Fawcett, 2006). A disadvantage of AUC is that it does not account for 

prevalence or different misclassifications costs. Further criticisms of the AUC are heavily cited 

in clinical and medical literature, noting its lack of relevance and un-interpretability of small 

magnitude changes. This technique is commonly applied in financial sector, specifically credit 

risk, for assessing risk discrimination (please see Zhou, Lai & Yen, 2009; Joao, 2007; Brown & 

Mues, 2012; Abdelmoula, 2015). 

     As discussed, each confusion matrix metric is geared towards measuring the classifiers 

ability to assesses various aspects of the model’s predictive power. Although, there is no 

universal method to assess classifier “accuracy”. The choice of confusion matrix metrics is 

dependent on the modelling objective, what is needed from the overall classifier, the forecasting 

scenario, and the outcome of interest. 

2.4 BEYOND THE CONFUSION MATRIX 

Although the confusion matrix outlines many evaluation metrics to assess the accuracy of 

classification-based models, it does not encompass an exhaustive list of such metrics. Therefore, 

this section outlines validation metrics that are outside the confusion matrix and are heavily 

used within industry and academia. 

     The Log-loss metric is an example of a classification evaluation metric which resides outside 

the confusion matrix and heavily used in machine learning tasks. Minimising the log-loss is 

equivalent to maximising accuracy of the classifier, therefore a lower log-loss value implies 

better predictions. The log-loss heavily penalises classifiers that confidently produce incorrect 

classification (i.e. producing a high probability for incorrectly classified observations). Log-
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losses closer to 0 indicate high accuracy, whereas if the log-loss is away from 0 indicates lower 

accuracy, therefore, the log-loss increases as the predicted probabilities diverge from the 

observed class. The log-loss is a logarithmic proper scoring rule (please see section 2.12) and is 

applied in many machine learning problems to identify the optimal solution, specifically binary 

classification models, such as energy (please see Esser, Appuswamy, Merolla, Arthur & Modha, 

2015; Belanger & McCallum, 2016; LeCun, Chopra, Hadsell, Ranzato & Huang, 2006), credit 

risk (please see De Fontnouvelle, Jesus-Rueff, Jordan & Rosengren, 2003; Bielecki, Cousin, 

Crepey & Herbertsson, 2014; Chen, 2007; Zhang, 2009) and pattern recognition (please see 

Almeida, Backovic, Cliché, Lee & Perelstein, 2015; Masood, Ellis, Nagaraja, Tappen, LaViola 

& Sukthankar, 2011; Cheng, Zhang, Shao & Zhou, 2016; Ding, Chen, Lui & Huang, 2016). 

     The Brier score is another example of a proper score function, specifically a quadratic 

function, measuring the accuracy of probabilistic predictions. It is heavily used in medical 

research and meteorological forecasting to assess and compare the accuracy of binary classifiers 

(Lix, 2010; Wilks, 2010; Ferro, Richardson & Weigel, 2008). The most common Brier score is: 

 

𝐵𝑆 =  
1

𝑁
∑(𝑓𝑡 − 𝑜𝑡)2

𝑁

𝑡=1

           (7) 

In effect this is the mean squared error (MSE) error of the forecast. The Brier score 

simultaneously addresses calibration, the statistical consistency between the predicted 

probabilities and the observations, and sharpness, i.e. the concentration of the predictions, 

(Rufibach, 2010). The more concentrated the predictions, the sharper the forecasts, and the 

sharper the better, subject to calibration (Gneiting, Balabdaoui & Raftery, 2007). A lower Brier 

score implies better model calibration and classification accuracy. The Brier score is widely 

reported in the meteorology literature and survival analysis (please see Ferro, 2013; Jewson, 

2004; Young, 2010; Hersbach, 2000; Prasad, Dash & Mohanty, 2010). 

     A gain and lift chart measures classifier effectiveness through the ratio between the results 

obtained with and without the model (Jaffery & Liu, 2009). It measures the improvement in 

results when applying the classifier compared to the results when the classifier is not applied. 

The chart represents the cumulative percentage ‘correct’ and cumulative population (Figure 2(a) 

and Figure 2(b)). Figure 2(a) illustrates a gains chart, showing the percentage of the total number 

of observations, for example, the first observation is at (10%, 30%) implying that when 

contacting 10% of the customer base 30% of these contact customers will have positive 

responses, and contacting 50% of the customer based 85% will have a positive responses. The 

diagonal line represents the baseline curve (i.e. without model), for example if 10% of 

observations are randomly selected from the ‘scored’ dataset, it is expected that approximately 

10% of the observations are classified as a ‘positive response’. 
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     The lift chart can be obtained from the gain chart by identifying the values on the 𝑦 − 𝑎𝑥𝑖𝑠 

corresponding to the ratio of the cumulative gain for each curve to the baseline (Vuk & Curk, 

2006). Figure 2(b) shows the corresponding lift chart for the gains chart in Figure 2(a). 

 

 

 

 

 

 

 

 

 

 

     These techniques are commonly applied in marketing to evaluate the success of marketing 

campaigns (i.e. customer response before prediction model vs. customer response after 

prediction model), establish the acquisition of new customers after the release of a new product/s 

or launch of a marketing strategy (please see Amini, Rezaeenour & Hadavandi, 2015; Rosset, 

Neumann, Eick, Vatnik & Idan, 2001; Sing’oei & Wang, 2013; Surma & Furmanek, 2010, Kim, 

2009; Vuk & Curk, 2006). 

     The Kolmogorov-Smirnov (KS) is another non-parametric goodness-of-fit test which 

measures whether a sample is drawn from a population with some known distribution and that 

two populations have the same distribution (Dodge, 2008). Like AUC, this technique is heavily 

used in financial sector for assessing risk discrimination within the credit risk environment. The 

KS statistic quantifies the distance between the empirical distribution of the sample and the 

cumulative distribution associated with the null hypothesis (i.e. reference distribution) or 

quantifies the distance between the empirical distribution functions of two samples (Lopes, 

2011).  

     Calibration measures how close the predicted probabilities are to the actual probabilities. A 

model is “well-calibrated” if the probabilistic effectively reflect the true likelihood for the event 

of interest. For linear regression models, a calibration plot is a simple scatter plot, while for 

binary outcomes smoothing techniques such as loess can be used to estimate the observed 

Figure 2(a): Gain chart and Figure 2(b) Lift chart 
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probabilities for the outcome in relation to the predicted probabilities. Calibration is a common 

characteristic required by many probabilistic model outputs as it measures the statistical 

consistency between the predictive distribution and the observations (Gneiting, Balabdaoui & 

Raftery, 2007). 

     Proposed by Youden (1950) the Informedness statistic combines both sensitivity and 

specificity into a single measure. The measure is a value between 0 and 1, where 1 represents a 

perfect test and 0 represents an imperfect test. It measures how consistently the predictor 

predicts the outcome of interest by combining surface measures about what proportion of 

outcomes are correctly predicted (Powers, 2007). Effectively, the Informedness metric measures 

the likelihood of observations (i.e. subjects) with a given condition to test positive against those 

observations (or subjects) without the condition to test positive. It is commonly applied in 

Clinical literature (please see Smits, 2010; Nonhoff, Rottiers & Struelens, 2005; Li, Shen, Yin, 

Peng, Chen, 2013, Youden, 1950; Ruopp, Perkins, Whitcomb & Schisterman, 2008).  

2.4.1 Model Selection  

This section provides a brief overview of four commonly used model selection and evaluation 

techniques: Akaike Information Criteria (AIC), Coefficient of Determination (𝑅2), Persons 

Correlation Coefficient, Hosmer-Lemeshow test, Stepwise regression, and Cross-validation. 

Model selection is an important phase of developing the ratings framework as under-fitting a 

model leads to insufficient information being captured surrounding the true nature of variability 

in the dependent variable, while an over-fitted model leads to selecting a model that loses 

generality. 

     The Akaike Information Criteria (AIC) is a model selection and comparison technique. AIC 

is a penalized likelihood and requires the likelihood to be maximised before it is calculated. The 

AIC algorithm tests varying combinations of the independent variables regressed on the 

dependent variables, estimating several candidate regression-models, and selecting the model 

that produces the lowest AIC value, which represents the optimal model. “The AIC attempts to 

balance the trade-offs between complexity of a given model and its goodness of fit” 

(Mohammed, Naugler & Far, 2015). 

     The coefficient of determination, also known as the 𝑅2, measures the correlation between 

the dependent variable and the independent variables jointly (Zhang, 2017). It measures the 

proportion of variation in the dependent variable explained by the independent variables 

included in the model. Within linear regression models, the 𝑅2 is most used as a measure of 

goodness-of-fit of the underlying models, as it measures the proportion of variation explained 

by the model predictors. 

     Pearson’s correlation coefficient measures the strength and direction of the relationship 

between two variables 𝑿 and 𝒀. It has a value between +1 and -1, where 1 is a completely strong 
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positive correlation, 0 is no correlation and -1 is a completely string negative correlation. A 

disadvantage of the correlation coefficient is that it only measures linear relationships between 

𝑿 and 𝒀. A disadvantage of the correlation measure is that it is meaningless when applied to 

categorical data and leads to inaccurate results when applied to non-linear relationships. A 

fundamental assumption when using the 𝑅2 measure in linear regression is that all the 

observations and exploratory variables are correctly observed. However, occasionally, the 

variables may not be correctly observed and measurement errors creep into the data (Cheng, 

Shalabh & Garg, 2014). 

     The Hosmer-Lemeshow test is used measure the goodness of fit for logistic regression 

models. The test statistic assesses whether the observed event rates match expected event rates 

in subgroups of the model population (Hosmer, Lemeshow & Sturdivant, 2013). A model is 

considered well-calibrated if the observed and expected outcome rates in subgroups are similar. 

     The Hosmer-Lemeshow goodness of fit test is based on dividing the sample up according to 

their predicted probabilities (Bartlett, 2014). Effectively, it measures how well the logistic 

regression model fits the data. A small p-value associated with the Hosmer-Lemeshow test 

statistics indicates that the model does not fit the model well. The Hosmer-Lemeshow test is 

commonly applied in risk prediction models across many disciplines such as actuarial science 

(please see Mendoza, Rose, Geiger, & Cash, 2016; Klotz, Vesprini, Sethukavalan, Jethava, 

Zhang, Jain, Yamamota, Mamedov & Loblaw, 2014; Klugman & Parsa, 1999), credit risk 

(Altman & Sabato, 2008; Soureshjani & Kimiagari, 2012; Sun & Guo, 2015), health care 

(Homser, Taber & Lemeshow, 2011; Saunders, Krause, Acuna 2012; Rello, Lujan, Gallego, 

Valles, Belmonte, Fontanals, Diaz, Lisboa, 2010), insurance (Paefgen, Staake & Fleisch, 2014; 

Kim, 2016 & Kelz, Gimotty, Polsky, Norman & DeMichele, 2004) and marketing (Jensen, 

2006; Jensen & Jepsen 2008; DesJardins, 2002). 

     The stepwise regression technique is a model selection technique which implements a 

combination of the forward selection and backward elimination variable selection techniques. 

The forward selection technique is initialized with the null model and inputs predictors to the 

model with the lowest 𝑝 − 𝑣𝑎𝑙𝑢𝑒 less than 𝛼𝑐𝑟𝑖𝑡 and stops when all 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 are less than 

𝛼𝑐𝑟𝑖𝑡. The backward elimination procedure starts with all the predictors in the model, 𝑌 =  𝐵0 +

𝐵1 + ⋯ + 𝐵𝑟−1𝑋𝑟−1 + 𝜖, and removes the predictors with 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 greater than 𝛼𝑐𝑟𝑖𝑡 and 

then refits the model. This process is continued until all 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 are less than 𝛼𝑐𝑟𝑖𝑡. Stepwise 

regression is a modification of the forward selection method in that after each step in which a 

variable is added, all the candidate variables in the model are checked for statistical significance, 

if significance is achieved the variable is retained in the model and removed otherwise. The 

final optimal model minimises the Akaike Information Criteria or maximises the adjusted 𝑅2 

value. A drawback of the stepwise regression is the stopping criteria which only produces a 
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single model while there may be a variety of models with a similar goodness-of-fit (Seber & 

Lee, 2012). An additional drawback is that the forward selection method only selects 

independent variables that maximises the partial correlation coefficient with the dependent 

variable (Bendel & Afifi, 1977). 

     Cross-validation evaluates a model’s ability to predict data that was unobserved during the 

model training process to identify over-fitting or selection bias issues and is the most widely 

used method for estimating prediction error. Therefore, the objective of cross-validation is 

assessing a model by measuring how well it will generalise to an independent data set. 

     The basic idea behind cross-validation partitions sample data into k complementary subsets. 

These complementary subsets, k, are used to derive model estimates, while the remaining k parts 

are used to identify the quality of the model estimates. However, model results greatly depend 

on the random splitting procedure, for example if the training set does not reflect the structure 

of the original data, then the developed model will not generalise well to the validation set. 

     There are two types of cross-validation: exhaustive and non-exhaustive. Exhaustive cross 

validation methods train and test on all possible partitions of the original data into a training and 

validation set, while non-exhaustive methods do not train and test on all possible partitions of 

the original data. 

     Cross-validation has become an attractive modelling approach and has several advantages: 

1) uses all data – predictions can be made on all data using 𝑘 different models, 2) availability 

of more metrics – building 𝑘 different models allow 𝑘 different evaluations on the test set and 

reduces bias, 3) dependent/ grouped data – by performing random train-test split on the data, it 

is assumed that the examples are independent, 4) parameter tuning – training and testing 𝑘 

different models allows the modeller to identify the best or optimal model parameters, and 5) 

model stacking – meta-ensemble to combine information from 𝑘 different predictive models. 

     The most used cross-validation techniques will be discussed briefly: 1) leave-p-out, 2) leave-

one-out, 3) k-fold, 4) holdout method and 5) Repeated random sub-sampling validation. 

An example of exhaustive cross-validation is leave-p-out cross validation. Leave-p-out cross 

validation 𝑁 − 𝑝 subsamples are used as the training set, while the remaining p subsamples are 

used as the validation set. This process is repeated for all combinations in which the original 

sample can be separated into a validation set of p observations and a training set of 𝑁 − 𝑝. This 

process can be computationally intensive and time consuming as a model is trained and tested 

N times.  

     Leave-one-out cross validation (LOOCV) is a case of leave-p-out where p = 1. In LOOCV 

the data is partitioned into k = N equal size subsamples; therefore, LOOCV is k-fold cross 

validation. At each step, a model is fitted to N-1 subsamples used as the training set and the 

remaining subsample (i.e. one observation) is used as a validation case to calculate the 

prediction error of the fitted model. This cross-validation process is repeated N times (i.e. 
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number of observations in the data) with each observation being used once as the validation set. 

The N results are averaged or combined to a produce a single observation.  

     An example of exhaustive cross-validation is hold-out cross validation. In Holdout cross 

validation the data is randomly partitioned into two subsamples: 1) training set, and 2) testing 

set. First, a model is built using the training set to estimate a model, second, the model estimates 

are assessed against the validation set to see how well the model generalises to an unseen data 

source. Holdout cross-validation process can be costly for small data sources as it excludes a 

proportion of the data for training and testing. 

     In k-fold cross validation the data is randomly partitioned into k equal size subsamples. At 

each step, 𝑘 − 1 subsamples are used as the training set, while the remaining k subsample is 

used as a validation set. The prediction error of the fitted model is calculated when predicting 

the kth part. This cross-validation process is repeated k times, with each subsample being used 

once as the validation data. The k results are either averaged or combined to a produce a single 

estimation. “The advantage of this method is that all observations are used for both training and 

validation, and each observation is used for validation exactly once” (Hastie, Tibshirani & 

Friedman, 2009, p. 258). As 𝑘 increases, the difference in size between the training set and the 

validation sets decreases, and as this difference decreases so does the bias of the technique. 

Therefore, there is a bias-variance trade-off associated with the choice of k 

     In repeated random sub-sampling cross validation, sampling is run over k iterations, with 

each iterations procedure randomly selecting a fixed number of samples, S, without 

replacement. At each iteration, S, samples are used as the training set, while the remaining n-S 

samples are used as the validation set. This cross-validation procedure is repeated k times. 

2.4.2 Scoring Rules 

A scoring rule can be any function of the predictions and the observations, which measures the 

informativeness or valuableness of specific probability predictions by providing a score, to each 

probabilistic prediction, based on the prediction and on the occurrence event. Measure of the 

quality of a probabilistic forecast. The use of a proper scoring rule encourages the forecaster to 

be honest to maximise the expected reward. A score can be thought of as either a measure of 

the “calibration” of a set of probabilistic predictions, or as a “cost function” or “loss function”. 

Scoring rules were developed to provide the modelling system or the forecaster with an 

incentive to honestly report probabilistic predictions and encourage the assessor to reveal their 

‘true’ beliefs. 

     In an ex-ante (i.e. results based on forecasts) sense, strictly proper scoring rules provide an 

incentive for careful and honest forecasting by the modeller i.e. well-calibrated, while in the ex-

post (i.e. results based on actual outcomes) they reward accurate forecasts, i.e. sharp 

probabilities, and penalise inferior forecasts (Winkler, 1996). “The ex-ante incentive aspect of 
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scoring rules, however, suggests that we should restrict our attention to strictly proper scoring 

rules, for which the assessor can maximise his or her expected score only by reporting 

probabilities honestly” (Winkler, 1996, p.3). 

     An example of probabilistic forecasting is in meteorology where a weather forecaster may 

give the probability of rain on the next day. One could note the number of times that a 25% 

probability was quoted, over a long period, and compares this with the actual proportion of times 

that rain fell. If the actual percentage was substantially different from the stated probability, we 

say that the forecaster is poorly calibrated. A poorly calibrated forecaster might be encouraged 

to do better by a bonus system. A bonus system designed around a proper scoring rule will 

incentivise the forecaster to report probabilities equal to their personal beliefs. In addition to the 

simple case of a binary decision, such as “rain” or “no-rain”, scoring rules may be used for 

multiple classes, such as ‘rain’, ‘snow’ or ‘clear’. 

     The modeller desires to maximise the expected score from a strictly proper scoring rules, 

which requires well calibrated and sharp probabilities. Calibration assesses how well model 

predictions align with observed probabilities. It is crucial when developing insightful predictive 

models, especially for decision-making. A commonly used technique for calibration is Hosmer-

Lemeshow test statistic which assesses a model’s goodness-of-fit by comparing observed 

probabilities against predicted probabilities at quantiles of predicted probabilities. Predicted 

probabilities that match the expected probability distribution for each class or quantiles are 

referred to as calibrated. For the model to be well-calibrated, the probabilities must effectively 

reflect the true likelihood of the event of interest. Calibrated probabilities can result in an 

improved calibration on a reliability diagram, plotting the relative frequency of observed 

probabilities vs relative frequency of predicted probabilities. Better calibrated probabilities may 

or may not lead to better class-based or probability-based predictions. This depends on the 

specific metrics used to evaluate predictions.  

     The scoring rule motivates the modeller to report well calibrated and sharp probabilities, as 

there is a desire to maximise the expected score from a strictly proper scoring rule. Many have 

noted that ensemble-based forecasts are generally assessed on two statistical criteria: calibration 

and sharpness, also known as reliability and resolution, respectively (please see Gneiting, 

Stanberry, Grimit & Held, 2008; Gneiting, Balabdaoui & Raftery, 2009; Gneiting, Raftery, 

Westveld and Goldman, 2005; Wilks, 2018; Feldmann, 2012; Hudson, 2017). Given scoring 

rules promote the reporting of well-calibrated and sharp probabilities, the scoring rule 

methodology lends itself well to the construction of a novel performance metric to quantify the 

effectiveness of sport-based rating systems. “Calibration refers to the statistical consistency 

between the distributional forecasts and the observations and is a joint property of the 

predictions and the events that materialize. Sharpness refers to the concentration of the 

predictive distributions and is a property of the forecasts only (Gneiting, Balabdaoui & Raftery, 
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2007, p.2). Sharp predictions refer to prediction concentration and can be measured using 

entropy and variance. 

          Savage (1971) stated that scoring rules induce an assessor to reveal their true opinion, 

expressed through probabilities, associated with events or, more generally, their personal 

expectations of random quantities. Winkler (1996) made a similar statement, stating that 

situations arise where experts maybe self-interested and, consequently, are not necessarily 

honest when reporting their beliefs. For example, experts with a reputation to protect might 

report forecasts near the most likely group consensus, whereas experts who have a reputation to 

build might overstate the probabilities of outcomes they believe will be understated in a possible 

consensus. Therefore, it is necessary to distinguish between an expert’s belief 𝒑, and the expert’s 

reported forecast 𝒓 =  (𝑟1, 𝑟2, … , 𝑟𝑛). It is desirable that an expert’s forecast equals the expert’s 

belief 𝒑 =  𝒓, and that the expert’s forecast is accurate.  

     The elicitation of “true” beliefs and probabilities can be observed when gambling. The 

gambler is incentivised to place bets based on their belief on event outcome and is rewarded 

with cash if the subjective reported probability (𝑟) equals the actual probability (𝑝). The 

situation where 𝑟 = 𝑝  is known as perfect calibration. The gambler is penalized by sustaining 

financial losses, if 𝑟 ≠ 𝑝 or if the reported probability (𝑟) is “far-away” from the actual 

probability (𝑝). This example illustrates how scoring rules can be used to capture an assessor’s 

or a model’s “true” opinion and how they can be used to self-evaluate “vagueness” or 

“uncertainty”. Vagueness or uncertainty is a major obstacle when forecasting, however after the 

initial predictions, the predictions that follow are modified when reflecting upon the 

implications of the initial predictions (Maskey, 2004). Effectively, calibrating and sharpening 

the probabilities considering new information. 

     Scoring rules are commonly applied in finance (please see Figini & Maggi, 2014; Offerman, 

Sonnemans, Van de Kuilen & Wakker, 2009; Hanson, 2012; Tsaih, Liu, Liu & Lien, 2004; 

Henley, 1995), meteorology (please see Winkler & Murphy, 1970; Ferro, 2013; Murphy, 1973; 

Stanski, Wilson & Burrows, 1989) and pattern recognition (please see Malley, Kruppa, 

Dasgupta, Malley & Ziegler, 2012; Lakshminarayanan, Pritzel & Blundell, 2017; Nock, Ali, 

D’Ambrosio, Nielsen & Barlaud, 2014; Kauppi, Kamarainen, Lensu, Kalesnykiene, Sorri, 

Kalviainen, Uusitalo & Pietila, 2009). 

2.4.2.1 Strictly Proper Scoring Rules 

A scoring rule, S, is strictly proper if: 

 
        𝐸𝑝[𝑆(𝑝)] > 𝐸𝑟[𝑆(𝑟)]              𝑓𝑜𝑟 𝑟 ≠ 𝑝 (8) 

Here, p denotes the modeller’s subjective probability that 𝐴 will occur, and r denotes the actual 

objective probability of 𝐴. It is evident from (8) that an assessor maximises their expected score 
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when the reported forecast, 𝑟, equals the assessors’ true beliefs (i.e. 𝒓 =  𝒑; perfect calibration). 

Therefore, strictly proper scoring rules incentivise the assessor for careful probabilistic 

assessment and for gathering information to ‘improve’ probabilities by recalibrating the 

probabilities by using more informative attributes. 

     The difference between the user’s subjective and model’s objective probabilities allows the 

modeller to 1) effectively calibrate the predictions and 2) build in any subjective or expertise 

knowledge that may be missed by the model. All strictly proper scoring rules encourage honest 

and careful assessment ex-ante and reward calibration and sharpness ex-post (Wrinkler, 1996). 

     Building in such subjective, domain expertise and individual interpretation to the model are 

important as the model is more likely to produce outcomes that are reflective of reality or nature. 

Therefore, to maximise expected score, the modeller should set r = p (i.e. the modeller should 

be honest). 

     A scoring rule, S, gives the modeller a score of 𝑆1(𝑟) if A occurs and 𝑆2(𝑟) if A does not 

occur. The expected score is: 𝐸𝑝[𝑆(𝑟)] = 𝑝𝑆1(𝑟) + (1 − 𝑝)𝑆2(𝑟). Alternatively, the choice to 

report 𝑹 can be analysed in terms of expected loss: 𝐿(𝑟, 𝑝) =  𝐸𝑝[𝑆(𝑝)] − 𝐸𝑝[𝑆(𝑟)] =

∑ 𝑝𝑖𝑆𝑖(𝑝) − ∑ 𝑝𝑖𝑆𝑖(𝑟). 

     Three frequently used scoring rules for dichotomous response variables s are the quadratic, 

logarithmic and spherical rules. 

Quadratic Logarithmic Spherical 

 𝑆1(𝑟) =  −(1 − 𝑟)2 𝑆1(𝑟) =  log 𝑟 𝑆1(𝑟) =
𝑟

[𝑟2 + (1 − 𝑟)2]
1
2

 

𝑆2(𝑟) =  −𝑟2 𝑆2(𝑟) = log(1 − 𝑟) 𝑆2(𝑟) =   
1 −  𝑟

[𝑟2 + (1 − 𝑟)2]
1
2

 

In the presence of an event with more than a dichotomous outcome, the Quadratic, Logarithmic 

and Spherical scoring rules take the following form: 

Quadratic Logarithmic Spherical 

𝑆𝑗(𝑟) = 2𝑟𝑗 − ∑ 𝑟𝑖
2

𝑖 ∈ 𝐼

  𝑆𝑗(𝑟) = log 𝑟𝑗 
      𝑆𝑗(𝑟) =  

𝑟𝑗

(∑ 𝑟𝑖
2

𝑖 ∈𝐼 )
1
2

 

 

In the presence of continuous random variables, the Quadratic, Logarithmic and Spherical 

scoring rules take the following form: 
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2.5 KEY LITERATURE REVIEW OUTCOMES 

Reviewing the sports ratings and credit risk literature several important elements to construct 

rating systems were revealed. It was found that many rating systems apply ensemble modelling 

strategies, such as model stacking, and use feature selection techniques and dimension reduction 

mechanisms. These approaches combined trait or feature-based ratings, and extract as much 

information as possible to reduce ratings uncertainty, respectively. 

     Applying these statistical techniques and modelling methodologies a set of rating systems 

were developed. These systems have been peer-reviewed and published in numerous academic 

journals and conference proceedings. A list of the most notable rating systems, constructed 

because of this literature review, are provided below and in Appendix A. 

     Moreover, as a result of the literature review this chapter has identified several gaps in the 

academic literature and outlined a set of key research objectives. An additional consequence is 

the development of sport rating systems which have been published in peer-reviewed academic 

journals and presented at peer-reviewed academic conferences. These systems were developed 

using some of the key methodologies identified in the literature, which enabled the identification 

of key elements and limitations that must be considered when developing the ratings framework. 

     As mentioned, based on this literature review, the peer-reviewed conference proceedings, 

journal publications and limitations within the ratings literature, this thesis formulates three 

potent, yet achievable, research objectives which form the basis of this research. (i) Develop a 

quantitative framework to construct sport-based ratings systems that output meaningful ratings. 

(ii) Develop a novel evaluation metric to quantify the effectiveness of meaningful sport-based 

ratings. (iii) Demonstrate the applicability of the developed ratings framework and novel 

evaluation metric within the sporting context. 

2.5.1 Limitations of Rating Systems 

During the literature review several rating systems were developed using modelling techniques 

identified throughout the literature (please see section 2.5.4 and section 2.5.5). During this 

development process, gaps within the literature, and the limitations and communalities of these 

systems were identified. These are the limitations of the current knowledge base4: 

 
4 The limitations within the credit-risk and sport-based ratings literature led to the research objectives outlined in 

Chapter One. 

Quadratic Logarithmic Spherical 

2𝑟(𝑥) − ∫ 𝑟2(𝑥)
∞

−∞

𝑑𝑥 𝑆𝑥(𝑟) =  log 𝑟(𝑥) 𝑆𝑥(𝑟) =  
𝑟(𝑥)

(∫ 𝑟2(𝑥)𝑑𝑥
∞

−∞
)

1/2
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• Lack of a sport-based ratings framework– given the prevalence of sport-based ratings 

within the commercial and academic environment no modelling framework or approach 

currently exists in the literature to construct meaningful sport-based rating systems.  

• Lack of meaningful rating systems – the literature echoed the sentiment expressed by 

Bracewell (2003); ratings are an elegant form of dimension reduction. Throughout this 

chapter it was shown that variable selection and dimension reduction are crucial elements 

of ratings methodologies. Although, given the loss of information during dimension 

reduction and the application of “black box” modelling techniques to produce ratings, the 

resultant ratings lack transparency and intuition, implying that results cannot be mapped 

to real-world observable outcomes. 

• No evaluation metric to assess the effectiveness of meaningful sport-based ratings – to 

evaluate the predictive accuracy of the developed rating systems commonly applied 

evaluation metrics such as log-loss, root mean square error (RMSE) and mean absolute 

error (MAE), were used. Although, given the uniqueness of sport-based rating systems, 

it is necessary to construct a specific performance metric which quantifies the 

effectiveness of meaningful sport-based ratings. 

2.5.2 Ensembling Forecasting 

Throughout the literature review [of rating systems] it was found that many credit-risk and sport-

based systems apply ensemble forecasting strategies, such as model stacking, to produce highly 

predictive and reliable outputs. 

     Formally, “an ensemble consists of a collection of two or more forecasts that try to realise 

the possible uncertainties in a numerical forecast (Cheung, 2001, p. 315). Birthed in 

meteorology, ensemble forecasting strategies are prevalent amongst meteorologist as they allow 

the use of many models with varying initial atmospheric conditions and model uncertainties to 

understand the range of possibilities of future weather to evaluate the most likely outcomes. 

Much of the underlying methodology of ensemble forecasting and ensemble forecasting 

strategies have been developed by atmospheric scientists. These strategies fall into one of two 

categories or a combination: 1) Ensembles based on many different models and 2) Ensemble 

based on many runs of one-computer model initialised from slightly different data (Kunst & 

Jumah, 2004). 

     Ensemble forecasting is an appealing modelling approach because instead of choosing a 

single method, a collection of the most appropriate methods is selected to improve accuracy, 

assuming each method statistically and practically contributes to the modelling objectives. 

Ensembling forecasts are advantageous 1) when the modeller is uncertain as to which method 

is best or which variables or combination of variables are best, and 2) when it is assumed that 

each modelling method has some validity, but no single method provides perfect forecasts. 



85 
 

Armstrong (2001) stated that an ensemble forecasting strategy produce results whose 

probability law of error rapidly decreases. “Combining forecasts improves accuracy to the 

extent that the component forecasts contain useful and independent information” (Armstrong, 

2001, p.1). There are two ways to generate independent forecasts: 1) analysing different data 

sources and dimensions within the data and 2) applying different forecasting methods. The 

greater the difference between the data dimensions and modelling methods, the greater the 

expected improvement in the accuracy over the average of the individual forecasts. Compared 

with single forecasts, ensembled forecasts provide more complete information on the possible 

future states of the modelling system, because they allow forecasters to estimate, in an objective 

and reliable way, the range of possible future scenarios. Moreover, a competent ensemble 

algorithm is a key requirement for a successful ensemble forecasting strategy. 

     In recent years ensembling forecasting strategies have seen a surge in implementation and 

applicability within different fields such as weather forecasting (Wu & Lin; 2017; Yu, Nakakita 

& Jung, 2016; Dahl, Brun, Kirsebom & Andresen, 2018; Ye, Deng, Ma, Duan, Zhou & Du, 

2019; Craparo, Karatas & Singham, 2017), industrial economics (Qin, Xie, He, Li, Chu, Wei & 

Wu, 2019; Sun, Wang & Wei, 2018; Hao & Tian, 2019), credit risk scorecards (Bao, Lianju & 

Yue, 2019; Papouskova & Hajek, 2019; Yu, Wang & Lai, 2019), sports analysis (Lessmann, 

Sung, Johnson & Ma, 2012; Baboota & Kaur, 2019; Cai, Yu, Wu, Du & Zhou, 2019; Gjoreski, 

Kaluza, Gams, Milic & Lustrek, 2015), and energy generation (Tang, Wu & Yu, 2018; Zhou & 

Chen, 2009; Kim & Hun, 2018; Ziliani, Ghostine, Ait-El-Fquih, McCabe & Hoteit, 2019). 

     Peimankar, Weddell, Jalal & Lapthorn (2018) presented an ensemble time series forecasting 

algorithm using multi-objective optimisation to predict dissolved gas contents of power 

transformers. The results showed that the proposed algorithm produced higher accuracy and 

reliable forecasts for one day, two day and three-day forecasts compared with other statistical 

methods. 

     Sun, Wang & Wei (2019) designed a multiscale decomposition ensemble approach for 

forecasting exchange rates, which was found to produce promising forecasting foreign exchange 

rates. Allison, Crocker, Tran & Carrieres (2014) developed an ensemble forecasting model 

adopting a Monte Carlo approach to embedded random variability to the model parameters to 

predict the drift of icebergs. Although the proposed method did not improve the skill of the 

forecast, relative to non-ensemble forecasts methods, it was shown to be consistent and the 

statistical properties of the model provide useful information on the uncertainty inherent in the 

forecasts.  

     Liu, Zhan & Bai (2019) investigated the effects of PV solar power variability and proposes 

a data-driven recursive ensembling modelling technique, implementing SVM (support vector 

machines), MLP (multilayer perceptron) and MARS (multivariate adaptive regression splines) 
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methods, to improve the predictive accuracy of PV power generation. In general, the ensembling 

strategy demonstrated higher accuracy compared to a stand-alone forecasting model. 

     Liu, Xu & Chen (2019) developed a multi-step stacking ensemble forecasting method with 

Empirical wavelet transform for urban fine particle concentration. The proposed model was 

shown to have better accuracy and wider applicability compared to existing models. 

     Furthermore, ensemble forecasting strategies are becoming increasingly prevalent in the 

credit risk environment (for more examples please see Bao, Lianju & Yue, 2019; Papouskova 

& Hajek, 2019; Ala & Abbod, 2016a; Ala & Abbod, 2016b; Beque & Lessmann, 2017; Dahiya, 

2017; Wang, Hao, Ma & Jiang, 2011; Noghani & Moattar, 2015; Bouaguel & Limam, 2015, 

Zhu, Zhou, Xie, Wang & Nguyen, 2019; Abellan & Castellano, 2019; Yu, Wang & Lai, 2019; 

Thomson, Pollock, Onkal & Gonul, 2019; He, Zhang & Zhang, 2018). In recent years, 

classification ensemble strategies or multiple classifier systems have been widely applied to 

credit scoring and have been found to achieve significantly better performance than individual 

classifiers (Feng, Xiao, Zhong, Qiu & Dong, 2018). 

2.5.3 Dimension Reduction and Feature Selection Techniques 

Along with ensemble forecasting strategies, many rating systems apply a combination of 

dimension reduction and feature selection techniques to reduction dimensions and increase 

model parsimony, respectively, to produce transparent and robust. 

     Dimension reduction and feature selection techniques are vital elements in rating systems 

due to the issues of multicollinearity, interrelationships between various attributes-types and the 

high dimensionality of datasets. Therefore, dimension reduction and feature selection 

techniques are necessary to handle such issues and identify features that significantly affect 

human traits and to construct trait-based ratings which significantly account for uncertainty 

within sporting performances. To ensure that statistically significant and important features are 

identified two areas of feature selection are considered: (1) classical parametric techniques, such 

as principal component analysis, linear discriminant analysis, stepwise regression and 

hierarchical variable clustering, and (2) non-parametric techniques, such as regression trees, 

random forests and gradient boosted machines. While a preliminary regression analysis can 

produce an assessment of variable significance by evaluating statistical significance and effect 

size, such analyses can generate unreliable and inaccurate results, due to the inability to handle 

multicollinearity and interaction effects. Additionally, given the multitude of features and the 

research require to produce meaningful sport-based ratings, an accurate means of assessing 

feature significance was paramount to research success. 

     Common variable assessment strategies in credit scoring include automated logistic 

regression variable selection (e.g. stepwise, forward and backward), Factor Analysis, Principal 

Component Analysis (PCA), and field-specific statistics such as ‘Weight of Evidence’ and 
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‘Information Value’ (Lin, 2013). Common feature selection and dimension reduction strategies 

in sports ratings include a combination of traditional and machine learning techniques, such as 

random forest, linear regression, stepwise regression, PCA and regression trees (Patel, 2016). 

     Feature selection is a process whereby a heuristic or algorithm identifies the variables that 

best accomplish a given modelling objective (e.g. explanatory value, prediction accuracy). The 

current apex of literature is ‘feature selection’ in genomics. Gene expression microarray data 

sets range from 20,000 to 60,000 variables (Dziuda, 2010, p.100; Guyon & Elisseeff, 2003, 

p.1158), often numeric, coded (i.e. not intuitively interpretable), and with only cursory 

theoretical knowledge available to guide selection. 

     The three main strategies in feature selection are ‘wrappers’, ‘filters’ and ‘embedded 

methods’ (Guyon & Elisseeff, 2003). With wrappers, the feature importance measures of a 

supervised learning machine, trained to predict a response variable, are used to determine 

variable selection in subsequent models. Filters, in contrast, assess importance during a ‘pre-

processing step’ separate from the response variable, while embedded methods are automated 

and self-contained within the model (e.g. stepwise selection in regression). 

     Due to the multicollinearity and high dimensionality of the data, various selection and 

reduction techniques should be applied within the ratings framework to minimise the presence 

of such effects and reduce the number of features that are implemented when rating sporting 

performance. 

2.5.4 Evaluating Meaningful Sport-Based Ratings 

Given meaningful sport-based rating systems must be reliable and intuitive (along with 

transparent and robust), it is necessary to apply an evaluation metric which is able to capture 

expert knowledge and account for sporting context. The ideal metric should reward or 

favourably weight ratings based on honest reporting and the system’s ability to output ratings 

which align with a tolerable level of intuition. This notion of intuition is important to sport-

based rating systems as the outputs derived from such systems must incorporate an element of 

intuition. Therefore, the ideal performance metric when evaluating sport-based rating systems 

should elicit an adequate level of information from experts to make informed, objective and 

intuitive judgements, and ensure ratings encompass a tolerable level of intuition; therefore the 

results can be mapped to real-world outcomes. 

     Therefore, it is proposed that a novel performance metric be developed which meets the 

following criteria: 1) sensitivity to distance, 2) sensitivity to time-dependence, 3) evaluate 

ratings on the entire probability distribution (i.e. non-local metric), 4) incentivisation for well-

calibrated and sharp ratings, and 5) adjusts incentives based on forecasting difficulty. The 

justification for each of these criteria are provided in Chapter Three (section 3.7). 
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     A metric that accounts for these five criteria can determine the effectiveness of meaningful 

sport-based rating systems (i.e. reliable, robust, transparent, and intuitive). Given these criteria, 

and the limitations of current evaluation metrics, and that ensembled ratings are generally 

assessed on calibration and sharpness (Gneiting, Raftery, Westveld & Goldman, 2005), a proper 

scoring rule methodology will be applied to develop the novel performance metric to evaluate 

the effectiveness of meaningful sport-based rating systems (research objective (iii)). 

2.5.5 Sport-Based Rating Systems 

To derive a deeper understanding of the requirements for meaningful sport rating systems, the 

author has undertaken significant, novel research and meaningfully contributed to the body of 

knowledge. These findings have been peer-reviewed and published as outlined below:  

Patel, A. K., Bracewell, P. J., & Rooney, S. J. (2017). An Individual-Based Team Rating Method 

for T20 Cricket. Journal of Sports and Human Performance 5(1): 1-17. 

Patel, A. K., Bracewell, P. J., & Wells, J. D. (2017, June 23). Real-time measurement of 

individual influence in T20 cricket. Paper Presented at The Proceedings of the 17th MathSport 

International 2017 Conference Proceedings. (pp. 61-70). Padua, Italy. ISBN: 978-88-6938-

058-7. 

Patel, A. K., Bracewell, P. J., Gazley, A. J., Bracewell, B. P. (2017). Identifying fast bowlers 

likely to play test cricket based on age-group performances. Journal of Sports Science and 

Coaching 12(3): 328-338. 

Brown, P., Patel, A. K. & Bracewell, P. J. (2017, June 23). Optimising a Batting Order in 

Limited Overs Cricket using Survival Analysis. Paper Presented at The Proceedings of the 

17th MathSport International 2017 Conference Proceedings. (pp. 71-80). Padua, Italy. ISBN: 

978-88-6938-058-7.  

Simmonds, P., Patel, A. K., & Bracewell, P. J. (2018). Using network analysis to determine 

optimal batting partnership in T20 cricket. Paper presented at The Proceedings of the 14th 

Australian Conference on Mathematics and Computers in Sports. Sunshine Coast, 

Queensland, Australia:  ANZIAM MathSport. ISBN: 978-0-646-95741-8. 

McIvor, J. T, Patel, A. K., Hilder, T.A., & Bracewell, P. J. (2018). Commentary sentiment as a 

predictor of in-game events in T20 cricket. Paper presented at The Proceedings of the 14th 

Australian Conference on Mathematics and Computers in Sports. Sunshine Coast, 

Queensland, Australia:  ANZIAM MathSport. ISBN: 978-0-646-95741-8. Paper presented at 

The Proceedings of the 14th Australian Conference on Mathematics and Computers in Sports. 

Sunshine Coast, Queensland, Australia:  ANZIAM MathSport. ISBN: 978-0-646-95741-8. 
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Patel, A. K., Rooney. S. J., Bracewell, P. J., & Wells. J. D. (2018). Constructing a predictive 

PGA performance rating using hierarchical variable clustering. Paper presented at The 

Proceedings of the 14th Australian Conference on Mathematics and Computers in Sports. 

Sunshine Coast, Queensland, Australia:  ANZIAM MathSport. ISBN: 978-0-646-95741-8. 

2.5.5 Credit risk rating systems 

Patel, Bracewell, Gazley & Bracewell (2017) applied methodologies and techniques heavily 

used within the credit risk environment to calculate the probability of bowler success and rank-

order each bowler in terms of international success. Specifically, residual logistic regression, a 

two-stage regression method which is commonly used in credit risk, is applied to estimate an 

applicant’s probability of default (please see Baez-Revueltas, 2009, for more details). Given the 

confidential and commercially sensitive nature of credit risk scorecards the credit risk system 

developed because of this research is not disclose (embargoed research). 

Patel, A. K., Bracewell, P. J., Gazley, A. J., Bracewell, B. P. (2017). Identifying fast bowlers 

likely to play test cricket based on age-group performances. Journal of Sports Science and 

Coaching 12(3): 328-338. 

Patel, A. K., Bracewell, P. J., & Coomes, M. (2020). Inferring bowling strike rate in T20 cricket. 

Journal of Sports Analytics (under review). 

These rating systems reinforced Bracewell’s (2003) definition of ratings being an elegant form 

of dimension reduction. To adequately measure performance using a single numerical value, 

which provides an interpretation of performance, the key dimensions affecting the performance 

must be sufficiently accounted for in the rating system. Further, to predict this sporting 

performances appropriate modelling techniques must be applied to derive these measures of 

performance. Various modelling techniques must be used, and the ratings associated with 

different traits must be ensembled to produce a meaningful rating. Given these findings, Chapter 

Three develops a ratings framework for constructing sport-based rating systems that produce 

robust, reliable, transparent, and intuitive ratings, also known as meaningful ratings, of 

performance. Further, Chapter Three develops a novel performance metric to assess the 

effectiveness of meaningful rating systems. 

2.6 DISCUSSION AND CONCLUSION 

This chapter provided a comprehensive review of statistical methodologies and techniques 

commonly applied when constructing rating systems within the sporting (team and player-

based) and credit risk (application and behaviour-based) environments. Based on this literature 

review, several modelling techniques were applied to develop rating systems across these three 

domains. Throughout this development process limitations were identified, and three research 

objectives were formulated. Addressing these limitations and answering the research questions 
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will plug the gap in the literature and provide a novel solution for constructing sport-based rating 

systems. 

     The literature review revealed that many rating systems apply an ensemble strategy and use 

machine learning techniques as feature selection and dimension reduction mechanisms. These 

two approaches combine multiple feature specific ratings or trait-based ratings to extract as 

much information as possible and reduce uncertainty. Consequently, it was identified that the 

most suitable and applicable method for use within the ratings environment, for the problems 

defined in this thesis, is a multi-objective ensemble forecasting strategy. 

     Applying commonly used statistical methodologies and techniques revealed key 

communalities when constructing rating systems. These communalities were the application of 

1) dimension reduction and feature selection techniques, 2) feature engineering tasks, 3) a multi-

objective framework, 4) time-based variables and 5) an ensembling procedure to produce an 

overall rating. The following chapter develops a ratings framework which implements these five 

communalities to construct sport-based ratings that output meaningful ratings of performance. 

     Through the rating systems literature review, it has become apparent that there exists no 

unique performance metric when assessing the effectiveness of sport-based ratings. This is 

because commonly applied performance metrics are plagued with limitations and are not 

suitable when assessing sport-based ratings. 

     Chapter Two also provided a comprehensive review of commonly applied model evaluation 

metrics to assess the predictive accuracy of regression and classification-based models. In this 

chapter it become apparent that there exists no universal model evaluation technique to measure 

the validity of sport-based ratings that output meaningful ratings of performance. Given this 

review and the limitations of the performance metrics that were identified, a set of criteria are 

identified to construct a performance metric to quantify the effectiveness of sport-based ratings. 

These criteria include: 1) sensitivity to distance, 2) sensitivity to time-dependence, 3) evaluates 

the ratings on the entire probability of distribution, 4) provides an incentive for calibration and 

sharp ratings and 5) adjusts incentives based on forecasting difficulty. Moreover, the proper 

scoring rule methodology is identified as the most appropriate method to construct this 

evaluation metric as it allows the incorporation of these five criteria. 

     The literature review revealed that ensemble forecasts are generally assessed through two 

key statistics: reliability and resolution (i.e. calibration and sharpness, respectively). The 

reliability, or calibration, of a forecast indicates how confident the assessor can be in their 

predictions and can be evaluated by comparing the standard deviation of the error in the 

ensemble mean with the forecast spread (Gneiting, Balabdaoui & Raftery, 2007). The 

resolution, or sharpness, of a forecast indicates how much the forecasts deviates from the 

climatological event frequency, given that the ensemble is reliable, increasing this deviation will 

increase the usefulness of the forecast. 
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     Given these ideal criteria and the need for calibration and sharpness to assess ensembled 

ratings, the proper scoring rules methodology is identified as the most suitable methodology to 

construct an evaluation metric that quantifies the effectiveness of sport-based ratings. 

     The following chapter provides a technical overview of scoring rules, constructs a novel 

performance metric quantifies the effectiveness of meaningful sport-based ratings and describes 

how the constructed metric accounts for the five criteria mentioned above. Therefore, Chapter 

Three answers research objectives (i) Develop a quantitative framework to construct sport-based 

ratings systems that output meaningful ratings; and (ii) Develop a novel evaluation metric to 

quantify the effectiveness of meaningful sport-based ratings. 

    



 



 
 

 

Chapter Three 

A NOVEL RATINGS FRAMEWORK AND 

EVALUATION METRIC 

“This black box problem of artificial 

intelligence is not new, and its relevance has 

grown with modern, more powerful machine 

learning solutions and more sophisticated 

models. Meanwhile, models can outperform 

humans in complex tasks like the classification of 

images, transcription of speech, or translations 

from one language to another. And the more 

sophisticated the model, the lower its 

explainability level”. 

      Dr. Markius Noja, The Digitialst.  

     On bringing transparency into AI. 

 

 

https://www.sap.com/products/leonardo/machine-learning.html?url_id=text-global-digitalist
https://www.sap.com/products/leonardo/machine-learning.html?url_id=text-global-digitalist
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3.0 OVERVIEW 

Given the lack of a ratings framework for constructing rating systems, the first half of this 

chapter develops a novel framework for constructing sport-based rating systems which produce 

intuitive, robust, reliable, and transparent outputs, also known as meaningful performance 

ratings. Specifically, the framework is developed to construct rating systems within sporting 

industry to evaluate team and player performances. The framework adopts a multi-objective 

ensembling strategy and implements five key communalities present within many rating 

methodologies. These communalities are the application of 1) dimension reduction and feature 

selection techniques, 2) feature engineering tasks, 3) a multi-objective framework, 4) time-

based variables and 5) an ensembling procedure to produce an overall rating. Key elements of 

the ratings framework are the application of feature engineering, feature selection and 

dimension reduction techniques; therefore, the ratings problem resides in the field of 

information theory. 

     An ensemble approach is applied because it is assumed that performance is a function of the 

individual traits significantly affecting overall performance. Therefore, performance is defined 

as 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑓(𝑡𝑟𝑎𝑖𝑡1, … , 𝑡𝑟𝑎𝑖𝑡𝑛). Moreover, the ratings framework is a form of model 

stacking where information from multiple models is combined to generate a more informative 

model. A key part of the proposed framework is feature selection and dimension reduction; an 

ideology held throughout credit scoring literature. The development of this ratings framework 

to construct sport-based rating systems addresses research objective (i). 

     Applied to sport-based ratings, current model evaluation metrics such as RMSE, MAE and 

SMAPE are limited as they do not evaluate forecasting difficulty, capture the introduction of 

bias and cannot assess the effectiveness of meaningful sport-based rating systems. Therefore, 

the second half of this chapter develops an evaluation metric which quantifies the effectiveness 

of meaningful ratings systems applicable within the sporting context. The proposed metric 

resolves these issues and quantifies elements of the human decision-making process by 1) 

evaluating the distance between reported ratings, actual outcomes and averaged forecasts, 2) 

measuring the distance between ratings across different time-frame, 3) providing an incentive 

for well-calibrated and sharp ratings, 4) accounting for the context and the difficulty of the 

forecasting scenario and 5) evaluating ratings on the entire probability distribution. A proper 

scoring rule is the underlying methodology, specifically distance and magnitude-based 

measures derived through the spherical scoring are applied. The development of the novel 

performance metric addresses research objective (ii). 

3.1 BACKGROUND 

The application of analytics in the business environment has experienced tremendous growth 

(Analytics, 2016). Business analytics has transformed from a “nice-to-have” to a competitive 
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advantage. “In the past few years, predictive analytics, has gone from a practice applied in a few 

niches to a competitive weapon with a rapidly expanding range of uses” (CGI: Predictive 

Analytics, 2013, p.1). 

     A key factor for the rise in business analytics is the phenomenon of “big data” and the data 

science revolution, and its acceptance by senior executives as an important business enabler. 

The goal of insight and information extraction or revealing hidden patterns within big data is 

achievable through the application of mathematical and statistical techniques. Importantly, these 

insights need to be relayed appropriately to the intended audience. Sagiroglu & Sinanc (2013) 

stated that modern analytics, characterised by improvements in computing power, reduced cost 

in data storage, greater access to various data sources and cheaper commodity hardware, 

requires a revolutionary step forward, moving away from traditional data analysis. The 

Transforming Data with Intelligence survey revealed that the application of advanced analytics 

creates better aimed marketing, informed decision-making, client-based segmentation, and 

recognition of sales opportunities. This information offers significant potential to generate 

business value and competitive advantage. 

     This growth in demand for analytics and data capture has been experienced across many 

industries, resulting in considerable academic and commercial attention (e.g. Stefani, 1997; 

Siddiqi, 2012; Bracewell et. al., 2017, respectively). The consequence is the development of 

data-driven and modelling intensive applications with an objective of evaluating, rating, and 

forecasting the performance of an individual or collection of individuals (i.e. team).  

     Such data-driven models must produce robust, transparent, and contextual results 

(Bracewell, 2003) to generate trust leading to implementation of the insights. In this chapter, 

this definition is extended, specifically, ratings are an elegant and excessive form of dimension 

reduction whereby a value provides a meaningful quantitative interpretation of sporting 

performance. 

     It is stated that rating systems must produce meaningful results, which have the following 

characteristics: 1) Robust – ratings must yield good performance when data is drawn from a 

wide range of probability distributions that are largely unaffected by outliers, small departures 

from model assumptions, and small sample sizes. 2) Reliable – ratings must be accurate and 

produce highly informative predictions which are well-calibrated and sharp. 3) Transparent – 

ratings must be interpretable and easy to communicate. 4) Intuitive – ratings must relate to real-

world observable outcomes. 

     Given the limitations found within the ratings literature, this chapter addresses these 

limitations by 1) developing a quantitative ratings framework to construct sport-based rating 

systems that output meaningful ratings, applicable within the sporting industry to evaluate team 

and player performance and 2) develop a novel evaluation metric to quantify the effectiveness 

of meaningful sport-based rating systems built using the ratings framework. 
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3.2 KEY ELEMENTS OF A RATING SYSTEM 

Although there is high demand for rating systems within the commercial environment and the 

academic literature is highly active, currently there is no known modelling approach for 

constructing sport-based rating systems. Moreover, a limitation of the academic literature is the 

lack of methodologies to output robust, reliable, transparent, and intuitive ratings. Through the 

literature review it became apparent that rating systems lack at least one of these four output 

characteristics. Specifically, many systems lack transparency and intuition due to the application 

of machine-learning techniques such as neutral-networks, random forest, gradient boosted 

machine etc, which although produce highly predictive and accurate results, lack transparency 

and intuition due to their “black-box” syndrome. Such systems produce outputs which are 

difficult to communicate and map to observable real-world outcomes. Further, commercially 

deployable rating systems are difficult to assess because transparency and intuitiveness is 

usually absent because software suppliers want to maintain their competitive advantage and 

intellectual property. The need for transparency and intuition in sport-based ratings is necessary 

as such ratings must align with observable real-world outcomes and must be interpretable. 

     Given the commercial prevalence of sport-based rating systems and the gaps in the literature 

(Chapter Two, section 2.5), this chapter develops a ratings framework which output reliable, 

robust, transparent, and intuitive ratings, also known as meaningful ratings. Specifically, the 

framework constructs sport-based rating systems which produce meaningful ratings that 

quantify sporting performances, at both a team and player-level, and are comparable across 

different forecasting scenarios. The proposed framework adopts multi-objective ensembling 

forecasting strategy. Specifically, the ratings framework is a form of model stacking where 

information from multiple models is combined to generate a more informative model. Further, 

the proposed framework implements five key elements: 1) dimension reduction and feature 

selection techniques, 2) feature engineering strategies, 3) multi-objective modelling framework, 

4) time-based variables and 5) ensembling forecasting. These five elements were determined 

during the development of the sport-based rating systems outlined in Chapter Two (section 

2.5.5). The contribution of each published paper to these five elements is outlined below. 

     Patel, Rooney, Bracewell & Wells (2018) applied hierarchical clustering as a dimension 

reduction tool and randomForest as a variable section technique to identify meaningful clusters 

and significant attributes, respectively, to construct a predictive PGA performance rating 

system. Using a hierarchical clustering technique, four meaningful and expected clusters were 

found to influence a player’s earnings: 1. Short game, 2. Putting, 3. Accuracy and 4. Driving. 

The most important attributes within each cluster was identified by applying a random forest 

technique. A simple linear model was created with these metrics for each of the 2010-2017 

seasons. The models were applied to the following season, explaining no less than 64% of 

variation associated with player earnings for each season. 
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     Similarly, Patel, Bracewell, Gazley & Bracewell (2017) applied a classification tree 

technique to account for the collinearity and complex interactions amongst player metrics and 

identified the key dimensions influencing the selection of fast bowler to play test cricket. In this 

research Patel et al. (2017) develop a methodology for determining individuals with a greater 

propensity to play test cricket for New Zealand, based solely on youth performances. The 

framework enables the probability of playing test cricket for each player to be determined by 

fitting a regression model to the regression tree residuals. This framework serves as a useful 

ranking system.  

     Simmonds, Patel & Bracewell (2018) developed a framework to assess the influence any 

batting partnership has on a T20 match. Match and player attributes were analysed using 

exploratory data techniques and random forests to identify the most important attributes 

influencing the number of runs scored, within a partnership. The important partnership attributes 

were: (1) partnership strike rate, (2) change in expected total, (3) proportion of resources 

consumed and (4) partnership contribution. These attributes were aggregated to create a 

partnership match influence (PMI) metric that quantifies the strength of a partnership. Applying 

the PMI metric as edge weights for network analysis allows visualisation of partnership strength 

within a team. It was found that the PMI in the second innings of T20 cricket was more 

indicative of match outcome relative to individual player influence, showing that building strong 

partnerships must be built to successfully reach the target total. Simmonds, Patel & Bracewell 

(2018) outlined the importance of dimension reduction and feature selection techniques, and the 

need to utilise intuitive and transparent metrics when developing a rating system to assess the 

influence of batting partnerships in T20 Cricket. 

     Similarly, Brown, Patel & Bracewell (2018) applied Cox proportional hazard modelling to 

develop a partnership rating system for one-day batters. The paper successfully formulated 

models capable of calculating how likely a partnership is to survive each ball, for different 

partnerships based on within-game events. Based on these survival ratings the optimal batting 

order for the New Zealand black Caps is identified using a boot-strapping optimisation 

approach. A stepwise regression survival analysis is applied to identify the significant batting 

features. Brown, Patel & Bracewell (2018) illustrated the importance of feature selection 

techniques and time-based metric when building a rating system. 

     McIvor, Patel, Hilder & Bracewell (2018) applied feature engineering strategies to extract 

player specific metric from [cricketing] commentary data to predict in-game events in T20 

Cricket. McIvor et al. (2018) outline a four-stage process (i.e. phase extraction, player 

identification, performance analysis and future predictions) for extracting and using key 

components of to produce player ratings based on commentary sentiment. This research outlined 

the need to apply feature engineering techniques to derive intuitive and reliable sentiment 

metrics when constructing rating systems. Moreover, McIvor et al. (2018) applies a linear multi-
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objective framework to ensure the commentary-based player metrics are robust. Additionally, 

it was hypothesised that high sentiment leads to improved future outcomes, therefore an 

autoregressive distributed lag model using time-lagged sentiment metrics was applied to predict 

future match state. The results found that time-lagged metrics include additional information 

which helped predict future match state. 

     Patel, Bracewell & Rooney (2018) constructed an adaptive roster-based optimisation rating 

system for limited overs cricket by deriving team ratings as an ensemble of individual ratings. 

The attributes used to define the individual rating were based on the statistical and practical 

contribution to winning. An adaptive system was sued to create the individual ratings using a 

modified version of a product weighted model. It was shown that when developing team rating 

systems, the individual player components must be appropriately constructed and measured. 

Moreover, ensembling these individual components produce superior ratings relative to those 

based on summary statistics of team performance. Therefore, it was recommended that an 

ensemble mechanism should be applied when building rating systems. 

     Similarly, Patel, Bracewell & Wells (2017) developed a framework to evaluate the influence 

of individual players in T20 Cricket. It is hypothesised that three key dimensions are needed to 

accurately measure player influence: 1) volume of contribution, 2) efficiency of contribution 

and 3) contributions made under pressure. The ratings framework applies a multi-objective 

ensembling strategy to derive player ratings. Moreover Patel, Bracewell & Wells (2017) This 

outlined the importance of dimension reduction and feature selection techniques when 

constructing rating systems and highlighted the importance of ensembling forecasting strategies 

when building rating systems. 

     Patel, Bracewell, Blackie & Boys (2017)5 developed a predictive rating system to assess the 

effectiveness of computer programmers to optimise recruitment. The paper constructs a 

modelling framework for building a developer-based rating system. It was found that a 

developer’s performance score is a combination of ‘accuracy’, ‘timeliness’ and ‘difficulty’ 

based features. These three traits form a meaningful predictive measure of performance by using 

a non-linear optimisation routine which ensembles these three ‘trait-ratings’. Patel, Bracewell, 

Blackie & Boys (2017) identified the key traits that significantly impact developer performance 

and the key building blocks necessary to construct a rating system. Moreover, they highlighted 

the advantage of ensembling individual traits to produce an overall rating of performance. 

 
5 This paper was assessed and selected by IGI Global’s executive editorial board as a reprinted chapter in IGI Global 

research anthology titled Human Performance Technology. Bracewell, P. J., Patel, A. K., Blackie, E. J., & Boys, C. 

(2019). Using a Predictive Rating System for Computer Programmers to Optimise Recruitment: Using Ratings to 

Optimise Programmer Recruitment. In Management Association, I. (Ed.), Human Performance Technology: 

Concepts, Methodologies, Tools, and Applications (pp. 397-412). IGI Global. http://doi:10.4018/978-1-5225-8356-

1.ch020.   
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     Through the development of these sport-based rating systems it is abundantly clear that to 

output meaningful ratings of sporting performance the [ratings] framework must apply 

dimension reduction and feature selection techniques, feature engineering strategies, multi-

objectives, time-based attributes, and ensemble forecasting strategies. Table 2 outlines the 

reason for each element. 

Element Reason 

Dimension reduction and feature selection 

Identifies the traits that significantly affect 

performance and identify the attributes-types 

(of varying complexity) that significantly 

affect each trait, respectively. 

Feature engineering 
These strategies extract the latent traits 

affecting performance. 

Multi-objective modelling Derive trait-based ratings. 

Time-based variables 

Allows the dynamic evaluate ratings. This is 

necessary as sports are regarded as a dynamic 

system. 

Ensemble strategies 

These procedures combine the trait-based 

ratings and produce results that have better 

predictive performance relative to single 

predictions and are more stable. 

Table 2: Key elements of sport-based ratings framework 

     Moreover, given the complexity of modelling performance and the different traits needed to 

construct a numerical representation of the performance, it is assumed that multiple dimensions, 

corresponding to different traits that significantly affect performance are necessary. Effectively, 

the ratings assigned to each significant trait is ensembled to produce intuitive, robust, reliable, 

and transparent ratings. This “meaningful” combination of trait-based ratings is achieved using 

an ensemble strategy and produces a performance-based rating, referred to as a sport-based 

rating. Therefore, performance is defined as a function of individual traits, specifically 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  ℱ(𝑡𝑟𝑎𝑖𝑡1, 𝑡𝑟𝑎𝑖𝑡2, … , 𝑡𝑟𝑎𝑖𝑡3). 

     An ensemble forecast strategy, using different sources, dimensions and modelling methods, 

is applied because error reductions are larger when ensembling is based on different methods 

and each method is applied to different dimensions within the data (Batchelor & Dua, 2011). 

Batchelor & Dua (2011) found that combining forecasts based on diverse assumptions reduces 

error more than when combining forecasts based on similar assumptions. In Chapter Two it was 
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shown that such ensemble strategies are heavily applied within the credit risk environment and 

the sporting industry to evaluate team and player performances. Therefore, a multi-objective 

ensemble forecasting strategy has been applied to construct the ratings framework, because 

ensembling different trait-based ratings derived from methods that differ substantially and draw 

from different dimensions and sources of information lead to improved forecasting accuracy 

(Lichtendahl Jr. & Winkler, 2019). 

     Effectively, the ensembling strategy will assign ratings to each significant trait, known as 

trait-based ratings, that affect performance, and ensemble these ratings to produce a rating 

indicative of performance, during the “evaluation period”. Formally the “evaluation period” is 

defined as the period in which a modeller evaluates human performance for a given task against 

some standard, depending on the ratings scenario, and assign trait-based ratings. During this 

period, the trait-based ratings are ensembled to produce an overall human rating, representing a 

numerical interpretation of performance. For example, when calculating credit-ratings, for a 

loan applicant, which quantifies an applicants’ ability to make timely repayments, on their line 

of credit, different repayment traits must be considered, such as the applicants’ current lines of 

credit, existing limits, default history, etc. Each repayment trait is scored using statistical 

analysis to produce a trait rating. These “trait” ratings are then ensembled to produce a resultant 

credit-rating. 

     To produce meaningful ratings, trait-based ratings must also be meaningful, and therefore, 

must be reliable, robust, transparent, and intuitive. Key elements of the ratings framework are 

the application of feature engineering, feature selection and dimension reduction techniques. 

This reveals the sport-based ratings problem resides within the field of feature selection and 

dimension reduction, because to effectively measure performance the traits significantly 

affecting performance must be identified, using feature selection, and quantitatively understood, 

using dimension reduction. 

3.3 MULTI-OBJECTIVE ENSEMBLING 

Given the complexity and difficulty of modelling performance it is assumed that performance 

cannot be evaluated with a single predictive run due to the inherent uncertainty and dynamic 

nature of the ‘subject’ during the evaluation period6. Therefore, a multi-objective ensemble 

forecasting strategy is adopted to construct the ratings framework. Such an approach is 

necessary “to improve forecasting strategy, combine forecasts derived from methods that differ 

substantially and draw from different sources of information” (Armstrong, 2001, p.1). 

Lichtendahl Jr. & Winkler (2019) expressed similar sentiments stating that, it is generally 

 
6 The “evaluation period” is defined as the period in which a modeller evaluates performance for a given task 

against some standard, depending on the ratings scenario, and assigns trait-based ratings. 
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accepted that using a combination of forecasting methods instead of a single forecasting method 

can lead to improvements in forecast accuracy. Moreover, such an approach is appropriate 

because it is hypothesised that performance is a weighted average or a function of the traits 

significantly affecting performance (Heinstrom, 2003; Kampe, Edman, Bader, Tagdae, Karlson, 

1997; Scharli, Ducasse, Nierstrasz and Black, 2003; Weiten, 2007).  The “multi-objective” 

element of the forecasting strategy will enable the framework to evaluate individual human traits 

at different layers, either shallow or deep. The greater the number of traits that significantly 

affect performance, the more complex the performance. 

     Given there are different traits that significantly affect performance, the constructed 

framework should incorporate different modelling objectives that quantify these traits. 

Effectively, the multi-objective ensembling forecasting strategy is an approach to establish a 

quantitative understanding of each significant trait, known as trait-based ratings. These 

individual trait ratings must also be intuitive, transparent, reliable, and robust. Moreover, these 

individual trait ratings must be unique and not highly correlated, this is because Lichtendal Jr 

& Winkler (2019) stated that including a poorer method that has forecasting errors which are 

highly correlated with those of a better method is redundant and can degrade the performance 

of a combination, while on the contrary, applying a poorer method that has forecasting errors 

which are negatively correlated with those of a better method can improve a combination. These 

trait-based ratings are ensembled to produce a meaningful rating of sporting performances. 

     As sport-based rating systems require a high level of intuition and interpretability, there is 

an inherent trade-off between the predictive accuracy and the ability to produce such results. 

Therefore, the ratings framework applies a manual feature selection and engineering, dimension 

reduction and model selection, based on each trait-based objective, ensuring meaningful outputs 

are produced.  

     The trait-based modelling objectives are determined based on the context of the problem and 

the decision makers criteria for success. To reduce the uncertainty within different traits, 

multiple (trait-based) objectives are defined and methods that involve fundamentally different 

approaches are applied to reduce the dependence. Each trait has a unique modelling objective 

designed to produce a rating which provides a numerical interpretation for the specific trait, also 

known as a trait-based rating. The trait-based objectives correspond to individual traits that 

significantly affect performance. For example, within the cricketing context, to successfully 

measure a player’s match performance, their contribution across both innings, with the bat and 

ball must be examined. Moreover, their contribution at both the match-level and ball-by-ball 

level must also be measured. By evaluating a player’s performance across different dimensions 

(i.e. batting, bowling, match, and ball-level), using multiple objectives it is possible to produce 

a numerical representation of performance, known as a player rating. Effectively, the “multi-

objective” element ensures that all relevant traits pertaining to performance are captured and the 
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uncertainty surrounding the numerical interpretation of performance (i.e. human rating) is 

sufficiently reduced. Given that performance are difficult to measure, it is hypothesised that 

multiple layers for each trait must be evaluated to ascertain a significant proportion of 

uncertainty within each trait, and thus producing a rating which is an ensemble of the trait-based 

ratings. 

     It is hypothesised that each trait-based rating must incorporate information from different 

layers of each trait. The different layers within each trait account for different levels of 

uncertainty. Therefore, it is necessary to extract performance information layer-by-layer for 

each trait. Further, the multi-objective ensemble approach ensures that the individual trait-based 

ratings are sufficiently diverse. Specifically, no two traits account for the uncertainty within the 

same layer for a given trait. 

     An additional benefit of multi-objective ensembling forecasts is it extends the period of 

skilful forecasts. This effectively increases the amount of information and reduces uncertainty 

to produce highly predictive forecasts. For example, the evaluation period for a cricketer is the 

length of a match (i.e. 20 overs, 50 overs and 5-days). However, trait ratings from varying 

lengths need to be combined to generate an overall view. A players “batting” evaluation period 

is the number of balls faced till dismissed, while their “bowling” evaluation period is the number 

of balls bowled. Therefore, a player’s rating is an ensemble of their individual trait-based 

ratings, specifically, batting and bowling ratings. Moreover, ensembling forecasts from different 

time periods extends the evaluation period, which increases the skilfulness of the forecasts 

(Pardowitz, Osinski, Kruschke & Ulbrich, 2016). 

3.4 CONSISTENCIES OF RATING SYSTEMS 

Through the literature review and the process of developing rating systems (Chapter Two and 

Appendix A), key communalities were identified within the rating methodologies. These 

included: 1) features-types, 2) sample size issues, 3) lack of transparency and intuitive ratings, 

4) lack of an evaluation metric to assess the effectiveness of ratings systems and 5) a quantitative 

representation of performance. 

3.4.1 Feature Types - Action, Context and Time 

A communality found across sport and credit-risk rating systems was the application of three 

feature types: 1) action, 2) context and 3) time. Patel, Bracewell, Blackie & Boys (2017) found 

that a developer’s performance score is a combination of ‘accuracy’, ‘timeliness’ and ‘difficulty’ 

based features. These three developer-trait ratings were derived using three significant feature-

types, specifically action, context, and time, that affect each trait. These three traits form a 

meaningful predictive measure of performance by using a non-linear optimisation routine which 

ensembles these three ‘trait-ratings’. 
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     Given these findings, it is assumed that trait-based ratings must use these three feature-types 

to account for a significant proportion of uncertainty. These feature types are classified at 

varying levels of complexity (i.e. traditional, environment or time). This implies trait-based 

ratings are an ensemble of three feature-types of varying complexity and performance ratings 

are an ensemble of trait ratings, which are derived using action, context, and time-based features. 

Figure 3 illustrates the relationship between feature, traits, and performance. 

     The literature review showed that when developing rating systems, a combination of action, 

context and time-based features are necessary to produce highly predictive trait-based ratings. 

For example, a discriminatory credit risk scorecard uses a combination of 1) traditional applicant 

characteristics such as age, gender and occupation, 2) environmental characteristics such as 

living area and deprivation score, and 3) time-based characteristics such as time at current 

residence and length of tenure. To develop a highly discriminatory scorecard, a credit risk rating 

system should apply features from varying levels to generate ratings for repayment ‘traits’ that 

significantly affect performance. Therefore, to significantly determine trait-based ratings which 

accurately quantify a given trait a combination of action, context, and time-based feature-types 

at varying levels of complexity must be applied. 

     Further, in the cricketing context, to accurately quantify a player’s batting trait the rating 

system must use a combination of action (runs scored), context (strike rate) and time based (balls 

faced) features at varying levels of complexity. 
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Figure 3: Relationship between feature, traits, and performance 
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3.4.1.1 Definitions 

Action-based features are associated with an observation’s physical contribution or 

demographic characteristic, such as gender, age, runs conceded, coding language etc. 

These attributes summarise an observations static ability without recognising the context 

of the performed action. 

     Context-based features contextualise an observation’s action for a given condition. A 

context-based feature provides insight into an individual’s action. For example, if ‘age’ is 

an action-based feature, then ‘occupation’ or ‘relationship status’ are context-based 

feature. If ‘runs scored’ is an action-based feature, then ‘strike rate’ is context-based. The 

context features provide information on how and why an action was conducted, efficiency 

of an action and supplements the action with ‘reduced uncertainty’. For example, in the 

credit risk environment, if the scorecard only applies an applicant’s ‘age’ and assigns a 

credit rating of 520. Now suppose the applicant’s occupation, a context-based feature, is 

applied in the scorecard, increasing the applicant’s credit-score to 660. The addition of a 

context-based feature allows the model to account for an additional level of certainty for 

an applicant’s credit rating, overall reducing the uncertainty surrounding their repayment 

behaviour. By introducing more information, the system becomes increasingly 

representative of the applicant’s ability to make ‘good’ on a line of credit. 

     Now suppose instead of introducing ‘occupation’, an additional action-based feature, 

such as ‘gender’ is applied. The credit rating may experience an increase; however, this 

increase would not be as significant as when occupation was introduced. Therefore, 

combining action and context features reduces uncertainty concerning creditworthiness, 

producing a more predictive rating. 

     Time-based features introduce an element of time to an observations action or 

contextual ability. A time-based feature provides information on the length of time elapsed 

for an observation to perform an action. Time features are important when constructing 

rating systems because it informs the decision maker about the length of time taken to 

perform an action. Effectively such attributes inform the model of the humans’ longevity 

when performing an action within a given context. For example, in the cricketing context 

‘runs scored’ and ‘strike rate’, are action and context-based attributes respectively, while 

‘resources remaining’ and ‘balls remaining’ are time-based features, because they measure 

the amount of time remaining until all batting resources have been exhausted, leading to 

match completion. Moreover, in the credit risk context, time-based features are more 

subtle. For example, ‘time at current residential address’, ‘length of tenure at current job’ 

or ‘length of current relationship’ are time-based features providing information on the 

longevity when performing an action. If ‘relationship status’ is considered a context-based 

feature, the corresponding time-based feature would be ‘time spent in current relationship’. 
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     As mentioned, all three feature-types are required to build meaningful sport-based rating 

systems. Each feature-type must be applied to produce highly predictive ratings. Moreover, 

the following relationship of feature “informativeness” should exist: 𝑡𝑖𝑚𝑒 ≥ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 >

𝑎𝑐𝑡𝑖𝑜𝑛. Specifically, time-based features account for an equal or greater proportion of 

uncertainty than context-based features, while context-based features account for a greater 

proportion of uncertainty than action-based features. 

3.4.2 Sample Size Issues 

Given performance-based ratings are an ensemble of trait-based ratings, an issue was the lack 

of data-points for certain observations during the earlier stages of an evaluation period. This 

sample size issue leads to an inability to significantly reduce uncertainty, ultimately producing 

ratings unindicative of performance. The sample size issue occurs during the earlier stages of 

the evaluation period, when insufficient amount of information is available. Although, this issue 

dissipates as the evaluation period matures and more data becomes available. Due to this “time-

dependent” nature of rating systems, a dynamic ratings framework is developed. Moreover, an 

additional benefit of multi-objective ensembling forecasts is that it extends the period of skilful 

forecasts, leading to an increase in sample size over time. 

3.4.3 Lack of Transparency and Intuition 

The most prevalent issue amongst sport-based rating systems is the lack of transparency and 

intuition. Although ratings can be highly predictive and accurate, many suffer from the “black-

box” syndrome, implying that ratings are difficult to map to observable real-world outcomes. 

This leads to communication and interpretation issues of model outputs in terms of observable 

performance-based attributes. As mentioned, this lack of transparency and intuition is due to the 

application of black box modelling techniques such as support vector machines (SVM), neural 

networks (NN), multilayer perceptron (MLP), gradient boosted machines (GBM). To account 

for this lack of transparency and intuition the ratings framework ensures complete autonomy 

over model features, feature selection, dimension reduction and modelling techniques. 

3.4.4 Numerical Representation of Performance 

The most common characteristic shared across many rating systems is the output of a numerical 

value representing a quantifiable interpretation of sporting performances. Therefore, the 

constructed ratings framework must output a numerical interpretation of performance when 

performing a given task, for example repayment behaviour for credit risk. This credit ‘ratings’ 

or ‘score’ evaluates how well an applicant performed while completing [credit] tasks over the 

course of the loan period (i.e. evaluation period). 
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3.5 RATINGS FRAMEWORK: A DYNAMIC HIERARCHICAL MULTI-

OBJECTIVE ENSEMBLE FORECASTING STRATEGY 

Given the complexity and difficulty of modelling performance it is assumed that performance 

cannot be evaluated and described with a single predictive run due to the inherent uncertainty 

and dynamic nature of the ‘subject’ during the evaluation period. Therefore, a dynamic multi-

objective ensemble forecasting strategy is adopted when constructing a sport-based ratings 

framework. 

     Liu & Pentland (1999) developed an approach to model performance which considers the 

human as a device with many internal mental states, or traits, each with its own control 

behaviour and interstate transition probabilities. This approach is like the ratings framework 

approach outlined in this section, whereby each performance-trait is modelled individually, and 

the trait-based ratings are ensembled to produce an overall rating representing a numerical 

interpretation of performance.  

     Therefore, it is hypothesised that ratings perform better the deeper a dimension is explored. 

The intuition is that engineering features at deeper layers, of a given trait, capture more 

information and account for a greater level of uncertainty, relative to shallow layer features [of 

the same trait]. Therefore, the ratings framework incrementally builds more complex features, 

reducing the uncertainty surrounding performance and producing a rating indicative of 

performance. 

     Figure 4 shows a pictorial representation of the ratings framework and represents the 

different dimensions and multiple layers that exist within each dimension. The rectangular 

boxes represent the different layers within each trait dimension, and the different layers 

represent the ‘depth’ of each trait. The deeper layers contain ‘complex’ features, which explain 

a greater proportion of variation within a given trait, relative to shallow layer features. These 

complex features are constructed by applying modelling or transformation techniques to 

traditional or simple features. To generate these trait-based ratings action, context and time-

based features must be applied. The edges linking the layers represent the methods applied to 

access deeper layers leading to deeper understanding of specific traits, effectively reducing the 

level of uncertainty. 

     The shallow layers of each trait produce weak forecasts as they apply simple features that 

explain a smaller proportion of uncertainty in performance compared to deep layer features. It 

is assumed that to completely understand the complexities of each trait, first the trait must be 

understood at shallow levels, and these shallow-level [trait] “understandings” is functionally 

ensembled to construct increasingly complex features that explain a greater proportion of 

uncertainty within the trait. As mentioned, these complex features are constructed within deeper 

layers using the features constructed in the shallow layers.  
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     To ‘delve deeper’ into each trait relevant features must be engineered to construct 

‘informative’ trait-based ratings. Therefore, feature engineering, feature selection and 

dimension reduction techniques ensure that a significant proportion of uncertainty has been 

removed from each trait rating, and the correct features are selected when building a model to 

predict each trait-based rating. 

     Specifically, the deeper layers combine shallow layer forecasts and features, and account for 

interactions to develop complex features which incorporate information corresponding to the 

individual performance. Therefore, the deeper layers for each trait contain greater amounts of 

information pertaining to performance than the weaker forecasts that were built in the shallower 

layers. These deeper layers are synonymous with “getting to know” the performance on a deeper 

level, to better understand and evaluate and establish the depth of the performance (or 

performance). When the trait-based rating explains an “appropriate” level of uncertainty, the 

modeller progresses to the succeeding trait, and constructs the trait-based rating. Once the 

significant traits are assigned a rating a modelling function is applied to ensemble these trait-

based ratings and produce an overall rating representing a numerical interpretation of 

performance, at a given point during the evaluation period. 

     Chapter Four and Five apply the ratings framework within the sporting context to build novel 

rating systems, at both the team and individual level, to evaluate both team and player 

performance, respectively. 

     The proceeding sections of this chapter are dedicated to the development of a performance 

metric which quantifies the effectiveness of meaningful sport-based rating systems (research 

objectives (ii)). 
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3.6 METRIC INTRODUCTION 

Sport-based rating systems developed using the ratings framework produce intuitive, robust, 

reliable, and transparent outputs, or more simply meaningful ratings. In the literature review it 

was found that current model evaluation metrics are limited and lack applicability in certain 

ratings or forecasting scenarios. Moreover, it was found that traditional performance metrics 

lack the ability to utilise domain and forecasting specific knowledge. Therefore, it is necessary 

to develop an evaluation metric which appropriately quantifies the effectiveness of meaningful 

sport-based rating systems, accurately distinguishes between ‘good’ and ‘bad’ ratings, measures 

the distance between the reported ratings and the actual outcome, and appropriately accounts 

for the sporting context and forecasting difficulty. Such a metric will measure the 

‘meaningfulness’ and subsequent effectiveness of sport-based ratings systems. 
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Figure 4: Ratings framework 
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     Until now, performance metrics applied to assess the effectiveness of sport-based rating 

systems are considered insensitive to the subtle nuances of performance ratings and do not 

sufficiently account for specific attributes that are important to sport performance-based ratings. 

It is stipulated that such ratings require an evaluation metric which sufficiently accounts for 

information from different dimensions (i.e. traits), such that model outputs are rewarded for 

sufficiently incorporating this information. This section is dedicated to the development of a 

novel metric to quantify the effectiveness of meaningful sport-based rating systems; therefore, 

addressing research objective (ii). 

     Throughout this section the terms assessor, expert, forecaster, modeller, and rating systems 

will be used interchangeably, and are defined as model-based approaches to derive ratings. 

When forecasting, an assessor can choose one or two of the following approaches: 1) A model-

based approach which depends on statistical models built on historical data to forecast 

outcomes of future events and 2) An expert-driven approach which, given the current situation, 

depends on a forecaster’s expert beliefs and knowledge to forecast the occurrence of future 

events. The following section defines and outlines a set of ideal criteria for a performance metric 

to assess the effectiveness of sport rating systems and describes the importance of each criteria 

when evaluating the effectiveness of meaningful sport-based rating systems. 

3.7 PERFORMANCE METRIC CRITERIA 

Given meaningful sport-based performance ratings must be reliable and intuitive [transparent 

and robust], it is necessary that an evaluation metric incorporates on element of expert 

knowledge to account for reliability and intuitiveness of sport-based rating systems. Effectively, 

it is vital that ratings align with a tolerable level of intuition and reality. The performance metric 

should reward ratings based on honest reporting and provides motivation to report ratings equal 

to their beliefs. This notion of honest reporting is important to sport-based rating systems 

because the ratings derived from such systems incorporate an element of intuition. An ideal 

performance metric should elicit adequate information from experts to make informed, 

objective, and intuitive judgements. 

     Chapter Two revealed a set of ideal criteria for constructing a novel performance metric. 

These metric criteria are: 1) sensitivity to distance, 2) sensitivity to time-dependence, 3) evaluate 

ratings on the entire probability distribution (i.e. non-local metric), 4) incentivisation for well-

calibrated and sharp ratings, and 5) adjusts incentives based on forecasting difficulty. 

     A metric that accounts for these five criteria can determine the effectiveness of meaningful 

sport-based rating systems (i.e. reliable, robust, transparent, and intuitive). Given these criteria, 

and the limitations of current evaluation metrics, and that ensembled ratings are generally 

assessed on calibration and sharpness (Gneiting, Raftery, Westveld & Goldman, 2005), a proper 

scoring rule methodology, specifically a spherical scoring methodology is applied to develop 
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the novel metric. Distance and magnitude measures associated with the spherical scoring rule 

are used to develop the novel performance metric to assess the effectiveness of meaningful 

sport-based rating systems. 

3.7.1 Sensitivity to Distance 

Ratings are sensitive to distance, that is, ratings that are closer to the actual outcome, during 

early stages of the evaluation period, should receive a greater expected score than equivalent 

ratings outputted during latter stages of the evaluation period. Therefore, it is important that the 

performance metric considers the distance between the reported probability (𝒓) and the actual 

probability (𝒑) and consequently, is sensitive to the size of the deviation from the truth. 

Specifically, a metric that rewards ratings which are closer to the actual outcome during the 

early stages of an evaluation period than the latter stages is necessary, as the assessor who 

produces ratings closer to what actually happened during earlier stages of the evaluation period 

has done more with less (i.e. produce more informative predictions with less information). 

Specifically, during the early stages of the evaluation period, the rating system, and therefore 

the ratings are less reliable about the outcome of interest compared to ratings outputted during 

the latter stages, where more reliable information is available. Therefore, it is much easier to 

make predictions about actuality relative to the early stages.   

     This notion of sensitivity to distance involves probabilities assigned to values close to the 

observed values compared with probabilities assigned to values farther from the truth (Winkler, 

1996). For example, suppose two rating systems, 𝐴 and 𝐵, report probabilities, 𝒑, the probability 

it rains on Sunday, given today is Tuesday. The possible values are 0 (rain̅̅ ̅̅ ̅) and 1 (rain). These 

probabilities, as reported by rating system 𝐴 and 𝐵, are updated daily until Saturday evening. 

The vector 𝒑 for the five-day forecast (Tuesday, Wednesday, Thursday, Friday and Saturday) 

is [0.64, 0.73, 0.82, 0.85, 0.87] for system 𝐴 and [0.5, 0.6, 0.82, 0.88, 0.91] for system 𝐵. Now 

suppose that it rains on Sunday, under the quadratic (Brier) scoring rule, system 𝐴 receives a 

score of 0.89 and system 𝐵 receives a score 0.81. This example illustrates the notion of 

“sensitivity to distance” which involves the comparison of the probabilities assigned to values 

close to the observed outcome with the probabilities assigned to the values farther from the 

outcome. Even though system 𝐵 reported a probability on Saturday closer to the actual event 

relative to system 𝐴, it is observed that system 𝐴 reported probabilities closer to the actual event 

throughout the entire evaluation period7 and reported ‘closer’ probabilities to the actual 

outcomes further from Sunday (i.e. better prediction during the earlier stages of the evaluation 

period). Therefore, system 𝐴 is said to be more consistent.  

 
7 The evaluation period is defined as the period in which an assessor evaluates a for a given task against some 

standard, depending on the ratings scenario, and assign ratings. 
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     To evaluate the effectiveness of spot-based rating systems a metric that is sensitive to 

distance is required. Therefore, if it is believed that a set of probabilities closer to the true value 

reflect greater predictive power and ability to incorporate sporting context, a performance metric 

that is sensitive to distance is reasonable. 

3.7.2 Sensitivity to Time-Dependence 

Ratings are generated at equal time-intervals during the evaluation period, and the length of an 

evaluation period depends on the sporting context to which the ratings framework is being 

applied. For example, when rating batting performance, the evaluation period is the batting-

innings. As the batting-innings matures and nears completion, so too does the information 

surrounding the outcome of interest, and the uncertainty surrounding match outcome decreases. 

Given this information asymmetry, with less information available during the early stages of 

the evaluation period and more information available during latter stages, it is important that the 

performance metric weights the early-stage ratings differently than later-stage ratings. For 

example, suppose two sport pundits: pundit A and pundit B, predict the outcome of a rugby 

game for team 𝑖 at 5 different time intervals. The vectors of assessed probabilities for the 5-time 

intervals for pundit A and B are [0.67, 0.72, 0.75, 0.82, 0.88] and [0.56, 0.65, 0.72, 0.85, 0.93], 

respectively. Now suppose that team 𝑖 won the match, even though pundit B’s final prediction 

of match outcome (0.93) was more accurate than pundit A’s (0.88) prediction, at the end of the 

evaluation period, pundit A’s predictions for the first three intervals ([0.67, 0.72, 0.75]), were 

significantly more predictive than pundit B’s initial three predictions [0.56, 0.65, 0.72]. 

Moreover, there was more uncertainty in pundit B’s initial two predictions (0.56 and 0.65) 

compared to pundit A’s initial two predictions (0.67 and 0.72). This reveals that pundit A was 

able to extract more information about the match outcome from fewer data-points and lesser 

information than pundit B, and therefore pundit A should be rewarded more. 

     By the time pundit A and pundit B reveal their predictions, for time-intervals 4 and 5, 

majority of the uncertainty surrounding match outcome has dissipated and majority of the 

information surrounding what will happen has been established. Therefore, one could say that 

the value of expert opinion diminishes as the evaluation period matures. Further, it is argued 

more accurate expert opinions with less information should be rewarded (or weighted) more 

favourably than accurate expert opinions with more information. Therefore, it is suggested that 

a  rating system which is able to do “more with less” (i.e. extracts greater amount of information 

from lesser data) or a rating system which is “most right earliest” should be weighted more 

favourably than a system which is able to do “more with more” or “least right earliest”. 

3.7.3 Evaluate Ratings on The Entire Probability Distribution 

This criterion is a direct consequence of sensitivity to distance and sensitivity to time-

dependence. Again, consider the example of pundit A and pundit B (see section 3.7.2), even 
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though it is a dichotomous problem, the ideal performance metric should assess the entire 

probability distribution, rather than a single probability. The pundits should be evaluated on 

their reported forecasts throughout the entire evaluation period. This criterion is closely linked 

to sensitivity to distance and sensitivity to time-dependence because the entire evaluation period 

accounts for information asymmetry and the assessors’ ability to produce predictive ratings 

under scenarios of asymmetric information by analysing the assessor’s entire probability vector. 

Therefore, the novel metric should be non-local as the effectiveness of rating systems should to 

be evaluated on the entire probability distribution. “A scoring rule is local if it the score depends 

only on the probability or density assigned to what is observed” (Wrinkler, 1996, p.15). 

     The logarithmic rule is a local scoring rule as the score depends only on the probability or 

density assigned to the observed outcome. The logarithmic score assigns a score that is 

independent of normalization of the quoted probability distribution (Parry, 2016). 

     Moreover, an additional challenge with sport-based rating systems is the lack of events for 

the outcome of interest (Patel & Bracewell, 2018), therefore, a performance metric which 

assesses the entire probability distribution rather than a single probability is appropriate for 

sport-based rating problems. 

3.7.4 Incentive for Well-Calibrated and Sharp Ratings 

Calibration and sharpness are criteria shared by most predictive models. These properties are 

highly sort-after when producing probabilistic predictions (please see Gneiting, Balabdaoui & 

Raftery, 2007). Gneiting, Balabdaoui & Raftery (2007) stated that calibration refers to the 

statistical consistency between the distributional forecasts and the observations and is a joint 

property of the predictions and the events that materialise. Sharpness refers to the concentration 

of the predictive distributions and is a property of the forecasts only. The more concentrated the 

predictions, the sharper the forecasts, and the sharper the better, subject to calibration. 

     Winkler (1996) stated that “good” probability forecasts should be well-calibrated and sharp. 

Moreover, Naeini, Cooper & Hauskrecht (2015) stated that predictive models that are well-

calibrated and sharp are critical for many prediction and decision-making tasks in artificial 

intelligence; and Niculescu-Mizil & Caruana (2005) mentioned that in many applications it is 

important to predict well-calibrated and sharp probabilities. 

     The performance metric must reward well-calibrated ratings by penalising deviations from 

perfect calibration, that is, 𝒓 = 𝒑, where 𝒓 represents the output vector reported by the rating 

system, and 𝒑 represents the actual outcome vector. The metric must also reward sharpness by 

penalising ratings as they move from zero or one and towards one-half. Effectively, moving 

towards greater amounts of uncertainty in the ratings. To maximise expected score, the system 

should set 𝒓 =  𝒑. Therefore, the ratings should be assessed using calibration (or reliability) 

and sharpness (or resolution) statistics. 
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3.7.5 Adjusts Incentives Based on Forecasting Difficulty 

Specific strategies must be developed for tailoring proper scoring rules to specific ratings 

scenario and aligning the interests of the expert and the rating system. Therefore, the evaluation 

metric should heavily weight systems for reporting accurate forecasts when other systems 

perform badly relative to when most systems perform well and when performing well under 

extremely difficult forecasting situations. 

     Given, sport-based rating systems can be built for different sporting scenarios, the developed 

performance metric should be capable of adjusting for various forecasting difficulty and 

sporting contexts. Moreover, the metric should maximise the expected reward for the “most 

skilful” forecast (a probability of zero or one being true for a single event) and minimise the 

expected reward for the “least skilful” forecast. “If one extreme forecast is viewed as more 

skilful (for example perhaps because it is more difficult to forecast precipitation perfectly than 

to forecast no precipitation perfectly), then the expected score should be maximised at that 

extreme” (Winkler, 1996, p.17). 

     A forecast is regarded as “most skilful” during the early stages of the evaluation period, when 

the forecasted rating is close to the observed outcome. Extreme ratings (i.e. 0 or 1) that are closer 

to the actual outcome during the early stages of the evaluation period are viewed as “more 

skilful”, because it is more difficult to forecast ‘accurate’ ratings earlier than forecasting 

‘accurate’ ratings during latter stages of the evaluation period. Therefore, the expected reward 

should be maximised at the extremes. 

     It is important that the performance metric rewards ratings derived during the early stages of 

the evaluation period, differently than similar ratings derived during the latter stages of the 

evaluation period. This difference in incentives, based on the time at which ratings are produced, 

is due to the information asymmetry phenomenon present within the ratings system. Therefore, 

the skilfulness of ratings and adjusting ratings for forecasting difficulty is required depending 

on their distance from what is actually observed and the time during the evaluation period at 

which the rating was outputted. Therefore, time adjusting the ratings accounts for scenarios 

where the outputted ratings perfectly or closely align with the actual outcome (i.e. perfect 

calibration or well-calibrated, respectively), however perfect calibration or well-calibrated 

ratings occur during the latter stages of the evaluation period, where prior knowledge is 

redundant and contributes insignificant information. During these situations, the performance 

metric should not maximise the expected reward as most of the information surrounding the 

outcome of interest is available. 

3.8 PROPER SCORING RULES 

It is hypothesised that a performance metric which encompasses the five criteria (section 3.7) 

can determine the effectiveness of meaningful sport-ratings by measuring the distance between 
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ratings reported by the rating system and the actual outcome, accounting for the context and 

difficulty of the forecasting tasks, accounting for time-dependence, measuring ratings on the 

entire probability distribution, and incentivising for well calibrated and sharp output. As 

mentioned, a spherical scoring methodology is used to develop a novel performance metric to 

assess the effectiveness of meaningful sporting performances. 

     Specifically, distance and magnitude measures derived through the spherical scoring rules 

are applied to construct the novel performance metric, known as the DMS (distance and 

magnitude-based ‘spherical’) metric, to assess the effectiveness of meaningful sport-based 

rating systems and measure the accuracy of ratings for inducing honest reporting within a certain 

context. 

3.8.1 Application of Scoring Rules 

Carvalho (2016) stated that there has been a tremendous increase in the number of published 

articles applying proper scoring rules to evaluate probabilistic forecasts. The areas which have 

experienced the largest growth in the application of proper scoring rules are: meteorology (Rasp 

& Lerch, 2018; Jordan, Kruger & Lerch, 2017; Sillman, Thorarinsdottir, Keenlyside, Schaller, 

Alexander, Hegerl, Seneviratne, Vautard, Zhang & Zwiers, 2017; Katz & Murphy, 2005; 

Murphy & Winkler, 1973; Murphy & Winkler, 1982; Murphy & Winkler, 1984; Murphy & 

Winkler, 1992), prediction markets (Witkowski, Atanasov, Ungar & Krause, 2017; Cummings, 

Pennock & Vaughan, 2016; Carvalho, 2016), sport analytics (Jackson, 2016; Patel & Bracewell, 

2018), psychology (Hollard, Massoni & Vergnaud, 2016; Mellers, Stone, Atanasov, Rohrbaugh, 

Metz, Ungar, Bishop, Horowitz, Merkle & Tetlock, 2015; Shah, Zhou & Peres, 2015; Bolger & 

Rowe, 2015; Schlag, Tremewan & Van der Weele, 2015; Roughgarden & Schrijvers, 2017) and 

energy markets (Robu, Chalkiadakis, Kota, Rogers & Jennings, 2016; Scheuerer & Hamil, 

2015; Chen, Jiang, Yu, Liao, Xie & Wu, 2017; Papakonstantinou & Pinson, 2016). 

     Machete (2013) suggested that the chosen proper scoring rule should depend on its 

application and consider future decisions associated with high impact, low probability events. 

The choice of the most appropriate scoring rule is dependent on the desired properties, which 

depends on the underlying context. Given the forecasting context and the level of forecasting 

difficulty, choosing the most appropriate scoring rule indicates that: 1) properness is not the 

only important property, 2) the scoring function should evaluate different forecasts in terms of 

penalising errors and 3) incorporate information about the decision maker/s who will use the 

forecast and incorporate new information or attributes as the evaluation period matures and 

uncertainty or vagueness surrounding the outcome of interest diminishes. Wrinkler (1969) 

expressed similar sentiments stating that “it is insufficient to use a scoring rule simply because 

it is strictly proper; instead, it is beneficial to consider the specific way in which the scoring rule 

rewards and penalizes forecasts” (Wrinkler, 1969, p.753). 
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     An example of probabilistic forecasting is in meteorology where a weather forecaster may 

give the probability of rain for the next day. One could note the number of times that a 25% 

probability was quoted, over a long period, and comparing this with the actual proportion of 

times that rain fell. If the actual percentage was substantially different from the stated 

probability, here it is stated that the forecaster is poorly calibrated. A poorly calibrated forecaster 

might be encouraged to do better by a reward-based system. A reward system designed around 

a proper scoring rule will incentivize the forecaster to report probabilities equal to their personal 

beliefs. In addition to the simple case of a binary decision, such as “rain” or “no-rain”, scoring 

rules may be used for multiple classes, such as ‘rain’, ‘snow’ or ‘clear’. 

     The modeller desires to maximise the expected score from a strictly proper scoring rules, 

which requires well calibrated and sharp probabilities. Here, calibration assesses how well 

model predictions align with observed probabilities. A commonly used technique for calibration 

is the Hosmer-Lemeshow test statistic (Hosmer & Lemeshow, 2013) which assesses a model’s 

goodness-of-fit by comparing observed probabilities against predicted probabilities at quantiles 

of predicted probabilities. Predicted probabilities that align with the expected probability 

distribution are known as calibrated. Furthermore, the model is well-calibrated, if the 

probabilities effectively reflect the true likelihood of the event of interest. 

3.9 SPHERICAL SCORING DISTANCE AND MAGNITUDE MEASURES 

Given the DMS metric utilises distance and magnitude statistics derived from the spherical 

scoring methodology, this section discusses the characteristics and properties associated with 

the spherical scoring rule, how the methodology lends itself to evaluate the effectiveness of 

rating systems and how these characteristics meet the five ideal criteria for an evaluation metric 

to assess the effectiveness of meaningful sport-based rating systems. 

     The quadratic score is not sensitive to distance, while the logarithmic score is a local scoring 

rule and does not consider the entire probability distribution. A spherical scoring rule is non-

local and considers the entire probability distribution, therefore, distance and magnitude 

measures derived from the spherical scoring rule are applied to develop the novel performance 

metric to evaluate the effectiveness of meaningful sporting performance (i.e. ratings). 

3.9.1 The Spherical Scoring Rule 

The spherical scoring rule, first introduced by Roby (1965) in the context of psychological 

testing, has several geometric properties and a strong connection to the statistical notion of 

surprise (Good, 1971). The notion of statistical surprise or information content is the amount of 

information gained when a random variable or signal is sampled. Surprisal represents the 

surprise or unexpectedness of observing an outcome, for example, the occurrence of a highly 

improbable outcome is very surprising. The identification of surprise makes a forecaster 

reconsider the validity of their modelling assumptions, the selected features, the data, and 
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applied techniques. It can provoke the forecaster to change their subjective assessment of 

previous hypotheses and generate hypotheses that had not been previously entertained. 

     The expected score, 𝐸𝑝[𝑆(𝑟)], and spherical scoring rules for the occurrence, 𝑆1(𝑟), and non-

occurrence, 𝑆2(𝑟), of an event, are expressed as follows: 

𝐸𝑝[𝑆(𝑟)] = 𝑝𝑆1(𝑟) + (1 − 𝑝)𝑆2(𝑟) 

𝑆1(𝑟) =
𝑟

√𝑟2 + (1 − 𝑟)2
          and          𝑆2(𝑟) =

1 − 𝑟

√𝑟2 + (1 − 𝑟)2
 

Jose (2007) expressed the expected spherical scoring rule as eqn. 9 and the score for reported 

probabilities, 𝒓, for, 𝑖, as eqn. 10: 

                    𝐸𝑝(𝑝) = ∑ 𝑝𝑖

𝑝𝑖

‖𝒑‖
= ‖𝒑‖,        where      ‖𝑝‖ = (∑ 𝑝𝑖

2

𝑛

𝑖=1

)

1
2

                           (9) 

                                            𝑆(𝒓, 𝑖) =  
𝑟𝑖

‖𝒓‖
=

𝑟𝑖

√𝑟𝑖
2 + ⋯ + 𝑟𝑛

2

                                                    (10) 

Equation (9) shows that the expected spherical score for reporting honestly is the Euclidean 

length of the vector associated with point 𝑝. Here, 𝒑 represents the true outcome and 𝒓 represents 

the reported or modelled probability. The expected score of the spherical scoring rule for 

reporting honestly is the Euclidean length of the vector associated with the point 𝑝 representing 

the assessment 𝑃 𝜖 ℘ (Jose, 2007). Given 𝑝, 𝑟 ∈  ∆𝑛, 𝐸𝑝[𝑆(𝑟)] can be expressed as follows: 

𝐸𝑝[𝑆(𝑟)] = ∑
𝑝𝑖𝑟𝑖

‖𝒓‖
𝑖

  =   ‖𝒑‖ ∑
𝑝𝑖𝑟𝑖

‖𝒑‖ ∙ ‖𝒓‖
𝑖

 

                                                    = ‖𝒑‖ cos 𝜃                                                                            (11) 

Here, 𝜃 represents the angle between vectors 𝒓 and 𝒑. This implies that the expected score is 

related to the angle of deviation and the spherical rule is strictly proper since the score is 

maximized only if the angle between the two vector is equal to zero, that is 𝒓 = 𝒑 (Jose, 2007). 

This shows that the spherical scoring rule motivates the assessor to forecast well-calibrated and 

sharp probabilities and maximises the expected score when 𝒓 = 𝒑. The comparison of losses 

considers the informativeness of the assessments. This is because the norm of a vector 𝒑 

measures to some extent the sharpness of this probabilistic assessment, as 𝒑 moves away from 

the centre of the simplex towards the edges the value of the norm increases, and a prediction is 
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viewed to be more informative. Practically, it seems reasonable that when faced with 𝑛 events 

where an assessor has complete ignorance over, most people by the principle of insufficient 

reason would tend to defer to a uniform distribution rather than making a categorical forecast. 

Therefore, to prevent the possibility of such scenarios developing and appropriately 

incentivising the assessors is to provide an incentive for well-calibrated and sharp ratings. Eqn. 

11 illustrates that the spherical scoring rule is sensitive to distance. Since the expected loss can 

be measured from the angle between vector 𝒓 from the vector 𝒑, this angular deviation is a 

measure of the ‘distance’ between the reported rating (𝒓) and the true outcome (𝒑). 

     Figure 5 is a geometric representation of the spherical scoring rule. It can be seen that the 

expected score (i.e. rating) of 𝒓 given the true belief 𝒑 can be interpreted as the norm of an 

orthogonal projection of a vector of the same size as that of 𝒑 but in the direction of 𝒓. This 

supports the notion that the angular deviation is a sufficient statistic, when taken together with 

𝒑, for the expected score 𝐸𝒑[𝑆(𝒓)]. Effectively, this measures how well probability distribution 

𝒓 represents probability distribution 𝒑, and measures the dispersion in the forecaster’s true 

probability assignment. 

     Given the spherical scoring function is sensitive to distance and non-local, and therefore 

assesses the entire probability distribution when generating scores, it is evident that the spherical 

scoring rule is 1) sensitive to distance, 2) evaluates the entire distribution (i.e. non-local) and 3) 

provides incentives for well-calibrated and sharp ratings.  

 

 

 

 

 

 

 

 

 

𝐿(𝑟, 𝑝) 

Figure 5: Geometric representation of the spherical scoring rule 
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3.9.2 Extending the Spherical Scoring Rule 

In the previous section it was shown that the spherical scoring rule meets the ideal criteria of 

sensitivity of distance, provides an incentive for well-calibrated and sharp rating and evaluates 

ratings on the entire distribution (i.e. non-local). To ensure the developed performance metric 

sufficiently meets the last two criteria of: 1) sensitivity to time-dependence and 2) adjusts 

incentives based on forecasting difficulty, there is the need to extend the spherical scoring rule 

such that it is applicable to rating problems. As a consequence, this section draws from Winkler 

(1994) and Saaty (1971) to introduce a novel adaptation of the spherical scoring rule to construct 

a performance metric which evaluates the predictive power of sport-based ratings and 

simultaneously meet the last two criteria (time-dependence and adjusting incentives based on 

forecasting difficulty). 

3.9.2.1 Time-dependence 

Ratings close to the outcome of interest during the early stages of the evaluation period 

should be given a higher expected score, than ratings closer to the outcome of interest, 

during the latter stages of the evaluation period. Therefore, the constructed performance 

metric should heavily weight (i.e. reward) outputs that are more accurate “the earliest” (i.e. 

early stages of the evaluation period) relative to outputs that are more accurate “the latest” 

(i.e. early stages of the evaluation period). Therefore, the performance metric should be 

non-linear, as the ‘predictive accuracy gains’ assigned to the ratings during different stages 

of the evaluation period are not linearly related to the expected score. Given, the ratings 

are time dependent, the scores assigned to early ratings of the evaluation period are not 

equivalent to the scores assigned to latter ratings of the evaluation period. Effectively, a 

rating system that provides outputs during the earlier stages of the evaluation period that 

are ‘close’ to the outcome of interest should receive a higher expected score than rating 

systems that provide ‘close’ outputs, during the latter stages of the evaluation period. This 

is because early ratings close to the actual outcome better utilise lesser information and 

lesser reliable information to produce accurate forecasts, while close ratings during the 

latter stages should receive relatively smaller scores as more reliable information is 

available. The first system was able to extract greater information using fewer data points 

(i.e. the model was able to do “more with less”). Therefore, an asymmetric weight 

adjustment is implemented due to the time-dependent information asymmetry property of 

rating systems. 

     A possible method of adapting the distance and magnitude statistics derived from the 

spherical scoring rule for time-dependent scenarios is applying a positive affine 

transformation to dynamically evolve as the evaluation period matures. Such 

transformations are useful in converting the range of possible values for these scoring rules 
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into other ranges which may be appropriate to the decision context. This time dependent 

“evolution” of the positive affine transformation can be decision context specific, such that 

the scoring rule “rewards” an assessor depending on the context of the forecasting 

situation8. For example, the scoring rule can be transformed such that 𝛼 accounts for the 

time and 𝛽 accounts for the context. This serves as a useful transformation given the way 

scores are allocated simultaneously depend on the time and sporting context. 

3.9.2.2 Adjusting incentives based on forecasting difficulty 

Suppose there are two assessors’, 𝐴 and 𝐵. Assessor 𝐴 evaluates the probability that a credit 

applicant defaults on their line of credit, i.e. cannot make monthly repayments over a six 

month period, and in-light of new monthly information, updates these probabilities on a 

monthly basis and has the following probability vector [0.34, 0.32, 0.31, 0.29, 0.21, 0.19]. 

Assessor 𝐵 evaluates the probability that a cricketing batter will be dismissed, i.e. losses 

their wicket over a 6-ball evaluation period, and in-light of new information, updates these 

probabilities on a ball-by-ball basis and has the following probability vector 

[0.34, 0.32, 0.31, 0.29, 0.21, 0.19]. Now suppose a performance metric that only accounts 

for the first four criteria (i.e. sensitive to distance, sensitive to time dependence, evaluate 

ratings on the entire probability distribution and provides an incentive for well-calibrated 

and sharp ratings) was used to evaluate the forecasting ability of the two assessors. Here 

both assessors would receive the same score, and assessor 𝐴 and assessor 𝐵 are considered 

equal in terms of forecasting ability. However, a performance metric that considers the 

forecasting context and difficulty needs to be applied. This is because the ‘score’ a rating 

system receives should depend not only on their forecasting ability, but also on the nature 

of the forecasting scenarios. Given the performance metric is specific to the sporting 

context, it is necessary to apply a mechanism which accounts for forecasting difficulty and 

provides incentives depending on each scenario. Therefore, a metric which adjusts 

incentives based on the forecasting difficulty is a necessary criterion. As mentioned, a 

positive affine transformation will be applied to adjust incentives based on forecasting 

difficulty and ratings context. 

3.9.2.3 Asymmetric scoring rules 

Given the complexity of sporting performances (at both the team and player level), the 

difficulty in assigning meaningful ratings that assess performance and the variations of the 

performance across different sporting codes, it is necessary to adjust for forecasting 

difficulty and tailor the scoring rule for certain scenarios. An expected-score function that 

 
8 An interesting property of proper scoring rules is that any positive affine transformation of a proper scoring rule is 

still proper, therefore any positive linear transformation of a strictly proper scoring rule is itself strictly proper. 

Effectively, if 𝑆 is a strictly proper scoring rule then so is 𝛼𝑆 + 𝛽, for α >  0. 
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minimises the expected score for probabilities deemed to be the “least skilful” prediction 

is required. The expected score should be measured for probabilities deemed to be most 

“most skilful” predictions. The “most skilful” forecast is a perfect forecast (i.e. a rating of 

0 or 1) in the assessment if a probability for a single event. “If an extreme forecast is viewed 

as more skilful then the expected score should be maximised at the extreme point” 

(Winkler, 1996, p.17). 

     Strictly proper scoring rules that attempt to evaluate the skill of probabilistic forecasts 

will almost always be asymmetric and their precise form for a given situation can be based 

on an evaluator’s judgments concerning the relative skill of different probability values 

(Wrinkler, 1994, p.1405). Winkler (1994) found that the outputs from asymmetric scoring 

rules correspond to an intuitive notion of a good forecast and are preferable and lead to 

good scores relative to skill scores and symmetric scoring rules. 

     Therefore, to develop a performance metric which evaluates the effectiveness of sport-

based ratings an asymmetric spherical scoring rule is appropriate, and it should be tailored 

to reflect forecasting skill in different rating (i.e. forecasting) scenarios. 

     Skill scores are necessary when comparing two different forecasting systems, because 

different forecasters generally do not deal with the same situations. Further, different 

forecasting systems provide forecasts on different time intervals across different domains. 

For example, when forecasting the probability of precipitation, in extremely dry climates 

it is easy to give a probability close to zero on many days. However, in areas with higher 

frequency of precipitation due to highly unstable weather conditions, it may be difficult to 

give extreme forecasts near zero or one. Both these scenarios will lead to different 

distributions, 𝑔(𝑟), which represents the proportion of time the value 𝑟 occurs in a forecast 

series and consequently to different average scores. 

     In scenarios where two forecasts or forecasting systems receive different average scores, 

the difference in scores, across the two systems, could reflect differences in forecasting 

ability or in the forecasting situation. To address this issue, Murphy (1974) developed “skill 

scores” to produce average scores that reflect the relative ability of forecasters rather than 

a combination of the forecasters’ ability and the level of difficulty of the forecasting task. 

The skill scores attempt to neutralise the contribution of ‘situational’ effect by comparing 

a forecasters average score to the average scores obtained from an unsophisticated 

forecasting strategy for the same set of forecasting situations. “The typical forecasting 

strategy chosen when a base rate (a relative frequency of occurrence of the event based on 

past data) is available is simply a forecast equal to that base rate” (Winkler, 1994, p.1398). 

For example, in meteorology the base rate, 𝒄, is known from climatology. Suppose it has 

rained for 30% of the days in April at a given location, the climatology forecasts would be 

a probability of 0.3 for each day in April. 
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     In scenarios where 𝑐 = 0.5 (i.e. base rate), the scoring rule is symmetric and asymmetric 

otherwise (i.e. 𝑐 ≠ 0.5). “The intuition supporting this result is that the uncertainty about 

whether the event 𝐸 will occur or not is greatest when the probability of 𝐸 is 0.5” (Winkler, 

1994, p. 1398), and therefore, the average skill scores will be lowest for the least skilful 

forecast. Here, the “least skilful” forecast are 1) those near or close to all information or 

data needed to access the outcome is readily available, or 2) situations where no real expert 

opinion is required to assess the outcome of interest. Generally, such forecasts occur during 

the latter stages of the evaluation period or when nearing the end of the evaluation period 

where all data and information to evaluate the system is available. For example, within the 

cricketing context reasonableness is defined as benchmark, 𝑐, which evolves as an innings 

matures. Suppose a forecasting system outputs the probability that the second innings 

batting team wins the match, on a ball-by-ball basis. This benchmark, 𝑐, is the proportion 

of times the team batting second went onto to win the match, given the number of balls, 

runs scored, wickets lost and resources remaining in the innings. Here, the average score 

is minimised for forecasts identical to the benchmark rate, i.e. 𝑐. For example, suppose a 

model outputs a probability of winning of 0.78 for a given ball, with a benchmark value 

𝑐 = 0.6, and the team batting second wins the match. Then the prediction of 0.78 is 

considered ‘reasonable’ as the forecasted probability is closely aligned with the actual 

outcome relative to the benchmark (i.e. 𝑐 = 0.6). Therefore 𝑐 can be viewed as an 

appropriate benchmark probability and the skill score represents the system’s ability to be 

more discriminatory than 𝑐. 

     For sport-based rating systems, the benchmark vector, 𝒄, is different from the 

climatology example as 𝒄 dynamically changes over the course of the evaluation period. 

3.10 A NOVEL PERFORMANCE METRIC USING SPHERICAL SCORING: THE 

DISTANCE AND MAGNITUDE-BASED SPHERICAL METRIC 

The objective of the novel evaluation metric is to measure the predictive accuracy of a sports-

based rating systems’ reported rating, 𝒓, against the actual ratings (i.e. outcome) vector, 𝒑, and 

an average rating vector, 𝒄, during different time intervals of the evaluation period. Effectively, 

𝒄 (i.e. benchmark vector) is the average observed outcome given the current conditions. The 

novel metric utilises distance and magnitude measures (calibration and sharpness statistics) 

associated with the spherical scoring method (such as the rate of change in the difference in 

vector magnitude and the rate of change in vector angles), and therefore will be known as the 

DMS (Distance and Magnitude-based Spherical) metric. These “similarity” measures are 

calculated using the three vectors, 𝒄, 𝒓 and 𝒑, across different time intervals during the 

evaluation period. Vector 𝒓 are ratings derived from the rating systems, vector 𝒑 is the actual 

rating and vector 𝒄 is the benchmarked rating based on historical data. 
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     The DMS metric is derived using an algorithmic process such that the reported probability 

vector, 𝒓, is weight-adjusted based on the rate of change in the difference in vector magnitude 

and the rate of change in vector angle measures between 𝒓, 𝒑, and 𝒄. A weight-adjustment is 

applied to vector 𝒓 at each time interval, 𝑡, of the evaluation period, and these adjustments 

weight (i.e. reward and penalise) 𝒓 based on the rate of change measures. These weights are 

derived using the Analytical Hierarchy Process (Technical details provided in Appendix B). 

     Figure 6 illustrates the rate change in the difference between vector magnitude and the rate 

change of in vector angle measures. 

 

 

 

 

 

 

 

 

 

 

In Figure 6, 𝜃𝒑,𝒄, represents the angular distance between vector 𝒑 and 𝒄, 𝜃𝒓,𝒑 represents the 

angular distance between vector 𝒄 and 𝒑, and 𝜃𝒓,𝒄 represents the angular distance between vector 

𝒓 and 𝒄. The number of elements within 𝒓 and 𝒄 increases as the evaluation period matures and 

as more information becomes available (i.e. time interval, 𝑡, increases). The vector 𝒑 represents 

the actual outcome of interest and is realised once the evaluation period is completed (i.e. fully 

matured). 

3.10.1 Rate of Change in Difference in Vector Magnitude 

As the evaluation period matures the magnitude of 𝒓, ‖𝒓‖, should tend towards ‖𝒑‖. ‖𝒄‖ should 

also tend towards ‖𝒑‖, but at a slower rate. Although the averaged forecasts, 𝒄, improves as the 

evaluation period matures, it uses match information less “efficiently” than the ensembled 

ratings system used to derive 𝒓. Further, given 𝒓 is assumed more informative than 𝒄 as the 

evaluation period matures, the difference between ‖𝒓‖ and ‖𝒄‖ increases over time, while the 

difference between ‖𝒓‖ and ‖𝒑‖ decreases. Therefore, ‖𝒑‖ − ‖𝒓‖ → 0 faster than ‖𝒑‖ − ‖𝒄‖ 

as the evaluation period matures. 
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3.10.2 Rate of Change in Vector Angles 

As the evaluation period matures the angle between 𝒓 and 𝒑, 𝜃𝒓,𝒑, decreases. As the evaluation 

period matures and more information becomes available the rating systems reported rating, 𝒓, 

should converge faster to the actual outcome, 𝒑, relative to 𝒄. Therefore, 𝜃𝒓,𝒑 → 0 faster than 

𝜃𝒄,𝒑 as the evaluation period nears completion. 

     Further, as time matures the angle between 𝒓 and 𝒄 (i.e. 𝜃𝒓,𝒄) should slowly increase. As 

stated, the system’s reported ratings, 𝒓, should converge faster to 𝒑, relative to 𝒄, over time as 

more information becomes available. Although 𝜃𝒄,𝒑 → 0, the rating system produces 

increasingly informative ratings than the average forecast, 𝒄. Therefore, 𝜃𝒓,𝒑 → 0 faster relative 

to 𝜃𝒄,𝒑. Although both 𝜃𝒓,𝒑 and 𝜃𝒄,𝒑 converge to zero, 𝜃𝒓,𝒑 converges at a faster rate, therefore 

the rate of angular change, 𝜃𝒓,𝒑 and 𝜃𝒄,𝒑, diverges over time, and the angular difference between 

𝒓 and 𝒄 (i.e. 𝜃𝒓,𝒄) increases over time. Specifically, this difference in rate of angular change 

between 𝜃𝒓,𝒑 and 𝜃𝒄,𝒑, it is assumed that 𝜃𝒓,𝒄 will increase as the evaluation period matures. 

     Therefore, over time 𝜃𝒑,𝒄 decreases and tends towards zero, however the rate of angular 

change between 𝜃𝒓,𝒑 and 𝜃𝒑,𝒄 should not be the same. As mentioned, it is assumed that 𝒓 is more 

informative than 𝒄 at any given point, especially during the latter stages of the evaluation period 

where 𝒓 increases at a greater rate than 𝒄. The rate at which 𝜃𝒓,𝒑 → 0 must be greater than the 

rate at which 𝜃𝒑,𝒄 → 0, therefore, although 𝜃𝒄,𝒑 → 0, it tends towards zero at a slower rate than 

𝜃𝒓,𝒑, during the evaluation period. 

     These vector-based rate of change distance and magnitude measures can be used to quantify 

sport-based ratings effectiveness, at different time intervals of the evaluation period. The 

magnitude-based measures evaluate the similarity between the vectors, while the angle-based 

measures evaluate the distance between the vectors. The time remaining until the evaluation 

period fully matures measures length till completion. 

3.10.3 Mathematical Notation 

• Rate of change in vector angle between 𝒓 and 𝒑, during time 𝑡 to 𝑡 + 1, is represented 

by ∆𝜃𝒓,𝒑(𝑡, 𝑡 + 1).  

• Rate of change in vector angle between 𝒓 and 𝒄, during time 𝑡 to 𝑡 + 1, is represented 

by ∆𝜃𝒓,𝒄(𝑡, 𝑡 + 1).  

• Rate of change in vector angle between 𝒑 and 𝒄, during time 𝑡 to 𝑡 + 1, is represented 

by ∆𝜃𝒑,𝒄(𝑡, 𝑡 + 1). 

• Difference in vector magnitude between 𝒑 and 𝒓 at time 𝑡 is represented by 

(‖𝒑‖ − ‖𝒓‖)𝑡.  

• Difference in vector length between 𝒑 and 𝒄 at time 𝑡 is represented by (‖𝒑‖ − ‖𝒄‖)𝑡.  
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• Difference in vector length between 𝒓 and 𝒄 at time 𝑡 is represented by (‖𝒓‖ − ‖𝒄‖)𝑡 .  

• Rate of change in the difference in vector length between 𝒑 and 𝒓 from time 𝑡 to 𝑡 + 1 

is represented by ∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1.  

• Rate of change in the difference in vector length between 𝒑 and 𝒄 from time 𝑡 to 𝑡 + 1 

is represented by ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1.  

• Rate change in the difference in vector length between 𝒓 and 𝒄 from time 𝑡 to 𝑡 + 1 is 

represented by ∆(‖𝒓‖ − ‖𝒄‖)𝑡,𝑡+1. 

3.10.4 DMS Weight Adjustments 

The weight adjustment strategy for the DMS metric is based on the rate of change in vector 

angle and the rate of change in the difference in vector magnitude, from time 𝑡 to 𝑡 + 1 (at 

different time intervals of the evaluation period). These weight adjustments are calculated using 

the AHP (please see Appendix B for technical notes). 

     Higher weight adjustments are applied to ‖𝒓‖ when it is closer to ‖𝒑‖ relative to ‖𝒄‖, and 

the rate of change in the difference in vector magnitude between 𝒓 and 𝒑 →  0 

(i. e ∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1  → 0) faster than the rate of change in the difference in vector 

magnitude between 𝒄 and 𝒑 (i. e ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1  → 0). 

     Lower weight adjustments are applied when the rate of change in the difference in vector 

magnitude does not significantly decrease over time or when ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 tends towards 

0 faster than (∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1. These weight adjustments are initialised using expert 

knowledge and are updated at each time interval of the evaluation period. This updating process 

is dependent on the forecasting context and the time at which ratings are derived. 

     Based on the rate of change in vector angles and rate of change in difference in vector 

magnitude rules. Table 3 and 4 outlines a distance, magnitude, and time-based weight 

adjustment schema for the DMS performance metric. 

3.10.4.1 High weight adjustments 

Weight adjustments Vector movement Rule 

Maximum reward If ‖𝒑‖ = ‖𝒓‖  

High reward 

 
If ‖𝒑‖ − ‖𝒓‖  → 0 

During early stages of the evaluation period 

and where 𝜃𝒓,𝒑 is ‘very close’ to zero. 

Medium reward if ‖𝒑‖ − ‖𝒓‖  → 0 
During latter stages of the evaluation 

period and where 𝜃𝒓,𝒑 is ‘close’ to zero. 

Small reward if ‖𝒑‖ − ‖𝒓‖  → 0 
During early stages of the evaluation period 

and where 𝜃𝒓,𝒑 is ‘far’ from zero. 
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Table 3: High weight adjustment schema for the DMS performance metric 

3.10.4.2 Low weight adjustments 

Weight adjustments Vector movement Rule 

High reward 

 
If ‖𝒑‖ − ‖𝒓‖  → 0 

During latter stages of the evaluation 

period, and where 𝜃𝒄,𝒑 is ‘closer’ to zero, 

relative to 𝜃𝒓,𝒑. 

Medium reward if ‖𝒑‖ − ‖𝒓‖  → 0 

During latter stages of the evaluation 

period, and where 𝜃𝒓,𝒑 is ‘further’ from 

zero, relative to 𝜃𝒄,𝒑. 

Small reward if ‖𝒑‖ − ‖𝒓‖  → 0 

During early stages of the evaluation 

period, and where 𝜃𝒄,𝒑 is ‘closer’ to zero, 

relative to 𝜃𝒓,𝒑.  

Smallest reward if ‖𝒑‖ − ‖𝒓‖  → 0 

During early stages of the evaluation 

period, and where 𝜃𝒓,𝒑 is ‘further’ from 

zero, relative to 𝜃𝒄,𝒑. 

3.10.5 Calculating the Distance and Magnitude Spherical metric 

Based on the sporting context the modeller defines the importance for each of the rate of change 

in difference in vector magnitude measures (i.e. ∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1, ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 and 

∆(‖𝒓‖ − ‖𝒄‖)𝑡,𝑡+1), and the rate of change in vector angle measures (i.e. ∆𝜃𝒓,𝒑
𝑡,𝑡+1, ∆𝜃𝒑,𝒄

𝑡,𝑡+1 

and ∆𝜃𝒓,𝒄
𝑡,𝑡+1). The importance of each rate of change measure is calculated through the 

Analytical Hierarchy Process (AHP) between each time interval, 𝑡. Please see Appendix B for 

more details. 

     The comparison matrix, as defined by the AHP, establishes the importance for each of the 

rate of change measures and defines how these measures are updated over time. The AHP is 

applied to each comparison matrix for each time interval, 𝑡. 

     The rate of change metric ∆(‖𝒑‖ − ‖𝒓‖)𝑡+𝑡+1 is the most important magnitude-based 

measures, followed by ∆(‖𝒑‖ − ‖𝒄‖)𝑡+𝑡+1  and ∆(‖𝒓‖ − ‖𝒄‖)𝑡+𝑡+1. The weight assigned to 

(‖𝒑‖ − ‖𝒓‖)𝑡+𝑡+1 is significantly different than the weights assigned to (‖𝒑‖ − ‖𝒄‖)𝑡+𝑡+1 and 

(‖𝒓‖ − ‖𝒄‖)𝑡+𝑡+1. These weights are applied to each difference in vector length measure to 

output a result which is used to scale the vector 𝒓, and create a new vector 𝒓′. 

Smallest reward if ‖𝒑‖ − ‖𝒓‖  → 0 
During latter stages of the evaluation 

period and where 𝜃𝒓,𝒑 is ‘far’ from zero. 

Table 4: High weight adjustment schema for the DMS performance metric 
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     The rate of change metric ∆𝜃𝒓,𝒑 is the most important distance-based measures, followed by 

∆𝜃𝒑,𝒄 and ∆𝜃𝒓,𝒄. As vector 𝒑 represents the actual outcome, the angular measures 𝜃𝒓,𝒑 and 𝜃𝒑,𝒄 

are more important than 𝜃𝒓,𝒄. Weights are applied to each of these angular distance measures to 

produce weighted vectors, which are applied to 𝒓 to create a new vector 𝒓′. Finally, vector 𝒓′ is 

applied to the spherical scoring rule to evaluate the effectiveness of ratings. In this section a 

simple worked example of the distance and magnitude-based spherical (DMS) performance 

metric is provided. Chapter Five applies the DMS metric within the cricketing context. 

Specifically, to assess the predictive accuracy of a probability of win model and quantify the 

effectiveness of a player ratings model. 

     The following algorithmic process generates the DMS metric: 

1) Establish the time intervals in which the data will be split. For example, an evaluation 

period partitioned into 20%-time intervals and a vector with 20 elements will be split into 

10-time intervals of length 2. The size of these ‘time’ blocks are set by the modeller using 

expert knowledge. 

2) Establish the importance for each of the three difference in rate of change in vector length 

(i.e. magnitude) measures (i.e. ∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1, ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 and ∆(‖𝒓‖ −

‖𝒄‖)𝑡,𝑡+1) and rate of change in vector angle (i.e. distance) measures (i.e. ∆𝜃𝒓,𝒑
𝑡,𝑡+1, 

∆𝜃𝒑,𝒄
𝑡,𝑡+1 and ∆𝜃𝒓,𝒄

𝑡,𝑡+1). The relative importance of each distance and magnitude measure 

between each time interval, 𝑡 to 𝑡 + 1, is established using the AHP. 

3) Calculate the vector length (i.e. magnitude) and vector angle (i.e. distance) for each time 

interval, 𝑡: (i.e. ‖𝒓‖𝑡, ‖𝒄‖𝑡, ‖𝒑‖𝑡, 𝜃𝒓,𝒄
𝑡
, 𝜃𝒑,𝒄

𝑡
 and 𝜃𝒓,𝒑

𝑡
).  

4) Calculate the difference in vector length and vector angle for time 𝑡 between each vector 

(i.e. (‖𝒑‖ − ‖𝒓‖)𝑡, (‖𝒑‖ −  ‖𝒄‖)𝑡 , (‖𝒓‖ − ‖𝒄‖)𝑡, ∆𝜃𝒓,𝒄
𝒕
, ∆𝜃𝒑,𝒄

𝑡
 and ∆𝜃𝒓,𝒑

𝑡
). 

5) Calculate the rate of change in the difference in vector length and rate of change in vector 

angle between each time interval (i.e. ∆(‖𝒑‖ − ‖𝒓‖)𝒕,𝒕+𝟏, ∆(‖𝒑‖ − ‖𝒄‖)𝒕,𝒕+𝟏,  

∆(‖𝒓‖ − ‖𝒄‖)𝒕,𝒕+𝟏, ∆𝜃𝒓,𝒄
𝑡,𝑡+1

, ∆𝜃𝒑,𝒄
𝑡,𝑡+1

, and ∆𝜃𝒓,𝒑
𝑡,𝑡+1). 

6) Apply the AHP importance weightings to the rate of difference in vector length and the 

rate of change in vector angle measures across each time-interval. A multiplicative 

approach is applied to derive the equations for the rate of change in the difference in vector 

magnitude: 

𝜔∆(‖𝐩‖−‖𝐫‖)t,t+1 = (∆(‖𝐩‖ − ‖𝐫‖)t,t+1 × ωt,t+1

∆(‖𝐩‖−‖𝐫‖)𝐭,𝐭+𝟏) 
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𝜔∆(‖𝐩‖−‖𝐜‖)t,t+1 =  (∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 × ω𝑡,𝑡+1

∆(‖𝒑‖−‖𝒄‖)𝒕,𝒕+𝟏) 

𝜔∆(𝑟−‖𝐜‖)t,t+1 =  (∆(‖𝐫‖ − ‖𝐜‖)𝐭,𝐭+𝟏 × ωt,t+1

∆(‖𝐫‖−‖𝐜‖)𝐭,𝐭+𝟏) 

A multiplicative approach is also applied to derive the equations for the rate of change in 

vector angle (i.e. distance): 

      𝜔∆𝜃𝒓,𝒄
𝑡,𝑡+1

= (∆𝜃𝒓,𝒄 × ω𝑡,𝑡+1

∆𝜃𝒓,𝒄
𝑡,𝑡+1

) 

 𝜔∆𝜃𝒑,𝒄
𝑡,𝑡+1

=  (∆𝜃𝒑,𝒄 × ω𝑡,𝑡+1

∆𝜃𝒑,𝒄 ) 

 𝜔∆𝜃𝒓,𝒑
𝑡,𝑡+1

=  (∆𝜃𝑟,𝑝 × ω𝑡,𝑡+1

∆𝜃𝒓,𝒑 ) 

7) Generate an additive scalar and apply it to the vector 𝒓 to produce 𝒓′ for each time interval, 𝑡. 

8) Calculate the spherical score and expected spherical score for 𝒓′. 

𝑆(𝒓′, 𝑖) =  
𝑟′

𝑖

‖𝒓′‖
=

𝑟′
𝑖

√𝑟𝑖
2 + ⋯ + 𝑟𝑛

2

 

𝐸𝑝[𝑆(𝒓′)] = ‖𝒑‖ cos 𝜃   

9) Compare the spherical score and, 𝐸𝑝[𝑆(𝒓)] against 𝐸𝑝[𝑆(𝒓′)]. The higher the expected score 

the better the predictive accuracy and ‘meaningful’ of the rating systems. 

3.10.6 Distance and Magnitude Spherical Metric Example 

Calculate a spherical score for the prediction vector, 𝒓, for each time interval 𝑡. This is achieved 

by partitioning the evaluation period into 𝑡 equal time intervals which are user defined. This 

allows the user to define ‘close’ or ‘far’ from evaluation completion. For example, if the 

evaluation period is partitioned into 20%-time intervals, a prediction vector 𝒓 of ten elements is 

partitioned as follows: 

𝒓 =  [0.81, 0.83, 0.85, 0.86, 0.87, 0.89, 0.91, 0.95, 0.97, 1]T 

Based on the sport (i.e. forecasting scenario) and sporting context (i.e. forecasting difficulty) 

the decision-maker defines the importance of each of the rate of change in difference in vector 

length (i.e. magnitude) measures: 1) ∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1, 2) ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 and 3) 
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∆(‖𝒓‖ − ‖𝒄‖)𝑡,𝑡+1, and the rate of change in vector angle-based (i.e. distance) measures:  1) 

∆𝜃𝒓,𝒑(𝑡, 𝑡 + 1), 2) ∆𝜃𝒑,𝒄(𝑡, 𝑡 + 1) and 3) ∆𝜃𝒓,𝒄(𝑡, 𝑡 + 1). 

     The importance assigned to each distance and magnitude measure is derived using the AHP 

between each time interval, 𝑡 to 𝑡 + 1. Table 5 and 6 illustrates an example of comparison 

matrices between each time intervals, 𝑡 to 𝑡 + 1, for a vector, 𝒓. 

 

Time 1 - 2 ∆(‖𝒑‖ − ‖𝒓‖)𝟏,𝟐 ∆(‖𝒑‖ − ‖𝒄‖)𝟏,𝟐 ∆(‖𝒓‖ − ‖𝒄‖)𝟏,𝟐 

∆(‖𝒑‖ − ‖𝒓‖)𝟏,𝟐 1 3 4 

∆(‖𝒑‖ − ‖𝒄‖)𝟏,𝟐 0.33 1 4 

∆(‖𝒓‖ − ‖𝒄‖)𝟏,𝟐 0.25 0.25 1 

Time 2 - 3 ∆(‖𝒑‖ − ‖𝒓‖)2,3 ∆(‖𝒑‖ − ‖𝒄‖)2,3 ∆(‖𝒓‖ − ‖𝒄‖)2,3 

∆(‖𝒑‖ − ‖𝒓‖)𝟐,𝟑 1 3 4 

∆(‖𝒑‖ − ‖𝒄‖)𝟐,𝟑 0.33 1 4 

∆(‖𝒓‖ − ‖𝒄‖)𝟐,𝟑 0.25 0.25 1 

Time 3 - 4 ∆(‖𝒑‖ − ‖𝒓‖)3,4 ∆(‖𝒑‖ − ‖𝒄‖)3,4 ∆(‖𝒓‖ − ‖𝒄‖)3,4 

∆(‖𝒑‖ − ‖𝒓‖)𝟑,𝟒 1 3 4 

∆(‖𝒑‖ − ‖𝒄‖)𝟑,𝟒 0.33 1 4 

∆(‖𝒓‖ − ‖𝒄‖)𝟑,𝟒 0.25 1/4 1 

Time 4 - 5 ∆(‖𝒑‖ − ‖𝒓‖)4,5 ∆(‖𝒑‖ − ‖𝒄‖)4,5 ∆(‖𝒓‖ − ‖𝒄‖)4,5 

∆(‖𝒑‖ − ‖𝒓‖)𝟒,𝟓 1 3 4 

∆(‖𝒑‖ − ‖𝒄‖)𝟒,𝟓 0.33 1 4 

∆(‖𝒓‖ − ‖𝒄‖)𝟒,𝟓 0.25 1/4 1 

 

 

 

 

Table 5: Comparison matrix for the rate of change in vector length, between time t and t+1 
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The comparison matrix defines the importance of each of the rate of change measures and shows 

how this importance evolves over time. Applying the AHP over each comparison matrix for 

each time interval, 𝑡. Table 7 and 8 outline the weights for the rate of change in the difference 

in vector length and the rate of change in vector angle. 

 

 

 

Time 1 - 2 ∆𝜽𝒓,𝒑
(𝟏,𝟐)

 ∆𝜽𝒓,𝒑
(𝟏,𝟐)

 ∆𝜽𝒓,𝒑
(𝟏,𝟐)

 

∆𝜽𝒓,𝒑
(𝟏,𝟐)

 1 6 7 

∆𝜽𝒑,𝒄
(𝟏,𝟐)

 1/6 1 6 

∆𝜽𝒓,𝒄
(𝟏,𝟐)

 1/7 1/6 1 

Time 2 - 3 ∆𝜽𝑟,𝑝
(𝟐,𝟑)

 ∆𝜽𝑟,𝑝
(𝟐,𝟑)

 ∆𝜽𝑟,𝑝
(𝟐,𝟑)

 

∆𝜽𝒓,𝒑
(𝟐,𝟑)

 1 7 7 

∆𝜽𝒑,𝒄
(𝟐,𝟑)

 1/7 1 6 

∆𝜽𝒓,𝒄
(𝟐,𝟑)

 1/7 1/6 1 

Time 3 – 4 ∆𝜽𝑟,𝑝
(𝟑,𝟒)

 ∆𝜽𝑟,𝑝
(𝟑,𝟒)

  ∆𝜽𝑟,𝑝
(𝟑,𝟒)

 

∆𝜽𝒓,𝒑
(𝟑,𝟒)

 1 8 8 

∆𝜽𝒑,𝒄
(𝟑,𝟒)

 1/8 1 5 

∆𝜽𝒓,𝒄
(𝟑,𝟒)

 1/8 1/5 1 

Time 4 - 5 ∆𝜽𝑟,𝑝
(𝟒,𝟓)

 ∆𝜽𝑟,𝑝
(𝟒,𝟓)

  ∆𝜽𝑟,𝑝
(𝟒,𝟓)

 

∆𝜽𝒓,𝒑
(𝟒,𝟓)

 1 9 8 

∆𝜽𝒑,𝒄
(𝟒,𝟓)

 1/9 1 5 

∆𝜽𝒓,𝒄
(𝟒,𝟓)

 1/8 1/5 1 

Time 𝛚(∆‖𝒑‖−‖𝒓‖)𝒕,𝒕+𝟏 𝛚(∆‖𝒑‖−‖𝒄‖)𝒕,𝒕+𝟏 𝛚(∆‖𝒓‖−‖𝒄‖)𝒕+𝒕+𝟏 

𝐭𝐢𝐦𝐞 𝟏 − 𝐭𝐢𝐦𝐞 𝟐 0.60 0.30 0.10 

𝐭𝐢𝐦𝐞 𝟐 − 𝐭𝐢𝐦𝐞 𝟑 0.69 0.23 0.08 

𝐭𝐢𝐦𝐞 𝟑 − 𝐭𝐢𝐦𝐞 𝟒 0.70 0.23 0.01 

𝐭𝐢𝐦𝐞 𝟒 − 𝐭𝐢𝐦𝐞 𝟓 0.73 0.21 0.06 

Table 6: Comparison matrix for the rate of change in vector angles, between time t and t+1 

Table 7: AHP weights for each rate change in difference of vector length element, between time t and t+1 
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Here, (∆‖𝒑‖ − ‖𝒓‖)𝑡+𝑡+1 is the most important magnitude-based measure, it describes the rate 

change in the difference in vector length between vector 𝒑 and 𝒓, for time 𝑡 to 𝑡 + 1. This is 

followed by (∆‖𝒑‖ − ‖𝒄‖)𝑡+𝑡+1  and (∆‖𝒓‖ − ‖𝒄‖)𝑡+𝑡+1. Here, the reported probability 

vector, 𝒓, is the most important magnitude vector throughout the evaluation period. Moreover, 

the weight assigned to (∆‖𝒑‖ − ‖𝒓‖)𝑡+𝑡+1 is significantly different than the weights assigned 

to (‖𝒑‖ − ‖𝒄‖)𝑡+𝑡+1 and (‖𝒓‖ − ‖𝒄‖)𝑡+𝑡+1. These weights are applied to each difference in 

vector length element to produce a value which is used to scale the vector 𝒓 to create a new 

vector 𝒓′. 

 

 

 

The rate of change in vector angle ∆𝜃𝒓,𝒑
𝑡,𝑡+1

 is the most important angle-based distance 

measure, it describes the rate of angular change between 𝒓 and 𝒑, for time 𝑡 to 𝑡 + 1. This is 

followed by ∆𝜃𝒑,𝒄
𝑡,𝑡+1

 and ∆𝜃𝒓,𝒄
𝑡,𝑡+1

. As vector 𝒑 represents the actual outcome, the angular 

measures 𝜃𝒓,𝒑 and 𝜃𝒑,𝒄 are more important than 𝜃𝒓,𝒄. These weights are applied to each rate of 

change in vector angle measure to produce a value which is applied to scale the vector 𝒓 to 

create a new vector 𝒓′.  

     This modified vector 𝒓′ is used within the spherical scoring rule to measures the effectiveness 

(i.e. predictive accuracy) of the forecasted ratings. The following section outlines a simple 

example of the distance and magnitude-based metric algorithm, followed by a more complex 

example applied within the cricketing context. 

3.10.6.1 The Distance and Magnitude Spherical Metric Algorithm 

Using the previous example, the following steps are necessary to calculate the distance and 

magnitude-based spherical metric: 

1) Establish the time intervals in which the data will be split. Here, the evaluation period 

is partitioned into 20%-time intervals; for example, a vector with 10 elements will be 

split into 5-time intervals. 

2) Establish the importance of the three difference in rate of change in vector length 

measures, for each time interval (i.e. ∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1, ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 and 

Time 𝛚∆𝜽𝒓,𝒑 𝛚∆𝜽𝒑,𝒄 𝛚∆𝜽𝒓,𝒄 

𝐭𝐢𝐦𝐞 𝟏 − 𝐭𝐢𝐦𝐞 𝟐 0.73 0.21 0.06 

𝐭𝐢𝐦𝐞 𝟐 − 𝐭𝐢𝐦𝐞 𝟑 0.74 0.20 0.06 

𝐭𝐢𝐦𝐞 𝟑 − 𝐭𝐢𝐦𝐞 𝟒 0.78 0.17 0.05 

𝐭𝐢𝐦𝐞 𝟒 − 𝐭𝐢𝐦𝐞 𝟓 0.79 0.16 0.04 

Table 8: AHP weights for each rate change in vector angle element, between time t and t+1 



131 
 

∆(‖𝒓‖ − ‖𝒄‖)𝑡,𝑡+1) and rate of change in distance measures (i. e. ∆𝜃𝒓,𝒑
𝑡,𝑡+1, ∆𝜃𝒑,𝒄

𝑡,𝑡+1 

and ∆𝜃𝒓,𝒄
𝑡,𝑡+1). The relative importance of each element between each time interval is 

established using the AHP. 

3) Calculate the vector length and vector angle for each time interval, 𝑡. For example, 

the vector 𝒓 at time interval 𝑡 = 1, 𝒓1, is (0.81,0.83), with a length, ‖𝒓‖𝑡, of 1.16, and 

an angle, 𝜃𝒓,𝒄, of 0.21 degrees (0.0037 radians). The vector length and vector angle for 

each time interval in the evaluation period for vectors, 𝒓, 𝒑 and 𝒄 are: 

Time Vector length Angles 

𝒕 ‖𝒓‖ ‖𝒄‖ ‖𝒑‖ 𝜃𝒓,𝒄 𝜃𝒑,𝒄 𝜃𝒓,𝒑 

1 1.16 0.89 1.41 0.21 0.91 0.70 

2 1.68 1.37 2.00 3.20 4.45 1.31 

3 2.09 1.75 2.45 3.30 4.97 1.75 

4 2.47 2.10 2.83 3.04 5.50 2.75 

5 2.83 2.42 3.16 2.67 5.80 3.80 

4) Calculate the difference in vector length and vector angle between each vector, 𝒓, 𝒑 

and 𝒄 for time 𝑡.  

Time Vector length Angles 

𝒕 ‖𝒑‖ − ‖𝒓‖ ‖𝒑‖ −  ‖𝒄‖ ‖𝒓‖ − ‖𝒄‖ ∆𝜃𝒓,𝒄
𝑡,𝑡+1

 ∆𝜃𝒑,𝒄
𝑡,𝑡+1

 ∆𝜃𝒓,𝒑
𝑡,𝑡+1

 

1 0.25 0.52 0.72 0.49 0.91 0.21 

2 0.32 0.63 0.31 1.89 1.25 3.20 

3 0.36 0.70 0.34 1.55 4.97 3.30 

4 0.36 0.73 0.37 0.29 2.46 3.04 

5 -0.33 0.74 0.41 -1.13 3.13 2.67 

5) Calculate the rate of change in the difference in vector length and the rate of change 

in vector angle between time 𝑡 and 𝑡 + 1. 

Time Vector length Angles 

𝒕 ∆(‖𝒑‖

− ‖𝒓‖)𝑡,𝑡+1 

∆(‖𝒑‖

− ‖𝒄‖)𝑡,𝑡+1 

∆(‖𝒓‖

− ‖𝒄‖)𝑡,𝑡+1 

∆𝜃𝒓,𝒄
𝑡,𝑡+1

 ∆𝜃𝒑,𝒄
𝑡,𝑡+1

 ∆𝜃𝒓,𝒑
𝑡,𝑡+1

 

1-2 -0.07 -0.11 0.41 -2.99 -3.54 -0.61 

2-3 -0.04 -0.07 -0.03 -0.10 -0.52 -0.44 

3-4 0.06 -0.03 -0.03 0.26 -0.53 -1.00 

4-5 -0.69 -0.01 -0.04 0.37 -0.30 -1.05 
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6) Apply the corresponding AHP weights to each element to the distance and magnitude 

measures between time-interval, 𝑡 to 𝑡 + 1. Table 7 and 8 outlines the weights for the 

rate of change in difference in vector length and rate of change in vector angle 

measures, respectively. The equations for the rate of change in the difference in vector 

length: 1) (∆(‖𝐩‖ − ‖𝐫‖)t,t+1 × ωt,t+1

∆(‖𝐩‖−‖𝐫‖)𝐭,𝐭+𝟏), 2) (∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 ×

𝜔𝑡,𝑡+1

∆(‖𝒑‖−‖𝒄‖)𝒕,𝒕+𝟏) and 3) (∆(‖𝐫‖ − ‖𝐜‖)t,t+1 × Wt,t+1

∆(‖𝐫‖−‖𝐜‖)𝐭,𝐭+𝟏). The equations for the 

rate of change in vector angle: 1) (∆𝜃𝒓,𝒄 × 𝜔𝑡,𝑡+1

∆𝜃𝒓,𝒄 ), 2) (∆𝜃𝒑,𝒄 × 𝜔𝑡,𝑡+1

∆𝜃𝒑,𝒄 ) and 3) 

(∆𝜃𝒓,𝒑 × 𝜔𝑡,𝑡+1

∆𝜃𝒓,𝒑 ).  The following table outline the multiplicative scalars for the rate of 

change in the difference in vector length between each time interval: 𝑡𝑖𝑚𝑒 1 − 2 =

 −0.034, 𝑡𝑖𝑚𝑒 2 − 3 =  −0.0416, 𝑡𝑖𝑚𝑒 3 − 4 =  0.0347 and 𝑡𝑖𝑚𝑒 4 − 5 =

 −0.5085. 

The following table outlines the multiplicative scalars for the rate of change in vector 

angle between each time interval: 𝑡𝑖𝑚𝑒 1 − 2 =  −2.96, 𝑡𝑖𝑚𝑒 2 − 3 =  −0.2044, 

𝑡𝑖𝑚𝑒 3 − 4 =  0.0629 and 𝑡𝑖𝑚𝑒 4 − 5 =  0.2023. 

 Vector angles 

𝒕 ∆𝜃𝒓,𝒄
𝑡,𝑡+1

× ω𝑡,𝑡+1

∆𝜽𝑟,𝑐
 ∆𝜃𝒑,𝒄

𝑡,𝑡+1
× ω

𝑡,𝑡+1

∆𝜽𝑝,𝑐
 ∆𝜃𝒓,𝒑

𝑡,𝑡+1
× ω

𝑡,𝑡+1

∆𝜽𝑟,𝑝
 

1 (−2.99 × 0.73) = -2.183 (−3.54 × 0.21) = -0.7434 (−0.61 × 0.06) = -0.037 

2 (−0.10 × 0.74) = -0.074 (−0.52 × 0.20) = -0.104 (−0.44 × 0.06) = -0.0264  

3 (0.26 × 0.78) = 0.203 (−0.53 × 0.17) = -0.0901 (−1.00 × 0.05) = -0.05 

4 (0.37 × 0.79) = 0.2923 (−0.30 × 0.16) = -0.048 (−1.05 × 0.04) = -0.042 

 

 

 Vector length 

𝒕 ∆(‖𝒑‖ − ‖𝒓‖)𝒕,𝒕+𝟏 × ω𝑡,𝑡+1

∆(‖𝒑‖−‖𝒓‖)𝒕,𝒕+𝟏 ∆(‖𝒑‖ − ‖𝒄‖)𝒕,𝒕+𝟏

× ω𝑡,𝑡+1

∆(‖𝒑‖−‖𝒄‖)𝒕,𝒕+𝟏 

∆(‖𝒓‖ − ‖𝒄‖)𝒕,𝒕+𝟏

× ω𝑡,𝑡+1

∆(‖𝒓‖−‖𝒄‖)𝒕,𝒕+𝟏 

1 (−0.07 × 0.60) = -0.042 (−0.11 × 0.30) = -0.033 (0.41 × 0.10) = 0.041 

2 (−0.04 × 0.69) = -0.028 (−0.07 × 0.23) = -0.016 (−0.03 × 0.08) = 0.0024  

3 (0.06 × 0.70) = 0.042 (−0.03 × 0.23) = -0.007 (−0.03 × 0.01) = -0.0003 

4 (−0.69 × 0.73) = -0.504 (−0.01 × 0.21) = -0.0021 (−0.04 × 0.06) = -0.0024 
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Time intervals Magnitude scalar Angular scalar Multiplicative scalar 

1-2 -0.034 -2.96 0.10064 

2-3 -0.0416 -0.2044 0.0085 

3-4 0.0347 0.0629 0.0022 

4-5 -0.5085 0.2023 -0.103 

7) Generate an additive scalar and apply it to vector 𝒓 to produce 𝒓′. 

𝒓′ = [0.81, 0.83, 0.94, 0.96, 0.94, 0.97, 0.91, 0.95, 0.88, 0.90]𝑻 

8) Calculate the spherical score and expected spherical score for 𝒓′. 

𝑆(𝒓′, 𝑖) =  
𝑟′

𝑖

‖𝒓′‖
=

𝑟′
𝑖

√𝑟𝑖
2 + ⋯ + 𝑟𝑛

2

 

‖𝒓′‖ = √0.812 + 0.832 + 0.942 + 0.962 + 0.942 + 0.972 + 0.912 + 0.952 + 0.882 + 0.902 

‖𝒓′‖ = 2.88 

𝑆(𝒓′, 𝑖) = [0.281, 0.288, 0.326, 0.333, 0.326, 0.336, 0.316, 0.330, 0.306, 0.313]𝑇 

𝐸𝑝[𝑆(𝑟′)] = ‖𝒑‖ cos 𝜃   

9) Compare the spherical score and expected score of 𝒓 against 𝒓′. The spherical score for 

𝒓 and 𝒓′, respectively:  

𝑆(𝒓, 𝑖) = [0.286, 0.293, 0.300, 0.303, 0.307, 0.314, 0.321, 0.335, 0.342, 0.353]𝑇 

𝑆(𝒓′, 𝑖) = [0.281, 0.288, 0.326, 0.333, 0.326, 0.336, 0.316, 0.330, 0.306, 0.313]𝑇 

The expected spherical score for 𝒓′: 

∑
𝑝𝑖𝑟𝑖

‖𝒑‖ ∙ ‖𝒓‖
𝑖

=  
(0.81 ∗ 1)

9.10
+

(0.83 ∗ 1)

9.10
+

(0.94 ∗ 1)

9.10
+

(0.96 ∗ 1)

9.10
+

(0.94 ∗ 1)

9.10

+
(0.97 ∗ 1)

9.10
+

(0.91 ∗ 1)

9.10
+

(0.95 ∗ 1)

9.10
+

(0.88 ∗ 1)

9.10
+

(0.90 ∗ 1)

9.10
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∑
𝑝𝑖𝑟𝑖

‖𝒑‖ ∙ ‖𝒓‖
𝑖

= 0.999 

Next, the angle 𝜃 is calculated: 

cos 𝜃 = ∑
𝑝𝑖𝑟𝑖

‖𝒑‖ ∙ ‖𝒓‖
𝑖

 

cos 𝜃 =
𝒑. 𝒓

‖𝒑‖ ∙ ‖𝒓‖
 

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠𝑖𝑛𝑒 (
𝒑. 𝒓

‖𝒑‖ ∙ ‖𝒓‖
) 

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠𝑖𝑛𝑒 (
9.09

9.10
) = 0.047 

Therefore, the expected score, 𝐸𝑝[𝑆(𝒓′)] is:  

𝐸𝑝[𝑆(𝒓)] = 3.15 

𝐸𝑝[𝑆(𝒓′)] = 3.16 

The vector 𝒓′ is shown to have a higher score across the evaluation period and a higher expected 

spherical score. This shows that relative to 𝒄, in terms of angular distance and magnitude, 𝒓′ 

was closer to the actual outcome over the evaluation period. This implies that 𝒓′ should be 

rewarded for having better prediction than the benchmark during certain time intervals of the 

evaluation period.  Figure 7 illustrates the evaluation of the spherical score for 𝒄, 𝒓′, 𝒓 and 𝒑. 
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3.11 VALIDATION THROUGH APPLICATION 

Given the DMS metric has been shown to work on a simple example. In this section, the metric 

is applied to the probability of win model developed in Chapter Five (Patel, Bracewell & Wells, 

2018) and benchmarked against the general spherical scoring rule and the log loss method. 

Specifically, the 2019 Big Bash semi-final between the Hobart Hurricanes and Melbourne stars 

is analysis. For more details on the probability of winning model, please see Chapter Five 

(section 5.5.4). 

     There are 120 elements 𝒓, 𝒄 and 𝒑, as there are 120 balls in T20 cricket, and the evaluation 

period is partitioned into equally spaced intervals of 2 balls. Such a specific split is produced as 

each vector for each time-split will contain 2 elements ((2/120) ×100= 1.67% of the evaluation 

period). Therefore, the evaluation period has been split into 60-time intervals with 59 between 

time intervals. 

     As mentioned, the vector 𝒓 will be adjusted based on three magnitude-based rate of change 

distance measures and three angle-based rate of change measures over the 59-time intervals. 

Instead of constructing 118 comparison matrices, a ‘matrices update’ procedure is adopted. For 

example, assume for any given time interval, 𝑡 to 𝑡 + 1, ∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1 is required to be 

more important than ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1, and ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 is required to be more 

important than ∆(‖𝒓‖ − ‖𝒄‖)𝑡,𝑡+1. Therefore, ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 > ∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1 > 

∆(‖𝒓‖ − ‖𝒄‖)𝑡,𝑡+1 in terms of importance. 
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     Further, for any given time interval 𝑡 to 𝑡 + 1, ∆𝜃𝒓,𝒑(𝑡, 𝑡 + 1) is more important than 

∆𝜃𝒑,𝒄(𝑡, 𝑡 + 1), and ∆𝜃𝒑,𝒄(𝑡, 𝑡 + 1) is more important than ∆𝜃𝒓,𝒄(𝑡, 𝑡 + 1). Therefore, 

∆𝜃𝒓,𝒑(𝑡, 𝑡 + 1) > ∆𝜃𝒑,𝒄(𝑡, 𝑡 + 1) > ∆𝜃𝒓,𝒄(𝑡, 𝑡 + 1) in terms of importance. 

     Finally, assume it is known that in the first time interval the most important rate of change-

based metrics, i.e. ∆𝜃𝒓,𝒑(𝑡, 𝑡 + 1) and ∆(‖𝒑‖ − ‖𝒓‖)𝑡,𝑡+1, are absolutely more important than 

∆𝜃𝒓,𝒄(𝑡, 𝑡 + 1) and ∆(‖𝒓‖ − ‖𝒄‖)𝑡,𝑡+1, are strongly more important than ∆𝜃𝒑,𝒄(𝑡, 𝑡 + 1) and 

∆(‖𝒑‖ − ‖𝒄‖)𝑡,𝑡+1, respectively. Therefore, the AHP pairwise comparison matrix for time 

interval 59-60 is: 

Time 59-60 ∆(‖𝒑‖ − ‖𝒓‖)𝟓𝟗,𝟔𝟎 ∆(‖𝒑‖ − ‖𝒄‖)𝟓𝟗,𝟔𝟎 ∆(‖𝒓‖ − ‖𝒄‖)𝟓𝟗,𝟔𝟎 

∆(‖𝒑‖ − ‖𝒓‖)𝟓𝟗,𝟔𝟎 1 9 10 

∆(‖𝒑‖ − ‖𝒄‖)𝟓𝟗,𝟔𝟎 1/9 1 8 

∆(‖𝒓‖ − ‖𝒄‖)𝟓𝟗,𝟔𝟎 1/10 1/8 1 

 

Time 59-60 ∆𝜽𝒓,𝒑
(𝟓𝟗,𝟔𝟎) ∆𝜽𝒑,𝒄

(𝟓𝟗,𝟔𝟎) ∆𝜽𝒓,𝒄
(𝟓𝟗,𝟔𝟎) 

∆𝜽𝒓,𝒑
(𝟓𝟗,𝟔𝟎) 1 8 10 

∆𝜽𝒑,𝒄
(𝟓𝟗,𝟔𝟎) 1/8 1 7 

∆𝜽𝒓,𝒄
(𝟓𝟗,𝟔𝟎) 1/10 1/7 1 

Given the pairwise comparison matrix weights for each distance and magnitude measure, for 

time interval 1-2 and time interval 59-60, are known, therefore the AHP weight for each measure 

is known, at the beginning and end of the evaluation period. Therefore, at each time interval, 

the step change applied to each rate of change metric is also known. 

     A weighting update approach is dynamically applied to adjust the weights for each rate of 

change measure by a pre-defined value until match completion and the weights have 

‘converged’ to the pre-defined weight as of time 59-60. 

     Given the small partitioning (i.e. 1.67%) of the innings, there are fifty-nine comparison 

matrices and therefore the importance value assigned to each element of the pairwise matrix is 

also small and must incrementally increase as the match progresses. The AHP comparison 

matrices for the rate of change in the difference in vector length and rate of change in vector 

angle for time interval 1-2 are: 

Time 1-2 ∆(‖𝒑‖ − ‖𝒓‖)𝟏,𝟐 ∆(‖𝒑‖ − ‖𝒄‖)𝟏,𝟐 ∆(‖𝒓‖ − ‖𝒄‖)𝟏,𝟐 

∆(‖𝒑‖ − ‖𝒓‖)𝟏,𝟐 1 3 6 

∆(‖𝒑‖ − ‖𝒄‖)𝟏,𝟐 1/3 1 7 

∆(‖𝒓‖ − ‖𝒄‖)𝟏,𝟐 1/6 1/7 1 
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Time 1-2 ∆𝜽𝒓,𝒑
(1,2) ∆𝜽𝒑,𝒄

(1,2) ∆𝜽𝒓,𝒄
(1,2) 

∆𝜽𝒓,𝒑
(1,2) 1 3 5 

∆𝜽𝒑,𝒄
(1,2) 1/3 1 6 

∆𝜽𝒓,𝒄
(1,2) 1/6 1/6 1 

 

Given the number of splits within the evaluation period and the comparison matrices for time 

interval 1-2 and 59-60 are known, the increments needing to be applied to each distance and 

magnitude measure at each time-interval are also known. For example, ∆(‖𝒑‖ − ‖𝒓‖)1,2 is 

more important than  ∆(‖𝒓‖ − ‖𝒄‖)1,2, with an AHP scale of 6, and ∆(‖𝒑‖ − ‖𝒓‖)59,60 is  

absolutely more important than  ∆(‖𝒓‖ − ‖𝒄‖)59,60, with an AHP scale of 10. Therefore, given 

there is a difference of 4 scales (10-6) between these two rates of change measures, over the 59 

time-intervals, the pre-defined step change applied to the AHP [for ∆(‖𝒑‖ − ‖𝒓‖) and ∆(‖𝒓‖ −

‖𝒄‖)] is 4/59 = 0.068. At each time interval of the evaluation the AHP will experience an 

incremental increase of 0.068, and at the end of the evaluation period it converges to an AHP 

scale importance of 10 (i.e. ∆(‖𝒑‖ − ‖𝒓‖)59,60 vs. ∆(‖𝒓‖ − ‖𝒄‖)59,60). This linear increment 

is pre-defined and applied to each rate of change measure and at each time interval the 

comparison matrices are updated accordingly. 

     These changes are pre-defined and applied to each metric as the evaluation period matures. 

Accordingly, as these changes are applied a spherical score is recalculated for each time-

interval. Figure 31(a) and 31(b) compares the log-loss metric against the DMS metric to assess 

the predictive power of the probability winning model (please Patel, Bracewell & Wells (2018)). 
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Figure 8(a), 8(b) and 8(c): spherical scoring vs. log-loss and probability of winning for first and second 
innings batting team, respectively. 

To demonstrate the effectiveness of the DMS metric, a case study is examined. Here, the first 

semi-final from the Australian Big Bash 2018 between Hobart Hurricanes and Melbourne Stars 

on 14th February 2019 is explored (https://www.espncricinfo.com/series/). 

     The Hobart Hurricanes batted first and got off to a relatively poor start losing two wickets in 

the second over, leaving them 5 for 2 after 2. The third wicket put on an additional 37 runs prior 

to the major contribution coming from the 4th wickets, where the score advanced to 117 for 4, 

after 16 overs. The final total of 148 is arguably below par, given a 𝑝(𝑤𝑖𝑛) for the team batting 

first of 0.40. Intuitively at this stage the team batting second, the Melbourne Stars, would be 

picked as the favourites, aligning with the model. 

     Reflecting on the insights, observable in Figure 8(b), by the spherical scoring rule, there is 

relatively rapid movement in the first two overs of the first innings with the metric going from 

0.51 after ball 2 to 0.59 after ball 12 and fall of the second wicket. Conversely, the log-loss score 

does not begin to move after the fifth over, with a gradual decline from 0.74 to 0.68 after 56 

balls (end of eight overs). This indicates slight improvements in score from an interpretation of 
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the log-loss as oppose to the early and meaningful escalation of the spherical score which 

provides greater insight into model performance relative to match context. 

     Similarly, in the second innings the spherical prediction is approximately monotonically 

increasing from ball one, going from 0.7 to 0.95. Conversely, the log-loss drops only within the 

power-play indicating an improvement in model prediction from 0.68 to 0.58 at the end of over 

4.  It continues to hover around 0.55 for the last 10 overs. However, with the Melbourne Stars 

chasing down the total only 4 down within 19 overs indicating they were comfortable 

throughout the chase. Consequently, its expected probability is high, this demonstrates the 

modified spherical scoring metric rewards the expected runs model based on its ability to predict 

accurately from long-range. This indicates the methodology is providing reliable, intuitive, 

robust, and transparent outputs. 

     Figure 8(a) and 8(b) shows that the spherical scoring rule outperforms the log-loss during 

the middle and latter stages of the evaluation period, given the meaningful change in the metric 

relative to the match context. Between overs 1-4 a power-play phase is conducted and during 

this time of the match, a lot of uncertainty, especially in the first innings, is present due to 

scoring rate which affects match volatility. The figures clearly show both metrics indicate model 

performance is improving as more information is obtained as the game advances. 

     This is represented in the latter stages of the spherical score, Figure 8(a), as the trend 

converges faster to what happened in the second innings, while the first innings trend remains 

relatively flat. Further. Compared to the log-loss predictions across both innings the modified 

metric converges at a faster rate to the actual outcome, revealing a better use of information. 

     In both instances the log-loss and spherical metric predictions are best in the 2nd innings, 

which is expected as more reliable or informed data is available because the first innings has 

passed. Figure 8(a) reveals that the modified metric is better at utilising new information and 

converges faster to actuality relative to the log-loss metric, this is due to the assigned weights 

representing the forecasting scenario. 

     These results reveal that the modified spherical scoring rule is an appropriate metric to 

assesses the effectiveness of human-based ratings and outperforms well-known performance 

metric of the log-loss. 
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3.12 DISCUSSION AND CONCLUSION 

Given the lack of a modelling framework to construct sport-based rating systems, this chapter 

endeavoured to plug this gap with a robust methodology that produces reliable, robust, 

transparent, and intuitive ratings; also referred to as ‘meaningful’ ratings. 

     Through the literature review and the findings established during the development of 

multiple sport-based rating systems (please see Appendix A), it was identified that sport-based 

rating systems implement five key elements: 1) dimension reduction and feature selection 

techniques, 2) feature engineering tasks, 3) a multi-objective framework, 4) time-based 

variables and 5) an ensembling procedure to produce an overall rating of performance. Given 

these findings, a framework which applies these elements was developed.  

     Specifically, the framework is a form of model stacking where information from multiple 

models is combined to generate a more informative model and applies a dynamic multi-

objective ensembling forecasting strategy. An ensemble approach was adopted as it is assumed 

that sporting performances are a function of the individual traits that significantly affect 

performance. 

     The framework does not necessarily produce the ‘optimal’ rating system; however, it outlines 

the process to construct sport-based rating systems which produce meaningful ratings. It is 

hypothesised that a meaningful rating system identifies the important attributes for each 

significant trait, with respect to performance, and applies an ensemble strategy to construct 

meaningful ratings. This hypothesis is tested in Chapter Four and Chapter Five by applying the 

ratings framework within the sporting context to assess its applicability and validity. These 

sport-based rating systems attempt to show that the framework leads to meaningful outputs. The 

rating systems developed in Chapter Four and Five have been published in a peer-reviewed 

journal and conference proceedings, respectively. 

     This chapter also developed a novel performance metric, known as the DMS metric, which 

applies distance and magnitude measures derived from the spherical scoring rule to assess the 

effectiveness of rating systems. The DMS metric accounts for five criteria which leads to 

effective evaluation of meaningful ratings. This is achieved by 1) evaluating the distance 

between reported ratings, actual outcomes and averaged forecasts, 2) measuring the distance 

between ratings across different time-frame, 3) providing an incentive for well-calibrated and 

sharp ratings, 4) accounting for the context and the difficulty of the forecasting scenario and 5) 

evaluating ratings on the entire probability distribution. Based on these criteria and given that 

ensemble forecasts are generally assessed on calibration and sharpness, a proper scoring rule 

methodology is applied to construct the DMS metric. Specifically, distance and magnitude-

based measures derived through the spherical scoring are applied to develop the DMS metric. 
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     The DMS was developed using three rating vectors 𝒓 (modelled ratings), 𝒄 (benchmarked 

ratings) and 𝒑 (actual ratings) and their corresponding rate of change metrics based on 

magnitude and angular difference. 

     An AHP was applied to assign importance weightings to each vector magnitude and angular 

distance measure. These weights were linearly updated using a pre-defined step parameter value 

until the evaluation period fully matures. 

     Using the probability of win model presented in Patel, Bracewell & Wells (2018), the DMS 

metric was benchmarked against the log-loss scoring rule. The DMS metric was shown to 

outperform the log-loss during the middle and latter stages of the evaluation period, however it 

performed equivalently during the earlier stages. This is mostly likely to due to the weightings 

assigned to the rate of change magnitude and angular metrics. Chapter Five extends this 

validation beyond a single cricket match and applies it to 400 matches. 

     Chapter Four and Five applies the ratings framework within the sporting context to build 

novel rating systems, at both the team and individual level, to evaluate team and player 

performance within a cricketing context, respectively. To demonstrate the effectiveness of the 

DMS performance metric, a cricket-based case study is also examined in Chapter Five. The 

effectiveness of the rating system (presented in Chapter Five) to output meaningful sport-based 

ratings of performance is validated using the DMS metric. Finally, the validity of the DMS 

metric is measured by comparing it against the log-loss when assessing the probability of win 

and player rating models (research objective (iii)).
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Chapter Four 

ESTIMATING EXPECTED TOTAL IN THE 

FIRST INNINGS OF T20 CRICKET USING A NOVEL 

RATINGS FRAMEWORK 

“Essentially, all models are wrong, but some 

models are useful”. 

                                                                                   

George Box (1976).  

Box, G. E. (1976). Science and    

statistics. Journal of the American Statistical 

Association, 71(356), 791-799.
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4.0 INTRODUCTION 

The primary goal of this chapter is to evaluate the sport-based ratings framework and its ability 

to produce meaningful, i.e. robust, reliable, transparent, and intuitive, ratings, specifically to 

assess team performances within the cricketing context. It is shown that systems that ensemble 

features of varying complexities from different dimensions of the ratings scenario produce 

superior predictions than systems which only apply traditional statistics. Specifically, this 

chapter applies the ratings framework within the cricketing context to build a run prediction 

model which outputs meaningful ratings of team performances (i.e. expected total). These team 

ratings are interpreted in terms of runs the first innings batting team is expected to score, at any 

stage of the innings. 

     Current run prediction systems utilised within limited overs cricket suffer from two model 

issues: 1) overly broad match representation metrics and 2) inability to account for contextual 

match factors. In this chapter a gradient boosted model (GBM) ensembling strategy is developed 

to account for these two issues. The model outputs are benchmarked against a popular media 

tool, dynamic programming model (DPM), and actual first innings runs scored. The results show 

that the developed model converged to actual first innings total faster than the DPM and the 

winning and score prediction system (WASP). Importantly, the GBM model outperformed the 

DPM and WASP across several statistical accuracy metrics. The proposed run prediction model 

utilises traditional metrics, such as current runs and wickets, match-level metrics, such as runs 

remaining, resource-based metrics, such as resources remaining, and team (or innings) specific 

metrics relating to the batting and bowling teams, such as percentage dot balls and percentage 

boundaries. Conceptually, these attributes begin to account for environmental and team specific 

factors. The improvement in accuracy whilst maintaining a simplicity of deployment suggests 

that maintaining contextual information and intuition within an estimated runs model is 

appropriate for limited overs cricket. The results show that ensembling metrics or predictions 

from different match dimensions, such as player and environmental, produce more predictive 

and interpretable run estimates than models that only consider macro-perspectives such as 

Duckworth-Lewis model and the dynamic programming model. This indicates model 

robustness and reliability. 

     The ratings framework outlined in Chapter Three is applied to develop a run prediction 

system which implements different attributes from various dimensions of a cricket match to 

derive ball-by-ball run predictions, indicative of team performance (i.e. team-based ratings). 

Using the ratings framework, it is assumed that a model which ensembles traditional, resource-

based and match-level metrics result in better predictions than models that either 1) do not 

incorporate ensembling techniques and 2) only utilise environmental-level or traditional (or 

shallow) metrics such as wickets, current total and balls. Similar ensemble strategies have been 

applied in the baseball sabermetrics literature focussing on run prediction. The literature states 
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that models which utilise both traditional and complex metrics generate better run predictions; 

for example, “A mixture of conventional independent variables and sabermetrics independent 

variables would be broad enough to find models to correlate highly with run production and run 

preventions” (Benevenatno, Berger & Weinberg, 2012, p. 67). 

     The primary goal of this chapter to use the ratings framework to develop a real-time team-

based rating system that predicts the expected total of the first innings batting team, at each 

stage of an innings, and to demonstrate the applicability of the ratings framework to construct 

sport-based systems that produce meaningful ratings of team-based performances. By 

demonstrating the applicability of the framework, this chapter addresses research objective (iii). 

Specifically, it demonstrates the need to apply 1) dimension reduction and feature selection 

techniques, 2) feature engineering strategies, 3) multi-objectives, 4) team-based variables and 

5) ensemble forecasting strategies, to construct meaningful sport-based rating systems. Overall, 

the aim is to show that the ratings framework produces highly predictive expected runs, 

indicative of team performance9,10. 

4.1 RUN PREDICTION SYSTEMS IN CRICKET 

T20 cricket is a dynamic and fast paced game where the team’s prospects of winning can change 

within a few balls. This allows players to significantly influence match result off fewer 

deliveries relative to longer formats. Consequently, each ball carries more weight as it represents 

a greater proportion of the match. Although, this introduces a greater level of uncertainty when 

predicting results as only a small number of balls are necessary to the change match situation. 

An area of considerable uncertainty is the number of runs the batting team is expected to score 

in the first innings.  It is hypothesised that ball-by-ball predictions of the first innings total can 

be improved by using match level metrics, such as resources remaining, or shallow metrics such 

as current total, with team inning metrics, such as percentage dots to produce better first inning 

run predictions than a model that only considers shallow metrics. The rationale is that some of 

these within game descriptive actions will encapsulate information about playing conditions. 

     Traditional run prediction models do not consider the complex interactions existing between 

resource-based, traditional, match level and team-specific (or inning specific) metrics, due to 

data inaccessibility, implementation issues, inability to produce intuitive results that are 

understandable by players and coaches and inability to implement offline.  

 
9 Patel. A. K., Bracewell. P.J., & Bracewell, M.G. (2018). Estimating expected total in the first innings of T20 cricket 

using gradient boosted learning. Paper published in The Proceedings of the 14th Australian Conference on 

Mathematics and Computers in Sports. Sunshine Coast, Queensland, Australia:  ANZIAM MathSport. ISBN: 

978-0-646-95741-8. 

10 This paper was awarded the Neville De Mestre Prize for best student paper at the 14th Australian Conference on 

Mathematics and Computers in Sport (MathSport) conference. 
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     Refining estimates using data that is descriptive of actions within the innings is useful for 

applications in coaching, strategy, and entertainment.  Although, they are not suited to adjusting 

totals for defining the formal outcome of a match, where the Duckworth-Lewis-Stern is used 

(Stern, 2016). The now defunct Indian Cricket League used the VJD method, developed by 

Jayadevan (2002). The outputs from targeting setting and readjusting models are subject to 

scrutiny and can have a bearing on match and tournament outcomes, thus tremendous rigour 

must be applied to ensure fair results. 

     Consequently, forecasting totals is an area that has received considerable attention.  Notable 

research in run prediction in limited overs cricket include: Duckworth and Lewis (1998), Stern, 

(2016), Jayadevan (2002), Ovens and O’Riley (2006), Brooker & Hogan (2011), Clarke (2000), 

Scarf, Akhtar & Shi (2010), Kaluarachchi & Varde (2010), Bailey & Clarke (2006), Bandulasiri 

(2004), Jhawar & Pudi (2016), Asif & McHale (2016), Davis, Perera & Swartz (2015) and Shah, 

Jha & Vyas (2016). 

     The Duckworth-Lewis-Stern (DLS) system is the most famous of this research (Duckworth 

and Lewis, 1998; Stern, 2016) with the primary function is to reset the target total during 

interrupted matches of limited overs cricket.  Importantly, the DLS system can also be used to 

produce first innings run predictions for uninterrupted matches, with the output embedded in 

live scorecard publication tools and websites like crichq.com and nzc.nz. This elegant method, 

which is well entrenched in club, domestic and international cricket due to simplicity of use, is 

well described in both academic and popular literature (e.g. espncricinfo.com). The premise of 

the method is that batting teams have two resources to produce runs: balls and wickets. This 

two-factor relationship is then used to calculate the average number of runs that can be scored 

given the remaining resources. 

     Clarke (1988) applied a dynamic programming model to one-day cricket to: 1) calculate the 

optimal scoring rate, 2) estimate the total number of runs to be scored in the first innings and 3) 

estimate the probability of winning in the second winnings. The first innings formulation 

generated a team’s optimal scoring rate to obtain a given total, given the number of wickets lost 

and balls. The second innings formulation generated a probability scoring table outlining the 

probability of the second innings batting team achieving the target total, given the number of 

wickets lost and balls remaining. Ovens and O’Riley (2006) evaluated the ball-by-ball run 

prediction ability of four models: Average Run Rate, PARAB, Duckworth Lewis (D/L) and 

Jayadevan. Results showed that the D/L method had the strongest predictive power, predicting 

4.50 runs below the actual total, followed by ARR with prediction 17.29 runs below the actual 

total, Jayadevan with 31.13 runs below the actual total and PARAB 41.60 runs below the actual 

total. Similarly, Brooker and Hogan (2011) utilised a dynamic programming model to develop 

a Winning and Score Prediction (WASP) system for limited overs cricket. The system produces 

predictions using factors such as pitch conditions, weather, boundary size and the quality of the 
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batting team and bowling attack. The WASP works backwards to solve inning specific models. 

The first innings model produces ball-by-ball prediction of the runs scored, while the second 

innings model calculates the probability of the batting team reaching the target total and 

therefore winning.  

     Swartz, Gill and Muthukumarana (2009) developed a discrete generator simulator, as there 

is finite no. of outcomes that can occur for any given delivery, for one-day cricket. Applying a 

Bayesian Latent model, ball-by-ball outcome probabilities were estimated using historical ODI 

data and were dependent on batter, bowler, total wickets lost, total balls bowled and current 

match score. It was found that the proposed simulator produced reasonably realistic results, with 

actual runs and simulated runs revealed an excellent agreement. Ovens & Bukiet (2006) 

developed a Markov chain approach to predict the runs scored for a given batting line-up. 

Realising that the interaction between bowler and batter is the primary factor dictating the 

dynamics of run production, a match was modelled as a sequence of one-on-one interactions, 

through a multi-dimensional matrix, 𝑀, with entries (𝑏, 𝑟, 𝑤, 𝑏1, 𝑏2) representing the number of 

balls, runs scored, wickets lost, and the striking and non-string batter, respectively. The 

probability of being in any given state was calculated, for any given number of balls, by 

multiplying 𝑀, representing the set of probabilities after 𝑏 − 1 balls, by the probability of each 

event (i.e. number of runs scored off any given ball). Simulation resulted in a runs distribution 

table and “summing the product of each possible number of runs and its probability of being the 

result for the match gives the expected number of runs for the batting order considered” (Ovens 

et al., 2009, pg. 497).  

     Jayadevan (2004) developed a method for resetting the target total during an interrupted 

limited overs cricket match. A normal score represented a team’s general scoring pattern, while 

the target score represented a team’s ideal scoring pattern too achieve the target score. 

Regressing cumulative percentage runs on cumulative percentage overs it was found that a cubic 

polynomial equation of order 1 represented a team’s scoring pattern (a similar approach was 

adopted by Mansell, Patel, McIvor, and Bracewell, 2018). Moreover, the effect of a wicket was 

incorporated into the model by examining the pattern of wickets fallen. Applying the model 

produces a “target runs” percentage table that allocates a proportion of runs that needed to be 

scored by the batting team during any stage of the second innings. 

     Swartz, Gill, Beaudoin & deSilva (2004) used simulated annealing to conduct a search over 

a space of permutation of batting orders to find the optimal or near optimal first innings order. 

A first innings run simulator was built using a Bayesian log-linear model to generate ball-by-

ball outcomes. The model was applied to the 2003 India World cup squad and posterior 

estimates of the parameters were obtained by averaging output from a Markov chain. Simulating 

71,000 first innings runs using India’s 2003 World cup final batting order a good fit between 
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actual runs and simulated runs was found. Overall, it was found that the optimised batting order 

produced 6 more runs than that of the actual batting order.     

     Singh, Singla and Bhatia (2015) developed a first innings run prediction model and a second 

innings match outcome probability model for one-day cricket by applying linear regression and 

Naïve Bayes classifiers for each innings applied in 5 over intervals. The first innings model used 

current run rate and wickets fallen, while the second innings used current run rate, wickets fallen 

and target score. The error produced by the linear regression classifier were less than a current 

run rate projection method and the Naïve Bayes classifier had an accuracy of 68% in the 0-5th 

overs, increasing to 91% between the 40-45th over.  

     Bracewell et. al. (2014) generated team ratings where margin of victory was represented in 

terms of runs only.  Like the approaches outlined previously, the resources available at the end 

of the second innings were used to determine a likely final total if the innings continued until 

all resources were consumed. This was used to generate team ratings that outperformed popular 

opinion for result prediction. 

     The hypothesis of combining conventional and advanced metrics builds on sabermetrics 

literature stating that run prediction models that utilise both conventional and advanced metrics 

generate better predictions. 

4.2 METHODS 

Using the ratings framework, the intent is to show that ensembling traditional (i.e. current total 

and balls etc.), resource-based (i.e. resource remaining), match level and team-based metrics 

(i.e. percentage dots and percentage boundaries) produce better first inning run predictions in 

T20 cricket than models that only consider traditional (or shallow) metrics. It is anticipated that 

team-based specific metrics inherently include information relating to environmental, 

situational, and competitive factors. For example, high percentage boundaries could indicate 

either poor bowling, good batting, favourable batting conditions or any combination of these 

factors. Due to the large variations between balls in T20 cricket, ball-by-ball metrics that capture 

this variation must be utilised to produce predictive outputs. The traditional and less informative 

metrics produce less informative model outputs. Therefore, advanced, and more informative 

metrics must be adopted to significantly explain the underlying variation to produce accurate 

predictions. In effect resulting in non-meaningful outputs. Therefore, a modelling framework, 

such as ensembles, that consider these subtle nuisances and capture complex interactions must 

be applied to output meaningful ball-by-ball run predictions. 

     It is assumed that models which ensemble traditional, resource-based match level, and team 

specific metrics produce better run predictions than models that only utilise match level or 

traditional metrics, such as wicket, current total, and balls. This assumption has been extracted 

from baseball sabermetrics literature focusing on run prediction, which is a well-researched and 
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documented problem within baseball. Effectively, the literature states that models which utilise 

both conventional and advanced metrics generate better run predictions. For example, “A 

mixture of conventional independent variables and sabermetrics independent variables would 

be broad enough to find models to correlate highly with run production and run preventions” 

(Benevenatno, Berger & Weinberg, 2012, p. 67).  For more readings on baseball run prediction 

please see Bukiet, Harold & Palacios (1997); Freeze (1974); Beneventano, Berger & Weinberg 

(2012); Cserepy, Ostrow & Weems (2013). Only first inning run prediction models are 

considered as there is less information available regarding what is expected to be a winning total 

(which is known in the second innings).  

 

 

 

 

 

 

 

 

 

 

Figure 8 outlines the adapted ratings framework to develop a run (i.e. team-based) performance 

prediction system that accurately forecasts the expected number of runs in first innings of a T20 

match, at any stage of the first innings. The run prediction framework applies various metrics 

from different dimensions of a cricketing match, these metrics are categorised into five 

dimensions: resources-based, traditional, match-level, team-based (i.e. bating and bowling 

dimensions). Each of these dimensions represent different elements of a cricket match, and 

within each dimension there are multiple metrics of varying complexity. 

     Ensembling metrics of varying levels of complexity from each dimension produces better 

predictions of expected run than traditional models such as the WASP system which only 

utilises match level, such as wicket, current total, and balls. Moreover, the framework will 
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account for complex interactions between metrics across the five dimensions of interest to 

produce highly accurate predictions.  

     The objective of each layer of the run prediction framework is as follows: 1) the traditional 

layer measures a team’s ability to score runs based on traditional statistics such run rate, wickets, 

and current total. 2) The resource layer derives resource-based metrics which measures the 

proportion of resources at the batting team’s disposal from which to accumulate runs, at each 

stage of an innings. 3) The match layer considers match-level statistics, such as percentage dots 

and percentage boundaries to derive expected runs. 4) The team-level layer (i.e. batting and 

bowling team) using metrics such as projected total (i.e. current runs/ resources remaining), 

strike rate, and team economy rate (i.e. current runs/total balls).  

     The shallow (i.e. initial) layers of the framework consider match-level, traditional and 

resource-based metrics to build a better understanding of the team’s run scoring ability and the 

complex interactions metrics which explain state of play. Team-based metrics are derived from 

resource metrics, for example, projected total is calculated using the resources-remaining 

feature. Finally, ensembling these metrics using a modelling function which accounts for 

interactions is applied to reduce variation in predicted run and produce highly predictive and 

meaningful run predictions. 

     Each dimension of the run prediction framework quantifies the state of play on a ball-by-ball 

basis and explains how team-level contributions affect the expected total. At each layer of the 

ratings framework action, context and time-based attributes are applied. All features are time-

based as they are derived on a ball-by-ball basis. Table 9 outlines the metrics that will be used 

in the ensembled model, and the attribute-type and layer to which they relate. 

Performance metrics Associated layer Attribute group 

Projected total Match-level Action/ Time 

Team adj. strike rate Batting Context/ Time 

Current run rate Match-level Action/ Time 

Wickets Traditional Action/ Time 

Percentage dots Bowling Context/ Time 

Percentage boundaries Batting Context/ Time 

Resource remaining Resource Context/ Time 

Balls bowled Traditional Action/ Time 

Current runs Traditional Action/ Time 

Percentage extras Bowling Context/ Time 

Table 9: Metrics used in the ratings model by layer and attribute-type 
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4.3 DATA  

Model development utilised ball-by-ball observations from the following T20 competitions: 

Indian premier league (IPL; 2015, 2016, 2017 and 2018), Australian Big Bash League (BBL; 

2016-2017 and 2017-2018), English NatWest T20 league (2015, 2016), South Africa Ram slam 

(2016 and 2017), Caribbean Premier league (CPL; 2014, 2015, 2016 and 2017) and New 

Zealand Super Smash League (2017-2018).  

     A process was developed to programmatically extract and parse ball-by-ball observations 

from ESPNCricinfo (http://www.espncricinfo.com/) commentary logs and provide a more 

convenient data structure (using the R programming language). The process extracted relevant 

data on a ball-by-ball basis and stored the data in a tabular form for easy access. 

     Overall, the dataset contained 85,700 1st inning ball-by-ball observations from 704 matches. 

Model development utilized 50% of the data for training, 25% for testing and 25% for 

validation.    

     Figure 9 shows that the underlying distribution for first innings total can be well 

approximated by a normal distribution. Given this finding a normal distribution will be used to 

during the modelling process. Exploratory analysis found the average first innings runs scored 

= 160, while the average first innings winning total = 168. Figure 10 illustrates the evolution of 

first innings total since 2014. There is an upward trend, with runs experiencing an average yearly 

increase of 4.75. 

Figure 9 and 10: Distribution of first innings total and Avg. 1st innings total (2014 - 2018) 
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4.4 GENERALISED BOOSTED REGRESSION MODELING 

The proposed model uses a gradient boosted regression technique (GBM) to account for the 

complex interactions between match and inning level metrics by taking a sequence of weak 

leaners to construct a complex leaner – increasing model complexity. The initial learners fit 

simple model and then the weighted combinations can grow more and more complex as learners 

are added. This produces regression models consisting of a collection of regressors. Learners 

do so sequentially with earlier stages fitting simple models to the data and analysing the errors. 

Latter models focus on trying to account for as much error as possible. The models are given 

weightings and the different models are combined into an overall predictor. Moreover, the 

gradient boosted method serves as a dimension reduction technique to identify the relative 

importance of each performance metric, allowing the evaluation of metric importance and 

elimination of uninformative metrics.  

     The proposed model was built in R using the gbm package and incorporates the following 

parameters: 1) distribution = Poisson – runs scored is a count outcome, 2) n.trees = 20,000 - 

optimal number of tree for out-of-bag variance, 3) interaction.depth = 5 – 5-way interaction to 

capture complex variable relationships and 4) shrinkage = 0.0001 – step-size learning rate. The 

combination of weak-leaners, to build a complex learner, that incorporate a 5-way interaction 

effect will slowly start to reduce the error in first innings total. Ultimately, the new complex 

learner will account for greater variation and understand the complex interaction between match 

and inning-specific metrics. The metrics included in the model: projected total 

(𝑖. 𝑒. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙 / 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑔), team strike rate, run rate, current runs, wickets, 

percentage dots, percentage boundaries, resources remaining and balls. These metrics contain 

match level, batting, and bowling-level performance information. Team specific metrics 

included in the model are percentage dots, percentage boundaries, percentage extras, strike rate 

and economy rate. These metrics inherently store information about the interactions between 

the bowling and batting environment. The gradient boosted technique considers the interactions 

across these ‘meta-information’ rich metrics to gauge match-level understanding. 

4.5 RESULTS 

The GBM model was benchmarked against the Dynamic Programming Model (DPM) outlined 

in Clarke (1988), and the model predictions were evaluated against actual runs scored. The ball-

by-ball predictions and were aggregated to an over. A relative importance analysis revealed 

projected total, team strike rate, percentage boundaries and run rate as the 3 most important 

metrics. These results show that in T20 cricket the first inning total is heavily dependent on 

efficient run production. Specifically, run production is dependent on the volume of runs scored 

per percentage of resources used. Moreover, the analysis reveals the metrics that are utilised by 

the dynamic model: i.e. current total, balls and wickets are contained within the top 3 important 
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metrics: 1) balls influence team strike rate, 2) current total influences team strike rate and project 

total and 3) wickets influence resources remaining, which is also present in projected total. This 

indicates that although current total, balls and wickets are important to evaluate the expected 

total in the first innings they are more informative when combined with other metrics to explain 

a greater proportion of variation. Model performance was evaluated using two measures: Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE). RMSE has the benefit of 

penalising large errors, while MAE has interpretative power and only describes error. Figure 11 

illustrates the over-by-over predictive accuracy of the two models, measured against RMSE and 

MAE.  

     These run predictions (i.e. team ratings) are intuitive and transparent, as the results can be 

mapped to real-world observable outcomes and the context to which the system is being applied, 

and are interpretable and easily communicated, respectively. Moreover, the predictions are 

reliable and robust, as they yield good performance during different stages of the first innings, 

and are well-calibrated and sharp, respectively. 

     Figure 11 illustrates that on average the proposed model out-performs the dynamic program 

on an over-by-over basis across both RMSE and MAE. A bootstrapped sample of the over-by-

over performance measures created confidence intervals. A statistically significant difference 

was found between the performance metrics for the two models: GBM and DPM (α == 5%). 

This statistically significant difference between the models for the performance measures 

existed up until the 13th over (~78 balls) suggesting that for 65% of the first innings of a T20 

match the GBM model produced statistically better results than the DPM. Although, examining 

the performance measures on a match-by-match basis revealed instances where the DPM 

produced better predictions. On average, the DPM produced better predictions for low scoring 

matches (i.e. ≤ 158). This could be because in low scoring matches metrics such as current total, 

balls and wickets metrics have a greater impact on expected total, while efficiency metrics (i.e. 

percentage dots and percentage boundaries) are of lesser importance. A 30% increase in 

predictive accuracy is observed between the 5th and 10th over. Although, the prediction error 

during this period is large given that the data does not contain sufficient match information. 

Surprisingly, model accuracy experiences a decrease in the 12th over. It was found that between 

overs 6 -10 the batting team the run rate, percentage boundaries and innings strike rate are 

relatively constant. Although, in overs 11-13 these metrics begin to experience a steady increase, 

indicating that the batters are starting to pick-up and increase aggression. It is assumed that the 

GBM and DPM fail to effectively account for this sudden increase in batting intensity. The 12th 

over is where the difference between RMSE and MAE becomes statistically insignificant, 

indicating that after the 12th-13th over enough match information is known, therefore both 

models are producing similar results and both models are extracting similar information from 

the metrics relating to the first innings expected total. 
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4.6 HYBRID MODEL: GBM using DPM 

Given the dynamic model generates predictive results and produces better prediction for low 

scoring first innings, the GBM model was updated using the DPM predictions as an input metric. 

This hybrid model did not produce prediction improvements as the metrics that are present in 

the DPM are already present in the GBM. As stated, current total, balls and wickets are included 

in the GBM model in a meaningful manner, such that more information regarding match-state 

is incorporated. Therefore, the DPM metric is not introducing any new information into the 

proposed model and introducing confounding issues. An importance analysis revealed DPM 

metric was the most important metric. This is expected as the DPM combines three conventional 

metrics in a meaningful way to produce a more informative metric. This suggests that combining 

weak predictors, in a meaningful manner, creates a stronger predictor that explains a greater 

proportion of variation. 

     Implementing a GBM ensembling approach into the run predictions framework produces 

highly predictive and meaningful team ratings, which is represented by their expected total at 

each stage of the innings. The run predictions are 1) robust - the prediction yield good 

performance where data is drawn from a wide range of distributions that are largely unaffected 

by model assumptions. 2) Reliable – the predictions produce accurate and highly informative 

forecasts which are well-calibrated and sharp. 3) Transparent – the predictions are easy to 
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interpret and communicate. Each ball-by-ball prediction illustrates the number of total numbers 

of runs the batting team is expected to score. 4) Intuitive - each ball-by-ball prediction can be 

mapped back to a cricketing context, for example, suppose at 𝑏𝑎𝑙𝑙𝑖 a batter hits a boundary four, 

increasing the expected total from 125 to 132, between 𝑏𝑎𝑙𝑙𝑖 and 𝑏𝑎𝑙𝑙𝑖+1, it can be said that the 

value of that boundary on the first innings expected total was 7 runs (i.e. 132-125).  

4.7 DISCUSSION AND CONCLUSIONS 

Although the proposed model produced better results, there are scenarios where the dynamic 

programming model produced better predictions. The DPM produced better outputs in low 

scoring matches (i.e. ≤ 163 runs) where the batting team had a ‘slow’ start. This scenario arises 

because the proposed model considers metrics that are relatively more important in high scoring 

matches, such as percentage dots and percentage boundaries and therefore is more sensitive to 

performances that significantly affect or deviate the slope of the expected total. Figure 10 

illustrates the evolution of first innings total since 2014. Overall, there is an upward trend across 

time, although this seems to flatten out. Although recently (2017-2018) there has been a small 

increase in gradient. Assuming the trend continues it is assumed that the proposed model will 

continue to outperform the DPM as scores will continue to rise, meaning the latter model will 

continue to produce more varied predictions over time as it fails to accommodate for highly 

sensitive metrics that significantly affect expected total and matches where more than 163 are 

scored in the first innings. 

     The results confirmed the hypothesis that a model that utilises both meta (i.e. match-level) 

and shallow metrics, and advanced metrics will output better predictions than a model that only 

utilise meta and shallow metrics. This shows that advanced metrics store additional information, 

and combining shallow metrics reveal features that account for additional proportion of 

variation. Moreover, ensembling weak predictors creates stronger, more complex predictors that 

explain a greater proportion of variation than its individual counterparts. At each layer of the 

ratings framework action, context and time-based attributes are implemented to produce highly 

predictive run predictions. These three attribute-types are necessary to produce meaningful 

output because combining action, context and time-based attributes create trait-based ratings 

which result in meaningful performance-based ratings (please see Chapter 3 section 3.4.1). 

     Current models do not consider complex interactions existing between innings specific and 

match level metrics. Therefore, a modelling technique that incorporates these subtle nuisances 

and interactions is expected to produce more accurate predictions. The literature relies heavily 

on meta-level metrics such as pitch conditions, boundary size, and shallow team metrics such 

as batting and bowling characteristics that fail to incorporate inning dynamics and capture the 

interaction effects between players and team metrics. This novel methodology attempts to 

address these issues to dynamically predict the first innings total. The hypothesis that first 
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innings predictions could be improved by using match-level, team and inning specific data was 

found to hold true in the first 12 overs over an innings. 

     Using the framework (Chapter Three), this chapter developed a novel team-based rating 

system, within the cricketing context, predicting the number of runs the first innings batting 

team is expected to score. Specifically, the results of this system are a meaningful representation 

of how a team is performing on a ball-by-ball basis. It is revealed that meaningful ratings of 

team performance (i.e. run predictions) are generated by 1) identifying the important dimensions 

of a cricket match using dimension reduction, 2) establishing the key feature within each of 

these dimensions, 3) apply time-based (i.e. ball-by-ball) features to understand match context 

and team performance on a ball-by-ball level, 4) considering the different objectives (or 

dimensions) of a cricket match and 5) applying an ensembling forecasting strategy (i.e. gradient 

boosted modelling) to effectively account for the complex interaction present within cricket and 

team performances. This chapter shows that rating systems must implement these key 

communalities to output meaningful ratings of team performance. Moreover, it was shown that 

different match dimensions must be applied to produce meaningful predictions. 

     It has been shown that the framework can be applied within the sporting context to produce 

meaningful ratings i.e. intuitive, robust, reliable, and transparent. It is concluded that the ratings 

framework allows the construction of rating systems which produce meaningful team-based 

ratings of performance within the sporting context.  

     The following chapter applies the ratings framework within the cricketing context, to develop 

a novel player-based rating system to evaluate the amount of influence a player exerts at each 

stage during a match of twenty-twenty (T20) cricket. Moreover, to demonstrate the effectiveness 

of the DMS performance metric, chapter five applies the DMS metric to a probability of win 

and player rating model, and benchmarks it against the log-loss metric (research objective (iii)) 

to prove that it better accounts for match context. The effectiveness of the player-based rating 

systems to output meaningful performance ratings is validated using the DMS metric. 

     From a team selection and commercial point of view, more accurate estimations of a first 

innings total provide interested parties with useful information for both strategic and 

entertainment purposes highlighting the value of deploying the GBM model in real-time. 

     Future research will benchmark the GBM system against the WASP model (Brooker et. al., 

2011, Shah et. al., 2016). Although the WASP utilises team specific metrics such as the average 

team score, opposition’s bowling performance, ground average score, these shallow metrics fail 

to capture match and inning information at a deeper level. Although metrics such as climate, 

pitch conditions and boundaries are important when predicting runs, this meta (i.e. match-level) 

information can be captured and stored in team and inning-specific metrics; for example, a high 

percentage of dots and quick depletion of resources indicating strong bowling attack, weak 
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batting performance and/ or poor batting conditions. In addition, reviewing tournament specific 

model performance will also provide greater insight into the applicability of various models. 

     Finally, given that the DPM falls-over for high scoring matches (i.e. ≤ 158) and the first 

innings total is experiencing a 4.75 runs increase year-on-year, it is suggested that future 

research benchmark the two models year-on-year and observe the period in which the DPM 

outperforms the GBM. It is assumed that earlier seasons (2014 and 2015) the DPM would 

outperform GBM due to the low scoring first innings. 
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Chapter Five 

DYNAMICALLY EVALUATING PLAYER 

INFLUENCE IN T20 CRICKET USING THE 

RATINGS FRAMEWORK 

“Human behaviours can be accurately described 

as a set of dynamic models sequenced together by 

a mathematical or statistical function” 

 

                          Alex Pentland (1999). 

Pentland, A., & Liu, A. (1999). Modeling and 

prediction of human behavior. Neural 

computation, 11(1), 229-242. 
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5.0 INTRODUCTION 

Limited overs cricket is an ideal sport to isolate individual team member contribution. This is 

due to the availability and volume of machine-readable data, combined with the relatively 

isolated nature of the batter versus bowler contest observed per ball. 

     Cricket is a team sport based on the balance of two key resources: 1) balls and 2) wickets. 

Simply, the batting team that utilises these two resources most effectively wins the match. As 

an inning progresses, the total number of resources allocated to the batting team decreases. 

During this time the batting team aims to score as many runs as possible given an allocated 

number of resources, while the bowling team aims to restrict the total number of runs conceded, 

by taking wickets. The bowling teams’ overall goal is to deplete the batting team resources as 

quickly as possible for the least number of runs. 

     The first innings batting team is assigned the task of maximising the total number of runs 

scored given two resource constraints: 1) balls and 2) wickets; while the second innings batting 

team is assigned the task of outscoring the first innings batting team, given the allocated 

resources. The first innings reaches completion when all resources are depleted, while the 

second innings reaches completion when all resources are depleted, or the batting team has 

achieved the target score. “The optimisation exercise in either team’s task involves choosing 

some compromise between scoring fast and hence taking higher risks of losing wickets and 

playing carefully and hence risking making insufficient runs” (Duckworth & Lewis, 1998, pg. 

220). 

     Cricket is intertwined with numerical values that ultimately translate to a match result. 

Although, given its numerical depth academic and commercial literature regarding the 

application of analytical techniques within cricket is limited. Historically this has been due to 

accessing data. Although, with rich online data sources such as ESPNCricinfo 

(http://www.espncricinfo.com/) this is rapidly evolving. The most notable application of 

analytics within cricket is the Duckworth Lewis (1998) resource allocation method. Duckworth 

and Lewis (1998) developed a framework which mathematically allocates resources to 

appropriately reset or recalculate target scores during interrupted one-day cricket matches. This 

system is currently implemented by the International Cricketing Council (ICC) as the primary 

method to recalculate the target score during an interrupted limited overs cricket match. 

     The primary goal of this chapter to use the ratings framework to develop a real-time 

individual-player rating system that accurately measures the amount of influence a player exerts 

on a T20 match of cricket, at each stage of an innings11. Overall, the aim is to show that the 

ratings framework produces meaningful ratings for player performance. The secondary goal of 

 
11 Patel, A. K., & Bracewell, P. J. (2019). Dynamic evaluation of player performance in T20 cricket. Journal of 

Quantitative Analysis in Sport. 

http://www.espncricinfo.com/
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this chapter is to apply the DMS performance metric developed in Chapter Three to the 

probability of win and player rating model, and benchmark it against the log-loss metric to prove 

that it outperforms the log-loss and better accounts for match context. Specifically, this chapter 

demonstrates the applicability of the developed ratings framework and novel performance 

metric within the sporting context. Therefore, addressing research objective (iii). 

     As the emphasis for this method is in real time, novel ball-by-ball metrics are built. To derive 

meaningful metrics, the ratings framework is applied. The ratings framework applies multi-

modelling objectives to derive player specific metrics which are used to produce player ratings, 

quantifying the amount of influence a player exerts on a match of T20 cricket. Each model 

outputs ball-by-ball metrics which aim to explain a player’s in-game contribution in terms three 

key dimensions: volume of contribution, efficiency of contribution, and contributions made 

under pressure. 

     To accurately measure a player’s influence three key dimensions of a player’s game must be 

considered: 1) volume of contribution, 2) efficiency of contribution and 3) contributions made 

under pressure. Many conventional performance metrics are inapplicable when evaluating in-

play influence due to indefinability i.e. batting average is undefined until match completion, and 

event dependence i.e. bowling average and strike rate are undefined until a bowler takes a wicket 

(i.e. event). 

     Moreover, traditional metrics do not account for many match factors, such as opposition 

strength, venue, or pitch conditions. Therefore, before developing an influence model, 

performance metrics that are measurable on a ball-by-ball basis are engineered. These 

engineered metrics must incorporate the different dimensions of a player’s game and capture 

their ability to affect match outcome. An influential player is one which can significantly shift 

the probability of winning in their teams’ favour and contribute to team victory with quantity, 

efficiency and in pressure situations. 

     No such approach to evaluate real-time player influence, using a combination of volume, 

efficiency and pressure-based metrics, and match outcome, while the game is in progress, was 

identified in the academic literature. Although, it should be noted that real time tracking, and 

estimation is investigated in Akhtar & Scarf (2012), Bailey & Clarke (2006), Scarf & Shi (2005) 

and Bracewell (2015). Moreover, the idea of player efficiency was first introduced by Beaudoin 

& Swartz (2003) and the by Lewis (2005). 

     Before presenting the model, section 5.1 outlines the most notable research into the 

application of analytical systems in cricket. Section 5.2 describes the research methodology is 

described, followed by a description of the data used for model development and the covariates 

that will be experimented within the modelling. Section 5.4 provides an in-depth description for 

each of the models and assesses model accuracy and predictive power. Section 5.5 evaluates 

model fit diagnostics, provides a comparison of predicted probabilities with actual outcomes, 
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and applies the DMS performance metric to the probability of win and player rating models. 

Section 5.6 concludes with closing remarks and discusses potential future work. 

5.1 APPLICATION OF ANALYTICAL SYSTEMS IN CRICKET 

As stated in Asif & McHale (2013) previous work in cricket has focussed largely on the problem 

of resetting target in the limited overs format following interruptions to play (please see McHale 

& Asif (2013); Duckworth & Lewis (2004); Duckworth & Lewis (1998); Bhattacharya et al., 

(2011); Jayadevan (2002); Preston & Thomas (2002); Stern (2016)). 

     Although there are a small number of published articles on the application of analytics within 

cricket, there is increasing analytical literature and the adoption of predictive methodologies at 

the professional level. It has been noted that “during the past decade many academic papers 

have been published on cricket performance measures and predictive methods” (Lemmer, 2011, 

pg. 1). Moreover, there is increasing commercial demand for data-driven decision-making 

regarding topics such as player selection, in-game strategies. For example, Trent Woodhill 

claimed that the problem [with cricket] is, for all its obsession with numbers, the sport has yet 

to move onto a data obsession… Data is not something cricket has invested greatly in yet 

(ESPNCricinfo, 2017). 

     Critically, there remains an academic and commercial gap surrounding real-time, player 

rating systems. Proceeding is a review of the most notable academic literature outlining the 

application of analytical techniques to ball-by-ball cricketing data: 

     Clarke (1988) applied a dynamic programming model to one-day cricket to: 1) calculate the 

optimal scoring rate, 2) estimate the total number of runs to be scored in the first innings and 3) 

estimate the probability of winning in the second innings. The first innings formulation allowed 

the development an ‘optimal scoring model’ outlining a team’s optimal scoring rate (i.e. runs 

per over) to obtain a given expected total, for any given number of wickets lost and balls 

remaining. The second innings formulation enabled the development of a ‘probability scoring 

table’ outlining the probability of the second innings batting team scoring the target total, for 

any given number of wickets lost and balls remaining.  

     Similarly, Davis, Perera and Swartz (2015) developed a T20 simulator that calculated the 

probability of a first-innings batting outcomes dependent on batsmen, bowler, and number of 

overs consumed and total wickets lost. These probabilities were based on an amalgamation of 

standard classical estimation techniques and a hierarchical empirical Bayes approach, where the 

probabilities of batting outcomes borrow information from related scenarios (Davis et al., 2015). 

Simulation suggested that batting teams were not incrementally increasing aggressiveness when 

falling behind the required run rate.   

     Swartz, Gill and Muthukumarana (2009) developed a discrete generator simulator, as there 

are an infinite number of outcomes that can occur for any given delivery, for one-day cricket. 
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Applying a Bayesian Latent model, ball-by-ball outcome probabilities were estimated using 

historical ODI data and were dependent on batsmen, bowler, total wickets lost, total balls 

bowled and current match score. It was found that the proposed simulator produced reasonably 

realistic results, with actual runs and simulated runs revealing an excellent agreement. 

Moreover, comparing wickets taken, the actual results compared favourably with simulated 

results. 

     Bukiet & Ovens (2006) developed a Markov chain approach to predict the expected runs 

scored of a batting line-up. Realising that the interaction between bowler and batsman is the 

primary factor dictating the dynamics of run production, a match was modelled as a sequence 

of one-one interactions, through a multidimensional matrix, 𝑀, with entries (𝑏, 𝑟, 𝑤, 𝑏1, 𝑏2) 

representing the number of balls, runs scored, wickets lost, and the striking and non-striking 

batsmen, respectively. The probability of being in any given state was calculated, for any given 

number of balls, by multiplying M, representing the set of probabilities after 𝑏 − 1 balls, by the 

probability for each event (i.e. number of runs scored off any given ball). “Summing the product 

of each possible number of runs and its probability of being the result for the match gives the 

expected number of runs for the batting order considered” (Ovens et al., 2009, pg. 497). The 

results indicated that the optimal batting line-up had a minimum and maximum expected 

number of runs approximately 219 and 235, respectively, and on average, the optimal batting 

order produced at least 70 runs more than the worst batting order. 

     Duckworth & Lewis (2005) developed real time player metrics, using the Duckworth-Lewis 

methodology, to evaluate player contribution at any given stage of an innings, producing 

context-based measures. The developed metrics were: 1) batsmen average run contribution per 

unit of resources consumed and 2) bowlers’ average runs contribution per unit resources 

consumed. Applying these measures to the 2003 VB series final (Australia vs. England) it was 

shown that the Duckworth-Lewis based contribution measures were less susceptible to 

distortions compared to traditional performance metrics. 

     Brown, Patel, and Bracewell (2016) investigated the likelihood of an opening batsman 

surviving (i.e. not being dismissed) each ball faced over the course of an innings. Using various 

model formulation and selection techniques, Brown et al. (2016) developed a contextually and 

statistically significant Cox proportional hazard model that predicted the probability of survival 

for any opening batsmen, given certain model conditions. Practically and statistically significant 

predictors were: 1) cumulative number of runs scored, 2) cumulative number of consecutive dot 

balls faced and 3) cumulative number of balls faced in which less than two runs in four balls 

had been scored. The results illustrated that as the magnitude of the three predictors increased 

for an opening batsman, the associated survival probabilities for the batsman either remained 

constant or decreased on a ball-by-ball basis. Applying the model to opening batsmen from 68 

ODI matches, played between 8th December 2014 and 8th February 2014, it was found that 
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Kumar Sangakkara was the most effective batsman at occupying the crease. Moreover, 

calculating the area under the survival curve served as a unique validation method of rating 

batsmen contribution in real-time.   

     Bhattacharya et al. (2011) applied a Gibbs sampling scheme relating to isotonic regression 

to observed scoring rates to produce a non-parametric ball-by-ball resource table. The desired 

resource table required non-decreasing elements along the rows and down the columns. To 

accommodate these requirements Bhattacharya et al. (2011) implemented an isotonic regression 

optimization problem subject to monotonicity constraints applied to the rows and columns. 

Recognizing that the problem arises from a normal likelihood, a Bayesian model using a flat 

default prior subject to monotonicity constraints was adopted. Consequently, a Gibbs sampling 

was carried out via sampling from the full distribution. Sampling was carried out using a normal 

generator and reject sampling. 

     A comprehensive review of the application of statistical methods analyses in cricket is 

provided in Albert, Glickman, Swartz & Koning (2017). 

5.2 RESEARCH OBJECTIVES 

The primary aim of this chapter is to develop a real-time rating system that accurately measures 

the amount of influence a player exerts on a T20 match of cricket, at each stage of an innings. 

Such a system has considerable implications for a variety of stakeholders, such as players, 

coaches, managers, and franchise owners. The system will enable players and coaches to isolate 

specific match situations where performances increase or decrease and identify the key metrics 

leading to performance fluctuations. Moreover, coaches and managers can utilise the model 

results to build effective, player specific training regimes, determine optimal batting line-ups, 

evaluate player-selection decisions, and develop in-game strategies. 

     The secondary aim of this chapter is to assess the predictive accuracy of the probability of 

win model and the player rating model using the DMS metric, and benchmarking it against the 

log-loss metric to show that it outperforms and better accounts for match context relative. 

5.3 DATA PREPARATION 

The model development process implemented ball-by-ball observations from the following T20 

competitions: Indian Premier League (IPL; 2014, 2015, 2016), Australian Big Bash League 

(BBL; 2014, 2015), English NatWest T20 League (2015, 2016) and Caribbean Premier League 

(CPL; 2014/2015, 2015/2016). 

     A process was developed to programmatically extract and parse ball-by-ball observations 

from ESPNCricinfo (http://www.espncricinfo.com/) commentary logs and provide a more 

convenient data structure (using the R programming language). The process extracted relevant 

data on a ball-by-ball basis and stored the data in a tabular form for easy access. 

http://www.espncricinfo.com/
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     The data contains approximately 95,000 observations across 400 matches, excluding rain 

interrupted and abandoned matches. 

     The performance metrics fall into three categories: pre-match metrics, which are measured 

pre-play, in-play metrics, which are measured during play, and post-match metrics, which are 

measured post-match. 

5.4 RESEARCH METHODOLOGIES 

To measure a player’s match influence, during any stage of an innings, performance metrics 

that significantly affect match outcome are necessary. These metrics must capture match, inning 

and player-specific information to accurately measure a player’s influence, therefore it is 

necessary to implement metrics that capture 3 key dimensions: volume of contribution, 

efficiency of contribution and contributions made under pressure. Appendix C lists the metrics 

that are categorised under each playing dimension, and the corresponding attribute type (i.e. 

action, context, or time). 

     To effectively measure an individual’s in-play influence many conventional performance 

metrics are inapplicable for two reasons: 1) Indefinability – for example batting average is 

undefined until inning completion; 2) Event dependence – for example bowling strike rate and 

bowling average are undefined, until the bowler takes a wicket. Therefore, given this lack of 

definable and event independent player metrics, engineering meaningful ball-by-ball metrics 

that are measurable was paramount to research success. 

     Generally, cricketing statistics are regarded as traditional or out-of-date as many are 

unobserved and immeasurable in real-time and have not evolved since the sports conception. 

Duckworth & Lewis (2005) expressed a similar sentiment stating that traditional performance 

metrics are susceptible to greater distortion relative to context-based metrics. Therefore, 

engineering measurable and definable metrics which captures volume, efficiency and pressure 

metrics are paramount to research success. These metrics will account for a greater proportion 

of variation in a player’s influence and demonstrate how their individual performances affect 

match outcome. 

     The ratings framework is applied to extract meaningful metrics capturing information 

pertaining to the three dimensions of player influence and evaluate player performance (i.e. 

player-based ratings). The ratings framework engineer features encompassing information 

relating to different dimensions and layers within the data. For example, batting strike rate and 

runs scored are metrics that capture volume and efficiency information, respectively. The 

number of dots faced, and percentage boundaries also capture volume and efficiency 

information, however these metrics capture a deeper level of information as they provide insight 

into a batter’s volume and efficiency with context, specifically relating to volume of non-scoring 

balls and efficiency of scoring boundaries. 
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     In Chapter Three it was stipulated that ensembling traditional metrics, (i.e. metrics 

accounting for a small proportion of variation), with complex metrics, (i.e. metrics accounting 

for a large proportion of variation), resulting in meaningful ratings (i.e. reliable, robust, intuition 

and transparent). As mentioned, the five key elements of the ratings framework are dimension 

reduction, feature engineering strategies, feature selection techniques, multi-objectives 

(accounting for different dimensions within a sport), time-based variables and ensemble 

forecasting strategies. Here, the ratings framework has been adapted to output meaningful 

player-based ratings and implements these five key elements. Appendix C outlines all the action, 

context and time-based features applied within the player ratings framework. All features are 

time-based as they are derived on a ball-by-ball basis. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 12 outlines the adapted framework applied to develop a real-time player rating system 

that accurately measures the amount of influence a player exerts on a T20 match of cricket. The 

player ratings framework applies multi-objectives with each objective modelling key 

dimensions of a T20 cricket match and engineer important features within each dimension. 

Specifically, five models are built to derive ball-by-ball (i.e. time-based) player specific metrics 

that are used to calculate player ratings: 1) resources model, 2) expected runs model, 3) pressure 

model 4) batting survival model and 5) probability of win model. Each model captures a specific 

Figure 12: Player ratings framework 
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dimension of a T20 cricket match and encompasses a significant proportion of variation in 

player influence. 

     The objective of each model is as follows: 1) The resource model measures the proportion 

of resources at the batting team’s disposal from which to accumulate runs. The proportion of 

resources remaining at each stage of an innings indicates the rate at which the batting team are 

losing wickets and the rate at which the bowling team is accumulating wickets. The rate of 

resource decay measures which team is performing ‘better’ and describes innings progress from 

a team perspective. 2) The expected-runs model calculates the total number of runs the batting 

is expected to accumulate at the conclusion of their innings based on team-level batting metrics 

and the proportion of resources remaining. This measure shows how the batting team is 

performing and whether they will accumulate runs above par in the first innings or reach the 

target score in the second innings. 3) The pressure model measures the amount of pressure the 

batting and bowling is under given the amount of runs the batting team is expected to 

accumulate. The pressure metric is a value between 0-100, where a higher value indicates 

greater pressure. For example, if the second innings batting team is expected to accumulate more 

runs than the target total, the pressure exerted on the bowling team is greater than the pressure 

exerted on the batting team. 4) The probability of win model derives the batting team’s 

probability of winning the match based on a set of team, match, and player metrics. This model 

utilises a mixture of individual and match-level metrics, such as resources, expected runs, 

batting team strike rate etc., because combining features from different match dimensions 

captures a greater level of information than the individual counterparts. 5) The batting survival 

model calculates the probability of a batter being dismissed given current batting performance, 

the amount of resources remaining and the level of pressure. This survival model is an extension 

of the work presented in Brown, Patel & Bracewell (2018) and measures the current batter’s 

ability to occupy the crease (i.e. not lose their wicket). 6) The player ratings model quantifies 

the amount of influence a player exerts on a match of T20 cricket, on a ball-by-ball basis. The 

player rating models implement logistic regression to evaluate the amount of influence a bowler 

and batter exerts as the inning progresses. Consequently, the impact of a player’s action relative 

to the current match state is evaluated, which enables dynamic player tracking. This 

methodology allows the quantification of an individual’s match influence and can be applied to 

measure the importance of individual players to a team’s probability of winning. 

     A rating system like that presented in this chapter could be used for several purposes; for 

example, team coaches may use in-play player rating to assess the merits of various strategies 

or analyses overall team performance. Further, the media could use the model to identify key 

moments in a match and further enhance television converge. The ratings framework is a 

dimension reduction, feature engineering and feature selection exercise, with a goal to reduce 

model complexity, increase variation explained and decrease the number of match metrics 
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needed to explain the amount of influence a player exerts on a T20 match of cricket on a ball-

by-ball basis. 

     The shallow layers of the framework adopt match-level metrics to engineer increasingly 

complex metrics which explain state of play, including resources, expected runs, pressure and 

probability of win. The deeper layer, derives player specific metrics using these match-level 

(i.e. complex metrics); for example, the number of runs contributed and saved by a batter and 

bowler, respectively, are calculated using expected runs feature (please see section 5.5.2). The 

features engineered within each layer are fed to succeeding layers to engineer more complex 

and informative features. Finally, ensembling these features provides a more informative 

understanding match situation and player influence (i.e. player ratings). Therefore, quantifying 

the state of play on a ball-by-ball basis allows accurate measurement of a player’s actions and 

how their actions affect match outcome. The resources, expected runs, pressure and probability 

of win models enable the engineering of features associated with state of play and the derivation 

of player specific metrics. These player specific metrics are applied and ensembled in the 

survival and player rating models, respectively, to generate meaningful player ratings. 

     The following section details the methodology used to extract ball-by-ball features and 

outlines the features engineered to develop the dynamic player ratings model. 

5.5 MODEL DEVELOPMENT 

5.5.1 Resources Model 

In-play resources remaining measures the proportion of resources at the batting team’s disposal 

from which to accumulate runs, at each stage of an innings. Resources remaining represents the 

time till inning completion and quantifies the amount of time to accumulate runs. It allows the 

evaluation of whether the bating team is effectively utilising their time at the crease. 

     The original Duckworth & Lewis (1998) resource allocation method was designed for one-

day cricket. Consequently, this study calculated proportion of resources remaining at any given 

stage of an inning uses a modified Duckworth-Lewis system developed by McHale & Asif 

(2013). McHale & Asif (2013) illustrates that the function 𝐹(𝑤) a positive decreasing step 

function with  𝐹(0) = 1, interpreted as the proportion of runs that are scored with w wickets 

lost compared with that of no wicket lost – results in unintuitive consequences on the value 

assigned to wicket partnership and produces erratic patterns for the value assigned to wicket 

partnerships. To solve this problem McHale & Asif (2013) smoothed 𝐹(𝑤) producing a survival 

function based on a truncated normal distribution. 𝐹(𝑤) was smoothed using equation (12): 

𝐹(𝑤) =
𝜙(10;𝜇1,𝜃1)−𝜙(𝑤;𝜇1,𝜃1)

𝜙(10;𝜇1,𝜃1)−(0;𝜇1,𝜃1)
−  ∞ < 𝜇1 < ∞, 𝜃1 > 0  

                     

(12) 
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Here 𝐹(𝑤) is a survival function based on a truncated normal distribution, and 𝜙 is the normal 

cumulative distribution function and 𝜇1, 𝜃1, and parameters to be estimated. 

     Further, McHale & Asif (2013) suggested a truncated-Cauchy distribution which introduces 

slower decay towards the asymptotes, a heavier tail and produces more acceptable reset targets, 

compared to the exponential function outlined in Duckworth & Lewis (1998), which decays 

rapidly towards the asymptotes, 𝑍0𝐹(𝑤), leading to situations where the D/L model under 

compensates. Therefore McHale & Asif (2013) suggested a truncated-Cauchy distribution 

which introduces slower decay towards the asymptotes, a heavier tail and produces more 

acceptable reset targets. The average number of runs scored in the remaining u overs when w 

wickets have been lost was given by: 

𝑍(𝑢, 𝑤) =  𝑍0𝐹(𝑤) {
𝑡𝑎𝑛−1(

𝑢−𝜇

𝜃0𝐹(𝑤)
)−𝑡𝑎𝑛−1(

−𝜇

𝜃0𝐹(𝑤)
)

𝜋

2
−𝑡𝑎𝑛−1(

−𝜇

𝜃0
)

}  (13) 

𝐹(𝑤) is defined as above. Eqn. (13) was found to produce more intuitive results for 𝑍0 than the 

D/L method. A 𝜆 parameters was introduced to (11) to account for high and low scoring 

matches, as in Duckworth & Lewis (2004). It was assumed, in high scoring matches 𝑍𝑢 tends 

to become linear and hypothetically, the value of each wicket tends to zero. To account for effect 

𝜃0 and 𝑍0 are scaled; Eqn. (11) is transformed to the following model: 

𝑍(𝑢, 𝑤|𝜆) =  𝑍0𝜆𝑛(𝑤)+1𝐹(𝑤) {
𝑡𝑎𝑛−1(

𝑢−𝜇

𝜃0𝜆𝑛(𝑤)𝐹(𝑤)
)−𝑡𝑎𝑛−1(

−𝜇

𝜃0𝜆𝑛(𝑤)𝐹(𝑤)
)

𝜋

2
−𝑡𝑎𝑛−1(

−𝜇

𝜃0
)

}    

This modification produced more intuitive results for 𝑍0 than the D/L method. McHale & Asif 

(2013) scaled the existent parameters and introduced an additional parameter, 𝜆, to account for 

high and low scoring matches, as in Duckworth & Lewis (2004). Therefore, the resources 

available are given by: 

 

𝑅𝑖 = 1 −  ∑ (𝑃𝑁(𝑢1,𝑗, 𝑤𝑗|𝜆) − 𝑃𝑁(𝑢2,𝑗, 𝑤𝑗|𝜆))
𝑛𝑖
𝑗=1   (14) 

This proposed method was found to be superior to the methods presented in Bhattacharya, Gill 

& Swartz (2011), Jayadevan (2002) and Stern (2009). Figure 13 illustrates resource decay 

during a T20 cricket match. It is revealed that resources decay linearly in T20 cricket. 
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5.5.1.1 Resources-based features 

The resources remaining metric is used to assess a team’s scoring efficiency and an 

individual’s scoring efficiency (eqn. 15 and 16, respectively). This scoring efficiency 

metric measures the number of runs scored per unit of resources consumed. 

            𝑟𝑢𝑛𝑠 𝑝𝑒𝑟 % 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑖 =  
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙𝑖

(1− 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑖)
         (15) 

𝑏𝑎𝑡𝑡𝑒𝑟𝑠 𝑟𝑢𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑘 =
𝑟𝑢𝑛𝑠 𝑠𝑐𝑜𝑟𝑒𝑑𝑘

∑ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑘
         (16) 

Here, 𝑟𝑢𝑛𝑠 𝑠𝑐𝑜𝑟𝑒𝑑𝑘 represents the number of runs scored by batter k, and 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑘 represents the proportion of resources consumed by batter k; 

calculated using: 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑖 = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑖 − 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑖−1 

     For example, if batter k hits a boundary four off 𝑏𝑎𝑙𝑙𝑖, and resources remaining 

decreases from 0.86 to 0.84, between 𝑏𝑎𝑙𝑙𝑖−1  and 𝑏𝑎𝑙𝑙𝑖, then batter k has consumed 0.02 

resources. This idea to assess the performance of batters and bowlers in one-day cricket 

was first developed by Beaudoin & Swartz (2006) and later by Lewis (2005). 

5.5.2 Expected Runs Model 
In-play expected total predictions were generated using the methodology outlined in Patel, 

Bracewell & Bracewell (2018). The method applies a gradient boosted machine (gbm) 
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technique with a Poisson distribution, 20000 iterations, a 5-way interaction depth and a step-

size learning rate of 0.0001. A gbm technique was implemented because it accounts for the 

complex interactions between match and inning-level metrics by a taking a sequence of weak 

learners to construct a complex learner and increasing model complexity. The combination of 

weak-learners to create an increasingly complex learner that incorporates a 5-way interaction 

effect will reduce the error in expected total. 

     First and second innings models predicting ball-by-ball expected total was developed. The 

models used innings total as the dependent variable, while the model covariates were current 

total, wickets, balls bowled, run rate, projected total, percentage boundaries, percentage dots, 

resources remaining, runs per percentage resources, runs remaining and required run rate. The 

number of runs the batting team is expected to score depends on the team’s batting performance, 

opposition strength and meta-level factors such as venue and pitch conditions, it is assumed that 

efficiency-based metrics, such as percentage boundaries, percentage dots and team strike rate, 

inherently contain this information. For example, if the bowling team is considered strong or 

the pitch conditions are not batter friendly, this information is captured in batting efficiency 

metrics. Although the expected runs model does not utilise venue and bowling strength, it is 

assumed that batting efficiency metrics incorporate such information. 

     

Applying a gbm technique with a Poisson distribution and 25,000 iterations, two individual 

models (first and second innings) predicting ball-by-ball expected runs were developed. The 

metrics included: projected total, team strike rate, run rate, current runs, wickets, percentage 
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dots, percentage boundaries, resources remaining, balls, required run rate and runs remaining. 

Projected total (current total/ resources available) was incredibly important on first innings 

expected runs model (𝑟2 = 0.58). However, there is a significant drop in its importance in the 

second innings. The importance of projected total is equivalent to team strike rate. This result 

is expected as the runs scored in the second innings is dictated by first innings total and the runs 

remaining to achieve the target score, given resources available, which is heavily dependent on 

the scoring rate. Figure 14 outlines the ball-by-ball predictive power using root mean square 

error, of the two models predicted runs against observed runs. 

     It is shown that the predictive power improves as the innings progresses as an inning matures 

the metrics become more indicative of actual total and incorporates more information 

surrounding the end-of-innings total. The results reveal that model 2 outperforms model 1, 

because in the 2nd innings the batting team’s target score is known, and the model utilises runs 

remaining and run rate required. Therefore, model 2 has greater ‘knowledge’ about match state 

regarding the team’s ‘optimal’ scoring pattern and distance between expected total and target 

total, relative to model 1. 

5.5.2.1 Expected runs-based features 

The expected runs metric is used to engineer a volume-based metric measuring a player’s 

ball-by-ball contribution and the effect each ball outcome has on a team’s expected total. 

Given the outcome of 𝑏𝑎𝑙𝑙𝑖, a player’s contribution is evaluated through the change in 

expected runs between 𝑏𝑎𝑙𝑙𝑖 and 𝑏𝑎𝑙𝑙𝑖−1:   

  𝑏𝑎𝑡𝑡𝑒𝑟 𝑟𝑢𝑛𝑠 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖 =  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑢𝑛𝑠𝑖 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑢𝑛𝑠𝑖−1           (8) 

 

  𝑏𝑜𝑤𝑙𝑒𝑟 𝑟𝑢𝑛𝑠 𝑠𝑎𝑣𝑒𝑑𝑖 =  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑢𝑛𝑠𝑖−1 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑢𝑛𝑠𝑖   

For example, if 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑢𝑛𝑠𝑖−1 = 129, and batter A hits a boundary four off 𝑏𝑎𝑙𝑙𝑖, 

delivered by bowler B, which increases the 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑢𝑛𝑠𝑖 to 135, then batters A’s 

contribution for 𝑏𝑎𝑙𝑙𝑖 = 6 (135 -129), while bowler B’s contribution for 𝑏𝑎𝑙𝑙𝑖 = -6. This 

context-based metric measures player contribution at a team level. A player’s total batting 

contribution is calculated by summing their ball-by-ball run contributions, while their total 

bowling contribution is calculated by summing their ball-by-ball runs saved. 

     A player’s contribution is interpreted in terms of how many runs they contributed to the 

final total and shows how many runs a batter contributes to the innings total. For example, 

if batter k scored 35 runs but their total contribution is 43, this is interpreted as the batter’s 

true value to the end-of-innings total was 43 runs. 
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5.5.3 Pressure Model 
It is assumed that team-level pressure is a function of the number of runs a team is expected to 

score at each stage of an innings, given the proportion of resources remaining. For example, if 

the first innings batting team has a slow scoring rate and are trending towards a sub-par total, 

the batting team is under greater pressure than if they had a stronger scoring rate and trending 

towards an above par winning total. Based on this assumption the expected runs metric was 

used to engineer a pressure feature. 

     Bhattacharjee & Lemmer (2016) stated the pressure the batting team experiences is 

determined by a combination of batting performance and retaining wickets, while the pressure 

the bowling team experiences is determined by its ability to take wickets and to restrict the 

number of runs scored by the opponent. 

     On average a total of 175 runs are required for the first innings batting team to win. Using 

this value, a raw pressure metric for any given ball i is established: 

𝑟𝑎𝑤 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑖 = {
𝑖𝑓 𝑖𝑛𝑛𝑖𝑛𝑔𝑠 = 1;  175 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙𝑖

     𝑖𝑓 𝑖𝑛𝑛𝑖𝑛𝑔𝑠 = 2;  𝑡𝑎𝑟𝑔𝑒𝑡 𝑡𝑜𝑡𝑎𝑙 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙𝑖
 

Given expected runs accounts for the batting teams scoring rate and resources remaining, the 

pressure metric adopts an assumption like that outlined in Bhattacharjee & Lemmer (2016). 

Bhattacharjee & Lemmer (2016) suggested that second innings pressure is a function of the 

remaining runs and required run rate to achieve the target total. This has been incorporated in 

the pressure metric, as runs remaining and required are embedded in the expected runs model. 

“It is customary to assess the scoring process by calculating the required run rate time to time 

to see whether the scoring rate is satisfactory (Bhattacharjee & Lemmer, p. 684, 2016). The 

Bhattacharjee & Lemmer (2016) pressure index decreases when the batting progress is ‘good’ 

and if resources are kept until the target has been reached.  

     At any stage of the first innings, the greater the difference between a team’s expected total 

and 175 the greater the pressure, as the team is tracking towards a sub-par total. The first innings 

pressure metric can take negative and positive values as a team’s expected total can be above or 

below the par total of 175. The second innings pressure only takes positive values, as the 

expected total can be below or equal to the target, leading to positive pressure or no pressure, 

respectively. Figure 15 shows the distribution of raw pressure across both innings. The first 

innings [raw] pressure follows an approximate normal distribution, while second innings [raw] 

pressure follows an approximately gamma distribution.  

 



176 
 

     Here, pressure can be interpreted in terms of ‘runs’, however the standard deviation across 

the first and second innings is 21 and 19.5, respectively. Consequently, there are instances where 

exaggerated estimates are produced. This issue was addressed by ‘forcing’ pressure into a logit-

normal distribution, which was achieved by extracting the empirical cumulative density 

functions (Figure 15) associated with [raw] pressure across the two innings. Pressure was fit to 

a logit-normal distribution with shape parameter = 0.6, on a [0,1] support. 

     Applying the empirical CDF transforms the [raw] pressure values such that they are 

uniformly distributed. These uniformly distributed values are malleable and can be compelled 

into any distribution. 

     Applying a logit-normal distribution produces a distribution on [0,1]. This is a desired 

property as it produces an interpretable measure of pressure; for example, pressure values close 

to 0 represent low pressure, while values close to 1 represent high pressure. It is assumed that 

pressure follows a bell curve distribution because changes in pressure are assumed to be normal, 

hence the shape parameter 0.6. 

     Given pressure is a function of expected runs, the metric measures the distance between the 

winning and expected total, overall measuring the amount of pressure felt by the batting team 

at ball i, while the 𝑏𝑜𝑤𝑙𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑖 = 1 − 𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑖, at ball i. 

     Figure 16(a) shows that the empirical cumulative density function of first innings pressure 

follows a logistic function, and Figure 16(b) shows that the ecdf of second innings pressure 

follows an exponential function. Given [raw] pressure follows an approximate normal and 

gamma distribution across the first and second innings, respectively, the empirical cumulative 

density functions are as expected.  

Figure 15: [raw] pressure distribution across the 1st and 2nd innings 
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     Figure 17(a) and 17(b) shows how pressure evolves across both innings for the batting and 

bowling team depending on the match results. Figure 17(a) shows first inning pressure for losing 

teams steadily increasing as the innings progresses, however the losing batting team experiences 

a slight decrease after the 8th over, while the losing bowling team experience an increase after 

the 18th over. Figure 17(a) shows first innings pressure steadily decreasing as the innings 

Figure 16(a) and 16(b): Empirical cumulative distribution of raw pressure across the 1st and 2nd innings 

Figure 17(a): First innings pressure by batters and bowlers 
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progresses, however the winning bowling team experience an increase after the 18th over. This 

maybe because in the final overs of the first innings, regardless of match situation, the batting 

team begins to take high risk shots or attempting to achieve greater reward by hitting boundaries. 

This increases the team’s run rate, leading to an increase in expected runs. This claim was 

reinforced from the data which showed the 18th -20th overs are the most expense when the first 

innings bowling team goes on to win the match – on average 25 runs are conceded during these 

overs. 

     The most significant difference between batting and bowling pressure occurs in the second 

innings (Figure 17(b)) when the batting side loses. Moreover, the pressure remains relatively 

constant during the innings. This shows that, in general, when the team batting second loses, 

they are under pressure from the outset of the innings, most likely due to a large target total and 

required run rate. Finally, Figure 17(b) shows second innings pressure for the losing bowling 

team steadily increases as the inning progresses. This maybe because as the batting team draws 

closer to the target total or are tracking towards achieving an expected total equal to the target, 

the pressure for the bowling team increases. Further, the deviation between the first innings 

pressure among winning and losing teams is not as pronounced as it is in the second innings, 

this shows that there is implicit pressure in the first innings (setting a total) while there is explicit  

pressure in the second innings (chasing a known total). 

Figure 17(b): First innings pressure by batters and bowlers 
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      A Kolmogorov-Smirnov (K-S) test was conducted on the first and second innings pressure 

values across winning and losing, batting, and bowling, teams. Table 10 outlines the p-value for 

the K-S statistic across groups. The results show that the distance between the empirical 

distribution functions of the two samples is statistically significant, illustrating that the four 

groups are statistically significantly different from each other. 

5.5.3.1 Pressure-based features 

The pressure metric was used to engineer a “contribution under pressure” metric which 

assesses a team’s run scoring and run restricting ability per unit of pressure, at ball i: 

                      𝑟𝑢𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑖 =  
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙𝑖

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑖
                  

This metric was used to assess the amount of contribution player k has made under varying 

levels of pressure. For example, a batter’s contribution under pressure at 𝑏𝑎𝑙𝑙𝑖 is 

𝑡𝑜𝑡𝑎𝑙 𝑟𝑢𝑛𝑠 𝑠𝑐𝑜𝑟𝑒𝑑𝑖

𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑖
, and a bowler’s contribution under pressure at 𝑏𝑎𝑙𝑙𝑖 is 

𝑡𝑜𝑡𝑎𝑙 𝑟𝑢𝑛𝑠 𝑐𝑜𝑛𝑐𝑒𝑑𝑒𝑑𝑖

𝑏𝑜𝑤𝑙𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑖
. 

5.5.4 Probability of Win Model 
The derivation of match-level metrics, resources, expected runs and pressure, allows the 

evaluation of the probability of winning. These features relate to different dimensions within 

the data and explain different aspects of a cricket match. Combining the derived features with 

traditional statistics a highly predictive probability of winning model is built for both innings. 

     A logistic regression model is adopted for estimating the probability of the batting team 

winning the match. Two models are developed, one for each innings of T20 cricket. The reason 

two separate models were developed is twofold: 1) the batting team (reference team) in each 

innings plays with a different strategy. The first innings batting team aims to score as many runs 

as possible to maximise their chances of winning, while the second innings batting team aims 

to achieve the target before all wickets have been lost or the pre-allotted overs have been played. 

     To obtain the ‘best’ inning-dependent logistic regression models the bestglm() function in R 

was used adopting a cross-validation delete d-method. The list of candidate model covariates 

for inclusion: 1) pressure, 2) expected total, 3) total runs, 4) strike rate, 5) percentage dots, 6) 

percentage boundaries, 7) resources remaining, 8) scoring efficiency and 9) scoring pressure. In 

Sample 
K-S P-value 

One Two 

1st inn winning batter pressure 1st inn losing bowler pressure 0.934 < 0.0001 

1st inn losing batter pressure 1st inn winning bowler pressure 0.983 < 0.0001 

2nd inn winning batting pressure 2nd inn losing bowling pressure 0.983 < 0.0001 

2nd inn losing batting pressure 2nd inn winning bowling pressure 1 < 2.2e-16 

Table 10: K-S statistics across groups 
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addition, runs remaining and run rate required are included in the second innings model. Table 

11 outlines the practically and statistically significant covariates across the two models. The 

results reveal that the probability of winning in the first innings is dependent on scoring volume 

and scoring efficiency, while the probability of winning in the second innings is dependent on 

scoring efficiency under pressure. This result validates the adage “scoreboard pressure”, 

showing that in the second innings pressure has a greater impact on probability of winning 

relative to the first innings. However, the Hosmer-Lemeshow test statistic, with 10 groups, for 

the first and second innings models was 98.6 and 369.77 with p-values < 0.0001 and < 0.0001, 

respectively, indicating evidence of poor fit. This poor fit is because the independence 

assumption of observation is violated. 

 

     

  

 

 

 

 

 

     The statistical and practical significance of the expected runs, pressure, and resources 

remaining metrics within the probability of win models and their predictive power (Table 12, 

Figure 18 and 19) validates the relevance of the engineered features. For example, probability 

of winning increases by 3% in the first innings for every unit increase in percentage boundaries; 

and the probability of winning decreases by 16.4% in the second innings for every unit increase 

in batting team pressure. 

     A downfall to the method is that the response variable (match outcome) with respect to the 

ball-by-ball data in a specific innings of a match remains unchanged after each ball, meaning 

the independence assumption of observations is violated. An alternative approach would be a 

series of k = 120 independent models (i.e. fitting a different model to each ball). Fitting a series 

of k independent models is appealing, in that the sample of matches over which the regression 

coefficients that are estimated are played independently (McHale & Asif (2016)). 

     A first step in assessing model validity is to compare the predicted probabilities with the 

actual outcome, for different categories of the predicted probability of winning from the model. 

Table 12 shows the observed proportion of matches that finish in a victory. In general, the 

model-predicted probabilities and the corresponding empirical probabilities are well-aligned, in 

  

Innings 

First Coeff. Second Coeff. 

M
et

ri
cs

 

intercept -7.71 intercept 3.77 

expected total 0.04 bat team pressure -6.70 

strike rate 0.87 resources remaining 2.90 

% dots -1.55 innings runs 0.02 

% boundaries 4.17 required run rate -0.36 

scoring efficiency 0.04 scoring efficiency 0.03 

Table 11: Probability of winning model coefficients 
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that, there is a monotonic increase in the observed proportion of win for each increase in 

predicted probability band. 

 

 

 

 

 

 

 

 

A further two model validation exercises are conducted to examine predictive power. First, a 

log-loss evaluation is carried out on ball-by-ball predictive for winning and losing results, 

respectively across both innings. Second, a leave-one-out cross validation (LOOCV) to examine 

the proportion of match results that were predicted correctly by the models as the match 

progresses. The proportion of correct out-of-sample predictions made by the two logistic 

regression models are examined using LOOCV. Figure 18 shows the proportion of correct 

predictions for each ball across both innings. 

5.5.4.1 Logarithmic loss 
Minimising the log-loss is equivalent to maximising accuracy of the classifier, therefore a 

lower log-loss value means better predictions. Log-loss closer to 0 indicates high accuracy, 

whereas if the log-loss is away from 0 indicates lower accuracy. Log-loss works by heavily 

penalises classifiers that are confident about an incorrect classification.  

Predicted 

probability 

Overs remaining 

First innings Second innings 

20 15 10 5 20 15 10 5 

0-0.1 0.135 0.128 0.108 0.067 0.105 0.093 0.082 0.065 

0.1-0.2 0.268 0.167 0.131 0.120 0.233 0.188 0.199 0.197 

0.2-0.3 0.314 0.270 0.248 0.211 0.312 0.273 0.273 0.268 

0.3-0.4 0.409 0.370 0.375 0.377 0.388 0.352 0.339 0.356 

0.4-0.5 0.467 0.458 0.456 0.465 0.488 0.446 0.450 0.420 

0.5-0.6 0.475 0.555 0.573 0.554 0.584 0.512 0.524 0.519 

0.6-0.7 0.555 0.616 0.615 0.631 0.628 0.602 0.586 0.612 

0.7-0.8 0.684 0.735 0.745 0.745 0.713 0.711 0.684 0.737 

0.8-0.9 0.695 0.784 0.776 0.815 0.816 0.818 0.844 0.862 

0.9-1.0 0.818 0.857 0.857 0.889 0.918 0.955 0.971 0.986 

Table 12: Model predicted win probabilities and the proportion of matches resulting in a win. The 

figure in parentheses show the number of matches in each category. For example, there were 63 

matches with a predicted probability of victory between 0 and 0.1, when there were 15 overs 

remaining in the first innings. Of the 63 matches, 0.128*63 = 8 were won. 
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     Figure 19 shows log loss decreasing as the inning matures and the models’ high 

predictive power from the beginning of the models. This result is expected because as the 

inning nears completion the metrics store more information regarding match outcome, 

increasing the model’s “informativeness”. Moreover, the second innings model is superior 

in terms of predictive power, relative to the first innings model, as it incorporates additional 

information such as required run rate and runs remaining, and therefore is more informative 

about state-of-play. Surprisingly, the models perform better when predicting losing 

outcomes, across both innings, however, overall, the second innings models have greater 

predictive power than the first innings model. Moreover, the second innings model, for 

winning outcomes, has greater predictive power between balls 6 and 72 (over 1-12), 

however this change between balls 73-120 where second inning losing outcome the model 

has greater predictive power. However, after the 12th overs the log-loss for the losing model 

experiences a rapid decline, while the log-loss for the winning team experiences a slight 

increase, followed by a steady declined until inning completion. This maybe because teams 

that win in the second innings generally finish well before 12 balls have been delivered. 

Although, if the team batting second winnings with only a few resources remaining then it 

is assumed the match is “close”, therefore more difficult to predict match outcome, leading 

to an increase in log-loss. Moreover, if the team batting second needs more time (i.e. 

resources) to reach the target total than it is more than likely that they will lose the match. 

Figure 18: Leave-one-out cross validation: proportion of 'correct' forecasts made for first and 

second innings 
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This could possibly explain the decrease in log-loss for [second innings] losing results after 

13 overs. 

5.5.4.2 The Distance and Magnitude Spherical Performance metric 

Maximising the DMS performance metric is equivalent to maximising the classifiers 

predictive accuracy, therefore a higher DMS score means better predictive power. 

     Figure 20 shows that the DMS metric outperforms the log-loss during the middle and 

latter stages of the first innings, given the meaningful change in the DMS score relative to 

the match context. Between overs 1-4 a power-play phase is conducted and during this time 

of the match, a lot of uncertainty is present due to scoring rate and possible resource 

depletion which affects match volatility. Figure 18 and Figure 19 clearly show both metrics 

indicating improvement in model performance as more information is obtained as the 

match advances. 

     Figure 20 shows the DMS performance metric increasing as the first and second innings 

mature, showing the model’s predictive power increasing as the match progresses12. The 

DMS score reveals similar model insights to that of the log-loss (Figure 19): 1) The 

predictive power of the second inning model’s is significantly better than the first innings. 

 
12 The update procedure applied to the weights, produced by the AHP, to calculate the DMS is the same 

as the linear process outlined in Chapter Five (section 3.11). 
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2) The models perform better when predicting losing results relative to winning results, 

across both innings. 3) The second inning losing model has the greatest predictive power 

between balls 72-120. 

     Compared to the log-loss metric, the DMS metric output better scores when using the 

first inning model to predict match results. Figure 19 shows that the DMS score is fairly 

constant around 0.5 throughout the first innings, for both winning and losing outcomes. 

This shows that the DMS metric is unable to define a winner or loser based on first inning 

results. Although, a score of 0.5 does not indicate ‘good’ predictive power it does indicate 

slight predictivity, however, it reveals the metrics ability to pick up match context, in that, 

on average, match results are not clear cut, at the end of the first innings. Therefore, a DMS 

score of 0 indicates no predictivity, 1 indicates ‘extremely good’ predictivity, and 0.5 

indicates an undefined or 50:50 result. 

     Figure 19 shows the log-loss steadily during the first innings. Compared to the DMS 

metric, the log-loss produces poorer results, especially for the first innings win model, 

although the log-loss declines throughout the first innings, it never goes below 0.60 and 

0.53 for the winning and losing models, respectively. 

     Figure 20 shows a relatively rapid movement in the first five overs of the first innings 

with the DMS score going from 0.52 to 0.65 between ball 1 and 30. Conversely, the log-

loss score does not experience significant movement until after the sixth over, with a 

Figure 20: Ball-by-ball DMS score of actual outcomes and predicted outcome 
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gradual decline from 0.45 to 0.68 after 56 balls (end of eight overs). This indicates slight 

improvements in score from an interpretation of the log-loss compared to the early and 

meaningful escalation of the DMS metric which provides greater insight into model 

performance relative to match context.  

     During the second innings, for both winning and losing models, the DMS score is 

approximately monotonically increasing between ball 1 and 72, going from 0.65 to 0.82. 

This demonstrates the DMS metric rewards the probability of win models based on its 

ability to predict accurately from long-range, indicating the metric is providing reliable, 

intuitive, robust, and transparent outputs. 

     Surprisingly, for the second innings, across winning results, the log-loss is 

approximately exponentially decreasing between ball 1 and ball 72. Although, between 

ball 72 and ball 78, it experiences a slight increase, and after experiences a slow monotonic 

decrease to 0.25. Given that in the second inning win model the DMS score is 

monotonically increasing until the 18th over (ball 108), after which it experiences an 

exponential increase, it shows that the DMS metric provides greater insight into model 

performance relative to match context. 

     Finally, for the second innings win model, both DMS and log-loss produce similar 

performance up until the 12th over, overall indicating that the second innings win model 

outperformed the second innings loss model. Thereafter, the second innings loss model 

outperforms its winning counterpart. Moreover, after the 12th over, the log-loss reflects this 

decrease in predictive power of the second innings loss model with a slow rate of decline. 

The DMS ignores this poor performance and continues to produce measures indicative of 

match outcome at a faster rate.   

     In the second innings the DMS and log-loss metric have similar performance in terms 

of final predictions, however, the DMS has better performance during the early stages of 

the second innings as it better accounts for match context. Surprisingly, for the second 

innings loss model, the log-loss steadily declines until the 72nd ball (12th over) and 

thereafter experiencing a rapid decline. This is because after the 12th, the DMS score does 

not experience a rapid increase it still converges to the actual outcome at a similar period 

of the inning to that of the log-loss. 

     This is represented in Figure 20, as the DMS trend converges faster to what actually 

happened in the second innings, while the first innings trend remains relatively flat. 

Specifically, compared to the log-loss across both innings the DMS metric converges at a 

faster rate to the actual outcome. This shows that from the outset of the second innings (and 

the first innings) the DMS better accounts for match context, and that appropriate weight 

adjustments have been applied. 
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     In both instances the log-loss and DMS metric scores are best in the 2nd innings, which 

is expected as more reliable or informed data is available because the first innings has 

passed. Figure 20 reveals that the DMS metric is better at utilising new information and 

converges faster to actuality relative to the log-loss metric, this is due to the assigned 

weights representing the forecasting scenario. 

     These shows results reveal that the DMS performance metric is an appropriate metric 

to assess the effectiveness of meaningful sport-based rating systems and its ability to 

outperform well-known performance metric of the log-loss. 

5.5.4.1.1 Win-based features 

The results show the two winning models produces predictive results and confirm the 

relevance and predictive power of the engineered features. Given the models statistical and 

practical significance a player metric evaluating how a player’s action has affected match 

outcome can be derived. The equation below shows how ball-by-ball changes in the 

probability of winning can be used to evaluate a batter’s and bowler’s contribution to match 

outcome, at ball𝑖. 

𝐵𝑎𝑡𝑡𝑒𝑟𝑠 𝑤𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖

= 𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛)𝑖 − 𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛)𝑖−1 

𝐵𝑜𝑤𝑙𝑒𝑟𝑠 𝑤𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖

= 𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛)𝑖−1 − 𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛)𝑖 

     For example, if batter A hits a boundary four off 𝑏𝑎𝑙𝑙 𝑖 delivered by bowler B, and the 

𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑤𝑖𝑛)𝑖 increases to 0.64 from 0.62 between 𝑏𝑎𝑙𝑙𝑖 and 𝑏𝑎𝑙𝑙𝑖−1, the batters 

win contribution for 𝑏𝑎𝑙𝑙𝑖 is 0.02 (0.64-0.62), while bowler B’s win contribution for 𝑏𝑎𝑙𝑙𝑖 is 

-0.02. Moreover, a player’s total contribution is calculated using the following equations: 

𝑏𝑎𝑡𝑡𝑒𝑟 𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  ∑ 𝑏𝑎𝑡𝑡𝑒𝑟 𝑤𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑡𝑢𝑖𝑜𝑛𝑖𝑖  ; for batter k 

𝑏𝑜𝑤𝑙𝑒𝑟 𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  ∑ 𝑏𝑜𝑤𝑙𝑒𝑟 𝑤𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑡𝑢𝑖𝑜𝑛𝑖𝑖  ; for bowler k 

Given the probability of win is dependent on pressure, resources remaining, and scoring 

efficiency (including percentage dots and percentage boundaries), a players’ total winning 

contribution is classified as a volume, efficiency, and contributions under pressure feature. 

5.5.5 Batting Survival Model 

Given the match level metrics provided adequate insight surrounding match outcomes and the 

individual metrics have been statistically engineered using these match-level metrics, the next 



187 
 

step is to engineer a batter specific metric. A batter survival metric is engineered representing 

the probability of dismissal on ball i. 

     Extending the methodology outlined in Brown, Patel, and Bracewell (2017) to non-opening 

batter (i.e. top, middle, lower, and tail) across both innings, a batter’s ball-by-ball survival 

probability is calculated. Brown et al. (2017) established three model development criteria: 1) 

model coefficients must be practically and statistically significant, 2) a decrease in resources 

leads to a decrease in the probability of surviving the next ball, and 3) probability of survival 

decreases on a ball-by-ball basis as resources are monotonically decreasing. Models that met 

these three criteria were included in the candidate set. 

     Applying a Cox proportional hazard technique, the total number of balls faced, by any given 

batsmen, represented the time till failure (i.e. batsmen dismissal). The Cox proportional hazard 

model has the following form: 

ℎ(𝑡, 𝑿) = ℎ0(𝑡, 𝜶)𝒆(𝜷′𝑿) 

Here, ℎ0(𝑡, 𝜶) represents the hazard function at baseline levels of covariates, and varies over 

time, and α is a vector of parameters influencing the baseline hazard function. The Cox model 

has the following survival function: 

𝑆(𝑡, 𝑿) =  𝑆0(𝑡, 𝑿, 𝜷)𝐞(𝛃′𝐗), 

Here, 𝑆0(𝑡, 𝑿, 𝜷) represents the survival function at baseline levels of covariates. A right 

censoring methodology was adopted as a batsman may not be dismissed during an innings. 

     The validity of the Cox model relies on two assumptions: 1) the effect of each covariate is 

linear in the log hazard function, and 2) The ratio of the hazard function for two individuals with 

different sets of covariates do not depend on time. Both assumptions were met across all models. 

 

 

Table 13: Practically and statistically significant metrics across both innings 
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To identify the optimal models the study implemented the glmulti R package. The models 

implemented an exhaustive genetic algorithm to explore the candidate set in conjunction with 

an AIC criterion to dictate model selection. Model interactions were not considered and a model 

with a minimum set of three and maximum set of five metrics were required. All five optimal 

models met the Cox assumptions, declared convergence, and met model development criteria. 

Table 13 outlines the metrics that met the requirements and the coefficients, for all batting 

positions, across both innings. 

     Figure 21 illustrates the exponentially decreasing nature of a batter’s survival probability 

across both innings for winning and losing teams. A batter’s survival, irrespective of position, 

is dependent on volume, efficiency, and pressure-based contributions. Moreover, these results 

prove the validity and statistical significance of the engineered features when measuring player 

ability. Finally, Figure 21 illustrates the decreasing survival probability across both innings for 

winning and losing teams, for all five bating positions. It also reveals that the survival 

probability of first innings openers and top order batter is greater than their second innings 

counterpart. Moreover, the survival probability of the lower and tail-ender batters, for winning 

teams, is greater than the lower and tail ender batters, for losing teams. This is because the 

lower-order and tail-end batters, for winning teams, occupy the crease for longer which leads to 

more runs and less wickets. 
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Figure 21: Survival probabilities by innings result 
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5.5.6 Player Rating Model 

The derivation of match-level and individual player metrics allows the evaluation of player 

ratings which measure the amount of influence a player exerts on a T20 match of cricket, at 

each stage of an innings. ‘Ensembling’ the derived features with traditional statistics makes it 

possible to build an accurate player ratings model for both innings. 

     Four separate logistic regression models are developed to estimate a player’s rating, i.e. 

batter and bowler models, across each innings. The reason four separate models were developed 

is twofold: 1) The batting and bowling team in each innings plays with a different strategy. The 

first innings batting team aims to score as many runs as possible to maximise their chances of 

winning, while the second innings batting team aims to achieve the target before either all 

wickets have been lost or the pre-allotted overs have been played. 2) The first innings bowling 

team aims to restrict the number of runs conceded, while the second innings bowling teams aims 

to exhaust the batting team resources before they reach the target total. 

     Again, to identify the ‘best’ dependent logistic regression models the bestglm() function in 

R was applied adopting a cross-validation delete d-method. The list of candidate batting metrics 

for inclusion in the models are runs scored, balls faced, contribution, total runs contributed, 

strike rate, dots faced, total boundaries, percentage dots, percentage boundaries, pressure 

contribution, activity rate and survival probability. The list of candidate bowling metrics for 

inclusion in the model are balls bowled, runs conceded, percentage dots, percentage boundaries, 

economy rate, pressure contribution, dots bowled, boundaries bowled, maidens, total runs 

saved, wickets. Table 14 outlines the practically and statistically significant covariates across 

the two models and reveals the validity of the engineered features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

INNINGS 

FIRST SECOND 

B
A

T
T

IN
G

 Intercept -0.98 Intercept -0.73 

runs scored 0.22 runs scored 0.04 

dots faced -0.03 boundaries 0.23 

survival prob. 0.05 survival prob. 0.01 

pressure contribution 2.01 percentage dots -0.21 

activity rate 0.38 pressure contribution 9.77 

B
O

W
L

IN
G

 Intercept 0.09 Intercept -0.50 

runs conceded -0.13 runs conceded -0.34 

percentage dots 0.13 percentage dots 0.18 

economy rate -0.17 economy rate -1.01 

pressure contribution 6.38 pressure contribution 18.10 

runs saved 0.18 runs saved 0.24 

Table 14: Inning-based player influence model coefficients 
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Table 14 reveals that a batter’s and bowler’s ability to influence match outcome, across both 

innings, is dictated through volume, efficiency and pressure-based metrics, validating the 

hypothesis that to accurately measure player influence it is necessary to implement 3 key 

metrics-types: 1) volume of contribution, 2) efficiency of contribution and 3) contributions 

under pressure. 

     Unsurprisingly, pressure and efficiency metrics have a greater impact on player influence in 

the second innings compared to the first innings. This is an expected result because in the second 

innings batters experience “scoreboard pressure” and need to efficiently score runs and score 

runs under pressure, while bowlers need to efficiently restrict runs and restrict runs under 

pressure. 

     It is evident from Figure 22 the second innings player ratings models have significantly better 

predictive power than the first innings models, with the second innings model producing better 

predictions for winning results than losing results. Figure 22 shows the log-loss decreasing as 

the inning matures, illustrating that a player’s influence becomes more indicative of match 

outcome as an innings mature. This result is expected because as the inning nears completion a 

player’s performance metrics store more information regarding match outcome, increasing 

model “informativeness”. Moreover, the Hosmer-Lemeshow test statistics, with 10 groups, for 

the first and second innings models was 30,457 and 33,910, with p-values <0.0001 and <0.0001, 

respectively, indicating evidence of poor fit. These results indicate that a dynamic player rating 
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Figure 22: Ball-by-ball log-loss actual match outcome vs. player influence rating 
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framework has successfully allowed the construction of a ratings framework that measures the 

amount of influence they exert on a T20 match of cricket. 

     These player ratings are intuitive and transparent, as the results can be mapped to real-world 

observable outcomes and the context to which the system is being applied, and are interpretable 

and easily communicated, respectively. Moreover, the ratings are reliable and robust, as they 

yield good performance during different stages of the first and second innings, across winning 

and losing performance, and are well-calibrated and sharp, respectively. 

     Surprisingly, Figure 23 shows the first innings player models to have better predictive power 

than the second inning models, until the 12th over. After, the 12th over the second innings model 

produce better player ratings across both winning and losing results. 

     Figure 23 reveals that the DMS13 score better accounts for first innings match context relative 

to the log-loss metric (Figure 22) as it never produces scores below 0.50. Although, the DMS 

score shows that the first inning player-rating models are unable to account for variation in 

player influence at the same rate as the second innings. The DMS metric and the log-loss show 

that the second innings model produce significantly better player ratings as the match near 

completion, due to the amount of information that is available. Surprisingly both the DMS 

metric and log-loss report similar predictive power for the second inning rating models, however 

the predictive power as reported by the log-loss, for the corresponding losing model, slows after 

the 12th over. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
13 The update procedure applied to the weights, produced by the AHP, to calculate the DMS is the same 

as the linear process outlined in Chapter Five (section 3.11). 

Figure 23: Ball-by-ball DMS score of actual outcomes vs. player influence rating 
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     Figure 22 and Figure 23 reveal both DMS and log-loss producing fairly consistent measures 

for first innings player models. For both the DMS and log-loss measures produce monotonically 

increases and decreases, respectively. Although, for the second innings, the monotonically 

decreasing aspect of the log-loss slows after the 9th over (ball 54), after which the log-loss 

declines to 0.42. This trend phenomenon is not experienced by the DMS and continues it 

monotonically increasing trend until match competition. Again, these results reveal that the 

DMS performance metric is an appropriate metric to assess the effectiveness of meaningful 

sport-based rating systems and its ability to outperform well-known metric of the log-loss.  

     The results from the player rating models are intuitive and transparent, as they can be mapped 

to real-world observable outcomes and the context to which the system is being applied, and are 

interpretable and easily communicated, respectively. Moreover, the ratings are reliable and 

robust, as they yield good performance during different stages of an innings, and are well-

calibrated and sharp, respectively. 

5.6 DISCUSSION AND CONCLUSION 

To accurately measure a player’s influence on a T20 cricket match three key dimensions of a 

player’s game must be considered: 1) volume of contribution, 2) efficiency of contribution and 

3) contributions made under pressure. To derive volume, efficiency and pressure-based metrics, 

this chapter applies the ratings framework to build models capable of calculating ball-by-ball 

performance metrics associated with these three dimensions, leading to a novel perspective of 

dynamically assessing player impact on match outcome. Through the application of the inning-

based models, it was established that inning-based models possess the capability to dynamically 

evaluate a player’s ability to influence match outcome. The in-play player ratings represent the 

level of influence a player is exerting on a match and quantifies the amount of influence (or 

impact) an action has on match outcome. The results highlight the 3 key implications: 1) the 

model’s strong predictive power to evaluate match outcome during any stage of an innings for 

batters and bowlers, 2) the ‘inverse’ relationship between the predictive power of corresponding 

models (i.e. model 1 & 2, model 3 & 4), and the ability to dynamically account for match 

outcome variation based on significant changes in performance metrics, and 3) the model’s 

ability to dynamically evaluate shifts in batting and bowling metrics, and the ability to evaluate 

the changes effect of match outcome. 

     The models developed can be used by various stakeholders such as commentators, to 

establish live odds and deliver more insightful commentary on match state, create player specific 

training regimes to optimise in-game situations where players thrive and reduce match situations 

where the players performance deteriorates. The model results validate the assumption that a 

player’s influence had three key dimensions: volume of contribution, efficiency of contribution 

and contributions made under pressure. Moreover, it is revealed that to effectively measure a 
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player’s in-play influence many conventional cricket metrics are inapplicable due to two 

primary reasons: undefinable and event dependent metrics. 

     Given the magnitude of the batting metrics that affect match influence vary depending on 

batting position and playing-role, it is recommended that future research build a batter influence 

model based on batting position (i.e. opener, top, middle, lower and tail). 

     Using the ratings framework constructed in Chapter Three, this chapter developed a novel 

player-based rating system. The rating system adopted a multi-objective modelling strategy 

whereby each objective corresponded to a trait significantly affecting performance, and applied 

dimension reduction, feature selection and feature engineering techniques to ensure these traits 

were sufficiently and appropriately quantified. This chapter shows that rating systems must 

implement these key communalities to produce meaningful ratings of a players sporting 

performance. Moreover, it was shown that different feature-types across varying levels of 

complexity can be applied to build meaningful trait-based ratings; and that performance ratings 

are only as ‘good’ as the individual trait used to produce the final ratings. 

     It has been shown that the framework can be applied within the sporting context to produce 

intuitive, robust, reliable, and transparent player ratings. It is concluded that the framework 

constructs sport-based rating systems which output meaningful ratings of performances within 

the sporting context. 

     The predictive power of the probability of win and the player rating models were assessed 

using the DMS performance metric and the log-loss scoring rule. The DMS metric was shown 

to outperform the log-loss during the middle and latter stages of a second innings, however it 

performed equivalently during the first innings. This is due to the weightings assigned to the 

rate of change magnitude and angular metrics. The DMS was shown to better account for match-

context for latter stages of an innings, this is due to the weight adjustments that reflect match 

situation and better incorporates match information. 

          This is represented in the latter stages of the DMS as the trend converges faster to what 

happened in the second innings, while the first innings trend remains relatively flat. Further, 

compared to the log-loss predictions across both innings the DMS metric converges at a faster 

rate to the actual outcome, revealing a better use of information. 

     In both instances (Figure 22 and Figure 23) the log-loss and DMS metric predictions are 

better in the 2nd innings, which is expected as more reliable or informed data is available because 

the first innings has passed. Overall, it is revealed that the DMS metric is better at utilising new 

information and converges faster to actuality relative to the log-loss metric, this is due to the 

assigned weights representing the forecasting scenario. 

     These results reveal that the DMS metric is an appropriate metric to assesses the 

effectiveness of rating systems and outperforms well-known performance metric of the log-loss. 
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Chapter Six 

DISCUSSION, CONCLUSION AND FUTURE 

RESEARCH 

“Now it is time for the next chapter. I have new 

dreams and aspirations, and I want new 

challenges”. 

         Derek Jeter (2014)  

           On his retirement from professional Baseball. 
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6.1 DISCUSSION AND CONCLUSION 

Formally, this thesis has three research objectives: 1) develop a quantitative ratings framework 

to construct sport-based rating systems that output meaningful ratings. 2) Develop a novel 

evaluation metric to quantify the effectiveness of meaningful sport-based ratings. 3) 

Demonstrate the applicability of the developed ratings framework and novel performance metric 

within the sporting context. This chapter outlines the key outcomes and findings from this 

research, briefly describes the research limitation, future areas of research and possible ways to 

extend and improve the work presented throughout this thesis. 

     Through the literature review, it became abundantly clear that the growing application of big 

data and machine learning within the commercial environment has significantly increased the 

need for data-driven performance-based evaluation systems, referred to as rating systems or 

scoring models. 

     Specifically, rating systems have recently experienced a major growth in three major industry 

verticals, specifically 1) credit-risk, 2) sport and 3) the computer developer environments. 

Specifically, this growth is most prevalent when evaluating an applicants’ creditworthiness and 

repayment behaviour (credit-risk), evaluating team and player performance (sports) evaluating 

a developers’ coding ability (developer).  Consequently, DOT Loves Data was approached by 

Umano (a software company), Penny (a peer-to-peer lending service) and New Zealand Cricket 

to develop rating systems. Specifically, Umano wanted to develop a real-time computer 

programming and developer rating system which monitors individual, project, and team 

performance. Penny a wanted to develop a dynamic credit-risk scorecard which evaluates an 

applicant’s credit worthiness (ability to make timely repayments). New Zealand cricket wanted 

to develop a team and player optimisation tool allowing managers and coaches to select players 

and build strategy based on data-driven player ratings. 

     As a result of these three diverse, yet similar, projects, DOT funded this research to develop 

a ratings framework for constructing rating systems that could be applied and commercially 

deployed across multiple domains. Although this research was funded to develop a ratings 

framework to construct ratings systems across multiple domains, this thesis purely focusses on 

the development of a novel framework to construct rating systems within the sporting context, 

referred to as sport-based rating system. Specifically, the aim of this research was to develop an 

approach for constructing systems that produce reliable, robust, intuitive, and transparent 

ratings, or more simply, meaningful ratings, within the sporting context.  

     This rating systems disclosed within this thesis were restricted to the sports domain due to 

the commercial sensitivity of credit-risk and developer data, and intellectual property and non-

disclosure agreements. Moreover, sporting data is easily accessible, a large amount which is 

publicly available, and does not suffer from commercial sensitive, such as credit-risk and 

developer data. 
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     This thesis began by evaluating the current state of the ratings literature, specifically within 

the credit risk and sporting environments, and use the identified distinctions, limitations, and 

communalities to develop a ratings framework for constructing meaningful sport-based rating 

systems.  

     The research extends Bracewell’s (2003) definition of ratings; Bracewell (2003) who stated 

that ratings are an elegant form of dimension reduction and enable the simplification of massive 

amounts of data into a single quantity. Specifically, ratings are an elegant and excessive form 

of dimension reduction whereby a numerical value provides a meaningful quantitative 

interpretation of performance. Meaningful ratings must have the following characteristics: 1) 

Robust – ratings must yield good performance where data is drawn from a wide range of 

probability distributions that are largely unaffected by outliers, small departures from model 

assumptions, and small sample sizes. 2) Reliable – ratings must be accurate and highly 

informative predictions that are well-calibrated and sharp. 3) Transparent – ratings must be 

interpretable and easy to communicate. 4) Intuitive – ratings should relate to real-world 

observable outcomes and the context to which the system is being applied. 

          The criteria of intuitive and transparency were necessary as sport-based ratings systems 

required commercially deployment, and therefore the outputs need to relate to observable real-

world outcomes and be easy to communicate to decision-makers. 

     Based on the literature review, exploratory research was conducted and several rating 

systems, using commonly applied methodologies within the sporting context, were developed. 

Consequently, key limitations and communalities within the rating methodologies were 

identified. The limitations were the 1) lack of a ratings framework, 2) lack of meaningful ratings 

and 3) lack of an evaluation metric which quantifies the effectiveness of sport-based rating 

systems and accounts for different sporting context. The communalities were the application of 

1) dimension reduction and feature selection techniques, 2) feature engineering tasks, 3) a multi-

objective framework, 4) time-based variables and 5) an ensembling procedure to produce an 

overall rating. Therefore, a ratings framework was developed to apply methodologies to address 

these limitations and incorporate methodologies to implement these communalities. 

     Using these findings, a ratings framework was developed which implemented a dynamic 

multi-objective ensembling forecasting strategy. The framework applies a methodology for 

constructing rating systems within the sporting environments to produce meaningful ratings of 

performance. Rating systems built using the framework utilise action, context, and time-based 

metrics at varying levels of complexity from traditional and environmental-based metrics to 

complex metrics. Effectively, the framework ensembles ratings corresponding to traits that 

significantly affect behaviour, expressed as performance on context specific traits. These trait-

based ratings are derived by identifying the significant attribute-types (action, context and time), 

at varying levels of complexity, that affect the individual traits, and combining these trait-based 
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ratings through a modelling function to output meaningful trait-based ratings. Therefore, to 

produce meaningful ratings, the trait-based ratings that are ensembled must also be meaningful, 

in that, they are robust, reliable, transparent, and intuitive. Moreover, to truly capture the 

definition of ratings as an elegant and excessive form of dimension reduction, the framework 

adopts dimension reduction techniques. 

     An ensemble approach was adopted because it is assumed that performance is a function of 

the individual traits significantly affecting performance. Therefore, performance is defined as 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑓(𝑡𝑟𝑎𝑖𝑡1, … , 𝑡𝑟𝑎𝑖𝑡𝑛). Moreover, the framework is a form of model stacking 

where information from multiple models is combined to generate a more informative model. 

     The framework was used to construct a novel team and player-based rating system (Chapter 

Four and Chapter Five, respectively), specifically within the cricketing context. These two 

rating systems were shown to output meaningful ratings, confirming that a multi-objective 

ensembling strategy is an appropriate approach to construct meaningful rating systems within 

the sporting context. It was concluded that ensembling trait-based ratings, derived by combining 

the action, context, and time-based feature-types that significantly affect each trait is an 

appropriate strategy. Moreover, it was confirmed that to construct meaningful sport-based rating 

systems the following elements must be implemented 1) dimension reduction and feature 

selection techniques to identify the traits significantly affecting performance and identify the 

feature-types (action, context and time) of varying complexity that significantly affect each trait, 

respectively, 2) feature engineering to extract the latent traits affecting performance, 3) multi-

objective framework to derive trait-based ratings, 4) time-based variables to dynamically 

evaluate ratings and 5) applying an ensembling procedure to combine trait-based ratings and 

produce outputs that have better predictive performance compared to single predictions and are 

more stable. Given its validity, the ratings approach was used to develop the underlying models 

which are currently deployed within the Umano and Penny environments. Furthermore, the 

ratings framework was used to develop a player and team optimisation tool for New Zealand 

Cricket to select the optimal team for the T20 2019 cricket world cup. Although, these results 

and models were not disclosed in this thesis due to commercial agreements (intellectual property 

and non-disclosure agreements). 

     During the development of exploratory and framework-based rating systems, numerous 

regression and classification-based evaluation metrics were used to evaluate model 

performance. Throughout this process the limitations of commonly applied performance metrics 

such as RMSE, MAPE, accuracy etc. was realised. It was realised that commonly used 

performance metrics were not completely suitable to evaluate the effectiveness of sport-based 

ratings, in that various performance metrics are required to evaluate their effectiveness but no 

single evaluation index can be applied across all systems and none is universally regarded as 

the ‘gold-standard’ metric to evaluate rating performance. To address this issue, a novel 
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performance metric was developed to evaluate the effectiveness of ratings. Before constructing 

such a metric, the shortcomings of commonly used performance metrics needed to be 

understood and therefore a comprehensive review of evaluation metric was conducted. 

     A set of criteria were identified to construct a performance metric to quantify the 

effectiveness of meaningful sport-based rating systems. These criteria were: 1) sensitivity to 

distance, 2) sensitivity to time-dependence, 3) evaluates the ratings on the entire probability of 

distribution, 4) provides an incentive for calibration and sharp ratings and 5) adjusts incentives 

based on forecasting difficulty. 

     The literature review revealed that ensemble forecasts are generally assessed through two 

key statistics: reliability and resolution (i.e. calibration and sharpness, respectively). The 

reliability, or calibration, of a forecast indicates how confident the assessor is in their predictions 

and can be evaluated by comparing the standard deviation of the error in the ensemble mean 

with the forecast spread (Gneiting, Balabdaoui & Raftery, 2007). The resolution, or sharpness, 

of a forecast indicates how much the forecasts deviates from the climatological event frequency, 

given that the ensemble is reliable, increasing this deviation will increase the usefulness of the 

forecast. Therefore, given the five ideal criteria and the need for calibration and sharpness to 

assess ensembled ratings, a proper scoring rule methodology, specifically a spherical scoring 

rule, was identified as the most suitable approach to construct an evaluation metric to quantify 

the effectiveness of meaningful sport-based rating systems. Distance and magnitude-based 

measures derived from a non-local spherical scoring rule were used to develop this novel 

evaluation metric. This distance and magnitude-based spherical (DMS) metric implements an 

analytical hierarchy process (AHP), which enables the incorporation of prior knowledge 

surrounding sporting scenario and difficulty, and accounts for the time-element of sports. 

     Applying the DMS performance metric to team and player-based rating systems, specifically 

within the cricketing context, it was found to output prediction measures more aligned with 

actuality compared to traditional evaluation metrics such as the log-loss. This is because the 

DMS performance metric incorporates time-specific and scenario specific adjustments based on 

domain knowledge. 

     In conclusion this thesis has successfully identified the communalities and limitations of 

rating systems and developed a quantitative ratings framework to construct sport-based rating 

systems that produce meaningful ratings. The value of this framework was proved by 

demonstrating its applicability within the sporting context. Finally, the thesis developed a novel 

evaluation metric (DMS) to quantify the effectiveness of meaningful sport-based rating systems. 

which outperformed traditional metrics in certain forecasting scenarios. Successfully addressing 

the research objectives proves this thesis’s academic contribution. 
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6.2 FUTURE RESEARCH 

This thesis assumes that performance is an ensemble of individual traits, without considering 

the probabilistic nature of each trait and measuring how each trait could change from state-to-

state over time. Pentland & Liu (1999) described human behaviour as a set of dynamic models 

sequenced together by a Markov chain. Pentland & Liu (1999) considers the human as a device 

with many internal mental states, each with its own particular control behaviour and interstate 

transition probabilities (Pentland & Liu, 1999). Moreover, the state of each model was 

hierarchically organised to described both short-term and long-term behaviours. Future research 

could consider evaluating performance as an amalgamation of the work presented in this thesis 

and the work conducted by Pentland & Liu (1999). The framework could be extended by 

identifying long and short-term traits that affect performance. For example, when rating a 

cricket player there are short-term traits such as consecutive dots and consecutive boundaries, 

and long-term traits such as runs scored, percentage dots and percentage boundaries, that affect 

performance. In a dynamic Markov model, a probabilistic transition matrix could be assigned 

to measure the probability of moving from one state to another and anticipating the change for 

each player trait. Such an approach could possibly improve the framework as it would anticipate 

change in traits and where the trait transitions to, and therefore would adjust or recalculate 

performance based on probabilistic trait predictions. Such strategies of updating Markov chain 

models using ensembling techniques have been heavily investigated by Oliver, Chen & Naevdal 

(2010); Emerick & Reynolds (2011); Goodman & Weare (2010); Iba (2001); Moradkhani, 

DeChant & Sorooshian (2012); Posselt & Bishop (2012); Vrugt, Diks & Clark (2008). 

     Another area of future research is the application of the ratings framework to domains outside 

of sports. Although the ratings framework was only applied within the sporting-context for the 

purpose of this thesis, it is hypothesised that when applied to areas outside of sports, meaningful 

results can also be produced. Further research must be conducted to confirm this hypothesis. 

For example, there is a commercial need for such systems within digital marketing to assign 

ratings to online campaigns and evaluate their effectiveness and identify the key attributes and 

touchpoints that lead to sales and conversions. 

     Moreover, it is stated that the application of the DMS performance metric is not restricted to 

the evaluation of cricket-based rating systems and is applicable in any sporting code where an 

evaluation between the actual and predicted outcome is required. An area of future research is 

the application of the DMS performance metric outside the cricketing context. Therefore, future 

research into the applicability of the DMS metric across other sports, other than cricket is also 

recommended. It is hypothesised that when applied to areas outside of sports and cricket, the 

DMS metrics can still outperform traditional model evaluation metrics. Further research must 

be conducted to confirm this hypothesis. Further research should also be conducted into the type 

of weighting procedures that could be applied to update the rate of change attributes.  
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     It is hypothesised that the DMS metric is applicable in any field where an evaluation between 

the actual and predicted outcome is required. To test this hypothesis, the metric should be 

applied in field such as digital marketing to evaluate the effectiveness of ratings assigned to 

online campaigns and key attributes and touchpoints that lead to sales and conversions.  
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Analytical Hierarchy Process 

The analytical hierarchy process (AHP) is a multi-criteria decision-making tool developed 

by Thomas Saaty (Saaty, 1988). Given a user defined pairwise comparison matrix, the AHP 

translate the matrix into a vector of relative weights for each criterion element using a 

mathematical model. The pairwise comparison matrix provided a numerical comparison of 

each attributes with respect to the other attributes being evaluated. These matrix entries are 

determined using the fundamental AHP scale (Table 15) and are based on prior experience 

or expert knowledge. Applying the AHP to the pairwise comparison matrix translates the 

subjective weights into objectives weights, representing the importance of the attribute 

relative to the other attributes. Moreover, the method implements a consistency measure for 

each attribute to ensure that the ‘user’ defined weights are consistent and reduces bias in the 

decision-making process. “The aim is to provide the decision maker a precise reference to 

make adequate decisions and reduce the risk of making biased decisions by decomposing 

the problem into a hierarchy of more easily comprehended sub-problems” (Sinuany-Stern, 

1988, p. 74). According to (Maliki, Owen & Bruce, 2006, p. 4) the following steps are 

computed applied to conduct the AHP: 

Compute the value of criteria weights 

The user defines an 𝑛 × 𝑛 pairwise comparison matrix, 𝐴, where 𝑛 represents the 

number of evaluation criteria. Each 𝑎𝑖𝑗 entry evaluates the importance of attribute 𝑖 

with respect to 𝑗. The entries 𝑎𝑖𝑗 and 𝑎𝑗𝑖 must satisfy: 𝑎𝑖𝑗  × 𝑎𝑗𝑖 = 1, while criteria with 

the same level of importance must satisfy: 𝑎𝑖𝑗 =  𝑎𝑗𝑖 = 1. The importance of criteria 𝑖 

relative to 𝑗 can be established via the fundamental scale of the AHP: 

 

 

 

 

 

 

 

 

Synthesis judgement 

Derive the normalised pairwise comparison matrix, 𝐴𝑛𝑜𝑟𝑚, by the equating the sum of 

column entries to 1. The entries in matrix 𝐴𝑛𝑜𝑟𝑚 are computed as:    

𝑎̅𝑖𝑗 =  
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

 

Value of 𝒂𝒊𝒋 Interpretation 

1 𝑖 and 𝑗 are equally important 

3 𝑖 is slightly more important than 𝑗 

5 𝑖 is more important than 𝑗 

7 𝑖 is strongly more important than 𝑗 

9 𝑖 is absolutely more important than 𝑗 

Table 15: Fundamental scale of AHP 
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Create a criteria weight vector 

𝑤𝑖 =
∑ 𝑎̅𝑖𝑗

𝑛
𝑗=1

𝑛
 

A relationship exists between the pairwise comparison matrix 𝐴 and the weights vector, 

𝑤, such that 𝐴𝑤 = 𝜆𝑚𝑎𝑥𝑤. The maximum eigenvector 𝜆𝑚𝑎𝑥 can be found by 

computing a consistency check: 

𝐶𝑉𝑖 =  
∑ 𝑎𝑖𝑗 × 𝑤𝑗

𝑛
𝑖=1

𝑤𝑗
, 

And dividing the summation of consistency check values by, 𝑛, the number of criteria: 

𝜆𝑚𝑎𝑥 =  
∑ 𝐶𝑉𝑖

𝑛
𝑖=1

𝑛
 

Consistency check of pairwise comparison matrix 

The 𝜆𝑚𝑎𝑥 parameter enables the deviation of a consistency ratio (CR) which validates 

the consistency of the estimates vector: 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
 

n 2 3 4 5 6 7 8 9 10 

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 

The random index (RI) is dependent on 𝑛, if 𝐶𝑅 ≤ 0.1 then the values of subjective 

judgement (i.e. pairwise comparison matrix) and the weights generated in step 3 are 

regarded as acceptable. 

 
 



 
 

 

 

 

 

 



 
 

Appendix C 
 

Metric types and definitions 
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Performance metric Definition Attribute type 

Resources remaining Proportion of balls and wicket left in an innings Context/ Time 

Over number Number of over bowled Action/ Time 

Wickets Number of wickets Action/ Time 

Innings balls Number of balls bowled Action/ Time 

Innings runs Ball-by-ball runs scored Action/ Time 

Ball run rate Current total / balls bowled Action/ Time 

Projected total Current total / resources remaining Time 

Team percentage dots Total dots / balls bowled Context/ Time 

Team percentage 

boundaries 
Total boundaries / balls bowled Context/ Time 

Runs remaining Number of runs needed to reach the target total Context/ Time 

Required run rate Run rate needed to reach the target total Context/ Time 

Batting team pressure The amount of pressure experienced by the batting team Context/ Time 

Bowling team pressure The amount of pressure experienced by the bowling team Context/ Time 

Batting team run 

efficiency 
Inning runs / resources consumed Context/ Time 

Balls faced Number of balls delivered to a batter Action/ Time 

Batter total runs Total number of runs a batter scored Action/ Time 

Batter runs contributed Batter runs / innings runs Action/ Time 

Batter strike rate Batter runs / ball faced Context/ Time 

Batter total dots Balls faced by a batter in which no runs are scored Context/ Time 

Batter total boundaries Number of boundaries hit by the batter Action/ Time 

Batter percentage dots Batter total dots/ balls faced Context/ Time 

Batter percentage 

boundaries 
Batter total boundaries/ balls faced Context/ Time 

Batter activity rate Percentage of balls a batter score runs off Context/ Time 

Batter total run 

contribution 
Sum of batter runs contributed Action/ Time 

Balls bowled Number of balls bowled by a bowler Action/ Time 

Bowler runs saved Number of runs saved by a bowler Action/ Time 

Bowler total runs 

contributed 
Sum of bowler runs saved Action/ Time 

Batter run efficiency Batter runs scored / resources consumed by the batter Context/ Time 

Batters pressure 

contribution 
Batter’s contribution made under pressure Context/ Time 

Bowlers pressure 

contribution 
Bowler’s contribution made under pressure Context/ Time 

Batters win contribution 𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛)𝑖 − 𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛)𝑖−1 Context/ Time 

Bowlers win contribution 𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛)𝑖−1 − 𝑝𝑟𝑜𝑏(𝑏𝑎𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛)𝑖 Context/ Time 

Batters total win 

contribution 
Sum of a batters win contribution Context/ Time 

Bowlers total win 

contribution 
Sum of a bowlers win contribution Context/ Time 

Batter’s survival 

probability 
Probability of a batter being dismissed Context/ Time 

Table 16: Metric definitions and attribute-type for player-based ratings framework (Chapter Five) 

 


