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Abstract

We investigate strongly graded C*-algebras. We focus on graph C*-algebras
and explore the connection between graph C*-algebras and Leavitt path
algebras, both of which are Z-graded. It is known that a graphical condi-
tion called Condition (Y) is necessary and sufficient for Leavitt path alge-
bras to be strongly graded. In this thesis we prove this can be translated
to the graph C*-algebra and prove that a graph C*-algebra associated to a
row-finite graph is strongly graded if and only if Condition (Y) holds.
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Chapter 1
Introduction

We say that a ring A is graded by a group G if A =  A,, where each

geG

A, is an additive subgroup of A, and A, - A, C Ay, for every g,h € G.
For a G-graded ring A every element a € A has a unique decomposition
a=>)_,paywhereeacha, € A;and F'is a finite subset of G. A motivating

example is a polynomial ring, which is graded by the integers, Z.

In a recent book [5], Exel defines a C*-algebra to be G-graded if it con-
tains a dense GG-graded ring. In fact, Exel also introduces a stronger notion:
a G-graded C*-algebra is topologically graded if there is a bounded linear
map F' : A — A which is the identity on A, and vanishes on every A, with
g # e [5, Definition 19.2]. Results from both [5] and [12] demonstrate that
there is an interesting relationship between the algebraic theory of graded
rings and analytic theory of graded C*-algebras. Expressly, each grading
subspace of a graded C*-algebra is a Banach space and the collection of

these form an analytic structure known as a Fell bundle.

We say that a ring is strongly graded if in addition to being G-graded,
A, - A, = Ay, for every g.h € G. In [4], Dade systematically studied
strongly graded rings and claimed that ”their gradings alone are their

most important property”.

In this thesis we aim to introduce the notion of strongly graded C*-
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2 CHAPTER 1. INTRODUCTION

algebras. In the literature, a Fell bundle is called saturated if it satisfies a
condition which looks strikingly similar to the condition for strong grad-
ing. We expect the relationship between strong grading and saturated Fell
bundles to reflect the relationship between grading and Fell bundles.

We focus our investigation within the specific setting of graph rings
and algebras. To any directed graph we can associate both a purely alge-
braic ring called the Leavitt path algebra as well as a C*-algebra such that
the Leavitt path algebra sits densely inside the graph C*-algebra. The con-
nection between the two have captured the attention of ring theorists and
analysts alike.

Both the graph C*-algebra and the Leavitt path algebra are graded by
Z. In the preprint [3], a graphical condition is given such that a graph ring
is strongly graded if and only if the condition is met. The main goal of this
thesis is to demonstrate how this characterisation gives similar results for
graph C*-algebras by showing that its grading generates a saturated Fell
bundle.

Numerous results have been found wherein the Leavitt path algebra
has a particular property if and only if the graph C*-algebra shares said
property (or some topological equivalent) and our main theorem fits this
model. Typically the arguments for these results run parallel to one an-
other; it is shown that a Leavitt path algebra has a property if and only
if the associated graph has some property, and the same is proven for the
graph C*-algebra using different techniques. The link between the graph
C*-algebra and the Leavitt path algebra is only made at the level of the
graph. The novelty of our approach is that we deduce our C*-algebra re-
sult directly from the analogous result about Leavitt path algebras.

We assume a basic understanding of C*-algebras, though we will de-
fine the terminologies when needed including the definitions and conven-
tions of graph C*-algebras which follow [10].

We now outline the structure of this thesis. In the second chapter we



define and review some of the basic properties of Leavitt path algebras
and graph C*-algebras. The third chapter discusses grading in both the al-
gebraic and the C*-algebraic setting; in particular, we will show that both
the Leavitt path algebra and the graph C*-algebra are graded by the group
Z. We also look at the structure of the 0-graded piece, A, of both struc-
tures. We show that the 0-graded piece of the Leavitt path algebra and
the graph C*-algebra are isomorphic to the direct limit of matrix algebras.
Finally, in Chapter 3 we examine Fell bundles over C*-algebras, which we
will see are intrinsically tied to C*-grading, and present some properties of
saturated Fell bundles. These chapters will cover most of the preliminary

knowledge required.

In the fourth chapter we introduce the notion of a strongly graded C*-
algebra and present our main result. Namely, we prove that the C*-algebra
of a row-finite directed £ graph is strongly graded if and only if £/ has no

sources and satisfies Condition (Y).
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Chapter 2

Directed Graphs And Their
Algebras

In this chapter we discuss directed graphs and their associated algebras.
We begin by introducing directed graphs and terms used to describe their
components and properties. Then for a directed graph E we discuss the
associated Leavitt path algebra ring Ly (E), where K is an arbitrary field,
which is built using an axiomatised set of relations over the vertices and
edges of the graph. We then move on to discussing Cuntz—Krieger E-
families which we use to establish the graph C*-algebra C*(E). We show
that the two structures are founded upon similar relations, and are strongly
connected. In fact, there is a dense Leavitt path algebra L¢(E) embedded
in C*(E), which we use to form the crucial argument for the main result
of this thesis.

2.1 Directed Graphs

A directed graph E is a quadruple (E°, E', r, s), consisting of two countable
sets, E,E' and two functions r, s : E' — E°. We call E° the set of vertices
of E and E' the set of edges of E. For an edge ¢ € E' we call s(e) the source
of ¢, and r(e) the range of e. If e € E' such that s(e) = v and r(e) = w we

5



6 CHAPTER 2. DIRECTED GRAPHS AND THEIR ALGEBRAS

say that v emits e and that w receives e. For the purposes of this thesis all
graphs will be directed unless otherwise stated so the reader may always

assume the term ”graph” refers to directed graphs as defined above.

An edge with the same source and range is known as a loop. A vertex
which emits no edge is known as a sink and a vertex that receives no edge
is known as a source (the double up in terminology does not seem to cause

any ambiguity within the literature).

It is often useful to represent graphs by drawing them; however, there
are many ways to draw a graph. It is important to note that two graphs £
and F are isomorphic if and only if there are two bijective functions ¢° :
E° — FY and ¢' : E' — F'suchthatrpo¢! = ¢ organd spog! = ¢ osp.

We say that a graph E is row-finite if the vertex matrix Ag of the graph
E,which is the E° x E° matrix with entries

Ap(v,w) = #{e € E' : r(e) = v, s(e) = w},

is such that each row has a finite sum.

2.2 Leavitt Path Algebras

Let E be a row-finite directed graph and K be any field. Define the set
(EY)* .= {e* : e € E'} to be a new set of edges consisting of the edges of
E with the direction reversed so that s(e*) = r(e) and r(e*) = s(e). We
sometimes refer to these as ghost edges. The Leavitt path algebra Ly (E) is
the free associative K-algebra generated by £° U E' U (E')* subject to the

following relations:
1. Forallv,w € E°, vw = §, ,v;
2. Foralle € E', e = r(e)e = es(e);

3. Foralle € (E')*, e* = s(e)e* = e*r(e);
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4. Foralle, f € E', e*f = 0. ss(e);

5. Forallv € E% v = > (eemia(e)=v} €€° Whenever v is not a source.

These relations can vary within the literature where r and s are essen-
tially swapped and sinks become sources and vice versa. The above defi-
nition and the results in the rest of this section can be found in [1, Chapter
1, Section 2] with r and s interchanged. We have chosen this convention
to be consistent with [10]. This will mean that the paths of a graph will
appear to be in reverse; however, this approach is better suited for the
context of higher rank graphs.

Remark 2.2.1 (The Universal Property of Lx(E)). Leavitt path algebras are
universally defined in the following sense: Suppose E is a graph, and A
is a K-algebra which contains a set of pairwise orthogonal idempotents
{a, : v € E'}, and two sets {a. : e € E'}, and {b. : e € E'} for which

(1) Qe = Qr(e)e = Qels(e) and b, = as(e)be = beCLT(e) forall e € El,'
(ii) beas = ¢ raye) foralle, f € E'; and
(iii) a, = >, (ecBlr(e)v) Qebe Whenever v is not a source;

then there exists a unique K-algebra homomorphism ¢ : L (E) — A such
that ¢(v) = a,, ¢(e) = a. and ¢(e*) = b, forallv € E° and e € E' [1,
Remark 1.2.5]. We call such a family a Leavitt E-family in A.

We now give some basic properties of Lx(E). The following calcula-
tions and terminologies have been adapted from chapter one of [10] for
Leavitt E-families in order to give a more detailed proof of [1, Lemma
1.2.12].

Proposition 2.2.2. Let E be a row-finite graph, let K be a field. Then for e, f €
L (F), we have that:

(i) ef #0 = s(e) =r(f);
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(ii) e f*#0 = r(e) = s(f);

(i) ef* #0 = s(e) = s(f);

ee* ife=f

0 else.

(iv) (ee”)(ff*) = {

Proof. To begin with fix e, f € E°. To prove (i), notice that

ef = (es(e))(r(e)f) by the second relation for Ly (E)
= e(s(e)r(f)f
= e(0s(e)r(5)s(€)) f by the first relation for Ly (E)

and

ds(e)r(n)se) # 0
= s(e) =r(f)

according to the first Leavitt path algebra relations; giving us (). We can
use a similar calculation prove (ii) and (7i1).

Lastly, for (iv), (ee*)(ff*) = e(e*f)f* = e(ders(e))f* by the fourth
Leavitt path algebra relation. So either

(ee”)(ff7) = e0f" =0
implying e # f;elsee = f and
(ee")(ff") =e(e’e)e” =es(e)e” = ee™.

]

Part (i) of Proposition 2.2.2 is particularly useful because this allows us
to think of paths as elements of the Leavitt path algebra. A path of length
n in a directed graph E is a sequence of edges y = fi1 -+ i, in E such
that s(u;) = (1) for i € {1,...,n — 1}. We denote the length of 1 as
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|u| :== n, and consider vertices to be paths of length 0. We say that £ is
the set of paths of length n in . We call the set of all paths of a graph
E* := |J E". We can extend the range and source maps to paths of E by

n>0

setting r(u) = r(p1) and s(p) = s(p,) for p € E*. For p,v € E* with
s(p) = r(v), we write uv for the path juy - - - puv1 -+ - vy

When we view a finite sequence of edges as a product of edges in the
Leavitt path algebra Proposition 2.2.2 tells us that for any product of length
n, L= fiy - - - 1, = 0 unless p is a path. If i is a path then:

pre= (s i) i (2.1)
= i+ pa(papa )2 - i
= fiy -+ ppS(py)pio - - - i (fourth relation forLx (£))

= o par(po)pe - (s(pi) = r(pis))
= [y - g (fapio) s - -+

= s(tn) = s(p)-

We can extend the results of Proposition 2.2.2 in the following way:

Corollary 2.2.3. Let E be a row-finite directed graph and K be a field. Then for
paths p, v € E* in the Leavitt path algebra Ly (E) we have that:

(i) uw #0 = pv € E%
(ii) p* £0 = s(u) = s(v);
(iii) p'v* 40 = vu € E*
(iv) if |u| = |v| and pu % v, then (up*)(vv*) = 0;

W if u = vy for some i/ € E*
(v) w'v=4qv ifv=p forsomev € E*.

0 else
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Proof. Fix p,v € E*. Firstly, we show (i). As discussed above v =
fi - Vi - - V|- Suppose ur # 0, then

1 0 = () = r(v1) by Proposition 2.2.2.(3)
— uv € E*

Similarly for (ii), we can see that

/LV* = fiq - Mlul(yl e V|V\)*
= /’1/1 LY MIM'VI*V| ... Vik.

If pv* # 0 then py, v, # 0 which implies s(u,) = s(v,) by Proposi-
tion 2.2.2.(74i), and thus s(p) = s(p),) = s(vp)) = s(v).

To see (iii), notice p*v* = (vp)*, which is non-zero by (i) whenever
vp € B*.

To see (iv), suppose |u| = |v| = n and let ¢ be the smallest integer such
that p; # v;. Then

M*V pr— (/”Ll .. ‘/”l’n)*ljl .. -Vn
= ) v

= fi o g S(Him1 Vi by Equation (2.1)
:NZMfT(Mz)Van as S(,ui,l) :T(,ul)
= IV Uy by fourth relation for Ly (E).

Which is equal to 0 since pf # v; by fourth relation for Leavitt path alge-
bras.

Finally, for (v) suppose that || = n, and |p] < |v|. Let v = v’ with
la| = n. Then p*'v = p*(a') = (w*a)v'. If 4 = «, then by Equation (2.1)
()’ = s(p)v'. Else, p # a and (")’ = 0/ = 0 by (i). In the case
where |u| > |v| we can show (v) using a similar argument factoring p =
Bu'. O

We are now able to prove the following lemma which can be found in
[1, Lemma 1.2.12].



2.3. GRAPH C*ALGEBRAS 11

Lemma 2.2.4. Let E be a row-finite graph and K be a field. Then for paths
w, v, e, B € E*in Li(E) we have

(ua)p* if a = va! for some o € E*
() (aB*) = § p(BV)*  ifv = v for somev' € E* (2.2)

0 else.

In particular, the algebra Ly (E) is spanned as a K-vector space by the set
{w" v € B s(pn) = s(v)}.

Proof. Fix p,v,a, B € E*. If s(u) # s(v) or s(a) # s(B), then (uv*)(af*) =0
by Corollary 2.2.3.(i7). Suppose that s(x) = s(v) and s(«) = s(5). Then

pc!p*if @ = va/ for some o/ € E*
() (af®) = pu(v'a)B* = ¢ u(Bv')* if v = av/ for some v’ € E*

0 else

by Corollary 2.2.3.(v).

To show the second statement of this proposition, take a non-zero string
of elements e € F' and f* € (E')*. Adjacent e’s can be written as a path
p € E* and adjacent f*’s can be written as v* for some v € E*. So the
string is a product of terms of the form pv*; for example we can write y*
as s(p)p*. Equation (2.2) tells us a product of these terms can be simplified
to a single term of that form. Thus, every element of Lx(FE) is a sum of

terms of the form pv* and L (F) = span{uv* : p,v € E* s(u) = s(v)}. O

2.3 Graph C*-algebras

We now seek to represent a directed graph £ with operators on a Hilbert
space ‘H. When building a graph C*-algebra from a graph we represent
the vertices with projective subspaces of H and the edges with partial
isometries mapping between them. It is important to note that there is
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no standard method to prescribing which direction to put the isometries.
Some authors will put them in the same direction as the edges, and oth-
ers will put them in the opposite direction. Each method comes with its
own advantages and disadvantages. A large majority of the information
regarding graph C*-algebras in this thesis, the remainder of this chapter in
particular, is from [10] and as such we will be using the conventions used

by Raeburn.

Let E be a row-finite directed graph and H be a Hilbert space. A Cuntz—
Krieger E-family {S, P} on H consists of a set of mutually orthogonal pro-
jections {P, : v € E°} and a set {5, : e € E'} of partial isometries on H
such that

(CK1) S:S., = P,
(CK2) P, = > S.S¥ whenever v is not a source.
e€El:r(e)=v

These conditions are known as Cuntz—Krieger relations. In particular, CK(2)
is known as the Cuntz—Krieger relation at v.

Since these projections are mutually orthogonal, ie. P, P, = 0 whenever
v # u, the subspaces P,H are mutually orthogonal subspaces of #. The
relation (CK1) implies that the initial space of the partial isometry S, is
PyyH ([10, Proposition A.4]) and relation (CK2) informs us that S.S} is
dominated by P, (), and as such we have that S;H C P, ([10, Proposition
A.1]). Thus S, is an isometry of Py onto a closed subspace of P, giving
us the relation
Se = Pye)Se = SePr(e)- (2.3)

Notice that these relations are strikingly similar to the Leavitt path alge-
bra relations, the main difference being that one may sum infinitely many
terms over a C*-algebra and the field is strictly C. In fact, one should no-
tice that {S, P} = {S.} U{P,} U{S!} form a Leavitt E-family inside B(H).
Since S is the adjoint of S, it is not necessary for {S* : e € E'} to be

mentioned in the definition of Cuntz—Krieger E-families.
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We denote the C*-algebra generated by a Cuntz—Krieger E-family {5, P}

in B(#H) as C*(S, P) and investigate the *-algebraic consequences of the
Cuntz—Krieger relations.

Proposition 2.3.1. Given a row-finite graph E and a Cuntz—Krieger E- family
{S, P} in a C*-algebra B. Then fore, f € E* and u,v € E*:

(i) SeSp#0 = s(e) =r(f);
(i) S;5% #0 = r(e) =s(f);

(iii) S.S7 #0 = s(e) = s(f);

S.S¢ ife=f

0 else
mutually orthogonal);

(iv) (S.S57)(S;S}) = (this implies that {S.S* : e € E'} are
(v) S5, #0 = pv e E*;
(vi) S,55#0 = s(u) = s(v);

(vii) Sy #0 = vp € EY;

(viii) if |u| = |v| and p # v, then (S,55;)(S,5;) = 0;

* . _ / ’ *
St if w=wvy' for some ' € £
(ix) S;S, =148, ifv=p forsomev € E*

0 else.

Proof. As {S, P} form a Leavitt E-family we can apply the same calcula-
tions from Proposition 2.2.2 and Corollary 2.2.3 to see this is true. O

In fact the calculations from Proposition 2.2.2 and Corollary 2.2.3 give
us the following corollary as per [10, Corollary 1.15]:
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Corollary 2.3.2. Suppose that E is a row-finite directed graph and {S, P} is a
Cuntz—Krieger E-family in a C*-algebra B. Then for paths p,v, o, € E* we
have
(Suar)Ss  if a =va for some o’ € E*
(SuSy)(SaSE) = S Su(Sau)*  if v =/ for some V' € E* (2.4)
0 else.
In particular, it follows that every non-zero finite product of the partial isometries

Se and S} has the form S,,S}; for some p, v € E* with s(u) = s(v).

Proof. This proof follows the proof of Lemma 2.2.4 using the equivalent
relations from Proposition 2.3.1. O

Corollary 2.3.3. [10, Corollary 1.16] If {S, P} is a Cuntz—Krieger E-family in a
C*-algebra B for a row-finite graph E, then

C*(S, P) =span{s,S; : u,v € E*, s(u) = s(v)}.

Proof. Corollary 2.3.2 implies that span{S,S} : p,v € E*,s(u) = s(v)} isa
sub-algebra of C*(.S, P). Since

(SuSy)" = 8,8, € span{S,S;, : p,v € B, s(u) = s(v)}

itis a *-sub-algebra; therefore its closure is a C*-sub-algebra. Now, C*(.S, P)
is the smallest C*-algebra containing the generators S, and P, and since
Se = Se53 ) and P, = 5,5 which are both in span{5,,5} : p,v € E*, s(u) =
s(v)} we have that

C*(S, P) = Span{S, S, : j,v € B, s(u) = s(v)}.
O
Now, [10, Proposition 1.21] states that for any row-finite directed graph

E, there is a C*-algebra C*(E) generated by a universal Cuntz—Krieger
E-family {s,p} such that for every Cuntz—Krieger E-family {7',Q} in a
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C*-algebra B, there is a homomorphism 77 of C*(E) into B satisfying
mr.q(se) = T, for every e € E' and 77 o(p,) = Q, for every v € E°. We call
C*(E) the graph C*-algebra of the graph E. In this thesis {s,p} will always
refer to the universal family which generates C*(E).

Suppose E is a row-finite graph, and {s,p} is the universal Cuntz-
Krieger E-family. From the discussion above we can see that {s, p} form a
Leavitt E-family, and by the universal property of Ly (E) (Remark 2.2.1),
there exists a homomorphism ¢ : L¢(E) — C*(E) such that p(v) = p,,
o(e) = s., and p(e*) = si. Proving that ¢ is injective directly would be
challenging; however, The Graded Uniqueness Theorem [14, Theorem 5.3]
states that ¢ is injective since both L¢(£) and C*(E) are graded, which we
discuss in the following chapter. This is an example of how the grading
in both L¢(E) and C*(FE) plays a critical role in informing us about the
strong connection between these objects and their structure. From now
on we will identify ¢(L¢(E)) as Le(E); in particular, we will write s,,s;,

instead of pv* and p, rather than v.

Earlier we said that L¢(E) = span{s,s} : u,v € E*, s(u) = s(v)}, so
we can see exactly how the Leavitt path algebra L¢(E) sits densely inside
C*(E) = span{s,s; : ji,v € E*,s(u) = s(v)}.
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Chapter 3
Gradings

We say that a ring A is graded by a group G if A = ®,ccA,, where each A,
is an additive subgroup of A such that the pointwise product A,- A, C Ay,
for every g, h € G. More generally for an algebra A, A, is a subspace of A
for every g € GG and the product A, - A, = span{ab : a € A,,b € A} for
every g,h € G. This implies that every element of A can be written as a
unique sum of elements from the A,’s. We refer to these subgroups as the

grading of A, or grading subspaces whenever A is an algebra.

A C*-algebra is graded if it contains a dense graded sub-ring; however,
unlike in the algebraic sense, we do not necessarily have a canonical way
to write an element of a graded C*-algebra in terms of elements from its

grading.

In this chapter we begin by showing that L¢(F) is Z-graded. We then
prove the graph C*-algebras of row-finite graphs are also Z-graded, and
that the grading subspaces of C*(E) are the closed spans of the grading
subspaces of the Leavitt path algebra sitting densely inside it. We then
discuss the structure of the grading subspace associated with 0 for both
Leavitt path algebras and graph C*-algebras. Both are isomorphic to the
direct limit of matrix algebras — a fact we use in the argument for the main

result of this thesis. The grading subspaces of the graph C*-algebra col-

17
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lectively form an analytic structure known as a Fell bundle, which we
describe more thoroughly towards the end of this chapter. We also intro-
duce the notion of saturated Fell bundles, which are a class of Fell bundles
satisfying a condition similar to the description of strong grading in the
algebraic sense.

3.1 The Z-grading of L¢(F)

In Chapter 2 we saw that L¢(E) = span{s,s; : p,v € E* s(un) = s(v)}.
In [1, Corollary 2.1.5] Abrams states that for any graph E the Leavitt path
algebra Ly (FE) is Z-graded with grading subspaces

Leo(B), = span{s,s, : p,v € B, |u] — [v] = n, s(u) = s(v)}.

In this section we verify this for row-finite graphs without sources using
an adaptation of [11, Proposition C.1] for Leavitt path algebras. It is diffi-
cult to show that the L¢(E), are linearly independent due to the multiple
ways we can represent elements of a Leavitt path algebra. In order to do
this we use tensor products between the Leavitt path algebra L¢(E) and
the group algebra CZ. For more information about group algebras see [6,
pg. 227]. We now define and review some basic properties of the tensor
products. The following discussion and proposition is a summary of [7,
Chapter 8, pg. 319-321] adapted to the specific setting of vector spaces.

For any two vector spaces VV and W over a field K we simultaneously
construct a vector space IV @ W and a bilinearmap ¢ : V. x W — V @ W.
We begin by constructing a free vector space F' generated by V x W. We
then consider the subspace of S of I’ spanned by elements

(]{11)1 + k2v2, UJ) — kl ('Ul, ’LU) -+ kz(?]g, w), and
(v, kywy + kows) — ky (v, wq) + ka(v, ws)

for ki,ky € K, v,v1,v9 € V and w, wy,wy, € W, and write V ® W for the
quotient space F'/S, and call this the tensor product of V and W'.
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Then V' ® W is a vectors space generated by vectors of the form v ® w
for vectorsv € V,and w € W. The relation ® : V x W — V ® W is such
that for every v, vy, v, € V, w,w;,wy € W and c € K we have:

(i) clvew)=(v)@w=1v& (cw)
() (1 +v2) QW= QW+ vy W
(iii) v ® (W +wy) = v @ Wy + v ® ws.
And thus ¢ : (v,w) — v ® w is bilinear.

Proposition 3.1.1. (Universal Property of Tensor Product Vector Spaces) The
vector spaces V, W, and the associated bilinear map ¢ : V x W — V @ W have
the property that for any bilinear map b : V- x W — X where X is some vector
space, there exists a linear map b' : VW — X such that b(v, w) = V' op(v, w) =
V(veow)foranyv € Vand w € W. Thus L(V @ W, X) = B(V x W, X).

The following Lemma can be found in [13, Lemma B.1]:

Lemma 3.1.2. If A and B are *-algebras over a field K, then there is a unique
algebra structure on the vector space tensor product over A ® B such that

(a®b)(c®d) =ac®bd and (a®b)* =a* b
foreverya,c € Aandb,d € B.

Proof. We verify the first relation, for the proof of the second relation see
[13, Lemma B.1]. Fix a € A and b € B. Then the map (c,d) — ac ® bd is
bilinear for all c € A and d € B by the properties of elements of A ® B,
and multiplication in A and B. So, by the Universal Property of Tensor
Products of Vector Spaces there exists a linear map L, : ¢ ® d — ac ® bd.
Let us consider the map L whereby L(a,b) — L, ® L, = L,;, where L,
and L, are linear mappings with respect to a and b. Clearly, this is a bilinear
mapping from A x B to L(A ® B) which is the space of linear mappings
of A x B, so there exists a linear map L : A ® B — L(A ® B) such that
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(a ®b) = Lgs. So the required product can be defined as (a ® b)(c ® d) =
(a®b)(c®d).

We can check that the required laws for associativity and distributiv-

L
L

ity for multiplication over an algebra hold. First we check to see if the

multiplication as defined is associative:

(a@b)(c®d))(e® f)=(Lla®b)(ced)(e® f)
= (Lap(c®d)) (e ® f)
= (ac @ bd)(e ® f)
= Lacpa(e @ f)
= ace ® bdf
= Lop(ce ® df)
= (a ® b)(ce ® df)
=(a® b)(Lc,d(e ® f))
=(a®b)((c®d)(e® f))

Now we check the distributive properties hold:

(a@b)((c®d)+(e® f)) = Lap((c®d) + (e @ [))
= Laop(c®@d) + Lop(e® f)
=(a®b)(c®d)+ (a®b)(e® f),

(a®b)+ (c@d)(e® f)=L((a®b) + (c®d))(e® f)
= (L(a®b)+ Llc®d))(e® f)
= (Lap + Lea)(e® f)

Lop(e @ f) + Leale @ f)
(@a®b)(e® f)+ (c@d)(e® f),
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(2(a®b))(c®d)=L(z(a®b))(c®d)
=2L(a®b)(c®d)
=z((a®b)(c® d))
= 2Lap(c®d)
= Lop(2(c® d))
= (a®b)(2(c®d)),

verifying the first relation. O

Now we are able to verify that for a row-finite graph without sources,
Lc(F) is Z-graded. To do this we adapt the proof of [11, Proposition
Proposition C.1] to the context of Leavitt path algebras.

Proposition 3.1.3. Let E be a directed row-finite graph with no sources. Then
L¢(E) is a Z-graded algebra so that

Le(B) = @D Le(EB)n.

nez

Proof. Define

Le(E), = Span{susi pl = v =n}.

Clearly, the subspaces L¢(E), span L¢(E), so we must check that
Le(E)p N Le(E)y = {0} Vm,n € Zwithn # m.

To see this is true we show that these subspaces are linearly independent
using an argument from coaction theory. Consider the group algebra of
the integers, CZ. First, we take n : E* — Z such that y — || for p € E*.
Define 7 : CZ — Cby 7(y) = yo wherey = > _, yn0,, € CZ. For arbitrary
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ke Candy,x € CZ:

Thy+2) =70 kyabo + > 240,)

nez ne”L
= 7> _(kyn + 20)0n)
nez
= kyo + xo

=k71(y) + 7(x).

So 7 is a linear transformation. For each g € Z we define 7,(y) := 7(d,'y) =
y,. We claim that given the Cuntz-Krieger E-family {s,p}, the elements
s, @n(p) generate a Leavitt E-family in L¢(E) ® CZ by checking they agree
with the Leavitt path algebra relations. Fix p,, p, € Lc(E), then

(po @ 0(v)) (P0 @ N(w)) = (Popw @ N(vw))
_ {py®77(v) ifv=w

0 else.
So the first relation is satisfied. For s, € L¢(F) we have
r(e)se @n(r(e)e) = sc ®@n(e) = ses(e) @n(es(e))
satisfying the second relation. We can see the third relation is satisfied

using a similar calculation.

To see that (CK1) holds fix s., sy € L¢(E), then

(5e @m(e))"(se @1(e)) = sise @1(e”e)
= Ps(e) @0
= Ds(e) & 77(“)-
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Lastly to see that (CK2) is satisfied fix p, € L¢(E), then

peao) = (i) ) @0

ecE*:r(e)=v

= > ((ses))®0)

ecE*:r(e)=v

= D> (sest)®mnlee”)

ecE*:r(e)=v

= > (se@n(e))(se @m(e))".

ecE*:r(e)=v

Hence, by the universal property of Leavitt path algebras, Remark 2.2.1,
there is a homomorphism 7, : Le(E) — Le(E£)®CZ such that meg, (s,) =
s,@n(p). The map (z®c) — x7,(c) is bilinear by the scalar multiplication of
tensor products, so by the universal property of tensor products of vector
spaces, there is a well-defined linear map ¢ ® 7, from L¢(E) ® CZ to L¢(E)
where ¢ is the identity map on L¢(£), such that « ® 7,(x ® h) = z71,(h). We
can see that

(6 ® 7g) 0 Tomn(sus,) = (4@ 7g)(sus, @ n(ur))

sus, if|pl = =g

0 else.

To see linear independence take the finite sum a = > _, a, where each

neF
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an € Le(E), and a = 0in L¢(E). For all g € Z we have

0=(id®7y) 0 Ws@n(z )

nel

= zd®7'g E T an

neF

= (id®7,) (D (a, ®n))

neF

= (id®7y)(a, ®n)

ner

= Z anTy(n)

Therefore the subspaces L¢(E),, are linearly independent, and thus their
direct sum is equal to L¢(E).

It remains to show that L¢(E), Lc(E)m C Le(E)pim- To see this, fix a €
L¢(E), and b € Le(E)y,, then ab can be written as a linear combination of
elements of the form (s,s})(sas3) for p, v, a, 8 € E* such that |u| — [v| = n,
and || — | 5| = m. From Lemma 2.2.4 we know that

SuarSp  if @ = va’ for some o € E*
(sus,)(Sasp) = { sush,, if v =ar/ for some ' € E*
0 else.
Clearly, 0 € L¢(E)p+m, so all we need to do is check the other two cases.

Suppose (5,5;)(8a55) = Suarsh, for some o’ € E¥, then || = |af — [v].
Then

e[ = 18] = |ul + |/ = 5]
= |ul +laf = v =8|

Similarly, we see that if (s,s})(sa5};) = 5,55,/ for some v/ € E* then |u| —
|BV'| = n +m. Thus (s,s;)(sas5) = ab € Le(E)nim- ]
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3.2 The Z-grading of Graph C*-algebras

The following definition for graded C*-algebras can be found in [5, p. 125].
Let Abe a C*-algebra and G be a group. We say that a linearly independent
collection {4, },<¢ of closed subspaces of A is a C*-grading for A, if P A,

ceG
is dense in A, and for every ¢ and 7 in G one has that

() A, - A, C A,

(i) A% C A,

If A has a C*-grading we say that A is C*-graded; moreover, if it is clear
that A is a C*-algebra we simply say that A is graded.

In this section we show that C*(F) is Z-graded with grading subspaces
C*(E), = Lc(E),, :=span{s,s,, : s,s, € Lc(E),}.

In order to do this we need to show that {L¢(E),}nez is a collection of
linearly independent subspaces which are dense in C*(E). Showing that
the subspaces { Lc(E), }nez are linearly independent is tricky in an analytic
setting because we need to show that the closures of the L¢(£), do not
intersect. To do this we use a faithful map &, to project C*(E) onto L¢(E),
for all n € Z, which averages C*(E) over the gauge action ~ of the unit

circle T on C*(E).

In order to construct this map we establish the existence of the gauge
action of T on C*(E). The following Proposition follows [10, Proposition
21].

Theorem 3.2.1. Let E be a row-finite directed graph. Then there is a topological
group action y of T on C*(E) such that v,(s.) = zs. for every e € E' and
Y.Pw = Py for every v € E°.
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Proof. We take C*(E) generated by the Cuntz-Krieger E-family {s,p} =
{Se,pv}, and fix z € T. Then |z| = 1 and {zs,p} = {zs¢,p,} is a Cuntz—-
Krieger I-family since

(ZSe)*(ZSe) = |Z|ste = Ps(e)

and

Z (28e)(28¢)" = Z |2|Sest = po;

ecELlr(e)=v ecELr(e)=v

satisfying the Cuntz—Krieger relations. Since
C*(s,p) = C*(E) =span{s,s, : u,v € E*},

C*(zs,p) is a sub-algebra of C*(E) because zs, is a scalar multiple of s..
Likewise, s = zzs. so C*(E) is contained in C*(zs,p), therefore {zs,p}
generates C*(E).

We can also see that if {T,Q} is a Cuntz-Krieger E-family in a C*(E)-
algebra B, then {zT, )} is a Cuntz-Krieger E-family in B. Using the ho-
momorphism 71 of C*(E) into B as described in [10, Proposition 1.21]
we have:

Te1,Q(28e) = 2Ta1,Q(Se)
= z(zT,)
= |z|T,
=1T,.

With the homomorphism pr¢ = 71, the pair (C*(E), {zs,p}) has the
property described in [10, Corollary 1.22] so there is an isomorphism v, of
C*(F) onto C*(FE) such that v,(s.) = zs. for every e € E' and v.p, = p, for
every v € E°.

To see that +y is be a continuous group action, we must first show that
it is a group action. Fix w € T, then
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Yz © Yuw(Se) = V2 (Vw(5e))
= 'VZ(U)S6>

= ZWS,
= Yzw (36) .

In addition, we can see that when z = 1, v, acts as the identity over
C*(FE) using a straightforward calculation. So v is an action of T on C*(E),
and v is a homomorphism of T into Aut C*(E) by [6, Theorem 4.5].

To show 7 is continuous under multiplication, we use an /3 argument.
Fix 2 € T,a € C*(F) and € > 0. Choose ¢ := > \,,s,s; such that

VEE"
|la — c|| < &/3. Notice that 7,(s,) = 2s,, and %(f;;) = (2lHs,)" = z"“'s;
because |\| = 1. Hence v, (s,s}) = zI#="Is, s*. By the continuity of scalar
multiplication
w — Z A= s
uveER*

is continuous so there exists some ¢ > 0 such that
lw— 2] <6 = |7w(c) — ()] <e/3.

We also know that automorphisms of C*-algebras preserve the norm so
that ||7.(a — ¢)|| < ¢/3 for every z € T. Thus, for any w € T such that
|w — z| < 0 we have the following inequality:

17w (@) = =(a)]] < (e = )] + lnw(c) = 1=(a)]
< (@ = O + [lnw(e) = ()l + l17:(e) = 7:(a) |
<3(e/3)=¢

as required.
O

Now that we have defined the gauge action we can use it to project
C*(E) onto the subspaces L¢(E), for every n € Z. Our method for doing
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this is motivated by the map which projects C*(E) onto the fixed point
algebra
C*(E) :={a € C*(E) :v,(a) =a, Vz € T}.

We show that C*(E)" is the same as L¢(E)y. We use the following lem-
mas which can be found in [10, Chapter 3] to construct a faithful map
¢ : C*(FE) — C*(E)" called a conditional expectation.

Lemma 3.2.2. Suppose that A is a C*-algebra and f : T — A is a continuous
function. Then there is a unique element [ f(z)dz of A such that, for every
representation m of A on H and h, k € H we have

(w( /T 12) dz)h‘k:) _ /T (=(F(=))h]k) d=. (3.1)

Which gives us:
(i) b([; f(2)dz) = [;bf(2)dzforbe A
(i) | Jy £(z) dz]) < J £ dz

(iii) ¢( [ f(2)dz) = [, #(f(2)) dz for every homomorphism ¢ : A — B
(iv) forw € T, [ f(wz)dz = [} f(2)dz

Proof. We follow the proof given in [10, Lemma 3.1], with additional in-
formation from [13, pg.275]. We choose a faithful representation p : A —
B(H). The map (h, k) — [:(p(f(2))h|k)dz is sesquilinear given the lin-
earity of integration and sesqu1lmear1ty of the inner product thus there
exists a linear operator ' € B(H) satisfying (T'h|k) = [L(p(f(2))h|k) dz for
all b,k € H by [9, Theorem 2.3.6]. We can see that 7" is bounded by || fl1

since

(Thik) = / (p(f(2))hk) d
< 11 1Bl & for all .k € H.
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Now we want to show that 7" € p(A) so that we can define

/T f(2)dz = p(T).

To see this we fix ¢ < 0. The Heine-Cantor theorem informs us that f is
uniformly continuous since the function f is continuous and T is compact,

so there exists some 0 such that for every y,z € T,
ly — z| < § implies that || f(y) — f(2)] <e.
Let V be the open set B(1,0) N T. If y~'2 € V, then
1—y 2] <d = |ly—2|<$§
= [lf(y) - [l <e

Now {yV },er is an infinite open cover of T, which is compact, so there
are finitely many y; so that |, v;V' is a finite open cover of T. We can make
a partition of unity {¢;} on T subordinate to J, y;V in accordance with
[13, Lemma 4.34]. The functions ¢; € C(T) are such that 0 < ¢; < 1, and
supp(¢;) C (y; - V) for each i, satisfying > ¢;(z) = 1 forall z € T.

Now

I7 -3 swall = e MOLCITE
- [ 156 SRR SNECILE
-/ 32 (76) = 1) i 0=
< [S00C) = sw) st =
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So Z f(yi) ¢i — f ase — 0. This implies that

(Thlk) — /qbz ) d2)p(f (y:))hlk)
:/T(( F()Alk) dz—/ Zqﬁz ))hlk) dz=
_ /T Z@ )hlk) dz

<|f- Zf yi) illy 1Al 1]

<el[R]l %]

So ||IT' — 2@(2) (f(%i)llop = O as e — 0.
Let ¢; = [} ¢i(2) dz. Then the suchp( (1)) € p(A) and

Sap(fw) = [op(f(2)dz=T. ThusT € p(A). We can define [} f(z) dz :=
p~'(T). Since p is isometric, || [, f(z) dz — Z ¢if(yi)]] < e which shows that

J1 f(2) dz is unique.

Given any representation 7 of A:

(i) = ([t )

< (7? /sz dz—zi:cif(yi))h|k)‘
+ ‘ ((;Cﬂ(f(yi) - Aﬂ(f(z)>dz)h|k)’

< (e + o)Al I
= 2¢[|hll &[],

this proves Equation (3.1) since ¢ is arbitrary.

We can use Equation (3.1) to show (i) and (ii) by fixing b € A and a
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faithful representation p as follows:

<p(/be(z) dz)h\k) :/T(p(bf(z))h\k)dz
:/T(p(b)p(f(z))h{k;)dz
= (o010t [ 1121 acpnlr)
-~ (p(b/Tf(z) dz)h\k)

I [ srael = ot [ s a2,
=1 [ s e,

and

For (ii7) let p be a faithful representation of B and let 7 = p o ¢. Then
2)dz) =pton z)dz
o [ 218 =ptor( [ feaz)
=7 [ () d2)
/pl om(f(z))dz
T
T

To show (iv), recall that for a continuous function g : T — C we write

/T f(2)dz = /0 1 F(emityat.

We can obtain integrals of continuous functions g : T — C by using the

right hand side of Equation (3.1) which integrates an inner product over
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T. Fix w € T with w = >, then

1 ‘ 146 A
/g(wz) dz:/ g(eQm(GH))dt:/ g(e%’t)dt,
T 0 0

which is equal to fol by periodicity. O

Now we are ready to project C*(E) onto the fixed point algebra C*(E)?
by averaging over ~ using [10, Propsition 3.2].

Lemma 3.2.3. Let « be an action of T on a C*-algebra, and define ® : A — A by

P (a) :/Taz(a) dz.

Then ®(a) € A® for every a € A, and ®(a) = a for every a € A®. The map ¥ is
linear and norm-decreasing, and is faithful in the sense that ®(a*a) = 0 implies
a = 0.

Proof. Fixw € T and a € A, then by parts (iii) and (iv) of Lemma 3.2.2 we

can see that ®(a) € A“ since

vy (P(a)) = au / a.(a)dz
T

= / o (az(a)) dz by Lemma 3.2.2.(iii)
T

= /Ozwz(a) dz
T

= [ a.(a)dz by Lemma 3.2.2.(iv)
T

= ®(a)

To see that ®(a) = a for Vo € A%, fix a € A* and by (i) of Lemma 3.2.2

<I>(a):/Tozz(a)dz:/?radz:a/qudz:a.

The linearity of ®(a) can be seen through the application of Equation (3.1).
As for the norm-decreasing property of ®(a), using part (ii) of Lemma 3.2.2
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and the fact that automorphisms of C*-algebras are norm-preserving we
can see that

le@)] = | / . (a) d|| < / los(a)] dz = / lall dz = fall.

Lastly, to see that @ is faithful, suppose that ®(a*a) = 0, and let 7 be a
faithful representation of A. Then for every h € H we have

0

(@(a*a))h’h)

Il
\@\@\?

(m(a.(a*a))h|h) dz

(7(a.(a)) ’ (m(c(a))h|h) dz

( (az(a))h | w(az(a)h) dz

/||7r o, (a)) Al d=.

Since z — ||m(a.(a))h|* is a non-negative continuous function the map-

ping is zero and 7 (a.(a))h = 0 for all h € H. Since 7 is faithful, a = 0. O

For the remainder of this thesis ® will denote the linear map of C*(£)
onto

C*(E)":={a € C*(E):~.(a) =a,Vz € T}

which we call the core of C*(E). We use the core, C*(E)?, to create a Z-
grading of C*(E). In the following corollary, which follows [10, Corollary
3.3], we show that C*(E)" = L¢(E), before adapting ® to project C*(E)
onto the subspaces L¢(E),,.

Corollary 3.2.4. For every finite subset F' of E* and every choice of scalars c,,,,

®( Z CupSpSy) = Z CuwSuS, (3.2)

pveF {nveF:lul=Iv]}

we have

and
C*(E)” = span{s,s,, : |u| — |v| = 0}.
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Proof. Since @ is linear we need only consider ®(s,s}) for p,v € E*. If
s(p) # s(v) then ®(s,s;) = 0. Else

B(s,50) = [ (5,50 s

— lul=lvlg o

—/z 5,5, dz
T

— lul=Iv] *

= (/z dz)s,s;
T

fsust i1l =1
0 else.

Which proves the first equality.

To show C*(E)Y = span{s,s; : |u| — |v| = 0}, first we check that
Span{s,s; : |u| —|v| =0} C C*(E)". Let a € span{s,s; : |u| — |v| = 0}, then
a is fixed by . for every z € T as a is the limit of sums of elements s,s,

with |u| = |v].
We have that ®(C*(E)") = C*(£)” from Lemma 3.2.3 and by Equa-
tion (3.2) ®(C*(E)") C span{s,s; : |u| — |v| = 0} = Lc(E),. N

Proposition 3.2.5. Let E be a directed row-finite graph. Then C*(E) is a Z-
graded C*-algebra such that

=P &)

nel

Proof. This proof follows closely to the proof of [1, Lemma 5.2.11]. For
each n € Z define
C*(E), := Le(E),.

By Corollary 3240 maps C*(E) onto C*(E)" = L¢(E)y = C*(E),. Define
= [rz” ). Then

0 else.

{ if 1] — [v] = n
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Which implies
*
(I)n( E Cu,ususy) = E : CM7V3M82>
pvEF {nwEF:|u|—v|=n}

from which we conclude that ®,, is a map of C*(E) onto C*(E),.
To see that C*(E) is Z-graded, fix n,m € Z, a,, € C*(E),, and a,, €
C*(E)m. Then

:/z‘"%(an) z_m%(/qr(z_lw)_m%1w(am)dw)) dz by 3.2.2.(iii)

d
= /z_"%(an) < / 2™z w) "™y, 0 7Z1w(am)dw> dz
T T
= / 27"y, (ay,) (z_m% ( / w_myw(am)dw)) dz by 3.2.2.(iv)
T
Since a,, and a,, were arbitrary, and ®,,,(a) € C*(E)4, foralla € C*(E)

we have that C*(E),,C*(E),, C C*(E)pt+m-

We also have
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for a,, € C*(E),. Thisimplies thata) € C*(E)_, and (C*(E),)* € C*(E)_,.
Lastly, we need to show that these subspaces are linearly independent.
For a € C*(E),, with n # 0 we have

®(a) = /T’yz(a) dz
= [([ ot dw) a:
= [ w0 et o) d:

= /T Ve (2" /1r (zw) 20 (a) dw) dz by 3.2.2.(iii)

I
5—

2" ( /T(w)_”vw(a) dw) dz by 3.2.2.(iv)

z "adz

Il
o
g

N
Suppose ) a; =0 for some N € Z with a; € C*(E); for each i. Then
=—N

1=—

Fix =N < j < N. Thena; € C*(E)_; since (C*(E);)* € C*(F)_;and aja; €
C*(E)_j4; for each —N < i < N because C*(E)_;C*(E); C C*(E)_j4i-
Therefore

N N

0= d( Z aja;) = Z (aja;) = P(ajay).
i=—N i=—N
Since aja; ¢ C*(E)", aja; = 0 for i # j. Thus, a; = 0 because @ is faithful.
Therefore the subspaces C*(E),, are linearly independent and C*(E) is Z-
graded. O
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3.3 The Core

In Section 3.2 we saw that the gauge action maps C*(E) onto the fixed
point algebra C*(E)? = span{s,s} : |u| —|v| = 0}, which we called the core
of C*(E). In the context of grading, C*(E)” is C*(E),. In fact, the subspace
A, of any G-graded algebra A, where e is the identity of G, forms a sub-
algebra of A; since it is closed under addition by liberty of its span and
according to the definition of grading we have that A, - A, C A, so itis

closed under multiplication.

We have seen that L¢(E) is dense in C*(E) and that L¢(E), sits densely
inside C*(E)". Since ®(L¢c(FE)) = Lc(E)y we will refer to Le(E)y as the
core of L¢(E). Both L¢(E) and C*(E)” are isomorphic to the direct limit
of matricial algebras, a fact we rely heavily upon in the proof of our main

result.

We begin with a short summary of section A.2. of [10] which discusses
matrix algebras; then we apply these results to the core of both the Leavitt
path algebra and graph C*-algebra of a row-finite graph E taking heavy
direction from the discussion of the structure of C*(E)” in chapter 3 of [10].

A matrix unit is a matrix E;; € M, (C) whereby 1 <1, j < n and

| ifi—k =1
(Eij)u =

0 else.
Every a € M,(C) can be written as }_, ; a;;Ej; and hence the set {£;}

forms a basis for M,,(C).

We can also see, through simple calculations, that the matrix units E;

are such that

Ey ifji=k

0 else.
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We use these conditions to find copies of M, (C) in our algebras by finding
families satisfying the necessary relations. In [10, Proposition A.5] Rae-
burn shows that for a C*-algebra B with a non-zero family {e;; : 1 < 1,5 <
n} satisfying the above relations there is an injective homomorphism ¢
from M, (C) in to B such that ¢(E;;) = e;;.

Suppose E is a row-finite directed graph. We use the discussion above
to analyse the structure of the core of both L¢(FE) and C*(F). For a given
k € N, define

Fi :=span{s,s’ : y,v € E*}.

For any paths p, v, a, 3 € E*, we have

* : _
SuSh ifr=a«a

(su5,) (8a53) = (3.3)

0 else

by Lemma 2.2.4 and the fact that |v| = || = k. Moreover, we have that

(susy)* = s,s%; hence Fj, is a family of matrix units.

For every v € E°,
Fi(v) :=span{s,s’ : p,v € E¥ s(u) = s(v) = v}

is a family of matrix units we can see this using Equation (3.3) in conjunc-
tion with [10, Proposition A.5]. For a row-finite graph there are a finite
number of paths 1 € E* N s (v) s0 Fj,(v) = Migrns1,)(C).

Since no path of F,(v) is in Fi(w) for all v,w € E° such that v # w we
have Fj(v)Fi(w) = 0. Hence

-Fk = @ Fk(v)

veEEOD

When the graph £ has no sources, the Cuntz-Krieger relation at v gives

SMSV - Sﬂpvsu - Sﬂsesesu - Sﬂesuw

r(e)=v r(e)=v
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which implies that 7, C Fi11. So
Uk (Bpero Fi(v)) = UpFr = span{s,s;, : p,v € E*, |u| = |v|} = Le(E)o

and

Uk (@Pvepo Fr(v)) = UpFr = Span{s,s, : p,v € E*, |u| = |v|} = C*(E)".

Thus, the core of both L¢(FE) and C*(E) are isomorphic to the direct limit

of matrix algebras.

For general row-finite graphs Raeburn uses a technique introduced by
Yeend (2003) to analyse the core of C*(E) which we can also use for the
core of L¢(FE). Take k € N, we define

E<F={p e E*:|u| =k, or|u| < kand s(u) is a source}.

If v,a € ES* and |v| < |a|, then v # av/. Additionally |v| < k and s(v)
is a source of £/ meaning that o cannot extend v. Thus by Lemma 2.2.4
(5u5;)(8a85) = 0. By the same reasoning, if |a| < |v| then a # va' and
v # av'. Hence Equation (3.3) holds for all i, v, a, B € ES*. Thus

F<i(v) == span{s,s; : u,v € E=F and s(u) = s(v) = v}
is a family of matrix units and
F<p :=span{s,s’ : p,v € E<F}

is the direct @@,z F<k(v). If v is not a source then all paths p, v € E<F
must have length £, and we know that F;, C Fj, from above; thus

Far(v) = Fr(v) C Fi C Frpr C Fekyr-

If v is a source then from the definition of E=F we can see that

(B<Fns™(v)) C (B=Fns™H(w))
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and thus F<j(v) C F<jt1(v). As such F< C F<i1, giving us that
Le(E)o C UpF<i = Up(@pepo F<i)

and

C*(E)" C UpF<k = Ur(Doepo F<r)-

If £ has sources the inclusion will be proper, because F<;(v) will in-
clude elements s,s; such that |u| # |v|. If we want to describe the core of
L¢(F) and C*(E) we will need to introduce the sub-algebras

Fia(v) :=span{s,s} : p,v € E=* u] = |v| =, 5(n) = s(v) = v}

Again we can see that F;(v) contains a family of matrix units. Then

k
gk(’l}) = ]:§k<v) N L((:(E)o = EB]:M(U),
=1

and

Gy =F<, N Lc(E) = @ Gi(v).

veE0
Since F<j, C F<k+1 and L¢(E) is closed under multiplication we have that

Gr C Ggy1. From this we can see that

Le(E)o = (D Gr(v)) (3.4)

k wveEY

and

Cc*(E) = J(EB Gv)). (3.5)

k veEY

3.4 Fell Bundles

In this section we discuss the structure of Fell Bundles that can be found
within a C* algebra and their relation to gradings. The definitions and

results of this section can be found in Chapter 16 of [5].
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A Fell bundle over a group G is a collection of Banach spaces

B = {Bg}geGa

wherein each B, is known as a fibre. In addition, the disjoint union of
these fibres, known as the total space of %, is equipped with a multiplica-
tion operation and an involution satisfying the following properties for all
g,he Gand b, c € £:

(i) ByBj C Byp;

(ii) multiplication is bilinear from B, x B}, to By;

(iii) multiplication on 4 is associative;

(iv) [lbell < [[o[l el

(v) (By)* € Bys;

(vi) involution is conjugate linear from B, to B,-1;
(vii) (be)* = c*b*;
(viii) b** = b;

() [[b*]] = [[oll;

() (|76l = [1Bl1%;

(xi) b*b >in B..

According to [5], the properties (i) to (iv) give rise to what is known
as a Banach Algebraic Bundle, and with the addition of (v) to (x) describe a

Banach *-algebraic Bundle.

Given that B, x B, maps to B, and (B.)* C B., we can observe that
axioms (i) through (x) imply that B, is a C*-algebra using given operations.
We often call B, the unit fibre algebra.
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Remark 3.4.1. Clearly, if given a G-graded C*-algebra B the grading sub-
spaces B, form a Fell bundle with respect to the norm, multiplication and
adjoint of B. However, B cannot necessarily be uniquely determined from
%, because there can be multiple ways to complete 4.

Before we move on we will visit two examples which illustrate this
point, and introduce a notion of grading for C*-algebras with stronger con-

ditions.

Example 3.4.2. This first example is discussed in [12, Example 1]. Consider
the graph E consisting of a single vertex v and a single loop e. The Cuntz-
Krieger E-family {S, P} of E is generated by the single unitary operator
Se, and P, is an identity for C*(E). Since graph algebras are universal
for Cuntz—Krieger E-families, this graph is universal for all C*-algebras
generated by a single unitary element, and since for any C*-algebra B
generated by a unitary element © we can construct the homomorphism
mu : C*(F) — B so that m,(S.) = u.

Consider T and the identity function ¢ : z +— z from T to C. Now ¢ is
unitary, and the C*-algebra generated by . is the closed span of the func-
tions (™ (1*)" : z — 2™z", which for T is the polynomials z*. Moreover, the
Stone-Weierstrass Theorem tells us that C*(:) = C(T). Hence (C*(E), S.)
is (C(T), 2).

We know from Proposition 3.2.5 that C*(E) is a Z-graded algebra, and
we can observe the grading C(T),, by considering the span of polynomials
2". As discussed above, the subspaces form a Fell bundle %, with fibres
B,, consisting of the polynomials z". We can see that the polynomials 2"
form an orthonormal basis for L?*(T) and C(T) c L*(T), so the Fourier
coefficients

1
f(n) = /Tf(z)zn dz ::/0 f(BZMt)e*Q’”'t di

of f € C(T) determine f uniquely and f(n) = §(n) for all n implies f = g
in C(T). A classical result of Fejér (1900) tells us that the Cesaro means (we
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say that a sequence {a,} is Cesaro summable, with Cesaro sum A € R,
if as n tends to infinity the arithmetic means of the partial sums s, :=

k 1 n
a;+as+...+a, = > a, converge to A, ie, lim — > s, = A) of the partial

sums of the Fourier series converge uniformly to f on T. As such we can
recover f from its Fourier coefficients which allows us to view C(T) as a

Z-graded algebra.

Example 3.4.3. This second example is discussed in both [5, p. 156], and [12,
Example 2]. In this example we take a closed proper subset X of T which
is infinite, and consider C'(X) generated by the inclusion map ¢ : X — C
whereby z — z, we say that C'(X) is generated by z. Now we can consider
whether B,, = C2™, Vn € Z can constitute a Z-grading for C'(X).

Clearly, we can see that B, B,, C B,+,, Vm,n € Z, and B} = B_,, for
every n € Z. Now we must check that the B, s are linearly independent
subspaces of C'(X). To see this suppose that > ¢,2" = 0on X. Then

n<N

1z) = Z 2t =0, VzelX.
n<N
Then 27"u(z) = 27 "p(z), for some polynomial p of degree 2N. Now,
|27 # 0, so p(z) = 0 for all z in X, which, by the fundamental theorem
of algebra, implies that X is contained in the roots of p, and |X| < 2N.
However, X was chosen as an infinite set, therefore ¢,, = 0 for each n and
the subspaces C'(X),, are linearly independent.

Now, X is a proper closed subset of T, so X is compact; meaning each
continuous function f € C(X) is bounded. We can apply Tietze’s Exten-
sion Theorem, as described in [2, Theorem 3.2.13], to the real and imagi-
nary parts of f to see that there exists a continuous function g : T — C
such that g, = f, for all z € X. So the map g — g|, is onto.

Each f € C'(X) has many extensions g € C(T). As discussed in the pre-
vious example each such extension ¢ has a canonical sequence of homoge-

neous components §(n), over which the Cesaro means of the partial sums
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converge uniformly to g in C(T). The restrictions of the Cesaro means to
X converge uniformly in C(X) to g, = f. However, each extension of f
will have different Fourier coefficients, and there is no canonical way to

choose homogeneous components for f in C'(X).

These examples demonstrate the strong connection between graded
C*-algebras and Fell Bundles. In Example 3.4.2 we see that we can derive
C(T) from the Fell bundle %, but we are unable to obtain C'(X) from the
Fell bundle made up of the spaces C(X),, as described in Example 3.4.3.
When we can reassemble a graded C*-algebra from its parts we say that
it is topologically graded. More formally we say a grading on a C*-algebra
B is said to be a topological grading if there exists a (necessarily unique)
conditional expectation of B onto B,, vanishing on all B, for g # e.

Now we move on to discuss some properties of Fell bundles and a
class of Fell bundles known as saturated Fell bundles as they hold particular

significance to our result.

Lemma 3.4.4. For any Fell Bundle 8 = {By}4ec and g € G, ByB,-1 is a closed
ideal of B, (where B, By, is the closed span of B,Bj,).

Proof. Fix g € G, then by continuity, we have

B,B, 1B. C B,B, 1B, C B,B,

and

B.ByBy 1 C B.ByBy 1 C ByB, 1.

O

If # = {B,},cc is a Fell Bundle with B,B;, = B, for all g,h € G, we
say that # is saturated as per the definition given in [5, Definition 16.10].
This definition seems to hold certain parallels with that of strong grading,
a connection which we intend to demonstrate in our main result. But first,

we need to better understand the structure of a saturated Fell Bundle.
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Proposition 3.4.5. A Fell bundle 2 = { B, },cc is saturated if and only if
B,B,: = B.Vg € G.

We present the proof of Proposition 3.4.5 after the following Lemmas.
We have B,B,-1 C B, for any g € G by definition; however, we need to do
more work to show that B, C B,B,-1 using Bi-modules which we describe
below using [5, Definition 15.1].

Given a C*-algebra A, we say that an right pre-Hilbert A-module is a
complex linear space M equipped with a right A-module structure with a
map (-,-) : M x M — A satisfying the following properties for all z,y, z €
M, o, €C,and a € A:

(i) (z,0y+ Bz) = afz,y) + {z, 2);
(i) (z,ya) = (z,y)a;
(iii) (z,y)" = (y,z);
(iv) (z,2) > 0and (z,2) =0 < 2 = 0.

We define a left pre-Hilbert A-module similarly, where we assume M to be

have a left A-module structure and we alter the first two axioms to get:
(') (az + By, 2) = alz, 2) + By, 2);
(i) (az,y) = afz,y).

We can define a norm over the pre-Hilbert A-module M whereby ||m|| =
[ (m, m)||*/2. If M is complete with respect to this norm we say that M is a
Hilbert A-module.

Lemma 3.4.6. If {v;} is an approximate identity for B,, then for any g € G and
be By,

b = lim bv; = lim v;b.
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Proof. Fix g € G, we claim that B, is a Hilbert B.-B.-bimodule. Clearly
B, forms a B.-bimodule and through the associativity of multiplication
over % together with the sesquilinear maps giving (z, y) r := xy* from the
right and (z,y) . := 2*y from the left which map from B, x B, to B, since
B; B, C B. and B,B; C B.. These maps give us that

(,y)rz = (2y")z = 2(y"2) = 2(y, 2) -

The fibre B, will be complete with respect to the norm || - ||.., defined
over the Hilbert bimodule given that B, is a Banach space and Hb\|?> =
16, D) [| = [1o*b]| = 11>

Since B, is a Hilbert B.-B.-bimodule we can see from the result of [5,
Lemma 15.2] that

b=Ilimby; =limv;b Vbe B,.

]

Lemma 3.4.7. Fora Fell bundle 8 = { B, }4cq and any g € G, By = ByB,-1 B,

Proof. Firstly since B, and B,-: are fibres of %, B,B,1 B, C B.B, C B,.
To show the other containment let {v;} be an approximate identity for

B,B,-1 and {u;} be an approximate identity for B,-: B,. Then for any b
B

g

b= limv;b = lim bu;

since B, will be a B,B,-1-B,-1B;-bimodule using the same sesquilinear
forms discussed in Lemma 3.4.6. This implies that 5, is a right Hilbert
B,-1B,-module and a left Hilbert B, B,-:-module. According to [5, Lemma
15.2] this means that b = lim; v;b = lim; bu;. So B, C B,B,-1B,. O

The proof of Proposition 3.4.5. As stated earlier if B,B), = By, Vg, h € G then
ByB,-1 = B.. Suppose that B,B,-1 = B, for every g € G. We fix g,h € G,
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and compute

Bgn = By Bgn)-1Bgn (by Lemma 3.4.7)
B.Bgn (ByBy—1 = B.Vg € G)
.

N

N
oy
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Chapter 4

Strongly Graded Graph
C*-algebras

Suppose that a ring A is graded by a group G, such that A = ®,ccA,. We
say that A is strongly graded it A, - A, = Ay, for every g, h € G.

Motivated by this definition and the definition of saturated Fell bun-

dles we define strongly graded C*-algebras as follows:

Definition 4.0.1. Let A be a G-graded C*-algebra with the C*-grading {4, }4cc-
Then A is strongly G-graded if

Ay Ap = Ay,

forevery g,h € G.
If the group G is clear, we say that A is strongly graded.

In Remark 3.4.1 we discussed how the grading of a C*-algebra forms
a Fell bundle. Any grading of a C*-algebra satisfying the conditions for
a strongly graded C*-algebra would indeed form a saturated Fell bundle;
and if a Fell bundle generated by the grading of a G-graded C*-algebra A
were saturated then A would be strongly graded.

A graph E satisfies Condition (Y') if for every k € N and every infinite
pathp, there exists a final subpath a € E* and g € E* such that s(3) = s(«a)

49
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and || — |a| = k [3, Definition 4.1]. In [3, Theorem 4.2] Clark, Hazrat and
Rigby prove that L¢(E)k(F) is strongly graded if and only if £ has no
sources and satisfies Condition (Y).

The main new result of this thesis is as follows:

Theorem 4.0.2. Suppose E is a row-finite graph. Then C*(E) is a strongly
graded C*-algebra if and only if E has no sources and satisfies Condition (Y).

We tried to prove this directly by modifying the argument of [3, Theo-
rem 4.2] but found the “unusual thing” of deducing the C*-algebra result
from the Leavitt path algebra result worked better and was cleaner.

Theorem 4.0.3. Let E be a row-finite graph. Then C*(E) is a strongly graded
C*-algebra if and only if Lc(E) is a strongly graded ring.
The easier argument is the ”if” direction.

Proposition 4.0.4. Suppose E is a row-finite graph. If Lc(E) is a strongly
graded ring then C*(FE) is a strongly graded C*-algebra.

Proof. If L¢(E) is strongly graded then
L(C(E)n : L(C(E)m = L(C(E)n+m Vn, m € Z.

Since C*(E) is graded we have that C*(E),, - C*(E),, € C*(E)p+m and
since C*(E),+m is a Banach space it is closed; giving us C*(E),, - C*(E),, C
C*(E)p+m. It remains to show is that C*(E),+,, € C*(E), - C*(E),,. To see
this, fix a € C*(E),4m. Since C*(E),1m = Lc(E),4m by Proposition 3.2.5,

there exists a sequence

{a;} € L¢(E)psm such that a; — aas i — oco.

Then {a;} C Lc(E)n-Le(E)m € C*(E) - C*(E), and hence a € C*(E),, - C*(E),y,.

]

For the other direction we prove the contrapositive.
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Proposition 4.0.5. Suppose E is a row-finite graph. If L¢(E) is not a strongly
graded ring then C*(E) is not a strongly graded C*-algebra.

To prove this we need the following Lemmas:

Lemma 4.0.6. Let E be a graph. Then L¢(E), - Le(E)—y is a *-subalgebra of
Le(E).

Proof. By definition L¢(E),,-Le(E) -y, = span{ab : a € L¢(E),, b € Le(E)_,}
so it is closed under addition and scalar multiplication. To see that it
is closed under multiplication it suffices to show that two generators of
Le(E)y, - Le(E)—, multiplied remain in L¢(E), - Le(E)—, thanks to the dis-
tributive property of multiplication. Suppose a and b are two generators of
L¢e(E)y - Le(E) -y, with a = aya_, and b = b,b_,, such that a,,, b, € Lc(FE),
anda_,,b_, € Lc(E)_,. Then

ab = (ana_y,)(bpb_p) = ap(a_p(byb_y)).
Since L¢(F) is Z-graded we have that
a,n(bnb,n) < Lc(E),n . Lc(E)n . L(C(E),n - L(c(E>,n . L(c(E)O - L(C(E),n

So ab = ay(a—p(bpb_y)) € Le(E)y - Le(E)—p-
Lastly for *-closure, fix a generator a = a,a_,, € Lc(E), - Le(E)—, with
ap € Le(F),and a_,, € L¢(E)_, then

a* = (apa_p)* =a* ,a

-n-n

and since L¢(F):, C Le(E)_y, for all m € Z, we have

m

a’inaz € L(C(E)n : Lc(E>,n

Lemma 4.0.7. Let E be a row-finite graph, then

LC(E>n : L(C<E)fn = C*<E)n ) C*(E)fw
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Proof. We have L¢(E), - L¢(E)-, € C*(E), - C*(E)_, giving us

Le(E), - Lo(E)_y, € C*(E), - C*(E)_p.

It remains to show that

CHE)n - C*(E)—n € Le(E)n - Le(E)—n.

It suffices to show

C*(E>n ’ O*(E)—n = L(C(E)n ) LC(E)—n C L<C<E)n ) LC(E)—n-

To see this fix sequences {a;} C L¢(E), and {b;} C L¢(E)_, with a; — a
and b, — b as ¢ — oo. By the algebra of limits we have a;b; — ab as i — oc.
Thus {a;b;} is a convergent sequence of L¢(E), - L¢(E) -, and

CH(E)n - C*(E)—n = Le(E)n - Lo(E) .
]

Proof of Proposition 4.0.5: Suppose L¢(FE) is not strongly graded. By [3,
Lemma 2.1] there exists n € Z such that

Le(E)n - Le(E)-n S Le(E)o.

Hence there exists a € L¢(E)y such that a ¢ Le(E), - Le(E)—y,. Recall that
C*(E)p = C*(E)". We will show that a € C*(E)"\C*(E),, - C*(E)_,, which
would imply that C*(E)Y # C*(E), - C*(E)_, so C*(E) is not strongly
graded.

Since a € L¢(E)o we have a € C*(E)". By Lemma 4.0.7

L(C(E)n ) LC(E)—n = C*(E)n ’ O*(E)—n

so it suffices to show that a ¢ L¢(E), - Le(E)—,. Recall that by Equa-

tion (3.4)
Le(B)o =G = (€D Gx(v)).

k  wveE"
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So there exists some k and a finite collection of vertices F' € EY such that
a € @,crGr(v) which we will denote Apj. Since Apy is a finite direct
sum of matricial algebras it is finite dimensional and hence a closed *-
subalgebra in C*(F).

By Lemma 4.0.6 L¢(E), - Lc(E)—, is a *-subalgebra so the intersection
App N Le(E), - Le(E) -, will be a closed *-subalgebra of A ). Since

a §é AF,k N Lc(E)n . Lc(E),n,

there exists an open set U, in Apj, with respect to the subspace topology,

containing a such that
U N (Apg N Le(E)y - Le(E)—p) = 0.

Since U, N Apy = U,, we have U, N L¢(E),, - Le(E)—, = 0. Thus

AF g

a ¢ L(C(E)n : L(C(E)_n

where closure is taking place in Apy. But, A is closed in C*(E), so by [8,
Theorem 17.3]

Le(B)n - Le(B) - ™ = Te(B)a - Le(B)-

in C*(F). Hence a ¢ L¢(E), - Le(FE)—, as needed. O
Theorem 4.0.3 follows from Proposition 4.0.4 and Proposition 4.0.5.

Proof of Theorem 4.0.2: Let E be arow-finite graph. Then C*(E) is a strongly
graded C*-algebra if and only if L¢(E) is a strongly graded ring by The-
orem 4.0.3. Now L¢(FE) is a strongly graded ring if and only if £ has no
sources and satisfies Condition (Y) by [3, Theorem 4.1]. This completes the
proof. ]
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