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Abstract

There is a huge and rapidly increasing amount of data being generated by so-
cial media, mobile applications and sensing devices. Big data is the term usu-
ally used to describe such data and is described in terms of the 3Vs - volume,
variety and velocity. In order to process and mine such a massive amount of
data, several approaches and platforms have been developed such as Hadoop.
Hadoop is a popular open source distributed and parallel computing frame-
work. It has a large number of configurable parameters which can be set before
the execution of jobs to optimize the resource utilization and execution time of
the clusters. These parameters have a significant impact on system resources
and execution time. Optimizing the performance of a Hadoop cluster by tun-
ing such a large number of parameters is a tedious task. Most current big data
modeling approaches do not include the complex interaction between configu-
ration parameters and the cluster environment changes such as use of different
datasets or types of query. This makes it difficult to predict for example the ex-
ecution time of a job or resource utilization of a cluster. Other attributes include
configuration parameters, the structure of query, the dataset, number of nodes
and the infrastructure used.

Our first main objective was to design reliable experiments to understand
the relationship between attributes. Before designing and implementing the ac-
tual experiment we applied Hazard and Operability (HAZOP) analysis to iden-
tify operational hazards. These hazards can affect normal working of cluster
and execution of Hadoop jobs. This brainstorming activity improved the de-
sign and implementation of our experiments by improving the internal validity
of the experiments. It also helped us to identify the considerations that must be
taken into account for reliable results. After implementing our design, we char-
acterized the relationship between different Hadoop configuration parameters,
network and system performance measures.



Our second main objective was to investigate the use of machine learning
to model and predict the resource utilization and execution time of Hadoop
jobs. Resource utilization and execution time of Hadoop jobs are affected by
different attributes such as configuration parameters and structure of query. In
order to estimate or predict either qualitatively or quantitatively the level of re-
source utilization and execution time, it is important to understand the impact
of different combinations of these Hadoop job attributes. You could conduct
experiments with many different combinations of parameters to uncover this
but it is very difficult to run such a large number of jobs with different combi-
nations of Hadoop job attributes and then interpret the data manually. It is very
difficult to extract patterns from the data and give a model that can generalize
for an unseen scenario. In order to automate the process of data extraction and
modeling the complex behavior of different attributes of Hadoop job machine
learning was used. Our decision tree based approach enabled us to systemati-
cally discover significant patterns in data. Our results showed that the decision
tree models constructed for different resources and execution time were infor-
mative and robust. They were able to generalize over a wide range of minor and
major environmental changes such as change in dataset, cluster size and infras-
tructure such as Amazon EC2. Moreover, the use of different correlation and
regression techniques, such as M5P, Pearson’s correlation and k-means cluster-
ing, confirmed our findings and provided further insight into the relationship
of different attributes and with each other. M5P is a classification and regres-
sion technique that predicted the functional relationships among different job
attributes. The use of k-means clustering allowed us to see the experimental
runs that shows similar resource utilization and execution time. Statistical sig-
nificance tests, were used to validate the significance of changes in results of
different experimental runs, also showed the effectiveness of our resource and
performance modelling and prediction method.
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Chapter 1

Introduction

Big data is a term coined in 1990s represents data of volume, velocity and va-
riety. Large volumes of data is being generated at unprecedented rate from
variety of sources [1]. For example, in health and medical sciences where data
is mostly unstructured and can be from variety of sources as well such as CT
scans, X-Rays, claims, documents and machinery [2]. In businesses, the interac-
tion and preferences of customers can be analyzed to reduce costs and get better
recommendations [3]. The use of technological trends like Internet of Things,
Cloud Computing and easy access to smart devices are the main contributors to
generate big data [4]. In social life, data is being analyzed to understand the user
behavior and interactions such as Facebook, Twitter, and LinkedIn [5]. Behind
the scene, powerful systems and distributed computing are supporting clean-
ing, processing, analyzing, securing and granular access to massively evolving
data [6, 7].

Traditional data mining methods are not able to handle and analyze the big
data in timely and cost effectively manner [8, 9]. Web and social media alone is
producing an overwhelming amount of data on daily basis which makes cur-
rent big data infrastructures to be improved and optimized for different data
types [10] [11] [12]. There have been a number of efforts to make current big
data technologies more efficient, scalable and robust. These include improv-
ing load balancing and process scheduling capabilities across different environ-
ments [13] [14] [15] [16] [17] [18], improving security of data [19] [20] [21], opti-
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mized utilization of available data storage [22] [23], making of scalable and ap-
plied cloud technologies and developing performance matrices for distributed
file systems [24–28]. Distributed computing paradigms, such as peers to peers,
clusters, grids, and the cloud platforms, have been used for distributed data
mining [29, 30]. Clusters are the system or group of systems that functions as
one processing resource. The systems in clusters are usually linked with high-
speed networks and are a suitable platform to perform distributed data mining
tasks. In 2004, Google launched Map Reduce paradigm, which has become the
most popular platform for distributed big data mining platforms [31]. It has
two basic functions, Map and Reduce. Map generates key-value pairs on the
basis of user defined functions and the Reduce phase groups them together to
compute the output.

Apache Hadoop is an open source distributed and parallel processing
framework serving many of big data applications. Hadoop is designed to re-
duce low performance and complexity encountered while processing and an-
alyzing traditional Big data technologies. It relieves considerable communica-
tion load from network and servers [32]. Hadoop consists of its own filesys-
tem named Hadoop Distributed File System (HDFS) and a MapReduce engine.
HDFS employs a Master/slave architecture for both distributed computation
and distributed storage. HDFS clusters consists of a single NameNode, a Mas-
ter server that manages the file system namespace and regulates access to files
by clients, and many DataNodes that manage storage issues along with Task
Tracker and Job Tracker [33]. Copies of the same data exists in different slave
nodes ensuring a fault tolerant working. This phenomena is called data replica-
tion [34]. The Job Tracker receives the job from the user and splits it into parts.
The architecture involves storing data as blocks which can scale up to Gigabytes
and Terabytes in the DataNodes [35].

1.1 Problem Statement

Optimizing different resources and performance of Hadoop cluster faces many
challenges. These challenges motivated us to set our research objective. Follow-



1.1. PROBLEM STATEMENT 3

ing section highlights some of the challenges.

Hadoop cluster experimental setup design and configuration parameters tun-
ing:

To optimize the performance of Hadoop cluster, we need to tune large num-
ber of configuration parameters [34]. Existing work has reported the impact of
change in block size [18] and trying different replication strategies [26] to en-
hance throughput of the system. Each of these parameters can take more than
one value. The tuning of Hadoop parameters not only require understanding
of the system internals and knowledge of workload but also hardware char-
acteristics of the cluster. Insufficient execution times and under utilization of
resources often results due to misconfiguration of parameters. These configura-
tion parameters may interfere each other in a complex way [36].

Furthermore, the performance of Hadoop is greatly dependent on the nature
of application and is also influenced by the cluster design choices and inher-
ent system characteristics [37]. So, to benchmark the performance of Hadoop,
there have been some efforts to measure performance on different storage de-
vices [38] and emerging hardware resources like Knights Landing clusters [39],
characterization of cost-effectiveness on deploying big data systems under dif-
ferent hardware and software capabilities [40], and the impact of geographical
diversity [41]. However, these experiments are often not repeatable or repro-
ducible. Also the impact of confounding factors is not taken into account which
can also impact when validating the system in external environment [42] [43].
So there are two important perspectives that need to be answered while tuning
configuration parameters as mentioned by [44];

• Which parameters to configure that can optimize the performance of Hadoop clus-
ter?

• Analyzing how its performance and resource utilization is affected?

It is necessary to understand which factors are important in designing and run-
ning experiments on Hadoop cluster and which confounding factors exist that
can impact the performance and resource utilization of Hadoop cluster. We



4 CHAPTER 1. INTRODUCTION

applied an experimental design approach, Hazard and Operability (HAZOP),
to see the confounding factors in our Hadoop cluster. It was originally pro-
posed by Lawley and was used to review the design of processes in chemical
plants [45]. It not only identified the risks associated with a process but also
highlighted the possible causes and potential consequences [46]. So, it is a struc-
tured way to correct and prevent possible causes of potential risk in the system
by taking timely actions [47,48]. It was used in various studies such as in health
sciences [49], identifying risk in waste pickers in Brazil [50], accident prevention
system [51], risk analysis of radioactive storage tanks [52], human-robot inter-
action [53], risks assessment of bio-pharmaceutical industry [54], road safety
measures [55]. This ensured the internal validity of the system while design-
ing a robust experimental methodology. The method mainly relied on using
the guide words in combination with process parameters. This highlighted the
deviations of the process from intended normal process [56].

Modelling resource and performance based on job-characteristics:

Due to the large number of parameters involved, the prediction of execution
time and resource utilization of Hadoop jobs is a difficult task. Heterogeneity
of infrastructure, hardware/software errors and resource contention, stragglers
can also occur. Traditional white-box based modeling approaches requires the
good understanding of the system’s internals such as operating system, work-
load and hardware.

Machine learning (ML) is a black-box technique which has the advantages
of being flexible, robust and simpler to build [57]. The process involves training
computers for the ability to automatically extract important information from
data. The purpose is to search or predict for associations or patterns in data [58].
It is a multidisciplinary field of science incorporating computer science, statis-
tics, information theory and artificial intelligence [59]. Machine learning has
been used to model: energy utilization of clusters [60] and performance pre-
diction of jobs [61]. There is also some work reported to optimize the use of
resources utilization [62], but the potential of using machine learning to model
characteristics of Hadoop job for diverse system resources is still largely an un-



1.1. PROBLEM STATEMENT 5

explored area of research. To solve this issue, we used machine learning ap-
proaches like decision trees (DT).

DT is a supervised learning technique used for the modelling of diverse
problems such as fault detection [63–66], speech recognition [67], prediction of
system vulnerabilities [68], mining gene expression data [69], modelling dia-
betes and asthma based on neighborhood [70], modelling macroeconomics fac-
tors in air-traffic [71], predicting obesity based on body mass index [72]. DT
is one of the most commonly used data mining tool because they are flexible,
robust and easy to build and interpret [73–75]. It can work with variety of data
formats and predicts the relationships of important confounding attributes in
the form of tree [76]. DT gives non-parametric models and enables us to simul-
taneously model large number of variables [77].

Correlation of factors affecting resource utilization of Hadoop clusters:

Execution time and resource utilization of Hadoop jobs is affected by impor-
tant configuration parameters like block size, replication factor and number of
mappers, along with structure of query, choice of dataset and cluster size. Cor-
relation is a measure of how closely a set of variables are associated [78]. It are
usually expressed in the form of a number between 0 and 1, where 0 is not asso-
ciated and 1 is strongly correlated. Correlation has been applied but not limited
to calculate the association between: disease and genes in health sciences [79],
factors affecting vehicle-based air pollution [80], rainfall and twitter response
data [81].

DT provided a good insight into how different factors are linked to resource
utilization prediction. But DT sometimes become unstable and insensitive due
to stochastic nature of data [82]. Also, DT does not provides functional rela-
tionship between the factors affecting resource utilization and execution time
of Hadoop cluster jobs. M5P is a Classification and Regression Tree (CART)
method, to find the linear relationship between confounding factors [83]. It
also has the advantage of being able to handle continuous variables and miss-
ing data. The leaves of the tree are multiple linear regression models [84]. It
has been used in various studies such as estimating hybrid energy consump-
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tion [85], maximum power point trackers [86], prediction of wind power [87,88],
modelling and predicting traffic accidents duration on urban freeway [89], pre-
dicting concrete strength [90], prediction of mechanical properties of leaf [91],
predict precipitation index [92].

Clustering is an unsupervised machine learning technique used to classify
unlabelled objects into same group or cluster [93, 94]. K-mean clustering algo-
rithm is widely used method due to its simplicity and fast convergence [95,96].
The main objective is to minimise the within-group sum of squares [97]. Data
objects gets associated with the centroid closest to them [98, 99]. It has been
used in various studies such as to classify seismic wave arrival times [100],
to locate the earthquake sources [101], kidney disease detection [102], deriv-
ing hydro-power reservoir’s operational rules [103], detecting geochmemical
anomaly [104], rice yield estimation [105], fault diagnosis [106], image segmen-
tation [107].

1.2 Research goal and objectives

This section describes motivation, overall research goal, research question and
objectives of the thesis.

The design of a robust experimental methodology includes but not limited
to the number of nodes, design of the cluster, data size, type of input, number of
experiments, parameter inter-relationship, statistical significance of the results,
the dataset used [14, 15, 108–112]. Absence of robust methodology can be a ma-
jor factor in non-reproducibility of the results at some later stage by same author
or someone else [42, 113–116]. HAZOP is one such method that can be applied
to the experimental design [117]. This could increase the reliability of experi-
ments by ensuring both internal and external validity of results [42, 113–116].
Simulation modelling techniques, such as trace driven, event driven, execu-
tion driven, complete system simulation and software profiling, and analytical
modelling techniques, such as probabilistic models, queuing model, Markov
models and Petri Net models, are often computationally expensive and less in-
terpretable [118]. While experimental approach such as performance measure-
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ment, often includes hardware/ software monitoring, workload characteriza-
tion, capacity planing and benchmarking, are more interpretable, less expensive
and easy to build [119].

To optimize Hadoop job performance and resource utilization, we should
carefully select from an extensive list of 200 parameters [18]. Other attributes
such as job input, dataset, cluster size and infrastructure can also be used to
model its performance and resource utilization [18] [26] [14] [15] [62] [120]. The
inter-related impact of these attributes can be hard to predict manually. Auto-
mated procedures such as machine learning can be effectively used to model
such complex relationship [60]. Such a correlation between attributes can be
useful to cluster designers and managers to optimize its performance and re-
source utilisation [61] [62].

The overall research goal is to model and predict Hadoop job performance
and resource utilization. To achieve this we designed the following research
questions:

1. What quantification can be done for the configuration parameters af-
fecting Hadoop job performance and resource utilization?

2. What impact the changes in infrastructure and job type has on Hadoop
job performance and resource utilization?

3. In what way machine learning can be applied to model Hadoop job per-
formance and resource utilization?

We used different machine learning techniques such as decision trees, M5P
trees and k-mean clustering. More specifically this research addressed the fol-
lowing sub-objectives:

Objective 1: Design a robust experimental methodology to characterize the
factors affecting Hadoop performance This objective highlighted differ-
ent aspects of designing and running experiments on Hadoop clusters for
its performance characterization. Some important questions in this regard
were:

• What confounding factors exist in designing experiments on Hadoop
cluster?
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• which possible hazards can cause deviations from normal function-
ing?

• What are the possible consequences caused by these deviations?

• What are the severity and likelihood of that hazard to take place?

• What actions can be taken to mitigate the affect of these hazards?

Objective 2: Empirical analysis of resource utilization and execution time
to characterize the factors affecting Hadoop jobs This thesis highlighted
different aspects of Hadoop job to optimize it for a particular resource and
dataset. Some of the important questions were:

• What Hadoop parameters are important?

• What values of these parameters have been reported in literature and
documentation?

• What impact each parameter has on CPU usage, disk usage, memory
usage, network usage and overall execution time?

• Does different Hadoop job inputs have impact on resource utilization
provided the dataset remains the same?

• Are there any confounding factors affecting the performance and re-
source utilization of cluster.

Objective 3: Modelling and prediction of resource utilization for Hadoop
jobs using machine learning.

This sub-objective results in the development of a methodology to build
models for Hadoop clusters running large datasets. Some of the questions
we tried to answer were:

• What machine learning-based technique we can use to build a model
for our Hadoop jobs?

• Can these models predict resource utilization for a set of chosen val-
ues?

• Can job input or dataset selection and cluster size can become part of
model building process?
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• How generalizable these models can be for unseen datasets and dif-
ferent cluster sizes?

Objective 4: Correlation of features affecting Hadoop job performance.

This sub-objective highlighted important interactions or relationships be-
tween Hadoop configuration parameters, dataset or query structure and
different cluster sizes. Some of the important questions were:

• How can we model such a complex feature space into a single func-
tion?

• Which features are important for under or over-utilization of a par-
ticular resource such as CPU usage?

• What is strength of correlation and direction of correlation between
each Hadoop job feature and its performance measure?

• Which job configuration setups shows similar performance and re-
source utilization?

1.3 Contributions

This section highlights the main contributions made by this thesis. The contri-
butions are as follows.

• Insights into designing and implementing reliable Hadoop experiments.
HAZOP was applied to Hadoop cluster design for experiments highlight-
ing the important confounding factors that can affect performance and re-
source utilization of Hadoop jobs. By applying HAZOP, we identified the
considerations that must be taken into account for reliable results. This ac-
tivity also saved time when we encountered some deviations from either
normal working of cluster or running of jobs on cluster because it speeds
up troubleshooting.

• A performance characterisation of Hadoop jobs allowing identification of
the attributes of Hadoop job that have significant effect on the utilization
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of different resources and execution time. Some of these features included
block size, replication factor, number of mappers and query structure.
This characterisation will help users of Hadoop cluster understand the im-
pact of different values of these features on CPU usage, disk usage, mem-
ory usage, network usage and execution time. Our results highlighted the
complexity of problem of tuning Hadoop clusters due to the large num-
ber of configurable parameters are involved. Each of these parameters can
possibly take a range of values which made the problem even complex
due to possible combinations of resulting parameters values. Also, dif-
ferent elements of queries significantly impacted on overall performance
and resource utilization of Hadoop cluster.

• A machine learning-based modeling and prediction approach to estimate
the resource utilization of Hadoop cluster. We discretized the performance
and resource utilization of the cluster into high usage and low usage. This
enabled us to build models of each of the performance measures by using
decision trees. This thesis also contributed to model and predict resource
utilization for datasets of different sizes and shapes. The models were
built on the basis of a single dataset with six different query structures
and then used to predict the performance and resource utilization when
used different datasets. This showed that our models have good general-
izability for unseen data.

• An evaluation of the prediction accuracy of a model built using our ma-
chine learning techniques. To evaluate the approach we changed the num-
ber of nodes on the cluster, the dataset used to run the Hadoop jobs and
changed the infrastructure as well. To see the generalizability of our ap-
proach over changes in infrastructure, we configured a Hadoop cluster on
Amazon EC2. We applied the model built from our previous experiments
and found that it showed good prediction accuracy. The correlation be-
tween different features of Hadoop job and resource utilization was also
investigated. Some features contributed more towards the under or over
utilization of a particular resource for example CPU or overall execution
time. We used M5P trees to see how different factors are related into func-
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tional relationship. The strength and direction of their association was
also calculated using Pearson’s correlation technique. K-means clustering
technique was used to investigate the experimental runs showing similar
performance behavior. The M5P trees helped us to understand the inter-
related impact of different attributes while k-means clustering helped us
to how different experimental runs were related.

1.4 Structure of the Thesis

The remainder of this thesis is organized as follows.

• Chapter 2- Background and Literature Review

This chapter introduces the background information necessary to under-
stand the concepts presented in this thesis. It highlights different compo-
nents of Hadoop ecosystem. It also gives a brief overview of Hive and
its functionality. This chapter also covers some of the relevant literature
published in recent years and helps in identifying the problem.

• Chapter 3- Application of HAZard and OPerability analysis for the de-
sign of Hadoop cluster

This chapter focus on applying Hazard and Operability analysis (HA-
ZOP) to see potential factors that can hinder or affect the working to
hardware, running of experiments and collection of measurements. This
chapter describes how we can ensure the internal validity of Hadoop ex-
periments. This also highlighted the important deviations, their possi-
ble consequences, the severity and likelihood of occurring those hazards,
and possible mitigations to improve designing and running of our exper-
iments on Hadoop clusters.

• Chapter 4- Characterization of Hadoop performance and resource uti-
lization by parameter tuning and job input

This chapter focuses on understanding the factors that can affect the
Hadoop performance. Potentially important configuration parameters
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used in our experiments were identified from literature and Hadoop doc-
umentation. This chapter also describes the design and implementation
of our experimental setup which served as platform to run all of our cur-
rent and future experiments. We discussed the datasets we used and the
performance measures taken into account as well. We also discussed what
different values of each configuration parameter has been used in our ex-
periments and how these impact on system resources and execution time.
This chapter also highlights the complexity of large number of different
combinations of parameter space.

[Published in Tariq, H., Welch, I. and Al-Sahaf, H., 2018, November.
An Investigation of Hadoop Parameters in SDN-enabled Clusters. In
2018 12th International Conference on Mathematics, Actuarial Science,
Computer Science and Statistics (pp. 1-9). IEEE.]

• Chapter 5- Modelling and prediction of resource utilization of Hadoop
cluster using Machine Learning

This chapter describes our method to model and predict resource utiliza-
tion of Hadoop cluster. It discusses our experimental design and setup.
It also covers the use of machine learning-based method to build model
and then predict the resource utilization for different inputs, and high-
lights the important features participating towards modelling of each of
the system resource and thus predicting its severity of utilization.

[Published in Tariq, H., Al-Sahaf, H. and Welch, I., 2019, December.
Modelling and Prediction of Resource Utilization of Hadoop Clusters:
A Machine Learning Approach. In Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing (pp. 93-100).]

• Chapter 6- Modelling and prediction of resource utilization of Hadoop
cluster for different datasets, cluster sizes and infrastructure

This chapter discusses the impact of environmental changes such as using
different dataset and adding or removing one node in the existing cluster.
The chapter also discusses the generalizability of model generated from
previous experiments to predict resource utilization when using different
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datasets. It also describes the similarities and differences between differ-
ent cluster size for the same job.

It also presents the association or correlation between different Hadoop
parameters, inputs or queries, and cluster size. A tree-based regression
model is used to give multiple linear regression models. The strength and
direction of correlation was also calculated for each feature of Hadoop
job and resource. This highlights the relative importance or influence of
each feature to optimize Hadoop jobs to predict a particular performance
measure.

[Partially published in Tariq, H., Al-Sahaf, H. and Welch, I., 2019, De-
cember. Modelling and Prediction of Resource Utilization of Hadoop
Clusters: A Machine Learning Approach. In Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing
(pp. 93-100).]

• Chapter 7- Contributions and Future Work

This chapter summarizes the results and highlights the contributions de-
rived from different phases of the thesis. It also discusses the possible
future directions of the thesis.
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Chapter 2

Background and literature Review

This chapter presents the research background of the thesis and followed by
a discussion of the related works that supports the motivations of the thesis.
It starts with a general introduction of Hadoop. Section 2.1.1 discussed differ-
ent components of the Hadoop ecosystem including Hadoop distributed file
system (HDFS), Yet Another Resource Negotiator (YARN) and the program-
ming framework MapReduce. It also highlights the important characteristics of
HDFS. Section 2.1.2 highlights some important configuration parameters and
their brief description. In Section 2.1.3 we have discussed general introduc-
tion to Hive and its components. Software-defined networking (SDN) has been
introduced in Section 2.1.4. Its architecture has been discussed to give reader
general idea about the working of SDN. Subsequently, we discussed related
work in Section 2.2 to motivate the research works reported in this thesis. To
the end of, the chapter summarizes the discussions on related works to make
connections to following contribution chapters (i.e. Chapters 3-6).

2.1 Background

Big data analytics is a fact growing area focused on collecting, processing and
analyzing the multi-scale, and multi-source data. The main objective is to dis-
cover the patterns, find the correlations and extract the information to get some
useful insight that may improve decision making in common businesses of

15
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life [121]. Machine learning based approaches are usually being used to ac-
complish this task of mining data. Both supervised and unsupervised learning
techniques have been applied for this purpose which are computationally ex-
pensive because of the serial implementation of algorithms [122]. Parallel and
distributed computing approaches have been in use to process large volumes
of data [123]. Several technologies are making use of parallelism in computing
such as grids, clusters etc [124–126]. But these technologies often do trade-offs
between performance, cost, failure management, maintenance, usability and
data recovery.

Apache Hadoop was developed by Dough Cutting and Mike Cafarella in
2005 [127]. Hadoop is a general framework serving lots of big data applications
like machine learning, crawling etc. Hadoop is not a single application, infact
it is an ecosystem comprising of different components working together such
as Hive, Pig, Giraph, Mahout and Cascading. Hadoop distributed file system
(HDFS) is built on top of Hadoop ecosystem and is a core part of this framework
[128,129]. Various research is underway to comprehend the areas which require
special investigation [130]. Areas such as scheduling, data locality, map reduce
optimization, multiple sequence alignment, straggler problem and speculative
execution, shuffle and sort optimization are under active study [131].

Using Hadoop for distributed processing of big data as compared to other
platforms, such as Spark [132], has many advantages. Firstly Hadoop is highly
fault-tolerant because of replication of data block across different nodes of the
cluster [133–135]. Secondly, data security in Hadoop is fine-grained [136–138].
Instead of copying the data into memory, Hadoop performs processing of data
where it is actually stored, thus it relieves network and severs of considerable
communication load [32].

2.1.1 Components of Hadoop

The Hadoop Common is the foundation of Hadoop. It consists of basic services
such as abstraction of operating system and its filesystem. Hadoop common
also provides Java Archive (JAR) files to start and run jobs on Hadoop. [139]
Other components of Hadoop ecosystem are Hadoop Distributed File System
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(HDFS), MapReduce programming framework and Yet Another Resource Ne-
gotiator (YARN).

Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is one of the most popular open-
source platform for the storage of Big Data or large volumes of data [129]. HDFS
is a distributed filesystem that helps to run the basic hardware components. It
has been reported to store as large as the data of size 100PB on a cluster [140].
It is designed to run on commodity hardware and has many similarities with
existing distributed file systems. Its main feature are:

1. Suitable for the distributed storage and processing.

2. Command-line based interface to interact with HDFS.

3. Streaming access to data

4. File permissions and authentication

5. Built-in servers for NameNode and DataNode.

6. Portability across heterogeneous hardware and software platforms

Characteristics of HDFS The following paragraphs discusses the characteris-
tics of Hadoop distributed file system. It is important to understand how differ-
ent components work and what is their inter-linkage while the job is being exe-
cuted. These characteristics of HDFS are the core features of the Hadoop ecosys-
tem as well. Overall, they make the Hadoop data processing fault-tolerant and
robust.

NameNode and DataNodes HDFS has a Master/slave architecture. An
HDFS cluster consists of a single NameNode, a Master server that manages the
file system namespace and manages access to files by clients. In addition, there
are a number of DataNodes, usually one per node in the cluster, which man-
age storage attached to the nodes that they run on. HDFS exposes a file system
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namespace and allows user data to be stored in files. Internally, a file is split
into one or more blocks and these blocks are stored in a set of DataNodes. The
NameNode executes file system namespace operations like opening, closing,
and renaming files and directories. It also determines the mapping of blocks to
DataNodes. The DataNodes are responsible for serving read and write requests
from the file system’s clients. The DataNodes also perform block creation, dele-
tion, and replication upon instruction from the NameNode.

The NameNode and DataNode are pieces of software designed to run on
commodity machines. These machines typically run a GNU/Linux operating
system (OS). HDFS is built using the Java lanGauge; any machine that supports
Java can run the NameNode or the DataNode software. Usage of the highly
portable Java lanGauge means that HDFS can be deployed on a wide range
of machines. A typical deployment has a dedicated machine that runs only
the NameNode software. Each of the other machines in the cluster runs one
instance of the DataNode software. The architecture does not preclude running
multiple DataNodes on the same machine but in a real deployment that is rarely
the case.

Figure 2.1: HDFS architecture

Data replication HDFS is designed to reliably store very large files across
machines in a large cluster. It stores each file as a sequence of blocks; all blocks
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in a file except the last block are the same size. The blocks of a file are replicated
for fault tolerance. The block size and replication factor are configurable per
file. An application can specify the number of replicas of a file. The replication
factor can be specified at file creation time and can be changed later. Files in
HDFS are write-once and have strictly one writer at any time.

The NameNode makes all decisions regarding replication of blocks. It pe-
riodically receives a Heartbeat and a Blockreport from each of the DataNodes
in the cluster. Receipt of a Heartbeat implies that the DataNode is functioning
properly. A Blockreport contains a list of all blocks on a DataNode.

Replica placement The placement of replicas is critical to HDFS reliabil-
ity and performance. Optimizing replica placement distinguishes HDFS from
most other distributed file systems. This is a feature that needs lots of tuning
and experience. The purpose of a rack-aware replica placement policy is to
improve data reliability, availability, and network bandwidth utilization. The
current implementation for the replica placement policy is a first effort in this
direction. The short-term goals of implementing this policy are to validate it on
production systems, learn more about its behavior, and build a foundation to
test and research more sophisticated policies.

Large HDFS instances run on a cluster of computers that commonly spread
across many racks. Communication between two nodes in different racks has to
go through switches. In most cases, network bandwidth between machines in
the same rack is greater than network bandwidth between machines in different
racks.

The NameNode determines the rack id each DataNode belongs to via the
process outlined in Hadoop Rack Awareness. A simple but non-optimal policy
is to place replicas on unique racks. This prevents losing data when an en-
tire rack fails and allows use of bandwidth from multiple racks when reading
data. This policy evenly distributes replicas in the cluster which makes it easy
to balance load on component failure. However, this policy increases the cost of
writes because a write needs to transfer blocks to multiple racks.

For the common case, when the replication factor is three, HDFS’s placement
policy is to put one replica on one node in the local rack, another on a node in
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Figure 2.2: HDFS architecture

a different (remote) rack, and the last on a different node in the same remote
rack. This policy cuts the inter-rack write traffic which generally improves write
performance. The chance of rack failure is far less than that of node failure; this
policy does not impact data reliability and availability guarantees. However, it
does reduce the aggregate network bandwidth used when reading data since a
block is placed in only two unique racks rather than three. With this policy, the
replicas of a file do not evenly distribute across the racks. One third of replicas
are on one node, two thirds of replicas are on one rack, and the other third
are evenly distributed across the remaining racks. This policy improves write
performance without compromising data reliability or read performance.

Replica selection To minimize global bandwidth consumption and read
latency, HDFS tries to satisfy a read request from a replica that is closest to the
reader. If there exists a replica on the same rack as the reader node, then that
replica is preferred to satisfy the read request. If HDFS cluster spans multiple
data centers, then a replica that is resident in the local data center is preferred
over any remote replica.
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The Persistence of File System Metadata The HDFS namespace is stored
by the NameNode. The NameNode uses a transaction log called the EditLog
to persistently record every change that occurs to file system metadata. For
example, creating a new file in HDFS causes the NameNode to insert a record
into the EditLog indicating this. Similarly, changing the replication factor of a
file causes a new record to be inserted into the EditLog. The NameNode uses
a file in its local host OS file system to store the EditLog. The entire file system
namespace, including the mapping of blocks to files and file system properties,
is stored in a file called the FsImage. The FsImage is stored as a file in the
NameNode’s local file system too.

The NameNode keeps an image of the entire file system namespace and
file Blockmap in memory. This key metadata item is designed to be compact,
such that a NameNode with 4 GB of RAM is plenty to support a huge number
of files and directories. When the NameNode starts up, it reads the FsImage
and EditLog from disk, applies all the transactions from the EditLog to the in-
memory representation of the FsImage, and flushes out this new version into
a new FsImage on disk. It can then truncate the old EditLog because its trans-
actions have been applied to the persistent FsImage. This process is called a
checkpoint. In the current implementation, a checkpoint only occurs when the
NameNode starts up. Work is in progress to support periodic checkpointing in
the near future.

The DataNode stores HDFS data in files in its local file system. The DataN-
ode has no knowledge about HDFS files. It stores each block of HDFS data in a
separate file in its local file system. The DataNode does not create all files in the
same directory. Instead, it uses a heuristic to determine the optimal number of
files per directory and creates subdirectories appropriately. It is not optimal to
create all local files in the same directory because the local file system might not
be able to efficiently support a huge number of files in a single directory. When
a DataNode starts up, it scans through its local file system, generates a list of
all HDFS data blocks that correspond to each of these local files and sends this
report to the NameNode: this is the Blockreport.
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The Communication Protocols All HDFS communication protocols are
layered on top of the TCP/IP protocol. A client establishes a connection to a
configurable TCP port on the NameNode machine. It talks the ClientProtocol
with the NameNode. The DataNodes talk to the NameNode using the DataN-
ode Protocol. A Remote Procedure Call (RPC) abstraction wraps both the Client
Protocol and the DataNode Protocol. By design, the NameNode never initiates
any RPCs. Instead, it only responds to RPC requests issued by DataNodes or
clients.

MapReduce Paradigm

It is the other core part of Hadoop framework which is originally developed by
Google [141]. Several public and hybrid clouds deploy MapReduce paradigm.
Amazon Elastic MaprReduce, Microsoft Azure [142,143], IBM’s Clue cloud and
Google App Engine [144, 145] are some of the public clouds that enable users
to perform MapReduce-based computations [146]. It is cost effective as users
don’t have to consider physical infrastructure or software installations.

It performs distributed processing of the data in two steps; map and reduce.
During map task, input dataset is being converted into key/value pair which
are scalar transformations. Output of map tasks is grouped by keys and then
sorted and divided to simpler tasks. Usually, map tasks can be sub-divided into
four distinct phases.

1. Compute : It involves the application of map function to each key-value
pair

2. Collect : The processed key-value pairs are stored in a map output buffer.

3. Sort : It takes place between collect and spill phases of map task. The
key-value pairs are sorted at this stage.

4. Spill : The output buffer empties all of its content to a file on local disk.
This process in being initiated when the map output buffer is full.

The list of keys are then combined and presented to the Reduce task which
performs operations on values arrays for each key. In the end the matching keys
from map task are combined and results are being collected.
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Yet Another Resource Negotiator (YARN)

YARN is a distributed application management framework introduced in
Hadoop 2.0 [130]. It enhanced parallelism and resource management along
with better scalability. It works on top of HDFS and also handles real-time in-
teractive processing and batch-processing of data. It is designed in a way that it
is compatible with MapReduce API [145].

There are two separate functionalities of YARN. First is to allocate and man-
age the resources across the cluster which is also called as Resource Manager
daemon. Second, is the Application Master daemon which is a framework to
schedule and monitor tasks using task Tracker daemons at the cluster nodes. In
short, YARN ensures the life cycle management of all applications executed in
the cluster [147].

2.1.2 Important Hadoop configuration parameters

The previous section highlighted different components of the Hadoop frame-
work. This section highlights some of the important configuration parameters.
The important of these parameters has been demonstrated in several studies in
the literature. We are describing them briefly here to give general idea of their
functionality and impact over cluster performing and resources utilization. We
choose to discuss these and ignoring all other parameters as these are com-
monly discussed parameters while deployment, optimization and estimation
of Hadoop job performance. We have used different values of these parameters
for executing different jobs. Different experimental setups reported in thesis
refer to different combinations of values of these parameters.

Slot value is used to show the capacity of a cluster node to accommodate the
task. Usually each node has pre-defined number of slots but one can also config-
ure the slot as map or reduce slot according to his convenience and requirement.
The value of slot is usually being set with heuristic numbers without consider-
ing the characteristics of the job. This can affect the optimal performance of
cluster for various jobs.
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Number of mappers

How long are our mappers running for? If they are only running for a few
seconds on average, then we should see if there’s a way to have fewer mappers
and make them all run longer, a minute or so, as a rule of thumb. To what extent
this is possibly depending on the input format we are using [127].

Number of Reducers

For maximum performance, the number of reducers should be slightly less than
the number of reduce slots in the cluster. This allows the reducers to finish in
one wave and fully utilizes the cluster during the reduce phase [127].

Block size

A disk has a block size, which is the minimum amount of data that it can read
or write. HDFS, too, has the concept of a block, but it is a much larger unit-64
MB by default. Like in a filesystem for a single disk, files in HDFS are broken
into block-sized chunks, which are stored as independent units [26].

Replication factor

To ensure against corrupted blocks and disk and machine failure, each block is
replicated to a small number of physically separate machines (typically three).
If a block becomes unavailable, a copy can be read from another location in a
way that is transparent to the client. A block that is no longer available due to
corruption or machine failure can be replicated from its alternative locations to
other live machines to bring the replication factor back to the normal level [15].

2.1.3 Hive

This section gives general introduction to Hive which is an important and in-
tegral part for running of our experiments on Hadoop framework. Hive is a
data warehousing infrastructure that is built on top of Hadoop [148]. It fa-
cilitates data summarization, analysis and query in distributed Hadoop clus-
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ters [149]. We can query the data by using SQL-like lanGauge called HiveQL.
The queries can be run by using Hive shell, JDBC or ODBC. Hive uses MapRe-
duce framework to breakdown HiveQL statements for parallel processing on
Hadoop cluster [150]. We can use other execution engines as well, for example,
Tez, Spark [151]. A general overview of Hive-Hadoop setup is shown in Figure
2.3. The main components of Hive and functionality is as follows:

• External interfaces - Hive facilitates the access through web user interface,
command line interface (CLI) and through application programming in-
terfaces (API) like ODBC and JDBC.

• Metastore - It is the main catalog of Hive metadata. It has a separate
storage system to store Hive metadata and provides service to other com-
ponents of Hive for metastore access. It not only stores metadata of Hive
tables, such as their schema and location, but also stores partitions in a
relational database.

• Driver - This component receives queries from external interfaces and
manages the life cycle of HiveQL statements during compilation, opti-
mization and execution. The functions of its main components are:

– Compiler first receives the query from Hive driver where it is parsed
and type checked. A semantic analysis is also performed here by the
help of schema in metastore.

– Optimizer makes the logical planning of the job. The plan is directed
acrlyic graph (DAG) pf MapReduce and HDFS tasks.

– Execution Engine submits the MapReduce jobs to Hadoop for exe-
cution. this process initiates once compilation and optimization has
been completed successfully.

2.1.4 Software-defined Networking (SDN)

This section gives general overview of SDN and its architecture. We used SDN
instead of using normal switch as it gives more control to the user and we can
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Figure 2.3: Hive architecture

store desired network measurements in a configured database. SDN is a net-
working architecture that separates the control layer from forwarding layer of
the network. It simplified the network control, innovation through network
programmability and management. It helped easy monitoring of networks, de-
signing of fault tolerant networking and open protocols and interfaces [152]
[153].

As shown in Figure 2.4, the framework of SDN consists of two APIs and
three planes. The data plane comprises flow forwarding devices like routers
and switches. The control plane makes the decision and data plane forwards
the traffic on the basis of those decisions. The control plane have controllers
or severs which decide on the traffic flow forwarding strategies. The applica-
tion plane consists of network applications like access control lists (ACLs) and
firewalls. These three planes are connected by two APIs: southbound API and
northbound API. The southbound API is the interface between control plane
and data plane. The controller can send flow forwarding decisions to switches
by using southbound API. The northbound API is the network programming
interface used to to design and implement new and innovative network proto-
cols and applications [154].
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Figure 2.4: SDN architecture

2.2 Related work

In this section, we introduced the research works that are closely related to this
thesis regarding their pros and cons to better motivate the research of this the-
sis. The section is organized in correspondence to research objectives stated in
Section 1.2.

Performance is an important factor that has to be taken into account in the
development, designing, configuration and tuning of a computer system. Com-
puter performance evaluation can be divided into three broad areas, namely
simulation, analytical and measurement [155]. Simulation performance mod-
eling involves techniques like trace driven, event driven, execution driven,
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complete system simulation and software profiling. Analytical modeling in-
cludes probabilistic models, queuing model, Markov models and Petri Net
models etc. Performance measurement involves the hardware/ software moni-
toring,workload characterization techniques, capacity planing and benchmark-
ing [118]. In the literature, several approaches has been mentioned to improve
Hadoop performance by parameter tuning.

2.2.1 Configuration parameters based optimization

Different phases of map task include compute, collect, sort,spill,combine and
merge-spill. All phases except spill and merge-spill are CPU intensive. So, the
number of maximum map tasks running for a particular MapReduce applica-
tion on a node is called slot value. The slot value has an impact over CPU uti-
lization of cluster. Kamal and Freeh showed that a single value for maximum
number of map tasks, running concurrently, is not applicable for different types
of applications [110]. They configured two 6 node clusters: first consist of IBM
PowerPC machines and the second consist of x86 machine. The experiments
were run by using six applications from PUMA suite [156] and seven variants
of terasort. PUMA is a benchmarking suite developed by Purdue university.
The number of map tasks were varied with an increment of 8 from 16 to 64
maps per slot. The workload of 150 and 300 GB were used to run experiments
on both of the clusters. They measured the performance of thirteen different
applications that have a wide range of IO and CPU characteristics. So no one
value is suitable for all of the applications.

They introduced Hadoop counters that measured the CPU usage per-map
task IO throughput. The applications formed three distinct regions when the
values of the two measures, for TaskTracker of one node, were normalized and
plotted against each other. The CPU utilization was on x-axis and IO through-
put on y-axis. The applications in each regions were categorized as IO intensive,
CPU intensive and balanced. Base upon their personal experience to define that
30% of the region should be IO intensive, 60% should be balanced region and
10% should be CPU intensive. Each regions has a certain range of values repre-
senting the number of map tasks giving best performance for that application.
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percentage of data So when they have chosen the application specific number
of map task, the CPU performance degradation was only 1% as compared to
7% in case of single value for all applications.

Wang et al., [109] suggested a n approach to achieve efficient and fair slot
configuration for Hadoop cluster. The slot indicates the capacity of each node
of the cluster to accommodate map and reduce tasks. This value can be kept
static during the lifespan of the cluster. They adopted two approaches to adjust
slot value. First approach was to decide the number of map and reduce tasks
before launching cluster and Fair scheduler was used to schedule job. Second
approach included, adjusting slot values dynamically by allowing the change
of a slot in an online manner to either a map slot or reduce slot. This dynamic
approach involves calculating the difference between expected and actual map
slot. if the aexpectation is higher than the free slots will be assigned as a map
slots. They compared the results for static and dynamic slot configuration with
different workloads. They also presented a new fairness calculation scheme
to achieve minimum makespans without degrading it. Makespan is the total
time to complete processing of all jobs [157, 158]. The experiments were run
on Amazon EC2 platform. They built two clusters of 10 nodes and 20 nodes
with slot size of 4. Six PUMA benchmarks were used to evaluate the perfor-
mance of their proposed systems. The workloads were 4 GB and 8GB and the
datasets used were wikilink data and movie rating data. For static slot configu-
ration three different settings were tested while for dynamic slot configuration
two workloads were tested i.e. simple and mixed workloads. For simple work-
loads ten jobs for each application was submitted to cluster with an interval of
2 seconds. The results showed that fair scheduler performed well in most of
the experiments. For mixed workloads, five sets of workloads were designed.
Each set consisted of 12 different combinations of applications and workloads.
Two sets of workload were created from initial three mixed work loads. these
two sets represented map-intensive and reduce-intensive workloads. Their re-
sults showed that a fair scheduler with 2:2 ration represents the best makespan.
They compared their results with traditional Hadoop schedulers like FIFO and
capacity scheduler.

Yao et al., stated that static configuration throughout the lifespan of clus-
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ter, can result in low system resources utilization and lengthy completion times
[111]. Each node in Hadoop cluster can take up to a certain number of map or
reduce tasks. This value can be set fixed to manipulate the cluster’s maximum
parallelization capacity. They allocated map and reduce tasks dynamically dur-
ing the execution of the Hadoop jobs. At the end of each task Hadoop needs
to decide that how many map or reduce tasks are left? and whether a slot is
available to be assigned. They first estimated the workload of each node for
concurrently running jobs. They fixed the maximum number of map and re-
duce such that the number of map tasks does not go beyond a certain value at
a time. The experiments were run on Amazon EC2 platform. They built clus-
ter of 5 nodes and 20 nodes with slot size of 4. They have run the experiments
by using four Purdue MapReduce Benchmark Suite. The workloads were 10
GB and 7 GB and the datasets used were wikilink data and movie rating data.
A simple and mixed workload was designed to evaluate the performance of
their method. They improved completion time of a batch of MapReduce jobs
by adjusting mad and reduce slot ratio on the basis of an estimated workload.
The scheme was evaluated on a cluster at Amazon EC2 and demonstrated 28%
reduction in makespans and 20% increase in resource utilization.

Block size is an important configuration parameter which directly affects
the Hadoop distributed file system. Krishna et al., [26] demonstrated that per-
formance of HDFS can be evaluated by using read and write operations. In
order to do so, they performed read and write operations of small and large
files by using data size of 1GB, 2GB, 4GB and 8GB. A five node cluster was built
for experimentation purpose with Ubuntu installed on it. The performance was
measured on the basis of overall execution time. In order to make a comparison
the execution times for the same data size was compared. For each data size,
number of files and the file size was altered. File size started from 1MB and is
doubled up to 1024MB in each of their experiments. Their results showed that
the performance of read and write operations of HDFS remained poor when
the file size was less than the default block size (64MB) and the performance
increased when the file size is greater than the default block size.

Bansal et al., [159] studied the impact of different Hadoop parameters on the
performance of Hadoop jobs. They studied the impact of block sizes of 64MB,
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128MB, 256MB and 384MB on the overall and average execution time of the
job. They used 10Gbps uplink and 1 Gbps lateral ports for the connection of
their 1 Master and 4 node cluster. For performance evaluation, they used Pur-
due MapReduce benchamrk suite (PUMA). They experimented with different
scheduling algorithms in Hadoop yarn such as fair sharing, capacity schedul-
ing and first in first out(FIFO), to show that cache size, memory and spill mem-
ory along with the nature of job submitted can impact the execution time. They
didn’t report the number of times experiment repeated to ensure that their find-
ings are repeatable and reproducible.

Xueyuan et al., [112] studied the impact of Hadoop configurations on
the performance of Hadoop jobs. They altered memory related settings of
Hadoop in docker environment and observed the resource utilization for dif-
ferent settings. They used Hadoop 2.7.1 and Ubuntu 14.04.03 LTS was con-
figured by using docker version 1.9.1 on a HP server machine having 24 In-
tel Xeon cores and 1TB hard drive. Each docker container acted as a cluster
node. Some of the important memory related parameters they used in their
experiments are: MapReduce.map.memory.mb, MapReduce.reduce.memory.mb and
yarn.nodemanager.resource.memory-mb etc. Eighteen different values of these pa-
rameters have been used to run WordCount and TeraSort. They measure the
CPU and memory footprints of the system. Their results showed that appro-
priate customization of the parameters can improve the performance of the
Hadoop. The performance can be improved by increasing memory allocated
to the nodes as compared to default memory parameter settings. they have
also stated that their method can only achieve better results if the memory is
the bottleneck of the nods, otherwise it can cause performance degradation of
CPU.

Nascimento et al., [160] investigated the impact of different Hadoop con-
figuration parameters while running Hadoop-based Exact Diameter Algorithm
(HEDA). They used twitter and Internet research lab (IRL) datasets and moni-
tored the CPU usage, memory usage, network traffic and the execution time for
different cluster sizes. They used Ganglia for cluster monitoring purpose [161].
Their results showed that the choice of parameters, on clusters of different
nodes, has improved the run-time of HEDA by 80 percent. The results for clus-
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ter sizes of 1, 2 4 and 8 nodes running job maps 6, 12, 24 and 48 were reported
in their studies. They used replication factor 1 and 3 and block sizes of 64MB,
128MB and 256MB for all sizes of clusters. However, their work lacks the rela-
tionship between different Hadoop parameter setting and system, memory and
execution time. Furthermore, they did not reported the number of times they
repeated the experiments to ensure experimental rigour.

Apart from parameter tuning, some researchers also tried to optimize the
performance by modifying current Hadoop ecosystem. One such example is
modifying replica placement strategy to enhance resource utilization.

Qu et al., [14] has presented dynamic replica adjustment strategy(DRS) based
on Markov Model. It relies on the data access frequency and data access pat-
terns. Here each file in the system is treated as a state. Firstly file access times
for each file is calculated in a given period of time to see how frequent a file is
being accessed. Each file is replicated according to the access frequency calcu-
lated based on Markov model. Whenever a new file is added into the system
it is assigned a non-state entity. But as this new file is accessed over a certain
number of times, it will be taken as a state in the system. Similarly if any file has
not been accessed over a certain period of time, it is added to non-state space.
The replica number of file i can be computed as

mj = dR×N × πje (9)

where R is the replication factor and N is the number of files in system.

Parameters Value
Replication 3

Nodes 5
Racks 3

Performance metrics Avg. job time

Table 2.1: Parameters used

Qu et al., [14] demonstrated that replicas can be equally distributed across
n racks. When a file is to be placed on a particular rack, its adjacent file is
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also placed at that rack. In this way related files are placed on the same rack
involving reduced data transmission between nodes or racks. In this strategy,
first average number of replicas are calculated for each rack based on markov
model using formula.

mi =
ci
r

(2.1)

where ci is the number of replication number of file i and r is the number of
racks. The replication number of a file i on each rack is Si. If there are no replica
of file i placed on the rack where file j is placed, then place replica over this
rack otherwise move forward. This process is repeated until all replicas are
uniformly distributed.

Figure 2.5: Homogeneous Replica Placement Strategy

Dai et al., [15] demonstrated the even distribution of the replicas in HDFS
using partition replica placement strategy(PRPP). They designed a theoretical
simulation to for this purpose. This involves the division of all available nodes
into three sections. Two sections will have 1/3 of the nodes (S2) while one sec-
tion will have 2/3 of the nodes (S1). This is called as section formation phase
followed by replication phase. Replication phase involves the distribution of
replicas to all nodes. First a table is constructed for each section, where a column
corresponds to replica assignment of one node. It starts assigning the replicas
that are supposed to be on the same rack from left to right and top to bottom.
This will be further randomized so that no nodes have the same replica assign-
ment. After distributing the first two replicas to nodes in S1,they distributed
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the remaining one replica among nodes of S2. This type of replica placement
strategy is only suitable for homogeneous clusters where each node has same
computing capabilities. It eliminated the use of default load balancing utility of
HDFS.

Parameters Value
No. of Blocks 8000
Replication 3

Nodes 600
Racks 30,45

Performance metrics min, max, mean, variance and std. deviation

Table 2.2: Parameters used

Zheng and Shen, addressed the issue of low resource utilization and ef-
ficiency problem for Hadoop [62]. They proposed a data-parallel processing
framework to horizontally scale parallelism of task execution. This means that
more sub-tasks have been added to the usual process of map-reduce [162, 163].
The data management of current distributed file system is relatively coarse
grained due to big block split which can lead to coarse granularity of data pro-
cessing. So, it is important to get a fine grained data processing strategy to
improve resource utilization of cluster. Their overall strategy consists of three
main aspects: Sub-block, Task, and Pre-shuffle. In the sub-block step, they fur-
ther split the block to reduce data management granularity which can impact
on performance and scalability of HDFS. The sub-blocks position is same as
that of block so it can easily be recognized by the map task without increasing
load on NameNode. This can cause serious disk performance degradation if the
number of sub-blocks are too many.

Then in the task section, based on sub-block,they improved the parallelism
of map/reduce task execution. They used multiple threads(called sub-task)
to make full use of resources as each thread can process one or more sub-
blocks. The speculative tasks which can result in under-utilization of resources
and long execution times, can easily be handled by sub-task strategy as it will
not hold up the entire block. They implemented their idea by using Apache
Hadoop 1.2.1.In the experimental environment, we build Hadoop cluster with



2.2. RELATED WORK 35

five servers, one for JobTracker and NameNode, the others for compute nodes.
Each server has two 6 core Intel Xeon CPUs (E5645, 2.4GHz, with Hyper-
Threading Technology), 64GB RAM and 300GB hard disk. All servers are in-
stalled Ubuntu Server 12.04 with Sun JVM version 1.6.0 26. They used Word-
count, Sort and Kmeans to run experiment to see scalability, performance under
multi-CPUs and resource utilization. Their experiments shows that they opti-
mize the cluster resources and also speed up the completion time.

Mathiya and Desai [120] demonstrated that the performance of Apache
Hadoop Yet Another Resource Negotiator (YARN) depends upon a large num-
ber of parameters. They classified the Hadoop YARN parameter configuration
settings into different categories. The main classes were CPU-related, memory-
related and I/O-related parameters. A parameter was assigned to one of these
classes if it can directly affect the performance of CPU, memory or I/O of the
system. One of the drawbacks of their study includes the lack of any experi-
mental design to justify that these parameters do affect the class they were put
into.

Summary

The summary of literature review is shown in Table 2.3. Current studies showed
that optimal performance of Hadoop depends on several characteristics of
Hadoop job. Researchers have tried to optimize or estimate the resource uti-
lization or execution time of Hadoop jobs by improving job scheduling, slot
value assignment, block size alteration etc. But careful analysis of the current
studies also highlighted some gaps for the future work.

Firstly, the lack of robust experimental design is not present in most of the
studies. This includes the lack consistency of workloads in consecutive experi-
ments to be compared, not reporting the datasets they used in their studies, and
the application they used to run the these experiments.

Secondly, not reporting the input of the experiments or number of times the
experiments has been reported is another important gap in the existing work.
Hadoop jobs might be resource extensive or time consuming but both of these
aspects are important for good experimental design. Ignoring these can intro-
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duce scientific bias into the results which can give misleading and unreliable
results.

Thirdly, another important problem raised because of these shortcomings
is that the studies do report the percentage of increase or decrease in perfor-
mance or resource utilization but they did not report the statistical significance
of this percentage difference. This is very important aspect of the scientific ex-
periments as a very prominent difference in percentage may not be significant
statistically and this can impact the validity of the results achieved.
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2.2.2 Job characteristics-based optimization

Correlation analysis is carried out to measure the relationship between two vari-
ables or quantities [164,165]. A high level of correlation means that the relation-
ship between the two variables is very strong while a low correlation means that
the variables are not related or less related [166]. Correlation analysis is a sta-
tistical method usually measured as correlation coefficient [167, 168]. The value
of correaltion coefficient ranges between −1.0 to +1.0. Anything around ±1.0

is considered as strongly correlated [169]. The difference between the plus and
minus symbols is the direction of correlation or relationship. A + sign means
that both variables or quantities are directly related. If one quantity increases,
the other quantity also increases. While − sign shows that if the value of one
variable increases, the value of other variable decreases accordingly [170]. From
machine learning point of view, this correlation or relationship can be repre-
sented in the form a linear regression model [171]. Linear regression was first
proposed by Sir Francis Galton and is a mathematical model which shows the
functional relationship between multiple variables [172, 173].

Hadoop job is a complex working of different frameworks, resources and
hardwares working together to achieve parallelism and distributed computing.
So, overall cluster setup or cluster environment largely affects the execution of
job. Cluster environment includes nature of application, type of input, system
configuration settings and hardware, workload etc. It is important in defin-
ing its performance and resource utilization. Following paragraphs are some
work reported to in the literature which shows that Hadoop performance and
resource can be optimized or correlated to different characteristics of Hadoop
cluster.

Nabavinejad and Goudarzi [174] proposed Smart Configuration Selection
(SCS) method to choose a set of sample parameter configuration for virtual
machines to run MapReduce job. They used Pearson correlation coefficient
[175, 176] or Kendall rank correlation coefficient [177, 178] to select the most ef-
fective configurations. The recommended configurations were tested on Ama-
zon EC2 and Microsoft Azure and showed less estimation error (11.58%) as
compared to random configuration selection (19.72%). They used different
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benchmark applications, like WordCount and TeraSort, to see the difference be-
tween different configurations. Their results also showed that when this SCS
is used with makespan minimizing algorithm, it can reduce the execution time
upto 36% as compared to random selection.

Li et at., [179] proposed a tool which calculated the mathematical relation-
ship between configuration parameters and system performance. This tool help
to predict the relationship which suits best for a particular hardware. They mon-
itored CPU usage, disk usage and network usage every second on a nine node
cluster. The experiments were run with predicted and default configurations
using TeraSort. The running time of the predicted parameter settings was ten
times faster than the default settings.

Cluster workload is correlated with the overall performance of the cluster.
Moraveji et al., [18] investigated how to load shared resources of a cluster of
servers with data-intensive applications so that throughput degradation never
falls below a certain limit. First they calculated the throughput of a single work-
load on a single physical server. They considered file size and file operation
request size for the performance characterization of throughput. Their results
showed that larger request size (RS) always gives higher throughput. Other pa-
rameters like last-level cache (LLC), system file cache and disk cache also effect
the workloads greatly. They extended their work by putting multiple work-
loads on a single server which takes into the consideration file size, request size
and number of concurrent workloads. Their results showed that throughput al-
ways degrades when the amount of data exceeds LLC capacity. Other contribut-
ing factors can be processor execution engine, file system cache, disk cache and
disk bandwidth. In another experiment they calculated multiple workloads on
multiple servers where they performed consolidation so that throughput is not
degraded more than 50%.

On the basis of their experiments they designed a greedy algorithm to solve
the consolidation problem. This algorithm minimizes the throughput degra-
dation of consolidated workloads when distributed among a number of phys-
ical servers. They compared their algorithm results with brute-force technique
which overloaded the schedulers to show their designed algorithm was better.

Cluster hardware/resource profile affects the performance of Hadoop job
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as shown in the work reported by Mohan et al., [41]. They compared the read
performance of triple replication storage in HDFS with Reed-Soloman erasure
coded storage module available in RAID module of HDFS in various cluster
distribution across diverse geographical locations across Australia on NeCTAR
reseach cloud. They tried to understand the performance of various storage
codes over distributed data across geo-diverse clusters. Two types of experi-
ment setups were used, in one setup performance comparison between default
HDFS replication and Hadoop’s erasure coding was carried out and in other the
comparison of Hadoop erasure code with local reconstruction codes in XOR-
BAS Hadoop. Five clusters with varying geographical locations were used for
the experiments. The default block size of 64MB was maintained in all of the
experiments along with a file size of 640MB. Their results showed that erasure
codes didn’t degrade the performance and XORBAS Hadoop does not perform
well as reported in other studies. Their study emphasized the importance of
understanding the scheduling and block placement policies of Hadoop.

Resource available impacts the performance and resource utilization of of
Hadoop jobs as demonstrated in work done by Zhu et al. [180]. They proposed
a automatic configuration tuning framework for general systems. Their system
used divide-and-diverge method to estimate the resource requirement. This
resource utilization along with application specific workload requirement was
then used to auto-tune configuration parameters. They tested this proposed ar-
chitecture on Tomcat system on virtual machines, Cassandra and MySQL. Their
results showed that their framework significantly improved the throughput of
all of the systems.

Number of nodes or size of cluster is also an important contributing factor
affecting job execution over Hadoop cluster as reported by Pal and Agrawal
[108]. They reported their work on HDFS and MapReduce to investigate the re-
lationship between memory usage by number of mappers and reducers. Their
results showed that memory usage increases as the number of nodes of the clus-
ter increases. They also demonstrated that cluster deployment can be problem-
atic when we use WebUI to deploy cluster on Ubuntu.
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Summary

A summary of literature review demonstrating the relationship of cluster envi-
ronment for optimization of Hadoop performance is given in Table 2.4. Hadoop
ecosystem is complex combination of different modules or frameworks working
together. In order to achieve optimal and fair performance and resource utiliza-
tion, we have to carefully measure and analyze different factors constituting the
cluster or job environment. These environmental factors include but not limited
to nature of application, type of input, configuration settings hardware etc. In
addition to the shortcomings identified in Section 2.2.1, the work reviewed in
current section showed following research gap. Most of the studies focused on
optimizing one aspect of either the Hadoop ecosystem or Hadoop job. But It
will be interesting to investigate what impact it has when multiple parameters
have been optimized using many different values at a time. This will highlight
the important relationship or correlation between the parameters. This will also
provide a good insight into Hadoop cluster performance and resource utiliza-
tion under these changes.
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2.2.3 Machine learning based performance optimization

In this section, we have reviewed literature relevant to Hadoop optimization
for resource and performance modeling. The main focus of this review is to
highlight what machine learning techniques have been used and what was the
purpose of their use. From purpose we meant to say which aspect of Hadoop
ecosystem have been optimized and how it improved the job execution. There
are two important objectives of using machine learning techniques, first one is
the modelling of one or few Job characteristics and second is prediction based
on the models built. All machine learning techniques are used to build models
which can help to understand the patterns within a data. This model is later
on tested on an unseen data which is is not part of the model building process.
This process is called prediction. The percentage of correct prediction gives us
a measure of goodness of the model built. We divided the current work into
two broader categories, the performance modelling and performance predic-
tion. Performance prediction usually involves both modeling and prediction
processes.

Performance modelling

Kim and Kim [181] build a cooperative data and simulation modelling ap-
proach for performance analysis of the Hadoop system. Their modelling ap-
proach involved a workload model, which describe the application and disk
Input/Output (I/O) processes, and a system model which involved the opera-
tions of Hadoop Distributed File System (HDFS) and MapReduce. They used
Artificial Neural Networks (ANNs) for data modeling and Discrete Event Sys-
tem Specification (DEVS) for simulation modelling. Root mean square error
was calculated to compare the prediction accuracy of real results with simula-
tion results, and the results showed that cooperative modeling approach can
achieve promising results as compared to individual data modeling and simu-
lation modeling approaches.

Wang et al. [182] reported a method to tune the configuration of a large
number parameters in Apache spark by using different machine learning tech-
niques. They defined the performance of Hadoop by using equation.
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Perf = F (p, d, r, c)

Where Perf denotes the performance of the Spark platform, p denotes the
user’s application, d denotes the input data, r denotes the platform’s resources,
and c denotes the configuration parameters of Spark platform, Fis a function of
Perf about p,d,r, and c. In their experiments, they only focused on configuration
parameters c, to optimize the performance. p,d, r remained fixed in their exper-
iments.They trained their model on random sampling on parameter space and
used Decision tree (C5.0), logistic regression, Support vector machines (SVM)
and the artificial neural network. Their results showed that decision tree model
can give best computational performance and prediction accuracy for both bi-
nary and multi-classification.

Khan et al. [57] reported modeling of job time estimation in Hadoop clusters.
They used historical records to employ the Locally Weighted Linear Regression
(LWLR) technique to estimate the execution time of a job. They calculated re-
source provisioning by the Lagrange Multiplier technique. They evaluated their
model on an in-house Hadoop cluster and Amazon Elastic Compute Cloud
(EC2). Their experimental results showed up to 95.51% accuracy in estimating
the deadline of Hadoop job.

Yigitbasi et al. [183] demonstrated a machine learning based auto-tune
method for MapReduce applications. They run the experiments on two dif-
ferent clusters. They collected data of two different workloads on both clus-
ters and then used different multiple Linear regression Models to build models.
The have used root mean square error (RMSE), R2 Statistics and basic statis-
tics to compare the results from different workloads. They used support vec-
tor regression (SVR), M5Trees and ANN models to compute the accuracy and
computational performance for different workloads. Their SVR model showed
comparable or better prediction accuracy than other cost-based auto-tuner like
Starfish.

Ataie et al., proposed a design-time hybrid approach to build analytical
model (AM) and machine learning(ML) models to estimate MapReduce jobs
execution time in Hadoop clusters [61]. Firstly, they proposed an AM based
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on queueing networks to model the execution of jobs. The results obtained
are exploited as analytical data which is used to train ML model. In order to
create a more accurate performance predictor, new data from the operational
system has been fed into the ML model. The limitations of their work includes
the use of synthetic data to train the model initially. This is because real data
would have noisy data which will not give accurate predictions. So they used
an incremental and iterative strategy to introduce real data into the learning
system. They have used linear regression, polynomial regression and Guassian
support vector regression to train on feature set which includes number of map
and reduce tasks, average and maximum values of map execution time, aver-
age and maximum values of reduce execution times, average and maximum
of shuffling times, dataset size and number of cores. Their experiments have
been performed on CINECA, the Italian super-computing center. PICO, the Big
Data cluster available at CINECA, is composed of 74 nodes, each of them boast-
ing two Intel Xeon 10-core 2670 v2@2.5GHz, with 128 GB of RAM. Out of the
74 nodes, 66 are available for computation. The dataset used for running the
experiments has been generated using the TPC-DS benchmark data generator.
Their results show that the hybrid approach performed 21% better than pure
ML approach.

Foo et al., applied machine learning approach combining evolutionary NN
and sensitivity analysis(SA) to model the energy prediction of the cloud data
center [60]. They used genetic algorithms for feature selection by utilizing SA
as guide.The feature subset, along with the NN architecture, is represented by a
structurally-inclusive encoding scheme in the form of a chromosome matrix.
A population of chromosomes is maintained through the genetic process of
crossover and mutation. The chromosome’s fitness is evaluated at every gener-
ation to determine its survival in the next generation. The algorithm “prunes”
away connections between the neurons to de-emphasize a particular input neu-
ron’s contribution to the NN s output should such an input feature causes the
chromosome to have a weak fitness. The eventual NN is a network with re-
duced complexity. This leads to a model with better generalization and at lower
computational cost. A complex NN has high computational cost and the ten-
dency to overfit. The proposed evolutionary NN combined with SA helps to
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extract the key factors impacting the cloud data center energy performance. A
Hadoop cluster with Hadoop Distributed File System (HDFS) and MapReduce
stack (Facebook Apache Hadoop version 0.20.1), is set up to perform the experi-
ments. The software stack is installed over 6 x HP Proliant DL360P and DL380P
Gen8 servers, consisting of 120 cores housed within a single rack. Each server is
equipped with 64 GB memory, dual socket 6-core Intel(R) Xeon(R) CPU E5-2667
@ 2.90GHz with hyper-threading technology. The Hadoop cluster comprises of
1 x NameNode, 1 x secondary NameNode and 4 x datanodes. All nodes are
installed with CentOS 6.5 and running on bare-metal hardware without hyper-
visor or virtualization.

A mixture of MapReduce jobs, in the form of the WordCount application
and Sort application are executed during the experiments. The Hadoop MapRe-
duce counters such as the Map file byte read, the Reduce file byte write and etc.
are extracted using the build-in Hadoop web admin user interfaces (UIs). The
counters can be access via the HDFS NameNode admin at port 50070 and the
MapReduce Job tracker admin at port 50030. The other counters such as the
CPU and memory utilization and network IO are collection using Ganglia, an
open source monitoring system. The power consumption data is collected us-
ing the Raritan intelligent Power Distribution Unit (iPDU), through which the
servers’ power supply are connected into. For sensitivity analysis they have
used partial derivative method and Weights method. Their results indicate that
file size, time taken to complete the task and resources assigned to job has high
impact over energy consumption.

Xu et al., presented a deep learning approach for speculative execution and
replication of deadline critical jobs [184]. They used machine learning approach
called deep neural network (DNN) to solve straggler migration problem. A
Deep neural network, modeled loosely after the human brain, consists of an in-
put layer, hidden layers, and an output layer. The input layer takes inputs from
a dataset, and passes data to the following hidden layer. Each hidden layer,
which is not directly exposed to the input data, consists of multiple neurons.
A neuron is a computational unit that takes weighted inputs and generates an
output using an activation function. The output layer takes results from hidden
layers, and produces a value or a vector of values [185].
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For a job with deadline, Xu et al., proposed a metric called probability of
completion before deadline (PoCD) to quantify the likelihood of straggler mi-
gration strategy to meet job execution deadlines [184]. Their model consist
of two deep neural networks, first for the task execution time estimation and
second one for determining the number of extra attempts to launch for each
straggler. Their method relies on task progress score, time of estimating the
task execution, amount of bytes read and written on HDFS and CPU execu-
tion time.Their cloud testbed consist of 80 nodes. Each node has 8 vCPUs
and 2GB memory. The physical servers are connected to a Gigabit Ethernet
switch and the link bandwidth is 1 Gbps. WordCount with a 1.2GB workload
for WordCount from Wikipedia. They compared their results with speculative-
resume with quantitative analysis strategy which is a model-based optimization
method. Their results show that their DNN-based method is not able to accu-
rately estimate execution time of straggler as compared to model-based strat-
egy, but it performs better than Hadoop-S and Hadoop-NS in terms of PoCD
and cost.

Performance prediction

Berral et al., described the ALOJA project and different tools provided this
framework [40]. This is a Hadoop based long-term collaborative project be-
tween Barcelona Supercomputing Center and Microsoft to characterize the cost-
effectiveness of Big data deployments along with their run-time performance.
The project has created an open repository featuring 40,000 Hadoop jobs exe-
cution and performance details. This tool compares the software and hardware
configurations for deploying cost-effective Hadoop deployments.

The framework has been tested over a high-end cluster of 2 to 16 nodes
per execution, 64GB of RAM machines; 6 SATA2 SSD drives as RAID-0 storage
(1.6GB/s read, 1GB/s write), and local 3TB SATA HDD storage per node; net-
work interfaces with 4 Gigabit Ethernet and 2 FRD InfiniBand ports per node
providing a bandwidth peak up to 56Gbps, and InfiniBand switching , and a
Cloud IaaS with Microsoft Azure environment using A7 instances using 3 to
48 data-nodes per execution plus a head-node, with 8 cores and 56GB of RAM;
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mounting up to 16 remote volumes limited to 500 IOPS. In order to enhance
the knowledge discovery capabilities they used ML algorithms like Regression
trees, Nearest neighbors, FFA Neural Networks, and polynomial regression.
They showed that resulting models can forecast or predict the execution be-
haviors and times for new configurations and hardware choices. Their work
has limitation of not exploring the relationship of configuration and hardware
attributes.

Ling et al., [186] predicted the execution time of two Hadoop applications
under different input size. They used linear regression model and error correc-
tion neural network model to train the model and predict the total execution
time. They deployed 5-node cluster with MapReduce framework. The hard-
ware specifications of the cluster are: HP with two Intel(R) Xeon(R) CPU E5649
processors, 2.5GHz, 64bit, 32GB memory and 4TB disk. Hadoop versions 2.3.0
was deployed and real-time network traffic was collected and stored in HDFS.
In order to evaluate the results, they used mean relative error, mean absolute per-
centage error and RMSEroot mean square error. RMSE is given below,

RMSE =

√
ΣM

i=1(actual
(i) − predicted(i))2
M

(5)

They also calculated PRED(25) to see the fitness of model. This is given
below,

PRED(25) =
m

M
(7)

where m is the length of dataset where MRE is less than o.25. The model is a
better fit if the value of PRED(25) is close to 1.0. Their results showed that error
correction neural network model gives 2% better prediction of overall execution
time under different input sizes as compared to regression model.

Summary

This section has presented the work related to modelling and prediction of re-
source and performance using machine learning methods. There are several
gaps highlighted from this review as shown in Table 2.5. Most of the studies
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has not taken into account the complex relationship between Hadoop job char-
acteristics for modeling and prediction. The reason can be the non-flexibility of
the modeling method they choose, the dataset for modeling might have missing
values or different data-types which can lead non-robustness of the technique.
This is very important because a model might have considered type or size of
workload but how it can efficiently predict the performance or resource utiliza-
tion of a Hadoop job when several important aspect has not been included in
this process. For example the type and structure of input, hardware profile or
configuration parameters.
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2.3 Chapter Summary

This chapter provides a comprehensive literature review, including fundamen-
tal concepts related to Hadoop and its ecosystem with a focus on Hadoop dis-
tributed file system and Map-Reduce programming framework. The working
of Hadoop components and the important factors affecting the performance
and resource utilization has also been discussed. Besides, in order to motivate
the research of the thesis, this chapter has also discussed and analyzed the short-
comings in the related literature.

Some of the general challenges for modeling resource and performance uti-
lization of Hadoop cluster are: a) ensuring the internal validity while design-
ing the Hadoop cluster and experiment, b) estimating the correlation or inter-
dependence of Hadoop job characteristics, c) improving the models to make
prediction more generalizable for different cluster environmental changes.
Based on the literature review, the specific limitations are:

1. There has been experimental evaluations to benchmark Hadoop perfor-
mance for different storage devices [38] and emerging hardware resources
like KNL [39], characterization of cost-effectiveness on deploying Big-
Data systems under different hardware and software capabilities [40] and
the impact of geographical diversity [41], but none of them has focused on
problems such as repeatability or validity. The current studies lack the de-
sign of a robust experimental methodology. Not only that it is important to
mention the experimental setup but also the experimental design details
as well. Experiment methodology includes but not limited to the number
of nodes, design of the cluster, data size, type of input, number of exper-
iments, parameter inter-relationship, statistical significance of the results,
the dataset used etc. Absence of robust methodology is a major factor in
non-reproducibility of the results at some later stage by same author or
someone else [42]. To the best of our knowledge, some of the studies did
not report the details of dataset used [14, 15, 26, 62], applications used to
run the experiments [14, 15, 108–112] and size of data [15, 159], number of
experiments run [14, 15, 18, 26, 62, 109–111, 174], defining input [120].
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2. There is an extensive list of more than 80 parameters that play an impor-
tant role in determining the task performance [34]. Some limited work
has been reported for identifying the impact of change in block size [18]
and trying different replication strategies [26] to enhance throughput of
the system. To the best of our knowledge, the inter-related impact of these
parameters is yet to be investigated [18] [26] [14] [15] [62] [120] [109] [110]
[111] [108]. The statistical significance of the results validate the differ-
ences in the performance of the two experiments. However, most studies
did not report this [18] [26] [174] [14] [15] [62] [120] [108].

3. Traditional approaches of Hadoop performance characterization and pa-
rameter tuning include manual trial and error or white-box modeling
methods. Hadoop has large number of parameters and prior knowledge
of its internal structure is also required along with the cluster hardware
profile, the type of input given and the dataset used. Machine learning
models are black-box modeling methods which has the advantage of be-
ing robust, flexible and simpler to build. There is some limited work re-
ported using machine learning, black-box techniques, to model and pre-
dict complex Hadoop performance characteristics. Researchers have used
machine learning to model the problem like energy utilization of clus-
ters [60] and performance prediction of jobs [61]. There is also some work
reported to optimize the use of resources utilization [62]. However, to the
best of our knowledge current literature has no work reporting the com-
plex relationship between different Hadoop parameters [183] [61] [60], re-
source utilization [186] [183] [61] [60] [57] [181], job characteristics [40]
[184] [183] [61] [60] [57] [181] and system’s layout such as number of
nodes [182] [186] [184] [183].



Chapter 3

Application of HAZard and
OPerability analysis for the design
of Hadoop cluster

3.1 Introduction

The goal of this chapter is to apply Hazard and operability (HAZOP) analysis to
the design of Hadoop cluster experiments. HAZOP is a brainstorming activity
ensured the internal validity of the system and represented a robust experimen-
tal design. The process outlined the detail analysis of the confounding elements
that need to be considered while designing the Hadoop cluster, thus ensuring
the smooth design and running of experiments. These confounding elements
can seriously cause operational hazards which can not only affect the normal
working of the cluster and execution of Hadoop jobs but can also introduce
errors into measurements if not countered. Lack of such experimental design
often results in fragile experiments, biased measurements and wastage of time.

3.1.1 Chapter goal

The objective of this chapter was to investigate the following research questions.

• What factors and confounding factors were important for the design of

53
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Hadoop cluster? and How?

3.1.2 Chapter organization

Section 3.2 presents the introduction to Hazard and Operability (HAZOP) anal-
ysis, and discusses the reason as to why using HAZOP in our experimental
design is important. Section 3.4 presents the application of HAZOP for Hadoop
cluster deployment. Section 3.5 presents the overall summary of the application
of HAZOP for Hadoop.

3.2 Background

Our aim in this work is to achieve reliable experiments. One aspect of this
is how to achieve consistent results. This can also be thought of as internal
validity which concerns the extent to which a relationship between a dependent
and independent variable actually exists and is not obscured by confounding
factors [187, 188]. Experiments may produce inaccurate conclusion because the
designers have not properly controlled design and experiment factors which
may affect the final result. For instance, having an unreliable memory usage
measurements because of some background service is running.

In computer science experiments were used for theory falsification [189],
investigation of assumptions [190] and developing theory based upon observa-
tions [191]. But as pointed out by some researchers, the reliability of experi-
ments or internal validity was compromised while designing the experiments
in computer science [42,113–116]. This lack of reliability or internal validity was
due to absence of control in experimental design [42, 113–116].

HAZard and OPerability (HAZOP) is a structured and systematic approach
involving thorough analysis of a system, its processes and components by ex-
perts to identify if any system or environment attributes in which the system
operates, may result in deviation from the design intent [117]. HAZOP provides
a methodology to design reliable and replicable experiments by controlling all
variables and hypothetical scenarios in an experimental setup, allowing the val-
idation of experiment’s internal validity by predicting the relationship between
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dependent and independent variables.

In their work, Maxion et. al. [192, 193] investigated how to design experi-
ments that identify potential confounds and appropriately control or mitigate
them. In their case study approach, they use their experiments on keystroke
biometrics for user identification to illustrate the difficulties in implementing
reliable measurement in the presence of confounds.

Mansoori et. al., applied HAZOP methodology to a case study of network
security experiments [43]. Their aim was to ensure reliability of the measure-
ments by finding the confounding factors in the experiments. Their approach
involved the case study of IP tracking where they defined the client honeypot
as apparatus, web pages as subjects and request as stimuli.

Seifert et. al. [194] performed a hazard and operability study and identified
hazards and bias which could be introduced into experimental studies using
state-based high interaction client honeypot. Their study used experiments on
real-world datasets demonstrated that subjects of studies the input dataset and
its source of collection can have significant effect on a measurement study. In-
creased number of malicious web sites in datasets gathered from adult web sites
and top level domains were observed. Their repeated measurement study on
the number of malicious web sites in the .nz domain over an eight months pe-
riod, revealed the impact of retrieval time on the outcome of a measurement
study as significant increase and decrease in the number of detected malicious
web sites were observed.

The aim of a HAZOP study was to identify risk and hazards into the oper-
ability of the system functions. Originally found in chemical engineering, we
are applying it to the design of Hadoop cluster experiments [195, 196]. In our
context, risks and hazards in a quantitative computer science experiment could
translate into increased risk of an unexpected and biased variable which would
impact the internal validity of the experiments. High internal validity was de-
sirable because it indicates that confounds coming from the experiment itself
were considered and dealt with in order to ensure we are measuring what we
believe we are measuring. Confounds in this context were variables that cause
hazards to the reliability of validity. External validity, on the other hand, is the
degree of certainty in which it could be argued that the conclusion of the study
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will hold true and can be used to make predictions about a larger population.
High external validity in an experiment warrants a high degree of certainty
about the generalizability of the findings. For example, that the findings about
the particular Hadoop cluster setup will generalise to similar Hadoop cluster
setup but different number of nodes.

Absence of robust methodology was a major factor in non-reproducibility of
the results at some later stage by same author or someone else [42]. For example
while characterizing and optimizing performance of Hadoop ecosystem, some
of the studies did not report the details of dataset used [15, 62], some did not
mention the size of data [15, 159] or number of experiments run [18, 174] or
testing the results for their statistical significance.

Our approach was inspired by the need for some form of guidance to de-
signers of reliable experiments on Hadoop clusters. We would like to provide
Hadoop-specific guidance than is found in the work by Maxion et. al. and Man-
soori et. al that applies to cybersecurity experiments. This not only identified
the potential hazards in our experimental design but will also highlighted the
possible actions that can be taken to counter these operational problems.

3.3 Hazard and Operability analysis

We adopted HAZOP as a methodology for reviewing the design of our Hadoop
experiments. This met the needs identified above because it was neither too
prescriptive nor specific. The following approach was based upon work on
applying HAZOP to cybersecurity experiments [197]. Based upon the reviews
of the literature a HAZOP study involves the following steps:

1. Firstly, the methodology of the study was defined. It described how the
experiment was meant to be conducted. The objective was to outline dif-
ferent events that were taking place in our experiment. We might be inter-
ested in observing and measuring some of these events. The high-level
view of the experimental design was analyzed to investigate any con-
founding factors. Parameters of experimental methodology such as ap-
paratus, stimuli and subjects need to described in details [195, 196].
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2. Possible hazards were defined by applying the pre-selected guide words
to the lower-level view of the experiment. These hazards were called as
deviations as they altered the usual working of the experiments. It was
not feasible to apply all the guide words to every component or process.
At this stage the objective was to take care of all possible deviations.

3. The possible consequences, as a result of some deviation, were defined.
This helped us make an assessment whether actions need to be taken to
minimise or mitigate the deviation.

4. We could eliminate or minimize the impact of hazard by taking appropri-
ate action [198]. This largely depended on the severity and likelihood of
the hazard. If necessary actions were not taken, it is a threat to validity of
the experiments.

This can be understood by an example of designing a Hadoop cluster-based
experiment. If the cluster CPU measurement shows that only Master nodes is
being utilized while running an job on bid dataset, The possible hazards could
be the incorrect configuration of the cluster, incorrect configuration of switch,
or coding error. The consequences could be the incorrect measurement, incor-
rect configuration on the switch or Hadoop framework. We could take actions
to check for the code first, check whether the cluster nodes were configured
correctly and can communicate with each other through password-less SSH.

Features of the HAZOP approach mentioned in this chapter may vary com-
pared to the original HAZOP model used in chemical engineering and was
adapted to suit the requirement of the study. Our method largely resembles
Mansori et. al. work, that applied HAZOP to cyber security experiments to
find confounding variables [43]. This practice was also accepted by many other
studies applying HAZOP to other fields [199, 200]. For instance, having a team
leader and a group of specialists from other fields was not deemed necessary
for this research and was not followed. Our methodology followed a similar
approach in analysis to the research performed by Seifert et. al. [194]. HAZOP
methodology in this thesis was mostly focused on identifying the confounding
factors in our experiments that may result in erroneous results or experiment
failures. The main components of our HAZOP study included:
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1. Study Node: Specific points in the design where the deviations are stud-
ied.

2. Guide words: Short words suggesting deviations from the correct state of
the system . The standard keywords of HAZOP include No, More, Less,
As Well As, Part Of, Reverse, and Other Than. Other keywords such as
Early, Late, Before and After were considered to be derivatives of ”Other
Than” keyword to apply more specific meanings to a deviation [201]. The
application of the guide words results in hypothetical deviations related
to that component or process (Table 3.1). Some guide words should be
interpreted broadly as different form of these words may be more appro-
priate to the process or artifact to which they were being applied. Guide
words used in our research were:

3. Deviation: Combined with guide words, they define a more descriptive
departure from the design intent of the component or process.

4. Cause: Described the potential cause which would result in the deviation.

5. Severity (Denoted by S, 1=Low, 2=Medium, 3=High): Expressed the po-
tential hazard and threat if the deviation occurs. If it was not possible to
entirely eliminate a hazard, then it should be minimised in respect to its
severity and likelihood [198].

6. Likelihood (Denoted by L, 1=Low, 2=Medium, 3=High): Expressed the
possibility of the deviation happening within the study node. The focus
of our HAZOP study was to identify experimental scenarios with high
and medium likelihood of occurrence and proposes measures to mitigate
or significantly reduce their effects. The ”cutoff” points represented the
line below which the threats to validity of final data and result were so
low and can be neglected [198].

7. Consequence: Described the potential results if the deviation occurs.

8. Required Action: Identified any measures to be taken to either remove the
cause or eliminate the consequence.
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Table 3.1: Guide words and their interpretations in our study

Guide words Meaning
NO No part of design intention is achieved
More Quantitative increase in a parameter or variable
Less Quantitative decrease in a parameter or variable
Other than Compared to design something completely different happened
Unreliable A value of measurement is not the same when measured again

in the same context as it was measure before.
Part of Qualitative decrease/ modification
As well as Qualitative increase/ modification
Wrong Wrong signal or action
Biased Systematic error across a set of measurements usually introduced

due to way the sampling done or the measurement process itself

Applying a HAZOP methodology to a repeated measurement experiments,
we questioned every component of the experimental design including data in-
put, datasets, processes, cluster node hardware, Hadoop framework and mea-
surements used in the interaction. These lower-level design components and
their associated hazards were each be discussed in detail in the following sec-
tions followed by HAZOP tables. It was a good way to explore the relationship
between risk, severity, likelihood and required actions in a HAZOP study. In
our study of HAZOP, we focused on finding confounding factors which might
introduced any hazard into the study such as wrong measurements.

3.4 HAZOP for Hadoop

As Hadoop is a multi-node cluster which involves many different elements of
hardware and software working together. These individual elements needed to
be integrated and configured in a specific way. As designing a Hadoop cluster
required good and carefully use of skills and experience, it was very important
to look for potential operational hazards that can cause deviate the cluster from
its normal functionality. Below is the detailed HAZOP analysis of the Hadoop
cluster which was not only helpful for this study, as it helped us finding the
confounds in our experiments, but also for the future researchers who want
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to design their own Hadoop cluster and look for the solutions of the different
operational hazards they face.

3.4.1 Apparatus (Hadoop cluster)

Multi-node Hadoop clusters may vary in their design and capabilities. How-
ever, all share some basic components that are discussed below:

• Cluster nodes: These were the physical cluster resources responsible for
storing and processing data.

• Switch : Different systems of the cluster were connected by either a physi-
cal or virtual networking device such as switch. All of the communication
was done through this.

• Hadoop framework: It was the software responsible for taking care of all
cluster job related tasks.

The hazards introduced due to failures of different components of the cluster
and the actions taken to mitigate their impact are listed in table 3.2.

Cluster nodes

These were the computer systems that were connected through some network-
ing device. When configured using Hadoop these different systems act like
a single storage and processing resource. The data might be physically dis-
tributed unevenly over different systems but as a cluster the data is distributed
in a way that if one of the system is turned off or fails, the job is still being
completed.

A Hadoop cluster has Master-slave architecture. One system was designated
as Master or NameNode while all other systems were slaves or datanodes. The
Master or NameNode was of the central importance regarding the configuration
of Hadoop cluster. It recorded the IP address of all of the slave nodes. It was
connected to datanodes using password-less secure shell (SSH) [202] protocol.
NameNode kept the track of all of the available resources. It also kept track of
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the status of jobs running on different datanodes. As Hadoop has its own file
system, the NameNode kept the record of how and where different blocks of
data were being stored over the cluster resources.

The job tracker present at Master node keeps track of the different tasks of
same job executed at datanodes. A job was being divided and subdivided by
using a MapReduce framework. The individual tasks were assigned and per-
formed at datanodes. These tasks were monitored by using task tracker mod-
ules present at datanodes. Datanodes or slave nodes were responsible for stor-
ing different blocks of same data.

Bias might potentially be introduced into our study when setting up the
cluster nodes can affect the internal validity of the system. There were two im-
portant aspects of cluster nodes configuration. First was hardware and second
was software. It was important to know the hardware profile of a multi-node
cluster. If different nodes have different CPU’s memory or storage capacities the
cluster is heterogeneous, but if all nodes have same hardware profile, the cluster
is called as homogeneous cluster. In our study, we setup homogeneous cluster
as we want to investigate how different jobs used different resources because
the nodes of the cluster. From software perspective, we have to take care of the
operating system installed on the individual nodes. Each node must have same
operating system as Hadoop configuration largely depends upon the operating
system it is being installed [203].

Some of the common hazards that could affect the job execution on cluster
nodes were:

• There was no cluster node present that could execute the Hadoop job. Pos-
sible causes were that cluster hardware was being replaced, it was being
turned off or damaged. Another possible reason could be the absence of
Java and Java run time environment.

• When the cluster size was increased by adding one extra node. This was
important hazard for utilization of all resources because once we add any
extra node in already configured Hadoop cluster, the new cluster node
need to have same configuration in various XML files. Secondly, the de-
fault Hadoop distributed file system need to be reformatted the file system
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of whole cluster.

• When a cluster node was being removed from an already configured clus-
ter, the Hadoop distributed file system need to be formatted again. This
would make the Hadoop framework aware of the available resources and
thus resource and job performance modeling could be accurately pre-
dicted.

Switch

The switch had central importance in the execution of Hadoop jobs. All the
communication between different nodes of the cluster was via a switch. We
used a SDN-configured switch while designing our Hadoop cluster. The con-
trol plane and data plane of such a switch were separated. The controller to
switch, Faucet, was installed and configured on Master node. This enabled us
to monitor packets transferred in or out of the different nodes of cluster. Gauge
was an integral part of OpenFlow switch which fetches the port statistics of the
switch and store it in a database. We used InfluxDB to store network traffic data
for each of our experiments. All of these network related measurements could
be seen by using a data visualization dashboard like grafana.

Some of the common hazards caused due to deviations of normal function-
ality of switch were:

• There was no switch that allowed connection between the host systems.
Possible causes could be that switch might be turned off, broken or un-
plugged.

• Another possible hazard was the replacement of switch which could also
result in no communication between the systems. This hazard takes place
when the new switch has not been configured to allow the communication
between devices.

• Wrong switch supplied by the vendor or product was not as per specifica-
tions could also be an operational hazard in Hadoop cluster which could
be avoided by cross checking the ordered product along with features it
provides.
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Hadoop framework

We configured framework to distribute and manage data on cluster hardware
resources and then execute job using built-in programming paradigms like
MapReduce. For convenience we did use many add-ons on top of basic Hadoop
framework such as Hive. We configured Hive to store and query structured
data on Hadoop framework. The installation of correct version of Hadoop was
also important. If all nodes of the cluster did not have same Hadoop version
installed and configured on it, the multi-node cluster cannot be configured cor-
rectly and it will result in under utilization of some resources.

There are many pre-requisites for the installation of Hadoop framework
such as enabling and installation of Java and SSH on each and every node of
the cluster. Some of the deviations were as under:

• The Hadoop framework was not present. Possible causes of this devi-
ations could be the complete absence of Hadoop framework on system,
Java was not installed and configured on cluster, Hadoop configurations
and environment variables were missing.

• Another possible deviation was that part of Hadoop framework was miss-
ing. Possible cause of this behavior could be that some files of the Hadoop
framework were missing.

• Installation of wrong framework was another important deviation. Possi-
ble causes could be the downloading and installation of wrong version of
framework and wrong configuration.
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3.4.2 Subjects (Performance and Resource measures)

Modeling performance and resource utilization of Hadoop cluster was the pri-
mary objective of this thesis. So, identifying any hazard that could stop, modify
or alter the collections of performance and resource utilization measures was
very important. The measures we were collecting are network traffic measures
(both packets in and packets out), CPU usage, disk usage, memory usage and
execution time. The possible hazards and the actions taken to minimize their
impact were discussed below and were presented in Table 3.3.

For network traffic measurement, it was very important that the switch was
installed and configured correctly. As the switch was SDN-enabled, so the cor-
rect installation and configuration of Gauge and InfluxDB were very important.
Gauge fetches the network statistics from the switch for each port of the clus-
ter and InfluxDb served the purpose of storing those network statistics. Some
of the hazards that could result in the deviation from the normal collection of
network traffic measurement were:

• There were no traffic measurements recorded after the job was completed.
The possible causes of this hazard were; influxDb might not be installed
correctly, Faucet or Gauge might not be configured, or licence for the SDN
switch had been expired, or the presence of a wrong switch in the cluster.

• Another important measurement is the collection of incorrect traffic mea-
surements. Possible causes for this could be some problem with the switch
or the device was not as specified by vendor.

For measurements of system utilization such as CPU usage, disk usage and
memory usage, it is important that all the physical hardware be correct and
functioning as expected. Any malfunctioned component could affect the oper-
ability and performance of the whole cluster. These system performance mea-
surements were collected during the execution of Hadoop job at each node of
the cluster. Once the job was finished the measures were stored in a single file
at a designated location on cluster. The hazards caused due to deviations were
discussed below.
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• Having no measurement recorded at the end of each job or experiment
was one of the hazards. It could be caused due to the connection failure
between the cluster nodes, job was not submitted, the scripts running the
job and collecting these measures had error or bug or some libraries need
to be installed on the system such as psutil library of the python.

• Another hazard was the collection of wrong system performance mea-
surements. The possible causes were the presence of coding errors in
scripts.

• Unreliable measurements were the most important hazard for such an ex-
periment. The possible causes of this hazard were: job might be termi-
nated earlier, some background application or service was being activated
or running and a component hardware was being changed.

• Recording the system performance earlier than expected was a very seri-
ous hazard. Possible cause was faulty script writing.

• Similar to early measurement, late measurement was also a hazard. It was
also caused by faulty script writing.

The execution time was an important performance measure for different jobs
executed over Hadoop cluster. The overall execution time of a job indicated
the impact of particular configuration parameter. It also helped to differentiate
between the performance of Hadoop jobs when querying differently over same
dataset or executing same query structure for different datasets. The overall
execution time was recorded by scripting in our experiments. Some important
hazards were discussed below:

• Having no execution time recorded was an operational hazard in this ex-
periment. The possible reason could be the presence of coding errors in
the scripts or supporting libraries were not installed.

• When same job was showing more or less execution time than expected,
it was an important hazard for our experiment as it makes the measure-
ment unreliable. The possible causes could be the running of some extra
services or background application while executing that job.
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• If the execution time recorded was wrong, the data analysis could be per-
formed. Possible reason for this kind of hazard could be the errors in
script, or using incorrect library.
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3.4.3 Stimuli (Hadoop job)

Once the cluster had a fully functional Hadoop framework installed on it,
the parallel and distributed processing of data was initiated by submitting a
Hadoop job. A Hadoop job had several characteristics which could affect the
overall performance and resource utilization of cluster. Some of the key hazards
were discussed below:

Job input

Hadoop job input was an important element of a job. As our experiments were
executed on a Hadoop-Hive setup, the input was given in the form of SQL-
like query. The query format was known as HIVEQL and it initiated a Hadoop
job. Query is mostly a SELECT statement with different clauses in it. We used
ORDER BY clause and GROUP BY clause with varying number of columns in
each clause. Some of the operability-related hazards of input were:

• No Hadoop job started as we input the query to initiate the job. The pos-
sible reason could be the absence of Hadoop framework on the system, or
another job was in progress, or Hadoop not configured correctly or out of
memory or system resources.

• Wrong input could also lead to an operational hazard. The possible cause
could be the incorrect syntax of Hive query.

Dataset

A Hadoop job always required some dataset to process. We can use any dataset
of our choice to run Hadoop job and monitor system performance and resource
utilization. Using Hive required a structured dataset to be uploaded into the
HDFS. The dataset was stored in the form of table and we could use Hive query
to start a MapReduce job. Common hazards affecting validity of our experi-
ments were:

• If the dataset was absent the Hadoop job would not be executed. Possible
reason could be that the dataset file was not uploaded into the HDFS.
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• Using an incorrect dataset was another important hazard. It would result
in termination of Hadoop job every time the input was given. Possible
causes could be the use of a wrong dataset file or referring to wrong Hive
table while designing the query.

• Operability of Hadoop job could also be compromised when a part of
dataset is missing. Possible causes were that the raw data included in the
system might included unwanted characters or some missing characters.

Configuration parameters

A Hadoop job was controlled and affected by configuration parameters. These
configuration parameters were defined before the beginning of a job. If not, the
Hadoop framework assumed the default values of these parameters. An impor-
tant hazard related to configuration parameters was that wrong value selection
can affect the overall job execution. Possible cause could be the wrong scale of
value for an important parameters in XML files such as assigning 500 to replica-
tion factor could increase the size of the originally stored data in HDFS by 500
times, or assigning 3 to block size will result in very small blocks of data and
thus affecting overall performance and resource utilization of cluster.

3.5 Summary

We applied HAZOP to identify many hazards in our study. We also highlighted
the possible actions one could take when encountered with such operational
problems. It was recommended to conduct such analysis before the design and
implementation of actual experiments as it ensured the internal validity of the
experiments. There were numerous efforts in the literature that showed the
importance of such analysis for any process or setup. But currently, we haven’t
came across any such analysis for the design of Hadoop cluster.
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Chapter 4

Characterization of Hadoop
performance and resource utilization
by parameter tuning and job input

4.1 Introduction

The previous chapter used risk and hazard analysis of our experimental design
to help us improve it by identifying hazards to mitigate. This chapter investi-
gates the empirical relationship between different Hadoop parameters, network
and system performance measures. The parameters taken into account were
block size, replication factor and number of mappers. The reason to choose
these parameters was that they are the most commonly discussed configura-
tion parameters in the literature. The type of job can also impact the perfor-
mance (overall execution time) and resource utilization of cluster and it is an
area which is wide open to explore. Hence, we have considered the query struc-
ture while estimating the cluster performance and utilization behavior. In order
to measure the impact of each parameter, we analyzed packets in, packets out,
CPU usage, disk usage, memory usage and execution time of different job.

75
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4.1.1 Chapter goals

The goals of this chapter are to investigate the following research questions.

1. What quantification can be done for configuration parameters affecting
Hadoop job performance and resource utilization?

2. What impact the change in query has on utilization of different re-
sources such as CPU usage, disk usage, memory usage, network usage
and execution time?

4.1.2 Chapter organization

Section 4.3 presents our design of our experiments including the dataset and ex-
perimental setup, Section 4.4 discusses the results of our experiments in order
to characterize Hadoop performance and resource utilization. Section 4.4.1 dis-
cuss the results of the experimental to highlight the impact of changing block
size on different performance measures. Section 4.4.2 presents the results to
show impact of changing replication factor. Section 4.4.3 highlights the impact
of changing number of mappers on different performance measures. Section
4.4.4 shows the importance of query structure and its impact on resource uti-
lization and execution time of Hadoop jobs. Section 4.5 shows the summary of
this section.

4.2 Methodology

This section describes the method for characterization of Hadoop performance
and resource utilization by tuning parameters. The method consisted of three
phases which are described below:

4.2.1 Phase 1: Hadoop job specification

Phase 1.1: We selected the Hadoop parameters to vary, such as like replication,
block size, and number of mappers, and decided the values of these parameters
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to be used in our experiments. We designed five set of experiments to further
our investigation.

1. Experiment 1: involved using four different block sizes i.e. 128MB, 256MB,
512MB and 1024MB. The number of replicas were two and number of map-
pers were five.

2. Experiment 2: involved using two different number of replicas i.e. two
and three. The block size for both experimental runs was kept constant to
256MB and number of mappers were five.

3. Experiment 3: involved the running experiments for four different number
of mappers i.e. 5, 10,15 and 20. The block size was kept constant to 128MB
and number of replicas to two for all experimental runs.

4. Experiment 4: involved running the experiments to see the impact of the
number of columns in ORDER BY clause of Hive query. Three queries
were designed with three, two, and one number of column. Other configu-
ration parameters were kept constant. The block size was 128MB, number
of replicas was two and number of mappers was five for all experimental
runs.

5. Experiment 5: involved running the experiments for different the number
of aggregate functions in SELECT clause and the number of columns in
GROUP BY clause of Hive query. Three queries were designed with one,
two, and three number of aggregate functions. Other configuration param-
eters were kept constant. The block size was 128MB, number of replicas
was two and number of mappers was five for all experimental runs.

Phase 1.2: This phase involved the selection of dataset to run Hadoop job. All
experimental runs used Berkeley Earth Surface Temperature dataset.

Phase 1.3: The next step is specifying the query to decide the structure of query
like how many columns to select and which clauses to be included. We used
Hive-based query to run our experiments. Our query have varying number of
clauses in Select clause, Order By clause and Group By clause as shown
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below. For experiment 1-3 query 1 was used to execute jobs, for experiment 4
queries 1-3 were used while for experiment 5 queries 4-6 were executed. The
queries are described below:

Query 1: SELECT * FROM table_name ORDER BY col_1,col_2,col_3;

Query 2: SELECT * FROM table_name ORDER BY col,col_2;

Query 3: SELECT * FROM table_name ORDER BY col_1;

Query 4: SELECT aggregate_function_1 FROM table_name

GROUP BY column_1,column_2;

Query 5: SELECT aggregate_function_1,aggregate_function_2

FROM table_name GROUP BY column_1,column_2;

Query 6: SELECT aggregate_function_1,aggregate_function_2,

aggregate_function_3 FROM table_name GROUP BY column_1;

Phase 1.4: Lastly, we decided upon the performance metric to measure like
packets in, packets out, CPU usage, disk usage, memory usage and execution
time, and number of iterations to run for each combination of the parameter set-
tings. Each experiment was repeated 30 times.

4.2.2 Phase 2: Data collection

This phase involved automatic collection of performance metric measures dur-
ing each run of Hadoop job. The Master node was connected to slave nodes via
an OpenFlow switch. The associated Software-defined Networking (SDN) con-
trollers were Faucet (operating as a learning switch) and Gauge (Monitoring
port statistics). InfluxDB is a database optimized for storing large number of
small measurements such as packets in and Grafana is a monitoring dashboard
used to display InfluxDB measures.

During each run of the experiment, we collected packets in, packets out,
CPU usage, disk usage and memory usage with an interval of 10 seconds for
entire duration of Hadoop job. For packets in and packets out data, we used
InfluxDB to fetch data for ports connected to cluster nodes. For CPU usage,
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disk usage and memory usage data, we used python scripts to monitor these
system statistics at each of the node.

4.2.3 Phase 3: Analysis

We calculated the mean resource usage and execution time for each node of the
experimental setup. The boxplot analysis was used to get further insight into
the results.

4.3 Experimental design

This sections described the experiments run to characterise the impact of chang-
ing important configuration parameters. We discussed the implementation and
design of our experimental setup and Hadoop cluster in Section 4.3.2. We dis-
cussed the results of our experiments along with statistical significance of these
results in Section 4.4. The following section describe datasets used in proposed
method and experimental setup.

4.3.1 Datasets

The Berkeley Earth Surface Temperature Study combined 1.6 billion temper-
ature reports from 16 pre-existing archives. The dataset had six attributes
and almost 10 million records. The dataset is publicly available at https:
//data.opendatasoft.com/explore/dataset/.

4.3.2 Experimental setup

We built a four node cluster locally. Each node had Intel(R) Core(TM) i7-7700
CPU@3.6GHz,500GB disk space, 8GB RAM running Ubuntu 16.04 LTS. We con-
figured the cluster for Hadoop 2.9.0 and Hive 2.3.3 on Master node. We used
Hive-based query to run our experiments. During each run of experiment we
collected packets in, packets out, CPU usage percentage, disk usage percent-
age and memory usage with an interval of 10 second. Each experiment was

https://data.opendatasoft.com/explore/dataset/
https://data.opendatasoft.com/explore/dataset/
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repeated 30 times.
As shown in Figure 4.1, Master node was connected to slave nodes via an

Multi-node cluster

Nodes

Switch

Gauge

Fetch port statsController to switch

Faucet

Store statistics

InfluxDB

Get information

Grafana

Figure 4.1: Experimental design

OpenFlow switch. The associated SDN controllers are Faucet (operating as a
learning switch) and Gauge (Monitoring port statistics). Both Faucet and gauge
were the version 1.6.8 and installed from source [204]. InfluxDB is a database
optimized for storing large number of small measurements, Prometheus is a
tool allowing extraction of information about network state from Faucet and
Grafana is a monitoring dashboard used to display InfluxDB measures.

For statistical significance, we conducted two sample t-test. For each of the
experiments, we tested following null and alternate hypothesis with α = 0.05.

H0 = Means are equal
H1 = Means are not equal

4.4 Results and discussion

This section describes our results and discuss the results in details. Impact of
different Hadoop parameters on our performance measures has been analyzed,



4.4. RESULTS AND DISCUSSION 81

such as the impact of Block size, impact of replication factor and impact of input
data.

4.4.1 Impact of Block size

In this particular setup we analyzed the impact of changing HDFS block size
on network and system metrics. We used four different block sizes of 128MB,
256MB,512MB and 1024MB. The replication factor was 2 for all the experiments
and each experiment was repeated 30 times. Number of mappers and reducers
were set to default value, which were 5 and 1 respectively. The Hive-based
query was used to run experiment which was, Select * from table name order by
column 1, column 2, column 3;

Figure 4.2: Box plot and average packets in data for 30 runs for different block
sizes.

Figure 4.2, show the impact of increasing HDFS block size on packets in.
There was a slight increase in the overall average packets transferred when we
increased the block size from 128MB to 256MB. This increase in overall average
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continued as we increased the block size to 512MB. But as we further increased
the block size to 1024MB, the overall average dropped down. For individual
nodes, the Master node showed a smaller mean than the overall mean in all of
the experiments except for the block size 256MB, where it was higher than the
overall mean. Slave-1 consistently showed similar individual means as that of
overall mean across all experiments. Slave-2 showed similar behavior as that
of slave-1 except for 512MB where the individual node mean was much higher
as compared to the overall mean. Slave-3 showed higher individual mean than
the overall mean in all of the experiments.

Figure A.1, show the results from packets out. Block sizes 128MB and
256MB showed similar overall averages. There was a slight increase in over-
all mean for 512MB block size and then there was slight decrease for block size
1024MB. For individual nodes, Master node showed higher mean than overall
mean in all of the experiments. All of the slave nodes showed less than overall
mean in all of the experiments except slave 2 for 512MB.

Figure A.2, showed the CPU percentage usage for different block sizes.
Overall mean was similar for 128MB, 256MB and 512MB block sizes. It in-
creased for the block size 1024MB. Mean of individual nodes showed that the
Master node and slave-2 always performed higher CPU usage than other nodes
and the overall mean as well. Slave-1 and slave-3 always showed lower than
the overall mean in all of the experiments.

Disk percentage usage as shown in Figure A.3. As we increased block size
from 128MB to 256MB, there was a decrease in overall and Master node disk
usage. Disk usage gradually increased as we further increased the block size to
512MB AND 1024MB.

Virtual memory usage is shown in the Figure A.4. Memory usage showed
similar pattern as that of CPU usage for overall and individual node means.
Master node showed much higher memory usages as compared to other nodes.
Slave-2 also showed higher than overall average memory usage. Slaves 1 and 3
showed very low memory usage in all of the experiments.

Figure A.5, showed the impact of increasing block size on execution time
of the job for 30 runs of the experiments. As we doubled the block size from
128MB to 256MB, there was an increase in execution time as well. But as we
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further increased the block size to 512MB, the execution time lowered a bit and
then increased again for block size 1024MB.

Table 4.1: Statistical significance t-test of impact of increasing block size

Packets in 128MB 256MB 512MB
256MB =
512MB = =

1024MB = = =
Packets out

256MB =
512MB = =

1024MB = = =
CPU usage

256MB =
512MB - +

1024MB + - +
Disk usage

256MB -
512MB + +

1024MB + + +
Memory usage

256MB -
512MB - +

1024MB - - +
Execution time

256MB =
512MB = =

1024MB + = =

Summary We evaluated the impact of HDFS block size by considering net-
work and system metrics. Increasing block size from 128MB to 256MB, directly
impacted the overall execution time while inversely impacted all other system
and network parameters. Increasing the block size to 256Mb resulted in increase
of packets in, packets out and disk usage and decrease in CPU usage, memory
usage and execution time. Taking the block size further to 1024MB directly im-
pacted packets in, packets out, CPU usage, disk usage and execution time.
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When we analyzed change in block size from 256MB to 512MB, it positively
impacted packets in, packets out and disk usage only. While the change from
256MB to 1024MB, packets in, packets out, CPU, disk, memory usages and ex-
ecution time were directly impacted. For the change from 512MB to 1024MB,
there was an increase in all system metrics along with execution time. Table
4.1 showed the results from student t-test, the change in CPU usage, disk us-
age and memory usage were significant as compared to default 128MB except
128MB to 256MB. For execution time, only the change from 128MB to 1024MB
was significant.

4.4.2 Impact of replication factor

In this particular setup we analyzed the impact of changing HDFS replication
factor on packet in, packet out, CPU usage percentage, disk usage percentage,
virtual memory usage and execution time. We used two different replications
factors i.e., 2 and 3. The block size was kept 256MB for both set the experiments
and each experiment was repeated 30 times. Number of mappers and reducers
were set to default value, which were 5 and 1 respectively. The Hive-based
query was used to run experiment which was, Select * from table name order by
column 1, column 2, column 3;

Figure A.6, showed the impact of increasing replication factor from 2 to 3.
There was a definite increase in overall mean packets transfer for replication
factor 3. Individual nodes showed mean close to the overall mean. For factor-2,
Master node and slave-3 has showed higher than overall mean while for factor-3
only slave-1 showed much higher mean packets transfer as that of other nodes.

Figure A.7 showed the packets out data of the two experiments. Unlike
packets in, packets out of factor-3 showed much higher overall mean as com-
pared to factor-2. Master node in both of the experiments showed much higher
mean that overall mean. Salve-1 showed ±500 mean as compared to overall
mean in both of the experiments. Slave-2 showed similar or lower mean pack-
ets transfer than overall while slave-3 showed lower mean in both of the exper-
iments.

Both CPU usage and virtual memory usages are shown in the Figure A.8
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and Figure A.9 respectively. Both of these showed similar patterns. Master and
slave-2 nodes had higher than overall means in both of the experiments. Slave-
1 and slave-3 had much lower mean usage as compared to overall means. For
CPU usage , overall means were similar while for memory usage the there was
a slight decrease for factor-3.

Figure A.10, showed the disk percentage usage for both of the experiments.
There was a decease in overall mean for factor-3. The master node also showed
this pattern and showed a great deal of decrease in disk usage for factor-3. All
of the slave nodes performed much less than overall mean disk usage.

The execution times of the two experiments were shown in the Figure 4.3.
AS we increased the replication factor from 2 to 3, there was a prominent de-
crease in overall time.

Figure 4.3: Box plot and average execution for 30 runs for different replication
factors

Summary In this particular experiment, we observed the impact of chang-
ing HDFS replication factor on packets in, packets out, CPU usage, disk usage,
memory usage and execution time. The statistical significance t-test as shown
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Table 4.2: Statistical significance of the impact of replication factor using t-test

Packets in Packets out CPU usage Disk usage Memory usage Execution time
Factor-2 Factor-2 Factor-2 Factor-2 Factor-2 Factor-2

Factor-3 + + + - - -

in Table 4.2, the change was significant for all of the metrics. The change in
replication factor increased the packets in, packets out and CPU usage, while
decreased the disk usage, memory usage and execution time.

4.4.3 Impact of mappers

In this particular experiment, we analyzed the impact of changing number of
mappers in HDFS on packet in, packet out, CPU usage percentage, disk usage
percentage, virtual memory usage and execution time. We used four different
number of map tasks i.e., 5, 10, 15, 20 mappers. The block size was kept 256MB
and replication factor was 2 for all experiments and each experiment was re-
peated 30 times. Number of reducers were set to default value. The Hive-based
query was used to run experiment which was, Select * from table name order by
column 1, column 2, column 3;

Figure A.11, showed the impact of increasing the number of mappers on
packets in. For default settings, 5-mappers were utilized in each run. The over-
all mean of the average number of packets transferred for the default number
of mappers was the least among all set of experiments. This overall mean in-
creased as we doubled the number of mappers to 10 but then slightly lowered as
the increase became three to four fold of the original number. Here, the job run
and dataset used were held constant between all experimental runs, so there
was very little chance of any other factor contributing towards this variability.

When we analyze individual node packet in data across each of the experi-
ments, we found that Master node received highest amount of data for default
number of mappers which gradually decreased as the number of mappers in-
creased. Also, the master node mean was close to the overall average for the
10,15 and 20-mappers. Slave-1 seemed to receive lower number of packets that
overall in all of the experiments except when 15-mappers used, where it was
slightly above the overall average. Slave-2 and slave-3 were variable in all of the
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experiments. For default, both received less average data than overall average.
But increasing the number of mappers resulted in a higher average packet in
transferred than overall mean for either of them.

Figure A.12, showed similar patterns for the overall mean of average across
all experiments. The default number of mappers was associated with the lowest
number of data transferred out of each data node. The overall mean of average
packets out data increased as the number of mappers increased from five to ten
and then it slightly decreased as the number of mappers increased to 15 and 20.
The master node showed the highest number of average packets out in all of the
experiments and it was consistently higher than the overall average as well. The
reason for this difference might be the presence of YARN on Master node which
allocated and scheduled the map tasks on slave nodes. We observed that slave-1
and slave-3 have transferred less data than the overall average packets out data
in all of the experiments. Slave-2 consistently showed greater or equal mean
than overall mean in all experiments except in case of 15 mappers. The reason
for that could be the fact that in this particular experiment slave-1 and slave-3
showed much higher packets out than in other experiments.

The Impact of increasing the number of mappers on CPU usage percentage
is shown in Figure A.13. The overall mean of each experiment increased slightly
with the increase of number of mappers. The master node showed the highest
mean CPU usage in all the experiment and it was almost double to that of over-
all mean. Another important factor was the overall lower mean CPU usage of
slave nodes across all experiments except slave-2 which showed the mean CPU
usage higher or equal than that of overall average CPU percentage usage.

The disk usage percentage is shown in Figure A.14. The results showed
higher disk usage percentage on Master node because we are using Hive-based
query which run on master node. Increasing number of mappers resulted in
gradual increase in mean disk usage percentage of each of the nodes and also
overall mean of experiments.

Figure A.15, showed the impact of increasing number of mappers on virtual
memory usage. For individual nodes, the master node showed highest mean
virtual memory usage in all of the experiments. Slave-2 showed almost the
similar mean memory usage as that of overall average memory usage. Slave-1
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and slave-3 showed the lowest mean memory usage in all of the experimental
runs.

Figure 4.4, showed the overall average execution time for each of the exper-
iment. Increasing number of mappers resulted in decreasing the mean execu-
tion time. Also less number of mappers resulted in mean execution times with
greater standard deviations. The experiment with 20-mappers showed more
consistent and least standard deviation among mean execution times.

Figure 4.4: Box plot and average execution time for 30 runs for different number
of mappers

Summary This experiment entailed the impact of explicitly defining number
of mappers in our experiment and observe the change on our metrics. For
all comparisons across the experiments involving 5, 10, 15 and 20 number of
mappers, there was a gradual decrease in memory usage and execution time
and gradual increase in CPU usage and disk usage.Packets in and packets out
showed an increase first and then a slight decrease in case of 15 mappers, fol-
lowed by increase again for 20 mappers.

Statistical t-test were used to analyze the significance of the changes to CPU
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Table 4.3: Statistical significance of the results for the impact of number of map-
pers using t-test

Packets in 5-mappers 10-mappers 15-mappers
10-mappers +
15-mappers + =
20-mappers + = =
Packets out
10-mappers +
15-mappers + =
20-mappers + = =
CPU usage
10-mappers +
15-mappers + +
20-mappers + + +
Disk usage
10-mappers +
15-mappers + +
20-mappers + + -
Memory usage
10-mappers -
15-mappers - -
20-mappers - - +
Execution time
10-mappers -
15-mappers - -
20-mappers - - -

usage, disk usage, memory usage, network usage and execution time as shown
in Table 4.3. We found that changes in packets in and packets out when com-
paring 5 mappers with all other experimental runs, were significant. While for
CPU usage, disk usage and memory usage changing the number of mappers
always resulted in significant impact.

4.4.4 Impact of Query

In our experimental setup, the Hadoop job is executed when we input a Hive
query. Hive query has SQL-like syntax and we can use SELECT statements to
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query the data. The queries could have different number of columns on SELECT
clause, ORDER BY clause or GROUP BY clause. Therefore, due to the differ-
ence in syntax of query, the Hadoop jobs executed and affected the resource uti-
lization and execution times differently. This section showed our experimental
runs to highlight the impact of query on performance and resource utilization.
At this stage, we only considered SELECT queries with ORDER BY clause and
GROUP BY clause.

Number of columns in order by clause

In this particular experiment setup, we analyzed the impact of changing query
structure on packet in, packet out, CPU usage percentage, disk usage percent-
age, virtual memory usage and execution time. The block size was kept as
256MB and the replication factor was set to 2 for all experiments and each ex-
periment was repeated 30 times. The number of mappers and reducers were
set to five. The Hive-based query was used to run each experiment. Three dif-
ferent queries that vary the number of columns in the ORDER BY clause were
designed to see the impact of this parameter on our selected measures. The
queries are:

1. Select * from table name order by column 1, column 2, column 3;

2. Select * from table name order by column 1, column 2;

3. Select * from table name order by column 1;

Figure A.16, showed the impact of using different number of parameters in
query on packets in data. The results showed gradual increase in average pack-
ets transferred from query-1 to query-3. For individual nodes, the master node
showed gradual decrease in data transfer into the system as we reduce the
number of columns in ORDER BY clause from three to one. In all of the ex-
periments, the master node showed higher mean than overall average except
query-3 which had ordering by one column. For query-1, all of the slave nodes
showed lower mean packets in than overall average. For query-2, the all slaves
except slave-3 showed lower mean than overall mean. For query-3, all slave
nodes except slave-2 demonstrated higher mean than overall mean.
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Packets out results are shown in the Figure A.17. The overall average pack-
ets transferred out showed the same pattern as that of the packet in. Master
node showed greater mean than overall average in all of the experiments and
there was gradual increase in individual mean from query-1 to query-3. Slave-1
and slave-3 also showed a gradual increase in mean from queries 1 to 3. slave-2
showed lower mean than overall mean in all of the experiments except query-1.

Figure 4.5 showed the CPU usage percentage for the impact of change of
query structure. There was a slight decrease in overall average CPU usage per-
centage from query 1 to 3. As most of the processing and data storage takes
place at Master node, it showed similar pattern as that of overall mean. Slave-1
and slave-3 has showed much lower CPU usages as compared to overall CPU
usage and other nodes as well. Slave-2 has performed very close to overall
mean in all of the experiments.
Disk usage percentage results were presented in Figure A.18. As we decreased

Figure 4.5: Box plot and average CPU usage percentage data for 30 runs for
different queries

the number of order by columns from 1 to 3, there was a gradual increase in
overall and Master node mean disk usage percentages. All of the slave nodes,
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Table 4.4: Statistical significance of the number of columns in order by using
t-test

Packets in Query-1 Query-2
Query-2 +
Query-3 + =

Packets out
Query-2 +
Query-3 + =

CPU usage
Query-2 -
Query-3 - =

Disk usage
Query-2 +
Query-3 + +

Memory usage
Query-2 -
Query-3 - =

Execution Time
Query-2 =
Query-3 = =

showed consistently low disk usages as compared to the overall mean disk us-
age.

Virtual memory usage were presented in the Figure A.19. The impact of
changing the query structure showed that there is gradual and slight decrease
in overall mean and mean memory usage of individual nodes. Slave-2 showed
memory usage similar to that of the overall mean for all of the experiments.

Figure A.20, showed the execution time for all three set of experiments of
query change. As we decreased the number of order by columns there was a
decrease in execution time. The possible reason for this could be the decrease
in complexity of query in ORDER BY clause. The reason that query-3 showed
much lower execution times was that it has only one parameter in ORDER BY

clause as compared to query-1 and query-2 which has 3 and 2 parameters in the
clause.
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Summary The results showed that reduction in number of columns order by
columns, gradually increased the packets in, packets out, disk usage and CPU
usage, while gradually decreased the memory usage and execution time. We
used a statistical t-test (Table 4.4) to determine the significance of changes in
system and network performance measures. We found significant differences in
mean when comparing query-1 to other queries except execution time. But if we
compare the query-2 and query-3, only the change in disk usage was significant.

Number of aggregate functions

In this particular experiment, we analyzed the impact of changing query struc-
ture on packet in, packet out, CPU usage percentage, disk usage percentage,
virtual memory usage and execution time. The block size was kept 256MB and
replication factor was 2 for all experiments and each experiment was repeated
30 times. Number of mappers and reducers were set to default value. The Hive-
based query was used to run experiment. The three different queries used vary
in the number of columns in GROUP BY clause and designed to explore the im-
pact on our selected metrics. In addition to GROUP BY clause, Query-1 had one
aggregate function, query-2 had two aggregate functions and query 3 has more
than 2 aggregate functions to see the impact of query structure.

1. Select function 1(column 1) from table name group by column 1, column 2;

2. Select function 1(column 1),function 1(column 2) from table name group by
column 1, column 2;

3. Select function 1(column 1),function 2(column 2), function 3(column 1) from
table name group by column 1, column 2;

Figure A.21 showed the impact number of the aggregate functions in query
on packets in data. The overall mean packets transfer decreased as we increased
the number of aggregate functions from 1 to 3. Master node showed the highest
mean activity in all of the experiments and it was higher than overall mean as
well. All the individual slave nodes showed smaller means than the overall
mean except slave-2 which showed higher than the overall mean for query-1.
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Figure A.22 showed the results from packets out data. For overall average,
the results showed similar pattern as that of packets in. For individual node’s
mean, the master node showed the lowest mean packets transferred out data in
all of the experiments. All of the slave nodes showed higher than the overall
mean packets out transferred for all queries. Slave-1 showed the highest activ-
ity in query-1 and query-3.

Figure 4.6: Box plot and average CPU usage percentage data for 30 runs for
different aggregate functions in queries

The CPU usage percentage results were shown in Figure 4.6. The overall
mean in all of the experiments remained similar approximately. The master
node showed the highest CPU usage in all of the cases. The mean CPU usage
of slave nodes was always less than the overall mean.

Disk usage percentages were shown in Figure A.23. Both overall and in-
dividual mean have similar values across all of the experiments. Disk usage
utilization of the Master node was the highest and most consistent across all of
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Table 4.5: Statistical significance of the number of aggregate functions by using
t-test

Packets in Query-1 Query-2
Query-2 -
Query-3 - =

Packets out
Query-2 -
Query-3 - =

CPU usage
Query-2 -
Query-3 - =

Disk usage
Query-2 =
Query-3 - -

Memory usage
Query-2 +
Query-3 = -

Execution Time
Query-2 +
Query-3 = -

the experiments while the disk usages of slave nodes remained constant across
each of the experiments. Figure A.24, showed the impact of varying the num-
ber of aggregate functions on virtual memory usage. For all of the queries, the
Master node showed maximum memory usage with query-2 being the highest
among all. Query-2, which had two aggregate functions, showed greater over-
all average as compared to query-1 and query-3. Slaves 1 and 3 showed the
much lower mean memory usage as compared to the other nodes. Slave-2 had
mean memory usage close to the overall mean.

Figure 4.7, showed the impact of aggregate functions on execution times.
Query-1 with one aggregate function had lesser execution time as compared
to query-2. For Query-3, which had more than five aggregate functions, the
execution time dropped as compared to all other experiments.

Summary The results showed that increasing the number of aggregate func-
tions in the query has slightly decreased packets in, packets out and CPU usage
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Figure 4.7: Box plot and average execution time for 30 runs for different aggre-
gate functions in queries

from query 1 to query-3. As compared to all previous experiments, disk usage
remained constantly high among all experiments except query-3. Virtual mem-
ory and execution time has slightly increased for query-2 and then dropped
down again for query-3.

The statistical t-test showed that all changes from query-1 to query-2 are
significant except disk usage as shown in Table 4.5. For query-1 to query-3,
packets in, packets out CPU and disk usages were significant. While changes
in execution time and CPU usage were significant when comparing query-1
to query-3, Another prominent results was the significant results for memory
usage, disk usage and execution time when comparing query-2 with query-3
which showed that even a slightest change in query structure such as adding
an aggregate function had impacted on system performance.
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4.5 Chapter Summary

If we summarize the results reported in this chapter, there are many conclusions
drawn from the current set of experiments which are as follows:

• Changing Hadoop configuration parameters like Block size, replication and
number of mappers had an impact on system resources and overall execu-
tion time of job. Choosing suitable value of a parameter was important
but we should always consider the inter-related affect between different
parameters.

• Query the same dataset differently showed that it also impact the system
resource utilization and execution time. So when we optimize a Hadoop
job for a particular system or cluster of computers, we must consider not
only the configuration parameters for HDFS, MapReduce but also how we
are querying the data.

• The parameters were configured manually, one at a time. But to see the
impact of these parameters on the system performance measures it was
impossible to run experiments for all possible combinations of parame-
ters by updating the configuration files manually. so, there should be an
automatic procedure to study all possible combinations of parameters and
query structures.

• As it was impossible to manually find combined effect of different fea-
tures(configuration parameters and query structure), we have to adopt
some statistical or mathematical modelling process like machine learning
to find patterns and correlations between the parameter space and query
structure.
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Chapter 5

Modelling and prediction of
resource utilization of Hadoop
cluster using Machine Learning

5.1 Introduction

The purpose of this chapter is to investigate the use of machine learning ap-
proach to model and predict the resource utilization and execution time of
Hadoop jobs. As we discussed in Chapter 4, resource utilization and execu-
tion time of Hadoop jobs are affected by different attributes such as configura-
tion parameters and structure of query. These confounding attributes can take
a range of values. So, in order to estimate or predict either qualitatively or
quantitatively the correct level of resource utilization and execution time, it was
important to understand the how different combinations of these Hadoop job
attributes can affect overall performance and resources. It was very difficult
to run such a large number of jobs with different combinations of Hadoop job
attributes and then interpret the data manually. To manually extract patterns
from the data and give a model that can generalize for an unseen scenario is
a tedious and impossible task in such a a situation. In order to automate the
process of data extraction and modeling the complex behavior of different at-
tributes of Hadoop job machine learning can be used. Machine learning (ML)

99
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is a collection of statistical techniques that automate the process of data-driven
modeling. This enabled us to program systematic discovery of significant pat-
terns in data [205].

5.1.1 Chapter goals

The objective of this chapter is to investigate the following research questions.

1. Whether machine learning approaches can be used to model the
resource utilization of our cluster for different Hadoop configura-
tions?and How?

2. Can we get a visualizable and easy-to-interpret machine learning-based
model to predict resource utilization and execution time? and How?

5.1.2 Chapter organization

Section 5.2 presents the brief introduction of commonly used ML approaches
such as k-nearest neighbors (KNN), Naive bayes (NB), Random Forests (RF),
Decision trees (DTs) and Support vector machine (SVM). Section 5.3 presents the
details of our proposed machine learning-based method. Section 5.4 presents
the experiment design including the experimental setup, dataset and prelimi-
nary experiments. Section 5.5 discusses the results from different experiments.
Section 5.6 presents the overall summary of the chapter.

5.2 Machine learning approaches

This section gives a brief overview of different machine learning approaches we
used in our initial experiments. These algorithms include decision tree, random
forest, support vector machines, naive bayes and k-nearest neighbors method.

k-nearest neighbors (KNN) is an algorithm that can be used when all the
values of attributes are continuous. It can also be modified to deal with categor-
ical attributes. The method can be used to predict the class lable of unseen in-
stances using the closest instance or instances [206]. Random Forests (RF) is an
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ensemble method of classification where multiple decision trees are being gen-
erated [207]. The term random refers to the building of multiple decision trees
from each random sample of data and then selecting best trees. Support vector
machine (SVM) is a classification algorithm and model. It is computationally
expensive and mathematically complex [208]. For a given labeled training data,
the algorithm categorizes the new examples on the basis of an optimal hyper-
plane [209].

Naive bayes (NB) is a classification algorithm which assumes that for a prob-
ability of a given classification the effect of the value of one attribute is indepen-
dent of the values of the other attributes [206]. Decision trees (DTs) are the class
of machine learning (ML) algorithms used for supervised regression and classi-
fication tasks. It is one of the most commonly used ML technique [119,210,211].

Every decision tree is composed of three types of nodes: root node, intermedi-
ate nodes and leaf nodes. An input variable is associated with each node. More
than one edge is coming out of each node that represents the possible values
that node can take. A leaf node always represents the value based on the values
given from the input variable in the path running from root node to leaf node.
DTs always starts at root node and end on a leaf node. The tree does not con-
verge at any point, it always splits its way out as the nodes are processed [212].

Some of the advantages of the decision tree algorithm are:

• It gives interpretable model representations like like some binary tree
graph [119].

• It can handle numerical, categorical and binary variables, so no data pre-
processing needed in most cases [210].

• It performs well with reasonable amount of computing, so they show scal-
able computation [211].

• It has the ability to deal with irrelevant inputs [212].

• They are quite tolerant when it comes to dealing with missing value [213].
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Figure 5.1: Different phases of our method.

5.3 Methodology

Our method for modeling and predicting resource utilization of a Hadoop clus-
ter is described in this section. The method consist of three phases and each
phase was divided into sub-phases as shown in Figure 5.1.

5.3.1 Phase 1: specification of Hadoop jobs

Phase 1.1: This phase involved the selection of dataset to run Hadoop job. The
experiment included running Hive-Hadoop jobs using six different query struc-
tures on the Berkeley Earth Surface Temperature dataset.

Phase 1.2:The next step was specifying the query to decide the structure of
query like how many columns to select and which clauses to be included. We
used Hive-based query to run our experiments. Hive is a data warehouse soft-
ware that facilitates SQL-based querying of large datasets residing in HDFS
storage [214]. Our query have varying number of clauses in Select clause,
Order By clause and Group By clause as shown below.

SELECT * FROM table_name ORDER BY col_1,col_2,col_3;

SELECT * FROM table_name ORDER BY col,col_2;

SELECT * FROM table_name ORDER BY col_1;

SELECT aggregate_function_1 FROM table_name
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GROUP BY column_1,column_2;

SELECT aggregate_function_1,aggregate_function_2

FROM table_name GROUP BY column_1,column_2;

SELECT aggregate_function_1,aggregate_function_2, aggregate_function_3

FROM table_name GROUP BY column_1;

Phase 1.3: Next, we selected the Hadoop parameters to vary, such as like repli-
cation, block size, and number of mappers, and decided the values of these
parameters to be used in our experiments.

Phase 1.4: Lastly, we decided upon the performance metric to measure like net-
work traffic, CPU usage, disk usage, memory usage and execution time, and
number of iterations to run for each combination of the parameter settings. Each
experiment was repeated 30 times.

5.3.2 Phase 2: data collection and processing

Phase 2.1: This phase involved automatic collection of performance measures
during each run of Hadoop job. The Master node was connected to slave nodes
via an OpenFlow switch. The associated Software-defined Networking (SDN)
controllers were Faucet (operating as a learning switch) and Gauge (Monitoring
port statistics). InfluxDB is a database optimized for storing large number of
small measurements such as packets in and Grafana is a monitoring dashboard
used to display InfluxDB measures.

During each run of the experiment, we collected packets in, packets out,
CPU usage, disk usage and memory usage with an interval of 10 seconds for
entire duration of Hadoop job.
For packets in and packets out data, we used InfluxDB to fetch data for ports
connected to cluster nodes. For CPU usage, disk usage and memory usage data,
we used python scripts to monitor these system statistics at each of the node.
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Phase 2.2: Here, we processed the collected data. We calculated the mean re-
source usage for each run of the experiment,e.g., memory usage and execution
time. We created datasets, one for each of our performance measures, with the
following feature: block size, number of mappers, number of replicas, percent-
age of columns selected, number of columns in order by clause, number of ag-
gregate functions and number of columns in group by clause. While including
structure of query into our feature space, we take into account the percentage of
columns selected rather than actual number of columns. This was because dif-
ferent datasets have different numbers of columns and stating only the number
of columns does not tell us the complexity of the dataset itself.

Column percentage =
No. of columns selected

Total number of columns
(5.1)

Phase 2.3: Then we performed median-based discretization of the data. Dis-
cretization is a process of converting continuous attribute values into a finite
set of intervals with minimal loss of information [215]. The median measure
was used instead of the mean because a single very high or very low value can
disturb the mid point of the data. If a value was lower than median resource
usage, the observation was labeled as low usage, otherwise high usage.

5.3.3 Phase 3: ML-based modeling and prediction

The third phase was the usage of machine learning to model the dataset created
in the previous phase. The model was built by running six different queries
over the earth surface temperature dataset. We used a decision tree [216] (J48)
algorithm from WEKA [217] and performed 10-fold cross-validation. We chose
to use a DTs because of the simplicity of the model itself and because it allowed
us to automate the process of discovering important relationships between dif-
ferent features of Hadoop jobs. DTs also had another advantage, decision trees
built interpretable models which can handle complex interactions, such as the
relationship between various parameters and query structures. For each of our
performance measures, one tree was generated. We extracted decision rules
from our decision trees for each performance measure. Each rule was extracted
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by traversing the tree from leaves to root node. For example, in Figure 5.2, if we
traverse back from leaf nodes indicating high usage just after number of repli-
cas, the rule will be CPU usage was high if the percentage of columns selected
> 0.5, number of mappers > 15 and replica > 2. Each leaf node had two num-
bers associated with it, for example, Low (2160.0/1.0). The first number 2160.0
represent the number of observations used for training end up at this path and
the second number 1.0 represent the number of observations incorrectly classi-
fied, i.e., full under the other class.

5.4 Experiment Design

This section describes our experimental setup and datasets used in our ex-
periments. Figure5.3 shows the experimental design of our system. When a
job was submitted to the cluster, all the communication took place through the
switch. As the switch had Faucet (OpenFlow controller) [204] and we could
monitor the flow of traffic passing through different ports of the switch. Gauge
was used to pull statistics from switch and store them in InfluxDB at a definite
interval. From InfluxDB [218] we visualized the packets in and packets out data
by using a visualization dashboard named Grafana [219].

5.4.1 Experimental setup

A cluster comprising four nodes was built to run the experiments in this study.
The cluster was only used for our experiments, there was no concurrent use
of the cluster. Each node had Intel(R) Core(TM) i7-7700 CPU@3.6GHz, 500GB
disk space, 8GB RAM running Ubuntu 16.04 LTS. We configured the cluster for
Hadoop version 2.9.0 and Hive version 2.3.3 on the Master node. Both Faucet
and Gauge were the version 1.6.8 and installed from source [204].

5.4.2 Dataset

The Berkeley Earth Surface Temperature Study combined 1.6 billion tempera-
ture reports from 16 pre-existing archives. The dataset had six attributes and
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Figure 5.2: Decision tree for CPU usage.

almost 10 million records. The size of the file was 650 MB 1.

5.4.3 Preliminary experiment

This section gave the overview of the preliminary experiment that we setup
to understand how we can apply machine learning approaches over existing

1available at https://data.opendatasoft.com/explore/dataset/

https://data.opendatasoft.com/explore/dataset/
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Figure 5.3: Experimental Setup.

dataset. The dataset here was the performance measure that was recorded in
previous experiment. The details of experimental setup is given in Table 5.1.

In our experimental method, we kept decision tree as baseline method.
The classification accuracies of other methods were compared to our baseline
method to see whether the results are significantly different or not.

Table 5.1: Experimental settings for the classification of different Hadoop block
sizes.

Input:
Block Size 128, 256, 512, 1024
Replication 2
Number of mappers 5
Query Q2
Output Packets in
Experiments repetition 30
Task Classification
Algorithms Naive Bayes, KNN, SVM, DT,Random Forest
Method 10-fold cross Validation
Measurement Accuracy
Statistical test Two-tailed T-TEST

5.5 Results and discussions

This section present and describe the results from our experiments. Apart from
using decision tree models we have used descriptive statistics such as mean
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and boxplot to get further insight into the results. The feature appearing at the
root node is the most important feature in the node as it appeared in all of the
decision rules and correspond to the best predictor.

We built boxplots to analyze the underlying pattern. Apart from showing
different elements of boxplots we also plotted mean at different levels of the
plot. Figure 5.4 shows the meaning of different elements of the Figure . Mean
have been calculated on each level to distinguish the relationship between each
scenario, block of settings and overall mean.

5.5.1 Preliminary results

This section provides the results of the preliminary experiment as outlined in
Section 5.4.3. As we can see in our results that both decision tree and random
forest method showed very good results. The advantages of decision trees out-
lined in Section 5.2 we decided to use it in further experiments to model and
predict the resource utilization of Hadoop cluster which is part of our proposed
methodology outlined in Section 5.3.

Table 5.2: Classification of Hadoop Block size using machine learning algo-
rithms

Dataset Decision Tree Naive Bayes SVM KNN Random Forest
CPU usage 100±0.0 97.42±4.38 97.5±3.84 95.67 ±5.86+ 99.83 ±1.17
Disk usage 100±0.0 100±0.0 100±0.0 100 ±0.0 100 ±0.0
Packets in 98.92±3.48 94.17±6.86+ 95 ±5.68+ 97.58±4.15 98.33 ±3.55
Packets out 93.67±7.22 67.75±15.38+ 73.17±13.59+ 95.08 ±5.93 96.92±5.12
Memory usage 99.75±2.50 88.33 ±9.33+ 89.42 ±8.45+ 96.75 ±5.54 99.75 ±1.86

5.5.2 CPU usage

For CPU usage, the most important feature contributing towards the model was
the percentage of columns selected. number of mappers (M) and Replication factor
or number of replica(R) in order by clause were the two other important feature
as shown in the Figure 5.2.
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Figure 5.4: Description of different elements of the Figure .

Figure 5.5 showed the detailed analysis of impact of different Hadoop pa-
rameter configurations on CPU usage. The red ref line in the Figure showed the
overall mean and the small purple lines showed the mean of a certain block of
features. The results showed that number of mappers followed a certain pattern
along with number of replicas and block size. As the number of mappers was
small, the replica mean was smaller than the overall mean of all experiments.



110 CHAPTER 5. MACHINE LEARNING-BASED MODELLING

The local mean gradually increased as the number of mappers increased from
5 to 20. The number of replica CPU usage mean became greater than the over-
all mean when the number of mappers becomes greater than 10. There was a
small variation between the local means for each of the replicas. This was also
demonstrated in our decision tree at level two, where the tree predicted that
when the number of mappers will be greater than 15 and number of replica is
greater than 2, the CPU usage will be high.

Figure 5.5: Boxplot of different values of block size, number of replica and num-
ber of mappers for CPU usage.

Our decision tree results also showed the importance of percentage of
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columns selected as the root node of the tree and it also predicted that if it was
less than 50% the CPU usage will be high. Figure B.9 showed the impact of
different elements of query structure over CPU usage. The Figure showed that
percentage of columns selected (N) had a very distinguishing impact over CPU
usage. The results showed that smaller percentage of columns selected gave
higher CPU usage. If the percentage of columns selected remained less than 50
percent, the CPU utilization remained greater than the overall CPU usage. On
the other hand if N was greater than 50% the CPU utilization was less than the
overall mean CPU usage. Another important factor was the presence of number
of columns in group by clause. Higher number of group by clause contributed
towards higher CPU usage.

Figure B.4 showed the impact of percentage of columns selected (N), number
of mappers and block size over CPU usage. The small value of N, as discussed
before, resulted in higher CPU usage. However, number of mappers could also
impact the CPU usage and when it was combined with N. The results suggested
that smaller number of mappers could result in small mean CPU usage. Our
decision tree model also predicted that lower number of mappers could result
in lower CPU usage. If N < 50% and number of mappers greater than 5, CPU
usage was higher than overall mean CPU usage. There were a great number of
outliers in the boxplots. But when N > 50 % the CPU usage always remained
less than overall mean CPU usage. Also the difference between local means
was very small and there were also very less number of outliers in the chart as
shown in Figure B.5.

Figure B.6 showed the interaction between different query structures, block
size and CPU usage. The results suggest that there was not much difference in
the pattern of CPU usage as we have seen in Figure B.9. As shown in Figure
B.8, when we compared the relationship between number of replicas, different
query structures and CPU usage the results showed that it did not add any
distinguishing pattern in our chart. The decision tree prediction also showed
that block size and number of columns in order by clause add very little to the
CPU resource utilization.

When we analyzed the impact of different query structures and number of
mappers on CPU utilization the results showed different pattern as shown in
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Figure B.7. As we can see the CPU usage increased as number of mappers
increased from 5 to 20. The analysis also suggested that the presence of order by
clause in the query showed compact CPU usage values while group by clause
gives very dispersed CPU usage values with high standard deviations.

Rules extracted from decision trees suggested that high CPU usage will re-
sult if:

• Number of columns selected (N) ≤ 3

• number of replica (R) > 2, Number of Mappers (M) > 15 and N > 3

Some rules suggesting CPU usage lower than the median CPU usage are:

• M ≤ 15 and N > 3

• B ≤ 256MB, R ≤ 2, M > 15 and N > 3

5.5.3 Disk usage

For disk usage model, block size (B) was the most important feature. Other im-
portant features were the number of replicas, percentage of columns selected
(N), the number of columns in order by clause or the number of order by
columns (O) and the number of mappers as shown in Figure B.10.

The decision tree model suggested that larger the value of both block size
and number of replica higher the mean disk usage. Figure B.11 show the impact
of Hadoop configuration parameters on disk usage. Block size and number of
replicas had the most distinguishing effect among all. Local mean disk usage
gradually increased as the Block size increased. Local mean disk usage for the
Block size when the number of replica was three , was higher than the local mean
disk usage for the Block size when the number of replica was two. Another
important behavior was that the higher value of number of replicas and block
size always resulted in local mean usage higher than the overall mean usage,
for example when the number of replica was equal to three and block size was
greater than 512 then the mean CPU usage was extremely high. Also, in each of
these cases when the number of mappers is equal to 15, the standard deviation
and mean disk usage was much higher than the other cases.
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Figure 5.6: Boxplot of number of replicas, block size and percentage of columns
selected for disk usage.

Another prediction of our model was the high disk usage for high percent-
age of columns which increased as the block size and number of replica value
increased. Figure 5.6 showed the impact of number of replicas, block size and
percentage of columns selected. The results showed that it follows the similar
pattern as that of shown in Figure B.11. However, when we selected 100 per-
cent of the columns the disk usage was not only higher than the local mean disk
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usage but also the standard deviation was much higher than other cases of N.

Figure B.15 show the behavior of disk usage for different query struc-
tures used in our experiments. The results suggested that when percentage of
columns selected is less than or equal to 50% and a group by clause is present,
the mean disk usage will always be less than the overall mean disk usage. The
results also showed that mean disk usage is higher than the overall mean disk
usage when the number of columns in order by clause was small. Our decision
tree model also suggested that lower percentage of columns selected can lead
to lower disk usage.

Figure B.14 show the behavior of number of replicas and query structure for
disk usage. As discussed previously, number of replicas showed distinguishing
patterns in our disk usage results. We can see that mean disk usage was always
less than overall mean disk usage when the number of replicas was equal to two.
It was also observed that not only means, medians but also the standard devi-
ations were high when the number of replicas was equal to three and query has
order by clause. For higher number of replicas value the disk usage increases
up to a certain number of order by clause columns, for example in our results it
is two.

Figure B.12 show the impact of query structure and block size over disk us-
age. The pattern for query structure was similar to of that discussed previously.
Adding block size to the analysis has resulted in further break down of the dis-
tinguishing factors which was evident in our decision tree model as well as the
block size appears to be the root node. Increasing the Block size gradually from
128MB to 1024MB showed gradual increase of individual block mean disk us-
age as highlighted in the Figure with brown lines. If the block size is greater
than 512, the mean disk usage was greater than the local mean disk usage. An-
other important observation was the higher standard deviation for the block
sizes 512 and 1024.

Figure B.13 demonstrated the patterns when query structure and number of
mappers were taken into account. When the percentage of columns selected
was 100% and the number of columns in order by clause is high, graphs show a
large number of outliers resulting in lower median of disk usage for the number
of mappers greater than or equal to 20.
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For high disk usage, some of the decision tree rules were;

• B >512 and R ≤ 2

• B ≤ 128,R > 2 and M > 10 ≤ 15

.
For low disk usage,

• B <= 128, R > 2 M < 10

• B > 512,R<= 2, M <= 5 O<=2

5.5.4 Memory usage

The number of mappers was the most important feature in the model built on
memory usage measure. Other important features included block size and per-
centage of columns selected as shown in Figure B.1.

Our model predicted that greater number of mappers results in higher mem-
ory usage. Number of mappers were the initial phase of MapReduce framework
and increasing the number of mappers results in more memory to be occupied.
This behavior of configuration parameters and their impact on memory usage
was also shown in Figure 5.7. Block size and the number of mappers seemed
to have a distinguishing impact on memory usage. Mean memory usage in-
creased gradually as the number of mappers increased. Mostly if the num-
ber of mappers were greater than or equal to 15 the mean and median of the
memory usage remained greater than the overall mean memory usage. An-
other important observations was when the block size became greater than 256,
the individual mean memory usage for smaller number of replicas always re-
mained less than mean memory usage of mappers. For Block size of 1024, the
boxplot showed less number of outliers as compared to other block sizes. Fig-
ure B.21 show the impact of different elements of query structure over memory
usage. The percentage of columns selected is the most distinguishable feature
here. The less percentage of columns selected and group by clause resulted in
mean and median of memory usage to be higher than the overall mean mem-
ory usage as predicted by our decision tree model as well. The results also



116 CHAPTER 5. MACHINE LEARNING-BASED MODELLING

Figure 5.7: Impact of Hadoop configuration parameters on mean memory us-
age.

suggested that presence of order by clause and selecting all the columns in the
data demonstrates lower mean and median of memory usage, as compared to
overall memory usage. Another observation was the presence of large number
of outliers for the boxplots showing order by clause.

We added number of replicas to understand the underlying pattern as
shown in Figure B.20. The boxplot graph showed that for columns selected
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less than 50% both of the replicas showed similar memory usage. But when
selected all of the columns, the number of replicas with value three showed
smaller standard deviation in memory usage.

Higher number of mappers and less percentage of columns selected was
predicted to result high memory usage in our decision tree model. However,
when we included the number of mappers and the query structure together to
see the behavior of memory usage, the pattern was quite different as shown in
Figure B.19. There was a gradual increase in the mean memory usage of the
system as we increased the number of mappers from 5 to 10. The difference
between individual means was high when the percentage of columns selected
was less than 50% and there was group by clause present in the query structure.
The pattern was same in the query structure with order by clause but the dif-
ference between means was much smaller. Mostly, the median of the memory
usage was less than or close to overall mean of memory usage when there was
order by clause present.

Figure B.18 show the impact of query structure and block size over mem-
ory utilization of the system. The presence of group by clause and percentage of
columns less than 50% demonstrated the memory usage with the greater stan-
dard deviations. The block size breakdown over the query structure showed
that memory usage decreases as the block size approaches 256. However, the
mean memory usage gradually increased as the block size increased from 256
to 1024. The only exception here is due to the presence of outliers in the boxplot
which impacts the mean when N was 100% and O was 1 and block size was
512.

We also analysed the behavior of percentage of columns selected, number of
mappers and block size over memory usage as shown in Figure B.16. The box-
plot show that there was a cascading pattern followed by the increase of num-
ber of mappers for N≤ 50%. The mean and median memory usage, for number
of mappers greater than 10, was higher than the overall memory usage of all
experiments. Also, the difference between these local means was quite signif-
icant. Moreover, when the percentage of columns selected is 100% both mean
and median memory usage of mappers was less than or equal to the overall
mean memory usage.
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Figure B.17 show the interaction between percentage of columns selected,
replicas and number of mappers. Mean memory usage for number of mappers
gradually increased with increasing number of mappers. When the percentage
of columns selected is less than 50% and number of mappers greater than 10,
the mean and median memory usage remained higher than the overall mean
memory usage.

Some of the decision rules for high memory usage were:

• M > 10 and N ≤ 3

• B > 256 MB, R ≤ 2, M > 10 ≤ 15, N > 3 and O > 1

For low memory usage some of the decision rules were;

• B ≤ 128 MB, R > 2 and M ≤ 5

• B > 128 ≤ 256, R ≤ 2, M > 10 ≤ 15 N > 3 and O > 1

5.5.5 Network usage

For network usage, percentage of columns selected and number of replicas were
the two important features. Other important features were number of mappers,
number of orderby columns and block size as shown in Figure B.2.

Our model predicted that lower percentage of columns selected can result
in lower network traffic. Figure 5.8 show the impact of different elements of
query structure over network usage. Firstly, the presence of group by clause
and percentage of columns selected less than or equal to 50% can result in mean
network usage less than the overall mean network usage. Secondly, the pres-
ence of group by clause resulted in a boxplot with a large number of outliers
contributing toward high means. On the other hand, the presence of order by
clause resulted in higher network usage. The mean network usage slightly de-
creased as the number of columns in the order by clause increased. Also, there
were almost no outliers in the boxplots for order by clause.

The interaction of configuration parameters with network usage is shown
in Figure B.24. Firstly, number of mappers show a gradual increase in mean
network usage up to 15. The mean network usage dropped down as the number
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Figure 5.8: Boxplot of different elements of query structure for network usage

of mappers became greater than 15. Secondly, the number of replicas show less
mean than the overall mean network usage when the value was two and greater
mean when the number of replica was three.

Figure B.23 show the network usage behavior when number of replicas,
number of mappers and number of columns in order by clause (O) are taken
into account. The mean network usage, when O was equal to zero or when
group by clause was present, was always less than the overall mean network
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usage. On the other hand the, the mean network usage for lower number of
order by clause columns was high most of times and this gradually decreased
as the order by columns increased to three. Another interesting observation was
the impact of number of mappers, where mean usage increased gradually as
the number of mappers increased to 15. For replicas equal to two, the mean
network utilization was always less than the overall mean network usage.

Another interesting observation was the behavior demonstrated when we
compared percentage of columns selected, number of replicas and number of
mappers as shown in Figure B.22. The mean network usage for number of repli-
cas was less than the overall mean network usage when the columns selected
was less than or equal to 50%. For all columns selected, the mean network us-
age was higher than mean network usage where number of replicas with value
three showed the highest mean usage.

Decision rules predicted that network usage will be higher if:

• N > 3, R > 2, M > 10 and O > 2

• B > 128 ≤ 256 MB, R ≤ 2, M > 10, N > 3 and O >≤ 2

Lower network usage was predicted if:

• B ≤ 256, R ≤ 2, N > 3, M ≤ 5 and O > 1

• B> 128 MB, R ≤ 2, N > 3, M > 5 ≤ 10 and O > 2

5.5.6 Execution time

Percentage of columns selected was the most important feature in execution
time model as shown in Figure B.3. Number of mappers and number of order
by columns were the other important features.

Figure B.27 showed the impact of configuration parameters on execution
time for queries with group by clause. Number of mappers seemed to have a
very distinguishing impact over execution time. The mean execution time was
less than the overall execution time for the number of mappers less than ten.
As the number of mappers gone beyond 10, the mean execution time became
greater than overall mean execution time. Another important observation was
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that for number of mappers less than or equal to 10, lower number of replica
showed mean time less than the block size mean time. This trend become re-
verse as the number of mappers becomes greater than 10 until 20. Similar pat-
terns were demonstrated when we analyzed the results from order by clause
as shown in Figure B.28. The key difference between the two queries has been
that for order by clause the mean for number of replicas was much closer to the
overall mean.

Figure B.34 showed the impact of query structure over execution time. The
purple line represent the overall mean while green line represents the over-
all median of execution time of all experiments. The mean execution time for
queries with group by clause over the same data was much less than the mean
execution time of the queries with order by clause. One common observation
was that increasing columns in order by clause can result in higher time. This
was very much evident in the Figure B.32 where we added number of repli-
cas into the analysis to further distinguish the underlying patterns. The mean
time for three order by columns, when all of the data was selected, was always
greater than the overall mean execution time.

Figure B.31 showed the behavior of order by clause and number of map-
pers over execution time. There was a gradual decrease in execution time as the
number of mappers increases from 5 to 10. But as the number of mappers in-
creased from 10 to 20, the mean time increased gradually. Similar patterns were
evident in the queries with group by clause as shown in Figure B.33. Figure
B.29 and Figure B.30 showed the impact of query structure and block size over
execution time. Block size did not seem to be very discriminatory in this sce-
nario. All of the block sizes show similar mean execution time as that of shown
in Figure B.34.

Lower execution times were predicted by the following decision rules:

• B > 256 ≤ 512 MB, R ≤ 2, M > 10 ≤ 15 N > 3 and O ≤ 1.

• N ≤ 3

Higher execution times were predicted by the following rules:

• M ≤ 10 and N > 3 or M > 15 and N > 3
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• M > 10 ≤ 15, N > 3 and O > 1

5.6 Summary

From the results above we can summarize the following conclusions:

• Percentage of columns selected, number of mappers and number of repli-
cas has greatest impact over utilization of different resources in our
Hadoop cluster. Choosing different values could result in high or low
resource usage. Our decision tree models of different resources showed
that apart from different values of Hadoop parameters, it was also impor-
tant that how we query the data. In case of disk usage, block size has the
greatest impact and it should also be given importance if we have limited
storage resources while designing clusters and submitting huge number
of jobs.

• Our proposed methodology was very effective in building models which
can predict the utilization of resources and execution time. It was due to
the robustness of decision tree model which could take data in variety of
formats and also handles the missing values very well. The decision tree
models were easy to visualize and also showed very good generalizability
while taking into account large and diverse attributes.

• In order to see the prediction ability or generalizability of our decision tree
model we needed to run further experiment to see what happens when we
change the dataset.

• Also, until now we only used the cluster with fixed size, It would also be
worth observing the generalizability or prediction ability of our decision
tree model for environmental changes like changing the cluster size.



Chapter 6

Modelling and prediction of
resource utilization for different
datasets, cluster sizes and
infrastructure

6.1 Introduction

Chapter 4 showed that different attributes of Hadoop jobs affected the over-
all resource utilization and execution time of Hadoop jobs. Our decision tree
model (Chapter 5) showed how different attributes were linked to over and un-
der utilization of Hadoop resources. The decision tree based modeling was con-
structed using the data from different experiments. These experiments used the
same dataset, same cluster configuration and same infrastructure. It was impor-
tant to investigate that whether our decision tree models were robust enough
so that they could predict the resource utilization and execution time when we
change the cluster size or dataset, etc.

6.1.1 Chapter goals

The objective of this chapter is to investigate the following research questions.

123
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1. What impact the change in dataset, cluster size and infrastructure has
on Hadoop job performance and resource utilization?

2. Whether cluster job performance and resource utilization models, built
previously, can generalize for the changes in cluster size, datasets an
infrastructure?

6.1.2 Chapter organization

Section 6.2 details the methodology proposed to run our experiments. Section
6.3 represent the experimental setups and datasets used to run our experiments.
Section 6.4.1 discussed the results of the experiments run to highlight the impact
of using different datasets on resource utilization and execution time of Hadoop
jobs. Section 6.4.2 represents the importance and affect of changing cluster size
for our performance measures. It also highlights the robustness of our previ-
ously built decision tree model and how different attributes are correlated with
one another. Section 6.4.3 show that running the same experiments on different
infrastructure can greatly impact the overall performance of Hadoop jobs.

6.2 Methodology

The method to perform our experiments is presented in this section. Our
method consists of four phases.

Phase 1: This phase involved updating the Hadoop job environment. We de-
signed three set of experiments to further our investigation.

1. Experiment 1 : involved using different datasets to run on the same
Hadoop cluster. We executed same query on each of the dataset.

2. Experiment 2 : involved running the same query after updating cluster
size. Previously, we used four cluster, but here we updated the cluster size
by adding or removing one node from the existing cluster. Thus five node
and three node Hadoop clusters were configured for this experiment.
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Figure 6.1: Different phases of our method.

3. Experiment 3 : involved the running the same experiments on a completely
different infrastructure. For this purpose we used Amazon Elastic Com-
pute Cloud (EC2) [220] to design Hadoop cluster.

Phase 2: This phase involved selection of query. For experiment 1, we used query
1. For experiment 2 and 3, we used both query 1 and query 2.

Query 1: SELECT * FROM table_name

ORDER BY column_1,column_2,column_3;

Query 2: SELECT * FROM table_name
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ORDER BY column_1,column_2;

Phase 2.2: For all three experiment, this phase was same as that of phase 1.3
in 5.3. Phase 2.4: For experiment 1 and 2, this phase was same as that of phase
1.4 in 5.3. But for experiment 3, we only monitored overall execution time of a
job.

Phase 3: All of the phases and sub-phases were same as that of phase 2 in 5.3.

Phase 4: This phase involved the validation of results by using different ap-
proaches to answer our research questions.

Phase 4.1: Prediction The decision rules were extracted from decision tree
model built in phase 3 of 5.3. The decision rules were used to predict the out-
come of both of our experiments for all of our performance measures such as
CPU usage, disk usage, memory usage, network usage and overall execution
time. Firstly, we calculated the percentage of rules that correctly predicted the
outcome of both of our experiments. This was done by calculating the num-
ber of rules correctly predicting the outcome. This showed the prediction or
generalizability of the constructed decision tree models for unseen data.

Secondly, we calculated the percentage of data/instances that were true pos-
itives for a given decision rule. In order to do that we simply filtered the num-
ber of instances in each dataset that satisfy the conditions of that rule. The true
positives were calculated by using the criteria; true positive = total number of
positives - false negative. This gave the generalizability and prediction ability
of an individual rule for unseen data.

Phase 4.2: Statistical analysis This phase involved analysing the results of
different performance measures by applying statistical approaches. We applied
descriptive statistics like mean and standard deviations. For experiment 1, we
compared the overall and individual experimental settings to see the under-
lying pattern. For experiment 2, we compared the overall and individual set-
tings mean and standard deviations for different cluster sizes. We used the
boxplot [221, 222] analysis to get further insight into our results.

Phase 4.3: Correlation analysis This phase involved finding relationship or
association between different attributes for a particular performance measure of
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a job or experiment, for example, Pearson correlation [223]. Another important
objective of this phase was to investigate the attributes of Hadoop job exhibiting
similar effects.

Cluster analysis was performed to group data into groups (clusters) in a
way that the data in the same group are more similar to each other than other
groups [224]. We used k-means clustering algorithm to do this, where k = 2. Our
clustering algorithm was based on Lloyd’s algorithm with squared Euclidean
distances to compute the k-means clustering for each k [225]. This value was
chosen to categorize our attributes into two broader categories, such as low and
high, as we did in our decision tree model. This was an automated process of
finding the set of experimental settings which are correlated [221]. The Calinski-
Harabasz criterion (CHC) [226] was used to assess the quality of cluster. The
greater the value of this ratio, the more cohesive the clusters (low within-cluster
variance) and the more distinct/separate the individual clusters (high between-
cluster variance). It was defined as

CHC =
SSB

SSW

× N − k
k − 1

(5.1)

where SSB is the overall between-cluster variance, SSW is the overall
within-cluster variance , k is the number of cluster, and N the number of ob-
servations.

The output of the clustering was analyzed by between-group sum of square,
within-group sum of squares, number of observations in each cluster. Analysis
of variance (ANOVA) [227] was performed on clustering results to see varia-
tions between and within observations that was partitioned into clusters. The
ANOVA was computed for each variable (datasets or cluster size here) to see
which of them were most effective for distinguishing clusters. We mainly com-
puted F-statistics and p-value. The larger the F-statistics value, the better the
corresponding variable was in distinguishing between the two clusters and the
lower the p-value was the more significant difference was present between the
elements of the two clusters.

Regression or linear regression model was used to predict a well defined and
functional relationship between one dependent and one or more independent
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variables. M5P tree [217] was a classification and regression tree (CART) based
on M5 tree [216]. It had the advantage of being able to deal with categorical and
continuous variables along with handling the missing values as well. The tree
combines conventional decision tree structure and linear regression models at
the leaves. The main idea of the tree was to maximize the standard deviation
reduction (SDR) [228]. The SDR was defines as

SDR = sd(T )−
∑
i

|Ti|
|T |
× sd(Ti) (5.2)

where T was the set of cases, Ti was the ith subset of cases that result from
the tree splitting based on a set of variables (attributes), sd(T) was the standard
deviation of T, and sd(Ti) was the standard deviation of Ti as a measure of error.

6.3 Experimental design

This section outlined the experiment setup and datasets used in our experi-
ments. The experiment design was same as that of Section 5.4.

6.3.1 Experimental setup

The experiment setup was same for all of the experiments except for experiment
2, where number of nodes was changed in the cluster. The setup is outlined in
Section 5.4.1.

For experiment 1, we used three datasets: NOAA, Airbnb and NES. The
experimental setup was kept the same as that of 5.4.1. The Hive query used to
run all experiments is :

SELECT *

FROM table_name

ORDER BY column_1,column_2,column_3;

For experiment 2, the existing cluster with four has been up-sized to five-
nodes and then downsized to three-nodes. The experimental setup was the
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same as that of 4.1. Two different queries were run, on three cluster setups,
using the Berkeley Earth Surface Temperature dataset.

Query 1: SELECT *

FROM table_name

ORDER BY column_1,column_2;

Query 2: SELECT *

FROM table_name

ORDER BY column_1,column_2,column_3;

For experiment 3, we designed a 4 node cluster at Amazon EC2. Each node
was a t2.large instance with 2 vCPUs, 8.0 GB memory and 50 GB of storage. The
experiment setup did not involve the use of SDN-enabled switch. The Berkeley
Earth Surface Temperature dataset was used to run experiments, using the two
queries below.

Query 1: SELECT *

FROM table_name

ORDER BY column_1,column_2;

Query 2: SELECT *

FROM table_name

ORDER BY column_1,column_2,column_3;

6.3.2 Datasets

1. The Berkeley Earth Surface Temperature (EST) Study combined 1.6 bil-
lion temperature reports from 16 pre-existing archives. Dataset had six
attributes and almost 10 million records. The size of the file was 650 MB 1.

2. Airbnb dataset had 8,348,173 records and is published by Inside Airbnb.
It had a total of 6 attributes and file size was 3.2 GB 2.

1available at https://data.opendatasoft.com/explore/dataset/
2available at http://insideairbnb.com/get-the-data.html

https://data.opendatasoft.com/explore/dataset/
http://insideairbnb.com/get-the-data.html
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3. Historical National Oceanic and Atmospheric Administration(NOAA) in-
cludes daily land surface observations from around the world. The dataset
was developed to meet the needs of climate analysis and monitoring stud-
ies that require data at a sub-monthly time resolution (e.g., assessments of
the frequency of heavy rainfall, heat wave duration, etc.) [229]. File size of
the dataset was 2.4 GB. Dataset had ten attributes and almost 37 million
records 3.

4. National Current Employment Statistics (NES) dataset was published by
Bureau of labor Statistics. The dataset comprised of a monthly survey of
147,000 businesses and government agencies, representing 634,000 work-
sites. The dataset had 21 attributes, 7,512,728 records and file size was 1.9
GB 3.

6.4 Results and discussion

This sections present the results from our experiments.

6.4.1 Impact of change in dataset

This section discuss the results of different resource utilization and execution
time for change of datasets.

CPU usage

Figure C.1 showed the impact of number of mappers and block size over differ-
ent datasets. NOAA showed the lowest overall mean CPU usage while Airbnb
showed the highest overall mean CPU usage. The results showed that mean
CPU usage increased as the number of mappers increased. The mean CPU us-
age of number of mappers remained less than overall mean when the number
of mappers were lower than or equal to 10. For the datasets with large number

3available at https://data.opendatasoft.com/explore/dataset/

https://data.opendatasoft.com/explore/dataset/
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of columns, this cascading pattern of increasing mean with the increasing num-
ber of mappers was more evident. While for the datasets having lower number
of columns the mappers mean was almost equal to the overall mean CPU us-
age. Another important observation was the high CPU usage in case of Airbnb
dataset which was due the presence of lengthy text fields in the datasets.

Figure C.2 showed the behavior of CPU usage when we taken into account
all configuration parameters. The results showed that there was a gradual in-
crease in the mean CPU usage with increasing order of number of mappers and
replica. keeping everything constant, lower value of number of replicas always
resulted in lower CPU usage. For Airbnb dataset the number of replicas with
value two always gave mean CPU usage lower than overall mean usage.

Figure C.3 showed the impact of number of replicas and block size on CPU
usage of different datasets. The number of replicas with larger value showed
mean CPU usage greater than the overall mean. However, the difference be-
tween overall mean and number of replicas mean was very small. Also, the
range of CPU usage was small when the number of columns were small. So,
NES dataset had the highest range of values suggesting higher standard devia-
tions for higher number of columns. Figure C.4 showed the impact of number
of mappers and number of replicas with CPU usage. The pattern was the same
as discussed previously. Number of mappers showed a very discriminatory be-
havior among its different values. The gradual increase in mean CPU usage
was shown in the graph for both NOAA and NES datasets.

Figure C.5 showed the difference in mean CPU usage for different datasets.
The results showed that there was a gradual increase in mean CPU usage as
the number of mappers increased. Also higher number of replica resulted in
higher mean CPU usage. However, for Airbnb dataset, higher number of repli-
cas resulted in mean CPU usage higher than overall mean CPU usage. Figure
C.6 showed the comparison of standard deviations for different datasets. The
results showed that Airbnb dataset had the highest standard deviation among
all.

Figure6.2 showed the clustering of data into two clusters. The results
showed that there was a difference in mean CPU usage when the number of
mappers were less than or equal to 10 and when number of mappers become
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greater than 10. Both clusters received equal number of entries. The variables
can clearly be segregated in to two distinct clusters. As we can see in the Figures
as well that cluster 1 was clearly distinct with respect to the overall mean of the
data. The clustering model also suggested that EST dataset showed the highest
CPU in cluster 1 while Airbnb showed highest CPU usage in cluster 2.

F-statistics results suggested that NES was the best variable (dataset) that
distinguishes between the two clusters. Other datasets that showed very good
F-statistics results are EST and NOAA. All of these three datasets had p-value
less than significance level (0.05) which suggested that the difference between
means was significant. We also observed that the between-group sum of
squares was higher than within-group sum of square for the two clusters. This
suggested that individual measures in each clusters were closer while the val-
ues assigned to each cluster were quite distinct and showed distinctly similar
CPU usage in different datasets.

For high CPU usage, 100% of the rules were able to predict the CPU usage
for NOAA, Aribnb and NES datasets. The rule R> 2, M> 15 and N> 0.5, which
comprises of the 24.84% of the total number of instances for NOAA, 42.65% for
Airbnb and 50% for NES.

For low CPU usage 33% of the rules were true for the NOAA and NES
datasets, while 100% for Airbnb. An example of decision rule is M ≤ 15 and
N > 0.5 which makes the 100% of the instances for NOAA dataset, 70.85% for
Airbnb and 99.79% for the NES.

Individual rules and their prediction percentage for different datasets were
given in Section C.1.1. We compared the percentage difference in high and low
CPU usage for the three datasets. For NOAA dataset, high CPU usage was
23.89% higher than the low CPU usage. For Airbnb the difference was 14% and
for NES the difference was 35.65%.

The correlation analysis by using M5P regression model showed a very good
correlation with value of 0.8 and root mean square error (RMSE) of the model
is low. Linear regression model (LM14), LM1, LM6 and LM13 covered high
number of observations and lower RMSE value suggesting how close they were
to the line of best fit. As shown in Figure C.7, number of mappers, number of
columns in dataset and number of replicas were the most contributing attributes
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Figure 6.2: Result of k-mean clustering for CPU of different datasets.

contributing towards the overall CPU usage. The linear models were presented
in Section C.1.2 and Linear Model(LM) 1 is shown below.

CPU usage =

-0.0181 * No_of_columns

- 0 * Block_size

+ 0.0109 * Replica

+ 0.0004 * Mappers

+ 0.1795

The Pearson correlation coefficient was calculated for the CPU usage data of dif-
ferent datasets. The results showed that number of mappers had moderate re-
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lationship with CPU usage while number of columns, number of replicas had
weak relationships with CPU usage. The association between number of map-
pers and number of replicas with CPU showed positive correlation while num-
ber of columns showed negative correlation with CPU usage.

Disk usage

Figure C.8 showed the behavior of block size and number of replicas for disk
usage. The mean usage increased gradually with the increase of block size for
the NES and Airbnb datasets, but for NOAA the mean usage increased up to
block size of 512 and then drops. Another pattern was that the mean disk usage
when the number of replicas was equal to two was always less than when the
number of replicas was equal to three for block size up to 512.

Figure C.9 showed the impact of block size and number of mappers on disk
usage. The mean disk usage increased as the block size increased. The block size
less than or equal to 256 kept the mean disk usage less than the overall mean
disk usage. For the datasets having large text columns like Airbnb, increased
number of mappers mean disk usage shows cascading increasing or decreasing
pattern.

FigureC.10 showed the impact of different values of Hadoop configuration
parameters on disk usage. The results showed that experimental runs with low
block size and low number of replicas can result in lower mean disk usage than
the overall mean disk usage. Also, the higher number of replicas and block
size could always result in mean disk usage higher than the overall mean disk
usage.

Figure C.11 showed the comparison of means for disk usage of different
datasets. The results showed that there was a gradual increase in disk usage
with the increase in block size. The EST dataset showed the lowest overall mean
disk usage while NES showed the highest mean disk usage followed by the
Airbnb. The mean usage was less than overall mean as the block size was less
than or equal to 512MB. The block size greater than 512 MB showed the highest
disk usage among all other values of block size for most of the datasets.

Figure C.12 showed the comparison of standard deviations of the different
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datasets. The EST dataset showed the lowest standard deviation while Airbnb
showed the highest standard deviation followed by NOAA dataset. This sug-
gested that the datasets having textual data or more number of fields can result
in higher mean disk usage.

Figure 6.3 showed the output of k-mean clustering applied on disk usage
data for different datasets. The results suggested that block size play a vital
role in disk usage. Block size starting from 128MB to 512MB was clustered
into one cluster. Although block size of 512 MB seemed to be a value which
can result in over-utilization of resources if other Hadoop parameters were not
chosen carefully. As we can see block size of 512MB, the number of replicas with
value 3 and higher number of mappers results in mean disk usage higher than
overall mean disk usage for most of the datasets. For the value above 512MB,
the disk usage was high most of the times and this was placed in cluster 2 by
the algorithm. The results also suggested that cluster 1 received 32% of the data
while cluster 2 got 25% of the data. For both clusters, NES showed the highest
mean disk usage followed by Airbnb while EST showed the lowest mean disk
usage.

The F-statistics demonstrated that NES was the variable or dataset that dis-
tinguishes the two clusters, followed Airbnb and EST datasets. The significance
test value suggested that the difference between means of the two clusters for
these three datasets, is also significant. The between-group sum of squares and
within-group sum of squares were very similar. So, the analysis suggested that
although the results were significant for NES, Airbnb and EST datasets but the
cluster means were very close to the overall mean.

For high disk usage 77.77% of the rules were true for NOAA dataset, and
66.67% rules were true for Airbnb and NES datasets. For example, the pre-
diction percentage of decision rule, B > 256, R > 2, for different datasets
was: 55.62% for NOAA dataset, 48.43% for Airbnb dataset and 56.13% for NES
dataset.

For low disk usage, 42.85% rules were true for NOAA and Airbnb datasets,
and 57.14% rules were true for NES dataset. The individual prediction percent-
age of decision rules has been calculated, for example, B <= 256, R <= 2, which
was 38.74% for NOAA dataset, 44.86% for Airbnb dataset and 50.10% for NES
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Figure 6.3: Result of k-mean clustering for disk usage of different datasets.

dataset.

Individual rules and their prediction percentage for different datasets was
given in Section C.2.1. The percentage difference between high and low usage
for disk utilization was : NOAA 18.2%, Airbnb 18.42% and NES was 34.59%.

The correlation analysis showed that there is high correlation (0.86) between
Hadoop parameters and number of columns in different datasets is demon-
strated by the regression M5P tree as shown in Figure C.13. The block size was
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the most important attribute for disk usage followed by number of columns in
the dataset and replica. Linear models (LM) 1, 5, 6, 16 19 are some of the exam-
ples with higher number of observations and lower RMSE. A large number of
linear models (35) were suggested by the M5P tree, representing the complexity
of the situation. These models were listed in Section C.2.2.

The Pearson correlation coefficient calculated for the data showed that all of
the attributes have positive correlation with disk usage. Number of columns
in dataset showed moderate level association with disk usage while block size
showed weak association with disk usage.

Memory usage

FigureC.14 showed the mean memory usage for the four datasets. The re-
sults showed that EST had the lowest overall memory usage while Airbnb and
NOAA has the highest memory usages. For datasets having numeric fields, like
EST and NES, lower number of mappers resulted in mean memory usage lower
than the overall mean memory usage. But for number of mappers greater than
ten, the mean memory usage was greater than the overall mean usage.

Figure C.15 showed the standard deviation for memory usage. The EST
dataset showed highest value among all dataset while NES and NOAA showed
the lowest values of standard deviation.

Figure C.16 showed the comparison of three datasets for block sizes, num-
ber of mappers and replica. As a general trend, less number of mappers showed
lesser mean memory usage for numeric datasets like NES and NOAA. But for
Airbnb dataset, the mean memory usage was similar or higher to that of the
overall mean memory usage. Also, there were a large number of outliers indi-
cated in the boxplots of NOAA and NES.

Figure 6.4 showed the output of k-mean clustering algorithm applied on
memory usage data of all the datasets. The results showed that both block size
and number of mappers play an important role in distinguishing the underly-
ing pattern for memory usage. When the number of mappers were less than
or equal to 10, the mean memory usage was less than overall mean memory
usage. For most of the datasets, the number of mappers greater than 10 and
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block size higher than 512 MB resulted in mean memory usage higher than the
overall mean memory usage. The number of observations assigned to cluster 1
were 53% as compare to the cluster 2 which received 47% of all of the observa-
tions. For both clusters NOAA datasets showed highest mean memory usage
followed by Airbnb and NES while EST showed the lowest mean memory us-
age in both of the clusters.

The F-Statistics and p-value showed that NES was the dataset able to sig-
nificantly distinguish between two clusters. Other datasets showed very small
F-statistics and p-values suggesting that the distinguishing ability between clus-
ters was very low. The between-group was smaller than within-group sum of
squares which shows that the mean of each cluster was very close to the overall
mean memory usage.

For low memory usage, 71.42% of the rules were found to be true for all
datasets. A decision rule was: B > 128 MB and M <= 5 which was 27.25% of
the instances for NOAA dataset, 20.87% for Airbnb and 29.79% for NES dataset.

High memory usage, 100% rules were found true for all datasets. The pre-
diction percentage of a decision rule, M > 15 and N > 3, for different datasets
was: NOAA’s 27% and Airbnb’s 49.27% of the total instances.

Individual rules and their prediction percentage for different datasets was
given in Section C.3.1. The percentage difference between high and low mem-
ory usage for NOAA dataset is 7.8%, for Airbnb 7.2% and for NES 10.79%.

Figure C.17 showed the M5P tree to demonstrate the correlation between
memory usage and Hadoop job attributes for different datasets. The tree pre-
dicted 22 linear models as shown in Section C.3.2. Number of mappers and
block size were the two most important attributes associated with different lev-
els of memory usages for different datasets.

The Pearson correlation coefficient calculated for memory usage showed that
number of columns in dataset and number of replicas had negative correlation
with memory usage while block size and number of mappers have positive cor-
relations. Number of columns in dataset and number of mappers had weak
correlation while number of replicas and block size showed very weak correla-
tion.
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Figure 6.4: Result of k-mean clustering for memory usage of different datasets.

Network usage

FigureC.18 showed the comparison of means for the four datasets. The EST
dataset had the lowest network usage while Airbnb had the highest mean net-
work usage followed by the NES and NOAA datasets. Number of replica could
have a significant impact on the overall mean network usage. Lower number of
replicas resulted in lower network usage than the overall mean network usage
in each of our experiments. The results also suggested that datasets with more
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text columns, like Airbnb, and more number of columns, like NES, can result in
higher network usage.

Figure C.19 showed the standard deviations of each of experiment. The re-
sults demonstrated that more number of columns and huge text fields in the
datasets result in higher standard deviations.

Figure C.20 showed different Hadoop parameters for network usage of
NOAA, Airbnb and NES. The Figure showed that the mean and median of
number of replicas with lower value was always less than the overall mean
network usage.

Figure 6.5 showed the output of k-mean clustering algorithm for network
usage data of different datasets. The results showed that less number of repli-
cas has mean network usage less than overall mean network usage while higher
number of replicas always resulted in mean network usage higher than the
overall mean network usage. Both the clusters received equal number of in-
stances. For both of the clusters Airbnb demonstrated the highest mean net-
work usage, followed by NES. The between-group sum of square was very high
which shows that the individual means were not closer to the overall mean and
the two cluster groups were significantly distinct.

The F-statistics value for Airbnb was the highest followed by EST, NES and
NOAA. This showed that Airbnb significantly distinguishes the values in two
clusters. The p-value also far less than the significance value, which shows that
the difference between the means of the two clusters was highly significant. The
lower within-group sum of square suggest that the values in each cluster were
very close to the cluster mean.

For high network usage, 72% of the rules were true for NES dataset, while
for both Airbnb and NOAA datasets 50% of the rules are true. An example of
decision rule was R> 2 and N> 0.5, which is 91.04% for NOAA dataset, 98.75%
for Airbnb dataset and 97.29% for NES dataset.

For low network usage, 100% of the rules were true for all of the datasets.
Individual rules and their prediction percentage for different datasets is given in
Section C.4.1. The percentage difference between high and low network usage
for NOAA dataset is 72.9%, for Airbnb dataset it was 49.8% and for NES dataset
it was 73.66%.
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Figure 6.5: Result of k-mean clustering for network usage of different datasets.

Figure C.21 showed the M5P tree for network usage data of different
datasets. The correlation coefficient was 0.84, which was high and 12 linear
models were predicted for the data. Number of replicas was the most impor-
tant attribute for network usage, followed by number of columns and number
of mappers. Linear models are being presented in Section C.4.2 and LM 12 en-
compasses 37.5% of the total number of observations with a very low RMSE.

The Pearson correlation coefficient for network usage of different datasets
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showed that number of columns, number of replicas and number of mappers
had positive correlation with network usage while block size have negative cor-
relation. While analyzing the strength of the relationship, number of replicas
had moderately strong relationship while number of mappers and number of
columns had weak associations with memory usage. Block size had very weak
association with memory usage.

Execution time

Figure C.22 showed the mean execution time for four datasets used in our ex-
periments. The mean execution time increased as the number of mappers in-
creases for EST. But for the other three datasets the less number of mappers
demonstrated mean execution time higher than the overall mean execution
time. The results also showed that as the dataset fields become more complex
the execution time increased, for example the NOAA datasets had large number
of coordinates and Airbnb dataset had more textual data.

Figure C.23 showed the standard deviations of the execution times for dif-
ferent datasets. The results showed that EST has the least standard deviation
while Airbnb and NOAA had the highest standard deviations.

Figure C.24, Figure C.25 and Figure C.26 showed different comparisons of
block size, number of mappers and replica. The results showed that lower
number of mappers resulted in higher execution times for NOAA and Airbnb
dataset. But for Airbnb dataset the mean execution time was very much similar
to overall mean execution time.

Figure 6.6 showed the output of the k-mean clustering applied on execu-
tion times of the datasets. Number of mappers seemed to be playing a very
distinct role in clustering the instances into two groups. The cluster 1 received
almost 44% instances while cluster 2 got 56% of the values. For cluster 1, EST
showed the highest mean execution time followed by Airbnb. For cluster 2, the
NES dataset showed the highest mean execution time followed by Airbnb and
NOAA.

The F-statistics showed that EST was the best dataset, which was able to dis-
tinguish between two clusters followed by NES and NOAA. the p-value also
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suggested that EST, NES and NOAA datasets showed significant difference be-
tween means of the two clusters. The between-group sum of square was less
than withing-group sum of square. This suggested that the means of each clus-
ters were close to the overall mean.

Figure 6.6: Result of k-mean clustering for execution time of different datasets.

For high execution time, the following rules have been found to be true for
NOAA, Airbnb and NES datasets, which are 100% of the total rule set. A deci-
sion rule was N > 3 and M <= 10, which is 58.54% for NOAA dataset, 49.34%
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for Airbnb dataset and 67.39% for NES dataset of the total number of instances.
Individual rules and their prediction percentage for different datasets was

given in Section C.5.1. The percentage difference between high and low execu-
tion times for NOAA dataset is 8.64%, for Airbnb dataset is 7.2% and for NES
dataset is 13.43%

The correlation analysis for overall time data for different datasets was
shown in Figure C.27. A total of 3 linear models were predicted with a correla-
tion coefficient of 0.36. Number of columns in dataset and number of mappers
are the only attributes which contributed towards the correlation and prediction
of outcome. the linear modes are presented in Section C.5.2 where LM1 covers
50% of the observations.

The Pearson correlation coefficient for the overall execution time showed that
number of columns in the datasets, number of replicas and number of map-
pers have negative correlation with execution time while block size has positive
correlation. The number of columns showed weak relationship while all other
attributes showed very weak associations with execution time.

Table 6.1: Mean and standard deviation of CPU usage, disk usage, memory
usage, network usage and execution time for high and low usages of different
datasets. (x̄ ± s)

Low Usage High usage
Datasets NOAA Airbnb NES NOAA Airbnb NES
Network Usage 2085 ± 215 3419 ± 206 2530 ± 298 3966 ± 71 5210 ± 157 4828 ± 164
CPU usage 6.2 ± 0.02 7.84 ± 0.03 6.4 ± 0.06 7.6 ± 0.13 8.68 ± 0.14 9.2 ± 0.11
Disk Usage 3.9± 0.023 4.88± 0.01 5.06 ± 0.02 4.7± 0.024 5.88 ± 0.06 7.6 ± 0.11
Memory Usage 33.28 ± 0.25 33.92 ± 0.16 31.24 ± 0.2 35.47 ± 0.08 35.11 ± 0.06 34.12 ± 0.09
Execution Time 447.6± 1.54 367.13 ± 0.89 223.1 ±1.62 481.8 ± 1.74 387.46 ± 1.92 248.2 ± 1.9

Summary

From the results above we can summarize the following:

• We outlined two approaches to analyze our results, the first approach was
the analysis by using descriptive statistics and building different graphical
representations like boxplots and plotting means and standard deviations,
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Figure 6.7: Heat map of resources utilization for different datasets

the second approach involved the use of automated process of clustering
the data into two clusters by using k-mean clustering algorithm. The results
showed that different values of number of mappers could greatly impact
overall CPU usage, memory usage of Hadoop cluster and execution times
of the Hadoop job. While different values of replica could affect disk usage
and network usage of the cluster. Block size value had the highest impact
over disk usage of Hadoop cluster. These results were mostly aligned with
our previous findings in Chapter 5.
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• We performed t-tests to check the statistical significance of the difference
between highest and lowest usage of our selected performance metrics.
This showed the effectiveness of the our method to give us the Hadoop job
attributes with desired resource utilization and execution time. We found
that all of our metrics disk usage, network usage, memory usage and
execution time were statistically significant for both NOAA and Airbnb
datasets. The results were shown in table 6.1.

• The decision tree build in previous experiment, Chapter 5, can general-
ize over the current experiments very well. On average 75% of the deci-
sion rules were able to correctly predict the resource utilization for NOAA,
Aribnb and NES datasets. Although decision tree models are able to gen-
eralize well over unseen data from different datasets, the results also high-
lighted the impact a dataset can have on resource utilization.

• The correlation analysis was done to see the association of different at-
tributes to each other. The analysis not only showed the strength of re-
lationship but also the direction of relationship. Number of columns in
datasets and number of mappers are the attributes, strongly correlated
with the resource utilization and execution time of Hadoop jobs. Num-
ber of replicas was moderately correlated to the resource utilization, but it
was strongly correlated with network usage. The block size showed weak
correlation with most of the performance measure for different datasets.

• The overall comparison of resource utilization for different datasets was
shown in Figure 6.7, where the lighter color represents lower resource
utilization and the darker color represents the higher resource utiliza-
tion. The EST dataset showed the lowest resource usage among the four
datasets compared. While the NES datasets showed the highest over-
all resource utilization followed by Airbnb. This demonstrates that the
datasets with higher number of columns and lengthy textual columns
could greatly impact the overall system performance.

• So, apart from taking into consideration the importance of query struc-
ture and the different values of Hadoop parameter configurations (as dis-
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cussed in Chapter 4 and Chapter 5), the choice of dataset was also im-
portant while designing and implementing a Hadoop cluster. Some of
the important features of the datasets which should be taken into account
were: the number of columns in the dataset table and type of data in the
columns.

6.4.2 Impact of change in cluster size

This section discuss the results of different resource utilization and execution
time for change in number of nodes in cluster. We executed our experiments
after adding and removing one node in the existing four node cluster.

CPU usage

For five node cluster, our model predicted 75% of the outcome correctly while
for three node cluster 60% of outcome predicted correctly.

FigureD.1 showed the overall mean CPU usage for cluster of different sizes.
When we increased the number of nodes from four to five, overall mean CPU
usage decreased by 16.67% and when we decreased the number of nodes from
four to three, the overall mean CPU percentage usage was increased by 10.64%.
If we look at the percentage change in decreasing cluster size from five nodes to
three nodes, the mean CPU usage increased by 25.53%.

The analysis of standard deviation of CPU usage showed that increasing
number of nodes resulted in low mean CPU usage but the standard deviation
has increased significantly. While downsizing of the cluster from four nodes
to three nodes keeps the standard deviation of CPU usage similar as shown in
Figure D.2.

Figure D.3 showed the boxplot for each of the experiments run on differ-
ent cluster sizes. The results showed many interesting patterns in our exper-
iments. Firstly, decreasing the cluster size from five nodes to three nodes re-
sults in greater median CPU usage. Secondly increasing block size, number
of replicas and number of mappers has a great impact on overall CPU usage.
The results showed that higher block size, higher replication factor and higher
number of mappers always result in higher CPU usages provided the size of
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the cluster remains the same. Decreasing the number of nodes in the cluster
put more pressure on CPU usage. Same amount of work has to be done by
lower number of CPU which resulted in significant increase in CPU usage. So
increasing or decreasing number of nodes is a major environmental change in
the system and it impacted overall CPU utilization.

Figure 6.8 showed the output of the k-mean clustering performed for CPU
usage of different cluster sizes. The results showed that mean CPU usage in-
creased with the increase of number of mappers. Also, the mean CPU usage
remained less than the overall mean CPU usage when the number of mappers
were less than or equal to 10. As soon as the number of mappers become greater
than 10, the mean CPU usage become higher than the overall mean CPU usage.
Both clusters received equal number of instances. For both clusters, the three
node cluster showed highest mean CPU usage followed by four nodes and five
nodes cluster. The between-group sum of square was higher than within-group
sum of square which suggests that both of the k-mean clusters were not close to
overall mean and their boundaries were very distinct apart from each other as
well.

The F-statistics results showed that four node Hadoop cluster was dataset
with highest distinguishing ability between the clusters. The p-value for the
results showed that the difference between two clusters was statistically signif-
icant for all of the three Hadoop cluster sizes.

The correlation analysis by using M5P tree showed that the model had very
high correlation coefficient with a value of 0.97. Number of mappers and num-
ber of nodes seemed to have a strong correlation with CPU usage for all of the
experiments. Seven Linear models were predicted for the data as shown in
FigD.1, and LM 1, LM2 and LM7 encompasses more than 83% of the observa-
tions as shown in Figure D.4. These models showed 0% RMSE, which suggests
that they were the best fit lines in this correlation. The equation of LM1, which
alone covered more than 50% of the observations is given below;

CPU usage =

-0.0013 * Nodes

+ 0.0003 * Replica
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Figure 6.8: Result of k-mean clustering for CPU usage for cluster of different
sizes.

+ 0.0002 * Mappers

+ 0.003

The Pearson correlation coefficient for CPU usage clusters with different
nodes revealed that number of replicas and number of mappers had positive
correlation with CPU usage while block size and number of nodes have nega-
tive correlation. The number of mappers and number of nodes demonstrated



150CHAPTER 6. MODELLING HADOOP CLUSTER ENVIRONMENTAL CHANGES

moderately strong association with CPU usage while number of replicas and
block size showed very weak association.

Disk usage

Our model was able to predict 70% of the resource utilization correctly for both
three nodes and five node cluster.

Figure D.5 showed the mean disk usage for the change in cluster size. When
we increased the number of nodes from four to five the mean disk usage has
increased by 27.9% and when we downsized the cluster from four nodes to three
nodes the mean disk usage has increased by 39.20%. However decreasing the
number of nodes from five to three nodes suggests that there was an overall
increase in mean disk usage by 15.68%.

Figure D.6 showed the standard deviations of the cluster of different sizes. It
shows that three node cluster had the highest standard deviation for disk usage
percentage followed by five node cluster and four nodes cluster. The results also
showed that smaller block size gives higher standard deviation in disk usage
on the cluster with three nodes while larger block size gives higher standard
deviation for cluster with five nodes. It seemed like the Hadoop parameters
we chose and the dataset we used to run the jobs has an impact on disk usage
which resulted in very low disk usage for the four nodes cluster.

Figure D.7, showed the boxplot of the disk usage for three different cluster
sizes. A common pattern in all of these experiments was that lower block size
results in lower disk usage compared to overall mean disk usage. As the block
size increased, individual mean disk usage also tends to increased than overall
mean disk usage.

Figure 6.9 showed the output of the k-mean clustering algorithm for the
three Hadoop clusters with different number of nodes. The results showed that
most of the times higher block size demonstrated mean disk usage higher than
the overall mean disk usage. For all three Hadoop clusters, lower disk usage
along with lower number of replicas and number of mappers resulted in mean
disk usage lower than the overall mean disk usage. The clustering algorithm
clustered almost 72% instances into one cluster and remaining 28% into other
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cluster. For both clusters, the three node cluster showed highest mean disk us-
age followed by five node and four nodes Hadoop cluster. The between-group
sum of squares was less than within-group sum of square which suggested that
although the cluster means were distinct but their boundaries may not be very
distinct.

The F-statistics value for the Five node Hadoop cluster, followed by four
nodes and three nodes, was the highest which shows that it has played greater
role in distinguishing the between two clusters. The p-value suggests that the
difference between the two clusters was statistically significant for the three
Hadoop setups.

Figure D.8 showed the M5P regression tree for correlation between Hadoop
parameters an cluster size. The correlation coefficient, 0.94, was very high sug-
gesting that the model was good in predicting the disk usage and 12 linear
models were predicted for different associations of attributes as shown in D.2.
The number of nodes was the most important attribute contributing towards
disk usages of the system. Block size was the other important attribute for disk
utilization of different cluster sizes. Linear models with the most number of
observations and lower RMSE value include LM1 and LM12.

The Pearson correlation coefficient for disk usage showed that number of
nodes had negative correlation with disk usage while all of the Hadoop config-
uration parameters showed positive correlation with disk usage. The number
of nodes and number of mappers demonstrated moderate association with disk
usage. Block size showed a weak association while number of replicas showed
very weak association with disk usage.

Memory usage

Our model was able to correctly predict 42% of the memory usage of five node
cluster while 50% of the three node cluster.

Figure D.9 showed the mean memory usage for three clusters of different
sizes. When we increased the number of node from four to five, overall mean
memory usage decreased 20.54%. When we downsized the cluster from four
node to three node the memory usage has decreased by 7.2%. if we calculate
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Figure 6.9: Result of k-mean clustering for disk usage for cluster of different
sizes.

the percentage increased in mean memory usage for downsizing the cluster by
two nodes, that was from five node and three node, there was an increase of
14.37%.

Figure D.10 showed the comparison of standard deviations of the five nodes,
four nodes and three node cluster with the same dataset. Although, five node
cluster showed the least mean memory usage but it had the highest overall stan-
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dard deviation. The four nodes cluster had the highest mean memory usage but
it had the lowest overall standard deviation. The percentage difference between
the two was 20.37%.

Figure D.11 showed the boxplot of the memory usage of the three cluster
sizes. The results showed that number of mappers had the most distinguishing
effect on the cluster of different sizes. Lower number of mappers resulted in
lower memory usage as compared to overall memory usage. As the number of
mappers increased above 10, mean memory usage remained higher than overall
memory usage. Another interesting observation was that when block size was
1024, the standard deviation of mean memory usage of the five node cluster
was most of the times high.

Figure 6.10 showed the clustering of memory usage data for three different
Hadoop clusters. The results demonstrated that the number of mappers played
a vital role in memory usage of Hadoop clusters. The number of mappers lower
than or equal to 10 mostly resulted in mean memory usage less than the overall
mean memory usage. The cluster group 1 received 47% of the instances while
cluster group 2 received 53% of the instances. For both groups, the four nodes
Hadoop cluster showed the highest mean memory usage. The between-group
sum of square was less than within-group sum of squares, which demonstrate
that the cluster boundaries were not distinct enough and their centers were a
bit close to the overall mean memory usage.

The F-statistics showed that the three node Hadoop cluster was the variable
with highest distinguishing ability between the means of two k-mean clusters.
The p-value for the three Hadoop setups suggests that the difference between
the means of the two clusters was statistically significant only for three node
and five node Hadoop cluster.

The correlation analysis for memory usage data of different cluster sizes is
shown in Figure D.12. The model tree predicted eight linear models, shown in
Section D.3, with a high correlation coefficient of 0.78. LM1 and LM8 covered
highest number of observations (66.67%) with 0% RMSE demonstrating it to be
equivalent to the best fit line. The number of nodes was the most important
attribute in predicting the association between attributes and memory usage.
The number of mappers was the other important attribute in this regard.
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Figure 6.10: Result of k-mean clustering for memory usage for cluster of differ-
ent sizes.

The Pearson correlation coefficient showed that number of nodes and block
size are negatively correlated with memory usage while number of mappers
and number of replicas are positively correlated with memory usage. The num-
ber of nodes were moderately associated with memory usage while number
of mappers showed weak association. Both number of replicas and block size
showed very weak association.
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Network usage

Model predicted 86% of the network utilization correctly for five node cluster.
For three node cluster model predicted 100% of the network usage correctly.

Figure D.13 showed the mean network usage for three cluster sizes. When
we increased the number of nodes from four to five there was a decrease in
network traffic by 15.09%. when we decreased the number of nodes from four
to three, there was an increase in overall mean network traffic by 19.15%. If
we compare the change in network usage for increasing number of nodes from
three to five, the overall network traffic decreased by 31.36%.

Figure D.14 showed the standard deviation of the network usage for five,
four nodes and three nodes cluster. Results showed a gradual increase in overall
standard deviation of network usage when we reduced the cluster size from five
to three. There was a percentage increase of 19.60%.

Figure D.15 showed the boxplot of the results for network usage. Number of
replicas seem to have a distinguishing effect over the increase in network traffic
when we reduced the cluster size from five to three nodes. Another interesting
observation in all three cluster sizes was that when we used 3 number of replicas
instead of 2 number of replicas, the network traffic was greater than the overall
mean network traffic.

Figure 6.11 showed the k-means clustering of network usage data for the
five node, four nodes and three nodes Hadoop clusters. The two clusters re-
ceived equal number of instances. The results showed that less number of
replicas always resulted in mean network traffic less than overall mean net-
work usage while the number of replicas with value 3 resulted in mean net-
work usage higher than the overall mean network usage. For both clusters,
three node Hadoop cluster showed the highest mean network traffic, followed
by four nodes and five nodes. The between-group sum of squares was 9 times
greater than within-group sum of squares. This shows that the two cluster cen-
ters were not close to the overall mean and their boundaries were very distinct.
The individual values of each cluster were very close to each other.

The F-statistics values showed that four nodes Hadoop cluster was the high-
est distinguishing variable for clustering followed by three node and five node
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Hadoop clusters. The p-values also showed that the difference between the
means of two clusters is highly significant for the three experimental setups.

Figure 6.11: Result of k-mean clustering for network usage for cluster of differ-
ent sizes.

The correlation analysis, by using regression M5P tree for network usage data
of different cluster sizes is shown in Figure D.16. The outcome showed 18 linear
models with the correlation coefficient of 0.88. The results showed that num-
ber of replicas and number of nodes were highly correlated with network us-
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age. Linear models 2, 13, 14 and 15 covered higher number of observations and
lower RMSE value as compared to the rest of the models. The individual linear
models are shown in Section D.4.

The Pearson correlation coefficient for network usage showed that number of
nodes was negatively correlated with network usage while block size , number
of replicas and number of mappers were positively correlated with network
usage. The number of nodes in the cluster showed a strong association with
network usage while number of replicas showed moderately strong association.
Number of mappers showed weak relationship with network usage while block
size showed very weak association.

Execution time

For both three node and five node clusters, the model built on the basis of four
nodes cluster was able to predict 100% of the outcome correctly. All the rules
were able to generalize the resource utilization.

Figure D.17 showed that adding or removing nodes in existing four nodes
cluster can result an increase in the overall execution time of the job. Increas-
ing a node in the cluster resulted in 5.9% increase in the overall mean execution
time of Hadoop job. Similarly decreasing a node from four nodes to three nodes
also resulted in 3.2% increase in the overall mean execution time of job. The
results showed that number of replicas and number of mappers had the most
distinguishing effect on the mean execution time of the job. For five node clus-
ter, there was a gradual decrease in mean execution time with the increasing
number of mappers while keeping the number of replicas constant as shown in
Figure D.19. For four nodes cluster, the mean execution time increases gradually
with the increase in number of mappers. But further downsizing the cluster to
three nodes resulted in increasing the mean execution time as the number of
mappers increased from 5 to 15. But when the number of mappers further goes
above 15 the mean execution time dropped below overall execution time.

Figure D.18 showed the standard deviation of the execution time of cluster
of five nodes, four nodes and three nodes. There was a gradual increase in
the overall standard deviation of execution time. Downsizing the cluster from
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three nodes to five nodes resulted in 13.51% decrease in the overall standard
deviation in execution time.

Figure 6.12 showed the output of the k-means clustering performed for ex-
ecution times of the three Hadoop cluster setups. The cluster 1 received more
than 65% of the instances while cluster 2 received less than 35% of the instances.
For cluster 1, five node Hadoop cluster showed the highest mean execution
time. For cluster 2 five node cluster also showed the highest mean execution
time but it was much closer to three node cluster. The between-group sum of
squares is 25% less than withing-group sum of squares. This suggests that the
difference between the clusters means and overall mean was less and clusters
may not have very distinct boundaries.

The F-statistics results showed that five node cluster was the highest distin-
guishing variable for clustering followed by three node and four nodes clusters.
The p-value results also showed that the difference between the means of the
two clusters was statistically significant.

The correlation analysis by using regression tree, for execution time of
Hadoop jobs on different clusters, is shown in Figure D.20. Four linear regres-
sion models have been predicted by the tree with a correlation coefficient of
0.45. Number of nodes was the most important attributed associated with exe-
cution times. The linear models were quoted in Section D.5 and LM 1 and LM2
covered 66.67% of the observations with a low RMSE.

The Pearson correlation coefficient for the overall execution time of same job
over Hadoop cluster with different number of nodes showed that number of
nodes had positive correlation with execution time while all other attributes
showed negative correlation. The analysis of strength of relationship between
attributes and execution time showed that number of nodes was moderately
associated with execution time while number of replicas, number of mappers
and block size were very weakly associated with execution time.

Summary

From the results above we can summarize the following:

• The results showed that changing the size of cluster could greatly impact
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Figure 6.12: Result of k-mean clustering for execution time for cluster of differ-
ent sizes.

resource utilization and overall execution time of Hadoop jobs. Num-
ber of mappers can greatly impact overall CPU usage, memory usage of
Hadoop cluster and execution times of the Hadoop job. While different
values of replica can affect disk usage and network usage of the cluster.
Block size value had the highest impact over disk usage of Hadoop clus-
ter. These results are mostly aligned with our previous findings. The clus-
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Figure 6.13: Heat map representation of the overall performance of different
performance measures

tering results also showed very distinct performance differences between
the clusters of different sizes.

• We analyzed the statistical significance of these results by applying z-test.
We used z-test because the number of observations were greater than 30.
For all of our performance measures for example CPU usage, disk usage,
memory usage, network usage and execution time, the change was signif-
icant between cluster of all sizes. This significance test was run to record
the change between five nodes to four nodes, four nodes to three nodes
and five nodes to three nodes.
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• The correlation analysis, Pearson’s correlation coefficient and M5P tree,
was carried out for the experiments run on cluster size of five nodes, four
nodes and three nodes. The results showed that number of nodes in the
cluster was the attribute that was strongly correlated with the utilization
of different resources and execution time. In case of system resources like
CPU usage, disk usage, memory usage, and network usage the correlation
was negative which demonstrated that the cluster with less number of
nodes showed higher resources usage while cluster with high number of
nodes had lower resources utilization.

• Figure 6.13 showed the heat map representation of our performance mea-
sure in cluster of five nodes, four nodes and three nodes. The lighter color
represented the lowest among three and the darkest color represents the
highest of all. The results showed that lower cluster sizes always result
in higher execution time, CPU usage, disk usage, memory usage and net-
work usage, for example, the three node cluster in current set of experi-
ments. Thus, we concluded that when same job run over Hadoop clusters
with different number of nodes, it impacted the overall resource utiliza-
tion. Among other attributes, number of mappers and replica showed
moderate to weak association with our performance measures.

6.4.3 Impact of change in infrastructure

This section presented and discussed the results of impact of change in infras-
tructure on overall performance of the Hadoop job from dedicated single user
to virtual. These experiments were run on AWS EC2 [220] as to evaluate the
generalizability of the method. The overall execution time of the jobs had been
recorded for different Hadoop configuration parameters using two different
queries.

Figure E.1 showed the impact of configuration parameters and number of
order by columns on mean execution time. Mean execution time was always
higher than the overall mean execution time when the number of columns in
order by clause were three. While when the number of columns in order by
clause was two, the mean execution time was always less than the overall mean
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execution time. This mean execution time gradually decreased as the number
of mappers decreased. The change was more prominent when the number of
columns in order by clause were three.

Figure E.2 showed the impact of number of mappers and number of replicas
on mean execution time. Increasing the number of mappers results in gradual
decrease in mean execution time. A similar pattern can be observed when we
plotted the mean execution times while considering the number of mappers and
block size Figure E.3. Figure 6.14 shows that no of order by columns played a
vital role, higher number of columns in Order by clause always resulted in
higher mean execution times. The standard deviations plotted in Figure E.4
also showed a significant difference when the number of columns was three. The
boxplot shown in Figure E.5, suggests that mean and median execution times
of jobs was greater than the overall mean execution time when the number of
order by columns was higher and number of mappers ware less.

Figure E.6 and Figure E.7 showed the impact of mean and standard devi-
ation for block size, number of mappers and number of replicas on overall
mean execution time. The results showed that when the value of block size
was 256MB or less, the mean and standard deviation of the overall execution
time was significantly less. Similar pattern was highlighted in Figure E.8 and
Figure E.9, where the impact of block size higher than 256Mb was prominent.

Figure E.10 showed the difference in execution times for different Hadoop
job attributes between local cluster and AWS cluster. The overall mean execu-
tion time for the same job on AWS cluster was 1.5 times higher than running the
same job on our four nodes local cluster.

Figure E.11 showed the output of the k-means clustering performed on exe-
cution times of AWS-based Hadoop cluster. Cluster group 1 received 92.18% of
the instances while cluster group 2 only received only 7.8% of the instances. The
population standard deviation of cluster group 1 was 6.57 while the population
standard deviation of the cluster group 2 was 36.58. So the standard deviation
of cluster group 2 was 5.56% higher than cluster group 1. The between-group
sum of square was 6.7% higher than than within-group sum of squares. This
suggested that both of the clusters groups have distinct boundaries and the p-
value also shows that the difference between both of the clusters was statisti-
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Figure 6.14: Mean execution times showing impact of number of mappers,
number of replicas and columns in order by clause on AWS cluster

cally significant. The results suggested that higher columns in order by clause,
higher block size and very few number of mappers could result in higher exe-
cution times, thus resulting in similar behavior.

The decision tree model in Figure E.12, showed that number of columns in
order by clause was the most important feature contributing towards higher
execution time. The greater the number of columns, leads to higher execution
time. Other important attributes include number of mappers and block size.
Another important observation was that if the value of block size is less than



164CHAPTER 6. MODELLING HADOOP CLUSTER ENVIRONMENTAL CHANGES

256 and the number of mappers is less than or equal to 5, the execution time
remained high. These results were not aligned with our findings in our previous
decision tree model as shown in Figure B.3. This showed that the change in
infrastructure significantly affects the overall performance of the jobs.

The M5P regression tree for the execution time of Hadoop jobs on AWS clus-
ter was shown in Figure E.13. Five linear regression models were predicted by
the tree with a correlation coefficient of 0.75. Number of orderby columns was
the most important attribute contributing toward the overall execution time.
Other important attributes were number of mappers and Block size. The linear
models were quoted in E.1 and both LM2 and LM5 covered 50% of the observa-
tions with RMSE lower than other models.

The Pearson correlation coefficient showed that the number of order by
columns, block size and number of replicas were positively correlated with ex-
ecution time while number of mappers were negatively correlated with overall
execution time of job on AWS cluster. The analysis of strength of relationship
showed that number of order by columns was strongly correlated with execu-
tion time while number of mappers and block size are moderately correlated
with execution time. Number of replicas shown to be weakly related to overall
execution time.

6.5 Chapter summary

From the discussion in this chapter, we summarized the following:

• The results from our experiments showed that the change in experiment
setup, like dataset, or change in cluster environment, like cluster size, has
significantly affected Hadoop cluster resource utilization and overall ex-
ecution time. Different values of Hadoop parameters and other Hadoop
job attributes like size and content of dataset and number of nodes in the
cluster are significantly important. These Hadoop job attributes should be
chosen carefully while designing and configuring a Hadoop cluster for a
particular job as it can greatly impact the overall performance of the clus-
ter resources.
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• Our results also highlighted the importance of infrastructure. Same ex-
periments run on different infrastructure like AWS EC2 can impact the
overall performance of Hadoop job significantly. So, it will be appropriate
to also consider both hardware and software infrastructures while model-
ing and predicting resources utilization and performance of Hadoop jobs.
It also demonstrated the application of our technique to model and predict
performance and understand key factors.

• The results also demonstrated that the decision tree-based modeling of
the Hadoop jobs was very effective. The results showed that the models
have very good predictive ability. These prediction achieved good true
positive percentages for completely unseen data, resulting from signifi-
cant changes in the Hadoop job and cluster environment. Therefore, if
we incorporate different attributes of environmental changes like cluster
size, infrastructure into the model building process, it could make models
more robust.

• The results were analysed for correlations among different attributes of
Hadoop jobs and performance measures. The valuable insight into the sig-
nificantly contributing attributes was demonstrated and verified by using
different descriptive, statistical and regression modeling techniques. Most
of the time, the findings of each technique were aligned with the findings
of our decision tree prediction. So, while optimizing such system it is
better to use more than one technique. This is because, firstly, no one tech-
nique was efficient enough to understand the complex interaction among
different contributing factors towards resource and performance model-
ing of Hadoop jobs, secondly, using multiple techniques can validate the
prediction of decision tree-based models.
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Chapter 7

Conclusions and Future Work

This thesis proposed the method to optimize the performance of a Hadoop
cluster. This included the development of robust methodology to measure the
performance of our system by incorporating configuration parameters, dataset
structure and cluster size. This also included the use of machine learning based
technique to build model and predict resource utilization of a Hadoop job. This
thesis provided insight into commonly discussed configuration parameters of
Hadoop such as block size, replication factor and number of mappers. We used
different values of each of these parameters to see their impact on overall per-
formance of CPU, disk and memory. We also analyzed the impact of changing
the values of these parameters on network usage and overall execution time of
job. Setting up the correct value of these parameters require experience as we
have to consider the available system resources. We designed experiments not
only to analyze the impact of different values of configuration parameters but
also the query given. We used Hive queries, which is a data warehouse sys-
tem built on top of Hadoop to mine structured data. Our results showed that
apart from changing the parameters, changing the query, for same dataset, also
affects the overall performance of the system resources.

We analyzed results by using different statistical techniques in order to
model the behavior of Hadoop job in the context of system resources and execu-
tion time. But we find it difficult to draw the underlying patterns, correlations
and associations. In order to automate the process of modelling the relationship

167
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between variety of parameters and query structures, we used machine learning
approach. We used decision trees to model and predict the resource utiliza-
tion behavior of different Hadoop jobs. The trees showed robustness and good
generalizability when we used them to predict the resource utilization and ex-
ecution time of the jobs running with diverse datasets. Decision trees were also
able to predict the resource utilization behavior of clusters of different sizes.

While decision trees were used to predict the resource utilization when us-
ing a particular parameter value or query structure. This thesis further investi-
gated to see the relationship or correlation between factors (parameters, query
structure etc.) affecting Hadoop job. We used M5P tree algorithm, a classifica-
tion and regression tree, to see the functional relationship between these factors.
These Hadoop job attributes were also correlated by using Pearson’s correlation
coefficient. We performed k-mean clustering to see job characteristics showing
similar resource utilization and execution time behavior. This thesis provided
a comprehensive and robust method to model and predict the resource usage,
for complex interaction of different characteristics of Hadoop job, which can be
very helpful for system designers or administrators.

We investigated our research goal as described in Chapter 1. The overall aim
is to investigate the relationship between Hadoop job attributes and resource
utilization. We used different machine learning techniques such as decision
trees, M5P trees and k-mean clustering. Section 7.1 of this chapter highlight the
main conclusions of the thesis and Section 7.2 outline the possible future work
in this area. This chapter conclude by providing a summary of the research.

7.1 Conclusions

This section highlights the contributions from different chapters of this thesis.

Robust experimental methodology for Hadoop performance characterisa-
tion. Hazard and Operability analysis (HAZOP) was applied to iden-
tify potential factors that can hinder or affect the working of hardware,
running of experiments and collection of measurements. This process im-
proved the internal validity of our experiments. By applying HAZOP, we
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not only minimized the risk of biased measurements but also saved time
of looking for cause of problem whenever we encountered some devia-
tions from either normal working of cluster or running of jobs on cluster.
This practice supported our experimental methodology and made sure
that are reproducible and can be easily replicated by anyone in the future.
This also highlighted the important hazards and their possible mitigations
while designing Hadoop-based experiments.

Characterisation of the impact of Hadoop job attributes for the utilization
of different resources and execution time. Performance characterisa-
tion was done to see the factor affecting the performance of a system
or framework. Hadoop has a complex ecosystem with many of inter-
dependencies between its modules. Configuration parameters are defined
in XML files to control the behavior of different modules, thus contribut-
ing to its fault-tolerance and robustness during the execution of job for
example, the number of replicas and block size can affect the distribution
of data on cluster nodes. There are are more than 200 configuration pa-
rameters in Hadoop which can be tuned to optimize the performance of
this distributed framework. Tuning these parameters not only requires
good understanding of its internal structure but also experience and skill.
Also, these parameters can take more than one value, so tuning these pa-
rameters is a challenging task.

This thesis provided useful insight into important Hadoop configuration
features and their impact on CPU usage, disk usage, memory usage, net-
work usage and execution time. Our focus was not only to highlight the
impact of different values of the commonly discussed parameters on sys-
tem resources but also relationship between impact of query or input ex-
ecuted and dataset used. In order to make sure that our experimental re-
sults were repeatable and statistically valid, we run each set of experiment
30 times.

While exploring the impact of changing one parameter value we kept
other parameter values, cluster size, dataset and input constant. But this
did not highlight the inter-related impact of all possible combinations of
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configuration parameters on system resources and execution time. Not
only this, but also our experimental setups became more complicated as
we used six different query structures for each 32 different combinations
of configuration parameters. Therefore, we automated this process of pa-
rameter assignment and query assignment to a Hadoop job, and run a sin-
gle experiment with all possible combination of configuration parameters.
As each combination of parameter was run 30 times as mentioned before.
There were two advantages of this approach; firstly the results were sta-
tistically verified to be significant or not, secondly if a job showed some
abnormal behavior due to any hardware-based or software-based failures,
the overall effect on our data analysis is being minimized as we easily de-
tected any outlier in the data. This has not only made our methodology
repeatable, reliable and robust but also allowed us to collect CPU usage,
disk usage, memory usage, network usage and execution time data for all
of these experiments.

Modeling and predicting resource utilization of Hadoop jobs by using de-
cision trees. Once we collected resources utilization and execution time
data for all possible scenarios including different configuration parame-
ters and queries as part of our experiments to characterize the impact of
change in Hadoop job attributes. Therefore, it was impossible to manu-
ally draw some conclusions or generic models as the feature space was
huge. Therefore, we tried to find patterns by using boxplots and graphs
or some descriptive statistics. We used machine learning to automate this
process of data mining, data modeling and prediction. We used decision
trees (DT) algorithm to achieve this task. DT models are very robust, easy
to build and has the advantages of being able to handle variety of data and
missing values. For each of the resource such as CPU usage, a tree-based
model was built after discretizing the data into low and high resource
usage. The model was then tested for its generalizability and predictabil-
ity. Our results showed that the decision rules, extracted form models by
traversing the trees from leaf nods to root nodes, can effectively predict
or generalize over such situations like changing the dataset, number of
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nodes and change in infrastructure.

The decision tree models not only gave us good and generalizable models
but they also helped us to identify and predict the important patterns in
the data such as the attributes which affected the performance of Hadoop
jobs and resource utilization the most. These features included number of
mappers, number of columns selected, number of replicas and others.

Correlation of features affecting the Hadoop job performance. Decision trees
were used to model and predict the behavior of different configuration
parameters, query structure and performance measures. These models
were robust in handling such diverse feature space. But can these models
show how different job attributes are related? Can different experiments
be grouped into similar category on the basis of their performance mea-
sure? To answer these questions this thesis demonstrated the use of two
methods. Firstly, for different performance measures, to see the associ-
ation or correlation between configuration parameters, query structure,
dataset and number of nodes. We used M5P tree modeling technique
which is a classification and regression tree. This predicted linear relation-
ship between different characteristics of Hadoop job in a decision tree-like
fashion. Separate linear regression models are predicted for each path
from root to leaf node. We further analyzed the strength and direction of
relationship for each performance measure by using Pearson’s correlation
coefficient.

Secondly, we used k-means clustering technique to see whether a particu-
lar set of experiments showed similar behavior. We used k=2 to categorize
the experiments into two main groups. For some performance measures
the two groups showed very distinct boundaries. The Hadoop job charac-
teristics grouped into one cluster can be seen as closely related. The overall
difference for both between-group and within-group sum-of-squares for
clusters demonstrated the strength of correlation for attributes grouped
together. The F-statistics further highlighted the experiment with greatest
standard deviation to make clusters.
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7.2 Future Work

This section lists the potential directions for future work related to the research
in this thesis.

7.2.1 Including YARN parameters for performance optimiza-

tion of Hadoop

YARN is an important part of Hadoop ecosystem which handles the resource
scheduling of jobs. It also has a large number of configuration parameters. Also,
there are different scheduling strategies which can impact the performance of
Hadoop cluster. Also, the impact of these parameters in conjunction with differ-
ent parameters of HDFS and MapReduce will be interesting. Modeling and pre-
diction of performance of Hadoop jobs for such a huge parameter space along
with other characteristics of Hadoop jobs will be a challenging task.

7.2.2 Modeling performance for more datasets and query ele-

ments

There are numerous other query structures which need to be explored such as
different types of JOINS. Datasets also play important role in different perfor-
mance measure. It will be interesting to characterize datasets and include them
in modeling process.

7.2.3 Expanding discretization for more detailed analysis

Currently, we have discretized the performance of different resources into high
or low. We have used median-based discretization in this study. Another possi-
ble future direction can be to discretize data into more classes or trying different
criteria of discretization.
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7.2.4 Extending to multi-class optimization problem

We focused on analyzing individual performance measure with two possible
outcomes. So current modeling and prediction only comprises of binary classes.
But it would also be interesting to see how we can combine these different mea-
sures into one dataset and try to model and predict performance. This will give
rise to many different and diverse classes such as predicting a Hadoop job at-
tribute which will give us high CPU usage, low disk usage, low memory usage,
high network and high execution time.

7.3 Summary

In summary, this thesis has contributed to the field of optimization of Hadoop
performance for different configuration parameters, query structures, different
datasets and cluster sizes. We proposed: (a) a robust methodology to design ex-
periments for such systems, (b) characterization of the impact of changing con-
figuration parameters and job query on system resources and execution time,
(c) a machine learning approach to model and predict performance of Hadoop,
and (d) an in-depth analysis approach to analyze the relationship between dif-
ferent characteristics of Hadoop job optimization problem.
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Figure A.1: Box plot and average packets out data for 30 runs for different block
sizes

Figure A.2: Box plot and average CPU usage data for 30 runs for different block
sizes



177

Figure A.3: Box plot and average disk usage data for 30 runs for different block
sizes

Figure A.4: Box plot and average virtual memory data for 30 runs for different
block sizes
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Figure A.5: Box plot and average execution for 30 runs for different block sizes

Figure A.6: Box plot and average packets in data for 30 runs for different repli-
cation factors
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Figure A.7: Box plot and average packets out data for 30 runs for different repli-
cation factors

Figure A.8: Box plot and average CPU usage data for 30 runs for different repli-
cation factors
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Figure A.9: Box plot and average virtual memory usage data for 30 runs for
different replication factors

Figure A.10: Box plot and average disk usage data for 30 runs for different
replication factors



181

Figure A.11: Box plot and average packets in data for 30 runs for different num-
ber of mappers

Figure A.12: Box plot and average packets out data for 30 runs for different
number of mappers
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Figure A.13: Box plot and average CPU usage percentage data for 30 runs for
different number of mappers

Figure A.14: Box plot and average disk usage percentage data for 30 runs for
different number of mappers
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Figure A.15: Box plot and average virtual memory usage data for 30 runs for
different number of mappers

Figure A.16: Box plot and average for packets in data for 30 runs for different
queries
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Figure A.17: Box plot and average packets out data for 30 runs for different
queries

Figure A.18: Box plot and average disk usage percentage data for 30 runs for
different queries
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Figure A.19: Box plot and average virtual memory usage data for 30 runs for
different queries

Figure A.20: Box plot and average execution time for 30 runs for different
queries
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Figure A.21: Box plot and average for packets in data for 30 runs for different
aggregate functions in queries

Figure A.22: Box plot and average packets out data for 30 runs for different
aggregate functions in queries



187

Figure A.23: Box plot and average disk usage percentage data for 30 runs for
different aggregate functions in queries

Figure A.24: Box plot and average virtual memory usage data for 30 runs for
different aggregate functions in queries
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Figure B.1: Decision tree for memory usage
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Figure B.2: Decision tree for network usage
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Figure B.3: Decision tree for execution time
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Figure B.4: Impact of percentage of columns selected, number of mappers and
block size on mean CPU usage.

Figure B.5: Impact of percentage of columns selected, number of mappers and
block size on mean CPU usage.
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Figure B.6: Impact of query structure elements and block size on mean CPU
usage.

Figure B.7: Impact of query structure elements and number of mappers on mean
CPU usage.
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Figure B.8: Impact of query structure elements and number of replicas on mean
CPU usage.

Figure B.9: Impact of different query structure elements on mean CPU usage.
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Figure B.10: Decision tree for disk usage
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Figure B.11: Impact of different configuration parameters on mean disk usage.

Figure B.12: Impact of different query structure elements and block size on
mean disk usage.
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Figure B.13: Impact of different query structure elements and number of map-
pers on mean disk usage.

Figure B.14: Impact of different query structure elements and number of repli-
cas on mean disk usage.
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Figure B.15: Impact of different query structure elements on mean disk usage.

Figure B.16: Impact of percentage of columns selected, number of mappers and
block size on mean memory usage.
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Figure B.17: Impact of percentage of columns selected, number of mappers and
number of replicas on mean memory usage.

Figure B.18: Impact of query structure elements and block size on mean mem-
ory usage.
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Figure B.19: Impact of query structure elements and number of mappers on
mean memory usage.

Figure B.20: Impact of query structure elements and number of replicas on
mean memory usage.
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Figure B.21: Impact of different query structure elements on mean memory us-
age.

Figure B.22: Impact of percentage of columns selected, number of replicas and
number of mappers on mean network usage.
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Figure B.23: Impact of Number of columns in order by clause, number of repli-
cas and number of mappers on mean network usage.

Figure B.24: Impact of Hadoop configuration parameters on mean network us-
age.
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Figure B.25: Impact of percentage of columns selected for group by clause, num-
ber of replicas and number of mappers on mean execution time.

Figure B.26: Impact of percentage of columns selected for order by clause, num-
ber of replicas and number of mappers on mean execution time.
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Figure B.27: Impact of Hadoop configuration parameters for group by clause
on mean execution time.

Figure B.28: Impact of Hadoop configuration parameters for order by clause on
mean execution time.
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Figure B.29: Impact of query elements and block size for group by clause on
mean execution time.

Figure B.30: Impact of query elements and block size for order by clause on
mean execution time.
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Figure B.31: Impact of query elements and number of mappers for order by
clause on mean execution time.

Figure B.32: Impact of query elements and number of replicas for order by
clause on mean execution time.
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Figure B.33: Impact of query elements and number of mappers for group by
clause on mean execution time.

Figure B.34: Impact of different query structure elements on mean execution
time.
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Appendix C

Modelling and prediction of
resource utilization of Hadoop
cluster for different datasets

C.1 CPU usage

Figure C.1: Impact of number of mappers and block size on CPU usage for
different datasets.
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Figure C.2: Impact of number of mappers, number of replicas and block size on
CPU usage for different datasets.

Figure C.3: Impact of number of replicas and block size on CPU usage for dif-
ferent datasets.
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Figure C.4: Impact of number of mappers and number of replicas on CPU usage
for different datasets.

Figure C.5: Mean CPU usage for different dataset.
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Figure C.6: Standard deviation of CPU usage for different dataset.

C.1.1 Decision tree rules

1. B <= 256MB, R <= 2, M > 15 and N > 0.5, only Airbnb showed 24.04%
of the instances were true.

2. B <= 256MB, R <= 2, M > 15, N > 0.3 and O > 2, 34.46% of the instances
were true in Airbnb dataset.

C.1.2 CPU usage linear regression models from M5P tree for

different datasets

LM num: 1

usage =

-0.0181 * No_of_columns

- 0 * Block_size

+ 0.0109 * Replica

+ 0.0004 * Mappers
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+ 0.1795

LM num: 2

usage =

-0.0035 * No_of_columns

- 0 * Block_size

+ 0.0109 * Replica

+ 0.0007 * Mappers

+ 0.4524

LM num: 3

usage =

-0.0057 * No_of_columns

- 0.0004 * Block_size

+ 0.0109 * Replica

+ 0.0257 * Mappers

+ 0.0109

LM num: 4

usage =

-0.0057 * No_of_columns

- 0.0036 * Block_size

+ 0.0109 * Replica

+ 0.0257 * Mappers

+ 0.9981

LM num: 5

usage =

-0.0057 * No_of_columns

- 0 * Block_size

+ 0.0109 * Replica

+ 0.0069 * Mappers

+ 0.0283
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LM num: 6

usage =

-0.0004 * No_of_columns

- 0 * Block_size

+ 0.0093 * Replica

+ 0.0004 * Mappers

- 0.0123

LM num: 7

usage =

0.0007 * No_of_columns

- 0 * Block_size

+ 0.0247 * Replica

+ 0.0173 * Mappers

- 0.2524

LM num: 8

usage =

0.0007 * No_of_columns

- 0 * Block_size

+ 0.0247 * Replica

+ 0.0829 * Mappers

- 0.8406

LM num: 9

usage =

0.0068 * No_of_columns

+ 0.0001 * Block_size

+ 0.0093 * Replica

+ 0.0028 * Mappers

+ 0.7194
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LM num: 10

usage =

0.0068 * No_of_columns

- 0.0007 * Block_size

+ 0.0093 * Replica

+ 0.0028 * Mappers

+ 0.4623

LM num: 11

usage =

0.0068 * No_of_columns

- 0.0001 * Block_size

+ 0.0093 * Replica

+ 0.0028 * Mappers

+ 0.815

LM num: 12

usage =

0.0057 * No_of_columns

- 0 * Block_size

+ 0.0093 * Replica

+ 0.0028 * Mappers

+ 0.8063

LM num: 13

usage =

0.0015 * No_of_columns

- 0 * Block_size

+ 0.0093 * Replica

+ 0.0028 * Mappers

+ 0.8957

LM num: 14
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usage =

0.0008 * No_of_columns

- 0 * Block_size

+ 0.0093 * Replica

+ 0.0012 * Mappers

+ 0.9365

C.2 Disk usage

Figure C.8: Impact of block size and number of replicas on disk usage for dif-
ferent datasets.
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Figure C.9: Impact of block size and number of mappers on disk usage for dif-
ferent datasets.

Figure C.10: Impact of Hadoop configuration parameters on disk usage for dif-
ferent datasets.
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Figure C.11: Mean disk usage for different dataset.

Figure C.12: Standard deviations of disk usage for different dataset.
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C.2.1 Decision tree rules

1. B > 512, R <= 2 and O > 2, which is 14.05% for NOAA dataset, 35.15%
for Airbnb dataset and 43.65% for NES dataset.

2. B <= 512, R <= 2, M <= 10 and N > 0.5, which is 17.06% for NOAA
dataset, 19.33% for Airbnb dataset and 12.47% for NES dataset.

3. B <= 512, R <= 2, M > 10, N > 0.5 and O > 2, which is 14.85% for NOAA
dataset and 6.23% for NES dataset.

4. B <= 128, R > 2, M > 10 <= 15 and O > 2, which is 12.04% for NOAA
dataset and 2.92% for Airbnb dataset.

5. B > 128 <= 256, R > 2 and M > 5 <= 10, which is 14.25% for NOAA
dataset, 11.71% for Airbnb dataset and 12.47% for NES dataset.

6. B > 128 <= 256, R > 2, M > 15, N > 0.5 and O > 2, which is 17.06% for
NOAA dataset, 13.47% for Airbnb dataset and 12.68% for NES dataset.

For low disk usage,

1. B <= 128, R > 2, M <= 10 and O > 2, which is 6.49% for NOAA dataset,
13.40% for Airbnb dataset and 12.52% for NES dataset.

2. B <= 128, R > 2, M > 15 and O > 2, which is 12.31% for NES dataset.

3. B > 128, R > 2 and M <= 5, which is 5.84% for NOAA dataset, 13.40% for
Airbnb dataset and 18.78% for NES dataset.

C.2.2 Disk usage linear regression models from M5P tree for

different datasets

LM num: 1

usage =

0.0048 * No_of _columns

+ 0.0002 * Block_Size
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+ 0.008 * Replica

- 0.0013 * Mappers

- 0.0613

LM num: 2

usage =

0.0058 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

+ 0.0142 * Mappers

- 0.1719

LM num: 3

usage =

0.0907 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

- 0.0459 * Mappers

+ 0.0602

LM num: 4

usage =

0.0029 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

- 0.0017 * Mappers

- 0.0393

LM num: 5

usage =

-0.0005 * No_of _columns

+ 0.0001 * Block_Size

+ 0.008 * Replica
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- 0.0008 * Mappers

- 0.0142

LM num: 6

usage =

-0.0023 * No_of _columns

+ 0.0005 * Block_Size

+ 0.008 * Replica

+ 0.0015 * Mappers

- 0.048

LM num: 7

usage =

-0.0296 * No_of _columns

+ 0.0005 * Block_Size

+ 0.008 * Replica

+ 0.0015 * Mappers

+ 0.5242

LM num: 8

usage =

0.0083 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

+ 0.0121 * Mappers

- 0.1255

LM num: 9

usage =

0.0083 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

- 0.0153 * Mappers
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+ 0.7335

LM num: 10

usage =

0.0171 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

+ 0.006 * Mappers

+ 0.6196

LM num: 11

usage =

-0.0043 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

+ 0.004 * Mappers

+ 0.0406

LM num: 12

usage =

-0.0038 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

- 0.0069 * Mappers

+ 0.9792

LM num: 13

usage =

-0.0065 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

- 0.0781 * Mappers

+ 1.9686
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LM num: 14

usage =

-0.0102 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

+ 0.1029 * Mappers

- 1.3092

LM num: 15

usage =

0.0019 * No_of _columns

+ 0.0002 * Block_Size

+ 0.008 * Replica

- 0.004 * Mappers

+ 0.9162

LM num: 16

usage =

-0 * No_of _columns

+ 0 * Block_Size

+ 0.0126 * Replica

- 0.0057 * Mappers

+ 0.972

LM num: 17

usage =

-0 * No_of _columns

+ 0 * Block_Size

+ 0.0126 * Replica

- 0.0057 * Mappers

+ 0.4634
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LM num: 18

usage =

-0 * No_of _columns

+ 0 * Block_Size

+ 0.0126 * Replica

+ 0.0582 * Mappers

+ 0.2091

LM num: 19

usage =

-0 * No_of _columns

+ 0 * Block_Size

+ 0.0126 * Replica

+ 0.0027 * Mappers

+ 0.8828

LM num: 20

usage =

-0 * No_of _columns

+ 0 * Block_Size

- 0.0048 * Replica

+ 0.0006 * Mappers

+ 0.9778

LM num: 21

usage =

-0 * No_of _columns

+ 0 * Block_Size

- 0.0048 * Replica

+ 0.0048 * Mappers

+ 0.5408

LM num: 22
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usage =

-0 * No_of _columns

+ 0 * Block_Size

- 0.0048 * Replica

- 0.006 * Mappers

+ 1.0383

LM num: 23

usage =

0.0035 * No_of _columns

- 0.0001 * Block_Size

+ 0.0106 * Replica

- 0.0012 * Mappers

+ 0.8138

LM num: 24

usage =

0.0035 * No_of _columns

- 0.0001 * Block_Size

+ 0.0106 * Replica

- 0.0284 * Mappers

+ 0.6653

LM num: 25

usage =

0.0035 * No_of _columns

- 0.0001 * Block_Size

+ 0.0106 * Replica

+ 0.0139 * Mappers

+ 0.5244

LM num: 26

usage =
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0.0035 * No_of _columns

- 0.0001 * Block_Size

+ 0.0106 * Replica

- 0.0012 * Mappers

+ 0.1313

LM num: 27

usage =

0.0035 * No_of _columns

+ 0 * Block_Size

+ 0.0106 * Replica

- 0.0033 * Mappers

+ 0.8988

LM num: 28

usage =

0.0035 * No_of _columns

+ 0.0015 * Block_Size

+ 0.0106 * Replica

- 0.0066 * Mappers

- 0.5416

LM num: 29

usage =

-0.0063 * No_of _columns

- 0.0002 * Block_Size

+ 0.0106 * Replica

- 0.0003 * Mappers

+ 1.0626

LM num: 30

usage =

-0.0063 * No_of _columns
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+ 0.0015 * Block_Size

+ 0.0106 * Replica

- 0.0003 * Mappers

- 0.4644

LM num: 31

usage =

-0.0003 * No_of _columns

- 0 * Block_Size

+ 0.0106 * Replica

- 0.0028 * Mappers

+ 0.9859

LM num: 32

usage =

-0.0008 * No_of _columns

+ 0.0001 * Block_Size

+ 0.0106 * Replica

+ 0.0928 * Mappers

- 1.0039

LM num: 33

usage =

-0.0008 * No_of _columns

+ 0.0001 * Block_Size

+ 0.0106 * Replica

+ 0.0076 * Mappers

+ 0.7005

LM num: 34

usage =

-0.0008 * No_of _columns

- 0.0002 * Block_Size
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+ 0.0106 * Replica

- 0.0183 * Mappers

+ 1.3358

LM num: 35

usage =

-0.0008 * No_of _columns

- 0.0002 * Block_Size

+ 0.0106 * Replica

- 0.14 * Mappers

+ 3.1619

C.3 Memory usage

Figure C.14: Mean memory usage for different datasets.
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Figure C.15: Standard deviations of memory usage for different datasets.

Figure C.16: Impact of Hadoop configuration parameters on memory usage for
different datasets.
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C.3.1 Decision tree rules

For low memory usage,

1. B <= 128 MB, R > 2 and M <= 5 which is 2.71% for NOAA, 2.92% for
Airbnb dataset and 5.6% for NES dataset.

2. B > 128 <= 256 MB, R <= 2, M > 10 <= 15 N > 3 and O > 1 that makes
11.48% for NOAA, 12.94% for Airbnb and 20.62% for NES dataset.

3. B > 128 <= 512MB and M > 5 <= 10 that comprises of 38% NOAA,
35.49% Airbnb and 38.33% of NES of the total number of instances.

4. B > 512 MB, R <= 2 and M > 5 <= 10 which is 7.09% for NOAA, 10.85%
for Airbnb and 6.6% for NES dataset.

High memory usage,

1. M > 10 <= 15, N > 3 and R > 2 that is 21.62% for NOAA, 23.07% for
Airbnb dataset and 29.11% for NES dataset.

2. B <= 128 MB, N > 3, O > 1, R <= 2 and M> 10 <= 15 which is 6.8% for
NOAA and 5.19% for Airbnb.

3. B> 512 MB, R> 2 and M> 5 <= 10 which is NOAA’s 4.78% and Airbnb’s
11.64%.

4. B <= 128MB R > 2 and M > 5 <= 10 and O > 1 that is 7.48% for NOAA
and 7.27% for Airbnb dataset.

C.3.2 Memory usage linear regression models from M5P tree

for different datasets

LM num: 1

usage =

-0.0301 * No_of _columns

- 0 * Block_Size



232 APPENDIX C. MODELING CHANGE OF DATASET

- 0.3569 * Replica

+ 0.0003 * Mappers

+ 1.7823

LM num: 2

usage =

0.0151 * No_of _columns

- 0 * Block_Size

- 0.0068 * Replica

+ 0.0003 * Mappers

+ 0.1232

LM num: 3

usage =

0.0656 * No_of _columns

- 0 * Block_Size

- 0.0068 * Replica

+ 0.0003 * Mappers

+ 0.0262

LM num: 4

usage =

-0.0078 * No_of _columns

- 0 * Block_Size

- 0.0068 * Replica

+ 0.0003 * Mappers

+ 0.289

LM num: 5

usage =

-0.0479 * No_of _columns

- 0 * Block_Size

- 0.0068 * Replica
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+ 0.0003 * Mappers

+ 0.615

LM num: 6

usage =

0.0052 * No_of _columns

- 0 * Block_Size

- 0.0068 * Replica

+ 0.0003 * Mappers

+ 0.4364

LM num: 7

usage =

-0.0161 * No_of _columns

- 0 * Block_Size

- 0.0068 * Replica

+ 0.0003 * Mappers

+ 0.4219

LM num: 8

usage =

-0.0001 * No_of _columns

- 0.001 * Block_Size

+ 0.0019 * Replica

+ 0.0004 * Mappers

+ 0.6844

LM num: 9

usage =

-0.0004 * No_of _columns

+ 0.0006 * Block_Size

+ 0.0479 * Replica

- 0.0147 * Mappers
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+ 0.0671

LM num: 10

usage =

-0.0004 * No_of _columns

+ 0.0006 * Block_Size

+ 0.0479 * Replica

- 0.1058 * Mappers

+ 1.4332

LM num: 11

usage =

-0.0004 * No_of _columns

+ 0.0001 * Block_Size

+ 0.0479 * Replica

+ 0.0531 * Mappers

- 0.2473

LM num: 12

usage =

-0.0004 * No_of _columns

+ 0.0001 * Block_Size

+ 0.0479 * Replica

- 0.064 * Mappers

+ 1.2272

LM num: 13

usage =

0.0003 * No_of _columns

+ 0 * Block_Size

+ 0.1408 * Replica

+ 0.0013 * Mappers

+ 0.0704
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LM num: 14

usage =

-0.0331 * No_of _columns

+ 0.0001 * Block_Size

- 0.0391 * Replica

+ 0.0013 * Mappers

+ 1.1237

LM num: 15

usage =

-0.0044 * No_of _columns

+ 0.0001 * Block_Size

- 0.0391 * Replica

+ 0.0013 * Mappers

+ 0.858

LM num: 16

usage =

0.0297 * No_of _columns

- 0.0001 * Block_Size

- 0.0391 * Replica

+ 0.0013 * Mappers

+ 0.197

LM num: 17

usage =

-0.0314 * No_of _columns

- 0.0001 * Block_Size

- 0.0391 * Replica

+ 0.0013 * Mappers

+ 0.9769
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LM num: 18

usage =

0.0128 * No_of _columns

+ 0 * Block_Size

- 0.0969 * Replica

+ 0.0013 * Mappers

+ 0.7303

LM num: 19

usage =

-0.0208 * No_of _columns

+ 0.0001 * Block_Size

+ 0.0014 * Replica

+ 0.0003 * Mappers

+ 0.6947

LM num: 20

usage =

0.0006 * No_of _columns

+ 0.0001 * Block_Size

+ 0.027 * Replica

+ 0.0003 * Mappers

+ 0.3936

LM num: 21

usage =

0.0006 * No_of _columns

+ 0.0001 * Block_Size

+ 0.027 * Replica

+ 0.0003 * Mappers

+ 0.6449

LM num: 22



C.4. NETWORK USAGE 237

usage =

0.0006 * No_of _columns

+ 0 * Block_Size

+ 0.027 * Replica

+ 0.0003 * Mappers

+ 0.7387

C.4 Network usage

Figure C.18: Mean network usage for different datasets
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Figure C.19: Standard deviations of network usage for different datasets

Figure C.20: Impact of Hadoop configuration parameters on network usage for
different datasets.
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C.4.1 Decision tree rules

For low network usage,

1. B > 512, R <= 2, M <= 5, N 0.53, which is 12.5% for both NOAA and
Airbnb datasets, and 12.29% for NES dataset.

2. B <= 256, R <= 2, M <= 5, N > 0.5 and O > 1, which is also 12.5% for
both NOAA and Airbnb datasets, and 12.29% for NES dataset.

3. B > 128, R <= 2, M > 5 <= 10, N > 0.5 and O > 2, which is 48.95% for
NOAA dataset, 50% for Airbnb dataset and 48.95% for NES dataset.

C.4.2 Network usage linear regression models from M5P tree

for different datasets

LM num: 1

Usage =

-0.0003 * No_of _columns

- 0.0014 * Block_Size

+ 0.0061 * Replica

+ 0.0365 * Mappers

+ 0.1698

LM num: 2

Usage =

-0.0003 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

- 0.0504 * Mappers

+ 0.6466

LM num: 3

Usage =
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-0.0003 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

+ 0.0008 * Mappers

+ 0.0574

LM num: 4

Usage =

-0.0003 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

- 0.0166 * Mappers

+ 0.6898

LM num: 5

Usage =

-0.0004 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

+ 0.004 * Mappers

- 0.0152

LM num: 6

Usage =

-0.0034 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

+ 0.0008 * Mappers

+ 0.3849

LM num: 7

Usage =

-0.0034 * No_of _columns
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+ 0.0004 * Block_Size

+ 0.0061 * Replica

+ 0.0008 * Mappers

+ 0.0385

LM num: 8

Usage =

-0.0034 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

+ 0.0008 * Mappers

+ 0.0511

LM num: 9

Usage =

-0.0004 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

+ 0.0003 * Mappers

+ 0.9767

LM num: 10

Usage =

0.0147 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

+ 0.0003 * Mappers

+ 0.6231

LM num: 11

Usage =

0.0345 * No_of _columns

- 0.0001 * Block_Size
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+ 0.0061 * Replica

+ 0.0003 * Mappers

+ 0.0709

LM num: 12

Usage =

0.0004 * No_of _columns

- 0 * Block_Size

+ 0.0061 * Replica

+ 0.0001 * Mappers

+ 0.9707

C.5 Execution time

Figure C.22: Mean execution time for different datasets
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Figure C.23: Standard deviations of execution time for different datasets
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Figure C.24: Impact of Hadoop configuration parameters on overall execution
time for different datasets.
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Figure C.25: Impact of number of mappers and block size on overall execution
time for different datasets.

Figure C.26: Impact of number of mappers and number of replicas on overall
execution time for different datasets.
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C.5.1 Decision tree rules

For high execution time,

1. N > 3 and M > 15, which is 11.70% for NOAA dataset, 21.49% for Airbnb
dataset and 32.06% for NES dataset of the total instances.

2. N > 3, M > 10 <= 15 and O > 1, which is 53.74% for NOAA, 49.34% for
Airbnb dataset and 53.95% for NES dataset.

C.5.2 Execution time linear regression models from M5P tree

for different datasets

LM num: 1

usage =

-0.0001 * No_of _columns

- 0.0281 * Replica

- 0.0001 * Mappers

+ 0.8446

LM num: 2

usage =

-0.0001 * No_of _columns

- 0.0005 * Replica

- 0.0195 * Mappers

+ 0.8344

LM num: 3

usage =

-0.0001 * No_of _columns

- 0.0011 * Replica

- 0.0011 * Mappers

+ 0.2594
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Appendix D

Modelling and prediction of
resource utilization of Hadoop
cluster for different cluster sizes

Figure D.1: Mean CPU percentage usage for different cluster sizes

253
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Figure D.2: Standard deviation of CPU usage for different cluster sizes

Figure D.3: Box plot for CPU usage for different environmental changes



255

Figure D.4: M5P regression tree of CPU usage for changing cluster sizes
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D.1 CPU usage linear regression models from M5P

tree for different cluster sizes

LM num: 2

Usage =

-0.0089 * Nodes

+ 0.002 * Replica

+ 0.0009 * Mappers

+ 1.0038

LM num: 3

Usage =

-0.0103 * Nodes

+ 0 * Block_Size

+ 0.0132 * Replica

+ 0.0055 * Mappers

- 0.0667

LM num: 4

Usage =

-0.0103 * Nodes

+ 0 * Block_Size

+ 0.0493 * Replica

+ 0.0055 * Mappers

+ 0.0434

LM num: 5

Usage =

-0.0103 * Nodes

+ 0 * Block_Size

+ 0.0493 * Replica

+ 0.0055 * Mappers
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+ 0.2318

LM num: 6

Usage =

-0.0103 * Nodes

+ 0 * Block_Size

+ 0.0493 * Replica

+ 0.0055 * Mappers

+ 0.7636

LM num: 7

Usage =

-0.0103 * Nodes

+ 0.0036 * Replica

+ 0.0016 * Mappers

+ 0.0154

Figure D.5: Mean disk percentage usage for different cluster sizes
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Figure D.6: Standard deviation of disk usage for different cluster sizes

Figure D.7: Box plot for disk usage for different cluster sizes
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Figure D.8: M5P regression tree of disk usage for changing cluster sizes
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D.2 Disk usage linear regression models from M5P

tree for different cluster sizes

LM num: 2

usage =

0.0037 * Nodes

+ 0.0001 * Block_Size

+ 0.0161 * Replica

+ 0.0002 * Mappers

- 0.057

LM num: 3

usage =

0.0037 * Nodes

+ 0.0005 * Block_Size

+ 0.0161 * Replica

+ 0.0018 * Mappers

- 0.1158

LM num: 4

usage =

0.0037 * Nodes

+ 0.0006 * Block_Size

+ 0.0161 * Replica

- 0.0014 * Mappers

- 0.0567

LM num: 5

usage =

0.0037 * Nodes

+ 0.0006 * Block_Size

+ 0.0161 * Replica
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- 0.0634 * Mappers

+ 1.1719

LM num: 6

usage =

0.0037 * Nodes

+ 0.0006 * Block_Size

+ 0.0161 * Replica

- 0.0073 * Mappers

+ 0.8178

LM num: 7

usage =

0.0037 * Nodes

+ 0.0006 * Block_Size

+ 0.0161 * Replica

- 0.012 * Mappers

+ 0.4432

LM num: 8

usage =

0.0037 * Nodes

- 0 * Block_Size

+ 0.0131 * Replica

+ 0.0041 * Mappers

+ 0.8968

LM num: 9

usage =

0.0037 * Nodes

- 0 * Block_Size

+ 0.0131 * Replica

+ 0.083 * Mappers
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+ 0.1073

LM num: 10

usage =

0.0037 * Nodes

+ 0.001 * Block_Size

+ 0.0131 * Replica

- 0.0009 * Mappers

- 0.1641

LM num: 11

usage =

0.0037 * Nodes

+ 0 * Block_Size

+ 0.0131 * Replica

- 0.0002 * Mappers

+ 0.9271

LM num: 12

usage =

0.0037 * Nodes

+ 0 * Block_Size

+ 0.0015 * Replica

+ 0.975
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Figure D.9: Mean memory usage for different cluster sizes

Figure D.10: Standard deviation of memory usage for different cluster sizes
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Figure D.11: Box plot for memory usage for different cluster sizes
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Figure D.12: M5P regression tree of memory usage for changing cluster sizes
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D.3 memory usage linear regression models from

M5P tree for different cluster sizes

LM num: 1

usage =

0.0001 * Mappers

+ 0

LM num: 2

usage =

-0.0038 * Nodes

- 0 * Block_Size

- 0.056 * Replica

+ 0.0077 * Mappers

+ 0.9525

LM num: 3

usage =

-0.0038 * Nodes

- 0 * Block_Size

- 0.056 * Replica

+ 0.0729 * Mappers

+ 0.0163

LM num: 4

usage =

-0.0038 * Nodes

+ 0 * Block_Size

+ 0.0141 * Replica

+ 0.0034 * Mappers

- 0.0324
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LM num: 5

usage =

-0.0038 * Nodes

+ 0.0002 * Block_Size

+ 0.0141 * Replica

+ 0.0034 * Mappers

- 0.0536

LM num: 6

usage =

-0.0038 * Nodes

+ 0.0005 * Block_Size

+ 0.1322 * Replica

+ 0.0034 * Mappers

- 0.384

LM num: 7

usage =

-0.0038 * Nodes

+ 0.0001 * Block_Size

+ 0.0649 * Replica

+ 0.0316 * Mappers

- 0.0668

LM num: 8

usage =

-0.0038 * Nodes

+ 0.0002 * Mappers

+ 0.0172
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Figure D.13: Mean network usage for different cluster sizes

Figure D.14: Standard deviation of network usage for different cluster sizes
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Figure D.15: Box plot for network usage for different cluster sizes
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Figure D.16: M5P regression tree of network usage for changing cluster sizes
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D.4 Network usage linear regression models from

M5P tree for different cluster sizes

LM num: 1

usage =

-0.0107 * Node

+ 0.0001 * Block_Size

+ 0.0023 * Replica

+ 0.0009 * Mappers

+ 0.8472

LM num: 2

usage =

-0.0107 * Node

- 0 * Block_Size

+ 0.0023 * Replica

+ 0.0006 * Mappers

+ 1.0166

LM num: 3

usage =

-0.0107 * Node

+ 0.0001 * Block_Size

+ 0.0023 * Replica

+ 0.0024 * Mappers

+ 0.1614

LM num: 4

usage =

-0.0107 * Node

+ 0.0002 * Block_Size

+ 0.0023 * Replica



272 APPENDIX D. MODELING CHANGE IN CLUSTER SIZE

+ 0.0024 * Mappers

+ 0.476

LM num: 5

usage =

-0.0107 * Node

- 0 * Block_Size

+ 0.0023 * Replica

+ 0.0024 * Mappers

+ 0.1275

LM num: 6

usage =

-0.0107 * Node

- 0 * Block_Size

+ 0.0023 * Replica

+ 0.0018 * Mappers

+ 0.8353

LM num: 7

usage =

-0.0107 * Node

+ 0 * Block_Size

+ 0.0023 * Replica

+ 0.0018 * Mappers

+ 0.3215

LM num: 8

usage =

-0.0107 * Node

+ 0 * Block_Size

+ 0.0023 * Replica

+ 0.0018 * Mappers
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+ 0.5721

LM num: 9

usage =

-0.0107 * Node

- 0 * Block_Size

+ 0.0023 * Replica

- 0.0008 * Mappers

+ 0.8591

LM num: 10

usage =

-0.0107 * Node

- 0 * Block_Size

+ 0.0023 * Replica

- 0.0008 * Mappers

+ 0.9814

LM num: 11

usage =

-0.0107 * Node

- 0.0001 * Block_Size

+ 0.0023 * Replica

- 0.0008 * Mappers

+ 0.8568

LM num: 12

usage =

-0.0107 * Node

- 0.0001 * Block_Size

+ 0.0023 * Replica

- 0.0008 * Mappers

+ 0.563
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LM num: 13

usage =

-0.0086 * Node

- 0 * Block_Size

+ 0.0023 * Replica

+ 0.0003 * Mappers

+ 0.0519

LM num: 14

usage =

-0.0019 * Node

+ 0.0023 * Replica

+ 0.0001 * Mappers

+ 0.9986

LM num: 15

usage =

-0.0027 * Node

+ 0.0023 * Replica

+ 0.0007 * Mappers

+ 0.9929

LM num: 16

usage =

-0.0027 * Node

+ 0.0023 * Replica

+ 0.0009 * Mappers

+ 0.9428

LM num: 17

usage =

-0.0027 * Node
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+ 0.0003 * Block_Size

+ 0.0023 * Replica

+ 0.0009 * Mappers

+ 0.485

LM num: 18

usage =

-0.0027 * Node

+ 0.0023 * Replica

- 0.0023 * Mappers

+ 1.0249

Figure D.17: Mean execution time for different cluster sizes
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Figure D.18: Standard deviation of execution time for different cluster sizes

Figure D.19: Box plot for job execution time for different cluster sizes
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Figure D.20: M5P regression tree of overall time for changing cluster sizes
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D.5 Execution time linear regression models from

M5P tree for different cluster sizes

LM num: 1

usage =

-0.001 * Nodes

- 0 * Block Size

+ 0.0001 * Mappers

+ 1.0023

LM num: 2

usage =

-0.001 * Nodes

- 0.0003 * Replica

+ 0.0004 * Mappers

+ 0.7535

LM num: 3

usage =

-0.001 * Nodes

- 0.0145 * Replica

+ 0.0048 * Mappers

+ 0.9391

LM num: 4

usage =

0 * Mappers

+ 0.999



Appendix E

Modelling and prediction of
performance of Hadoop cluster for
different infrastructure

Figure E.1: Mean of execution times showing impact of number of mappers,
number of replicas, block size and columns in order by clause on AWS cluster
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Figure E.2: Mean execution times showing impact of number of mappers and
number of replicas on AWS cluster

Figure E.3: Mean execution times showing impact of number of mappers and
block size on AWS cluster
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Figure E.4: Standard deviations of execution times showing impact of number
of mappers, number of replicas and orderby clause on AWS cluster

Figure E.5: Boxplot for execution time on AWS cluster
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Figure E.6: Mean execution times showing impact of number of mappers, num-
ber of replicas and block size on AWS cluster

Figure E.7: Standard deviation of execution times showing impact of number of
mappers, number of replicas and block size on AWS cluster
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Figure E.8: Mean execution times showing impact of number of replicas and
block size on AWS cluster

Figure E.9: Standard deviation of execution times showing impact of number of
replicas and block size on AWS cluster
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Figure E.10: Impact of infrastructure change on the performance of Hadoop jobs

Figure E.11: k-mean clustering for execution time on AWS cluster
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Figure E.12: Decision tree for the performance of Hadoop jobs on AWS cluster

Figure E.13: M5P tree for the performance of Hadoop jobs on AWS cluster
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E.1 Execution time Linear regression models from

M5P tree for AWS cluster

LM num: 1

Usage =

-0.0002 * Block_Size

- 0.0713 * Mappers

+ 0.0103 * No_of_orderby_columns

+ 0.9833

LM num: 2

Usage =

-0 * Block_Size

- 0.0013 * Mappers

+ 0.0103 * No_of_orderby_columns

+ 0.0438

LM num: 3

Usage =

0.0001 * Block_Size

- 0.1573 * Replica

- 0.0137 * Mappers

+ 0.0103 * No_of_orderby_columns

+ 1.2136

LM num: 4

Usage =

0.0001 * Block_Size

+ 0.1498 * Replica

- 0.0008 * Mappers

+ 0.0103 * No_of_orderby_columns

+ 0.461
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LM num: 5

Usage =

0.0001 * Block_Size

- 0.0089 * Mappers

+ 0.0103 * No_of_orderby_columns

+ 0.9754
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