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Abstract
Path dependent types form a central component of the Scala programming
language. Coupled with other expressive type forms, path dependent types
provide for a diverse set of concepts and patterns, from nominality to F-
bounded polymorphism. Recent years have seen much work aimed at for-
malising the foundations of path dependent types, most notably a hard won
proof of type safety. Unfortunately subtyping remains undecidable, present-
ing problems for programmers who rely on the results of their tools. One
such tool is Dotty, the basis for the upcoming Scala 3. Another is Wyvern,
a new programming language that leverages path dependent types to sup-
port both first class modules and parametric polymorphism. In this thesis
I investigate the issues with deciding subtyping in Wyvern. I define three
decidable variants that retain several key instances of expressiveness includ-
ing the ability to encode nominality and parametric polymorphism. Wyvfix

fixes types to the contexts they are defined in, thereby eliminating expansive
environments. Wyvnon-µ removes recursive subtyping, thus removing the key
source of expansive environments during subtyping. Wyvµ places a syntactic
restriction on the usage of recursive types. I discuss the formal properties
of these variants, and the implications each has for expressing the common
programming patterns of path dependent types. I have also mechanized the
proofs of decidability for both Wyvfix and Wyvµ in Coq
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Chapter 1

Introduction

The last decade has seen much work in laying the formal foundations of so-
called Path Dependent Types, a language feature that features most promi-
nently as a core component of the Scala programming language. Simply
stated, type definitions can exist within objects (in the same manner a value
or function can), and a path dependent type is the type that is derived from
accessing that type via a specific path. As an example consider the following
definition:

1 val o : Object = new {
2 type L = Integer
3 }
4 val i : o.L = 4

Here we initialise a new object o with a type L, and subsequently use that
type in the creation of i by selection on o.

While path dependent types are fairly simple conceptually, they allow for
a rich variety of patterns, especially when combined with other powerful type
forms such as intersection, recursive and dependent function types. They
offer an alternative to the F-bounded polymorphism of functional languages
such as System F<:, type classes of Haskell and class generics of Java. Path
dependent types also introduce a notion of nominality, which allows for the

1
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modelling of ML-style modules.
With this rich conceptual ecosystem comes some significant trade-offs.

The formal properties of path dependent types have been quite difficult to
nail down. Much effort has been spent on deriving a type safety proof for
path dependent types in presence of type refinements, recursive types or a
lattice structure for subtyping. Several variations on the core formal seman-
tics for Scala have been proposed and they were eventually demonstrated to
be type safe in 2016 by Rompf and Amin for the Dependent Object Types
(DOT). Central to the struggle for type safety was the transitivity of sub-
typing, or rather ensuring subtype transitivity while also ensuring other key
properties such as well-formedness of type bounds and environment narrow-
ing (the narrowing of variable types to more specific forms during subtyping
or reduction). The resulting formalism explicitly included subtype transi-
tivity as part of the subtype rules, but demonstrated that this at no point
introduced ill-formed expressions, even if ill-formed types might exist.

Rich type systems also have other downsides. It has long been known
that subtyping of bounded quantification is undecidable, but more recently
Grigore demonstrated that subtyping of Java generics was also undecidable.
Since a language such as DOT, which features both path dependent types
and some form intersection types, subsumes the subtyping of both bounded
quantification and Java generics, it also captures the undecidability of their
subtyping.

Not only do languages such as DOT capture the decidability issues of
bounded quantification and Java generics, but it also introduces several other
problems: recursive types, mutually defined types and intersection types.

This thesis categorizes the issues of decidability present in the Wyvern
programming language, a language closely related to DOT that includes path
dependent types, recursive types and limited intersection types. The thesis
is organised in the following way:

• Chapter 2 covers the background and related work associated with this
thesis.

2
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• Chapter 3 introduces a minimal core calculus for Wyvern called Wyvcore.
I then discuss the associated decidability issues with it.

• Chapter 4 defines a Material/Shape separation on Wyvern, a syntac-
tic separation on types that constrains recursion in order to achieve
subtype decidability.

• Chapter 5 defines a general decidability argument for decidable variants
of Wyvcore. I then define Wyvfix, a decidable variant that removes the
narrowing of environments during subtyping. A proof of decidability
is provided. This decidability proof has been mechanised in Coq [2].

• Chapter 6 defines a decidable variant of Wyvern removes recursive sub-
typing in order to achieve subtype decidability. After proving decid-
ability, I then prove type safety.

• Chapter 7 defines a decidable variant of Wyvern that places a syntac-
tic restriction on recursive types. A proof of decidability is provided,
along with a proof of type safety. The proof of decidability has been
mechanised in Coq [2].

• Chapter 8 concludes.

Parts of the work in this thesis has been published. The novel type
systems presented in Chapters 5 and 7 are the topic of our POPL 2020 paper
[55].

Finally, I have mechanised two of the proofs of decidability, that of Wyvfix

and Wyvµ in Coq [2].
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Background

In this thesis I investigate the issues of subtype decidability in type systems
(formal models of typed languages) for object oriented languages with path
dependent types. I present several variations on a single type system that
contain some common features with other programming languages. These
languages and features have been investigated to varying degrees, and the
work in this thesis draws directly upon work that other researchers have done
over the past few decades.

In this Chapter I provide background among others on

• In Section 2.1 I discuss type systems, the formal method I use to model
the languages discussed in this thesis. Section 2.1 takes a tutorial ap-
proach initially, introducing the type systems of a family of languages
referred to as the λ-calculus. These are foundational calculi for func-
tional languages, but they have much in common with the object ori-
ented languages that occupy the rest of this thesis.

• Section 2.2 introduces object oriented languages, and discusses sub-
typing in object oriented languages. I also introduce and discuss the
Dependent Object Types (DOT) calculus, an object oriented language
that is the perhaps the most prominent formal calculus that features
the language features at the centre of this thesis: recursive types and

5
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path dependent types. I end this section with a discussion on Java and
its associated issues with decidability.

• Section 2.3 introduces the Wyvern, the basis and motivation of the
work in this thesis. I introduce the syntax of Wyvern, and discuss
topics that motivate it.

2.1 Type Systems
In Computer Science, a type system is a commonly used formal method for
defining a programming language and demonstrating a variety of properties
held by that language, usually with the purpose of excluding problematic
behaviour. Pierce [70] provides the following definition of a type system:

A type system is a tractable syntactic method for proving
the absence of certain program behaviours by classifying phrases
according to the kinds of values they compute.

Generally, a type system uses a syntax to categorize components of a
program and a semantics to define properties and behaviour of elements of
that syntax. In this Section I present a lineage of type systems, each building
on the last to successively exclude a greater class of problematic programs.
This both demonstrates how type systems are used to model programming
languages, as well as providing the conceptual foundations to the more com-
plex type systems defined in the following chapters. The problem of subtype
decidability does not arise suddenly with the introduction of Wyvern, the
language we focus on in this thesis, but rather arises from the confluence
of features described in several smaller calculi. For now, we start with the
λ-Calculus.

2.1.1 λ-Calculus

The λ-calculus is a family of higher-order functional programming languages
defined by Church[30, 42]. Some of these will be discussed in this section,

6
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t ::= Terms
x variable
λx.t abstraction
t t application

Figure 2.1: λ-Calculus Syntax

λx.t −→ λy.[y/x]t (α− conversion)

(λx.t1) t2 −→ [t2/x]t1 (β − reduction)

Figure 2.2: λ-Calculus Operational Semantics

each building on the last to demonstrate the use of type systems and provide
a theoretical basis for the languages modelled in the rest of the thesis. I
start with the untyped λ-calculus the syntax of which is defined in Figure
2.1. Expressions in the λ-calculus are restricted to only three forms: vari-
ables, λ-abstractions (or functions) and applications. λ-calculus evaluation
is defined in Figure 2.2 and is performed via a series of variable renames
(α − conversion) and function applications (β − reduction). Both of these
evaluations make use of variable substitution. The substitution [t′/x]e is a
replacement of all instances of x in t with t′.

The untyped λ-calculus is extremely simple and captures the key aspects
of functional programming languages. For the purposes of meaningful ex-
amples I introduce the modelling of some basic data types in the λ-calculus.
The boolean values true and false are encoded below.

true = λx.λy.x false = λx.λy.y

Such encodings are referred to as Church encodings [42]. It is further possible

7
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to encode simple logic operators.

∧ = λa.λb.a b a ∨ = λa.λb.a a b ¬ = λa.a false true

It is easy to demonstrate for the operational semantics defined in Figure 2.2,
we get the following identities.

∧ true false = false ∨ true false = true ¬true = false

The λ-calculus syntax restricts the form that terms may take, already ex-
cluding the category of programs that are syntactically ill-formed. Depend-
ing on the definition of ill-formed, however it does not exclude all potentially
ill-formed terms. Consider the following terms:

(∧ λx.x) true x true

While the first example is syntactically valid and evaluates to a valid ex-
pression, it does not adhere to the intent of the ∧ function. That is, ∧ was
defined with the intent that it operates on boolean terms. The second term
is also syntactically valid. It is however irreducible since x is not an abstrac-
tion. What is more, it does not make much sense. There is no binding for
x. There are several problems that arise in these two examples. Firstly, a
programmer might expect functions they write to only operate on a specific
subset of terms. Secondly, we expect well-formed terms to be closed (there
are no unaccounted free variables present within the term) unless they are
bound within an abstraction. Finallly, we expect terms to take the correct
form, that is the left-hand side of an application should be an abstraction.

2.1.2 The Simply Typed λ-Calculus: λ →

The Simply Typed λ-Calculus extends the untyped λ-calculus with simple
types. There are typed lambda calculi with more complex types, some of
which I will discuss in later sections. In the simply typed lambda calculus, a
types is either an atomic type A (perhaps Bool or Int) or an “arrow type”,
τ1 → τ2, specifying a function from values of type τ1 to values of type τ2.
This type syntax is formally defined in Figure 2.3.

8



Chapter 2 Type Systems

τ ::= A | τ → τ

Figure 2.3: Types in the Simply Typed λ-Calculus

What is a Type?

A common description of a type considers a type as a set of possible values
within a programming language. That is, all inhabitants of a type adhere to
the specification of the type. In the simply typed λ-calculus all values have
either some atomic type, or a function type of the form τ1 → τ2. That is,
all values are either some primitive data type, or a function. If the simply
typed λ-calculus were extended with boolean values and the type Bool, types
would now provide a distinction between a function and a boolean term.

Morris provides a different perspective on the concept of “type” in pro-
gramming languages. They argue that type is not an extensional property in
the way that set membership is, rather types are used to define the properties
values of that type must have. Specifically, Morris argues that a type does
not define what a value is, but where it came from, and how it may be used.

This is a topic that arises frequently. Equality of two sets is extensional,
and is defined entirely by the members of those sets. This is not the case
with types. Equality of types is generally defined by the specifications the
types provide. Later in this Chapter (Section 2.2.1) intersection and union
types introduce the type operators ∩ and ∪. Such type operators imply a
set theoretic perspective on types. Without getting into the details of these
types, a value has type τ1 ∩ τ2 if it has both type τ1 and τ2. Thus, while the
analogy of types as sets may not hold in general, it remains a useful analogy
under certain circumstances.

9
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t ::= Terms
x variable
λx : τ.t abstraction
t t application
true
false
if t then t else t conditional

Figure 2.4: Simply Typed λ-Calculus with Booleans

if true then t1 else t2 −→ t1 (R-If1)

if false then t1 else t2 −→ t2 (R-If2)

Figure 2.5: Reduction of Boolean Conditionals

Adding Types to the λ-Calculus

I already defined the syntax for types in the simply typed λ-calculus in Figure
2.3. In Figure 2.4 I provide the grammar of a simply typed λ-calculus that
includes not only arrow types, but also includes boolean as an atomic type
[70]. Types as defined in Figure 2.3 categorize terms into either functions (of
type τ → τ) or boolean terms (of type Bool).

Terms are also extended, most importantly by adding a type to the syntax
of abstractions (λx : τ.t). This type is discussed later, but is used to specify
the allowable arguments that the function may take. Some boolean specific
terms are also added, true, false and conditional terms. true and false
are irreducible and thus values. Conditionals however are reducible, and I
give their reduction as in Figure 2.5 as an extension to the reduction of the
base terms of the λ-Calculus.

10
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Γ(x) = τ

Γ ⊢ x : τ
(T-Var)

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ λx : τ1.t : τ1 → τ2
(T-Abs)

Γ ⊢ t : τ ′ → τ Γ ⊢ t′ : τ ′

Γ ⊢ t t′ : τ
(T-App) Γ ⊢ true : Bool (T-True)

Γ ⊢ false : Bool (T-False)

Γ ⊢ t : Bool Γ ⊢ t1 : τ Γ ⊢ t2 : τ

Γ ⊢ if t then t1 else t2 : τ
(T-If)

Figure 2.6: Simply Typed λ-Calculus Type Rules

By adding the true, false and conditional terms to the grammar, we
are able to define boolean operators more effectively and make use of the
classification that the types give us. Below are the new encodings for basic
boolean operators.

∧ = λa : bool.λb : bool.if a then b else false
∨ = λa : bool.λb : bool.if a then true else b

¬ = λa : bool.if a then false else true

The types defined in Figure 2.3 can be used to categorize valid terms using
a static semantics defined in Figure 2.6. Γ is referred to as a context or an
environment, and is used to store the types of variables during type checking.
Thus T-Var is used to type variables within a context. This excludes the
class of programs that may use variables that haven’t been introduced. T-
Abs is used to type abstractions, checking that the body of an abstraction
has the correct type given the type of the variable. Applications are typed
using T-App, checking that the right-hand side is of a function type that
accepts terms of the type on the left-hand side. T-True and T-False state

11
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that true and false have the type Bool. Finally, T-If specifies that the
condition of a conditional must be a boolean, and both branches must have
the same type.

The type system of the simply typed λ-calculus has allowed programmers
to exclude a specific set of undesirable behaviour. Using the rules in Figure
2.6, we can categorize acceptable terms and unacceptable ones. Specifically,
we are able to exclude the earlier examples. With the new definition of ∧,
the previous example, (∧ λx.x) true, is now ill-formed and can be rejected
statically. Typing can be used reject terms with unbound, free variables.
x true is can be rejected by the rules in Figure 2.6, as x is unbound in the
empty environment.

Static type checking is however conservative in it’s application, and there
are trade-offs for this safety. A simple example is given below.

λx.x

A general identity function is now not generally expressible in the simply
typed λ-calculus. Such a function would have to specify a type for the argu-
ment x, and a new function would have to be written for each potential data
type.

λx : Bool.x λx : Bool → Bool.x

While this may be a piece of functionality that a language could do without,
if lists were introduced to the language, this limitation would have similar
implications. For example, when writing a function that appends an element
to the end of the list, a new append function would have to be written for
each data type that could potentially populate a list even if the behaviour of
append does not necessarily depend on the type of the elements involved.

2.1.3 Polymorphism: System F

Polymorphism is the ability to define a program (or part of a program) that
has different behaviour depending which types are used [24]. System F (some-
times referred to as λ2 [16]) [37, 74] is another typed λ-calculus that extends

12
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t ::= Terms
...
Λα.t type abstraction
t τ type application

τ ::= Types
...
α type variable
∀α.τ all

Figure 2.7: System F with Booleans

the simply typed λ-calculus with polymorphism. The extended grammar of
System F with boolean terms is given in Figure 2.7.

Types in System F are extended with type variables (α) and universally
quantified types (∀α.τ), where the type τ is quantified over some type α.
These types categorize the new terms that System F extends the grammar
with: type abstractions (Λα.t) and type applications (t τ). A type abstraction
similar to an abstraction on a term, except instead of quantifying terms
over other terms, terms are quantified over types. Type applications are an
application of a type abstraction on a type. Quantification over types allow
for programmers to write a general identity function that was previously not
possible in the simply typed λ-calculus. Define id as

id = Λα.λx : α.x

id is a generally applicable function giving the following identities:

id Bool true = true id Bool → (Bool → Bool) ∧ = ∧

Figure 2.8 defines the extension to type rules of the simply typed λ-
calculus that System F provides. A type abstraction is typed with the uni-
versally quantified type whose body is the type of the type abstraction’s
body. The type of a type application is the type of the body of the type
abstraction on the left where the type variable on the left is substituted for
the the argument type on the right.

The evaluation rule for type applications is given in Figure 2.9.
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Γ ⊢ t : τ

Γ ⊢ Λα.t : ∀α.τ
(T-Type-Abs)

Γ ⊢ t : ∀α.τ

Γ ⊢ t τ ′ : [τ ′/α]τ
(T-Type-App)

Figure 2.8: System F Type Rule Extension

Λα.t τ −→ [τ/α]t (R-Type-App)

Figure 2.9: System F Evaluation Rule Extension

While System F provides the expressiveness of generalizing behaviour over
types, it does not allow the programmer to specify any information about
those types. For instance, the following expression is ill-formed in System F.

apply = Λα.λx : α.λy : Bool.x y

The polymorphic apply function above takes three parameters, α, x and y.
x is specified to be of type α and y of type Bool. x is then applied to y, but
the type of x (α) is not an “arrow type” (a type of the form τ1 → τ2), thus
the entire expression is ill-formed.

2.1.4 Bounded Quantification: System F<:

System F<: [25, 69] adds two new concepts on top of System F: Subtyping
and Bounded Quantification.

Subtyping

If types denote sets of values within a language, subtyping captures the notion
of a subset. Thus, if τ1 subtypes τ2, then any value that inhabits the set
denoted by τ1 also inhabits the set denoted by τ2. Specifically subtyping is
the concept of substitutability [53]. That is, if τ1 subtypes τ2, values of type

14



Chapter 2 Type Systems

τ <: ⊤ (S-Top) τ <: τ (S-Refl)

τ2 <: τ1 τ ′1 <: τ ′2

τ1 → τ ′1 <: τ2 → τ ′2
(S-Arr)

τ1 <: τ2

∀α.τ1 <: ∀α.τ2
(S-All)

Figure 2.10: Subtyping for System F

τ1 can be substituted in any part of a program that expects a value of type
τ2. If subtyping implies a subset relationship, it is useful to have a concept
of a universal set. ⊤ is the universal type that contains all values. Thus all
types subtype ⊤.

Figure 2.10 provides an initial attempt to introduce subtyping to System
F. S-Top has already been discussed, but Figure 2.10 introduces three other
rules. S-Refl explicitly introduces subtype reflexivity to System F subtyping,
that is every type is a subtype of itself. The subtyping of arrow types (S-
Arr) enforces inverse relationships on the parameter type versus the return
type. The intuition here derives from the substitutability principle [53]. If
a program expects an expression of type τ2 → τ ′2, an expression of type
τ1 → τ ′1 may only be provided if it may be treated as having the expected
type and thus accept expressions of type τ2 and return an expression of type
τ ′2. Thus the argument type τ1 must be at least τ2 and τ ′1 must be at most τ ′2.
These relationships are known as contra-variant (τ2 <: τ1) and covariant
(τ ′1 <: τ ′2) relationships respectively [8]. Subtyping of universally quantified
types (S-All) is based on covariant subtyping of the bodies of the type.

Bounded Quantification

Bounded Quantification mixes the ideas of subtyping and polymorphism [70].
While both concepts are individually useful, together they provide new ex-
pressiveness to the typed λ-calculus. Bounded quantification in typed λ-
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calculi means type abstractions specify bounds on the abstracted type. Below
the earlier apply example is revisited with a slight modification.

applyBoolean = Λα ⩽ Bool → Bool.λx : α.λy : Bool.x y

The variable α is now bounded by the type Bool → Bool. This has two
implications, firstly x may now be identified as a function statically during
type checking, and secondly any improper usage of the function may be
rejected statically.

System F<:

System F<: extends System F with subtyping and bounded quantification to
provide greater expressiveness than either polymorphism or subtyping can
provide alone. The extended syntax of System F<: over System F is given in
Figure 2.11, while the type and subtype rules are given in Figures 2.12 and
2.13 respectively.

Typing in System F<: is uses two environments, Γ a map of expression
variables to types and ∆ a map of type variables to types (the bounds of
the types). The differences when compared to the typing rules of System
F are visible in the T-Type-App and T-Sub rules, both of which involve
subtyping. The application of type abstractions (T-Type-App) requires the
argument type to subtype the bound on the type variable and any expression
of type τ can be considered as inhabiting any type that τ subtypes (T-Sub).
This final rule is known as the subsumption rule and fulfils the intent of
substitutability.

Subtyping of System F<: in Figure 2.13 introduces two new rules (S-Var
and S-Trans) and modifies one (S-All) rule in Figure 2.10. S-Var defines
subtyping of type variables in relation to their bounds. Type variables are
mapped to their bounds in the context ∆. In S-All, additions to ∆ are made
during the comparison of the bodies of two universally quantified types. S-
All also enforces a contra-variant relationship between the bounds of two
universally quantified type. The S-Trans subtype rule explicitly introduces
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e ::= Expressions
...
Λα ⩽ τ.e type abstraction

τ ::= Types
...
⊤ top
∀(α ⩽ ⊤).τ all

Figure 2.11: System F<: Syntax extension over System F

Γ(x) = τ

∆;Γ ⊢ x : τ
(T-Var)

∆; Γ, x : τ ⊢ e : τ ′

∆;Γ ⊢ λx : τ.e : τ → τ ′
(T-Abs)

∆; Γ ⊢ e : τ ′ → τ

∆;Γ ⊢ e′ : τ ′

∆;Γ ⊢ e e′ : τ
(T-App)

∆;α ⩽ τ ; Γ ⊢ e : τ ′

∆;Γ ⊢ Λ(α ⩽ τ).e : ∀(α ⩽ τ).τ ′
(T-Type-Abs)

∆; Γ ⊢ e : ∀α ⩽ τ ′.τ ′′ ∆ ⊢ τ <: τ ′

∆;Γ ⊢ e τ : [τ/α]τ ′′
(T-Type-App)

∆; Γ ⊢ e : τ ′ ∆ ⊢ τ ′ <: τ

∆;Γ ⊢ e : τ
(T-Sub)

Figure 2.12: System F<: Typing Rules

∆ ⊢ τ <: ⊤ (S-Top) ∆ ⊢ τ <: τ (S-Refl)
∆(α) = τ

∆ ⊢ α <: τ
(S-Var)

∆ ⊢ τ1 <: τ

∆ ⊢ τ <: τ2

∆ ⊢ τ1 <: τ2
(S-Trans)

∆ ⊢ τ2 <: τ1

∆ ⊢ τ ′1 <: τ ′2

∆ ⊢ τ1 → τ ′1 <: τ2 → τ ′2
(S-Arr)

∆ ⊢ τ2 <: τ1

∆, α ⩽ τ2 ⊢ τ ′1 <: τ ′2

∆ ⊢ ∀(α ⩽ τ1).τ
′
1 <: ∀(α ⩽ τ2).τ

′
2

(S-All)

Figure 2.13: System F<: Subtyping Rules
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transitive subtyping, that is if τ subtypes τ ′, then it transitively subtypes
any type that τ ′ subtypes. Subtyping only uses one environment, ∆, the
mapping of type variables to type bounds. An environment for typing term
variables, Γ, is not required as types do not include term variables.

2.1.5 Properties of Type Systems

Type systems provide formal means for demonstrating useful properties of
programming languages. Primarily, we are concerned with demonstrating
undesirable behaviour does not exist, and desirable behaviour does. While
“desirable” and “undesirable” are often difficult to define, we can informally
say that we want to allow for common patterns used by programmers, and
disallow expressions that result in errors.

Subtype Reflexivity

A language is subtype reflexive if values of some type τ are substitutable
in parts of programs that require type τ . This may seem like an obvious
property, but it is not necessarily true of any particular type system. Due to
S-Refl, subtype reflexivity is by definition a property System F<:.

Subtype Antisymmetry

Subtyping of a language is said to be anti-symmetric if whenever some types
τ1 and τ2 subtype each other, it follows that τ1 = τ2. The anti-symmetry of
subtyping implies a set theoretic nature of subtyping in that for sets A and B,
if A ⊆ B and B ⊆ A, it follows that A = B. This is not necessarily true of all
type systems, especially since equality implies a syntactic equality rather than
a semantic equivalence. In languages where types can have different names,
but the same semantic meaning, antisymmetry of subtyping is unlikely to
hold unless a semantic notion of equality is defined.
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Subtype Transitivity

Subtype transitivity has particular importance for the work in this thesis.
Transitivity of subtyping has already been briefly introduced in the subtype
rules of System F<:, but is expanded on here. A subtyping is transitive if
whenever some type τ1 subtypes a type τ2 and τ2 in turn subtypes another
type τ3, it follows that τ1 subtypes τ3. While this is definitionally true of
subtyping System F<:, it is often a fairly difficult result to derive, and conflicts
with several other type theoretic properties.

Type Safety

Type Safety (soundness of the typing judgement) is one of the central tar-
gets of defining a type system for a language. A language is said to be
type safe if all well-formed expressions in well-formed contexts reduce to
well-formed expressions and do not result in type errors. Type safety is of-
ten formulated using two different theorems, Progress (Theorem 2.1.1) and
Preservation (Theorem 2.1.2) [85].

Progress demonstrates that any well-formed expression is either fully eval-
uated (a value, e.g. an abstraction or type abstraction in System F<:), or
can be further evaluated (e.g. an application or type application in System
F<:). This implies that at no point can a well-formed program get stuck.

Property 2.1.1 (Progress). For any expression e that is well-formed, either
e is a value, or there exists e′ such that e −→ e′.

Preservation demonstrates that a well-formed program will never reduce
to an ill-formed program.

Property 2.1.2 (Preservation). For any well-formed expression e in a well-
formed context Γ if e reduces to some e′, e′ has the same type as e.

Together, Progress and Preservation ensure type safety, that a well-
formed expression is either fully evaluated, or it can evaluate to some other
well-formed expression.
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Type safety is often a nebulous target to reach. Both type systems of
Scala and Java were found to be unsound by Amin and Tate in [11]. The
existence of null in these languages, coupled with wild-cards in Java [21, 38]
and lower bounds in Scala [66] allow any type to indirectly subtype any other
type using null as a witness to this relationship.

The type system of TypeScript [7] has several documented instances of
unsound behaviour. Many of these are intentionally introduced as part of
the language, often to provide for common patterns used in JavaScript [5],
the underlying basis of TypeScript.

Syntax Directedness of a Rule Set

We say that a set of rules is syntax directed if every rule is applicable for
a unique set of syntactic elements. As an example, the typing of Figure
2.6 is syntax directed. Given any syntactically valid term of the Simply
Typed λ-Calculus, there can only be one rule that is applicable in deriving
its typing. This is a valuable property of rule sets as it means that the rule
set itself constitutes an algorithm for checking that property (in the case of
Figure 2.6, typing). If a rule set is syntax directed, then we are able to invert
the declarative rule set in to a decision procedure, where each premise in a
declarative inference rule now becomes the next step in the algorithm.

Subtype Decidability

For a type system to be useful, the properties that type system enforces
have to be checkable. For example, the type rules defined in Figure 2.6 are
relatively easy to define a type checking algorithm for, as they are syntax
directed and thus are themselves an algorithm. Furthermore, it would be
relatively easy to demonstrate that such an algorithm could always come
to a conclusion on typing of simply typed λ-calculus expressions since type
checking in this instance is bounded by the syntactic depth of the expression.
In this case, typing of the simply typed λ-calculus is said to be decidable.
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Subtype Decidability is what much of this thesis is concerned with. Sub-
typing provides much expressiveness to languages, but itself presents a prob-
lem for type checkers. A more complex algorithm than typing in System F
would need to be one defined for the subtype rules of System F<: (Figure
2.13). In [69], Pierce demonstrated that there does not exist an algorithm
that is able to decide System F<: subtyping, that Subtyping in System F<: is
undecidable. Pierce demonstrated this by defining a reduction of the Halting
problem for two counter Turing machines to subtyping in System F<:.

Subtype Undecidability in System F<:

System F<: suffers from a divergence of contexts during certain instances
of subtyping. Due to a combination of contra-variant types and context
modification during subtyping, infinite types are created and added to the
context during subtyping. The System F<: syntax and subtype semantics
have already been given in Figures 2.11 and 2.13.

While Figure 2.13 provides the full subtyping rules, examples of divergent
contexts and non-terminating subtyping are only dependent on the S-Var
and S-All rules. For convenience we use a shorthand for negation types
provided at the top of Figure 2.14 in S-Neg, however this shorthand is
not necessary in demonstrating divergence. Subtyping of negation types
implies a negative subtype relationship. The example of subtyping in Figure
2.14 demonstrates how divergence occurs during subtyping. Using only the
rule for universally quantified types and variable lookup, we can see that
subtyping quickly diverges. Types are never repeated, rather an infinite
number of similar types are created.

The origin of the divergence is a combination of the modification of the
context during subtyping and contra-variance. Context modifications al-
low type definitions to be redefined, while contra-variance allows redefinition
to occur on both sides of the subtype relation (if contra-variance were not
present, the unmodified type would be bound syntactically and would not
diverge). Such a modification can be seen in the second premise of S-All,
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Γ ⊢ (∀α ⩽ T1.⊤) <: (∀α ⩽ T2.⊤)

Γ ⊢ ¬T1 <: ¬T2

(S-Neg) let T0 = (∀α ⩽ ⊤.¬(∀β ⩽ α.¬β))

∅ ⊢ (∀α0 ⩽ ⊤.α0) <: (∀α0 ⩽ T0.(∀α1 ⩽ α0.¬α1))

α0 ⩽ T0 ⊢ α0 <: (∀α1 ⩽ α0.¬α1)

α0 ⩽ T0 ⊢ (∀α1 ⩽ ⊤.¬(∀β ⩽ α1.¬β)) <: (∀α1 ⩽ α0.¬α1)

α0 ⩽ T0,

α1 ⩽ α0

⊢ ¬(∀β ⩽ α1.¬β) <: ¬α1

α0 ⩽ T0,

α1 ⩽ α0

⊢ α1 <: (∀β ⩽ α1.¬β)

...

Figure 2.14: Non-termination of subtyping in System F<:

where α is originally bound by S1 in T1, but in subsequent subtype checks is
bound by S2. Contra-variance is present in the subtyping of type bounds.

Kernel F<:

Pierce [70] defined a decidable subset of System F<: called Kernel F<:. Kernel
F<: modifies the subtype semantics of System F<:. Figure 2.15 provides the
Kernel F<: subtyping rules, modifying the rules in Figure 2.13. There are
four critical changes made to the subtyping of System F<:. Firstly, S-Trans
is removed. It is not syntax directed, and is especially problematic since
any algorithm that could be defined would have to guess at the middle type.
To make up for the loss of an explicit transitivity rule, S-Var is extended
to include subtyping of any type that is subtyped by the variable’s bound.
S-Refl is restricted to only type variables (more general subtype reflexivity
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∆ ⊢ τ <: ⊤ (S-Top) ∆ ⊢ α <: α (S-Refl)
∆ ⊢ ∆(α) <: τ

∆ ⊢ α <: τ
(S-Var)

∆ ⊢ τ2 <: τ1 ∆ ⊢ τ ′1 <: τ ′2

∆ ⊢ τ1 → τ ′1 <: τ2 → τ ′2
(S-Arr)

∆, α ⩽ τ ⊢ τ1 <: τ2

∆ ⊢ ∀α ⩽ τ.τ1 <: ∀α ⩽ τ.τ2
(S-All)

Figure 2.15: Kernel F<: Subtyping Rules

W∆(α) = 1 +W∆(τ) where τ = ∆(α)

W∆(⊤) = 1

W∆(τ1 → τ2) = 1 +W∆(τ1) +W∆(τ2)

W∆(∀α ⩽ τ1.τ2) = 1 +W∆,α⩽τ1(τ2)

Figure 2.16: Kernel F<: Depth Measure

can be demonstrated easily from this). Finally, an invariance is enforced on
the bound of universally quantified types during subtyping.

This final modification ensures the subtype decidability of Kernel F<:.
Kernel F<: has several properties. It is subtype reflexive, transitive and de-
cidable, as well as being type safe [70]. Reflexivity and transitivity are easily
demonstrable via induction on the size of the type in the case of reflexivity
and the size of the derivation in the case of transitivity.

In order to prove a relation decidable, it is necessary to demonstrate
that a decision procedure, that is both sound and complete, exists for it.
Thus, demonstrating that an algorithm exists for determining subtyping of
Kernel F<: types that terminates on all inputs is enough to prove subtyping
decidable. The rules defined in Figure 2.15 are syntax directed, and thus
constitute a subtype algorithm for Kernel F<:. Secondly, this algorithm is
bounded by a finite depth measure (given in Figure 2.16) that is strictly
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∆ ⊢ τ2 <: τ1 ∆, α ⩽ ⊤ ⊢ τ ′1 <: τ ′2

∆ ⊢ ∀(α ⩽ τ1).τ
′
1 <: ∀(α ⩽ τ2).τ

′
2

Figure 2.17: F⊤
<: Subtyping for Universally Quantified Types

decreasing during subtyping. Progress and Preservation (and thus Type
Safety) are provable by induction on the size of the derivation of typing.

F⊤
<:

Another decidable variant of System F<: called F⊤
<: was developed by Castagna

and Pierce [27]. Like Kernel F<:, F⊤
<: targets the environmental divergence

present in the subtyping of System F<:, however instead of enforcing invari-
ance on the argument type as Kernel F<: does, F⊤

<: allows for variance of
argument types, as the original System F<: does. Castagna and Pierce’s
modified subtype rules are given in Figure 2.17. Unfortunately, typing for
F⊤
<: was discovered to lack minimality [28], posing problems for type checkers.

Proving a Subtyping Decidable

Kernel F<: serves as a good example of how I approach questions of subtype
deciability in this thesis. While the subtype relations that I define in the
rest of this thesis are often somewhat more complex than that of Kernel F<:,
the same general approach still applies. For each subtype relation, I start
by defining a subtype algorithm A, I demonstrate that A terminates for all
inputs, I finish by demonstrating that for any for any two types τ1 and τ2,
A(τ1, τ2) = true if and only if τ1 subtypes τ2.
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2.1.6 Calculus of Constructions

One notable extension of the Simply Typed λ-Calculus is the Calculus of
Constructions (CoC), a language that sits on the opposite end of what is
called the “λ-Cube” [15]. CoC includes three key extensions:

1. Polymorphism (System F): terms may be dependent on types.

2. Dependent types (λ-P): types may be dependent on terms.

3. Type Operators (System Fω): types may be dependent on other types.

CoC is notable, because it is the basis for Coq the theorem prover used to
verify proofs in this thesis. In recent years it has become fairly common prac-
tice for formalisms in parts of theoretical computer science to be developed
using a theorem prover, a language and tool that allows formal modelling of
mathematical definitions and proofs to be verified. Among the most com-
mon theorem provers available are Coq [17, 86], Isabelle/HOL [62, 86], Agda
[78, 82], Idris [19] and Twelf [68].

Theorem provers are built upon different mathematical foundations. Coq
as I have noted is based on the the calculus of constructions [33], an extension
of the λ-Calculus with dependent types, polymorphism and type functions
[15]. The theoretical basis for Coq is the Curry-Howard Correspondence
[34, 45, 81], the discovery that there existed an equivalence between proofs
and programs. This was first observed by Curry and later extrapolated on
by Howard. Thus a type in Coq is equivalent to a proposition and an term
of that type is evidence of, or rather a proof of that proposition [71]. Coq
is a one of the more popular theorem provers available, and has developed a
wide range of resources, approaches and best practices to developing machine
verified proofs [71, 29]. Coq is the tool used to verify the proofs of subtype
decidability discussed in this thesis.

25



Chapter 2 Object Oriented Languages

t ::= Terms
x variable
λ(x : τ).t abstraction
t t application
Λ(α ⩽ τ).e type abstraction
e τ type application
new{z ⇒ d} object
t.m access

d ::= Declarations
m : τ = t method

τ ::= Types
⊤ top
α variable
τ → τ arrow
∀(x ⩽ τ).τ all
{σ} structure

σ ::= Declaration Types
m : τ method

Figure 2.18: System F<: with Objects

2.2 Object Oriented Languages

The past few decades of programming languages, in both research and in-
dustrial settings, has seem a proliferation of object-oriented languages. In-
formally, an object is a data type containing a set of members (methods)
that are used to interact with it. Some objects may go further, and con-
tain mutable state. Objects provide an analogy to real world systems, where
every component is a discrete object that can be communicated with, and
maintains some sense of self [8].

In Figure 2.18 I define an minimal extension to System F<: that in-
cludes objects. Objects enrich the syntax with a way to create a new object
(new{z ⇒ d}), and a way to access the members contained within an object
(t.m). Objects contain a set of members (d). A member (d) of an object is
a declaration, that is typed with declaration a type (σ). An object is typed
with a structure type ({σ}), a set of declaration types.
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2.2.1 Dependent Object Types

The Dependent Object Types (DOT) calculus [12, 13, 14, 75] is a type system
built around some of the core langauage features of the Scala programming
language [66, 64]: dependent function types, path dependent types, inter-
section types, and recursive types. DOT was developed with the intention
of formalising the central features of Scala, the goal being to demonstrate
type safety and provide a foundation for the theory of these concepts. The
formalising of this theory was a long road, but has provided designers of
object oriented languages a powerful calculus that is both highly expressive
and also type safe. For this reason, I will now introduce DOT as both a
foundational calculus in the spirit of System F<:, but also as the theoretical
union of several important features that I will examine in further chapters,
and thus a useful tool for introducing these features.

Wyvern, the language this thesis is primarily concerned with is closely re-
lated to Scala, and as such the type systems I present in subsequent chapters
are closely related to DOT. In fact most of the type systems discussed in the
rest of this thesis contain some combination of path dependent types, inter-
section types, dependent function types and recursive types. For this reason,
the design of DOT and the decisions made in its design are incredibly useful
and inform much of the design of the Wyvern type system. The existence of
a proof of type safety [14, 75] is of particular importance, as it indicates the
boundaries of what is and is not safe in a language that features so much
complexity.

Before proceeding with a discussion of DOT, I will elaborate on some
terminology. There have been several iterations on the DOT calculus, each
building upon the last, but in this thesis I will consider only two of the most
recent editions: (i) the DOT of Wadlerfest 2016 [14], and (ii) and the DOT
presented by Rompf and Amin in 2016 [75]. The DOT of Wadlerfest 2016 fea-
tured path dependent types, intersection types, dependent function types and
recursive types but did not include subtyping between recursive types. The
DOT of Rompf and Amin extended Wadlerfest DOT with subtyping between
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recursive types along with union types. For the rest of this thesis, to differ-
entiate between these two versions of DOT, I will use “ Wadlerfest DOT”
when speaking specifically about the former, and “ DOT 2016” when speak-
ing about the later (even though Wadlerfest DOT is also dated to 2016).
In several places throughout the text I may rather refer to “DOT”. In such
cases, unless contextually referring to a pre-established version of DOT (to
avoid clumsy wording), I will be generally referring to properties that are
present in both versions of DOT mentioned above. I will now discuss the
different components of the DOT type system.

Path Dependent Types

Up till now I have only alluded to, or discussed informally the language
feature that sits at the centre of this thesis: path dependent types, most
notably captured in the Abstract Type Members of Scala. Scala being the
most prominent language to feature path dependent types, and DOT being
the formal basis of Scala, it is appropriate to introduce path dependent types
in the context of DOT and Scala. In Scala, an object may contain type
definitions, or type members, in the same way that it might contain fields or
methods.

1 trait Cell{ this =>
2 type E <: Any
3 val member : this.E
4 }
5 object intCell extends Cell{
6 type E = Int
7 val member : this.E = 5
8 }
9 def returnMember(c : Cell) : c.E = c.member

The trait Cell defines an object type that contains two members; a type
E and a value member of type E. The object intCell implements Cell, and
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specifies E as Int. The type E can now be referred to within the object by
the notation this.E, and from without as in the example c.E, much like a
field or a method in a typical object oriented language. The type formed by
this selection (this.E or c.E) is referred to as a path dependent type. The
“path” referring to the receiver (this. or c.), and the “dependent” referring
to the fact that the type that is selected depends on the path that is selected
on.

Types as members of objects first appeared in BETA [50], and was later
suggested as an alternative to Generics in Java [56, 79, 20, 46, 31] under
the name of virtual types. Ultimately, virtual types lost out to parametric
polymorphism in Java, however they were adopted for Scala [65, 64] as Ab-
stract Type Members, and have proven a central component of the Scala type
system.

While path dependent types formed a part of the Scala type system,
there was no proof of type safety, and much of the surrounding metatheory
remained open. Over the past few years, the metatheory has been greatly
expanded, with a proof of type safety for DOT at the centre. The type safety
proof for DOT has allowed language designers to reason about extensions to
DOT and the theory of path dependent types [44, 72].

Dependent Function Types

A dependent function type is a function type that allows the return type to
be defined in terms of the argument. A dependent function type ∀(x : τ1).τ2,
is interpreted as the type of a function with argument x of type τ1 and return
type τ2, where τ2 may be dependent on x.

In a language such as DOT with no explicit bounded polymorphism, de-
pendent function types are necessary for capturing the bounded polymor-
phism of System F<:. As was already mentioned earlier in this section,
in DOT, parametric polymorphism is in fact subsumed by path dependent
types. In DOT, polymorphic function types
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fold[µ(α : τ)] : µ(α : τ) → [α 7→ µ(α : τ)]τ

fold−1[µ(α : τ)] : [α 7→ µ(α : τ)]τ → µ(α : τ)

Figure 2.19: Isomorphism on Iso-Recursive Types [70]

1 def append(x : {type E},
2 l : List[x.E]) : List[x.E] = { ... }

Recursive Types

A core aspect of DOT, and this thesis are recursive types. Simply stated, a
recursive type is a type that has some reference to itself, and thus may be
constructed recursively, referring to itself as a syntactic sub-component. A
common example of a recursive type is the definition of List in Haskell [57]:

1 data List a = Nil | Cons a (List a)

A List in Haskell is either an empty list (Nil), or a list constructed from a
head (of type a) and some other list (of type List a). List references itself
in its definition, and is thus recursive.

The theory of recursive types has been reasonably well covered in the
literature [70, 26, 23]. The µ-notation is a commonly used representation for
recursive types. A type µ(α : τ) represents a recursive type, defined using
the µ operator, mapping the type variable α to µ(α : τ) in τ . Recursive
types in the literature are approached in two different ways: equi-recursive
or iso-recursive [70]. They differ in how they treat folding and unfolding
of the µ operator. Under the equi-recursive approach, the type µ(α : τ) is
equivalent to [α 7→ µ(α : τ)]τ . Under the iso-recursive approach, µ(α : τ)

and [α 7→ µ(α : τ)]τ are treated as different types, but an isomorphism is
defined between the two forms (see Figure 2.19).

Cardelli [23] defined a set of subtyping rules for the Amber language that
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have since become known as the “Amber Rules”. These rules are given below.

Σ, α1 <: α2 ⊢ τ1 <: τ2

Σ ⊢ µ(α1 : τ1) <: µ(α2 : τ2)
(S-Amber)

α1 <: α2 ∈ Σ

Σ ⊢ α1 <: α2

(S-Assumption)

In order to subtype two iso-recursive types, an assumption context is intro-
duced (Σ), storing subtype assumptions between types. Two types can sub-
type each other if such an assumption appears within Σ (S-Assumption).
Thus, if two types have a subtype relationship, assuming their recursive ref-
erences are subtypes of each other, then it follows that their recursive forms
have a subtype relationship too (S-Amber).

In DOT, recursive types differ from those more broadly discussed in the
literature: they are similar to equi-recursive types but are quantified over a
term, and not a type [10].

µ(z : τ)

The variable z does not quantify the type µ(z : τ), but rather the term typed
with µ(z : τ). A variable x with type µ(z : τ), can be thought of as having
type [x/z]τ . Similarly, a variable x has type [x/z]τ , also has type µ(z : τ).
This distinction has implications for how subtyping is defined between two
recursive types in DOT. Below I provide the subtype rule for recursive types
from DOT 2016 (written here in µ-notation), along with the packing and
unpacking rules for variable typing (note: the notation T x represents a type
where the variable x is free in type T ).

Γ, z : µ(z : T1) ⊢ T1 <: T2

Γ ⊢ µ(z : T1) <: µ(z : T2)
(Bind-X)

Γ ⊢ x : T x

Γ ⊢ x : µ(z : T z)
(VarPack)

Γ ⊢ x : µ(z : T z)

Γ ⊢ x : T x
(VarUnpack)

31



Chapter 2 Object Oriented Languages

While both Wadlerfest DOT and DOT 2016 includes recursive types,
only DOT 2016 features subtyping of recursive types. Rapoport et al. 2017
argue that while Wadlerfest DOT does not include subtyping of recursive
types, neither does Scala (the target of DOT). The absence of subtyping
for recursive types does however reduce the expressiveness of path depen-
dent types in their ability to model Java subtyping in the absence of class
inheritance. This will be discussed on in Section 3.2.3.

Intersection Types and Union Types

If we accept the idea of types as sets of values, then it makes sense that we
might expect certain concepts from set theory to translate into our logics.
Intersection and union types introduce the concepts of set intersection and
unions to types. Intuitively, if a value has both type τ1 and τ2, then it also
has type τ1 ∩ τ2 (the intersection of τ1 and τ2), and if a value has either type
τ1 or τ2, then it also has type τ1 ∪ τ2 (the union of τ1 and τ2). Intersections
and unions enable more expressive subtyping, relating to the meet and join
of subtyping respectively.

Intersection type feature in several different programming languages and
provide several different instances of expressiveness. Languages such as Java
and C♯ allow for a form of intersection type in that a class may extend
multiple other classes, allowing for multiple inheritance.

1 class List<E> implements Comparable<List<E>>, Iterable<E>

A List is both an instance of Comparable and Iterable. While this is a
form of intersection type, it does not capture the full expressiveness of in-
tersection types. In Java, such intersections are limited to class inheritance
declarations, it is not possible to use intersections in an ad-hoc manner. The
type List<Comparable ∩ Serializable> is not possible. Nor is it possible
to use intersection types as function argument types, or bounds on generic
types.

DOT (both forms of DOT) includes full intersection types, that is τ1 ∩ τ2
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is a valid syntactic type form under all circumstances. We are able to rewrite
the above List multiple inheritance example in DOT as

1 type List[E] <: Comparable[List[E]] ∩ Iterable[E]

But we are further able to use the full expressiveness of intersection types in
an ad-hoc fashion. The example below uses an intersection of two types to
parametrise a function in an ad-hoc fashion.

1 def cast(x : Comparable ∩ Iterable) : Comparable = x

The example above still does not capture the full expressiveness of inter-
section types in DOT. Until now I have liberally used the syntax List[Int]
to represent a List with the generic parameter Int, however DOT does not
include explicit parametric polymorphism. In DOT, List[Int] is in fact syn-
tactic sugar for the type List ∩ {type Elem = Int}! Thus, every instance
of parametric polymorphism in DOT is in fact an instance of an intersection
type.

Union types are the dual of intersection types, where contra-variant sub-
typing can be thought of as the involution operator. Union types are per-
haps not as widely used as intersection types, but they have some useful
applications. One common usage is to capture something similar to pattern
matching.

1 def printStringOrFile(s : String ∪ File) = {
2 if (s instanceOf String)
3 s.print
4 else if (s instanceOf File)
5 s.stream.forEach(_.print)
6 }

The above function can be called on either a String or a File, and provide
specialized behaviour for both. The type String ∪ File guarantees the
argument to be either of those two types, and as a result, we need not provide
some general, default behaviour.
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Another pattern is the ability to provide “nullability” to a language, a
more controlled manner of handling null values. In languages such as Java,
the value null can be typed with any type. This causes many software bugs,
allowing uninitialized null values to be treated as containing implemented
methods and fields. Hoare famously referred to null references as a “billion
dollar mistake” [43, 77]. Further, the very presence of null in Java is unsound
[11]. Union types, along with a reordering of the subtype hierarchy, allow
an elegant solution to this problem. Consider a language where null is a
singleton value of a type Null that has no subtypes and is only super typed
by ⊤. Under such typing null, values must be accommodated for in the types
of expressions.

1 def filterNulls(l : List[Object ∪ Null]) : List[Object] = {
2 l.filter(! _ instanceOf Null)
3 }

In the above example, null pointer errors are avoided statically, the type
system ensures that the List returned by the above method contains no null
values. Further, no object operation can be performed on anything in l until
it has been filtered of null values.

There are several languages that include union types including C, C++
and Ceylon. The unions of C and C++ represent a kind of union type where
an initialized value of a union type contains one of a collection of fields.
In Ceylon [49], the type τ1|τ2 represents the union of two types τ1 and τ2.
Wadlerfest DOT does not include union types, however DOT 2016 does.

Wadlerfest DOT

The syntax of Wadlerfest DOT is provided in figure 2.20. A Type is either a
recursive type (µ(x : τ)), a dependent function type (∀(x : τ1).τ2), a structure
with either a field ({f : τ}) or type ({L : τ1 . . . τ2}) definition, a selection
type (x.L), an intersection type (τ1 ∧ τ2), the top type (⊤), or bottom type
(⊥). A Term is either a variable, an object, an abstraction, a field selection,
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s, t, u ::= Term
x variable
v value
x.f selection
let x = t in u let binding

v ::= Value
ν(x : τ).d object
λ(x : τ).t abstraction

d ::= Definition
{f = t} field definition
{L = τ} type definition
d ∩ d aggregate definition

τ ::= Type
µ(x : τ) recursive type
∀(x : τ).τ dependent function
{f : τ} field definition
{L : τ . . . τ} type definition
x.L type selection
τ ∩ τ intersection
⊤ top
⊥ bottom

Figure 2.20: Wadlerfest DOT Syntax

or a let binding.
The strength of the DOT type system is in the economy of concepts af-

forded by the combination of a relatively small variety of types. The relatively
small array of types in Figure 2.20 many different common type patterns can
be employed, including structural subtyping, nominal subtyping, multiple
inheritance style type hierarchies, parametric polymorphism, and f-bounded
polymorphism.

The “Bad Bounds” Problem

The so called “bad bounds” problem refers to a problem at the centre of
the long search for a type safety proof for DOT. An earlier version of DOT,
µDOT [13], did not include subtype transitivity as an explicit rule in sub-
typing. Rather it was hoped that transitivity would be a latent property of
subtyping that could be proven. Amin et al. demonstrated that the proper-
ties of subtype transitivity and environment narrowing in µDOT were not
present alongside language features such as intersection types or type re-
finements. Informally environment narrowing refers to the preservation of
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Γ ⊢ τ <: τ ′

Γ ⊢ τ1 <: τ2 Γ(x) = τ2

Γ[x 7→ τ1] ⊢ τ <: τ ′
(Narrow<:)

Γ ⊢ τ1 <: τ Γ ⊢ τ <: τ2

Γ ⊢ τ1 <: τ2
(Trans)

Γ ⊢ τ wf
Γ ⊢ τ1 <: τ2 Γ(x) = τ2

Γ[x 7→ τ1] ⊢ τ wf
(Narrowwf)

Figure 2.21: Mutual Dependency between Properties of µDOT

language properties after types in the environment are narrowed more spe-
cific types. In µDOT, properties of typing are mutually dependent: the
preservation of both subtyping and well-formedness by narrowing, and sub-
type transitivity are all mutually dependent. The dependencies between
these properties is shown in Figure 2.21. These dependencies are shown in
Figure 2.21. Subtype transitivity (Trans) is mutually dependent on envi-
ronment narrowing preserving subtyping (Narrow<:). Such a dependency
already complicates the proof of transitivity, but subtype transitivity is also
dependent on environment narrowing preserving well-formedness of types.

As part of well-formedness of types, µDOT requires the bounds of type
members to observe a subtype relationship. i.e. for any type member
L : τ1 . . . τ2, τ1 must subtype τ2. This is a requirement for the deriva-
tion of subtype transitivity, particularly the case τ <: x.L <: τ ′. If
the lower bound of x.L does not subtype the upper bound, then transitivity
cannot be expected to hold generally. If, for instance x.L had definition
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L : ⊤ . . .⊥, then as all types subtype ⊤ and ⊥ subtypes all types, sub-
type transitivity would imply that any type could subtype any other type,
clearly an unsafe property. Unfortunately the presence of intersection types
is enough to construct this very example. Consider the variable x of type
{A : ⊤ . . .⊤}∩ {A : ⊥ . . .⊥}. The lower bound of x.A is effectively ⊤, and
the upper bound ⊥.

In Wadlerfest DOT, Amin et al. demonstrated that the well-formedness
requirement was in fact too strong, and ill-formed bounds could be defined
safely as long as it could be ensured that type members of objects refer to
specific types and not types with arbitrary bounds. Under such this relaxed
notion of well-formedness, Narrowwf can be removed from the dependencies
of Figure 2.21. As a consequence of this key property of Wadlerfest DOT,
subtyping can be safely admitted, meaning type members may be defined
with arbitrary bounds, and programmers may construct bespoke subtype
lattices. Type safety is ensured by requiring concrete objects to act as a
witness to the bounds of a type member before it code that is quantified by
that member may be evaluated. As a demonstration, consider the following
Wadlerfest DOT function definition.

1 def crazyCast(x : {type X : String ... Int},
2 s : x.X) : Int = { s }

The function crazyCast takes as a parameter some object x that defines a
member X lower bounded by String and upper bounded by Int, along with
some object of type x.X. Clearly any String may be supplied for s, allowing
for the seemingly crazy cast of String to Int. What makes such a function
safe is the requirement that some object must also be supplied for x. That
object must have a type member X that refers to a specific type, say T, such
that String <: T <: Int. The ability to define T acts as a witness to the fact
that String subtypes Int. Since no such type exists, crazyCast may never
be called.
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Γ ⊢ σ1 <: σ2

Γ ⊢ {σ1} <: {σ2}
(S-Struct)

Γ ⊢ τ1 <: τ2

Γ ⊢ m : τ1 <: m : τ2
(S-Meth)

Figure 2.22: Structural Subtyping

2.2.2 Structural vs Nominal Subtyping

Subtyping in object oriented languages usually adheres to one of two disci-
plines (or perhaps both): structural or nominal. The subtyping associated
with the types in Figure 2.18 is structural, that is two structure types have
a subtype relationship if the structure of the smaller type adheres to the
structure of the larger type. I formally state this subtyping in Figure 2.22.
The subtyping of Figure 2.22 resembles most of the subtypings defined in
the rest of this thesis. Structural subtyping is present in languages such as
Scala [66], OCaml [35] and Modula-3 [22, 61]. Structural subyping is based
on behaviour. If {σ1} <: {σ2} then we know that if a method of name m

occurs in {σ2}, then there must be some analogous method of comparable
type in {σ1}. Consider the Scala example, DBConnection, below.

1 object mySQLConnection {
2 var url : MySQLUrl
3 def commit : Unit = {...}
4 }
5 def doCommit(c : {def commit : Unit}) : Unit = {
6 c.commit;
7 }
8 def main() : Unit = {
9 doCommit(mySQLConnection);

10 }
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A bespoke connection object (mySQLConnection) is defined, containing a field
(MySQLUrl) and method (commit). The method doCommit specifies that that
it merely requires an object containing a commit method, and does not specify
anything else about the argument. Subsequently the call

doCommit(mySQLConnection)

type checks because mySQLConnection contains a commit method.
Languages such as Java [38] and C♯ [3] take a different approach to ob-

ject subtyping, based around classes. In Java a Class is a template that
combines several complex aspects of the language and type system. A class
is responsible for object initialization, implementation of methods, naming of
types, inheritance of methods and defining the type hierarchy. While surely
complex, in this thesis, I am primarily concerned with the implications that
classes have for types. Objects initialized by a class C are labelled as having
type C. Java also incorporates class inheritance as a mechanism for both
code reuse (when initializing objects) and as the basis for defining a class
hierarchy and from that, subtyping.

Consider the code snippet below, a variant on the Scala example.

1 class DBConnection {
2 DBConnection(String url){ ... }
3 void commit(){ ... }
4 }
5 class SQLConnection extends DBConnection{
6 SQLConnection(Sring url){ ... }
7 ...
8 }
9 class AdHocConnection {

10 commit(){ ... }
11 }
12 void doCommit(DBConnnection c)
13 c.commit();
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14 }
15 void main(){
16 SQLConnection c = new SQLConnection( ... );
17 AdHocConnection c' = new AdHocConnection();
18 doCommit(c);
19 doCommit(c'); */ق type error /*ق
20 }

Two classes are declared, a general database connection DBConnection and
a SQL database connection SQLConnection. The extends keyword is the
basic building block of class inheritance in Java. SQLConnection not only
inherits all the methods declared in DBConnection, but is also declared as
a subtype of DBConnection. Subtyping is thus an explicit property that is
defined between classes. The call to doCommit on line 18 type checks because
of the explicit subtype relationship, however the call on line 19 does not.
Even though AdHocConnection contains a commit method, it does not ex-
tend DBConnection. Subtyping that is defined around these kinds of explicit
relationships is referred to as Nominal Subtyping.

Nominal and structural subtyping represent different philosophies in sub-
typing. Nominal subtyping relies on the intent of a type while structural sub-
typing defines subtyping from a purely behavioural perspective. A language
such as Scala in fact provides facilities for both nominal and structural sub-
typing. While structural subtyping is included in the manner seen in Scala
example, it is also possible to provide some form nominality in two ways:
class declarations and type declarations. Scala does include classes and thus
a class based form of nominal subtyping.

2.2.3 Java

Java [9] is an object oriented programming language that sees widespread use
in industry. This widespread use and popularity mean that Java is a useful
reference point for demonstrating a minimal level of expressiveness, even if
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it is not as expressive as a language such as Scala. Throughout this thesis, I
use Java and encodings from Java to demonstrate different properties of the
type systems defined. While it is not the only reason I provide an encoding
of Java, the primary purpose in this thesis is to demonstrate that the calculi
presented are as at least as expressive as some form of Java.

Java includes many of the features of object-oriented languages, and re-
cently has been extended with features from functional languages too. The
features that this thesis is most concerned with however is the subtyping of
Java and Java Generics. Java is class based language with nominal subtyping
built around a class inheritance hierarchy. Both classes and methods may
include generic type parameters. Generic types in Java may be either co-
variant or contra-variant. Variance in Java Generics is use-site as opposed to
the declaration site variance of parametric polymorphism in Scala. As a pop-
ular language, Java has had much research devoted to it in the literature, and
certain aspects of its type system have been vigorously investigated, much
more so than a language such as Scala.

Featherweight Java and Featherweight Generic Java

Igarashi et al. developed a minimal core type system for Java called Feather-
weight Java (FJ) in [47]. They extended the core FJ calculus with Generics
as Featherweight Generic Java (FGJ). Igarashi et al. was then able to prove
both FJ and FGJ sound. Given the complexity with formalizing a full mod-
ern language, a minimal core has a clear advantage over a full type system
when proving formal properties, specifically that complexity is removed thus
making proofs that much more tractable. The downside to proving properties
on a minimal core means that the results of such a proof are not generally
applicable to the wider language especially if unforeseen interactions exist
between different language features. The Java type system for instance has
since been proven unsound [11] in a manner that many might not have ex-
pected.

Even though properties proven of a minimal core is not necessarily a
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guarantee that those properties are held by the wider language, the advantage
of proofs on a minimal core can nonetheless remove specific fears about the
potential for problematic interactions between related language properties.
FGJ as an example demonstrated that Java Generics was safe for a core set
of programs, and has been the basis of other work in investigating how the
core Java type system interacts with other language features [54]. It is also
notable that the features that introduced unsoundness to Java were present
in Java 5, released more than a decade before the publication of the findings
of unsoundness, implying that this particular instance of unsoundness had
marginal effect on the Java community.

2.2.4 Decidability of Subtyping in Java

Kennedy and Pierce [48] questioned the decidability of Java’s Generics, and
postulated that it is decidable as it did not contain multiple instantiation
inheritance (a property that they identified as a key determinant of unde-
cidability in generics). Unfortunately this was not the case. The question
of decidability of subtyping Java’s wildcards remained. Wehr and Thiemann
[83] demonstrated that subtyping of bounded existential types in JavaGI [84]
was undecidable. Java wildcards represent a restricted form of the existen-
tial types in JavaGI however, and were not necessarily implicated by this
proof. Java Generics were ultimately proven Turing Complete by Grigore in
2017 [40], and thus undecidable. Grigore encoded Turing machines into a
fragment of Java’s subtyping that was limited to Java Generics and contra-
variant type parameters. It is useful to have the result of undecidability,
however the literature before Grigore already contained several instances of
proposed decidable subsets of Java Generics, indicating a strong suspicion of
undecidability.

Zhang et al. [87] propose a variation on Java Generics that allows con-
straints on generics to be defined in a manner reminiscent of type classes
in Haskell. Greenman et al. [39] demonstrated that such separation, when
used to restrict the use of Shapes from parametrizing recursive inheritance
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definitions, ensured decidability of subtyping. What Greenman et al. found,
via a survey of Java code, was that this was a separation that was already
being observed by Java programmers, implying that such a restriction could
be applied to Java with minimal effect on existing code bases. What is more,
the syntactic nature of the restriction means that it can be introduced to
existing Java type checkers with minimal modification. The advantages that
the Material/Shape separation represent make it a particularly promising ap-
proach for this thesis, and as such I will go into more detail on the specifics
of the work by Greenman et al..

Material/Shape Separation

Greenman et al. [39], defined a syntactic subset of Java that ensures decidable
subtyping. That is, if a Java program follows some simple syntactic rules,
subtyping for that program is guaranteed to be decidable. These syntactic
rules take the form of a separation on types. Types are classified as either
Materials, that may be freely used, or Shapes, that are restricted from use in
generic parameters on generic classes.

Informally, a Material is a concrete datatype used to type terms within
a program. A Shape refers to abstract types that are used to specify a
program. In Java, the distinction between a Material and a Shape loosely
lines up with the distinction between concrete classes, and interfaces. That is,
Materials are types that might be instantiated (e.g. ArrayList or Integer),
while Shapes are used to specify a program, i.e. as bounds on generic types,
argument types, or extended types in class definitions (e.g. Iterable or
Comparable).

Defining Materials and Shapes

Thus far, all we have is a fairly vague definition of Materials and Shapes.
Greenman et al. formalized the definition and their separation using cycle
detection on type definitions. They use class definitions to construct type
usage graphs, where any cycles represent a recursive type definition. Since
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List Eq

Eq

Eq

Figure 2.23: Type Usage Graph of List

the recursion in Java class definitions arises from the inheritance declaration,
they perform edge labeling on the graph to identify type inheritance. As an
example, consider the class definition below.

1 interface Eq<T>
2 class List<E> implements Eq<List<Eq<E>>>

List is defined in terms of itself, and is is thus an example of a recursive type
definition in Java. This recursive definition is defined using two language
features, the inheritance declaration ...قق) implements Eq), and generic class
parameters (Eq<قق...>).

Using the graph construction rules of Greenman et al., I provide a type
usage graph for List and Eq in Figure 2.23. Vertices in the type usage graph
represent type names, and edges represent usages in those type definitions.
i.e. Eq is used in the definition of List, thus there is an edge from List to
Eq. For a particular type definition, edges from the defined type to types
used as parameters on the extended type are labeled with the name of the
extended type. i.e. List is defined as an extension of Eq parameterized with
List<Eq<E>>, thus there is an edge from List to both Eq and List, and those
edges are labeled with Eq. Finally, there is an unlabeled edge from List to
Eq capturing the the inheritance (or extension) relationship List has with
Eq.

The labeling of edges in the type usage graph is important. Labeling of
edges is used to identify recursion in type definitions (represented by cycles
in the usage graph). Note, in Java it is not possible to have an entirely
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unlabeled cycle, as unlabeled edges imply an inheritance relationship, and
thus an unlabeled cycle would require cyclic inheritance, something that is
not allowed in Java. Recursion in Java occurs in the parameters on the
inherited type (e.g. the parameters on Eq in the case of List), thus any
subtyping that results in recursion must be done via the extended type (i.e.
recursive subtyping of List must occur via Eq). This is in fact a result of the
subtype nominality of Java. While not addressed by the work of Greenman
et al., it is important to note that this would not be true of a structural
type system. If Java had general structural subtyping, there would be no
assurance that recursive subtyping of List would include Eq. This distinction
between nominal and structural subtyping in relation to the Material/Shape
Separation, is important for the work described in this thesis.

As I have already mentioned, recursion is captured in the type usage
graph by type cycles. Further, the labels on edges represent inheritance
declarations. Thus, an edge on a cycle, labeled with some class name T,
represents a recursive definition for a type defined as inheriting from T. The
graph in Figure 2.23 features only one cycle, from List back to itself. The
only edge in the cycle is labeled with Eq. Formally, Greenman et al. provide
the following definition of the Material/Shape separation:

Definition 2.2.1. Let M be all classes/interfaces used as type arguments.
For some set S of classes/interfaces such that removing all edges labeled with
an element of S from the usage graph results in an acyclic graph, M and S
are disjoint.

Put another way, all type cycles (i.e. recursive definitions) in a program
must have at least one edge that is labeled with a Shape. This means that the
classification of Material/Shape is not generally unique for any program, as
there may be more than one labeled edge in a cycle, or the set of Shapes may
include types that do not label any edges. In the above List/Eq example,
the only type that fulfills Definition 2.2.1 is Eq since it is the only label on
the only cycle. Thus, for the List/Eq example, there are two possible Shape
classifications: {Eq} or {Eq, List}.

45



Chapter 2 Object Oriented Languages

If we pick the first classification (M = {List}, S = {Eq}), this seems
to fit with the intuition that we started with: Materials are concrete types,
while Shapes are abstractions. We might want to create an instance of List,
but we would never instantiate Eq. On the other hand, we would expect Eq to
be used to specify a program, for example, as a argument type to a method,
or as a bound on a generic method.

Restricting Shape Usage

As mentioned earlier, the separation places a single, simple restriction on
the use of Shapes in Java: Shapes may not be used in type parameters on
classes. Greenman et al. importantly demonstrated, via a survey of Java
code, that this separation represented a latent rule already followed by Java
programmers. For most Java programs that they included in their survey
(with a small number of minor exceptions), some classification of Materials
and Shapes existed such that the program adhered to the Material/Shape
separation. Thus, they found programmers generally write programs that
instantiate types such as List<Integer> and not List<Comparable>. The
fact that programmers already follow this distinction is important because
it means that (i) such a separation in Java is more likely to be backward
compatible with existing Java code bases, and (ii) that while the separation
represents a clear reduction in expressiveness, it does not exclude programs
that programmers actually write. It is important to state that Greenman
et al. did find a small number of Java programs that did not obey the Ma-
terial/Shape separation, however they did find that those programs could
easily be rewritten to follow a Material/Shape separation, or exhibited obvi-
ous errors.

Nominality with Path Dependent Types

Languages with path dependent types provide a form of nominality through
the ability to define a type in an abstract manner. Abstract is often an
overloaded word, but in this case it is meant to refer to types that are not
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defined as a specific type, but rather defined with some upper bound. To
illustrate this nominality, I now provide an example that reoccurs often in
the following chapters.

1 type ListAPI = { self =>
2 type Equatable <: ⊤{ z =>
3 type E >: ⊥
4 def equals : E -> bool
5 }
6 type List <: self.Equatable{ z =>
7 type E = self.List{ type T = z.T }
8 type T <: ⊤
9 }

10 def nil : self.List{type T = ⊥}
11 def cons : (x : {type Elem <: ⊤},
12 e : x.Elem,
13 l : List{type T <: x.Elem}) ->
14 self.List{type T <: x.Elem}
15 def peek : (x : {type Elem <: ⊤},
16 l : List{type T <: x.Elem}) ->
17 x.Elem
18 def pop : (x : {type Elem <: ⊤},
19 l : List{type T <: x.Elem}) ->
20 self.List{type T <: x.Elem}
21 }
22 val myListAPI : ListAPI

The above example is derived from Rompf and Amin, and depicts an inter-
face for a module called ListAPI. Within ListAPI, two types are defined,
Equatable and List, along with two constructors for List, nil and cons.
While it may not look it initially, the types Equatable and List exhibit
nominal subtyping. As I discussed earlier in this section, nominal subtyping
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is a form of subtyping that is that has been explicitly declared. An exam-
ple of this is that List subtypes Equatable only because it is defined as
extending Equatable. Because Equatable is defined using the upper bound
operator (<:), the lower bound of Equatable is ⊥, thus the only types that
can subtype it are ones that have been explicitly declared so.

This provides some powerful expressiveness, especially in the declaration
of modules. The List (and Equatable) type in the example above is an
abstract data type [32], similar to those of Haskell [57]. The type types
List and Equatable are defined, along with a set of operations that have
been defined for those types. Given an instance of ListAPI, the client is
constrained to constructing Lists using either nil or cons, and inspecting
or removing from Lists using either peek or pop.

This is however, a slightly different (or perhaps laxer) notion of nominality
to that of Java. List can always subtype another type structurally. For
instance, List subtypes the structure type { type E <: ⊤ }. The details of
this variation of nominality is very important to this thesis, and is discussed
further in Chapter 3.

2.3 Wyvern

Wyvern [52, 51, 63, 1, 67] is a pure object oriented language with first class
modules and a focus on high-assurance programming. Wyvern includes path
dependent types, leveraging their expressiveness to support nominality and
ML-style modules. Wyvern also provides support for concepts from func-
tional programming languages such as lambda expressions. To provide re-
liable tools for programmers, it is critical that type checking in Wyvern be
decidable.

In Figure 2.24 I provide the syntax for Featherweight Wyvern [63], a
minimal core calculus for Wyvern in the spirit of Featherweight Java [47].
Featherweight Wyvern contains many ideas that are similar to DOT, it is an
object oriented language with functional components, recursive types, and
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t ::= Term
x variable
λx : τ.t abstraction
t t application
new {d} new
t.f field access
t.f = t assignment
t.m method access

τ ::= Type
T name
τ → τ arrow

d ::= Declaration
var f : τ = t field
meth m : τ = t method
type T = {τd} type

τd ::= Meth Decl. Type
meth m : τ method

σ ::= Declaration Type
var f : τ field
type T = {τd} type
τd method

Figure 2.24: Featherweight Wyvern Syntax of Nistor et al.

type members. Featherweight Wyvern does not include intersection types,
dependent function types or bounds on type members, and subsequently does
not leverage the full expressive power of path dependent types. Notably, the
exclusion of these types means that the nominality of DOT is lost, along with
some of the key encodings of parametric polymorphism. Nistor et al. 2013
also provide an extension to Featherweight Wyvern that includes classes, but
note that this extension is a merging of the concept of type and value that
can be translated back to Featherweight Wyvern.

2.3.1 Modules for Wyvern

One of the primary motivations for path dependent types in Wyvern is the
modelling of modules in the style of ML [58, 41]. Path dependent types can
be used to express module signatures from Standard ML. Below I provide an
encoding of the Protocol signature from the FoxNet project [18].

1 type Protocol {this =>
2 type Address
3 type Data
4 def send(a:Address, d:Data)
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5 def receive(a:Address):Data
6 }
7 module IP : Protocol { ... }
8 module TCP : Protocol { ... }

As in ML (and the ListAPI example from Section 2.2.2), it is possible to
declare Address and Data as abstract.
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Issues with Subtype
Decidability

In this chapter I discuss the issues present in deciding subtyping in the
Wyvern programming language (see 2.3). The chapter is organised as fol-
lows.

• Section 3.1: I design a core calculus based on the Featherweight
Wyvern of Section 2.3 called Wyvcore. I introduce the syntax and se-
mantics for this core type system, and discuss expressiveness in Wyvcore

and some difficulties in deriving a subtype algorithm for Wyvcore.

• Section 3.2: I demonstrate three ways of proving subtype undecid-
ability in Wyvcore, and discuss some of the mechanisms that allow for
undecidability of subtyping in Wyvcore.

There is an important point to keep in mind while reading this chapter.
While the central focus of the chapter is subtype decidability, that is not the
only concern. It is also important to consider the expressiveness of any final
calculus and the type safety of that calculus.

• Expressiveness is often a hard quality to measure, and in this thesis is
often measured by presenting instances of known expressiveness in the
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form of patterns, and discussing the effect different restrictions have
on such examples. Where possible, I make stronger claims of expres-
siveness by demonstrating the power of a calculus to encode another,
thereby subsuming its expressive power.

• Type Safety is a more concrete goal than expressiveness, and this
thesis often leans on type safety argument of DOT [14, 75] as it provides
invaluable insight into the nature of subtyping in similar type systems.

With these two factors in mind, in both the design of Wyvcore and its subse-
quent variants I discuss the implications that different restrictions that seek
to provide for subtype decidability have on expressiveness and type safety.

3.1 A Core Wyvern Type System
In this section I design and present a core Wyvern type system: Wyvcore.
In designing Wyvcore, I begin this section by presenting a type system for
Basic Wyvern (Section 3.1.1). Basic Wyvern is not Wyvcore, but rather an
intermediate type system between the Wyvern of Section 2.3 and Wyvcore. I
subsequently discuss Basic Wyvern and some of its properties that fall in, two
categories: syntax directedness and expressiveness (Section 3.1.2). I finally
end by presenting Wyvcore and a discussion of some important properties of
subtyping in Wyvcore (Section 3.1.3). Wyvcore is the base type system for the
rest of the Chapter, and for the extensions introduced in Chapters 5, 6, and
7. Subtyping in Wyvcore is not decidable for several reasons, but it forms a
starting point for the subsequent variants that are decidable, and a basis for
understanding the issues of decidability.

3.1.1 Starting with a Basic Wyvern Type System

Basic Wyvern can be thought of as a type system that occupies a position
in the design space somewhere between the Featherweight Wyvern of Fig-
ure 2.24 and Wyvcore. Basic Wyvern includes several language features that
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empower path dependent types that Featherweight Wyvern lacks. I use this
basic type system as a vehicle for discussing some initial decisions made in
the design of Wyvcore. These decisions fall into two categories: syntax direct-
edness and expressiveness.

What is missing from Featherweight Wyvern?

There are two fundamental concepts that are missing from the Featherweight
Wyvern of Figure 2.24: recursive types and bounded type members. Recur-
sive types (see 2.2.1) allow types to be defined recursively, in Wyvern this
means types can contain references to any other types defined within the
same environment. Technically Featherweight Wyvern does have a degree of
recursion in that types can use any type name defined within the environ-
ment, but this is not included explicitly as a syntactic form. Bounded type
members provide key expressiveness among other things capturing bounded
polymorphism. The type members of Figure 2.24 are in fact merely type
aliases, alternate names provided for types within a specific environment.

In Basic Wyvern I make two key extensions to Featherweight Wyvern: (i)
a recursive type form µ(z : τ), where z is a recursive reference that may be
used within τ , and (ii) a bounded form for type members L : τ1 . . . τ2, where
τ1 is the lower bound of type definition L, and τ2 is the upper bound.

Basic Wyvern

I give the syntax, along with the variable typing and subtyping relations for
Basic Wyvern in Figures 3.1, 3.2, and 3.3 respectively. A Type (τ) is either a
recursive type (µ(z : τ)), a dependent function type (∀(x : τ1).τ2), a selection
type (x.L), a structure type ({σ}) that contains a set of declaration types
(σ), the top type ⊤ or the bottom type ⊥. A Declaration Type (σ) is either
a type member with an upper and a lower bound (L : τ . . . τ) or a value
member (l : τ). As we are only currently concerned with the metatheory of
subtyping, we restrict terms to variables (x, y, z) only.
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x, y, z Variable
τ ::= Type

µ(z : τ) recursive type
∀(x : τ).τ dependent function type
x.L type selection
{σ} structure type
⊤ top
⊥ bottom

σ ::= Declaration Type
L : τ . . . τ type
l : τ value

Γ ::= Environment
∅
Γ, x : τ

Figure 3.1: Basic Wyvern Syntax

Γ ⊢ x : τ

Γ(x) = τ

Γ ⊢ x : τ
(T-Var)

Γ ⊢ x : µ(z : τ)

Γ ⊢ x : [x/z]τ
(T-Rec)

Γ ⊢ x : τ Γ ⊢ τ <: τ ′

Γ ⊢ x : τ ′
(T-Sub)

Figure 3.2: Basic Wyvern Typing

Γ ⊢ τ1 <: τ2, σ1 <: σ2, σ1 <: σ2

Γ ⊢ x.L <: x.L (S-Refl)
Γ ⊢ τ1 <: τ2 Γ ⊢ τ2 <: τ3

Γ ⊢ τ1 <: τ3
(S-Trans)

Γ ⊢ ⊥ <: τ (S-Bottom) Γ ⊢ τ <: ⊤ (S-Top)

Γ ⊢ x : {L : _ . . . τ}

Γ ⊢ x.L <: τ
(S-Upper)

Γ ⊢ x : {L : τ . . ._}

Γ ⊢ τ <: x.L
(S-Lower)

Γ ⊢ τ2 <: τ1

Γ, x : τ2 ⊢ τ ′1 <: τ ′2

Γ ⊢ ∀(x : τ1).τ
′
1 <: ∀(x : τ2).τ

′
2

(S-All)
Γ, z : µ(z : τ1) ⊢ τ1 <: τ2

Γ ⊢ µ(z : τ1) <: µ(z : τ2)
(S-Rec)

Γ ⊢ σ1 <: σ2

Γ ⊢ {σ1} <: {σ2}
(S-Str)

∀ σ2 ∈ σ2, ∃ σ1 ∈ σ1, Γ ⊢ σ1 <: σ2

Γ ⊢ σ1 <: σ2

(S-Decls)

Γ ⊢ τ2 <: τ1 Γ ⊢ τ ′1 <: τ ′2

Γ ⊢ L : τ1 . . . τ
′
1 <: L : τ2 . . . τ

′
2

(S-Type)
Γ ⊢ τ1 <: τ2

Γ ⊢ l : τ1 <: l : τ2
(S-Val)

Figure 3.3: Basic Wyvern Subtyping
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Note: in the formal statement of Basic Wyvern, I sometimes use an un-
derscore (_) in place of certain syntactic expressions. I use this short-hand
here and in other type systems in this thesis in place of meta-variables that
are contextually unimportant. In the case of S-Upper (described below) for
example, the lower bound of L has no relevance to the rule.

Typing of variables (Γ ⊢ x : τ) is defined in Figure 3.2. A variable x in
an environment Γ has type τ if Γ(x) = τ (T-Var). If x has some recursive
type µ(x : τ), then it is also judged as having type [x/z]τ , the “unpacking” of
the recursive type, where the recursive reference is substituted for x (T-Rec).
T-Rec is similar to the VarUnpack rule of DOT 2016. Typing in Basic
Wyvern also includes subsumption, where if x has type τ , it is also judged
to have any supertype of τ (T-Sub). Subsumption plays an important role
in subtyping, allowing (through width subtyping) a variable x of type {σ}
to be typed as {σ} if σ ∈ σ. Similarly, if a variable x has type y.L, then
through subsumption, it is also true that x has type τ , where τ is the upper
bound of y.L.

Subtyping is defined in Figure 3.3. Γ ⊢ τ1 <: τ2 formalizes the notion
that τ1 subtypes τ2 in environment Γ. Subtyping is reflexive for selection
types (S-Refl). Subtyping is explicitly transitive (S-Trans). Subtyping is
bounded above by ⊤ (S-Top) and below by ⊥ (S-Bottom). Subtyping of
a selection type is defined according to its upper (S-Upper) and lower (S-
Lower) bounds. Subtyping of dependent function types is contra-variant
(see Section 2.1.4) with respect to the argument types and covariant with
respect to the return types (S-All). Subtyping of recursive types is defined
by the subtyping of the unpacked type, introducing the recursive variable to
the environment (S-Rec). Subtyping of structure types is defined in rela-
tion to the declaration types (S-Str). A set of declaration types σ1 subtypes
another set of declaration types σ2 if ever declaration type in σ2 is subtyped
by some declaration type in σ2 (S-Decls). Type declarations are subtyped
contra-variantly with respect to their lower bounds and covariantly with re-
spect to their upper bounds (S-Type). Value declarations are subtyped
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covariantly with respect to their types (S-Val).

3.1.2 Properties of Basic Wyvern

While the type syntax is fairly simple, subtyping is already relatively complex
and presents several issues for decidability. Firstly, subtyping is not syntax
directed, that is, the syntactic form of the the types being compared does not
necessarily inform which rule to apply during subtyping. Thus, the rules do
not themselves define an algorithm for subtyping. The presence of an explicit
subtype transitivity rule (S-Trans) means there is no way to determine
which rule to use since there is no way to identify the middle type (τ2).
Secondly, the subtyping of dependent function types (S-All) coupled with
type selections (x.L) implies the direct encoding of System F<: subtyping,
a problem well-known to be undecidable. Finally, the presence of recursive
types coupled with path dependent types also provides an encoding of System
F<:, and thus implies subtyping is undecidable. These last two issues will
be addressed in Section 3.2, in this Section I discuss the issue of transitivity
and address some concerns of expressiveness.

Syntax Directedness: Transitivity

A general transitivity rule is a problem when attempting to define an algo-
rithm from a set of subtyping rules. The need for a third middle type requires
searching the set of all possible types. This is often either infeasible due to
the large number of potential types, or impossible due to the existence of
infinite types. The alternative is to design subtyping rule set in such a way
that transitivity arises naturally from the rules. An example of such a rule
set is the Kernel F<: variant of System F<: [70], where transitivity is defined
for type variables only, allowing transitivity in its general form to be proven.
I have already discussed Kernel F<: to some degree in Section 2.1.5, but it
is useful to revisit it here as an analogy for changes that can be made to the
subtype rules of Basic Wyvern. In Figure 3.4 I provide the relevant change
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to the rules from System F<: to Kernel F<:. The general transitivity rule

Γ ⊢ τ1 <: τ2 Γ ⊢ τ2 <: τ3

Γ ⊢ τ1 <: τ3
(S-Trans)

Γ(α) = τ

Γ ⊢ α <: τ
(S-Var)

⇒

Γ(α) = τ ′

Γ ⊢ τ ′ <: τ

Γ ⊢ α <: τ
(S-Var)

Figure 3.4: Syntax Directed modification to System F<:

(S-Trans) and the rule for subtyping type variables (S-Var on the left of
Figure 3.4) is replaced with a modified rule for subtyping variables (S-Var
on the right of Figure 3.4) that includes transitivity in the premises. These
two rule sets are equivalent in that they can prove the same set of judgements
(Kernel F<: differs from System F<: in other ways that are not important
here).

The subtype rules of Figure 3.3 resemble the rules on the left of the exam-
ple in Figure 3.4. Transitivity is explicit in Figure 3.3, and type members are
judged as subtyping their upper bounds (S-Upper) and supertyping their
lower bounds (S-Lower). Earlier formulations of DOT subtyping [13] did
not include an explicit rule for transitivity, and resembled the rule on the
right of Figure 3.4. I use those formulations to inform a syntax directed form
of subtyping for type selections in Figure 3.5.

In Wyvern (and more specifically DOT), such syntax directed subtyping
does not provide general transitivity in the same way that it does for Kernel
F<:. As discussed in Section 2.2.1, transitivity sits in the centre of the long
struggle for type safety in DOT. Part of this story is the complex interactions
path dependent types have with environment narrowing, and how this can
lead to ill-formed bounds on type members. The complexities and details
of this topic, while interesting, not entirely relevant to this thesis, and are
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Γ ⊢ τ1 <: τ2

Γ ⊢ τ2 <: τ3

Γ ⊢ τ1 <: τ3
(S-Trans)

Γ ⊢ x : {L : _ . . . τ}

Γ ⊢ x.L <: τ
(S-Upper)

Γ ⊢ x : {L : τ . . ._}

Γ ⊢ τ <: x.L
(S-Lower)

⇒

Γ ⊢ x : {L : _ . . . τ1}
Γ ⊢ τ1 <: τ2

Γ ⊢ x.L <: τ2
(S-Upper)

Γ ⊢ x : {L : τ2 . . ._}
Γ ⊢ τ1 <: τ2

Γ ⊢ τ1 <: x.L
(S-Lower)

Figure 3.5: Syntax Directed modification to Basic Wyvern Subtyping

better left to Rompf and Amin. Their insight however, is very important, as
they demonstrate that the loss of transitivity is only relevant to types in ill-
formed environments, and that typing guarantees that such environments do
not compromise the type safety of the language. This is important, because
it suggests that while the modification does not preserve transitivity, it is
type safe, and the instances where transitivity is lost relate only to ill-formed
type bounds.

Syntax Directedness: Subsumption

Related to transitivity, the subsumption rule T-Sub is a subtyping rule that
commonly features in formal descriptions of programming languages. DOT
for instance is an example of this. In the case of DOT, subsumption plays
an important role in typing, as it allows intersection types to be unpacked
during typing, thus allowing terms to be typed by either component of an
intersection. This is also true of Basic Wyvern, and as has been discussed in
Section 3.1.1, subsumption empowers a variety of useful typings within Basic
Wyvern (e.g. if x has type y.L, which in turn has upper bound τ , then x is
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also judged as having type τ).
Subsumption, is however problematic for constructing a typing procedure

in the same manner that explicit transitivity is problematic when designing
a subtyping procedure. In rule T-Sub, there is no obvious candidate type
for τ ′. In Figure 3.6 I replace the T-Sub rule with two other rules that
introduce explicit subsumption: T-Str and T-Sel. These two rules provide

Γ ⊢ x : τ

Γ ⊢ τ <: τ ′

Γ ⊢ x : τ ′
(S-Sub)

⇒

Γ ⊢ x : {σ} σ ∈ σ

Γ ⊢ x : {σ}
(T-Str)

Γ ⊢ x : y.L

Γ ⊢ y : {L : _ . . . τ}

Γ ⊢ x : τ
(T-Sel)

Figure 3.6: Syntax Directed modification to Basic Wyvern Typing

for very specific forms of subsumption. Under T-Str, a variable of some
structure type is also judged as having a type with any one of it’s associated
declaration types. Under T-Sel, a variable x of type y.L is also judged has
having type τ , where τ is the upper bound of y.L. Unfortunately, as with
the syntax directed modification to subtyping defined in Figure 3.5, the new
rule set is not as expressive as the old.

Expressiveness: Type Refinements and Intersection Types

The Basic Wyvern type system includes both recursive types and object
types, critically allowing recursive object types (µ(z : {σ})). What this basic
form of Wyvern does not allow is the refinement of existing types, that is,
the reuse of existing type definitions with added type information. This is a
critical feature allowing for polymorphic data types and nominality. I provide
a deeper discussion of type refinements in Section 2.2.1.
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In order to facilitate type refinements, I replace recursive and structure
types with a combined syntactic form. Figure 3.7 replaces the recursive

τ ::= Type
...
µ(z : τ) recursive type
{σ} structure type

⇒

τ ::= Type
...
{z ⇒ σ} top refinement
x.L{z ⇒ σ} selection refinement

Figure 3.7: Replacing Recursive and Structure types with Recursive Type
Refinement

and structure types of Basic Wyvern with two forms for type refinement: a
refinement on ⊤ ({z ⇒ σ}), and a refinement on a selection type (x.L{z ⇒
σ}). This is not a new type form, earlier variants of DOT, namely Amin
et al. in 2012 and Amin et al. in 2014 also included similar type refinements.

While type refinements are less expressive than full intersection types,
they do provide a very specific aspect of intersection types: the refining of
an existing object type with new member information. Type refinements do
not allow for two useful instances of expressiveness: (i) the kind of type hier-
archies one finds in multiple inheritance, and (ii) ad-hoc intersection types.
Thus, it is not possible to write the following example:

1 type List[Elem = ⊤] <: Equatable[List[Elem]] & Traversable[Elem]{
2 def equals : List[Elem] -> bool
3 def traverse[U] : (Elem -> U) -> ⊤
4 }
5 }

It is also not possible to specify arguments as inhabiting more than one type,
as in the example below:

1 def showTraversable(t : Printable & Traversable) = {
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2 t.traverse(_.print)
3 }

Thus, type refinements do not allow for the full encoding of a language such
as Java, as it includes multiple inheritance. This is certainly a limitation,
but it is a limitation that keeps the language in question tractable.

Single Bounded Type Declarations

As a final modification, I replace the syntactic type form for type declarations.
This is given in Figure 3.8. I introduce a specific syntactic form for upper

σ ::= Declaration Type
...
L : τ . . . τ

⇒

σ ::= Declaration Type
...
L ⩽ τ upper bound
L ⩾ τ lower bound
L = τ specific type

Figure 3.8: Double Bounded Type Declarations with Single Bounded Type
Declarations

bounded type declarations (L ⩽ τ), lower bounded type declarations (L ⩾
τ) and specific type declarations (L = τ). Note: the upper bounded type
declarations do in fact have a lower bound of ⊥. Similarly, lower bounded
type members have an upper bound of ⊤. The specific type declaration
L = τ is in fact the type declaration with both upper and lower bound
τ . These syntactic forms allow discussions about type declarations to be
more exact, as each syntactic form has different uses and properties. Thus
discussions about each specific form become simpler. It is also notable that
this comes at almost no loss in expressiveness. While it is true that there is
no single syntactic form that can express L : τ1 . . . τ2, the type {L : τ1 . . . τ2}
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is easily expressed as  L ⩾ τ1

L ⩽ τ2


3.1.3 Wyvcore

Now that some guidelines have been established in constructing a starting
point for Decidable Wyvern, I present the core Wyvern syntax and seman-
tics. Figure 3.9 gives the syntax of types in Wyvcore. Types are either a type
member selection on a variable (x.L), the top type (⊤) or the bottom type
(⊥), type refinements (τ{z ⇒ σ}) or dependent function types (∀(x : τ1).τ2).
A type refinement τ{z ⇒ σ} is a base type τ refined with a set of declara-
tion types σ and a self reference z. A type refinement is restricted to either
a refinement on ⊤ ({z ⇒ σ}) or a selection type (x.L{z ⇒ σ}). Dependent
function types (∀(x : τ1).τ2) type functions where the return type may be
dependent on the argument type. Declaration Types are the types of dec-
larations. Unlike Basic Wyvern in Figure 3.1, declaration types are explicitly
either upper bounded (L ⩽ τ), lower bounded (L ⩾ τ), or an exact type
(L = τ). A value declaration (l : τ) is unchanged from that of Figure 3.1.

Throughout the type system I use several shorthands for different syntac-
tic variations. Type refinements combine the recursive and structure types
of Figure 3.1 with a restricted form of intersection types. Type refinements
can thus be used to capture one or more of these concepts at a time and
it is sometimes useful to distinguish between those uses. As an example,
type refinements are not required to be refinements on a selection type, the
refinement ⊤{z ⇒ σ} corresponds to the recursive structure type {z ⇒ σ}.
Depending on which aspects of type refinement are in use, we use two short-
hands: type refinements with ⊤ as the base type are written as {z ⇒ σ} and
type refinements where the self variable is not free in the refining declarations
is written as τ{σ}. Both of these combined give us the structure types of
Figure 3.1: {σ}. There are several places in the definition of the semantics
where rules may apply to multiple syntactic forms of declaration types. In
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τ ::= Type
∀(x : τ).τ dependent function
{z ⇒ σ} top refinement
x.L{z ⇒ σ} selection refinement
x.L type selection
⊤ top
⊥ bottom

σ ::= Declaration Type
L ⩽ τ upper bound
L ⩾ τ lower bound
L = τ equality
l : τ value

Γ ::= Environment
∅
Γ, x : τ

Figure 3.9: Wyvcore Syntax

Γ ⊢ x : τ

Γ(x) = τ

Γ ⊢ x : τ
(T-Var)

Γ ⊢ x : τ{z ⇒ σ} σ ∈ σ

Γ ⊢ x : {[x/z]σ}
(T-Rec)

Γ ⊢ x : τ{z ⇒ σ}

Γ ⊢ x : τ
(T-Rfn)

Γ ⊢ x : y.L Γ ⊢ y : {L ⩽ τ}

Γ ⊢ x : τ
(T-Sel)

Γ ⊢ x : {L = τ}

Γ ⊢ x : {L ⩽ τ}
(T-Eq1)

Γ ⊢ x : {L = τ}

Γ ⊢ x : {L ⩾ τ}
(T-Eq2)

Figure 3.10: Wyvcore Typing

Γ ⊢ x : {L ⩽ τ}
τ is extendable

Γ ⊢ x.L ⩽:: τ
(E-Sel)

Γ ⊢ τ ⩽:: τ ′

Γ ⊢ τ{z ⇒ σ} ⩽:: flat(τ ′, σ, z)
(E-Rfn)

Figure 3.11: Wyvcore Type Extension

x.L is extendable ⊤ is extendable

τ{z ⇒ σ} is extendable

Figure 3.12: Wyvcore Type Extendabil-
ity

flat(⊤, σ, z) = ⊤{z ⇒ σ}
flat(x.L, σ, z) = x.L{z ⇒ σ}
flat(τ{z ⇒ σ1}, σ2, z) = τ{z ⇒ σ1, σ2}

Figure 3.13: Refinement Flattening
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Γ ⊢ τ1 <: τ2, σ1 <: σ2, σ1 <: σ2

Γ ⊢ x.L <: x.L (S-Rfl) Γ ⊢ ⊥ <: τ (S-Bot) Γ ⊢ τ <: ⊤ (S-Top)

Γ ⊢ x : {L ⩽ τ ′} Γ ⊢ τ ′ <: τ

Γ ⊢ x.L <: τ
(S-Upper)

Γ ⊢ x : {L ⩾ τ ′} Γ ⊢ τ <: τ ′

Γ ⊢ τ <: x.L
(S-Lower)

Γ ⊢ τ2 <: τ1 Γ, x : τ2 ⊢ τ ′1 <: τ ′2

Γ ⊢ ∀(x : τ1).τ
′
1 <: ∀(x : τ2).τ

′
2

(S-All)

Γ, z : τ{z ⇒ σ1} ⊢ σ1 <: σ2

Γ ⊢ τ{z ⇒ σ1} <: τ{z ⇒ σ2}
(S-Rfn)

Γ ⊢ τ1 ⩽:: τ Γ ⊢ τ <: τ2

Γ ⊢ τ1 <: τ2
(S-Ext)

∀ σ2 ∈ σ2, ∃ σ1 ∈ σ1 s.t. Γ ⊢ σ1 <: σ2

Γ ⊢ σ1 <: σ2

(S-Decls)

Γ ⊢ τ1 <: τ2

Γ ⊢ L ⩽/= τ1 <: L ⩽ τ2
(Sσ-Upper)

Γ ⊢ τ2 <: τ1

Γ ⊢ L ⩾/= τ1 <: L ⩾ τ2
(Sσ-Lower)

Γ ⊢ τ2 <: τ1 Γ ⊢ τ1 <: τ2

Γ ⊢ L = τ1 <: L = τ2
(Sσ-Equal)

Γ ⊢ τ1 <: τ2

Γ ⊢ l : τ1 <: l : τ2
(Sσ-Value)

Figure 3.14: Wyvcore Subtyping
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these cases, the syntax L ⩽/= τ or L ⩾/= τ is used to indicate that we are
interested in either the upper or lower bound of a type definition, and do not
care whether it is an exact type or not.

I define variable typing in Figure 3.10. Typing in some ways looks similar
to that of Basic Wyvern, and in other ways is modified in line with Section
3.1.2. T-Var is unchanged from Basic Wyvern, capturing typing of a variable
within an environment. T-Rec in some ways resembles the T-Rec of Basic
Wyvern in the way the recursive type is “unpacked”. In Wyvcore however,
recursive types have been replaced with the combined form of recursive type
refinements, thus the T-Rec in Wyvcore also resembles the T-Str of Figure
3.6. Thus, T-Rec captures the typing: if a variable x has type τ{z ⇒ σ},
then it is also judged as having the the type of specific σ in σ, with the self
reference replaced with x. As with the subtyping of Figure 3.6, T-Rec is a
case of explicit subsumption. Another instance of explicit subsumption can
be seen in T-Rfn. Here a variable x of type τ{z ⇒ σ} is also judged as
having type τ . The T-Sel rule again, is an instance of explicit subsumption,
and is identical to the T-Sel rule of Figure 3.6. Finally, I introduce two new
forms of explicit subsumption: a variable with type {L = τ} is also judged
as having (i) type {L ⩽ τ} (T-Eq1), and (ii) type {L ⩾ τ} (T-Eq2).

Type extension (Γ ⊢ τ1 ⩽:: τ2) is defined in Figure 3.11. Type
extension is an important relation, and is conceptually similar to the rela-
tionship implied by the extends keyword in Java. In Java, the class decla-
ration class C<E> extends D<E> describes not only a subclass relationship,
but the subtype relationship between different instances of C and D. For
example, one might say that C<Int> extends D<Int>. In Wyvcore, a type
declaration C ⩽ x.D{z ⇒ E ⩽ ⊤, T = z.E} implies a similar rela-
tionship. As in Java, we want to be able say that x.C{E = Int} extends
x.D{z ⇒ E = Int, T = z.E}. Type extension captures this relationship:

Γ ⊢ x.C{E = Int} ⩽:: x.D

z ⇒
E = Int
T = z.E
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This is an important judgement in capturing transitive subtyping for type
refinements. To extend the previous example, if x.D{z ⇒ E = Int, T =

z.E} subtypes some other type τ , then it should follow that x.C{E = Int}
subtypes τ .

Type extension is captured by two rules: E-Sel and E-Rfn. All se-
lection types extend their upper bound (E-Sel). Type extension for type
refinements is more complex. A type refinement τ{z ⇒ σ} extends the type
extended by τ (τ ′), with the refinement (_{z ⇒ σ}) flattened into it. Flat-
tening is defined by the flat function in Figure 3.13, and is simply a merging
of multiple refinements. flat takes three parameters: the base type being
flattened into τ , the self variable z, and the refinement σ to be flattened into
τ . If τ (the type being flattened into) is either top or a selection type, the
result of flat(τ, z, σ) is the type refinement τ{z ⇒ σ}. If τ is some type
refinement τ ′{z ⇒ σ′}, then flat(τ, z, σ) merges the two refinements and
returns τ{z ⇒ σ′, σ}.

Subtyping is defined in Figure 3.14. Subtyping is explicitly reflexive only
with regard to selection types on variables (S-Rfl). Subtyping is bounded
below by ⊥ and above by ⊤ (S-Bot and S-Top). Subtyping of type selec-
tions is defined in relation to their upper and lower bounds (S-Upper and
S-Lower respectively). Subtyping of dependent function types is defined in
S-All, the argument types are subtyped contra-variantly while the return
types are subtyped covariantly. Type refinement subtyping is relatively com-
plex and is captured in the S-Rfn, S-Ext. S-Rfn compares two refinements
on equal types. S-Ext uses type extension to determine the upper bound of
a type that may include a refinement. Finally, subtyping of member types
is done per member type (S-Decls, S-Decl-Upper, S-Decl-Lower, S-
Decl-Equal and S-Decl-Val).

A Note on Deriving a Subtyping Algorithm for Wyvcore

In the design of Wyvcore earlier in this section, I discussed the importance
of being able to construct an algorithm for subtyping in Wyvcore. For this
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reason Wyvcore does not include a rule for subtype transitivity. The reader
may however, have noticed that subtyping in Wyvcore is not in fact syntax
directed, and thus constructing a subtyping algorithm is perhaps not trivial.
There are three reasons for this:

1. A proof search for x.A <: y.B has no information that would favour
either S-Upper or S-Lower over the other. Indeed, both may apply.
Such a subtyping question represents an instance of branching, and any
subtype algorithm must search both branches.

2. The S-Ext rule is not syntax directed as there is no syntactic informa-
tion supplied by the rule that would inform a subtype algorithm when
such a rule should be used. The definition of type extension (⩽::) how-
ever, implies that there are only two instances when it is applicable: (i)
when τ1 = x.L where τ is its upper bound, and (ii) when τ1 and τ2 are
both type refinements. The first case is subsumed by S-Upper, and so
can be ignored during construction of a subtyping algorithm (although
it is important for completeness for the type extension relation). The
second case can be further refined (after introducing static cycle detec-
tion in Chapter 4) by noting that cycle detection can exclude the case
where the two base types are equal (types that extend themselves can
be easily excluded by cycle detection, and is similar to the way that a
Java disallows cyclical inheritance). This leaves the subtype algorithm
designer with only one applicable instance, when τ1 and τ2 are both
type refinements with differing base types.

3. The definition of type refinements does not restrict declaration type
names to be unique, thus the variable typing (specifically those de-
rived during T-Rec and T-Rfn and subsequently the upper bounds
of selection types) in S-Upper and S-Lower is not guaranteed to be
unique. While typing may not be unique, there are guaranteed to be
finitely many typings for any variable x (as variable typing does not
introduce new type information to the environment, and so is not di-
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vergent). Further it seems unlikely that a variable would have very
many typings as intuitively multiple definitions for a type seem most
likely to arise from type extension, and type extension hierarchies seem
unlikely to be very deep. This has not been demonstrated empirically,
and is based solely on the author’s intuition.

3.2 Subtype Undecidability in Wyvcore

Subtyping in Wyvcore is undecidable. Undecidability can be demonstrated in
three different ways, each indirectly demonstrating a reduction of subtyping
in Wyvcore to the halting problem [80], and each implicating a different aspect
of subtyping.

1. Encoding System F<: in Wyvcore using Dependent Function Types (Sec-
tion 3.2.1): Subtyping in System F<: has long been known to be un-
decidable. I define an encoding from System F<: into Wyvcore using
dependent function types, to demonstrate that subtyping in Wyvcore

subsumes subtyping in System F<:.

2. Encoding System F<: in Wyvcore using Recursive and Path Dependent
Types (Section 3.2.2): I demonstrate a distinct encoding of System
F<: in Wyvcore using only recursive and path dependent types. This
demonstrates that undecidability of subtyping in Wyvcore is not merely
a matter of constraining dependent function types.

3. Encoding Java Generics in Wyvcore (Section 3.2.3): As I discuss in
Section 2.2.3, Java Generics have recently been demonstrated to be
Turing complete, and thus subtyping in Java Generics is undecidable.
I demonstrate that the fragment of Java Generics proven to be Turing
complete is encodable in Wyvcore, in turn implying that Wyvcore is
Turing complete.

All three of these encodings make use of different aspects of Wyvcore subtyp-
ing.
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1. The encoding of Section 3.2.1 uses dependent function types to encode
System F<:.

2. The encoding of Section 3.2.2 uses recursive and path dependent types
to encode System F<:.

3. The encoding of Section 3.2.3 uses nominality and recursive type re-
finement to encode Java Generics.

3.2.1 Encoding System F<:: Dependent Function Types

As Section 2.1.5 discussed, subtyping in System F<: is undecidable. In this
section I demonstrate that Wyvcore encodes the decidability problems of Sys-
tem F<:. The encoding of System F<: is fairly straightforward given the
combination of dependent function types and path dependent types. The
encoding is easily achieved in Figure 3.15 using a combination of path de-
pendent types and dependent function types. Note: I use the Latin T for
types and in Figure 3.15 instead of the Greek τ of Section 2.1.4, to avoid
confusion with the types of Wyvcore. I also use Greek α (instead of the Latin
x used in Wyvcore) to represent both type variables of System F<: and the
variables of Wyvcore.

The fundamental insight into the encoding of Figure 3.15, is that type
variables can be encoded as variables with type members. Thus we encode
a type variable α as a selection type α.A. We assume that it is possible
to use the same variable identifiers in Wyvcore as in System F<: for ease of
following examples. Function types in System F<: are encoded using depen-
dent function types, ignoring the argument in the return type. The encoding
of universally quantified types in Wyvcore is achieved again using dependent
function types. This time we do not ignore the argument, rather allowing the
return type to use the argument variable. Thus, in the same way that sub-
typing of universally quantified types in System F<: introduce a type variable
and a bound to the environment, dependent function types introduce a vari-
able typed with a structure type containing an upper bound type member.
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F(α) = α.A

F(T1 → T2) = ∀(_ : F(T1)).F(T2)

F(∀(α ⩽ T1).T2) = ∀(α : {A ⩽ F(T1)}).F(T2)

F(∅) = ∅
F(α ⩽ T,∆) = α : {A ⩽ F(T )}, F(∆)

Figure 3.15: Encoding System F<: in Wyvcore

Finally, the type environment ∆ is encoded as a series of variable typings,
and not as a series of type variable upper bounds.

The encoding of Figure 3.15 is somewhat unsurprising considering the
similar of the semantics of System F<: and the semantics for dependent
functions in Wyvcore. As Pierce actually proves the undecidability of System
F<:’s subtyping using a normal form of System F<:: FN

<:. I give the sub-
type rules for FN

<: in Figure 3.16 (again using Latin characters for types): In
fact, it is the NAll rule (S-All in System F<:) that is the main cause of
undecidability. For the encoding to be sound, we require F to preserve the
three properties of the subtyping described by NAll: (i) contra-variance on
the type bounds, (ii) covariance on the returns type, and (iii) environment
narrowing in the subtyping of the return types, introducing the bound on
the right hand side to the environment. To give an intuitive sense of why
the encoding of Figure 3.15 makes sense, consider the transformation of the
derivation in Figure 3.17

It is easy enough to demonstrate that the specific property described by
Figure 3.17 holds by demonstrating that the more general Theorem 3.2.1
holds.

Theorem 3.2.1 (F preserves subtyping). ∆ ⊢ T1 <: T2 ⇒ F(∆) ⊢
F(T1) <: F(T2)

Proof. Let n be the depth of some FN
<: subtyping derivation ∆ ⊢ T1 <: T2.

We proceed by induction on n.
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∆ ⊢ T <: ⊤ (NTop) ∆ ⊢ α <: α (NRefl)

∆(α) = T1 ∆ ⊢ T1 <: T2

∆ ⊢ α <: T1

(NVar)

∆ ⊢ T2 <: T1 ∆ ⊢ T ′
1 <: T ′

2

∆ ⊢ T1 → T ′
1 <: T2 → T ′

2

(NArr)

∆ ⊢ T2 <: T1 ∆, α ⩽ T2 ⊢ T ′
1 <: T ′

2

∆ ⊢ ∀(α ⩽ T1).T
′
1 <: ∀(α ⩽ T2).T

′
2

(NAll)

Figure 3.16: FN
<: Subtyping

Induction Hypothesis: for any subtype derivation ∆′ ⊢ T ′
1 <: T ′

2 of depth
m < n, then F(∆′) ⊢ F(T ′

1) <: F(T ′
2).

Using the induction hypothesis, we show that for each subtype rule in Figure
3.16, F preserves subtyping.

Case 1 (Base Case: NTop). Trivial.

Case 2 (Base Case: NRefl). Trivial.

Case 3 (Base Case: NVar).

∆(α) = T1 ∆ ⊢ T1 <: T2

∆ ⊢ α <: T1

(NVar)

Since ∆(α) = T1, it follows by the definition of F that

F(∆)(α) = {A ⩽ F(T1)}

Thus, by T-Var, we have

F(∆) ⊢ α : {A ⩽ F(T1)}
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∆ ⊢ T2 <: T1 ∆, α ⩽ T2 ⊢ T ′
1 <: T ′

2

∆ ⊢ ∀(α ⩽ T1).T
′
1 <: ∀(α ⩽ T2).T

′
2

⇓

F(∆) ⊢ F(T2) <: F(T1)

F(∆) ⊢ {A ⩽ F(T2)} <: {A ⩽ F(T1)}
F(∆), α : {A ⩽ F(T2)} ⊢ F(T ′

1) <: F(T ′
2)

F(∆) ⊢ ∀(α : {A ⩽ F(T1)}).F(T ′
1) <: ∀(α : {A ⩽ F(T2)}).F(T ′

2)

Figure 3.17: FN
<: NAll ⇒ Wyvcore S-All

By the induction hypothesis, we have

F(∆) ⊢ F(T1) <: F(T2)

Thus by S-Upper we get the desired result:

F(∆) ⊢ α <: F(T2)

Case 4 (Inductive Case: NArr).

∆ ⊢ T2 <: T1 ∆ ⊢ T ′
1 <: T ′

2

∆ ⊢ T1 → T ′
1 <: T2 → T ′

2

(NArr)

By the induction hypothesis, we have

F(∆) ⊢ F(T2) <: F(T1) F(∆) ⊢ F(T ′
1) <: F(T ′

2)

By environment weakening in Wyvcore we get

F(∆),_ : F(T2) ⊢ F(T ′
1) <: F(T ′

2)

Thus, by S-All we get the desired result:

F(∆) ⊢ ∀(_ : F(T1)).F(T ′
1) <: ∀(_ : F(T2)).F(T ′

2)
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Case 5 (Inductive Case: NAll).

∆ ⊢ T2 <: T1 ∆, α ⩽ T2 ⊢ T ′
1 <: T ′

2

∆ ⊢ ∀(α ⩽ T1).T
′
1 <: ∀(α ⩽ T2).T

′
2

(NAll)

By the induction hypothesis, we have

F(∆) ⊢ F(T2) <: F(T1) F(∆), α : {A ⩽ F(T2)} ⊢ F(T ′
1) <: F(T ′

2)

Thus, by S-All we get the desired result:

F(∆) ⊢ ∀(α : {A ⩽ F(T1)}).F(T ′
1) <: ∀(α : {A ⩽ F(T2)}).F(T ′

2)

Wyvern encodes the entire of System F<: and one could easily create
a similar example in Wyvern to that in Figure 2.14 using the encoding in
Figure 3.15. An encoding of FN

<: to Wyvcore is not in itself sufficient to
demonstrate subtype undecidability, for that a demonstration that Wyvcore

is a conservative extension to FN
<: is needed, that is that not only does every

subtype derivation in FN
<: have an equivalent in Wyvcore, but every subtype

relationship that is not derivable in FN
<: is also not derivable in Wyvcore.

Theorem 3.2.2 (Conservative Extension). If ∆ ⊢ T1 <: T2 is not derivable
in FN

<:, then F(∆) ⊢ F(T1) <: F(T2) is not derivable in Wyvcore.

Proof. We prove the contrapositive, (i.e. F(∆) ⊢ F(τ1) <: F(τ2) implies
∆ ⊢ τ1 <: τ2) by induction on the structure of the proof of F(Γ) ⊢ F(τ1) <:

F(τ2). The proof is relatively straightforward as the range of F does not
include structure types, ⊥ or lower bounds, thus one need only consider
cases for the rules S-Top, S-All, S-Rfl and S-Upper. The S-Top and
S-Rfl cases are trivial as they immediately hold by their FN

<: counterparts.
The S-All case is derived by an application of the induction hypothesis and
the NAll rule in FN

<:. Finally, the S-Upper case holds by the induction
hypothesis and the NVar rule in FN

<:.
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F ′(⊤) = ⊤
F ′(α) = α.A

F ′(T1 → T2) =

 A ⩾ F ′(T1)

B ⩽ F ′(T2)


F ′(∀(α ⩽ T1).T2) = ¬

α ⇒
A ⩽ F ′(T1)

B ⩾ F ′(T2)


where ¬τ = {X ⩾ τ}
F(∅) = ∅

F(α ⩽ T,∆) = α :

 A ⩾ F ′(T )

B ⩽ F ′(_)

 , F(∆)

Figure 3.18: Encoding System F<: in Wyvcore without functions

3.2.2 Encoding System F<:: Recursive Types

An encoding of the bounded quantification of System F<: is relatively simple,
and somewhat to be expected given the presence of both dependent function
types and path dependent types in Wyvcore. What might be surprising how-
ever, is that FN

<: subtyping can be encoded in Wyvcore even in the absence of
dependent function types. Figure 3.18 provides an encoding of the critical
aspects of FN

<: using only path dependent types and recursive types.
The encoding of Figure 3.18 differs from that of 3.15 in that it does

not employ dependent function types to encode either arrow types (T1 →
T2), or universally quantified type (∀(α ⩽ T1).T2). Encodings of both types
is achieved by using recursive type refinements and path dependent types.
The key to the encoding is the fact recursive types and path dependent
types include the two critical components of FN

<:: (i) contra-variance in the
subtyping of lower bounded type members, and (ii) quantification over types
(technically Wyvcore includes quantification over terms, but since terms may
contain types, this distinction is blurred for the purposes of encoding FN

<:).
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The final piece of the encoding in Figure 3.18 is the encoding of the ∆

environment of type variable bounds. Note that the encoding of ∆ in Figure
3.18 differs from that of Figure 3.15 in that the encoding of the type includes
two type declarations, A and B. This is because the encoding of universally
quantified types includes two members A and B. I leave the bound of B

unspecified because B is never accessed (all type selections are of the form
α.A), but for the purposes of the proof of subtype preservation, it is enough
that there exists some type for which the encoding is sound.

Theorem 3.2.3 (F ′ preserves subtyping). ∆ ⊢ T1 <: T2 ⇒ F(∆) ⊢
F ′(T1) <: F ′(T2)

Proof. Let n be the depth of some FN
<: subtyping derivation ∆ ⊢ T1 <: T2.

We proceed by induction on n.
Induction Hypothesis: for any subtype derivation ∆′ ⊢ T ′

1 <: T ′
2 of depth

m < n, then F ′(∆′) ⊢ F ′(T ′
1) <: F ′(T ′

2).
Using the induction hypothesis, we show that for each subtype rule in Figure
3.16, F ′ preserves subtyping.

Case 1 (Base Case: NTop). Trivial.

Case 2 (Base Case: NRefl). Trivial.

Case 3 (Base Case: NVar). Similar reasoning to the equivalent case in
Theorem 3.2.1.

Case 4 (Inductive Case: NArr).

∆ ⊢ T2 <: T1 ∆ ⊢ T ′
1 <: T ′

2

∆ ⊢ T1 → T ′
1 <: T2 → T ′

2

(NArr)

By the induction hypothesis, we have

F ′(∆) ⊢ F ′(T2) <: F ′(T1) F ′(∆) ⊢ F ′(T ′
1) <: F ′(T ′

2)
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By environment weakening in Wyvcore we get

F ′(∆),_ :

 A ⩾ F ′(T1)

B ⩽ F ′(T ′
1)

 ⊢ F ′(T2) <: F ′(T1)

F ′(∆),_ :

 A ⩾ F ′(T1)

B ⩽ F ′(T ′
1)

 ⊢ F ′(T ′
1) <: F ′(T ′

2)

By Sσ-Upper and Sσ-Lower we get

F ′(∆),_ :

 A ⩾ F ′(T1)

B ⩽ F ′(T ′
1)

 ⊢ (A ⩾ F ′(T1)) <: (A ⩾ F ′(T2))

F ′(∆),_ :

 A ⩾ F ′(T1)

B ⩽ F ′(T ′
1)

 ⊢ (B ⩽ F ′(T ′
1)) <: (B ⩽ F ′(T ′

2))

Thus, by S-Rfn we get the desired result:

F ′(∆) ⊢

 A ⩾ F ′(T1)

B ⩽ F ′(T ′
1)

 <:

 A ⩾ F ′(T2)

B ⩽ F ′(T ′
2)


Case 5 (Inductive Case: NAll).

∆ ⊢ T2 <: T1 ∆, α ⩽ T2 ⊢ T ′
1 <: T ′

2

∆ ⊢ ∀(α ⩽ T1).T
′
1 <: ∀(α ⩽ T2).T

′
2

(NAll)

By the induction hypothesis, we have

F(∆) ⊢ F(T2) <: F(T1)

F(∆), α :

α ⇒
A ⩾ F ′(T2)

B ⩽ F ′(T ′
2)

 ⊢ F(T ′
1) <: F(T ′

2)

By weakening we get

F(∆), α :

α ⇒
A ⩾ F ′(T2)

B ⩽ F ′(T ′
2)

 ⊢ F(T2) <: F(T1)
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By Sσ-Upper and Sσ-Lower we get

F ′(∆), α :

α ⇒
A ⩾ F ′(T2)

B ⩽ F ′(T ′
2)

 ⊢ (A ⩽ F ′(T2)) <: (A ⩽ F ′(T1))

F ′(∆), α :

α ⇒
A ⩾ F ′(T2)

B ⩽ F ′(T ′
2)

 ⊢ (B ⩾ F ′(T ′
2)) <: (B ⩾ F ′(T ′

1))

Thus, by S-Rfn we get:

F ′(∆) ⊢

α ⇒
A ⩾ F ′(T2)

B ⩽ F ′(T ′
2)

 <:

α ⇒
A ⩾ F ′(T1)

B ⩽ F ′(T ′
1)


Finally, by a combination of Sσ-Lower and S-Rfn we get the desired result:

F ′(∆) ⊢ ¬

α ⇒
A ⩾ F ′(T1)

B ⩽ F ′(T ′
1)

 <: ¬

α ⇒
A ⩾ F ′(T2)

B ⩽ F ′(T ′
2)


The encoding of Figure 3.18 is more troublesome than that of Figure

3.15 in attempting to derive a restriction that is acceptably expressive. A
natural inclination might be to apply a similar restriction to that of Kernel
F<:, i.e. require invariance on the contra-variant aspect of subtyping. For
dependent function types, this implies invariant argument types, a restriction
that still permits many instances of valuable expressiveness. For recursive
types however, this implies invariant lower bounds, which represents a much
larger loss of expressiveness.

A common instance of expressiveness using lower bounds features writing
to data structures as in the following append function.

1 def append[E](e : E,
2 l : List[Elem >: E]) : bool =
3 match l with
4 nil = e :: nil
5 e'::t = e'::(append e t)
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Enforcing invariance on lower bounds in this case would restrict usage of
append on lists with element type equal to the element being appended. Thus
append[Int](5, new List[Int]) would typecheck, but append[Int](5, new List[Number])
would not. This is clearly not a useful restriction, thus any decidable and
practical subset of Wyvern would need to address this issue.

3.2.3 Encoding Java Generics

Grigore [40] showed that Java Generics was Turing complete by demonstrat-
ing that Java subtyping could encode a Turing machine. The mechanism
that allows such a reduction is the recursive manner in which Java generics
can be used coupled with the contra-variant subtyping of Java wildcards, and
Java’s multiple inheritance (but not necessarily multiple instantiation inher-
itance). Wyvcore exhibits similar kinds of variance and recursive patterns to
those present in Java’s generics using path dependent types and type refine-
ment. Below is an example of a recursive type definition (derived from an
example defined by Greenman et al.) that leads to looping during subtyping:

1 interface Equatable <T extends Object >{}
2 interface List <T extends Object >
3 extends Equatable <List <? extends Equatable <? super T>>>{}
4 class ArrayList<T extends Object> implements List<T>{}
5 class Tree extends ArrayList <Tree >{}
6

7 public class Function {
8 public void func(Equatable<? super Tree> e){
9 }

10 public static void main(String[] args) {
11 Tree t = new Tree (); Function f = new Function ();
12 f.func(t); // loops during subtyping
13 }
14 }
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C⟨t1, . . . , tn⟩ <::∗ D⟨t′1, . . . , t′m⟩ t′′1 <: t′1 . . . t′′m <: t′m

C⟨t1, . . . , tn⟩ <: D⟨t′′1, . . . , t′′m⟩

Figure 3.19: Fragment of Java Subtyping (Grigore 2017)

The definition of List above contains a form of recursion, as List is defined
in terms of itself. Looping is not evidence for undecidability. While the above
code fragment will cause javac to crash with a StackOverflow error, it will
be rejected by the Eclipse IDE’s type checker. There are however other more
complex examples that will cause Eclipse to crash just by opening them in
Eclipse. Such an error has significantly more serious implications for tools
programmers rely on.

Grigore defined a fragment of Java’s subtyping and demonstrated it Tur-
ing complete. A Java type t under their formulation is a class C with n

(where n ≥ 0) type parameters, all of which are contra-variant. Classes
are specified in a class table, a list of class inheritance declarations of the
form: C⟨XC1, . . . , XCn⟩ <:: D⟨t1, . . . , tm⟩. The associated subtyping is given
in Figure 3.19. Note: <:: is overloaded in Grigore’s formulation of Java to
include inheritance lookup from the class table coupled with substitution of
type variables. Further, <::∗ is the transitive and reflexive closure of this sec-
ond meaning of <::. Thus, the usage of <::∗ in Figure 3.19 does not introduce
any free variables.

Java has what is called use-site variance, in that the variance used during
subtyping (co- or contra-variance) is specified at the use site. Other lan-
guages, such C♯, Scala, Kotlin and Ceylon all use declaration-site variance
to specify the variance used during subtyping. In Java, covariant subtyping
is indicated by ? extends at the use site, while contra-variant subtyping is
indicated by ? super. The subtyping provided in Figure 3.19 has declaration
site variance (technically every type parameter is contra-variant). Grigore
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points out that declaration site variance can be encoded in Java by replacing
every usage of a co-variant parameter with ? super _, and every usage of
a contra-variant parameter with ? super _ (only ? super _ in that case of
Figure 3.19).

By brief inspection of Figure 3.19, it seems unlikely that Wyvcore should
be able to encode it. It has already been mentioned that path dependent
types subsume the type parameters of Java Generics. Type definitions are
analogous to classes, and type refinements for path dependent types is anal-
ogous to supplying a type parameter to a class. The type extension defined
in Figure 3.11 is conceptually similar to class inheritance in so far as it de-
fines type extension. The feature that is missing is multiple inheritance style
hierarchies (see Section 2.2.1).

While Wyvcore does not contain multiple inheritance, it is possible to
encode it at a type level, if not for objects. Java inheritance hierarchies are
captured by class inheritance declarations in the class table. Wyvcore does not
have a class table, instead type definitions are stored within an environment,
and type definitions are not restricted to a single definition.

1 type ListAPI = {
2 type List[Elem <: ⊤] <: Equatable[List[Elem]]{
3 def equals : List[Elem] -> bool
4 }
5 type List[Elem <: ⊤] <: Traversable[Elem]{
6 def foreach[U] : (Elem -> U) -> ⊤
7 }
8 }

The code snippet above provides two definitions for List, one that extends
Equatable and another that extends Traversable. Any usage of List within
the context of ListAPI can treat List as an extension of either type. This has
no bearing concrete objects, as in order to instantiate ListAPI, the instanti-
ating object would have to contain a single List definition that satisfied both
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W(XCi) = zC .XC

W(C⟨t⟩) = z0.C
{

XC ⩾ W(t)
}

W(∅) = ∅

W(∆, {X1 ⩾ t1, . . . , Xn ⩾ tn}D) = W(∆), z0.D


zD ⇒

X1 ⩾ W(t1)

X1 ⩾ ⊥
...
Xn ⩾ W(tn)

Xn ⩾ ⊥


W(C⟨XC⟩ <:: D⟨t⟩;CT ) = C ⩽ z0.D

{
zC ⇒

XD ⩾ W(t)

XC ⩾ ⊥

}
,W(CT )

Figure 3.20: Encoding Java (Grigore 2017) in Wyvcore

of the above definitions, which is not possible in Wyvcore (unless Equatable
somehow subtyped Traversable, or vice versa). While not useful for typing
objects, it is still possible to construct questions of subtyping around them.
Thus, for the purposes of encoding Java’s subtyping, we can consider Wyvcore

as containing multiple inheritance.

An encoding (W(t) = τ) of the Java types used in Figure 3.19 into
Wyvcore types is provided in Figure 3.20. Firstly, the encoding of Figure
3.20 makes a distinction between a top level self variable (z0) and all self
variables internal to type definitions (zC). A type variable is encoded as
a type selection on the internal self variable. A class type is encoded as a
non-recursive type refinement, whose base type is a type selection on the top
level self variable. The type refinement refines the type definitions within
the base type with the types provided as parameters. An encoding for class
tables is also provided, encoding class definitions as type definitions. A class
definition C⟨. . .⟩ extending some other class D⟨. . .⟩ is encoded as a type
definition named C upper bounded by a type refinement on z0.D. The re-
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X ⩾ t ∈ ∆ ∆ ⊢ t′ <: t

∆ ⊢ t′ <: X

C⟨tC⟩ <::∗ [t1/X1, . . . , tn/Xn]D⟨t′⟩
∆, {X1 ⩾ t1, . . . , Xn ⩾ tn}D ⊢ t <: t′

∆ ⊢ C⟨tC⟩ <: D⟨t⟩

Figure 3.21: Alternative form of Java Subtyping (Grigore 2017) with Explicit
Substitutions

finement defines all of C’s type members as lower bounded by ⊥, and refines
the members belonging to D as lower bounded by the relevant types. The
encoded class table is included in all subtyping as an initial environment:
ΓCT = z0 : {z0 ⇒ W(CT )}.

Before we can show that subtyping in Java Generics is a subset of subtyp-
ing in Wyvcore, some preliminary definitions and lemmas are needed. First
we define a modified version of Java subtyping that explicitly includes the
transitivity of the inheritance step, rather than relying on a transitive inher-
itance relation. This more closely resembles the type extension of Wyvcore.
Further, we restrict the number of type parameters to n ≤ 1 to make the
proofs simpler, but it would be just as easy to construct an equivalent proof
for an arbitrary number of type parameters. The definition of the alternate
form of Java subtyping can be found in Figure 3.21.

The subtyping of Figure 3.21 still differs in a significant way to that of
Wyvcore: type variables are substituted out in Java, while in Wyvcore, selection
types are stored within an environment. In order to capture this difference, I
define type Java extension substitution implied by the Java variant of Figure
3.21.

Lemma 3.2.1 (Wyvcore Flattening subsumes Java Substitution). For all C,
D, and tC , tD, t1, X1, . . . , tn, Xn, if C⟨tC⟩ <::∗ [t1/X1, . . . , tn/Xn]D⟨tD⟩,
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then

ΓCT ⊢ W(C⟨tC⟩) ⩽::∗ flat(W(D⟨t′D⟩),



Xn ⩾ W(tn)

Xn ⩾ ⊥
...
X1 ⩾ W(t1)

X1 ⩾ ⊥


, z)

Proof. By induction on the structure of the proof of C⟨tC⟩ <::∗ [t1/X1, . . . , tn/Xn]D⟨tD⟩:

Case 1. The base case is the single inheritance step:

C⟨tC⟩ <:: D⟨tD⟩

By the definition of <::, there exists t′D such that C⟨XC⟩ <:: D⟨t′D⟩ ∈ CT

and tD = [tC/XC ]t
′
D. Thus, by the definition of W(CT ), we have

ΓCT ⊢ z0 : {C ⩽ z0.D

zC ⇒
XD ⩾ W(t′D)

XC ⩾ ⊥

}

And by E-Rfn we get

W(C⟨tC⟩) = z0.C{XC ⩾ W(tC)}

ΓCT ⊢ z0.C{XC ⩾ W(tC)} ⩽:: z0.D

zC ⇒
XD ⩾ W(t′D)

XC ⩾ ⊥
XC ⩾ W(tC)


Which is equal to the desired result: flat(W(D⟨t′D⟩),

 XC ⩾ ⊥
XC ⩾ W(tC)

 , zC)

Case 2. The inductive case is the transitive inheritance step:

C⟨tC⟩ <:: [tn/Xn]C
′⟨t′C⟩ C ′⟨t′C⟩ <::∗ [t1/X1, . . . , tn−1/Xn−1]D⟨tD⟩
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By the induction hypothesis we know that

ΓCT ⊢ W(C ′⟨t′C⟩) ⩽::∗ flat(W(D⟨t′D⟩),



Xn−1 ⩾ W(tn−1)

Xn−1 ⩾ ⊥
...
X1 ⩾ W(t1)

X1 ⩾ ⊥


, z)

It is an easy step, using the same reasoning as in Case 1 to demonstrate that

ΓCT ⊢ z0.C{zC ⇒ W(tC)} ⩽:: z0.D

zC ⇒
XC′ ⩾ W(t′C)

XC ⩾ ⊥
XC ⩾ W(tC)

, and thus

by successive applications of E-Rfn we get

ΓCT ⊢ W(C⟨tC⟩) ⩽::∗ flat(W(D⟨t′D⟩),



Xn ⩾ W(tn)

Xn ⩾ ⊥
...
X1 ⩾ W(t1)

X1 ⩾ ⊥
XC ⩾ W(tC)

XC ⩾ ⊥


, z)

Note, that for the purposes of well-formedness we include members in-
dicating unassigned type parameters as X ⩾ ⊥ in the definitions of types.
These members are kept around during type extension, but can be ignored
during subtyping as there is no Java type t such that W(t) <: ⊥, and
since type variables in Java are always substituted out, there will always be
another more specific member X ⩾ W(T ) in the environment.

Theorem 3.2.4. For all t, t′ and ∆, if ∆ ⊢ t <: t′, then ΓCT ,W(∆) ⊢
W(t) <: W(t′)
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Proof. We proceed by induction on the structure of the proof of ∆ ⊢ t <: t′.

Case 1 (Base Case: ∆ ⊢ t′ <: X).

X ⩾ t ∈ ∆ ∆ ⊢ t′ <: t

∆ ⊢ t′ <: X

By the definition of W(∆), there exists some z such that W(X) = z.X, and

ΓCT ,W(∆) ⊢ z : _{_ ⇒ X ⩾ W(t)}

Further, by the induction hypothesis, we get

ΓCT ,W(∆) ⊢ W(t′) <: W(t)

Thus, by S-Lower, we get the desired result:

ΓCT ,W(∆) ⊢ W(t′) <: W(X)

Case 2 (Inductive Case: ∆ ⊢ C⟨tC⟩ <: D⟨t⟩).

C⟨tC⟩ <::∗ [t1/X1, . . . , tn/Xn]D⟨t′⟩
∆, {X1 ⩾ t1, . . . , Xn ⩾ tn}D ⊢ t <: t′

∆ ⊢ C⟨tC⟩ <: D⟨t⟩
By the induction hypothesis, we get

ΓCT ,W(∆), zD : z0.D


zD ⇒

X1 ⩾ W(t1)

X1 ⩾ ⊥
...
Xn ⩾ W(tn)

Xn ⩾ ⊥


⊢ W(t) <: W(t′)

By Lemma 3.2.1 we get

ΓCT ,W(∆) ⊢ W(C⟨tC⟩) ⩽::∗ z0.D


zD ⇒

XD ⩾ W(t′)

X1 ⩾ W(t1)

X1 ⩾ ⊥
...
Xn ⩾ W(tn)

Xn ⩾ ⊥
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Thus by successive applications of S-Ext, and finally an application of S-
Rfn, we get the desired result.
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Chapter 4

Material/Shape Separated
Wyvcore

In Chapter 3 I define the Wyvcore calculus, and demonstrate several ways in
which subtyping is undecidable in Wyvcore. In this Chapter, I define the basis
for decidable subtyping of variants of Wyvcore, a Material/Shape Separation
for Wyvcore based on the work of Greenman et al. [39] for Java. We construct
a separation on types, classifying them as either Materials or Shapes, and
restricting where Shapes may be used.

This Chapter begins by discussing the tension between (i) the need to
restrict recursion in types to obtain decidable subtyping, and (ii) the expres-
siveness of nominality, in order to build a design and high level understanding
of the Material/Shape Separation in Wyvcore (Section 4.1). I finally formalize
this separation using a graphical representation of types (Section 4.2).

4.1 Designing a Material/Shape Separation
for Wyvcore

In Section 2.2.4 I described the Material/Shape separation [39] designed by
Greenman et al. for Java. In this section I design a similar separation for
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Wyvcore. The immediate question is: why choose the Material/Shape separa-
tion, and not take some other approach to subtype decidability for Wyvcore?
Firstly, there is an obvious similarity between the recursion of Wyvcore and
Java: in both languages types can explicitly be defined recursively. If we
recall the example used in Section 2.2.4.

1 interface Eq<T>
2 class List<E> implements Eq<List<Eq<E>>>

As I described in Section 2.2.4, recursive type definitions in Java are defined
using two language features, inheritance and parametric polymorphism. In
the example above, List is recursively defined as inheriting from Eq<List<Eq<E>>>.
Wyvcore does not feature inheritance, however it does include the aspect of
Java’s inheritance that we are concerned with: nominal subtyping (via ab-
stract type members, see 2.2.4). Similarly, Wyvcore does not feature paramet-
ric polymorphism, but type members can be used to model type parameters
(see 2.2.1). In fact, to some degree, type members model all of the language
features required for recursion in Java: type definitions, nominality, and
polymorphism. These similarities between recursive type definitions in Java
and Wyvcore suggest that the Material/Shape separation might be a good fit
for Wyvcore.

The Material/Shape separation also has the advantage that it does not
seem to exclude most real world Java programs. Wyvern is a young language,
and thus it is not possible to know what patterns might be commonly used in
real world Wyvern programs, and therefore whether the results of the survey
by Greenman et al. can be extrapolated to Wyvern. It is however, useful to
have the subset of expressiveness defined by the Material/Shape separation
of Greenman et al. as a baseline of expressiveness.

In order to design a Material/Shape separation for Wyvcore analogous to
the one Greenman et al. designed for Java, we need to be able to identify
type definitions (class or interface declarations), type extensions (extends or
implements in Java), and parametric polymorphism (class generics in Java).
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As we have already noted, in Wyvcore, all these features are modeled using
type members. Below I rewrite the List/Eq example in Wyvcore.

1 { z0 =>
2 type Eq <: { type T >: ⊥ }
3 type List <: z0.Eq{ z =>
4 type E
5 type T >: z0.List{ type E = z0.Eq{ type T = z.E } }
6 }

In Java, type definitions, type extension, and parametric polymorphism, all
have separate syntactic forms, and thus were easily differentiated. Each
of these features play a role in defining the Material/Shape separation. In
Wyvcore, we must judge by the particular usage of a type member to de-
termine if it is a type definition (e.g. type List or type Eq), or if it is a
polymorphic member definition (e.g. type E). We need to also differentiate
between type extension usages (e.g. type List <: Eq{ ...قق }), and specifi-
cation of polymorphic type members (e.g. type T = z0.List{ ...قق }). How-
ever, even if we were able to identify the intent for a particular type usage,
unfortunately nominal subtyping in Wyvcore is not equivalent to the nominal
subtyping of Java. In this section, I will address these two problems in the
design of a Material/Shape separation. Since the Material/Shape separation
is largely intuitive, we will use this intuition (informed by the Material/Shape
separation for Java) rather than a formal definition, in discussing these design
decisions. I will wait until I have elaborated on the design before presenting
the final formal design of the Material/Shape separation.

4.1.1 Relaxing The Material/Shape Separation

A central difficulty in defining a Material/Shape separation in Wyvcore, is
that in general, there is no obvious way to differentiate between the type
definition of z0.List and z.T. There is no way to determine the intent of a
type declaration: is it a definition, or a polymorphic type? In the Materi-
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al/Shape separation defined for Java these different usages require different
rules: Shapes may be used in type definitions, but not in polymorphic posi-
tions. In Java this distinction is explicitly included as part of the language
syntax. In Wyvcore, these two usages are syntactically indistinguishable.

As an example, consider the List/Eq example. As yet, we have not
formally defined a separation on Materials and Shapes in Wyvcore, but for
now, I will look to the same example in Java, and assume that we intend Eq
to be a Shape, and List a Material. In the Java version of the example, it
seems easy to restrict Shapes (Eq in this case) from use in polymorphic types,
but allow them in type definitions. In Wyvcore, these two language features
use the same syntactic form: a type member. As a result, if we try to apply
the Material/Shape separation defined for Java to Wyvcore, we quickly run
into problems. In the case of Eq, using our classification of Materials and
Shapes, we would correctly disallow the use of z0.Eq from the definition of
z.T, but incorrectly disallow z0.Eq from the definition of z0.List. In fact,
classifying Eq as a Shape would make Eq essentially unusable in any position,
significantly reducing the expressiveness of Wyvcore. While technically usable
as an argument type to a function, the function would be unusable since
nothing could subtype it, as no type could be defined as extending Eq.

The solution to the problem is to relax the restriction on Shapes to only
prohibiting them from use in lower bounds. This relaxed restriction is still
enough to build an argument of decidability, but not before we address the
other issues related to the Material/Shape separation.

4.1.2 Nominality in Wyvcore vs Java

Recursion in Wyvcore is possible because of the ability to assign names to
types, and to use the name of a type in its definition. Naming of types is
also fundamental to another property of Wyvcore, subtype nominality. Nom-
inality allows programmers to easily construct new types by referring to and
extending existing types. Nominality also allows programmers to restrict
data to a specific origin.
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What is notable about the proofs of undecidability in Section 3.2 is less
the undecidability of Wyvcore through the presence of dependent function
types (Section 3.2.1), but rather the two proofs of undecidability that rely
on recursive types and nominality. One through the encoding of System F<:

(Section 3.2.2), and the other through the encoding of Java (Section 3.2.3). In
this Section I discuss nominality in Wyvcore and compare it to the nominality
in Java. I identify two specific ways nominality in Wyvcore differs from Java.

Example: A Nominal List Implementation

Nominal subtyping in Wyvcore refers to the nominality that is exhibited by
subtyping in DOT (see Section 2.2.1): through abstract type members. That
is, type members that have been defined in an abstract manner, by way of an
upper bound (L ⩽ τ), and not a specific type (L = τ). Thus an abstract
type member represents an abstraction of data, and not a specific datatype.
To demonstrate this form of nominality, I recall the ListAPI example from
Section 2.2.4:

1 type ListAPI = { self =>
2 type Equatable <: ⊤{ z =>
3 type E >: ⊥
4 def equals : E -> bool
5 }
6 type List <: self.Equatable{ z =>
7 type E = self.List{ type T = z.T }
8 type T <: ⊤
9 }

10 def nil : self.List{type T = ⊥}
11 def cons : (x : {type Elem <: ⊤},
12 e : x.Elem,
13 l : List{type T <: x.Elem}) ->
14 self.List{type T <: x.Elem}
15 }
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16 val myListAPI : ListAPI

In the above example, we define the interface for a ListAPI. Equatable is
defined using an abstract definition, and is used in the definition of List,
another abstract type. myListAPI is a field that refers to a specific instance of
ListAPI. The abstract specification of Equatable means that subtyping is in
effect nominal. Since Equatable is defined without a lower bound (in fact the
lower bound is actually ⊥), the only types that may subtype it are either ⊥,
or type refinements on Equatable (such as Equatable{type E = Int}). Put
another way, only types that are explicitly defined as subtyping Equatable are
considered subtypes of Equatable, i.e. nominal subtyping. Similarly, since
List is an abstract type member, it too exhibits nominal subtyping. This
form of nominality allows for the abstraction visible in the function definitions
of nil and cons. Programmers are provided an interface for constructing
their own lists, but are unable to access the specific implementation provided
by any particular instance of ListAPI. Through such a pattern, Wyvcore is
able to model abstract data types [32].

Nominal Super-typing

Nominal subtyping in Wyvcore differs from that of Java in the restrictions
placed on which types may super-type another type. As the ListAPI ex-
ample demonstrated, nominal type definitions in Wyvcore only restrict which
types may subtype a type, and not which types may super-type a type. In
Java however, nominality is defined by the class hierarchy, and subtyping
is restricted from above as well as from below. A Java type C<_> may only
be super-typed by types defined by classes that are direct super classes of
C. In Wyvcore however, the List type from the ListAPI example, may only
be subtyped by types that explicitly refine List, but may be super-typed
by any type that super-types its upper bound. Thus the following subtype
relationship holds:

List <: { def equals :⊥ -> bool }
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There is no equivalent subtype relationship in Java. The reader, might how-
ever notice that the above statement is not exactly true and the type hier-
archies of Wyvcore and Java are more alike than I am letting on. The type
{ def equals :⊥ -> bool } is in fact a type refinement on ⊤, a type that
List does transitively extend (via Equatable). The difference of course is
that the equivalent of ⊤ in Java is Object, and subtyping in Java does not
allow for type parameters on Object, let alone arbitrary refinements. In fact,
type parameters in Java are restricted to those defined for the class of the
type in question. It is therefore perhaps more accurate to say that the nomi-
nal type hierarchy of Java restricts arbitrary super-typing of type refinements
(type parameters in Java) in a way that Wyvcore does not.

This difference is not especially problematic in general, and in fact allows
for the kinds of useful expressiveness that structural subtyping is intended for.
It does however have implications when designing restrictions on recursive
nominal subtyping. This distinction between the semantics of nominality in
Wyvcore and Java is important for the Material/Shape separation due to the
implicit restriction Java’s nominal subtyping places on Shapes. A central
property of subtyping in Material/Shape separated Java is that Shapes may
only be super-typed by other Shapes, and as a result when comparing type
parameters during subtyping, Shapes are removed, and are guaranteed to
never occur again. In Wyvcore, as I have discussed, structural subtyping
means that we can not be sure that only Shapes super-type other Shapes.

Extending Wyvcore’s Nominal Semantics

We now address the lack of nominal super-typing in Wyvcore. The gist of our
approach is to provide both nominal subtyping and nominal super-typing for
Shapes in Wyvcore. We do this by again looking to Java’s nominal subtyping.
Java restricts how type parameters are used, and subsequently how they are
subtyped. What I mean by this is that Java type parameters are unique to the
class they are defined within. There is no way to induce structural subtyping
of type parameters without employing the class that they are defined within.
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Given a class declaration:

class C<E> extends D

There is no way in Java to define a type of unknown class, that contains a
type parameter named E, and subsequently compare this type to some C<T>.
Such a type makes no sense in Java. Structural subtyping is however possible
in Wyvcore:

C{type E <: {...قق <: {type E <: ...قق }

The ellipses represent unimportant type information.
The Material/Shape separation designed for Java achieves decidability by

identifying those types critical in constructing recursive inheritance (Shapes),
and syntactically ensuring that there exists a maximal depth beyond which
Shapes do not occur (by restricting their usage in all but top level positions
of types). The definition of Shapes derives from they way they are used,
more specifically the way they are parameterized (or extended in Wyvcore)
as part of recursive inheritance definitions. It is not just the Shapes that are
involved in instances recursive inheritance, but also the type parameters, and
how they relate to the type being defined. In other words, while Equatable
might be identified as a Shape in the ListAPI example, the problematic
aspect of that example is the way List is defined in terms of itself using the
type parameter E of Equatable.

The decidability argument that arises from the Material/Shape separa-
tion depends on the fact that through nominality, Java restricts subtyping
of parameters to specific cases. The structural subtyping inherent in Wyvcore

allows for Shapes to be “side-stepped”. That is, the problematic relationship
can be inspected during the evaluation of some subtype algorithm without
going through the Shape that acts as a guard. In the previous ListAPI exam-
ple, the problematic relationship was between List, and the type parameter
(type member in Wyvcore) E, originally defined within Equatable. In the
example below, the Shape Equatable can be side-stepped entirely:

List{type E <: _} <: {type E <: _}
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Γ ⊢ x : {M ⩽ τ}

Γ ⊢ x.M ⩽:: τ
(E-Mat)

Γ ⊢ x : {S ⩽ τ} τ is a shape

Γ ⊢ x.S ⩽:: τ
(E-Sha)

Figure 4.1: Material/Shape Separated Wyvcore Type Extension

In order to enforce a greater degree of nominality on Shapes, I define a
modification of the type extension semantics defined in Figure 3.11. Figure
4.1 differentiates type extension for materials and shapes. The type exten-
sion rule for materials is as normal, but the type extension rule for shapes
requires that the extended type also be a shape. Note: this does not require
all Shapes to be defined in terms of Shapes, rather that a Shape can only be
judged as extending another Shape. This prevents arbitrary structural sub-
typing of shapes, and ensures the nominality required for the Material/Shape
separation. That is, with this fix, Shapes in Wyvcore now have both nominal
subtyping and nominal super-typing.

Nominality for Concrete Types

Another difference between the nominality in Wyvcore and Java, is that in
Wyvcore, nominal subtyping is reserved for abstract types, and not concrete
types. Concrete types (i.e. referring to a specific type: L = τ), i.e. types
that might be instantiated, do not exhibit nominal subtyping. In Java, con-
crete types are defined by class definitions, while abstract types are defined
using either interface or abstract class definitions. Both of these types ex-
hibit nominal subtyping. This might not normally be a problem (as we might
want to allow structural subtyping for concrete types), but as we have iden-
tified, Shapes may only be used in a nominal type definition, i.e. the upper

95



Chapter 4 Designing a Material/Shape Separation for Wyvcore

bound of a type. In Wyvcore, a concrete type definition (L = τ) defines both
its’ upper and lower bound (as τ). A prohibition on the used of Shapes in
lower bounds means that concrete types may not be defined in using Shapes.
This severely restricts the usefulness of Shapes. As an example, while we
can define the abstract type List as an extension of Eq, we could not define
a concrete ArrayList using Eq, meaning that we could not usefully imple-
ment ListApi. Our solution to this problem is to introduce a new syntactic
form for type members that allows nominal subtyping, and thus the use of
Shapes, for concrete types in Wyvcore. I will now discuss this problem in
greater detail, and introduce our new syntactic form.

Note: thus far I have not defined a term syntax or operational semantics
for Wyvcore, as we are largely concerned with the interactions of types. For
the purposes of examples, I assume a term syntax, typing properties and
operational semantics similar to that of DOT 2016. I will elaborate on these
semantics when necessary, but will not if the details are largely unimportant
to the example.

At runtime, myListAPI must be initialized with a concrete object of a
concrete type (that is, not abstract). Below I provide a minimal example
of such an object. I omit the implementation of the methods nil and cons
along with the internals of the types as we are only interested in how the
types relate to each other (hence the ellipses).

1 val myListAPI = new ListAPI{ self =>
2 type Eq = ⊤{ z => ... }
3 type List = self.Eq{ z => ... }
4 ...
5 }

The types myListAPI.Equatable and myListAPI.List do not exhibit nom-
inal subtype behaviour. As I have already discussed, Shapes as defined for
Wyvcore (and Java), are an inherently nominal concept, and in Wyvcore, may
not be used in a lower bound. As a result, the definition of List above is
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σ ::= Declaration Type
...
L ⪯ τ nominal definition

Γ ⊢ x : {L ⪯ τ}

Γ ⊢ x : {L ⩽ τ}
(T-Nom)

Γ ⊢ τ1 <: τ2

Γ ⊢ L ⪯ τ1 <: L ⩽ τ2
(Sσ-Upper⪯)

Γ ⊢ L ⪯ τ <: L ⪯ τ (Sσ-Nominal)

Figure 4.2: Concrete Nominal Type Definitions

illegal due to the use of a Shape (Eq) in it’s lower bound. The solution we
introduce is an alternate syntactic form for type members: a concrete, but
nominal definition. I define this extension to the syntax and semantics in
Figure 4.2.

Selections on nominal types may be treated as selections on upper bounds
(T-Nom) in the same way that selections on exact types can, but critically
they are not treated as having a lower bound, and thus can’t be subtyped
except by reflexivity or type refinement. In most cases selections on nominally
defined types behave just like upper bounded types. They differ in that
subtyping of their definitions is invariant during subtyping (Sσ-Nominal).
This means that objects can be initialized with nominally defined types,
something that is not true of abstractly defined types. From the perspective
of the Material/Shape separation, this means that they may contain shapes
in the way that specific types (L = τ) cannot, but can be used during object
initialization in the way that abstract upper bounded types cannot. We are
now able to rewrite the earlier example of MyListAPI:
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1 new ListAPI{
2 type Eq = { ... }
3 type List ⪯ Eq{ self => ... }
4 }

Note the nominal form (⪯) used to define List, as opposed to the specific
type (=) in the code fragment presented earlier in this section.

4.2 Formalizing The Material/Shape Separa-
tion in Wyvcore

In this section I formalize the Material/Shape separation for Wyvcore. To help
formally address the distinction between different type usages in Wyvcore, I
develop a graphical representation of types similar to that of Greenman et al..
The Material/Shape separation designed for Java also uses a graphical repre-
sentation of types, however those graphs elide much of the type information.
In developing a Material/Shape separation into Wyvcore, it is useful to elabo-
rate this information for both clarity, and to help make explicit the language
features (type definition, type extension, and parametric polymorphism) rep-
resented by each.

4.2.1 Type Graphs in Wyvcore

In Figure 4.3 I define a syntax for type definition graphs in Wyvcore. I define
the vertex (Definition 4.2.1) and edge (Definition 4.2.2) sets, along with the
type definition graph (Definition 4.2.3) for a specific Java environment.

Definition 4.2.1 (Wyvcore Type Definition Vertices). For a given environ-
ment Γ, we define the set of vertices as
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V ::= Vertex
z :: type L type definition
z :: val l value definition
⩽ τ upper bound
⩾ τ lower bound
= τ exact type
⪯ τ nominal type
: τ value type
τ type usage

E ::= Edge
V → V bound
V

def→ V definition
V

{}→ V member
V

{}→
x.L

V extension member

V
∀→ V parameter

V
ret→ V return

V
⩽::→ V extension

Figure 4.3: Syntax for Wyvcore Type Definition Graphs

VΓ ≜



V

∣∣∣∣∣

V = zق::type L,∃ r τ, Γ ⊢ z : {L r τ}, r ∈ {⩽,⩾,=,⪯} ∨
V = zق::val l, Γ ⊢ z : {l : . . .} ∨
V = (r τ), r ∈ {⩽,⩾,=,⪯},∃z L,Γ ⊢ z : {L r τ} ∨
V = (: τ),∃z l,Γ ⊢ z : {l : τ} ∨
V = τ, (r τ) ∈ VΓ r ∈ {⩽,⩾,=,⪯, :}∨
V = τ1, (∀(x : τ1).τ2) ∈ VΓ ∨
V = τ2, (∀(x : τ1).τ2) ∈ VΓ ∨
V ∈ VΓ,z:τ{z⇒σ}}, τ{z ⇒ σ} ∈ VΓ ∨
V ∈ VΓ,x:τ1 ,∀(x : τ1).τ2 ∈ VΓ ∨
V = r τ, τ ′ ∈ VΓ,Γ ⊢ τ ′ ⩽:: τ, r ∈ {⩽,⩾,=,⪯} ∨
V = τ, τ ′ ∈ VΓ,Γ ⊢ τ ′ ⩽:: τ



Definition 4.2.2 (Wyvcore Type Definition Edges). For a given environment
Γ, with vertex set VΓ we define the set of edges as
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EΓ ≜



E

∣∣∣∣∣

E = zق::type L → r τ, Γ ⊢ z : {L r τ} ∨
E = r x.L{z ⇒ σ} {}→

x.L
τ, L′ r′ τ ∈ σ, r r′ ∈ {⩽,⩾,=,⪯} ∨

E = r x.L{z ⇒ σ} {}→
x.L

τ, l : τ ∈ σ, r ∈ {⩽,⩾,=,⪯} ∨

E = r x.L{z ⇒ σ} def→ xق::type L, r ∈ {⩽,⩾,=,⪯} ∨
E = x.L{z ⇒ σ} {}→τ, L′ r′ τ ∈ σ, r r′ ∈ {⩽,⩾,=,⪯},
x.L{z ⇒ σ} ∈ VΓ ∨

E = x.L{z ⇒ σ} {}→τ, l : τ ∈ σ, r ∈ {⩽,⩾,=,⪯},
x.L{z ⇒ σ} ∈ VΓ ∨

E = x.L{z ⇒ σ} def→ xق::type L, r ∈ {⩽,⩾,=,⪯},
x.L{z ⇒ σ} ∈ VΓ ∨

E = ∀(x : τ1).τ2
∀→ τ1,∀(x : τ1).τ2 ∈ VΓ ∨

E = ∀(x : τ1).τ2
ret→ τ2,∀(x : τ1).τ2 ∈ VΓ ∨

E = r τ ′
⩽::→ τ,Γ ⊢ τ ′ ⩽:: τ, r ∈ {⩽,⩾,=,⪯} ∨

E = τ ′
⩽::→ τ,Γ ⊢ τ ′ ⩽:: τ


Definition 4.2.3 (Wyvcore Type Definition Graph). For a given environ-
ment Γ, we define a type definition graph as

GΓ ≜ (VΓ, EΓ)

What definitions 4.2.1, 4.2.2, and 4.4 capture is a graphical representation
of the relationships between type definitions in a program. That is, for
an environment Γ, type graph GΓ is the graph whose vertices (V in Figure
4.3) represent types and their definitions, while edges represent relationships
between those types and definitions. A vertex (V ) is either a type definition
(of the form z :: type L), a value defintion (z :: val l), an upper bound
(⩽ τ), a lower bound (⩾ τ), an exact type (= τ), a nominal bound (⪯ τ),
a value type (: τ), or a type usage (τ). An edge (E) between these vertices
either connects a type definition (or value definition) to it’s bound (V → V ),
a selection type to it’s definition (V def→ V ), a type refinement to a member
within the refinement (V {}→ V ), a type refinement on the top level of a bound
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z0ق::List

z0.List{قق...}

⪯ z0.Eq{قق...} {...قق}

{...قق} z.T

z0.Eq{قق...}

{...قق}

z0ق::Eq

z0.Eq{قق...}

def

⩽::

def

⩽::
{}

{} z0.Eq

{}

def

⩽::

⩽::

Figure 4.4: Type Graph (Definition) of List in Wyvcore

to a member within the refinement (V {}→
x.L

V ), a dependent function type to

it’s argument type (V ∀→ V ) and it’s return type (V ret→ V ), or a type to it’s
extended type (V ⩽::→ V ).

Using Definitions 4.2.1, 4.2.2, and 4.2.3, I construct the graph in Figure
4.4, which provides a full representation of the List and Eq types in the
Wyvcore version (including the syntactic extension of Section 4.1.2) of the
List/Eq example.

1 new ListAPI{ z0
2 type Eq = ⊤{
3 type E >: ⊥
4 def equals : E -> boolean
5 }
6 type List ⪯ z0.Eq{ z =>
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7 type T <: ⊤
8 type E = z0.List{type T = z0.Eq{type E = z.T}}
9 }

10 }

For the purposes of space, I elide the details of some vertices in Figure 4.4 by
the use of elipses. Note, as with the graph in Figure 2.23, there is only one
cycle (class List → ... def→ class List), with only one edge labeled with
a type name (Eq). In fact, from the perspective of cycles, these two graphs
are equivalent. The differences are apparent in that all of the relevant type
relationships are visible in Figure 4.4.

The recursion of types in Wyvcore means that their expansion is not finite,
but a critical feature of type graphs is that they are finite. Recursion in
Wyvcore is due to the presence type members. Usages of type members in
type graphs point back to the definition of the type member, and do not
introduce a new type.

4.2.2 An Extended Syntax for Material/Shape Sepa-
rated Wyvcore

Given the definition of type graphs, we are now able to define the Materi-
al/Shape separation for Wyvcore. As with the original Material/Shape sepa-
ration designed for Java, we define Shapes in Definition 4.2.4.

Definition 4.2.4. Let T be all types defined as a type member of some object
in an environment Γ. We define as shapes, some set S of types such that
removing all edges labeled with an element of S from the type graph usage of
Γ results in an acyclic graph. We define all remaining types, the set M, as
materials. M and S are disjoint, and T = M∪S.

The result of Definition 4.2.4 is that every type cycle in Material/Shape
separated Wyvcore is guaranteed to contain at least one Shape. Thus, while
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L ::= Type Name
M material
S shape

Figure 4.5: Separation on Material/Shape Type Names

τ ::= Type
η{z ⇒ σ}
x.L{z ⇒ δ}
x.M

∀(x : τ).τ

⊤
⊥

σ ::= Decl. Type
M ⩽ τ

M ⩾ η

M = η

L ⪯ τ

l : η

η ::= Material Type
η{z ⇒ δ}
x.M

∀(x : η).η

⊤
⊥

δ ::= Mat. Decl. Type
M ⩽ η

M ⩾ η

M = η

L ⪯ η

l : η

Figure 4.6: Material/Shape Separated Wyvcore Syntax

the expansion of a type in Material/Shape separated Wyvcore might be infi-
nite, there is guaranteed to be a finite “Shape Depth”. It is this measure that
I will use to demonstrate termination of subtyping in the variants of Wyvcore

described in the rest of this thesis.
Finally, Figure 4.6 provides a Material/Shape separated syntax for Wyvcore,

that defines where Shape may be used, and where they are prohibited. The
Material/Shape separation defines where shapes may be used safely. Types
are separated into general types (τ) that may contain either Materials or
Shapes, and pure material types (η) that do not contain any Shapes, along
with general declaration types (σ) and pure material declaration types (δ).

103



Chapter 4 Formalizing The Material/Shape Separation in Wyvcore

Shapes are restricted to function types (∀(x : τ).τ) and upper bounded type
definitions only (L ⩽ τ and L ⪯ τ). Shapes are also restricted to refined
usages (x.L{z ⇒ δ}). This ensures that any subtype of a shape must use the
S-Refine rule, and thus that the restriction on shape extension in Figure
4.1 applies in subtyping all shape usages. Further, all refinements on shapes
are restricted to materials (δ).
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A General Decidability
Argument

In this Chapter I use the Material/Shape separation defined in Chapter 4
to formalise a general argument that I use to prove subtype decidability
for type systems defined throughout the rest of the thesis. In Chapter 4, I
defined a Material/Shape separation for Wyvcore, that ensures that for any
type definition, there is a finite “shape depth”. That is, for any Wyvcore type
in some environment, if we recursively unfold that type, there is a finite depth
at which a Shape occurs. This “Shape Depth” is the depth measure that is
used in proving subtype decidability for the decidable variants presented
later in this thesis, and I define such a depth measure measure later in this
Chapter.

A Material/Shape separation does not however ensure decidability. There
is a remaining problem of environment narrowing. For any type, the “Shape
Depth ” is dependent on a specific environment. If the environment changes
during subtyping, we cannot be sure that the shape depth does not change.
This Chapter introduces an intermediate representation of Wyvcore types
called Wyvexpand, that removes environment narrowing. Types in Wyvexpand

represent the (potentially infinite) expansion of types in Wyvcore. This rep-
resentation, along with terminating subtype algorithm is the basis for all of
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the decidability proofs found in the rest of this thesis. That is, if it can be
shown that subtyping for any variant of Wyvcore is reducible to subtyping of
this variant, then it follows that subtyping for that variant is decidable.

In Section 5.1 I define Wyvexpand, an expansion of Wyvcore types. In Section
5.2 I define a subtype algorithm (subtype) for types in Wyvexpand. In Section
5.3 I define the shape depth measure, on types in Wyvexpand, and then use
the shape depth measure to prove termination of subtype. I subsequently
provide some brief examples of how shape depth relies on an environment to
be well behaved during subtyping. All variants of Wyvcore in later Chapters
deal with this problem of environment narrowing in some way. Finally, in
Section 5.5.1, I present one such variant of Wyvcore called Wyvfix, describe
how Wyvfix deals with environment narrowing, and prove subtyping for Wyvfix

decidable by demonstrating a sound and complete reduction from subtyping
for Wyvfix to subtyping of Wyvexpand.

5.1 Wyvexpand: Recursive Expansion of Wyvcore

Types
As I have already mentioned, environment narrowing in Wyvcore is a problem
for subtype decidability. All of the variants of Wyvcore that are defined in the
rest of this thesis introduce some restriction on environment narrowing. In
this Section I define a syntax for expanded types in Wyvcore called Wyvexpand.
Expanding types by unfolding the type members to their definitions makes
the definition of a subtype algorithm much easier, as we are not required to
maintain an environment, and don’t have to consider environment narrowing.
Further, a full expansion allows an easier definition of the finite measure
Shape Depth (Section 5.3). In all of the variants of Wyvcore that I define
in the rest of the thesis include some restriction on environment narrowing,
and target Wyvexpand as an intermediate language in order to demonstrate
subtype decidability. In Figure 5.1 I define a syntax for Wyvexpand.

Types in Wyvexpand largely resemble types in Wyvcore, except in those
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T ::= Type
∀(x : T ).T

{z ⇒ D}
x.L{z ⇒ D} 7→ T

x.L 7→ D

⊤
⊥

D ::= Decl. Type
L ⩽ T

L ⩾ T

L = T

L ⪯ T

l : T

Figure 5.1: Type Syntax for Wyvexpand

cases that include a type member selection. This is evident by looking at
the syntax defined in Figure 5.1. A syntactic term is either a type (T ) or
a declaration type (D). Types that are constructed from selection types
differ from those of Wyvcore, in that they include the definitions of the type
selection as a syntactic subterm. A selection type (x.L 7→ D) includes the
set of type member definitions (D) associated with the type selection (x.L)
. A type refinement on a selection type (x.L{z ⇒ D} 7→ T ) includes the set
of extended types (T ) represented by the type refinement.

Types in Wyvexpand represent an expansion of types in Wyvcore, and as
such, I define a mapping that captures this in Figure 5.2. The mapping of
Wyvcore types to Wyvexpand types in Figure 5.2 is fairly self-explanatory. There
are two notable properties of Figure 5.2: (i) a type T might be infinite due
to the recursion present in Wyvcore (I address this directly in Section 5.3),
and (ii) Figure 5.2 constitutes an algorithm for expanding Wyvcore types into
Wyvexpand types since it is syntax directed, and there is no ambiguity of rules.
This second property is important because this means it is always possible
to generate the expansion of a type.
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Γ ⊢ τ 7−→ T

Γ ⊢ ⊤ 7−→ ⊤ Γ ⊢ ⊥ 7−→ ⊥
Γ ⊢ σ 7−→ D σ = {σ|Γ ⊢ x : {σ}, id(σ) = L}

Γ ⊢ x.L 7−→ x.L 7→ D

Γ, z : x.L{z ⇒ σ} ⊢ σ 7−→ D Γ ⊢ τ 7−→ T τ = {τ |Γ ⊢ x.L{z ⇒ σ} <:: τ}

Γ ⊢ x.L{z ⇒ σ} 7−→ x.L{z ⇒ D} 7→ T

Γ, z : {z ⇒ σ} ⊢ σ 7−→ D

Γ ⊢ {z ⇒ σ} 7−→ {z ⇒ D}

Γ ⊢ τ1 7−→ T1 Γ, x : τ1 ⊢ τ2 7−→ T2

Γ ⊢ ∀(x : τ1).τ2 7−→ ∀(x : T1).T2

Γ ⊢ τ 7−→ T

Γ ⊢ L ⩽ τ 7−→ L ⩽ T

Γ ⊢ τ 7−→ T

Γ ⊢ L ⩾ τ 7−→ L ⩾ T

Γ ⊢ τ 7−→ T

Γ ⊢ L = τ 7−→ L = T

Γ ⊢ τ 7−→ T

Γ ⊢ L ⪯ τ 7−→ L ⪯ T

Γ ⊢ τ 7−→ T

Γ ⊢ l : τ 7−→ l : T

Figure 5.2: Unfolding Types in Wyvcore to Types in Wyvexpand

5.2 A Subtyping Algorithm for Wyvexpand

I now define a subtype algorithm for subtyping between types in Wyvexpand:
subtype. If T1 and T2 are types in Wyvexpand, then subtyping between them
is captured by

subtype(T1, T2) = true

Before providing the final subtype algorithm, I define some helper func-
tions in Algorithm 1 that assit in deriving the lower bound of a selection
type:

• ub: the upper bound function takes a type, and returns a set of defined
upper bounds for that type.

• lb: the lower bound function takes a type, and returns a set of defined
lower bounds for that type.
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ub(T)
switch T do

case x.L 7→ D do
∪

D∈D

ub(D);

case L ⩽ T ′ do {T ′};
case L ⩾ _ do {⊤};
case L = T ′ do {T ′};
case L ⪯ T ′ do {T ′};
otherwise do ∅;

end
lb(T)

switch T do
case x.L 7→ D do

∪
D∈D

lb(D);

case L ⩽ _ do {⊥};
case L ⩾ T ′ do {T ′};
case L = T ′ do {T ′};
case L ⪯ T ′ do {T ′};
otherwise do ∅;

end
Algorithm 1: Wyvexpand Subtyping Helper Functions

The definitions for ub and lb are fairly straightforward, and simply pattern
match on the definitions defined for a selection type, returning the set of
bounds (either upper or lower bounds).

The Subtyping Algorithm

Subtyping of types in Wyvexpand is given in Algorithms 2 and 3. Both algo-
rithms are based on the Wyvcore subtype rules defined in Figure 3.14. Unlike
types that exist within an environment, the unfolded types of Wyvexpand in-
clude all type information as syntactic sub-components. Thus, the main
algorithm, Algorithm 2 is syntactically driven, and each successive call to
subtype (or subtypeDecl) is made on syntactic components of the previous
call. Note: at the moment there is no indication that subtype should termi-
nate, as expanded types are potentially infinite, and thus each component is
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subtype(T1, T2)
switch T1 do

case ⊤ do
switch T2 do

case ⊤ do true;
case x.L 7→ D do

∨
T∈lb(T2)

subtype(T1, T ) ;

otherwise do false;
end

case ⊥ do true;
case x1.L1 7→ D1 do

switch T2 do
case ⊤ do true;
case x2.L2 7→ D2 do (x2 = x2 ∧ L1 = L2) ∨ (

∨
T∈ub(T1)

subtype(T , T2))∨

(
∨

T∈lb(T2)
subtype(T1, T )) ;

otherwise do
∨

T∈ub(T1)
subtype(T , T2) ;

end
case ∀(x : S1).U1 do

switch T2 do
case ⊤ do true;
case x.L 7→ D do

∨
T∈lb(T2)

subtype(T1, T ) ;

case ∀(x : S2).U2 do (subtype(S2, S1)) ∧ subtype(U1, U2) ;
otherwise do false;

end
case T ′

1{z ⇒ D1} 7→ T 1 do
switch T2 do

case ⊤ do true;
case x.L 7→ D do

∨
T∈lb(T2)

subtype(T1, T ) ;

case T ′
2{z ⇒ D2} 7→ T 2 do

if T ′
1 == T ′

2 then
subtypeDecl(D1, D2)

else ∨
T∈T1

subtype(T , T2)

end
otherwise do false;

end
end

Algorithm 2: Wyvexpand Subtyping Algorithm
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subtypeDecl(D1, D2)
switch D1, D2 do

case L1 ⩽ T1, L2 ⩽ T2 do
if L1 = L2 then subtype(T1, T2);
else false;

case L1 = T1, L2 ⩽ T2 do
if L1 = L2 then subtype(T1, T2);
else false;

case L1 ⩾ T1, L2 ⩾ T2 do
if L1 = L2 then subtype(T2, T1);
else false;

case L1 = T1, L2 ⩾ T2 do
if L1 = L2 then subtype(T2, T1);
else false;

case L1 = T1, L2 = T2 do
if L1 = L2 then subtype(T2, T1) ∧ subtype(T1, T2);
else false;

case L1 ⪯ T1, L2 ⪯ T2 do
L1 = L2 ∧ T1 = T2

case l1 : T1, l2 : T2 do
if l1 = l2 then subtype(T1, T2);
else false;

otherwise do false;
end

Algorithm 3: Wyvexpand Declaration Subtyping Algorithm
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S(⊤) = 0

S(⊥) = 0

S(x.S 7→ D) = 0

S(x.M 7→ D) = 1 +max(S(D))

S(∀(x : T1).T2) = 1 +max(S(T1),S(T2))

S(T{z ⇒ D} 7→ T ) = if T is a shape
then 0

else 1 +max(S(T ),S(D))

S(L ⩽ T ) = 1 + S(T )

S(L ⩾ T ) = 1 + S(T )

S(L = T ) = 1 + S(T )

S(L ⪯ T ) = 1 + S(T )

S(l : T ) = 1 + S(T )

Figure 5.3: Shape Depth Measure on Type Graphs

not necessarily smaller than it’s parent.
subtype takes two types as arguments, and returns either true or false.

subtypeDecl takes two declaration types as arguments, and returns either
true or false. Both subtype and subtypeDecl consist of switch statements
that pattern match on the syntactic form of the first argument, and then the
second.

As I mentioned at the beginning of this section, Algorithms 2 and 3
are based on the subtype rules of Wyvcore, and attempt to perform a proof
search by inverting the rules. Thus, the premises of the Wyvcore’s subtype
rules become sub-calls to Algorithms 2 and 3. Due to this correlation, it
is possible to draw comparisons between rules in Figure 3.14 and cases in
Algorithms 2 and 3. In fact, subsequent proofs of decidability for variants of
Wyvcore aim to demonstrate this exact correlation.

5.3 Shape Depth

In Chapter 4 I defined a Material/Shape separation on types that restricts
Shapes from certain uses. In this Section I will use the Material/Shape
separation to define a finite measure on types. As I have already noted,
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expanded types in Wyvexpand may be infinite due to the potential for recursive
definitions. This makes it difficult to nail down a finite measure that strictly
decreases during subtyping.

While types in Wyvexpand may be infinite, they do have a finite “Shape
Depth”. That is, an infinite type in Wyvexpand corresponds to a recursive type
in Wyvcore. A recursively defined type in Wyvcore must exhibit a cycle in it’s
type graph (by Definition 4.2.4). By Definition 4.2.4, that cycle must include
a Shape. Thus, for any vertex V in a type graph G there does not exist an
infinite path that does not include a Shape. Inverting this line of reasoning,
for any infinite type in Wyvexpand, there must be a finite maximum depth at
which a Shape occurs. I define this depth in Figure 5.3

Below I define a set of separation properties on type graphs. These prop-
erties all follow directly from Definition 4.2.4 and the syntax defined in Figure
4.6, and can be statically checked apart from typing.

Separation Property 1. All cycles in type graphs of type definitions contain
at least one edge that is labelled with a Shape (by definition 4.2.4).

Separation Property 2. All type names are either Materials or Shapes (by
Definition 4.2.4).

Separation Property 3. Lower bounds do not contain Shapes (by Figure
4.6).

Separation Property 4. Refinements on Shapes do not contain Shapes (by
Figure 4.6).

Since types in Wyvexpand are derived from types in Wyvcore, we could just
as easily define S on Wyvcore types. However for ease of defining a subtyping
algorithm, we define S on Wyvexpand types.

Theorem 5.3.1 (S is a Finite Measure). For all Γ, τ , GΓ, and T , such
that Γ ⊢ τ 7−→ T , and GΓ is the type graph for Γ, if GΓ observes the
Material/Shape separation, then S(T ) is finite.
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Proof. T is either

(a) Finite or

(b) Infinite.

If T is finite, then it follows immediately that S(T ) is finite. If T is infinite,
then it follows that τ contains a recursive definition, and thus for any type
name used in this definition, there is a finite depth at which it occurs. By
Separation Property 1 it follows that any recursive definition in τ contains
a Shape, and thus there is a finite depth at which a Shape occurs in T . It
follows directly that S(T ) is finite.

5.4 Termination of Subtyping Algorithm
In this Section I demonstrate that all calls to the subtype (and subtypeDecl)
function are guaranteed to terminate if the arguments obey the Materi-
al/Shape separation. The proof of termination of subtype serves as a gen-
eral proof of decidability for all forms of subtyping that are equivalent to
subtype. That is, for all variants of Wyvcore subtyping, if Γ ⊢ τ1 <: τ2 ⇐⇒
subtype(T1, T2) = true, where Γ ⊢ τ1 7−→ T1 and Γ ⊢ τ2 7−→ T2, subtyping
is decidable. Unfortunately this does not hold for the Wyvcore subtype rules
defined in Chapter 3. Wyvfix defined in Section 5.5.1 and the variants defined
in the following Chapters take different approaches to constructing variants
of Wyvcore subtyping that do observe this equivalence.

Theorem 5.4.1. For any subtype check, subtype(T1, T2) there exists a max-
imum depth after which all calls to subtype have a pure material type on the
right-hand side.

Proof. By induction on S(T1) + S(T2) it is demonstrable that there is a
maximum depth at which either T1 or T2 with be a Shape. If either T1 or
T2 is a Shape, subtype can only make progress by traversing the other side
of the subtype check, and again by induction on the shape depth of that
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side, there is a maximum depth at which the other side is also a Shape.
The subtype comparison of two shapes can only have two outcomes, failure
(trivially satisfying the desired result), or a comparison of two pure material
refinements, also satisfying the desired result.

Theorem 5.4.2. For any subtype check subtype(T1, T2), where T2 is a pure
material, all subsequent calls to subtype will also have a pure material on
the right-hand side.

Proof. Proceed by case analysis on T2.

Case 1 (T2 = ⊤). Trivial.

Case 2 (T2 = ⊥). Case analysis on T1 demonstrates that any subsequent calls
to subtype that might arise must have ⊥ on the right-hand side, satisfying
the desired result.

Case 3 (T2 = x.L 7→ D). Case analysis on T1 demonstrates that any
subsequent calls to subtype must either have T2 on the right-hand side or
the lower bound of T2, another pure material, thus satisfying the desired
result.

Case 4 (T2 = ∀(x : S2).U2). Case analysis on T1 demonstrates that any
subsequent calls to subtype must either have T2 on the right-hand side, U2

(a pure material) or the type bound of some other universally quantified type
(another pure material), all satisfying the desired result.

Case 5 (T2 = T{z ⇒ D} 7→ T ). Case analysis on T1 demonstrates that any
subsequent calls to subtype must either have T2 on the right-hand side, some
Di ∈ D (a pure material) or the lower bound of some other type member
(another pure material), all satisfying the desired result.

Theorem 5.4.3. Any subtype check subtype(T1, T2), where T2 is a pure
material type, will terminate for all inputs.
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Proof. Our proof is by induction on the measure in Figure 5.3. I have already
noted that S(T1) + S(T2) is finite for all T1 and T2. This follows from the
Material/Shape separation, specifically Property 1.

Now, the proof proceeds by induction on the size of S(T1) + S(T2). For
any call to subtype, it can be shown that any subsequent calls are strictly
smaller. By Theorem 5.4.2 no Shapes will occur on the right-hand side of any
subsequent calls to subtype. Since occurrences of Shapes must be refined, a
Shape on the right-hand side may only be compared with another Shape on
the left (which will not occur). Thus execution of subtype is bound by the
finite shape depth on the right-hand side.

Theorem 5.4.4 (Decidability). Any call to Algorithm 2,
subtype(T1, T2) will terminate for all inputs.

Proof. Follows directly from Theorems 5.4.1 and 5.4.3.

5.5 Fixed Environments
I have already discussed environment narrowing as it affects type safety
proofs in DOT (see Section 2.2.1), but environment narrowing is the cen-
tral reason subtyping in Wyvcore is not equivalent to subtyping of Wyvexpand

Informally environment narrowing is the process whereby a variable within
an environment is mapped to a more specific, or “narrower” type. Formally,
preservation by environment narrowing is given in Property 5.5.1.

Property 5.5.1 (Environment Narrowing Preserves Subtyping).

Γ ⊢ τ ′ <: τ Γ(x) = τ Γ ⊢ τ1 <: τ2

Γ[x : τ ′] ⊢ τ1 <: τ2

Property 5.5.1 states that if τ1 subtypes τ2 in Γ, then narrowing the type
of some x preserves that subtype relationship.

Environment narrowing can occur in multiple parts of a type system
like Wyvcore or DOT. Environment narrowing during term reduction has
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been well covered for DOT. In Wyvcore, environment narrowing occurs during
subtyping.

In this Section I define Wyvfix, a decidable variant of Wyvcore that is
free from narrowing during subtyping entirely. As such, Wyvfix is not a
subset of Wyvcore. I provide a proof of subtype decidability for Wyvfix, and
subsequently discuss the properties of type system.

5.5.1 Wyvfix

Wyvfix is a variant of Wyvcore that removes narrowing from the subtyping
judgement. The strategy fixes types to the context in which they were de-
fined. In Wyvcore, narrowing occurs in two places during subtyping: function
subtyping and refinement subtyping:

Γ ⊢ τ2 <: τ1 Γ, x : τ2 ⊢ τ ′1 <: τ ′2

Γ ⊢ ∀(x : τ1).τ
′
1 <: ∀(x : τ2).τ

′
2

(S-All)

Γ, z : τ{z ⇒ σ1} ⊢ σ1 <: σ2

Γ ⊢ τ{z ⇒ σ1} <: τ{z ⇒ σ2}
(S-Rfn)

In both cases, types are defined in one context and then subtyped in
another. In S-All: τ ′1 is defined in a context where x : τ1, but during
subtyping, the type of x is narrowed to τ2. In S-Rfn: declaration types σ2

are defined in an environment where z, the self variable, has type τ{z ⇒ σ2},
but during subtyping the type of z is narrowed to τ{z ⇒ σ1}. The key
modification to the Wyvfix subtype rules over those of Wyvcore is a double
headed subtype judgement.

Γ1 ⊢ τ1 <: τ2 ⊣ Γ2

Subtyping takes place in the context of two environments, one for each type.
All variable within τ1 are typed in the context of Γ1, and similarly all variables
within τ2 are typed in the context of Γ2. Thus, any variation from the defining
environment of a type is prevented during subtyping, as typings always take
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Γ1 ⊢ τ <: ⊤ ⊣ Γ2 (S-Top) Γ1 ⊢ ⊥ <: τ ⊣ Γ2 (S-Bot)

Γ1 ⊢ x.L <: x.L ⊣ Γ2 (S-Rfl)

Γ1 ⊢ x : {L ⩽ τ ′}
Γ1 ⊢ τ ′ <: τ ⊣ Γ2

Γ1 ⊢ x.L <: τ ⊣ Γ2

(S-Upper)

Γ2 ⊢ x : {L ⩾ τ ′}
Γ1 ⊢ τ <: τ ′ ⊣ Γ2

Γ1 ⊢ τ <: x.L ⊣ Γ2

(S-Lower)

Γ2 ⊢ τ2 <: τ1 ⊣ Γ1

Γ1, x : τ1 ⊢ τ ′1 <: τ ′2 ⊣ Γ2, x : τ2

Γ1 ⊢ ∀(x : τ1).τ
′
1 <: ∀(x : τ2).τ

′
2 ⊣ Γ2

(S-All)

Γ1 ⊢ τ1 ⩽:: τ Γ1 ⊢ τ <: τ2 ⊢ Γ2

Γ1 ⊢ τ1 <: τ2 ⊣ Γ2

(S-Ext)

Γ1, z : τ{z ⇒ σ1} ⊢ σ1 <: σ2 ⊣ Γ2, z : τ{z ⇒ σ2}

Γ1 ⊢ τ{z ⇒ σ1} <: τ{z ⇒ σ2} ⊣ Γ2

(S-Rfn)

∀σ2 ∈ σ2,∃σ1 ∈ σ1, Γ1 ⊢ σ1 <: σ2 ⊣ Γ2

Γ1 ⊢ σ1, σ1 <: σ2, σ2 ⊣ Γ2

(S-Decls)

Γ1 ⊢ τ1 <: τ2 ⊢ Γ2

Γ1 ⊢ L ⩽/= τ1 <: L ⩽ τ2 ⊣ Γ2

(Sσ-Upper)

Γ2 ⊢ τ2 <: τ1 ⊢ Γ1

Γ1 ⊢ L ⩾/= τ1 <: L ⩾ τ2 ⊣ Γ2

(Sσ-Lower)

Γ1 ⊢ τ1 <: τ2 ⊢ Γ2 Γ2 ⊢ τ2 <: τ1 ⊢ Γ1

Γ1 ⊢ L = τ1 <: L = τ2 ⊣ Γ2

(Sσ-Equal)

Γ1 ⊢ τ1 <: τ2 ⊢ Γ2 Γ2 ⊢ τ2 <: τ1 ⊢ Γ1

Γ1 ⊢ L ⪯ τ1 <: L ⪯ τ2 ⊣ Γ2

(Sσ-Nominal)

Γ1 ⊢ τ1 <: τ2 ⊢ Γ2

Γ1 ⊢ l : τ1 <: l : τ2 ⊣ Γ2

(Sσ-Value)

Figure 5.4: Wyvfix Subtyping
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place within the same environment. A double headed subtype relation is not
a novel form. Amin et al. [13], used a double headed form of subtyping to
push back on narrowing when attempting to derive transitivity. While Amin
et al. used a double headed form of subtyping in a specific instance, Wyvfix

entirely replaces subtyping with the double headed form.
Wyvfix is syntactically identical to Wyvcore. The full subtype semantics

are given in Figure 5.4. Apart from the addition of a second environment,
subtyping of Wyvfix does not differ from that of Wyvcore. Member lookup
is performed in the environment related to the appropriate type (S-Upper
and S-Lower). Environment updates are performed simultaneously on both
environments (S-All and S-Rfn). Comparison of types in contra-variant
positions invert the positions of the environments.

5.5.2 Subtype Decidability

The advantage of Wyvfix over other type systems discussed in this thesis is the
ease with which subtyping can be reduced to subtyping of Wyvexpand. Subtyp-
ing in Fixed Wyvern completely removes narrowing and thus the expansion
of types in Wyvfix to Wyvexpand remains constant during subtyping.

The proof of subtype decidability is achieved from a proof of equivalence
between Wyvfix subtyping and subtyping of the Wyvexpand types those types
expand to. This is provided in Lemmas 5.5.1 and 5.5.2. Subtype decidability
follows directly in Theorem 5.5.1.

Lemma 5.5.1 (Subtyping ⇒ subtype). For all Wyvfix types and declaration
types, τ1, σ1, τ2 and σ2 in environments Γ1 and Γ2, and their expansions into
Wyvexpand T1 and T2, and D1 and D2 such that

Γ1 ⊢ τ1 7−→ T1

and
Γ2 ⊢ τ2 7−→ T2

119



Chapter 5 Fixed Environments

and
Γ1 ⊢ σ1 7−→ D1

and
Γ2 ⊢ σ2 7−→ D2

if
Γ1 ⊢ τ1 <: τ2 ⊣ Γ2 then subtype(T1, T2) = true

and if
Γ1 ⊢ σ1 <: σ2 ⊣ Γ2 then subtypeDecl(D1, D2) = true

Proof. Proof proceeds by mutual induction on the structure of the proofs of

Γ1 ⊢ τ1 <: τ2 ⊣ Γ2 Γ1 ⊢ σ1 <: σ2 ⊣ Γ2

• Induction Hypothesis 1: for any sub-proof in Γ1 ⊢ τ1 <: τ2 ⊣ Γ2,
subtype (or subtypeDecl) returns true.

• Induction Hypothesis 2: for any sub-proof in Γ1 ⊢ σ1 <: σ2 ⊣ Γ2,
subtype (or subtypeDecl) returns true.

Case 1 (Base Case: S-Top).

τ2 = ⊤

It follows by inversion of the derivation of Γ ⊢ τ1 7−→ T2, that T2 = ⊤.
Thus, after case analysis on T1, the desired result, subtype(T1,⊤) = true is
trivially derived.

Case 2 (Base Case: S-Bot).

τ1 = ⊥

It follows by inversion of the derivation of Γ ⊢ τ1 7−→ T2, that T1 = ⊥.
Thus, the desired result, subtype(⊥, T2) = true is trivially derived.
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Case 3 (Base Case: S-Rfl).

τ1 = τ2 = x.L

By inversion on the derivation of Γ1 ⊢ τ1 7−→ T1 and Γ2 ⊢ τ2 7−→ T2, it
follows that there exists D1 and D2 such that

T1 = x.L 7→ D1 T2 = x.L 7→ D2

By the definition of subtype, it follows trivially that subtype(x.L 7→ D1, x.L 7→
D2) = true.

Case 4 (S-Upper).

τ1 = x.L Γ1 ⊢ x : {L ⩽ τ ′} Γ1 ⊢ τ <: τ2 ⊣ Γ2

By the derivation of Γ ⊢ τ1 7−→ T1, it follows that there exists D such that:

T1 = x.L 7→ D

By the definition of type expansion to Wyvexpand, it follows that ∃T ′
1 ∈

ub(x.L 7→ D). By the inductive hypothesis, it follows that subtype(T ′
1, T2) =

true. Thus by case analysis on T2, it is easy to demonstrate that subtype(T1, T2) =

true, the desired result.

Case 5 (S-Lower).

τ2 = x.L Γ2 ⊢ x : {L ⩾ τ ′} Γ1 ⊢ τ1 <: τ ⊣ Γ2

By the derivation of Γ ⊢ τ2 7−→ T2, it follows that there exists D2 and T ′
2

such that:

T2 = x.L 7→ D2 Γ2 ⊢ τ 7−→ T ′
2

By the definition of type expansion, it follows that T ′
2 ∈ lb(x.L 7→ D). By

the inductive hypothesis, it follows that subtype(T1, T
′
2) = true. Thus by

case analysis on T1, it is easy to demonstrate that subtype(T1, T2) = true,
the desired result.
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Case 6 (S-All).

τ1 = ∀(x : τ ′1).τ
′′
1 τ2 = ∀(x : τ ′2).τ

′′
2 Γ2 ⊢ τ ′2 <: τ ′1 ⊣ Γ1

Γ1, x : τ ′1 ⊢ τ ′′1 <: τ ′′2 ⊣ Γ2, x : τ ′′2

By the definition of Γ1 ⊢ τ1 7−→ T1, it follows that there exists T ′
1 and T ′′

1

such that

Γ1 ⊢ τ ′1 7−→ T ′
1 Γ1, x : τ ′1 ⊢ τ ′′1 7−→ T ′′

1 T1 = ∀(x : T ′
1).T

′′
1

Similarly, there exists T ′
2 and T ′′

2 such that

Γ2 ⊢ τ ′2 7−→ T ′
2 Γ2, x : τ ′2 ⊢ τ ′′2 7−→ T ′′

2 T2 = ∀(x : T ′
2).T

′′
2

By the induction hypothesis, it follows that subtype(T ′
2, T

′
1) = true and

subtype(T ′′
1 , T

′′
2 ) = true. Thus it is easy to demonstrate that subtype(T1, T2) =

true, the desired result.

Case 7 (S-Ext).

Γ1 ⊢ τ1 ⩽:: τ Γ1 ⊢ τ <: τ2 ⊣ Γ2

By the definition of type extension, either τ1 is some x.L, where Γ1 ⊢ x :

{L ⩽ τ}, in which case we can use the same reasoning to Case 4 to derive
the desired result, or τ1 is some τ ′{z ⇒ σ}. In the second case, by inversion
on the derivation of Γ1 ⊢ τ1 7−→ T1 there exists some T ′, D, T and T such
that

Γ1 ⊢ τ ′ 7−→ T ′

Γ1 ⊢ σ 7−→ D Γ1 ⊢ τ 7−→ T T1 = T ′{z ⇒ D} 7→ T T ′ ∈ T

By the induction hypothesis, it follows that subtype(T, T ′
2) = true. Thus it

is easy to demonstrate that subtype(T1, T2) = true, the desired result.

Case 8 (S-Rfn).

τ1 = τ{z ⇒ σ1} τ2 = τ{z ⇒ σ2} Γ1, z : τ1 ⊢ σ1 <: σ2 ⊣ Γ2, z : τ2
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By the derivation of Γ1 ⊢ τ1 7→ T1 there exists T ′
1 and D1 such that

Γ1 ⊢ τ 7→ T ′
1 Γ1, z : τ1 ⊢ σ1 7→ D1

Similarly, there exists T ′
2 and D2 such that

Γ2 ⊢ τ 7→ T ′
2 Γ2, z : τ2 ⊢ σ2 7→ D2

By the induction hypothesis, it follows that subtypeDecl(D1, D2) = true,
and thus giving the desired result: subtype(T1, T2) = true.

The remaining cases related to declaration subtyping are all easily derived
by an application of the induction hypothesis to the premises.

Lemma 5.5.2 (Subtyping ⇐ subtype). For all τ1 and τ2 in environments
Γ1 and Γ2 respectively, Γ1 ⊢ τ1 <: τ2 ⊣ Γ2 is derivable if subtype(T1, T2) =

true, where T1 and T2 are the Wyvexpand expansions of τ1 and τ2 such that
Γ1 ⊢ τ1 7−→ T1 and Γ2 ⊢ τ2 7−→ T2.

Proof. Since the evaluation of subtype(T1, T2) is finite, we induct on its eval-
uation depth. The evaluation depth of subtype(T1, T2) is defined as the
number of recursive calls made during it’s evaluation. Then by case analy-
sis on those combinations of T1, T2 where either subtype(T1, T2) = true, or
results in a recursive call to subtype.

Case 1 (T1 = ⊤, T2 = ⊤). Trivial.

Case 2 (T1 = ⊤, T2 = x.L 7→ D). There is one sub-evaluation subtype(T1, lb(x.L))
which is strictly smaller in terms of evaluation depth than subtype(T1, T2).
By inversion on the derivation of Γ ⊢ τ2 7−→ x.L 7→ D there exists τ and T

such that

Γ2 ⊢ τ 7−→ T T ∈ lb(x.L 7→ D) Γ2 ⊢ x : {L ⩾ τ}
subtype(T1, T ) = true

That is, τ expands to T , and T is a lower bound of x.L in Γ2, and super
types T1. By the inductive hypothesis, it follows that Γ1 ⊢ τ1 <: τ ⊢ Γ2.
Thus, by S-Lower the desired result is achieved.
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Case 3 (T1 = ⊥). Trivial.

Case 4 (T1 = x.L, T2 = ⊤). Trivial.

Case 5 (T1 = x1.L1 7→ D1, T2 = x2.L2 7→ D2). subtype(T1, T2) reduces to
(x1 = x2∧L1 = L2)∨(subtype(up(x1.L1 7→ D1), T2))∨(subtype(T1, lb(x2.L2 7→
D2))). Thus, one of these boolean subterms must equal true. By case anal-
ysis:

Subcase 1 (x1 = x2 ∧ L1 = L2). By trivial application of S-Rfl.

Subcase 2 (subtype(ub(x1.L1 7→ D1), T2) = true). By the equivalence be-
tween upper_bound and upper bound lookup, and similar reasoning to that
of Case 2 the desired result is achieved.

Subcase 3 (subtype(T1, lb(x2.L2 7→ D2)) = true). By the same reasoning
as the Case 2 the desired result is achieved.

Case 6 (T1 = x.L 7→ D, T2 = _). By the equivalence between ub and upper
bound lookup, and similar reasoning to that of Case 2 the desired result is
achieved.

Case 7 (T1 = ∀(_ : _)._, T2 = ⊤). Trivial.

Case 8 (T1 = ∀(x : S).U , T2 = x.L 7→ D). By the same reasoning as that of
Case 2 the desired result is achieved.

Case 9 (T1 = ∀(x : S1).U1, T2 = ∀(x : S2).U2).

subtype(T1, T2) = subtype(S2, S1) ∧ subtype(U1, U2) = true

Both of the above evaluations of subtype have strictly smaller evaluation
depths than subtype(T1, T2). By the inversion of the derivation of Γ1 ⊢
τ1 7−→ ∀(x : S1).U1 and Γ2 ⊢ τ2 7−→ ∀(x : S2).U2, there exists τ ′1, τ ′′1 , τ ′2
and τ ′′2 such that

τ1 = ∀(x : τ ′1).τ
′′
1 Γ1 ⊢ τ ′1 7−→ S1 Γ1, x : τ ′1 ⊢ τ ′′1 7−→ U1

τ2 = ∀(x : τ ′2).τ
′′
2 Γ2 ⊢ τ ′2 7−→ S2 Γ2, x : τ ′2 ⊣ τ ′′2 7−→ U2
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Thus by the inductive hypothesis, it follows that

Γ2 ⊢ τ ′2 <: τ ′1 ⊢ Γ1 Γ1, x : τ ′1 ⊢ τ ′′1 <: τ ′′2 ⊢ Γ2, x : τ ′2

And subsequently by S-All that Γ1 ⊢ ∀(x : τ ′1).τ
′′
1 <: ∀(x : τ ′2).τ

′
2 ⊣ Γ2, the

desired result.

Case 10 (T1 = x1.L1{z ⇒ D1} 7→ T , T2 = ⊤). Trivial.

Case 11 (T1 = x1.L1{z ⇒ D1} 7→ T , T2 = x2.L2 7→ D2). By the same
reasoning as that of Case 2 the desired result is achieved.

Case 12 (T1 = x1.L1{z ⇒ D1} 7→ T 1, T2 = x2.L2{z ⇒ D2} 7→ T 2). By case
analysis on the equality of x1.L1 and x2.L2:

Subcase 1 (x1.L1 = x2.L2 = x.L).

subtype(T1, T2) = subtypeDecl(D1, D2) = true

By inversion on the derivation of Γ1 ⊢ τ1 7−→ x.L{z ⇒ D1} 7→ T 1 and
Γ2 ⊢ τ2 7−→ x.L{z ⇒ D2} 7→ T 2, there exists σ1 and σ2 such that

τ1 = x.L{z ⇒ σ1} Γ1, z : x.L{z ⇒ σ1} ⊢ σ1 7−→ D1

τ2 = x.L{z ⇒ σ2} Γ2, z : x.L{z ⇒ σ2} ⊢ σ2 7−→ D2

For all (D1, D2) in (D1, D2), the evaluation depth of subtypeDecl(D1, D2) is
strictly smaller that that of subtype(T1, T2). Thus by the induction hypoth-
esis, it follows that

Γ1, z : τ{z ⇒ σ1} ⊢ σ1 <: σ2 ⊣ Γ2, z : τ{z ⇒ σ2}

Subsequently by S-Refine the desired result Γ1 ⊢ τ{z ⇒ σ1} <: τ{z ⇒
σ2 ⊣ Γ2} is achieved.

Subcase 2 (x1.L1 ̸= x2.L2).

∃T, T ∈ T 1 subtype(T1, T2) = subtype(T, T2) = true
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By inversion on the derivation of Γ1 ⊢ τ1 7−→ x1.L1{z ⇒ D1} 7→ T 1 and
Γ2 ⊢ τ2 7−→ x2.L2{z ⇒ D2} 7→ T 2, there exists τ , σ1 and σ2 such that

τ1 = x1.L1{z ⇒ σ1} Γ1, z : τ ′1{z ⇒ σ1} ⊢ σ1 7→ D1

τ2 = x2.L2{z ⇒ σ2} Γ2, z : τ ′2{z ⇒ σ2} ⊢ σ2 7→ D2 Γ ⊢ τ 7−→ T

Γ ⊢ x.L{z ⇒ σ1} ⩽:: τ

Thus by the induction hypothesis, it follows that Γ1 ⊢ τ <: τ2, and subse-
quently by S-Extend the desired result that Γ1 ⊢ x1.L1{z ⇒ σ1} <: τ2 ⊣
Γ2.

The remaining cases relating to the subtyping of Wyvexpand declaration
types are omitted as they are easily derivable by simple application of the
induction hypothesis.

Theorem 5.5.1 (Subtype Decidability). Subtyping in Wyvfix is decidable.

Proof. From Lemmas 5.5.1 and 5.5.2 it follows that for all τ1, T1, Γ1, τ2, T2

and Γ2 where Γ1 ⊢ τ1 7−→ T1 and Γ2 ⊢ τ2 7−→ T2, Γ1 ⊢ τ1 <: τ2 ⊢ Γ2

⇐⇒ subtype(T1, T2) = true
Thus, by Theorem 5.4.4, there exists a terminating algorithm able to

decide questions of Fixed Wyvern subtyping.

5.5.3 Transitivity in Wyvfix

Subtyping in Wyvfix is not transitive. This is not entirely surprising since
environment narrowing and transitivity have a long history of being inter-
twined [13, 75, 10, 73] and tightly interdependent. The absence of transitivity
is easiest to understand in the following counter-example.

1 type A = {w⇒type L = Integer
2 type L' >: Integer}
3 type B = {w⇒type L = Integer
4 type L' >: w.L}
5 type C = {w⇒type L <: ⊤
6 type L' >: w.L}
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While A <: B and B <: C, A ̸<: C. The lack of transitive subtyping in the
above example is due to the separation of type information during subtyping
between the two environments, thus during subtype checking, neither ΓA nor
ΓC contain the most specific type information. ΓB does contain the necessary
type information, but is not available during subtype checking. Contra-
variance is also required to break transitivity. If the example lacked any
types in a contra-variant position, then the left-most environment (ΓA) would
always contain the most specific type information, and thus subtyping would
be derivable.
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Chapter 6

Non-Recursive Subtyping

Recursive types and their subtyping are at the core of the decidability is-
sues in Wyvcore. Using recursive types, programmers are able to construct
mutually defined types that feature cycles, recursive type definitions, and
encode the subtyping of two type languages that are known to contain unde-
cidable subtyping, System F<: and Java. In this Chapter I present a variant
of Wyvcore that removes subtyping of recursive types: Wyvnon-µ. This may
seem like a significant restriction, however it is in some ways the simplest of
available restrictions, and resembles the subtyping of Wadlerfest DOT [14],
that also does not include subtyping for recursive types. Further, Scala itself
does not include subtyping of recursive structural types [73]. Scala allows
for recursively defined types, and recursive inheritance, but not subtyping
of recursive type refinements. Both of these languages suggest that valuable
expressiveness can still be derived from such a restriction.

6.1 Wyvnon-µ

In this section, I define the subtyping of Wyvnon-µ, a restricted form of the
subtyping of Figure 3.14. While the subtyping of Wyvnon-µ differs from that
of Wyvcore, the syntax and related relations remain the same, and so are
omitted.
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Γ ⊢ x.L <: x.L (S-Rfl) Γ ⊢ ⊥ <: τ (S-Bot)

Γ ⊢ τ <: ⊤ (S-Top)
Γ ⊢ x : {L ⩽ τ ′} Γ ⊢ τ ′ <: τ

Γ ⊢ x.L <: τ
(S-Upper)

Γ ⊢ x : {L ⩾ τ ′} Γ ⊢ τ <: τ ′

Γ ⊢ τ <: x.L
(S-Lower)

Γ, x : τ ⊢ τ1 <: τ2

Γ ⊢ ∀(x : τ).τ1 <: ∀(x : τ).τ2
(S-All)

Γ ⊢ σ1 <: σ2

Γ ⊢ τ{σ1} <: τ{σ2}
(S-Rfn)

Γ ⊢ τ1 ⩽:: τ Γ ⊢ τ <: τ2

Γ ⊢ τ1 <: τ2
(S-Ext)

Figure 6.1: Wyvnon-µ Subtyping

The subtype rules for Wyvnon-µ are shown in Figure 6.1. I do not include
the subtype rules for declaration types, as they are identical to those in Figure
3.14. Subtyping in Wyvnon-µ differs from Wyvcore only in the subtyping of
type refinements (S-Rfn), requiring the refinement to be non-recursive, and
dependent function types, requiring invariance on the argument type.

6.2 Subtype Decidability

In this section I demonstrate that the subtyping of Figure 6.1 is decidable.
Types in Wyvnon-µ are unchanged from those of Wyvcore, and as such the
encoding to Wyvexpand (see Section 5.1) remains the same. Wyvnon-µ subtyping
semantically differs from that of Figure 3.14, by only allowing subtyping
of non-recursive type refinements (S-Rfn). As a consequence, Algorithm
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subtypenon−µ(T1, T2)
switch T1 do

case ⊤ do
switch T2 do

case ⊤ do true;
case x.L 7→ D do

∨
T∈lb(x.L 7→ D)

subtypenon−µ(T1, T ) ;

otherwise do false;
end

case ⊥ do true;
case x1.L1 7→ D1 do

switch T2 do
case ⊤ do true;
case x2.L2 7→ D2 do (x1 = x2 ∧ L1 = L2) ∨ (

∨
T∈ub(x1.L1 7→ D1)

subtypenon−µ(T , T2))∨ (
∨

T∈lb(x2.L2 7→ D2)
subtypenon−µ(T1, T )) ;

otherwise do
∨

T∈ub(x1.L1 7→ D1)
subtypenon−µ(T , T2) ;

end
case ∀(x : S1).U1 do

switch T2 do
case ⊤ do true;
case x2.L2 7→ D2 do

∨
T∈lb(x2.L2 7→ D2)

subtypenon−µ(T1, T ) ;

case ∀(x : S2).U2 do
S1 = S2 ∧ subtypenon−µ(U1, U2)

otherwise do false;
end

case x1.L1{z ⇒ D1} 7→ T 1 do
switch T2 do

case ⊤ do true;
case x2.L2 7→ D2 do

∨
T∈lb(x2.L2 7→ D2)

subtypenon−µ(T1, T ) ;

case x2.L2{z ⇒ D2} 7→ T 2 do
if x1.L1 == x2.L2 ∧ z ̸∈ fv(D1) ∪ fv(D2) then

subtypeDeclnon−µ(D1, D2)
else if x1.L1 == x2.L2 ∧ z ∈ fv(D1) ∪ fv(D2) then

false
else ∨

T∈T1

subtypenon−µ(T , T2)

otherwise do false;
end

end
Algorithm 4: Wyvnon-µ Subtyping Algorithm
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2 does not capture the subtyping of Figure 6.1, and a modified subtype
algorithm must be defined in order to subtype the type graphs of Wyvnon-µ

types. Algorithm 4 defines the subtype algorithm for Wyvnon-µ expansions
into Wyvexpand.

Algorithm 4 defines subtypenon−µ, a subtype algorithm that is identical to
subtype defined in Algorithm 2 except during subtyping of dependent func-
tion type and when checking subtyping between refinements on equivalent
types. Argument types are invariant during subtyping of dependent function
types and refinements are only compared in the case that they do not have
recursive references. This is a minor deviation from Algorithm 2, that allows
us to still lean on the decidability result of 5.4. Theorem 6.2.1 proves that any
call to subtypenon−µ terminates if an equivalent call to subtype terminates.
Given Theorem 5.4.4, this is equivalent to demonstrating that subtypenon−µ

for all inputs.

Theorem 6.2.1 (subtypenon−µ Termination). For all T1 and T2, if
subtype(T1, T2) terminates, then so does subtypenon−µ(T1, T2).

Proof. Since we know that subtype(T1, T2) will terminate, we can induct on
the depth of the call tree for subtype(T1, T2). Our induction hypothesis being
that the termination of any sub-call subtype(T ′

1, T
′
2) implies the termination

of subtypenon−µ(T1, T2). All cases are trivially demonstrated by the induction
hypothesis, leaving only the case:

T1 = x1.L1{z ⇒ D1} 7→ T 1 T2 = x2.L2{z ⇒ D2} 7→ T 2

where
subtype(T1, T2) = if x1.L1 == x2.L2 then

subtypeDecl(D1, D2)

else ∨
T∈T 1

subtype(T, T2)

and
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subtypenon−µ(T1, T2) = if x1.L1 == x2.L2 ∧ z ̸∈ fv(D1) ∪ fv(D2)

then
subtypeDeclnon−µ(D1, D2)

else if x1.L1 == x2.L2 ∧ z ∈ fv(D1) ∪ fv(D2) then
false

else ∨
T∈T 1

subtypenon−µ(T , T2)

The desired result can then be achieved by case analysis: first on the equality
of the base types (x1.L1 == x2.L2), giving the desired result if the base types
differ, and subsequently on whether z is in the set of free variables of D1 and
D2.

Subcase 1 (z ̸∈ fv(D1) ∪ fv(D2)). By the induction hypothesis.

Subcase 2 (z ∈ fv(D1) ∪ fv(D2)). Trivial.

Finally, equivalence between Algorithm 4 and the declarative subtyping
rules is shown in Theorems 6.2.2 and 6.2.3.

Theorem 6.2.2 (<:non−µ ⇒ subtypenon−µ). For all Γ, τ1, τ2, T1 and T2

where Γ ⊢ τ1 7−→ T1 and Γ ⊢ τ2 7−→ T2, if Γ ⊢ τ1 <: τ2 then it follows
that subtypenon−µ(T1, T2) = true.

Proof. By induction on the derivation of Γ ⊢ τ1 <: τ2.

Case 1 (S-Rfl).

τ1 = x.L τ2 = x.L

By inversion on the derivation of Γ ⊢ x.L 7−→ T2, it follows that there exists
some T such that

T1 = x.L 7→ T = T2

By the definition of subtypenon−µ, we get the desired result:

subtypenon−µ(T1, T2) = (x == x) ∧ (L == L) = true
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Case 2 (S-Top).

τ2 = ⊤

By inversion of the derivation of Γ ⊢ τ2 7−→ T2, it follows that

T2 = ⊤

And subsequently by the definition of subtypenon−µ we easily get the desired
result.

Case 3 (S-Bot).

τ1 = ⊥

By inversion of the derivation of Γ ⊢ τ1 7−→ T1, it follows that

T1 = ⊥

And subsequently by the definition of subtypenon−µ we easily get the desired
result.

Case 4 (S-Upper).

τ1 = x.L Γ ⊢ x : {L ⩽ τ} Γ ⊢ τ <: τ2

By inversionon the derivation of Γ ⊢ x.L 7−→ T1, it follows that there exists
D and T such that

T1 = x.L 7→ D L ⩽ T ∈ D Γ ⊢ τ 7−→ T

By the induction hypothesis it follows that

subtypenon−µ(T, T2) = true

and thus by the definition of subtypenon−µ we get the desired result:

subtypenon−µ(T1, T2) = subtypenon−µ(T, T2) = true
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Case 5 (S-Lower). By similar reasoning to the case for S-Upper.

Case 6 (S-All).

τ1 = ∀(x : τ).τ ′1 τ2 = ∀(x : τ).τ ′2 Γ, x : τ ⊢ τ ′1 <: τ ′2

By inversion on the definition of Γ ⊢ τ1 7−→ T1 and Γ ⊢ τ2 7−→ T2, there
exists some T , T ′

1, and T ′
2 such that

T1 = ∀(x : T ).T ′
1 T2 = ∀(x : T ).T ′

2

Γ ⊢ τ 7−→ T Γ, x : τ ⊢ τ ′1 7−→ T ′
1 Γx : τ ⊢ τ ′2 7−→ T ′

2

By the definition of subtypenon−µ we have,

subtypenon−µ(T1, T2) = (T == T ) ∧ (subtypenon−µ(T
′
1, T

′
2))

By the induction hypothesis we have subtypenon−µ(T
′
1, T

′
2) = true, the de-

sired result.

Case 7 (S-Rfn).

τ1 = x.L{σ1} τ2 = x.L{σ2} Γ ⊢ σ1 <: σ2

By inversion on the derivation of Γ ⊢ τ1 7−→ T1 and Γ ⊢ τ2 7−→ T2, for all
σ1 ∈ σ1 and σ1 ∈ σ2, such that Γ ⊢ σ1 <: σ2, there exists D1, D2, D1,
and D2 such that

Γ, z : x.L{σ1} ⊢ σ1 7−→ D1 Γ, z : x.L{σ2} ⊢ σ2 7−→ D2

Γ, z : x.L{σ1} ⊢ σ1 7−→ D1 Γ, z : x.L{σ2} ⊢ σ2 7−→ D2

By environment strengthening (as z ̸∈ fv(σ1) and z ̸∈ fv(σ2)) we get

Γ ⊢ σ1 7−→ D1

Γ ⊢ σ2 7−→ D2 Γ ⊢ σ1 7−→ D1 Γ ⊢ σ2 7−→ D2

By the definition of subtypenon−µ we have,

subtypenon−µ(T1, T2) = (x.L == x.L) ∧ (subtypeDeclnon−µ(D1, D2))
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By the induction hypothesis, we get

subtypenon−µ(D1, D2) = true

giving us the desired result

subtypenon−µ(T1, T1)

Case 8 (S-Ext).

Γ ⊢ τ1 ⩽:: τ Γ ⊢ τ <: τ2

By case analysis on the derivation of Γ ⊢ τ1 ⩽:: τ ′:

Subcase 1 (τ1 = x.L).

Γ ⊢ x : {L ⩽ τ}

By similar reasoning to Case 4 (S-Upper).

Subcase 2 (τ1 = x.L{z ⇒ σ1}).

Γ ⊢ x.L ⩽:: τ ′′ τ = flat(τ ′′, z, σ1)

By inversion on the derivation of Γ ⊢ τ1 7−→ T1, there exists some D, T ,
and T such that

Γ ⊢ x.L{z ⇒ σ1} 7−→ x.L{z ⇒ D} 7→ T Γ ⊢ τ 7−→ T T ∈ T

By the definition of subtypenon−µ we have

subtypenon−µ(T1, T2) =
∨

T ∈ T

subtypenon−µ(T, T2)

By the induction hypothesis, we get

subtypenon−µ(T, T2) = true

and thus by the definition of subtypenon−µ we have the desired result

subtypenon−µ(T1, T2) =
∨

T ′ ∈ T

subtypenon−µ(T
′, T2) = subtypenon−µ(T, T2) = true
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Theorem 6.2.3 (<:non−µ ⇐ subtypenon−µ). For all Γ, τ1, τ2, T1 and T2

where Γ ⊢ τ1 7−→ T1 and Γ ⊢ τ2 7−→ T2, if subtypenon−µ(T1, T2) = true
then it follows that Γ ⊢ τ1 <: τ2.

Proof. We induct on the finite call depth of subtypenon−µ:

Case 1 (T1 = ⊤, T2 = ⊤). By inversion on the derivation of Γ ⊢ τ2 7−→ T2

we have τ2 = ⊤, and subsequently the desired result by S-Top.

Case 2 (T1 = ⊤, T2 = x2.L2 7→ D).

subtypenon−µ(T1, T2) =
∨

T∈lb(x2.L2 7→D)

subtypenon−µ(⊤, T ) = true

In other words, there exists some T ∈ lb(x2.L2 7→ D) such that L ⩾
T ∈ D and subtypenon−µ(T1, T ) = true. By inversion on the derivation of
Γ ⊢ τ2 7−→ x2.L2 7→ D there exists some τ such that

Γ ⊢ τ 7−→ T Γ ⊢ x : {L ⩾ τ}

Thus, by the induction hypothesis we have

Γ ⊢ τ1 <: τ

giving us the desired result by S-Lower.

Case 3 (T1 = ⊥). By inversion on the derivation of Γ ⊢ τ1 7−→ ⊥ we have
τ1 = ⊥, and subsequently the desired result by S-Bot.

Case 4 (T1 = x1.L1, T2 = ⊤). By inversion on the derivation of Γ ⊢ τ2 7−→
T2 we have τ2 = ⊤, and subsequently the desired result by S-Top.

Case 5 (T1 = x1.L1 7→ D1, T2 = x2.L2 7→ D2).

x1 = x2 L1 = L2

Result is easily obtained by S-Rfl.
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Case 6 (T1 = x1.L1 7→ D1, T2 = x2.L2 7→ D2).

subtypenon−µ(T1, T2) =
∨

T∈ub(x1.L1 7→D1)

subtypenon−µ(T, T2) = true

In other words, there exists some T ∈ ub(x1.L1 7→ D1) such that
subtypenon−µ(T, T2) = true. By inversion on the derivation of Γ ⊢ x1.L1 7→
D1 7−→ T1 there exists some τ such that

Γ ⊢ τ 7→ T Γ ⊢ x1 : {L ⩽ τ}

Thus, by the induction hypothesis we have

Γ ⊢ τ <: τ2

giving us the desired result by S-Upper.

Case 7 (T1 = x1.L1 7→ D1, T2 = x2.L2 7→ D2). By similar reasoning to Case
2

Case 8 (T1 = x1.L1 7→ D1). By similar reasoning to Case 6

Case 9 (T1 = ∀(x : S1).U1, T2 = ⊤). By inversion on the derivation of
Γ ⊢ τ2 7−→ T2 we have τ2 = ⊤, and subsequently the desired result by
S-Top.

Case 10 (T1 = ∀(x : S1).U1, T2 = x2.L2 7→ D2). By similar reasoning to
Case 2

Case 11 (T1 = ∀(x : S1).U1, T2 = ∀(x : S1).U1).

subtypenon−µ(T1, T2) = (S1 == S2) ∧ subtypenon−µ(U1, U2) = true

By inversion on the derivation of Γ ⊢ τ1 7−→ ∀(x : S1).U1 and Γ ⊢ τ2 7−→
∀(x : S2).U2 there exists some τ ′1 and τ ′′1 such that

τ1 = ∀(x : τ ′1).τ
′′
1 Γ ⊢ τ ′1 7−→ S1 Γ, x : τ ′1 ⊢ τ ′′1 7−→ U1
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and, some τ ′2 and τ ′′2 such that

τ2 = ∀(x : τ ′2).τ
′′
2 Γ ⊢ τ ′2 7−→ S2 Γ, x : τ ′2 ⊢ τ ′′2 7−→ U2

It follows that S1 = S2, and subsequently that τ ′1 = τ ′2. Thus we get Γ, x :

τ ′1 ⊢ τ ′′2 7−→ U2. Subsequently by the induction hypothesis we get

Γ, x : τ ′1 ⊢ τ ′′1 <: τ ′′2

and the desired result by S-All

Case 12 (T1 = x1.L1{z ⇒ D1} 7→ T , T2 = ⊤). By inversion on the deriva-
tion of Γ ⊢ τ2 7−→ T2 we have τ2 = ⊤, and subsequently the desired result
by S-Top.

Case 13 (T1 = x1.L1{z ⇒ D1} 7→ T , T2 = x2.L2). By similar reasoning to
Case 2

Case 14 (T1 = x.L{z ⇒ D1} 7→ T 1, T2 = x.L{z ⇒ D2} 7→ T 2).

z ̸∈ fv(D1) ∪ fv(D2) subtypeDeclnon−µ(D1, D2) = true

By inversion on the derivation of Γ ⊢ τ1 7−→ T1 and Γ ⊢ τ2 7−→ T2 it
follows that there exists some σ1 such that

Γ, z : x.L{z ⇒ σ1} ⊢ σ1 7−→ D1

Similarly, there exists some σ2 such that

Γ, z : x.L{z ⇒ σ2} ⊢ σ1 7−→ D2

Since z ̸∈ fv(D1)∪ fv(D2), it follows that z ̸∈ fv(σ1)∪ fv(σ2). Thus, by
strengthening we have

Γ ⊢ σ1 7→ D1 Γ ⊢ σ2 7→ D2

By the induction hypothesis and subtypeDeclnon−µ(D1, D2) = true, we get

Γ ⊢ σ1 <: σ2

Finally, we get the desired result by S-Rfn.
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Case 15 (T1 = x1.L1{z ⇒ D1} 7→ T 1, T2 = x2.L2{z ⇒ D2} 7→ T 2).

x1 ̸= x2 L1 ̸= L2

∨
T∈T 1

subtypenon−µ(T, T2) = true

In other words, there exists some T such that

T ∈ T 1 subtypenon−µ(T, T2) = true

By inversion on the derivation of Γ ⊢ τ1 7−→ x1.L1{z ⇒ D1} 7→ T 1 there
exists τ and σ1 such that

τ1 = x1.L1{z ⇒ σ1} Γ, z : x1.L1{z ⇒ σ1} ⊢ σ1 7→ D1

Γ ⊢ τ 7→ T Γ ⊢ x1.L1{z ⇒ σ1} ⩽:: τ

Now by the induction hypothesis and subtypenon−µ(T, T2) = true, we get
Γ ⊢ τ <: τ2, and subsequently the desired result by S-Ext.

6.3 Type Safety
I now present an argument for type safety for Wyvnon-µ for a term syntax and
typing that . Unfortunately subtyping in Wyvnon-µ, as with that of Wyvcore,
is not transitive. Again, this is due to same reasons that transitivity was so
difficult to derive in DOT. In this section I construct an encoding for a term
syntax to a version of DOT, and demonstrate that it preserves typing. Due
to their similarity, the encoding of Wyvnon-µ targets Wadlerfest DOT.

6.3.1 Term Typing and Reduction

The syntax of Wyvnon-µ is defined in Figure 6.2 is only marginally different
from that of Wadlerfest DOT. The only difference is in the syntax of new
objects, which appears as ν(z : τ)d in DOT, and declarations which include
the intersection form d∩ d. This similarity in syntax is adopted primarily to
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t ::= Term
ν value
x y application
x.l selection
let x = t in t : τ let

ν ::= Value
new τ{z ⇒ d} object
λ x : τ.t : τ abstraction

d ::= Declaration
L = τ type
l : τ = t value

E ::= Eval. Context
[ ] hole
let x = E in t : τ

let x = ν in E : τ

Figure 6.2: Wyvnon-µ Term Syntax

aid in the encoding of Wyvcore to DOT. As with DOT, the syntax uses Ad-
ministrative Normal Form [76] for the sake of simplicity. Thus, all reducible
operations (function applications and member selections) may only involve
variables (x y or x.l).

While the syntax is fairly similar to that of Wadlerfest DOT, term typing
is significantly different. The term typing is defined in Figure 6.3. This
more complete term typing subsumes that of Figure 3.10, extending those
rules with the typing rules for the terms of Figure 6.2. Thus, typing for
variables (T-Var), variables typed with type refinements (T-Rec and T-
Rfn), selection types (T-Sel) and variables typed with equal or nominal
type definitions (T-Upper and T-Lower) remain unchanged. We extend
these rules with type rules for member access, abstractions, applications,
new objects and let expressions. A member access on a variable has the type
of the member associated with the type of the receiver variable (T-Acc).
An abstraction has a dependent function type if the body of the abstraction
subtypes the return type (T-Abs). An abstraction application has the return
type of the abstraction if the argument subtypes the argument type (T-App).
A let expression has the type of the body if the body is appropriately typed
with respect to the bound term. New object initializations are typed using
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Γ ⊢ t : τ, d : σ

Γ(x) = τ

Γ ⊢ x : τ
(T-Var)

Γ ⊢ x : τ{z ⇒ σ} σ ∈ σ

Γ ⊢ x : {[x/z]σ}
(T-Rec)

Γ ⊢ x : τ{z ⇒ σ}

Γ ⊢ x : τ
(T-Rfn)

Γ ⊢ x : y.L Γ ⊢ y : {L ⩽ τ}

Γ ⊢ x : τ
(T-Sel)

Γ ⊢ x : {L ⪯/= τ}

Γ ⊢ x : {L ⩽ τ}
(T-Upper)

Γ ⊢ x : {L = τ}

Γ ⊢ x : {L ⩾ τ}
(T-Lower)

Γ ⊢ x : {l : τ}

Γ ⊢ x.l : τ
(T-Acc)

Γ, x : τ1 ⊢ t : τ Γ, x : τ1 ⊢ τ <: τ2 x ̸∈ fv(τ1)

Γ ⊢ (λ (x : τ1).t : τ2) : ∀(x : τ1).τ2
(T-Abs)

Γ ⊢ x : ∀(z : τ ′).τ Γ ⊢ y : τ2 Γ ⊢ τ2 <: τ ′

Γ ⊢ x y : [y/z]τ
(T-App)

Γ ⊢ t1 : τ1 Γ, x : τ1 ⊢ t2 : τ2 Γ, x : τ1 ⊢ τ2 <: τ x ̸∈ fv(τ)

Γ ⊢ let x = t1 in t2 : τ : τ
(T-Let)

Γ ⊢ τ ∼= {z ⇒ σ}
d has distinct labels
Γ, z : τ ⊢ d : σ′ Γ, z : τ ⊢ σ′ <: σ

Γ ⊢ new τ{z ⇒ d} : τ
(T-New)

Γ ⊢ L = τ : L = τ (T-Type)
Γ ⊢ t : τ ′ Γ ⊢ τ ′ <: τ

Γ ⊢ (l : τ = t) : (l : τ)
(T-Value)

Figure 6.3: Wyvnon-µ Term Typing

Γ ⊢ ⊤ ∼= {z ⇒ ∅}
Γ ⊢ τ ∼= τ ′

Γ ⊢ τ{z ⇒ σ} ∼= flat(τ ′, σ, z)

Γ ⊢ x : {L ⪯/= τ}
Γ ⊢ τ ∼= τ ′

Γ ⊢ x.L ∼= τ ′

Figure 6.4: Wyvnon-µ Member Expansion
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v = λ(z : τ).t : τ ′

let x = v in E[x y] : τ −→ let x = v in E[[y/z]t] : τ
(R-App)

v = new τ{z ⇒ d} (l : τ ′ = t) ∈ d

let x = v in E[x.l] : τ −→ let x = v in E[t] : τ
(R-Acc)

let x = y in t : τ −→ [y/x]t (R-Var)

t′ = (let y = t1 in t2 : τ
′)

let x = t′ in t : τ −→ let y = t1 in (let x = t2 in t : τ) : τ
(R-Let)

t −→ t′

E[t] −→ E[t′]
(R-Ctx)

Figure 6.5: Wyvnon-µ Operational Semantics

a secondary judgement, member expansion (Figure 7.8), that associates a
type with a set of declaration types. If the declarations of a new object
initialization have the type of the expansion, then the new object has the
declared type (T-New). Finally, type and value definitions are typed by
T-Type and T-Value respectively.

The type expansion judgement in Figure 6.4 is necessary in Wyvnon-µ due
to the added nominality of type refinements and nominal type definitions
when compared to a calculus such as DOT. Expansion extracts the member
types of an object type. ⊤ expands into an empty refinement on ⊤, type
refinements expand into the expansion of the base type flattened with the
refinement. Only nominal or exact selections are expandable, and expand to
the expansion of their defined type.

The term reduction is also derived from Wadlerfest DOT, and is defined
by the rules in Figure 6.5. An application x y within the binding let x =
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λ(x : τ).t : τ ′ reduces to the body of the abstraction (t), with the argument
substituted in (R-App). A member selection x.l within the binding let x =

new τ{z ⇒ d}, reduces to the value bound by the label (R-Acc). Let
statements are reduced if either the bound term is bound in some other
binding (R-Var), or if the bound term is itself another binding (R-Let).
Finally, context reduction is captured by R-Ctx.

6.3.2 Encoding Wyvnon-µ in Wadlerfest DOT

The argument for type safety of Wyvnon-µ is derived from that of Wadlerfest
DOT. I define a mapping in Figure 6.6 from Wyvnon-µ types and terms to
Wadlerfest DOT terms and types. The subsequent type safety argument is
constructed by demonstrating that this mapping preserves subtyping, typing
and reduction. The primary differences between the two syntaxes is the man-
ner in which multiple member declarations and member declaration types are
captured. In Wyvnon-µ, multiple member declaration types are represented in
a set form (σ) as in a type refinement. Similarly, a set of member declarations
is included as part of a new object. DOT makes use of intersections of dec-
laration types to capture multiple declarations, and intersections of member
declarations to capture multiple member declarations. These differences is
visible in Figure 6.6. Most encodings are relatively straight forward and un-
interesting, however the divergence between the two calculi is evident in the
encodings of type refinements (D(τ{z ⇒ σ})) and new object initializations
(D(new τ{z ⇒ d}))

Type safety of Wyvnon-µ is then constructed in five theorems:

1. Theorem 6.3.1 proves that variable typing in Wyvnon-µ implies variable
typing in DOT.

2. Theorem 6.3.2 proves that subtyping in Wyvnon-µ implies an equivalent
subypting in DOT.

3. Theorem 6.3.3 proves that typing in Wyvnon-µ implies an equivalent
typing in DOT.
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D(⊤) = ⊤
D(⊥) = ⊥
D(x) = x

D(x.L) = x.L

D(∀(x : τ1).τ2) = ∀(x : D(τ1)).D(τ2)

D(τ{z ⇒ σ}) = µ(z : D(τ) ∧ (
∧
σ∈σ

D({σ})))

D(L ⩽ τ) = L : ⊥ . . .D(τ)

D(L ⩾ τ) = L : D(τ) . . .⊤
D(L = τ) = L : D(τ) . . .D(τ)

D(L ⪯ τ) = L : D(τ) . . .D(τ)

D(l : τ) = l : D(τ)

D(x) = x

D(x y) = x y

D(x.l) = x.l

D(let x = t1 in t2 :) = let x = D(t1) in D(t2)

D(new τ{z ⇒ d}) = ν(z : D(τ))
∧
d∈d

D(d)

D(λ(x : τ1).t : τ2) = λx : D(τ1).D(t)

D(L = τ) = L = D(τ)

D(l : τ = t) = l = D(t)

Figure 6.6: Wyvnon-µ to Wadlerfest DOT Encoding

4. Theorem 6.3.4 proves that term reduction in Wyvnon-µ implies an equiv-
alent term reduction in DOT.

5. Theorem 6.3.5 proves that term reduction in Wyvnon-µ does not get
stuck.

Theorem 6.3.1 (Wyvnon-µ variable typing implies DOT variable typing).
For all Γ, x, τx, if Γ ⊢ x : τx then D(Γ) ⊢ x : D(τx).

Proof. We construct the proof by mutual induction on the derivation of Γ ⊢
x : τx.
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Case 1 (T-Var).

Γ(x) = τx

It follows that
DΓ(x) = D(τx)

and thus, D(Γ) ⊢ x : D(τx) (by Var [75]).

Case 2 (T-Rec).

Γ ⊢ x : τ{z ⇒ σ} σ ∈ σ τx = {[x/z]σ}

By the induction hypothesis, we have

D(Γ) ⊢ x : D(τ{z ⇒ σ})

By the definition of D we have
D(Γ) ⊢ x : µ(z : D(τ) ∧ (

∧
σ∈σ

{D(σ)})) (by defn. of D)

D(Γ) ⊢ x : [x/z]D(τ) ∧ (
∧
σ∈σ

{D(σ)}) (by Rec-E)

D(Γ) ⊢ x : [x/z]{D(σ)} (by Sub,And1-<: and And2-<:)
D(Γ) ⊢ x : {D([x/z]σ)} (by defn. of D)

The desired result.

Case 3 (T-Rfn).

Γ ⊢ x : τ{z ⇒ σ} τx = τ

By the induction hypothesis, we have

D(Γ) ⊢ x : D(τ{z ⇒ σ})

By the definition of D we have
D(Γ) ⊢ x : µ(z : D(τ) ∧ (

∧
σ∈σ

{D(σ)})) (by defn. of D)

D(Γ) ⊢ x : [x/z]D(τ) ∧ (
∧
σ∈σ

{D(σ)}) (by Rec-E)

D(Γ) ⊢ x : [x/z]{D(τ)} (by Sub and And1-<:)
D(Γ) ⊢ x : {D([x/z]τ)} (by defn. of D)

D(Γ) ⊢ x : {D(τ)} (as z ̸∈ fv(τ))

The desired result.
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Case 4 (T-Sel).

Γ ⊢ x : y.L Γ ⊢ y : {L ⩽ τx}

By the induction hypothesis and the definition of D we have

D(Γ) ⊢ x : y.L D(Γ) ⊢ y : {L : ⊥ . . .D(τx)}

By Sel-<:, D(Γ) ⊢ y.L <: D(τx), and then by Sub we get the desired
result: D(Γ) ⊢ x : D(τx).

Case 5 (T-Upper).

Γ ⊢ x : {L ⪯/= τ} τx = {L ⩽ τ}

By the induction hypothesis:

D(Γ) ⊢ x : {L : D(τ) . . .D(τ)}

By Typ-<:-Typ and Sub we have the desired result:

D(Γ) ⊢ x : {L : ⊥ . . .D(τ)}

Case 6 (T-Lower). By similar reasoning to T-Upper we get the desired
result.

Theorem 6.3.2 (DOT subsumes Wyvnon-µ subtyping). For all Γ, τ1 and τ2,
if Γ ⊢ τ1 <: τ2 then D(Γ) ⊢ D(τ1) <: D(τ2).

Proof. The proof proceeds by induction on the derivation of Γ ⊢ τ1 <: τ2.

Case 1 (S-Rfl). Trivial.

Case 2 (S-Bot). Trivial.

Case 3 (S-Top). Trivial.
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Case 4 (S-Upper).

τ1 = x.L Γ ⊢ x : {L ⩽ τ} Γ ⊢ τ <: τ2

By Theorem 7.4.1 it follows that D(Γ) ⊢ x : {L : _ . . .D(τ1}). The
induction hypothesis gives D(Γ) ⊢ D(τ1) <: D(τ2). By DOT subtyping
(Sel-<: and Trans) we get the desired result :D(Γ) ⊢ x.L <: D(τ2)

Case 5 (S-Lower). By similar reasoning to Case 4.

Case 6 (S-All). By simple application of the induction hypothesis to the
premises.

Case 7 (S-Refine).

τ1 = τ{z ⇒ σ1} τ2 = τ{z ⇒ σ2} Γ, z : τ{z ⇒ σ1} ⊢ σ1 <: σ2

D(τ1) = µ(z : D(τ) ∧ (
∧
σ∈σ1

{D(σ)})) D(τ2) = µ(z : D(τ) ∧ (
∧
σ∈σ2

{D(σ)}))

By the induction hypothesis it follows that D(Γ, z : τ{z ⇒ σ1}) ⊢ D(σ1) <:

D(σ2). By intersection subtyping (And1-<:) in DOT we have D(Γ), z :

D(τ1) ⊢ D(τ) ∧ (
∧

σ∈σ1

D(σ)) <: D(τ). Intersection subtyping (And2-<:)

and transitivity (Trans) in DOT also gives D(Γ), z : D(τ1) ⊢ D(τ) ∧
(
∧

σ∈σ1

D(σ)) <:
∧

σ∈σ2

D(σ). Thus the desired result is derived in DOT by

<:-And.

Case 8 (S-Extend).

Γ ⊢ τ1 ⩽:: τ Γ ⊢ τ <: τ2

Γ ⊢ τ1 <: τ2

By case analysis on the derivation of Γ ⊢ τ1 ⩽:: τ :

Subcase 1 (E-Upper). This is essentially upper bound subtyping, and thus
the reasoning from Case 4 applies.
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Subcase 2 (E-Refine).

τ1 = τ ′{z ⇒ σ} Γ ⊢ τ ′ ⩽:: τ ′′ τ = flat(τ ′′, σ, z)

By the induction hypothesis we have D(Γ) ⊢ D(τ) <: D(τ2). Now we
demonstrate that D(Γ) ⊢ D(τ1) <: D(τ): By case analysis on τ ′′ for valid
applictions of flat we have either: τ ′′ = ⊤, x.L or τ ′′′{z ⇒ σ′′′}. The first
two cases are easily demonstrated by the DOT subtyping rule And1-<:.
Otherwise: τ ′′ = τ ′′′{z ⇒ σ′′′} where σ′′′ = σ0 ∪ σ. Again D(Γ) ⊢ D(τ1) <:

D(τ) is achieved by successive application of <:-And, And1-<: and And2-
<:. Now by the DOT transitivity rule we have: D(Γ) ⊢ D(τ1) <: D(τ2),
the desired result.

Lemma 6.3.1. For all Γ, τ and τ ′ such that Γ ⊢ τ ∼= τ ′, then D(Γ) ⊢
D(τ ′) <: D(τ).

Proof. By induction on the derivation of Γ ⊢ τ ∼= τ ′:

Case 1.

τ = ⊤ τ ′ = {z ⇒ ∅}

Trivial by Top.

Case 2.

τ = τ ′′{z ⇒ σ} Γ ⊢ τ ′′ ∼= {z ⇒ σ′′} τ ′ = flat({z ⇒ σ′′}, z, σ)

By the induction hypothesis:

D(Γ) ⊢ D({z ⇒ σ′′}) <: D(τ ′′)

By the definition of flat and D we get

D(τ) = µ(z : D(τ ′′) ∧ (
∧
σi∈σ

{σi}))

D(τ ′) = µ(z : ⊤ ∧ (
∧

σj∈σ′′

{σj}) ∧ (
∧
σi∈σ

{σi}))

The result is then derived by
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Theorem 6.3.3 (DOT subsumes Wyvcore typing). For all Γ, t and τ , if
Γ ⊢ t : τ then D(Γ) ⊢ D(t) : D(τ)

Proof. This is the more general form of Theorem 7.4.1. By induction on the
derivation of Γ ⊢ t : τ : For cases T-Var, T-Rec, T-Rfn, T-Sel, T-
Upper and T-Lower, the desired result can be demonstrated by Theorem
6.3.1.

Case 1 (T-Acc).

Γ ⊢ x : {l : τ}

By the induction hypothesis and definition of D we have:

D(Γ) ⊢ x : ⊤ ∧ {l : D(τ)}

Thus, by Sub and And2-<: we have:

D(Γ) ⊢ x : {l : D(τ)}

And finally, by {}-E we have the desired result:

D(Γ) ⊢ x.l : D(τ)

Case 2 (T-App).

Γ ⊢ x : ∀(z : τ1).τ2 Γ ⊢ y : τ ′1 Γ ⊢ τ ′1 <: τ1 τ = [y/z]τ2

By the induction hypothesis and Theorem 6.3.2, we have

D(Γ) ⊢ x : ∀(z : D(τ1)).D(τ2)

D(Γ) ⊢ y : D(τ ′1) D(Γ) ⊢ D(τ ′1) <: D(τ1)

By Sub, we get
D(Γ) ⊢ y : D(τ1)

Then, by All-E we get the desired result:

D(Γ) ⊢ x y : D([y/z]τ2)
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Case 3 (T-Abs).

Γ, x : τ1 ⊢ t : τ Γ, x : τ1 ⊢ τ <: τ2

x ̸∈ fv(τ1) t = λ(x : τ1).t : τ2 τ = ∀(x : τ1).τ2

By the induction hypothesis and Theorem 7.4.2, we get

D(Γ), x : D(τ1) ⊢ D(t) : D(τ) D(Γ), x : D(τ1) ⊢ D(τ) <: D(τ2)

Also, by the application of D we get x ̸∈ fv(D(τ1)). Subsequently, by Sub
we get:

D(Γ), x : D(τ1) ⊢ D(t) : D(τ2)

And finally, by All-I we get the desired result:

D(Γ) ⊢ λ(x : τ1).t : ∀(x : τ1).D(τ2)

Case 4 (T-Let).

Γ ⊢ t1 : τ1 Γ, x : τ1 ⊢ t2 : τ2 Γ, x : τ1 ⊢ τ2 <: τ x ̸∈ fv(τ)

t = (let x = t1 in t2 : τ) D(t) = let x = D(t1) in D(t2)

By the induction hypothesis and Theorem 6.3.2 we get:

D(Γ) ⊢ D(t1) : D(τ1)

D(Γ), x : D(τ1) ⊢ D(t2) : D(τ2) D(Γ), x : D(τ1) ⊢ D(τ2) <: D(τ)

By Sub we get

D(Γ), x : D(τ1) ⊢ D(t2) : D(τ)

By the definition of D we have x ̸∈ fv(D(τ)). Thus, by Let we get get the
the desired result:

D(Γ) ⊢ (let x = D(t1) in D(t2)) : D(τ)

Case 5 (T-New).

Γ ⊢ τ ∼= {z ⇒ σ}
Γ, z : {z ⇒ σ′} ⊢ d : σ′ Γ, z : {z ⇒ σ′} ⊢ σ′ <: σ
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Case 6 (T-Type).

Case 7 (T-Value).

Theorem 6.3.4 (DOT Term Reduction is equivalent to Wyvnon-µ Term Re-
duction). For all t and t′, if t −→ t′ then D(t) −→ D(t′).

Proof. The result is achieved easily by induction on the derivation of t −→
t′.

Theorem 6.3.5 (Wyvnon-µ is Type Safe). For all t and τ , if ∅ ⊢ t : τ , then
term reduction of t does not get stuck.

Proof. The result follows directly from Theorems 6.3.3 and 6.3.4.

6.4 Expressiveness
Wyvnon-µ does not allow for subtyping of recursive types, and while this is a
significant loss in expressiveness, the fact that Scala also does not allow for
subtyping for recursive type refinements suggests there is degree of expres-
siveness that is valuable.

While Scala does not allow for subtyping of recursive type refinements, it
does allow for subtyping of recursively defined nominal types, that is recur-
sively defined classes. Further, at the beginning of this chapter I briefly
made the comparison between Wyvnon-µ and Wadlerfest DOT. This is
not an entirely apt comparison. While it is certainly true that Wadlerfest
DOT does not feature subtyping of recursive types, it should be noted that
Wadlerfest DOT has a subsumption rule, along with an introduction rule for
values with recursive types that somewhat make up for this. Consider the
following example:

1 def recArg(x : {z => type E <: ⊤, type T = z.E}) = { ... }
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In Wyvnon-µ, there is no way to use the recArg function, because doing so
would require subtyping of a recursive type. In Wadlerfest DOT, recArg can
be called on the value v : { z <=ق type E = Int, type T = z.E } since the
following typing can be derived:

v : {z <=ق type E = Int, type T = z.E}

v : {type E = Int, type T = v.E}
(by Rec-E)

v : {type E <: ⊤, type T = v.E}
(by Sub)

v : {z <=ق type E <: ⊤, type T = z.E}
(by Rec-I)

General subsumption is not possible in Wyvnon-µ typing for reasons covered
in Section 3.1.2.
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Recursive Types

As discussed in Chapter 3, undecidability of subtyping in Wyvcore derives
from the confluence of contra-variance and environment narrowing. Since
neither one of these is inherently undecidable, in this Chapter, I define a
variant that severs the link between the two by addressing recursive types,
the central cause of environment narrowing in Wyvcore. In this Chapter I start
by discussing the expressiveness of recursive types in Wyvcore (Section 7.1). I
then present Wyvµ, a variant of Wyvcore that places a syntactic restriction on
where recursive types may be used, along with a proof of subtype decidability
(Section 7.2). I subsequently demonstrate that Wyvµ retains a high degree
of expressiveness, in particular the ability to encode the subtyping of Java
Generics (Section 7.3) along with the specific examples of expressiveness
identified in Section 7.1. I finally demonstrate that both Wyvcore and Wyvµ
are type safe (Section 7.4).

7.1 Examples of Expressiveness with Recur-
sive Types

In the opening remarks of Chapter 3, I mention that the design of any vari-
ations on Wyvcore must take into account not only subtype decidability, but

155



Chapter 7 Examples of Expressiveness with Recursive Types

expressiveness and type safety too. I leave the discussion of type safety for
Section 7.4, and issues of decidability for Section 7.2 but I start by dis-
cussing several instances of expressiveness for recursive types that program-
mers might want.

While the following is not a full accounting of the expressiveness of recur-
sive types in Wyvcore, it identifies core uses of recursive types. I will return
to these examples in Section 7.3.

Polymorphic Data Types

As has already been discussed, bounded polymorphism as seen in not only
functional languages such as System F<:, but also object oriented languages
Java and C♯, is subsumed in expressiveness by type members in Wyvern and
DOT. Chapter 3 has demonstrated that subtyping in Wyvcore subsumes that
of Java Generics. What was perhaps not explicitly noted in Chapter 3 was
the role that recursive types play in the encoding of Java. The following
example of a Node class in Java can be used to illustrate this.

1 class Map<K, V>
2 class Node<E, V> extends Map<E, Node>

The class Node extends the Map class, encoding a Node as a map where the
edges of type E map to adjacent nodes. While it may not be immediately
obvious, this encoding can only be constructed using recursive types. The
use of E in the instantiation of Map<E, Node> is a usage of a self reference.
The Wyvern encoding is given below.

1 type Map[K <: ⊤, V <: ⊤]
2 type Node[E <: ⊤, V <: ⊤] = Map[self.E, Node]

Recursive types are thus necessary for capturing such critical instances of
expressiveness.
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Family Polymorphism

One of the strengths of calculi like Wyvcore and DOT is the ability to de-
fine bespoke subtype lattices, specifying the relationships of abstract types
without specifying the exact types themselves. The type below demonstrates
how type relationships can be defined without explicitly defining the types
themselves.

{z ⇒ A ⩽ ⊤, B ⩾ z.A,B ⩽ z.C, C ⩽ ⊤}

Very little has been said about what the types A, B and C are, but the
relationship between them is defined, and we know that whatever the types
eventually resolve to, A <: B <: C will hold. A more concrete example
can be seen in an alternate version of the Node example.

1 type Graph = { z ⇒
2 type Node <: {val neighbors : Map[Edge, Node]}
3 type Edge <: {val origin, destination : Node}
4 }

A limited amount of type information has been defined for Node or Edge,
but we know that they are interdependent. Such a pattern is reliant on the
presence of recursive types. Since the usage of Node and Edge are actually
calls on the self variable, z, the definition of Graph requires recursion.

This manner of defining types is reminiscent of Family Polymorphism, a
language feature that allows families of related types to be defined. Poly-
morphism is captured at the family level and relationship level, ensuring
reuse across families while simultaneously ensuring type safety. We adapt
the gbeta example from [36] to Wyvern:

1 type Graph = { z1 ⇒
2 type Node <: {def touches (e : z2.Edge) : bool}
3 type Edge <: {var n1 : z1.Node
4 var n2 : z1.Node}
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5 }
6

7 val graph : z1.Graph = new Graph{ z1 ⇒
8 def newNode : z1.Node =
9 new { z2 ⇒

10 def touches (e : z1.Edge) : bool =
11 z2 == e.n1 || z2 == e.n2
12 }
13 def newEdge : z1.Edge = new {var n1, n2 := null}
14 }
15 val onOffGraph : Graph = new Graph{ z1 ⇒
16 type Edge = {var enabled : bool
17 var n1 : z1.Node
18 var n2 : z1.Node}
19 def newNode : z1.Node =
20 new { z2 ⇒
21 def touches (e : z1.Edge) : bool =
22 if(e.enabled){z2 == e.n1 || z2 == e.n2} else {false}
23 }
24 def newEdge : z1.Edge = new {var enabled := false
25 var n1, n2 := null}
26 }
27 def build(g : Graph, n : g.Node, e : g.Edge, b : bool) =
28 e.n1 := n
29 e.n2 := n
30 if(b == n.touches(e))
31 print(''OK'')
32

33 def main =
34 build(graph, graph.newNode,
35 graph.newEdge, true)
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36 build(onOffGraph, onOffGraph.newNode,
37 onOffGraph.newEdge, false)
38 build(graph, graph.newNode,
39 onOffGraph.newEdge, false) \\ compile-time error

Again, recursive types are required in the definition of Graph, Node and Edge.
Such expressiveness arises naturally from path dependent types in the pres-
ence of recursive types, and demonstrates the importance of recursive types
in Wyvcore.

7.2 Wyvµ

In this section I define a syntactic restriction on recursive types that ensures
decidability. The advantage of a syntactic restriction is that the semantics
remain unchanged, ensuring the behaviour of code that observes the syntactic
restriction remains unchanged.

7.2.1 Preservation of the Material/Shape Separation

Recursive types and environment narrowing have more implications than just
added expressiveness or environmental expansion, they also have implications
for the application of a Material/Shape separation. The Material/Shape
separation relies on the detection of cycles as part of an initial step in type
checking. Any proof of termination of subtyping relies on existence of a
finite shape depth during subtyping, that is for any problem of the form
Γ ⊢ τ1 <: τ2, there is some finite depth at which a Shape occurs. Cycle
detection is performed on a per-environment basis, that is for any specific
environment there is some specific Shape depth. In a subtyping that includes
environment narrowing, the environment is modified, and thus while the
Shape depth might always be finite for any particular subtype question, the
measure might not always be well-founded and strictly decreasing with every
derivation step. Consider the derivation of Γ ⊢ τ{z ⇒ L ⩽ τ1} <: τ{z ⇒

159



Chapter 7 Wyvµ

L ⩽ τ2}:

...

Γ1 ⊢ τ1 <: τ2

Γ1 ⊢ L ⩽ τ1 <: L ⩽ τ2

Γ1 = Γ, z : τ{z ⇒ L ⩽ τ1}

Γ ⊢ τ{z ⇒ L ⩽ τ1} <: τ{z ⇒ L ⩽ τ2}

The shape depth of L ⩽ τ2 in Γ1 is not strictly smaller than the shape depth
of τ{z ⇒ L ⩽ τ2} in Γ, as we are only able to statically measure the shape
depth of L ⩽ τ2 in the environment Γ, z : τ{z ⇒ L ⩽ τ2}. Thus, the
Material/Shape separation is not in fact applicable for Wyvcore. Narrowing
does not preserve shape depth on the left hand side. Narrowing does however
preserve shape depth on the left hand side of the subtype derivation. That
is, the shape depth of L ⩽ τ1 is strictly smaller than the shape depth of
τ{z ⇒ L ⩽ τ1}. Unfortunately, our ability to derive useful conclusions from
this is limited as contra-variance means that narrowing can occur not only
on the right hand side of a subtype proof search, but on the left hand side
too. Wyvµ, the variant of Wyvcore defined in this section addresses this issue
directly.

7.2.2 Wyvcore −→ Wyvµ

The combination of both contra-variance and recursive types is required in
the encoding of System F<:. While the removal of recursive types would
remove valuable expressiveness, the removal of contra-variance would also
preclude all of the value of lower bounds. In this section I place a syntactic
restriction on the Wyvcore type system to restrict the usage of recursive types
in contra-variant positions.

Figure 7.1 provides modifications to the Wyvcore Syntax and Subtype
Semantics from Chapter 3. Wyvµ restricts recursive types from appearing
in lower bounds. For convenience we attach this restriction to the existing
Material/Shape separation. This requires a relatively simple restriction: pure
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η ::= Material Type
...
η{δ}

Γ, x : τ ⊢ τ1 <: τ2

Γ ⊢ ∀(x : τ).τ1 <: ∀(x : τ).τ2
(S-All)

Figure 7.1: Wyvµ Syntax/Semantic Extension

material types are restricted from using recursive types. Originally only
Shapes were restricted from usage in the lower bounds of type members,
and in refinements on shapes, but this restriction is now extended to include
refinements with self references. Note: the extension of the Material/Shape
separation does not imply a prohibition of recursive types involving Materials,
only that for a type to be considered “pure material”, it must not contain
any recursive types.

The semantic restriction is also fairly simple, subtyping of dependent
function types requires invariant argument types. This is in line with the
restricted semantics that Kernel F<: placed on System F<:.

7.2.3 Subtype Decidability

As with both Wyvfix and Wyvnon-µ, the argument for subtype decidability
for Wyvµ is based on an encoding of types into the intermediate language
of Wyvexpand, as described in Chapter 5. While in Wyvµ, there is no equiva-
lence between subtyping of two arbitrary types, and their respective expan-
sions (for the reasons already discussed in Section 7.2.1), there does exist an
equivalence for subtyping of the form Γ ⊢ τ <: η. That is, an equivalence
exists between subtyping of Wyvµ types and their equivalent type graphs if
the type on the right-hand side is a material. The reason for this is that
environment narrowing is guaranteed not to occur in subtyping of the form
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Γ ⊢ τ <: η.
An algorithm for constructing a reduction from Wyvµ subtyping to sub-

typing of only materials is given in Algorithms 2 and 3. Thus, the argument
for subtype decidability of Wyvµ is three part: (i) demonstrate that subtype
questions of the form Γ ⊢ τ <: η are reducible to subtyping of the ex-
pansion into Wyvexpand, (ii) demonstrate that Algorithm 2 is able to decide
the subtyping defined in Figure 7.1 and (iii) demonstrate that Algorithm 2
terminates for all inputs.

Part (i) is demonstrated in Theorem 7.2.1. Part (ii) is demonstrated
in Theorem 7.2.2. Part (iii) is demonstrated in Theorem 7.2.3. The proof
uses the depth measure in Figure 7.2, whose finiteness is ensured by the
Material/Shape separation.

Theorem 7.2.1 (Material Subtyping in Wyvµ Wyvern). For all Γ, τ, η, T1

and T2, if Γ ⊢ τ 7→ T1 and Γ ⊢ η 7→ T2, then Γ ⊢ τ <: η ⇐⇒
subtype(T1, T2).

Proof. Proof proceeds by case analysis on both directions of ⇐⇒

Case 1 (⇒). Proceed by induction on the derivation of Γ ⊢ τ <: η

Subcase 1 (S-Top: Γ ⊢ τ <: ⊤). By inversion on the derivation of
Γ ⊢ ⊤ 7−→ T2 we have T2 = ⊤, and we easily get the desired result

subtype(T1,⊤) = true

Subcase 2 (S-Bottom: Γ ⊢ ⊥ <: η). By inversion on the derivation of
Γ ⊢ ⊥ 7−→ T1 we have T1 = ⊥, and we easily get the desired result

subtype(⊥, T2) = true

Subcase 3 (S-All: τ = ∀(x : η′).η1, η = ∀(x : η′).η2 and
Γ ⊢ ∀(x : η).η1 <: ∀(x : η).η2). By inversion on the derivation of Γ ⊢ ∀(x :

η′).η1 7−→ T1, there exists T and T ′
1 such that

Γ ⊢ η′ 7−→ T Γ, x : η′ ⊢ η1 7−→ T ′
1
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subtypeη(Γ, τ1, τ2)
if τ2 is a material then

subtype(T1, T2) where Γ ⊢ τ1 7→ T1 and Γ ⊢ τ2 7→ T2

else
switch τ1 do

case ⊤ do
switch τ2 do

case ⊤ do true;
case x.L do subtypeη(Γ, τ1, lower_bound(Γ, x.L)) ;
otherwise do false;

end
case ⊥ do true;
case x1.L1 do

switch τ2 do
case ⊤ do true;
case x2.L2 do (x2 = x2 ∧ L1 = L2) ∨ subtypeη(Γ, upper_bound(Γ, x1.L1),
τ2)∨ subtypeη(Γ, τ1, lower_bound(Γ, x.L)) ;

otherwise do subtypeη(upper_bound(Γ, x1.L1), τ2) ;
end

case ∀(x : τ).τ ′1 do
switch τ2 do

case ⊤ do true;
case x.L do subtypeη(Γ, τ1, lower_bound(x.L)) ;
case ∀(x : τ ′).τ ′2 do (subtypeη(Γ;x : τ , τ ′1, τ ′2)) ;
otherwise do false;

end
case τ ′1{z ⇒ σ1} do

switch τ2 do
case ⊤ do true;
case x.L do subtypeη(τ1, lower_bound(Γ, x.L)) ;
case τ ′2{z ⇒ σ2} do

if τ ′1 = τ ′2 then
(subtypeDeclsη(Γ, z : τ1, σ1, σ2))

else
switch extends(τ1, τ2, ∅) do

case Some(σ) do (subtypeDeclsη(Γ, z : τ1, σ, σ2));
otherwise do false;

end
end

otherwise do false;
end

end
end

Algorithm 5: Wyvµ Subtyping Reduction Algorithm
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subtypeDeclη(Γ, σ1, σ2)
switch σ1, σ2 do

case L1 ⩽ τ1, L2 ⩽ τ2 do
if L1 = L2 then subtypeη(Γ, τ1, τ2);
else false;

case L1 = τ1, L2 ⩽ τ2 do
if L1 = L2 then subtypeη(Γ, τ1, τ2);
else false;

case L1 ⩾ τ1, L2 ⩾ τ2 do
if L1 = L2 then subtypeη(Γ, τ2, τ1);
else false;

case L1 = τ1, L2 ⩾ τ2 do
if L1 = L2 then subtypeη(Γ, τ2, τ1);
else false;

case τ1 = τ1, L2 = τ2 do
if L1 = L2 then subtypeη(Γ, τ2, τ1) ∧ subtypeη(Γ, τ1, τ2);
else false;

case L1 ⪯ τ1, L2 ⪯ τ2 do
if L1 = L2 then subtypeη(Γ, τ2, τ1) ∧ subtypeη(Γ, τ1, τ2);
else false;

case l1 : τ1, l2 : τ2 do
if l1 = l2 then subtypeη(τ1, τ2);
else false;

otherwise do false;
end

subtypeDeclsη(Γ, σ1, σ2)
switch σ2 do

case ∅ do true;
case {σ2} ∪ σ′

2 do
switch σ1 do

case {σ1} ∪ σ′
1 do

subtypeDeclη(Γ, σ1, σ2) ∨ subtypeDeclsη(Γ, σ′
1, σ

′
2)

otherwise do false;
end

end
Algorithm 6: Wyvµ Declaration Subtyping Reduction Algorithm
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Similarly, there exists T ′
2 such that

Γ, x : η′ ⊢ η2 7−→ T ′
2

By reflexivity of the subtype algorithm, it follows that

subtype(T, T) = True

and by the induction hypothesis, it follows that

subtype(T ′
1, T

′
2) = True

Thus we have the desired result

subtype(T1, T2) = subtype(T, T ) ∧ subtype(T ′
1, T

′
2) = True

Subcase 4 (S-Upper: τ = x.L,Γ ⊢ x : {L ⩽ τ ′},Γ ⊢ τ ′ <: η). By
inversion on the derivation of Γ ⊢ x.L 7→ T1, there exists D and T ′ such
that

Γ ⊢ x.L 7−→ x.L 7→ D Γ ⊢ τ ′ 7−→ T ′ (L ⩽ T ′) ∈ D

by the definition of ub we have

T ′ ∈ ub(x.L 7→ D)

By the induction hypothesis, we get

subtype(T ′, T2) = true

thus by the definition of subtype we get the desired result

subtype(T1, T2) =
∨

T∈ub(x.L 7→D)

subtype(T, T2) = True

Subcase 5 (S-Lower: η = x.M,Γ ⊢ x ∋ M ⩾ τ ′,Γ ⊢ τ <: τ ′). By
inversion on the derivation of Γ ⊢ x.M 7→ T2, there exists D and T ′ such
that

Γ ⊢ x.M 7−→ x.M 7→ D Γ ⊢ τ ′ 7−→ T ′ (M ⩾ T ′) ∈ D
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by the definition of lb we have

T ′ ∈ lb(x.M 7→ D)

Further, since lower bounds are restricted to materials, we know that τ ′ is a
material. Now by the induction hypothesis, we get

subtype(T1, T
′) = true

thus by the definition of subtype we get the desired result

subtype(T1, T2) =
∨

T∈lb(x.M 7→D)

subtype(T1, T ) = True

Subcase 6 (S-Refine: τ = x.M{z ⇒ σ}, η = x.M{δ},
Γ, z : x.M{z ⇒ σ} ⊢ σ <: δ). By inversion on the derivation of Γ ⊢
x.M{z ⇒ σ} 7−→ T1 and Γ ⊢ x.M{δ} 7−→ T2 there exists D1, T 1, D2,
and T 2 such that

T1 = x.M{z ⇒ D1} 7→ T 1 (a) Γ, z : x.M{z ⇒ σ} ⊢ σ 7→ D1 (b)

T2 = x.M{D2} 7→ T 2 (c) Γ, z : x.M{δ} ⊢ δ 7→ D2 (d)

Since z ̸∈ fv(δ), by applying environment strenghtening, and then weakening
to (d) we have

Γ, z : x.M{z ⇒ σ} ⊢ δ 7→ D2

Thus, by the induction hypothesis, we have

subtype(D1, D2) = true

giving us the desired result.

Subcase 7 (S-Extend: Γ ⊢ τ ⩽:: τ ′,Γ ⊢ τ ′ <: η). By inversion on the
derivation of Γ ⊢ τ ⩽:: τ ′, either

1. τ = x.L and Γ ⊢ x : {L ⩽ τ ′} or
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2. τ = x.L{z ⇒ σ} and Γ ⊢ x ⩽:: τ ′

In the first case we proceed in the same fashion as Subcase 4.
In the second case:

By inversion on the derivation or Γ ⊢ x.L{z ⇒ σ} 7−→ T1, there exists
D, T , T ′ such that

T1 = x.L{z ⇒ D} 7→ T T ′ ∈ T Γ ⊢ τ ′ 7−→ T ′

Thus, by the induction hypothesis, we have

subtype(T ′, T2)

and by the definition of subtype we easily arrive at the desired result.

Case 2 (⇐). By induction on the call depth of subtype(T1, T2):
Induction Hypothesis: for every subcall to subtype, if subtype(T ′

1, T
′
2) =

true, then it follows that for all Γ′, τ ′ and η′ such that Γ′ ⊢ τ ′ 7−→ T ′
1 and

Γ′ ⊢ η′ 7−→ T ′
2, then Γ′ ⊢ τ ′ <: η′.

Subcase 1 (Base Case: T1 = ⊤, T2 = ⊤). Trivial.

Subcase 2 (Inductive Case: T1 = ⊤, T2 = x.M 7→ D).

∃T ′
2 ∈ lb(x.M 7→ D) subtype(T1, T

′
2) = true

By inversion on the derivation of Γ ⊢ η 7−→ x.M 7→ D, there exists some
τ ′2 such that

Γ ⊢ τ ′2 7−→ T ′
2 Γ ⊢ x : {M ⩾ τ ′2}

Since τ ′2 is a lower bound, it follows that it must be some pure material type
η′2. Thus, by the induction hypothesis, it follows that

Γ ⊢ τ <: η′2

And then by S-Lower we get the desired result:

Γ ⊢ τ <: η
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Subcase 3 (Base Case: T1 = x.L 7→ D,T2 = ⊤). Trivial.

Subcase 4 (Base Case: T2 = x.M 7→ D1, T2 = x.M 7→ D2). Trivially
acheived by S-Rfl.

Subcase 5 (Inductive Case: T1 = x1.L 7→ D1, T2 = x2.M 7→ D2). By similar
reasoning to subcase 2, but on the upper bound instead of the lower bound.

Subcase 6 (Inductive Case: T1 = x1.L 7→ D1, T2 = x2.M 7→ D2). By similar
reasoning to subcase 2.

Subcase 7 (Inductive Case: T1 = _, T2 = x2.M 7→ D2). By similar reason-
ing to subcase 2.

Subcase 8 (Base Case: T1 = ∀(x : S1).U1, T2 = ⊤). Trivial.

Subcase 9 (Inductive Case: T1 = ∀(x : S1).U1, T2 = x2.M 7→ D2). By
similar reasoning to subcase 2.

Subcase 10 (Inductive Case: T1 = ∀(x : S1).U1, T2 = ∀(x : S2).U2). By
simple application of the induction hypothesis.

Subcase 11 (Base Case: T1 = x1.L1{z ⇒ D1} 7→ T 1, T2 = ⊤). Trivial.

Subcase 12 (Inductive Case: T1 = x1.L1{z ⇒ D1} 7→ T 1, T2 = x2.M 7→ D2).
By similar reasoning to subcase 2.

Subcase 13 (Inductive Case: T1 = x1.L{z ⇒ D1} 7→ T 1,
T2 = x2.M{z}D2 7→ T 2).

x1 = x2 L = M

By inversion on the derivation of Γ ⊢ T1 7−→ x1.L1{z ⇒ D1} 7→ T 1 and
Γ ⊢ T2 7−→ x2.L2{z ⇒ D2} 7→ T 2 there exists some σ and δ.

τ = x1.L{z ⇒ σ} (1) η = x2.M{δ} (2)

Γ, z : x1.L{z ⇒ σ} ⊢ σ 7−→ D1 (3) Γ, z : x1.M{δ} ⊢ δ 7−→ D2 (4)
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D(Γ,⊤) = 0 D(Γ,⊥) = 0
Γ ⊢ x ∋ L ⩽ τ

D(Γ, x.L) = 1 +D(Γ, τ)

Γ ⊢ x ∋ L ⩾ τ

D(Γ, x.L) = 1 +D(Γ, τ)

Γ ⊢ x ∋ L = τ

D(Γ, x.L) = 1 +D(Γ, τ)

Γ ⊢ x ∋ L ⪯ τ

D(Γ, x.L) = 1 +D(Γ, τ)

D(Γ,∀(x : τ1).τ2) = 1 +max(D(Γ, τ1),D(Γ;x : τ1, τ2)) D(Γ, τ{z ⇒ σ}) = 0

Figure 7.2: Refinement Depth Measure on Wyvµ Types

Since z ̸∈ fv(δ), by application of environment strengthening followed by
environement weakening to (4) we get

Γ, z : x1.L{z ⇒ σ} ⊢ δ 7−→ D2

Finally we get the desired result by application of the induction hypothesis.

Subcase 14 (Inductive Case: T1 = T ′
1{z ⇒ D1} 7→ T 1,

T2 = T ′
2{z ⇒ D2} 7→ T 2). The only possible sub-call has T2 (and η) itself on

the right-hand side, fulfilling the requirements for the induction hypothesis.
Finally, the desired result is achieved by S-Ext.

Theorem 7.2.2 (Equivalence of Wyvµ Subtyping). For all Γ, τ1, τ2 and Γ ⊢
τ1 <: τ2 ⇐⇒ subtypeη(Γ, τ1, τ2).

Proof. Algorithm 5 reduces questions of Wyvµ subtyping between types to
questions of subtyping between their expansions in Wyvexpand. As I noted
in Section 5.1, given an environment Γ and a type τ , it is always possible
to generate the expansion of that type. If τ2 is a pure material, then the
expansion is generated, and the subtype function is called. In all other cases,
the types are syntactically matched upon. The notable point is that the only
way a cycle may arise on the right, is through a selection type. Since all the
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lower bounds of all selection types are pure materials, such a case is sound by
Theorem 7.2.1. In all other cases, types are syntactically bound, that is, all
subsequent calls are to arguments that are strictly smaller syntactically.

Theorem 7.2.3 (Wyvµ Subtyping is Decidable).

Proof. The result follows directly from Theorem and 7.2.2.

7.3 Expressiveness of Wyvµ

Polymorphic Data Types

Restricting recursive types from the lower bound of type definitions conflicts
with several instances of expressiveness, most importantly those that use
recursive types in type definitions of the form L = τ . This restriction is
implicit since L = τ specifies both a lower and an upper bound. This is
a common form for type members and thus the restriction has wide ranging
implications. Among those excluded are both of the examples mentioned in
Section 7.1 as both use type members to specify exact types.

While the specific formulation of the examples of Parametric Polymor-
phism and Family Polymorphism in Section 7.1 are no longer expressible in
Wyvµ, the examples can still be expressed using the nominal form of type
members introduced in Chapter 3 (L ⪯ τ). Types defined using a nominal
definition may only be subtyped by explicit extension, and are not treated
as having a lower bound in the same way that other type members are. The
Node and type definitions are rewritten using the nominal form below.

1 type Node[E <: ⊤, V <: ⊤] ⪯ Map[self.E, Node]

As a result of using the nominal form for type definition, Node cannot be
structurally from below inspected during subtyping. This represents a rather
large conceptual split between nominal subtyping where recursive types may
be used, and structural subtyping where recursive types are restricted to only
upper bounds of type definitions. This is implies a potentially significant
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restriction on the expressiveness allowable by Scala, but not on a language
such as Java where all subtyping is nominal.

Encoding Java in Wyvµ

Chapter 3 already demonstrated that Java Generics represents a subset of
Wyvcore’s subytyping, but it is valuable that Wyvµ subsumes the subtyping of
Java, in particular the version of Java subtyping present in Greenman et al.
original Material/Shape separation. It should be noted that while Wyvµ is
able to express the types and subtyping of Java, it is not necessarily able
to capture the dynamic semantics, in particular Wyvern does not contain
inheritance.

A syntax and subtype semantics for a Java-like type system are given in
Figures 7.3 and 7.4, while the encoding is given in Figure 7.5. The syntax
and semantics of Java provided by Greenman et al. is in fact a superset of
Java in that type parameters may be defined with both an upper and a lower
bound while Java allows either an upper bound or a lower bound, but not
both [38]. The encoding in Figures 7.3 and 7.4 only allows for single bound
on type parameters, and are thus in-line with the expressiveness of Java.

Theorem 7.3.1. The subtype sematics of Figure 7.4 are a subset of those
in Chapter 3. That is, if ⊢ ς1 <: ς2 ⇒ x : {Wyv(CT )} ⊢Wyv Wyv(ς1) <:

Wyv(ς).

Proof. Letting x : {Wyv(CT )} = ΓWyv, proceed by induction on the deriva-
tion of ⊢ ς1 <: ς2. SJ-Top: Trivial. SJ-Bot: Trivial. SJ-Class+(⊢
C⟨+ς1⟩ <: C⟨+ς1⟩): By the induction hypothesis, we have ΓWyv ⊢ Wyv(ς1)

<: Wyv(ς2), or more specifically we have ΓWyv ⊢ L ⩽ Wyv(ς1) <: L ⩽
Wyv(ς2). Since Java does not allow self references (αC) in class type param-
eters, we can safely weaken the context to ΓWyv, αC : {αC ⇒ L ⩽ Wyv(ς1)},
giving us the desired result by S-Refine. SJ-Class−: Following similar
reasoning to SJ-Class+. SJ-Extend: The substitution in Figure 7.3 is
captured as a refinement on C ′ in the Wyvµ encoding of class declaration of
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ς ::= Java Type
⊥ bottom
⊤ top
α variable
C⟨±ς⟩ class

± ::= Variance
+ negative
− positive

CT ::= Class Table
∅
C⟨±⟩ <:: D⟨±ς⟩;CT

[α 7→ ±1/±2ς] + ς ′ = +[α 7→ ±1/±2ς]ς ′

[α 7→ ±1/±2ς]− ς ′ = −[α 7→ ±−1
1 /±2ς]ς ′

[α 7→ ±/±ς]α = ς

[α 7→ −/+ς]α = ⊥
[α 7→ +/−ς]α = ⊤
[α 7→ ±1/±2ς]C⟨±′ς ′⟩ = C⟨[α 7→ ±1/±2ς]±′ ς⟩

where +−1 = − and −−1 = +

Figure 7.3: Java-like Syntax and Substitution

C in Figure 7.5. Since all substitutions that could possibly be applied are
distinct, they can be safely extracted to a context that stores substitutions as
bounds on each distinct α. Substitution replaces α with the relevant bound
(positive types have ⊥ as the lower bound, and negative types have ⊤ as
the upper bound). During Wyvern subtyping, these bounds are looked up as
they are needed using S-Upper and S-Lower. Thus, following this logic we
can derive a relatively simple substitution lemma. Finally, we get the desired
result using this lemma, the induction hypothesis and S-Extend.

7.4 Type Safety

I now present a proof of type safety for Wyvcore for a term syntax and typing
that extends that of Wyvcore. Unfortunately subtyping in Wyvcore (and thus
Wyvµ) is not transitive, for the same reasons that transitivity was such a
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⊢ ς <: ⊤ (SJ-Top) ⊢ ⊥ <: ς (SJ-Bot)

⊢ ς1 <: ς2

⊢ C⟨+ς1⟩ <: C⟨+ς2⟩
(SJ-Class+)

⊢ ς2 <: ς1

⊢ C⟨−ς1⟩ <: C⟨−ς2⟩
(SJ-Class−)

C⟨±1⟩ <:: C ′⟨±′
1ς

′
1⟩ ⊢ [α 7→ +/±1ς1]C

′⟨±′
1ς

′
1⟩ <: D⟨±2ς2⟩

⊢ C⟨±1ς1⟩ <: D⟨±2ς2⟩

Figure 7.4: Java-like Subtyping

Wyv(⊤) = ⊤
Wyv(⊥) = ⊥
Wyv(αC) = αC .L

Wyv(C⟨±ς⟩) = x.C{Wyv(LC ,±ς)}

Wyv(L,+ς) = L ⩽ Wyv(ς)

Wyv(L,−ς) = L ⩾ Wyv(ς)

Wyv(∅) = ∅
Wyv(C⟨±ς1⟩ <:: D⟨±ς2⟩;CT ) = C ⪯ D{αC ⇒ Wyv(L,±ς1),Wyv(L,±ς2)};Wyv(CT )

Wyv(αC 7→ ±1ς1; Γ) = αC : {αC ⇒ Wyv(L,±1ς1)},Wyv(Γ)

Figure 7.5: Encoding Java in Wyvern

difficult goal for DOT: the potential for bad bounds. As with DOT, this
does not necessarily mean that typing is is unsafe. While types with ill-
formed bounds can be defined in Wyvcore, they are implicitly uninhabited
as their definition must be satisfied by a member of some real object. The
type safety argument for Wyvcore leans on that of DOT by demonstrating
Wyvcore a subset of DOT rather taking the traditional route of Progress
and Preservation. In this section I define the term typing and reduction of
Wyvcore. I then define an encoding of Wyvcore into DOT. I subsequently prove
that a well typed Wyvcore term is in fact a well-typed DOT term.
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t ::= Term
x variable
new τ{z ⇒ d} object
t.m(t) method call

x ::= variable
y concrete var
z abstract var

d ::= Declaration
L = τ type
m : ∀(x : τ).τ = t method

v ::= value
y

Figure 7.6: Wyvcore Term Syntax

7.4.1 Term Typing and Operational Semantics

I define the term syntax, typing and reduction for Wyvcore. As Wyvµ is a
subset of Wyvcore, results based on this typing are applicable to Wyvµ too.
The term syntax is defined in Figure 7.6. A Term is either variable (x), a
new object initialisation (new τ{z ⇒ d}), or a method invocation (t.m(t)).
New objects contain a set of member declarations. A declaration d is either
a type declaration (L = τ), or a method declaration (m : ∀(z : τ).τ = t).

The syntax of Figure 7.6 is only superficially different from that of DOT
2016. The similarity in syntax between the two is intentionally adopted to
aid in the encoding of Wyvcore to DOT. DOT 2016 is a purely object ori-
ented language, and does not contain the anonymous dependent functions
of Wadlerfest DOT. Method declarations in DOT 2016 are however de-
pendent functions, allowing DOT 2016 to capture the same functionality by
wrapping functions in objects. In designing the term syntax for Wyvcore, we
restrict the type of all members to be dependent function types in order to
mirror DOT 2016.

While the syntax is fairly similar to that of DOT, term typing is signif-
icantly different. The term typing is defined in Figure 7.7. This is a more
complete term typing that subsumes the typing of Figure 3.10, extending
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Γ ⊢ t : τ, d : σ

Γ(x) = τ

Γ ⊢ x : τ
(T-Var)

Γ ⊢ x : τ{z ⇒ σ} σ ∈ σ

Γ ⊢ x : {[x/z]σ}
(T-Rec)

Γ ⊢ t : τ{σ} σ ∈ σ

Γ ⊢ t : {σ}
(T-Non-Rec)

Γ ⊢ x : τ{z ⇒ σ}

Γ ⊢ x : τ
(T-Rfn1)

Γ ⊢ t : τ{σ}

Γ ⊢ t : τ
(T-Rfn2)

Γ ⊢ t : x.L Γ ⊢ x : {L ⩽ τ}

Γ ⊢ t : τ
(T-Sel)

Γ ⊢ t : {L ⪯/= τ}

Γ ⊢ t : {L ⩽ τ}
(T-Upper)

Γ ⊢ t : {L = τ}

Γ ⊢ t : {L ⩾ τ}
(T-Lower)

Γ ⊢ t0 : {m : ∀(z : τ1).τ2} Γ ⊢ y : τ Γ ⊢ τ <: τ1

Γ ⊢ t0.m(y) : [y/z]τ2
(T-Invk1)

Γ ⊢ t0 : {m : ∀(z : τ ′).τ} Γ ⊢ t : τ2 Γ ⊢ τ2 <: τ ′ x ̸∈ fv(τ)

Γ ⊢ t0.m(t) : τ
(T-Invk2)

Γ ⊢ τ ∼= {z ⇒ σ}
d has distinct labels
Γ, z : τ ⊢ d : σ′ Γ, z : τ ⊢ σ′ <: σ

Γ ⊢ new τ{z ⇒ d} : τ
(T-New)

Γ ⊢ L = τ : L = τ (T-Type)

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (m : ∀(x : τ1).τ2 = t) : (m : ∀(: τ1).τ2)
(T-Meth)

Figure 7.7: Wyvcore Term Typing

Γ ⊢ ⊤ ∼= {z ⇒ ∅}
Γ ⊢ τ ∼= τ ′

Γ ⊢ τ{z ⇒ σ} ∼= flat(τ ′, σ, z)

Γ ⊢ x : {L ⪯/= τ}
Γ ⊢ τ ∼= τ ′

Γ ⊢ x.L ∼= τ ′

Figure 7.8: Wyvcore Member Expansion
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those rules with type rules for the terms of Figure 7.6, and generalizing some
of the existing rules for all terms rather than just variables. Thus, typ-
ing for variables (T-Var) and unfolding of recursive types for variables (T-
Rec) remain unchanged. Type rules for type refinements (T-Rfn), selection
types (T-Sel), and limited subsumption for upper and lower bounded types
(T-Upper and T-Lower) are generalized for all terms t rather than just
variables (x). We extend these rules with type rules for method invocation
(T-Invk1 and T-Invk2), and new objects (T-New). A method invocation
t0.m(y) has type [y/z]τ2 if the receiver t0 has type {m : ∀(z : τ1).τ2}, and
the argument y is has a type that subtypes τ1. A new object initialisation
new τ{z ⇒ d} has type τ if τ if the types of object members d subtype the
expansion of τ (∼=). Expansion of a type is defined in Figure 7.8, and is
necessary in Wyvcore due to the added nominality of type refinements and
nominal type definitions when compared to a calculus such as DOT. Ex-
pansion extracts the member types of an object type. ⊤ expands into an
empty refinement on ⊤, type refinements expand into the expansion of the
base type flattened with the refinement. Only nominal or exact selections
are expandable, and expand to the expansion of their defined type.

I now define a term reduction, also derived from DOT 2016, in Figure
7.10. Evaluation contexts and location stores, used in reduction, are defined
in Figure 7.9 and are standard and uninteresting. A method invocation
(R-Invk) reduces to the body of the method retrieved from the store, sub-
stituting out the self and method variables for the receiver and argument
respectively. A new object initialization reduces to a newly created loca-
tion in the store that contains the object. Context reduction (R-Ctx) is
standard.

7.4.2 Encoding Wyvcore in DOT 2016

As I have already mentioned, the argument for type safety of Wyvcore is
derived from that of DOT 2016. Toward this end I define a mapping in
Figure 7.11 from Wyvcore types and terms to DOT 2016 types and terms.
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E ::= Eval. Context
[ ] hole
E.m(t)

y.m(E)

γ ::= Store
∅
y 7→ new τ{z ⇒ d}, γ

Figure 7.9: Wyvcore Evaluation Contexts and Store

γ(y) = new τ{z ⇒ d} (m : ∀(x : τ1).τ2 = t) ∈ d

y.m(y′) −→ γ | [y/z][y′/x]t
(R-Invk)

y fresh in γ γ′ = γ[y 7→ new τ{x ⇒ d}]

γ | new τ{z ⇒ d} −→ γ′| y
(R-New)

t −→ t′

E[t] −→ E[t′]
(R-Ctx)

Figure 7.10: Wyvcore Operational Semantics

The subsequent type safety argument is constructed by demonstrating that
this mapping preserves subtyping, typing and reduction. The primary dif-
ferences between the two syntaxes is the manner in which multiple member
declarations and member declaration types are captured. In Wyvcore, multi-
ple member declaration types are represented as a set (σ) in type refinements.
Similarly, a set of member declarations (d) is included as part of a new ob-
ject. DOT 2016 makes use of intersections of declaration types to capture
multiple declarations, and intersections of member declarations to capture
multiple member declarations. These differences are visible in Figure 7.11.
Most encodings are relatively straight forward and uninteresting, however
the divergence between the two calculi is evident in the encodings of type
refinements (D(τ{z ⇒ σ})), new object initializations (D(new τ{z ⇒ d}))
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D(⊤) = ⊤
D(⊥) = ⊥
D(x) = x

D(x.L) = x.L

D(τ{z ⇒ σ}) = {z ⇒ D(τ) ∧ (
∧
σ∈σ

D(σ)z)}

D(τ{σ}) = D(τ) ∧ (
∧
σ∈σ

D(σ))

D(L ⩽ τ) = L : ⊥ . . .D(τ)

D(L ⩾ τ) = L : D(τ) . . .⊤
D(L = τ) = L : D(τ) . . .D(τ)

D(L ⪯ τ) = L : D(τ) . . .D(τ)

D(m : ∀(x : τ1).τ2) = m(x : D(τ1)) : D(τ2)

D(x) = x

D(x y) = x y

D(x.l) = x.l

D(new τ{z ⇒ d}) = {z ⇒
∧
d∈d

D(d)}

D(L = τ) = L = D(τ)

D(m : ∀(z : τ1).τ2 = t) = m(x) = D(t)

Figure 7.11: Wyvcore to DOT 2016 Encoding

and method members (D(m : ∀(x : τ1).τ2 = t)).
Type safety of Wyvcore is constructed in five theorems:

1. Theorem 7.4.1 proves that variable typing in Wyvcore implies variable
typing in DOT.

2. Theorem 7.4.2 proves that subtyping in Wyvcore implies an equivalent
subypting in DOT.

3. Theorem 7.4.3 proves that typing in Wyvcore implies an equivalent typ-
ing in DOT.
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4. Theorem 7.4.4 proves that term reduction in Wyvcore implies an equiv-
alent term reduction in DOT.

5. Theorem 7.4.5 proves that term reduction in Wyvcore does not get stuck.

Theorem 7.4.1 (Wyvcore variable typing implies DOT 2016 variable typ-
ing). For all Γ, x, τx, if Γ ⊢ x : τx then D(Γ) ⊢ x : D(τx).

Proof. We construct the proof by mutual induction on the derivation of Γ ⊢
x : τx.

Case 1 (T-Var).

Γ(x) = τx

It follows that
D(Γ)(x) = D(τx)

and thus, D(Γ) ⊢ x : D(τx) (by Var [75]).

Case 2 (T-Rec).

Γ ⊢ x : τ{z ⇒ σ} σ ∈ σ τx = {[x/z]σ}

By the induction hypothesis, we have

D(Γ) ⊢ x : D(τ{z ⇒ σ})

By the definition of D we have

D(Γ) ⊢ x : {z ⇒ D(τ) ∧
∧
σ∈σ

D(σ)z} (by defn. of D)

D(Γ) ⊢ x : D(τ) ∧
∧
σ∈σ

D(σ)x (by Rec-E)

D(Γ) ⊢ x : {D(σ)}x (by Sub,And11 and And12)

D(Γ) ⊢ x : {D([x/z]σ)} (by defn. of D)

The desired result.

Case 3 (T-Non-Rec). By similar reasoning to Case 2, without the unfold-
ing of the recursive type.
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Case 4 (T-Rfn).

Γ ⊢ x : τ{z ⇒ σ} τx = τ

By the induction hypothesis, we have

D(Γ) ⊢ x : D(τ{z ⇒ σ})

By the definition of D we have

D(Γ) ⊢ x : {z ⇒ D(τ) ∧
∧
σ∈σ

D(σ)z} (by defn. of D)

D(Γ) ⊢ x : D(τ) ∧
∧
σ∈σ

D(σ)x (by VarUnpack)

D(Γ) ⊢ x : {D(τ)} (by Sub and And11)

The desired result.

Case 5 (T-Rfn2). By similar reasoning to Case 4, without the unfolding of
the recursive type.

Case 6 (T-Sel).

Γ ⊢ x : y.L Γ ⊢ y : {L ⩽ τx}

By the induction hypothesis and the definition of D we have

D(Γ) ⊢ x : y.L D(Γ) ⊢ y : {L : ⊥ . . .D(τx)}

By Sel1, D(Γ) ⊢ y.L <: D(τx), and then by Sub we get the desired result:
D(Γ) ⊢ x : D(τx).

Case 7 (T-Upper).

Γ ⊢ x : {L ⪯/= τ} τx = {L ⩽ τ}

By the induction hypothesis:

D(Γ) ⊢ x : {L : D(τ) . . .D(τ)}

By DTyp-<:-DTyp and Sub we have the desired result:

D(Γ) ⊢ x : {L : ⊥ . . .D(τ)}
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Case 8 (T-Lower). By similar reasoning to T-Upper we get the desired
result.

Before proving subtyping is preserved by D, I first demonstrate that that
a type’s extension (Figure 3.11) is a super type of the original type.

Lemma 7.4.1 (⩽:: ⇒ <: in DOT 2016). For all Γ, τ and τ ′ such that
Γ ⊢ τ ⩽:: τ ′ then D(Γ) ⊢ D(τ) <: D(τ ′).

Proof. By induction on the derivation of Γ ⊢ τ ⩽:: τ ′:

Case 1 (E-Sel).

τ = x.L Γ ⊢ x : {L ⩽ τ ′}

By Theorem 7.4.1 and the definition of D, we get

D(Γ) ⊢ x : {L : ⊥ . . .D(τ ′)}

The desired result is then achieved by Sel1

Case 2 (E-Rfn).

τ = τ1{z ⇒ σ}
Γ ⊢ τ1 ⩽:: τ2 τ ′ = flat(τ2, σ, z) D(τ) = {z ⇒ D(τ1) ∧

∧
σ∈σ

D(σ)z}

By case analysis on the flat function, it is easy to demonstrate that

D(flat(τ2, σ, z)) = {z ⇒ D(τ2)
z ∧

∧
σ∈σ

D(σ)z}

By the induction hypothesis we get:

D(Γ) ⊢ D(τ1) <: D(τ2)
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Thus we get:

D(Γ), z : D(τ) ⊢ D(τ1) <: D(τ2) (by weakening)
D(Γ), z : D(τ) ⊢ D(τ1) ∧

∧
σ∈σ

D(σ)z <: D(τ2) ∧
∧
σ∈σ

D(σ)z (by Reflexivity

and And11)

D(Γ) ⊢ {z ⇒ D(τ1) ∧
∧
σ∈σ

D(σ)z} <: {z ⇒ D(τ2) ∧
∧
σ∈σ

D(σ)z} (by BindX)

The desired result.

Theorem 7.4.2 ( DOT 2016 subsumes Wyvcore subtyping). For all Γ, τ1

and τ2, if Γ ⊢ τ1 <: τ2 then D(Γ) ⊢ D(τ1) <: D(τ2).

Proof. The proof proceeds by induction on the derivation of Γ ⊢ τ1 <: τ2.

Case 1 (S-Rfl). Trivial.

Case 2 (S-Bot). Trivial.

Case 3 (S-Top). Trivial.

Case 4 (S-Upper).

τ1 = x.L Γ ⊢ x : {L ⩽ τ} Γ ⊢ τ <: τ2

By Theorem 7.4.1 it follows that D(Γ) ⊢ x : {L : _ . . .D(τ}). The induction
hypothesis gives D(Γ) ⊢ D(τ) <: D(τ2). By DOT 2016 subtyping (Sel1

and Trans) we get the desired result :D(Γ) ⊢ x.L <: D(τ2)

Case 5 (S-Lower). By similar reasoning to Case 4.

Case 6 (S-All). D does not encode dependent function types, thus D(τ)

does not exist, and the result is trivial.

Case 7 (S-Refine).

τ1 = τ{z ⇒ σ1} τ2 = τ{z ⇒ σ2} Γ, z : τ{z ⇒ σ1} ⊢ σ1 <: σ2

D(τ1) = {z ⇒ D(τ) ∧
∧
σ∈σ1

D(σ)z} D(τ2) = {z ⇒ D(τ) ∧
∧
σ∈σ2

D(σ)z}

182



Chapter 7 Type Safety

By the S-Decls, it follows that

∀σ2 ∈ σ2, ∃σ1, such that Γ, τ1 ⊢ σ1 <: σ2

and subsequently by the induction hypothesis and the definition of D:

D(Γ),D(τ1) ⊢ D(σ1) <: D(σ1)

It then follows that for every T2 in
∧

σ∈σ2

D(σ)z, there exists some T1 in
∧

σ∈σ1

D(σ)z

such that
D(Γ),D(τ1) ⊢ T1 <: T2

Since by reflexivity of subtyping in DOT 2016 we have: D(Γ),D(τ1) ⊢
D(τ) <: D(τ), the desired result can be reached by a combination of
And11, And12 and And2.

Case 8 (S-Extend).

Γ ⊢ τ1 ⩽:: τ Γ ⊢ τ <: τ2

Γ ⊢ τ1 <: τ2

The result follows from a combination of Lemma 7.4.1 and subtype transi-
tivity (Trans) in DOT 2016.

Lemma 7.4.2. For all Γ, τ and τ ′ such that Γ ⊢ τ ∼= τ ′, then D(Γ) ⊢
D(τ ′) <: D(τ).

Proof. By induction on the derivation of Γ ⊢ τ ∼= τ ′:

Case 1.

τ = ⊤ τ ′ = {z ⇒ ∅}

Trivial by Top.
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Case 2.

τ = τ ′′{z ⇒ σ} Γ ⊢ τ ′′ ∼= {z ⇒ σ′′} τ ′ = flat({z ⇒ σ′′}, z, σ)

By the defintion of flat and D we get

D(τ) = {z ⇒ D(τ ′′) ∧
∧
σi∈σ

D(σi)
z}

D(τ ′) = {z ⇒ ⊤∧ (
∧

σj∈σ′′

{σj}) ∧ (
∧
σi∈σ

{σi})}

By the induction hypothesis:

D(Γ) ⊢ D({z ⇒ σ′′}) <: D(τ ′′)

D(Γ) ⊢ {z ⇒ ⊤∧ (
∧

σj∈σ′′
{D(σj)})} <: D(τ ′′) (by the defn. of D)

D(Γ), z : D({z ⇒ σ′′}) ⊢ (⊤ ∧ (
∧

σj∈σ′′
{D(σj)}))z <: D(τ ′′) (by BindI)

D(Γ), z : D({z ⇒ σ′′}) ∧ (
∧

σi∈σ

{σi}) ⊢ (⊤ ∧ (
∧

σj∈σ′′
{D(σj)}))z <: D(τ ′′) (by Narrowing)

D(Γ), z : D({z ⇒ σ′′}) ∧ (
∧

σi∈σ

{σi}) ⊢ (⊤ ∧ (
∧

σj∈σ′′
{D(σj)}))z ∧ (

∧
σi∈σ

{σi}) (by And11,

<: D(τ ′′) ∧ (
∧

σi∈σ

{σi}) And12 and And2)

Finally, the result is derived through BindX.

Theorem 7.4.3 (DOT subsumes Wyvcore typing). For all Γ, t and τ , if
Γ ⊢ t : τ then D(Γ) ⊢ D(t) : D(τ)

Proof. This is the more general form of Theorem 7.4.1. By induction on the
derivation of Γ ⊢ t : τ : For cases T-Var and T-Rec, the desired result can
be demonstrated by Theorem 7.4.1. Most of the remaining cases are solved
by either similar reasoning to Theorem 7.4.1, or direct application of either
the induction hypothesis or Theorem 7.4.2. The only case that varies much
from the type rule for DOT 2016 is the rule for new object initialization:

Case 1 (T-New).

Γ ⊢ τ ∼= {z ⇒ σ}
Γ, z : {z ⇒ σ′} ⊢ d : σ′ Γ, z : {z ⇒ σ′} ⊢ σ′ <: σ
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By the induction hypothesis we have

D(Γ, z : {z ⇒ σ′}) ⊢ D(d) : D(σ′)

By the Theorem 7.4.2 we have

D(Γ, z : {z ⇒ σ′}) ⊢ D(σ′) <: D(σ)

By the Theorem 7.4.2 we have

D(Γ) ⊢ D(new τ{z ⇒ d}) : D(τ)

Thus by subsumption, we get the desired result:

Theorem 7.4.4 (DOT Term Reduction is equivalent to Wyvcore Term Re-
duction). For all t and t′, if t −→ t′ then D(t) −→ D(t′).

Proof. Term reduction is unaffected by either subtyping or typing, the major
differences between Wyvcore and DOT 2016. Reduction is in fact equivalent,
and the proof derives easily from this.

Theorem 7.4.5 (Wyvcore is Type Safe). For all t and τ , if ∅ ⊢ t : τ , then
term reduction of t does not get stuck.

Proof. The result follows directly from Theorems 7.4.3 and 7.4.4.
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Conclusion

In this thesis I have identified the different sources of undecidability in typ-
ing languages with both path dependent and recursive types. I have subse-
quently designed three different approaches to tackling these problems. In
this Chapter I summarize the contributions of this thesis. I subsequently go
on to describe potential future work, and questions that remain unanswered.

8.1 Contributions of this Thesis

In this section I detail the contributions of this thesis. The contributions fall
in to two categories: (i) the extension to nominality in Wyvern, and (ii) the
development of three distinct approaches to achieving decidability.

8.1.1 Nominality in Wyvern

The construction of the Material/Shape separation of Chapter 3 relies on
the nominal properties of Wyvcore. This is not surprising as the original
Material/Shape separation of Java is based on the nominality of Java. What
is interesting, is that Wyvcore (and in fact DOT) does not possess the full
nominality of Java. There are two important ways nominality in Wyvcore

differs from that of Java:
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1. Nominal Concrete Types: In Java all subtyping is nominal, even sub-
typing between concrete types. In Wyvcore (and DOT), nominal sub-
typing only exists as type refinements on abstractly defined types.

2. Nominal Supertyping: In Java the nominal type hierarchy defines not
only which types may subtype a specific type, but also which types may
supertype a type. Abstract type members in Wyvcore do not provide
this second restriction. A type x.L defined using the form L ⩽ τ

may only be subtyped by types that refine x.L, whereas, x.L may be
super-typed by any type that super-types τ .

Both of these differences in nominality have implications for the way
that a Material/Shape separation can be defined for Wyvcore. The lack of a
concrete nominal form limits the expressiveness of Material/Shape separated
Wyvcore, and the lack of strict nominality on supertyping of Shapes subverts
the restrictions enforced by the Material/Shape separation. I describe both
of these issues at length in Chapter 4.

To address these issues, I define two extensions to Wyvcore that facilitate
the Material/Shape separation:

1. I define a concrete nominal form for type members (L ⪯ τ) that ex-
hibits nominality in subtyping like abstract, upper bounded type mem-
bers, but is concrete and invariant in the way specific type members
are.

2. I limit type extension of Shapes so as to ensure that Shapes may not
be structurally supertyped.

8.1.2 Decidable Variants of Wyvcore

In this thesis I have developed three decidable variants on Wyvcore.
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Wyvfix

Wyvfix uses two environments for subtyping, and allows for the simplest proof
of decidability using the algorithm described in Chapter 5. Further, there
is no syntactic restriction on Wyvfix beyond the Material/Shape separation.
There are considerable downsides however:

• Transitivity is lost, not only in the ways that one might expect from
type systems with path dependent types and environment narrowing,
but in cases that would seem to work (see 5.5.3).

• Type Safety there is no proof of type safety for Wyvfix. It seems pos-
sible (perhaps even likely) that the language would be type safe, but
the existence of two environments complicates the derivation of such
a proof. Type safety for other variants was derived by demonstrating
a sound encoding existed to some form of DOT. Such an encoding is
more difficult to demonstrate for Wyvfix.

Wyvnon-µ

Wyvnon-µ does not include subtyping for recursive types, and subsequently re-
moves a critical source of environment narrowing during subtyping. Wyvnon-µ

is comparable to both Wadlerfest DOT and Scala in its absence of subtyping
of recursive types, and so does not represent too large of a loss in expressive-
ness from Wyvcore. I provide a proof of type safety for Wyvnon-µ through an
encoding of Wyvnon-µ to Wadlerfest DOT that is both sound and complete.

Wyvµ

Wyvµ prohibits recursive types from lower bounds, ensuring a maximal depth
after which environment narrowing does not occur. I prove Wyvµ type safe by
defining an encoding to DOT 2016 and proving that encoding to be sound
and complete. There are some drawbacks in expressiveness, particularly
around the encoding of family polymorphism, but they can be mitigated by

189



Chapter 8 Future Work

using the nominal form for type members introduced in Section 4.1.2 (Figure
4.2).

8.2 Future Work
There are still many interesting avenues for research in decidability for sub-
typing with path dependent types. In this section I will discuss some of these
areas that might be fruitful for extending Wyvern with added expressiveness.

8.2.1 Type Safety for Wyvfix

While subyping in Wyvfix is decidable, it is not clear that typing for an accept-
able term syntax and operational semantics would be sound. The presence
of two environments in subtyping complicates any attempt to define a sound
and complete encoding to either of the main DOT variants ( Wadlerfest DOT
or DOT 2016), the proof strategy used to demonstrate type safety for both
Wyvnon-µ and Wyvµ.

One potential strategy might take inspiration from the type safety proof
of Wadlerfest DOT and DOT 2016, and defined some super set of Wyvfix,
Wyvfix

′ that explicitly introduces subtype transitivity as a rule. If it could
be demonstrated that such an extension could be proven type safe, it would
follow that Wyvfix itself would be type safe too.

8.2.2 Transitivity

Unfortunately none of the variants of Wyvcore (or indeed Wyvcore itself) fea-
ture subtype transitivity. This is due to the same reason that transitivity
proved so elusive in DOT, the so called “bad bound” problem (see 2.2.1).
The lack of transitivity means that it is difficult to construct a proof of type
safety for any of the variants without referring to some version of DOT.

Ideally the metatheory of Wyvcore would be self contained within Wyvcore,
allowing for programmers to know that every partially evaluated program of
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an originally well-typed program is itself well-typed.

This does not seem to be an simple target, given the nature of transitiv-
ity in DOT, and the role that it plays in type safety. As has been discussed
previously (see 2.2.1), the ability to define type members with arbitrary
bounds, coupled with a transitivity axiom, means that a type member rep-
resents a subtype assumption, that introduces new connections in the sub-
type lattice. In other words, given the variable x : {L : Int . . . String}
in some context allows for the following transitive subtype relationship:
Int <: x.L <: String. Transitivity then allows for the derivation of
Int <: String. The type safety of DOT demonstrates that such a relation-
ship is counter-intuitively still type safe.

Generally the difficulty with defining a transitive subtyping algorithm is
the question of which middle type to use. This is especially problematic if
there are infinite possible types. One way to possibly achieve transitivity
in Wyvcore is to limit the search for the middle type to the finite set of
path dependent types defined within any particular context. This might be
possible to do, but is likely infeasible computationally given the potentially
large number of type definitions any program of even modest size might
define.

Full nominality, like that of Java might provide an solution to this problem
by further constraining the subtype lattice. In a nominal language such as
Java, subtyping is explicitly constructed by declarations of subtyping. In
Java for example, this is done by class inheritance declarations:

1 class C<E> extends D<E>

C<قق...> may only subtype either some D<قق...>, or some super type of D<قق...>.
The subtype lattice is thus constrained by explicit subtype declarations. Such
nominality in Wyvcore might be able to treat type member definition L :

Int . . . String in the same way as nominal subtype declarations, allowing for
an ad-hoc way to introduce connections to the subtype lattice.
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8.2.3 Intersection and Union Types

The most noticeable features missing from Wyvcore when compared to a lan-
guage such as DOT, are intersection and union types. Intersection and union
types provide a range of useful expressiveness that has already been detailed
in Section 2.2.1.

Wyvcore is already empowered with a constrained form of intersection
types in the form of type refinements (see 3.1), but critically lacks the kinds
of multiple inheritance style type hierarchies afforded by full intersection
types, along with the ability to define aggregate types in an ad-hoc manner.

Wyvcore lacks any support for union types, a language feature that DOT 2016
does have. Wadlerfest DOT does not include union types, and as such they
are not needed to encode Scala types.

In this section I discuss some possible extensions to Wyvcore that include
either some form of intersection types or both intersection and union types.

Multiple Nominal Member Definitions

In Wyvcore (and DOT), a type may contain multiple member types of the
same name. This is not unsound, so long as at runtime, any values that
inhabit that type adheres to the specification of each of those member types.
Members of objects in Wyvcore (and DOT) must have unique names (see the
typing and operational semantics in Sections 6.3.1 and 7.4.1). The reason
for this is to avoid potentially unsound types being defined. Soundness in
DOT (and thus Wyvcore) depends on objects at runtime being sound, and
members within objects being well behaved. Multiple members of the same
name could violate this property. Consider the following object:

val x = new

z ⇒
L = String
L = Int
cast : ∀(y : z.L).String = λ(y : z.L).y : String


If the definition of x were allowed, the cast function could be called on a value
of type Int, something that is clearly unsound. The unsoundness derives from
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the fact that one definition (L = Int) can used to type arguments supplied
to cast, and the other definition (L = String) can be used to type the
body of cast. Put another way, we are able to type programs using the
lower bound of one definition and the upper bound of another. This is not
true if nominal type definitions are used:

val x = new

z ⇒
L ⪯ String
L ⪯ Int
cast : ∀(y : z.L).String = λ(y : z.L).y : String


The above program still includes multiple definitions of L, but the nominal
definition of L means that it has no lower bound, and subsequently any ar-
gument supplied to cast must explicitly extend x.L, meaning it must adhere
to the specification both Int and String. Such a type definition is fairly
similar to multiple inheritance style type definitions. It seems likely that a
relatively simple extension to Wyvcore could be defined that introduced such
multiple nominal type definitions in a decidable and type safe manner.

Intersection and Union Types

Full intersection and union types are already known to co-exist with both
path dependent and recursive types in DOT 2016 in a type safe manner. It
seems reasonable that they might be introduced on top of Wyvcore in a way
that is both safe and decidable. Intersection types in DOT are an integral
part of the type system, and are used to model a variety of type patterns,
including type refinements (see 2.2.1). Type refinements are however an
integral part of the Material/Shape separation defined in Chapter 3, and
intersection types are not immediately amenable to the application of the
same Material/Shape separation.

Likely the simplest extension does not integrate the Material/Shape sep-
aration into intersection types, defines a simple extension on top of Wyvcore

that does not seek to replace type refinements. In Figure 8.1 I define a syn-
tactic extension on top of Wyvcore that does not remove type refinements,
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τ ::= Type
...
τ ∩ τ intersection
τ ∪ τ union

Figure 8.1: Wyvfull Syntax Exten-
sion

Γ ⊢ x : τ

Γ ⊢ x : τ1 ∩ τ2

Γ ⊢ x : τ1
(T-Int1)

Γ ⊢ x : τ1 ∩ τ2

Γ ⊢ x : τ2
(T-Int2)

Figure 8.2: Wyvfull Typing Extension
Γ ⊢ τ1 <: τ2

Γ ⊢ τ <: τ1 Γ ⊢ τ <: τ2

Γ ⊢ τ <: τ1 ∩ τ2
(S-And)

Γ ⊢ τ1 <: τ

Γ ⊢ τ1 ∩ τ2 <: τ
(S-And1)

Γ ⊢ τ2 <: τ

Γ ⊢ τ1 ∩ τ2 <: τ
(S-And2)

Γ ⊢ τ1 <: τ Γ ⊢ τ2 <: τ

Γ ⊢ τ1 ∪ τ2 <: τ
(S-Or)

Γ ⊢ τ <: τ1

Γ ⊢ τ <: τ1 ∪ τ2
(S-Or1)

Γ ⊢ τ <: τ2

Γ ⊢ τ <: τ1 ∪ τ2
(S-Or2)

Figure 8.3: Wyvfull Subtyping Extension

but simply adds intersection and union types. I also provide extensions to
Wyvcore typing (Figure 8.2) and subtyping (Figure 8.3). Such an extension
could use the same Material/Shape separation with very little modification.
While I have not demonstrated decidability for any variant of Wyvfull, in the
same manner as Wyvnon-µ or Wyvµ, it seems likely that either approach could
be taken to achieve such a variant.

Integrated Subtyping for Intersection and Union Types

Muehlboeck and Tate [60] defined a framework for extending existing lan-
guages with intersection and union types in a decidable manner, while also
providing useful, intuitive, and expressive properties such as distributivity.
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Such an extension would have obvious benefits to either Wyvnon-µ or
Wyvµ. Muehlboeck and Tate do however require several properties of the
subtyping of the underlying language, among them subtype transitivity, a
property that is missing from all variants of Wyvcore.

Decidable Scala

The type systems in this thesis have wider implications than just the Wyvern
programming language, they also imply a potential subset of Scala that is
still reasonably expressive. Scala, as the most prominent language featuring
the both recursive types and path members, is a natural target for testing
the ideas in this thesis on large scale industry code bases.

Both Wyvnon-µ and Wyvµ represent potential paths for developing a de-
cidable variant of Scala. While Wyvnon-µ lacks subtyping of recursive types,
so does the subtyping of both Wadlerfest DOT and Scala. Wyvµ, while it
includes subtyping of recursive types, it does not allow for the use of recursive
types in the lower bounds of type members. For Wyvµ to adequately capture
Scala, researchers would have to evaluate to what degree such a limitation
would have on existing Scala code bases.

Building such an extension to Scala would have other advantages, most
notably it would allow for a similar survey to that which Greenman et al.
conducted on the separation of Materials and Shapes. Whether Sclaa pro-
grammers using type members follow the same latent distinction as Java
programmers using type parameters is still an unanswered question.

Finally, there are two potential targets for extension; the current Scala
2.XX compiler, and the new Dotty formulation of Scala [4], intended as the
basis of Scala 3 [6]. Both targets have their strengths as targets:

• Scala 2 represents a relatively mature language, with a sizeable code
base to serve as a corpus, thus providing better intuition for the way
Scala programmers use type members over type parameters.

• Dotty is intended as the basis of Scala 3, and ultimately the future of
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the Scala language. Scala 3 is yet to be released (intended for a release
date of early 2020 [6]), and provides a good basis for constructing
decidable subtyping for future editions of Scala. Unfortunately Dotty
is not intended to be backwards compatible with all language features
of Scala 2, and ultimately some existing Scala code bases will not be
compatible with Scala 3.
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