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Abstract

Today, the Internet plays an vital part in our society. We rely greatly on

the Internet to work, to communicate and to entertain. The Internet is a

very large and complex computer network, consisting of tens of thousands of

networks called autonomous systems (ASes). The key routing protocol for

interdomain routing between ASes, Border Gateway Protocol (BGP), was

invented three decades ago. Although BGP has undergone many improve-

ments, many fundamental problems and limitations of BGP still exist today.

For instance, BGP does not have the resiliency to attacks and good sup-

port for traffic engineering. To date, many evolutionary and revolutionary

solutions have been proposed to address these problems. However, very few

were adopted. While there are many reasons for this limited adoption, one

may blame for the lack of deployability, scalability and more importantly

adequate functionality.

SDN is a new networking paradigm that decouples the control plane and

data plane. SDN breaks the ossification of the Internet and enables network

innovations. SDN has been thoroughly investigated for the enterprise envi-

ronment. This research investigates the application of SDN for interdomain

routing in transit ASes. Specifically, the main goal is to study how SDN

capabilities can be utilised to develop a scalable, programmable and flexible

routing architecture for transit ISPs.
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Chapter 1

Introduction

The Internet is composed of tens of thousands of autonomous systems. Each

Autonomous System (AS) is independently operated. A small number of

ASes forms the “Internet core”. They are Internet Service Providers (ISPs)

that provide transit services to other ASes. The majority of ASes rely

solely on the transit services to get connected to the Internet. Typically, an

end-to-end Internet path traverses at least one or more transit ASes.

Currently, BGP is the de facto protocol for interdomain routing. BGP

facilitates the establishment of end-to-end connectivity between ASes in the

Internet. Unfortunately, it was designed with limited support for quality of

service and security [2]. Moreover, it converges slowly and can take several

minutes to compute a new path after a failure [3]. As a result, the computed

interdomain paths are ill-suited for many emerging applications such as real-

time control and communications.

In the last decade, Software-Defined Networking (SDN) has emerged

as a new networking paradigm advocating for the decouple of the control

and forwarding function in the network. SDN is composed of a logically cen-

1



2 CHAPTER 1. INTRODUCTION

tralised controller and a network of forwarding devices. The controller makes

decisions based on a complete view of the network. SDN is a promising ap-

proach to many networking problems [4]. OpenFlow is a prominent SDN

framework which is widely supported by both the academia and industry.

This thesis presents an incremental and backward-compatible SDN-

based solution that can be deployed per transit provider. In contrast to

clean-slate solutions, this would allow a transit ISP to improve its transit ser-

vice without cooperation from the others. This potentially sparks a competi-

tion and leads to a large scale adoption of SDN among ISPs. Having enough

number of SDN-enabled ISPs would enable the deployment of a clean-slate

solution which is the ultimate goal among the Internet community.

1.1 Motivation

SDN has been thoroughly studied in the literature to develop solutions to

many existing networking problems [5]. Interestingly, solutions proposed so

far mainly focus on security or traffic engineering problems in enterprise and

datacenter networks. With regard to transit ISPs, previous research has

looked at interdomain routing [6, 7, 8]. However, their main focus is an

Internet-wide solution.

Other works such as SDN-IP [9] and RouteFlow [10] offer no enhancement

to the functionality and operation of interdomain routing, as they merely

investigate how SDN can be incrementally deployed in an ISP environment.

In particular, work on software-defined internet exchange (SDX) [11] which

improves interdomain routing within an Internet Exchange Point (IXP) has

inspired this research. However, SDX cannot be directly applied to an ISP
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environment because it was designed for work on a single-switch network.

This research aims to utilise SDN and develop a working solution for transit

ISPs.

Transit ISPs play a crucial role in the Internet infrastructure. They sit at

the backbone of the Internet, have connectivity to every destination in the

Internet and carry a large portion of interdomain traffic between end (stub)

networks [12]. Since the commercialisation of the Internet, transit services

remain as “best-effort” delivery: they merely provide the connectivity with

no QoS guarantee. In practice, transit services are often associated with a

service level agreement (SLA). However, the scope of SLAs is limited to a

network’s boundary as a transit operator has no mechanism to ensure end-

to-end SLAs. Meanwhile, network applications have become more diverse,

ranging from high-bandwidth (e.g. data-intensive applications, on-demand

videos) to low-latency ones (e.g. real-time communications). The best-effort

transit service may work for some applications but not the others.

This research develops a SDN-based solution for interdomain routing in

transit ISPs called SDN for Interdomain Routing (SDIRO). Figure 1.1 de-

picts the high-level architecture of the system in which a logically centralised

controller with complete visibility of the path performance and availability

status, computes routes for all border routers in the network. The controller

enables the operator to programmatically define fine-grained routing pol-

icy for customers. For instance, traffic from customer A, B and C to the

same destination can be routed over different paths in order to meet the cus-

tomers’ requirements. While this architecture can possibly be implemented

using existing technologies such as Virtual Routing and Forwarding (VRF)

and Policy-Based Routing (PBR) as suggested by past research [13, 14],
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Transit provider

Customer A 
(video conference) 

Reliable ISP 

High-speed ISP

Destination

Customer B 
(big data) 

B1

B3

Secure ISP

B4
B2

Customer C 
(finance) 

Controller

Figure 1.1: High-level architecture of the solution which consists of a logically

centralised controller. Each border router (B1..,B4) can use a different path

to a remote destination.

there are a number of technical challenges that need to be addressed for the

sake of practicality (i.e. simplicity, efficiency and scalability). The following

describes these challenges.

Routing programmability. Currently, high-level routing objectives

(e.g. “use of the cheapest path or low latency one”) are manually translated

into BGP commands (e.g. to set the BGP local-preference) which tell a router

to prefer one particular path over the others for traffic forwarding [15]. How-

ever, conventional routers support a limited set of commands (associated

with the BGP path attributes). Thus, many policies that are dynamic, tem-

poral or performance-aware cannot be directly implemented in BGP. Instead

of writing policy with a set of predefined commands, the operator should

be able to express policy as software applications. This software-defined pol-

icy allows the operator to realise arbitrary policy. Existing SDN program-

ming frameworks such as Procera [16] and Maple [17] designed for enterprise
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networks do not offer the right programming language and abstractions for

interdomain routing. Solutions built for conventional networks [18, 14] are

rather complex to implement and do not benefit from the advantages of SDN.

This research fills this gap by designing and implementing a prototype of a

logically centralised controller for interdomain routing in transit ISPs. The

controller leverages graph models and a graph database to provide the op-

erator with a declarative language for writing arbitrary policy in a simple

manner while ensuring scalability (see Chapter 3).

Routing flexibility. BGP routers route packets based on the destina-

tion. This greatly limits the operator from realising fine-grained routing (i.e.

customer-specific or application-specific). For example, a router can have

multiple attached paths but the destination-based forwarding limits it from

forwarding different traffic via different path. This limitation can be over-

come by using PBR and VRF [13, 14]. However, using these technologies

for realizing fine-grained policy is overkill and too complex to manage (see

Chapter 6). In this research, these issues are addressed by re-designing the

ISP border routers using SDN and OpenFlow. It uses the same concept of

RouteFlow [10] and SDN-IP [9] but incorporates with the multi-path routing

capability to support flexible policy (see Chapter 4).

Routing scalability. The flexibility of being able to define finer-grained

policy increases the forwarding state in routers. This exacerbates the already-

a-concern scalability with regard to exponential growth of the forwarding

table in transit ISPs [19]. Past research has attempted to address this scal-

ability issue using many different approaches such as routing table compres-

sion [20], clean-slate design [21] and coordinated route aggregation [22]. This

research takes a different approach which decomposes the forwarding table
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into sub-tables and distributes across a interconnected network of switches

(see Chapter 5). This allows the forwarding table to scale vertically or hori-

zontally by replacing or adding more switches to the network.

1.2 Research Framework

Route Controller (Chapter 3)

Abstractions

Graph Models

Query language

BGP BGPBGP

OpenFlow-
capable
network

OpenFlow-
capable
network

OpenFlow-
capable
network

Multipath-capable forwarding plane (Chapter 4)

External routers

FIB scalability (Chapter 5)

C
on

tro
l P

la
ne

D
at

a 
Pl

an
e

Figure 1.2: Research Framework

The main focus in the research is the applicability of SDN and OpenFlow

into interdomain routing in transit ISPs. The results are solutions which

address the key routing challenges. The research framework is depicted in
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Figure 1.2. It describes components in the control and data plane being cov-

ered in and the contributions of the research. On top is the controller which

provides routing abstractions and a query-like Application Programming In-

terface (API) to the applications. The data plane is made up of a distributed

network of BGP routers built on top OpenFlow. It also includes a mecha-

nism and algorithm for scaling the Forwarding Information Base (FIB) table

and a design and an implementation for the multipath forwarding capability.

1.3 Contributions

1. Design and evaluation of a centralised controller for programmable

interdomain routing in transit ISPs.

In a transit AS, routers are autonomous which select the best routes

based on a statically configured policy. The route selection of the

conventional BGP does not consider metrics such as performance or

security. A router may continue to send traffic via path which is suffer-

ing from congestion but it is not deemed broken in the control plane.

Moreover, policy expression using low-level, vendor-based languages

and an indirect and overloaded mechanism (i.e. route ranking using

local-preferences) is difficult to write and to reason about.

a) A design and implementation of a centralised controller for policy

programmability through a graph-based representation of routing

and a declarative programming language is developed. A working

implementation of the controller has been developed using Neo4J

graph database.
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b) Extensive evaluation of the controller using synthesis and real data

traces was performed. The evaluation looks at a number of metrics

including convergence and policy expressiveness.

2. Design and evaluation of BGP multipath routing on OpenFlow-

enabled networks.

Multipath routing enables the network to utilise all available paths for

traffic delivery, as opposed to the current single-path model of BGP

which forces traffic from multiple customers to be sent via the same

path.

a) The research presents a design for multipath capability with min-

imal rule overhead compared to the conventional techniques. By

leveraging OpenFlow and its multi-table capability, a multipath-

capable BGP router, built on top of a distributed network of

switches, is designed and implemented.

b) A fully functional (open-source) OpenFlow-based BGP router (con-

troller) was implemented in Python which has become a popular

language for network programming [23]. The main logic (BGP

controller) is implemented as a Ryu application which commu-

nicates with Faucet being responsible for managing a distributed

layer 2 network. Managing traffic within the layer 2 network is the

job of Faucet, whereas the BGP controller performs the standard

BGP operation and react to the route controller’s commands.

c) A physical testbed was deployed simulating a transit ISP with

three demarcation points (i.e. Point of Presence (POP)) using

both hardware and software switches. This demonstrates that
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the system can be deployed incrementally as one of the POPs is

using traditional routers. Evaluation on performance of both the

control plane (processing capacity, convergence) and data plane

(forwarding performance) was performed on this testbed.

3. Design and evaluation of a FIB distribution mechanism for

scaling the data plane.

The exponential growth of the global Internet routing table in transit

ASes has raised scalability concerns. Attempts to reduce the size of the

table require global coordination. Common practices to filter routes can

lead to black-holes.

a) The thesis presents a mathematical model of the problem of dis-

tributing FIB rules over a distributed switch and model it as a

linear optimisation problem.

b) A design of a heuristic algorithm which trades the efficiency for

speed and perform a comprehensive evaluation of the algorithm

using synthesis and real data traces.

1.4 Thesis Organisation

The remainder of this thesis is structured as follows:

Chapter 2 first provides an introduction to interdomain routing and its

core routing protocol, BGP and to the concept of SDN and existing SDN ar-

chitectures. In the second part, the chapter reviews existing solutions to the

three issues of the interdomain routing in transit ISPs: routing programma-

bility, routing flexibility and routing scalability.
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Chapter 3 provides an overview of the design and implementation of the

centralised routing controller gRCP. gRCP controller addresses the routing

programmability of the proposed solution for interdomain routing.

Chapter 4 provides an overview of the design and implementation of

fBGP, a flow-based border router. fBGP offers the flexibility for performing

customer-specific routing. fBGP addresses the routing flexibility of the pro-

posed system. Chapter 5 presents a method and algorithm for addressing

the scalability issue by decomposing and distributing the FIB table across a

distributed switching fabric.

Chapter 6 provides an in-depth comparison between the proposed solution

and the potential legacy approach to the routing problem of interdomain

routing. Finally, chapter 7 summaries the thesis, the contribution made by

the thesis and discusses the future work.



Chapter 2

Background and Related Work

This thesis investigates methods to improve the capability and perfor-

mance of interdomain routing in a transit ISP and the application of

SDN into realising an incrementally deployable solution . There are

a wide range of clean-slate proposals addressing various aspects of interdo-

main routing such as Pathlet [24] (scalability and flexibility), NIRA [25] (path

programmability) and SCION [26] (path programmability, scalability and se-

curity). However, they do not meet the requirement for incremental deploy-

ment, therefore they are not covered in this review.

This chapter is organised into three main sections. Section 2.1 provides

an introduction to interdomain routing and BGP. The definition of SDN, an

introduction to several popular SDN architectures, particularly OpenFlow -

the most popular implementation of SDN in the literature, and existing SDN

solutions to interdomain routing in general and in transit ISPs in particular,

are also provided in Section 2.2. The performance attributes and capabilities

of interdomain, namely routing programmability, flexibility and scalability,

are discussed in Section 2.3.

11
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2.1 Introduction to Interdomain Routing

This section gives a brief introduction to interdomain routing, and BGP. It

also provides a discussion of the challenges facing the ISP operators.

2.1.1 Overview

Interdomain routing is described as the routing between ASes, in contrast

to routing within an AS which is called intradomain routing. Interdomain

routing plays a critical role of being the backbone of the Internet that provides

connectivity between any host or device in the Internet.

In interdomain routing, participating ASes are operating in the same

global address space (i.e. IPv4 and IPv6). The address space is divided into

small portions called prefixes which are allocated to different ASes. Interdo-

main routing is the process of exchanging information and establishing paths

from an AS to prefixes of other ASes.

An AS who has ownership of a prefix originates routing information

(called route) about the prefix to its neighbouring ASes. A route contains

information about the sequence of ASes used to reach to the prefix. These

neighbours, in turn, propagate the route after appending its own ASN to the

path. This process continues until the route is propagated to all ASes in the

Internet. An AS makes autonomous decisions on who it wants to propagate

a route to as well as how a route from a neighbour will be processed. Routing

decisions are typically associated with the business relationship between two

ASes. Specifically, the types of interconnection between ASes determine how

interdomain paths are formed in the Internet.

BGP is the dominant protocol used for propagating the routing informa-
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tion between ASes. BGP and interconnection are two main components of

the current interdomain routing in the Internet. The next sections discuss

Internet interconnection and BGP in more detail.

2.1.2 Internet Interconnection

Links between ASes are traditionally categorised into three classes: transit,

peering and sibling. A transit link reflects a Customer-to-Provider (c2p)

relationship between an AS (the customer) and a transit AS (the provider).

Peering links are established between two ASes who have mutual agreement

to exchange their own traffic or their customers’ traffic at no cost. Two ASes

(e.g. operated by the same organisation after merging) may have sibling links

between them. Some variants of interconnections exist, including partial

transit (i.e. limited destination) and hybrid (i.e. two ASes have both transit

and peering interconnection at different locations).

Figure 2.1 illustrates simplified interconnection topology in the Internet.

Arrows and lines represent c2p and p2p links, respectively. At the core of the

Internet are tier-1 transit ISPs: there are only a handful of them but they

have a critical role of keeping the Internet connected [12]. A tier-1 ISP only

has peering and transit links (p2c). Tier-2 ISPs are customers of tier-1 ISPs

and so on. Typically, traffic flows a from a customer via a c2p link, possibly

crossing a p2p link and finally a p2c link before reaching the destination. The

real-world topology is much more complicated [27] with almost 35K active

ASes and 146K interconnections [28] (as of 2011). CAIDA reports 70K ASes

as of 2017. ASes tend to keep the details of their interconnections secret as

this information is sensitive for the business. Therefore, inferring an accurate

Internet topology has always been an active research area [29].
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Tier-1 ISPs Super large CDNs

IXP IXP

Tier-2/3 ISPs Tier-2/3 ISPs

Stub AS Stub AS Stub AS Stub AS Stub AS

Figure 2.1: A simplified interconnection topology of the Internet

Transit links are commonly associated with a Service Level Agreement

(SLA). A SLA is the commitment of the transit provider for the quality

of service. SLAs cover aspects of the service including availability, quality

(which includes delay, throughput and/or jitter) and responsibilities. How-

ever, while an AS has total control of its intradomain routing, it has limited

influence on the routing decision made by other ASes, thus the committed

SLA by a transit provider is unlikely to be enforced a long the end-to-end

path [30].

Many peering links between ISPs are established at colocation facilities

and IXP. A study shows that outages at these facilities are common and can

last as long as tens of minutes in average [31]; 40% of them even exceed 1

hour. This frequent outages of the peering infrastructure has great impact

on remote networks. The same study also finds that the median Round-Trip
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Time (RTT) increases more than 100 msec during the outages, with 30% of

the paths still having an increased RTT of 40 msec after the outages. The

study also notes that outages of peering infrastructures not only have local

impact but impact on remote networks as well.

Interdomain routing is policy-driven; end-to-end paths are formed by the

collective policy applied by the ASes along the path. Studies have shown

that the Internet exhibits path inflation i.e. paths are longer than necessary,

affecting quality. The intradomain routing topology and peering policies of

ISPs are contributors of the path inflation [32].

Valley-free routing is a universal property of the Internet interconnection.

Valley-free routing dictates that traffic between two large ASes should not

transit a small (customer) AS [33]. Violation of valley-free routing can sig-

nificantly degrade performance (i.e. the small AS cannot accommodate the

traffic). However, studies found that valley-free violations are pervasive with

many valley paths lasting for months [34].

Having said all that, stub ASes (end networks) have limited influence and

control over the formation of the end-to-end Internet paths. It is mostly up

to the transit providers to decide how their customer routes will be prop-

agated. Moreover, routing changes (i.e. topology, policy) in transit ISPs

can significantly contribute to end-to-end packet loss [35]. Meanwhile, the

associated SLA of transit services is likely not enforced across the path.

2.1.3 Border Gateway Protocol

BGP is a path vector protocol: it does not route traffic on the shortest path

like many other intradomain protocols.

Two BGP-speaking routers establish a TCP session between them to
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Route
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Figure 2.2: BGP route announcement and the established path.

exchange routing update messages. A router sends to its neighbours an an-

nouncement message to inform them that it knows the path to the associated

prefix(es). A withdrawal message is sent to a neighbour when the router does

not want that neighbour to use the path or it actually has lost the path. If

two routers are in different ASes, its BGP session is called eBGP otherwise

iBGP. Figure 2.2 depicts the high-level operation of BGP. The traffic flows in

a reverse direction of routing information. A route announcement contains

two key attributes: prefix(es) and AS path along with many other attributes.

The list of popular attributes are shown in Table 2.1. Local-preference (called

local-pref for short) is the most used attribute for routing policy [36].

A BGP route consists a number of attributes which a router can use

for route selection. The operator defines an import policy based on these

attributes which dictates which route a router should install into its local

routing table. Attribute values may be modified before the update is sent out.

Noted that, none of the existing attributes reflects the performance properties

of the path rather than the hop count. Thus, operators typically choose

routes based on the path length (AS hops). Nevertheless, other attributes

can also be used. Study shows that default routes provided by BGP are

usually poor in terms of performance metrics such as throughput and delay
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Attribute Name Description

Origin The origin code tells how BGP learned about the

specific route (i.e. three sources: IGP, EGP and

incomplete (other source))

AS path The sequence of ASes to reach to the destination.

BGP selects shortest AS path by default

Next hop Provide information about the next hop for traffic

forwarding

Multi-Exit Dis-

criminator (MED)

An optional non-transitive attribute, used to hint

external neighbours about the preferred path into

an AS

Local preference

(or local-pref)

Most used attribute for influencing outbound

traffic engineering

Community Widely used to provide additional information

about the route and expected handling of the

route

Table 2.1: Popular well-known BGP Attributes.

provided that there exist routes with better performance [37].

A BGP router typically receives multiple routes to the same prefix from

different neighbours. It only selects a single route (known as the best route)

which is used for forwarding traffic. BGP routers use a pair-wise comparison

for selecting the best route: the route attributes of two routes are compared

and the superior one is selected. Although the BGP specification does not

specifically define the route selection algorithm, the industry agrees on a

common and simple decision process as described below:
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1. Verify if the next hop can be resolved

2. Prefer the path with the highest local preference

3. Prefer the path with the shortest AS path

4. Prefer the path with lowest origin value (IGP < EGP < incomplete)

5. Prefer the path with the lowest MED

6. Prefer the path learned from eBGP over iBGP

7. Prefer the path with the lowest IGP metric to the next hop

8. Prefer the oldest path

2.1.4 Interdomain Routing in Transit ISP

This section describes the topology and architecture of interdomain routing

within a transit ISP, and the common routing policy used by ISPs. The pop-

ular route distribution mechanism (i.e. route reflection) and its limitations

are also discussed.

Within an AS, BGP protocol does not allow a router to exchange a route

learned via iBGP to other routers of the same AS. Thus, a full-mesh iBGP

connectivity between routers is required. However, such full-mesh topology

is not scalable for large networks. Route reflection technique is used. A route

reflector is a special BGP router which has iBGP connection to all routers

and reflects a route received from one router to the others.

Route reflection increases routing convergence, since update messages

traverse a longer path before reaching the final iBGP router. Route reflection

reduces path diversity. The route reflector itself runs the same path selection
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POP-level RR POP-level RR POP-level RR
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Figure 2.3: A logical routing topology in an ISP.

algorithm as other routers, thus only a single best path being announced. It

is most likely that not all the best paths chosen by the reflector would be the

best paths for each of all its clients [38].

An incremental solution to the limitation of RR was proposed, called

BGP Add-path [39]. The extension allows BGP routers to advertise multiple

paths, in order to improve the path diversity [40]. This increases loads on

the BGP route computation [41].

Interdomain traffic engineering in transit ASes is a non-trivial task [42].

One of Traffic Engineering (TE) objectives that is common in transit ISPs

is to minimise the time interdomain traffic traverses across their network.

This is commonly known as “hot-potato” routing. Traffic engineering of

interdomain routing in transit ISPs is more challenging than in stub ASes

due to the cascade effect.

BGP provides great expressiveness for routing policy. Range of policies

can be categorised into four categories: business relationship, traffic engi-
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neering, security and scalability [36]. Typically, ISPs prefer route learned

from a customer, than peer and provider. This is achieved by setting higher

local preference for customer routes. The main policy mechanism used by

ISPs is local preference.

2.2 Software-Defined Networking

This section provides an overview of the SDN concept and principles, and a

brief introduction about different SDN architectures and implementations.

2.2.1 SDN Architecture

Traditionally, network devices are vertically integrated. The control plane

which decides how to handle network traffic and the data plane which for-

wards traffic are bundled in the same hardware platform. This tightly coupled

configuration hinders the innovation and evolution of the network [43]. For

instance, deploying a new capability or upgrading the forwarding capacity

would possibly require a replacement of existing devices.

Noted that, many modern network devices have modular architecture

with “hot-swap” capability which allows the control and data plane to be

upgraded independently on the fly. This makes the network management

easier to some extent. But since the design of the control plane and the

communication protocol the two planes are proprietary, the operator has to

rely completely on its vendors for innovations. Moreover, network devices are

autonomous and make decisions based on limited view (largely based local

events) of the network.
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SDN breaks this tradition in networking by introducing three key capa-

bilities: separation of the control and data plane, centralisation of the control

plane and an open API, as ways to make the network programmable [44].

According to Open Networking Foundation (ONF), a consortium among op-

erators including Facebook and Google, founded in 2011 to promote SDN,

in SDN the control plane and the forwarding planes are decoupled (i.e. de-

ployed in separate hardware platforms) and the network intelligence is (log-

ically) centralised in a programmable SDN controller. The SDN controller

maintains a global view of the network and makes it appear to applications

and policy engines as a single logical device.

Application Layer

Control Plane Layer

Data Plane Layer

Controller
(Network Operating System)

Business Applications

Northbound API

Southbound Interface (e.g. OpenFlow)

Figure 2.4: A high-level view of SDN architecture.

A simplified view of an SDN architecture is depicted in Figure 2.4. At the

top layer are network applications that interact with the network through an
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open API provided by the controller. The controller manages the network

devices and maintains a global view of the network. The data plane consists

of network devices whose job is to simply forward packets according to the

control plane’s decisions. OpenFlow is a popular implementation of SDN

architecture.

There have been several proposals for SDN. The next sections presents

popular SDN implementations, including OpenFlow, Forwarding and Control

Element Separation (ForCES), Path Computation Element (PCE), Interface

to Routing System (I2RS) and NetConf.

2.2.2 OpenFlow Architecture

OpenFlow Switch 1

OpenFlow Controller

Secure
Channel

Flow Table 1 Flow Table 2 Flow Table n

OpenFlow Switch n

Secure
Channel

Flow Table 1 Flow Table 2 Flow Table n

OpenFlow protocol

Figure 2.5: Overview of OpenFlow Architecture

An OpenFlow architecture as shown in Figure 2.5, is composed of a con-

troller, a secure channel and one or more OpenFlow-compliant switches [45].

An OpenFlow switch can be configured with one or more flow tables in a se-

quence (called pipeline), with each containing a prioritised list of flow entries,

instructing the switch how packets should be handled. Each flow entry has

a match field, a set of instructions and a counter. If a packet matches a flow
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with highest priority, it will be processed according to the instructions and

the counter is incremented. The packet can be forwarded out of a port(s),

sent to the next table or dropped. If there is no match, the packet may be

encapsulated and sent to the controller.

The controller is a software program responsible for managing the flow

tables of switches. The controller can install, remove or modify a flow en-

try by sending OpenFlow commands to the switch via the secure channel.

The OpenFlow protocol specifies the data models and the communication

between the controller and the switches. To date, OpenFlow protocol has

gone through a number of development, from version 1.0.0 to 1.5.0. How-

ever, OpenFlow version 1.3 is currently a widely supported protocol by switch

vendors [4]. It has many improvements compared to the previous versions

including support for cookies, and flow meters.

Much research into SDN and OpenFlow is dedicated to the development

of the OpenFlow controller [46]. As a result, many controller platforms and

architectures (both open-source and commercial) have been proposed - NOX,

ONOS, Open Daylight, Floodlight, Ryu and POX to name a few. These con-

trollers enable APIs to develop SDN applications in many popular program-

ming languages such as C, Java and Python. Ryu, a Python-based controller

was chosen in this thesis for prototyping and experiment, as it is the well-

tested, well-documented controller which is accepted in both academics and

industry.

OpenFlow switches are available in both hardware and software form [47].

Some hardware OpenFlow switches are distributed as black boxes that ex-

poses only the OpenFlow interface to the external controller. Some are

distributed as “white-box” that users can install their own switch control
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software (e.g. OpenFlow agent). Software switches are commonly available

as open-source. Many OpenFlow switches support hybrid mode (i.e. both

OpenFlow and legacy mode) to facilitate incremental deployment in an ex-

isting network.

OpenFlow is considered to be the enabler for network innovations [48]. To

date, it is the most commonly deployed SDN technology in both experiment

and production environments [4].

2.2.3 Other SDN Architectures

OpenFlow is not the only SDN architecture. Several architectures have been

proposed before OpenFlow. This section gives an overview of these architec-

tures and highlights the key differences with the OpenFlow architecture. A

more detail of SDN architecture can be found in two surveys [49] and [50].

ForCES

The Forwarding and Control Element Separation (ForCES) was introduced

in 2003 by the IETF ForCES Working Group [51]. The ForCES architecture

is composed of two logic entities called the Control Element (CE) and the

Forwarding Element (FE). The CE is responsible for control and signalling

functions whereas the FE provides per-packet processing according to the

instructions of the CE.

The ForCES architecture is based on a building block called Logical Func-

tion Block (LFB). The LFB is a well-defined, logically separable functional

block that resides in an FE and is controlled by the CE via the ForCES
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protocol 1. OpenFlow tables are equivalent to LFBs but with more flexi-

bility. The function of a LFB (e.g. Ethernet processing) and the order of

LFBs (i.e. packet flow) are defined in advance, whereas OpenFlow tables can

match on arbitrary packet headers and move the processing (i.e. the “Goto”

capability) to any subsequent table.

The ForCES architecture is not widely adopted due to the lack of clear

language abstraction definition and controller-switch communication [52].

PCE

The Path Computation Element (PCE) architecture was proposed to fa-

cilitate the computation of paths (i.e. labelled switch paths or LSPs) in a

MPLS-enabled network [53, 54]. The PCE architecture has two key elements:

the PCE and the PCC (path computation client). The PCC is usually imple-

mented in a network management system or in a node, initiating a request

for a LSP path to the PCE which in turn performs the computation based on

its global view of the network (i.e. the traffic engineering database or TED).

In comparison to OpenFlow, PCE is limited to path computation in

MPLS networks whereas OpenFlow offers programmability to implement new

functionality in the data plane.

I2RS

I2RS is an IETF standard proposed in early 2013, which defines protocols

and mechanisms to control the dynamic state in routers and switches [55].

The I2RS architecture consists of the clients and the agents. The agents are

implemented in network devices that interact with the RIB table (i.e. the

1https://tools.ietf.org/html/rfc6956
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routing table) and the routing policy. The client(s) controls the agents and

provides interfaces to applications.

Similar to the PCE architecture, I2RS focuses on a specific domain in

networking (i.e. the routing control). In contrast, OpenFlow aims to improve

the programmability of the data plane. I2RS is being standardised. Router

vendors have not yet supported and implemented I2RS.

NetConf/Yang

NetConf is a replacement of the traditional simple network management pro-

tocol (SNMP) which provides the functionality for installing, manipulating

and deleting configuration of network devices [56]. Yang, a data modelling

language, is used to model configuration as well as state of network ele-

ments [57]. Yang is designed for both human and machine readability. Net-

Conf/Yang provides a simplified and extensible way for network automation,

an alternative to the conventional command line interface (CLI). Yang mod-

ules are to be converted into XML format, populated with configuration data

and transported to the device by NetConf.

In comparison to OpenFlow, NetConf offers limited programmability. It

can tune the behaviour of a functionality implemented in a network device

(i.e. configuration of routing) but does not allow implementation of a new

functionality. OpenFlow, in contrast, allows full programmability of the

data plane, thus making it possible to realise new functionality in the same

hardware.
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2.2.4 SDN Applications

Most existing works are dedicated for developing SDN-based solutions for

enterprise networks, for instance, traffic monitoring and analysis [58, 59],

traffic engineering [60], network management and virtualisation [61].

With regard to interdomain routing, the authors in [62] use SDN to de-

velop a new interdomain protocol called multi-dimension link vector (MLV)

that allows the exchange of fine-grained virtual network views between ASes.

The virtual network views are composed of intra-domain virtual links and

inter-domain physical links. The link information includes the multi-dimensional

prefixes which are allowed to pass that link, the bandwidth, the utility, ver-

sion and other features of the link. The network view is exchanged by having

each AS to send the link vector message to its neighbours according to their

commercial relationships. The link vector message includes a directed link

list together with the multi-dimensional prefixes which are allowed to pass

through that link list. Exposing the intradomain topology can pose serious

security risks and scalability problems.

In other works, the direct programming of the forwarding devices was

leveraged in SDX [11], a routing controller supplementary to BGP in IXP

environment. SDX consists of a route server, a policy compiler and a switch-

ing fabric. The route server receives eBGP routes from member networks and

selects best routes based on the standard BGP decision process. The policy

compiler takes members’ policy definitions and best routes as input, compiles

OpenFlow rules and installs to the switch. Since SDX targets IXPs of which

the network size in terms of number of devices, number of customers and

number of routes is small, SDX assumes a single route server the whole net-
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work. In SDX, any member can define arbitrary fine-grained policy respected

to routes advertised by or advertised to the member. Thus, this policy does

not take into account the routing objective of the ISP itself if SDX is to be

deployed as the controller. RouteFlow [10] and SDN-IP [9] have proposed

architecture for hybrid networking of BGP and OpenFlow. However, these

works are limited to demonstrate how BGP can be deployed in OpenFlow

without further investigation into its limitations can be addressed.

2.3 Performance of Interdomain Routing

This section reviews the literature regarding the three performance attributes

of interdomain routing: routing programmability, flexibility and scalability.

2.3.1 Routing Programmability

Networks are traditionally managed via the command line interface (CLI)

which is designed specifically for human. The CLI makes it extremely difficult

to automate management tasks, as CLI does not come with data models and

it varies from vendor to vendor.

Moreover, traditional network devices are deployed as appliances with a

specific set of built-in functionality, for instance a switch used for Layer 2

forwarding, a router for Layer 3 forwarding and a firewall for Layer 4 packet

filtering. Deploying a new functionality means replacing the hardware or

installing new software onto the device.

The concept of programmable networks has been proposed as a way to

simplify the task of network management and performance tuning and to

break the “Internet ossification” [50]. Traditionally, network devices are man-
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aged through low-level, vendor-specific commands, therefore it is a difficult

and error-prone task to manually transform high-level policies into low-level

configuration commands. Moreover, as network devices are black boxes, run-

ning the vendor’s closed-source codes, introducing new functionality to the

network requires replacement or upgrade of software and hardware.

A programmable network enables third-party codes to run on the control

and/or the data plane [63]. This capability enables the operator to quickly

implement and deploy new network services and functionality.

Network Programmability

Control Plane

Data Plane

Configuration

Monitoring

Packet
processing Packet filtering

Control
function/protocol

Network Function
Programmability

Network management
programmability

Data models

Routing Programmability

Figure 2.6: Different aspects of network programmability

There are two main aspects regarding programmability in networking:

network management programmability and network function programmabil-

ity. Figure 2.6 illustrates the components and interaction of the two pro-

grammability aspects. Network management programmability mainly in-

teracts with the control plane, whereas Network function programmability

works with both the control and the data plane. Routing programmability

resides within the scope of network programmability and requires both the

control and the data plane.
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There are a vast number of research works on programmable networks [64,

49, 50, 5, 44, 50]. In the context of interdomain routing, routing programma-

bility is concerned with functionality of interdomain routing and manipula-

tion of the BGP policy. Currently, programmability of interdomain routing is

limited to a static set of attributes and actions provided by BGP, for instance

to filter a route if one of its attribute has a certain value and to modify the

value of an attribute.

In the literature, the proposed architecture for routing programmability

is typically composed of a centralised routing controller which maintains a

complete view of the network and provides southbound interfaces to appli-

cations where the high-level routing objectives are implemented.

Past effort to improve interdomain routing programmability in traditional

networks includes: Routing Control Platform (RCP) [65], Morpheus [14,

1] (academia), Intelligence Route Service Control Platform (IRSCP) [13],

Application-Based Network Operation (ABNO) [53], and Juniper Egress

Peering Engineering [66] (industry).

RCP [65] is the first and a simple route controller which performs routing

computation for all routers in the network in a centralised manner (see Fig-

ure 2.7). With a complete network view, RCP can compute optimal routes

for each router. However, RCP does not enhance BGP’s functionality in any

way nor does it expose programmatic interface to external applications. It

simply computes routes using the standard BGP selection algorithm. It is to

show that centralised routing is technically feasible for large networks such

as tier-1 ISPs, even with the controller running on a commodity PC. RCP is

the first prototype to demonstrate the possibility and benefits of separating

routing from routers.
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rc
Routing Control Server

(RCS)
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P1 P2

Routing Control Platform (RCP)

Figure 2.7: RCP architecture.

Morpheus [1] proposes to enhance the functionality of BGP by making

the routing aware of external metrics rather than just the built-in attributes.

In Morpheus, routes are first classified and tagged and given an appropriate

weight for each tag. The algorithm is then to select routes with the highest

weight. By having multiple classifiers (e.g. one for latency, bandwidth, secu-

rity, stability, etc) and adjusting the weights, the operator can select routes

that satisfy conflicting policy objectives. Morpheus suggests running multi-

ple decision processes (each with its own weight settings) in order to realise

different policies and satisfy different customers. Morpheus proposes to use

VRF, MPLS or IP tunnels to realise multiple routes. Morpheus does not

expose API to applications. Moreover, its configuration interface requires

the human operator to define pair-wise comparisons (per criterion) of all al-

ternative routes. Morpheus is more powerful and flexible than the BGP’s

standard selection algorithm. However, it does not meet the requirement for
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dynamic and programmatic network control.
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Figure 2.8: Morpheus’s route selection process [1].

The industry is also interested in enhanced routing control for BGP.

IRSCP [13] is the route controller developed by and deployed in AT&T

network. IRSCP supplements the traditional BGP decision process by al-

lowing external applications to override the decision with a per-destination,

per-router explicit ranking of traffic egresses. This allows to take into ac-

count external information such as available bandwidth of egress links. In

IRSCP, the controller performs the standard BGP decision from step 0 (ig-

nore unreachable egress) to step 4 (lowest MED). The next step is based

on the ranking provided by applications. The authors argued for overriding

the hot-potato policy. Similar to Morpheus, IRSCP has the full visibility of

routes and is built upon the notion that the underlying network is capable of

destination-based routing and the use of BGP as the communication protocol

between the controller and the routers.

AT&T extended the RCP concept and developed a controller system

called Intelligent Route Service Control Point (IRSCP) [67] which offers
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dynamic connectivity management. It enables operators to perform selec-

tive blackholing, planned maintenance dryout, VPN gateway selection and

network-aware load balancing. Similar to RCP, IRSCP communicates with

routers via IBGP to learn routes and send the selected routes back to routers.

IRSCP is implemented based on Quagga and offers primitive commands (such

as addblackhole/delblackhole) to the operator. In a later version, IRSCP is

extended to allow control via applications. The decision is opened up to

application which can utilize external information into the decision process.

ABNO framework [53] - a PCE-based architecture for application-based

network operations. ABNO provides interfaces to network applications (e.g.

web, and email) to request for and make reservation of network services (e.g.

connectivity, reliability) and resources (e.g. bandwidth). ABNO framework

aims to make the network application-driven. Currently, the network is re-

sponsive to management commands driven by a human user. Applications

should be able to make reservation for connectivity, reliability, and resources.

ABNO does not explicitly specify how the TED database is extended to

support interdomain routing. ABNO is designed for intradomain routing,

particularly for provision and management of LSPs between border routers.

ABNO and SDIRO can work together to provide a complete solution for

ISPs. Juniper EPE [66] is another industrial proposal by Juniper.

2.3.2 Routing Flexibility

The term routing flexibility refers to the granularity the operator has, to

control and implement routing policy in the network. There are two aspects

of routing flexibility: control plane flexibility i.e. the granularity of control

in the control plane and data plane flexibility i.e. the ability to utilise the
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diversity of paths in the network.

The control granularity depends on the routing protocol used in the con-

trol plane. For instance, OSPF offers limited flexibility. It calculates path

based on the shortest path algorithm. The only control mechanism is to

change the link weights. BGP allows more control. BGP as a standard does

not specify how a router should select routes. However, the common route

selection algorithm implemented by vendors can be controlled based on any

route attributes or any combination of them.

In the data plane, routing flexibility refers to the ability to utilise multiple

paths for different forwarding policies. For instance, traffic loads can be

shared between paths.

In the context of interdomain routing, the intradomain network is treated

as a single virtual big router with interfaces being border routers. Routing

flexibility is the ability of this “single big” router to enforce diverse forwarding

policies to control packet forwarding from one virtual interface to the other.

This paper [68] discusses how iBGP policy can be utilised to improve

routing flexibility in the traditional network and the risks of doing so.

In the data plane, MPLS and Segment Routing (SR) are two mechanis-

m/architecture for flexible routing in the traditional network.

This work [69] proposes a backward-compatible approach to end-to-end

QoS in interdomain routing. It relies on MPLS tunnels. Elaborate more.

2.3.3 Routing Scalability

In the Internet, routing scalability has been an outstanding issue since the

early 1990s. Two main main concerns about routing scalability are the in-

creasing number of routes in the routing table (see Figure 2.9) and the routing
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churn [70]. The growing number of devices and customer networks (i.e. stub

ASes) connected to the Internet have contributed to the scalability issue.

Figure 2.9: BGP routing entries in the Internet core routers (source:

https://bgp.potaroo.net)

The Internet’s only scalability mechanism, i.e. route aggregation, does

not work well mainly due to multi-homing and the adoption of provider-

independent addressing. Route aggregation requires a good hierarchical

topology to work: a provider aggregates multiple customer routes (prefixes)

into a super one before advertising to its upstream providers. However, cus-

tomer networks often seek for more reliability, availability and control by

multihoming to several different providers and by using their own IP pre-

fixes. Now, if one provider tries to aggregate the customer’s prefixes, the

traffic toward the customer’s network would completely traverse the other

providers.

The dilemma is that customer networks wants more routing control and
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they are doing so by advertising a number of small prefixes. ISP providers

are struggling (e.g due to economic constraints) to promptly upgrade their

networks to the latest technologies to keep up with the demands. The current

common practice of ISPs is to limit the number of prefixes a customer can

advertise to the Internet (hence limited control for the customers).

In coping with the growth of the routing table, a number of works have

been proposed. They can be categorised into classes: clean-slate and evolu-

tionary approach.

Numerous past work has investigated compression techniques to address

Internet routing scalability [20]. Compression is also computationally expen-

sive and has limited effectiveness when routes have diverse next-hops. The

main drawback of this technique is that the operator loses fine-grained con-

trol over routing. For example, it does not support operators’ desire to set

different QoS for different set of destinations. It can also lead to packets

being forwarded even though no actual route exists (i.e. “punching hole” ef-

fect) Nonetheless, this method is complementary to ours and can be applied

before the placement to achieve a better result.

Another approach is offloading forwarding rules to cheaper hardware (e.g.

a software router). In [71], the authors propose a “configuration only” ap-

proach in which the conventional FIB table is decomposed using virtual pre-

fixes and the subtables are then installed to one or more routers at carefully

chosen locations. Ingress routers are then configured to forward traffic des-

tined to a virtual prefix to the router which is responsible for that prefix.

To avoid manual configuration, the work in [72] uses SDN to automate the

system. Our work advances this approach by considering more complicated

forwarding semantics. Our system shares some commonality with DIFANE
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[73] in which the controller partitions the space of rules and distributes to

switches. However, DIFANE works with multidimensional rules, and does

not scale to hundreds of thousands of rules as in interdomain routing. Al-

though their results do not show, computational overhead is probably high.

Offloading forwarding rules can also be done locally in a router by moving

rules from expensive memory to inexpensive one [74, 75]. A recent work

in [76] considers offload complex SDN rules. However, it is not efficient as

FEs are still duplicated in different routers. Moreover, the use of software

switching can result in inconsistent packet switching latency [77].

Incremental approach to BGP
RIB/FIB scalability

Split & distribution

Compression

Offloading (cache)

* Punching-hole effect 
* Locally on routers 
* Network-wide duplication 
* Reduced visibility 

* Reduce duplication
* Control over individual routes
* Work with CP/DP techniques

Route filter
* Punching-hole effect 
* Locally on routers 
* Lost visibility 
* Impact on TE and security 

* Network-wide duplication 
* Require extra hardware
* Unwanted path change

Figure 2.10: Summary of approaches to Internet routing scalability.

Existing works have considered the split and distribution approach to

deal with ACL scalability in enterprise networks [78, 79, 80]. For instance,

[81] proposes a legacy architecture to deal with routing scalability in ISP
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networks. Distributed servers select routes on behalf of routers. Each router

maintains its share of Internet routes in addition to a cache of routes currently

used to forward traffic.

2.4 Summary

This chapter introduced interdomain routing in the Internet and BGP, the

de facto protocol for interdomain routing, and several popular SDN archi-

tectures. It reviews the recent literature on SDN-based solutions to improve

interdomain routing in transit ISPs. Three performance attributes, namely

programmability, flexibility and scalability are considered importantly for

transit networks. The subsequent chapters leverage SDN to develop a num-

ber of SDN-based solutions for addressing these performance attributes.



Chapter 3

Design and Implementation of

gRCP

This chapter presents the design, implementation and evaluation of an in-

terdomain routing control platform for ISPs which allows the operator to

programmatically control and manage its transit services through a well-

defined programmatic interface. The design addresses one of the key issues

in the controller design: representation of the global network view. The key

idea in designing the controller is to use the property graph model to repre-

sent the network intelligence and the declarative query language to interact

with the network.

39
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C1
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Outbound service: C1 to D: take Path 1

Path 1

Path 2

Path 3

Path 4UDP
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Outbound service: C1/UDP to D: take Path 3
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(a) Outbound transit service abstraction
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Path 1
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Inbound service: C2/D2: take Path 4

D2

(b) Inbound transit service abstraction

Figure 3.1: Transit service abstractions for inbound and outbound services.

C1 and C2 denote customer routers. D,D1 and D2 denote destination IP

prefixes. The transit service abstraction is defined as a mapping of a source

and a destination entity to a path.
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3.1 Design for Programmability

3.1.1 Transit Service Abstraction

In the traditional network, provisioning a transit service is a complicated

process. Consider a simple ISP in Figure 3.1, to provide a customer C1 with

a transit service to the destination D first the operator will need to define

an import policy on the border routers R2 and R3 which have learned paths

to D. The import policy eliminates paths that the operator do not want to

use and prioritise the others according to some policy objectives.

Assume path P1 is chosen (i.e. because it satisfies some policy objectives).

Next, the operator specifies an export policy which determines whether P1

can be announced to the customer. This is often determined based on the

agreement between the provider and its customers. When P1 is announced

to C1, the customer will be able to send packets to the destination D. The

operator also needs to provision the reverse path so that the customer can

receive traffic from the Internet.

In defining the reserve path, the operator imports all prefixes (many en-

terprise customers usually advertise only a few prefixes) from the customer

and exports them to other ISPs. The operator can choose any neighbouring

ISP as long as the path is visible to every network in the Internet. It is

up to the provider to decide which customer path to be exported to which

neighbour. For example, the provider decided to use paths P1 and P4 for

the customer’s inbound traffic to D1 and D2 respectively.

An example of the import and export policy configuration defined in

Cisco’s route-map language are shown in Listing 3.1. Line 1 to 12 (including

comments) define two import policies for routes received from the Peer 1
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1 ! p o l i c y d e f i n i t i o n f o r the prov ide r (ASN 100)

ip as−path access− l i s t PROVI1 permit ˆ100

3 route−map PROVI1 IN permit 1

match as−path PROVI1

5 s e t l o c a l−p r e f e r e n c e 80

s e t community 1 :123

7 ! p o l i c y d e f i n i t i o n f o r the peer (ASN 200)

ip as−path access− l i s t PEER1 permit ˆ200

9 route−map PEER1 IN permit 1

match as−path PEER1

11 s e t l o c a l−p r e f e r e n c e 90

s e t community 1 :123

13 ! export to customer

route−map CUST OUT permit 10

15 ! export p o l i c y f o r PEER2

ip community− l i s t expanded NO PEER permit 1 :123

17 route−map PEER2 OUT deny 10

match community NO PEER

19 ! apply p o l i c y

route r bgp 1

21 address−f ami ly ipv4 un i ca s t

ne ighbor 1 0 . 0 . 1 . 1 route−map PROV1 IN in

23 neighbor 1 0 . 0 . 1 . 2 route−map PEER1 IN in

neighbor 1 0 . 0 . 2 . 1 route−map PEER2 OUT out

25 neighbor 1 0 . 0 . 3 . 1 route−map CUST OUT out

neighbor 1 0 . 0 . 3 . 2 route−map CUST OUT out

Listing 3.1: Example of import/export policy in Cisco’s policy language.

and Provider 1. The policies set higher local-preference for the peer routes

than for the provider ones (line 5 and 11) so that they are more preferable.

Export policies defined from line 13 to 18 prevent routes from the peer and

the provider to be exported to Peer 2 but allow all routes to the customer.

Policies are applied in line 19 to 25. Some lines were omitted for clarity.

This configuration snippet is typically very long depending on the number of

neighbours and particularly the policy granularity (size of peer groups, size

of aggregate prefixes, etc,.).
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When the policy configuration is specified, it can be applied to the router

(through the CLI or an automated tool like Ansible 1). While it is possible

to write applications to generate the policy configuration, it is rather difficult

with language like Route-map. Moreover, it is not possible to load balance

traffic (e.g. send customer 1 and 2 via the peer 1 and provider link respec-

tively) since BGP does not directly support this capability. If the link peer 1

is congested, the operator will have to determine some prefixes to be moved

to the provider link. Then the policy has to be updated at finer granularity.

The transit provision is equivalent to creating two working virtual links

(one for each direction) between the customer and Internet destinations while

fulfilling its own and its customer routing needs, for instance lower transit

cost and maximised utilisation. Thus, this whole process can be abstracted

as a list of mappings between customers (or in more general term origin

entities) and the Internet paths. Transit service provisioning is then meant

to creating such mappings. The granularity of the mapping does not need

to be limited to a customer but can be extended to protocols or applications

that the customer is using. For instance, the arrows in Figure 3.1 represent

the transit service for customer C1, and its two TCP and UDP applications.

A mapping can be expressed as below:

A mapping m : (O,D) 7→ P

where O is the originator, D is the destination and P is the path. These

abstractions will be discussed in the next section.

While the mapping specification of transit service can be specific, defin-

ing and managing such mappings per customer and per destination prefix

1https://www.ansible.com/
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is clearly not scalable, even for a few hundreds of customers and prefixes.

Moreover, from the high-level policy’s point of view the operator may not

need to consider what exact path is being used but the kind of path should be

used. For instance, the operator may be interested in forwarding customer’s

traffic via a path learned from a peer rather than an underutilised path from

a provider. Such specification may be applied to not only a single destina-

tion but a group of them. Having said that, the operator needs a declarative

way for expressing the mapping specification which ensures expressiveness,

simplicity and scalability. This chapter describes a query language which can

fulfil such requirements.

3.1.2 Global Network View Abstraction

The Global Network View (GNV) is the abstraction of the interdomain rout-

ing state. The GNV provides a centralised access to network topology, ad-

ministrative information and router states, AS relationships, received routes,

and traffic statistics.

While the GNV in this context serves the same purpose as in other con-

troller designs such as ONIX [82] and ONOS [83], it is specifically designed

for the interdomain routing. The ONIX’s GNV contains components that

are typically suitable for intradomain applications (e.g. switch ports). The

GNV consists of the following abstractions:

• Router: A Router is a node in the GNV which represents a Forward

Controller in the topology. This is not a typical BGP router; it is a

logical data-plane component which is described in the Chapter 4. A

router typically has IntraLinks links to another router, and InterIngress
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and InterEgress links to/from Neighbors.

• Neighbor: A traditional BGP router that belongs to a neighbour AS

(i.e. customers, peers or providers). A neighbour has an InterIngress

and InterEgress link to the same border router, which represents the

incoming and outgoing traffic from the standpoint of the border router.

Neighbors can be further categorised into Customer, Peer and Provider.

• Application: An application represents a type of traffic. An applica-

tion can be connected to a Neighbor.

• IntraLink: An IntraLink represents a logical connection between two

routers. It is assumed that only one IntraLink exists between two

Routers. That does not imply a single physical connection. The oper-

ator decides the value of bandwidth of the IntraLink which at max is

the sum of bandwidth of all physical links.

• InterIngress: An InterIngress represents an incoming link from a

Router and a Neighbor.

• InterEgress: An InterEgress represents an outgoing link from a Router

and a Neighbor.

• Route: A route is a link in the graph which represents a BGP route.

A route link a Neighbor and a Destination. A Route has a number of

attributes including BGP attributes such as AS path, and others such

as bandwidth (i.e. amount of traffic using this route).

• Destination: A destination is a routable address in the Internet. In

the current Internet routing system it is an IP prefix (i.e. IPv4 or
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IPv6). Type of the Destination is off concern for the controller.

• Paths: A path is a sequence of nodes and relationships which traffic

takes. For example, traffic from a router R1 to prefix p1 may take a

path (R1)→ (R2)→ (N1)→ (p1). With the purpose of separating the

interdomain and intradomain, we define a construct for typical paths

as a sequence of (ingress), (intradomain link), (egress), (egress link),

(neighbor), (route), (destination). That is, the interdomain function

does not care about how the ingress router is connected to the egress. It

is concerned with what (i.e. the capacity, utilisation and performance).

A special case would have the ingress and egress router being the same.

Paths can be expanded to (customer), (intradomain ingress), (ingress).

• Mapping: A Mapping is a relationship between a Router, Neighbor

or Application node (i.e. originator) and a Destination. The existence

of a mapping implies that traffic from the originator can be sent to the

destination. A mapping has attributes to identify what the actual path

traffic will take.

An example of a Global Network View is illustrated in Figure 3.2. The

ISP has two Routers which are connected to a customer, a peer, an IXP and a

provider. There is one destination prefix in the network. Two routes to that

prefix were learned from the provider and IXP. A transit service, described as

the MapTo link between the customer and the prefix, is created. Its attributes

describe the service. As compared to the traditional policy expression, the

API greatly reduces the complexity.
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InterIngressID: 1.1.1.1 

IntraLink {bw: 200, weight: 5}

ID: 1.0.0.1 

InterEgress {cost: 1, bw:80}
ID: 1.0.0.2 

Peer
InterEgress {cost: 0, bw:100}

ROUTE {aspath: [1,2,3]}

ID: 3.3.3.3 

IXP

Router

Router
ROUTE {aspath: [2,3]}

ID: 4.4.4.4 

Provider

Prefix:
1.0.0.0/24 

Destination

InterIngress

MapTo {path: [R1, R2, IXP]}

ID: 2.2.2.2 

Customer

Figure 3.2: Example of Data models in the Global Network View.

3.1.3 Flexible Path Computation

In a traditional network, routers select the best route by performing a pair-

wise comparison of route attributes. Thus, to affect the result, the operator

tweaks one or more attributes of a route to make it more preferable than the

rest.

By modelling routing in a graph, the path computation is turned into a

graph traversal between a router and the prefix. By traversing the graph,

attributes of nodes and links can be taken into consideration. Figure 3.3

demonstrates this process. The path computation is done for router R1

which has intradomain links to four egress routers (E1, E3, E4 and E5).

Those egress routers have interdomain links to neighbours. Links between a

neighbour and the prefix P1 represent the route announcement received by

that neighbour.

In the first scenario which R1 does not have route to P1 (i.e. fresh com-

putation), the path computation is done by traversing the graph from R1 to
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Figure 3.3: Path computation is done by traversing the graph. Shaded circles

are nodes that form potential paths that meet the policy requirements. Bold

lines are selected path. Dotted line is a new route.

P1. Paths that do not meet the requirements will be eliminated. Attributes

of the path are computed from attributes of individual links and nodes. Eli-

gible paths are then sorted or compared based some algorithm and the best

one is selected. The computation complexity is increasing proportionally to

the number of egress routers and neighbours. However, in a typical ISP net-

work the number of paths to a prefix is often less than tens of them. Thus,

by reversed traversal (i.e. starting from the prefix), the complexity will be

reduced. The path traversal allows for complex computation, for example to

consider only paths with a certain capacity.

In the second case, router R1 has already had the best path (the bold

line) and a newly route is learned from neighbour N8. The computation
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can simply figure out if the new path meet the requirement and perform a

comparison with the current one to see if it is more preferable.

3.1.4 Programmatic Interface

This section describes a language for programming transit services.

APIs are built based on declarative language. Each node and relationship

in the GNV are associated with a read and write API. Read API is used to

query for properties, whereas write API is used to update, create and delete

nodes, relationships and their properties.

For each abstract model, the read API and the write API are expressed as

query() and update() methods respectively. The query method takes param-

eters to filter specific node or relationship. It is used to define a set of nodes

which a certain operation will be applied on. For instance, Router.query()

returns all routers in the GNV whereas Router.query(loc=“New Work”) re-

turns routers located in New York city.

The API can be used against other composite model such as Path which

represents a sequence of nodes and relationships. A path has properties in-

cluding a list nodes and links (that it travels), and other properties such as

delay and bandwidth. Paths can be queried using query method. For exam-

ple, Path.query(src.name='R1', dst.prefix='1.0.0.0/12') returns all paths

between the node R1 and the destination with prefix 1.0.0.0/12. In addition,

an order() method can be used with query method to sort the result. For

example, Path.query().order(cost, aspath len, weight, bandwidth, delay) will

order first cost by ascending, then length of AS path, weight and so on.

These APIs allow for simple expression of routing policy. For example,

the code snippet in Listing 3.2 implements a common policy in ISPs which
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de f gao import ( ) :

2 path = Path . query ( )

. f i l t e r ( Path . bandwidth >= 2)

4 . o rder ( Path . cost , Path . aspath len ,

Path . weight , Path . o r i g i n ,

6 Path . bandwidth )

dest = Dest inat i on ( p r e f i x='1.0.0.0/20' )

8 ne ighs = Neighbor . query ( a t tached to={'name' : 'Router1'})

create mapping ( s r c=neighs , des t=dest , path=path )

Listing 3.2: API example to define Gao’s import/export policy.

prefers customer to peer and provider paths (i.e. Gao-Rexford [84]). It

computes routes for all routers in the network. When there are multiple

options, it chooses a path based on cost (assume cost of provider links >

peer > customer), then AS path length and so on (defined in line 2). The

operator first define the path and the preference (line 2 to 6) and then the

destination (line 7) and the originator (line 8). The final step is to call the

create mapping API. The controller runtime will select the first path in the

list and create a mapping between the neighbour and the destination.

3.2 Controller Design

The high-level architecture of the controller is depicted in Figure 3.4. It

consists of multiple controller instances, a graph database which stores the

global network view and a pub/sub system for message exchange between

instances. Control applications implement the routing policy in response to

events from the network. Forward Controllers (FCs) are the controlled enti-

ties that are responsible for packet forwarding. Routing events generated by

FCs are handled by multiple controller instances for scalability. An event can
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be handled twice by two instances for reliability. Details of how scalability

and reliability are achieved are discussed in the next sections.

Runtime 
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Data models 

App1 
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APIs 

Messenger 

Data models 

App2 
RC2

Global Network View (Graph DB) 

...

Pub/sub system 

Forward
Controller 

Forward
Controller 

Forward
Controller 

point-to-point connections

Figure 3.4: Main components of the gRCP Controller.

Controller instances communicate through a publish/subscriber subsys-

tem. The pub/sub provides for a reliable and complex point-to-multipoint

communication between controller instances. The pub/sub system also en-

ables a loosely coupling between controller instances, allowing for easily

launching new instances to take over the increased workload.

All controller instances access the global network view through the same

graph database system. An instance will be in charge of updating the GNV

upon receiving an event from a FC which it is the master of. This will benefit

from many write operations being localised (i.e. affecting a small number of

nodes and relationships), thus consistency checking is not necessarily in many

cases hence better write speed.
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3.2.1 Availability

Availability is of importance for the survival of ISP networks. Controller

failures can lead to service disruption which affects the customer traffic.

Controller redundancy approach is taken in order to improve network

availability. That is, each FC is configured with a master controller and a

list of backup ones. An FC establishes a point-to-point connection to the

master controller over a reliable transport protocol. An FC registers itself to

the master and periodically sends heartbeats to the controller for liveliness

monitoring. If the FC does not hear back from the master for a certain time

unit, it automatically switches to the next controller. Similarly, if the master

does not receive a certain number of heartbeats from an FC, it considers the

FC has become unavailable. The proposed mechanism works similarly to the

master/slave configuration in an OpenFlow network.

The master controller’s responsibilities include installation and update of

forwarding states (i.e. mapping rules) and reception and handling of events

generated by the FCs of which it is in charge. Multiple (identical) controllers

can be deployed to listen and respond to the same set of events. These

controllers do not necessarily have to be the same ones used for FCs. This

allows for flexibility in optimising the system.

3.2.2 Scalability

Transit ISPs must be scalable in order to cope with the exponential growth

of the Internet. The controller faces two important scaling issues: the rate

of routing updates (churn) and the scale of the network (i.e. number of

devices, customers and neighbours). In this section, a method based on
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prefix subnetting is introduced to help overcome the update churn problem.

This method takes into account the fact that most workloads are associ-

ated with the number of route announcements and withdrawals the controller

receives. The figure for a large ISP can be millions per typical day, depend-

ing on the number of neighbours it has. Fortunately, route updates can be

partitioned based on the prefix it carries. Figure 3.5 represents a portion of

prefix tree for IPv4 (0/1 is a short form of prefix 0.0.0.0/1). A route update

for a prefix p will be located to one and only one leaf. By distributing leave

prefixes to multiple controller instances, the workload per instance will be

reduced. This assumes that prefixes are non-overlapping. Redundancy can

be achieved by having two or more instances managing the same prefix. This

technique works for IPv6 as well.

0/0

128/1

192/2128/2

0/1

64/20/2

C1 C2 C3 C4

Figure 3.5: Technique for route update distribution to multiple controller

instances. An update carries a prefix, e.g. p ∈ 0/2 will be sent to C1.

Workloads can vary significantly per prefix. However, it is possible to
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find a prefix distribution which permits a load balance across instances. De-

velopment of a solution for this matter is out of this thesis’s scope.

This technique can be easily implemented using, for example an Update

Distributor (UD) which examines each update’s prefix and computes the

leave prefix it belongs to to determine the instances to send the update to.

The UD can be a centralised or distributed. For instance, if a messaging

system such as RabbitMQ is used for communication, the UD can be imple-

mented with the content-based routing feature. With a distributed approach,

the FCs are to maintain mapping configuration and to mark updates with a

marker corresponding to a prefix group. Then, the update can be distributed

via RabbitMQ using simple routing keys.

3.2.3 Event Processing

The gRCP architecture is a distributed system where the functionality and

workload are split between components. Figure 3.6 shows the process of

which a routing event is processed by the system. Events are typically orig-

inated by FCs which assign each event with an unique ID throughout the

lifetime of the system. Events expire after a period of time, e.g. a few

seconds. Expired events are silently discarded.

In this process, an event Ep (e.g. related to a route announcement

r〈prefix : p, nexthop : N, attributes : A〉 is originated by FC Fx. Its mas-

ter controller Cx first receives and handles the event. Cx updates the graph

database, e.g. by creating a sequence of relationships (Fx)−[InterEgress]→

(N) − [Route] → (p). It, then, re-generates an event with an identical ID

of the original one with the content being the newly created sequence. The

event is distributed through the pub/sub system to the interested controller



3.2. CONTROLLER DESIGN 55

Fx originates 
event Ep

Master Cx updates DB Write success?

End Send to appropriate Ck(s)

Cx re-creates Ep

Ck(s) process Ep & compute
mappings Mp

Send Mp to master Cy(s)

Cy(s) compute forwarding rules
and send to Fy(s)

Fy(s) install rules and 
send back confirmation Ecp

Master C updates DB with
mappings Mp

Y

N

Write success?
N

Announce to Ck(s)

Y

Ep expired?
Y

N

Figure 3.6: Routing event processing.

instances Ck (those are the instances responsible for a group prefix which

p belongs to). Ck(s) compute multiple identical mapping solutions Mp for

Forward Controllers Fy(s). Mp are delivered to the responsible controller

instances Cy(s) who in turn compute the forwarding rules and program the

forward controller Fy(s). Noted that Cy(s) may receive more than one map-

ping solutions. They simply discards ones that arrive late. Fy(s) inform

their masters if the rules have been installed successfully. Upon receiving the

confirmation, if the event has not expired, the masters update the database

and notify related controllers.

It is the responsibility of control application (i.e. the developer) to handle

the loss of confirmation events or half-baked event handling. There are oc-



56 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRCP

casions when there exist the disparity between the global network view and

the forwarding state. For instance, the master controller may crash during

updating the database and after the reception of the confirmation. This dis-

parity may not have impact on the traffic flow. However, applications may

take appropriate actions to make sure that the network and global network

view are in sync.

Failures of a Ck do not affect the working of the system. If there are

multiple Ck instances handling the same event, then the chances that all of

them crash during the process are unlikely.

The database can fail too. However the deployment of a cluster of

databases can eliminate this single point of failures. Most database systems

such as Neo4J support this configuration.

3.3 Evaluation

3.3.1 Language Evaluation

gRCP defines a declarative domain-specific language (DSL) based upon a

graph query language to improve the ability of operators to define routing

policies programmatically. We evaluate to what extent this aim is achieved

using quality characteristics from research into the qualitative assessment of

domain-specific languages [85]. Our evaluation is based around these key

characteristics: expressiveness ; transparency ; and, usability.

Expressiveness. The case studies show that three different types of

routing policies can be implemented using gRCP but expressiveness is more

than just functionality. To what degree can a problem-solving strategy can
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be mapped into a program naturally? In this case path selection is the

key strategy and unlike BGP or Morpheus, the language provides a direct

mapping because it allows path selection to be expressed directly as a query.

It also exposes important domain concepts such as Nodes (or Neighbours)

and Paths, allowing direct expression of path selection criteria. Again, BGP

and Morpheus require you to restate selection criteria in terms of proxies

such as community string or weightings.

Transparency or simplicity. A key feature of a successful DSL is that

one does not need to read the whole system to understand a small piece.

BGP’s implementation of programmable inbound and link congestion reso-

lution requires both BGP configuration directives and a requirement to log

into and update multiple routers that are each sent their own version of the

configuration file. Understanding the effect of this requires understanding

both parts. Morpheus does improve on this by having a single configuration

file specifying preferences and mappings in one place. However, the inter-

action between these is not directly relatable to the selection of paths and

requires definitions of special categories used for mapping such as lat1 and

lat2 in the example. On the other hand, gRCP exposes the path computa-

tion in a single place with node and path attributes explicitly identified in

the query. There is no need to update other parts of the system allowing an

operator to read only part of the system in order to understand the overall

effect.

Usability. Usability includes characteristics such as appropriateness for

the specific applications of the domain, number of activities required to

achieve a goal and whether the language has properties that aid producing

reliable programs. In terms of appropriateness, the graph database repre-
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Metric gRCP BGP Morpheus

Expressiveness medium low high

Readability easy hard easy

Structured programming flexible limited n/a

Error-proneness low high low

Table 3.1: Comparison of rogramming aspects with BGP and Morpheus.

sentation is chosen because it is a natural fit for modelling networks where

relationships should be as important in the data model as the data itself.

With regard to number of activities, implementation of a new routing func-

tion can be done easily in gRCP with a few lines of codes. The operator

would create an application per function or customer. Typically, a new rout-

ing requirement is implemented by simply specifying the Path.query() and

Path.order() statements. In contrast, BGP requires to define policy configu-

ration for different scenarios and to switch between configurations at the right

time. On the other hand Morpheus’s configuration is much more minimal

than either gRCP or BGP but it does not support other routing require-

ments. Finally, reliability is supported by gRCP because of the advantage of

error checking in the underlying graph query language and the ability to test

the routing policy interactively against the database before applying the pol-

icy. In contrast, neither BGP nor Morpheus allow testing of path selections

prior to deployment on the actual system.

3.3.2 Performance Evaluation

The performance evaluation focuses on routing convergence because it is the

most important performance indicator for a routing design. The convergence
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latency is commonly measured by the elapsed time since a routing event

occurs until all routers in the network agree on a single routing solution. A

routing event can be a link or router failure or a routing update caused by

a policy change. In the context of interdomain routing, routing updates (i.e.

BGP route announcement or withdrawal) are more frequent and are in great

numbers than other events, therefore the convergence latency is measured

against the update types.

Metrics

Typically, convergence latency Tc is composed of following components:

Tc = Tdetect + Tdistribute + Tcompute + Tinstall (3.1)

where Tdetect denotes time taken to discover an event by the first router;

Tdistribute denotes time required to distribute the event to all other routers;

Tcompute denotes time taken to compute a new routing solution; and Tinstall

is time required to install rules to the forwarding table.

In a centralised control system like the one we propose a single controller

performs route computation for all routers, thus Tcompute is measured by

the time the controller receives the event and until a solution is computed.

Tdistribute is identical to a conventional BGP network. Tinstall is likely to be

higher than traditional routers since it involves conversion of routing decision

into OpenFlow rules and communication of rules to hardware switches (and

different vendors perform differently). This experiment evaluates Tcompute,

see Chapter 4 for evaluation on Tinstall.
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Experiment design

The controller relies on the operations on a graph database for computing

routing. Therefore, the evaluation is designed to get a deep insight into

how the scale of the network affects the controller performance and how well

query-based route computation performs in different configurations. The

hypothesis is that query-based computation can scale to very large ISPs with

hundreds of routers, thousands of neighbours (i.e. BGP peers) and hundreds

of thousands of destination networks (i.e. prefixes) with an insignificant

additional latency compared to that of a conventional BGP network. The

faster the network converges, the better quality of service is. A measurement

study of two large ISPs concludes that most events converge in between 1

second to 30 seconds [86].

The evaluation focuses on Tcompute and measures it as the function of scales

(number of routers, neighbours and prefixes), and types of updates (route

announcement/withdrawal). Experiments were done on a single computer

with Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz, 8GB of memory and

an 512GB SSD. A graph database used is Neo4J version 3.4 running on

a docker container with all default configuration. The measurement script

which executes the controller APIs and models running on the host machine

(thus, Tdistribute latency is assumed to be 0 or insignificant. The controller

interacts with the database via an official Neo4J driver written in Python (i.e.

bolt driver over TCP). Each experiment is repeated 100 times with an empty

database to eliminate the caching effect of Neo4J. Tcompute does not take into

account the time needed to populate the database. Tcompute is measured as

time between an event occurrence and when the query is completed.
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Figure 3.7: Path computation latency as a function of #prefixes and update

types. Path query is run for a single router with 10 neighbors. A and W

stand for route announcement and withdrawal respectively.

For each test, the router topology is generated randomly and a subset

of routers (the number is randomly generated from uniform distribution be-

tween 0 and 10) are connected to all neighbours. Prefixes are generated

randomly such that each can have at most 5 different paths. For a given

experiment (blackbox/whitebox) and a topology, two tests are executed (100

times each): route computation in response to a routing announcement and

a routing withdrawal. For all topologies, the route computation is imple-

mented using the following query, which computes routes to a specific prefix

for all routers using the same policy (prefer routes by local preference, then

AS path length, and MED).
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Results: The solution scales

In Figure 3.7, we observe that the route withdrawal test performs better than

the route announcement test (the path query was run for a single router and

each route update affects a single prefix). Specifically, 90% of route with-

drawal updates converge less than 28 ms compared to 47ms of announce-

ments in all configurations. Moreover, the size of the topology (i.e. number

of prefixes exists in the network) has minimal impact on performance.

The Figure 3.8a shows that latency increases linearly with the number

of routers in the network but at a slightly slower pace. This is anticipated

as we simply repeat the query for each router. Some routers may use the

computed path of the other from the cache of Neo4J, explaining why the

latency increases more slowly than the topology size.

An interesting result shown in Figure 3.8b is that increasing the number

of neighbours (i.e. BGP peers) has no impact on performance. Overall, the

result shows that the solution can scale well to a very large network. The

major scalability concern is the number of routers that the controller has

to computes routes for each route update. Since the route computation is

basically a query from the graph database (an example of query is shown

below), we need to specify the router (either neighbouring router or a border

router) as the start of the path and a prefix as the end. That means a single

query cannot be used to compute routes for all routers. Since each query is

run sequentially in different transactions, it increases the latency. However,

these queries are unrelated, it is possible to scale horizontally by splitting

the task for multiple controllers.

To gain better understanding of what contributes to the high latency,
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Figure 3.8: Computation latency on different network sizes

(A=announcement, W=withdrawal).

we decompose the Tcompute (according to the implementation) and evaluate

performance of each components. When the controller receives an update, it

first updates the database (by running one or more read and write queries

in a single database transaction), then an event is created and distributed

internally to applications. An application runs a read query to compute paths
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Figure 3.9: Route update latency with regard to types of updates.

and selects the desired one (i.e. the query(), sort() and fetch() methods are

run in another transaction). Thus, Tcompute = Tupdate + Tpath, where Tupdate

is time to update the database and Tpath is the time to query for paths.

For example, a route announcement requires a query for the neighbor and

prefix (read) and update the relationship between them (write) (refer to the

model design for better understanding). If necessary, a Prefix node has to be

created (require one more write). For a route withdrawal, one read and one

write is needed. Noted that Neo4J performs consistency checking for every

write before writing to disk. Meanwhile, reads can be fetched from cache or

disk without consistency checking.

The Figure 3.9 shows results for performing database update upon the

recipient of a BGP update. Route announcement performance is 3 times

slower than that of a route withdrawal. The announcement latency can
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Figure 3.10: Performance can be significantly improved by Neo4J caching.

potentially be reduced by having Prefix nodes created in advance, this reduces

the number of writes to the database. This is possible since most popular

prefixes in the routing are known beforehand. Moreover, the performance

can be improved with caching technique in Neo4J, as shown in Figure 3.10.

Path query which has been cached performs 4 times faster than non-cached

queries.

3.4 Summary

This chapter provided an overview of a design of a routing control platform

to transit ISPs. The design utilises graph models and graph database to rep-

resent network routing and graph query language for computing routes as an

alternative to the conventional BGP’s pair-wise comparison. As shown in the
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evaluation, gRCP improves routing flexibility and expressiveness while intro-

ducing a small penalty for routing convergence. Chapter 6 will provide more

analysis of gRCP ’s capabilities in comparison with the traditional approach.



Chapter 4

Design and Implementation of

fBGP

This chapter presents the design, implementation and evaluation of fBGP,

a SDN controller that leverages capabilities of OpenFlow to enable routing

flexibility in conventional BGP routing. fBGP equipes the border routers in

ISPs with the multipath routing capability.

There are four main sections in this chapter: (1) Section 4.1 provides

an overview of the main elements of the fBGP controller; (2) Section 4.2

provides an overview of fBGP ’s implementation; (3) Section 4.3 describes a

deployment of fBGP controllers in a physical testbed representing a small ISP

POP; (4) the final section 4.4 evaluates fBGP with regards to performance

and functionality.

67
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4.1 Design of fBGP

This section presents the design of fBGP routers, focusing on the multipath

routing capability. The capability improves path diversity in transit ISPs and

allows multiple routing paths to be used simultaneously. Multipath capability

can be used for better traffic engineering and resolving conflicting routing

policies. The quality of experience and throughput can also be improved by

forwarding traffic over multiple paths (e.g. high bandwidth paths used for

bulk data transfer applications whereas low latency paths are for real-time

traffic) [87, 88].

For demonstration, let take a look at an example ISP shown in Figure 4.1.

The ISP network learns five different paths (depicted by numbered circles)

for a particular prefix. In a conventional network, the router ASBR1 selects

one path out of the five for all traffic from the customers according to the

assigned local preference of the paths (and the IGP distance to the exit points,

depicted by numbered squares). For instance, both ASBR1 and ASBR2 will

select path 3 if it has the highest local preference. If the local preferences

are equal, ASBR1 selects either path 1 or 2 while ASBR2 chooses ASBR1

as its exit point. Thus, routing policy such as “C1 to use path 1, C2 path 3

and C3 path 4” is difficult to realise in the current network. Techniques such

as Equal-Cost Multiple Path (ECMP) can be used for load balancing across

multiple paths but they do not allow flexible mapping of traffic to a path.

In this conventional network, two workarounds namely PBR and VRF

may be employed for implementing the multipath capability. PBR allows

routing to be based on various packet headers rather than just the destina-

tion address. Therefore, appropriate PBR rules can be defined and applied
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Figure 4.1: The case for multi-path BGP policy. The numbered circles rep-

resent candidate paths to a prefix p. Numbered squares are the IGP distance

between ASBRs. In the current network, policy is prefix-based making it

difficult to relocate customer traffic over different paths.

on both the ingress and egress border routers so that customer’s traffic is

forwarded to a different path rather than one chosen by BGP. However, this

incurs significant management overhead because PBR rules need to be kept

in sync with BGP routing. As BGP routes are withdrawn PBR rules will

need to be updated or deleted quickly to avoid long black-holing.

VRF is a technology that allows additional routing tables to coexist along-

side the default table (i.e. the global routing table). Therefore, a VRF can

be defined for a customer to handle its traffic differently from the default

routing. Since VRFs are isolated, each must hold all the routes otherwise

the customers can be black-holed for some prefixes, resulting in a huge du-

plication of routes. This can be addressed by the route leaking technique

which allows VRFs to share routes. However, implementing routing policy

with VRF and route leaking is troublesome; it needs to determine the shared
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routes and define the configuration for route import and export between

VRFs 1.

fBGP is designed to overcome the challenges facing PBR and VRF. It

is based on OpenFlow to allow conventional routing and flexible forward-

ing policy by allowing utilisation of all available paths concurrently in the

same platform. One of the design goals of fBGP is to ensure backward-

compatibility with the existing network. This is accomplished by extending

BGP functionality by utilising the flexibility of OpenFlow, rather than re-

designing the BGP protocol. One of the design challenges is routing scala-

bility. This will be addressed by a design of a distributed forwarding table.

The following section describes fBGP ’s architecture.

4.1.1 High-level Architecture

The design of fBGP adopts a hierarchical and modular architecture. It con-

sists of three different layers: Routing, Forwarding and Datapath as shown in

Figure 4.2. The modularisation is achieved by leveraging three distinct func-

tionalities of a router: routing functionality, forwarding functionality and the

forwarding hardware (i.e. Ternary Content Addressable Memory (TCAM)).

The Routing layer is comprised of BGP routing stack. The BGP stack

runs in a separate process (and probably in separate hardware) from the Flow

controllers (FCs) and is responsible for the BGP finite state machine, man-

aging BGP speaker peers, performing route selection and executing routing

policy. BGP stack keeps track of the peers and routes but is not necessarily

concerned with how peers are connected to the router. BGP sessions are

1https://cumulusnetworks.com/blog/vrf-route-leaking/
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Figure 4.2: An OpenFlow-based architecture for interdomain routing in ISP.

BGP routers are replaced by OpenFlow switches and routing is centrally

performed by BGP stack which replaces route reflectors.

established directly between the BGP stack and the external speakers. The

BGP stack communicates its decisions to the Flow Manager which translates

them into appropriate forwarding rules for the switches.

In the Forwarding layer there are OpenFlow controllers responsible for

managing switches and abstracting the distributed switch as a single forward-

ing table. These controllers manage connectivity between switches and em-

ploy routing algorithms for path computation within the distributed switch,

oblivious to the BGP controller. Only important events, such as a failure
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which disconnects traffic flows from one neighbour to another, should be

notified to the Routing layer.

The Physical layer is composed of programmable OpenFlow switches.

These switches are interconnected via high speed links. Some ports are used

to connect to neighbours’ routers (called external ports), while others are for

interconnecting switches (called internal ports).

This architecture offers several advantages including scalability and flexi-

bility as compared to the conventional BGP network. For example, it is now

easier to scale the system to support more BGP peers since the Routing stack

is running on separate hardware and is independent from the data plane con-

struction. As more capacity (e.g. bandwidth or number of ports) is required,

new switches can be added to the data plane without modification to the

Routing stack. The reliability in the data plane can be improved by for ex-

ample Link Aggregation, or connecting a customer to multiple switches. The

Routing stack simply sees a single session with the customer. The operator

is free to implement any possible mechanism to load balance or switch traffic

between links.

4.1.2 Multipath Routing Capability

In conventional routers, Routing Information Base (RIB) entries are trans-

lated into forwarding rules and installed into the FIB table. In an OpenFlow

switch, these FIB entries are OpenFlow forwarding rules (hereby called FIB

rules for short). A FIB rule matches on the destination prefix and has actions

to modify packets appropriately before outputting to the port connected to

the next-hop.

In implementing the FIB table, the multi-table support in OpenFlow ver-
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sion 1.3 onward is utilised to decompose the FIB table into two sequential

tables. The first table contains rules that match on the prefix and have nec-

essary modification actions. Modified packets are forwarded to the second

table which contains rules that match on the destination Media Access Con-

trol (MAC) address and send packets to the next-hop’s port. This hierarchi-

cal FIB table simplifies rule management in the controller. If the next-hop

moves to a new port, only a single rule needs to be updated. Moreover,

FIB rules (which change frequently in interdomain routing) can be added,

deleted or modified independently from the resolution of the next-hop into

MAC address.

In order to support flexible routing policy, an extension of the FIB table to

allow matching on finer-granularity of packet headers is required (e.g. match

on the source IP or MAC address). For instance, to support customer-specific

routing, the FIB table is extended to support matching on customer’s identity

along with the destination prefix. A customer can identified by its MAC

address or the OpenFlow inport. Thus, a normal FIB rule e.g. match(P )→

forward(N) will be transformed to a multipath FIB rule match(C,P ) →

forward(N), where C can be the source MAC address. These multipath

rules could be installed to the same FIB table with the normal rules with

higher priority. This, however, would end up in a significantly large table

with N×D+P entries, where N is the number of customers having multipath

rules to D of all P prefixes (see an example in Figure 4.3a).

By leveraging the number of customers which is typically larger than the

number of possible paths and several customers may share the same path,

the size of the FIB table can be reduced as per following technique.

Each path is assigned a unique tag and (virtual) MAC address (called
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(b) Rules are decomposed and installed into multiple tables (Priorities are not shown

due to space).

Figure 4.3: Two approaches to flexible forwarding policy using OpenFlow.

In (a) RIB entries are translated into PBR-like rules. In (b) the FIB rules

are decomposed into 3 different tables.

VM for short). The first table matches the prefix and set the destination

MAC to the VM. The second table matches on VM and assign the tag to

packets. Default MAC address does not have associated tag. The third table
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matches packets on both the prefix and the tag and set the destination MAC

to that of the next-hop before sending to the Output table (see Figure 4.3

for an example).

This results in more rules in total but less rules in each table. However,

since the first table already exists in the customers’ router, fBGP does not

need to store it. To form a complete forwarding pipeline, fBGP will need to

alter the first table stored in customers. This can be done by tweaking the

next-hop resolution process. As a customer router sends a resolution request

for a next-hop, fBGP examines the mapping table and returns appropriate

VM which identifies a path. Thus, each customer would perform the packet

tagging on behalf of fBGP.

This technique results in a smaller number of rules, equal to |N |+ |K| ×

|D| + |P |, where K is the set of available paths (K << N). In a typical

setting, an ISP can have tens of paths per prefix which is much smaller than

the set S. Moreover, among those paths, a smaller set may be enough to

satisfy a large number of customers.

4.1.3 Distributed Forwarding Plane

An approach to ensure routing scalability is to enable horizontal scaling by

implementing the FIB table on top of a distributed forwarding plane which

is composed of multiple OpenFlow switches. This section describes how the

implementation can be achieved.

In the forwarding plane, egress switches are directly connected to the

next-hops whereas ingress switches are connected to the incoming traffic.

Egress and ingress switches are directly connected or interconnected via

transit switches. The FIB table then can be decomposed and distributed
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Figure 4.4: Translation of RIB into dFIB table of a given topology.

to switches by a simple approach demonstrated in Figure 4.4 as follows.

This approach replicates the FIB at all switches with the next-hop being

the next switch along the path to the external next-hop, as illustrated in

Figure 4.5a. This result in unnecessary redundant rules. To address this,

source routing technique is used. Source routing (as shown in Figure 4.5b)

requires a single FIB entry and tunnel rules to drive packets to the desired

switches. Thus, only ingress switches need to store the FIB table. This tech-

nique eliminates the unnecessary duplication but does not utilise efficiently

the available space.

To improve space utilisation efficiency, FIB rules can be decomposed and

installed to multiple switches. One decomposition technique is to base on the

next-hop. For instance, all rules with next-hops N1 will be installed to the

egress switch S1 since N1 is connected to S1. Incoming traffic to an ingress
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S1 S2 S3 H2H1

FIB FIB FIB

(a) Hop-by-hop forwarding. FIB entries are installed at every hop along the path.

S1 S2 S3 H2H1

FIB

(b) FIB entries are installed at the ingress node only. Subsequent nodes tunnel

packets to the egress node.

Figure 4.5: Two approaches to establishing end-to-end forwarding path:

Hop-by-hop forwarding and source-routing

switch will need to be forwarded to the correct egress switch. This can be

achieved by computing aggregate FIB rules by grouping prefixes that are

numerically aggregated, for instance two prefixes 1.0.0.0/24 and 1.0.0.1/24

can be aggregated to 1.0.0.0/23. The aggregate rules are to be installed in

the ingress switches to direct packets to the right egress switch where packets

are examined by the actual FIB rules. This process spreads FIB rules to

multiple switches but the unbalanced distribution may still exist because

some switches have to hold more rules than the others (e.g. aggregate rules

are much less in number compared to the actual rules).

The unbalanced distribution causes inefficient use of FIB space in switches.

This unbalance can be overcome by migrating some FIB rules of egress

switches to the ingress and transit switches. The rule migration is decou-

pled from the routing and is to be performed by the FC controller. The

determination of which FIB rules to be installed on which switch in order to
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achieve efficient distribution will be investigated in Chapter 5.

4.2 Implementation of fBGP

This section provides an overview of the implementation of a fully functional

prototype of fBGP. The prototype was implemented fully in Python. It

implements the most critical functionalities of the design including the con-

ventional BGP selection process, the ability to manipulate the path mappings

and the interaction with the OpenFlow data path. Its main components and

interactions with other parts of the system are shown in Figure 4.6.

fBGP

BGP engine

routes

Faucet
events

FIB updates

gRCP
commands

path information

ExaBGP

BGP updates 
from peers

BGP updates 
to peers

best routes

gr
cp
_c
on
ne
ct

fa
uc
et
_c
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ct

exabgp_connect

exabgp_hook

Figure 4.6: fBGP components and interactions within the system. The

shaded boxes were implemented in Python as part of the thesis. The others

are existing open-source codes.
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ExaBGP 2 is used to learn and exchange routing updates with other

BGP routers. ExaBGP known as BGP Swiss army knife of networking, pro-

vides a simple and reliable platform to develop BGP applications. ExaBGP

maintains the BGP sessions with the BGP peers and handles the BGP state

machine. The exabgp connect module is used for communicating BGP up-

dates with ExaBGP. New routes received from ExaBGP are passed to the

BGP engine module for updating the routing table and selecting the best

routes.

The fBGP prototype relies on Faucet controller 3 for implementing the

forwarding plane and the FIB table. Faucet is an open-source OpenFlow

controller that provides L2 and L3 routing functionality. Faucet runs on

Ryu controller. Faucet is selected because it is written in Python, very light-

weight, well documented and easy to use. However, it is possible to port

fBGP to other controllers such as ONOS or Open Daylight.

The fBGP controller similar to Faucet is built as a Ryu application.

It runs alongside the Faucet on the same Ryu controller. The module

faucet connect interacts with Faucet via Faucet APIs. At the time of the

prototype development, the Faucet APIs required for updating the FIB table

were implemented as part of the prototyping. In addition, several additional

APIs and extensions were implemented in Faucet since it did not currently

have the multipath routing capability.

Within fBGP and gRCP, pathIDs are used to identify interdomain paths

in the network. Each pathID is associated with a virtual gateway (VIP) in

Faucet. When a path is advertised to a peer, the VIP is used as its next-hop.

2https://github.com/Exa-Networks/exabgp
3https://faucet.nz/
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As the peer resolves the next-hop an associated MAC address is returned.

Faucet installs a rule into the mapping table. Packets from the peer that

uses the path will be added with an OpenFlow metadata (i.e. pathID). The

packets are then pipe-lined through the FIB table. Faucet’s FIB table was

extended to match on the metadata and the destination prefix. OpenFlow

metadata differentiates rules and has an important attribute. If the rule

with the metadata does not exist, the (default) FIB rule without metadata

is used. This allows continuous forwarding when failures occur and while the

gRCP or fBGP controller are computing alternative path.

0 1 2 3 4 5 6

Packets In Packets Out

Drop packets

OPENFLOW DATAPATH

Drop packets

OPENFLOW DATAPATH

7

ORIGINAL FAUCET PINELINE

NEW FAUCET PINELINE

ETH_SRCVLAN ACL IPv4_FIB IPv6_FIB ETH_DST FLOOD

Packets In Packets Out

0 1 2 3 4 5 6

ETH_SRCVLAN ACL IPv4_FIB IPv6_FIB ETH_DST FLOOD TUNNEL

Figure 4.7: Forwarding pipeline of the original Faucet (top) and multipath

routing-enabled Faucet (bottom). The IPv4 FIB and IPv6 FIB were ex-

tended with Metadata to support multipath.

The modified Faucet’s forwarding pipeline is shown in Figure 4.7. IP
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forwarding entries are stored in two FIB tables: IPV4 FIB and IPV6 FIB

table for IPv4 and IPv6 prefixes respectively. Traffic classifier is implemented

by adding rules that match MAC addresses associated with the virtual IP

addresses in the ETH SRC table. The ETH SRC table keeps track of learned

hosts and determines whether traffic will be handled by L2 or L3 routing.

For tunnelling traffic between border routers, a tunnel table is added. In the

new pipeline, the FIB tables determine whether packets will be forwarded

straight to output port or are handled by the tunnel table. The tunnel

table encapsulates packets in Multiprotocol Label Switching (MPLS) headers

which carry the path identifier and tunnelling information used by the core

network to forward the packets to the correct egress border router.

The fBGP controller updates the gRCP controller with path information

as it learns from the neighbours. The gRCP controller can send (mapping)

commands that override the decisions made by fBGP. Two types of com-

mands are implemented: the Add commands that add a path mapping be-

tween fBGP itself or a peer and a route for a particular prefix, the Delete

commands that delete existing mappings. The module grcp connect that

handles the communication between fBGP and gRCP is implemented using

the Python Twisted library 4 for event-driven network programming. The

prototype is implemented with mechanism to fallback to the local routing

decision when the connection to gRCP is lost.

4https://twistedmatrix.com/trac/
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4.3 Testbed Deployment

A physical testbed was deployed for the purpose of this research. The testbed

is composed of three hardware switches from Allied-Telesis, one gRCP con-

troller and three fBGP controller representing three ISP POPs. It is fully

functional and compatible to BGP (i.e. Quagga).

4.3.1 Physical Topology

3

ATX-930-2ATX-930-1

ATX-510

VLAN100
10.0.100.203/24

VLAN200
10.0.200.254/24

VLAN201
10.0.201.254/24

C3
10.0.200.1

C4
10.0.201.4

C5
10.0.201.5

C1
10.0.200.1

C2
10.0.200.2

Router 3 
(fBGP controller)

Peer 3
10.0.30.1

Peer 4
10.0.30.2

VLAN30
10.0.30.254/24

VLAN100
10.0.100.202/24

m167

VLAN10
10.0.10.254/24

VLAN20
10.0.20.254/24

VLAN100
10.0.100.201/24

m162

m17d

m17c

m169

Peer 1
10.0.10.1

Peer 2
10.0.20.2

12

10

10

11

5 5

4 5

11

11

Router (POP)

Allied-Telesis 
OpenFlow switch

Docker container

Router 1 
(fBGP controller)

Router 2
(fBGP controller)

Virtual switch (VLAN)

m17c

10 12

1 1

Figure 4.8: Physical topology of the testbed. It is made up of three Allied-

Telesis switches and six Linux PCs hosting controllers and quagga routers.

A physical SDN testebed, called SDN@VUW, has been deployed for eval-

uation purposes of the research. The topology is shown in Figure 4.8.
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The SDN@VUW testbed uses three physical switches from Allied-Telesis,

i.e. series ATX-930 and ATX-510. Those are high-performance 24-gigabit

port switches designed for enterprises. They can run in traditional mode or in

OpenFlow v1.3. ATX-930 and ATX-510 switches have been officially verified

to be supported by the Faucet controller. A number of Linux computers

are also used to simulate the peer routers and to host the controllers. They

run Ubuntu 16.04, having Intel Core i7-4790 @ 3.6 GHZ CPU and 8 GB of

memory.

Docker containers are used to deploy the peer/customer routers. A docker

container is used for each peer. Quagga is used for BGP routing. A physical

link between a computer and a switch is configured in trunk mode. Docker

networking MACVLAN is used to simulate separation between peers.

In the physical switches, VLANs (configured and managed by Faucet

controllers) are used to simulate IP routed interfaces. From the peers’ per-

spective, each VLAN is a logical IP interface.

The SDN@VUW testbed is managed and automated totally by Ansible.

A separate management network (using a Cisco 2960 switch) (not shown) is

used for communication between the controllers and the controllers and the

switches. The control plane packets between a fBGP controller and a peer

are traversing completely in the data plane.

4.3.2 Logical Topology

The SDN@VUW logical topology is shown in Figure 4.9. Three routers

Router1, Router2 and Router3, corresponding to three hardware switches,

represent border routers of the three ISP POPs. A route reflector (quagga)

is used to facilitate the exchange of routes between border routers.
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Router 3
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eBGP
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control link
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Figure 4.9: Logical topology of the testbed. It represents a small ISP with

three border routers.

For evaluation purposes, peer routers are configured to advertise four

prefixes 1.0.0.0/24, 2.0.0.0/24, 3.0.0.0/24 and 4.0.0.0/24. Policy routing is

applied such that prefix 1.0.0.0/24 is preferable via Peer 1 and so on. Thus,

by the default policy routing, Customer C1 to C5 would use Peer 1 to reach

to prefix 1.0.0.0/24, Peer 2 for 2.0.0.0/24 and so on.

The gRCP controller is deployed with a simple application which switches

C2 traffic to 2.0.0.0/24 to Peer 2 if the link Router1-Peer1 is 60% satura-

tion. It also splits C4 and C5 traffic to prefix 4.0.0.0/24 to Peer2 and Peer4

(preferable) or Peer3 and Peer4. If Peer3 is not available for 4.0.0.0/24, then

the default routing is used.

Currently, the monitoring (by the Gauge controller of Faucet) is con-
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figured to port monitoring only. Faucet does support flow monitoring but

it does not support exporting the metrics to Prometheus database which

gRCP relies on the collect network statistics.

A traffic generation tool, iperf3 5 is used to generate traffic from a cus-

tomer router to a prefix. To simulate reachability, a logical sub-interface is

configured on each Peer router and ping and traceroute utilities are used to

validate the connectivity.

A few issues were encountered during the deployment, that are not de-

scribed in the official manual from Allied-Telesis. When the OpenFlow con-

troller programs rules that specifies VLAN for a port but the VLAN is not

currently configured on the switch, it can cause unexpected behaviour. The

traffic traverses that port experience extreme delay and packet loss. Most

packets are lost, except the first packets. The same behaviour is observed

if the VLAN is configured but at the same time the port is assigned to the

VLAN as if the switch is in normal mode.

4.4 Evaluation

Two sets of experiments were conducted. The first one focuses on the con-

vergence performance in the control plane. The convergence performance is

measured as the latency between the arrival of an BGP update arriving at

the controller and the completion of installing the corresponding FIB rules on

the switches. This evaluates the impact of using OpenFlow on implementing

the BGP functionality.

The second set of experiments evaluates the forwarding performance of

5https://iperf.fr/
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the data plane. The main focus is the impact of using multiple tables and of

the switch performance on updating the forwarding rules on traffic.

4.4.1 Experiment Setup

R1 R2

Route Reflector
(quagga)

iBGP

iperf3 client /
quagga

iperf3 server
eBGP

eBGP

BGP update
generator
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(a) Traditional mode setup
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eBGP
iperf3 client /

quagga

quagga

quagga

(b) OpenFlow mode setup

Figure 4.10: Experiment setup. Filled circles are data-collecting points.

The experiment setup is shown in Figure 4.10. The switches support

OpenFlow mode and traditional IP mode with BGP capability. The setup

simulate a simple ISP topology with two POPs. The iperf3 server represents

the upstream provider whereas the iperf3 client represents the customer. The

physical connections are all 1Gbps. iperf3 is used to measure bandwidth,
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jitters and packet loss. The traffic tool may not provide a highly accurate

result as it is software-based. However, due to its accessibility and easiness

to use and the lack of accessibility to a hardware-based tool, iperf3 was

selected. The iperf3 client sends UDP traffic at full-rate (1Gbps) to the

iperf3 server. Packet loss and jitters were recorded at the server. Network

Time Protocol (NTP) was used to synchronise the clock of those machines.

Experiments vary in terms of rates (number of updates per second), num-

ber of prefixes per update and types of updates (announcement, withdrawal,

or mix). Each experiment was carried for BGP and fBGP configuration.

To understand the effect of the dynamics in the control plane (i.e. control

plane convergence) on the data traffic, iperf tests were used for the evaluation.

The iperf client sends continuously UDP traffic at 100Mb/s to the server

(There were attempts to send traffic at higher rates, but the traffic was

randomly dropped at the docker containers). The iperf server announces

its prefixes to the border router R2. The update generator was configured

to send updates that causes the disturbance in the control plane, hence the

data plane. The iperf tests provide a number of measurements including

bandwidth, packet loss and jitters. Two performance metrics being examined

are jitters and throughput.

4.4.2 Results

The results on convergence performance and forwarding performance are

reported and discussed as follows:



88 CHAPTER 4. DESIGN AND IMPLEMENTATION OF FBGP

0 25 50 75 100 125 150 175 200
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

BGP-1
fBGP-1
BGP-2
fBGP-2
BGP-3
fBGP-3

Figure 4.11: Latency comparison between BGP and fBGP in three experi-

ments. In all cases, BGP outperforms fBGP.

Convergence Performance

Three different experiments, called Exp-1, Exp-2 and Exp-3 were used. In

Exp-1, updates are generated randomly as announcements or withdrawals

at the rate of 10 updates/second. Each update carries a random number

of prefixes up to five. Exp-2 is similar to the first one, but the number of

prefixes is fixed at one per update. Exp-3 uses realistic BGP data trace

obtained from RouteViews.

Figure 4.11 compares the convergence performance of BGP and fBGP in

terms of processing power of the controller (let call it control plane conver-
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gence). As can be seen, BGP performs slightly better than fBGP in Exp-1

and Exp-2 (about 20ms faster in average). In Exp-3, due to unknown tech-

nical issues tcpdump did not fully capture all the updates. However, the

captured data shows that BGP outperforms fBGP significantly. A closer

look at the data trace shows most of the updates contain five or more pre-

fixes and many of them have both announcements and withdrawals. The

current fBGP implementation processes prefixes sequentially. Performance

would be improved if parallel processing is used thanks to the independence

of prefixes.

Figure 4.12 analyses the convergence performance with regard to the flow

installation in the data plane (let call it data plane convergence). Similar

to the control plane convergence, fBGP performs poorly with realistic data.

This is explained by the fact that an update carrying multiple prefixes results

in the same number of OpenFlow modification messages.

Forwarding Performance

Impact on jitters were tested in two scenarios. In the first scenario, the

FIB rule used by the test traffic was updated and reprogrammed and in the

second scenario, the other FIB rules were being updated instead of the test

traffic carried one. In both cases, jitters are almost identical for both BGP

and OpenFlow modes. Noted that the results are indicative only. This is

because iperf, as a software traffic generator, may not be able to generate

reliable and consistent traffic.

The result as shown in Figure 4.13 shows that the ATX-930 switches

performs slightly better with regard to jitters in OpenFlow mode as compared

to the BGP mode. Thus, the multi-table pipeline used by fBGP seemingly
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Figure 4.12: Latency of OpenFlow. fBGP-1 and fBGP-2 are randomly gener-

ated updates at different rates, fBGP-3 is realistic updates from RouteViews.

does not have any negative effect on data traffic. A closer look at the switches

using two CLI commands, show openflow rules and show openflow flows gives

some explanations. The OpenFlow rules sent by the controller are stored in

the switch’s memory and are not actually used until there is a matching

packet. The switch then creates a flow by collapsing the whole pipeline into

a single entry and installs into the ASIC. If no packet is observed for a specific

period (i.e. one second or so), the flow is removed. However, the first packet

of a flow usually observes several tens of millisecond delay.

The impact on throughput was analysed based on the reported band-
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Figure 4.13: Allied-Telesis switches perform slightly better in terms of jitters

in OpenFlow mode compared to BGP mode.

width reported by iperf. For the throughput tests, the update generator was

configured to regularly announce and withdraw a superior update to router

R1 that cause it to switch traffic to the iperf server from the indirect link via

R2 to the direct link. However, there were technical issues with iperf setup

and BGP configuration that caused abnormality in the iperf results. Iperf

reported a long period of lost connectivity (i.e. nan% ) when the superior up-

date was sent. The issues were not resolved before the BGP and OpenFlow

licenses expired. Nonetheless, the result is still reported in Figure 4.14. It

shows that BGP experiences a longer period of lost connectivity as compared



92 CHAPTER 4. DESIGN AND IMPLEMENTATION OF FBGP

Time

0

20

40

60

80

100

Ba
nd

wi
th

 (M
b/

s

BGP
OpenFlow

Figure 4.14: Throughput test. Technical issues with the experiment cause

long periods of lost connectivity as reported by iperf for both BGP and

OpenFlow mode.

to OpenFlow. It is probably because of BGP route dampening algorithm.

Further investigation would be needed for a proper explanation. It was ob-

served in the test bed that reducing MRAI timer (it is the other timer which

can add more delay to BGP updates) of quagga to zero causes the high

CPU utilisation. For that reason, MRAI timer was set to one second. This,

however, still does not explain the lost of connectivity.
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4.5 Summary

This chapter presented an OpenFlow-based design for border routers to en-

able multipath interdomain routing in transit ISP networks. The design

enables the operators to achieve more flexible routing policies than the tradi-

tional single-path-capable BGP routers. A prototype was implemented based

on Faucet, an open-source production-ready SDN controller and deployed in

a physical testbed. This deployment proves the design is functional and

practical. Although fBGP does introduce a small penalty in control-plane

convergence performance, there is no impact on forwarding performance in

respect of both throughput and jitter metrics. The true benefits of fBGP ,

thanks to OpenFlow are the multipath-capability and the operational flexi-

bility by decoupling the software (controller) from the hardware (forwarding

plane).
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Chapter 5

Design of and Implementation

of FIBO

This chapter provides an overview of the design, implementation and evalu-

ation of a FIB distribution mechanism, called FIBO. FIBO is a part of the

SDIRO architecture. FIBO emulates a distributed data plane consisting of

multiple switches as a single logical forwarding table. FIBO efficiently utilises

the TCAM spaces in switches while preserving the forwarding behaviour.

The chapter has four main sections: (1) Section 5.1 provides an overview

of the problem and the approach; (2) Section 5.2 formally defines the prob-

lem as a linear programming problem; (3) Section 5.3 presents a heuristic

algorithm that trades efficiency for computation time; (4) Section 5.4 pro-

vides an evaluation in terms of efficiency and complexity, in comparison with

the traditional approach.

95
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5.1 Overview of the Problem

High-speed routers rely on TCAM memory to look up the next-hop for pack-

ets at the hardware line rate [89]. TCAMs are expensive, power-hungry, and

sizeable [90]. In a router, the TCAM space is usually shared between routing

and other applications such as firewall and packet classification.

In a typical transit network, border routers require over 700K TCAM en-

tries for BGP routes. The figure is doubling every 5 to 6 years 1. In 2014, the

BGP routing table exceeded the memory capacity of many Internet routers,

causing massive service disruption 2. Deployment of the multipath routing

capability presented in Chapter 4 exacerbates this scalability problem.

In a conventional ISP POP with multiple border routers, BGP routes

learned from external peers are replicated at each hop along the forward-

ing path (as demonstrated in Figure 5.1a). In modern ISP networks (i.e.

BGP-free core), routes are installed only at the ingress and egress routers

(demonstrated in Figure 5.1b. Tunnelling techniques (e.g. MPLS) are used

to tunnel packets from the ingress to egress routers. These networks poorly

utilise the available TCAM spaces.

To reduce sizes of the FIB table, the common technique used by ISP

operators is route aggregation (i.e numerically grouping prefixes into a super

prefix). The performance of route aggregation varies from router to router

and network to network, depending on the appearance of prefixes in the route

table. For example, if most of the routes have the same next-hop the table

size can be greatly reduced using route aggregation.

1https://bgp.potaroo.net/
2The forwarding table exceeded 512K entries causing memory overflow in core routers.

https://bgpmon.net/what-caused-todays-internet-hiccup/
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(a) Hop-by-hop forwarding where the FIB is replicated at hops.

(b) Tunnelling routing where the FIB is installed at the edges.

(c) The concept of FIB distribution.

Figure 5.1: Routing techniques and the approach to FIB distribution.

The basic concept of FIBO is demonstrated in Figure 5.1c. The FIB

table is decomposed and installed into all routers along the path. Tunnels are

established between switches so that the forwarding behaviour is maintained.

To show how FIBO works, let consider an example in Figure 5.2. Five

unique prefixes are reachable via two routers E1 and E2. The corresponding

FIB tables are shown in Figure 5.2a. FIB entries are routing prefix written

in a format of the first IP address in a network followed by a slash (/) and

ending with the bit-length of the prefix. For instance, 1.0.0.0/24 (or 1/24 for
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I1 E1

E2
1/24 N3 r6
2/24 N4 r7
3/24 N3 r8
64/24 N3 r9
65/24 N4 r10

N1

N2

N3

N4

I2

1/24 N1 r1
2/24 N2 r2
3/24 N1 r3
64/24 N1 r4
65/24 N2 r5

1/24 E1
2/24 E1
3/24 E2
64/24 E2
65/24 E2

1/24 E1
2/24 E2
3/24 E1
64/24 E2
65/24 E2

64/24 E2
65/24 E2

64/24 E2
65/24 E2

64/24 N1 r4
65/24 N2 r5

64/24 N3 r9
65/24 N4 r10

(a) The original FIB tables in each router. The first col. is the

destination prefixes and the second col. is the next-hops. The third

is the rule identity used for demonstration purpose only. The yellow

shaded entries can be aggregated and grey shaded ones are redundant

I1 E1

E2

N1

N2

N3

N4

I2

 N1  port 1

 N2  port 2

 N3  port 1

 N4  port 2

0/2

64/2

0/2

64/2

r1
r2
r8
r9
r10

r1
r3
r7
r9
r10

(b) FIB entries can be installed at PE routers. Processed packets

can be tagged and tunnelled to the border router. The right-

hand side tables contains the mapping between tags and out

ports

I1 E1

E2

N1

N2

N3

N4

I2

 N1  port 1

 N2  port 2

 N3  port 1

 N4  port 2

0/2

64/2

0/2

64/2

r1
r2
r8
r9
r10

r1
r3
r7
r9
r10

(c) Selection of cover prefixes which are used to decompose the

FIB tables

I1 E1

E2

N1

N2

N3

N4

I2

r8  

0/2 E1
64/2 E2

 N1  port 1

 N2  port 2

 N3  port 1

 N4  port 2

r1
r2
r3

r9

r10

0/2 E1
64/2 E2

r7  

0/2 E1
64/2 E2

0/2 E1
64/2 E2

(d) The final FIB tables in routers are shown, assuming a special

rule placement strategy has been applied.

Figure 5.2: Operations to reduce duplication and minimise the FIB size.
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short) is an IPv4 prefix of having 24 bits for network and 8 bits for hosts.

By using tunnelling technique, FIB entries in E1 and E2 can be elimi-

nated. Then, FIB tables in I1 and I2 are to be decomposed with a set of

cover prefixes (Figure 5.2b). Intuitively, two cover prefixes that can be used

are 0/2 and 64/2. The final step is to distribute FIB entries. In this exam-

ple, entries belong to the two aggregate routes can be placed into E1 and E2.

The aggregate routes are installed to the ingress I1 and I2 to direct packets

towards E1 and E2. The final FIB tables in routers (Figure 5.2d) are smaller

than the original ones.

The key problem to be solved here is to find a set of cover prefixes which

can be used to decompose the rule tables into multiple smaller tables (here-

after called subtables) and to find the locations for those subtables in order to

reduce the duplication while satisfying the table space constraint in switches

and the routing policy requirement. The next sections present the formation

of a linear programming problem for this FIB distribution problem.

5.2 Problem Definition

This section describes a mathematical model of the FIB distribution problem.

5.2.1 Overview

Let denote G = 〈S, L〉 a network composed of a set of switches S and a

set of links L between them. Each switch s ∈ S has finite Cs number of

rule entries it can hold. Let I and E be the set of edge switches which are

ingress (i.e. customer-facing) switches, and egress (i.e. provider/peer-facing)

switches respectively.
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The router learns routing update from its neighbours and computes a

global FIB table F = {r1, ..., rn} for a set of unique prefixes P = {p1, ..., pn}.

Each entry r is unique and identified by a tuple (prefix, next hop); r = 〈p, n〉.

A next hop can only be connected to one egress switch e ∈ E. As in a

traditional router, the identical FIB table F will need to be installed into all

ingress switches in order to enforce the forwarding correctness.

Notation Description

S A set of switches

E ⊂ S Set of egress points

I ⊂ S Set of ingress points

Q Set of cover prefixes

i, j ∈ I An ingress switches

e ∈ E An egress switch

q ∈ Q Represent a portion of FIB entries (hereby called a subtable)

s ∈ S A switch in network G

yeq(i, j) No. of rules shared b/w i and j of given egress e & cover prefix q

xi
s(q, e) Placement of rule group e of q of a given ingress i into a switch s

lie(s) If s lies on the shortest path i− e

ki
q(e) If q to be assigned to the shortest path i− e

Table 5.1: Summary of notation used in the model

When a packet arrives at an ingress switch i and hits a rule r it will be

delivered to the corresponding egress switch which is connected to the rule’s

next-hop. At the egress switch, the packet will then be forwarded to the

next-hop. Each switch has an implicit rule which drops packets that hit no

actual rule.
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In order to scale out the FIB table F , it will be decomposed into multiple

small tables (hereby called subtables) thanks to the fact that IP prefixes are

numerical aggregated. Given two prefixes p and q, the notion p < q denotes

that prefix q overlaps prefix p or p is encompassed by q. Based on that, the

table F can be decomposed into subtables by a set of prefixes Q (i.e. each

q ∈ Q encompasses several prefixes in P ). Thus, for a subtable Fq with a

corresponding q ∈ Q, it can be specified as Fq = {ri ∈ F |ri.p ≤ q}.

The FIB distribution problem is defined as to find the assignment f :

I × Q × E 7→ S such that the switch space constraint and the intradomain

policy is satisfied. The assignment f determines that rules having a particular

egress switch e will be installed on a switch s for a given ingress switch i.

Optimizing the FIB distribution would mean to find the assignment f

such that the total number of rules to be installed into switches are minimized

without breaking the forwarding correctness. The optimisation problem is

composed of two components. The first component, decomposition decom-

poses the FIB table into subtables by determining the set Q. The second

component, rule placement, computes the assignment f . The rule placement

component is discussed in the next section as it is considered to be critical

for the distribution performance.

5.2.2 Rule Placement Problem

For a given ingress i, a cover prefix q is assigned to the path between i and

an egress switch e which was chosen by the intradomain control plane. By

computing a (cover) rule that matches on q, whose next-hop is the subsequent

switch along the path, the forwarding path for q can be formed. Then, all

rules belonging to q can be distributed to the switches lying on the forwarding
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path. A packet which does not match an actual rule will be forwarded to

the next switch following the forwarding path. The final switch drop packets

that hit no actual rules by default.

Since a rule of a subtable Fq may have an egress switch which is different

from that of its forwarding path, it must be placed into the switch that lies

on a valid path (chosen by the intradomain) from the ingress switch to its

egress switch. Thus, the problem is to allocate rules to the right switch which

does not violate the intradomain policy and the switch space constraint.

This placement problem can be solved for every single rule. However, it is

unnecessarily expensive with hundreds of thousands of rule and not scalable.

Note that, all rules belonging to q that have the same egress switch can be

placed to the same switch. Thus, the placement problem would be faster

if rules are considered in groups of rules having the same egress (hereby

called egress groups or rule groups, denoted as Fq(e)) for each subtable. The

following constraints have been identified.

Forwarding semantic constraints:

∀i, q ∈ I,Q :
∑
e∈E

ki
q(e) = 1 (5.1)

∀i, q, e ∈ I,Q,E :
∑
s∈S

xi
s(q, e) = 1 (5.2)

∀i, e, q ∈ I,Q,E :
∑
s∈S

∑
e′∈E

xi
s(q, e) · ki

q(e
′) · lie(s) = 1 (5.3)

Constraint (5.1) ensures that a cover prefix can only be assigned to a single

forwarding path. Constraint (5.2) limits the placement of a rule group to a

switch, while constraint (5.3) ensures that the assigned switch has to lie on

both the forwarding path, and the chosen path between the ingress and the

egress of the group.
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In addition, the placement must satisfy the switch space constraint below.

Space constraint:

∀s ∈ S :
∑
q∈Q

∑
e∈E

|F s
q (e)| ≤ Cs (5.4)

where F s
q (e) denotes the set of rules Fq(e) to be installed to switch s.

For a given switch s and ingress i if xi
s(q, e) = 1, then the rule set Fq(e)

will be installed into the switch. Since a single copy of Fq(e) is required in

switch s to satisfy the routing for all ingress i, therefore F s
q (e) = Fq(e) if∑

i∈I x
i
s(q, e) ≥ 1, otherwise F s

q (e) = ∅. Having said that, the constraint

in 5.4 can be rewritten by the following two constraints.

∀s ∈ S; q ∈ Q; e ∈ E : Ks
q (e) ≥ xi

s(q, e)|Fq(e)| (5.5)

∀s ∈ S :
∑
q∈Q

∑
e∈E

Ks
q (e) ≤ Cs (5.6)

where Ks
q (e) is the minimum free space a switch s is required to have for the

rules in a subtable Fq(e).

The main goal to minimise the maximisation of space utilisation i.e to

equally split the table into all switches. Therefore, the objective function is

defined as below:

min ps(q, e) ∀q ∈ Q; e ∈ E; s ∈ S (5.7)

This LP problem can be solved using a standard ILP solver. Since ILP is NP-

hard, the solving time may not be practical to deal with the rate of changes

occurring in the FIB table (as BGP updates often come in burst and there

may be hundreds of update per second). Therefore, a lengthy solution time
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can cause backlog and result in traffic disruption.The next section proposes

a simple heuristic approximation algorithm which trades optimality for time.

5.3 Algorithm

This section discusses the rule placement problem and present the formation

of a linear programming model for optimisation.

A popular solver SCIP 3(version 4.0.1) was used to solve the above linear

optimisation problem. However, a satisfied result was not achieved although

efforts made to improve the performance by customising multiple settings of

the solver. This leads to development of an heuristic algorithm aiming at

obtaining a faster computation performance.

5.3.1 A heuristic algorithm

This section describes a heuristic algorithm for the forwarding table place-

ment in a distributed network aiming at improving the computation latency.

The algorithm is presented in Algorithm 1 and Algorithm 2.

At high-level, the heuristic algorithm is composed of three components.

The first component computes the forwarding paths between the ingress and

egress switches that satisfy the intradomain routing policy. The second com-

ponent computes the distribution of a subtable over a forwarding path and

for a particular ingress switch. The main component computes the mapping

between the subtables and forwarding paths for all ingress switches.

The algorithm works as follows. It sorts the ingress switches based on

their number of rules. It then starts with the ingress switch having the largest

3https://www.scipopt.org/
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Algorithm 1 Heuristic algorithm for the placement problem
Input: G, I,Q
Output: a map f : (I,Q,E)→ S
1: create an empty map f
2: sort I in descending by table sizes {i.e. |F i|}
3: for i ∈ I do
4: sort Q in descending by table size {i.e. |F i(q)|}
5: for q ∈ Q do
6: u∗ ←∞ {the maximum switch utilisation}
7: f∗i ← ∅{the best mapping for the given i, q}
8: for e ∈ E do
9: p← shortest path between(G, i, e)

10: u, f ′ ← distribute(i, q, p)
11: if u < u∗ then
12: u∗ ← u
13: f∗i ← f ′

14: end if
15: end for
16: update the map f with items in f∗i
17: end for
18: end for

number of rules. For each ingress switch, the algorithm tries to allocate the

largest subtable first. For a particular subtable, the algorithm examines the

potential distribution over all possible allowed paths between the ingress and

the egress switch. The distribution with the least maximum switch utilisation

is selected for that table. This process is repeated until all subtables are

allocated.

The main component is presented in Algorithm 1. It takes a network

topology G, a set of ingress switches I and a set of cover prefixes Q as input.

The output is a matrix that maps each element in I, Q and E to the set

switch S. It assumes the intradomain policy is the shortest path (line 9). An

appropriate function that implements the intradomain policy should replace

the shortest path.
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The distribution component is presented in Algorithm 2. The algorithm

ensures that rules in a table are placed to switch in group based on their egress

and that switch utilisation is minimised. The algorithm uses a matrix to keep

any valid placement i.e. satisfying constraint (5.3) (line 1 to 9). It then looks

for the switch with the least valid placement (line 11), and tries to allocate

as many groups of rules as possible (i.e. satisfying the constraint (5.4) (line

13 to 16). Then, the allocated egress is removed from the computation (line

17 to 18). The process keeps going until no egress left.

5.3.2 Decomposition

The quality of the decomposition of the FIB table can affect the feasibility

and quality of the distribution. The smaller and the less diverse the subtables

are, the better space utilisation the distribution will produce. If subtables are

too big the distribution may not be able to find paths for them and will fail.

However, large number of subtables increases the computation complexity.

In addition, the high egress diversity will affect the ability to find a path for

a subtable. The best case scenario is when egress diversity is zero. The sub-

table then can be placed to a switch which lies on the optimal path between

any ingress switch and the egress switch. The decomposition algorithm is

not considered in this work. In the evaluation, the decomposition set Q is

determined manually in advance.

5.3.3 Incremental Updates

FIB entries are not static. They may change as the routing policy changes or

new routing updates are received. For instance, a new rule may be added or
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Algorithm 2 Distribute a table over a selected path
Input: i, q
Input: a forwarding path p = {S1, .., Sn}
Output: mapping f : (i, q, E)→ S
1: create matrix m of zeros with E rows and n columns {m[e, s] = {0, 1} denotes

whether a group of rules with e as egress can be placed into switch s}
2: for e ∈ E do
3: for s ∈ p do
4: p′ ← shortest path between i, e
5: if s ∈ p′ then
6: m[e, s] = 1
7: end if
8: end for
9: end for

10: while E 6= ∅ do
11: s∗ ← get column with smallest sum in m
12: for e ∈ E do
13: if m[e, s∗] = 1 then
14: additional rule set K ← F i

( q, e)−Fs∗ {Fs: set of rules present in switch

s}
15: if available space of switch s∗ > |K| then
16: update map with (i, q, e) as key, s∗ as value
17: E ← E \ {e}
18: reset row e i.e. m[e, :]← 0 {i.e. mark it as done}
19: end if
20: end if
21: end for
22: end while

an existing rule is updated or removed upon the arrival of a BGP update. The

new FIB table may invalidate the current allocation hence a recalculation of

the allocation.

However, this brute-force approach may not be efficient and practical

enough to cope with the high frequency of BGP updates in the Internet. A

lengthy computation can cause backlogs and delay important updates to be

processed. Moreover, the new allocation may shuffle a large number of rules,
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Algorithm 3 A simple incremental algorithm for BGP updates
Input: BGP update U
while TRUE do

U ← newupdate
Q′ ← ∅
for announcement in U do

if announcement is withdraw then
update rule tables and continue

else if announcement is advertisement then
for new route r do

for q ∈ Q do
if r.p < q then

add q to Q′

end if
end for
if add to the current allocated switch fails then

run algorithm 1 on set Q′

end if
end for

end if
end for

end while

potentially affecting significant number of traffic flows.

Instead, an incremental algorithm was introduced. It is based on the

observation that if an update is a withdrawal that does not change the FIB

table, then no action is needed. Otherwise, for each new route introduced

the cover rule for it will be identified. These new rules are then installed to

the associated switch. If there is no space left in the switch, allocation for

those cover rules will be required. The algorithm avoids recalculation for a

large number of updates and limits the calculation to smaller number rules,

hence reduced latency.
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5.3.4 Handling Failures

Failures are inevitable in any network. A switch failure can cause temporary

packet loss for traffic handled by the portion of the FIB table on that switch.

Link or switch failure causes topological changes. One way to deal with

this is to re-run the algorithm with the new topology as input. However,

it is difficult to guarantee fast failover and may result in significant shuffle

of traffic. For fast failover, the portion in each switch should be cloned to

a backup switch. The controller then can react to topological changes by

reprogramming the ingress switches. Due to time constraint, this research

does not investigate failure scenarios and solutions.

5.3.5 Algorithm Analysis

This section provides a time complexity analysis of the heuristic algorithm.

The space complexity is not considered as memory is not really a concern

when running the algorithm in a general-purpose server. The analysis focuses

on two components: the distribution component and the mapping compo-

nent. The intradomain component is not taken into account as it is not part

of the interdomain controller and should be delegated to the intradomain

controller.

The time complexity of the distribution algorithm (Algorithm 2) will

be discussed first, followed by the mapping algorithm (Algorithm 1). The

distribution algorithm runs twice the loops over two sets E (egress switches)

and p (switches in a forwarding path). The first run gives a runtime O(E ×

p) (Lines 2 - 9). The second run is a double nested loop which gives a

runtimeO(E×(E−1)
2

) which is equivalent toO(E2). Thus, in total, the runtime
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complexity would be O(E2) (Lines 10 - 22).

The mapping algorithm runs a nested loop over three sets I (ingress

switches), E (egress switches) and Q (subtables). The last loop (Lines 8

- 14) produces the runtime O(E) in the worst case. This gives a runtime

O(I×E×Q). Thus, this gives the total runtime complexity of the algorithm

O(I ×Q× E3) in the worst case scenario.

As can be seen, the algorithm does not scale very well with the egress

switches. It is not, however, affected by the number of transit switches in

the network. Thus, in a practical deployment, scalability can be achieved

by adding more transit switches. With regard to decomposition of the FIB

table, there is a trade-off between the distribution efficiency (it means a finer

decomposition or more subtables) and runtime.

5.4 Evaluation

The heuristic algorithm was implemented in Python for the purpose of eval-

uation. An ILP solver was also implemented using the SCIP library (Solving

Constraint Integer Programs) with Python API (PySCIPOpt). The evalua-

tion focuses on two aspects: efficiency, latency and scalability.

The efficiency metric is measured based on the utilisation of table space

in the network and is computed as follows: e = N∑
s∈S Rs

, where Rs is the

number of rules in switch s and N is the total number of unique rules. The

lower the value e is, the higher the duplication will be. It is ideal when no

duplication of rules exists, i.e. e = 100%.

The latency metric is concerned with the processing latency, i.e. time

taken to process a BGP update and is measured using real BGP data traces.
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The solution is assumed to be practical if the processing latency is less than

a budget of 50 ms which is a common requirement in ISP networks [91]. The

BGP datasets were obtained from RouteViews for a week in November 2017.

Among the update messages in the datasets, more than 135K causes actual

changes to the FIB table, of which 128K updates are advertisements.

The scalability metric measures how well the system scales with regard to

the size of the FIB table. The scalability metric is computed as the function

of the number of destination prefixes and the largest FIB table size in the

network. Based on this definition, in a conventional BGP network or other

works such as RouteFlow [10] and SDN-IP [9], the scalability metric will be

identical to number of prefixes.

The topology of the data plane used for evaluation is synthetic. Three

different kinds of topology were used, including full-mesh, 3-tiered and ran-

dom kind. In the full-mesh topology, all switches are directly connected to

one another. In the 3-tiered topology, the first tier contains ingress switches

and the third tier contains egress switches interconnected to the first tier via

a middle tier. This 3-tier topology is recommended for POP design by large

vendors such as Cisco.

It is not possible to generate a realistic FIB table for a particular ISP

due to lack of information about their routing policy and interconnections

with the neighbours. Therefore, the FIB table was generated by randomly

assigning prefixes to egress switches. For each pair of destination prefix and

an ingress switch, the next-hop is randomly selected from the set of egress

switches. It is noted that the resulting FIB table has an equal distribution

of prefixes per egress switch and majority of adjacent prefixes do not share

the same next-hop.
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5.4.1 Efficiency
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egress switches.

Figure 5.3: Efficiency on different kinds of topology. The missing data for

ILP is because a time limit is set for the solver.

Figure 5.4.1 shows the result for efficiency metric. Overall, the ILP solver

performs better than the heuristic algorithm, but the difference is not signif-

icant.

In 3-tiered topology, the two have the same performance. As expected,

the efficiency decreases as the number of ingress switches increases. This is
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because more rules are duplicated at ingress switches. An interesting obser-

vation is that increasing the number of egress switches i.e. diversity, increases

the performance. This is contrary to the property of the FIB aggregation

technique. The heuristic algorithm works the best in 3-tiered topology among

other kinds.

5.4.2 Processing overhead
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Figure 5.4: Processing latency with real BGP updates

Figure 5.4.2 plots CDF of the processing delay. Most of the updates (99%)

can be processed under 60ms and 90% under 30ms. Noted that, the current

implementation does not utilise parallelism for improved performance as it

was based on a single Python process. If parallelism and multiprocessing

were introduced, the processing latency would be reduced. However, a risk

of disordered updates should be considered.
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Figure 5.5: Data plane scalability w.r.t number of unique prefixes. Conven-

tional BGP and ORTC are almost lined up with randomly generated routes.
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5.4.3 Scalability

In evaluation of scalability, three different types of topologies: MESH, RAN-

DOM and TIER were used, each with different number of egress switches

from 2 to 5. The FIB table increases in size at 100 prefixes per step. At each

step, prefixes are generated randomly and a egress node is chosen randomly

for each prefix. The test is repeated five times for each setting.

As shown in Figure 5.4.2, the heuristic algorithm works well in all settings.

It means that a large number of prefixes can be supported by a network com-

prising of very small switches. It is interesting that increasing the number

of egress, i.e. path diversity, reduces the table size. In contrast, FIB aggre-

gation algorithms perform well with less path diversity. It is also observed

that, Optimal Routing Table Constructor (ORTC) a popular FIB aggrega-

tion algorithm [92] and BGP are very close in term of FIB reduction with the

randomly generated FIB table. ORTC works by storing the FIB in a binary

tree and traverses the tree three times to generate an aggregated FIB.

5.5 Summary

This chapter discussed the FIB distribution as the approach to routing scal-

ability in transit ISP networks. It presented a formulation of the problem

as a linear programming problem and a heuristic algorithm that trades effi-

ciency for time. The heuristic algorithm can handles 90% of realistic BGP

updates within 30ms while achieving a close efficiency to that of the ILP

solver. The evaluation showed that the proposed mechanism improves the

TCAM utilisation in various types of network settings.
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Chapter 6

SDN-enabled Interdomain

Routing: A Comparison

This chapter provides a detailed comparison and evaluation of two controller

architectures, namely legacy SDN and OpenFlow-based SDN, with regard

to the complexity of implementing advanced routing capabilities in a transit

ISP. The legacy SDN refers to a network that is built using legacy routers

(i.e. closed-box devices with a proprietary control plane that exposes limited

programmability to an external controller), whereas OpenFlow-based SDN,

as its name suggests, refers to a network that uses OpenFlow switches.

In this chapter, section 6.1 introduces the legacy SDN architecture and

OpenFlow-based SDN architecture. In section 6.2, the method used for com-

parison and evaluation is presented. Of the subsequent sections ( 6.3, 6.4,

and 6.5), each presents the implementation of a different advanced routing

capability. Section 6.6 provides a discussion on the key advantages of an

OpenFlow-based SDN, followed by a conclusion section.

117
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6.1 Introduction

Neighbouring AS Neighbouring AS

eBGP session

Controller Route
reflectors

Border router

Southbound interfaces
iBGP session

App App

Figure 6.1: High-level architecture of SDN-enabled interdomain routing.

In a transit ISP, the interdomain routing network consists of border

routers, BGP sessions to neighbouring ASes and a route distribution sys-

tem (i.e. route reflectors). Traditionally, interdomain routing is controlled

by applying distributed import and export policies in border routers. Con-

versely, in a network with SDN-enabled interdomain routing a centralised

controller will be used to programmatically control the routing [10]. The

high-level architecture of SDN-enabled interdomain routing is shown in Fig-

ure 6.1. The controller manages border routers, maintains the global view

of the network and provides a platform to write routing control applications.

It uses the provided southbound interfaces to program the routers.

SDN-enabled interdomain routing can be accomplished using various south-

bound mechanisms including I2RS, ForCES, NetConf and OpenFlow [93].
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Currently, NetConf and OpenFlow are the most popular choices for SDN 1.

NetConf and OpenFlow can be considered as two extremes of the SDN spec-

trum: the later relies on a centralised controller and allows programma-

bility of the forwarding table while the former only provides interfaces for

configuring the control plane. Many published research works are based

on OpenFlow, whereas NetConf is popular among industrial discussions 2.

Thus, it would be interesting to have an indepth comparison between the

two approaches. The term legacy is used to describe NetConf and the re-

lated technologies.

The next section provides an overview of two architectural approaches to

SDN-enabled interdomain routing: legacy SDN and OpenFlow-based SDN.

6.1.1 Legacy SDN and OpenFlow-based SDN

The term OpenFlow-based SDN architecture refers to a network whose bor-

der routers are OpenFlow-compliant and capable of flow-based forwarding.

In contrast, a legacy SDN-enabled network uses legacy routers which are

managed via NetConf. The term legacy router describes BGP routers with

a destination-based forwarding capability.

Examples of legacy SDN includes the famous Routing Control Platform

(RCP) [65] and Intelligence Route Service Control Point (IRSCP) [67, 13]

deployed in AT&T network. Network vendors also offer their own SDN

solutions. The Application Centric Infrastructure (ACI) is offered by Cisco

for policy-driven networks based on Cisco Nexus 9000 family of switches 3.

1https://www.sdxcentral.com/networking/sdn/definitions/southbound-interface-api/
2https://archive.nanog.org/sites/default/files/1 Moore Network Automation And Programmability.pdf
3https://www.linkedin.com/pulse/software-defined-networking-sdn-simplified-kevin
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While Cisco ACI uses its proprietary southbound interface (called OpFlex),

there are standardised interfaces including BGP, NetConf and SNMP.

Examples of OpenFlow-based SDN includes Software-Defined Exchange

(SDX) [11], SDN-IP [9], RouteFlow controller [8] and its variant Cardi-

gan [94].

For the purpose of this research, the focus of the comparison is placed

particularly on the proposed SDIRO architecture and general legacy SDN.

Figure 6.2 depicts high-level overview of the two architectures. Overall, they

are architecturally similar with a centralised controller managing distributed

border routers. A key difference is that legacy border routers are mono-

lithic whereas that of SDIRO are made up of open software controllers and

OpenFlow-compliant switches.

Controller (e.g. gRCP)

App A App B

fBGP

OF sw OF sw

Intradomain
network

fBGP

OF sw OF sw

Programmed via path mapping abstraction

OpenFlow protocol

(a) SDIRO architecture

Controller (e.g. IRSCP)

App A App B

BGP
process

Intradomain
network

Controlled via configuration or iBGP

Monolithic
FIB table

BGP
process

Monolithic
FIB table

Closed-box device

Proprietary protocol

(b) Legacy SDN-enabled architecture

Figure 6.2: High-level overview of SDIRO and legacy SDN-enabled architec-

ture (Dashed boxes depict proprietary components).

The next section discusses in more details the framework for programming

routing control applications, of the legacy and SDIRO architecture.
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6.1.2 Legacy Programming and SDIRO Platform

The main components of the legacy and SDIRO controller platforms are

shown in Figure 6.3.

Controller
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Export Policy Adj-OUT RIB
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(a) Legacy programming platform
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General-purpose hardware

FIB Switch hardware
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BGP software layer

Path
abstraction

(b) SDIRO programming platform

Figure 6.3: Routing programmability in legacy and SDIRO network

In a legacy network, a router’s forwarding table (FIB) can only be pro-

grammed indirectly by manipulating the BGP import and export policies.
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The import policy contain rules specifying which incoming routes the router

can install into its RIB table and then FIB table. The export policy specifies

which routes can be announced to other peers. The controller can program

the import and export policy using NetConf, a network management frame-

work that defines protocol and mechanism for managing configuration and

state of networking devices. To learn what routes are available in the network,

several mechanisms can be used. The controller can utilise BGP Monitoring

Protocol (BMP) to learn all unprocessed incoming routes (i.e. before the

import policy). It can also learn routes from the Loc-RIB table via iBGP

(with Add-path enabled to allow multiple routes to be sent to the controller)

or NetConf if supported. In association with NetConf, the controller can be

programmed using YANG data models. For each particular programming

task, a suitable YANG module is required. While YANG is a standardised

data modelling language, development of YANG modules and support for

them vary across organisations and vendors. Thus, to program the import

policy, different YANG modules may be required for different router vendors

and there is no guaranteed that they are available.

The SDIRO architecture, in contrast, advocates for simpler abstractions

designed specifically for interdomain routing. It proposes two abstractions:

Path abstraction and Path mapping abstraction. The path abstraction rep-

resents an interdomain route as an end-to-end path between an ingress PE

router (or a customer connected to it) and a neighbour. It does not specify

the details of the path across the internal network. The path mapping ab-

straction specifies which path should be used for which customer or ingress

router. In a SDIRO network, the data plane is made up of two layers: the

control layer which runs on a separate general purpose hardware and the
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forwarding plane which is made up of distributed OpenFlow switches. The

RIB and FIB tables in a SDIRO network can be programmed directly, allow-

ing more control over the routing behaviour of the network. By relying on

a standardised OpenFlow, potential problems due to the differences between

vendor implementations could be reduced in a SDIRO network. A prototype

developed in this thesis, the implementation of the controller is called gRCP ,

while fBGP implements the data plane layer.

6.2 Method of Evaluation

This section describes the metrics used for evaluating the programming com-

plexity in legacy SDN and SDIRO, and the scenarios used in the evaluation.

6.2.1 Complexity Metrics

Typically, the complexity of a software system can be measured using code

metrics (e.g. lines of codes, McCabe’s Cyclomatic complexity number) or

structure metrics (e.g. McClure’s Control Flow Metric) [95]. These common

metrics either require a fully implemented system (code metrics) or detailed

design of interaction between components (structure metrics). To maintain

the generality and due to the time constraint, these metrics are not used for

evaluation.

Instead, for simplicity, the complexity of a system is qualitatively mea-

sured based on the number of protocols (as well as technologies) one would

have to work with in order to implement the desired functionality.
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6.2.2 Evaluation Scenarios

The evaluation is based on implementations of advanced routing capabilities.

Three different scenarios: Traffic engineering, Customer-defined SLA and

Customer-controlled Routing used for evaluation, are described below.

Traffic Engineering

Network congestion is common in the Internet, particularly during peak times

or big events such as sport events. Rather than relying on a human operator

to resolve congestion, a controller that automates the TE activities would

be essential to deal with such events. The controller monitors the links and

program routers to resolve congestion/violation which occurs while ensuring

stability and predictability. For simplicity, only outbound traffic engineering

(i.e. traffic towards other peer and provider ISPs) is considered. In practice,

inbound and outbound TE can be performed independently.

Customer-defined SLA

Commonly, the transit service is associated with a service-level agreement

(SLA) i.e. a technical specification of the service. A SLA defines the char-

acteristics of the service including bandwidth, delay, loss and availability. In

practice, a transit provider may have one or more SLAs which are shared by

multiple customers. However, SLAs are typically not enforced in interdomain

routing because of the limited control the provider has over the end-to-end

paths. Therefore, SLAs typically serve the guideline for compensation when

the service does not meet the specifications.

A provider can improve its service quality and experience by allowing each
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customer to define their own SLA and by having a controller actively monitors

the interdomain paths and re-programs the network so that the customer’s

traffic will be forwarded via the path that conforms to the SLA. Regardless

of how and where customers are connected, they can independently set SLA

for their traffic. Previous study [96, 18] show benefits of customer-defined

SLA.

Customer-controlled Routing

Traditionally, it is up to the transit provider how they handle and process

routes learned from customers and other networks. The customers have

limited ability to influence the operator’s decisions. BGP has a built-in

mechanism (i.e. the community attribute or MED) which allows a customer

to signal the provider about their intention. For example, some standardised

community values can be used to tell the provider not to export a route to

some ASes.

However, finer-grained controls such as “export/no-export given some con-

ditions of the network or links“, cannot be implemented. The ability for the

customers to customise the processing of their routes and to make the pro-

cessing subject to the network status would give the customers an improved

quality of service.

Next sections present a detailed implementation of these routing capabil-

ities using the legacy SDN platform and SDIRO platform.
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6.3 Scenario 1: Traffic Engineering

The operator in this scenario wishes to build a TE controller which can

automatically resolve congestion of its transit and peering links with the

upstream providers and neighbouring networks.

The TE controller regularly monitors all interdomain links (e.g. in 5

minute period) to collect measurements for the purpose of prediction of link

utilisation. Once a congested link is detected, it identifies one or more traffic

flows that need to be shifted to the other links. It assumes the desired

granularity of a flow is defined as tuple of an ingress PE and a destination

prefix. The controller’s algorithm is to pick the smallest flow and shift to

a cheaper or equal-cost link that can accommodate the flow. If multiple

options exist, the controller chooses the closest exit point in terms of IGP

distance between the PE and the gateway router.

The next sections presents the design and implementation of the TE

controller in the legacy and SDIRO network, highlighting major design issues.

6.3.1 Legacy BGP Implementation

This section presents the design of the monitoring component and the pro-

gramming model of the controller in a legacy network.

How links are monitored?

In the legacy network, link utilisation can be monitored using the simple

network management protocol (SNMP). Legacy routers collect link statistics

such as number of packets and bytes sent and received by an interface. The

controller can poll these statistics by sending a SNMP request with a specific
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Object Identifier (OID) to the router. PySNMP 4 is a popular python library

for SNMP which can be used to implement the link monitoring component.

Since SNMP is a standardised protocol, the same implementation can work

seamlessly for all vendors. Listing 6.1 shows an example of SNMP implemen-

tation based on the PySNMP library. While the code snippet looks simple

enough, the challenge lies in the fact that OIDs are vendor-specific.

1 from pysnmp . e n t i t y . r f c3413 . o n e l i n e r import cmdgen

de f snmp query ( oid , router , s e c r e t='public' ) :

3 cmdGen = cmdgen . CommandGenerator ( )

, , , varBinds = cmdGen . getCmd(

5 cmdgen . CommunityData ( s e c r e t ) ,

cmdgen . UdpTransportTarget ( ( router , 161) ) ,

7 o id )

re turn varBinds

9 #ge t number o f b y t e s r e c e i v ed by i n t e r f a c e Ge0/0 o f a rou te r

g e 0 0 i n o c t o i d = "1.3.6.1.2.1.2.2.1.17.1"

11 r cv by t e s = snmp query ( g e 0 0 i n o c t o i d , '172.16.1.1' )

Listing 6.1: Implementation of SNMP query in Python

How flows can be measured?

The controller will need to measure the bandwidth of each flow individually.

A set of flows can be decided in advance, e.g. a matrix of ingress PE routers

and a set of well-known, popular prefixes. The number of flows in practice

can be as large as tens of thousands, depending on the size of the network.

There is no existing mechanism in legacy BGP routers that supports

bandwidth measurement of a TE flow. There are two flow-based moni-

toring mechanisms that can be used for this purposes are NetFlow and

sFlow. NetFlow is available in Cisco platforms whereas sFlow is available

4http://snmplabs.com/pysnmp/index.html
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in other vendors’ devices. These mechanisms collect statistics of flows de-

fined as 7-tuple header fields (i.e. IP address source/destination, trans-

port protocol, source/dest port, TOS and input interface index). This flow

definition is too fine-grained for the TE controller. Thus, an aggregation

of multiple NetFlow flows is needed in order to compute the bandwidth

for a TE flow. This requires a correlation with the routing table and it

can be computationally expensive as a prefix can contain tens of thou-

sands of hosts (e.g. a prefix 1.0.0.0/19 has 8192 hosts). For example, if

a router produces two NetFlow flows: f1 = {src : 1.0.0.1, dst : 2.0.0.1} and

f2 = {src : 1.0.0.2, dst : 2.0.0.2} and its routing table contains two entries:

1.0.0.0/20→ 172.16.0.1 (PE) and 2.0.0.0/20→ 12.0.0.1 (external), the figure

for the flow (172.16.0.1→ 2.0.0.0/20 will be the sum of f1 and f2.

In implementing the flow measurement component, a flow collector/anal-

yser is required. ntopng 5 offers an open-source solution for NetFlow/sFlow

analyser. It provides APIs for external application which can be utilised to

implement the TE flow measurement.

Programming Model

In the event of link congestion, the controller first identifies and sorts the

flows on the link. It will need to maintain an up-to-date mapping of flows

to links (with link as key). In order to determine the alternative link for a

flow, the controller needs the routing table of all gateway routers and selects

ones that have active route to the prefix. Through a pair-wise comparison, it

then can determine the legitimate egress (i.e. the cheapest, closest policy).

To program a router’s forwarding table with a new route, the controller

5https://www.ntop.org/products/traffic-analysis/ntop/
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can either manipulate the import policy or update the router with a superior

route update. The former is CPU-intensive and can potentially impact the

router’s performance because changing the import policy causes the router

to recalculate all the affected routes. The later is a lightweight option. By

establishing an iBGP session to the router, the controller can program in-

dividual routes by sending a BGP update with e.g. higher local-preference.

Implementation of this programmer component can be done using ExaBGP,

a popular Python library and runtime for BGP.

1 # executed upon each conges t i on event

de f c o n g e s t i o n r e s o l v e r ( l i n k ) :

3 f l ows = g e t a l l f l o w s i n l i n k ( l i n k )

f l ows = s e l e c t a n d s o r t f l o w s ( f l ows )

5 f o r f low in f l ows :

route s = s e l e c t a v a i l a b l e r o u t e s ( f low )

7 cheaper = s e l e c t c h e a p e r r o u t e s ( f low . route , r ou te s )

c l o s e s t = s e l e c t c l o s e s t ( f low . i ng r e s s , cheaper )

9 i f c l o s e s t i s not None and c l o s e s t != f low . route :

program router ( f low . i ng r e s s , c l o s e s t )

11 i f g e t c o n g e s t i o n l e v e l ( l i n k ) < THRESHOLD:

return

Listing 6.2: Pseudocode implementing the TE logic of the legacy controller

Listing 6.2 provides a pseudo-code implementing the TE logic for demon-

stration. It loops through a list of sorted flows on a congested link, and for

each flow, it computes the closest route which is cheaper or equal. If such

route is found, the route will be programmed to the ingress PE, otherwise

the next flow will be considered.

A visual description of the controller’s component and architecture are

shown in Fig. 6.4. The controller is centralised which can be deployed in

a server at a desired POP. The deployment requires with minimal changes
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Figure 6.4: The architecture of the TE controller for legacy network.

to the network. NetFlow will need to be enabled on some interfaces (i.e.

interface connecting the ingress PE to the gateway routers).

6.3.2 SDIRO Implementation

This section presents the design for the TE controller in a SDIRO network.

How links and flows are monitored?

OpenFlow provides a vendor-independent mechanism for network monitor-

ing. OpenFlow protocol specifies that OpenFlow switches offer various types

of statistics that the controller can query for by sending appropriate control

messages to the switch. The controller can collect Port statistics to deter-

mine the utilisation and congestion level. It can rely on the same mechanism
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de f i s c o n g e s t e d ( l i n k ) :

2 i f ( l i n k . u t i l > THRESHOLD:

return True

4 re turn Fal se

6 @ l i s t e n e v ( [ LinkStateChange ] )

de f c o n g e s t i o n r e s o l v e r ( s e l f , ev ) :

8 l i n k = ev . l i n k

i f type ( l i n k ) != In t e rEg r e s s or not i s c o n g e s t e d ( l i n k ) :

10 re turn

qry = ( Mapping . query ( Mapping . pathid = l i n k . pathid )

12 . o rder ( Mapping . bandwidth ) )

f o r mapping in qry . f e t c h ( l i m i t =100) :

14 cur path = Path . query ( Path . pathid = mapping . pathid )

qry = Path . query ( Path . r o u t e r i d = cur path . route r id ,

16 Path . p r e f i x = cur path . p r e f i x ,

Path . i n t e r u t i l < THRESHOLD)

18 new path = ( qry . f i l t e r ( Path . co s t <= cur path . co s t )

. order ( Path . cost , Path . i g p c o s t )

20 . f e t c h ( l i m i t =1) )

i f new path :

22 topo . create mapping ( r o u t e r i d=mapping . route r id ,

p r e f i x=mapping . p r e f i x ,

24 path=new path , update=True )

i f not i s c o n g e s t e d ( l i n k ) :

26 re turn

Listing 6.3: Implementation of the TE controller in SDIRO

to collect Flow statistics to measure bandwidth of a TE flow (A TE flow is

represented as an entry in the forwarding table of the data plane). All flows

in an OpenFlow switch are associated with several counters for packets and

bytes transferred.

In the SDIRO architecture, the gRCP controller is responsible for main-

taining the global network view and representing it in a graph data structure.

The TE controller uses the API provided by gRCP to discover available paths

and their attributes as well as to listen to network events.
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Functionality Legacy SDN SDIRO

Link monitoring SNMP
OpenFlow

Flow monitoring NetFlow/sFlow

Programming model Yang models Path mapping abstraction

Table 6.1: Programming complexity of Traffic engineering.

Programming Model

The TE controller can be implemented as a control application running on

the gRCP controller. A fully working implementation of the TE application

is shown in Listing 6.3. The application listens for link events (i.e. LinkStat-

eChange) and determine if such an event causing network congestion. In

case of congestion, it queries for the current flows on a link (lines 11 - 13).

Then, for the selected flow to be shifted, it queries for the current path (line

14) and alternative paths considering the policy (lines 15-20) and update the

mapping table (line 22).

The programming abstractions provided by SDIRO eliminates the pro-

grammer from concerns about the underlying mechanisms that are required

to make it work. It is noted that, it is possible to realise these abstrac-

tions using the mechanisms of the legacy network described above but any

maintenance change of underlying hardware could require reprogramming.

6.3.3 Evaluation

Overall, the complexity of the legacy network lies in the fact that various pro-

tocols and mechanisms have to be employed for monitoring and control. In

contrast, an OpenFlow network provides a uniform way for network monitor-
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ing. Moreover, some legacy protocols have vendor-specific components mak-

ing it hard to switch between vendors. Table 6.1 summarises the protocols

and mechanisms used for implementation in the legacy and SDIRO network.

6.4 Scenario 2: Customer-Defined SLA

The scenario considered here is that some customers want special treatment

for their outgoing traffic. Specifically, the two customers C1 and C2 want

to define their own SLA. It assumes that these customers wish for different

paths for traffic to the same set of destination prefixes (e.g. the one who is

sending real-time traffic, is desired for low-latency path while the other is

interested in high-bandwidth for sending large amount of data).

The high-level abstraction of the system can be depicted as in Fig. 6.5

which shows the process for provisioning customer-defined routing. The SLA

specification defined by the customer and the provider’s own routing goals are

combined as the input to determine the best path for a particular customer.

The path is then provisioned in the network.

The next sections discuss the major technical challenges facing the design

and implementation of the customer-defined SLA (CDS) controller in legacy

and SDIRO network.

6.4.1 Legacy BGP Implementation

How paths are monitored?

The support for path performance monitoring varies between vendors. For

instance, Cisco provides its own mechanism called IP SLA, whereas Juniper
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Customer's SLA
specification

Determine the path

Provision the path

Provider's routing
goals

Figure 6.5: The provisioning process for customer-defined routing.

has RPM (Realtime Performance Monitor). By enabling IP SLA or RPM,

the router periodically sends out probing packets to the configured destina-

tion IP addresses. It is required to decide on the IP addresses in advance.

For example, to monitor the path to a prefix, one or more hosts belonging to

the prefix can be selected and used for enabling SLA. Listing 6.4 shows the

configuration to be applied on a router to enable IP SLA. The configuration

varies between vendors. On an experiment in a virtualised environment, the

Cisco router can only send probing packets via the active route, rendering it

useless for monitoring redundant paths.

ip s l a 6

2 icmp−echo 1 . 0 . 0 . 1 source−ip 1 7 2 . 1 6 . 0 . 1

f requency 300

4 request−data−s i z e 28

tos 160

6 t imeout 2000

tag p r e f i x 1 . 0 . 0 . 0 probe

8 ip s l a schedu le 6 l i f e f o r e v e r s ta r t−time now

Listing 6.4: Configuration snippet for IP SLA in Cisco routers
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How customer traffic is routed?

Once a path which meets the customer’s requirement is selected, the for-

warding plane needs to be programmed appropriately in order to drive the

customer traffic to follow the path. Specifically, the gateway router will be

programmed so that the selected path becomes active and gets installed into

the forwarding table. The ingress router which is connected to the customer

is also programmed to make the selected gateway as its exit point.

A challenge arises when two customers are connected to the same ingress

PE. Since the PE can maintain a single best path for each prefix, it cannot

satisfy both customers who want different paths concurrently. A practical

solution to this limitation is to use VRF, a technique that allows multiple

routing and forwarding tables to exist concurrently in a router. The controller

can be designed such that the default routing table (i.e. the global table) is

used for the ordinary transit service, whereas each additional VRF will be

used for a different class of service (e.g. low-delay SLA or high-bandwidth

SLA). A customer who wants a certain SLA for their traffic will be directed

to the appropriate VRF. The high-level design is shown in Fig. 6.6. VRFs

are created in the ingress router where the customers are connected and in all

selected egress routers. An experiment with Cisco router shows that, either

the whole interface is allocated to an VRF (i.e. all traffic) or selected traffic

is allocated using policy-based routing. Since customer’s requirement is per

prefix, PBR is required.

In the same experiment, it appears that Cisco and Juniper routers allow

only active routes (from the global table) to be imported to a VRF. This

renders routes computed by the local control plane on a router unusable for
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Figure 6.6: Implementation of customer-defined routing in the data plane

using VRF and PBR. Each VRF is associated with a class of service offered

by the provider. PBR rules used to direct traffic from a customer to a VRF.

this application. To overcome this, the controller will have to program routes

in a VRF manually. Specifically, if an egress router learns three routes via

BGP (e.g. r1 → N1, r2 → N2 and r3 → N3 as shown in Fig. 6.6) and BGP

selects r3. Then, to install r1 into vrf1 the controller crafts a static route

and maintains it in according to the updates of the BGP table (i.e. if r1

is withdrawn by the peer, the controller will need to compute a new static

route and update the VRF).

In addition, the experiment also shows that a PBR rule can only match

on L3 or L4 headers. This limits the definition of customers to source IP

address only. Thus, a knowledge of and maintenance of prefixes belong to a

customer will be needed. Implementation of the controller can be achieved

using NETCONF and YANG. Listing 6.5 shows a template which may be

used for programming static routes in a VRF.
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<c o n f i g>

2 <rout ing xmlns="urn:ietf:params:xml:ns:yang:ietf -routing">

<rout ing−i n s t anc e>

4 <name>{{ vrf name }}</name>

< i n t e r f a c e s />

6 <rout ing−p r o t o c o l s>

<rout ing−pro to co l>

8 <type>s t a t i c</ type>

<name>1</name>

10 <s t a t i c−route s>

<ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf -

ipv4-unicast-routing">

12 {% f o r route in r o u t e l i s t %}
<route>

14 <de s t ina t i on−p r e f i x>{{ route [ 'prefix' ] }}</

de s t ina t i on−p r e f i x>

<next−hop><next−hop−address>{{ route [ 'nexthop
' ] }}</next−hop−address></next−hop>

16 </ route>

{% endfor %}
18 </ ipv4>

</ s t a t i c−route s>

20 </ rout ing−pro to co l>

</ rout ing−p r o t o c o l s>

22 </ rout ing−i n s t anc e>

</ rout ing>

24 </ c o n f i g>

Listing 6.5: Template for static route based on Yang model

Since the current VRF implementation in legacy routers does not allow

non-active routes to be imported to a VRF, programming a VRF must be

done via static routing. The controller selects a route with the desired char-

acteristics, constructs a static route and installs into the VRF. NETCONF

can be used for remote installation of static routes. A YANG model for static

routing is needed (a template YANG model is shown in Listing 6.5) which is

parsed and transported to the router via NETCONF. An open-source Python
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library for NETCONF called ncclient 6 can be used to implement the static

routing component.

Programming Model

SLA SPEC = {
2 'SLA1' : {'spec' : SLA( maxlatency=20) , 'vrf' : 'VRF1'} ,

'SLA2' : {'spec' : SLA(minbw=100) , 'vrf' : 'VRF2'} ,

4 'SLA3' : {'spec' : SLA( maxcost=10) , 'vrf' : 'VRF3'}}

6 de f compute s la ( cust id , p r e f i x , s l a ) :

r oute s = g e t a v a i l a b l e r o u t e s ( p r e f i x )

8 s l a s p e c = SLA SPEC [ s l a ]

spec = s l a s p e c [ 'spec' ]

10 v r f = s l a s p e c [ 'vrf' ]

v a l i d r o u t e s = g e t v a l i d r o u t e s ( routes , spec )

12 i f v a l i d r o u t e s :

b e s t r o u t e = s e l e c t c h e a p e s t ( v a l i d r o u t e s )

14 program network ( cust , be s t route , v r f )

# Example

16 compute s la ('10.0.0.1' , '1.0.0.0/20' , 'SLA1' )

compute s la ('10.0.0.2' , '1.0.0.0/20' , 'SLA2' )

Listing 6.6: Example of CDS implementation in legacy network

The controller maintains a routing table which maps a prefix to a set

of external routes. An additional table is required which associates a route

with its SLA characteristics. The controller computes the best route for

a customer and a given prefix (i.e. a flow) by looping through all available

routes and comparing against the SLA requirement. If multiple options exist,

it can choose the best one according to the operator’ own policy. A example

of the implementation in Python is shown in Listing 6.6. It implements the

policy which favours the cheapest route.

6https://github.com/ncclient/ncclient
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6.4.2 SDIRO Implementation

How paths are monitored?

In OpenFlow, the PacketOut capability which allows the controller to send

out arbitrary packets out of an interface, can be utilised to implement the

path monitor component. This capability enables the operator to implement

various algorithms. This component is not currently implemented in the

SDIRO prototype.

How customer traffic is routed?

OpenFlow allows a flexible matching scheme. Many different combinations

of packet headers can be used. In SDIRO, the destination MAC address is

used to identify the SLA class a customer wishes for. Matching packets are

tagged with a metadata which is then used for matching together with the

destination prefix. The (metadata, prefix) implementation is equivalent to

VRF in legacy network. By using the destination MAC address, the scala-

bility is improved, as compared to PBR rules in the legacy implementation

(i.e. only one rule is used for all customers having the same SLA, compared

to multiple rules per customer in legacy network).

Programming Model

The controller’s logic is implemented simply by defining path queries that

reflect the SLA requirement. Each query is for a class of SLAs. For instance,

a filter(Path.bandwidth, Path.delay) assures SLA with minimal bandwidth of

10Mbps and maximum delay of 20ms. The order() path is where the operator

applies its own objectives. Specifically, the order(Path.cost, Path.distance)
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Functionality Legacy SDN SDIRO

Path monitoring IP SLA/RPM + SNMP
OpenFlow

Customer-specific routing VRF, PBR

Programming model Yang models declarative language

Table 6.2: Programming complexity of Customer-Defined SLA.

results in the lowest cost path or shortest distance between the ingress and

egress point when all paths have the same cost. An example of code snippets

is shown in Listing 6.7.

1 de f s l a s p e c 1 ( cust id , p r e f i x ) :

qry = ( Path . query ( s r c=customer . id , dst=p r e f i x )

3 . f i l t e r ( Path . bandwidth >= 10 , Path . de lay <= 20)

. order ( Path . cost , Path . u t i l ) )

5 re turn qry . f e t c h ( l i m i t =1)

7 de f s l a s p e c 2 ( cust id , p r e f i x ) :

qry = ( Path . query ( s r c=customer . id , dst=p r e f i x )

9 . f i l t e r ( Path . bandwidth >= 10 , Path . co s t <= 100)

. order ( Path . cost , Path . u t i l ) )

11 re turn qry . f e t c h ( l i m i t =1)

Listing 6.7: Implementation of CDS controller in SDIRO network

6.4.3 Evaluation

While VRF is widely used in ISP networks for Virtual Private Network

(VPN) services, it is rather complicated when applied for customer-defined

SLA. This is because customer traffic is to be identified and routed at finer

granularity. Moreover, programming relies on multiple Yang models. In

SDIRO, OpenFlow is the single southbound protocol. Its declarative lan-

guage simplifies the task of provisioning the service. Table 6.2 summarises
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technologies used in the legacy and SDIRO network.

6.5 Scenario 3: Customer-Controlled Rout-

ing

AS1

C3

AS3AS2

Figure 6.7: Topology demonstrating the CCR scenario. The AcmeISP (mid-

dle) has three POPs interconnecting to three ASes. Arrows depicts traffic

direction.

The scenario is that a customer C3 who has two separate transit con-

nections to AcmeISP and AS1, wants to control the incoming traffic to its

prefixes. Fig. 6.7 depicts the high-level topology. The majority of incoming

traffic to C3 was originated from AS3. Customer C3 may want to dictate

that it does not want to use the link(s) with AS2 when the utilisation ex-

ceeds 50%. The customer also dictates that traffic from AS3 should be split

between the its two links if the bandwidth exceeds 60%.
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BGP offers very limited capability for inbound routing control. The most

effective mechanism is selective advertisement which the controller advertises

a prefix to only the peers it wants to receive traffic from. Thus, to implement

the first policy, the controller withdraws routes to C3’s prefixes previously

advertised to AS2. This prevents C2 from sending traffic toward C3’s prefixes

via AcmeISP.

For the second policy, the edge router(s) used to connect to AS3 will have

an additional route (i.e. route via AS1) installed into its forwarding table.

That enables the router to balance load between the two links.

The subsequent sections discuss the implementation of the customer-

controlled routing (CCR) controller in the legacy and SDIRO network.

6.5.1 Implementation on Legacy network

Legacy BGP routers support BGP multi-path routing which allows multiple

paths to be used simultaneously for load sharing. However, for a path to

be installed into the forwarding table along with the best path, it must

have similar attributes to the best path. Specifically, attributes including

local Preference, AS path (both AS number and AS path length), origin,

MED and IGP metric. Such requirement obviously restricts the load sharing

across two path AS3→ AcmeISP → AS1→ C3 and AS3← AcmeISP →

C3 since their AS path attributes and possibly IGP metrics are different.

This selection criteria cannot be programmed, therefore such a policy is not

technically possible in a legacy network.
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6.5.2 Implementation on SDIRO network

Traffic load balancing

In a SDIRO network, BGP routing is controlled by a custom BGP software

stack running on a dedicated generic server. The fBGP prototype built on

top of Faucet and ExaBGP allows direct programmability of the RIB table.

Thus, it is possible to install any available routes to the forwarding table

regardless of their attributes.

In the dataplane, OpenFlow GroupTable feature can be utilised to im-

plement load balancing. To load traffic between the two paths in question,

the fBGP controller installs them to the FIB table with an action pointing

to a group table. This group table is created with select type, which allows

the switch to select between path using a pre-implemented algorithm (de-

pending on the switch vendor). This capability has not been implemented

in the prototype. It, however can be realised through a simple extension to

the Faucet controller.

Programming Model

The concept of path mapping in SDIRO makes it easy to control routing in

this case. The high-level control defines a path mapping between a peer (i.e.

AS3) and prefix p1. By turn on and off the path mapping according to a

network condition, the controller can implement the desired function. The

path mapping abstracts away how the underlying network is constructed.

The policy developer/operator will not need to care about.

The feature which supports multiple mappings (i.e. load balancing) is not

yet implemented in the SDIRO prototype. However, OpenFlow supports the



144CHAPTER 6. SDN-ENABLED INTERDOMAIN ROUTING: A COMPARISON

Functionality Legacy SDN SDIRO

Inbound routing control NetConf/Yang
OpenFlow

Traffic load balancing Not supported

Programming model Not supported declarative language

Table 6.3: Programming complexity of Customer-Controlled Routing.

capability to realise it in hardware switches.

6.5.3 Evaluation

Support for customer-controlled routing cannot be practically realised in the

legacy network. Table 6.3 summarises the technologies used in the legacy

and SDIRO network.

6.6 Discussion

6.6.1 SDIRO Provides Better Programmability

Programming in a conventional network is rather complex due to the lack of

abstractions. From a system point of view, the transit network is a black box

that connects a customer port to a transit port and vice versa. It virtually

has a mapping data structure which an external controller can program to

make which port should be connected to which port.

SDIRO abstractions and the declarative language make it easy to im-

plement new routing features and policies. The operator focuses on the

high-level policy rather than the mechanisms as in the conventional network.

SDIRO provides better separation of policy and mechanism.
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The path mapping abstraction simplifies the programming task. The

programmer focuses their attention to what traffic (i.e. customer) should be

using what path, rather than how this should be done.

The use of OpenFlow opens a lot of possibility to implement advanced

routing control and measurements.

6.6.2 SDIRO Allows Better Scalability

Two main scalability issues of the interdomain routing are the growth of

the routing table and the routing churn. As shown in the case studies,

some routing applications do introduce more routes into the network (i.e.

Customer-defined SLA), hence bigger TCAM memories.

There are multiple scalability issues in the conventional network. NetFlow

is cpu-intensive. The sample rate can be reduced for scalability at the expense

of accuracy. In contrast, the SDIRO network relies on OpenFlow counters for

network monitoring which can be enabled per entry in the forwarding table.

This effectively allows to collect statistics of traffic for each prefix (which is

enough for the TE application, whereas Netflow is too fine-grained). The

frequency of querying the counters can have negative impact on the switch

performance. However, various query techniques can be used (e.g. adaptive

query) and the frequency can be increased (e.g. TE application needs not

to control the network too frequent than tens of minutes or even hours).

SDIRO is built based on the open-source controller Faucet whose Gauge is

the monitoring. Currently, gauge simply sends a query periodically to get

counters for all available flow entries at once, which can be an issue if there

are hundreds of thousands of flows.
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6.6.3 SDIRO Improves Network Manageability

Firstly, the SDIRO architecture introduces fewer protocols and technologies

than the conventional approach when implementing new routing applications.

Although the technologies such as NetFlow, VRF and PBR are commonly

used in ISP networks, their removal will definitely make the network less

complex hence simplifying the management.

Secondly, the SDIRO architecture has clear separation of software and

hardware, thus simplifying many common management tasks such as soft-

ware and hardware upgrade. fBGP runs on separate hardware which makes it

easier to upgrade without impacting the forwarding plane. In the legacy net-

work, router replacement is visible to the external network. The physical link

and the eBGP session are terminated in the same router. In a SDIRO net-

work, eBGP sessions are terminated at fBGP server which is running on

a separate hardware from the switches where the physical connections are

connected. Thus, it enables the configuration where the customer’s router

is connected to fBGP using two physical links, terminated at two different

switches. Thus, shutting down a switch for replacement reduces bandwidth

capacity but does not disrupt the service.

Third, having the control software running on commodity hardware, al-

lows the operator to add more feature and adjust for their needs. Modifica-

tions to the router software is limited to the customisation or configuration

allowed by the router vendor. The typical wait time for a new feature can be

several years. SDIRO on the other hand, is an open-source and based on re-

liable open-source code bases including Faucet and Neo4j. fBGP is based on

Faucet which can freely available and can be extended. It is well documented
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and has growing community.

6.7 Summary

This chapter evaluates and compares two architectural approaches to ad-

vanced routing capabilities in a transit ISP: legacy SDN and OpenFlow-based

SDN. Overall, OpenFlow makes it easier to realise new routing functionality

by giving the operator more control over the forwarding plane.
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Chapter 7

Conclusions

The Internet has become an essential part of our lives. Innovation has been

and is being very active at the edge of the Internet, such as access tech-

nologies, applications and content delivery networks. However, the Internet

core which connects the edge networks together remains the same when it

was invented. The key routing protocol BGP has not significantly improved,

although much research has been paid attention to. The thesis argues that

the key obstacle to interdomain routing problems is the deployability of the

solution.

That motivates this research to investigate the design of a deployable

solution. SDN and OpenFlow facilitate the development of such a solution.

SDN breaks the ossification in the Internet by decoupling the control and data

plane. SDN offers flexibility and programmability to the network. These are

the key capabilities employed in this research to develop an incrementally

deployable solution for interdomain routing, SDIRO.

The high-level architecture of SDIRO is inspired by various previous work

on routing control platform. While SDIRO does not significantly diverge

149
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from other SDN architectures, in designing SDIRO the research addresses

several unique challenges in interdomain routing including programmability,

flexibility and scalability. Specifically, contributions made in this research

can be summarised as follows.

Chapter 3 presented the design of a routing control platform, gRCP which

enables routing programmability in transit ISPs. The design utilises graph

data model and graph database to represent interdomain routing information

and the design of a query language for routing programming. gRCP design

also takes into account the scalability and availability.

Chapter 4 addressed the inflexibility of interdomain routing in the cur-

rent networks through the design of fBGP, a programmable border router

based on OpenFlow. The main contribution is to show how the flexibility

and programmability of OpenFlow are utilised to implement the multipath

routing capability fBGP while ensuring scalability. Other contribution is

to evaluate whether implementing BGP functionality on top of OpenFlow

provides equivalent performance to conventional BGP router.

Chapter 5 tackled one of the key problem concerning ISP operators: scal-

ability, particularly the scalability of the data plane. FIBO is the proposed

solution which addresses the problem by decomposing the forwarding table

and distributing it across an interconnected network of switches. The main

contribution is a mathematical model of the problem and the formation of

the problem as an integer linear problem.

Chapter 6 offered a closer look at the advantages of using centralised con-

trol architecture and OpenFlow through a comparison between SDIRO and

a legacy SDN architecture, NetCONF.

In conclusion, the proposed solution for interdomain routing addresses
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three key technical requirements that are believed to be of importance for

transit operators: programmatic routing control, flexible routing policy and

scalability. However, like much previous research in the literature, the design

does not take into account the business requirements. In addressing the prob-

lems of interdomain routing, it is important to have the views of the transit

ISPs and other stakeholders such as CDNs. Very limited information on the

literature shows what problems are critical to their business and the Inter-

net community as a whole. Moreover, what functional and non-functional

requirements are needed by the transit operators and their customers. Thus,

a survey about the operators’ view on this matter would be essential for

researchers to develop the solution that fits for purpose. Moreover, more

information about routing policy and management in transit ISPs would be

needed for enhancing the practicality of the solution and better evaluations.
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Appendix A

Acronym

API Application Programming Interface

AS Autonomous System

ASBR Autonomous System Border Router

BFD Bidirectional Forwarding Detection

BGP Border Gateway Protocol

BMP BGP Monitoring Protocol

CDN Content Delivery Network

CLI Command Line Interface

ECMP Equal-Cost Multiple Path

FIB Forwarding Information Base

ForCES Forwarding and Control Element Separation

I2RS Interface to Routing System

IP Internet Protocol

ISP Internet Service Provider

IXP Internet Exchange Point

LFB Logical Function Block

LLDP Link Layer Detection Protocol

153
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LSP Label Switch Path

MAC Media Access Control

MED Multi-Exit Discriminator

MPLS Multiprotocol Label Switching

NTP Network Time Protocol

OAM Operation Administration and Maintenance

ONF Open Networking Foundation

ORTC Optimal Routing Table Constructor

OSPF Open Shortest Path First

PBR Policy-Based Routing

PCC Path Computation Client

PCE Path Computation Element

PCEP PCE Protocol

PE Provider Edge

POP Point of Presence

QoS Quality of Service

RCP Routing Control Platform

RIB Routing Information Base

RIR Regional Internet Registries

RTT Round-Trip Time

RPSL Routing Policy Specification Language

SDIRO SDN for Interdomain Routing

SDN Software-Defined Networking

SLA Service Level Agreement

SDX Software-defined Internet Exchange

SNMP Simple Network Management Protocol

TCAM Ternary Content Addressable Memory



155

TE Traffic Engineering

TED Traffic Engineering Database

TCP Transmission Control Protocol

VRF Virtual Routing and Forwarding

VPN Virtual Private Network
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