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Abstract

De novo peptide sequencing algorithms have been developed for peptide iden-
tification in proteomics from tandem mass spectra (MS/MS), which can be
used to identify and discover novel peptides and proteins that do not have a
database available.

Despite improvements in MS instrumentation and de novo sequencing
methods, a significant number of CID MS/MS spectra still remain unas-
signed with the current algorithms, often leading to low confidence of pep-
tide assignments to the spectra. Moreover, current algorithms often fail to
construct the completely matched sequences, and produce partial matches.
Therefore, identification of full-length peptides remains challenging. Another
major challenge is the existence of noise in MS/MS spectra which makes the
data highly imbalanced. Also missing peaks, caused by incomplete MS frag-
mentation makes it more difficult to infer a full-length peptide sequence. In
addition, the large search space of all possible amino acid sequences for each
spectrum leads to a high false discovery rate.

This thesis focuses on improving the performance of current methods
by developing new algorithms corresponding to three steps of preprocessing,
sequence optimisation and post-processing using machine learning for more
comprehensive interrogation of MS/MS datasets. From the machine learning
point of view, the three steps can be addressed by solving different tasks such
as classification, optimisation, and symbolic regression. Since Evolutionary
Algorithms (EAs), as effective global search techniques, have shown promis-
ing results in solving these problems, this thesis investigates the capability
of EAs in improving the de novo peptide sequencing.

In preprocessing step, this thesis proposes an effective GP-based method



for classification of signal and noise peaks in highly imbalanced MS/MS spec-
tra with the purpose of having a positive influence on the reliability of the
peptide identification. The results show that the proposed algorithm is the
most stable classification method across various noise ratios, outperform-
ing six other benchmark classification algorithms. The experimental results
show a significant improvement in high confidence peptide assignments to
MS/MS spectra when the data is preprocessed by the proposed GP method.
Moreover, the first multi-objective GP approach for classification of peaks
in MS/MS data, aiming at maximising the accuracy of the minority class
(signal peaks) and the accuracy of the majority class (noise peaks) is also
proposed in this thesis. The results show that the multi-objective GP method
outperforms the single objective GP algorithm and a popular multi-objective
approach in terms of retaining more signal peaks and removing more noise
peaks. The multi-objective GP approach significantly improved the reliabil-
ity of peptide identification.

This thesis proposes a GA-based method to solve the complex optimisa-
tion task of de novo peptide sequencing, aiming at constructing full-length
sequences. The proposed GA method benefits the GA capability of search-
ing a large search space of potential amino acid sequences to find the most
likely full-length sequence. The experimental results show that the proposed
method outperforms the most commonly used de novo sequencing method
at both amino acid level and peptide level.

This thesis also proposes a novel method for re-scoring and re-ranking
the peptide spectrum matches (PSMs) from the result of de novo peptide se-
quencing, aiming at minimising the false discovery rate as a post-processing
approach. The proposed GP method evolves the computer programs to per-
form regression and classification simultaneously in order to generate an ef-
fective scoring function for finding the correct PSMs from many incorrect
ones. The results show that the new GP-based PSM scoring function signif-
icantly improves the identification of full-length peptides when it is used to
post-process the de novo sequencing results.
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Chapter 1

Introduction

This chapter provides an introduction to this thesis, starting with the
problem statement, followed by the motivations section which outlines the
main limitations of the existing methods and each part explains why Evo-
lutionary Algorithms are suitable to deal with these limitations. The rest
of this chapter presents the research goals, the major contributions and the
organisation of the thesis.

1.1 Problem Statement

Proteomics is the large-scale identification and quantification of proteins
in cells [1]. Proteins are the main players for cellular functions in the cell.
They are micro-molecules made up of amino acids linked together in a linear
sequence by peptide bonds. There are 20 common amino acids represented
by the letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,
and Y. Peptides are generally considered to be short chains of amino acids
(from 2 to 50 amino acids). The chains that contain 50 to 2000 amino acid
residues are commonly referred to as proteins. A protein can be fragmented
into short peptide fragments by proteases.

One of the major challenges of proteomics research is to identify pro-
teins and their post-translational modifications (PTMs) in cells that allows

1
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researchers discover possible biomarkers and mechanisms in relation to phys-
iological disease or therapeutic state in an organism [2]. Mass spectrometry
(MS) is currently the most commonly used technology in proteomics for iden-
tifying proteins in complex biological samples [3]. The common method for
MS-based protein identification involves digesting proteins into peptides with
enzymes such as trypsin that cleaves the protein at the known sites (trypsin
cleaves the protein at ‘K’ and ‘R’), which are then ionised, analysed and
detected by mass spectrometers. The mass spectrometer measures the mass-
to-charge (m/z) ratios of the precursor peptide ions (called MS spectra) and
m/z ratios of the fragment ions of the precursor ions (called tandem mass
spectra (MS/MS spectra) ) [4]. While an MS spectrum is related to a pro-
tein, an MS/MS spectrum corresponds to a precursor peptide. These masses
later can be used for identifying the peptides and proteins in the samples.

A key challenge in MS-based proteomics is assigning MS/MS spectra to
the peptides, generating peptide-spectrum matches (PSMs). This process
is called peptide identification [5]. Collision-induced dissociation (CID) is a
commonly used technique in many mass spectrometers which fragments the
peptides at the peptide bonds, producing b-/y-ions. The amino acid sequence
of an CID MS/MS spectrum can be determined by the mass differences
between b-ions or between y-ions.

Peptide identification can be performed using database search methods [6,
7, 8] where the input experimental MS/MS spectrum is compared with the
theoretical spectrum predicted for each peptide sequence in a protein se-
quence database. However, these methods are only effective when the pro-
teins of interest are already present in the reference protein database. De
novo peptide sequencing algorithms are particularly appropriate for discover-
ing novel peptides which are not presented in any protein sequence database.
They are able to infer the amino acid sequence of a peptide without the
assistance of a sequence database [9, 10, 11].

The term “de novo” in Latin means “starting from the beginning”, and
in de novo sequencing from MS/MS indicates starting from the beginning
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(N-terminus) of the MS/MS spectrum and traversing the whole spectrum to
the end (C-terminus). Given an MS/MS spectrum, the de novo sequencing
algorithm starts with selecting a set of pairs of peaks from the spectrum.
If the mass difference between each pair of peaks matches one of the amino
acid residue masses, the mass difference will be labelled as the corresponding
amino acid letter. The process continues until matching all mass differences
with the amino acid residue masses. Then, the labelled amino acids of peak
pairs are joined together to generate a candidate peptide. By doing so, the de
novo sequencing algorithm generates a set of candidate peptides each having
a confidence score reflecting the quality of match between the experimental
spectrum and the candidate peptide. Normally, to find the best match to
the experimental spectrum, the highest-scoring candidate PSM is returned
as the results of de novo peptide sequencing for the input spectrum [9].

Although there have been many attempts to solve the de novo sequencing
problem using different approaches, de novo sequencing is still not being
widely used within the proteomics community compared to the database
searching methods [12]. To some extent this shortcoming can be attributed
to the limitations of the de novo sequencing algorithms. The main issue of
de novo sequencing is that a large number of MS/MS spectra are unassigned
with the existing de novo sequencing methods. That means that there is no
high confidence peptide assignment to the spectrum. Moreover, the accuracy
of full-length correct peptide sequencing by many existing de novo peptide
sequencing methods can only reach 70% [11, 13, 14, 15]. It is crucial to
identify the correct full-length peptides to avoid assigning a spectrum to
a peptide which is not expressed by a genome [16]. Insufficient peptide
level accuracy (i.e., the fraction of fully matched peptides) and lack of high
confidence peptides at the amino acid level (i.e., partially matched peptides)
result in low protein coverage and false identification. As peptide sequences
are assembled to infer proteins in the sample, accurate peptide identification
is essential for the correct protein identifications.

Fragmentation incompleteness and missing fragment ions prevent full-
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length peptide identification [13, 17]. In addition, an experimental MS/MS
spectrum with hundreds of peaks normally contains significant background
noise resulted from unexpected internal cleavages of the precursor peptide
ions leading to non-interpretable peaks. The number of signal peaks is gen-
erally small compared with the noise peaks in proteomics data, which makes
the MS/MS data highly imbalanced, raising the sensitivity and specificity
issues which are the two conflicting objectives. The noise peaks in the spec-
tra reduce the sensitivity of de novo peptide sequencing by introducing false
identification of peptides.

Advanced computational methods using machine learning can be helpful
to improve the performance of de novo sequencing [12]. The main focus
of this research is improving the de novo sequencing results of the existing
algorithms by utilising machine learning approaches. In machine learning,
the major tasks in developing computational approaches to improve the de
novo peptide sequencing involve: classification of the signal and noise peaks
in MS/MS spectra in order to simplify the spectra; amino acid sequence
optimisation in order to search for constructing the most likely amino acid
sequence of a peptide; and modelling fragmentation patterns from multiple
sources of information in order to discriminate between the true and false
matches, controlling the false discovery rate.

Evolutionary computation (EC) is a family of population-based problem
solving techniques that employs the principles based on the theory of bio-
logical evolution to get involved in many optimisation problems [18]. EC
techniques have been successfully applied across a wide range of real-world
problems in optimisation, classification, design and modelling [19]. An evolu-
tionary algorithm (EA) as a subset of EC is a search technique which is based
mainly on Darwinian principle of natural selection. EA uses a population of
individuals to build a model, searching to find a good solution for the prob-
lem during the evolutionary process [20]. The goodness of individuals, which
determines their potential to survive and represents their ability to solve the
problem, is measured by a fitness function. The individuals can be modified
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by genetic operators to breed new individuals. An EA simulates evolution by
employing fitness-based selection where the fitter individuals are expected to
have a higher chance to be chosen for producing new individuals.

EAs do not require to make any prior assumption about the underlying
fitness landscape. Moreover, although they do not need rich domain knowl-
edge to use, they have the capability to incorporate the domain knowledge.
Customisation is allowed in almost any aspect of these algorithms. In ad-
dition, they can be extended to solve multi-objective optimisation problems
and find solutions to problems with multiple conflicting objectives. EAs are
able to approximate a set of all Pareto optimal solutions of a multi-objective
optimisation problem in a single run due to their population-based nature.
Finding the non-dominated solutions along the trade-off surface allows a de-
cision maker to choose a solution based on his/her preference.

EAs have been shown to be highly successful in many classification [21],
regression[22, 23] and optimisation problems [24, 25]. This research focuses
on utilising evolutionary algorithms for more comprehensive interrogation of
MS/MS datasets in order to assist de novo sequencing for accurate peptide
identification. An important goal of this research is to understand which
EAs are most suited to solve the problems in peptide identification.

1.2 Motivations

1.2.1 Challenges of Preprocessing the MS/MS Spectra

The presence of noise in MS/MS spectra results in low confidence peptide
assignment, which leads to low confidence protein identification and a risk of
losing true identification. To overcome the problems imposed by the noise,
a preprocessing step to denoise the MS/MS spectra in order to increase the
overall confidence of peptide identification is required.

Intensity-based thresholding methods have been widely used for denois-
ing the MS/MS spectra, however these methods only consider the intensity
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information of peaks and neglect the hidden interrelationship between them
[8, 26, 27]. Recently, there is a growing trend to apply ML techniques on
MS/MS data in order classify the signal and noise peaks [28, 29]. In these
methods, the peaks of fragment ions are treated as “signals” and other peaks
as noise.

However, working with imbalanced data is difficult as uneven distribution
of class examples in the train dataset could leave the learning algorithm with
a performance bias, resulting a high majority class accuracy and a poor
performance on the minority class [30]. Another consideration is that as the
ratio of imbalance varies between MS/MS datasets, the classification method
should be robust to different imbalanced ratio. Therefore, a classification
strategy which is able to maintain the performance trade-off between the
minority (signal) and the majority (noise) class accuracies is required. So,
it is worth investigating the classification of peaks in MS/MS spectra via
multi-objective optimisation, which has not been found investigated before.

Why Genetic Programming

Inspired by biological evolution, Genetic Programming (GP) is an evolu-
tionary algorithm that uses a variable-length individual representation, tradi-
tionally tree-based structures, to evolve computer programs to automatically
build a solution for a predefined task. GP has been successfully applied to
solve various classification problems [31, 32].

GP has the ability to automatically evolve a model that fits the training
data without any prior knowledge or assumption. Moreover, GP using a tree-
based representation has the capability for implicit feature selection during
the evolutionary process. Therefore, the main advantage of GP in classifi-
cation problems is its ability to simultaneously evolve a good classification
model and implicitly selects only a subset of features during the evolutionary
process.

GP has the potential to cope with complex problems and has good learn-
ing capability even from imbalanced data [30, 33, 34]. GP can adapt its
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fitness function to evolve an individual that is capable of dealing with the
class imbalanced problem [30]. Unlike other machine learning algorithms,
GP has the ability to combine several advantages: GP can integrate various
types of data and generate effective models; such models are not black-box
models, but instead they are highly interpretable and readable by human.
Moreover, GP is able to handle two conflicting objectives, the accuracy of
the minority class and the accuracy of the majority class, in imbalanced data
using evolutionary multi-objective optimisation (EMO) [35].

There have been successful attempts to use GP and Pareto dominance-
based algorithms to solve the class imbalanced problem by maximising two
conflicting objectives, the classification accuracy of the minority and majority
classes [36]. While Pareto dominance-based algorithms usually produce non-
dominated solutions around the centre of the Pareto front, decomposition-
based EMO algorithms benefit from having the ability of differently allocating
resources to better approximate the Pareto front [37].

Multi-objective evolutionary algorithm based on decomposition (MOEA/D)
is an efficient framework for EMO and has been previously applied on several
real-world problems such as feature selection for classification problems [37],
web service composition [38], and optimal power flow problem [39]. As GP
showed to be a promising tool in MS analysis [40, 41], its potential for further
improvement in handling two conflicting objectives of majority and minority
classes using EMO and particularly MOEA/D has not been investigated in
MS/MS analysis.

1.2.2 Limitations of Current De Novo Peptide Sequenc-
ing Algorithms

As mentioned before, chemical noise, internal cleavages, missing ion types
caused by incomplete fragmentation, and sometimes low instrumental accu-
racy are critical issues for de novo sequencing, as they cause confusion during
sequence predictions [42, 43].



8 CHAPTER 1. INTRODUCTION

Graph-theoretical algorithms and dynamic programming have been widely
used to solve the complex optimisation task of de novo sequencing in the ex-
isting methods [9, 10, 44, 45, 46, 47, 48]. Graph theory approaches generate
a graph from an MS/MS spectrum where peaks are the vertices and edges
are defined as the corresponding amino acids to the mass differences between
two vertices. The paths are scored based on a fitness function and dynamic
programming is used to traverse through the spectrum graph.

However, a spectrum graph approach has some major difficulties such as
having a huge graph due to the noise peaks caused by internal cleavages, con-
taminants or post-translational modifications. Another problem is the lack
of full path due to the missing ion types caused by incomplete fragmentation
and low instrument accuracy. Therefore, de novo sequencing of full-length
peptides remains a challenge.

Being fragile to the missing ions, dynamic programming has an exhaustive
enumerating nature when dealing with a big search space due to the presence
of noise. For large datasets with a large number of instances and a large set
of features, this exhaustive search will not be practical. Even innovative
approaches that combine deep learning and dynamic programming to solve
the optimisation task of de novo sequencing need be further enhanced with
more advanced search algorithms [11, 15] to deal with the combinatorial
explosion of evaluating all possible sequences.

Why Genetic Algorithms

De novo sequencing can be formulated as an optimisation problem where
the objective is to discover the most likely amino acid sequence that can be
generated by the input spectrum [49]. Genetic Algorithms (GAs) are suitable
to solve the problem of de novo sequencing where a GA tries to optimise the
amino acid sequence in respect to a scoring function. GA is a population-
based problem solving technique which employs techniques inspired of Dar-
win’s theory of evolution such as recombination, mutation, natural selection
and survival of the fittest in order to evolve a population of individuals.
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With the ability of GAs in exploring a large search space of potential
amino acid sequences, GA is able to infer the most likely amino acid se-
quence directly from the spectrum. GA is a heuristic method and is suitable
to solve such NP-hard, large-scale problems. GA can be adapted to repre-
sent an individual as variable-length bit string called a chromosome which
is appropriate for keeping a peptide sequence containing a series of amino
acids.

Unlike exhaustive approaches, a GA does not generate all possible amino
acid sequences for a given spectrum. Instead, it can start with a set of initial
amino acid sequences as its initial population and then during the evolu-
tionary process manipulate these sequences by appropriate genetic operators
until finding the one that best fits to the spectrum in respect to the fitness
function. Moreover, unlike spectrum graph based algorithms, the perfor-
mance of a GA does not deterred by discontinuities in the search space (lack
of full path in the graph) due to missing ions. In addition, any component of
a GA including the fitness function, genetic operators, evolutionary process
can be specifically designed for the domain dependent problem.

1.2.3 Limitations of Current PSM Scoring Functions

As previously mentioned, to find the best match to the experimental spec-
trum from the results of de novo peptide sequencing, normally the highest-
scoring candidate PSM is returned as the results of identification. However,
the best match does not always indicate the correct (true) match [50].

Many of the existing de novo peptide sequencing algorithms suffer from
the lack of suitable PSM-scoring functions to measure the goodness of a
match between a spectrum and a peptide [51]. Due to the amino acid per-
mutation complexity, often the predictions are similar to each other with
even equal confidence scores, which makes it very difficult for the de novo
sequencing algorithm to distinguish or rank them properly. This results in
a high number of false identifications in the result of de novo sequencing.
Therefore, a quality control strategy to validate the results of de novo se-
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quencing in order to increase the accuracy of prediction is required.
A large number of scoring methods are based on the shared peak count

approach [52, 53] that may ignore the importance of informative peaks. Some
other methods have been developed based on likelihood ratio hypothesis test-
ing [44], Hidden Markov model [54], and decision tree [55, 10]. However,
these scoring methods mainly focused on partially correct de novo peptide
sequencing as their performance evaluation metric is the number of correctly
predicted amino acids in each peptide rather than full-length peptide predic-
tion.

PSM scoring is to provide users with accurate and relevant results on
the top of the search results [56]. The aim of the scoring function is to
come up with an optimal order of the search results [57]. Therefore in the
case of MS/MS analysis, a scoring function to re-score and re-rank the or-
der of the results of peptide identification is required. There have been
attempts to improve the results of database search algorithms by develop-
ing machine learning approaches to learning a model to distinguish between
correct and incorrect PSMs [5, 50, 58]. However, de novo sequencing algo-
rithms have been given little attention, and most of the methods focus on
improving the scoring function implemented in the de novo sequencing al-
gorithm [59, 10, 48] rather than developing a post-processing method for de
novo peptide sequencing. Therefore, for improving the results of de novo
peptide sequencing, a post-processing step in the form of a PSM scoring
function to re-score and re-rank the order of the results of de novo peptide
sequencing is necessary.

Why GP

Building a PSM scoring function from the possible combinations of dif-
ferent similarity scores (sub-scores) can be considered as a regression prob-
lem, where the sub-scores are treated as features. To build such a scoring
function, a function identification process is required to identify the hidden
relationship between the variables in the dataset and discover the mathemat-
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ical function models [60]. Symbolic regression is a type of regression analysis
that attempts to find the model that best fits a given dataset by discovering
both model structure and parameters at the same time. Being a function
identification process, symbolic regression does not face the problem of un-
known gap in domain knowledge or human bias [61, 62]. Having symbolic
nature of solutions and being independent of any prior knowledge, GP [63] is
a promising method for symbolic regression problems [64]. Symbolic regres-
sion using GP has been successfully applied to many real-world applications
such as finance [65, 66], industrial processing [67, 68], and software engineer-
ing [69, 70, 71]. Moreover, GP has been used to automatically build effective
ranking/scoring functions for information retrieval [72, 73, 74, 75]. There-
fore, it is worth investigating how a symbolic regression based approach using
GP can find the intrinsic relationship between the sub-scores and improve
peptide identification.

Moreover, since distinguishing the true PSM from false PSMs can be
treated as a classification problem, while building the PSM scoring function
can be considered as a regression problem, developing a method that can
simultaneously solve these two problems might be useful for building a pow-
erful discriminative PSM scoring function which can contribute to improving
peptide identification. Due to the fact that machine learning algorithms of-
ten solve either a classification or a regression problem, not two problems
together, it is worth investigating the capability of GP in this regard.

1.3 Research Goals

The overall goal of this thesis is to investigate the capability of evolution-
ary algorithms particularly GP and GAs in improving the de novo peptide
sequencing outcome and develop a new evolutionary learning approach to
improving de novo sequencing and peptide identification using GP/GAs. To
achieve this goal, a set of specific research objectives of this work are de-
scribed in more details as follows.
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1. Develop an effective classification method using GP to classify signal
and noise peaks for the purpose of preprocessing MS/MS spectra prior
to peptide identification. Since the number of signal peaks is very
small compared to the number of noise peaks, the classification algo-
rithm needs to handle the problem of imbalanced MS/MS data. As
the ratio of imbalance varies between MS/MS datasets, the stability of
the GP method across various ratios of signal to noise (S/N) will be
investigated and the results will be compared with different types of
classification algorithms. Moreover, the effectiveness of the proposed
method will be evaluated in terms of the improvement in the reliability
of peptide identification with the most commonly used peptide identifi-
cation tools on a large-scale dataset and the results will be compared to
the original un-preprocessed (raw) data and the intensity-based thresh-
olding method in the literature.

2. Develop a multi-objective GP (MOGP) approach based on the idea of
MOEA/D to solve the class imbalanced problem by evolving a Pareto
front of classifiers along the two objectives of maximising the minority
and majority class trade-off frontier. It is expected that the proposed
algorithm can evolve a set of non-dominated classifiers along the opti-
mal trade-off surface that offers the best compromises between the two
conflicting objectives i.e., the majority class and minority class accu-
racies. The stability of the proposed method with the decrease in S/N
ratio in the MS/MS data in terms of convergence to the Pareto front
will be investigated and the results will be compared with an MOGP
based on non-dominated sorting genetic algorithm II (NSGA-II) [76],
a popular elitist method which according to the literature produces
good solutions in the centre of the Pareto front [37]. Moreover, the
classification performance of the best compromise solutions evolved by
the proposed method will be compared with the best solutions evolved
by the single objective GP approach and those of the NSGA-II based
GP method. The proposed multi-objective GP approach is expected
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to achieve better performance than the single objective GP approach,
outperforming the NSGA-II based GP method as well.

3. Develop an effective de novo sequencing algorithm using GAs to con-
struct the full-length amino acid sequences of MS/MS spectra by propos-
ing a new initialisation method, a new fitness function and new updat-
ing mechanisms in GAs. The proposed method is expected to infer
the most likely amino acid sequence directly from the spectrum. The
fitness function needs to incorporate important spectral features and
fragmentation rules in order to enable GAs to discriminate the mis-
matches. The proposed method will be evaluated in the amino acid
level, indicating the ratio of partially correct sequences, and at the
peptide level, reflecting the ratio of full-length peptide sequencing. The
performance of the proposed method will be compared to PEAKS as
the state-of-the-art de novo peptide sequencing algorithm which is the
most commonly used de novo sequencing tool in proteomics community
as well [9, 77].

4. Develop an effective GP-based peptide-spectrum match scoring ap-
proach to evolve scoring functions to re-score and re-rank the de novo
peptide sequence predictions, which are the output of a de novo se-
quencing algorithm, in order to find the optimal ranking of those items.
A novel GP strategy aiming at improving the rate of de novo peptide
identification via simultaneously solving a regression and a classifica-
tion problem will be proposed. An appropriate fitness function that
lead GP towards building powerful discriminative PSM scoring func-
tions in order to distinguish between the correct PSMs and incorrect
ones will be designed. The effectiveness of the GP evolved PSM scor-
ing function to post-process the results of de novo sequencing tools in
terms of the full-length peptide identification rate will be evaluated and
the results will be compared with other Non-GP methods.
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1.4 Major Contributions

The thesis makes the following four major contributions.

1. This thesis has shown how GP can be used for effectively preprocess-
ing and denoising CID MS/MS spectra, and improving the reliability
of peptide identification. The proposed method is useful to perform
binary classification effectively on highly imbalanced MS/MS spectra,
where the two classes are signal and noise, as it is not biased towards
the accuracy of the majority class containing the noise peaks. GP takes
advantage of using an effective fitness function that accounts for both
the minority and the majority class accuracies in the evolved classi-
fiers. The experimental results on a large-scale dataset show that using
the proposed GP method prior to peptide identification with either de
novo sequencing or database searching methods results in improving
the high confidence peptide assignments to MS/MS spectra. Therefore,
this method clearly shows potential promise in decreasing the number
of unassigned MS/MS spectra in the large-scale MS/MS proteomics
analysis when is coupled with a peptide identification tool.

Parts of this contribution have been published in:

Samaneh Azari, Mengjie Zhang, Bing Xue and Lifeng Peng. “Genetic
Programming for Preprocessing Tandem Mass Spectra to Improve the
Reliability of Peptide Identification.” IEEE World Congress on Com-
putational Intelligence/ IEEE Congress on Evolutionary Computation
(WCCI/CEC 2018). Rio de Janeiro, Brazil, 8-13 July, 2018. DOI:
10.1109/CEC.2018.8477810.

Samaneh Azari, Bing Xue, Mengjie Zhang, Lifeng Peng. “Preprocess-
ing Tandem Mass Spectra Using Genetic Programming for Peptide
Identification”. Journal of The American Society for Mass Spectrome-
try. 2019. pp. 1294-1307, Vol. 30, No. 7, DOI: 10.1007/s13361-019-
02196-5.
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2. This thesis proposes the first multi-objective GP approach based on
MOEA/D, named MOGP/D, to solve the class imbalanced problem in
MS/MS data by maximising the two conflicting objectives, the accu-
racy of the minority class and the accuracy of the majority class. In
comparison with an NSGA-II based MOGP method (NSGP) with de-
creasing S/N ratio, MOGP/D produces better solutions in the region of
interest (centre of the Pareto front) according to the hypervolume indi-
cator on the training sets, showing to be a more stable approach when
facing high noise ratios. Moreover, the best compromise solutions of
MOGP/D outperformed those of NSGP and the best solutions evolved
by the single objective GP (from the first contribution) in terms of
sensitivity, specificity and average accuracy on both training and test
sets. The results shows that selecting the best compromise solution of
MOGP/D to preprocess the MS/MS spectra prior to de novo sequenc-
ing has a positive influence on the peptide identification reliability.

A part of this contribution has been accepted by:

Samaneh Azari, Bing Xue, Mengjie Zhang, Lifeng Peng. “A Decompo-
sition Based Multi-objective Genetic Programming Algorithm for Clas-
sification of Highly Imbalanced Tandem Mass Spectrometry.” The 5th
Asian Conference on Pattern Recognition (ACPR 2019). Auckland,
New Zealand. 26-29 November 2019. (Accepted). 14pp.

3. This thesis has shown how GAs can be used to for solving complex
optimisation task of de novo peptide sequencing and constructing full-
length peptide sequences by proposing a genetic algorithm based method,
GA-Novo. Given an MS/MS spectrum, GA-Novo optimises the amino
acid sequences to best fit the input spectrum. The developments pre-
sented in this work are a new domain dependent fitness function, a new
initialisation method and two new genetic operators that were partic-
ularly designed for the task. The fitness function was able to capture
main spectral features and guide the GA to produce the fully matched
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peptides. The tag-based initialisation method helped the GA start with
a better/fitter initial population. The genetic operators helped GA
maintain the diversity in the population and gradually convert partial
matches to fully matched sequences. On the testing dataset, GA-Novo
outperforms PEAKS at the amino acid level and at the peptide level.

A part of this contribution has been published in:

Samaneh Azari, Bing Xue, Mengjie Zhang, Lifeng Peng. “GA-Novo:
De Novo Peptide Sequencing via Tandem Mass Spectrometry using Ge-
netic Algorithm”. Proceeding of the 22th European Conference on Ap-
plications of Evolutionary Computation (EvoApplications 2019). Lec-
ture Notes in Computer Science. Vol. 11454, Leipzig, Germany. 24-26
April 2019. pp. 72-89.

4. This thesis proposes a novel strategy to generate effective PSM scoring
functions to improve the ordering/ranking of the PSMs which are the
outputs of a de novo sequencing algorithm. This is the first GP ap-
proach that evolves computer programs to perform regression and clas-
sification tasks simultaneously in order to generate an effective PSM
scoring function, which is able to: (1) produce the exact score that each
PSM gets via the regression task, and (2) look after of distinguishing
the correct PSM from the incorrect PSMs via the classification task.
Since machine learning algorithms often solve either a classification or
a regression problem, not two problems together, GP shows its capabil-
ity in handling these two tasks at the same time. Unlike other machine
learning algorithms, GP is able to learn from multiple sources of infor-
mation. From the training set which is suitable for the regression task,
GP learns how to assign appropriate scores to the PSMs. Also from
the designed training set suitable for classification, GP learns to give
the greatest score to the correct PSM in order to bring it ahead of all
incorrect PSMs for the same spectrum. The experimental results show
that proposed GP method outperforms other GP-based and non-GP
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methods in terms of improving the false identification rate.

Parts of this contribution have been published in:

Samaneh Azari, Bing Xue, Mengjie Zhang and Lifeng Peng. “Learn-
ing to Rank Peptide-Spectrum Matches Using Genetic Programming”.
Proceedings of 2019 IEEE Congress on Evolutionary Computation (CEC
2019). Wellington, New Zealand, 10-13 June, 2019. pp. 3244-3251.

Samaneh Azari, Bing Xue, Mengjie Zhang, and Lifeng Peng. Improving
the results of de novo peptide identification via tandem mass spectrom-
etry using a genetic programming-based scoring function for re-ranking
peptide-spectrum matches. In Pacific Rim International Conference on
Artificial Intelligence (PRICAI 2019), pages 474-487. Springer, 2019.

1.5 Organisation of Thesis

The remainder of this thesis is organised as follows. Chapter 2 provides
background on proteomics analysis followed by an overview on machine learn-
ing, evolutionary algorithms, GA and GP. Moreover, a review of the previous
works on peptide identification by de novo sequencing will be presented in
this chapter as well. The main contributions of this thesis are presented in
Chapters 3-6. Chapter 7 concludes the thesis.

Chapter 2 provides a background on proteomics analysis followed by an
overview on machine learning, evolutionary computation particularly GP,
GA and evolutionary multi-objective optimisation. Moreover, a review of
the previous works on de novo sequencing based on the traditional methods
and machine learning algorithms including GA and GP has been presented
in this chapter as well.

Chapter 3 proposes an effective GP-based preprocessing method for de-
noising highly imbalanced MS/MS spectra. A set of experiments are con-
ducted to investigate the important ion types for labelling the peaks in the
MS/MS datasets, appropriate measures for performance evaluation of the GP
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method, stability of GP across various ratios of S/N, and the effectiveness of
the proposed method in terms of improving the peptide identification relia-
bility. The interpretability of GP is shown by analysing the best GP evolved
program and important spectral features selected by GP are revealed.

Chapter 4 proposes a new decomposition-based (MOEA/D) evolution-
ary multi-objective GP approach to solve the class imbalanced problem in
MS/MS spectra by maximising the minority class and the majority class
accuracies. It presents a new MOEA/D weight vector initialisation method
which allocates the resources more efficiently to approximate the Pareto front.
The stability of the proposed method with the decrease in S/N ratio is then
investigated in terms of convergence to the Pareto front and the results are
compared with a Pareto dominance-based (NSGA-II) multi-objective algo-
rithm. The chapter analyses the classification performance of the best com-
promise solutions evolved by both MOGP methods and compares them with
the best solutions evolved by the single objective GP approach proposed in
Chapter 3.

Chapter 5 presents an effective GA-based de novo sequencing algorithm
for constructing the full-length peptide sequences. The chapter proposes
a new fitness function, a new initialisation method, and an effective set of
mutation and crossover operators that help GAs construct the full-length
amino acid sequences. The proposed algorithm is compared with PEAKS and
a GA-based de novo sequencing. The chapter also provides further analysis
on the effectiveness of each component used in the GA method.

Chapter 6 proposes a new GP method which is able to learn simultane-
ously from different training sources and solve a regression and a classification
problem at the same time. The proposed method is used to generate effective
PSM scoring functions to optimise the scores of the de novo sequencing re-
sults, aiming at identifying the correct PSMs from incorrect ones. The result
of the proposed GP method is compared with other GP-based and non-GP
based methods in terms of improving the accuracy of de novo sequencing
at the peptide level. The evolved programs are then analysed to investigate
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the implicit feature selection ability of the GP approaches and important
spectral features are recognised.

Chapter 7 concludes this thesis and summarises the key findings. The
research contributions and key points are discussed. The future research
opportunities and directions are also discussed in this chapter.

1.6 The Overall Pipeline

The flowchart presented in Figure 1.1 shows the relationship between
the proposed methods in this thesis along with the input and output of each
method. Given the input spectrum to the preprocessing methods proposed in
chapter 3 and chapter 4, the output is the denoised spectrum containing only
b-/y-ions. The denoise spectrum is given to the existing de novo sequencing
tools and their effectiveness is measured based on the improvement in the
confidence score of each identified peptide.

However, instead of using the existing de novo sequencing tool, Chapter
5 develops a new GA-based de novo sequencing algorithm, called GA-Novo.
GA-Novo gets the MS/MS spectrum as input and through the evolutionary
process generates the full-length amino acid sequence. As can be seen in
the flowchart unlike the existing de novo sequencing tool, GA-Novo does
not get its input from the GP-based preprocessig method. The reason is
that GA-Novo is robust enough against the noise in the spectrum due to
its special design. Various components in GA-Novo such as an intensity-
based denoising, a tag-based initialisation and different genetic operators
help GA-Novo handle the problem of large search space due to the presence
of noise and missing values. Therefore, we believe that GA-Novo does not
need a machine learning based processing method prior to sequencing. At the
end of each GA run, the solution with the highest fitness value is selected
as the result of the identification. The process of peptide identification is
finished here but the identification rate can be further improved by applying
the GP-based post processing model. This gives the chance of the correct
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Figure 1.1: The overall structure of the contributions in this thesis.

identification for the input spectrum by bringing the correct peptide on the
top of its candidate peptide list.

1.7 Benchmark MS/MS Dataset

The proposed methods in this thesis needs to be trained and tested us-
ing a set of MS/MS spectra with known identifications. This is a necessary
condition where the correct identification for each spectrum is required to
be known. Although a number of proteomics LC-MS datasets have been re-
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leased, only a relatively small number of them could be considered as bench-
mark datasets, or were even designed for that purpose. Many of the existing
peptide identification tools are not benchmarked on well-annotated MS/MS
datasets. Their ground-truth is the results of database searching methods
where there is the potential of existence of false positives.

The MS/MS spectra that are used in this thesis are selected from a com-
prehensive full factorial LC-MS/MS benchmark dataset specially designed
for the purpose of benchmarking data analysis methods [78]. The data were
obtained from the linear ion trap Fourier-transform (LTQ-FT, Thermo Fisher
Scientific) with CID. The dataset contains MS/MS spectra from 50 protein
samples extracted from Escherichia coli (E. coli) K12 and spiked with either
0, 0.125 µg, or 0.5 µg of bovine carbonic anhydrase II and/ or chicken oval-
bumin. The spectra in the dataset are high-quality ion trap CID MS/MS
spectra in the Mascot generic peak list format. The results of peptide iden-
tifications, known as ground-truth, were acquired using Mascot (v2.2) which
is searched against a curated Refseq released 33 E. coli database with the
following parameters: precursor mass tolerance was set to 10 ppm, fragment
error was set to 0.8 Dalton (Da), and Mascot peptide identification of 1%
false discovery rate (FDR) according to [78]. A total number of 304,321
MS/MS successfully matched with tryptic peptide sequences corresponding
to 10,166 unique peptides (resulting 10,166 PSMs), or 968 proteins which are
covering 23% of the E. coli, were obtained.

The MS/MS acquisition method used to acquire the spectra in full fac-
torial dataset is data-dependent (or “shotgun”) acquisition (DDA). In this
technique a fixed number of precursor ions (usually the most intense ions)
are selected for fragmentation and analysed by tandem mass spectrometry.
Co-isolated precursor ions is when DDA often co-isolates more than one
“ peptide” i.e. the observed fragment ions arise from two or more differ-
ent peptides (often of different charge states). Due to the fact that unique
peptides are more informative and more desirable to protein inference, the
experiments conducted in this thesis only focus on unique peptides. Such
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peptides are usually long with average length of 7 or longer [79] and peptides
in full factorial dataset have this characteristics.

As based on the CID fragmentation rules, the charge number of the pep-
tide and its precursor mass influence its fragmentation pattern [16], this study
only focuses on doubly charged peptides with no modifications. According to
the task and design of the experiments, several different meaningful subsets
of sufficient size are possible to be extracted from the dataset. The important
point is to make sure that the training sets do not include the peptides in
the test sets, and that is the reason that we use unique peptides to run the
experiments in this thesis.



Chapter 2

Literature Review

This chapter gives the background on proteomics analysis including a
short overview of the components in tandem mass spectrometry and current
spectral analysis algorithms. In addition, a brief review of machine learning,
evolutionary computation, GP and GA have been provided as well. Finally,
this chapter ends with a review of related traditional and machine learning
approaches to de novo sequencing and peptide identification.

2.1 Background on Proteomics Analysis

Proteomics refers to the large-scale study of proteins. Proteomics analy-
sis is the systematic identification and quantification of proteins, particularly
their sequences, structures and functions at a certain point in time. Iden-
tification of protein sequences and their modifications is very important in
proteomics because it allows researchers discovering possible genetic diseases
in an organism [80]. Mass spectrometry has been practically recognised as
the primary tool for protein identification. With significant improvements in
both accuracy and performance speed, these tools are highly reliable for the
high-throughput data analysis of proteomics. The rapid development of MS
machines has caused complicated configurations and various data analysis
algorithms.

23
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The commonly used technique for proteome analysis involves four main
steps consisting of protein separation, protein digestion, mass spectrometry
analysis as well as peptide and protein identification [4]. Figure 2.1 illustrates
a typical proteomic experiment which involves the aforementioned steps. The
circled numbers in this figure are explained in more details as follows.

First Step: Protein Separation
1 At first, a protein of interest will be separated from a complex mix-

ture, usually cells, tissues or whole organisms.

Second Step: Protein Digestion
2 Then, the protein is digested with trypsin into short peptide fragments

(trypsin cleavages the protein at the carboxyl side of amino acids lysine ’K’
and arginine ’R’ unless they are followed by amino acid proline ’P’). Both the
primary structure of the protein (the linear sequence of 20-letter alphabets)
and its three-dimensional arrangement are shown in this figure.

Third Step: Mass Spectrometry Analysis
3 The mass spectrometry (MS1) analyses the ionised peptides and gen-

erates an MS spectrum composed of the m/z values of the ions (precursor
ions) and their corresponding relative intensities (an m/z value and its rela-
tive intensity are denoted as an experimental peak).

Fourth Step: Peptide and Protein Identification
4 An MS spectrum can be identified by matching the measured masses

of the spectrum to the corresponding peptide masses of a protein from a
protein database. This process is called protein identification by peptide
mass fingerprinting (PMF) method.

5 However, more information about the amino acid sequence of a pep-
tide can be acquired using MS/MS (or MS2) [17, 81]. In MS/MS technique,
a selected precursor ion is fragmented into fragment ions whose m/z values



2.1. BACKGROUND ON PROTEOMICS ANALYSIS 25

Figure 2.1: A typical proteomic experiment, adapted from [4].
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Figure 2.2: Protein inference.

are measured by mass spectrometry to generate an MS/MS spectrum. There-
fore, an MS spectrum corresponds to a protein, while an MS/MS spectrum
is related to a peptide.

6 Peptide identification can be performed by comparing the input exper-
imental MS/MS spectrum with theoretical spectra predicted for each peptide
sequence in a protein sequence database (database search method). Alter-
natively, instead of searching the experimental MS/MS spectrum against a
database, peptide sequences can be extracted directly from the spectrum
with the de novo sequencing approach.

Most of today’s proteomics analyses are done with MS/MS [17]. Success-
ful proteome analysis requires good experimental design, high quality data
and powerful computational tools for protein identification [82]. Protein
identification comprises two stages. The first step is peptide identification
(Figure 2.1 stage (6)) which translates information embedded in spectra to
generate a set of putative modified and unmodified peptides followed by the
second step, where the identified peptides are assembled to infer the sequence
of a protein (Figure 2.2).

2.1.1 Mass Spectrometer (MS)

The mass spectrometer is a tool that measures the mass-to-charge ratio
(m/z) of charged particles [83]. It is composed of five components which are
shown in Figure 2.3. The sample inlet brings the sample that must be given
to the ion source. The ionisation chamber ionises the stream of molecules and
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Figure 2.3: A typical mass spectrometry structure.

Figure 2.4: Schematic of tandem mass spectrometry.

converts them to charged particles or ions. Then, these ions are accelerated
by an electromagnetic field and transferred to mass analyser in order to be
separated based on their m/z values. Next, a detector counts the ions for
each m/z and the signal is processed by a data system which produces the
mass spectrum. A mass spectrum is a stick diagram of the number of ions
detected as a function of their m/z ratios.

2.1.2 Tandem Mass Spectrometry (MS/MS)

Tandem mass spectrometry (MS/MS) involves multiple steps of mass
spectrometry along with fragmentation occurring in between the steps [84].
In a tandem mass spectrometer, the sample is ionised in the ion source and
separated according to m/z ratio by the mass analyser. Then, ions of a par-
ticular m/z is selected to be further fragmented into fragment ions whose m/z
values are measured by the second mass analyser. Next, the detector counts
the resulting ions for each mass and a tandem mass spectrum is generated at
the end. Figure 2.4 illustrates the schematic of tandem mass spectrometry.

The following sections describe more details about different components
evolved in obtaining MS/MS spectra.
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Sample Introduction

A sample introduced to a mass spectrometer may be a gas, a liquid, or a
solid. A sufficient amount of the sample is required to be transformed into
the vapor state to acquire the stream of molecules that must be given to the
ionisation chamber. Therefore, the sample inlet system is often connected
to a chromatograph device, which is used for the separation of a mixture by
travelling various constituents of the mixture at different speeds. This allows
the complex mixture of components to be separated, reducing the complexity
of the mass spectrum and increasing the detection coverage [83].

Ionisation Methods

Once the sample has introduced to the ion resource, it needs to be con-
verted to ions. Ionisation techniques include electron ionisation (EI), chem-
ical ionisation (CI), desorption ionisation (DI, including SIMS, FAB, and
MALDI) and electrospray ionisation (ESI) [85].

In EI-MS, which is the simplest ionisation method, a beam of high-energy
electrons interacts with the stream of molecules that has been admitted from
the sample inlet in order to knock off the electrons and produce ions. The
hardware required in this technique is low-cost and robust. In addition,
fragmentation pattern of a sample is reproducible and there exists many
available libraries of EI-MS data. However, since some compounds fragment
easily, they cannot be detected by the mass analyser due to their short molec-
ular ions lifetime. In this case, the compound’s molecular mass cannot be
detected accurately.

In CI-MS, the sample molecules are combined with a stream of ionised
reagent gas [86]. CI-MS method is a lower energy process than EI. This
leads to obtaining a less complex spectrum because of less or sometimes no
fragmentation, resulting insufficient information that can be achieved about
the ionated species. Both EI and CI techniques are suitable for low molecular
weight samples.
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DI techniques allow the analysis of high weight and nonvolatile molecules
with minimal fragmentation. In such techniques, the sample is dissolved or
dispersed in a matrix substance, which consists of crystallized molecules, and
the mixture is placed in the path of a beam of ions in secondary ion mass spec-
trometry (SIMS), neutral atoms in fast atom bombardment (FAB), or high-
intensity photons in matrix-assisted laser desorption ionisation (MALDI).
SIMS and FAB ionisation techniques have molecular weight limitation up
to about 20,000 g/mol. MALDI technique is quite useful for a wide range
of molecular weights. Furthermore, MALDI requires only a few amount of
sample. The ionisation mechanism with the MALDI technique is done by
the laser pulse fired at the matrix crystals in the dried-droplet spot. At a
certain time, the matrix absorbs the laser energy, resulting in being ionised.
However, to use MALDI technique, a mass analyser which is compatible
with pulsed ionisation techniques is required. MALDI is mostly useful for
singly-charged ions, therefore analysis of MS/MS spectra is difficult with this
method [83].

ESI is a useful technique for analysis of high molecular weight biomolecules
and nonvolatile compounds. As shown in Figure 2.5, the sample is mixed
with a liquid. Then, the solution is injected via a metallised needle on which
a high potential difference is applied. The sample solution is sprayed out the
end of a fine capillary into a heated chamber. The heat and gas flows desol-
vate the ions of the sample solution. Ions are analysed by a mass analyser
while several stages of differential pumping and mass analysing are done. The
spray in ESI can progressively produce multiply charged ions, therefore ESI
is the best method for analysing multiply charged compounds and compat-
ible with MS/MS spectra [87]. However, it has relatively complex hardware
compared to other ion sources.

Mass Analysers

After ionising the sample, the ions are accelerated by an electric field
to pass into the mass analyser which separates the ions according to their
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Figure 2.5: Schematic of electrospray ionisation mass spectrometry (ESI MS), adapted
from [88].

m/z ratios. Just like there are several ionisation techniques for different
applications, there exists also various types of mass analysers [83]. The most
common mass analysers include:

• Quadrupole ion trap mass analyser: This mass analyser consists
of four voltage carrying rods. The ions enter the area between these
electrodes. The electrical fields cause the ions of certain m/z values to
orbit in the space while passing through the radio frequency quadrupole
field. By increasing the radio frequency voltage, heavier mass ion or-
bits are stabilized and trapped in a two-dimensional electrical field.
This causes them to collide with the wall and to be detected by the
detector [89].

• Time of flight mass analyser (TOF): In this method, an ion’s
m/z ratio is determined via a time measurement based on the kinetic
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Figure 2.6: Peptide fragmentation in an MS/MS experiment results in 18 fragments which
are a,b,c and the x,y,z ion series.

energy and velocity of the ions. A static electric field accelerates the
ions and then measures the time they require to reach the detector.
The velocity of the ion depends on the m/z ratio, therefore, lighter
ions reach detector first.

• Magnetic/electrostatic sector mass analyser: Similar to TOF,
the ions are accelerated through a flight tube, where the ions are sep-
arated by a magnetic/electric field based on their m/z ratios.

• Ion cyclotron resonance: This mass analyser uses a magnetic field in
order to trap all ions of a particular range into an orbit inside of it. Then
electric signals from the trapped ions are generated by applying an
external electric field. A Fourier transform is used to differential to the
summed signals for different masses to produce the desired results [85].

Fragmentation

Dissociating the precursor ions is called fragmentation. The pattern in
the mass spectrum of a fragmented molecule can be used to determine struc-
tural information of the molecule. Collision-induced dissociation (CID) is
an extensively studied technique which is known to be highly suitable for
the identification of peptide sequences [90]. In this technique, fragmentation
happens at the peptide bonds, producing b-/y-ions. Each pair is related to
the sequence fragments of the precursor peptide. As mentioned in Figure 2.1
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at stage (5), in the MS spectrum, each precursor ion, which indicates the
m/z value of a peptide, can be selected and fragmented into hundreds of
fragment ions that construct an MS/MS spectrum. During fragmentation,
different fragment ion types are generated. Figure 2.6 illustrates the pat-
tern of product ions produced by the CID fragmentation technique with four
amino acids which are labelled as aa1, aa2, aa3 and aa4. Those fragments
that appear to extend from the left side (amino terminus or N-terminus) of
the peptide are termed a, b and c ions (prefix ions), while x, y and z ions
(suffix ions) starts from the right side or C-terminus of the peptide. The
fragment containing only the first amino acid from N-terminus is termed b1,
while the one that contains the first two amino acids is called the b2 ion, and
so forth.

In the CID fragmentation technique, we are only interested in b- and
y- ions because the amino acid sequence of an MS/MS spectrum can be
determined by the mass differences between b- (or y-) ions. A complete
peptide fragmentation gives a contiguous series of ion types which is called
ladder. For example for an MS/MS spectrum with n amino acids, the ladder
constructed from b-ions refers to the peaks corresponding to the prefix ions
observed sequentially in the spectrum i.e. b1, b2, b3, b4, ..., bn. Offsets equal to
the mass of an amino acid exist between each ion (the first fragment b1 is
seldom observed in the spectrum of peptides with free N-termini, since there
is no carboxyl group to induce cleavage). Likewise, the sequential suffix ions
in the MS/MS spectrum construct the y-ion ladder i.e. y1, y2, y3, ..., yn.

Table 2.1 shows an example of a mass fragmentation ladder. It shows a set
of possible fragmented ion pairs (b- and y-ions) for the peptide ‘SGFLEEDELK’.
It can be seen that each b-ion has a corresponding y-ion. These ions are called
complementary ions when the sum of their masses equal to the mass of the
pre-fragmented peptide. Therefore, peptide identification softwares employ
these fragmentation rules to generate theoretical fragment spectra, which will
be matched to the experimental spectra.
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Table 2.1: An example of a mass fragmentation ladder.

Mass ion b-ions y-ions ion Mass

88 b1 S GFLEEDELK y9 1080
145 b2 SG FLEEDELK y8 1022
292 b3 SGF LEEDELK y7 875
405 b4 SGFL EEDELK y6 762
534 b5 SGFLE EDELK y5 633
663 b6 SGFLEE DELK y4 504
778 b7 SGFLEED ELK y3 389
907 b8 SGFLEEDE LK y2 260
1020 b9 SGFLEEDEL K y1 147

Detectors

The final element of the mass spectrometer is the detector. It consists of
a counter that records the number of ions that hit a surface. The detector
will produce a mass spectrum, which is a record of ions as a function of
m/z. Possible detectors include electron multiplier, Faraday cups and ion-
to-photon detectors [91].

2.1.3 Assigning MS/MS Spectra to Peptide Sequences

The computational analysis of peptide sequence assignment to MS/MS
spectra is the next step after acquiring a desired amount of raw peak lists of
MS/MS data. Conventional methods for peptide identification from MS/MS
spectra can be divided into two main categories. Peptide identification can
be performed by comparing the input experimental MS/MS spectra with
either theoretical spectra predicted for each peptide sequence in a protein
sequences database (sequence database search approach). Alternatively, in-
stead of searching acquired MS/MS spectra against a database, peptide se-
quences can be extracted directly from the spectra with de novo sequencing
approach.
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Sequence Database Search Algorithms

The sequence database search algorithms are known to be the major
approach for assigning peptide sequences to MS/MS spectra. There is a
number of powerful computational tools using this method [92, 93, 94, 95, 96],
where experimental spectra are compared with an in silico digested protein
database. The two key components in this method are precursor mass and
the mass difference between an adjacent pair of peaks. Calculating mass
differences reveals particular amino acid residues.

Figure 2.7 illustrates how a basic database search algorithm interprets
a noiseless spectrum, which is an ideal case. Normally, MS/MS spectra
contain many noisy peaks, resulting in a complicated interpretation pro-
cess. Considering a pre-defined tolerance, those candidate peptides whose
masses are within the tolerated distance to the spectrum’s precursor mass
will be selected as a reference list from the protein database. The algorithm
traverses the spectrum and calculates the mass interval between two neigh-
bouring peaks to inference the corresponding amino acids. While traversing
the whole spectrum, the database search algorithm removes those peptides
from the reference list if they cannot match to the spectrum’s amino acid
sequence. The algorithm skips those peak intervals that they cannot match
to any amino acid. When all peak intervals are examined, the reference
list containing candidate peptides can be used as a guide to fill the possible
gaps in the spectrum’s sequence and makes the interpretation of the spectrum
with missing ion peaks possible. The algorithm scores each peptide-spectrum
matches (PSMs) based on the degree of similarity between the experimental
spectrum and candidate peptide. Therefore, the output of a database search
algorithm is a list of PSMs ranked according to the search score.

There are numerous scoring schemes for match scoring such as simple dot-
product [8], cross correlation score [92, 93, 95] or more advanced statistical
measures like expectation value [97]. It has been proven that only one score
is not enough to select the best match, therefore, various scores have been
developed to evaluate the results [92] followed by a post-processing step,
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Figure 2.7: An example of database search algorithm to interpret a noiseless MS/MS
spectrum, adapted from [98].

which is an statistical data validation process on the results of the database
search algorithm.

De Novo Sequencing Algorithms

The determination of the amino acid sequence of a peptide directly from
its MS/MS spectrum is called the de novo sequencing. Since the presence of a
database is not required, this method is highly useful for identification of new
proteins and peptides containing Post-translational modifications (PTMs).
De novo sequencing algorithms reconstruct the peptides by assigning the
corresponding amino acids to the mass differences between the peak pairs.

As mentioned in Section 2.1.2, the complete CID peptide fragmentation
gives a contiguous series of ion types which is called ladder [99]. The de
novo sequencing algorithm selects pairs of peaks and labels them if their
mass differences are within the tolerance ranges of the amino acid’s masses.
Therefore, here the distances between ions of the ladder can be used to
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Figure 2.8: De novo sequencing on an ideally fragmented MS/MS Spectrum
‘SGFLEEDELK’ with two ladders.

infer the amino acids. Figure 2.8 shows the result of de novo sequenc-
ing on an ideally fragmented MS/MS spectrum which indicates sequence
‘SGFLEEDELK’. The Y axis indicates the relative abundance to the tallest
peak in the spectrum with the tallest peak set to 100% relative intensity.
The X axis shows m/z, which is mass divided by charge. The green peaks
show y-ions, while red peaks represent b-ions. The blue arrows show the
amino acid letters which are labelled based on the mass differences between
each pair of b-/y-ions.

As an example, the difference in masses between two consecutive ions
y4 and y5 is 129 Da (unified atomic mass unit or dalton) and this number
indicates the mass of Glutamic (E) amino acid. Obtaining the amino acid
sequence of an MS/MS spectrum using y-ions gives the reverse order of the
sequence i.e. ‘EDEEJFG’ (The masses of amino acids ‘L’ and ‘I’ are not
distinguishable, so the letter ‘J’ has been considered instead which indicates
either ‘I’ or ‘L’).

Existing de novo sequencing tools include PEAKS [9], PepNovo [44], Lute-
fisk [100], and Novor [10]. Similar to the database search methods, de novo
sequencing algorithms are adversely affected by spectral noise. The quality
of the results of de novo sequencing algorithms is highly relevant to the preci-
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sion of the mass spectrometer instrument and the quality of MS/MS spectra.
These algorithms are not influenced by the errors in database search meth-
ods, therefore they are quite useful to identify known and unknown proteins.
Another advantage of such algorithms is their ability in producing partial
sequences which can be submitted to a tag-based database search algorithm
to find the complete sequences that may contain PTMs.

2.2 Machine Learning

Machine learning, which is one of the sub-fields of computer science, in-
volves the study of models and algorithms that have ability to automatically
learn complex patterns and make predictions on input data [101]. An input
example/sample may have a set of features which are individual measurable
properties of an object being observed. Depending on the nature of learn-
ing, machine learning tasks are categorised into two main groups namely
supervised and unsupervised learning [102].

In supervised learning, the training set is presented with example inputs
and their desired outputs. Therefore, the machine learning task is to learn
from the labelled training data and inferring a function that maps the input
data to the desired outputs [103]. In unsupervised learning, no labels are
presented in the training dataset and the learning algorithm needs to dis-
cover the hidden patterns in its input data by building models that provide
prediction of the output to the input data. Clustering, which refers to the
categorising a set of objects based on their similarities, is a typical approach
to unsupervised learning [104].

2.2.1 Learning Tasks

Depending on the output of the machine learning system, various learning
tasks such as classification, regression, clustering, association rules, density
estimation, and dimension reduction exist [103, 101]. In this thesis, we mainly
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focus on classification and regression tasks which are two major applications
of supervised learning.

2.2.2 Training and Testing

The learning algorithm used to perform the desire task requires to learn
from a training set during the training process and make prediction on a test
set during the testing process [105]. The learning algorithm builds a model
that fits the training set consisting of a set of pairs of an input vector and
the corresponding output vector (the output is known as target or label as
well). The test set contains instances from the same problem domain, but
test instances have never been used in training.

A validation set can be also used during the training process for model
selection. An application of validation set is in early stopping for model
selection where the training process stops when the error on the validation
set increases. It is also used to improve generalisation and avoid overfitting.
While generalisation reflects how well the machine learning model is able to
predict the unseen data, overfitting indicates the poor performance of the
model on data that the model has never seen [105].

2.2.3 Classification

In supervised learning, classification is a task of classifying a new unseen
observation into a set of groups that are already known based on the labelled
training datasets [106]. Therefore, classification involves a training and a
testing stages. In the former, the classifier is built by learning from the
samples accompanied by the class labels in the training dataset, while in the
latter the performance of the learned classifier is measured by using unseen
examples in the test dataset. Example classification algorithms include Naive
Bayes classifier (NB), support vector machines (SVM), decision trees (DT)
and artificial neural networks (ANN).

NB belongs to the probabilistic classifiers with a prior assumption of
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conditionally independent features. NB applies the Bayes theorem, which
describes the probability of an event is related to the other known probabil-
ities. Therefore, NB classifier assumes that the relationships between inputs
and outputs can be represented as probability distributions [107].

SVMs attempt to construct hyperplanes in a high dimensional space and
classify examples by performing linear classification. For each hyperplane,
the SVM model aims to maximise the distance between the hyperplane and
the nearest data points on each side of it. Then for an given unseen ex-
ample, the SVM algorithm classify the example based on which side of the
hyperplanes it falls on [108].

A DT is a tree-structure classifier that the paths from root to leaves
represent the classification rules. The internal nodes represent a test on the
attributes/features of the samples, the edges correspond to the outcome of
the tests and leaf nodes represent the class labels. The learning method in
DT is based on the approximated discrete valued functions. The examples
in the training dataset are used for selecting appropriate tests in the DT.
Typically learning is a top-down process where the algorithm attempts to
choose a variable at each step that best splits the set of items. For example
a DT can be built by considering those tests that maximise the information
gain about the classification are selected first. A new unseen example is
classified by submitting it to the tree, exploring a series of tests that identify
the class label of the example when reaches a certain leaf [101].

ANN, which is a computational model inspired of the human brain and
nervous system, aims at constructing a network using a number of layers that
maps the instances to the target class labels [109].

2.2.4 Regression

Classic Regression

Regression is a process that aims to discover the relationship between
inputs and outputs. A regression problem attempts to find a mathematical
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model that predicts a real value for each input example and measures the
error of the prediction in an iteratively way [110]. Given a set of independent
variables X and a dependent variable Y, the objective of the regression model
is to approximate Y using X along with W as a set of appropriate coefficients.

Y = f(X,W ) + ε (2.1)

where ε indicates possible noise.
Classical regressions assume a pre-defined functional form of f such as

being a linear regression model [111].

f(X,W ) = w0 + w1x1 + w2x2 + ...+ wmxm (2.2)

Therefore, the set of coefficients may be found by least square which
attempt to minimise the sum of the squares of the residuals. Other com-
mon classical regression algorithms include Back-Propagation neural net-
works, support vector regression (SVR) and Multivariate Adaptive Regres-
sion Splines (MARS).

The main idea in back-propagation NN is to construct a nonlinear func-
tion of input features using a transfer function which can be a sigmoid func-
tion. Training the network using known correct outputs in order to update
the coefficients (weights in the network) by gradient descent is called back-
propagation [112].

SVR, which is a regression version of SVM, maps the input data into a
m-dimensional feature space using nonlinear mapping and then constructs a
linear model in this feature space [113].

MARS is an extension of linear models that automatically models the
interactions between variables. A MARS model is a weighted sum of basis
functions Bi(x) with corresponding coefficients ci.

f(x) = Σk
i=1ciBi(x) (2.3)

The basis functions can be either a constant 1 or a hinge function, which is
in the form of max(0, x− c) or max(0, c−x), considers two different versions
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of a feature in the models. The constant c is called a knot. The MARS
algorithm aims on creating a mirrored pair of hinge functions with a knot at
each observed values of the features [114].

Symbolic Regression

Aiming at finding the model that best fits a given dataset, symbolic re-
gression is an analysis method that discovers both model structure and pa-
rameters simultaneously. It is a function identifier which attempts to find the
mathematical relationship between the input variables (known as dependent
variables) and output variables (known as independent variables). The major
difference between symbolic regression and the classical regression techniques
is that the former does not put any prior assumption on the model by limit-
ing its identification process to only finding the parameters/ coefficients of a
specific predefined model.

No predefined function or a specific model is needed as the start point of
the identification process. So, symbolic regression does not face the problem
of unknown gap in domain knowledge or human bias. Symbolic regression
randomly combines the mathematical building blocks such as primitive func-
tions, independent variables, and constants in order to generate a model
with minimum error difference from the target outputs. Therefore, no prior
knowledge about the size and shape of the model is required. As the model
found by symbolic regression should best fit the given dataset in terms of ac-
curacy and simplicity, during the learning/modelling process irrelevant and
redundant input variables are excluded from the search space. Moreover, the
number of coefficients and their values are also taken into account. To ensure
the accuracy of the model, the fitness function considers error metrics.

Among the existing methods proposed for solving symbolic regression
tasks, EC methods, particularly GP-based methods, are still the most pop-
ular techniques for symbolic regression [63, 67, 69, 115]. GP is a powerful
technique that is able to evolve data-driven models that effectively describe
the data, providing human insights about the data-generating system. More
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details about EC techniques and particularly GP is explained in the following
section.

2.3 Evolutionary Computation (EC)

Evolutionary computation is a family of population-based problem solv-
ing techniques whose employs principles based on the theory of biological
evolution to get involved in many optimisation problems [18]. EC algo-
rithms consists of Evolutionary Algorithms (EAs), Swarm Intelligence (SI)
and other EC techniques such as Evolutionary Multi-objective Optimisation
(EMO) methods.

EAs employ techniques inspired of Darwin’s theory of evolution such as
recombination, mutation, natural selection and survival of the fittest in or-
der to evolve a population of individuals. The goodness of individuals, which
determines their potential to survive and represents their ability to solve
the problem, is measured by using the fitness function. Based on the rep-
resentation of individuals, EAs are divided into different categories such as
Evolutionary Programming (EP) [116], Genetic Algorithm (GA) [117], Evo-
lution Strategies (ES) [118], and Genetic Programming (GP) [63].

EP uses finite-state machines to represent the individuals. Unlike GP, the
structure of programs (individuals) are fixed, and only numerical parameters
are allowed to evolve. GA, which has been widely used to solve optimisation
problems, represents an individual as a fixed-length bit string chromosome.
GA aims to decode the chromosomes to get the solution for the problem
being faced by employing genetic operators. ES use fixed-length real-valued
vectors to represent the individuals. Extending the idea of GAs, GP uses
computer programs to represent the individuals. The evolutionary process in
these algorithms involves random mutation, reproduction, and survival of the
fittest by selection. While mutation is random, selection can be deterministic
or stochastic in these algorithms.

SI algorithms are inspired of collective social behaviour of birds, ants
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and bees or other animal societies as agents. Performing an exploitation
search, each agent attempt to discover a better solution. Interaction between
the agents the whole group will learn the social behaviour. Two popular
algorithms in SI are Particle Swarm Optimisation (PSO) and Ant Colony
Optimisation (ACO). PSO, inspired of the movement of organisms in a bird
flock or fish school, guides the swarm of candidate solutions in the search
space based on their own and the entire swarm best known positions. By
repeating the process and updating the position of the swarm, a good solution
will be found. Compared with many global optimisation algorithms, PSO is
well-known for its fast convergence. ACO, inspired of the foraging behaviour
of ants in finding a path between their nest and a source of food, typically
performs a model-based search and is suitable to solve discrete optimisation
problems.

Since this thesis uses GAs, GP, and EMO, we will describe them in more
detail in the next sections. As GP is mostly used in this thesis, first GP and
its components are explained, followed by GA and EMO.

2.3.1 Genetic Programming (GP)

This section explains the important aspects of GP, such as evolutionary
search process in GP, program representation, genetic operators, and GP
fitness function.

Overview of Evolutionary Search Process

GP uses a variable-length individual representation to evolve population
of computer programs to automatically build or evolve a model to tackle
the problem. Being a stochastic search algorithm, GP generates an initial
random population of individuals to search for the solution. During the
evolutionary search process, individuals are modified by the set of genetic
operators [119]. GP simulates evolution by employing fitness based selection
where the fittest program is expected to be chosen. The computer structures
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Figure 2.9: The overall flowchart of a GP algorithm.

used in GP can be in the form of tree, linear and graph-based structure. The
most popular GP structure is tree-based which composed of structural units
namely terminal and function sets (Figure 2.9). The terminal set, which
represents the leaves of the GP tree, provides the inputs to the individuals
that may contain variables/features and constants. The function set repre-
sents the internal nodes and may consist of arithmetic operators, conditional
operations or any user-defined operators. The overall structure of a GP al-
gorithm [63] is illustrated in Figure 2.9 composing of the following steps:

1. Initial population: GP employs the function and terminal sets to gen-
erate a number of initial/candidate solutions.

2. Fitness evaluation: GP executes each individual (program) and evalu-
ates the goodness of the individual using a user-defined fitness function.
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Figure 2.10: An example of a GP tree representing the function and terminal nodes.

3. Individual selection: Using a specific selection procedure such as fitness-
proportional selection, truncation selection or etc., GP selects the in-
dividuals with higher fitness values for the reproduction process.

4. Genetic operators: GP transforms the initial population by applying
genetic operators (crossover, mutation and reproduction) to create new
individual program(s) which are more likely to contain higher fitness
values.

5. Stopping criteria: A stopping criterion determines when to stop the
evolutionary process. The process can be stopped when an ideal indi-
vidual with a specified fitness value has been found or when a maximum
number of generations has been reached.

Program Representation

The GP individuals can be represented by the following ways:

• Tree-based GP. The tree structure is the most popular GP representa-
tion where the leaf nodes correspond to terminals, and non-leaf nodes
represent functions. This representation is used in the design of the
GP models developed in this thesis [63]. Figure 2.10 shows an example
of a GP tree representing {+, ∗, /, sin} as functions and {x, y, 2} as
terminals.



46 CHAPTER 2. LITERATURE REVIEW

• Linear GP. In this representation, GP evolves the computer programs
represented as a variable number of sequence of instructions from ma-
chine language [120, 121].

• Graph-based GP. In this structure, the computer programs in a popu-
lation are represented as tree-based graphs where apart from function
and terminal nodes, the flow of data in the tree is represented by edges
of the graph. Cartesian GP uses this encoding scheme, allowing partial
sub-trees to be re-used in program execution [122].

• Grammar-based GP. Grammar-based GP and grammatical evolution
(GE) are the two popular GP approaches that use this representation
where the evolved programs are represented as integer strings encoded
through the use of a user-specific grammar [123].

As the tree-based representation is used in this thesis, more detail about
this structure is given as follows.

Typically two main components of a GP tree are function set and ter-
minal set where each contains elements to represent a node in th e tree.
While a function set contains a set of operators which perform operations
on their child(children) node(s), the nodes from the terminal set do not have
any child. According to the problem which GP is used to solve, these sets
are prepared in advance. The terminal set normally contains either a set
of features (variables) or a number of constant values which are randomly
selected by GP. The function set can contain a set of functions, including,
but not limited to, arithmetic, transcendental, or trigonometric functions.

It is important to satisfy two main properties of sufficiency and closure
when selecting the function set and terminal set [120]. If the two function set
and terminal set have enough expressive power to be representative to the
solutions of the problem, they will satisfy the sufficiency property. Moreover,
when the operators in function set are capable to properly handle all possible
inputs, the closure property is met as well.
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Initialisation of the Population

The three main ways to initial the population are as follows [63]:

• Full method. Before reaching to a maximum allowed tree depth, the
fully-formed trees are constructed by selecting the intermediate node
only from the function set. Once the maximum depth is reached, the
leaf nodes should be only from terminal set.

• Grow method. Unlike full method, the nodes can be selected randomly
either from terminal or function sets. The growth of a sub-tree is
terminated once a terminal node is selected. This method allows for
constructing initial tree-based individuals with different depths and
irregular shapes.

• Ramped half-and-half method. Utilising from both methods above to
create each half of the population, ramped half-and-half allows for en-
hancing the diversity in the initial population.

Genetic Operators

GP has three main genetic operators, Crossover, Mutation, and Repro-
duction to create the new offsprings. The first two operators modify the
genetic information in the parent individuals, whereas elitism create the new
offspring without altering the original parent. Generally speaking, these
operators are necessary to avoid having the same set of individuals in the
population of the next generation. The rate or the probability assigned to
each of these operators determine their importance during the evolutionary
process.

Crossover Being the most predominant operator used in GP, the crossover
operator (also called recombination) selects two parents based on the selec-
tion mechanism. In the tree-based GP, the sub-trees of the two parents at
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Figure 2.11: An example of a crossover operator in GP.

randomly selected points are swapped, generating two new children as shown
in Figure 2.11.

Crossover implies the fact that fitter individuals tend to be selected more
frequently than weaker ones and this is the major concept of “survival of the
fittest” originated from Darwinian evolutionary theory where fittest individ-
uals leave more copies of themselves in the next generations.

Mutation Mutation operator only select one parent (individual) to create
the new child. In the case of the tree-based GP, as shown in Figure 2.12
mutation operator randomly selects a sub-tree and replaces it with another
sub-tree generated by any of the initialisation methods such as full, or grow.
Introducing new genetic makeup into the population, mutation operator is
applied to maintain the diversity from one generation of the population to
the next [63].

Reproduction Reproduction operator selects an individual based on the
selection mechanism and simply copies that into the next generation. Al-
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Figure 2.12: An example of a mutation operator in GP.

though there are some differences (due to the selection mechanism), repro-
duction is also known as elitism which protects the best individual(s) for the
next generation1. As reproduction operator does not alter the parent individ-
ual, it ensures that the new offspring generated for the next generation does
not have fitness worse than its original parent from the current generation.
Normally the fittest individuals are selected for reproduction. Having this
operator among the other genetic operators in the design of the GP method
ensures that individuals of the population in the next generation are at least
as fit as those from the current generation.

Evaluation

Evaluation of an individual or a candidate solution is done through the
fitness function and that reflects the goodness of the individual in solving the
problem [63]. With respect to the problem or the task, the fitness function is
designed accordingly. For example, when GP is applied to solve a classifica-
tion problem, classification accuracy or classification error rate can be used
to measure the performance of the candidate solutions.

However, if GP is applied for regression problems, suitable performance
measures in regression such as absolute error or squared error can be used [120].
More details about various performance metrics appropriate for classification

1This thesis does not distinguish elitism and reproduction, similar to [124].
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and regression is explained in Section 2.4.1. The fitness of an individual de-
termines how likely it is selected to be used by the genetic operators [125].

Selection

The selection operator provides the opportunity for the individuals to
get passed to the mating pool for applying the genetic operators. Although
normally better fitted solutions have more opportunities to get selected, it
does not mean that less fitted individuals are excluded from the mating pool.
Even the worst individuals still have the chance, but at a lower probability.
The two most commonly used selection methods in GP algorithms are as
follows:

• Fitness-proportional selection. Known as roulette-wheel selection, this
operator potentially selects fitter solutions for recombination as the
probability of selection is proportional to the fitness values of the indi-
viduals. Still each individual has the chance to compete with the rest
of the individuals of population [125].

• Tournament selection. Regarding to a tournament size, a set of indi-
viduals are randomly selected to pass to the tournament. Then the
fittest individual is picked up from the tournament. Here only the
individuals in the tournament compete with each other. The larger
tournament size, the more pressure on the selection which means less
fitted individuals have less opportunity to be selected [124].

2.3.2 Genetic Algorithm (GA)

Inspired of Darwin’s theory of evolution, Genetic Algorithms (GAs) were
first introduced in 1960 by John Holland [117] and got extended afterwards in
1989 [126] by one of his students. GA starts its evolutionary process to find
the candidate solutions by evolving a population of chromosomes. Typically
in GA, chromosomes (or individuals) are represented as an array of bits. As
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S G F L E E D E L K

Figure 2.13: An example of an encoded GA chromosome (individual) to represent a se-
quence of amino acids.

this thesis uses GA for de novo sequencing, a relevant example of an encoded
bit strings chromosome which is used to represent a sequence of amino acids
is shown in Figure 2.13. Each element in this string is called a gene which
stores an amino acid. GA evolves the population of individuals to search
for the optimal solution. During the evolutionary search at each generation,
selection operator, the main driving operator of GA, is applied on the pop-
ulation to breed a new generation. This operator serves for modelling the
survival of the fittest (as measured by a fitness function). By applying other
genetic operators namely crossover and mutation, the solutions of the next
generation through those selected individuals are generated. The main con-
cepts in GA such as genetic operators and selection are quite similar to those
of GP which in previous sections are explained. Unlike traditional gradient
search methods for optimisation, GAs are less likely to get stuck in local
minimum. They, however, are time taken for convergence and need a decent
sized population and sufficient generations to find the optimal solution.

2.3.3 Evolutionary Multi-objective Optimisation

The traditional evolutionary search process can be further extended to
adapt the learning process to handle the conflicting objectives and this is
called evolutionary multi-objective optimisation (EMO). Optimising multi-
ple (usually conflicting) goals (or objective functions), multi-objective opti-
misation problems (MOPs) aim at generating a set of solutions capturing the
best possible trade-offs (compromises) among objective functions.

Generally speaking, in an MOP, Nobj conflicting objectives are required to
be optimised simultaneously, while a set of inequality and equality constraint
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functions are satisfied. Therefore, a multi-objective minimisation problem
can be formulated based on Equation (2.4).

minimise F(x) = (f1(x), f2(x), .., fNobj
(x)) (2.4)

subject to gi(x) ≤ 0, i = 1, 2, ..., k
hi(x) = 0, i = 1, 2, ..., l

where F (x) is an objective vector representing Nobj objectives. fi(x) is the
i-th objective of F (x) and x is the decision vector. gi(x) and hi(x) represent
the inequality and equality constraint functions of the optimisation problem.

In single objective optimisations, the optimal solution is usually unique,
while the optimal solution in MOP is often a set of non-dominated solutions
due to the conflict between different objective functions. Since the quality of
each solution is based on the compromise between objectives, knowing the
concepts of dominance is necessary. A solution y dominates z (denoted by y
≺ z) if and only if:

1. fi(y) ≤ fi(z) for all fi functions in F , and

2. there is at least one j such that fj(y) < fj(z)

The solution y is called Pareto optimal if it is not dominated by any other
feasible solutions. The set of all Pareto optimals is called the Pareto front,
representing the trade-off surface in the objective space. An EMO algorithm
is expected to evolve a set of non-dominated solutions to approximate the
Pareto front.

EAs are highly appropriate to approximate the Pareto front as they are
capable of producing multiple Pareto-optimal solutions in a single run. Un-
like traditional single objective EAs, EMOs often produce a set of optimal
solutions rather than only a single solution. A number of EMO methods are
proposed in the literature. The two main categories of EMO methods are
Pareto dominance-based and decomposition-based methods [127].
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In Pareto dominance-based algorithm, the performance of a solution is
determined through non-dominated sorting which means that the algorithm
assigns a rank (based on its Pareto dominance) to a solution on all objectives
relative to all other solutions in the population [128]. At each generation all
non-dominated solutions, which positively guide the search to convergence,
are selected to form the population of the next generation. Three are three
main categorises of Pareto dominance measures, dominance rank, dominance
count and dominance depth. Dominance rank counts the number of individu-
als which dominate the current individual, while dominance count represents
the number of individuals which are dominated by the current individual.
Individuals can be sorted into fronts according depth by dominance depth.
Pareto dominance-based algorithms also benefit from diversity promotion
techniques, for example, crowding distance to maintain the diversity of the
population [129].

Among Pareto dominance-based, Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) [76] and Strength Pareto Evolutionary Algorithm 2 (SPEA-
2) [130] are known to be standard approaches to solve MOP, although some
other approaches are proposed in literature where more details can be found
in [131]. NSGA-II is an extension of GAs for solving MOP which uses dom-
inance rank to measure the goodness of individuals. The solution in the
Pareto front evolved by NSGA-II tend to have the best fitness values (dom-
inance rank) of zero which means they are not dominated by any other so-
lutions in the population. SPEA-2 use both dominance rank and dominance
count to evaluate the performance of each individual. First dominance count
(strength) is calculated for each individual. Then, the dominance rank of
each solution is counted as the summation of the strengths of all individuals
that dominate the current solution. Therefore, the individuals in the Pareto
front have the best fitness of 0.

Being a basic technique in traditional MOP, decomposition has recently
attracted attentions in EMO. Decomposition-based methods decompose an
MOP through decomposition method (e.g. weighted sum or Tchebycheff)
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into a set of scalar sub-problems and simultaneously optimise them by an
optimisation algorithm [127]. Multi-objective evolutionary algorithm based
on decomposition (MOEA/D) [132] is a popular decomposition based MOEA
method [133]. For better convergence, MOEA/D uses evolutionary operators
for combining good solutions of neighbouring problems. Using information
from the neighbourhood makes MOEA/D having lower computational com-
plexity than Pareto dominance-based algorithms such as NSGA-II [37].

MOEA/D

In order to find the set of non-dominated solutions for Pareto front ap-
proximation, MOEA/D decomposes an MOP into a set of N (equal to the
population size) scalar objective optimisation sub-problems, each with the
objective of the aggregation of all objective functions. MOEA/D attempts
to optimise these N scalar optimisation sub-problems simultaneously instead
of solving MOP directly in a single run. Tchebycheff is one of the most widely
used decomposition approaches [132, 134]. In this approach, the fitness func-
tion of each single objective sub-problem is defined by a weight vector λ. This
approach represents the j-th scalar optimisation sub-problem in the following
form:

minimise gte(x|λj, z∗) = max
1≤i≤Nobj

{λj
i |fi(x)− z∗i |} (2.5)

where λj =
(
λj

1, ..., λ
j
Nobj

)T

, z∗ is the reference point, and z∗i in a minimisation
MOP is the minimum value of each objective function. The major motivation
behind MOEA/D is the concept of neighbourhood.

In this approach the neighbourhood of λj is defined as a set of the T
closest weight vectors in {λ1, λ2, ..., λN} and the Euclidean distance between
these weight vectors defines the neighbourhood relation. It is expected that
any information from the neighbouring sub-problems should be helpful for
optimising the current sub-problem. In summary, each Pareto optimal point,
x∗, with a weight vector of λ, which is the optimal solution of Equation (2.5),
is a Pareto optimal solution of Equation (2.4) and belongs to Pareto front.
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2.4 Performance Evaluation

In this section, the metrics for performance evaluation in classification,
regression, and peptide and PTM identification problems are presented.

2.4.1 Classification and Regression Problems

The key component to evolutionary algorithms is the performance mea-
sure of candidate solutions. The evaluation process determines the goodness
of an individual (or an evolved program, in GP) through the fitness func-
tion. Therefore, the evolutionary process is guided towards finding better
solutions [63].

The widely used performance measures in classification problems in-
clude:

• Classification accuracy is the number of correctly classified instances
as a percentage of the total number of instances.

• Classification error rate is defined as the ratio between the number of
error predictions and the total number of predictions.

• Confusion matrix is a table which presents the number of correct and
incorrect predictions made by the classification model compared to the
target value in ground-truth data. It reports TP (true positive), TN
(true negative), FP (false positive), and FN (false negative). More
detailed analysis can be done using the information of this table. Sen-
sitivity (also known as true positive rate) and Specificity (also known as
true negative rate), which both used in this thesis, categorise the type
of error made by a classifier and are calculated using Confusion ma-
trix. While sensitivity calculates the proportion of actual positives that
are correctly identified, specificity measures the rate of actual negative
instances that are correctly identified.
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• Receiver operating characteristic (ROC) plots the classification ability
of a binary classifier system across various thresholds. The true positive
rate is plotted in function of the false positive rate for different cut-off
points of a parameter. Ideally, if the curve rises quickly toward the
top-left, the model has correctly predicted the cases [135].

• Area under ROC curve (AUC) measures the quality of a classifier. The
accuracy is measured by the area under the ROC curve. In prac-
tice, most of the classification models have an AUC between 0.5 and 1
(ideal).

The common performance measures in regression problems are:

• Absolute error sums the absolute values of differences between the in-
ferred values and the desired values [136].

• Squared error, similar to the absolute error, calculates the sum of the
squares of the differences.

• Scaled error can either amplify or damp smaller deviations from the
desired output values.

• Relative sum of squared error compares the performance of the evolved
model against the mean of the target values as the baseline model. This
measure is used in Chapter 6 and is presented by Equation (6.3).

2.4.2 Sequence Comparison Metrics

There are mainly three common measures introduced in literature to eval-
uate the performance of the de novo sequencing algorithms. The metrics are
recall at the amino acid level, precision at the amino acid level, and recall at
the peptide level [11]. The three aforementioned metrics are also named as
single residues recall, sequence tag recall, and full-sequence recall [43].

To evaluate the accuracy of the de novo sequencing methods, normally
the predicted amino acid sequence (also known as de novo peptide sequence)
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is compared with the real peptide sequence (which is known to be a true
peptide sequence). Therefore, the three metrics are defined as follows:

The recall at amino acid level metric is calculated based on the ratio of
the total number of correctly predicted amino acids over the total number of
amino acids in the real peptide sequence. This metric determines the average
coverage of correctly predicted single amino acids.

The precision metric at the amino acid level is defined as the ratio of
the total number of correctly predicted amino acids over the total number
of amino acids in the predicted peptide sequence. This metric provides an
overview of the average predicted peptide length.

The rigorous recall at the peptide level measure is a harsh metric and
reflects the actual de novo sequencing errors, such as amino acid permuta-
tions. Being a full-sequence-based sensitivity criterion, this metric calculates
the number of fully correctly predicted peptides divided by the number of
real peptides. These three metrics are used in Chapter 5 and represented by
Equation 5.9, Equation 5.10, and Equation 5.11,

2.5 Related Work

This section reviews methods related to the prediction of fragmentation
patterns and de novo peptide sequencing. Some of them will be used in this
thesis to compare with our proposed methods.

2.5.1 Preprocessing MS/MS Spectra

To overcome the problem of incomplete fragmentation and noisy data, a
preprocessing step to denoise the MS/MS spectra and find signal peaks for
more reliable peptide identification is usually performed. Generally, there
are three types of methods to denoise MS/MS spectra: simple intensity-
based thresholding [92, 8, 137, 138, 26, 27], peak detection methods in-
spired of digital signal processing [139, 140, 141], and machine learning algo-
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rithms [142, 29, 143].

Intensity-based Thresholding

Threshold methods are normally used in database search engines prior to
searching in order to simplify the spectra by discarding peaks with intensity
below an specific threshold. However, an optimal threshold value is hardly
determined and varies from dataset to dataset. Moreover, these methods by
only considering the intensity information of peaks and assuming indepen-
dence of peaks, neglect the hidden interrelationship between them. In an
MS/MS spectrum, signal peaks are related to each other, for example, the
mass difference between two consecutive signal peaks may be equal to the
mass of one of the 20 amino acids. Another example is the relation between
complementary peaks which is mentioned in more details in Section 2.1.2.

Peak Detection

Peak detection methods such as Fourier analysis and wavelet analysis usu-
ally rely on the shape of the signals and assume stationary signals which are
not the characteristic of signals in mass spectrometry spectra. For low qual-
ity MS/MS data where the peaks are not well-defined shape, these methods
are considerably less effective [26, 144, 29].

Machine Learning Methods

Recently developing intensity-based models for peptide identification has
become an attractive prospect and many efforts have been made by different
groups. Zhou et al. [142] developed an intensity-based model using a Bayesian
neural network approach. A set of 35 peptide fragmentation features were
used to analyse the ion intensity pattern present in 13878 different tandem
spectra. Based on the selected features, the intensity-based model was built
in order to predict the intensity patterns for the given tandem mass spectra.
The work done by Zhou was capable of identifying more contribution of
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different amino acids to peptide fragmentation during CID. However, both
approaches did not model the peak intensities directly. They modelled the
probability of observing a certain fragment ion intensity.

Cleveland et al. [28] proposed an approach which used a two-staged neural
network (SNN) to model ion fragmentation patterns. The model estimated
the posterior probability of each ion type. The main objective was to identify
informative peaks particularly b- and y-ions. A total of 482,604 spectra for
doubly charged peptides ranging from 8 to 20 residues was chosen as the
dataset. The initial preprocessing step was expected to eliminate almost 50%
of all noise peaks in the spectrum. So it removed all peaks with intensities
less that 50. In the first NN, for each peak in the training dataset, a feature
vector containing 14 features and a target vector denoting three different ion
types were fed to the input layer of the NN for training and classification.
For computing the classification error, the cross entropy error function was
used as appropriate objective error function. In the second NN, the same
14 features along with the results of the first NN were given to the NN in
order to reinforce positive evidence that the current peak is a signal peak.
The SNN algorithm outperformed PepNovo [44] and pNovo [145] in terms
of correctly identified signal peaks. However, ANNs cannot be interpreted
and effectiveness of the SNN model by itself without applying the threshold
method was not investigated.

Tiwary et al. [143] also developed two different regression strategies to
model peak intensities using deep learning, DeepMass:Prism and wiNNer and
applied them to the analysis of both data-dependent and data-independent
acquisition datasets. Gessulat et al. [146] also trained a deep neural network,
termed Prosit to predict the fragment ion intensities. Although both methods
reported significant improvements in the prediction of fragment ion spectra,
more work is required to clarify best integration of these models into the
proteomics pipelines [147] and to investigate their impact on improving the
results of particularly de novo sequencing algorithms.

Overall, a number of methods has been developed to predict the intensi-
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ties of different fragment ions by training on a large dataset of experimental
fragment ion spectra. However, predicting the relative intensities of these
patterns are difficult as fragmentation is a stochastic process [147]. More-
over, many methods consider prior assumptions about the fragmentation
model [142, 148], for example, a random match is more likely to have a
low intensity peak [149], whereas even an informative b-/y-ion can be low
abundant. Although using millions of MS/MS spectra to train deep neural
networks has made these models to be more accurate than other methods
in predicting ion fragmentations, they require very large amount of MS/MS
spectra with known identification while in the case of unknown proteins and
peptides in proteomics, such data might not be always available. Another
main drawback of these models is their limited interpretability as deep learn-
ing models are known to be ‘black boxes’ [147].

2.5.2 De Novo Sequencing

A large numbers of de novo sequencing algorithms have been developed.
They are mainly divided into the following groups: näıve approaches, spec-
trum graph models, dynamic programming, hidden Markov models, and ma-
chine learning based algorithms [150, 12]. Each group is explained in more
details as follows.

Näıve Approach

Generating all possible sequences matching the measured precursor mass
for the input spectrum is called brute force, or näıve, approach [151, 152].
The sequences are then scored against the spectrum and the sequence with
the highest score is accepted as the correct identification. However, this
method is only feasible for very short peptides, because the time complexity
grows exponentially in terms of peptide length. PAAS [151], the first de novo
sequencing method, generated more than 21 million possible peptides for an
MS/MS spectrum shown in Figure 2.14 with precursor mass of 775. Also
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Figure 2.14: CID mass spectrum of peptide “VYLHPF”, adapted from [151].

for a large amount of spectra, this approach is not reasonable in terms of
time and space complexity. Many researches have been conducted on prefix
pruning to speed up the search, but since the prefixes are poorly represented
in the spectrum, such methods are not always successful in discovering the
correct sequences [52, 51, 153]

Spectrum Graph Theory Models

Another approach to de novo sequencing is to generate a graph from an
MS/MS spectrum and then finding paths in the spectrum graph that repre-
sent peptide sequences possibly giving rise to the spectrum [154, 155, 45]. A
spectrum is represented as a graph, where peaks (m/z values) are the ver-
tices and edges are defined as the corresponding amino acids to the mass
differences between two vertices. The de novo sequencing algorithm in this
approach is transformed to simply trace a full pathway through the directed
acyclic graph to obtain the spectrum’s sequence [49, 156, 157]. A scoring
function then will be used to score each vertex in this spectrum graph ac-
cording to its previous supporting peaks. The identification process involves
parsing the graph in order to find the highest scored path, which can be inter-
preted as the corresponding peptide sequence for the given MS/MS spectrum.
Popitam [158] uses a non deterministic heuristic approach as an ant colony
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Figure 2.15: An example of an spectral graph reconstructed for de novo sequencing.

optimisation algorithm (ACO) for exploring the graph. Many other methods
use dynamic programming to parse the graph. However, a spectrum graph
approach has some major difficulties such as having a huge graph due to the
noise peaks caused by internal cleavages, contaminants or PTMs. Another
problem is the lack of full path due to the missing ion types caused by incom-
plete fragmentation and low instrument accuracy which makes the de novo
sequencing of full-length peptides challenging (see Figure 2.15).

Dynamic Programming

Dynamic programming can solve a complicated problem by breaking it
down into simpler sub-problems and solve them in a recursive manner [159].
Several tools such as PEAKS [9], PepNovo [44], Lutefisk [100], Sherenga [160],
AUDENS [161], Eigenms [162], pNovo+ [163], MSNovo [46], UniNovo [47],
Open-pNovo [48], MRUniNovo [164] used dynamic programming to traverse
through the spectrum graph for finding optimal paths, although faster heuris-
tics exist. MSNovo uses dynamic programming to find the best peptide
among all possible peptides which are encoded by a mass array data struc-
ture [46]. Although dynamic programming can guarantee to find the optimal
sequence, this result might not always represent the correct sequence.
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Hidden Markov Models

Hidden Markov models are also used in NovoHMM to evolve a model
for solving de novo sequencing by estimating the Bayesian posterior prob-
abilities for each amino acid [54]. The model is constructed based on the
observed mass peaks as the observable random variables and the unknown
peptide sequence corresponded to the hidden variables. The inference with
the model estimates posterior probabilities for the inferred sequence of amino
acids rather than scores for single amino acid in the sequence. However, the
model is highly dependent on the completeness of the fragment ladder. In-
complete or multiple fragmentations and random noises severely diminish the
efficacy of the algorithm, leading to false positive predictions [46]. UVnovo
used a random forest algorithm to learn interpreting ultraviolet photodisso-
ciation (UVPD) spectra and passed the results to a hidden Markov model for
presiding and scoring the sequences. However, UVnovo is a special-purpose
program and not generally applicable [43, 165].

Machine Learning Methods

Recently, machine learning based algorithms are used for automated de
novo sequencing. Decision trees have been used to model the spectra inten-
sity patterns of given peptides. An intensity-based scoring model using two
probabilistic decision trees to model the fragment ion intensities, learning
from a library of MS/MS spectra was proposed in [55]. Similar to this work,
two new scoring functions based on two large decision trees prior to de novo
sequencing were used in Novor [10]. The decision trees were learnt from a
training data composed of more than 300,000 spectra. However, producing
huge decision trees with 7,000 and 14,000 nodes have potential to misclassify
the unseen new data.

Recently, deep learning has been introduced in this area to enhance both
accuracy and speed of de novo sequencing. DeepNovo algorithms [11, 15],
based on deep neural networks and local dynamic programming, show signif-
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icant improvement in full-length de novo sequencing over their competitors
PEAKS [9], PepNovo [44], and Novor [10]. Although the two algorithms
use a local version of dynamic programming that filters inappropriate amino
acid sequences and does not perform backtracking, the methods still can be
further enhanced with more advanced search algorithms as the authors of
DeepNovo have mentioned.

Comparisons of Multiple State-of-the-art De Novo Sequencing Al-
gorithms

Muth et al. [43] selected three dominant de novo sequencing methods,
Novor [10], PepNovo [44] and commercial PEAKS software [77] for the pur-
pose of providing a detailed evaluation on the performance of algorithms on
two HCD and two CID datasets. Their experimental results showed that the
overall performance of Novor, PEAKS and PepNovo on peptide level were
32.25%, 29.25%, and 18.25%, respectively. Clearly, Novor outperformed Pep-
Novo, but not very far from PEAKS. Moreover, Novor and PEAKS showed
better performance for HCD comparing with CID datasets. This indicates
that both algorithms could take advantage of the high resolution of HCD
fragmentation.

Tran et al. [11] compared the performance of DeepNovo [11] with PEAKS [77],
PepNovo, and Novor on five CID spectra on peptide level. The overall per-
formance of DeepNovo on the five datasets showed a significant improvement
at 25.81% in comparison with the other methods. PEAKS and Novor almost
achieved the same overall accuracy at 16%, both outperforming PepNovo
by 6%. Moreover, on 9 HCD datasets, the results provided by Tran et al.
showed overall accuracies of 37.6%, 15.4%, 32.22%, and 2.8% for DeepNovo,
Novor, PEAKS and, PepNovo on peptide level, respectively. The results
showed that DeepNovo and PEAKS were two main competitors with each
other on HCD data.

Qiao et al. in the design of DeepNovoV2 [15] used a new representation
for the input spectrum along with a new architecture of the deep model.
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They only evaluated the method on the same 9 HCD datasets and compared
the results with PEAKS [9] and DeepNovo [11]. The experimental results
showed that DeepNovoV2 achieved an average accuracy of 43.93% across
all nine HCD datasets, outperforming DeepNovo and PEAKS by average of
6.3% and 28.4% at the peptide level, respectively.

However, among all these de novo sequencing algorithms, PEAKS as
a commercial software is the most commonly used tool in the proteomics
community. Therefore, in this thesis we use PEAKS for further analysis and
cross comparison.

2.5.3 PSMs Post-processing

Given an MS/MS spectrum, typically peptide identification methods gen-
erate a set of candidate sequences with each having a match score indicating
the confidence of the match. Normally, the highest score sequence is consid-
ered as the best match. However, the best match does not always indicate
a correct match. As high confidence peptide identification increase the con-
fidence of protein inference, normally database searching methods perform
a post-processing step to evaluate the correctness of PSMs. The input to
post-processing algorithm is a list of high-scored PSMs and the output is the
high-confidence PSMs.

Keller et al. [166] used 4 scores computed by the SEQUEST database
search algorithm [92] as input features to a linear discriminant analysis clas-
sifier in PeptideProphet. The classifier was trained on correct and incorrect
PSMs dataset derived from a purified sample of known proteins. The main
disadvantage of PeptideProphet is the strong assumptions that were made
on the model including a score function learnt from a small dataset and the
Gaussian distributions presumption of correct and incorrect matches. An-
derson et al. [167] applied similar approach using various features and used
SVM as the classification algorithm.

Käll et al. [168] developed Percolator that utilized a richer feature rep-
resentation for PSMs by maximising the use of the information provided by
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the database search. They employed an SVM-based two-step strategy in an
iterative manner. First, the algorithm selected an initial set of PSMs, which
were generated based on the SEQUEST cross-correlation score, as positive
samples. Also a negative set was generated based on the concept of decoy
PSMs. The first SVM classifier was developed to learn from this initial la-
belled set. Then in an iterative manner, the algorithm re-ranked the entire
PSMs using the first classifier to select a new set of positives and then trained
the second SVM in the new set. Being largely heuristic is the main disadvan-
tage of Percolator. Moreover, what exact loss function Percolator optimises
is not clearly provided.

However, there have been only a few attempts to develop post-processing
algorithms for refining the results of de novo sequencing. Many de novo se-
quencing methods focus on improving the scoring function inside the sequenc-
ing algorithm [59, 10, 48] rather than developing a separate post-processing
algorithm for further improving the results.

Yang et al. developed pSite [13] to solve amino acid confidence eval-
uation and modification site localisation on the results of de novo peptide
sequencing. SVM was used to learn how to discriminate correct amino acids
from random one with and without modification. Then, a Bayesian model
was used to evaluate the false amino-acid rate (FAR) at any given threshold.
Their experimental results on three test data sets showed that pSite recalled
86% more amino acids on average than PEAKS at the FAR of 5%. However,
their method focuses on evaluation the confidence of each amino acid which
means partially correct de novo peptide sequencing rather than full-length
de novo peptide sequencing.

In pNovo3 [169], along with a de novo sequencing method to produce
top-10 candidates (pNovo) and a deep learning model (pDeep) to predict the
theoretical spectra, a new learning-to-rank framework was also developed
to discriminate similar peptide candidates for each spectrum. Six features,
extracted from a set of PSMs, were used as the input to SVM-rank [170]
to build a model for re-ranking top-ranked peptide candidates. Then, a
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further step,spectrum merging, was applied to refine the top-1 results. On
seven HCD datasets, pNovo3 outperformed pNovo, PEAKS, and Novor with
average accuracy of 56.3% at the peptide level. PEAKS, pNovo, and Novor
achieved the average accuracy of 36.63%, 35.23%, and 14.17%, respectively.
Although pNovo3 showed significant improvement over the other methods,
the effectiveness of its learning to rank framework by itself is not evaluated.
Moreover, the motivation of the authors is discovering important features
which are most useful for de novo sequencing to distinguish between correct
and incorrect peptides, but the new scoring model build by SVM-rank does
not reveal the relationship between the features fed into SVM-rank, and still
it is a black-box model.

2.5.4 GP for MS/MS Analysis

GP has shown a great potential to deal effectively with the challenges in
MS data to solve the problems such as biomarker detection [171], peptide
detection for biomarker verification [172, 173], quantitative analysis [40], fea-
ture selection and classification [174, 175]. Moreover, GP was successfully
used in motif discovery and cleavage site prediction from amino acid sequence
of proteins [176, 177, 178]. However, the capability of GP in the analysis of
MS/MS data, particularly for the peptide identification problem has not been
fully investigated.

Dorfer et al. [179] proposed a white box modelling based on symbolic
regression using GP for target-decoy classification on the results of their
database search engine, MS Amanda [180], to calculate updated scores of
PSMs. Pearson’s correlation coefficient was used as GP fitness function with
a terminal set containing a set of spectral and peptide specific features, and
a function set of arithmetic and logical operators. Their experimental re-
sults on a low resolution dataset showed that the GP-based scoring function
outperformed random forests (RFs) scoring function and significantly im-
proved the results of peptide identification by 14%, while RFs increased the
performance by up to 4%. However, using Pearson’s correlation imposes a
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prior assumption of a linear pre-defined model structure. Moreover, as the
motivation of this work was using a white box method for modelling the sepa-
ration of correct and false identification, no detailed analysis of the generated
models was provided.

2.5.5 GA for Sequence Optimisation

De novo sequencing can be formulated as an optimisation problem where
the objective is to discover the most likely amino acid sequence that can be
generated by the input spectrum [49]. De novo sequencing was performed via
stochastic optimisation using genetic algorithms [181]. Unlike the näıve ap-
proach, this method does not need to generate all possible sequences, instead
a small set of amino acid sequences is sufficient to start the process, optimis-
ing them to best fit the input spectrum. However, the algorithm failed as the
simple fitness function used in GA was not discriminative enough. Later on
another GA-based method with better fitness functions that got advantage of
shared peak count was developed [182]. Given an MS/MS spectrum, a small
initial population of amino acid sequences as individuals was generated ran-
domly. Each individual was represented by a vector of integers between 1 and
18 (considering 20 amino acids with two identical pairs I/L and K/Q). In this
algorithm, GA created 350 individuals in each of 150 generations. A fitness
function, which measured the similarity between the experimental spectrum
and the theoretical one produced by a candidate individual, was adapted
for GAs. The candidate individuals were manipulated using mechanisms
of recombination, selection and mutation until some pre-defined criterion of
convergence such as certain number of generations or the maximum fitness
has been met. The performance of the proposed method in situation when
there are missing peaks were evaluated and the results were compared with
those obtained by Lutefisk [100]. The results showed that Lutefisk was not
able to find the correct peptide in majority of cases and the GA outperformed
it. The GA-based de novo sequencing algorithm could potentially overcome
the problem of missing ion peaks, one of the major problems in real MS/MS
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spectra, so this methodology can be a promising approach in the proteomics
field. The work was extended by Malard et al. [183, 184] as de novo sequenc-
ing via constrained multi-objective optimisation using a Pareto-driven GA
with two scores namely H-score and T-score, which were considered as the
conflicting objectives to evolve a population of putative peptide sequences.
H-score counted the number of matches between the peak locations in two
experimental and theoretical spectra, whereas T-score measured the proba-
bility of a match being incorrect. However, further analysis on the quality
and biological relevance of the evolved peptide sequences were not provided
by the authors. PepyGen [185] was developed as a new post-processing al-
gorithm for optimising the results of existing de novo sequencing algorithms.
The partial sequences, tags, from Lutefisk were used as the input to Pepy-
Gen to reconstruct the full-length sequences and only two MS/MS spectra
were used to check the performance of the algorithm. Overall, these GA al-
gorithms showed promising results, but they only focused on improving the
fitness functions of GAs while the impact of designing domain-dependent
genetic operators was totally neglected in these methods.

2.5.6 Multi-objective Optimisation in MS/MS

There have been a very limited number of studies that used MOP in MS
analysis for biomarker detection [186]. Biomarker detection must consider the
trade-off between the classification performance and the number of features
without the prior specification of the relative importance of each objective.
The number of features should be as small as possible to be able to pass them
to experimental validation. Therefore, for evaluation of biomarker selection,
two objectives should be considered, maximise the classification performance
and at the same time minimise the number of features.

In MS/MS analysis MOP has not been fully investigated yet. Popitam
proposed by Hernandez et al. [158] used parallel multi-objective GP (MOGP)
to generate scoring functions for optimising the scores of the PSMs from the
results of a Full Path algorithm which used ant colony optimisation to find
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the full paths in the spectrum graphs. A set of 12 scenario subscores each
calculated based on a particular criterion such as sequence coverage, node
pertinence, and peak intensity was extracted and fed to GP as its terminal set
along with a random coefficient. The function set of GP is compromised of
six mathematical operators addition, subtraction, multiplication, protected
division, power, and a conditional statement if-less. The two fitness scores
rankFitness and discFitness were considered as the function objectives for
MOGP to optimise. RankFitness measures the ability of the GP evolved
solution to give the highest score to the correct peptide and compromises be-
tween 0 and 1 (the optimum value), while discFitness evaluates how capable
is the solution in distinguishing the correct PSM from other incorrect ones
and varies between 0 (the optimum value) and 1. discFitness corresponds
to mean of p-values computed based on score distributions of negative or
random peptides. They reported that the results were promising as the new
scoring function was able to distinguish the correct PSMs, resulting in im-
proving the performance of Popitam. However, it is not clear that the two
objectives considered in MOGP are in conflict with each other. Moreover,
apart from the pre-assumption of Gaussian distribution by discFitness score,
it was observed by the authors that quite often many random matches (incor-
rect peptides) receive p-values near 0, which is the optimum value, resulting
in contamination of the distribution. As the motivation of the proposed GP
method was building a scoring function which is able to give a good rank to
the correct peptide while separating the correct peptide from other negative
peptide scores, new criteria to separate correct assignments from incorrect
ones is required.

2.6 Summary

This chapter presents basic notions about mass spectrometry-based Pro-
teomics analysis. A brief background in machine learning with particular
emphasis on classification and regression problems is also provided. As this



2.6. SUMMARY 71

thesis takes advantage of evolutionary computation (EC) techniques, some
detailed background on genetic programming (GP), genetic algorithm (GA),
and evolutionary multi-objective optimisation (EMO) are also covered in this
chapter. The recent related works in MS/MS preprocessing, de novo sequenc-
ing and PSM scoring including traditional statistical and machine learning
based method are reviewed as well. There are a few open issues that have
not been explored yet:

• Despite the recent improvements in mass spectrometers and the relia-
bility of peptide and protein identification tools, a number of studies
revealed that state-of-the-art only assigned less than 40% of spectra to
peptides, and still a significant number of MS/MS spectra remained
unassigned [5, 187].

• Existing denoising models due to their black box nature have not fully
investigated the important spectral features in MS/MS that can be used
to learn fragmentation patterns [44, 145, 28]. Other methods need large
amount of data to learn the fragmentation patterns [143, 146]. While
over-fitting can be caused by performing classification on the small
datasets, there are also limitations in proteomics on generating large
benchmark MS/MS datasets with known identification, therefore the
classification algorithm should be able to learn from a reasonable size
of MS/MS dataset. Some methods mainly focused on the probability of
observing a particular ion intensity which is a challenging task due to
the stochastic nature of the fragmentation, rather than predicting the
ion types. Moreover, as the number of signal peaks is very small com-
pared to the noise peaks, the imbalanced property of MS/MS spectra
and its impact on the accuracy of the machine learning model used to
denoise/classify the peaks in order to learn the fragmentation patterns
are not systematically investigated. As the imbalanced ratio varies be-
tween the MS/MS dataset, a stable learning method to various S/N
ratios is required. Since learning from an imbalanced dataset is a very
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challenging task, multi-objective optimisation is a great technique to
deal with the accuracies of the minority and majority classes separately.
To the best of our knowledge there has not been any multi-objective
algorithm to learn the fragmentation patterns from the imbalanced
MS/MS data.

• De novo sequencing of full-length peptides is still a challenging task
due to the missing ion types and presence of noise in the data. Many
existing methods use either graph-theory or dynamic programming to
find the full-length paths which in either cases the performance of the
de novo sequencing algorithm deteriorates when facing missing values
or noise. Also other methods mainly focus on improving the scoring
functions used to score the candidate sequences, and neglect the search
mechanism to find the correct candidates. GA was used to solve the op-
timisation task of de novo sequencing due to its ability to explore a large
search space. However, current GA-based de novo sequencing methods
neglect the flexibility of GA in adapting with domain-dependent knowl-
edge and did not consider domain-specific genetic operators to enhance
the quality of the evolutionary search process. It is worth investigating
how designing appropriate GA components such as genetic operators,
fitness function, and selection operator can help GAs construct full-
length peptides.

• Developing PSM post-processing algorithms to refine the results of de
novo sequencing is relatively a new research area and recently has at-
tracted more attention. White/grey box models such as GP are more
preferred as the researchers are more interested in discovering the re-
lationship between the features that account for separation of correct
and false identification. The current GP methods either solve a classifi-
cation problem (a learning to rank framework) or a regression problem
to generate the new PSM scoring function to optimise the scores of
PSMs. However, these methods can be further improved by designing



2.6. SUMMARY 73

a strategy that enables GP to solve a classification and a regression
problem simultaneously in order to generate a powerful discriminative
scoring function that gives the highest score to the correct PSM among
the other false identifications, resulting in improving the performance
of the de novo sequencing method at the peptide level.

This thesis aims at exploring apparent limitations and suggests applying
GP and GA to conventional de novo peptide sequencing methods in order to
achieve the best possible identification accuracy at the peptide level.
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Chapter 3

Preprocessing MS/MS Using
GP for Improving the
Reliability of Peptide
Identification

3.1 Introduction

In MS/MS data, the background noise does not necessarily mean noise
from low instrument accuracy, but anything which makes the peptide identi-
fication tool having a big search space should be removed from data. There-
fore, a preprocessing step in a binary classification manner to remove back-
ground noise prior to de novo peptide sequencing in order to simplify the
highly imbalanced MS/MS spectra could be useful for more high-confidence
identifications.

As there is no gold standard for highly imbalanced MS/MS data contain-
ing already labelled signal and noise peaks, which can be used by the super-
vised classification methods, it is worth investigating which ion types should
be considered as signals in the training set of the gold standard dataset.

Since the MS/MS data is highly imbalanced, developing a suitable classi-

75
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fication algorithm that can handle this problem and also finding appropriate
evaluation matrices for measuring the performance of the classifier are of
great importance. One of the main advantages of GP in classification tasks
is its flexible representation. GP has the potential to cope with complex
problems and has good learning capability even from imbalanced data [35].
GP can adapt its fitness function to evolve a model that is capable of dealing
with the class imbalanced problem. Moreover, various spectral features and
fragmentation rules are introduced in the literature and their effectiveness in
improving the peptide identification is not systematically investigated. Since
GP has the capability of implicit feature selection, analysis of a GP model
can reveal the important spectral features that have better discrimination
ability.

GP has been successfully applied on MS data and proved to be a promis-
ing tool in MS analysis [188, 175, 40]. However, its potential for peptide
identification from MS/MS spectra has not been systematically investigated.

3.1.1 Chapter Goals

The overall goal of this chapter is to develop a GP approach to prepro-
cessing MS/MS spectra in order to reduce the noise peaks and to retain the
signal peaks for the purpose of improving the reliability of peptide identifi-
cation. Specifically, the following research objectives will be investigated:

• Investigating appropriate measures for performance evaluation of the
preprocessing method to classify imbalanced MS/MS data;

• Developing an effective fitness function that accounts for both the mi-
nority and the majority class accuracies in the evolved GP classifiers;

• Investigating important ion types in peptide identification in order to
create a suitable gold standard MS/MS dataset that can be used by
GP for the training purposes;
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• Investigating the stability of the proposed GP method across various
imbalance ratios;

• Investigating the effectiveness of incorporating various spectral features
and fragmentation rules as features into the GP method and analysing
the capability of GP in implicit feature selection; and

• Analysing the effectiveness of the proposed GP method in terms of the
improvement in the reliability of peptide identification with existing
peptide identification tools.

3.1.2 Chapter Organisation

The remainder of the chapter is organised as follows. The proposed GP-
based preprocessing method is explained in Section 3.2. Section 3.3 explains
the experiment design where MS/MS datasets, benchmark algorithms con-
sidered for comparisons, and a set of experiments are described. Section 3.4
presents the results of the experiments and provides further analysis on the
best evolved GP program. The chapter ends with Section 3.5 summarising
the findings.

3.2 The Proposed GP Method

Figure 3.1 illustrates the MS/MS analysis workflow designed for pre-
processing MS/MS spectra with GP followed by an evaluation step. The
workflow starts with an MS/MS spectra (in the Mascot generic peak list for-
mat) dataset containing noise and signal peaks. The preprocessing method
is composed of three steps including feature extraction, labelling peaks and
classification using GP. In feature extraction, a set of intensity-based spectral
features are extracted for each peak in the spectrum. The next step, labelling
peaks, determines the class label of each peak as either signal or noise. The
data then is divided into a training and a test set. GP uses the training
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Figure 3.1: The MS/MS analysis workflow composed of the proposed GP method for
preprocessing the spectra and an evaluating step.

set to build the model for binary classification then applies the model for
classifying the peaks in the test set into signal peaks and noise peaks.

The preprocessed test set by GP is then submitted to PEAKS to evaluate
the effectiveness of the GP method. The result of PEAKS is a set of identified
peptides with different confidence scores. It is worth mentioning that, in
peptide identification with PEAKS, an average local confidence score (ALC)
indicates the reliability of the results. An ALC score reflects the average
correct ratio of the predicted amino acids in a peptide sequence. The higher
the confidence score, the more reliable the peptide identification. In PEAKS,
ALC scores range from 0% to 99% and a score at 55% or above, as suggested
in the PEAKS website [189], is considered as a confident match. The entire
sequence of a peptide is not necessarily to be mapped due to the incomplete
fragmentation and the difficulty in detecting the signal peaks of the fragments
from the beginning and the end of the peptide sequences in MS/MS. The
results of peptide identification are grouped into five intervals which are {[55,
60), [60, 70), [70, 80), [80, 90), [90, 99]}. For each interval, the number of
peptides identified by PEAKS are counted.



3.2. THE PROPOSED GP METHOD 79

Table 3.1: List of spectral features. N denote a normalised value; D specifies a discretised
value; B denote a binary value;

Group features Feature Value

(1) {f1} Normalised m/z N
(2) {f2} Normalised and Discretised Intensity N,D
(3) {f3,...,f15} Is Top X in Win ± Z B
(4) {f16,...,f28} Local Rank in Win ± Z N
(5) {f29} Global Rank N
(6) {f30} Complementary Ion B
(7) {f31,...,f40} Sister Ions B

PEAKS is also used to perform de novo sequencing on un-preprocessed
(raw) data and on the spectra preprocessed by an intensity-based threshold
method. The results of peptide identification preprocessed by GP are then
compared to those of un-preprocessed data and the intensity-based threshold
method.

3.2.1 Feature Extraction

The intensity value of each peak in an MS/MS spectrum can be used to
extract a set of spectral features that explain the CID fragmentation prop-
erties of peptides. Table 3.1 presents a total number of 7 groups of spectral
features extracted from the MS/MS data. These spectral features can be
good discriminators between the signal and noise peaks. All groups include
only one feature except group 3, 4 and 7, which contain parametric features
where changing the parameter values result in new features.

Given spectrum s with n peaks and precursor mass of mprec, let s =
(mz(1),mz(2),mz(3), ...,mz(n)) denotes a spectrum with an intensity vector
of I = (I1, I2, I3, ..., In). The i-th peak in the spectrum corresponds to the
mass-to-charge value of mz(i) with intensity(i). More details about how to
extract the features of each group from the spectrum are explained as follows:

Group (1): “Normalised m/z” feature [29] normalises the m/z value of
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each peak to an integer value between 0 and 100 by measuring the relative
location of the current m/z value in the whole spectrum (see Equation (3.1)).

fnormmz (mz(i)) =
⌊
mz(i)× 100

mprec

⌋
(3.1)

Group (2): The “Normalised and Discretised Intensity” feature [28]
divides the intensity value of the current peak to the highest intensity value
in the whole spectrum. The intensity values within the whole spectrum
normally are very fluctuated from a very small value of less than 100.00
to a large value of 10,000.00. Therefore, to have a better scaled values,
discretisation is applied on the normalised values in order to map them into
m discrete bins. For example for m = 5 in Equation (3.2), the normalised
intensities are rounded up to 0.05, 0.10, 0.20, 0.40, 0.80, or 1.00 as discrete
values [28].

fnormintensity
(Ii) =

⌊
m( Ii

Imax

)
⌋
/m (3.2)

where Imax is the most abundant peak in the spectrum, Ii is the intensity of
the current peak and m indicates the number of discrete intervals.

Group (3): The “Top X in Win ± Z” features [27] rank all peaks within
the windows size of ± Z” around the current peak. If the current peak is
amongst the top X most intense peaks in the window, then its corresponding
feature value is considered to be 1, otherwise 0. The value of X and Z can
be determined empirically or based on the literature. It is worth mentioning
that overlapping windows are allowed in all window based features.

Group (4): The “Local Rank in Win ± Z” features [27] rank the num-
ber of peaks that are the same or are more abundant than the current peak
within a local window of ± Z. Normalised ranks are computed by dividing the
rank of each peak by the number of peaks available within the window ± Z.
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Group (5): The “Global Rank” feature, presented by Equation (3.3),
ranks the intensity of the current peak compared to all of the peaks in the
whole spectrum and then normalises the rank by dividing the rank of the
current peak to the total number of n peaks in the spectrum.

fnormrank
(Ii) = rank(Ii)

n
(3.3)

Group (6): The “Complementary Ion” feature investigates if the com-
plementary ion of the current peak exists in the whole spectrum. In CID
fragmentation, a complete peptide fragmentation gives a contiguous series of
ions. However, sometimes due to the low ion fragmentation efficiency of the
mass spectrometer, some ions are not available in the spectrum. By finding
the complementary ion peaks, undetected ions can be added to the spec-
trum. As shown in Equation (3.4), the sum of the two complementary ions’
masses should be equal to the precursor mass of the spectrum. Therefore,
each peak in the spectrum is checked for the existence of its complementary
peak. Based on the CID fragmentation parameters of the dataset, a mass
tolerance is considered to estimate the existence of the complementary ion
of the current peak.

fc(mz(i)) =

1, if mz(i) +mz(j) + δ ' mprec

0, otherwise
(3.4)

where 1 ≤ j ≤ n and n is the total number of peaks in the spectrum. δ is the
mass tolerance of the mass spectrometry device used to ionise the spectra in
the dataset and varies from one dataset to another one.

Group (7): The “Sister Ion” features check the existence of the sis-
ter ions of the current peak. A sister ion is a peak that can be found
at the fixed ∆ m/z value away from the current m/z value. Based on
the literature [28], a list of 10 common sister ions including ∆ values of
∆ = {−2, −1, 1, 2, 17, 18, 28, 34, 35, 36} are considered in this study.
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Figure 3.2: An example of the labelled peaks in the experimental spectrum by matching
against the theoretical spectrum.

These numbers are related to the loss mass of H2O, NH3, H2O-H2O, H2O-
NH3, and isotopic ions. This set can be extended to a larger range of all
possible ∆ values from -2 to 143 (145 sister ions).

3.2.2 Labelling Peaks/Instances

The so-called ground-truth is the spectrum peptide matches. The theo-
retical spectra of the known peptides based on the CID fragmentation rules
of doubly charged peptides [190] are constructed. The theoretical spectra
include only signal peaks with no noise peaks. More details about how to
construct the theoretical spectra and which fragment ions should be consid-
ered are experimentally investigated in Experiment I of Section 3.3.3 (see
Page 89) and the results are explained in Section 3.4 (see Page 95).

After constructing the theoretical spectrum, each peak in the experi-
mental spectrum with those in the theoretical one is matched. Figure 3.2
illustrates the process of matching peaks in both experimental and theoret-
ical spectra. A peak in the experimental spectrum within 0.8 Da of the
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signal peaks in theoretical spectrum is considered to be matched so it can be
manually labelled as a signal peak. However, those unmatched peaks in the
experimental spectrum are labelled as noise peaks. The mass tolerance of 0.8
Da is the mass error tolerance of the mass spectrometry used for producing
the benchmark dataset used in this thesis [78].

3.2.3 Creation of the Training Set and Test Set

After applying the labelling process, the dataset consists of instances
(peaks, m/z values), a set of extracted features followed by class labels which
are presented by numerical values of 0 (for noise peaks) and 1 (signal peaks).
Then, the data is divided into two sets: training set and test set. The training
set is used during the GP learning process to build the model and the test
set is used to evaluate the GP model.

3.2.4 GP Program Representation and Classification
Strategy

As mentioned before, for preprocessing the MS/MS spectra, a binary clas-
sification using GP for classifying signal peaks and noise peaks is performed.
A tree-based GP representation which is the most popular GP structure [63]
is used. The terminal set of the GP method comprises of the extracted fea-
tures and randomly generated floating point numbers, which are known as
constants. The function set consists of the four arithmetic operators +,−,×,
and protected / (indicates usual division except that a division by zero gives a
result of one) and the trigonometric sin function. The sin function is consid-
ered due to the periodic waveform of MS/MS spectra which might be turned
into a sum of different amplitude sine waves. The first four operators take
two arguments, whereas the last operator, sin, takes one argument. All five
operators return one argument. The output of the GP program is a single
floating point. It is worth mentioning that the function set considered in the
design of GP is not obtained based on many trial and errors, therefore it is
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Table 3.2: Genetic programming parameters

Parameter Value
Function Set {+,−,×, /, sin}
Terminal Set {Features from dataset, Random Constant}
Initial Population Ramped Half-and-Half
Population Size 1024
Generations 50
Mutation Rate 0.19
Elitism Rate 0.01
Crossover Rate 0.8
Selection Tournament, Size = 7

not the optimal function set for GP.
A threshold output value of zero is chosen to distinguish between the two

classes. Based on the class distribution of an imbalanced MS/MS dataset,
the signal class is considered to be the minority class, while the noise class
indicates the majority class. A positive GP-output (including zero) value of
the GP-tree indicates that the instance belongs to the signal class (minority
class) and a negative output value points to the noise class (majority class).
Table 3.2 displays the genetic programming parameters used in this work.
The Evolutionary Computation Java-based (ECJ) package [191] is used for
implementing the GP method.

3.2.5 An Effective Fitness Function for Imbalanced MS/MS
Data

The key component to an evolutionary algorithms is the performance
measure of candidate solutions. The evaluation process determines the good-
ness of an individual (or an evolved program in GP) through the fitness
function. Therefore, the evolutionary process is guided towards finding bet-
ter solutions. The number of correctly classified instances as a percentage
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of the total number of instances, i.e., the overall classification accuracy, is a
widely used performance measure in classification problems. However, in the
case of an imbalanced dataset, using such a measure as the fitness function
leads the evolved classifiers to be biased towards the majority class [192].
Therefore, to avoid this issue as the MS/MS spectra dataset is highly im-
balanced, a weighted fitness function including the true positive rate and
true negative rate with coefficient of α is used to evaluate the evolved GP
programs.

A-acc = α× ( TP

TP + FN
) + (1− α)× ( TN

TN + FP
)

= α× SE + (1− α)× SP
(3.5)

where A-acc is the abbreviation of average accuracy. The signal peaks are
considered as positive instances and noise peaks as negative examples. There-
fore, TP is the number of correctly classified signal peaks, whereas FN in-
dicates the number of incorrectly classified signal peaks. Also, TN is used
to count the number of correctly classified noise peaks, and FP presents the
number of incorrectly classified noise peaks. A-acc represents a weighted
sum function composed of accuracy of the minority class (sensitivity, SE)
and accuracy of the majority class (specificity, SP). α is a coefficient that
needs to be determined empirically. This is addressed in Experiment III of
Section 3.3.3 and the results are presented in Section 3.4.1 (see Page 101).
Considering a weighted accuracy rather than an average accuracy prevents
the bias issue when there is a prevalence relationship between the positive
class and the negative class.

3.3 Experiment Design

3.3.1 Dataset

Table 3.3 presents the datasets used to run the experiments in this chap-
ter. Each dataset contains different number of MS/MS spectra which are
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Table 3.3: Datasets details

Datasets No. of spectra No. of peaks
Synthetic
dataset

train 10 9,958
test 5 4,475

Original
dataset

train 2,630 1,730,190
test 1,674 1,228,529

Evaluation set 253,732 185,224,471

selected from the original benchmark dataset [78]. More details about the
datasets are as follows:

• Synthetic dataset: including 10 MS/MS spectra in the training set and
5 spectra in the test set. This dataset is used for the purpose of finding
the most stable classification algorithm across various imbalance ratios.
Various training and test sets having different S/N ratios are created
from this dataset. Also the dataset is used for tuning the GP fitness
function and finding appropriate feature parameters.

• Original dataset: including 2,630 MS/MS spectra in the training set
along with a test set of 1,674 MS/MS spectra. This dataset is used as
the gold standard dataset. The dataset is used with the purpose of com-
paring the threshold-based preprocessing method with the classification-
based method in terms of improvement in the reliability of peptide
identification.

• Evaluation set: containing 253,732 MS/MS spectra corresponding to
doubly charged peptides. This is the large-scale dataset which is used
for evaluating the GP method in terms of improving the reliability of
peptide identification with de novo sequencing and database searching
methods.
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3.3.2 Benchmark Algorithms

In order to have a comprehensive investigation of the effectiveness of the
GP method to handle the imbalanced MS/MS data, different types of clas-
sification algorithms including a distanced-based classifier (k-Nearest Neigh-
bour, K -NN), a kernel-based classifier (Support Vector Machine, SVM), a
probabilistic classifier (Näıve Bayes, NB), a ruled based classifier (Decision
Tree, DT), an ensemble-based classifier (Random Forest, RF), a network-
based classifier (Multilayer Perceptron, MLP) are used to compare with GP.
The implementation of these learning algorithms are taken from the Waikato
Environment for Knowledge Analysis (WEKA) package [193]. A brief de-
scription of these algorithms can be seen as follows.

1. K -NN tries to assign a class label resulted from the majority vote of
its k nearest neighbours.

2. SVMs attempt to construct hyperplanes in a high dimensional space
and classify examples. For each hyperplane, the SVM model aims to
maximise the distance between the hyperplane and the nearest data
points on each side of it.

3. NB applies the Bayes theorem, which works on conditional probability.
NB predicts membership probabilities for each class and then selects
the class with the highest probability as the most likely class for an
unseen example.

4. DT is a tree-structure classification algorithm, where the paths from
root to leaves represent the classification rules. The internal nodes
contain splits representing a test on the attributes/features of the sam-
ples, the edges correspond to the outcome of the tests and the leaf
nodes represent the class labels.

5. RF is an ensemble learning method in which multiple DTs are con-
structed together at the training time and the output is the most com-
mon class among the individual DTs.
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6. MLP is a computational model inspired of the human brain and nervous
system, aiming at constructing a network using a number of layers that
maps the instances to the target class labels.

3.3.3 Experiments

This section conducts three sets of experiments which are addressing the
research goals in this chapter.

(1) Experiment Set I (on GenGP method)

In this set of experiments, GP evolves a general GP-based preprocess-
ing model, called GenGP, using four commonly used spectral features in the
literature [28]. The goal of designing this GP method is assessing the capa-
bility of GP in handling the classification of imbalanced MS/MS data across
various imbalanced ratios. The experiments in Experiment set I are briefly
as follows:

• Experiment I : Investigating important ion types in peptide identifica-
tion.

• Experiment II : Investigating appropriate evaluation metrics for perfor-
mance evaluation of the classification algorithms using MS/MS spectra
in the test set of the gold standard dataset.

• Experiment III : Investigating appropriate α coefficient for the proposed
GP method on the synthetic dataset.

• Experiment IV : Comparing the performance of the proposed GP method
with six different classification algorithms across various ratios of S/N
using MS/MS spectra from the synthetic dataset.

• Experiment V: Investigating the performance of the proposed GP method
on the gold standard dataset.
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• Experiment VI : Evaluating the effectiveness of the proposed method
in terms of improvement in reliability of peptide identification on the
gold standard dataset.

In the rest of this section, the experiments above are explained in more
details.

Experiment I: Investigating important ion types in peptide identi-
fication.

In an MS spectrum, each precursor ion, which indicates the m/z value
of a peptide, can be selected and fragmented into hundreds of fragment ions
that construct an MS/MS spectrum. During fragmentation by CID, differ-
ent fragment ion types are generated. In the CID fragmentation technique,
we are only interested in b-/y-ions because the amino acid sequence of an
MS/MS spectrum can be determined by the mass differences between b-/y-
ions. However, during the fragmentation, different ion types such as isotopo-
logues, neutral losses, and doubly charged ions are produced. The presence
of different types of ions along with the background noise can produce a large
and complex search space for the peptide identification tool to explore, lead-
ing to a high false discovery rate. Therefore, prior to peptide identification,
it is worth investigating which ion types should be considered as signals and
noise peaks. This investigation helps make a clear definition of background
noise in the data. Based on the results of this experiment, the peaks in the
MS/MS datasets from Table 3.3 (see Page 86) are labelled as either signal
or noise to create a gold standard dataset which later will be used by the
proposed GP method and other classification algorithms.

Figure 3.3 illustrates the workflow of investigating the important ion types
in peptide identification. The workflow starts with an experimental MS/MS
spectrum with known peptide. The spectrum is submitted to the Mascot [93],
a popular database search engine, for labelling each peak in the spectrum.
Different peaks/ions are extracted from the spectrum to create different sce-
narios from 1 to 7. Table 3.4 shows the Mascot parameter settings. Each sce-
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Figure 3.3: The workflow of investigating important ion types for effective peak labelling.

nario containing a spectrum with different ions is submitted to both PEAKS
as a de novo sequencing software [9], and SPIDER, a benchmark database
search tool [194], to re-identify the spectrum.

The single experimental spectrum is chosen from the ground-truth pro-
vided by LC-MS/MS benchmark dataset [78]. The spectrum corresponds
to doubly charged peptide sequence “SEQGMSLLQPGK”. This spectrum
is submitted to Mascot database search tool to be searched against the Es-
cherichia coli K12 [195] protein database with Fragment match tolerance
of 0.8 Da. Table 3.4 shows more details of the database search parameter
setting.

The Mascot search result returns peptide “SEQGMSLLQPGK”, which is
the same as the ground-truth. The result of the Mascot database search is ex-
ported as an annotated spectrum where each peak is labelled as: y(1+), b(1+),
y(2+), b(2+), b(1+)-H2O, b(1+)-NH3, y(1+)-H2O, y(1+)-NH3 and no label
which is considered as noise. To find out which ion types should be labelled in
the gold standard dataset, different scenarios are provided to test the peptide
identification rate using different combinations of the ions. The scenarios are
as follows:
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Table 3.4: Mascot database search parameter setting
Protein database Spectrum

database name Escherichia coli
(strain K12)

min. precursor mass 350 Da

enzyme name Trypsin max. precursor mass 5000 Da
max. missed cleavage 1 min number of peaks 1

ms1 tolerance 10 ppm Fragment match options
(export search results)

ms2 tolerance 0.8 Da charge details +1 and/or +2
Percolator setting matched tolerance 0.8 Da

validation based on q-value
selected ion series

b, y, -H2O, -NH3,
Immoniumcutoff q-value 0.01

1. Raw spectrum containing all peaks which include all ion types (as sig-
nal peaks) along with noise peaks.

2. Labelling only matched doubly charges b-/y-ions as signal peaks. This
includes {b(2+), y(2+)}.

3. Labelling only matched singly-charged b-/y-ions as signal peaks. This
includes {b(1+), y(1+)}.

4. Labelling both matched singly and doubly charges b-/y-ions as signal
peaks. This includes {b(1+), y(1+), b(2+), y(2+)}.

5. Labelling matched singly-charged and neutral losses as signal peaks.
This includes {b(1+), y(1+), b(1+)-H2O, y(1+)-H2O, b(1+)-NH3, y
(1+)-NH3}.

6. Labelling CID simulated fragments singly-charged ions as signal peaks.

7. Labelling CID simulated fragments singly-charged ions and neutral
losses as signal peaks.

In each scenario, only those peaks which are mentioned in the description of
each scenario are submitted to PEAKS and SPIDER, while other peaks are
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removed from the spectrum. The results of these experiments will indicate
which scenario results in a higher score (more confident) identified peptide
with a larger number of matched amino acids. Two different commonly
used peptide identification tools, PEAKS and SPIDER, are used to make a
stronger conclusion. Based on the results of this experiment, the peaks in the
spectra from the datasets in Table 3.3 are labelled to create a gold standard
dataset.

Experiment II: Investigating appropriate evaluation metrics for
performance evaluation of classification algorithms.

This experiment investigates three metrics SE, SP, A-acc, which are in-
troduced in Equation (3.5), to determine the efficient metrics in noise reduc-
tion and signal retention of MS/MS spectra when a preprocessing method is
applied on the data. SE is calculated as the number of correctly classified
positive instances of peaks divided by the total number of positives, whereas
SP is the number of correctly classified negative instances divided by the to-
tal number of negatives. The selected metrics later are used to evaluate the
performance of the proposed GP method and other classification algorithms.

Moreover, since the proposed GP preprocessing method is compared with
the current threshold-based method [92, 8] in terms of improving peptide
identification on the test set of the gold standard dataset, by conducting this
experiment, the best threshold value for the dataset used in this study is
achieved to have a fair comparison. The idea is finding the best threshold
value of the gold standard dataset in terms of the number of identified pep-
tides. The test set contains 1,674 MS/MS spectra that correspond to 1,674
peptides (ground-truth).

To find the best threshold value, different thresholds ranging from 0 to
25,000 are considered. Then based on the flowchart in Figure 3.1, the prepro-
cessed data by each threshold value is submitted to PEAKS to identify the
peptides. The threshold value with the highest number of identified peptides
is chosen as the best threshold value for the dataset.
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After finding the best threshold value, SE, SP and A-acc are calculated
for all thresholds. The aim is to find a relationship between the three afore-
mentioned metrics across different thresholds. This relationship (pattern)
can give us a rough idea of how to evaluate the proposed GP-based pre-
processing method and other classification algorithms in Experiment IV and
Experiment V. The results are explained in Section 3.4.

Experiment III: Investigating appropriate α coefficient for the pro-
posed GP method.

In binary classification of imbalanced datasets, it is highly important to
identify instances belonging to the minority class correctly. Therefore, as
previously shown in Equation (3.5) on Page 85), a weighted average is used
to evaluate the evolved GP classifiers. In this section, different α coefficients
are experimentally checked to find a suitable α value. The synthetic dataset
containing 10 spectra in the training set and 5 spectra in the test set from
Table 3.3 is used to conduct this experiment.

Experiment IV: Comparing the performance of the GP method
with six different classification algorithms across various ratios of
S/N peaks in the synthetic dataset.

Since MS/MS spectra are highly imbalanced and due to the fact that
the ratio of imbalance varies between datasets, the aim of this experiment
is to investigate the stability of GP along with 6 learning algorithms on the
synthetic dataset across different imbalance ratios. Various training and test
sets having different S/N ratios including {1:1, 1:2, 1:4, 1:6, 1:13, 1:20} from
the synthetic dataset, where 1:1 indicates a balanced dataset whereas 1:20
implies 20 times more noise peaks than signal peaks are created. The perfor-
mance of each classifier is measured through the suitable metrics identified
in Experiment II.
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Experiment V: Investigating the performance of the proposed GP
method on the gold standard dataset.

In this experiment, GP and other six classifiers are allowed to build the
model on the training set and then test it on the test set of the gold standard
dataset. The aim of this experiment is to investigate if the results on the
gold standard dataset is consistent with those of the synthetic dataset (in
Experiment IV).

Experiment VI: Evaluating the effectiveness of the proposed method
in terms of improvement in reliability of peptide identification.

In this experiment, the impact of the GP method on peptide identification
on the test set of the gold standard dataset is investigated. Three different
scenarios are provided to investigate the effectiveness of the preprocessing
method. The three scenarios are as follow:

1. Using the original data (un-preprocessed dataset).

2. Preprocessing the data using the best threshold value identified in
experiment II.

3. Preprocessing the data produced by GenGP.

The spectra in the test set of the gold standard dataset preprocessed by
each scenario are submitted to the PEAKS software to identify the peptides
and the peptide reliability of each scenario is measured through the 5 different
ALC ranges.

(2) Experiment Set II

The second set of the experiments investigates whether the performance
of the proposed GP method improves by incorporating additional fragmen-
tation rules from CID spectra (considering all feature groups from Table 3.1
on Page 79). The spectral features might provide more evidence to the clas-
sifier for distinguishing the noise peaks from signal peaks. Therefore, a set
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of experiments including tuning “Top X in Win ± Z” features using differ-
ent X and Z parameters, and investigating the effectiveness of each group
of features in improving the classification performance are conducted. As
adding more features increase the search space of the classification problem,
the experiments also investigate the feature selection capability of GP. So
the feature selection capability of GP is explored by combining all features
from Table 3.1. The method is called CID-GP. The implicit feature selection
and interpretability of GP might reveal important spectral features that have
positive influence in classification of peaks.

(3) Experiment Set III (Performance Evaluation on Peptide Iden-
tification Reliability)

Finally, the performance of GenGP and CID-GP are compared with the
best intensity-based thresholding method in terms of improving the reliability
of peptide identification with PEAKS as a de novo sequencing method and
SEQUEST [92] as a benchmark database search engine. The evaluation set
from Table 3.3 is used to run this experiment.

3.4 Results and Discussions

This section presents the results of all experiments in the previous section
and discusses important findings.

3.4.1 Results of Experiment Set I

Results of Experiment I, important ion types

This section presents the results of Experiment I where important ion
types in peptide identification for effective peak labelling is investigated.
As previously mentioned, seven different scenarios (see Page 91) each using
different combinations of fragment ions are considered. Table 3.5 presents
the results of peptide identification on each scenario using PEAKS de novo
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Table 3.5: Comparisons of various scenarios containing different set of ion types sub-
mitted to PEAKS and Spider for peptide identification. The ground-truth sequence is
“SEQGMSLLQPGK”. The scenario with high scores and more sequence coverage for both
identification tool indicates containing the most important ion types. Scenario 6 gives the
best results.

PEAKS SPIDER
Scenario

no.
Identified Sequence

score
(%)

Identified Sequence
score
(%)

(1) WNKVELASAEK 34 DLGFLPGDLAEK 17.42
(2) FLLLKEYGYK 10 FLLLDEPTRGL 19.34
(3) LCKGMSLLQPGK 61 SEQGMSLLQPGK 42.02
(4) CLKGMSLLQPGK 60 SEQGMSLLQPGK 42.02
(5) YHQLLSMTPGK 52 LTTLLLSQGTPM 21.63
(6) LCKGMSLLQPGK 70 SEQGMSLLQPGK 42.02
(7) CLLVLLSMTPGK 72 GQDQLLSLAGGDT 25.02

sequencing and SPIDER database search. As previously mentioned, a single
experimental spectrum is chosen from the ground-truth and its corresponding
doubly charged peptide sequence is “SEQGMSLLQPGK”.

Any letter of the identified sequence which is in bold indicates an exact
match against the corresponding letter of the ground-truth sequence. In this
table, the scenario that obtains a high PEAKS and SPIDER confidence score
with higher sequence coverage (a larger number of bold AA letters) to the
ground-truth is selected as the best case and determines the most important
ion types to peptide identification. This indicates the best decision on the
ion types to be selected for labelling the MS/MS datasets which are used by
the machine learning methods. The following sections analyse the results of
each tool separately.

The Scenarios Submitted to PEAKS and the Peptide Identifica-
tion Results Table 3.5 presents the results of each scenario submitted to
PEAKS for de novo sequencing of the spectrum. The results in Table 3.5
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show that submitting the raw spectrum (scenario 1), which contains all ion
types and noise peaks, results in a sequence with a low ALC score of 34.
Moreover, if only matched doubly charged ions (scenario 2) are selected out
of all peaks in the spectrum and submitted to the de novo sequencing tool,
a worse result, ALC = 10, is obtained. However, the matched singly charged
of b-/y-ions (scenario 3) gives a better result of ALC = 61. In the next sce-
nario, both singly and doubly charged ions are combined (scenario 4), but
the ALC score decreases to 60. The next scenario combines singly-charged
and neutral losses ions (scenario 5) to investigate whether the presence of
neutral ions can improve the identification rate. However, the results dete-
riorate (ALC = 52) due to the fact that the presence of neutral losses ions
and doubly charged ions makes the ladder complicated and increases the po-
tential false positive sequences. Therefore, so far, only using the matched
singly-charged ions (scenario 3) are the best choice (ALC = 61). However,
only using the matched ions may make the ladder incomplete and deteri-
orate the performance of peptide identification. In the next scenario, the
ions are constructed virtually based on the known CID fragmentation rules
of doubly charged peptides [190] using only b-/y-(1+) (scenario 6). This
results in a complete ladder and presents a higher ALC score and closer to
the exact match compared to the previous scenarios. The last experiment
combines CID b-/y-(1+) and neutral losses (scenario 7). Although the ALC
score is the highest among all experiments, the sequence is far from the exact
match. Therefore, it can be seen that scenario 6 where only CID ions are
used, gives the best results. Furthermore, another set of experiments using
the database search tool, SPIDER, is conducted in the following to make a
stronger conclusion.

The Scenarios Submitted to SPIDER and the Peptide Identifica-
tion Results Here, the same set of scenarios are submitted to SPIDER.
The purpose of running this experiment is to see how a database search
tool interact with different sets of ions/peaks in the spectrum and to check
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Table 3.6: Labelled Datasets

Datasets
No. of
spectra

No. of
signal
peaks

No. of
noise peaks

Synthetic
dataset

train 10 278 9,680
test 5 115 4,360

Golden standard
dataset

train 2,630 42,960 1,687,230
test 1,674 38,707 1,189,822

Evaluation set 253,732 4,095,873 181,128,598

whether the previous results from the de novo sequencing is consistent with
the results from a database search tool.

From Table 3.5, it can be seen that similar to the PEAKS results, us-
ing doubly charged ions and neutral losses ions (scenario 2) does not help
the peptide identification. Since there is a protein database to be searched
against, it can be seen that in three scenarios, 3, 4, and 6, the results are
the same as with each other. It can be seen that, both tools on scenario 6
show good results. Therefore, only extracting CID singly-charged b-/y-ions
can “guarantee” to obtain a reasonable peptide identification rate. Shao et
al. [29] has also reported that complementary signal peaks are more likely to
be found at a charge state of +1 than at other charge states.

So based on the results in this section, all datasets introduced in Table 3.3
are labelled by considering only CID singly charges ions as signal peaks and
the rest of the peaks as noise peaks. Table 3.6 presents more details about
the number of signal and noise peaks in all datasets. It can be seen that all
datasets are highly imbalanced.

Results of Experiment II, appropriate evaluation metrics

This section provides the results of Experiment II where appropriate eval-
uation metrics for performance evaluation of classification algorithms is in-
vestigated. Figure 3.4 presents the result of peptide identification done by
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Figure 3.4: The result of peptide identification using PEAKS on the test set of the gold
standard dataset containing 1,674 MS/MS spectra preprocessed by different intensity-
based threshold values.

PEAKS on the test set of the gold standard dataset containing 1,674 MS/MS
spectra preprocessed by 50 experimentally determined threshold values in the
range 0 − 25, 000. The results represent the number of identified peptides
with ALC scores between 55 and 99. For more convenient presentation of the
overall trend, the x-axis of the plot shows only a few threshold values out of
50. It can be seen that by increasing the threshold from 0, identification rate
slightly increased and reached a peak of about 1400 by using threshold 100.
After this, there was a sharp decline in the number of identified peptides,
decreasing to less than 50 using threshold 25k. Therefore, the best threshold
value for the gold standard dataset is at 100.

In order to further investigate how different threshold values including
the best threshold classify signal and noise peaks, for each threshold, SE, SP
and A-acc have been calculated and plotted in Figure 3.5. Again similar to
Figure 3.4, only the results of the a few number of threshold values in the x-
axis have been plotted. Overall, it can be seen that SP is far higher than SE
throughout the whole threshold increment. This indicates that selecting high
threshold values to filter the signal and noise peaks in MS/MS spectra results
in removing a significant number of signal peaks due to their low intensity
values which are below the thresholds. Therefore, a trade-off between SE and
SP is required. This indicates that classification of noise and signal peaks in
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Figure 3.5: The total number of identified peptides by PEAKS with confidence scores
between 55 and 99 on the original data and the preprocessed data by GP method and an
intensity-based thresholding method. The y-axis shows the value of each measure for its
corresponding graph.

MS/MS data is a multi-objective problem as increasing the accuracy of one
class results in decreasing the accuracy of another class. The multi-objective
approach will be investigated in the next chapter.

The A-acc graph shows a steady downward trend in overall, which seemed
set to continue to reduce. As the best threshold value of 100 got the highest
rate of A-acc among other thresholds, it seems that A-acc, a trade-off value
between SE and SP, is an appropriate metric to evaluate the classification
algorithms in the next experiments.

In summary, the results show that to have high peptide identification
reliability, the preprocessing method is required to have a high A-acc value.
Since identifying signal peaks can highly improve the peptide identification
rate, as the second criterion to evaluate the classification performance, SE
value is considered as well. Therefore, in the next two experiments, the
effectiveness of the preprocessing methods in terms of two metrics, A-acc
and SE is measured.
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Figure 3.6: The classification results of GP on the labelled synthetic dataset for different
coefficients of sensitivity and specificity in the GP fitness function: α×SE + (1−α)×SP,
where α = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. (a) The classification results on the training set.
(b) The classification results on the test set.

Results of Experiment III, investigating appropriate α coefficient
for GP

This section presents the results of Experiment III which investigates a
suitable α value used in the fitness function (Equation (3.5) on Page 85) of
the proposed GP method.

Figure 3.6 shows the classification results of GP using different coefficients
for SE and SP on training and test sets of the labelled synthetic dataset from
Table 3.6, respectively. On one hand, it can be seen that by increasing the
coefficient of SE, the specificity in both the training and test sets drops.

On the other hand, giving a high coefficient to SP can decrease the sensi-
tivity and this is not desired. Therefore, it seems that the sets of coefficients
(0.5 × SE + 0.5 × SP) or (0.6 × SE + 0.4 × SP) work better compared
to other sets. However, (0.6 × SE + 0.4 × SP) results in higher sensitiv-
ity value, but decreases the precision due to the increase in false positives.
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Figure 3.7: Classification results of the GP method and six classification algorithms on the
synthetic dataset containing 10 MS/MS spectra in the training set and 5 MS/MS spectra
in the test set on different S/N ratios.

Therefore, the rest of the experiments are done by using α = 0.5, i.e., (0.5 ×
SE + 0.5 × SP) as the fitness function of GP.

Results of Experiment IV, investigating the stability of GP across
various ratios of S/N.

This experiment provides the results of comparing the performance of the
proposed GP method with six different classification algorithms across vari-
ous S/N ratios of the synthetic dataset. For the GP system, the experiments
are repeated for 30 independent runs with 30 different random seeds.

Figure 3.7 shows the classification results of the GP method and other
classification algorithms on the synthetic dataset. It can be seen that GP
has the best classification results in both training and test sets in terms of
A-acc and SE where noise ratio is high. All classifiers show decreasing A-acc
with the decrease in the S/N ratio of the MS/MS data in the training set
except GP that shows relatively “constant” accuracy at >80%. On the test
set most of the classifiers show top accuracy at 1:4 S/N ratio that dropped
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Figure 3.8: Classification results of the GP method and six classification algorithms on
the gold standard dataset containing 2,630 MS/MS spectra in the training set and 1,674
MS/MS spectra in the test set. The classification results of the best intensity-based
thresholding method (Thr.100) is also presented on the test set for further comparison.

significantly with the increase of the noise ratio except GP that shows steady
increase in accuracy with the increase of the S/N ratio.

Overall, GP showed the best performance in terms of A-acc among other
classification algorithms. In terms of SE, GP also showed the best and most
stable behaviour in both training and test sets. The GP algorithm developed
here focuses on both the majority and the minority classes in finding signal
peaks (A-acc and SE), which is desirable. Two possible reasons for the good
performance of GP could be: (1) other methods did not use the average
accuracy as the cost function in the training process, and (2) GP is capable of
automatically applying features selection while solving a binary classification
problem.
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Results of Experiment V, investigating the performance of the pro-
posed GP method on the gold standard dataset.

Figure 3.8 presents the results of A-acc and SE that were achieved by all
classifiers on both training set and test set of the gold standard dataset. As
can be seen in Figure 3.8, the results of all classification algorithms on the
gold standard dataset are consistent with those in Figure 3.7 at 1:20 S/N
ratio. The S/N ratio in both training set and test set of the gold standard
dataset is almost 1:30. This experiment demonstrates the performance of
GP when facing an MS/MS spectra dataset with a realistic imbalance ratio.
The results also show that GP has the best classification results in both
training and test sets in terms of A-acc and SE. The results of the best
threshold value, Thr.100, which was previously presented in Figure 3.5 has
been illustrated in bar chart of test set, to make a comparison between the
accuracy of the best classification method and best threshold based method.
It can be seen that, the results of the GP method in terms of A-acc and SE
is better than those of the best threshold value. It is worth mentioning that
in threshold based method, using only one feature value, intensity, could not
achieve a trade-off between classification of signal and noise peaks. Whereas
with the proposed GP method a high value of A-acc and SE can be achieved,
and this leads to discriminating more signal peaks from noise ones.

In summary, the GP algorithm has been demonstrated to be promising
in handling the highly imbalanced MS/MS data in retaining the signal peaks
that are minority instances and removing the noise peaks that are the ma-
jority ones. GP achieved the best average accuracy and sensitivity results
compared to the other algorithms examined. Next, the preprocessed MS/MS
data by GP is submitted to PEAKS in order to identify the peptides and
evaluating the effectiveness of the prepossessing GP method.
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Figure 3.9: The results of peptide identification using PEAKS on the test set of the gold
standard dataset. The original un-preprocessed data and the preprocessed data by the
initial proposed GP method and an intensity-based thresholding method are given to
PEAKS and the results are shown in different ALC ranges.

Results of Experiment VI, evaluating the effectiveness of GenGP
in terms of improvement in reliability of peptide identification.

Based on the results of Experiment II, threshold 100 received the highest
peptide identification rate among the other thresholds. The results of the
experiments IV and V showed that the GP method is the most promising
preprocessing method to classify signal and noise peaks. Therefore, the re-
sults of GP with the best threshold value is compared here. Figure 3.9 shows
the result of peptide identification performed by PEAKS using preprocessed
and un-preprocessed data referring to the three scenarios mentioned before
(see Page 94). The experiments are run on 1,674 MS/MS spectra in the test
set of the gold standard dataset. In Figure 3.9, the original data refers to the
un-preprocessed spectra. The results are presented in five different ranges
of ALC scores. For each ALC range, the number of identified peptides by
PEAKS has been counted.
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GenGP Threshold 100 Original data

55
ALC

99
0

250

500

750

1000

1250

1500

1750

2000
1611

1396
1255

Figure 3.10: The total number of identified peptides by PEAKS with confidence scores
between 55 and 99 using original data and the preprocessed data by the initial proposed
GP method and an intensity-based thresholding method.

Overall, GP could identify more high ALC scored peptides compared to
the other scenarios. It can be seen that there is a significant difference be-
tween the results of GP for peptides with ALC higher than 90% compared
to un-preprocessed data. For 60 ≤ ALC ≤ 99 in every range of ten, pre-
processing data with GP achieved the highest number of identified peptides
by PEAKS. However, the identification rate slightly dropped in the range
of 55 ≤ ALC < 60 for both GP method and threshold 100 compared to
the un-preprocessed data as most of the peptide are already identified with
higher confidence score and are shifted to the other ranges.

Figure 3.10 presents the results of total number of identified peptides by
PEAKS with ALC scores between 55 and 99. These results are the sum-
mation of number of identified peptides for each ALC range presented in
Figure 3.9. For 55 ≤ ALC ≤ 99, the results shows that GP could help
PEAKS in finding more high confidence peptides rather than the other meth-
ods. GP could improve the reliability of peptide identification by 28.3% (=
(1611−1255

1255 ×100)) compared to un-preprocessed data, whereas the best thresh-
old at 100, had the improvident of 11.2% (= (1396−1255

1255 × 100)). Comparing
both GP method and threshold method, GP had 15.4% (= (1611−1396

1396 ×100))
improvement over threshold method.

In summary, the influence of the proposed GP method on PEAKS in
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terms of finding more high confident identified peptides is more than the
threshold-based preprocessing method. The reason is that the threshold
method ignores those peaks with intensities less than the threshold, resulting
in loosing many low intensity signal peaks and keeping a number of high
intensity noise peaks. That is one of the disadvantage of threshold method
as it ignores the hidden relationship between the peaks and only filters them
based on only the intensity feature. Figure 3.8 shows that GP achieved
72.46% of A-acc and 86.77% of SE on the test set of the gold standard
dataset, which means GP could keep reasonable amount of signal peaks,
while removing a significant number of noise peaks and this allows GP to
improve the results of PEAKS.

3.4.2 Results of Experiment Set II

This section presents the results of the experiments conducted to tune the
parameters and features. The classification results of each group of features
along with combining all features are also provided.

Tuning the Parameters in “X Intensities in Win ± Z” Feature In
this section, a set of experiments is conducted where GP is used to perform
binary classification on labelled synthetic dataset using one single feature
of “Top X Intensities in Win ± Z”. A range of 1-10 is considered for X,
while Z ranges from 27 to 100 with an increment of 10. The value 27 is
suggested by [196] where a top 1 in Win 27 approach is applied on the
MS/MS spectrum to remove the potential noise peaks. Here, the aim of
running these experiments is finding appropriate parameter values for X and
Z that keep the classification performance reasonably high. The average
accuracy graphs in Figure 3.11 show that for X values from 3 to 8, and for
window size Z values less than 60 (the first four graphs starting from top
left), the results of classification in terms of average accuracy is reasonably
high (more than 85%). By increasing the window size Z to more than 70, the
average accuracy graphs keep increasing for all X values in range the 1-10. It
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Figure 3.11: Classification results of the GP method on the synthetic dataset using one
single feature of “Top X Intensities in Win ± Z”.

means that for window sizes more than 70, the X range of 1-10 is not sufficient
to give a downward trend to the average accuracy graphs. The reason is that
for a big window size Z, increasing the value of X gives more chances to
keep the potential signal peaks. Because of retention of more signal peaks,
the classification accuracy increases. As Z indicates a neighbourhood around
each peak, we are not interested in big neighbourhoods which can turn the
local “top X intensities in Win ± Z” feature to a global feature. Therefore,
one solution could be limiting the range of Z to the mass of the smallest
amino acid which is 57 Da. This is almost consistent with [27] where only
13 sets of X,Z where X,Z = (1,27), (3,56), (4,40), (4,50), (4,60), (6,25),
(6,30), (6,40), (6,50), (6,60), (8,40), (8,50), (8,60) were used for the purpose
of noise thresholding of MS/MS spectra. Also, another alternative would be
considering all X and Z values in the graphs of Figure 3.12 where the average
accuracy is more than 85% in both train and test sets. As there are 45
cases with that condition, the next experiments investigate the classification
results of using 45 sets of X,Z as features. Moreover, as the 13 sets of X,Z
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Figure 3.12: The classification results of GP on labelled synthetic dataset. (a) Using each
group of features individually on the training set. (b) The results on the test set.

reported in [27] were not used as the features for the machine learning-based
preprocessing method, in the next experiment, these sets of features are used
with the GP method and the results will be compared with other groups of
features including the top 45 sets of X,Z values.

Classification Results of each Group of Features This experiment
investigates the effectiveness of each group of features in improving the clas-
sification performance of the GP system. For “Top X Intensities in Win ±
Z” and “Sister Ions” features, various parameter values are considered to
investigate all possibilities. Figure 3.12 (a) and (b) show the classification
results of each group of features from Table 3.1 (on Page 79) on the labelled
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synthetic dataset.

The results of Figure 3.12 (a) and (b) show that among the seven groups
of features from Table 3.1, “Top X Intensities in Win ± Z” and “Local Rank
in Win ± Z” groups (group 3 and 4) achieve the highest classification results
on both the training and test sets compared to other feature groups. The
reason is that these two groups try to identify possible noise peaks within a
local window around the current peak and keep signal peaks. The second best
group of features is “Global Rank” (group 5), where each peak is compared
to all of the peaks in the spectrum.

“Complementary Ion” and “Sister Ions” groups are the third best sets
of features. These features are based on the CID fragmentation rules and
try to find the hidden relationship between the peaks in the whole spectrum
without considering the intensity of each peak. The last two best features
are “Normalised m/z” and “Normalised Intensity” groups.

As mentioned before, for the two groups of features, “Top X Intensities
in Win ± Z” and “Sister Ions”, two sets of experiments including different
parameter values are conducted to investigate appropriate parameters for
these groups. For the group “Top X Intensities in Win ± Z”, two sets of
13 and 45 features are used. The bar charts (Figure 3.12 (a) and (b)) show
that the classification results in terms of average accuracy, sensitivity, and
specificity on both the training and test sets are relatively the same for both
sets of 13 and 45 features. As using more features during the learning process
requires more processing time, for the group “Top X Intensities in Win ±
Z”, 13 features are considered afterwards. Also, the results of the bar charts
show that for “Sister Ions” group, considering only 10 common features will
be sufficient to get a reasonable classification result on both train and test
sets compared to having all 145 possible features.

So far, the results of each individual groups of features are obtained. Now
it is worth investigating the classification results of combining all features
together.
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Classification Results of Combining All Features GenGP, explained
in Experiment Set I , only considers 4 features. In this experiment, a different
set of features are extracted from the MS/MS data. Based on the results of
the classification of individual groups, a total number of 40 features includ-
ing 1, 1, 13, 13, 1, 1, and 10 features from group (1) to (7) are extracted,
respectively. For more investigation, 145 possible sister ions from group (7)
are used together with another 30 features from group (1) to (6). Therefore,
a total number of 175 features will be compared to 4 and 40 features. Shao
et al. [29] show that a total number of 20 delta values including common
neutral losses with ∆ = 17, 18, 28, 34, 35, 36, 44, 45, 46, 64 and isotopic
ions with ∆ = -1, -2, +1, +2 and delta values separated by masses of amino
acids including ∆ = 57, 63, 71, 87, 97, 99 are meaningful delta values and
contribute to better signal and noise peak discrimination. Therefore, the 20
features above from group (7) along with 30 features from other groups (to-
tally 50 features) will be also compared to 4, 40, and 175 features to find out
the best set of features aiming at increasing the classification performance
on the gold standard dataset (Table 3.6, which is a large dataset containing
thousands of spectra.

Figure 3.13 shows the classification results of GP using different number
of features on the training and the test sets of the gold standard dataset. It
can be seen that there is a huge difference between using only 4 features and
using more than 4 on both train and test sets. This is a good indication to
motivate using more features. Among the other cases when using 40, 50, and
175 features, it can be seen that using 40 features gives higher classification
result on the training and test sets compared to using 50 and 175 features.
Also, training process takes shorter time when using 40 features compared to
50 and 175 features. In summary, the results show that choosing 40 spectral
features are good discriminators to help GP identify signal and noise peaks.
As the main purpose of having a preprocessing method is improving the
peptide identification reliability, the next section evaluates the effectiveness
of the new GP-based preprocessing method using 40 features (CID-GP) and
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Figure 3.13: The classification results of GP on the gold standard dataset using different
set of features.

compares the results with GenGP using 4 features, the best threshold-based
method for the gold standard dataset, and the un-preprocessed data.

3.4.3 Results of Experiment Set III

Evaluating the Effectiveness of CID-GP on a large-scale dataset us-
ing PEAKS In this section a large-scale peptide identification using the
evaluation set which contains 253,732 MS/MS spectra is performed. The
evaluation set preprocessed by CID-GP, GenGP and the intensity-based
thresholding method are submitted to PEAKS for peptide identification.
Also, the evaluation set without applying any preprocessing method is sub-
mitted to PEAKS to be a baseline of all comparisons.

Figure 3.14 shows the results of peptide identification done by PEAKS
using different methods to preprocess the evaluation set. Overall, CID-GP
achieved the highest number of identified peptides by PEAKS compared
to the other methods. The CID-GP helped PEAKS identify more highly
confident peptides with scores 70 ≤ ALC ≤ 99. Since the method has



3.4. RESULTS AND DISCUSSIONS 113

CID-GP GenGP Threshold 100 Original data

90
ALC

99

80
ALC

<90

70
ALC

<80

60
ALC

<70

55
ALC

<60

55
ALC

99
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.14: The results of peptide identification using PEAKS on the evaluation set.
The original un-preprocessed data and the preprocessed data by CID-GP, GenGP and the
intensity-based thresholding method are given to PEAKS and the results are shown in
different ALC ranges including the whole range of 55 ≤ ALC ≤ 99.

already identified a large number of peptides in range 70 ≤ ALC ≤ 99, there
are fewer peptides to be identified with low confidence scores in range 55
≤ ALC < 70.

For 55 ≤ ALC ≤ 99 in Figure 3.14, which contains the results of the
summation of identification rate for each ALC range, the results show that
CID-GP could help PEAKS find more highly confident peptides rather than
the other methods. This method could improve the reliability of peptide
identification by 26.6% (= (0.995−0.728)×100) compared to un-preprocessed
data. Comparing CID-GP with the threshold method, CID-GP has 19.3%
(= (0.995 − 0.802) × 100) improvement over the threshold method. Also,
CID-GP has 7.2% (= (0.995 − 0.923) × 100) improvement compared to the
GenGP.

In terms of the identification rate, the CID-GP could help the peptide
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Table 3.7: The statistical results of peptide identification by SEQUEST using CID-
GP, GenGP, an intensity-based thresholding method, and gold standard data (un-
preprocessed/original data). The average and standard deviation of xcorr-scores for each
method is shown.

CID-GP GenGP Threshold 100 Original data
Xcorr-score 3.07 ± 0.74 2.93 ± 0.78 2.91 ± 0.77 2.54 ± 0.63

identification tool identify 99.5% of the highly confident peptides, whereas
the threshold method only achieved an identification rate of 80.2%.

In summary, CID-GP helps PEAKS find more highly confident identified
peptides than threshold-based preprocessing method. The reason is that the
threshold method ignores those peaks with intensities less than the threshold,
resulting in loosing many low intensity signal peaks and keeping a number
of high intensity noise peaks. That is one of the disadvantage of threshold
method as it ignores the hidden relationship between the peaks and only
filters them based on only the intensity feature. CID-GP achieved A-acc
of 88% and SE of 86.92% on the test set of the gold standard dataset (see
the 40 features bar charts in Figure 3.13. This means that GP could keep
a reasonable amount of signal peaks, while removing a significant number of
noise peaks and this allows GP to improve the results of PEAKS.

Evaluating the Effectiveness of CID-GP Using a Database Search
Tool for Peptide Identification

The same experiment explained in previous section is conducted using a
database search engine, SEQUEST [92], to check the effectiveness of the GP-
based preprocessing method. SEQUEST is a dominant benchmark database
search tool and reports a confidence score for each peptide spectrum match.
A cross-correlation (Xcorr) as a confidence score measures the goodness of
fit of experimental spectra to theoretical spectra created from the sequence
b- and y-ions. For each spectrum, the peptide candidate with the highest
Xcorr-score is known to be a better match.
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Figure 3.15: The best GP evolved program using 40 features.

To compare the results of CID-GP with other methods, a statistical un-
paired t-test with 95% confidence interval is used. Table 3.7 shows that the
result of CID-GP is statistically significantly better (shown in italics in the
table) than the other methods. CID-GP outperformed GenGP and increased
the mean of the Xcorr score by 0.53 and 0.16 compared to the best threshold
value and the un-preprocessed data, respectively.

In summary, CID-GP was also helpful for increasing the reliability of
peptide identification done by SEQUEST as a database search engine. By
filtering more noise peaks and retaining sufficient signal peaks, it increased
the average of confidence scores of identified peptides and reduced the stan-
dard deviation of these scores.
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3.4.4 Analysis of the Evolved GP Program

Figure 3.15 shows the best GP-evolved program using 40 features (CID-
GP). It can be seen that the GP tree uses features f2, f7, f7, f12, f12, f14,
f16, f16, f19, f21, f29, f29, f31, f34 which correspond to the groups (2), (3),
(4), (5), and (7) of Table 1. Analysis of the GP tree reveals that the features
“Normalised Intensity”, “Top X Intensities in Win ± Z”, “Local Intensity
Rank in Win ± Z”, “Global Rank”, and “Sister Ions” are good discriminators
which help GP distinguish signal peaks from noise peaks. This is the evidence
of why CID-GP gets better results compared with GenGP which only uses
2 groups of the features above (normalised intensity and global rank). Also
appearing the “Sister Ions” features in the evolved GP program confirms the
result of experiment I (investigating the important ion types) where it was
expected that ion types such as neutral losses can help GP identify the signal
peaks from noise peaks. So it can be seen that sister ion features have been
found by GP and help GP distinguish the signal peaks from noise peaks.

3.5 Chapter Summary

The goal of this chapter was to develop an effective preprocessing method
to filter noise peaks and identify the signal peaks for improving the reliabil-
ity of peptide identification using highly noisy CID spectra. The goal has
been successfully achieved by proposing a classification-based preprocessing
method using GP to classify peaks to signal or noise peaks. As the MS/MS
data is highly imbalanced, average accuracy of true positive rate and true
negative rate was used as the fitness function of GP, and this helped GP not
be biased towards the accuracy of the majority class containing noise peaks.
A suitable gold standard MS/MS dataset containing thousands of MS/MS
spectra was created and used as the training set of the GP system. Mean-
while, a set of suitable spectral features based on the CID fragmentation
rules was extracted from the dataset. With the tree-based representation
of GP, feature selection was implicitly applied during the evolutionary pro-
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cess and the analysis of a GP model revealed the important spectral features
that have better discrimination ability. The experiments showed that the
GP-based preprocessing method improved the reliability of peptide identifi-
cation and increased the identification rate of PEAKS by 26.6% compared
to the un-preprocessed data and 19.3% over the threshold-based method.
Moreover, the results of SEQUEST, the database search tool, using the data
preprocessed by GP were statistically significantly better than those with the
un-preprocessed data and the best threshold-based method.

The single objective GP approach showed promising results in handling
the highly imbalanced MS/MS data. From the results of Figure 3.5 on
Page 100, it is found that the two metrics SP and SN are conflicting with
each other. Although the effective weighted sum fitness function in the sin-
gle objective GP is able to look after the accuracies of both majority and
minority classes, it is worth investigating how multi-objective GP is able to
handle this problem. This investigation is addressed in the next chapter.
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Chapter 4

Multi-objective GP for
Classification of Highly
Imbalanced Tandem Mass
Spectrometry

4.1 Introduction

In Chapter 3, GP was successfully used in solving imbalanced classifica-
tion problems aiming at improving the reliability of peptide identification.
Being a population-based problem solving technique, GP has been proved
to be more stable compared to the other six investigated classification algo-
rithms including decision tree (DT), k-nearest neighbour (K-NN), multilayer
perceptron (MLP), naive Bayes (NB), random forest (RF), and support vec-
tor machines (SVMs) when the S/N in the MS/MS data decreases.

However, working with imbalanced data is difficult as uneven distribution
of class examples in the train dataset could leave the learning algorithm
with a performance bias, resulting a high majority class accuracy and a
poor performance on the minority class [30]. As it was seen in the previous
chapter (Experiment II) that SP, which is the accuracy of the majority class
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(noise), is in conflict with SN, which is the accuracy of the minority class
(signal). This means that increasing one results in decreasing the other one.
Therefore, classification of imbalanced MS/MS spectra can be served as a
multi-objective classification problem.

Moreover, as the objective preference information from the decision maker
is usually a priori built into the learning algorithm, in practice it is very dif-
ficult to obtain sufficient preference information and accurately represent the
decision maker’s preferences. Subsequently after finding the best satisfying
solution, any change to the decision maker’s preference requires to start the
search process with the new preference information again.

Evolutionary multi-objective optimisation (EMO) as a posteriori method
provides a set of Pareto optimal solutions prior to the decision maker’s pref-
erence. So during a single run, a set of non-dominated solutions along the
trade-off surface is found and then the decision maker can choose one of them
based on his/her preference. EMO techniques have been effectively used to
solve many real-world problems [186, 197].

A number of different EMO methods have been proposed [198]. There
have been successful attempts to use GP and Pareto dominance-based al-
gorithms to solve the class imbalanced problem by maximising two con-
flicting objectives, the classification accuracy of the minority and majority
classes [36].While Pareto dominance-based algorithms usually produce non-
dominated solutions around the centre of the Pareto front, decomposition-
based EMO algorithms benefit from having the ability of differently allocating
resources to better approximate the Pareto front [37].

Decomposing a multi-objective optimisation problem (MOP) into a set
of scalar sub-problems and simultaneous optimising them, MOEA/D (multi-
objective evolutionary algorithm based on decomposition) is an efficient frame-
work for EMO. Neighbourhood is an essential property of MOEA/D. It uses
evolutionary operators to combine good solutions of neighbouring problems
for better convergence.

As GP proved to be a promising tool in MS/MS analysis, its potential for
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further improvement in handling two conflicting objectives of majority and
minority classes using MOEA/D has not been investigated. Therefore, this
chapter aims to extend the previous single objective GP approach by develop-
ing a multi-objective GP (MOGP) approach using the MOEA/D framework
to evolve a set of solutions which maintain the best trade-off between these
two conflicting objectives.

4.1.1 Chapter Goals

The main goal of this chapter is to develop an MOGP approach based
on MOEA/D, named MOGP/D, to solve the class imbalanced problem by
maximising two conflicting objectives, the accuracy of the minority class
and the accuracy of the majority class in imbalanced MS/MS spectra. It is
expected that the proposed MOGP/D algorithm can evolve a Pareto front of
classifiers along the optimal trade-off surface that offers the best compromises
between the majority class and minority class accuracies. The classifier with
the best trade-off can be used to preprocess the imbalanced MS/MS spectra
prior to peptide identification in order to reduce the noise peaks and to retain
the signal peaks. The following objectives are specifically investigated:

1. Investigating the stability of an MOGP/D method with the decrease
in the S/N ratio in the MS/MS data in terms of convergence to the
Pareto front and comparing the results with MOGP based on NSGA-
II (named NSGP), the popular elitist non-dominated sorting genetic
algorithm method [76].

2. Analysing the classification performance of the best compromise solu-
tions evolved by MOGP/D and NSGP and comparing them with the
best solutions evolved by the single objective GP (SGP) approach.

3. Investigating the impact of the best compromise solution by MOGP/D
on improving the peptide identification reliability and compare it with
SGP.
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4.1.2 Chapter Organisation

The reminder of this chapter is organised as follows. Section 4.2 describes
the proposed MOGP/D method. Section 4.3 explains the experiment design
including the benchmark multi-objective algorithm, evaluating metrics and
a set of experiments which address the goals of this chapter. Section 4.4
provides the results and analysis. Section 4.5 concludes this chapter.

4.2 The Proposed Approach

This section describes the proposed MOGP approach based on MOEA/D
and explains the objective functions, the new weight vector initialisation
method and the evolutionary parameters used in this method.

4.2.1 Overview of the Method

In this section, the proposed MOGP method based on the MOEA/D
framework, for addressing the class imbalanced problem in MS/MS spec-
tra, is explained and the new algorithm is named MOGP/D. First, the two
conflicting objectives in the multi-objective classification of MS/MS spectra
are introduced. Then the modification applied on MOEA/D to effectively
initialising and allocating the weight vectors are described.

The pseudo-code of the evolutionary search algorithm to simultaneously
evolve a set of GP solutions along the learning objectives is presented in
Algorithm 1, and at the end of the section, the MOGP/D parameter settings
are explained.

Objective Functions

The two conflicting objectives in the classification of highly imbalanced
MS/MS spectra include accuracy of minority class (SE) and accuracy of
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Algorithm 1: Pseudo-code of the proposed MOGP/D approach
Input : MOP; NGen: number of generation as stopping criterion; N: number

of sub-problems; a set of uniformly distributed N weight vectors; T:
number of neighbours; σ: probability of selecting the parents from the
neighbourhood.

Output: an external population (EP) as the final optimal Pareto front.
1: Initialisation:
2: Set EP = ∅;
3: Generate initial weight vectors based on Equation (4.3) and calculate the

Euclidean distance between any two vectors;
4: For i = 1, .., N, find T closest weight vectors to the weight vector of the i-th

sub-problem, and denote B(i) as its neighbouring set;
5: Randomly initialise each GP individual to create the population P where each

individual in P is the candidate solution of the i-th sub-problem;
6: Initialise the reference point z∗;
7: gen← 0
8: while gen ≤ maxGen do
9: for i = 1 to Popsize do

10: Reproduction:

Ne =

B(i), if rand < σ

P, otherwise

Randomly select two solutions from Ne (either from the neighbouring
set, B(i), or from the whole population, P) to generate a new solution y
by using the genetic operators;

11: Update of z: for each j=1,..., Nobj if fj(y) < zj then zj = fj(y);
12: Update of Neighbouring Solutions: update solutions of neighbouring

sub-problems if the fitness value of y (F(y), based on Equation (2.5) on
Page 54) is better than the solutions of sub-problem.

13: Update of EP: remove all weight vectors dominated by F(y) from EP,
and add F(y) to EP if it is not dominated by any vector in EP.

14: end
15: gen← gen+ 1
16: end
17: return EP



124 CHAPTER 4. MULTI-OBJ. GP FOR PREPROCESSING MS/MS

majority class (SP) which both are presented in Equation (4.1).

SE = TP

TP + FN
; SP = TN

TN + FP
(4.1)

where TP and FN count the number of correctly and incorrectly classifying
signal peaks, respectively. TN and FP represent the number of correctly
and incorrectly classifying noise peaks, respectively.

In order to convert the multi-objective classification to a minimisation
problem, the two objective functions in Equation (4.1) are normalised into
the following form, shown in Equation (4.2).

f1(x) = 1− SE ; f2(x) = 1− SP (4.2)

Problem-specific Weight Vector Initialisation

Reference point, which represents an idealised solution, is one of the
most effective ways to give preference information to the EMO algorithm.
The preference information can be interpreted as the preferred goal that the
decision-maker is wanting to get. As in standard MOEA/D, preference in-
formation is usually provided by using uniformly distributed weight vectors
with the same reference point, here we use a problem-specific method to
initialise the weight vectors.

Starting with an effective set of weight vectors can ensure generating a
good approximation of the Pareto front. Therefore, the initial weight vectors
are designed to satisfy the following conditions:

Nobj∑
i=1

wi = 1.0, and wi ∈ {0,
1
N
,

2
N
, .., 1.0} (4.3)

where N is the number of sub-problems which equals to the population size.
As previously mentioned, the pseudo-code in Algorithm 1 presents the

overall framework of the MOGP/D algorithm for classification of highly im-
balanced MS/MS spectra. The input to the algorithm is the information of
MOP (based on Equation (2.4) on Page 52) and a set of parameters, and
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the output is an external population (EP) used to store the solutions of the
Pareto front.

4.2.2 MOGP/D Setup and Evolutionary Parameters

To represent the MOGP/D individuals, the tree-based GP structure is
used. The same set of internal set and function set designed for the single
objective GP approach from Table 3.2 on Page 84 is considered for the MOGP
approaches as well. A set of spectral features extracted from the MS/MS
spectra along with randomly generated floating point numbers are used as
the GP terminal set. Four arithmetic operators, addition (+), subtraction
(-), multiplication (×) protected division (%, dividing by zero gives the result
of 1) and sin function are used as the function set of GP. For the purpose
of binary classification strategy, if the output of the GP program, which
is a floating point number, is positive (including zero), the instance under
investigation is classified into the minority class (signal class), whereas a
negative GP output points to the majority class (noise class).

The parameters used for both MOGP approaches in this chapter are as the
following. For initialising the population, the ramped-half-and-half method
is used. The population size is 512 and the evolutionary process runs for a
maximum of 100 generations. For SGP, the population size and maximum
number of generation were 1024 and 50, respectively. The maximum number
of 100 iterations allows the EMO algorithm have higher chance for better
convergence and diversity. However, to reduce the computational cost, the
population size is considered half of that with SGP. Overall, the total number
of evaluations for both SGP and MOGP algorithms remains the same. The
crossover and mutation rates are 80% and 20%, similar to the parameter
setting in the SGP approach in Table 3.2 (where crossover, mutation and
elitism rates were 80%, 19% and 1%, respectively). In MOGP, selecting the
fittest individuals at each generation ensures not loosing the non-dominated
solutions during the evolutionary process, and this maintains elitism in the
population. The maximum program depth is restricted to 8 in order to
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prevent bloating.
For MOGP/D, the number of neighbours, T, for each sub-problem is set

to N
10 where N is the population size. The maximum number of individuals

replaced by each child is 1, and the probability that parent solutions are
selected from neighbourhoods, σ, is 0.85. The proposed MOGP/D method
is implemented in Python 3.6 and uses DEAP (Distributed Evolutionary
Algorithms in Python) package [199].

4.3 Experiment Design

4.3.1 Dataset

To run the experiments in this chapter, the synthetic dataset and the
gold standard dataset from Table 3.6 (see Page 98) are used.

The synthetic dataset is used to investigate the stability of MOGP/D
across different S/N ratios. A set of four commonly used spectral features
are extracted from the synthetic dataset. More details about the features
can be found in Section 3.2.1 (see Page 79) where the spectral features are
explained.

The gold standard dataset is used to compare the classification perfor-
mance of the best compromise solutions evolved by the multi-objective GP
approach with the best GP evolved program of the single objective approach
(CID-GP explained in Section 3.4.2, Page 107). A set of 40 spectral features,
as explained in the design of CID-GP are extracted from the gold standard
dataset. Moreover, the test set of this dataset is used to evaluate the ef-
fectiveness of the best compromise solution evolved by MOGP/D and the
results are compared with CID-GP.

4.3.2 Comparison Benchmark Algorithms

NSGA-II [76] is an extension of the genetic algorithm for multiple objec-
tive optimisation, which previously has been successfully used for binary class
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Figure 4.1: Calculating the HV value for two objectives with the presence of a reference
point.

imbalanced problems [36]. The three important principles of this algorithm
are non-dominated sorting, a crowding distance estimation procedure and a
crowding comparison operator. NSGA-II combines the parent and offspring
populations at every generation and then selects the fittest individuals for
the next generation.

The NSGA-II framework as a dominance-based algorithm is used to com-
pare with the MOEA/D framework as a decomposition based multi-objective
evolutionary algorithm to investigate which is more appropriate with GP for
binary classification problems with imbalanced data.

4.3.3 Evaluating Pareto Fronts

To examine the performance of the multi-objective algorithms the follow-
ing indicators are used.

Hypervolume

The hypervolume (HV) indicator [200] is used to obtain a single figure
indicating the convergence of the evolved Pareto front. It has been reported
that HV is the most accepted metric in the EMO community specially for
classification methods [201]. This is a good indicator to evaluate the per-
formance of the evolved Pareto front generated by each EMO algorithm.
Figure 4.1 illustrates how HV measures the size of the dominated space,
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bound from above by a reference point. Therefore, maximising A yields
better approximation of the Pareto front.

Inverted generational distance (IGD) which is another popular metric to
measure the convergence of the EMO algorithm is not used in this study
as it requires the Pareto optimal front (true PF) in order to measure the
convergence. However, in our problem, true PF is unknown. One possi-
ble approach is approximating the true PF by merging all non-dominated
solutions obtained by the EMO algorithms over all runs and selecting the
non-dominated solutions from the combined fronts. However, the results of
performance comparison of EMO algorithms based on IGD highly depend on
the specification of reference points as the points are not always uniformly
distributed over the entire PF [202]. Therefore in this study, HV would be
sufficient to compare the performance of MOGP methods.

Best Compromise Solution:

In order to offer a single solution from the Pareto front to the decision
maker, the concept of the best compromise solution [203] is used. For each so-
lution of the Pareto front, a normalised fuzzy membership value is calculated
and the solution with the maximum value is selected as the best compromise
solution. In this method, the k-th member of the Pareto front for its i-th ob-
jective value has a fuzzy membership value of µk

i . The membership function
µi varies between 0 and 1 and is defined by Equation (4.4). The membership
function µi, which varies between 0 and 1, demonstrates the i-th objective
function Fi, and is defined by Equation (4.4).

µk
i =



1, Fi ≤ Fmin
i

Fmax
i − Fi

Fmax
i − Fmin

i

Fmin
i < Fi < Fmax

i

0, Fi ≥ Fmax
i

(4.4)

where Fi is the i-th objective function, and Fmin
i and Fmax

i are the minimum
and maximum values of the i-th objective function among the set of solutions
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found along the Pareto front. The k-th solution of the Pareto front has
the normalised membership function µk which can be expressed based on
Equation (4.5).

µk =
∑Nobj

i=1 µk
i∑M

k=1
∑Nobj

i=1 µk
i

(4.5)

where M is the number of solutions in the Pareto front. The solution with
having the highest value of µk is selected as the best compromise solution.
More details about how to obtain the best compromise solution can be found
at [203]. After finding the best compromise solution, its A-acc is measured
based on Equation (4.6).

A-acc = 0.5× SE + 0.5× SP (4.6)

4.3.4 Experiments

A set of experiments on the synthetic dataset (from Table 3.6) are con-
ducted in order to investigate the performance of MOGP/D and NSGP across
various ratios of S/N peaks on MS/MS data. Since the ratio of imbalance
between the MS/MS datasets is different, these experiments are used to fig-
ure out which EMO algorithm produces better solutions along the Pareto
front across different imbalanced ratios. As previously mentioned in Chap-
ter 3, the synthetic dataset contains a set of six pairs of training and test sets
each pair having different S/N ratios including 1:1, 1:2, 1:4, 1:6, 1:12, 1:20.
1:1 indicates a balanced dataset, while 1:20 implies 20 times of noise peaks
over signal peaks in the dataset. The performance of each EMO algorithm
is evaluated based on the indicators explained in Section 4.3.3.

After investigating the stability of the EMO algorithms on the synthetic
dataset, another experiment to investigate the classification performance of
MOGP/D and NSGP on the gold standard dataset is conducted and the
results of the best compromise solutions of the two MOGP algorithms are
compared with the best evolved GP program from the single objective GP
approach proposed in Section 3.4.2. Finally, the effectiveness of the proposed



130 CHAPTER 4. MULTI-OBJ. GP FOR PREPROCESSING MS/MS

Table 4.1: Average (± standard deviation) HV of the all evolved Pareto fronts obtained
by MOGP/D and NSGP on the training sets of the synthetic dataset across different S/N
ratios over the 30 MOGP runs.

1:1 1:2 1:4 1:6 1:12 1:20

MOGP/D 0.163±0.001 0.160±0.001 0.156±0.001 0.154±0.001 0.144±0.001 0.140±0.001
(↓) (o) (↑) (↑) (↑) (↑)

NSGP 0.0.166±0.007 0.160±0.002 0.154±0.003 0.153±0.001 0.142±0.001 0.135±0.001

MOGP/D method in terms of improvement in the reliability of peptide iden-
tification is investigated and the results are discussed.

4.4 Results and Discussions

4.4.1 Analysis of the Overall Pareto Front Behaviour
in Terms of HV

Table 4.1 presents the results of the average HV values of the all evolved
Pareto fronts obtained by MOGP/D and NSGP on the six training sets of
the synthetic dataset with each set having a different S/N ratio. To calculate
the HV values, the reference point (0.5, 0.5) is used.

To compare the performance of the two EMO algorithms over the 30
GP runs, the statistical t-test with 95% confidence interval and two-tailed P
value less than 0.0001 is considered. The signs below the HV values show
the significance test results, where (↑)/(↓) indicates that MOGP/D is signif-
icantly better/worse than NSGP. Also (o) sign is used to represent that the
result of MOGP/D is not significantly different from NSGP.

The overall trend in the results of Table 4.1 shows that with the decrease
in the S/N ratio (i.e. increasing class imbalanced rate) in the MS/MS data
on the training sets, the HV values of both EMO algorithms decrease. This
indicates that higher imbalanced data makes the classification problem more
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Figure 4.2: Classification performance of the all evolved solutions using MOGP/D and
NSGP on the test sets with different S/N ratios.

difficult. Moreover, in terms of statistically comparing the performance of the
two EMO algorithms, it can be seen that with the decrease in the S/N ratio
in the training sets, MOGP/D achieves significantly better HV values than
NSGP. This result could indicate that MOGP/D is more stable than NSGP
in approximating the Pareto front when the S/N ratio is getting higher. As
the problem is becoming more difficult, MOGP/D shows better convergence
than NSGP.

However, the performance of NSGP when the dataset is balanced is sta-
tistically significantly better than MOGP/D. This is interesting and needs
further analysis, which is done by visualising the performance of the evolved
solutions by the two EMO methods over the 30 independent GP runs on the
test sets of the synthetic dataset (see Figure 4.2).

Based on the results of Table 4.1, although the performance of NSGP
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Table 4.2: Average (± standard deviation) GP tree size of the all evolved Pareto fronts
obtained by MOGP/D and NSGP on the training set with S/N ratio of (1:1) over the 30
MOGP runs.

Method GP tree size
MOGP/D 76.88 ± 17.87
NSGP 164.64 ± 33.87

on the balanced training set (1:1) is significantly better than MOGP/D, the
plots in Figure 4.2 show that the results of NSGP on both balanced (1:1)
and other imbalanced test sets are worse than MOGP/D. This means that
most solutions of NSGP are dominated by those of MOGP/D on test sets.
This indicates that the evolved solutions by NSGP have lower generalisation
performance than those of MOGP/D.

Further analysis on the average (and standard deviation) size of the GP
program solutions evolved by both methods over 30 MOGP runs is pre-
sented in Table 4.2. It can be seen that NSGP produces bigger GP programs
than MOGP/D. To summarise the analysis of the size of the GP programs
evolved by NSGP, an unnecessary growth of the GP tree known as bloat or
code growth is seen. This problem could be resolved by considering the GP
program size as a third objective besides the other two objectives related to
the program functionality, since a number of research have been successfully
used Pareto-based approaches for bloat controlling. However, without fo-
cusing on bloat control as the third objective, the plots in Figure 4.2 shows
that MOGP/D is able to indirectly handle the bloat problem, resulting in a
significant improvement in the objective values when the test sets are used.

4.4.2 Analysis of the Pareto Optimal in Terms of HV
Figure 4.3 illustrates the HV values of the Pareto fronts generated by

combining all evolved Pareto fronts across the 30 MOGP runs into a set of
non-dominated solutions. Combining all Pareto fronts in order to obtain a
potentially different set of non-dominated solutions is a useful technique in
EMO as it summarises the outcome of a series of MOP runs. The overall
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Figure 4.3: HV of the non-dominated fronts generated by combining all evolved Pareto
fronts obtained by each EMO algorithm (MOGP/D and NSGP) over the 30 MOGP runs
on the training sets of the synthetic dataset with each set having different S/N ratio.

trends in plots are consistent with the results from Table 4.1 and Figure 4.2,
which means that with the decrease in the S/N ratio in the training sets,
MOGP/D produces better solutions compared to NSGP. More analysis shows
that the number of evolved solutions using MOGP/D is more than that of
NSGP across all training sets.

4.4.3 Analysis of the Best Compromise Solutions

In the multi-objective classification of MS/MS data, after obtaining a
set of non-dominated solutions, the decision maker needs to select a single
classifier for preprocessing the MS/MS data prior to peptide identification.
Therefore, here we use a fuzzy membership technique to find the best com-
promise solution among all evolved solutions. So, with respect to each Pareto
front across the 30 runs, one single best compromise solution is obtained for
each EMO algorithm. For each single best compromise solution, A-acc ac-
cording to Equation (4.6) is calculated. Table 4.3 presents the results of
A-acc of all best compromise solutions with respect to the 30 independent
MOGP runs for two EMO algorithms on the training sets with different S/N
ratios.

The overall trends in the results of Table 4.3 show that the decrease in the
S/N ratio results in the decrease in the classification performance of evolved
solutions by both MOGP/D and NSGP. From the results in Table 4.3, it can
be seen that similar to the results of Table 4.1, with the decrease in the S/N
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Table 4.3: Average (± standard deviation) accuracy of the best compromise solutions
selected from the all evolved Pareto fronts obtained by MOGP/D and NSGP on the
training sets with different S/N ratios over the 30 MOGP runs.

1:1 1:2 1:4 1:6 1:12 1:20

MOGP/D
0.829±0.002 0.828±0.004 0.825±0.001 0.824±0.002 0.822±0.001 0.819±0.001

(↓) (o) (o) (↑) (↑) (↑)

NSGP
0.831±0.013 0.827±0.007 0.824±0.004 0.822±0.003 0.811±0.003 0.802±0.002

Table 4.4: Average (± standard deviation) accuracy of the best compromise solutions over
the 30 MOGP runs evaluated on the test sets.

1:1 1:2 1:4 1:6 1:12 1:20

MOGP/D 0.704±0.072 0.757±0.027 0.796±0.009 0.804±0.005 0.805±0.004 0.804±0.004

(↑) (↑) (↑) (↑) (↑) (↑)

NSGP 0.556±0.101 0.700±0.032 0.751±0.015 0.750±0.009 0.761±0.007 0.754±0.005

ratio, the best compromise solutions evolved by MOGP/D outperform those
of NSGP in terms of A-acc on the training sets. Looking more closely at
the results of both algorithms when the dataset is balanced, (1:1), NSGP is
statistically significantly better than MOGP/D, however based on the test
results in Table 4.4 the performance of NSGP at (1:1) dramatically drops.
Based on the results of Table 4.4 on the test sets, MOGP/D shows better
performance than NSGP across all different S/N ratios.

Finally, to compare the results of MOGP with SGP, the best compromise
solution of each EMO algorithm from its non-dominated front after combin-
ing all 30 Pareto fronts over the 30 GP runs are obtained. Figure 4.4 presents
the classification performance of the best compromise solutions evolved by
MOGP/D and NSGP along with the best SGP solution of GenGP in Sec-
tion 3.3.3. The results of classification in terms of SN, SP and A-acc are
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Figure 4.4: Classification performance of the best SGP and the best compromise solution
of MOGP/D and NSGP on the training and test sets with different S/N ratios.

plotted. Starting from the SN results on the training set, it can be seen that
all three methods have a steady decline from 1:1 to 1:6 followed by a sharp
drop at 1:20. This shows that decreasing the S/N ratio results in misclassifi-
cation of more signal peaks. However, the results show that MOGP/D and
NSGP outperform SGP in terms of SN on the training sets. Also on the test
set, the same decline in the SN results of all three methods can be seen. So
in summary, MOGP/D outperforms both methods in terms of SN on both
the training and test sets. This is very important in classification of peaks
in MS/MS spectra, as retaining the signal peaks as much as possible is more
important than filtering out the noise peaks.

The SP results on the training sets in Figure 4.4 shows that as the number
of noise peaks increases, the classification performance of all three method
on the majority class increases as well. Comparing the plots of SN and SP
on both the training and test sets obviously shows the conflict between these
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Figure 4.5: Classification performance of the best SGP and the best compromise solution
of MOGP/D and NSGP on the gold standard dataset.

two objectives. Similar to the results of SN plots, with the decrease in the
S/N ratio, MOGP/D outperforms NSGP and SGP in terms of SP on the
training and test sets.

Finally, the results of A-acc show that MOGP/D and NSGP outperform
SGP on the training sets. On the test sets, SGP and NSGP almost have
the same performance, while MOGP/D outperforms both of them. Overall,
with the decrease in the S/N ratio of the MS/MS data in the training set
MOGP/D shows constant accuracy at 83% whereas these values for NSGP
and SGP are at >81% and >80%, respectively.

4.4.4 Classification Performance on the Gold Standard
Dataset

Figure 4.5 presents the classification performance of the best compromise
solutions evolved by MOGP/D and NSGP along with the best SGP solution
of CID-GP proposed in Section 3.4.2 on the gold standard dataset. The bar
charts presenting the results of classification in terms of A-acc, SN, and SP.
As the S/N ratio in the gold standard dataset is almost 1:30, the classification
results on the training set in Figure 4.5 are consistent with those in Figure 4.4
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Figure 4.6: The results of peptide identification by PEAKS on the test set of the gold
standard dataset preprocessed by the best compromise solution evolved by MOGP/D and
the best GP program evolved by the single objective CID-GP in different ALC ranges.

at 1:20 S/N ratio, where both MOGP methods outperform SGP in terms of
A-acc, SN, and SP.

As the gold standard dataset contains 40 spectral features compared to
the synthetic dataset which contains only 4 features, and the gold standard
dataset includes more number of instances, it can be seen that the classifi-
cation performance of the best compromised solutions evolved by MOGP/D
and NSGP are significantly improved compared to those on the synthetic
dataset. Comparing both MOGP algorithms, it can be seen that MOGP/D
outperforms NSGP by 2.49% and 2.91% of retaining more signal peaks on
the training and test set of the gold standard dataset, respectively.

In summary, the MOGP/D algorithm has shown to be promising in evolv-
ing better solutions with compromises between the two conflicting objectives
of SN and SP in the classification of highly imbalanced MS/MS data. In the
next section, the preprocessed MS/MS data by the best compromise solu-
tion evolved by MOGP/D is submitted to PEAKS for peptide identification
and the results are analysed to evaluate the effectiveness of the prepossessing
method.
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4.4.5 Performance Evaluation

The results of evaluating the effectiveness of MOGP/D in terms of im-
provement in the reliability of peptide identification on the test set of the gold
standard dataset is presented in Figure 4.6. Overall, MOGP/D has signifi-
cantly improved the peptide identification compared to SGP, since MOGP/D
retains more signal peaks and removes more noise peaks compared to SGP.

Although there is not a significant difference between the results of the two
methods with ALC higher than 90%, for 70 ≤ ALC < 90, the results shows
that MOGP/D obviously improves the reliability of peptide identification
by helping PEAKS identify more high confident peptides than SGP. Adding
up all peptide identified with ALC higher than 70, the results show that
MOGP/D improves the reliability of peptide identification by 21.72% (=
(206+411+627)−(201+321+500)

(201+321+500) × 100) compared to SGP.

4.5 Chapter Summary

The goal of this chapter was to develop an effective MOGP/D method
based on the idea of MOEA/D to evolve a set of non-dominated solutions,
along the optimal trade-off surface that offers the best compromises between
the two conflicting objectives of SN and SP. The non-dominated solutions
are used for classification of peaks in the MS/MS spectra. The goal has
been successfully achieved by developing an MOEA/D based MOGP method.
Compared with NSGP, an NSGA-II based MOGP method, MOGP/D evolves
more solutions in the middle of Pareto front, pushing this front towards better
minority (signal) and the majority (noise) class accuracies.

As the MS/MS spectra is highly imbalanced, the stability of the proposed
MOGP method with the decrease in the S/N ratio in the MS/MS data was
investigated and the results were compared with NSGP in terms of conver-
gence to the Pareto front. The HV value was used as a single figure for
the purpose of comparison. The results showed that with decreasing S/N,
MOGP/D outperformed NSGP in terms of the HV values of the evolved



4.5. CHAPTER SUMMARY 139

Pareto fronts on both the training and test sets.
For selecting a single solution from the evolved Pareto front, a fuzzy

membership approach was used to obtain the best compromise solution. The
single classifiers from MOGP/D and NSGP were compared with SGP. The
results showed that MOGP/D outperformed NSGP and SGP in terms of SN,
SP and A-acc on both the training and test sets. In other words, MOGP/D
has shown to be more suitable for evolving a classifier that has the best trade-
off between the two conflicting objectives of the majority and minority class
accuracies in the problem of classification of imbalanced MS/MS spectra.

As CID-GP in Section 3.4.2 showed that adding more spectral features
helped GP for more accurate distinguishing the signal peaks from noise peaks
(see Figure 3.13 on Page 112) and CID-GP improved the reliability of pep-
tide identification (see Figure 3.14 on Page 113), the gold standard dataset
with having 40 spectral features was used to train the MOGP/D and NSGP
methods. The results showed that MOGP/D outperformed both CID-GP,
which is a single objective GP approach, and NSGP, knows as a multi ob-
jective GP approach. MOGP/D retains a larger number of signal peaks and
this has positive influence on the peptide identification reliability.

So far two preprocessing methods are developed with the purpose of de-
noising the MS/MS spectra prior to peptide identification either by a de novo
sequencing method or a database searching tool in order to help these tools
improve the reliability of peptide identification. Both methods attempt to
improve the peptide identification mainly at the amino acid level. Although
they might have improved the peptide identification at the peptide level as
well, our purpose was evaluating them at the amino acid level. That was the
reason that the changes in the confidence scores were analysed.

As previously mentioned in Chapter 1, one of the challenges of the current
de novo sequencing methods is accuracy at the peptide level. One possible
solution is developing post-processing methods to improve the result of cur-
rent de novo sequencing at the peptide level. But, before developing those
methods, we will develop our own de novo sequencing method using GA, as
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we believe it opens the door for future improvements for de novo sequencing
methods that use dynamic programming as their search strategy to solve the
complex optimisation task of de novo sequencing. GA can potentially over-
come problems associated with noise and missing ions in de novo sequencing
of real MS/MS data. Customisation in GA allows introducing new features
to deal with common problems in this field such as di-peptide conflicts in
full-length de novo sequencing. Next chapter explains the GA-based de novo
sequencing method in more detail.



Chapter 5

GA for De Novo Peptide
Sequencing

5.1 Introduction

The complete CID peptide fragmentation gives a contiguous series of ion
types called “ladder” [99]. Having the complete ion ladder, the de novo
sequencing algorithm selects pairs of peaks and labels them if their mass
differences are within the tolerance ranges of the amino acid’s masses.

However, it is often that peptide fragmentations are neither sequential
nor complete. The fragmentation events are somehow random and do not
necessarily start from the N-terminus of the peptide to the C-terminus (left
to right). Moreover, some cleavage sites are preferred over others, so more
abundant peaks for preferred sites and fewer abundant ones for other posi-
tions will be produced in the spectrum. Moreover, peptides may not frag-
ment at some positions, resulting in missing data. Even a human expert can
have difficulty to interpret the neighbouring residues when the fragmentation
sites are missing. Therefore, fragmentation incompleteness is a challenge for
interpreting MS/MS data in peptide identification problems. Also, a real
MS/MS spectra with hundreds of peaks normally contain background noise.
Therefore, while exactly 1 of 20l amino acid sequences can be considered as

141
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the potential correct prediction (l is the peptide length), de novo sequencing
with internal fragment ions is recognised as a combinatorial problem [51].

There have been attempts to solve the de novo sequencing problem using
different approaches. However, de novo sequencing of full-length peptides
remains a challenging task. De novo sequencing can be formulated as an op-
timisation problem where the objective is to discover the most likely amino
acid sequence that can be generated by the input spectrum [49]. De novo
sequencing has been performed via stochastic optimisation using a genetic
algorithm (GA) [182, 185], where a GA tries to optimise the amino acid se-
quence with respect to a scoring function. However, the existing de novo
sequencing methods using GA often fail to discriminate the mismatches be-
cause the fitness functions could not capture various aspects of peak match-
ing [150]. Moreover, the basic genetic operators used in these works are not
capable enough to guide GAs during the evolutionary process to construct
the fully matched sequence.

5.1.1 Chapter Goals

The goal of this chapter is to develop an effective de novo sequencing
algorithm, called GA-Novo, using GAs to construct the full-length amino
acid sequences of MS/MS spectra. Considering the ability of GA to explore
a large search space of potential amino acid sequences, GA is expected to
infer the most likely amino acid sequence directly from the spectrum. The
following objectives are investigated in this chapter:

1. Developing a new fitness function that captures important spectral fea-
tures and enables GA to discriminate the mismatches.

2. Developing an effective set of mutation and crossover operators that
help GA construct the full-length amino acid sequence.

3. Designing an effective GA algorithm that can perform the de novo
sequencing task, aiming at achieving a high number of fully matched
sequences out of the input spectra.
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5.1.2 Chapter Organisation

The rest of the chapter is organised as follows. Section 5.2 describes GA-
Novo which is the proposed de novo sequencing method using GA. Section 5.3
explains the experimental design including the MS/MS dataset, evaluation,
and GA parameters. Section 5.4 presents the experimental results and dis-
cussions. Summary of the chapter is explained in Section 5.5.

5.2 The proposed Method

As mentioned earlier, the problem of de novo sequencing is an optimisa-
tion problem where the input is an MS/MS spectrum s and the output is the
most likely peptide sequence p. Therefore, the optimisation problem can be
formulated based on Equation (5.1).

Maximise number of matched ions (s, t) (5.1)

subject to |M(s)−M(p)| < 57
length(p) > 0

where peptide p is the decision variable and the objective function is max-
imising the matched ions. t is the theoretical spectrum of peptide p based on
CID fragmentation rules. There are two constraints on the decision variable
p. The first one indicates that the absolute value of mass difference between
s and p should not exceed 57 which is the mass of amino acid ‘G’. Glycine
has the smallest mass compared to the other amino acids and this condition
ensures that the sequence p is not shorter or longer than the correct match.
The second constraint is the length of p which should be greater than 0 as we
do not want an empty sequence with no amino acids. Therefore, the sequenc-
ing optimisation problem aims at finding an amino acid sequence that has
the maximum number of matched ions between the experimental spectrum
s and its theoretical spectrum t.
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5.2.1 Overview of the Method

Figure 5.1 presents the workflow of GA-Novo. Given the raw MS/MS
experimental spectrum s, first a tag-based initialisation method is applied in
order to create a set of candidate initial individuals for the GA algorithm.
The candidate individuals are kept in a big initialisation pool. The individ-
uals are evaluated and based on three criteria, the fitness value, Nterm score
and Cterm score are selected to generate the initial population for GA.

The evolutionary process starts with applying selection in order to create
four pools for different purposes where the size of each pool is a third of
the total population size. To the best of our knowledge, this is the first
pool based GA and is proposed with the purpose of generating more suitable
individuals for GAs.

The helper pool contains top best individuals in terms of fitness values.
The individuals in N-term and C-term pools are the top best individuals
in terms of Nterm and Cterm scores, respectively. The Nterm score is able
to check whether a matched b-ion is a random match or not. Similarly
Cterm score checks if a matched y-ion is a random mach. These two scores
are explained in more detail on Page 153. The individuals in last pool,
tournament selection pool, are selected using tournament selection based on
their fitness values.

There are five genetic operators, two crossovers, two mutations and an
elitism. The individuals for Nterm-Cterm crossover are selected from the first
three pools. Other genetic operators get their individuals directly from the
tournament pool. Nterm-Cterm crossover is designed to construct individuals
with correct amino acid matches from N-terminus and the C-terminus and
possibly from the middle of the sequence, whereas two-point crossover aims
to repair the individuals from middle. The mutation operators randomly flip
flop the each bit/amino acid in the sequence. In each generation, elitism keeps
the best three individuals in terms of overall fitness value, Nterm and Cterm
score. The evolutionary process repeats until the termination criterion which
is the number of generations is met. The method returns the best individual
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Figure 5.1: The workflow of GA-Novo.

in terms of overall fitness value. More details about the components in this
flowchart are as follows.

5.2.2 Representation

Each GA individual has a variable length and is represented by a sequence
of single-letter amino acids, for example “AAALAAADAR”. Each individual
contains three fitness scores including the overall fitness value (from the fit-
ness function in Equation (5.5) on Page 151, Nterm and Cterm scores which
are explained later.
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5.2.3 Tag-based Initialisation Method

A domain dependent initialisation method is used to generate initial in-
dividuals for GA. Since GA is supposed to gradually construct the more
likely amino acid sequence for the input experimental spectrum, using domain
knowledge in initialisation helps GA avoid constructing incorrect sequences.
The workflow of this method is illustrated in Figure 5.2. The overall goal of
this method is to construct peptide sequences which are preferably partially
matched with the spectrum and having as small as possible mass difference
(∆mass) with the spectrum. Later in Section 5.4.2, this initialisation method
is compared with a random initialisation approach.

The input to the workflow of the initialisation method is an MS/MS spec-
trum (experimental spectrum) and the output is a set of peptide sequences
corresponding to the spectrum. The workflow starts with preprocessing the
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input spectrum. Then all 3-letter tags are extracted from the preprocessed
spectrum in tag extraction step. In tags concatenation step, each time 2, 3
or 4 tags are randomly selected and concatenated to construct a sequence
with length 6, 9 or 12. These numbers are in the range of the peptides’
length that fall in the precursor mass range of spectra used in this chapter.
Since all tryptic peptides have either amino acids ‘R’ or ‘K’ at the end, these
two amino acids are randomly added to the end of the sequences from tags
concatenation step.

As mass difference is a constraint, it is important to construct the se-
quences with |∆masses| ≥ 0. So the rest of the workflow checks whether or
not the mass difference between each constructed sequence and the spectrum
is less than the mass of amino acid ‘G’ which has the smallest mass compared
to the other amino acids. ∆mass is calculated based on Equation (5.2).

∆mass = M(s)−M(p) (5.2)

where M(p) and M(s) are parent mass (mass of peptide p) and the pre-
cursor mass (mass of the spectrum s), respectively. Therefore, based on the
∆mass value, appropriate amino acids are randomly added to/removed from
the sequence and the resulting peptide sequence is sent to the pool of pos-
sible peptide sequences corresponding to the input experimental spectrum.
The preprocessing step and the tag extraction are explained in the following
sections.

Spectrum Preprocessing

The data preprocessing step on MS/MS spectra reduces the noise and
adds some of the missing data. The MS/MS noise reduction step has been
done based on the noise reduction method proposed in SEQUEST [92]. Given
a spectrum, first the whole m/z range is divided into 10 windows (regions).
In each window, if the number of existing peaks exceeds 9, there should
be some possible noise, which needs to be eliminated from that window.
Noisy peaks are removed based on their intensity values. The peak intensity
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with the highest frequency is required to be found as it would be the noise
threshold value. To find that, all peaks with the same intensity values are
counted. Then the intensity value with the highest frequency is considered as
the noise threshold. Therefore, all peaks whose intensities are smaller than
the noise threshold will be removed from that window.

After removing these noisy peaks, the next step is normalising peak in-
tensities. In each window, each peak’s intensity is replaced with its square
root and then all intensities are normalised by dividing into the highest in-
tensity. Therefore, after normalisation, the highest peak intensity in each
window equals 1.

As presented in Table 2.1 (see Page 33), a complete peptide fragmenta-
tion gives a contiguous series of ions. However, sometimes due to the low ion
fragmentation efficiency of the mass spectrometer, some ions are not avail-
able in the spectrum. Then each peak in the spectrum is checked for the
existence of its complementary peak which will be added if required. By
finding the complementary ion peaks, undetected ions can be added to the
spectrum. The sum of the two complementary ions’ masses should be equal
to the precursor mass of the spectrum. Therefore, the corresponding comple-
mentary peak are added with the same intensity to the corresponding m/z
value. This algorithm only considers singly charged fragmentation ions.

So far, the spectrum is denoised and all necessary peaks are added into
it. Now the next step as shown in Figure 5.2 is extracting all 3-letter tags
from the spectrum.

Tag Extraction

In tag extraction, all 3-letter tags from the N-terminus to the C-terminus
are extracted from the spectrum. Figure 5.3 illustrates the tag extraction pro-
cess from a simplified MS/MS spectrum (a real spectrum has more peaks).
The MS/MS spectrum s consists of a list of peaks each having an m/z
value and an intensity value (peak height). Assume the spectrum is rep-
resented by two vectors of m/z values and intensities s = (M, I), where M =
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Figure 5.3: An example of the tag extraction process from a simplified MS/MS spectrum.

(m1,m2,m3, ...,mn) and I = (I1, I2, I3, ..., In). Considering the M vector, two
peaks construct a peak pair if theirm/z values satisfy |mi−mj−mass(a)| ≤ τ

where 1 ≤ i ≤ j ≤ n, mass(a) is the mass of one of the 20 popular amino
acids and τ is the MS/MS mass tolerance. A tag with length one is repre-
sented by t(i, j) and a label of a corresponding to its amino acid. Two tags
t(i, j) and t(i′, j′) are considered sequential if j = i′. So all 3-letter tags from
the spectrum will be extracted and are used in the initialisation method.
Figure 5.3 shows a few examples of 3-letter tags: DGQ, GQT, WLT and
LTN. In the next step, tags concatenation, these tags are concatenated to
each other to create a full-length amino acid sequence.

Tags concatenation

In tags concatenation, the 3-letter tags are randomly concatenated to
construct longer (full-length) sequences. As the precursor mass range of
spectra used in this study is limited to 1150, the peptides’ length that fall in
this range could be around 6 to 15. Therefore, each time 2, 3 or 4 tags are
randomly selected and concatenated to construct a sequence with length 6,
9 or 12. Since all tryptic peptides have either amino acids ‘R’ or ‘K’ at the
end, these two amino acids are randomly added to the end of the sequences.
Then, the mass difference between the concatenated peptide sequence and
the experimental spectrum is calculated based on Equation 5.2. As shown in
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Figure 5.2 if the absolute value of the mass difference is more than the mass
of amino acid ‘G’, then according to the value of ∆mass, appropriate amino
acids are randomly added to/removed from the sequence.

Two concatenated sequences from the tags in Figure 5.3 for the experi-
mental spectrum with precursor mass of 760 are presented as follow.

• ‘DGQGQTR’ with parent mass of 760.3 which is resulted from con-
catenation of DGQ + GQT and adding R to the end of the sequence.

• ‘GQTWTK’ with parent mass 719.3 which is resulted from concatena-
tion of GQT + WLT, adding K to the end of the sequence and removing
L to relax the mass difference.

5.2.4 Fitness

Fitness Function

The fitness function evaluates the quality of matching between an input
experimental spectrum and a peptide sequence constructed by GA-Novo. As
s is composed of a set of m/z values with their corresponding intensities,
and p is a linear combination of amino acids, these two entities should be
converted to a format to allow the spectrum to be matched with the peptide.
Therefore based on the CID fragmentation rules of doubly charged peptides
(as our research only focuses on doubly charged peptides), for each peptide its
corresponding theoretical MS/MS spectrum of all b- and y-ions is virtually
constructed [190]. The theoretical spectrum only contains m/z values with
equal intensities of 1. Both b-/y-ion ladders in Table 2.1 along with internal
fragments are constructed in the theoretical spectrum.

Equation (5.3) and Equation (5.4) show how to calculate the b-ions and
y-ions of the theoretical spectrum t, respectively. Having the peptide p with
length l, the mass of each theoretical b-ion in its b-ion ladder is calculated
based on Equation (5.3) [90].
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bj =
j∑

i=1
mass(ai) + 1 (5.3)

where mass(ai) is the mass of i-th amino acid in peptide p, bj is the j-th b-ion
of p and 1 ≤ j ≤ l− 1. The constant 1 is the result of a proton transfer that
could take place from the amide nitrogen of the adjacent amino acid residue
that precedes the peptide bond, which undergoes the CID dissociation.

Equation (5.4) [44] presents how to calculate the theoretical y-ions from
the y-ion ladder of peptide p.

yj =
l∑

i=l−j

mass(ai) + 19 (5.4)

where mass(ai) is the mass of i-th amino acid in peptide p, yj is the j-th
y-ion of p and 1 ≤ j ≤ l − 1. It can be seen that to calculate the y-ions,
the constant 19 has been added to the sum of residue masses. The reason is
that y-ions are the fragment ions that possess the -COOH of the precursor
ion. In fact the mass of singly charged y-ions are calculated as sum of the
amino acid residue masses in the fragment + a mole of water (18) + a proton
transfer (1).

Therefore converting the peptide p to the theoretical spectrum t, can let
us to match/compare the two experimental and theoretical spectra against
each other in order to measure the similarity between them. Peaks in the
theoretical spectrum are matched against the peaks in the experimental spec-
trum within the MS/MS mass tolerance of τ .

Finally, Equation (5.5) presents the new fitness function for measuring
the goodness of the peptide spectrum match (PSM).

fitness(PSM) =

∑
Imatched

n∑
i=1

Ii

− |∆mass|Prec.mass
+
Nterm+ Cterm−

∑
Nunmatched

length(P )

(5.5)
where Imatched is the sum of intensities of those peaks in the experimental
spectrum s which are matched with theoretical spectrum t corresponding
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to the peptide p. As normally b-/y-ions tend to have higher intensities,
the total intensities of all matched peaks could be a better indicator for
distinguishing a correct match rather than only considering the total number
of matched peaks. The total intensities of matched peaks is normalised by
dividing into the total intensities of the whole spectrum s. ∆mass is the mass
difference between parent mass of peptide p and the spectrum precursor mass
(Prec.mass). Since the total mass of the predicted peptide by GA is expected
to be equal to the precursor mass of the spectrum, the absolute value of
∆mass is considered as a penalty to avoid getting undesirable short or long
peptides. Nterm is the number of sequential b-ion matches from N-terminus
(left to right) and Cterm is the number of sequential y-ion matches from C-
terminus (right to left) of the theoretical spectrum t. These terms check the
quality of match from both sides of the theoretical spectrum and reward the
match. As normally those b-/y-ions in the middle part of the spectrum tend
to have higher intensities, whereas those on the other two sides particularly
N-terminus have lower intensities, without these two terms in the fitness
function there will be a chance of ending up to a peptide sequence which is
partially matched with the spectrum only from the middle. Therefore, with
these two terms, a peptide which has a few b-/y-ions matched from two sides
but not from middle, still has the chance to survive. In this case, the peptide
gets a reasonable fitness value and has a chance to remain in the population,
going through the evolutionary process for further improvement. Nunmatched

indicates the number of b-/y-ions in the theoretical spectrum t which are not
a match against the spectrum s. The three terms are divided into the length
of peptide.

It is worth mentioning that as b-y-ions of the whole sequence (not internal
fragment ions) have higher chance to have their neutral losses presented in the
MS/MS spectrum, there will be further step to produce the neutral losses
such as H2O and NH3 for each match b-/y-ions. Therefore, if any b-/y-
ion (of the whole sequence) is a match, its neutral losses such as H2O and
NH3 will be produced to be match against the experimental spectrum. This
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is a bonus for the match b-/y-ions. Moreover, if any b-ion of the whole
spectrum is a match, another neutral loss, CO, will be produced to be a
match against the spectrum, which is another bonus for the match b-ions.
Further bonus is calculating charge 2 of the precursor mass to check whether
it is a match or not. However, as Nunmatched is a penalty for unmatched
peaks, the penalty only will be considered for the b-/y-ions of the whole
sequence, neither internal fragment ions nor neutral losses. The reason is
that it does not always guarantee that internal fragment ions and neutral
ions are presented in the MS/MS spectrum. If they are presented, we will
get advantages and consider a bonus for any match against them, otherwise
we do not consider any penalty for their absence.

Apart from the fitness value produced by the fitness function above, the
two termsNterm and Cterm (without being divided into the peptide length),
are also kept as additional fitness scores for each individual. These values
are used later to apply a new crossover operator and are explained in the
following section.

Nterm and Cterm Scores

The idea of calculating these two terms comes from the ion ladder of
sequences and the CID fragmentation rules. As mentioned earlier in this
section, the mass of any theoretical b-ion can be calculated based on Equa-
tion (5.3). Similarly theoretical y-ions can be calculated based on Equa-
tion (5.4). Moreover, the complementary theoretical b- and y- ions in each
row of Table 2.1 have the mathematical relation presented in Equation (5.6).

bj + yl−j = PM(p) + 2 (5.6)

PM(p) =
l∑

i=1
mass(ai) +mass(H2O) (5.7)

Prec.mass = pepmass × charge - charge × mass(Proton) (5.8)
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To calculate the b-ions in the theoretical spectrum, Equation (5.3) is
used. Having the total mass of the peptide (parent mass in Equation (5.7)),
the y-ions can be calculated either by Equation (5.6) or Equation (5.4).
Therefore, for calculating the Nterm score, first all b-ions are calculated.
Then, in Equation (5.6) instead of PM(p) which the mass of the peptide,
Prec.mass which is the precursor mass (from Equation (5.8), where pepmass
is mass of the fragmented ion, charge is the precursor charge state and mass
of Proton equals to 1.00727647 atomic mass units) is replaced, and y-ions
are calculated. Let’s call these y-ions as experimental y-ions (because we
used mass of the spectrum). The experimental y-ions are compared with
theoretical y-ions from Equation (5.4). Starting from y1, if any two sequential
experimental y-ions are equal to the corresponding theoretical y-ions, the
Nterm score will be increase by one.

The Nterm score is able to check whether a matched b-ion is a random
match or not. Similarly, Cterm is calculated by using Equation (5.4) and
applying the similar process. The values of Nterm and Cterm scores do not
necessarily indicate the exact amino acid matches in the sequence. For exam-
ple a sequence with Nterm = 2 does not indicate that the first 2 amino acids
from N-terminus are exact matches compared to the ground-truth peptide.
The reason is that we are not aware of the ground-truth during the matching
process. However, these two scores are able to check the quality of match
from each side of the spectrum, and check whether it is a random match from
one side or a potential correct match from two sides of the spectrum.

5.2.5 Nterm-Cterm Crossover

A new domain specific crossover is designed for this problem. The crossover
mates two parents each having at least one exact match one b-/y-ion from
N-terminus and C-terminus. The goal is to mate these two parents in the way
that the new offspring would have exact b-/y-ion matches from both sides
and possibly from the middle as well. Figure 5.4 illustrates the Nterm-Cterm
crossover workflow.



5.2. THE PROPOSED METHOD 155

yes

yes

no
Δmass <= 100 ?

Merge the green parts

of the two parents

Return the 

new offspring

Δmass >0 ?

Choose two random 

points in the middle of 

the helper to select 

AA(s)

Add AA(s) from parent 2 to 

the

Parent1 until  |Δmass| < 

mass(‘G’)

add AA(s) to the 

middle of the merged 

sequence until  Δmass 

< mass(‘G’)

Parent1 Parent2

Helper

Start

End

no

Figure 5.4: The workflow of Nterm-Cterm crossover operator.

The input of the crossover is three GA individuals, two individuals as par-
ents and one as a helper, and the output is a new offspring. At first, the exact
match parts (the green parts) from both parents are concatenated. Here the
∆mass condition is more relaxed, allowing up to 100Da mass difference. If
absolute value of ∆mass is more than 100, then the new concatenated se-
quence will be checked whether it needs to remove/add amino acids from/to
the sequence. A negative ∆mass indicates that the sequence is long and
needs removing a few amino acids from it and vice versa for a positive value.
The reason is that based on Equation (5.7) a long sequence has more amino
acids and possibly it could have a bigger parent mass compared to a shorter
sequence with less number of amino acids. Since there might be some overlap
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parent1 parent2helper

new offspring

Figure 5.5: Schematic of how a new offspring with better fitness values is created.

between the green parts of the two parents, these ∆mass conditions help the
operator avoid constructing a bad offspring having a big ∆mass penalty in
its fitness value. Therefore, when ∆mass is negative, for removing the over-
lap the green part of the parent 1 is considered as the N-terminus of the new
sequence and each time one amino acid from C-terminus (the most right) of
the parent 2 is added to the new sequence until the ∆mass criterion is met.

If ∆mass is positive, it is required to add a few amino acids in the middle
of the green parts of the two parents. Here instead of adding random amino
acids, another individual as helper is used. The helper parent has a high
fitness value which possibly could indicate having more matched peaks in
the middle. So two crossover points are picked randomly from the middle of
helper parent and the amino acids in between those two points are added to
the middle of the new sequence one by one until the mass difference criterion
is met. Figure 5.5 illustrates this process when the three parents are used to
create a new offspring with better fitness values.

5.2.6 Flip-AA Mutation

The flip-AA mutation randomly picks one amino acid from the sequence
and replaces it with one of the 19 amino acids (‘I’ and ‘L’ are considered
identical). The mutation operator is not allowed to alter the last amino acid
in the sequence as it is always supposed to be either ‘R’ or ‘K’ for a tryptic
peptide sequence.
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Table 5.1: The dictionary of conflict masses where mass of a single amino acid conflicts
with di-peptides.

single AA di-peptide mass

W DA, AD, EG, GE, VS, SV 186
R VG, GV 156
Q AG, GA 128
N GG 114

Table 5.2: The set of peptide spectrum matches used in this chapter.

no. of
PSMs

peptide
length range

avg. length
of peptides

Charge No.
Precursor

mass range
fragment ion (Da)

120 7-12 9.5 2 <1150 0.5

5.2.7 Conflict-mass Mutation

There are situations where the mass of a single amino acid conflicts with
the mass of two amino acids (di-peptides). For example, the mass(‘W’) =
mass (“DA”) = 186. A dictionary of such conflict masses is provided and
shown in Table 5.1. The conflict-mass mutation operator checks whether the
sequence contains any amino acid in the conflict mass dictionary and if so
randomly replaces the amino acid with any of the corresponding di-peptides.

5.3 Experiment Design

5.3.1 Dataset

From the comprehensive full factorial LC-MS/MS benchmark dataset [78],
a set of 120 doubly charged peptide-spectrum matches (PSMs) with a min-
imum Mascot peptide identification score of 45, minimum peptide length of
7 amino acids and maximum length of 12 is selected. Based on Table 5.2,
the average length of the peptides is 9.5. The spectra have a precursor of
less than 1150 Da and the fragment ion of 0.5 is used as the value of toler-
ance τ . The so-called “ground-truth” is used to test the performance of de
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Table 5.3: GA-Novo parameters

Parameter Value Parameter Value
Initialisation Pool Size 1,000 Population Size 300
Size of Sub-pools 100 Generations, Runs 50, 30
Flip-AA
Mutation Rate

0.1
Conflict-mass
Mutation Rate

0.15

two-point
Crossover Rate

0.35
Nterm-Cterm
Crossover Rate

0.40

Elitism Rate 0.01 Selection Tournament, 7

novo sequencing algorithms.

5.3.2 Parameters, Evaluation and Benchmark Algo-
rithms

The parameters in Table 5.3 are used to setup the GA algorithm. GA-
Novo is implemented in Python 3.6 and uses DEAP package [199]. To evalu-
ate the accuracy of de novo sequencing results, the de novo peptide sequences
constructed by the algorithm are compared with the real peptide sequences
from the ground-truth dataset. The total recall and precision metrics at the
amino acid level are calculated based on the following equations:

precision = total number of matched amino acids
total length of predicted peptide sequences (5.9)

recall = total number of matched amino acids
total length of ground-truth peptide sequences (5.10)

The performance of GA-Novo is compared with PEAKS [version 8.0] [77]
and with PepyGen [185] which is a freely available de novo sequencing tool
using GA. The metrics in both Equation (5.9) and Equation (5.10) measure
the accuracy of the results at the amino acid level. The following metric is
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also used to evaluate the results of both algorithms at the peptide level.

recallpeptide level = total number of fully correctly predicted peptide sequences
total number of ground-truth peptides

(5.11)

5.4 Results and Discussions

This section presents a set of different experiments. The first experiment
uses GA-Novo for de novo sequencing of 120 MS/MS spectra in the dataset
and the results are compared with those of PEAKS and PepyGen. The rest
of this section analyses the effectiveness of two main components used in
GA-Novo namely tag-based initialisation method and the domain dependent
Nterm-Cterm crossover. More analysis on the evolutionary process of GA-
Novo is also presented in this section.

5.4.1 Performance Comparison Between GA-Novo, PEAKS
and PepyGen

This section compares the overall performance of GA-Novo with PEAKS
and PepyGen. All spectra in the dataset (Table 5.2) are used to assess the
performance of both algorithms. These spectra contain noise and possibly
incomplete ion ladders.

For each spectrum given to PEAKS, the top scored sequence is taken as
the output of de novo sequencing. PEAKS was run with an error tolerance
of 0.8 Da and tryptic digestion.

For GA-Novo and PepyGen, the experiments are repeated for 30 indepen-
dent runs with 30 different random seeds for each input spectrum. For each
spectrum in each run, the best fit sequence constructed by GAs are taken as
the outputs of both GA methods.

To compare the results of GA-Novo in 30 runs with PEAKS, one sample
statistical t-test with 95% confidence interval is used to compare the perfor-
mance of two methods. Table 5.4 presents the results of de novo sequencing
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Table 5.4: The results of sequencing 120 MS/MS spectra by GA-Novo and PEAKS.

Algorithm Precision Recall recallpep. level
avg. len. of

partial matches

avg. len. of
predicted
sequences

GA-Novo
0.89 ± 0.03

(+)
0.88 ± 0.03

(+)
0.64 ± 0.06

(+)
8.4 ± 0.27

(+)
9.4 ± 0.1

(=)
PEAKS 0.85 0.84 0.56 8.06 9.43
PepyGen 0.42 ± 0.05 0.41 ± 0.05 0.14 ± 0.04 3.9 ± 0.2 9.1 ± 0.2

by these two methods. (+) in the table indicates the difference between the
results of GA-Novo and PEAKS is considered to be statistically significant
and (=) indicates not statistically significant.

From the results of Table 5.4, it can be seen that the results of GA-Novo
in most cases are statistically significantly better than those of PEAKS and
PepyGen. GA-Novo outperforms PEAKS by 4% increase in precision and
4% increase in recall at the amino acid level. Moreover, the accuracy of
fully matched peptide sequences predicted by GA-Novo, at the peptide level,
is 8% higher than PEAKS. The reason of having lower recall at the amino
acid level compared to the precision at the amino acid level in the results of
PEAKS and GA-Novo is that, they mainly construct either equal or slightly
shorter peptide compared to the real peptide. Also, the results show that in
overall GA-Novo is able to find more partially matched sequences compared
to PEAKS, as the average length of partially matched sequences for GA-Novo
is 8.4 which is statistically significantly better than the result of PEAKS.

As shown in Table 5.2 on Page 157, the average length of peptides in
this dataset is 9.5, while sequences predicted by GA-Novo and PEAKS have
the average length of about 9.4. No doubt that this value is close to the
average length of the peptides in ground-truth as the goal of both algorithms
is constructing full-length individuals. The sequences “AMVEVFLER” and
“DAGTLLWLGK” are two examples of when PEAKS failed to predict the
whole sequences, whereas GA-Novo could successfully construct the fully
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matched peptides. The sequences were predicted by PEAKS as “TTVEVFLER”
and “WGTLLWLGK” while the first two amino acids in both sequences
were predicted wrongly. More analysis on the results of PEAKS shows that
it sometimes fails to predict the conflict masses from Table 5.1, whereas GA-
Novo gets benefit of its domain dependent mutation operator, conflict-mass
mutation, and avoids the mismatches.

Also from the results shown in Table 5.4, it can be seen that GA-Novo
outperforms PepyGen by 45% and 47% increase in precision and recall at
the amino acid level, respectively. Moreover, the accuracy of fully matched
peptide sequences predicted by GA-Novo, at the peptide level, is 50% higher
than PepyGen. The reason of low performance of PepyGen is due to its simple
GA design which is not able to construct the correct peptide sequences.
PepyGen does not apply the tag-based initialisation. Also, in the design
of its fitness function the two terms Nterm and Cterm do not exist and
this makes the algorithm to fail constructing the fully matched sequences.
PepyGen, uses only simple mutation and crossover operators and this makes
the algorithm not to be able to create fit individuals for the next generations.

Although the results show that GA-Novo is able to construct the full-
length of sequences (9.4 relatively close to 9.5), GA-Novo also sometimes
fails to construct the fully matched sequences (8.4). Comparing the difference
between the average length of the ground-truth peptides, 9.5, and the average
length of partial matches constructed by GA-Novo, 8.4, the result shows that
in overall GA only fails to fully match either one or two amino acids. The
reason of this mismatch is the incomplete conflict mass of di-peptides shown
in Table 5.1. As mentioned previously in Table 5.1 where the mass of di-
peptides conflicts with the mass of one single amino acid, there are other
situations where the mass of two di-peptides conflict with each other. This
table should be further extended to cover all other possible conflict masses.

The next sections analyse the effectiveness of initialisation method and
the domain dependent crossover operator used in GA-Novo, and shows how
these two components help GA in de novo sequencing.
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Figure 5.6: Plots of 1,000 individuals generated by random and tag-based initialisation.

5.4.2 Tag-based Initialisation vs. Random initialisa-
tion

Figure 5.6 illustrates two plots presenting the overall fitness value and the
values of its five terms included in the fitness function (see Equation (5.5)).
As the random initialisation method does not use any domain knowledge and
randomly generates sequences between length 7 and 12, it can be seen from
Figure 5.6 (a) that the fitness values of majority of population is below zero.
The reason of such low fitnesses is that the random initialisation does not pay
attention to ∆mass, mass difference, which is a penalty in fitness function.
Generating short or long peptide sequences results in a big ∆mass penalty.
However, the tag-based initialisation plot (see Figure 5.6 (b)), shows how
the ∆mass values are small in this method and the overall fitness values are
bigger than the random initialisation method. Obviously, the ∆mass scores
in this plot are very low and hardly can be seen compared to the those in
the random method.

The results in Table 5.5 show that the best individual out of 1,000 individ-
uals in a single run of random method is “YVMNEAR” with a fitness value of
0.25. In this table, each sequence is shown by its overall fitness value and five
different terms from fitness function, including I, D and N which indicate the
total intensities of matched peaks, ∆mass and the number of unmatched
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Table 5.5: The best individual in a single run tag-based and random initialisation methods
using the spectrum of “AAALAAADAR” peptide.

Fitness scores
Sequence Fitness I D N Nterm Cterm

Ground-Truth AAALAAADAR 2.1950 0.595 0.000003 0.0 0.8 0.8

Random Initial. YVMNEAR 0.25 0.057 0.020099 0.071 0 0.28
Tag-based Initial. RVAAAAWR 1.14 0.528 0.000027 0.0 0 0.625

Table 5.6: The statistics on three fitness scores in 30 different runs of tag-based and
random initialisation methods using the spectrum of “AAALAAADAR” peptide.

Fitness value Nterm Cterm
Min Max Avg. Std. Min Max Avg. Std. Min Max Avg. Std.

Random Initial. -0.97 0.32 -0.29 0.24 0 1.57 0.002 0.06 0 2.57 0.01 0.15
Tag-based Initial. -0.15 1.07 0.1 0.17 0 4.83 0.04 0.35 0 5.93 0.45 0.98

Significance (+) (=) (+)

peaks, respectively. Nterm and Cterm scores are normalised here. Based
on the tag-based method, the best individual is “RVAAAAWR” with fitness
value of 1.14. Therefore, the fitness value of the best individual produced by
the tag-based initialisation method is 4.7 times bigger than the one in ran-
dom initialisation. As mentioned above the fitness value of the ground-truth
is 2.19, the tag-based initialisation method could be a better start point for
GA.

The statistics results in Table 5.6 show the significance of comparison
between the results of the two methods. An unpaired statistical t-test with
95% confidence interval is used to compare the performance of two methods.
This table presents the statistics on the overall fitness value, Nterm and
Cterm scores. Please notice that Nterm and Cterm scores are not normalised
here.

From the results of Table 5.6, it can be seen that the average fitness
values and Cterm scores of tag-based initialisation method are statistically
significantly better than random based method. However, Nterm scores are
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not statistically significantly better than random method, thanks to the tag
extraction step which is sometimes not able to extract partially matched
3-letter tags from N-terminus of the spectrum due to the missing b-ions in
this area. During peptide fragmentation, peptides may not fragment at some
positions and leave no information, resulting in missing data. That is why
the first two fragments b1 and b2 ions are seldom observed in the spectrum.

Overall based on the results in both Tables 5.5 and Table 5.6, tag-based
method constructs better/fitter individuals compared to random initialisa-
tion, as tag-based method focuses on concatenating randomly 2, 3 or 4 tags.
Then the method reduces the absolute mass differences between the con-
structed sequences and the spectrum by randomly inserting/removing ran-
dom amino acids into the sequences. As known domain knowledge, each
tryptic peptide ends in either ‘K’ or ‘R’, this heuristic has been applied ran-
domly on the sequences constructed by this method as well. As a result, this
method decreases the mass differences and increases the number of match
ions, resulting in an increase in the total intensities of the match ions. Back
to the best sequence produced by the tag-based initialisation, “RVAAAAWR”
in Table 5.5, it is expected this sequence goes through the GA evolutionary
process and after a few generations converts to the exact match.

5.4.3 Analysis the Effectiveness of Nterm-Cterm Crossover

This section presents two examples when Nterm-Cterm crossover is ap-
plied on different individuals and also shows the performance of this operator
across 30 different runs.

Table 5.7 and Table 5.8 show how new Nterm-Cterm crossover can result
in whole sequence exact match. By looking at Nterm and Cterm scores of the
Nterm and Cterm parents in this table, it can be seen that these parents have
quite big values that could indicate potential exact amino acid matches from
each side. Considering the sequence of amino acids of these parents and know-
ing the ground-truth, it can be seen that the two parents have a few number
of exact amino acid matches. However, concatenating the exact match amino
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Table 5.7: An example of applying Nterm-Cterm crossover on two long partially matched
parents that have matched amino acids overlap.

Sequence fitness I D N
Nterm
score

Cterm
score

Ntermparent AAALAGGWR 0.79 0.21 0.031 0.05 4 2
Ctermparent NVLAAADAR 1.34 0.58 0.000002 0.02 0 7
Helperparent RGLAAADVK 0.58 0.59 0.00003 0.01 0 0
Offspring AAALAAADAR 2.19 0.59 0.000003 0.000 8 8

Table 5.8: An example of applying Nterm-Cterm crossover on two short partial match
parents and a helper parent to fill the middle gap.

Sequence fitness I D N
Nterm
score

Cterm
score

Best Ntermparent AAAPEPSEQK 0.1173 0.118 0.14 0.060 2 0
Best Ctermparent PEPSEQAR 0.4477 0.237 0.014 0.025 0 2
Best helperparent RGLAAADTK 0.2952 0.309 0.002 0.011 0 0
Offspring AAALAAADAR 2.1950 0.595 0.000003 0.000 8 8

acids (shown in bold) results in a false sequence “AAALALAAADAR” which
is not desired. As the proposed crossover method was explained previously,
when two highly fit parents are concatenated with consideration of removing
the overlap between them, an exact match as the new offspring is more likely
to be obtained. As both parents have enough Nterm and Cterm match amino
acids, the third parent, helper, is not used here.

The second example in Table 5.8 shows two parents with only a few
number of exact match amino acids. As the concatenated sequence still does
not meet the mass difference criterion, the third parent is used to fill the
gap. It can be seen from the fitness scores of the helper parent that it is
not necessary to have a high Nterm or Cterm score, as the helper parent
is chosen based on its overall fitness value. Here also an exact match is
obtained. However, it is worth mentioning that applying this operator does
not always results in whole sequence exact match, but mainly there is an
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Table 5.9: Performance evaluation of Nterm-Cterm crossover operator using the spectrum
of “AAALAAADAR” peptide in different scenarios.

∆fcx,Nparent ∆fcx,Cparent ∆fcx,Hparent

30 runs “Best” individuals 0.62 0.37 0.28
single run “Random” individuals 0.4 0.11 0.014

improvement in the fitness value of the new offspring. Therefore, clearly this
operator shows that multi-parent crossover can be more effective than two
parent crossover as suggested in literature [204, 205, 206].

Table 5.9 presents the overall performance of Nterm-Cterm crossover on
a number of individuals produced by tag-based initialisation method. In the
first row, the tag-based initialisation method is used in 30 independent runs,
each run producing 1,000 individuals. In each run, out of 1,000 individuals
three individuals with having the best Nterm score, Cterm score and fitness
value are chosen to be Nterm parent, Cterm parent and helper parent, re-
spectively. Then the Nterm-Cterm crossover is applied on the parents of each
run and the average delta fitness values are calculated for all runs. It can
be seen that in overall the fitness values of the offsprings improved by 62%
compared to the Nterm parent, 37% to Cterm parent, and 28% compared to
the helper parent.

Similarly, the second row of Table 5.9 presents the results of improvement
in the fitness values of new offsprings produced by Nterm-Cterm crossover
in a single run, but randomly choosing 30 individuals as parents which are
not necessarily the best scored parents. The results show that in this case
also in average, there is 4% improvement in the fitness score of the new
offspring compared to its Nterm parent, 11% compared to Cterm parents and
1.4% compared to the helper parent. One reason of not having a significant
improvement in this results is that the parents are not filtered. That is why
in design of the GA algorithm, presented in Figure 5.1, the individuals in
two Nterm and Cterm pools must have at least an Nterm or Cterm score of
one.
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Figure 5.7: The evolutionary process of GA-Novo converging to the whole sequence exact
matches using 4 different MS/MS spectra.

5.4.4 Evolutionary Process of GA-Novo

The plots in Figure 5.7 illustrate the evolutionary process of GA-Novo
using 4 real MS/MS spectra from the dataset. These examples demonstrate
how GA during the evolutionary process constructs the full sequences which
turned out to be the exact matches. Considering the fitness scores during the
evolutionary process, it can be seen that the fitness plots in Figure 5.7 (a)
and Figure 5.7 (b) are converged to the exact matches in the middle of the
evolutionary process (less than 30 generations), whereas the other two plots
required more generations to find the exact matches due to the potential
missing ions or more noise (more challenging spectra).
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5.5 Chapter Summary

The goal of this chapter was developing an effective de novo sequencing
algorithm that constructs full-length sequences. The goal has been success-
fully achieved by developing an effective GA algorithm that constructs the
peptide sequences that match the input MS/MS spectra.

The key developments presented in this chapter are a new domain de-
pendent fitness function, a new initialisation method and two new genetic
operators that were particularly designed for the GA algorithm. The GA
fitness function was able to capture main spectral features, guiding GA to
produce the fully matched peptides. The initialisation method was an ex-
cellent start point to accelerate the evolutionary process. The tag-based
initialisation method helped GA start with better/fitter initial population,
improving its convergence, and providing high quality individuals for the
GA components. The genetic operators helped GA maintain the diversity in
the population and gradually convert partial matches to fully matched se-
quences. The results showed that GA-Novo achieved higher number of fully
matched sequences compared to PEAKS. GA-Novo outperformed PEAKS
by 4% higher precision and 4% higher recall at the amino acid level and 8%
higher recall at the peptide level. Also GA-Novo outperformed PepyGen, a
GA-based de novo sequencing tool with a significant margin of 45% at the
peptide level.

Clearly GA showed promising application in searching for finding the
most likely full-length sequence in de novo sequencing. Although GA-Novo
outperformed its other counterparts at both amino acid level and peptide
level, still it ended up with some false positives. A possible reason could
be its fitness function which is not discriminative enough. The next chapter
develops an effective method which addresses this problem by developing a
new PSM scoring function which can reduce the rate of false positives in the
results of de novo sequencing. Moreover, in the final chapter of this thesis in
Section 7.3, future developments of GA-Novo is suggested.



Chapter 6

GP for Re-scoring and
Re-ranking the
Peptide-Spectrum Matches

6.1 Introduction

De novo peptide sequencing algorithms have been widely used in pro-
teomics to analyse tandem mass spectra (MS/MS) and assign them to pep-
tides, but quality-control methods to evaluate the confidence of de novo pep-
tide sequencing are lagging behind. We do not want to assign a spectrum to
a peptide which is not presented in the biological sample, as incorrect peptide
assignments result in incorrect protein identifications. The search scores in
the current de novo peptide sequencing algorithms do not always guarantee
to find the true (correct) matches from many false matches. Therefore, it
is essential to apply a post-processing step as a PSM validation phase on
the results of de novo sequencing in order to improve peptide identification
accuracy and sensitivity.

A fundamental part of a quality control method is the scoring func-
tion used to evaluate the quality of PSMs. PSM scoring is similar to the
document-query scoring in information retrieval, where the search engine

169
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uses a ranking algorithm to determine the relevance of each document (web
page) to the input query. Accurate ranking provides users relevant results
on the top of the search results [56].

The PSM ranking function is expected to perform two tasks: (1) pro-
ducing appropriate scores to each PSM, (2) giving the highest score to the
correct PSM which results in distinguishing the correct match from other in-
correct ones. The first task looks like a regression task and the second one is
somehow similar to a classification problem, and the important point is that
the correct PSM should get the highest score amongst the other candidates
for the same spectrum. Therefore, the ranking function can be treated as a
classification or a regression method.

Since machine learning algorithms often solve either a classification or a
regression problem, not two problems together, it is worth investigating the
capability of GP in this regard. To the best of our knowledge, this would be
the first GP approach that solves a regression and a classification problem
simultaneously.

6.1.1 Chapter Goals

The main goal of this chapter is to develop a novel GP approach, named
GP-PostNovo, that solves a regression task and a classification task simul-
taneously, aiming to generate an effective GP-based PSM scoring function
to re-score and re-rank the de novo peptide sequence predictions. It is ex-
pected that the new GP-based PSM scoring function increases the rate of
the full-length correct peptides predicted by any individual de novo peptide
sequencing tool. The following objectives are specifically investigated:

1. Design an appropriate strategy which enables GP to learn from two
different sources of training sets, one for regression and the other for
classification.

2. Design an appropriate terminal set composed of a diverse set of effective
features that can capture different aspects of the quality of a PSM.
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3. Design an appropriate fitness function which measures the performance
of each GP individual in terms of appropriate regression and classifi-
cation metrics, leading GP towards building a powerful discriminative
PSM scoring function in order to distinguish between the correct PSMs
and incorrect ones.

4. Evaluate the effectiveness of the GP evolved PSM scoring function to
post-process the results of de novo sequencing tools in terms of the
rate of full-length correct peptides and compare the performance of
GP-PostNovo with other GP-based and Non-GP methods.

6.1.2 Chapter Organisation

The rest of the chapter is organised as follows. Section 6.2 describes the
proposed GP method. Section 6.3 presents the design of the experiments.
The results and discussions are presented in Section 6.4. Finally, the sum-
mary of the chapter is presented in Section 6.5.

6.2 The Proposed GP-PostNovo Method

6.2.1 Overview of the Method

Figure 6.1 illustrates the flowchart of the proposed GP-PostNovo method
designed for re-scoring and re-ranking the results of de novo sequencing meth-
ods. The process is composed of three phases: (1) data preparation, which
involves the process of creating the training and test data; (2) learning phase,
where GP builds the PSM scorning function using the training set, and (3)
performance evaluation phase, where the new GP evolved PSM scoring func-
tion is used to post-process the results of de novo peptide sequencing by a
de novo sequencing tool, aiming at giving the greatest score to the correct
candidate peptide (true match) in the candidate peptide list produced by the
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Figure 6.1: The workflow of the proposed GP-PostNovo method.

de novo tool for each MS/MS spectrum in the test set. More details about
each phase is explained as follows.

(1) Data Preparation

The first step of the flowchart, data preparation, starts with selecting a set
of MS/MS spectra with known identification from the original database [78].
The spectra are randomly selected and split into two sets: a training set,
which is used by GP to learn and build a scoring model, and a test set,
which is the unseen data and is used to evaluate the effectiveness of the GP



6.2. THE PROPOSED GP-POSTNOVO METHOD 173

model.

The training set is created in two forms: reg-set and class-set. In reg-set
for each spectrum, only its correct peptide is considered. Therefore having N
spectra in the training set, reg-set has N peptides. It should be noticed that
N peptides mean N PSMs because peptides are matched with the spectra to
create a PSM, and each PSM is one instance in the dataset. Therefore reg-set,
which is used by GP for symbolic regression, has N instances. With feature
extraction, a set of features (from Table 6.1) which measure the goodness of
match between the spectrum and the candidate peptide, is extracted from
each PSM. Therefore, each instance in reg-set is represented by a feature
vector (as input/dependent variables of regression) and a Mascot score (as
output/target variable of regression) indicating the degree of reliability of
the match.

In class-set for each spectrum, a list of candidate peptides including one
correct peptide and four incorrect peptides is considered. As class-set is used
by GP for classification, the correct peptides are positive instances and incor-
rect peptides are served as negative instances. Therefore having N spectra
in the training set, class-set has N × 5 PSMs (instances). To generate the
negative instances (incorrect peptides), all N spectra in the training set are
given to PepNovo [44], a freely available de novo sequencing tool, to per-
form de novo sequencing. As the ground-truth is already available, which
means the corresponding correct peptide for each spectrum is known (posi-
tive instances), among the list of peptides generated by PepNovo, for each
spectrum four full-length false matches are taken and considered as negative
instances (incorrect peptides). Therefore, as it can be seen in Figure 6.1,
class-set contains N groups of PSMs where each group belongs to one spec-
trum and is composed of five peptides including one correct peptide that has
the class label of 1 and four incorrect peptides that have class label of 0. The
instances in class-set are sent to features extraction step to extract the same
set of features that previously were extracted from the instances in reg-set.
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(2) Learning phase

The design of learning phase allows GP to evolve computer programs in
classification and regression tasks. The GP fitness function is composed of the
summation of the regression error and the classification error. The former
is used to evaluate the performance of the GP program using reg-set in a
regression task in terms of relative sum of squared error (RSS), and the latter
evaluates the performance of the same GP program in terms of the error rate
of the classification, misRank rate, using class-set in a classification task.
During the evolutionary process, each training set is split into two sets of sub-
train and sub-test sets with each set having 70% and 30% of total instances
in each set. The sub-train sets are used to train GP and sub-test sets are
used to evaluate the GP model. More details about the GP evolutionary
process will be described in Section 6.2.4.

(3) Evaluation phase

The third phase of the flowchart is evaluating the effectiveness of the GP
evolved PSM scoring function using the test set. All MS/MS spectra in the
test set are given to a de novo sequencing tool which is considered to improve
its misRank rate by applying the new PSM scoring function generated by
GP. After performing the de novo sequencing, for each spectrum, a set of
top five peptides is taken as the results of identifications. Therefore, having
M test spectra, the test set contains a total number of M × 5 instances.
The same set of features similar to reg-set and class-set is extracted from the
instances in the test set as well. As the ground-truth is already available from
the original dataset, the sequences produced by the de novo tool are evaluated
to measure the identification rate of full-length peptides sequencing. For each
spectrum, the top-ranked PSM is taking as the identification result and is
compared with the ground-truth peptide to check whether it is a full-length
correct match or not. If the predicted sequence by the de novo sequencing
method exactly matches the ground-truth peptide, the value of total number
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Figure 6.2: Correctly re-ranking the PSMs using GP.

of true matches increases by one. However, there might be some cases that
although the true match (correct PSM) exists among the other four false
matches (incorrect PSMs), the de novo sequencing method does not give
the greatest match score (first rank) to it (see the box showing the sample
output of the de novo algorithm in Figure 6.1). Therefore, the true match is
missed and instead the de novo sequencing method reports a false match as its
identification result. In this situation, it is expected that by applying the new
GP evolved PSM scoring function on the results of the de novo sequencing
tool, those missed true matches can be identified, re-scored and re-ranked by
GP to get the top rank in each group. This process is illustrated in Figure 6.2.
It is worth mentioning that the GP evolved PSM scoring function as a post-
processing method is only expected to find the true matches that already
exist in the candidate lists of the spectra, and give them the top rank scores.
If the correct peptides do not exist among the top five candidates, there is
nothing that the GP scoring function can do with those spectra.
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Table 6.1: Features used to represent the PSMs.

Feature name Description

f1 deltaMass
Mass difference between the experimental spectrum s
and the peptide sequence p

f2 Imatched
Sum of intensities of those peaks in s which are
matched with theoretical spectrum of p

f3 Nmatched # of matched peaks in theoretical spectrum of p
f4 Nnot-matched # of not matched peaks in theoretical spectrum of p

f5 Nterm
# of matched b-/y-ions from N-terminus
(left to right) of p

f6 Cterm
# of matched b-/y-ions from C-terminus
(right to left) of p

f7 GA-Novo Linear combination of different match sub scores

f8 Cos
Fixed length Normalised Dot product between the
two vectorised spectra of s and t (theoretical spectrum of p)

f9 Euc Fixed length normalised Euclidean distance between s and t
f10 Hamming Hamming distance between s and t
f11 SeqFix Fixed length SEQUEST-like score between s and t
f12 SeqVar Variable length SEQUEST-like score between s and t

6.2.2 Feature Extraction

Table 6.1 shows a set of 12 features extracted from each PSM. These fea-
tures measure the goodness of match between the experimental spectrum s
and the peptide p from different perspectives. For being able to match the
peptide sequence p against the experimental spectrum s, a theoretical spec-
trum t based on the known CID fragmentation rules of doubly charged pep-
tides [190] is constructed from the peptide sequence. More details about how
to construct t can be found in Section 5.2.4 (see Page 150).

As can be seen from the list of features in Table 6.1, the first seven
features in this table are those which have been previously used in designing
the fitness function of GA-Novo in Chapter 5. The purpose of using these
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features is to see how GP can find the hidden relationship between these
features.

Features {f8, f9, f10, f11, f12} vectorise the experimental spectrum s and
the theoretical spectrum t into two binned vectors with same length and use
distance based measures to calculate the similarity between the two vectors.

This similarity indicates the goodness of the match between the spec-
trum s and the peptide p.

The vectors in features {f8, f9, f10, f11} have fix length of 4,000 bins. This
number comes from dividing the largest possible precursor mass of the spectra
from the dataset used in this chapter into the fragment ion tolerance used
to generate the spectra, i.e. 2000 divided by 0.5. However, the feature f12

has a variable length which is determined based on dividing the precursor
mass of each spectrum under investigation into the fragment ion tolerance.
For the fix length features, the process of vectorising the experimental and
the theoretical spectra starts with splitting each spectrum into 4,000 bins.
For the experimental spectrum, the value of each bin equals to the total
intensities of those peaks which fall into the corresponding bin in the vector.
In the case of the theoretical spectrum, the value of each bin is ether 0 or
100 as the intensity of each peak in the theoretical spectrum is 100%. If the
theoretical spectrum contains a peak within the range of the bin, the value
of the bin equals to 100, otherwise 0.

The Cos feature, f8, calculates the normalised dot product between the
experimental vector x and the theoretical vector y using Equation (6.1).

cos θ = x.y

||x|| × ||y||
(6.1)

where ||x|| is the absolute value (magnitude) of vector x and 0 ≤ cos θ ≤
1. The ideal value of feature cos is 1, which indicates the two vectors are
identical and that all peaks in s are matched against those in t.

The Euc feature, f9, measures the euclidean distance between the two
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vectored spectra using Equation (6.2).

euc (x, y) =

√
Σ(xi − yi)2

||x|| × ||y||
(6.2)

The Hamming feature, f10, first converts the two experimental and theoret-
ical vectors into binary vectors and then calculates the normalised hamming
distance between the two vectored spectra.

As both f9 and f10 are used to measure the dissimilarity between the two
entities, the ideal value for both of them is 0.

SeqFix and SeqVar, f11 and f12 both use Equation (6.1) to calculate
the similarity between the two vectors. However, the difference between
f11 and f12 in terms of their functionality with f8 is that both f11 and f12

apply a preprocessing step before vectorisation the experimental spectra.
The preprocessing is inspired of the preprocessing method in SEQUEST [92].
The preprocessing step removes the precursor mass and keeps top 200 most
intense peaks in the spectrum s. Then the whole spectrum is divided into 10
windows with each window having peaks with normalised intensities to the
maximum value of 50. After preprocessing the experimental spectrum s, the
rest of process is similar to vectorisation explained for f8 where the spectra
are split into n bins.

6.2.3 GP Program Representation

In the proposed GP method, an individual with its tree-based structure
represents a scoring function that assigns a real number to a PSM as its match
score when performing either classification or regression. The GP method
is designed with a terminal set including a set of features from Table 6.1
along with random floating point constants, and a function set containing
four arithmetic operators of {+,−,×, /(protected)}. The protected division
returns the value 1 if a division by zero has taken place. Table 6.2 shows
the GP parameters used to run the experiments. The proposed method is
implemented in Python 3.6, using DEAP package [199].
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Table 6.2: Genetic programming parameters
Parameter Value
Function Set {+,−,×, /(protected)}
Terminal Set {Features from dataset, random Constants}
Initial Population Ramped-half-and-half
Population Size 600
Maximum Generations 100
Mutation Rate 19%
Elitism Size 1%
Crossover Rate 80%
Selection Tournament, Size = 5

6.2.4 An Effective Fitness Function for Re-scoring and
Re-ranking the PSMs

The fitness function to evaluate the goodness of GP individuals is com-
posed of two parts.

fitness(indi) = RSS(indi) +misRank(indi) (6.3)

where RSS(indi), relative sum of squared error, is the fitness value of the i-th
GP individual on reg-set and it shows how the GP individual does not fully
represent the actual relationship between the target variable and the depen-
dent variables in the dataset. misRank(indi) presents the classification error
rate of the same GP individual on class-set and it measures the incapacity
of the GP individual to give the greatest score (first rank) to the correct
peptide. So misRank(indi) indicates the rate of the correct PSMs that did
not get the first rank. As we try to minimise the classification and regres-
sion error rates during the evolutionary process, for a GP individual the best
fitness value based on Equation (6.3) would be close to 0.
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The first term of this equation is calculated using the following equation:

RSS(indi) =
ΣN

j=1(Ŷj − Yj)
2

ΣN
j=1(Y − Yj)

2 (6.4)

where Ŷj is the output of the i-th GP individual for instance j, and Yj is the
actual output value of instance j. Y is the mean of the target values, and N
is the total number of MS/MS spectra in reg-set. A GP individual with the
best performance has RSS close to 0.

misRank(indi) for each GP individual is calculated based on Equation (6.5).
Having N MS/MS spectra in class-set indicates having N groups of PSMs
where each group contains one correct PSM and four incorrect PSMs.

misRank(indi) = 1−
ΣN

j=1hit(j)
N

(6.5)

where hit(j) is the total number of first ranked correct PSMs in each group.
As already mentioned in Equation (6.3) that GP tries to minimise the fitness
function, the average value of hit(j) is subtracted from 1 so that the best
value of misRank(indi) would be 0, which reflects that all spectra of class-set
were correctly identified (first rank). The following equation explains how
hit(j) is calculated.

hit(j) =

1, if score(correct PSM) > score (incorrect PSMs)

0, otherwise
(6.6)

So when the i-th GP individual is used to classify the PSMs in each group,
if the output of the GP individual (means score function) using the correct
PSM in group j is greater than the output of each four incorrect PSMs in the
same group, the hit value of group j (hit(j)) gets a value of 1, otherwise 0.

The pseudo-code presented in Algorithm 2 shows the learning phase pro-
cess in the flowchart of Figure 6.1, where GP is building the scoring model
using two training sets: reg-set and class-set. The inputs to this algorithm
are the instances in reg-set and class-set and the output is the best GP
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Algorithm 2: The pseudo-code of the learning phase in the pro-
posed GP method.

Input :

• reg-set (sub-train): a set of PSMs as instances which have n features and
Mascot scores as target values.

• class-set (sub-train): a set of PSMs as instances which have n features and
class labels of either 1 or 0 indicating correct or incorrect PSM,
respectively.

Output: The best evolved GP ind∗ in terms of the fitness value on the
training set.

1: Initialisation: Randomly initialise each individual to create the
population P

2: gen← 0
3: while gen ≤ maxGen do
4: for i = 1 to Popsize do
5: Evaluation:

• Evaluate the performance of indi on the
reg-set in terms of RSS

• Evaluate the performance of indi on the
class-set in terms of misRank(indi)

• Calculate the overal fitness of indi based on:
fitness(indi) = RSS(indi) +misRank(indi)

6: end
7: for i = 1 to Popsize do
8: if fitnessi < fitnessind∗ then
9: ind∗ ← indi

10: end
11: end
12: Evolution: Generate new population to the size of Popsize by

• Reproduce the most fit individual, ind∗ (elitism)

• Apply the crossover and mutation operators

gen← gen+ 1
13: end
14: return ind∗
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evolved PSM scoring function in terms of the overall fitness (Equation (6.3))
on the training sets.

The GP evolutionary process starts with the creation of the initial pop-
ulation with size of Popsize. During the evolutionary process by using the
instances from reg-set, each GP individual as the solution to a regression
problem learns to assign a real number as match score to a PSM as accurate
as possible. Meanwhile, the same GP individual tries to solve a classifica-
tion problem by using the instances from class-set to learn distinguishing
between the correct PSM and incorrect ones, aiming at giving the greatest
match score to the correct PSM compared to its opponent incorrect PSMs
corresponding to the same spectrum.

The overall fitness value for each GP individual is calculated and the
best GP individual in each generation is transferred to the next generation
using the elitism operator. Crossover and mutation as genetic operators
are applied on the individuals from the current generation to populate the
subsequent generation. The evolutionary process continues until the stopping
criterion, reaching to maxGen, is met. The best GP individual based on
the total fitness value on the training sets is returned as the output of the
learning phase. Later the best GP individual (the best GP evolved PSM
scoring function) is used to re-score and re-rank the PSMs in the test set.
More details about the learning phase and performance evaluation phase are
explained in Section 6.3.3.

6.3 Experiment Design

6.3.1 Dataset

Table 6.3 presents the datasets used to run the experiments in this chap-
ter. Each dataset contains different number of MS/MS spectra which are
selected from the original benchmark dataset [78]. The training set is com-
posed of two sets namely reg-set and class-set. Reg-set only contains target
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Table 6.3: The MS/MS spectra used in this study.

dataset # of spectra
# of target

PSMs
# of decoy

PSMs

Training set
reg-set 3,515 3,515 -

class-set 3,515 3,515 3,515 × 4
Test set 120 120

PSMs, whereas class-set is composed of the same target PSMs in reg-set along
with a set of four decoy PSMs for each target PSM. The test set contains
the same MS/MS spectra used in Table 5.2 (see Page 157). Using the same
set of spectra allows us to investigate the impact of the proposed method
on improving the peptide identification with PEAKS and GA-Novo which
previously were used in Chapter 5. Table 6.3 shows more details about these
sets.

6.3.2 Benchmark Algorithms

As GP is used to build a scoring function which gives a real number
to a PSM, it is compared with Random Forest (RF), Support Vector Re-
gression (SVR) and Support Vector Machines (SVMs) which are benchmark
algorithms in solving regression and classification problems. Similar to the
proposed GP method, the other methods use the same training sets to learn
the scoring functions.

As the proposed GP method solves two tasks of regression and classifi-
cation at the same time, another GP-based method, named GP-PSM, which
generates the PSM scoring functions by only solving a regression problem
is also developed. To train GP-PSM, reg-set is used and the evolved GP
programs are evaluated in terms of RSS (GP-PSM fitness function). This
method is used for comparing with the proposed GP method in order to
evaluate the effectiveness of the proposed simultaneous regression and clas-
sification strategy. The GP parameters used in this model are the same as
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GP-PostNovo from Table 6.2.
To evaluate the effectiveness of the scoring functions built by the methods

above, the spectra in test set are submitted to two de novo sequencing algo-
rithms: PEAKS [9] and GA-Novo (the GA-based de novo sequencing method
proposed in Chapter 5). Then the effectiveness of each PSM scoring function
as a post-processing method is evaluated on the output of each de novo se-
quencing method in terms of misRank before and after the post-processing.
Equation (6.5) presents misRank which is the ratio of total number of cor-
rect PSMs that did not get the first rank to the total number of MS/MS
spectra.

6.3.3 Experiments

Experiment I: Learning PSM Scoring Functions

This experiment performs the second step, the learning phase, as ex-
plained in the design of the proposed method and illustrated in Figure 6.1.
The two training datasets (reg-set and class-set in Table 6.3) are divided
into two sub-train and sub-test sets with each set having 70% and 30% of
the PSMs, respectively. The experiment is set up to build the PSM scoring
functions by GP according to the pseudo-code in Algorithm 2 which explains
how GP learns the scoring function using the two training sets. GP uses
the sub-train sets of reg-set and class-set to build the model and evaluates
the model using the sub-test sets. The results of GP on both sub-train and
sub-test sets are measured based on Equation (6.3).

To compare the GP model with other non-GP benchmark algorithms, RF,
SVR and SVM are used to build the PSM scoring models as well. Unlike each
GP computer program (GP tree) which is able to perform either regression
or classification task at each single evolution, RF, SVR and SVM are only
able to perform one task during the model training. Therefore, each method
is trained separately using the training set which is appropriate for the cor-
responding task. So RF, SVR and GP-PSM use reg-set to solve a regression
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problem and they are evaluated on reg-set in terms of RSS (Equation (6.4)
which is the regression error metric. Moreover, class-set is used by RF and
SVM to build the PSM scoring models and they both are evaluated in terms
of the classification error rate, misRank, on class-set.

Later in Experiment II, all models built by the five algorithms are used to
re-score and re-rank the results of the de novo sequencing algorithms using
the spectra in the test set, aiming at decreasing the classification error rate,
misRank.

Experiment II: Evaluating the Effectiveness of GP, RF and SVR

This experiment performs the evaluation phase which is the last phase of
the flowchart in Figure 6.1. The experiment evaluates the effectiveness of all
scoring functions obtained from the previous experiment using GP, RF, SVR
and SVM in terms of improving the misRank rate of the results of de novo
sequencing by two de novo sequencing methods, PEAKS and GA-Novo. The
experiment starts by giving the MS/MS spectra from the test set in Table 6.3
to PEAKS and GA-Novo separately to perform de novo sequencing. From
the output of each de novo algorithm, for each spectrum, a group of top 5
peptides is taken as the result of identification. The top-rank peptide in each
group is compared with the ground-truth to evaluate the misRank rate of
each de novo algorithm. Then the results of de novo sequencing by each
algorithm are given as the input to the scoring functions generated by the
five scoring models obtained in Experiment I for re-scoring and re-ranking
the PSMs.

All scoring models from Experiment I are used to evaluate their effec-
tiveness for post-processing the results of PEAKS and GA-Novo in terms of
improving the misRank rate of de novo peptide sequencing. As already the
corresponding peptides of the MS/MS spectra is known, the misRank rate
before and after applying the post-processing can be measured.
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Table 6.4: Fitness values of GP-PostNovo.

sub-train sub-test

30 runs 0.69 ± 0.03 0.71 ± 0.02
best run 0.65 0.69

Table 6.5: The results of RF and SVR in terms of RSS on reg-set.

Method sub-train sub-test

RF-regression 0.15 0.51
SVR 0.75 0.87
GP-PSM 0.48 0.50

6.4 Results and Discussions

6.4.1 Results of Experiment I

Table 6.4 presents the fitness values (i.e. Equation (6.3)) of GP in the
learning phase of the proposed method (see Figure 6.1) using the training set
including reg-set and class-set. The GP experiments are repeated 30 times
using 30 different random seeds and the results of the average (± standard
deviation) of the 30 runs are provided in this table. Moreover, the results
of the best GP individual on sub-train sets based on Equation (6.3) is also
presented in this table. As other methods (i.e. RF, SVM, SVR, and GP-
PSM) are only able to perform either classification or regression, their results
cannot be presented in this table. Instead, RF-regression, SVR and GP-PSM
which solve regression problems and RF-classification along with SVM that
are both performing classification are compared with each other.

Table 6.5 presents the results of RF-regression, SVR and GP-PSM on
reg-set in terms of RSS. From the results of this table, it can be seen that
RF-regression has better performance on sub-train but has low generalisa-
tion on sub-test of reg-set compared to GP-PSM. One possible reason of the
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Table 6.6: The results of RF and SVM in terms of misRank on class-set.

Method sub-train sub-test

RF-classification 0.21 0.79
SVM 0.84 0.90

deterioration of the performance of RF and SVR on test sets could be over-
fitting in these methods. The spacial design of the GP approach helps GP
to avoid this issue, resulting a reasonable performance on train sets of both
reg-set and class-set and the best performance on test sets.

Similarly, Table 6.6 presents the results of RF-classification and SVM on
class-set in terms of misRank. From the results, it can be seen that RF-
classification has better misRank on both sub-train and sub-test of class-set
than SVM and this means that RF-classification outperforms SVM in clas-
sification of PSMs. But still both methods have low generalisation possibly
due to the overfitting.

As previously mentioned that unlike GP-PostNovo, other algorithms used
here cannot learn simultaneously from different training sources, here we
cannot compare the performance of RF, SVM and SVR with GP-PostNovo
based on sub-train sets. However, the performance of each method can be
evaluated on each sub-test set individually. Therefore, we further evaluate
these PSM scoring functions (models) by applying them on the sub-test sets
of class-set and reg-set to evaluate the methods based on Equation (6.3).

Table 6.7 presents the results of each PSM scoring model on sub-test sets
of reg-set and class-set based on RSS and misRank, respectively and shows
the overall fitness values of each method based on Equation (6.3). On sub-
test of reg-set it can be seen that the results of RF-classification and SVM are
far worse than other three methods. The reason is that these two methods
are trained to build a classification model which outputs either 0 or 1, not a
float point figure. Therefore, these two methods have very low performance
on a sub-test set designed for a regression problem. Overall, it can be seen
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Table 6.7: Evaluating the PSM scoring functions on sub-test sets of reg-set and class-set.

Method
sub-test
(reg-set )

RSS

sub-test
(class-set )
misRank

total
fitness

RF-regression 0.51 0.30 0.81
RF-classification 8.84 0.79 9.63
SVR 0.87 0.38 1.25
SVM 9.08 0.90 9.98
GP-PSM 0.50 0.27 0.79
GP-PostNovo 0.49 0.20 0.69

that GP-PostNovo outperforms other methods on each sub-test, achieving
the best fitness value in terms of Equation (6.3). The second and third best
methods are GP-PSM and RF-regression, respectively.

In the next experiment, all PSM scoring models above are applied to the
test set to check the effectiveness of each model. For GP-PostNovo, all 30
GP individuals from 30 independent runs along with the best GP program
among all of them (in terms of Equation (6.3) on the training set) are selected
to run Experiment II. More details are explained in the following section.

6.4.2 Results of Experiment II

The Results of Peptide Identification by PEAKS and GA-Novo

Before presenting the results of the performance evaluation phase of the
models on the test set, more detail about the performance of each de novo
sequencing algorithm used to generate the instances in the test sets is given
here to help understand the misRank rate of each de novo tool before ap-
plying the PSM scoring functions generated by GP, RF, SVR and SVM.

Table 6.8 presents the results of de novo peptide sequencing by PEAKS
and GA-Novo. To calculate the total number of predicted/identified first
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Table 6.8: The results of de novo sequencing by PEAKS and GA-Novo using the MS/MS
spectra from test set.

FP

Method TP

# of correct PSMs
which are not
first ranked

(missed correct PSMs)

# of spectra that their
correct PSM

does not exist
among the 5
candidates

misRank

PEAKS 67 25 28 0.44
GA-Novo 84 24 12 0.3

ranked correct PSMs (the second column in the table) by each de novo se-
quencing method, for each spectrum the first ranked peptide is taken as the
identification result and is compared with the ground-truth peptide to check
whether it is a correct match or not. From the results of Table 6.8, it can be
seen that out of 120 MS/MS spectra, PEAKS and GA-Novo only found 67
and 84 first ranked correct PSMs, respectively. However, 25 and 24 correct
PSMs (the third column in the table) did not get the first rank by PEAKS
and GA-Novo, respectively. Those PSMs are wrongly ranked by the de novo
sequencing methods so we call them missed correct PSMs. In this case, the
PSM scoring models are applied on the results of PEAKS and GA-Novo to
check if they are able to re-score the correct PSMs and put them at the
first rank. A PSM scoring model as a post-processing tool also should not
mis-rank other correct PSMs that already got the first rank by the de novo
sequencing methods. It is worth mentioning that out of 120 MS/MS spectra
in this set, 28 and 12 of them were sequenced by PEAKS and GA-Novo,
without having the correct peptides among the five candidate peptides for
each spectrum. So when the de novo sequencing method does not identify
the correct peptide in the candidate peptide list, the post-processing method
cannot do anything further. So in summary, based on the results of Table 6.8,
the misRank rate of PEAKS using the spectra in test set is 0.44 and that
value for GA-Novo is 0.3. Therefore, it is expected that by applying the new
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Table 6.9: The results of post-processing the output of PEAKS using the spectra from
test set by RF, SVM, SVR and GP.

Method

# of missed correct
PSMs got
first-rank

(out of 25)

# correct PSMs
got missed
(out of 67)

TP FP misRank

RF-regression 13 5 75 46 0.38
RF-classification 3 10 60 60 0.50
SVR 9 6 70 50 0.42
SVM 0 32 35 85 0.71
GP-PSM
(30 runs)

17.79 ± 1.74 9.27 ± 1.44 75.52 ± 2.17 44.48 ± 2.17 0.37 ± 0.02

GP-PostNovo
(30 runs)

21.56 ± 1.77 4.20 ± 1.05 84.36 ± 2.32 35.64 ± 2.32 0.30 ± 0.02

GP-PSM
(best run)

20 8 79 41 0.34

GP-PostNovo
(best run)

24 3 88 32 0.27

PSM scoring functions, the misRank rate reduces by decreasing the number
of PSMs in the third column of Table 6.8.

Post-processing the Results of PEAKS

Table 6.9 presents the results of post-processing the output of PEAKS,
which previously used the spectra from the test set to perform de novo pep-
tide sequencing, by RF, SVR, SVM and GP. The second column of Table 6.9
shows the number of correct PSMs which previously did not get the first rank
by PEAKS but now after applying the post-processing method these PSMs
got the first rank. The third column presents the number of correct PSMs
that were correctly identified by PEAKS but they are wrongly ranked (not
first rank) by the new PSM scoring models. From the results of Table 6.9
it can be seen that RF-regression, SVR and the two GP methods improving
the results of PEAKS de novo peptide sequencing by finding more missed
correct PSMs (the second column) which results in decreasing the FPs and
improving the misRank rank. It can be seen that GP-PostNovo has the
highest number of identified missed correct PSMs (the second column) and



6.4. RESULTS AND DISCUSSIONS 191

the lowest number of mis-ranked correct PSMs (the third column) compared
to all other methods.

In terms of identification of missed correct PSMs, GP-PostNovo is able
to identify 96% (= (24

25 × 100)) of the missed correct PSMs whereas RF-
regression, SVR, RF-classification only found 52%, 36% and 12%, respec-
tively. The identification rate of missed correct PSMs for SVM is zero. Also
the results of mis-identification of the correct PSMs (third column) by non-
GP methods show that the GP methods are able to keep the correct PSMs
which are already got the first rank by PEAKS at top ranks. Particularly,
GP-PostNovo wrongly re-ranks the correct PSMs by 4% (= ( 3

67 × 100)),
whereas RF-regression, SVR, RF-classification and SVM get the rate of 7%,
8%, 15% and 48%, respectively. The comparison between GP-PostNovo and
GP-PSM shows that the scoring strategy in GP-PostNovo results in finding
a larger number of missed PSMs while sacrificing a smaller number of correct
PSMs which have already been identified by the de novo sequencing method.

Overall, GP-PostNovo reduces the misRank rate of PEAKS full-length
peptide sequencing by 17% (= (0.44− 0.27)× 100).

Post-processing the Results of GA-Novo

Table 6.10 presents the results of post-processing the output of GA-Novo,
by the scoring functions generated by RF, SVR, SVM and the two GP-based
methods. Similar to the results of post-processing PEAKS, GP-PostNovo
outperforms other methods by increasing the identification rate of missed
correct PSMs at 83% (= (20

24 × 100)), whereas RF-regression, SVR, RF-
classification and SVM get the rate of 46%, 33%, 21% and 0%, respectively.
Both GP methods try to minimise the rate of mis-identification of correct
PSMs compared to the other methods. In summary, the results of the best
run and 30 runs of GP-PostNovo show that the scoring functions have promis-
ing performance in terms of minimising the misRank of full-length peptide
de novo sequencing by GA-Novo. This means that employing GP-PostNovo
results in 15% (= (0.3− 0.15)× 100) reduction in misRank rate of GA-Novo.
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Table 6.10: The results of post-processing the output of GA-Novo using the spectra from
test set by RF, SVM, SVR and GP.

Method

# of missed correct
PSMs got
first-rank

(out of 25)

# correct PSMs
got missed
(out of 67)

TP FP misRank

RF-regression 11 5 90 30 0.25
RF-classification 5 15 74 46 0.38
SVM 0 40 44 76 0.63
SVR 8 6 86 34 0.29
GP-PSM

(30 runs)
18.54 ± 1.74 12.70 ± 1.92 88.84 ± 2.29 31.16 ± 2.29 0.26 ± 0.02

GP-PostNovo
(30 runs)

19.98 ± 1.87 5.30 ± 1.83 97.68 ± 3.00 22.32 ± 3.0 0.19 ± 0.02

GP-PSM
(best run)

19 10 92 28 0.23

GP-PostNovo
(best run)

21 2 102 18 0.15

One question arises here that why other methods including RF-regression
and SVR did not get results as good as GP. Further analysis on the scores that
the PSMs got after re-ranking by these methods shows that in many cases
there were two PSMs including a correct PSM and an incorrect one belonging
to the same group where they both got the same score. In this situation based
on the policy of our method, it is considered as a FP since the correct PSM
gets the same rank as the incorrect PSM. However, GP-PostNovo is more
discriminative and does not often give the same score to two PSMs. It is
worth mentioning that re-scoring and re-ranking the missed correct PSMs
from the results of both de novo sequencing methods is a challenging task.
The reason is that the decoy sequence (the incorrect candidate sequence) is
very similar to the target sequence and the difference might be in the position
of one or a few amino acids, which is the reason that the de novo sequencing
methods were unable to pick up the correct candidate sequence.

Figure 6.3 and Figure 6.4 shows a view of the instances in the training set
and the test set, respectively. Comparing the peptide column of both training
and test sets shows the challenge amino acid permutation complexity. As it
can be seen, the candidate peptides in test set, in each group of 5 instances
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Figure 6.3: The instances in the training set.

Figure 6.4: The instances in the test set.

are quite similar to each other with each instance having very close feature
values to the instances belonging to the same spectrum/group. Therefore, the
PSM scoring function generated by either GP or other methods should have
a strong discriminative ability to give the highest score to the correct peptide
in the test set. The learning strategy in GP-PostNovo, which makes GP to
evolve computer programs to solve the regression and classification problems
simultaneously, enables GP to assign appropriate scores to PSMs, giving
the greatest score to the correct PSM which brings it ahead of all incorrect
ones. However, other methods give almost the same float point scores to
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the candidate peptides belonging to the same group. Further analysis on
the scores that the candidate peptides got after re-ranking by other non-GP
based methods shows that in many cases there were two candidate peptides
including a correct peptide and an incorrect peptide belonging to the same
group where they both got the same score. In such cases, the instances
(PSMs) have almost the same feature values, therefore the scoring function
should be discriminative enough to be able to distinguish the correct PSM
from the incorrect PSMs.

6.4.3 Analysis on the Best GP Evolved Program

Table 6.11 presents the frequency of the appearance of all features in
the GP tree of GP-PSM and GP-PostNovo. As previously mentioned, GP-
PSM solves a regression task, while GP-PostNovo solves a classification and
a regression problem at the same time. Therefore, it is not unexpected
that GP-PostNovo covers GP-PSM and generates a bigger tree. Analysis
of the GP tree evolved by GP-PostNovo and GP-PSM reveals interesting
relationships between the features which are discussed as follows.

The features in Table 6.11 can be divided into two groups, spectral fea-
tures (from f1 to f7) and distance-based features (from f8 to f12). The
spectral features are inspired of CID fragmentation rules, whereas distance-
based features use distance measures to calculate the similarity/dissimilarity
between the two vectors corresponding to the experimental spectrum and the
theoretical spectrum. From Table 6.11, it can be seen that none of the three
methods use deltaMass feature, f1, as it produces very small values almost
close to zero for most of the PSMs. So GP discarded this feature as it does
not seem discriminative enough to help GP distinguish a correct match from
the incorrect ones.

The GP tree produced by GP-PSM (see Figure 6.5) shows that the left
sub-tree mainly consists of the combination of all spectral features (sepa-
rated by the blue dashed line), whereas the right sub-tree mostly contains
the distance-based features (showed by a purple dotted line). However, Anal-
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Table 6.11: Frequency of the appearance of the features in the three GP-based PSM
scoring functions.

Feature GP-PSM GP-PostNovo
f1 deltaMass 0 0
f2 Imatched 8 8
f3 Nmatched 4 9
f4 Nnot-matched 4 0
f5 Nterm 2 3
f6 Cterm 1 5
f7 GA-Novo - 2
f8 Cos 7 5
f9 Euc 0 2
f10 Hamming 2 4
f11 SeqFix 3 10
f12 SeqVar 1 0
Sum of the appearance of all features. 32 48

ysis on the GP tree of the GP-PostNovo method (see Figure 6.6) shows that
a number of times features from different groups are used together by the
arithmetic operators e.g., f3 with f10, or f2 along with f11. This is shown by
drawing the blue and purple dotted lines around the spectra and distance-
based features, respectively. This might indicate that the combination of
features from different groups could be more discriminative rather than com-
bining all features from the same group.

As in the Chapter 5, the two features Nterm and Cterm showed to be
very useful to find the best match from N-terminus and C-terminus of the
spectrum, these two features appeared twice in the form of (f5 ∗ f6) by GP-
PostNovo (see the green dotted lines around the nodes in the GP tree shown
in Figure 6.6), whereas such a relationship was not discovered by the best
evolved tree by GP-PSM. Moreover, due to the incomplete fragmentations,
some spectra might have less peaks in the N-terminus and more peaks in the
C-terminus. That is probably the reason that GP-PostNovo selected Cterm
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Figure 6.6: The best GP evolved program of GP-PostNovo.

features more frequent than Nterm features, but this pattern was not seen in
GP-PSM. Due to the frequent selection of f3 and f12, GP-PostNovo does not
select the other two features f4 and f12 as they might seem to have similar
functionalities to GP.
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6.5 Chapter Summary

The goal of this chapter was developing a new method for post-processing
the results of de novo sequencing methods, aiming at optimally re-ordering
the PSMs and minimising the misRank of the full-length de novo peptide se-
quencing. The goal has been successfully achieved by developing a GP-based
method, named GP-PostNovo, which automatically generated effective scor-
ing functions that can re-score and re-rank the results of de novo sequencing
and increased the accuracy of de novo sequencing at the peptide level. A
set of 12 features, which represented the important characteristics about the
goodness of the match between each spectrum and its corresponding peptide,
were extracted from the data. During the learning process, GP incorporated
the important features into its scoring function. The fitness function of GP
which combines the regression error and mis-ranking error allowed GP to
minimise the regression error rate which helped GP give accurate scores to
PSMs and classification error rate, which led GP to distinguish the correct
PSM from the incorrect ones. So as the result, the correct PSM correspond-
ing to the input spectrum would be ranked ahead of all incorrect candidate
ones belonging to the same spectrum.

For comparing the results of GP with other benchmark machine learning
algorithms, RF, SVM and SVR were used to build the PSM scoring func-
tions. GP and other methods were trained using a set of MS/MS spectra
with known identification corresponding to unique peptides from full factorial
LC-MS/MS proteomics benchmark dataset. To evaluate the effectiveness of
the PSM scoring functions including GP, two de novo sequencing methods,
PEAKS and GA-Novo were used to perform de novo sequencing using a test
set containing 120 MS/MS spectra from the original dataset. All GP-based
and Non-GP based scoring functions generated in this chapter were applied
to the outputs of each de novo sequencing method. The results showed that
GP-PostNovo outperformed all methods in terms of mis-ranking reduction.
GP-PostNovo increased the identification of full-length correct peptides of
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PEAKS and GA-Novo by 17% and 15%, respectively. Among other non-GP
methods, RF-regression was the second best post-processing method, by 6%
and 5% improvement in identification of full-length correct peptides from the
results of PEAKS and GA-Novo, respectively.



Chapter 7

Conclusions

This chapter concludes each research objectives of this thesis, providing
main findings from each individual chapter. Directions for future develop-
ments and potential research areas are presented at the end of this chapter.

In recent years, various new methods and software tools have been pro-
posed for de novo sequencing. Although these methods were successfully ap-
plied to perform de novo sequencing in various cases, they have limitations
which make these methods less accepted by the community. We believe that
the performance of these methods can be further improved by identifying
the challenges that these methods have faced and developing computational
approaches to overcome the limitations.

Through this thesis, three main steps including preprocessing, sequence
optimisation and post-processing were identified that could potentially assist
the performance of the current methods. From the machine learning point of
view, these steps could be formulated as three tasks of classification, optimi-
sation and regression. As evolutionary algorithms showed promising results
in solving these problems, the overall goal of this thesis was shaped as inves-
tigating the capability of evolutionary algorithms particularly GP and GAs
in addressing these task in order to improve the peptide identification with
de novo peptide sequencing. The goal was successfully achieved by propos-
ing four effective EA-based methods and the results have shown that each

199
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method was able to improve the de novo sequencing results at either the
amino acid level, peptide level or both.

The rest of this chapter provides conclusions for each research objectives
proposed in this thesis and new directions are discussed for further improve-
ment in the future.

7.1 Achieved Objectives

This thesis has successfully achieved the following research objectives:

• This thesis developed a GP-based method for preprocessing the imbal-
anced MS/MS spectra, aiming at improving the reliability of peptide
identification by removing more noise peaks and retaining more sig-
nal peaks (chapter 3). The proposed GP method proved to be the
most stable method across various ratios of signal to noise compared
to six well-known classification algorithms. The proposed method uses
an effective weighted fitness function that accounts for both the mi-
nority and the majority class accuracies (sensitivity and specificity)
in the evolved classifiers. The design of this fitness function allows
GP for more noise reduction and more signal retention when classify-
ing the MS/MS data. The proposed method was used to denoise the
MS/MS spectra prior to peptide identification with a de novo sequenc-
ing software and a database searching tool. The results show that the
confidence of peptide identification for both methods are successfully
improved.

• This thesis proposed a multi-objective approach, named MOGP/D
(chapter 4), for the purpose of evolving a Pareto front of classifiers
along the optimal trade-off surface that offers the best compromises
between the two conflicting objectives of sensitivity and specificity in
classification of imbalanced MS/MS spectra. In order to generate the
non-dominated solutions for Pareto front approximation, MOGP/D
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utilises the MOEA/D framework which decomposes an MOP into a
set of N scalar objective optimisation sub-problems, trying to optimise
these N scalar optimisation sub-problems simultaneously. MOGP/D
has shown to be promising for evolving a set of non-dominated classi-
fiers that have the best trade-off between the two conflicting objectives
of the majority and minority class accuracies in the problem of classi-
fication of imbalanced MS/MS spectra. The non-dominated solutions
(classifiers) can be used for classification of peaks in the MS/MS spec-
tra and the decision maker can choose one of them based on his/her
preference.

• This thesis developed a GA-based method, GA-Novo, which utilises the
“global” search ability of GA to solve the complex optimisation task of
de novo peptide sequencing, aiming at full-length de novo sequencing
of MS/MS spectra. Through four main components proposed in this
method, GA-Novo outperformed PEAKS, the most commonly used de
novo sequencing algorithm [9, 77], by a reasonably large margin of 8%
at the peptide level. The major contributions presented in this work
are: (1) a new tag-based initialisation method which helps GA find
better solutions and converge faster; (2) a new fitness function which
evaluates the quality of match between the input spectrum and the
candidate peptide sequence from different aspects; (3) Nterm-Cterm
crossover which is designed for creating superior offsprings inheriting
the best parts of their parents; (4) conflict-mass mutation which is
designed to solve the problem of di-peptides and conflict masses.

• Through this thesis an effective PSM scoring function, named Post-
Novo, that contributes towards minimising the false discovery rate in
the results of de novo peptide sequencing was proposed. This is the
first time that GP is used in a framework to solve a regression task and
a classification task at the same time. Through regression GP learnt to
give appropriate scores to the PSMs and via classification GP improved
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its scoring ability by learning to give the highest scores to the correct
PSMs. PostNovo was able to re-score and “optimally” re-rank the re-
sults of de novo sequencing with PEAKS and GA-Novo and successfully
minimised the false identification rate of these two algorithms at the
peptide level. Evaluating the performance of the proposed method at
the peptide level is so rigorous, however it allows us to measure the
common de novo sequencing errors, such as amino acid permutations.

7.2 Main Conclusions

Overall, this thesis contributed to the field of evolutionary algorithms, by
proposing new applications of GP and GA for more accurate and efficient
identification of peptides from MS/MS with de novo sequencing. This thesis
finds that the proposed EA-based methods had contributions to substantially
improving peptide identification with de novo sequencing particularly full-
length de novo sequencing on CID spectra.

The main conclusions for the four research objective drawn from the four
contribution chapters (Chapter 3 to Chapter 6) are presented in this section.

7.2.1 Single Objective GP for Preprocessing MS/MS
spectra

This thesis proposes the first GP-based preprocessing method for de-
noising MS/MS spectra in order to improve the reliability of peptide iden-
tification. The experimental results on a large-scale dataset show that the
proposed GP-based preprocessing method (CID-GP) improves the reliability
of peptide identification and increases the identification rate of PEAKS by
26.6% compared to the un-preprocessed data and 19.3% over the best value
of threshold-based method. The proposed method helps PEAKS identify
more highly confident peptides with scores 70 ≤ ALC ≤ 99 compared to
the other cases. Moreover, with 95% confidence interval, the results of the
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SEQUEST database search tool using the data preprocessed by GP are sta-
tistically significantly better than those with the un-preprocessed data and
the best threshold-based method.

Important Ion Types

This thesis performed a detailed investigation on different CID fragmen-
tation ion types to figure out the important ion types in peptide identification
that have contribution towards high confidence peptide identification. This
was done by analysing how different peptide identification tools interact with
different sets of ions/peaks presented in the spectrum. It is found that con-
sidering only CID singly-charged ions as signal peaks and the rest of the
peaks as noise peaks can guarantee to obtain a reasonable high confidence
peptide identification with both database searching and de novo sequencing.
This finding helps make a clear definition of background noise in the CID
data and allows to have a better decision on selecting the suitable ion types
for labelling the peaks in MS/MS datasets which are used by the machine
learning methods.

Interpretability of GP

From a set of different spectral features and fragmentation rules intro-
duced in the literature, GP with its implicit feature selection ability was able
to identify a set of features that contribute to predicting the ion types. For
example, analysis of the evolved GP trees shows which isotopic and neutral
losses features provide more evidence for finding the singly-charged b-/y-
ions in CID spectra. The interpretability of GP helps identify the important
spectral and fragmentation rule features that have positive influence on in-
terpretation of CID fragmentation patterns. This finding is useful for the
existing machine learning based methods that only rely on raw data to learn
the fragmentation patterns, but they require a large amount of data which
makes the training process computationally expensive.
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7.2.2 Multi-objective GP for Imbalanced MS/MS spec-
tra

This work showed how multi-objective can be used in GP to deal with
the imbalanced MS/MS data. The proposed method showed a significant
reduction of noisy peaks in the MS/MS spectra and increased the quality
of spectra, leading to improve the reliability of peptide identification with
PEAKS. In the range of 70 ≤ ALC ≤ 99, MOGP/D improved the reliability
of peptide identification by more than 21% compared with CID-GP, the single
objective GP in chapter 3.

Bloat Control

The analysis on the average size of the GP programs evolved by NSGP
and MOGP/D over 30 MOGP runs shows an unnecessary growth of the
GP trees known as bloat or code growth in NSGP on the training sets.
This results in low generalisation of NSGP on the test sets. It is found
that MOGP/D is able to partially handle the bloat problem, resulting in a
significant improvement in the objective values on the test sets compared to
NSGP. This finding indicates that the GP size does not need to be considered
as the third objective in the design of MOGP based on MOEA/D, but further
investigation is needed.

Stability to Noise Ratios

In real-world systems, we do not only try to find the optimal design but
also a robust design [207]. This thesis finds that MOGP based on MOEA/D
is more stable than MOGP based on NSGA-II in classification of peaks in
imbalanced MS/MS data across various noise ratios in terms of convergence
to the Pareto front. Moreover, the best compromise solutions evolved by
MOGP/D compared to the those of NSGP and single objective GP achieved
better results in terms of retaining more number of signal peaks and filtering
out more noise peaks across different S/N ratios on both the training and
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test sets.

7.2.3 GAs for Sequence Optimisation

De novo peptide sequencing includes global optimisation on noisy and
incomplete data. In this thesis, we developed a GA-based de novo sequencing
method which is reasonably robust to noise and missing ions and provides an
effective solution for predicting the amino acid sequence of an input spectrum.
Amino acid permutation is so challenging in de novo sequencing but the
proposed method is capable of finding full-length sequences which have not
been correctly predicted by its counterpart de novo sequencing tool. GA-
Novo outperformed PEAKS by 8% higher accuracy at the peptide level (fully
matched peptide sequences) and 4% higher accuracy at the amino acid level
(partially matched sequences). Moreover, GA-Novo outperformed a GA-
based de novo sequencing method, which uses random initialisation coupled
with simple genetic operators, by a large margin of 47% at the amino acid
level and 50% at the peptide level.

Representation

Among other evolutionary computation techniques, such as particle swarm
optimisation (PSO) from swarm intelligence (SI) or genetic programming
(GP) from evolutionary algorithms (EAs), GA is the most suitable method
to solve the problem of de novo sequencing. The variable-length representa-
tion of GA used in this study allows keeping a peptide sequence containing
a series of amino acids with any size. Therefore, this method can be used
to sequence any peptide with any length. The representation can be easily
adapted to include the numerical values of post-translation modifications as
well.
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Initialisation

Initialisation determines where the algorithm starts the search process.
It is found that the tag-based initialisation used in the design of GA-Novo
was a better starting point for GA and provided fitter initial population that
can benefit the whole evolutionary process. In addition, the spacial design
of the initialisation method and the ability of GA in searching a big search
space makes GA-Novo to be independent of using a preprocessing method to
denoise the spectra prior to de novo sequencing.

Effective Genetic Operators

The thesis finds that introducing various domain-dependent genetic op-
erators along with standard operators (i.e., two point crossover) gives GA
chances for better convergence and diversity. Although traditional two par-
ents crossover operators are more “biology inspired”, the Nterm-Cterm crossover
designed for GA-Novo shows that a multi-parents operator generates higher
quality individuals.

Accurately predicting di-peptides is very challenging for the current de
novo sequencing methods due to the vastly increased search space of the
peptides. It is found that designing an appropriate mutation operator that
considers a dictionary of conflict masses enables GAs to identify the correct
di-peptides. This results in constructing full-length peptides whereas other
methods failed.

7.2.4 Controlling PSM False Discovery

The low accuracy of the existing de novo sequencing methods at the pep-
tide level due to the lack of suitable PSM-scoring functions to measure the
goodness of a match was the reason to propose a new quality control strategy
in this thesis. Chapter 6 proposes a new GP-based approach to validating the
results of de novo sequencing in order to increase the accuracy of prediction
at the peptide level. GP was used to generate computer programs as ranking
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functions which are supposed to post-process the results of peptide de novo
sequencing to minimise the false identification. To evaluate the impact of the
proposed method on the existing de novo sequencing methods, PEAKS, and
GA-Novo (proposed in Chapter 5) were used to perform de novo sequencing
on a test set containing 120 MS/MS spectra. GP-PostNovo post-processed
the results of both methods and outperformed all its counterpart methods
in terms of mis-ranking reduction. The proposed method improved the per-
formance of PEAKS and GA-Novo by 17% and 15% at the peptide level,
respectively.

Simultaneous Learning and Solving

This thesis finds the ability of GP in learning from different sources of
training sets at the same time and solving two tasks simultaneously, while
other machine learning methods do not have this capability. The application
of the proposed method is not only limited to optimising the scores of PSMs,
any problem which is involved with scoring and ranking can benefit from this
approach. For example, search engine queries and recommender systems that
use ranking algorithms to retrieve the relevant results to the user queries can
gain advantage from this method. Clearly the ability of GP in automatically
evolving a model that best fits the dataset without having a prior knowledge
is also a key point here.

7.3 Future Work

Finally, future developments of research in this area are highlighted in
this section.
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7.3.1 Appropriate Genetic Operators for Post-translational
Modifications (PTMs)

Considering different types of mutation operators in GA might be useful
for better addressing the amino acid permutation complexity. It also can be
helpful to identify the potential PTMs. For example, designing appropriate
mutation operators to substitute an amino acid according to a probability
from a substitution matrix or from a list of known PTMs are potential direc-
tions that can be considered in the future research. Depending on the input
parameters by user, these mutations which lead to decreasing the number of
gaps in the candidate amino acid sequences can be applied. Moreover the
dictionary of di-peptide conflict masses can be further extended to cover all
possibilities and this could potentially increase the number of fully matched
sequences.

7.3.2 GA and Deep Learning for De Novo Sequencing

Our work opens a door for combining GA with deep learning to solve
the complex optimisation problem of de novo sequencing. Deep Learning
methods which have been recently proposed for peptide and protein identifi-
cation, can be further enhanced with more advanced search algorithms as the
authors have stated [11]. GA can be used to replace dynamic programming
due to its good ability to search the large search space of possible amino
acid sequences at the presence of noise. While deep learning can be used
to produce a probability distribution over the amino acid classes, GA can
filter out redundant amino acids or fill up the gaps due to the missing ions
or PTMs.

7.3.3 Generic PSM Scoring Function

Clearly, the ability of GP to automatically evolve a model without any
prior knowledge about the structure of the model has been successfully pre-
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sented in this thesis. This study trains GP on a particular class of frag-
mentation techniques, however, the GP-based PSM scoring function has the
potential for further improvement if it is trained on different spectra with
different charge numbers and precursor masses. This could be done by col-
lecting well-annotated, gold standard training and testing datasets. While
this study shows several putative applications of GP to improve the pep-
tide identification, subsequent improvements of the models will presumably
expand the scope of the identification of modified and unmodified peptides.

Moreover, it is worth investigating the effectiveness of using the GP-based
PSM scoring model as the fitness function of GA-Novo. The current fitness
function of GA contains a set of terms (scores) which their combination is
not optimised properly. It is expected that the learnt scoring function by
GP could potentially improve the results of GA-Novo. Because it is trained
using thousands of MS/MS spectra and is learned the fragmentation pattern
reasonably well.

7.3.4 Multi-objective Optimisation

The post-processing GP-based method to identify true and false PSMs
can be extended to a multi-objective approach to maintaining a trade-off
between specificity and sensitivity which are two competitive objectives in
the results of de novo peptide sequencing. Moreover, de novo sequencing of
modified peptides can be handled via multi-objective with conflicting objec-
tives of scores such as false identification rate and constraints such as the
number of PTMs or GP program size.

7.3.5 Combined use of MS1 and MS2

Since the focus of this thesis is at MS2 peaklists, it is worth exploring
PIF (precursor or product ion fraction) at the MS1 level and investigating
the effectiveness of using this information in-conjunction with the MS2 in-
formation. This could be achieved by exporting the raw mass spectrometry
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data to mzML or mzXML using open-source MS-based proteomics softwares
(e.g. Maxquant [208]) and exploring the level of chimericity in the dataset.
PIF values might contribute as an important feature for preprocessing and
elucidate and/or highlight the “imbalance” signal to noise as discussed in
this thesis.

7.3.6 An EA-assisted Peptide Identification Framework

The three components proposed in this thesis are responsible to improve
the peptide identification with de novo sequencing. As each component (ob-
jective of this thesis) is proposed and developed individually, in our future
work each component will be implemented as a plug-in. So each plug-in can
be integrated into the workflow of the current peptide identification tools in a
coherent manner in order to improve the peptide identification from MS/MS
spectra. Moreover, we will carefully put all components in a pipeline to make
our first EA-assisted end-to-end peptide identification framework.
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Glossary

amino acid :
Amino acid are organic compounds that combine to form proteins.
There are 20 common amino acids where each contains an amino group
(i.e. NH2) and a carboxylic acid group (i.e. COOH) with a side-chain
structure (R) specific for each amino acid.

amino acid level :
The fraction of partially matched peptides.

b-/y-ions :
They are the most common peptide fragments observed in low en-
ergy collisions. In the CID fragmentation technique, the amino acid
sequence of an MS/MS spectrum can be determined by the mass dif-
ferences between b- (or y-) ions.

biological samples :
Samples such as blood, urine, tissue, saliva, and many other types
which are collected for a variety of reasons from trial subjects.

biomarker :
Refers to anything that can be used as a measurable indicator of a
particular biological disease state or condition.

classification :
Classification is a task of classifying a new unseen observation into a
set of groups that are already known based on the labelled training
datasets.

collision-induced dissociation :
An extensively studied technique which is known to be highly suitable
for the identification of peptide sequences. In this technique, fragmen-
tation happens at the peptide bonds, producing b-/y-ions.
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C-terminus :
Refers to the end of an amino acid chain.

database search :
Peptide identification can be performed by comparing the input ex-
perimental MS/MS spectra with theoretical spectra simulated for each
peptide sequence in a protein sequences database.

de novo :
In Latin means “starting from the beginning” and literally means “again”).

de novo peptide sequencing :
The process of determining the amino acid sequence of peptides directly
from MS/MS spectra without using a protein database.

enzymes :
Being biological catalysts, enzymes are able to accelerate the chemical
reactions.

evolutionary algorithm :
A search technique which is based mainly on Darwinian principle of
natural selection. Evolutionary algorithms (EAs) employ techniques
such as recombination, mutation, natural selection and survival of the
fittest in order to evolve a population of individuals to solve the prob-
lem.

evolutionary computation :
Being a subfield of artificial intelligence, evolutionary computation (EC)
is a family of population-based problem solving techniques whose em-
ploys principles based on the theory of biological evolution to get in-
volved in many optimisation problems.

experimental MS/MS spectrum :
MS/MS spectra generated through high-throughput proteomics exper-
iments.
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fragmentation :
Dissociating the precursor ions is called fragmentation. The pattern in
the mass spectrum of a fragmented molecule can be used to determine
structural information of the molecule.

Genetic Algorithms :
Genetic algorithm (GA) represents an individual as a fixed-length bit
string called it a chromosome. GA aims to decode the chromosomes
to get the solution for the problem being faced by employing genetic
operators.

Genetic Programming :
Genetic Programming (GP) is an evolutionary algorithm which uses a
variable-length individual representation to evolve population of com-
puter programs to automatically build or evolve a model to tackle the
problem.

imbalanced :
In classification problems when the class distribution is not uniform
among the classes, the dataset is called imbalanced..

ladder :
A complete peptide fragmentation gives a contiguous series of ion types
which is called ladder.

mass spectrometer :
Measures the masses within a sample by ionizing the sample and sorting
the ions based on their mass-to-charge ratio (m/z). These masses later
can be used for identification of the proteins or peptides in the samples.

mass spectrometry :
Mass spectrometry has been practically recognised as the primary tool
for protein identification and measures the mass-to-charge ratio of ions.
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The mass spectrometry (MS1) analyses the ionised peptides and gen-
erates an MS spectrum which is a plot composed of the m/z values of
the ions (precursor ions) and their corresponding relative intensities.

MS spectrum :
An MS spectrum corresponds to a protein. A mass spectrum is a stick
diagram of the number of ions detected as a function of their m/z ratios.

MS/MS spectrum :
An MS/MS spectrum corresponds to a peptide. It consists of a list
of peaks each having a mass-to-charge ratio (m/z) value and an inten-
sity value (peak height). The m/z values are results of ionizing the
biological samples and their intensities indicate the abundance of ions.

N-terminus :
Refers to the start of a protein or a polypeptide.

optimisation :
An optimisation problem involves defining an objective function and
aims at minimising or maximising it by systematically choosing appro-
priate input values.

parent mass :
The mass of the peptide, which is called parent mass, equals to the
total mass of its amino acids plus mass of water.

peptide :
Short chains of amino acids (from 2 to 50 amino acids) joined by peptide
bonds.

peptide identification :
The process of assigning an MS/MS spectrum to a peptide is called
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peptide identification. Peptide identification can be performed by com-
paring the input experimental MS/MS spectrum with theoretical spec-
tra predicted for each peptide sequence in a protein sequence database
(database search method). Alternatively, instead of searching the ex-
perimental MS/MS spectrum against a database, peptide sequences can
be extracted directly from the spectrum with the de novo sequencing
approach.

peptide level :
The fraction of fully matched peptides.

peptide-spectrum match :
Matching an MS/MS spectrum to a peptide. This pair is called a
peptide-spectrum match (PSM). The goodness of the match is mea-
sured by a scoring function.

post-translational modification :
A naturally occurring chemical modification of a protein. Post-translational
modifications (PTMs) can alter the properties of a protein by prote-
olytic cleavage at a peptide bond or by addition of a modifying group
to one or more amino acids.

precursor peptide ion :
In MS/MS technique, a selected precursor ion is fragmented into frag-
ment ions whose m/z values are measured by mass spectrometry to
generate an MS/MS spectrum.

protease :
An enzyme that breaks the peptide bonds of proteins.

protein :
Micro-molecules that are made up of a long chain of amino acids linked
together in a linear sequence.
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protein identification :
The process of assigning an MS spectrum to a protein is called protein
identification. An MS spectrum can be identified by matching the
measured masses of the spectrum to the corresponding peptide masses
of a protein from a protein database. This process is called protein
identification by peptide mass fingerprinting (PMF) method.

proteomics :
Proteomics is the study of proteomes and their functions. A proteome is
a set of proteins produced in an organism, system, or biological context.
Proteomics analysis is the systematic identification and quantification
of proteins, particularly their sequences, structures and functions at a
certain point in time. Identification of protein sequences and their mod-
ifications is very important in proteomics because it allows researchers
discovering possible genetic diseases in an organism.

regression :
Regression is a process that aims to discover the relationship between
inputs and outputs. A regression problem attempts to find a mathe-
matical model that predicts a real value for each input example and
measures the error of the prediction in an iteratively way.

residue :
An amino acid within a peptide chain is called a residue due to the loss
of water.

tandem mass spectra :
Tandem mass spectrometry (MS/MS) involves multiple steps of mass
spectrometry along with fragmentation occurring in between the steps [84].

theoretical spectrum :
The theoretical spectrum contains only signal peaks (b- and y-ions)
with no noise peaks. It is virtually constructed based on the CID
fragmentation rules.
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trypsin :
An enzyme that helps us digest protein.



218 Glossary



Bibliography

[1] Akhilesh Pandey and Matthias Mann. Proteomics to study genes and
genomes. Nature, 405(6788):837–846, 2000.

[2] W Michael Caudle, Sheng Pan, Min Shi, Thomas Quinn, Jake Hoek-
stra, Richard P Beyer, Thomas J Montine, and Jing Zhang. Proteomic
identification of proteins in the human brain: Towards a more compre-
hensive understanding of neurodegenerative disease. Proteomics Clin-
ical Applications, 2(10-11):1484–1497, 2008.

[3] Hanno Steen and Matthias Mann. The ABC’s (and XYZ’s) of peptide
sequencing. Nature Reviews Molecular cell biology, 5(9):699–711, 2004.

[4] Robin Gras, David Hernandez, Patricia Hernandez, Nadine Zangge,
Yoann Mescam, Julien Frey, Olivier Martin, Jacques Nicolas, and
Ron D Appel. Cooperative metaheuristics for exploring proteomic data.
Artificial Intelligence Review, 20(1-2):95–120, 2003.

[5] Alexey I Nesvizhskii. A survey of computational methods and error rate
estimation procedures for peptide and protein identification in shotgun
proteomics. Journal of Proteomics, 73(11):2092–2123, 2010.

[6] Jimmy K Eng, Tahmina A Jahan, and Michael R Hoopmann. Comet:
an open-source MS/MS sequence database search tool. Proteomics,
13(1):22–24, 2013.

219



220 BIBLIOGRAPHY

[7] Sangtae Kim and Pavel A Pevzner. MS-GF+ makes progress towards a
universal database search tool for proteomics. Nature Communications,
5:5277, 2014.

[8] Fengchao Yu, Ning Li, and Weichuan Yu. PIPI: PTM-invariant peptide
identification using coding method. Journal of Proteome Research,
15(12):4423–4435, 2016.

[9] Bin Ma, Kaizhong Zhang, Christopher Hendrie, Chengzhi Liang, Ming
Li, Amanda Doherty-Kirby, and Gilles Lajoie. PEAKS: powerful soft-
ware for peptide de novo sequencing by tandem mass spectrometry.
Rapid Communications in Mass Spectrometry, 17(20):2337–2342, 2003.

[10] Bin Ma. Novor: real-time peptide de novo sequencing software. Jour-
nal of the American Society for Mass Spectrometry, 26(11):1885–1894,
2015.

[11] Ngoc Hieu Tran, Xianglilan Zhang, Lei Xin, Baozhen Shan, and Ming
Li. De novo peptide sequencing by deep learning. Proceedings of the
National Academy of Sciences, 114(31):8247–8252, 2017.

[12] Thilo Muth, Felix Hartkopf, Marc Vaudel, and Bernhard Y Renard.
A potential golden age to come- current tools, recent use cases, and
future avenues for de novo sequencing in proteomics. Proteomics,
18(18):1700150, 2018.

[13] Hao Yang, Hao Chi, Wen-Jing Zhou, Wen-Feng Zeng, Chao Liu, Rui-
Min Wang, Zhao-Wei Wang, Xiu-Nan Niu, Zhen-Lin Chen, and Si-Min
He. pSite: Amino acid confidence evaluation for quality control of de
novo peptide sequencing and modification site localization. Journal of
Proteome Research, 17(1):119–128, 2017.

[14] Ngoc Hieu Tran, Xianglilan Zhang, and Ming Li. Deep Omics. Pro-
teomics, 18(2):1700319, 2018.



BIBLIOGRAPHY 221

[15] Rui Qiao, Ngoc Hieu Tran, Ming Li, Lei Xin, Baozhen Shan, and Ali
Ghodsi. DeepNovoV2: Better de novo peptide sequencing with deep
learning. arXiv preprint arXiv:1904.08514, 2019.

[16] Ari M Frank. A ranking-based scoring function for peptide- spectrum
matches. Journal of Proteome Research, 8(5):2241–2252, 2009.

[17] Bin Ma. Challenges in computational analysis of mass spectrometry
data for proteomics. Journal of Computer Science and Technology,
25(1):107–123, 2010.
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