
Analysis and Diagnostics of

Categorical Variables with

Multiple Outcomes

by

Thomas Falk Suesse

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Doctor of Philosophy

in Statistics.

Victoria University of Wellington

2009



Abstract

Surveys often contain qualitative variables for which respondents may select any

number of the outcome categories. For instance, for the question “What type

of contraceptive have you used?” with possible responses (oral, condom, lubri-

cated condom, spermicide, and diaphragm), respondents would be instructed to

select as many of the J = 5 outcomes as apply. This situation is known as multi-

ple responses and outcomes are referred to as items. This thesis discusses several

approaches to analysing such data.

For stratified multiple response data, we consider three ways of defining the

common odds ratio, a summarising measure for the conditional association be-

tween a row variable and the multiple response variable, given a stratification

variable. For each stratum, we define the odds ratio in terms of: 1 item and 2

rows, 2 items and 2 rows, and 2 items and 1 row. Then we consider two esti-

mation approaches for the common odds ratio and its (co)variance estimators for

these types of odds ratios. The model-based approach treats the J items as a J-

dimensional binary response and then uses logit models directly for the marginal

distribution of each item by applying the generalised estimating equation (GEE)

(Liang and Zeger 1986) method. The non-model-based approach uses Mantel-

Haenszel (MH) type estimators.

The model-based (or marginal model) approach is still applicable for more

than two explanatory variables. Preisser and Qaqish (1996) proposed regression

diagnostics for GEE. Another model fitting approach is the homogeneous linear



predictor model (HLP) based on maximum likelihood (ML) introduced by Lang

(2005). We investigate deletion diagnostics as the Cook distance and DBETA for

multiple response data using HLP models (Lang 2005), which have not been con-

sidered yet, and propose a simple “delete=replace” method as an alternative ap-

proach for deletion. Methods are compared with the GEE approach.

We also discuss the modelling of a repeated multiple response variable, a cat-

egorical variable for which subjects can select any number of categories on re-

peated occasions. Multiple responses have been considered in the literature by

various authors; however, repeated multiple responses have not been considered

yet. Approaches include the marginal model approach using the GEE and HLP

methods, and generalised linear mixed models (GLMM). For the GEE method,

we also consider possible correlation structures and propose a groupwise corre-

lation estimation method yielding more efficient parameter estimates if the cor-

relation structure is indeed different for different groups, which is confirmed by

a simulation study.

Ordered categorical variables occur in many applications and can be seen as

a special case of multiple responses. The proportional odds model, which uses

logits of cumulative probabilities, is currently the most popular model. We con-

sider two approaches focusing on the mis-specification of a covariate. The binary

approach considers the proportional odds model as J−1 logistic regression mod-

els and applies the cumulative residual process introduced by Arbogast and Lin

(2005) for logistic regression. The multivariate approach views the proportional

odds model as a member of the class of multivariate generalised linear models

(MGLM), where the response variable is a vector of indicator responses.
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Chapter 1

Introduction

This introduction extensively reviews methods for categorical data with multi-

ple outcomes. The first section (Sec. 1.1) reviews multiple response data analysis

through various models. Section 1.2 focuses on the Mantel-Haenszel (MH) meth-

ods for stratified data. Then Section 1.3 gives a review of diagnostic methods

focusing on deletion diagnostics, and Section 1.4 shows an overview of the pro-

portional odds model. The last section (Sec. 1.5) provides an outline of the thesis.

1.1 Review: Various Modelling Strategies for Multi-

ple Response Data Analysis

1.1.1 Multiple Response Data

Surveys often contain qualitative variables for which respondents may select any

number out of J outcome categories. For instance, Bilder and Loughin (2002) pre-

sented data, where 239 sexually active college women were asked “What type of

contraceptives have you used?”. They could select any answer of the following:

1
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A-oral, B-condom, C-lubricated condom, D-spermicide, and E-diaphragm. Cat-

egorical variables that summarise this type of data are called pick any/J variables

or multiple response variables, where J is the number of outcome categories (J = 5

in this case) and “/” stands for “out of ”(Coombs 1964). Each outcome category

is referred to as an item (Agresti and Liu 1999).

A special case of a multiple response variable is a multinomial variable only

allowing J mutually exclusive outcome categories. We can cross-classify the

counts from a survey that contains a pick any/J variable, along with some ex-

planatory variables, into a contingency table. Table 1.1 by Bilder and Loughin

(2002) presents such a cross-classification for the 239 sexually active college women

with a group variable (r = 2 levels, whether a subject had a prior history of uri-

nary tract infection (UTI) or not) and a stratification variable (K = 2 levels, the

age groups) forming a 2 × 5 × 2 contingency table. In this table, subjects may be

represented in more than one cell.

Table 1.1: The marginal UTI data

Contraceptive Total Total
A B C D E responses women

Age ≥ 24
UTI

No 18 9 8 7 0 42 24
Yes 8 9 2 3 2 24 14

Age < 24
UTI

No 55 41 37 27 0 160 85
Yes 75 68 33 22 5 203 116

The multiple response vector yi = (yi1, . . . , yiJ)T with J items can be consid-

ered as a J-dimensional binary response vector, where i stands for the ith subject.

For item j, the response is either “the item is selected” (yij = 1) or “the item is not

selected” (yij = 0). The 2J possible outcomes for yi can be summarised in a joint
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table and the full joint distribution, specified by 2J probabilities, is characterised

by 2J − 1 parameters.

1.1.2 Marginal Modelling

One approach, called marginal modelling, is modelling each component µij of the

mean response vector µi of the multiple response variable, that is, modelling the

(univariate) marginal distributions of yi. For multiple response data, the mean

response µij is identical to the probability of a positive response πij . The linear

predictor ηij = zT
ijβj is connected to πij by link function gj such that gj(πij) = ηij ,

where βj is the column vector of model parameters for the jth item and zT
ij is the

ith contribution to the design matrix of the jth model.

The joint model containing all J models can also be written in vector form as

g(πi) = Ziβ with β = (βT
1 , . . . , βT

J )T , πi = (πi1, . . . , πiJ)T and g = (g1, . . . , gJ)T .

The column vectors zij (j = 1, . . . , J) form matrix Zi = Diag(zT
i1, . . . , z

T
iJ). We

assume Zi is an appropriate function of the covariate column vector xi. The con-

venient notation g(πi) stands for the column vector (g1(πi1), . . . , gJ(πiJ))T .

For the UTI data, we could model the probability of a positive response for

each item with a logistic link (gj) and using the row variable (r = 2 levels) and the

stratification variable (K = 2 levels) as explanatory variables. The most popular

link is the logit link, which is also the canonical link for binary data. Other pop-

ular links are the probit, log-log and complementary log-log links (McCullagh

and Nelder 1989). Marginal and other modelling strategies for multiple response

data were presented by Agresti and Liu (1999), and Agresti and Liu (2001) among

others.

The binary distribution is a member of the simple exponential family and

maximum likelihood (ML) estimates can be easily obtained via the framework
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of generalised linear models (GLM) (McCullagh and Nelder 1989). GLM were in-

troduced by Nelder and Wedderburn (1972) although many models in the class of

GLM were well established by then. The ML estimates of a GLM are the solutions

of the likelihood equations (the derivatives of the log-likelihood), which only de-

pend on the assumed distribution of the observations through the mean and vari-

ance. Within the class of GLM, the distribution determines the mean-variance

relationship. Wedderburn (1974) introduced quasi-likelihood functions, where

only an assumption about the mean-variance relationship is made without speci-

fying the underlying distribution. For a GLM, the quasi-likelihood equations are

identical to the likelihood equations. Both likelihood and quasi-likelihood equa-

tions are also often referred to as score functions.

However, the J dimensional binary vector yi contains dependent observa-

tions. There are 2J possible outcomes for yi. The underlying joint distribution

is assumed to be multinomial and characterised by 2J probabilities or 2J − 1 pa-

rameters. Treating the items naively as independent and applying ML estimation

for each of the J models separately gives less efficient parameter estimates (β̂)

and inefficient variance estimates. Liang and Zeger (1986) extended the quasi-

likelihood approach to multivariate data by assuming that the marginal distri-

butions are of the exponential family type and derived generalised estimation

equations (GEE or GEE1). As with quasi-likelihood, the link function and the

mean-variance relationship need to be specified, but also the correlation struc-

ture, which is assumed to depend on a parameter vector α. For some distribu-

tions, such as the multinomial distribution, the likelihood functions of a multi-

variate GLM (MGLM) (Fahrmeir and Tutz 2001) and the GEE are identical, but

only if the correlation structure is correctly specified. The true correlation is usu-

ally unknown and it requires a “working guess” for the structure. Common work-
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ing correlation structures are unstructured, exchangeable, independent, etc. The naive

variance naively treats the working correlation as the true correlation structure. If

the working correlation structure is indeed correct, the naive variance gives good

estimates, otherwise it performs poorly, and instead a robust or sandwich variance

is proposed (Liang and Zeger 1986). Independently of the choice of the correla-

tion structure, the parameter estimates β̂ are consistent, given the model for the

mean responses is correct. Under independence of items and an independence

working correlation, the GEE are identical to the likelihood equations of a GLM

(and the quasi-likelihood equations). For GEE, the observed vector yi is often re-

ferred to as the ith cluster, with the components of the observed vector referred

to as observations. For the remainder of the thesis yi will be referred to as the ith

observation or ith multiple response.

For binary response vectors, Prentice (1988) extended the GEE method to

simultaneous modelling of the mean responses and modelling of the correla-

tions. The correlation model parameters α are obtained from a second set of

estimating equations, which is of the same form as the first set of estimating

equations with model parameters β. Only the ith residual vector is replaced

by the vector of differences between the empirical and true pairwise correla-

tions. The obtained parameter estimates β̂ and α̂ are orthogonal. If the cor-

relation model is wrongly specified, α̂ is not consistent anymore, however, β̂

is still consistent provided the model for the mean responses is correct. Zhao

and Prentice (1990) also modelled the mean response and correlation parame-

ters for correlated binary data assuming the joint distribution is a member of the

quadratic exponential family. The density of a member of this familiy has the

form: f(yi) = ∆−1
i exp(yT

i θi + ωT
i λi + ck(yi)), where θi, ωi and λi are vectors

of canonical parameters, ∆i = ∆i(θi, ωi) is a normalising constant and ck(·) is the



CHAPTER 1. INTRODUCTION 6

shape function. As Prentice (1988), they derived two sets of estimating equations,

but by treating both the mean response and correlation model as one. There-

fore, their two sets of estimating equations are different from those presented by

Prentice, since they do not treat empirical correlations and observations as inde-

pendent. The parameter estimates β̂ and α̂ are not orthogonal anymore. This

method only provides consistent estimates if both models involving α and β are

correctly specified. The approach of Zhao and Prentice (1990) is referred to as

GEE2, whereas the approach by Prentice (1988) and Liang and Zeger (1986) is

referred to as GEE1. If both models are correct, the estimates of GEE2 are more

efficient than those of GEE1. Prentice and Zhao (1991) extended GEE2 to a wider

class of distributions other than the correlated binary distribution. Obtaining effi-

cient GEE2 estimates depends on the correct specification of the third and fourth

order central moments of yi which is analogous to the correct specification of the

working correlation (respectively of the second order moments of yi for GEE1).

Lipsitz et al. (1991) and Liang et al. (1992) use the odds ratio instead of the

correlation coefficient as a measure of association. Fitzmaurice and Laird (1993)

derived likelihood equations assuming yi is from the quadratic exponential fam-

ily. They modelled the mean response, but used the conditional log odds ra-

tios as the association parameter. Their iteration scheme uses a Fisher scoring

algorithm, where, for each step, the iterative proportional fitting (IPF) algorithm

(Bishop, Fienberg and Holland 1975) is applied to obtain updates of the higher or-

der moments, which are required for the computation of the likelihood. The mean

response model parameters are robust provided the mean response model is cor-

rectly specified independently of the association model. Heagerty and Zeger

(1996) investigated mean response and association models for clustered ordinal

responses. They considered the global odds ratio and the correlation coefficient as
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possible association parameters, and derived GEE2 based on a general log-linear

model representation of the likelihood of a single cluster by setting its higher or-

der parameters to zero. Generally, in order to obtain the full likelihood, we need

to specify all parameters up to the Jth order of the joint distribution, but the

mean response (and association) model only provides us with first (and second)

order parameters. Fitzmaurice and Laird (1993) circumvented this difficulty of

computing the higher order parameters directly by using the IPF algorithm and

computing these parameters indirectly, which involves a high computational bur-

den for each step. The benefit of their method is that it yields real ML estimates,

in contrast to the other GEE methods although some of those were partly de-

rived from the likelihood equations for the quadratic exponential family. Carey,

Zeger and Diggle (1993) used another approach called alternate logistic regres-

sion (ALR) also using the odds ratio as a measure of association. Their method

uses the same estimating equations for parameters β as GEE1. However, the odds

ratio arises in the conditional expectation using a unique approach of unbiased

nonlinear estimating equations. The authors report high efficiency of both mean

and association model parameters while retaining robustness of β̂. Heagerty and

Zeger (1996) extended this method for ordinal responses yielding slight efficiency

advantages in the estimation of α over GEE1.

Let now index k stand for the kth group or covariate setting. For instance,

Table 1.1 has K × r = 2 × 2 = 4 covariate settings. We can also express the

marginal model in terms of the expected joint (table) counts mk and function L

by L(mk) = Zkβ, because µk can be easily computed from mk. ML estimation

for generalised log-linear models (GLLM) of the form L(mk) = C logMmk =

Zkβ were considered by Lang and Agresti (1994) and Lang (1996) by applying

a constrained equation specification of the model for which Aitchison and Sil-
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vey (1958, 1960), Silvey (1959) and Aitchison (1962) laid out much of the theo-

retical foundation, where the model is re-expressed as a system of constraints

and Lagrange multipliers. The common freedom specification of the model as

for GEE or standard ML estimation does not allow the joint parameter to be ex-

pressed in terms of the modelled parameter, because there is a many-to-one re-

lationship. Haber (1985) considered ML estimation for linear link and a special

class of GLLM. Log-linear, logit, cumulative logit and multivariate logit models

(McCullagh and Nelder 1989, Glonek and McCullagh 1995, Glonek 1996) are sub-

classes of GLLM. Lang (2004) extended this class to multinomial-Poisson homo-

geneous (MPH) models by outlining a general theory of the constraint approach

for contingency table models. Lang (2005) introduced homogeneous linear pre-

dictor (HLP) models, an important subclass of MPH models, which have the form

L(mk) = Zkβ. Linear predictor models (Bergsma 1997) are formally equivalent to

HLP models, however they are implicitly restricted to allow asymptotic approx-

imations in contrast to HLP models. For our type of marginal modelling, GLLM

only allows the logistic link, in contrast to HLP, which also allows other (smooth)

popular links such as the probit link.

1.1.3 Random Effect Approach

The marginal model approach applies directly to the marginal distributions of yi.

The parameters β in a GLM or GEE are called fixed effects and are independent of

the sample. This type of modelling is called population-averaged. In contrast, gen-

eralised linear mixed models (GLMM) additionally include a cluster specific effect

or the random effect. Conditional on the random effect ui, the distribution of yi is

assumed to be of the exponential family and has the form g(µi|ui) = Ziβ + Qiui,

where Qi denotes the contribution of the ith subject to a design matrix Q for the
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random effects. The distribution of ui is often assumed to be multivariate normal

with zero mean and variance Σ. This model approach is also called cluster- or

subject specific since it accounts for subject specific mean responses. For normally

distributed data, the corresponding linear mixed models have been extensively

developed after some seminal papers (Harville 1976, Laird and Ware 1982). Ob-

taining parameter estimates for a linear mixed model for the fixed effect param-

eters, their variance and the random effect variance is relatively simple and the

estimates of the fixed parameters have even closed forms.

An early application of a GLMM is the Rasch model (Rasch 1961), modelling

binary correlated data by a simple logistic random effect model, where the esti-

mates are obtained through conditional ML. GLMMs were also used to account

for over-dispersion in binomial (Williams 1982) and Poisson (Breslow 1984) re-

gression models. Agresti et al. (2000) describe various social science applica-

tions of GLMM. Agresti and Natarajan (2001) review developments in random

effect models for ordinal data, whereas Hartzel, Agresti and Caffo (2001) discuss

GLMM methods for nominal outcomes. ML estimation is accomplished by inte-

grating over the random effect distribution. As a result, ML estimation is much

more complicated. The most frequently used methods are based on first- and sec-

ond order Taylor series expansions. Marginal Quasi-likelihood (MQL) involves

expansion around the fixed part of the model, whereas penalised quasi-likelihood

(PQL) also includes the random part in its expansion. Stiratelli, Laird and Ware

(1984) derive an approximate Bayes procedure which is identical to a PQL ap-

proach suggested by Schall (1991) and Breslow and Clayton (1993). Several au-

thors (Zeger, Liang and Albert 1988, Goldstein 1991) used MQL to focus on the

marginal relationship between covariates and outcome. Unfortunately, PQL and

MQL methods yield estimates that are biased towards zero in several situations,
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in particular for first order expansions (Breslow and Lin 1995). Raudenbush, Yang

and Yosef (2000) introduced a fast method combining a fully multivariate Taylor

series expansion and a Laplace approximation, yielding accurate results. Also, in

contrast to PQL and MQL, the deviance obtained from their method can be used

for likelihood ratio tests.

Another method to obtain real ML estimates is numerical integration. If the

random effect distribution is normal, any practical degree of accuracy of the inte-

gral can be obtained with Gauss-Hermite quadrature approximation by increas-

ing the number of quadrature points. However, this number increases exponen-

tially with the dimension of the random effect vector ui. Liu and Pierce (1994) and

Rabe-Hesketh, Skrondal and Pickles (2002) considered adaptive Gauss-Hermite

quadrature methods to reduce the number of quadrature points.

Due to a breakthrough in recent computer technology, iterative simulations

can also be used to approximate the integral. Monte Carlo (MC) techniques are

one useful tool to sample from the random effect distribution. If sampling from

the random effect distribution is difficult, importance sampling as suggested by

Geyer and Thompson (1992) and Gelfand and Carlin (1993) is an alternative method,

which was termed simulated ML (SML) by McCulloch (1997). A very popu-

lar method is maximising the likelihood via the EM algorithm (Dempster, Laird

and Rubin 1977). The EM algorithm consists of two steps: the E(xpectation)-

step and the M(aximisation)-step. Both steps can be performed separately for the

estimation of β and Σ, because the EM algorithm is based on the complete log-

likelihood which can be decomposed in a sum of two terms, where the first term

depends on β and the second on Σ. Generally, the EM algorithm also requires

to solve integrals numerically. The integrals are with respect to the conditional

distribution of ui given yi, which can be achieved by several MC Markov Chain
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(MCMC) methods. McCulloch (1997) suggested one method called MCEM based

on the Metropolis-Hastings algorithm, whereas Booth and Hobert (1999) consid-

ered the use of rejection sampling to yield real independent samples. McCulloch

(1997) also proposed a MC Newton Raphson (MCNR) algorithm. Both MCEM

and MCNR reach the neighbourhood of the ML estimates (MLE) quickly, how-

ever achieving high accuracy requires a rapidly increasing amount of time. In

contrast, SML performs poorly when using the true distribution; an unknown

optimal importance sampling distribution must be used to yield good estimates.

Instead, McCulloch (1997) suggested a hybrid method starting with MCEM or

MCNR to get rough estimates and then finishing with SML. The estimates of

MCNR or MCEM can be used to approximate the optimal importance sampling

distribution of SML. Another advantage is that the hybrid method yields an es-

timate of the likelihood as a by product, which is not available from MCNR or

MCEM.

Booth and Hobert (1999) also suggested to construct confidence intervals of

the estimates for each iteration of the EM algorithm to limit the number of points

needed to approximate the integrals. Their algorithm additionally provides the

information matrix using the formulae presented by Louis (1982). Tutz and Hen-

nevogl (1996) considered random effects models for ordinal data by applying sev-

eral EM algorithms. Their ML approach uses a parameter transformation, such

that the components of the random effects vector are independent and normally

distributed, to make the iterative procedure easier.

The random effect estimates cannot be obtained by using a frequentist ap-

proach, because it requires the knowledge of the conditional distribution of ui

given yi, which is unknown. However this conditional or posterior distribution

can be obtained from a Bayesian approach by applying Bayes’ theorem. Then an
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estimate of the random effect ui is the mean of a large sample of the posterior

distribution of ui given yi for known parameters β and Σ. These parameters are

unknown, but can be replaced by their estimates.

Generally, the subject-specific effects tend to be larger in absolute value than

the population-averaged effects, but so do the standard errors (Agresti and Liu

2001), hence, messages regarding significance are similar. If the variance of the

random effects is zero, the random effect model and the marginal model are iden-

tical. For nonzero variances, the implied marginal model for µij does not have the

same form as the random effect model. For instance, a logit random effect model

does not imply a logit model for the marginal mean. However, Zeger et al. (1988)

show the marginal mean of a logit random effect model can be approximated by

a logit model.

Pure Bayesian mixed models also have great popularity. The prior distribu-

tions of all parameters must be specified in advance. Parameter estimates are

obtained by sampling from the posterior distribution (Fahrmeir and Tutz 2001,

Ch. 7).

1.1.4 Loglinear Models

The full likelihood of each cluster can be represented by a log-linear model spec-

ifying all 2J − 1 parameters, for instance, Heagerty and Zeger (1996) derived

GEE2 for clustered ordinal data starting from a log-linear representation of the

log-likelihood. Liang et al. (1992) compare the marginal and log-linear model

approaches. The parameters of a log-linear model are interpreted in terms of

conditional probabilities and the parameters of a marginal model refer directly

to the marginal probabilities, which are expressed in terms of some explanatory

variables. Agresti and Liu (2001) discussed several log-linear models for multiple
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response data, such as independence models, assuming independence between

items or assuming conditional independence of items given an explanatory vari-

able. They also show a connection between the quasi-symmetry log-linear model

and a simple random effect model. Despite log-linear models being fitted effi-

ciently using the IPF algorithm (Bishop et al. 1975), the interpretation of their pa-

rameters is difficult and we cannot model the mean responses directly in terms of

the values of the covariates, in contrast to the marginal model approach. The log-

linear model approach seems sensible only for quite simple models, but for more

complex questions, log-linear models are impractical. The next section reviews

Mantel-Haenszel methods, which can also be seen as a modelling approach.

1.2 Review: Mantel-Haenszel (MH) Methods

In this section, we review Mantel-Haenszel (MH) methods, starting with ordinary

MH methods for a series of 2 × 2 tables. Then we follow with MH methods for a

series of r × J tables and finally discuss MH methods for multiple response data.

1.2.1 The Ordinary Mantel-Haenszel Method

The odds of an event (or condition) is defined by π/(1− π), where π is the proba-

bility of the event. The odds ratio Ψ is the ratio of the odds of an event occurring

in one group to the odds of that event in another group. These groups might

be men and women, an experimental group and a control group, or any other

dichotomous classification. The odds ratio is used to test whether the probabil-

ity of a certain event is the same for two groups. We note that the odds ratio

takes values in (0,∞). An odds ratio of 1 indicates that the event under study is

equally likely in both groups. If Ψ > 1, then the event is more likely in the first
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group, whereas Ψ < 1 indicates that it is less likely. The 2 × 2 Table 1.2 shows

observations for two such groups and events A and Ā, the complement of A.

Table 1.2: 2 × 2 Table for Event A and 2 Groups

A Ā totals
group 1 X1 n1 − X1 n1

group 2 X2 n2 − X2 n2

totals X1 + X2 n1 + n2 − X1 − X2 n1 + n2

The odds ratio Ψ = π1(1−π2)/{π2(1−π1)} is estimated by X1(n2 −X2)/{X2(n1 −

X1)}, which is invariant if rows or columns (or both simultaneously) are inter-

changed. In clinical studies there are often only a few subjects. Multicentre trials

increase the sample size, but populations differ for different centres and one can-

not assume that probabilities for different centres are equal. However, one can

assume that the odds ratios for each of the K centres are identical, that is, assum-

ing a common odds ratio Ψ with Ψ = Ψ1 = · · · = ΨK . Under this common odds

ratio assumption, the Mantel-Haenszel (1959) estimator Ψ̂ of the common odds ratio

is widely used by practising statisticians and epidemiologists. The MH estima-

tor is a ratio of two sums C12 and C21, where each summand of Cij has the form

Xik(njk − Xjk)/(nik + njk) with index k referring to the quantities of the kth table

or kth centre. The factor 1/(nik + njk) is a weight accounting for the sample size

of the kth table. The MH estimator is also often applied for other stratified data

for which the common odds ratio assumption is reasonable.

Even if the assumption of a common odds ratio is slightly violated, the MH

estimator is still a useful tool to summarise the association across tables. Despite

the Mantel-Haenszel estimator’s simplicity, it has some useful properties. First, it

applies to very sparse data. More precisely, it is defined when only one summand



CHAPTER 1. INTRODUCTION 15

of C12 and of C21 is non-zero.

It is also dually consistent, that is, consistent under two types of asymptotic

models: (1) when the sample size of each stratum increases and the number of

strata is fixed, and (2) when the number of observations becomes large with the

number of strata, while the sample size of each stratum remains fixed. We refer to

(1) as a large-stratum limiting model, or model I, and to (2) as a sparse data limiting

model, or model II. In practice, model I represents large n1k +n2k for each stratum

and model II respresents large K. The MH estimator is robust under any such

extreme data. The consistency of the MH estimator for model I was shown by

Gart (1962) and for model II by Breslow (1981). Hauck (1979) derived the limiting

variance of the MH estimator under model I, whereas Breslow (1981) derived two

asymptotic variances under model II: one based on the conditional distribution

of the observations for each table given the marginal totals, and the other on the

empirical variance. Applying either of the variance estimators depending on the

given data, whether the data resembles the sparse data or large stratum case,

is very unsatisfactory. Breslow and Liang (1982) proposed a weighted average

of the two variance estimators to account for the two different limiting models.

Robins, Breslow and Greenland (1986) proposed a variance estimator which is

dually consistent under models I and II based on the unconditional distribution

of the data.

An alternative way to estimate the common odds ratio for K 2 × 2 tables is

to fit an ordinary logit model with main effects and no interaction, where the

K strata and one binary classification are treated as factors and the other binary

classification as a response. The corresponding loglinear model is a model with

no three-way interaction among rows, columns and strata. However, the uncon-

ditional maximum likelihood (ML) estimator is a poor estimator, because under
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model II the nuisance parameters grow as the sample size grows. For instance

when each table consists of a single matched pair, then the unconditional ML es-

timator of the common odds ratio converges to the square of the true common

odds ratio (Anderson 1980, p.244). The nuisance parameters can be eliminated

by conditioning on the margins of the 2 × 2 contingency table. The ML estima-

tor based on the conditional distribution, which is noncentral hypergeometric in

each stratum, is also dually consistent. As a by-product, the ML fitting yields a

variance estimator of the odds ratio estimator.

Cochran (1954) introduced a statistic for testing conditional independence,

that is independence of the variables forming the rows and columns of the ta-

bles, conditional on the K levels of the third variable. The test statistic is based

on a weighted sum of table-specific differences in proportions conditioning on

the row totals, supposing each 2 × 2 table consists of independent binomials.

Mantel and Haenszel (1959) proposed a similar (MH) test statistic based on the

hypergeometric distribution as the conditional ML estimator. These two statistics

typically differ by a negligible term, and both are asymptotically chi-squared with

1 degree of freedom (χ2(1)). They are also known as Cochran-Mantel-Haenszel

(CMH) statistics. The tests are inappropriate when the association changes signif-

icantly across strata. The MH estimator equals unity only if the MH test statistic

equals zero. Hence a significance test using the MH test statistic can detect any

departure from unity of the weighted average of the stratum-specific odds ratios.

If the assumption of a common odds ratio fails, we can still use the MH es-

timate as a summary of the odds ratios among the strata. Without the common

odds ratio assumption, the MH estimator is consistent under model I only; and

appropriate standard errors were suggested by Guilbaud (1983), since the dually

consistent variance estimator of Robins et al. (1986) fails.
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A simple way to test the homogeneity of the odds ratio across strata is to

apply a goodness-of-fit test to a logit model with only main effects and no in-

teraction. The goodness-of-fit test statistic has K − 1 degrees of freedom (df) if

the model holds. Breslow and Day (1980) developed a test statistic which does

not require model fitting and focuses directly on the potential lack of homogene-

ity. The Breslow-Day test statistic sums the squared deviations of observed and

fitted values each standardised by its variance. According to Breslow and Day

(1980) the test statistic should follow a chi-squared distribution with df = K − 1.

Tarone (1985) proved that it is stochastically larger under the homogeneity as-

sumption, and developed a modified score test statistic that is indeed asymptot-

ically χ2(K − 1). A drawback of these methods is that they are inappropriate

under model II. Instead, Liang and Self (1985) proposed a score test assuming the

log odds ratios across strata are independent and identically distributed, which

is valid also when the sample size increases with the number of strata. Paul and

Donner (1989) conducted a simulation study generally recommending Tarone’s

modified test statistic. Liu and Pierce (1993) used a different approach by assum-

ing that the log odds ratios across the strata are a sample from a population with

unknown mean and variance. They investigated the conditional likelihood func-

tions for the mean and the variance. A test of homogeneity of the odds ratios

can be conducted by testing whether the variance of the log odds ratio equals

zero. Liu and Pierce (1993)’s approach is more general than that of Liang and Self

(1985), since it describes the heterogeneity of the log odds ratios across the strata.

1.2.2 Extended Mantel Haenszel Methods

The previous section discussed the MH method for binary responses only. Now

we review methods for the multiple response case, generally forming one r × J
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table for each stratum. First we review the generalised MH estimator for K 2× J

contingency tables with J nominal response categories. For columns x and y, one

can obtain a partial MH estimator by applying the ordinary MH estimator for

those two columns only. Mickey and Elashoff (1985) proposed a more efficient

generalised partial log odds ratio estimator by using information from all pairs

of columns. They introduced this generalisation to estimate the log odds ratio

for a log-linear model with no three factor interaction, but their method is gener-

ally applicable to any partial log odds ratio estimator. Greenland (1989) extended

their method to the log MH estimator from all 2× 2 subtables per stratum, yield-

ing the generalised MH estimator; and derived corresponding dually consistent

variance and covariance formulas. Liang (1987) introduced a class of estimating

functions by extending the Mickey and Elasthoff method, where the ordinary MH

estimator is a special case. Sato (1991) derived dually consistent (co-)variance es-

timators from Liang’s estimating functions approach. Yanagawa and Fujii (1995)

proposed a projection method for K 2 × J contingency tables. The method is ap-

plied to some arbitrary log odds ratio estimator to obtain an invariant log odds

ratio estimator. For example, the projection method applied to the ordinary MH

estimator yields the generalised MH estimator; and similarly using the log-linear

model approach one obtains the generalised estimator proposed by Mickey and

Elashoff (1985). Both Mickey-Elasthoff’s and Greenland’s generalised estimators

are asymptotically equivalent to Liang’s estimation functions with appropriate

weighting. As in the binary case, conditioning on the marginal totals for each

2 × J table, the counts follow a noncentral multiple hypergeometric distribution

(Plackett 1981, p.81). The corresponding conditional ML estimators are also du-

ally consistent, but they might impose a high computational burden (Mickey and

Elashoff 1985).
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For testing conditional independence, Birch (1965), Landis, Heyman and Koch

(1978) and Mantel (1978) extended the MH test statistic to K r × J tables. Con-

ditional on the margins of each table, the cells follow a multiple hypergeometric

distribution under conditional independence. Given nominal responses the test

statistic is chi-squared with df = (r − 1)(J − 1) under both limiting models. For

ordinal responses we can assign scores to the response categories and the col-

umn categories, and then the test statistic (Mantel 1963) is asymptotically χ2(1).

For ordinary multinomial responses, Zhang and Boos (1996) investigated several

generalised (Cochran-)Mantel-Haenszel statistics testing independence between

the treatment variable (r treatments) and the multinomial response variable (J

categories)

Yanagawa and Fujii (1990) extended the Breslow and Day (1980) test for ho-

mogeneity of K 2 × 2 tables, to test the homogeneity of the partial odds ratios of

K 2 × J contingency tables. Following Tarone (1985)’s approach, they adjusted

the Breslow-Day statistic to have asymptotically a chi-squared distribution with

df = (K − 1)(J − 1) if the common odds ratio assumption holds.

For ordinal K 2 × J contingency tables the common ordinal odds ratio can

be estimated by fitting a proportional odds model or an adjacent-category logit

model with the ML approach, and assuming no interaction between row and

stratum variables. However, ML estimation may not yield a good estimator if

the data are sparse. Since the proportional odds model is not a canonical link

model, the conditioning on the marginal tables does not eliminate the nuisance

parameter. Hence there is no conditional ML estimation for the proportional odds

model.

McCullagh and Nelder (1989, p.273) introduced a pseudo “conditional like-

lihood” estimate for the ordinal odds ratio in the one stratum case, based on
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the proportional odds model and using an estimating equation. However, their

method cannot be used for extremely sparse data, because it computes the inverse

of the cell counts.

Hartzel, Liu and Agresti (2001) discuss several random effect models for ordi-

nal data, such as the proportional odds model, the adjacent categories logit model

and the loglinear model of heterogeneous linear-by-linear association. The fixed

effects summarise the actual effect, while simultaneously the random effects de-

scribe the degree of heterogeneity across strata.

Clayton (1974) provided a more complex estimator of the log common ordinal

odds ratio, based on a weighted average of estimators and a separate collapsing

of each partial table. However, it remains unclear how to construct sparse data

standard errors. The MH estimator was generalised by Liu and Agresti (1996)

for K ordinal 2 × J tables. They derived a dually consistent ordinal common

odds ratio estimator and also a dually consistent variance estimator. This ordi-

nal common odds ratio estimator simplifies dramatically for matched pairs to an

estimator, which was previously proposed by Agresti and Lang (1993).

Liu (2003) extended the MH type common ordinal odds ratio estimator to K

r × J contingency tables, where J is the number of ordered response categories

and r the number of categories of an explanatory variable. Liu also provided not

only dually consistent (co-)variance estimators, but also generalised estimators

following the Mickey and Elashoff (1985) approach. For K r × J tables, the com-

mon ordinal odds ratio is also known as the local-global odds ratio. It is local

in the explanatory variable, because we can compare any two levels of the row

variable. On the other hand it is global since it is based on all dichotomous col-

lapsings of the response (J levels) for which each collapsed response has a binary

outcome (≤ j,> j). When both the response and explanatory variables are ordi-
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nal, the global odds ratio can be considered. Liu (2003) considers a model with

a constant odds ratio for all strata and dichotomous collapsings of the responses

into a pair of binary outcomes (≤ j,> j) and (≤ i,> i). The odds ratio is referred to

as a global odds ratio, because it describes the conditional association between the

two variables globally. One way to obtain a global odds ratio estimate is to use

ML estimation for homogenous linear predictor models (Lang 2005). Liu (2003)

also proposes another dually consistent MH type estimator for the global odds

ratio. Since the dually consistent variance estimator is too complex to derive, Liu

proposed a bootstrap estimate of standard error. Liu and Agresti (1996) and Liu

(2003) also introduce a Wald statistic to test the homogeneity across strata of the

local-global and global odds ratios.

Liu (1995) introduced a test of conditional independence under the assump-

tion of a common cumulative odds ratio. Liu also follows the approach by Liu

and Pierce (1993) assuming that the cumulative odds ratio behaves like a sample

from a population with unknown mean and variance.

Liu and Wang (2007) considered two diagnostic strategies for evaluating the

heterogeneity of the ordinal odds ratios across strata. The first strategy uses a pro-

portional odds model allowing random effects, where the standard deviations of

the random effects measure the heterogeneity of the ordinal odds ratios. The sec-

ond approach uses the Cook (1977) distance applied to the MH type estimator of

the ordinal odds ratio as a measure of influence. It shows in detail the hetero-

geneity of each stratum.
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1.2.3 Extending the Mantel-Haenszel Method to Multiple Re-

sponse Data

Many surveys allow each respondent to tick any number out of J categories. This

multiple outcome variable is referred to as pick any/J variables and the corre-

sponding data as pick any/J data, where ”/” stands for ”out of” (Coombs 1964).

Each of the J category responses is called an item (Agresti and Liu 1998). A prob-

lem of interest is whether responses to each category are marginally independent

of the row variable with r levels in the absence of a stratification variable, i.e.

a r × J table, where the rows refer to a group variable and where the columns

refer to the items of a multiple response variable. Agresti and Liu (1999) called

this multiple marginal independence (MMI). Bilder, Loughin and Nettleton (2000)

reviewed several existing methods for testing MMI and conducted a simulation

study investigating their performance. They found that the best results came

from a naive sum statistic proposed by Agresti and Liu (1999), which is a sym-

metric version of a test originally proposed by Loughin and Scherer (1998). Since

the distribution of the test statistic is unknown, they used bootstrapping and a

newly proposed p-value combination method to obtain its distribution.

Bilder and Loughin (2002) investigated MMI in the presence of a stratification

variable with K levels, that is conditional MMI (CMMI). They proposed an ex-

tended Cochran statistic which is chi-squared with df = (J − 1)(r − 1) when the

items are independent and suggested bootstrapping to obtain the distribution of

the test statistic when the items are dependent. Bilder and Loughin (2004) investi-

gated marginal independence between two categorical variables and proposed a

modified Pearson statistic following the approach by Loughin and Scherer (1998).

Again, bootsrapping is suggested to obtain the sampling distribution of the test
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statistic.

1.3 Review: Diagnostics Methods

Regression models are characterised by a relationship between the covariates xi

and the J dimensional observations yi (i = 1, . . . , n). For example a GLM or a

marginal model for multiple response data can be expressed as g(µi) = Ziβ with

previously introduced notations, where β is a p-dimensional parameter vector.

The model assumes that all n observations follow the same law or distribution,

i.e. g(µi) = Ziβ; i = 1, . . . , n. However, in reality, this is a very restrictive

and unrealistic assumption, because it seems likely that some observations do

not follow the model, which might lead to wrong statistical inference. Other

observations might follow the model, but may possibly falsify results due to,

for example, the extremeness of the sampled values. The main goal of diagnostic

methods is to detect such observations and to eliminate them, to avoid seriously

misleading representation of the data.

1.3.1 Linear Models

A linear model has the general form y = Zβ+ǫ, where ǫ are the error terms, most

commonly with independent zero mean random variables and common variance

σ2. Quantities such as vector y and design matrix Z without index i refer to the

stacked version containing all observations, e.g. Z stands for the design matrix

(ZT
1 , . . . ,ZT

n )T . Also note that we sometimes use multivariate quantities such as

yi although observations are univariate in some instances. Cook and Weisberg

(1982) comprehensively reviewed regression diagnostics for linear models with

univariate observations (J = 1), which were well established by then. Some of
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these statistics are briefly introduced. The residual vector ri = yi − µi describe

the deviations of the observed data from the fit. Points with large residuals, rep-

resenting model failure, are called outliers. The leverage, hat or prediction matrix

maps y into ŷ = µ by ŷ = Hy with H = Z(ZT V−1Z)−1ZTV−1, where V is the

covariance matrix of error terms ǫ. For independent and univariate observations

V = σ2I, for multivariate independent observations V is block-diagonal, and

for the general linear model V has an arbitrary structure. Matrix H can also be

seen as a projection matrix, because it generates the perpendicular projection of

y into a p × J-dimensional subspace. The leverage of the ith observation vector

is defined as the trace of the corresponding submatrix Hi of H. The leverage for

the jth observation within yi is the jth diagonal element of Hi or the simply the

corresponding diagonal element of H.

Leverage points are observations with a high leverage usually using 2p/n as

a calibration point (Hoaglin and Welsch 1978). High leverage points can also

be thought of as outliers with respect to the predictors, whereas outliers refer

to model failure in the response variable. Preferable to the residuals are scaled

residuals standardised by the variance or the leverage, as the studentised or Pear-

son residuals. Outliers occur frequently in real data, and they get often unnoticed,

because nowadays data is usually processed by computers without further care-

ful inspection or screening. Although the residuals and the leverage are effective

in detecting extreme points, they cannot detect the impact of the extreme points

on the estimates, residuals, etc. Other approaches are more useful: the deletion

approach and the perturbation approach.

Observations whose inclusion or exclusion results in substantial changes for

the fitted model are said to be influential or as Belsley, Kuh and Welsch (1980)

formulate: “An influential observation is one which, either individually or to-



CHAPTER 1. INTRODUCTION 25

gether with several other observations, has demonstrably larger impact on the

calculated values of various estimates ... than is the case for most of the other

observations”. Chatterjee and Hadi (1986) point out, that an “observation ... may

not have the same impact on all regression outputs. The question ’Influence on

what?’ is, therefore, an important question.” The observation might be influen-

tial on the parameter estimates β̂, on the residuals, or on the fitted values, etc.

First, we point out, that neither an outlier nor a high leverage point needs to be

influential. The influence function introduced by Hampel (1974) is a measure of

influence on a statistic when adding a observation (yT
i ,xT

i )T to the sample coming

from a c.d.f. and computing a certain limit.

Let subscript [i] denote the quantities with the ith observation being removed

from the sample, e.g. β̂[i] denotes the parameter estimates from n − 1 observa-

tions denoted by y[i] excluding the ith observation yi. If i refers to a single obser-

vation, then the deletion is also called single case deletion, whereas if i is replaced

by a set d we speak about multiple case deletion. The influence function on β̂ (or

generally on a statistic T ) with empirical c.d.f. denoted by F without comput-

ing the limit yields the sample influence curve or function, whereas the influence

function on β̂[i] with empirical c.d.f. F[i] and computing a limit yields the sen-

sitivity curve (Chatterjee and Hadi 1986). Both, the sample influence curve and

the sensitivity curve are proportional to DBETA i := ∆iβ̂ := β̂ − β̂[i]. An im-

portant diagnostic measure is the Cook distance CDi := ∆iβ̂
T

Cov(β̂)−1∆iβ̂/p,

which is the Mahalanobis distance between β̂ and β̂[i] with covariance matrix

Cov(β̂) divided by p. The Cook distance was originally introduced to assess the

influence on the confidence ellipsoid (Cook 1977). Following the above deriva-

tions from the influence curve, the Cook distance measures the influence of the

ith observation on the parameter estimates β̂. For linear models, the Cook dis-
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tance can also be re-expressed in terms of the leverage or in terms of the residuals

as (∆iŷ)T (∆iŷ)/(pσ̂2). Neither high leverage points nor outliers need to be in-

fluential nor need to have large Cook distance values, but usually the larger the

residuals and the leverage are, the larger the Cook distance is. The Cook distance

does not follow exactly the F -distribution for a linear model, but generally, ob-

servations whose Cook distance is larger than two, should be carefully checked.

There are also partial measures, such as the partial Cook distance or the partial

leverage, investigating the effect on the jth parameter estimate or the effect of the

jth covariate, etc. Chatterjee and Hadi (1986) review numerous influence mea-

sures for linear models, such as the Welsch-Kuh distance or the Welsch distance,

and concluded that only a handful of methods are needed to assess influential

observations. Case deletion methods for linear mixed models were considered

by Christensen, Pearson and Johnson (1992).

Pena and Yohai (1995) introduced an influence matrix where the ijth entry has

the form (∆iŷ)T (∆jŷ)/(pσ̂2). Clearly the diagonal elements are identical to the

Cook distance. Their procedure aiming at detecting influential subsets is based

on the analysis of the eigenstructure of the influence matrix. Lawrance (1995)

used the conditional Cook distance CDi[j], that is deletion of case i after case j has

been deleted, to investigate the effect of two observations. He compared CDi[j]

with CDi and CDij to distinguish interaction between a pair of cases. Interactions

were categorised into five types, such as swamping and masking. Masking refers

to a situation, when outliers are not detected due to multiple outliers interacting

with each other, and swamping refers to the opposite, when the data wrongly

suggests that a good point is an outlier. These are joint effects of observations

that make the detection of influential observations difficult.

Munoz-Pichardo et al. (1995) proposed a different approach by studying the
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influence in a general linear model with uncorrelated errors, based on the condi-

tional bias. Banerjee and Frees (1997) considered influence diagnostics for linear

longitudinal models. Outliers in linear multilevel models were considered by

Langford and Lewis (1998).

Haslett (1999) focused on the conditional residuals for the class of general lin-

ear models with correlated errors. Special cases of this model are: The classic

linear model with independent observations, longitudinal linear models, multi-

variate linear models, linear mixed models etc. The conditional residuals for a

given set i of observations are the differences between the observations yi and

the best linear unbiased predictor of yi given y[i] provided a general estimate of

the correlation matrix R is used, that is, the estimate of R is not refitted for each

deletion. The substitution of the response yi by its best unbiased predictor is also

called “delete = replace” method. Multiple deletion diagnostics and deletion di-

agnostics based on the conditional residuals for the general linear model were

also considered by Baade and Pettitt (2000). Haslett and Dillane (2004) proposed

the same “delete=replace” method for linear mixed models focusing on deletion

diagnostics for variance component estimation.

Haslett and Haslett (2007) gave a detailed review about three basic types of

residuals for the general linear model: The marginal (ri), the conditional and the

model specific residuals. They show a linear relationship between these three

types of residuals, though they are essentially different. Generally, the “delete

= replace” method provides a fast computational method to compute deletion

diagnostics, which can be expressed as a linear function of the conditional resid-

uals.

Zewotir and Galpin (2006) investigated the performance of deletion diagnos-

tics for linear mixed model using a Monte-Carlo simulation study. Based on a
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sensitivity analysis for the deletion diagnostics the authors obtain helpful results

for the analysis of influential observations.

1.3.2 Generalised Linear Models and Extensions

Pregibon (1981) considered diagnostics for logistic regression for binary responses.

In contrast to linear models, the fitting requires an iterative algorithm, such as

Fisher scoring, and so does the computation of the various deletion diagnostics

also require a refit of the model for each deleted observation. Cook and Weisberg

(1982) and McCullagh and Nelder (1983) discussed deletion diagnostics for GLM,

but Pregibon’s one step approximations were not mentioned. Williams (1987) fo-

cused on deriving (one-step) approximations of deletion diagnostics for GLM.

For a GLM, the difference 2{l(β̂) − l(β̂[i])}/p, where l denotes the likelihood, can

be approximated by the Cook distance. Generally, the Cook distance gained ac-

ceptance as an influence measure for other models as well as GLM, because of its

easy formulation in terms of DBETA i, the covariance of parameter estimates and

the number of parameters p, and its interpretation as a measure of influence on

the parameter estimates, which is the primary interest of the practitioner.

Preisser and Qaqish (1996) investigated deletion diagnostics for generalised

estimation equations, which is a broader class of models including univariate and

multivariate GLM (Fahrmeir and Tutz 2001) as a subclass. The authors derived

one-step formulae for DBETA and the Cook-distance for deleting an arbitrary

set of observations and the sub-cases of deleting a cluster and an observation

within a cluster. Ziegler et al. (1998) considered deletion diagnostics for the GEE1

approach for mean response models, but also for correlation models. However,

they did not provide estimates for the correlation model parameters deleting the

ith cluster. Such a formula was then provided by Preisser and Perin (2007).
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Lee and Fung (1997) focused on the detection of multiple outliers in a GLM

and non-linear regression. A stepwise procedure is proposed which might get

control over commonly occurring problems like masking or swamping. Xiang,

Tse and Lee (2002) investigated the Cook distance for GLMM deriving first order

approximations for the best linear unbiased predictor, that is, they used a quasi-

likelihood method to derive approximations, because methods based on real ML

estimation are computationally expensive. Wang, Critchley and Liu (2004) con-

sidered diagnostics and influence analysis using a perturbation approach for the

clustered sampling model for binary data.

1.3.3 Other Models and Methods

It seems the literature provides innumerable articles about diagnostic methods.

We want to outline only few of them. Simonoff and Tsai (1991) investigated the

influence on a goodness-of-fit test based on non-parametric regression. Fung et al.

(2002) focused on influence diagnostics for semi-parametric mixed models based

on maximum penalised likelihood estimation, extending the linear model frame-

work. Deletion diagnostics for non-linear structural equation models were pro-

posed by Lee and Lu (2003). They computed one step-approximation diagnostics

based on the conditional expectation of the complete likelihood in the EM algo-

rithm. Lee and Xu (2003) proposed a similar method deriving diagnostics for

factor analysis models and ordinal categorical data.

Atkinson and Riani (1997) suggested a robust method to pinpoint influential

observations for binomial data based on the forward search, which orders ob-

servations “from those most in agreement with the GLM to those least in agree-

ment with.” Their method is effective in pinpointing masked multiple outliers.

Fay (2002) proposed a simple method to measure the effect of a single binary re-
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sponse on logistic regression. After changing the binary response, the model is

refitted and the change in the statistic of interest T is recorded, which is called

range of influence (ROI) for T . The larger the ROI on T relative to the other re-

sponses is, the higher the influence of this changed binary response is. Wang,

Jones and Storer (2006) compared two commonly used methods for case-deletion

for the Cox-regression model: The empirical influence function approach and the

covariate-vector approach, which outperforms the former according to their sim-

ulations.

1.3.4 Graphical Methods

By looking only at the numerical values of the deletion diagnostics, influential

points can easily be undetected. Often, plots provide better insight and are an

indispensable tool to detect such influential points. Chatterjee and Hadi (1988)

considered a variety of common plots. For the simple linear regression model,

the most effective technique for checking the assumption of the model is to make

a scatterplot of a covariate versus the response and a residual plot of a covari-

ate versus the residuals. Departures from linearity suggest that the model is not

adequate. For generalised linear models, we would plot the inverse of the link

function of the covariate versus the responses or the residuals. To visualise out-

liers and leverage points other plots are of importance: Regression diagnostic

plot, a plot of the standardised residuals versus their index or versus their fit-

ted values, a Normal Q-Q plot of the standardised residuals, a distance-distance

plot, a leverage versus residual-squared plot, etc. or simply plotting one type of

deletion diagnostics versus their index.

Lin and Wei (1991) proposed a lack-of-fit test for GLM, which is a normalised

sum over those residuals for which a specific covariate is less or equal a certain
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value t. The value t is arbitrary and the sum can then be thought of an empirical

process or cumulative residual process, which converges to a Gaussian process

with zero mean and some unknown covariance. There is another process which

converges to the same limiting process and from which a sample can be obtained.

Hence, the distribution of the first process can be approximated by a sample from

the second. A supremum test, where large values indicate a lack-of-fit, can detect

any departures from the functional form of the investigated covariate. In a similar

manner, the overall model adequacy and the link function can be tested.

Lin, Wei and Ying (1993) used the same methods in a similar fashion to check

the Cox model with cumulative sums of martingale-based residuals. Spieker-

man and Lin (1996) extended the idea for the marginal Cox model for correlated

failure time data and Lin and Spiekerman (1996) did similarly for parameteric

regression from censored data. The supremum test yields small p-values if the

residual process gives relatively large values. Another possibility to assess the

significance is to plot the residual process versus the covariate along with a small

sample of the second process that is asymptotically equivalent. If the curve of the

observed residual process is relatively large in absolute value to the other curves

of the simulated processes, then it indicates a violation of the model. The plot-

ting of the processes might give more insight into a misfit of the model than the

sheer p-value and serves as an excellent graphical diagnostic tool. Lin, Wei and

Ying (2002) applied the cumulative residual processes to GEE to cover a wider

range of models and Pan and Lin (2005) did similarly for GLMM. Another appli-

cation of those cumulative residuals are stratified case control studies (Arbogast

and Lin 2005) for which standard ML estimation for a logistic model yields biased

intercept parameters but still allows valid inference for the regression coefficients.

There are also various other techniques introduced; we briefly outline now
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two of those. Cook and Weisberg (1997) discussed graphical methods for nearly

any kind of regression model. Their basic idea is to examine the fit of the model

by using a series of marginal model plots, where on each of these plots nonpara-

metric estimates from the model are compared with the estimates of a nonpara-

metric fit. Pardoe and Cook (2002) assessed the adequacy of a logistic model by

applying a graphical method based on the Bayesian framework.

In the next section, we focus on reviewing the proportional odds model and

graphical diagnostic methods for detecting a wrong model specification of the

proportional odds model.

1.4 Review: Proportional Odds Model

A response variable with more than two mutually exclusive categories is called

a polytomous variable. Such a categorical variable is known as a nominal variable if

the categories are not ordered, or as an ordinal variable if only the order matters

but not the difference between its values. Examples of ordered categories are:

Patient condition (good, fair, serious, critical), migraine severity or degree of pain

(none, mild, moderate, severe), and playing ability for any sport (weak, average,

strong, professional).

Let πij denote the probability that outcome category j = 1, . . . , J is observed

for subject i = 1, . . . , n. Then the jth cumulative probability is defined as π∗
ij =

πi1 + πi2 + · · · + πij . Most models for ordinal responses apply a link function

such as the logit or probit link on the cumulative probabilities. Currently the

most popular model for ordinal responses is the proportional odds model, which

uses logits of the cumulative probabilities, also termed cumulative logits. This

approach was first addressed by Williams and Grizzle (1972) and Simon (1974),
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but did not gain much popularity until the seminal paper of McCullagh (1980).

For the J-category ordinal variable Y and a corresponding set of predictors x, a

column vector, the proportional odds model has the form

logit[P (Y ≤ j | x)] = αj − xT γ, j = 1, ..., J − 1,

with α1 < α2 < · · · < αJ−1. The parameters {αj}, also called cut points, are of-

ten of little interest and are usually regarded as nuisance parameters, in contrast

to the parameter vector γ. The minus sign in front of the predictor term allows

the usual interpretation of each component of γ, whether the effect is positive

or negative, but this parametrisation is not necessarily needed. The model ap-

plies simultaneously to all cumulative probabilities assuming an identical effect

on each cumulative probability. In particular, the odds ratio of cumulative prob-

abilities logit[P (Y ≤ j | xi1)]− logit[P (Y ≤ j | xi2)], also called the cumulative odds

ratio, is identical for all responses j and any two subjects i1 and i2, and is pro-

portional to the distance between xi1 and xi2 . For more details of the cumulative

odds ratio we refer to Sub-Section 1.2.2 on page 17. The proportional odds model

received its name from this proportionality property which applies to each cumu-

lative logit. If J = 2, the proportional odds model is simply the logistic regression

model.

Assume that ordinal variable Y has an underlying continuous variable Y ∗

(Anderson and Philips 1981), which is called the latent variable. Also suppose the

mean of Y ∗ is linearly related to x and that the variance of the conditional logistic

distribution is constant. The cutpoints {αj} provide intervals of the continuous

scale. If the observations of Y ∗ are grouped according to these intervals, such that

ordinal variable Y is obtained, then the effects of the proportional odds model are
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proportional to those effects of the linear model involving Y ∗.

There are many other cumulative link models which do not use a logit link

but other smooth links, such as probit, log-log and complementary log-log. An-

other possibility is to apply the baseline-category logit model for ordinal data,

which is usually used for nominal responses. Other ordinal models, such as the

continuation-ratio logit model, were reviewed by Liu and Agresti (2005).

Generally, the proportional odds model and many other ordinal models can

be written as g(µi) = Ziγ, which is the general form of a multivariate GLM

(Fahrmeir and Tutz 2001), where µi is the mean of the multivariate response

yi = (yi1, . . . , yiJ) with yij = 1 if subject i selects category j and zero otherwise.

Here we focus on the proportional odds model and leave other ordinal response

models to the interested reader.

Peterson and Harrell (1990) and Brant (1990) fitted J − 1 separate logistic re-

gression models for each dichotomisation of the response variable with effects γj

and intercepts αj . These J−1 logistic regression models are also referred to as the

partial proportional odds models. Under the proportional odds model the null hy-

pothesis is H0 : γ1 = · · · = γJ−1. The authors propose tests such as the Wald test,

the score test and the likelihood ratio test for the null hypothesis H0 to assess the

validity of the proportional odds model. Stiger, Barnhart and Williamson (1999)

proposed a Wald and score test to assess the proportional odds model assump-

tion, applying the GEE methodology (Liang and Zeger 1986) . Their score test is

based only on the proportional odds model, whereas the Wald test applies to the

the fit of the partial proportional odds model.

Clustered polytomous data models can also be expressed in vector form as

g(µ) = Zβ, g(µ) standing for (g(µ1)
T , . . . , g(µT

n ))T and Z for (ZT
1 , . . . ,ZT

n )T , and

many of the aforementioned methods for fitting marginal models for multiple
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responses, such as GEE, also apply here, see Section 1.1.2. Miller, Davis and Lan-

dis (1993) and Lipsitz, Kim and Zhao (1994) extended the GEE (also known as

GEE1) approach for modelling correlated nominal and ordinal categorical data.

Heagerty and Zeger (1996) applied a GEE2 approach (Zhao and Prentice 1990)

for clustered ordinal data, which also includes the modelling of the association

parameters.

Agresti and Lang (1993) considered a proportional odds model with random

effects. Adding a random effect to a multivariate GLM defines a multivariate

GLMM and the aforementioned methods (in Section 1.1.3 on page 8) are also ap-

plicable to random effect models for ordinal and clustered ordinal data. Tutz and

Hennevogl (1996) and Hartzel, Liu and Agresti (2001) discussed several random

effect models for clustered ordinal data and suggested several fitting procedures.

Hartzel, Agresti and Caffo (2001) focused on random effect models for nominal

and ordinal categorical variables. Random effect models for categorical data in

the social sciences were reviewed extensively by Agresti et al. (2000).

Common methods to test the fit of a model compare observed frequencies

with expected frequencies satisfying the model. Lipsitz, Fitzmaurice and Molen-

berghs (1996) generalised the Hosmer – Lemeshow statistic for testing the fit of

a logistic regression model for binary data with continuous covariates to regres-

sion models for ordinal responses also with continuous covariates. They sum the

components of the multivariate observations yi and means µi with some chosen

coefficients λj (e.g. λj = j) to yield univariate quantities. The coefficients are

called scores and the univariate mean obtained by the sum is now called the mean

score. The data is partitioned into G regions according to that mean score. Now

another ordinal model with the same cutpoints and the same effects is fitted, but

also including coefficients that assign observations to their regions. Under the
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null hypothesis that the original model is true, these coefficients are zero, regard-

less of how the regions or scores were chosen. Standard goodness-of-fit tests, such

as the Wald-test, the likelihood-ratio test and the score test with d.f. = G − 1, are

used to test whether the coefficients are zero. If this null hyposthesis is rejected,

then so is the original model.

Toledano and Gatsonis (1996) generalised the receiver operating characteristic

(ROC) curve that plots sensitivity against 1 - specificity for all possible collapsings

of the J categories. Kim (2003) introduced a graphical method for assessing the

proportional odds assumption, which plots the probabilities P (Y = yi|xi) of the

proportional odds model versus P (Y = yi|xi) of the partial proportional odds

model, where index i refers to the ith subject. If the proportional odds model

holds, the points should lie on a line with slope 1. Then a reference plot is ob-

tained by plotting the same probabilities versus each other, but the probabilities

are obtained from an artificial sample from the proportional odds model with

parameters equal to the ML estimates of the real data set. The points of the ref-

erence plot are expected to lie near the line with slope 1, since the artificial data

set follows the proportional odds model assumption. The reference plot helps in

evaluating whether the plots of the real data set indicates a violation of the model

assumption.

Another important statistical issue was targeted by Perevozskaya, Rosenberger

and Haines (2003). They investigated the D-optimal design for the proportional

odds model.

McCullagh (1980) also considered the proportional hazard model, an impor-

tant model in the analysis of survival data. Here the ratio of log-survivor func-

tions depends only on the difference of two covariates, like the log odds ratio of

cumulative probabilities for the proportional odds model. Bennett (1983b) pro-
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posed another model, also called proportional odds model, for survival analysis,

where the odds ratio θ(t) is a ratio of two cumulative distribution functions Fi(t)

Fi(t)

1 − Fi(t)
=

Fj(t)

1 − Fj(t)
θ(t),

where i and j might refer to two observations or groups. If the event is failure

or death then Si(t) := 1 − Fi(t) is the survival function. Inference for this pro-

portional odds model was considered by many authors Bennett (1983a), Pettitt

(1984), Wu (1995), Murphy, Rossini and vanderVaart (1997), Yang and Prentice

(1999), Kirmani and Gupta (2001), Hunter and Lange (2002), Zeng, Lin and Yin

(2005), Sundaram (2006), Chen, Tong and Sun (2007), Sun, Sun and Zhu (2007),

and Lu and Zhang (2007).

1.5 Outline of the Thesis

The first three chapters (Ch. 2, 3 and 4) investigate odds ratio estimation for

K independent tables of multiple response data, where each table consists of r

independent rows of multiple responses with J items each. Chapter 2 defines

the odds ratio in terms of one item and two rows. The ordinary MH estima-

tor and its variance estimator are still applicable owing to the independence of

rows. However, two MH estimators referring to different items are not indepen-

dent anymore. We derive new dually consistent estimators for the covariances

between any two MH estimators. We also investigate the performance of the MH

estimator under dependence between strata. Under this dependence, ML estima-

tion is no longer as easy as under independence, but can be achieved by fitting

a homogenous linear predictor (HLP) model (Lang 2005). Since for large J this

method is infeasible, we use GEE (Liang and Zeger 1986) instead. We conduct a
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simulation study to investigate the performance of the estimators.

In Chapters 3 and 4 we generalise to the multiple response case the two types

of K × 2× J tables considered by Greenland (1989): (a) two rows of independent

multinomials for each stratum, and (b) J independent binomials for each stratum.

Chapter 3 extents case (a) to (a’): two rows of independent multiple responses

with J categories per table, also forming a 2×J table. Then Chapter 4 extends case

(b) to (b’): 1 row of multiple responses with J items (or equivalently J dependent

binomials) forming a 2 × J table. For case (b’), the ordinary MH estimator is

no longer dually consistent, but consistent only under model I (Yanagawa and

Fujii 1995). We propose a new dually consistent MH type estimator and also

derive a dually consistent variance estimator for that new MH estimator. For case

(a’), we prove that the ordinary MH estimator is dually consistent and derive

new dually consistent (co-)variance estimators. We also propose a generalised

estimator following the Mickey and Elashoff (1985) approach. For cases (a’) and

(b’), we conduct a simulation study confirming the dual consistency and good

properties of the estimators. In addition, we consider a diagnostic strategy to

detect heterogeneity of the estimators across the strata.

Chapter 5 investigates deletion diagnostics for multiple response data apply-

ing the GEE and HLP methodology. Preisser and Qaqish (1996) have considered

deletion diagnostics for GEE, but deletion diagnostics for HLP models have not

been considered previously. Methods are then illustrated using an example of

multiple responses, where farmers are asked about their veterinary information

sources.

Chapter 6 then investigates modelling strategies for a repeated multiple re-

sponse variable, which also has not been done before. As for multiple response

data, GEE and HLP models are two common model strategies, but the increased
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number of items of the repeated multiple responses often makes HLP models

infeasible. We also propose a new way to estimate the correlation for grouped

observations, obtaining more efficient parameter estimates for the GEE method.

Chapter 7 discusses graphical diagnostic methods for GEE extending a uni-

variate cumulative residual process (Lin et al. 2002) to a multivariate process.

The methods are applied to the proportional odds model to check the functional

form of a covariate, whereas many other (graphical) diagnostic methods check

only the overall model adequacy.

The last chapter (Ch. 8) summarises the results of the dissertation and dis-

cusses some further research topics for future work.



Chapter 2

The Analysis of Stratified Multiple

Responses

2.1 Introduction

In many surveys respondents may select any number of the outcome categories.

For instance, in Section 1.1.1 on page 1, we considered the question “What type

of contraceptives have you used?” with possible responses (A-oral, B-condom,

C-lubricated condom, D-spermicide, and E-diaphragm), where respondents are

asked to tick all items that apply. We can cross-classify these counts from a survey

that contains a multiple response variable with J = 5 items along with a group

variable (r levels, e.g. whether a subject had a prior history of urinary tract in-

fection) and a stratification variable (K levels, e.g. several age groups) into an

r × J ×K contingency table. An example due to Bilder and Loughin (2002) is the

2 × 5 × 2 Table 1.1 for 239 sexually active college women. We are interested in

the conditional relationship between the type of contraception and prior history

of urinary tract infection, given the age group.

40
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Another example comes from a study conducted by Dr. Paul Warren in the

School of Linguistics and Applied Language Studies at Victoria University of

Wellington, New Zealand. Six experts (raters) rated 50 utterances by non-native

English speakers on a 3-point scale for overall comprehensibility (from “not easy”

to “very easy” to understand) and then indicated whether there was a problem

for each utterance in each of the 7 items (e.g. pronunciation of consonants, vowel

pronunciation, word stress, etc.). These 7 items are the pick any/J variables,

where J = 7 in this example. Each item can be treated as a binary choice (i.e.,

it was or was not a problem). The study was interested in evaluating the condi-

tional relationship between the overall rating and the 7 items, given the raters.

Table 2.1 comprises 6 separate 3 × 7 tables (K = 6, r = 3 and J = 7), where the

cell counts are dependent across the columns for each table and also dependent

across the 6 strata.

Both examples are of stratified multiple response data, yet the observations

are not independent across the strata in the second example. Such data occur

frequently in health and social sciences and in language studies. To analyse the

data we need the complete information on which items have been selected for

each of the women (Example 1) or utterances (Example 2). One can express the

complete information for each of the respondents using an r×2J×K contingency

table such as Table 2.2, where the columns form the response profile on the J

items. In total there are 2J possible profiles, according to the (yes, no) outcome for

the selection of each item. The complete information on each of the 50 utterances

on the 6 raters and 7 items can be displayed in a similar fashion.

Cochran-(MH) test statistics determine whether a response variable is inde-

pendent of another variable given a third variable. Bilder and Loughin (2002)

generalised the Cochran test to determine whether the group and pick any/J
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Table 2.1: The marginal linguistics data

Items Total Total

1 2 3 4 5 6 7 responses utterances

Rater 1

Rating

1 8 7 2 2 1 0 1 21 8

2 32 22 7 2 6 0 3 72 32

3 8 1 3 0 0 0 1 13 10

Rater 2

Rating

1 10 8 8 4 5 8 0 43 11

2 18 6 10 11 8 11 1 65 19

3 18 9 4 3 8 7 0 49 20

Rater 3

Rating

1 7 1 3 0 4 2 0 17 7

2 11 4 6 1 8 4 0 34 13

3 23 7 8 3 13 8 2 64 30

Rater 4

Rating

1 2 2 2 2 0 0 0 8 2

2 11 7 2 4 1 1 0 26 12

3 11 6 1 5 0 0 1 24 36

Rater 5

Rating

1 1 0 0 0 0 0 0 1 1

2 8 6 5 0 1 1 0 21 23

3 5 11 4 0 1 1 0 22 26

Rater 6

Rating

1 14 18 6 14 14 17 0 83 18

2 12 10 1 9 11 9 0 52 14

3 12 14 4 7 9 11 1 58 18



CHAPTER 2. THE ANALYSIS OF STRATIFIED MULTIPLE RESPONSES 43

Table 2.2: The complete UTI data

Age ≥ 24

Contraceptive
Oral 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0
Yes 0 0 0 0 0 0 0 0 2 0 1 1 1 0 0 1

Contraceptive
Oral 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 14 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0
Yes 5 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

Age < 24

Contraceptive
Oral 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 0 0 1 0 0 0 0 0 2 0 1 0 8 0 18 0
Yes 0 0 1 0 0 0 0 0 14 0 3 0 10 0 12 1

Contraceptive
Oral 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 42 0 1 0 0 0 0 0 1 0 0 0 5 0 6 0
Yes 44 3 0 0 0 0 0 0 15 1 2 0 7 0 3 0
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variable (or “items”) are marginally independent given a stratification variable

This is known as conditional multiple marginal independence (CMMI). For the UTI

example, they tested whether the contraception practices of women are differ-

ent based on their urinary tract infection history, controlling for their age group.

They used a nonparametric bootstrap method to obtain the p-value of the test.

When the group and items are not conditionally marginally independent, it is

more interesting to describe how the items depend on the group. Similarly, in the

linguistics example we are not interested in the differences between raters, and

we focus on describing the conditional relationship between the overall rating

and the items, given each rater.

This chapter discusses two approaches to the analysis of such data. The first

approach, called the model-based approach, treats the J items as a J-dimensional

binary response and then uses logit models directly for the marginal distribu-

tion of each item. It applies the methodology of generalised estimation equa-

tions (GEE) (Liang and Zeger 1986), a multivariate extension of quasi-likelihood

methods. The GEE method is the computationally simplest one as we need only

to provide the mean-variance relationship and specify the working correlation

structure for the J items..

The Mantel-Haenszel type method, called the non-model-based approach, is an-

other option. This second approach extends the generalised Mantel-Haenszel

(GMH) estimators of Greenland (1989) to make the inference across J items.

The MH-type estimators are dually consistent, i.e. consistent under the limit-

ing model I (the “large stratum” limiting model) and model II (the “sparse data”

limiting model).

For an ordinary binary response case, it is well known that the MH estimators

perform much better than the ML estimators for sparse data (Anderson 1980,
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p.244). To make the inference across J items, we derive the dually consistent

variance and covariance estimators for the generalised MH estimators. As in the

Cochran-Mantel-Haenszel test, generalised MH estimators are used when the

conditional associations are not expected to vary drastically among the strata.

However, even though the true associations are heterogeneous between strata,

the generalised MH estimators often provide a useful descriptive summary if

the directions of the associations are the same across strata. When heterogene-

ity exists, it is always interesting to get the details of the heterogeneity. For the

linguistics example, although we want summary information on the conditional

relationship between the overall rating and the items given each rater, it is also

useful to find out which rater (if any) differs from the others. We use the influence

measure of Liu and Wang (2007) to evaluate the heterogeneity among raters.

Section 2.2 introduces the model-based approach using the GEE method, then

Section 2.3 shows how the generalised MH estimators apply to multiple responses

and gives dually consistent variance and covariance estimators. Section 2.4 pro-

vides the data analysis for the two examples. The dually consistent variance

and covariance estimators for the generalised MH estimators are applicable only

when the strata are independent. When the strata are dependent, as in the lin-

guistics example, it is more realistic to use the bootstrap method to evaluate the

variance and covariances of the estimators, because the dually consistent ones are

too complicated to derive. Therefore, in Section 2.5, we discuss the simulation re-

sults for the performance of the bootstrap method when the data are simulated

from various situations. We also compare the relative performances of the GEE

and MH methods. Section 2.6 uses an influence measure to analyse the hetero-

geneity between the strata. The next section (Sec. 2.7) provides a general discus-

sion. Finally, Section 2.8 proves in detail the dual consistency and the formula for
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the generalised MH estimator, and justifies the choice of the influence measure.

We published Sections 2.2-2.5 and 2.7 in a similar form (Liu and Suesse 2008).

2.2 Model Based Approach

Consider the J items as a J-dimensional binary response. For each item, the

response is either “the item is selected” or “the item is not selected”. For ex-

ample, for linguistics data we let πx|ak be the probability of having a problem

on item x when the utterance is overall rated on level a by rater k. To describe

our main course, the conditional relationship between the overall rating and the

items given each rater, we use the logit model for the marginal probabilities of

each item having the form

log

(
πx|ak

1 − πx|ak

)
= βax + τxk , (2.1)

where a = 1, . . . , r, x = 1, . . . , J , and k = 1, . . . , K. Identifiability requires con-

straints such as either βrx = 0 or τxK = 0 for all x (K, r ≥ 2). Define γx
ab = βax−βbx.

The parameters {γx
ab} characterise the conditional relationships. For instance, the

odds of having a problem on item x when the utterance is overall rated on level

a are exp(γx
ab) times the odds of having a problem on item x when the utterance

is overall rated on level b, given each rater.

We fit the model by applying the GEE methodology; see section 5.2.2 on page

150 for details. Since the GEE method is a multivariate extension of the quasi-

likelihood method, we do not need to specify the full joint distribution of the

J items. Only the mean-variance relationship and the correlation structure for

the J items need to be specified. One can make a “working guess” about the

correlation structure of the item responses and then adjust the standard error of
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the parameter estimators to reflect what actually occurs in the sample data using

a “sandwich” method.

The GEE approach is easy to apply for the UTI data, because the responses are

dependent only across the J items and the observations are independent across

strata. For the linguistics data it is not clear how the correlation structure can

be chosen when the responses are correlated across the J items and also the K

strata (raters), although one could always choose an “independent” working cor-

relation structure and use the sandwich standard errors to take into account the

empirical situation.

Instead of using the logit model, the conditional associations can also be ob-

tained using a generalised MH-type estimator. Unlike the logit model, the MH-

type method cannot be used to select the best model that includes all significant

predictors. However, if one is particularly interested in the conditional associa-

tion between the item and the overall rating given each rater, the MH-type esti-

mators evaluate the association directly. The next section gives the details.

2.3 Non-Model Based Approach

2.3.1 MH Estimators

Let us consider each item separately. For example, consider only item “1” (conso-

nant pronunciation) in Table 2.1. The conditional association between overall rat-

ing and “whether there was a consonant pronunciation problem” given the rater

can be described using a 3 × 2 × 6 table, where the column variable is “whether

there was a consonant pronunciation problem” with two levels (yes, no), the row

variable is overall rating (not easy, medium, very easy), and the stratum variable

is rater. Suppose we naively treat the 3 × 2 tables for the 6 raters as independent.
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We can use the generalised MH estimators (Greenland 1989) to describe the

conditional relationship between the row and column variables. The dual consis-

tency of the estimators (MH and generalised MH) have already been established.

However, the standard error and covariance estimates for the estimators based on

the naive independence assumption are inappropriate and the (dual) consistency

of the (co)variance estimators need to be determined. There are two ways to find

proper standard errors and covariance estimates: (1) deriving dually consistent

estimators; and (2) using the bootstrap method. We will discuss these in Sections

2.3.2 and 2.3.3.

For a general r×J ×K table, let Xx|ak denote the number of utterances having

a problem on item x rated by the kth rater (stratum) with the overall rating (row)

a. The notation nak denotes the total number of utterances in the ath row and the

kth stratum. Let Nk = n1k + · · ·+nrk. For convenience, we also let π̄x|ak = 1−πx|ak

and X̄x|ak = nik − Xx|ak. Define a common odds ratio for rows a and b as

Ψx
ab = Ψx

abk =
πx|akπ̄x|bk
π̄x|akπx|bk

x = 1, . . . , J, a, b = 1, . . . , r (a 6= b), (2.2)

for all k. Ψx
ab is the ratio of the odds of having a problem on item x for utterances

overall rated a to the odds of having a problem on item x for utterances overall

rated b, given any stratum. The ordinary MH estimator is

Ψ̂x
ab =

Cx|ab

Cx|ba
, (2.3)

where Cx|ab =
∑K

k=1 cx|abk with cx|abk = Xx|akX̄x|bk/Nk. Greenland (1989) intro-

duced the generalised MH estimator of log Ψx
ab

L̄x
ab = (Lx

a+ − Lx
b+)/r , (2.4)
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where Lx
ab = log Ψ̂x

ab and the subscript “+” indicates summation over that sub-

script. When the row variable has only two levels (r = 2) as for the UTI example,

we can use Ψx
12 to describe the conditional row effect on selecting item x. For r = 2

the generalised MH estimator of log Ψx
12 simplifies to the ordinary MH estimator

Lx
12 = log

(∑K
k=1 Xx|1kX̄x|2k/Nk∑K
k=1 Xx|2kX̄x|1k/Nk

)
. (2.5)

2.3.2 Dually Consistent Variance and Covariance Estimators

When the strata are independent (as in the UTI example), we can derive the du-

ally consistent variance and covariance estimators for the generalised MH esti-

mators. If one is only interested in a particular item, say x (x ∈ {1, . . . , J}), the

dually consistent variance and covariance estimators for {L̄x
ab, ∀ a 6= b} come di-

rectly from the work by Greenland (1989). However, one might be interested in

comparing the conditional association across items. For instance, in the UTI ex-

ample one might be interested in comparing the UTI effects of the contraceptive

methods “oral” and “condom”. The covariance estimator between L̄x
ab and L̄y

ab is

desirable for x 6= y (x, y ∈ {1, . . . , J}). The way to derive the dually consistent

estimator for it is more complicated than the case considering only a fixed item,

because Xx|ak and Xy|ak are correlated for all a and k. That is, the numbers of

women who used contraceptive methods x and y are not independent. To find

the dually consistent covariance estimator, we need to consider up to the fourth

moment of the X’s and the pairwise counts for the two items.

Define pairwise probabilities for items x and y (x, y ∈ {1, . . . , J}) as πst
xy|ak with

s, t ∈ {0, 1}, where (0, 1) is the (no, yes) outcome for the selection of each item.

Then πst
xy|ak is the probability of observing the pairwise outcome (s, t) for items x

and y. For instance, the notation π11
xy|ak represents the probability that a subject,
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who is in row a and stratum k, selects both items x and y. Define similarly the

pairwise observations as {Xst
xy|ak}. We assume Xxy|ik = (X00

xy|ak, X
01
xy|ak, X

10
xy|ak, X

11
xy|ak)

follows a multinomial distribution with parameters nak and πxy|ak = (π00
xy|ak, π

01
xy|ak,

π10
xy|ak, π

11
xy|ak) with π00

xy|ak + π01
xy|ak + π10

xy|ak + π11
xy|ak = 1. The marginal probabilities

can be computed from the pairwise probabilities by πx|ak = π10
xy|ak + π11

xy|ak and

πy|ak = π01
xy|ak + π11

xy|ak.

First we consider the fixed item x. Define hx|ab = (Xx|ak + X̄x|bk)/Nk. Let E

denote the standard expectation, Var and Cov the standard variance and covari-

ance. Greenland (1989) derived the following estimators

Ux|abb := V̂ar(Lx
ab) Ux|abc := Ĉov(Lx

ab, L
x
ac) (2.6)

with

Ux|abb =

∑
k cx|abhx|ab

2C2
|xab

+

∑
k cx|bahx|ab + cx|abhx|ba

2Cx|abCx|ba
+

∑
k cx|bahx|ba
2C2

x|ba

Ux|abc =

∑
k Xx|aX̄x|bX̄x|c/N

2
k

3Cx|abCx|ac

+

∑
k naX̄x|bXx|c/N

2
k

3Cx|abCx|ca

+

∑
k naXx|bX̄x|c/N

2
k

3Cx|baCx|ac

+

∑
k X̄x|aXx|bXx|c/N

2
k

3Cx|baCx|ca
.

Please note, subscript c refers to a row (as the indices a and b do). For convenience,

we often suppress subscripts x and k. For instance, cab = cx|abk, Xa = Xx|ak, and

na = nak.

Because L̄x
ab is a linear combination of {Lx

ab}, Ĉov(L̄x
ab, L̄

x
cd) can be expressed as

follows in terms of Ux|ab and Ux|abc

Ĉov(L̄x
ab, L̄

x
cd) = (U+

x|ac − U+
x|ad − U+

x|bc + U+
x|bd)/r

2 (2.7)
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with

U+
x|ab =





Ux|a++ =
∑

i,h Ux|aih for a = b

Ux|+ab − Ux|ab+ − Ux|ba+ + Ux|ab = U+
x|ba for a 6= b

The subscript “+” denotes summation over that subscript. Note that setting c = a,

d = b yields V̂ar(L̄x
ab) and setting c = a, d = c yields Ĉov(L̄x

ab, L̄
x
ac).

Next, we make the inference across two different items. For instance, consider

the covariance between L̄x
ab and L̄y

cd. We propose the following dually consistent

covariance estimators

Uxy|abb := Ĉov(Lx
ab, L

y
ab) =

D̂11
ab

Cx|abCy|ab
− D̂01

ab

Cx|baCy|ab
− D̂10

ab

Cx|abCy|ba
+

D̂00
ab

Cx|baCy|ba
(2.8)

Uxy|abc := Ĉov(Lx
ab, L

y
ac) =

D̂11
abc

Cx|abCy|ac

− D̂01
abc

Cx|baCy|ac

− D̂10
abc

Cx|abCy|ca
+

D̂00
abc

Cx|baCy|ca
(2.9)

with D̂ =
∑

k d̂k,

d̂st
ab =

1

N2
k

{Xs
x|aX

t
y|aX

s̄t̄
xy|b + Xst

xy|aX
s̄
x|bX

t̄
y|b − Xst

xy|aX
s̄t̄
xy|b} (2.10)

and

d̂st
abc =

1

N2
k

Xst
xy|aX

s̄
x|bX

t̄
y|c, (2.11)

where we set s̄ := 1 − s and use the convenient notation X1
x|a := Xs

x|a and X0
x|a :=

X̄s
x|a, for example for the pairwise counts X 1̄1̄

xy|a = X00
xy|a. We see that estimator

Uxy|abb has a similar form as Ux|abb and Uxy|abc is similar to Ux|abc, specially when

comparing the denominators. For a 6= b and c 6= d, Uxy|abcd does not need to

be defined, because Cov(Lx
ab, L

y
cd) = 0 owing to the independence of rows but

Cov(Lx
ab, L

y
ac) 6= 0. The estimator Uxy|abb is invariant under interchange of items

(x and y) or rows (a and b). Note that Ux|abb = Ux|baa, because Lx
ab = −Lx

ba. Also,

Ux|abc = Ux|acb by definition. However, Uxy|abb 6= Uxy|baa, but Uxy|abb = Uyx|baa by
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definition.

Again, since L̄x
ab (or L̄y

ab) is a linear combination of {Lx
ab} (or {Ly

ab}), we can

derive covariance estimators for (L̄x
ab, L̄

y
cd), which can be expressed as follows:

Ĉov(L̄x
ab, L̄

y
cd) =

1

r2
{U+

xy|ac − U+
xy|ad − U+

xy|bc + U+
xy|bd} (2.12)

with

U+
xy|ac =





Uxy|a++ =
∑

i,h Cov(Lx
ai, L

y
ah) for a = c

Uxy|+ac − Uxy|a+c − Uxy|ca+ + Uxy|ac for a 6= c

For non-distinct indices a, b, c, d we have

Ĉov(L̄x
ab, L̄

y
ac) =

1

r2
{U+

xy|a++ − U+
xy|ac − U+

xy|ba + U+
xy|bc}

and

Ĉov(L̄x
ab, L̄

y
ab) =

1

r2
{Uxy|a++ − U+

xy|ab − U+
xy|ba + Uxy|b++}.

Note that the contruction of Ĉov(Lx
ab, L

y
cd) is very similar to that of Ĉov(Lx

ab, L
x
cd),

since estimator L̄ is a linear combination of the L’s for both situations. In the last

section (Subsection 2.8.1 on page 72) we prove the dual consistency of these new

covariance estimators. We shall refer later to “formulae” variance and covariance

estimators, meaning Greenland’s dually consistent variance V̂ar(L̄x
ab) in (2.7) and

the dually consistent covariance Ĉov(L̄x
ab, L̄

y
cd) in (2.12).

When the strata are not independent (as in the linguistic example), it is even

more complicated to derive the dually consistent variance and covariance esti-

mators, because the X’s are correlated across not only items but also strata. For

instance, for K = 6 we need to consider up to the 24th (4 × 6 = 24) moment of

the X’s. Because of this complexity, Section 3.2 provides a realistic way to find
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estimates by applying the nonparametric bootstrap method.

2.3.3 Bootstrap Estimates of Variance and Covariance

The nonparametric bootstrap method (Efron and Tibshirani 1993) was conducted

by randomly selecting subjects with replacement from the original data. For in-

stance, for the UTI data, we resample Nk women with replacement from the kth

stratum, where k = 1, 2. Similarly, for the Linguistics example, we resample 50

utterances with replacement and cross-classify the data into a 3× 7× 6 table. For

each resampled data set, the size of each stratum is the same as before. We take B

resamples and then for each resample we calculate the generalised MH estimates

{L̄x
ab, x = 1, . . . , J, a 6= b = 1, . . . , r}. The bootstrap estimate of the standard error

of L̄x
ab is the standard deviation of the bootstrap replicates,

s.e. for L̄x
ab =

√√√√
∑B

s=1

(
L̄x

ab,s −
∑B

s=1 L̄x
ab,s/B

)2

B − 1
,

where L̄x
ab,s is the generalised MH estimate L̄x

ab for the sth bootstrap resample.

Similarly, the bootstrap estimate of the covariance of L̄x
ab and L̄y

cd is

ˆcov(L̄x
ab, L̄y

cd) =

∑B
s=1

(
L̄x

ab,s −
∑B

s=1 L̄x
ab,s/B

)(
L̄y

cd,s −
∑B

s=1 L̄y
cd,s/B

)

B − 1
.

Later, we will refer to this simply as the “bootstrap” estimate.

Based on the unconditional coefficient of variation, Efron and Tibshirani (1993)

suggest that as little as 25 bootstrap samples or replicates are sufficient in obtain-

ing reasonable results for variance estimation. However Booth and Sakar (1998)

investigated the precision of the bootstrap variance based on a conditional anal-

ysis and conclude that a much higher number of replicates is needed. In the
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following, we will use B = 50, 000 for the data analysis of the examples to obtain

sufficient precision.

There are other more efficient bootstrap methods (Shao and Tu 1995), such as

bootstrapping based on the studentised residuals or the “bootstrap accelerated

bias-corrected percentile”(BCa). The first method resamples the residuals and

the second is based on a transformation of a random variable, for which the dis-

tribution is known. However how do we define residuals for the MH estimator

and how do we check the assumptions for BCa? We do not want to investigate

the performance and applicability of these and other methods here. The prac-

titioner must keep in mind that there might be other bootstrap methods, which

perform better. A careful investigation might be subject to future research.

Remark 2.3.1. Estimation and Confidence Intervals for the Odds Ratio. We could es-

timate Ψ by Ψ̂xy ≡ exp(L) but because of efficiency advantages of L̄ over L

(Greenland 1989), we prefer to estimate Ψ by exp(L̄). The covariances for all

indices x, y referring to items and a, b, c, d referring to rows can be computed by

Ĉov(exp(L̄x
ab), exp(L̄y

cd)) = exp(L̄x
ab + L̄y

cd)Ĉov(L̄x
ab, L̄

y
cd)

because

Cova(exp(L̄x
ab), exp(L̄y

cd)) = exp(log Ψx
ab) exp(log Ψy

cd)Cova(L̄x
ab, L̄

y
cd)

by the Delta method, where Cova stands for the asymptotic covariance. However,

a confidence interval is best constructed in the log-scale (Emerson 1994), because

of the log-scale’s symmetry. An approximate 95% confidence interval for the log-

odds is

L̄ − 1.96

√
V̂ar(L̄) ≤ log Ψ ≤ L̄ + 1.96

√
V̂ar(L̄)
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and an approximate 95% confidence interval for the odds ratio is

exp[L̄ − 1.96

√
V̂ar(L̄)] ≤ Ψ ≤ exp[L̄ + 1.96

√
V̂ar(L̄)].

2.4 Examples

For the UTI example, the model-based (GEE) approach gives {γ̂x
12, x = 1, . . . , 5} =

{0.12 , −0.52, 0.71, 0.65, −8.96} with sandwich standard errors {0.28, 0.27, 0.28,

0.31, 1.10} using an exchangeable correlation structure. Alternatively, the non-

model-based (MH) approach gives {Lx
12, x = 1, . . . , 5}={0.12 , −0.52, 0.71, 0.64,

−2.57} with standard errors {0.28, 0.26, 0.28, 0.31, 1.41} by applying formula (2.7).

Choosing B = 50, 000, the corresponding bootstrap standard errors are {0.28,

0.26, 0.28, 0.32, 0.39}. For instance, for the first item (oral contraceptive), the

odds of having used the oral contraceptive for women without a prior history of

UTI are estimated to be exp(0.12) = 1.13 times the odds for women with a prior

history of UTI, given each age group.

The two approaches have similar results, except for the last item (“Diaphragm”),

because our data have no women without a prior history of urinary tract infec-

tion who use diaphragms. In Table 1.1, the cell count for row 1 and column 5 is

zero for both age groups. The GEE estimation routine fails to provide sandwich

standard errors. Similarly, the MH estimate L5
12 is undefined. To overcome this

problem in the model-based approach, we add to the data set a pseudo-subject

with no UTI history who used a diaphragm.

The model (2.1) is fitted by giving the pseudo-subject a small weight (say,

10−3). For the non-model-based approach, one way to get an amended estimator

is by adding 0.5 to each cell as suggested by Agresti (2002, p.71) for the ordinary
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Table 2.3: The bootstrap with B = 50, 000 and formulae (in parentheses) variance
and covariance estimates of {Lx

12, x = 1, . . . , 5}, 10× co-/variance for the data in
Table 1.1 (UTI data)

Cov(Lx
12, L

y
12)

y

x 1 2 3 4 5

1 0.79(0.76) −0.50(−0.48) −0.45(−0.42) −0.48(−0.02) 0.11(NA)

2 −0.50(−0.48) 0.68(0.70) 0.51(−0.37) 0.45(0.60) −0.07(NA)

3 −0.45(−0.42) 0.51(−0.37) 0.81(0.80) 0.51(0.44) −0.06(NA)

4 −0.48(−0.02) 0.45(0.60) 0.51(0.44) 1.04(0.94) −0.012(NA)

5 0.11(NA) −0.07(NA) −0.06(NA) −0.12(NA) 1.52(19.94)

items: 1-oral, 2-condom, 3-l.condom, 4-spermicide, 5-diaphragm

NA: not applicable

Table 2.4: 95% confidence intervals for log Ψx
12 − log Ψy

12 for the data in Table 1.1
(UTI data) based on formulae (lower left half) and bootstrap with B = 50, 000
(upper right half) (co)variance estimates

y
1 2 3 4 5

x oral condom l.condom spermicide diaphragm

1 (−1.6140, (−0.3876, (−0.5117, (−3.5851,
oral 0.3342) 1.5724) 1.5589) −1.7931)
2 (−1.6055, (0.8074, (0.6022, (−2.9973,
condom 0.3257) 1.6572) 1.7248) −1.1011)
3 (−0.3684, (0.3034, (−0.6335, (−4.2517,
l.condom 1.5532) 2.1613) 0.4959) −2.3113)
4 (−0.2976, (0.7488, (−0.6448, (−4.2498,
spermicide 1.3375) 1.5711) 0.5047) −2.1756)
5 (NA) (NA) (NA) (NA)
diaphragm

NA: not applicable
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Table 2.5: The generalised MH estimates and their bootstrap standard errors with
B = 50, 000 (in parentheses) for the data in Table 2.1 (Linguistic data)

item j
1 2 3 4 5 6 7

pronunciation pronunciation word sentence rhythm intonation rate
of consonants of vowels stress stress

L̄j
12 −0.00 1.19 0.70 0.28 −0.10 0.88 −0.39

(0.81) (0.50) (0.53) (0.40) (0.47) (0.50) (1.07)
L̄j

13 1.34 1.47 1.21 1.49 0.73 1.36 −1.23
(0.73) (0.48) (0.58) (0.49) (0.44) (0.45) (1.17)

L̄j
23 1.34 0.27 0.52 1.20 0.83 0.48 −0.84

(0.52) (0.30) (0.47) (0.50) (0.50) (0.43) (1.35)

odds ratio estimator. The cell counts for a stratum having only a few observations

are usually small. If we add 0.5 to a small cell count, it could easily influence and

weaken the association. In order not to smooth the data too much, we add 0.5 to

each cell for the stratum with largest size. For instance, because the stratum of

Age<24 contains the greater number of observations, we add 0.5 to each cell in

that stratum. The estimate of the odds ratio for the last item (“Diaphragm”) is not

stable under either approach. In summary, the conditional UTI effects are signif-

icant for the contraceptives “condom”, “lubricated condom”, and “spermicide”

at a 5% significance level.

Table 2.3 gives the bootstrap with B = 50, 000 and formulae ( shown in paren-

theses) variance and covariance estimates using equations (2.6) and (2.8) for {Lx
12,

x = 1, . . . , 5}. Table 2.4 shows all multiple comparisons of the conditional UTI

effects for any two items. For instance, comparing the UTI effects for the contra-

ceptives “oral” and “lubricated condom”, a 95% confidence interval for log Ψ1
12 −

log Ψ3
12 is (−0.39, 1.57). Owing to the sampling zero for item 5 (Diaphragm), a few

consistent covariance estimators involving L5
12 are not applicable. Consequently,



CHAPTER 2. THE ANALYSIS OF STRATIFIED MULTIPLE RESPONSES 58

the confidence intervals based on the formulae are not applicable for item 5. Al-

ternatively, one can choose to amend the pairwise observations to obtain rough

estimates for them.

In the linguistics example, the GEE approach fails to give the sandwich stan-

dard errors for the model (2.1). Instead we fit a parsimonious model that re-

places τxk by τx + αk. However, the generalised MH estimator works for the

general model (2.1). By comparing overall rating levels 1 and 2, the MH esti-

mates {L̄x
12, x = 1, . . . , 7} are {−0.00, 1.19, 0.70, 0.28, −0.10, 0.88, −0.39} with the

bootstrap standard errors with B = 50, 000 of {0.81, 0.50, 0.53, 0.40, 0.47, 0.50,

1.07}. Comparing rating levels 1 and 3, the MH estimates {L̄x
13, x = 1, . . . , 7} is

{1.34, 1.47, 1.21, 1.49, 0.73, 1.36, −1.23} with the bootstrap standard errors with

B = 50, 000 of {0.73, 0.48, 0.58, 0.49, 0.44, 0.45, 1.17}. There are no significant

differences between rating levels 1 and 2 for any item except for item 2 (pro-

nunciation of vowels), given each rater. However, the differences between rating

levels 1 and 3 are significant, given each rater, for all items except items 1, 5, and

7. Table 2.5 shows the generalised MH estimates and their bootstrap standard

errors. Similarly, the bootstrap variance and covariance estimates can be calcu-

lated. In this example the formulae (co)variance estimators are not appropriate,

because this data set has dependent strata.

Although the GEE method (the model-based approach) uses a more parsimo-

nious model than the MH method (the non-model-based approach), both meth-

ods give similar results in terms of the significance. For instance, the GEE esti-

mates for {log Ψx
13, x = 1, . . . , 7} are {1.34, 1.32, 0.83, 1.29, 0.76, 1.24, −1.11} with

the sandwich standard errors {0.67, 0.39, 0.53, 0.38, 0.33, 0.32, 1.19}.
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2.5 Simulation Study

In the simulation study we evaluate the performance of the model-based (GEE)

and non-model-based (MH) estimators for the odds ratio and their (co)variances

estimators. The simulation study consists of two main cases. One case assumes

that the strata are independent as in the UTI example. The other case allows

dependency between strata as in the linguistics example. In case 1 the scenarios

range from ones for which the limiting model I should work well to ones for

which the asymptotic model II seems more appropriate. In case 2 the situation

varies according to the degree of the dependency between strata.

For the model-based estimators (GEE), we use R (Team R Development Core, A

Language and Environment for Statistical Computing 2006) and its package geepack

(Yan 2004, Yan and Fine 2004) for fitting. We always assume an exchangeable cor-

relation structure to obtain the estimates {γ̂x
ab; a 6= b; a, b = 1, . . . , r; x = 1, . . . , J}.

We automatically obtain the robust (or sandwich) and naive (co)variances as a

by-product of the fitting algorithm. The robust covariance matrix is also consis-

tent, when the working correlation structure does not match the true correlation

structure, which is in contrast to the naive covariance. For further details of GEE

see Section 5.2.2 on page 150.

For the non-model-based method (MH) we compute {L̄x
ab; a 6= b; a, b = 1, . . . , r;

x = 1, . . . , J} and its bootstrap and formulae (co)variances.

Independent Strata For simplicity we let r = 2 and use a constant odds ratio for

every item, i.e., Ψx
12 = Ψ for all x = 1, . . . , J . We also set the marginal probabilities

πx|1k to be 0.5 for all items x = 1, . . . , c and strata k = 1, . . . , K. The marginal

probabilities {πx|2k} are computed from the given common odds ratio Ψ. Let Yx

indicate whether a subject selects item x: given a and k, if a subject selects item x
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then Yx = 1 otherwise Yx = 0. The pairwise dependency between items x and y

is denoted using an odds ratio θxy as

θxy|ik =
P (Yx = 1, Yy = 1|ak)P (Yx = 0, Yy = 0|ak)

P (Yx = 0, Yy = 1|ak)P (Yx = 1, Yy = 0|ak)
, (2.13)

where x 6= y = 1, . . . , J .

Let πxy|ak := π11
xy|ak = P (Yx = 1, Yy = 1|ak), then P (Yx = 1, Yy = 0|ak) =

πx|ak − πxy|ak, P (Yx = 0, Yy = 1|ak) = πy|ak − πxy|ak and P (Yx = 0, Yy = 0|ak) =

1 − πx|ak − πy|ak + πxy|ak with πxy|ak satisfying

min(0, πx + πy − 1) ≤ πxy ≤ max(πx, πy). (2.14)

For given θxy, πx and πy, we can compute the unique solution πxy of the quadratic

(θxy − 1)π2
xy − πxy[1 + (θxy − 1)(πx + πy)] + θxyπxπy = 0 (2.15)

satisfying (2.14). It follows that the complete pairwise distribution given by pair-

wise probabilities π11
xy, π01

xy, π10
xy and π00

xy is completely specified by θxy (respectively

πxy), πx and πy.

Then the 2J joint probabilities PY|ak = {P (Y1 = s1, . . . , YJ = sJ |ak), sx =

0, 1; x = 1, . . . , J} in the complete table (as in Table 2.2) can be computed from the

probabilities {πx|ak, x = 1, . . . , J} and {πxy|ak, x 6= y = 1, . . . , J}, if a feasible so-

lution exists (Lee 1993). Usually there are many solutions for the 2J (J > 2) joint

probabilities, but for some configurations of {πx|ak, x = 1, . . . , J} and {πxy|ak, x 6=

y = 1, . . . , J}, there is no feasible solution. For example: For J = 3 and given

{π1|ak, π2|ak, π3|ak}, the parameters θ12 and θ13 can be chosen arbitrarily determin-

ing the pairwise probabilities for the pairs of items (1, 2) and (1, 3). However, they



CHAPTER 2. THE ANALYSIS OF STRATIFIED MULTIPLE RESPONSES 61

also constrain the pairwise probabilities for the pair of items (2, 3). Therefore θ23

cannot be chosen arbitrarily.

There are several approaches to computing such a solution of the joint prob-

abilities for given pairwise and marginal probabilities. One approach is to use

linear programming. Another is applying the iterative proportional fitting (IPF)

algorithm as described by Gange (1995). Let Pj
Y|ak(= PY|ak) denote the joint prob-

abilities of the generic jth step for group i and stratum k and P
j
Y = (Pj

Y|11, . . . ,

P
j
Y|rK). Set P0 = 1. We can collapse Pj into marginal probabilities {P (Yx =

1|ak)j; a = 1, . . . , r; k = 1, . . . , K; x = 1, . . . , J} and pairwise probabilities {P (Yx =

1, Yy = 1|ak)j; a = 1, . . . , r; k = 1, . . . , K; x, y = 1, . . . , J}. The aim is to find a so-

lution Pj satisfying P (Yx = 1|ak)j = πx|ak, P (Yx = 1, Yy = 1|ak)j = πxy|ak and

P j
0|ak :=

∑
s1,...,sJ=0,1 P (Y1 = s1, . . . , YJ = sJ |ak)j = 1. The generic jth step of the

IPF algorithm uses the following formulae

P
j
Y = P

j−1
Y

πx|ak

P (Yx = 1|ak)j−1

P
j
Y = P

j−1
Y

πxy|ak

P (Yx = 1, Yy = 1|ak)j−1

P
j
Y = P

j−1
Y

1

P j−1
0

(2.16)

∀a = 1, . . . , r; k = 1, . . . , K; x, y = 1, . . . , J.

The generation of the joint probabilities subject to either {πx|ak, x = 1, . . . , J} and

{πxy|ak, x, y = 1, . . . , J} or {πx|ak, x = 1, . . . , J} and {θxy|ak, x, y = 1, . . . , J} is

analogous to the one applied by Bilder et al. (2000). We prefer IPF over linear

programming because it generates strictly positive (> 0) joint probabilities (as-

suming such a solution exists), in contrast to linear programming, which might

produce zero joint probabilities. It seems more plausible, since none of the 2J
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binary sequences is theoretically excluded from the data generation process.

Again for simplicity we let J = 2. The dependency between items is assigned

by the odds ratio θ = θ12. We draw Nk samples independently from either row

1 or row 2 with equal probabilities for stratum k and set N1 = · · · = NK . Given

the randomly chosen row a and stratum k, a sample (consisting of binary se-

quences of length J) is drawn from the joint distribution PY|ak. In case 1, we

simulate n = 20000 datasets based on the joint distributions {PY|ak} under a vari-

ety of configurations. For the bootstrap method, we use the number of bootstrap

resamples as B = 400. Note that we did not compute the model or non-model-

based estimators, when data amendment was required due to the sampling zero

problem.

Let the estimator of a parameter of interest δ, e.g. log Ψ2
12, be denoted by δ̂ and

let δ̂j be the value of the estimator for the jth simulated data set (j = 1, . . . , n).

Then the empirical (or sample) mean is defined as δ̄ = 1
n

∑n
j=1 δ̂j , the empirical

variance as 1
n

∑n
j=1(δ̂j − δ̄)2, the mean squared error (mse) as 1

n

∑n
j=1(δ̂j − δ)2 and

the empirical covariance between estimators δ̂ and ǫ̂ as 1
n

∑n
j=1(δ̂j − δ̄)(ǫ̂j − ǭ).

The second column of Table 2.6 shows the sample means for the generalised

MH estimates (L1
12, L2

12) in the first row, and the sample means for the GEE esti-

mates (γ̂1
12, γ̂

2
12) in the second row over n = 20000 simulations for various scenar-

ios given in the first column. The third column shows the corresponding mean

squared errors. We investigate: (1) The performance of the MH (L’s) and the

GEE (γ̂’s) estimators by comparing their sample means and the mean square er-

rors (mse), (2) the performance of the MH (co)variance estimators for the for-

mulae and bootstrap methods, and (3) the performance of GEE (co)variance esti-

mators for the robust and naive methods. To compare the performance of the

(co)variance estimators, we calculate the “empirical” (co)variances over 20000
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simulations.

For the non-model-based approach, we denote the sample mean for formu-

lae (co)variances by formulaeMH , and the bootstrap (co)variances by BTMH . The

empirical (co)variance is denoted by empMH . Similarly we denote for the model-

based approach the empirical (co)variances by empGEE, the mean of the robust

and naive (co)variances by robustGEE and naiveGEE, respectively. Each entry of

columns 4-6 in Table 2.6 consists of three terms. The first two are the variances

of the log odds ratio (L’s or γ̂’s) for items 1 and 2, and the third is the covari-

ance of the log odds ratios between items 1 and 2. The first column shows the

configuration of parameters K, Nk, Ψ, θ, and the number in parentheses shows

the number of samples which were not included in the simulation study due to

the sampling zero problem. The total number of simulated samples involved is:

20000 − (this number).

Dependent Strata In case 2 we let r = J = 2. Unlike case 1, there is some

degree of dependency between strata (or raters in the Linguistics example). We

introduce another two parameters, Λkl and Γxy,kl, to describe the dependencies

between items and between raters. Let Zk be whether rater k assigns an overall

rating 1. If it is a “yes”, then Zk = 1; otherwise Zk = 0. Similarly, let Wj,k be

whether rater k selects item j. If rater k selects item j, then Wj,k = 1; otherwise

Wj,k = 0. The parameters Λkl and Γxy,kl are defined as

Λkl =
P (Zk = 1, Zl = 1)P (Zk = 0, Zl = 0)

P (Zk = 0, Zl = 1)P (Zk = 1, Zl = 0)
, k 6= l = 1, . . . , K;

Γxy,kl =
P (Wx,k = 1, Wy,l = 1)P (Wx,k = 0, Wy,l = 0)

P (Wx,k = 0, Wy,l = 1)P (Wx,k = 1, Wy,l = 0)
,

k 6= l = 1, . . . , K or x 6= y = 1, . . . , J.
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Table 2.6: GMH and GEE Results of the simulation study for independent strata
with n = 20000 and B = 400.

mean Var(L/γ̂)112, Var(L/γ̂)212, Cov((L/γ̂)112, (L/γ̂)212)

(L1
12, L

1
12)GMH

10·mseGMH
10·empGMH

10·formulaeGMH
10·BTGMH

K,Nk,Ψ, θ (γ̂1
12, γ̂

2
12)GEE

10·mseGEE
10·empGEE

10·robustGEE
10·naiveGEE

2, 50, 1, 2 −0.000, 0.002 1.75, 1.70 1.75, 1.70, 0.310 1.67, 1.67, 0.279 1.77, 1.77, 0.300
(4) −0.000, 0.002 1.78, 1.73 1.78, 1.73, 0.317 1.71, 1.71, 0.291 1.71, 1.71, 0.291

2, 50, 1, 4 −0.001, 0.002 1.75, 1.71 1.75, 1.71, 0.588 1.67, 1.67, 0.543 1.77, 1.77, 0.584
(3) −0.001, 0.002 1.78, 1.75 1.78, 1.75, 0.601 1.71, 1.71, 0.566 1.71, 1.71, 0.566
(2)2, 50, 4, 2 1.425, 1.428 2.33, 2.32 2.32, 2.30, 0.296 2.23, 2.23, 0.294 2.55, 2.55, 0.331
(2) 1.440, 1.443 2.39, 2.38 2.36, 2.34, 0.304 2.27, 2.27, 0.308 2.27, 2.27, 0.323
(1)2, 50, 4, 4 1.429, 1.434 2.33, 2.36 2.32, 2.34, 0.654 2.24, 2.24, 0.611 2.56, 2.56, 0.687
(1) 1.443, 1.450 2.39, 2.43 2.36, 2.39, 0.668 2.27, 2.28, 0.638 2.28, 2.28, 0.660

2, 100, 1, 2 −0.002,−0.002 0.84, 0.83 0.84, 0.83, 0.148 0.82, 0.82, 0.138 0.84, 0.84, 0.142
(3) −0.002,−0.002 0.85, 0.84 0.85, 0.84, 0.149 0.83, 0.83, 0.141 0.83, 0.83, 0.141

2, 100, 1, 4 −0.002,−0.003 0.84, 0.83 0.84, 0.83, 0.280 0.82, 0.82, 0.269 0.84, 0.84, 0.278
(2) −0.002,−0.003 0.85, 0.84 0.85, 0.84, 0.283 0.83, 0.83, 0.274 0.83, 0.83, 0.275

2, 100, 4, 2 1.408, 1.405 1.08, 1.09 1.07, 1.09, 0.144 1.07, 1.06, 0.148 1.13, 1.13, 0.156

1.415, 1.412 1.09, 1.10 1.09, 1.10, 0.146 1.07, 1.07, 0.151 1.08, 1.07, 0.157

2, 100, 4, 4 1.407, 1.405 1.08, 1.09 1.08, 1.08, 0.309 1.06, 1.06, 0.301 1.13, 1.13, 0.317

1.414, 1.412 1.10, 1.10 1.09, 1.09, 0.313 1.07, 1.07, 0.307 1.07, 1.07, 0.316

20, 5, 1, 2 −0.002, 0.005 2.25, 2.22 2.25, 2.22, 0.382 2.12, 2.12, 0.351 2.30, 2.30, 0.362
(17653) −0.007,−0.005 2.83, 2.89 2.83, 2.89, 0.527 2.47, 2.48, 0.371 2.45, 2.45, 0.358

20, 5, 1, 4 0.003,−0.003 2.21, 2.20 2.21, 2.20, 0.739 2.12, 2.12, 0.678 2.29, 2.29, 0.709
(18027) 0.003, 0.014 3.19, 3.00 3.19, 3.00, 1.150 2.46, 2.46, 0.838 2.45, 2.45, 0.824
(47)20, 5, 4, 2 1.464, 1.460 3.56, 3.48 3.50, 3.43, 0.391 3.22, 3.20, 0.371 3.50, 3.50, 0.354
(19751) 1.890, 1.779 7.95, 6.75 5.44, 5.22, 0.684 3.65, 3.48, 0.319 3.55, 3.40, 0.379
(28)20, 5, 4, 4 1.457, 1.463 3.47, 3.47 3.42, 3.41, 0.881 3.19, 3.20, 0.769 3.48, 3.48, 0.743
(19784) 1.916, 1.945 7.78, 9.16 4.99, 6.07, 1.565 3.68, 3.75, 1.057 3.63, 3.69, 1.110

20, 10, 1, 2 −0.000,−0.003 0.93, 0.92 0.93, 0.92, 0.162 0.91, 0.90, 0.152 0.88, 0.88, 0.148
(1116) 0.000,−0.004 1.13, 1.11 1.13, 1.11, 0.202 1.00, 1.00, 0.170 1.00, 1.00, 0.168

20, 10, 1, 4 −0.001, 0.001 0.92, 0.93 0.92, 0.93, 0.313 0.90, 0.91, 0.298 0.88, 0.88, 0.290
(1227) −0.002, 0.000 1.12, 1.12 1.12, 1.12, 0.386 1.00, 1.00, 0.334 1.00, 1.00, 0.331

20, 10, 4, 2 1.411, 1.412 1.27, 1.28 1.27, 1.28, 0.170 1.23, 1.24, 0.162 1.38, 1.39, 0.167
(7085) 1.569, 1.570 1.90, 1.87 1.56, 1.54, 0.219 1.35, 1.34, 0.181 1.34, 1.34, 0.184

20, 10, 4, 4 1.412, 1.414 1.28, 1.28 1.27, 1.27, 0.346 1.23, 1.24, 0.335 1.39, 1.39, 0.349
(7667) 1.571, 1.572 1.86, 1.91 1.52, 1.56, 0.428 1.34, 1.34, 0.382 1.34, 1.34, 0.383

log(1) = 0, log(4) = 1.3863

The value in parentheses is the number of datasets having the sampling zero problem

(which are not included)
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For a special case of k = l, Γxy,kl = θxy describes the dependency between items

for a given rater k. In contrast, Γxy,kl with k 6= l denotes the dependency between

raters, and x 6= y between items. For convenience, we set Λkl = Λ for all k < l =

1, . . . , K; Γ12,kk = θ for all k = 1, . . . , K; and Γxy,kl = Γ for all k < l = 1, . . . , K and

x ≤ y = 1, 2.

We first fix the marginal overall rating probabilities P (Zk = 1) = 0.5, k =

1, . . . , K and compute the overall rating joint probabilities PZ = {P (Z1 = z1, . . . ,

ZK = zK), zk = 0, 1; k = 1, . . . , K} from {P (Zk = 1)} and Λ applying Gange’s

(1995) method. As in case 1, πx|1k is set to be 0.5 for all items x = 1, . . . , J and

strata k = 1, . . . , K. The marginal probabilities {πx|2k} are computed from the

given common odds ratio Ψ. Given a specific overall rating configuration z =

(z1, . . . , zK), the joint distribution PW|z = {P (W1,1 = w1,1, . . . , WJ,1 = wJ,1, . . . , W1,K =

w1,K , . . . , WJ,K = wJ,K|z),wx,k = 0, 1; x = 1, . . . , J ; k = 1, . . . , K} can be computed

from {πx|ak}, θ and Γ using Gange’s method. The 2K possible overall ratings con-

figurations result in 2K different joint distributions PW|z, which are all computed

in advance.

Then we draw Nk = N samples from the overall rating joint distribution PZ.

Now, given such a realisation z, we can sample one vector of length J · K from

PW|z. Then we separate each of the vectors of length JK into K vectors of length

J , such that the kth vector of length J represents the items of rater k. For instance,

for J = 2, if the kth vector is (0, 1), then it says that rater k selects item 2, but not

item 1. We draw samples from PZ in order to incorporate some dependency in

the overall rating between raters.

In case 2, it is not feasible to sample sparse data with a large number of strata

(K >> 5). Choosing K = 5 and J = 2, we already get 2JK = 210 = 1024 joint

probabilities in PW|z for each overall ratings configuration z. Increasing J or K
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creates a problem with a huge number of joint probabilities which is infeasible

for most computers. In total, we simulate n = 20000 datasets under a variety

of configurations. For the bootstrap method, we use the number of bootstrap

resamples as B = 400. Table 2.7 presents the results using the same notation as in

Table 2.6.

Results Table 2.6 shows that the MH approach performs better than the GEE

approach, especially when Nk is small. Also, GEE often fails to converge for

extremely sparse data, e.g., Nk = 5. The convergence problem occurs when the

number of parameters increases with the number of strata. In contrast, Table 2.7

shows that GEE provides better estimates for high dependence (Γ ≥ 4) between

strata, whereas for low dependence (Γ = 2) the MH approach still performs as

well as GEE.

When we compare the bootstrap with the formulae (co)variances, we can say

the following: Under independence of strata the formulae (co)variance and boot-

strap (co)variance behave similarly. For the dependent strata case, the bootstrap

(co)variance is better than the formulae (co)variance. Only for a few configu-

rations (Γ = 2) the formulae (co)variance is still quite good and similar to the

bootstrap (co)variance despite the violation of the naive independence assump-

tion.

Comparing the (co)variance estimates for GEE, we see that the robust (co)-

variance is generally better than the naive as expected, because the naive (co)-

variance assumes that the correlation structure chosen is the correct one. In case 1,

the dependence only occurs across 2 different items. Since 2 items only require 1

correlation parameter and the choice of working correlation structure “exchange-

able” is then automatically correct, the naive and robust (co)variances perform
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Table 2.7: GMH and GEE Results of the simulation study for dependent strata
with Ψ = 4 (log(4) = 1.3863), θ = 4 , n = 20000 and B = 400

mean Var(L/γ̂)112, Var(L/γ̂)212, Cov{(L/γ̂)212, (L/γ̂)212}
(L1

12, L
1
12)GMH

10·mseGMH
10·empGMH

10·formulaeGMH
10·BTGMH

K,Nk,Λ,Γ (γ̂1
12, γ̂

2
12)GEE

10·mseGEE
10·empGEE

10·robustGEE
10·naiveGEE

(1)2, 50, 2, 2 1.434, 1.431 2.41, 2.40 2.39, 2.38, 0.728 2.24, 2.24, 0.607 2.64, 2.63, 0.749
(1) 1.446, 1.442 2.44, 2.43 2.40, 2.40, 0.717 2.27, 2.27, 0.628 2.23, 2.22, 0.358
(4)2, 50, 2, 4 1.427, 1.432 2.57, 2.55 2.56, 2.53, 0.830 2.24, 2.25, 0.605 2.73, 2.74, 0.835
(4) 1.439, 1.445 2.36, 2.37 2.33, 2.33, 0.600 2.15, 2.16, 0.521 2.11, 2.12, 0.454
(4)2, 50, 4, 2 1.434, 1.426 2.48, 2.46 2.46, 2.44, 0.779 2.24, 2.24, 0.607 2.70, 2.68, 0.802
(4) 1.448, 1.440 2.53, 2.48 2.49, 2.45, 0.779 2.33, 2.32, 0.681 2.30, 2.29, 0.432
(2)2, 50, 4, 9 1.443, 1.443 2.86, 2.94 2.83, 2.90, 1.148 2.28, 2.28, 0.591 3.04, 3.05, 1.105
(2) 1.449, 1.448 2.34, 2.36 2.30, 2.32, 0.595 2.12, 2.12, 0.469 2.09, 2.09, 0.640

2, 100, 2, 2 1.411, 1.411 1.13, 1.13 1.13, 1.12, 0.347 1.07, 1.07, 0.301 1.17, 1.17, 0.349

1.417, 1.418 1.12, 1.13 1.12, 1.12, 0.334 1.08, 1.08, 0.310 1.05, 1.05, 0.174

2, 100, 2, 9 1.411, 1.409 1.22, 1.25 1.22, 1.25, 0.451 1.07, 1.07, 0.298 1.28, 1.28, 0.446

1.414, 1.412 0.96, 0.98 0.96, 0.97, 0.183 0.93, 0.93, 0.164 0.92, 0.92, 0.243

2, 100, 4, 2 1.408, 1.410 1.15, 1.13 1.15, 1.13, 0.359 1.07, 1.07, 0.301 1.19, 1.19, 0.373

1.415, 1.417 1.15, 1.15 1.14, 1.14, 0.354 1.10, 1.10, 0.336 1.08, 1.08, 0.210

2, 100, 4, 4 1.411, 1.407 1.21, 1.20 1.21, 1.19, 0.429 1.07, 1.07, 0.298 1.26, 1.26, 0.435

1.416, 1.412 1.12, 1.09 1.11, 1.09, 0.320 1.07, 1.07, 0.299 1.04, 1.04, 0.269
(5)5, 20, 2, 2 1.444, 1.441 2.88, 2.79 2.84, 2.76, 0.990 2.40, 2.39, 0.620 3.18, 3.19, 0.978
(34) 1.500, 1.499 2.91, 2.94 2.78, 2.81, 0.830 2.46, 2.47, 0.663 2.50, 2.51, 0.302
(32)5, 20, 2, 9 1.458, 1.462 3.93, 3.83 3.87, 3.78, 1.852 2.50, 2.50, 0.565 4.02, 4.03, 1.705
(66) 1.497, 1.500 2.78, 2.69 2.66, 2.56, 0.628 2.30, 2.30, 0.488 2.02, 2.02, 0.394
(8)5, 20, 4, 2 1.442, 1.445 3.07, 3.12 3.03, 3.09, 1.203 2.40, 2.41, 0.617 3.37, 3.40, 1.179
(41) 1.500, 1.503 3.09, 3.14 2.96, 3.01, 1.016 2.59, 2.60, 0.805 2.67, 2.67, 0.454
(48)5, 20, 4, 9 1.467, 1.463 4.55, 4.42 4.49, 4.36, 2.447 2.55, 2.53, 0.549 4.67, 4.67, 2.317
(91) 1.500, 1.497 2.99, 2.93 2.86, 2.80, 0.875 2.53, 2.52, 0.701 2.22, 2.19, 0.596

5, 100, 2, 2 1.396, 1.392 0.48, 0.47 0.48, 0.47, 0.175 0.42, 0.42, 0.120 0.48, 0.48, 0.169

1.407, 1.404 0.44, 0.44 0.44, 0.43, 0.131 0.43, 0.43, 0.124 0.41, 0.41, 0.054

5, 100, 2, 4 1.397, 1.393 0.54, 0.54 0.54, 0.53, 0.233 0.42, 0.42, 0.119 0.54, 0.54, 0.231

1.407, 1.403 0.42, 0.41 0.41, 0.41, 0.103 0.40, 0.40, 0.101 0.37, 0.37, 0.063

5, 100, 4, 2 1.396, 1.391 0.52, 0.51 0.52, 0.51, 0.213 0.42, 0.42, 0.119 0.51, 0.51, 0.205

1.407, 1.402 0.47, 0.46 0.47, 0.46, 0.160 0.45, 0.45, 0.150 0.44, 0.44, 0.081

5, 100, 4, 4 1.396, 1.397 0.61, 0.62 0.61, 0.61, 0.305 0.42, 0.42, 0.118 0.62, 0.62, 0.305

1.405, 1.406 0.45, 0.46 0.45, 0.46, 0.143 0.44, 0.44, 0.137 0.40, 0.40, 0.097

The value in parentheses is the number of datasets having the sampling zero problem

(which are not included)
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quite similarly. In case 2, dependence occurs across different items and strata.

The performance of the naive (co)variance becomes poor, simply because the “ex-

changeable” structure now deviates severely from the actual correlation structure

of the simulated data.

Most software, like R, only offer simple choices such as “exchangeable”, “un-

structured”, “independence” for all observations and ratings, and one cannot

match the exact correlation structure as in our simulation study. The “exchange-

able” structure is the most common one, because it incorporates fewer parameters

which results in fewer convergence problems.

2.6 Influence Measure

Like the ordinary MH method, one uses the generalised MH estimators when

the conditional association between row and column variables remains the same

across strata. For multiple responses with J items, we might consider whether

homogeneity holds for each of the items simultaneously. One possible way to

check the homogeneity uses model fitting. Agresti and Liu (2001) proposed fitting

a logit model assuming homogeneity and then to test the goodness-of-fit for the

model. It is plausible only when the strata are independent.

However, when the heterogeneity is not severe, the generalised MH estima-

tors still provide a useful descriptive summary of the conditional associations. It

might be still important to find out which stratum is “different” from the others.

We apply a diagnostics strategy given by Liu and Wang (2007) to the multiple

response data. Their influence measure has a similar form to the Cook’s distance

(Cook 1977)

CD(β)[d] =
(β̂ − β̂[d])

T Ĉov(β̂)−1(β̂ − β̂[d])

p
, (2.17)
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where β̂ is a vector of parameter estimates based on all data points; β[d] is a vec-

tor of parameter estimates with the set d of observations deleted; Ĉov(β̂) is the

estimate of the covariance matrix for β̂; and p is the dimension of β. This influ-

ence measure evaluates the difference in estimates due to the deletion. Relatively

large values of CD(β)[d] indicate a high influence of the set d of deleted observa-

tions and indicate that they may not follow the given model and/or yield false

estimates.

For the generalised MH estimators (2.4), we use (2.17) to find the detail of the

heterogeneity across strata for all J items. In β, we only need to include J(r − 1)

non-redundant parameters. The others are a linear combination of these J(r − 1)

parameters, because of the property of the odds ratios where L̄x
ab + L̄x

bc = L̄x
ac for

all a, b, c = 1, . . . , r and x = 1, . . . , J . We let β̂ = (L̄T
12, . . . , L̄

T
1r)

T , where L̄ab =

(L̄1
ab, . . . , L̄

J
ab)

T . Let β̂[d] be the generalised MH estimates when the dth stratum is

deleted. The covariance Cov(β̂) is obtained by the bootstrap method. Subsection

2.8.2 on page 88 shows that any set of J(r − 1) non-redundant parameters results

in the same value of CD(β)[d].

To determine the heterogeneity between raters in the Linguistics example, Fig-

ure 2.1 shows that the second and the third raters have relatively high values of

influence measure. This might suggest that the association between rating and

items for these two raters differ from the others. When the study is interested

in the differences among raters, the influence measure provides a basis for fur-

ther investigation. The UTI example is not applicable because there are only two

strata.
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Figure 2.1: Influence Measure for the Linguistics example with single strata
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2.7 Conclusion

In this chapter, we use both the model-based (GEE) and non-model-based (MH)

approach to evaluate the conditional associations between row and column vari-

ables for each of the items for stratified multiple responses. The model-based

approach is suitable if one is interested in the model selection in order to find the

relationship between the item responses and explanatory variables. For highly

sparse data (K large, but Nk small), it might result in convergence problems.

However, if one is particularly interested in the conditional association between

the item and the explanatory variable given the strata, the MH-type estimators

evaluate the association directly. From the simulation studies, the model-based
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and non-model-based approach agree with each other.

We give two examples in this paper. The UTI example has independent strata

and the linguistic example has dependent strata. For the MH approach with inde-

pendent strata, Greenland (1989) provided dually consistent variance and covari-

ance estimators for single items, whereas we derived dually consistent covariance

estimators between items. For dependent data the bootstrap method provides an

easy and plausible way to estimate variances and covariances. It also performs

similarly well as the formulae estimates for the independent strata cases.

The deletion influence measure provides a way to evaluate the heterogeneity

across strata. Even though it cannot be used directly to test whether the homo-

geneity assumption holds, it gives a rough idea of the level of heterogeneity.

The proposed MH methods are non-model-based, because we use the Mantel-

Haenszel type method. It gives a clear description of the relationship when one

focuses on evaluating the conditional association between two variables for each

of the items. In general, if the multiple response data has many explanatory vari-

ables (> 3), it is more appropriate to describe the relationship among all of them

using a model as proposed by Agresti and Liu (2001). However, their models are

applicable only for the cases with independent strata.

The linguistic example is a case of multilevel data where there is a hierarchical

correlated structure to the data. The responses are correlated within each of the

J items; and within each item, the responses are correlated within each of the K

raters. Besides the GEE and MH methods, a generalised linear mixed model can

also be used for analysing the multilevel data. Fitzmaurice, Laird and Ware (2004)

discuss the multilevel generalised linear mixed model. Unfortunately, using the

existing software it is not easy to implement the multilevel generalised linear

mixed model. Users need to write their own programs for this.



CHAPTER 2. THE ANALYSIS OF STRATIFIED MULTIPLE RESPONSES 72

Section 6.5 discusses in detail generalised linear mixed model (GLMM) and

describes several algorithms to fit such a model. This gives the reader some im-

pression of the implementation issues he might face when considering a multi-

level GLMM. Effects obtained from a GLMM tend to be larger in absolute value

than the effects from a GLM or GEE, but so do the standard errors. Therefore

messages regarding significance are similar (Agresti and Liu 2001). We expect

results from such a multilevel GLMM to be as useful and applicable as the results

from the GEE method and the MH approach are, which are considered only in

this thesis.

2.8 Proofs

This section provides the missing proofs of the previous sections. In Subsection

2.8.1, we prove the dual consistency of the covariance estimators defined by (2.8),

(2.9) and (2.12) on page 51. Then in Subsection 2.8.2, we show a proof for the

choice of the influence measure defined in Section 2.6 on page 68.

2.8.1 Proof Covariance Estimators

Preliminaries

Let Vara, Cova and E
a denote the asymptotic variances, covariances and expecta-

tions, whereas Var, Cov and E are the standard variances, covariances and expec-

tations. For convenience we define XA := X10
xy|ak, XB := X01

xy|ak, XC := X11
xy|ak,

XD := X00
xy|ak to avoid confusion with the indices s, t ∈ {0, 1}, similarly the

πst’s.The number of positive and negative responses were defined as Xx|ak and

X̄x|ak, similarly the probabilities.
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We will often suppress subscripts a and k for convenience. We can express πA,

πB and πD in terms of πx|ak, πy|ak and πC

πA = πx − πC

πB = πy − πC

πD = 1 − πA − πB − πC = 1 − πx − πy + πC , (2.18)

similarly the X ′s but replacing 1 with n in the last line of equation (2.18).

Also let n′
ak := nak −1. We assume Xak = (X00

xy|ak, X
01
xy|ak, X

10
xy|ak, X

11
xy|ak) follows

a multinomial distribution with parameters nak and πak = (π00
xy|ak, π

01
xy|ak, π

10
xy|ak, π

11
xy|ak);

hence, EX2 = nn′π2 + nπ and EXxXy = nn′πxπy (x 6= y).

We compute

EXxXy = E(XA + XC)(XB + XC) = EX2
C + EXAXB + EXAXC + EXBXC

= nn′π2
C + nπC + nn′πAπB + nn′πAπC + nn′πBπC

= nn′(π2
C + πAπB + πAπC + πBπC) + nπC

= nn′(πA + πC)(πB + πC) + nπC

= nn′πxπy + nπC . (2.19)

Using this we find

EXxX̄y = EXx(n − Xy)

= nEXx − EXxXy = n2πx − nn′πxπy − nπC

= nn′πxπ̄y + n(πx − πC)

= nn′πxπ̄y + nπA.
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Similarly for EX̄xXy:

EX̄xX̄y = E(n − Xx)(n − Xy)

= n2 − nEXx − nEXy + EXx(n − Xy)

= n2 − n2πx − n2πy + nn′πxπy + nπC

= nn′(1 − πx − πy + πxπy) + n(1 − πx − πy + πC)

= nn′π̄xπ̄y + nπD.

We summarise

EXxXy = nn′πxπy + nπ11
xy

EXxX̄y = nn′πxπ̄y + nπ10
xy

EX̄xXy = nn′π̄xπy + nπ01
xy

EX̄xX̄y = nn′π̄xπ̄y + nπ00
xy. (2.20)

Next, we list some useful theorems.

Theorem 2.8.1 (Slutsky’s Theorem). Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be random

variables on a probability space. Suppose that Xn →d X and Yn→dc, where c is a fixed

real number. Then (i) Xn + Yn→dX + c, (ii)Xn · Yn→dX · c, (iii) Xn/Yn→dX/c.

Theorem 2.8.2 (Chebyshev weak law of large numbers). Let {Yn, n ≥ 1} be a ran-

dom variable with E|Yn|2 < ∞, and let Sn =
∑n

j=1 Yj . If {cn, n ≥ 1} is a sequence of

positive constants satisfying Var(Sn) = o(c2
n), then Sn−E(Sn)

cn
→p0.

Theorem 2.8.3 (Weak law of large numbers). Let {Yn, n ≥ 1} be a sequence of inde-

pendent and identically distributed random variables, each having a mean EYn = µ with

E|Yn|2 < ∞. Then 1
n

∑n
j=1 Yj converges in probability to its mean µ.
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Theorem 2.8.4 (Delta method). If
√

n(X̄ − µ) →d N(0,Σ) and g = (g1, . . . , gk)

is continuously differentiable in a neighbourhood of µ, then
√

n(g(X̄) − g(µ)) →d

N(0,BTΣB) where B is the partial derivative matrix evaluated at µ.

Theorem 2.8.5 (Sen and Singer (1993, p.123)). Let {Xn} be sequence of random vec-

tors in R
p with mean vectors µn and finite covariance matrices Σn, n ≥ 1, such that

max
1≤i≤n

max
1≤j≤p

E|Xij − µij|2+δ < ∞ for some δ > 0

and

Σ = lim
n→∞

n−1
n∑

i=1

Σi

exists. Then n−1/2
∑n

i=1(Xi − µi) →d Np(0,Σ).

Theorem 2.8.6 (Multivariate Central Limit Theorem (C.L.T.)). Let X1, . . . ,Xn with

Xi = (Xi1, . . . , Xik) be independent, identically distributed random vectors with mean

E(Xi) = µ and Var(Xi) = Σ. Then
√

n(X̄ − µ) →d N(0,Σ) with X̄ = 1/n
∑n

i=1 Xi.

Theorem 2.8.7 (Shao (1999, p.39, Theorem 1.8 (vii))). Let X1,X2, . . . be random

k-vectors. Suppose that Xn →d X. Then for any r > 0,

lim
n→∞

E(‖Xn‖r)
r = E(‖X‖r)

r < ∞

if and only if {(‖Xn‖r)
r} is uniformly integrable in the sense that

lim
t→∞

sup
n

E[(‖Xn‖r)
r1{‖Xn‖>t}] = 0,

where ‖a‖p denotes the usual p-norm of vector a = (a1, . . . , ak), for example ‖a‖2 =

(aT a)1/2 = (
∑k

i=1 a2
i )

1/2. Function 1{exp} is the indicator function and is one if expres-

sion exp is true and zero otherwise.
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Theorem 2.8.8 (Vaart and Wellner (1996, p.69)). Let f : D → R be a continuous at

every point in set D0 ⊂ D, where D is a metric space. Let Xn →d X , where X takes its

values in D0. If f(Xn) is uniformly integrable, then Ef(Xn) → Ef(X).

Derivation of Asymptotic Covariances and Variances

Let N =
∑

k Nk and as N → ∞ let Nαak = nak, where 0 < αak < 1. Thus

Nk =
∑

i nik = N
∑

i αik. Recall Lx
ab = log Ψ̂x

ab = log Cx|ab/Cx|ba.

We can write

Ψ̂x
ab − Ψx

ab =
Cx|ab − Ψx

abCx|ba
Cx|ba

=
(Cx|ab − Ψx

abCx|ba)/M

Cx|ba/M
=

Ωx|ab/M

Cx|ba/M
. (2.21)

with ωx|abk := cx|abk − Ψx|abcx|bak and Ω =
∑

k ωk. Notation M can stand for either

N or K.

First we consider the asymptotics for Cx|ab under both limiting models. The

term cx|ab is a bounded random variable under Model II, hence, the variance of

Cx|ab is o(K2). We apply the Chebyshev weak law of large numbers and have

Cx|ab/K =

K∑

k=1

cx|ab/K
K→∞−→ lim

K→∞

K∑

k=1

Ecx|ab/K = lim
K→∞

ECx|ab/K. (2.22)

This limit is finite and nonzero. Under model I

Cx|ab/N =
K∑

k=1

cx|ab/N =
K∑

k=1

Xx|akX̄x|bk/(NkN)

=

K∑

k=1

naknbk

NkN

Xx|ak

nak

X̄x|bk
nbk

=

K∑

k=1

naknbk

NN

N

Nk

Xx|ak

na

X̄x|bk
nb

N→∞−→
K∑

k=1

αakαbk(
∑

i

αik)
−1πx|akπ̄x|bk =

K∑

k=1

(
∑

i

α−1
ik )−1πx|akπ̄x|bk, (2.23)
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and for the term ECx|ab/N we derive

ECx|ab/N =
K∑

k=1

Ecx|abk/N =
K∑

k=1

EXx|akEX̄x|bk/(NkN)

=

K∑

k=1

naknbk

NkN
πx|akπx|bk =

K∑

k=1

naknbk

NN

N

Nk
πx|akπ̄x|bk

N→∞−→
K∑

k=1

αakαbk(
∑

i

αik)
−1πx|akπx|bk =

K∑

k=1

(
∑

i

α−1
ik )−1πx|akπ̄x|bk. (2.24)

The expectation splits into two due to the independence of rows a and b. Note

we use the equality αakαbk(
∑

i αik)
−1 = (

∑
i α

−1
ik )−1 for convenience, although it

is only true for r = 2. Hence we conclude by comparing (2.23) with (2.24) and

taking into account (2.22), that ECx|ab/M converges under both limiting models

to a constant limM→∞ ECx|ab/M

ECx|ab/M
M→∞−→ lim

M→∞
ECx|ab/M < ∞ with M ∈ {N, K}. (2.25)

We also have Ecx|ab = Ψx
abEcx|ba by the common odds ratio assumption (2.2), hence

lim
M→∞

ECx|ab/M = Ψx
ab lim

M→∞
ECx|ba/M with M ∈ {N, K}. (2.26)

Now we can write for both limiting models assuming that the asymptotic covari-

ances exist

lim
M→∞

M · Cova(Lx
ab, L

y
ac)

= 1/(Ψx
abΨ

y
ac) lim

M→∞
M · Cova(Ψ̂x

ab, Ψ̂
y
ac)

= 1/(Ψx
abΨ

y
ac)

limM→∞ M · Cova(Ωx|ab/M, Ωy|ac/M)

(limM→∞ ECx|ba/M)(limM→∞ ECy|ca/M)

=
limM→∞ M · Cova(Ωx|ab/M, Ωy|ac/M)

(limM→∞ ECx|ab/M)(limM→∞ ECy|ac/M)
with M ∈ {N, K}. (2.27)
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The first equality follows from the delta method (Theorem 2.8.4), the second from

(2.21), (2.25) and Slutsky’s theorem (Theorem 2.8.1), and the final equality follows

from (2.26).

“Sparse Data” Limiting Model First by independence of rows Cov(Ωx|ab, Ωy|cd) =
∑K

k=1 Cov(ωx|ab, ωy|cdk). We will use either expression dependent on which is

more convenient. Note that E|ωx|abk − Eωx|abk|3 = E|ωx|abk|3 = O(1) , because

cx|abk is a bounded random variable under model II. By setting δ = 1, we con-

clude from Theorem 2.8.5 that K−1/2 (Ωx|ab, Ωy|ac) =
√

K(Ωx|ab/K, Ωy|ac /K) con-

verges to a zero mean multivariate normal distribution with covariance limK→∞

1
K

∑K
k=1 Cov(ωx|abk, ωy|ack), by noting that Eωabk = 0 and Cov(ωx|ab, ωy|ac) exists.

We can write

lim
K→∞

K · Cova(Ωx|ab/K, Ωy|ac/K) = lim
K→∞

1

K

K∑

k=1

Cov(ωx|abk, ωy|ack). (2.28)

“Large Stratum” Limiting Model Under model I,
√

N(Ωx|ab/N, Ωy|ac/N) con-

verges by the delta method (Theorem 2.8.4) to a zero mean multivariate normal

distribution with covariance V , because Ωx|ab is a function of the sample propor-

tions, which converge by the central limit theorem (C.L.T.) to a normal distribu-

tion. The delta method provides an explicit formula for this asymptotic variance

V . We want to show now that V [= limN→∞ N · Cova( 1
N

Ωx|ab,
1
N

Ωy|ac)] is identical

to limN→∞ N · Cov( 1
N

Ωx|ab,
1
N

Ωy|ac), that is

V ≡ lim
N→∞

N · Cov(
1

N
Ωx|ab,

1

N
Ωy|ac)

[
= lim

N→∞

1

N

K∑

k=1

Cov(ωx|abk, ωy|ack)

]
. (2.29)

Let Xn and Yn be a sequence of random variables (r.v.). If Xr
n is uniformly inte-

grable, so is Xs
n with s < r, or more generally, if Xn ≤ Y and Y is uniformly
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integrable, then Xn is also uniformly integrable. We can formulate the following

Lemma.

Lemma 1. Let (Xn, Yn) →d (X, Y ) with EX2
n < ∞ and EY 2

n < ∞. If X2
n and Y 2

n are

uniformly integrable, then Cov(Xn, Yn) converges to Cov(X, Y ).

Proof. Without loss of generality (w.l.o.g.) EXn = EYn = 0. From |Xn · Yn| > t

follows |Xn| >
√

t or |Yn| >
√

t, hence, 1{|Xn·Yn|>t} ≤ 1{|Xn|>
√

t} + 1{|Yn|>
√

t}. Define

X̃n := |Xn| · 1{|Xn|>
√

t} and Ỹn := |Yn| · 1{|Yn|>
√

t}. From the uniform integrability

of X2
n and Y 2

n and Theorem 2.8.7 follows that supn EX̃n, supn EỸn, supn Var(X̃n)

and supn Var(Ỹn) converge to zero (as t goes to infinity so does
√

t), and that

supn Var(|Xn|), supn Var(|Yn|), E|Xn| and E|Yn| are finite.

We have

sup
n

E|Xn · Yn| · 1{|Xn·Yn|>t}

≤ sup
n

E|Xn · Yn|
(1{|Xn|>

√
t} + 1{|Yn|>

√
t}

)
= sup

n

[
E|Xn| · Ỹn + EX̃n · |Yn|

]

≤ sup
n

E|Xn| · Ỹn + sup
n

EX̃n · |Yn|

≤ sup
n

(Var(|Xn|))1/2 · (Var(Ỹn))1/2 + sup
n

E|Xn| · EỸn

+ sup
n

(Var(X̃n))1/2 · (Var(|Yn|))1/2 + sup
n

EX̃n · E|Yn|

t→∞−→ sup
n

(Var(Xn))1/2 · 0 + sup
n

E|Xn| · 0 + 0 · sup
n

(Var(Yn))
1/2 + 0 · E|Yn| = 0.

From |E(|Xn| · Ỹn) − (E|Xn| · EỸn)| = |Cov(|Xn|, Ỹn)| ≤ Var(|Xn|)1/2 · Var(Ỹn)1/2

and E|Xn| · EỸn ≥ 0 follows that

E(|Xn| · Ỹn) = |(E|Xn| · Ỹn)| ≤ Var(|Xn|)1/2 · Var(Ỹn)
1/2 + E|Xn| · EỸn,

that is line 4, similarly line 5. We showed the uniform integrability of f(Xn, Yn)
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with f(a, b) = a·b. By Theorem 2.8.8 and using that R
2 is a metric space, Ef(Xn, Yn) =

EXnYn = Cov(Xn, Yn) converges to Ef(X, Y ) = EXY = Cov(X, Y ).

Remark 2.8.9. Given (Xn, Yn) →d (X, Y ), it would be very suprising if Var(Xn) →

Var(X) and Var(Yn) → Var(Y ) (which follows from the uniform integrability of

X2
n and Y 2

n with EX2
n < ∞ and EY 2

n < ∞) but Cov(Xn, Yn) 9 Cov(X, Y ).

Later in Chapter 3, see Remark 3.3.2 on page 98, we show the uniform in-

tegrability of (
√

N · Ωx|ab/N)2 = (N−1/2 · Ωx|ab)
2. It follows from Lemma 1 that

Cov(N−1/2 · Ωx|ab, N
−1/2 · Ωy|ac) converges to limN→∞ Cova(N−1/2 · Ωx|ab, N

−1/2 ·

Ωy|ac), or equivalently N · Cov( 1
N

Ωx|ab,
1
N

Ωy|ac) converges to V = limN→∞ N ·

Cova( 1
N

Ωx|ab,
1
N

Ωy|ac).

Asymptotic Covariance for Both Limiting Models We express the asymptotic

covariances for both limiting models expressed in equation (2.27) by using (2.28)

and (2.29) as

lim
M→∞

M · Cova(Lx
ab, L

y
ac) =

limM→∞
1
M

∑
k Cov(ωx|abk, ωy|ack)

(limM→∞
1
M

ECx|ab)(limM→∞
1
M

ECy|ac)
(2.30)

for M ∈ {K, N}.

Remark 2.8.10. If we want to compute the asymptotic variance for model I, we can

apply the delta method. However, we think these computations are more costly

than computing simply the limit of limN
1
N

∑
k Cov(ωx|abk, ωy|ack). The computa-

tion of Cov(ωx|abk, ωy|ack) is not cheap either, but is a by-product of the computa-

tion of the “sparse-data” limiting variance.
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Computation of Cov(ωx|abk, ωy|ack) Now we compute N2
k Cov(ωx|ab, ωy|ab) using

(2.20):

N2
k Cov(cx|ab − Ψx

abcx|ba, cy|ab − Ψy
abcy|ba)

= E(cx|ab − Ψx
abcx|ba)(cy|ab − Ψy

abcy|ba) − E(cx|ab − Ψx
abcx|ba)E(cy|ab − Ψy

abcy|ba)

= E(cx|ab − Ψx
abcx|ba)(cy|ab − Ψy

abcy|ba)

= Ecx|abcy|ab − Ψx
abcx|bacy|ab − Ψy

abEcx|abcy|ba + Ψx
abΨ

y
abEcx|bacy|ba

= EXx|aXy|aEX̄x|bX̄y|b − Ψx
abEX̄x|aXy|aEXx|bX̄y|b

− Ψy
abEXx|aX̄y|aEX̄x|bXy|b + Ψx

abΨ
y
abEX̄x|aX̄y|aEXx|bXy|b

= nanb{(n′
aπx|aπy|a + π11

xy|a)(n
′
bπ̄x|bπ̄y|b + π00

xy|b)

− Ψx
ab(n

′
aπ̄x|aπy|a + π01

xy|a)(n
′
bπx|bπ̄y|b + π10

xy|b)

− Ψy
ab(n

′
aππ|aπ̄y|a + π10

xy|a)(n
′
bπ̄x|bπy|b + π01

xy|b)

+ Ψx
abΨ

y
ab(n

′
aπ̄x|aπ̄y|a + π00

xy|a)(n
′
bπx|bπy|b + π11

xy|b)}

= nanb{n′
an

′
b(πx|aπy|aπ̄x|bπ̄y|b − Ψx

abπ̄x|aπy|aπx|bπ̄y|b

− Ψy
abπx|aπ̄y|aπ̄x|bπy|b + Ψx

abΨ
y
abπ̄x|aπ̄y|aπx|bπy|b)

+ n′
a(πx|aπy|aπ

00
xy|b − Ψx

abπ̄x|aπy|aπ
10
xy|b − Ψy

abππ|aπ̄y|aπ
01
xy|b + Ψx

abΨ
y
abπ̄x|aπ̄y|aπ

11
xy|b)

+ n′
b(π

11
xy|aπ̄x|bπ̄y|b − Ψx

abπ
01
xy|aπx|bπ̄y|b − Ψy

abπ
10
xy|aπ̄x|bπy|b + Ψx

abΨ
y
abπ

00
xy|aπx|bπy|b)

+ (π11
xy|aπ

00
xy|b − Ψx

abπ
01
xy|aπ

10
xy|b − Ψy

abπ
10
xy|aπ

01
xy|b + Ψx

abΨ
y
abπ

00
xy|aπ

11
xy|b)}

= nanbn
′
an

′
bπx|aπy|aπ̄x|bπ̄y|b(+1 − 1 − 1 + 1)

+ nanb{n′
a(πx|aπy|aπ

00
xy|b − Ψx

abπ̄x|aπy|aπ
10
xy|b − Ψy

abππ|aπ̄y|aπ
01
xy|b + Ψx

abΨ
y
abπ̄x|aπ̄y|aπ

11
xy|b)

+ n′
b(π

11
xy|aπ̄x|bπ̄y|b − Ψx

abπ
01
xy|aπx|bπ̄y|b − Ψy

abπ
10
xy|aπ̄x|bπy|b + Ψx

abΨ
y
abπ

00
xy|aπx|bπy|b)

+ (π11
xy|aπ

00
xy|b − Ψx

abπ
01
xy|aπ

10
xy|b − Ψy

abπ
10
xy|aπ

01
xy|b + Ψx

abΨ
y
abπ

00
xy|aπ

11
xy|b)}

= N2
k{d11

xy|ab − Ψx
abd

01
xy|ab − Ψy

abd
10
xy|ab + Ψx

abΨ
y
abd

00
xy|ab}
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with

dst
xy|ab =

nanb

N2
k

{n′
aπ

s
x|aπ

t
y|aπ

s̄t̄
xy|b + n′

bπ
s̄
x|bπ

t̄
y|bπ

st
xy|a + πs̄t̄

xy|aπ
st
xy|b}, (2.31)

where π1
x|a := πx|a and π0

x|a := π̄x|a with s̄ := 1 − s. The second equality follows

from E(cx|ab − Ψx
abcx|ba) = 0 and the 7th from πx|aπy|aπ̄x|bπ̄ = Ψx

abπ̄x|aπy|aπx|bπ̄y|b =

Ψy
abπx|aπ̄y|aπ̄x|bπy|b = Ψx

abΨ
y
abπ̄x|aπ̄y|aπx|bπy|b by the assumption of a common odds

ratio.

Similarly we obtain

N2
k Cov(cx|ab − Ψx

abcx|ba, cy|ac − Ψy
accy|ca)

= E(cx|ab − Ψx
abcx|ba)(cy|ac − Ψy

accy|ca)

= Ecx|abcy|ac − Ψx
abcx|bacy|ac − Ψy

acEcx|abcy|ca + Ψx
abΨ

y
acEcx|cacy|ca

= EXx|aXy|aEX̄x|bEX̄y|c − Ψx
abEX̄x|aXy|aEXx|bEX̄y|c

− Ψy
abEXx|aX̄y|aEX̄x|bEXy|c + Ψx

abΨ
y
abEX̄x|aX̄y|aEXx|bEXy|c

= nanbnc{(n′
aπx|aπy|a + π11

xy|a)π̄x|bπ̄y|c − Ψx
ab(n

′
aπ̄x|aπy|a + π01

xy|a)πx|bπ̄y|b

− Ψy
ab(n

′
aππ|aπ̄y|a + π10

xy|a)π̄x|bπy|b + Ψx
abΨ

y
ab(n

′
aπ̄x|aπ̄y|a + π00

xy|a)πx|bπy|b}

= nanbnc{π11
xy|aπ̄x|bπ̄y|c − Ψx

abπ
01
xy|aπx|bπ̄y|c − Ψy

abπ
10
xy|aπ̄x|bπy|c + Ψx

abΨ
y
abπ

00
xy|aπx|bπy|c}

+ πx|aπy|aπ̄x|bπ̄y|c{+1 − 1 − 1 + 1}

= N2
k{d11

abc − Ψx
abd

01
abc − Ψy

abd
10
abc + Ψx

abΨ
y
abd

00
abc}

with

dst
abc =

nanbnc

N2
k

πst
xy|aπ

s̄
x|bπ

t̄
y|c.
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If indices a, b, c, d are all distinct, Cov(ωx|abk, ωy|cdk) = 0 owing to the indepen-

dence of rows.

Now we write using (2.26) and D representing
∑

k d

lim
M→∞

M · Cova(Lx
ab, L

y
ab)

=
limM→∞

1
M
{D11

ab − Ψx
abD

01
ab − Ψy

abD
10
ab + Ψx

abΨ
y
abD

00
ab}

limM→∞
1
M

ECx|ab limM→∞
1
M

ECy|ab

=
lim 1

M
D11

ab

lim 1
M

ECx|ab
1
M

ECy|ab

− lim 1
M

D01
ab

lim 1
M

ECx|ba
1
M

ECy|ab

− lim 1
M

D10
ab

lim 1
M

ECx|ab
1
M

ECy|ba
+

lim 1
M

D00
ab

lim 1
M

ECx|ba
1
M

ECy|ba
. (2.32)

Similarly,

lim
M→∞

M · Cova(Lx
ab, L

y
ac)

=
lim 1

M
D11

abc

lim 1
M

ECx|abc
1
M

lim ECy|ab

− lim 1
M

D01
abc

lim 1
M

ECx|ba lim 1
M

ECy|ab

− lim 1
M

D10
abc

lim 1
M

ECx|ab
1
M

lim ECy|ba
+

lim 1
M

D00
abc

lim 1
M

ECx|ba lim 1
M

ECy|ba
. (2.33)

Dual Consistency of Covariance Estimators

The estimators Uxy|abb and Uxy|abc for Cov(Lx
ab, L

y
ab) and Cov(Lx

ab, L
y
ac), respectively,

are defined by (2.8) and (2.9) and the d̂’s estimating the d’s by (2.10) and (2.11).

Next we show that Uxy|abb and Uxy|abc are dually consistent, hence, we must show

that limM→∞ M ·Uxy|ab = limM→∞ M ·Cov(Lx
ab, L

y
ab) and limM→∞ Uxy|abc = limM→∞ M ·

Cov(Lx
ab, L

y
ac).

We can write

lim
M→∞

M · Uxy|abb
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=
lim 1

M
D̂ab

lim 1
M

Cx|ab lim 1
M

Cy|ab

− lim 1
M

D̂x
ab

lim 1
M

Cx|ba lim 1
M

Cy|ab

− lim 1
M

D̂y
ab

lim 1
M

Cx|ab lim 1
M

Cy|ba
+

lim 1
M

D̂xy
ab

lim 1
M

Cx|ba lim 1
M

Cy|ba
, (2.34)

similarly,

lim
M→∞

M · Uxy|abc

=
lim 1

M
D̂abc

lim 1
M

Cx|ab lim 1
M

Cy|ac

− lim 1
M

D̂x
abc

lim 1
M

Cx|ba lim 1
M

Cy|ac

− lim 1
M

D̂y
abc

lim 1
M

Cx|ab lim 1
M

Cy|ca
+

lim 1
M

D̂xy
abc

lim 1
M

Cx|ba lim 1
M

Cy|ca
. (2.35)

Comparing (2.34) and (2.35) with (2.32) and (2.33), it remains to show

lim
M→∞

1

M
d̂st = lim

M→∞

1

M
dst. (2.36)

Sparse Strata

We have

Ed̂st
ab =

1

N2
k

{EXs
x|aX

t
y|aX

s̄t̄
xy|b + EXst

xy|aX
s̄
x|bX

t̄
y|b − EXst

xy|aX
s̄t̄
xy|b}

=
1

N2
k

{EXs
x|aX

t
y|aEX s̄t̄

xy|b + EXst
xy|aEX s̄

x|bX
t̄
y|b − EXst

xy|aEX s̄t̄
xy|b}

=
1

N2
k

{(nan
′
aπ

s
x|aπ

t
y|a + naπ

st
xy|a)π

s̄t̄
xy|b + πst

xy|a(nbn
′
bπ

s̄
x|bπ

t̄
y|b + nbπ

s̄t̄
xy|b) − πst

xy|aπ
s̄t̄
xy|b}

=
nanb

N2
k

{n′
aπ

s
x|aπ

t
y|aπ

s̄t̄
xy|b + n′

bπ
st
xy|aπ

s̄t̄
xy|b + πst

xy|aπ
s̄t̄
xy|b}

= dst
ab
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and

Ed̂st
abc =

1

N2
k

EXst
xy|aX

s̄
x|bX

t̄
y|c =

1

N2
k

nanbncπ
st
xy|aπ

s̄
x|bπ

t̄
y|c = dst

abc.

By the Chebyshev law of large numbers we conclude

∑
k d̂st

K

K→∞−→ p

∑
k Ed̂st

K
=

∑
k dst

K

which was to be shown.

Large Strata:

As before, we consider the case N → ∞ with Nαik = nik and 1 > αik > 0. We

compute

dst
xy|ab/N =

nanb

N2
kN

{n′
aπ

s
x|aπ

t
y|aπ

s̄t̄
xy|b + n′

bπ
s̄
x|bπ

t̄
y|bπ

st
xy|a + πs̄t̄

xy|aπ
st
xy|b}

=
nanb

N2

N2
k

N2
{n′

a

N
πs

x|aπ
t
y|aπ

s̄t̄
xy|b +

n′
b

nb
πs̄

x|bπ
t̄
y|bπ

st
xy|a +

1

N
πs̄t̄

xy|aπ
st
xy|b}

N→∞−→ αaαb

(
∑

i αi)2
{αaπ

s
x|aπ

t
y|aπ

s̄t̄
xy|b + αbπ

s̄
x|bπ

t̄
y|bπ

st
xy|a + 0 · πs̄t̄

xy|aπ
st
xy|b

=
αaαb

(
∑

i αi)2
{αaπ

s
x|aπ

t
y|aπ

s̄t̄
xy|b + αbπ

s̄
x|bπ

t̄
y|bπ

st
xy|a},

d̂st
xy|ab/N =

1

N2
kN

{Xs
x|aX

t
y|aX

s̄t̄
xy|b + Xst

xy|aX
s̄
x|bX

t̄
y|b − Xst

xy|aX
s̄t̄
xy|b}

=
nanb

N2

N2

N2
k

{
na

N

Xs
x|a

na

X t
y|a

na

X s̄t̄
xy|b
nb

+
nb

N

Xst
xy|a
nb

X s̄
x|b

na

X t̄
y|b

nb
− 1

N

Xst
xy|a
na

X s̄t̄
xy|b
nb

}

N→∞−→ αaαb

(
∑

i αi)2
{αaπ

s
x|aπ

t
y|aπ

s̄t̄
xy|b + αbπ

s̄
x|bπ

t̄
y|bπ

st
xy|a + 0 · πs̄t̄

xy|aπ
st
xy|b

=
αaαb

(
∑

i αi)2
{αaπ

s
x|aπ

t
y|aπ

s̄t̄
xy|b + αbπ

s̄
x|bπ

t̄
y|bπ

st
xy|a},
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dst
abc/N =

nanbnc

N2
kN

πst
xy|aπ

s̄
x|bπ

t̄
y|c =

nanbnc

N3

N2

N2
k

πst
xy|aπ

s̄
x|bπ

t̄
y|c

N→∞−→ αaαbαc

(
∑

i αi)2
πst

xy|aπ
s̄
x|bπ

t̄
y|c

and

d̂st
abc/N =

1

N2
kN

Xst
xy|aX

s̄
x|bX

t̄
y|c =

nanbnc

N3

N2

N2
k

Xst
xy|a
na

X s̄
x|b

nb

X t̄
y|c

nc

N→∞−→ αaαbαc

(
∑

i αi)2
πst

xy|aπ
s̄
x|bπ

t̄
y|c.

We just showed that limN→∞
1
N

dst
ab = limN→∞

1
N

d̂st
ab and limN→∞

1
N

dst
abc = limN→∞

1
N

d̂st
abc,

which is (2.36), thus Uxy|abb and Uxy|abc are dually consistent.

Derivation of Covariance Estimators for the Generalised Log Odds Ratio Esti-

mators

The common log odds ratio log Ψx
ab can be estimated by Lx

ab but more efficiently

by the generalised estimator L̄x
ab defined by (2.4) on page 48. The (co)variances

for the generalised estimator are computed from the (co)variances of the estima-

tors Lx
ab, because L̄x

ab is a linear combination of the Lx
ab and so are the covariances.

We prove now formula (2.12) on page 52, the (co)variance estimator for the gen-

eralised estimator L̄x
ab.

Cov(L̄x
ab, L̄

y
cd) = Cov(1/r

r∑

h=1

Lx
ah − Lx

bh, 1/r
r∑

i=1

Ly
ci − Ly

di)

= 1/r2
∑

h,i

{Cov(Lx
ah, L

y
ci) + Cov(Lx

bh, L
y
di) − Cov(Lx

ah, L
y
di) − Cov(Lx

bh, L
y
ci)}

= 1/r2
∑

i

{Cov(Lx
ai, L

y
ci) + Cov(Lx

bi, L
y
di) − Cov(Lx

ai, L
y
di) − Cov(Lx

bi, L
y
ci)}
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+ 1/r2
∑

h 6=i

{Cov(Lx
ah, L

y
ci) + Cov(Lx

bh, L
y
di) − Cov(Lx

ah, L
y
di) − Cov(Lx

bh, L
y
ci)}

= 1/r2{Uxy|+ac + Uxy|+bd − Uxy|+ad − Uxy|+bc}

+ 1/r2
∑

h 6=i

{Cov(Lx
ah, L

y
ci) + Cov(Lx

bh, L
y
di) − Cov(Lx

ah, L
y
di) − Cov(Lx

bh, L
y
ci)}

We express
∑

h 6=i Cov(Lx
ah, L

y
ci) as

∑

h,i
h6=i

Cov(Lx
ah, L

y
ci) =

∑

h
(i=a)

Cov(Lx
ah, L

y
ca) +

∑

i
(h=c)

Cov(Lx
ac, L

y
ci)

− Cov(Lx
ac, L

y
ca) +

∑

h,i
c 6=h6=i6=a

Cov(Lx
ah, L

y
ci)

=
∑

h
(i=a)

Cov(Lx
ah, L

y
ca) +

∑

i
(h=c)

Cov(Lx
ac, L

y
ci) − Cov(Lx

ac, L
y
ca).

(2.37)

The second equality follows from Cov(Lx
ai, L

y
ck) = 0 for distinct indices a, i, c, k,

because the rows are independent. Thus

∑

h,i
h6=i

Ĉov(Lx
ah, L

y
ci) = −Uxy|a+c − Uxy|ca+ + Uxy|ac. (2.38)

It follows

Ĉov(L̄x
ab, L̄

y
cd) =

1

r2
{U+

xy|ac − U+
xy|ad − U+

xy|bc + U+
xy|bd} (2.39)

with

U+
xy|ac =





Uxy|a++ =
∑

h,i Cov(Lx
ah, L

y
ai) , a = c

Uxy|+ac − Uxy|a+c − Uxy|ca+ + Uxy|ac , a 6= c



CHAPTER 2. THE ANALYSIS OF STRATIFIED MULTIPLE RESPONSES 88

For non-distinct indices a, b, c, d we obtain the following sub-cases

Ĉov(L̄x
ab, L̄

y
ac) =

1

r2
{U+

xy|a++ − U+
xy|ac − U+

xy|ba + U+
xy|bc} (2.40)

and

Ĉov(L̄x
ab, L̄

y
ab) =

1

r2
{Uxy|a++ − U+

xy|ab − U+
xy|ba + Uxy|b++}. (2.41)

2.8.2 Proof of Influence Measure

We want to show that the influence measure defined by (2.17) on page 68 with

β̂ = (L̄T
12, . . . , L̄

T
1r)

T

and L̄ab = (L̄1
ab, . . . , L̄

J
ab)

T is equal to the influence measure replacing β̂ by β̂
′
,

where β̂
′
contains any r − 1 independent vectors L̄ab with a 6= b; a, b ∈ {1, . . . , r}.

Every L̄ab, b > a > 1 can be re-expressed in terms of the vectors L̄1b in β̂ as

L̄ab = L̄1b − L̄1a, b > a > 1.

Therefore β̂
′
= Cβ̂, with an invertible matrix C having only elements −1, 0, and

+1. If C is not invertible, then β̂
′
does not contain r−1 independent vectors. This

relationship holds for both β and β[d].

Define y := β̂−Eβ̂ and it follows the covariance matrix can be written as Cov(β̂) =

EyyT , equivalently for β̂
′
. Also define x := β̂ − β̂[d] and x′ := β̂

′ − β̂
′
[d] and it fol-

lows x′ = Cx and y′ = Cy. We have

p · CD(β′)[d] = x′T (E(y′y′T ))−1x′

= (Cx)T (E((Cy)(Cy)T ))−1Cx
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= xTCT (CE(yyT )CT )−1Cx

= xTCT (CT )−1
E(yyT )−1C−1Cx

= p · CD(β[d])

using the real covariance matrix. Replacing the real covariance matrix by the

bootstrap estimate of covariance yields the same result.



Chapter 3

MH Estimators for Stratified

Multiple Response Data with Two

Independent Rows per Stratum

3.1 Introduction

For an ordinary 2 × 2 table the odds ratio is defined in terms of the four table

probabilities formed by the two rows and two columns. For r×J tables, there are
(

r
2

)
pairs of rows and

(
J
2

)
pairs of columns defining

(
r
2

)
·
(

J
2

)
odds ratios. However,

each of these odds ratios can be computed from the (r−1)× (J −1) local odds ratio

defined as (Agresti 2002, p.55)

Ψij =
πijπi+1,j+1

πi,j+1πi+1,j

,

where πij is the probability of selecting row i and column j. The local odds ratios

form a non-unique minimal set of odds ratios.

Now we want to consider such (local) odds ratios for stratified multiple re-

90
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sponse data. First we consider the case of K 2 × J tables and then generalise to

K r × J tables. We define the (local) odds ratio as

Ψxy|abk =
πx|akπy|bk
πy|akπx|bk

, (3.1)

where πx|ak is the probability of a positive response of item x = 1 . . . , J , row

a = 1, . . . , r and stratum k = 1, . . . , K. As before, we assume a common odds

ratio

Ψxy|ab = Ψxy|ab1 = Ψxy|ab2 = · · · = Ψxy|abK (3.2)

for all strata. The MH estimator (Mantel and Haenszel 1959) now has the follow-

ing form

Ψ̂xy|ab = Cxy|ab/Cyx|ab, (3.3)

where Cxy|ab =
∑K

k=1 cxy|abk, cxy|k = Xx|akXy|bk/Nk and Nk =
∑r

i=1 nik. Let us also

define Lxy|ab = log Ψ̂xy|ab. For two rows we simply suppress indices a = 1 and

b = 2, for example, we write Ψxy|k instead of Ψxy|12k. The kth odds ratio Ψxy|abk

describes the conditional relationship between two items and two rows, whereas

the kth odds ratio Ψx
abk defined by (2.2) on page 48 describes the conditional rela-

tionship between two rows and one item only.

In the next section (Sec. 3.2), we show that the MH estimator (3.3) is still dually

consistent under the assumptions of a common odds ratio and independent rows.

However, in general, the dually consistent covariance and variance estimators

proposed by Greenland (1989) are not applicable anymore. Then in Section 3.3,

we derive dually consistent variance and covariance estimators for Ψ̂xy and Lxy.

Section 3.4 derives generalised MH estimators for K 2 × J tables, and Section

3.5 considers the generalised MH estimators for the extended case of K r × J

tables. We focus in Section 3.6 on the UTI example to illustrate the newly defined
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MH estimators and its dually consistent (co-)variance estimators. The last section

(Sec. 3.7) finishes with a simulation study investigating the performance of the

various estimators.

3.2 Dual Consistency of the Ordinary MH Estimator

Let us use the same notations from the previous chapter. From (2.20) on page 74

we have

EXxXy = nn′πxπy + nπ11
xy, (3.4)

and we also recall the first two moments of the multinomial distribution

EX = nπ

EX2 = nn′π2 + nπ. (3.5)

As before, we consider two kinds of asymptotics, the “large-stratum” limiting

model (or model I), where the row totals nk grow without bound, and the “sparse-

data” limiting model (or model II) with bounded stratum margins Nk, where K

grows with the sample size (K → ∞).

Theorem 3.2.1. The common Mantel-Haenszel estimator Ψ̂xy in (3.3) is also dually

consistent for the sampling model comprising of independent rows of multiple responses

under the common odds-ratio assumption.

Proof. Sparse-Data: From

πx|1kπy|2k = Ψxyπy|1kπx|2k, (3.6)
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which follows from the the common odds ratio assumption (3.2), we derive

Eωxy|k = E(cxy|k − Ψxycyx|k) =Ecxy|k − ΨxyEcyx|k

={EXx|1kEXy|2k − ΨxyEXy|1kEXx|2k}/Nk

={n1kn2kπx|1kπy|2k − Ψxyn1kn2kπy|1kπx|2k}/Nk

={n1kn2k(πx|1kπy|2k − πx|1kπy|2k)}/Nk = 0 (3.7)

with ωxy|abk := cxy|abk − Ψxy|abcyx|abk and Ωxy|ab :=
∑

k ωxy|abk.

We can write

Ψ̂xy − Ψxy =

∑K
k=1 cxy|k − Ψxycyx|k∑K

k=1 cyx|k

=

∑K
k=1(cxy|k − Ψxycyx|k)/K∑K

k=1 cyx|k/K

=

∑K
k=1 ωxy|k/K∑K
k=1 cyx|k/K

=
Ωxy/K

Cyx/K
. (3.8)

The term cxy|k is a bounded random variable under model II, hence, the variance

of Cxy is o(K2) and Theorem 2.8.2 states (Ωxy −EΩxy)/K →p0. By (3.7) the expres-

sion reduces to Ωxy/K→p0, that is, the numerator of Ψ̂xy − Ψxy in (3.8) converges

to zero in probability. Applying the Chebyshev weak law of large numbers again

to the denominator yields

K∑

k=1

cxy|k/K
K→∞−→ p lim

K→∞

K∑

k=1

E(cxy|k)/K < ∞. (3.9)

This limit is finite and nonzero. Thus, we conclude Ψ̂xy − Ψxy→p0 by Slutsky’s

theorem.

Large-Stratum: Let us consider the case N → ∞ with Nαak = nak and 0 <
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αak < 1, that is, as N approaches infinity the number of subjects nak, for all rows

a and strata k, also approaches infinity. Note Nk = n1k + n2k = N
∑

i αik.

Generally, for the term
∑K

k=1 Ecxy|k/N we derive

ECxy|k/N =

K∑

k=1

Ecxy|k/N =

K∑

k=1

EXx|1kEXy|2k/(NkN)

=
K∑

k=1

n1kn2k

NkN
πx|1kπy|2k =

K∑

k=1

n1kn2k

NN

N

Nk

πx|1kπy|2k

N→∞−→
K∑

k=1

α1kα2k(
∑

i

αik)
−1πx|1kπy|2k =

K∑

k=1

(
∑

i

α−1
ik )−1πx|1kπy|2k < ∞, (3.10)

also

Cxy|k/N =
K∑

k=1

cxy|k/N =
K∑

k=1

Xx|1kXy|2k/(NkN)

=

K∑

k=1

n1kn2k

NkN

Xx|1k

n1

Xy|2k

n2
=

K∑

k=1

n1kn2k

NN

N

Nk

Xx|1k

n1

Xy|2k

n2

N→∞−→ p

K∑

k=1

α1kα2k(
∑

i

αik)
−1πx|1kπy|2k =

K∑

k=1

(
∑

i

α−1
ik )−1πx|1kπy|2k. (3.11)

In the following notation M can stand for either N or K. We showed

lim
M

Cxy/M = lim
M

ECxy/M < ∞ with M ∈ {K, N}. (3.12)

We also have

lim
M

ECxy/M = Ψxy lim
M

ECyx/M with M ∈ {K, N} (3.13)
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from property (3.6). By Slutsky’s theorem, (3.12) and (3.13)

Ψ̂xy =
Cxy

Cyx

=
Cxy/N

Cyx/N

N→∞−→ p
limN ECxy/N

limN ECyx/N
= Ψxy

limN ECyx/N

limN ECyx/N
= Ψxy.

We could have used the same argument for the sparse data case, replacing N by

K. It follows that Ψ̂xy is dually consistent.

3.3 Dually Consistent Covariance and Variance Esti-

mators

In this section, we derive dually consistent estimators for Var(Ψ̂xy), Cov(Ψ̂xy, Ψ̂xz),

Cov(Ψ̂xy, Ψ̂wz) and for Var(Lxy), Cov(Lxy, Lxz), Cov(Lxy, Lwz).

3.3.1 Asymptotic Covariances and Variances

Using a similar argument as in Subsection 2.8.1 on page 76, we can derive a for-

mula for the asymptotic covariances under both limiting models. We obtain sim-

ilarly to equation (2.30)

lim
M→∞

M ·Cova(Ψ̂xy|ab, Ψ̂wz|cd) =
limN→∞

1
M

∑K
k=1 Cov(ωxy|abk, ωwz|cdk)

[limN→∞
1
M

∑K
k=1 Ecyx|abk][limN→∞

1
M

∑K
k=1 Eczw|cdk]

(3.14)

with M ∈ {N, K}. For (3.14) to also be valid under the “large stratum” limiting

model, we must show that (
√

N · Ωxy|ab/N)2 is uniformly integrable. Note that

Cov(Ωxy|ab, Ωwz|cd) =
∑K

k=1 Cov(ωxy|abk, Ωwz|cdk) under independence of strata.
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First we compute the kth variance Var(ωxy|abk)

N2
k

n1kn2k

Var(ωxy|abk) =
N2

k

n1kn2k

Var(cxy|k − Ψcyx|k)

=
N2

k

n1kn2k

[
E(cxy|k − Ψcyx|k)

2 − (E(cxy|k − Ψcyx|k))
2
]

=
N2

k

n1kn2k
E(cxy − Ψxycyx)

2 =
N2

k

n1kn2k

[
Ec2

xy − 2Ψcxycyx + Ψ2c2
yx

]

=
1

n1kn2k

[
EX2

x|1EX2
y|2 − 2ΨEXx|1Xy|1EXx|2Xy|2 + Ψ2

EX2
y|1EX2

x|2
]

= (πx|1 + n′
1π

2
x|1)(πy|2 + n′

2π
2
y|2)

− 2Ψ(n′
1πx|1πy|1 + πxy|1)(n

′
2πx|2πy|2 + πxy|2)

+ Ψ2(πy|1 + n′
1π

2
y|1)(πx|2 + n′

2π
2
x|2)

= (πx|1πy|2 + n′
1π

2
x|1πy|2 + n′

2πx|1π
2
y|2 + n′

1n
′
2π

2
x|1π

2
y|2)

− 2Ψ(n′
1n

′
2πx|1πy|1πx|2πy|2 + n′

1πx|1πy|1πxy|2 + n′
2πx|2πy|2πxy|1 + πxy|1πxy|2)

+ Ψ2(πy|1πx|2 + n′
1π

2
y|1πx|2 + n′

2πy|1π
2
x|2 + n′

1n
′
2π

2
y|1π

2
x|2)

= (πx|1πy|2 + n′
1π

2
x|1πy|2 + n′

2πx|1π
2
y|2)

− 2Ψ(n′
1πx|1πy|1πxy|2 + n′

2πx|2πy|2πxy|1 + πxy|1πxy|2)

+ Ψ2(πy|1πx|2 + n′
1π

2
y|1πx|2 + n′

2πy|1π
2
x|2)

=
N2

k

n1kn2k

{v1
xy|k − 2Ψv2

xy|k + Ψ2v3
xy|k} (3.15)

The third equality follows from (3.7), the fifth by applying (3.5) and (3.4), and the

second to last by property (3.6).

In the next step, we compute the “large stratum” limiting variance V = limN→∞ N ·

Vara(Ωxy|ab/N) by applying the delta method (Theorem 2.8.4). In Appendix A on

page 289, we show that

lim
N→∞

N · Vara(Ψ̂xy|ab) =
limN→∞

∑K
k=1

1
N

Vara(ωxy|k)

[limN→∞
1
N

∑K
k=1 Ecyx|k]2
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=

∑
k

(
P

i α−1
ik )−2

α1k
[πx|1kπ

2
y|2k + Ψ2πy|1kπ

2
x|2k − 2ΨπC|aπx|2kπy|2k]

(
∑

k(
∑

i α
−1
ik )−1πy|1kπx|2k)2

+

∑
k

(
P

i α−1
ik )−2

α2k
[π2

x|1kπy|2k + Ψ2π2
y|1kπx|2k − 2ΨπC|bπx|1kπy|1k]

(
∑

k(
∑

i α
−1
ik )−1πy|1kπx|2k)2

.

(3.16)

under the common odds ratio assumption.

By (3.14)

lim
N→∞

N · Vara(Ψ̂xy) =
limN→∞

∑K
k=1

1
N

Var(ωxy|k)

[limN→∞
1
N

∑K
k=1 Ecyx|k]2

. (3.17)

We compute limN→∞
∑

k Var(ωxy|k)/N using (3.15)

∑

k

Var(cxy|k − Ψcyx|k)/N

=
∑

k

n1n2

N2
kN

{v1
xy|k − 2Ψv2

xy|k + Ψ2v3
xy|k}

=
∑

k

n1n2

N2
kN

(πx|1πy|2 + n′
1π

2
x|1πy|2 + n′

2πx|1π
2
y|2)

−
∑

k

n1n2

N2
kN

2Ψ(n′
1πx|1πy|1πxy|2 + n′

2πx|2πy|2πxy|1 + πxy|1πxy|2)

+
∑

k

n1n2

N2
kN

Ψ2(πy|1πx|2 + n′
1π

2
y|1πx|2 + n′

2πy|1π
2
x|2)

=
∑

k

1

N

n1n2

N2

N2

N2
k

{πx|1πy|2 − 2Ψπxy|1πxy|2 + Ψ2πy|1πx|2}

+
∑

k

n1n2n
′
1

N3

N2

N2
k

{π2
x|1πy|2 + Ψ2π2

y|1πx|2 − 2Ψπx|1πy|1πxy|2}

+
∑

k

n1n2n
′
2

N3

N2

N2
k

{πx|1π
2
y|2 + Ψ2πy|1π

2
x|2 − 2Ψπx|1πy|1πxy|2}

N→∞−→ 0 +
∑

k

α2
1α2

(
∑

i αik)2
{π2

x|1πy|2 + Ψ2π2
y|1πx|2 − 2Ψπx|1πy|1πxy|2}

+
∑

k

α1α
2
2

(
∑

i αik)2
{πx|1π

2
y|2 + Ψ2πy|1π

2
x|2 − 2Ψπxy|1πx|2πy|2}. (3.18)
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If we substitute limN→∞ Var(ωxy|k)/N into (3.17), then equation (3.16) is identical

to (3.17). Hence limN→∞
1
N

Vara(ωxy|k /N) and limN→∞
1
N

Var(ωxy|k) are also identi-

cal and so are limN→∞ N ·Vara(Ωxy /N)and limN→∞ N ·Var(Ωxy/N) = limN→∞ N ·

E(Ωxy/N)2. Then by Theorem 2.8.7, (
√

N · Ωxy/N)2 is uniformly integrable.

By Lemma 1 on page 79 and the uniform integrability of (
√

N · Ωxy/N)2, we

conclude that N ·Cov(Ωxy|abk /N, Ωwz|cdk/N) converges to limN→∞ N ·Cova(Ωxy|abk

/N, Ωwz|cdk/N), consequently formula (3.14) is indeed true for arbitrary indices x,

y, a and b.

Remark 3.3.1. Appendix A on page 289 shows how costly the derivation of the

“large-stratum” variance is when the the delta method is applied. In contrast,

the computation of limN→∞
1
N

Cov(Ωxy|abk, Ωwz|cdk) is quite cheap, provided Cov(

ωxy|abk, ωwz|cdk) is known. In the remainder of this chapter, we derive the limiting

covariances only by (3.14), omitting the delta method.

Remark 3.3.2. We will use a trick, i.e. relabelling pairs of entries into a single se-

quence, to show that the odds ratio Ψx
abk defined in Chapter 2 is a special case of

the odds ratio Ψxy|abk defined in this chapter, this also applies to the underlying

sampling models. Then we can conclude that the uniform integrability also holds

in Chapter 2 (see pages 78-80), because we established it in this chapter.

Let us define π̃2x−1|ak := πx|ak, π̃2x|ak := 1 − πx|ak and let Cov(X̃2x−1|ak, X̃2x|ak) :=

−π̃2x−1|akπ̃2x|ak for x = 1, . . . , J , a = 1, . . . , r and k = 1, . . . , K. This ensures that

X̃2x−1|ak and X̃2x|ak are simply the positive and negative responses of a binomial

distribution, with probability of success πx|ak and probability of failure 1 − πx|ak.

See Appendix B on page 296 for details. Also let the pairwise probabilities be de-

fined as π̃st
2x−1,2y−1|ak := πst

xy|ak with s, t ∈ {0, 1}. In a similar way, we set the higher

order probabilities up to the Jth order, for example the fourth order probabilities

π̃stuv
2x−1,2y−1,2w−1,2z−1|ak := πstuv

xywz|ak. It follows that r independent rows of pick any/c



CHAPTER 3. MH ESTIMATORS FOR 2 ROWS OF MULTIPLE RESPONSES 99

variables, the sampling scheme of Chapter 2, is a special case of the sampling

scheme of this chapter, assuming r independent rows of pick any/2J variables.

The odds ratios Ψxy|abk based on {π̃x|ak} are identical to the odds ratios Ψx
abk based

on {πx|ak}. Hence Ψx
abk is a special case of Ψxy|abk.

We conclude that the uniform integrability of (
√

N · Ωxy|ab/N)2 also applies to

(
√

N · Ωx|ab/N)2 (because Ωx|ab is a special case of Ωxy|ab), a missing piece of the

proof of equation (2.29) on page 78. In fact, all derivations of this chapter can be

thought of as generalisations of those of Chapter 2.

3.3.2 A Dually Consistent Variance Estimator

We propose the following variance estimator of Ψ̂

V̂ar(Ψ̂xy) = Ψ̂2
xyV̂ar(Lxy) (3.19)

with

Uxyy := Uxyxy := V̂ar(Lxy) = Uold
xyy + Uadd

xyy ,

Uold
xyy :=

∑
k cxyhxy

2C2
xy

+

∑
k cyxhyx

2C2
yx

+

∑
k cxyhyx + cyxhxy

2CxyCyx

,

Uadd
xyy := −4

∑
k Xx|1Xy|1Xxy|2/N

2
k +

∑
k Xxy|1Xx|2Xy|2/N

2
k

2CxyCyx

−
∑

k Xxy|1(Xx|2 + Xy|2)/N
2
k +

∑
k Xxy|2(Xx|1 + Xy|1)/N

2
k

2CxyCyx

+ 4

∑
k Xxy|2Xxy|1/N

2
k

2CxyCyx
(3.20)

and hxy := (Xx|1 + Xy|2)/Nk. Equation (3.19) follows directly from the delta

method. Uold
xyy is identical to the variance estimator suggested by Greenland (1989)

for two rows of independent multinomials. Ψ̂2
xy ·Uold

xyy is also identical to the vari-
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ance estimator V̂ar(Ψ̂xy) suggested by Robins et al. (1986). Under the binomial

and multinomial models, as considered by Greenland (1989), the variance esti-

mator Uold
xyy is symmetric, that is, invariant under interchange of rows, of columns,

and of rows and columns. However, due to Uadd
xyy , the proposed variance estima-

tor is only invariant under either interchange of rows or interchange of columns,

but not invariant under interchange of rows and columns simultaneously. In fact,

interchange of rows and columns simultaneously is very difficult to define under

the multiple response sampling model.

Theorem 3.3.3. Uxyy is a dually consistent estimator of Vara(Lxy) and V̂ar(Ψ̂) is a du-

ally consistent estimator of Vara(Ψ̂).

Proof. By the Delta method

Vara(Lxy) =
1

(EaΨ̂)2
Vara(Ψ̂) =

1

Ψ2
Vara(Ψ̂xy). (3.21)

It is obvious from (3.21) that it is sufficient to show either of the two statements

of the theorem, we show the dually consistency of V̂ar(Ψ̂xy) [= Ψ2
xyUxyy].

Sparse Data:

Note that all numerator terms [. . . ]k of Uxyy are bounded random variables, hence,
∑

k[. . . ]k/K converges as K → ∞ to limK→∞
∑

k E[. . . ]k/K. Using (3.4),(3.5),

(3.13) and Slutsky’s theorem we have

lim
K→∞

K · V̂ar(Ψ̂xy) = Ψ2
xy · lim

K→∞
K · Uxyy = Ψ2

xy · lim
K→∞

K · (Uold
xyy + Uadd

xyy )

= Ψ2
limK

∑
k

1
N2

kK
EXx|1Xy|2(Xx|1 + Xy|2)

2 limK(ECxy/K)2
+ Ψ2

limK

∑
k

1
N2

kK
EXy|1Xx|2(Xy|1 + Xx|2)

2 limK(ECyx/K)2
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+ Ψ2
limK

∑
k

1
N2

kK
{EXx|1Xy|2(Xy|1 + Xx|2) + EXy|1Xx|2(Xx|1 + Xy|2)}

limK(ECxy/K)(ECyx/K)

− 2Ψ2
limK

1
N2

kK
{
∑

k EXx|1Xy|1Xxy|2 + EXxy|1Xx|2Xy|2 − EXxy|2Xxy|1}
limK(ECxy/K)(ECyx/K)

− Ψ2
limK

∑
k

1
N2

kK
{EXxy|1(Xx|2 + Xy|2) + EXxy|2(Xx|1 + Xy|1)}

2 limK(ECxy/K)(ECyx/K)

=
limK

∑
k

n1n2

N2
kK

{πx|1πy|2 + n′
1π

2
x|1πy|2 + πx|1πy|2 + n′

2πx|1π
2
y|2}

2(ECyx/K)2

+
Ψ2 limK

∑
k

n1n2

N2
k
{πy|1πx|2 + n′

1π
2
y|1πx|2 + πy|1πx|2 + n′

2πy|1π
2
x|2}

2 limK(ECyx/K)2

+
limK

∑
k

n1n2

N2
kK

{Ψ2n′
1π

2
y|1πx|2 + Ψπxy|1πy|2 + Ψ2n′

2πy|1π
2
x|2 + Ψπxy|2πx|1}

2 limK(ECyx/K)2

+
limK

∑
k

n1n2

N2
kK

{n′
1π

2
x|1πy|2 + Ψπxy|1πx|2 + n′

2πx|1π
2
y|2 + Ψπxy|2πy|1}

2 limK(ECyx/K)2

−
Ψ limK

∑
k

n1n2

N2
kK

{2n′
1πx|1πy|1πxy|2 + 2n′

2πx|2πy|2πxy|1 + 4πxy|1πxy|2 − 2πxy|1πxy|2}
(ECyx/K)2

−
limK

∑
k

n1n2

N2
kK

{Ψπxy|1πx|2 + πxy|1πy|2 + Ψπxy|2πx|1 + πxy|2πy|1}
2 limK(ECyx/K)2

=
limK

∑
k

n1n2

N2
kK

{πx|1πy|2 + Ψ2πy|1πx|2 − 2Ψπxy|1πxy|2}
limK(ECyx/K)2

+
limK

∑
k

n1n2n′
1

N2
kK

{π2
x|1πy|2 + Ψ2π2

y|1πx|2 − 2Ψπx|1πy|1πxy|2}
limK(ECyx/K)2

+
limK

∑
k

n1n2n′
2

N2
kK

{πx|1π
2
y|2 + Ψ2πy|1π

2
x|2 − 2Ψπxy|1πx|2πy|2}

limK(ECyx/K)2

=
limK

∑
k{v1k − 2Ψv2k + Ψ2v3k}
limK E(Cyx/K)2

,

which is identical to (3.17) with (3.18).

Large Stratum

lim
N→∞

N · V̂ar(Ψ̂xy) = Ψ2
xy · lim

N→∞
N · Uxyy = Ψ2

xy · lim
N→∞

N · (Uold
xyy + Uadd

xyy )

= Ψ2
limN

∑
k

1
N2

kN
Xx|1Xy|2(Xx|1 + Xy|2)

2 limN
1

N2 C2
xy

+ Ψ2
limN

∑
k

1
N2

kN
Xy|1Xx|2(Xy|1 + Xx|2)

2 limN
1

N2 C2
yx
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+ Ψ2
limN

∑
k

1
N2

kN
{Xx|1Xy|2(Xy|1 + Xx|2) + Xy|1Xx|2(Xx|1 + Xy|2)}

2 limN
1

N2 CxyCyx

− 2Ψ2
limN

1
N2

kN
{
∑

k Xx|1Xy|1Xxy|2 + Xxy|1Xx|2Xy|2 − Xxy|2Xxy|1}
limN

1
N2 CxyCyx

− Ψ2
limN

1
N2

kN

∑
k{Xxy|1(Xx|2 + Xy|2) + Xxy|2(Xx|1 + Xy|1)}

2 limN
1

N2 CxyCyx

=

limN

∑
k

n1n2

N2
k

[{
n1

N

X2
x|1

n2
1

Xy|2

n2
+ n2

N

Xx|1

n1

X2
y|2

n2
2

}
+ Ψ2

{
n1

N

X2
y|1

n2
1

Xx|2

n2
+ n2

N

Xy|1

n1

X2
x|2

n2
2

}]

2(
∑K

k=1(
∑

i α
−1
ik )−1πy|1kπx|2k)2

+ Ψ
limN

∑
k

n1n2

N2
k

{
n1

N

Xx|1

n1

Xy|2

n2

Xy|1

n1
+ n2

N

Xx|1

n1

Xy|2

n2

Xx|2

n2
+ n1

N

Xy|1

n1

Xx|2

n2

Xx|1

n1
+ n2

N

Xy|1

n1

Xx|2

n2

Xy|2

n2

}

2(
∑K

k=1(
∑

i α
−1
ik )−1πy|1kπx|2k)2

− 2Ψ
limN

∑
k

n1n2

N2
k

{
n1

N

Xx|1

n1

Xy|1

n1

Xxy|2

n2
+ n2

N

Xxy|1

n1

Xx|2

n2

Xy|2

n2
− 1

N

Xxy|2

n2

Xxy|1

n1

}

(
∑K

k=1(
∑

i α
−1
ik )−1πy|1kπx|2k)2

− Ψ
limN

∑
k

1
N

n1n2

N2
k

{
Xxy|1

n1

Xx|2

n2
+

Xxy|1

n1

Xy|2

n2
+

Xx|1

n1

Xxy|2

n2
+

Xy|1

n1

Xxy|2

n2

}

2(
∑K

k=1(
∑

i α
−1
ik )−1πy|1kπx|2k)2

=

∑
k

α2
1α2

(
P

i αik)2
{πx|1π

2
y|2 +

∑
k Ψ2πy|1π

2
x|2} +

α1α2
2

(
P

i αik)2
{π2

x|1πy|2 + Ψ2π2
y|1πx|2}

(
∑K

k=1(
∑

i α
−1
ik )−1πy|1kπx|2k)2

− 2

∑
k

α2
1α2

(
P

i αik)2
Ψπxy|1πx|2πy|2 +

∑
k

α1α2
2

(
P

i αik)2
Ψπxy|2πx|1πy|1 − 0

(
∑K

k=1(
∑

i α
−1
ik )−1πy|1kπx|2k)2

− 0

which is identical to (3.16) or (3.17) with (3.18).

3.3.3 Dually Consistent Covariance Estimators

We compute Cov(ωxy|k, ωxz|k)

Cov(ωxy|k, ωxz|k) = Cov(cxy − Ψxycyx, cxz − Ψxzczx)

= Ecxycxz − Ψxycyxcxz − Ψxzcxyczx + ΨxyΨxzcyxczx

=
1

N2
{EX2

x|1EXy|2Xz|2 − ΨxyEXx|1Xy|1EXx|2Xz|2

− ΨxzEXx|1Xz|1EXx|2Xy|2 + ΨxyΨxzEXy|1Xz|1EX2
x|2}
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=
n1n2

N2
{(πx|1 + n′

1π
2
x|1)(n

′
2πy|2πz|2 + πyz|2) − Ψxy(n

′
1πx|1πy|1 + πxy|1)(n

′
2πx|2πz|2 + πxz|2)

− Ψxz(n
′
1πx|1πz|1 + πxz|1)(n

′
2πx|2πy|2 + πxy|2) + ΨxyΨxz(n

′
1πy|1πz|1 + πyz|1)(πx|2 + n′

2π
2
x|2)}

=
n1n2

N2
{πx|1πyz|2 − Ψxyπxy|1πxz|2 − Ψxzπxz|1πxy|2 + ΨxyΨxzπyz|1πx|2

+ n′
1(π

2
x|1πyz|2 − Ψxyπx|1πy|1πxz|2 − Ψxzπx|1πz|1πxy|2 + ΨxyΨxzπy|1πz|1πx|2)

+ n′
2(πx|1πy|2πz|2 − Ψxyπxy|1πx|2πz|2 − Ψxzπxz|1πx|2πy|2 + ΨxyΨxzπyz|1π

2
x|2)

+ n′
1n

′
2(π

2
x|1πy|2πz|2 − Ψxyπx|1πy|1πx|2πz|2 − Ψxzπx|1πz|1πx|2πy|2 + ΨxyΨxzπy|1πz|1π

2
x|2)}

=
n1n2

N2
{πx|1πyz|2 − Ψxyπxy|1πxz|2 − Ψxzπxz|1πxy|2 + ΨxyΨxzπyz|1πx|2

+ n′
1(π

2
x|1πyz|2 − Ψxyπx|1πy|1πxz|2 − Ψxzπx|1πz|1πxy|2 + ΨxyΨxzπy|1πz|1πx|2)

+ n′
2(πx|1πy|2πz|2 − Ψxyπxy|1πx|2πz|2 − Ψxzπxz|1πx|2πy|2 + ΨxyΨxzπyz|1π

2
x|2)}

=
n1n2

N2
{πx|1πyz|2 + n′

1π
2
x|1πyz|2 + n′

2πx|1πy|2πz|2}

− Ψxy
n1n2

N2
{πxy|1πxz|2 + n′

1πx|1πy|1πxz|2 + n′
2πxy|1πx|2πz|2}

− Ψxz
n1n2

N2
{πxz|1πxy|2 + n′

1πx|1πz|1πxy|2 + n′
2πxz|1πx|2πy|2}

+ ΨxyΨxz
n1n2

N2
{πyz|1πx|2 + n′

1πy|1πz|1πx|2 + n′
2πyz|1π

2
x|2}

= {vxyz|12,k − Ψxyvxy,xz|k − Ψxzvxz,xy|k + ΨxyΨxzvxyz|21,k} (3.22)

with

vxw,yz|k =
n1n2

N2
{πxw|1πyz|2 + n′

1πx|1πw|1πyz|2 + n′
2πxw|1πy|2πz|2}, (3.23)

vxyz|abk = vA
xyz|abk + vB

xyz|abk (a 6= b),

vA
xyz|abk =

nanb

N2
πyz|bk{πx|ak + n′

aπ
2
x|ak} (a 6= b),

vB
xyz|abk =

nanbn
′
b

N2
πx|akπy|bkπz|bk (a 6= b), (3.24)
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and V representing
∑

k vk.

We rewrite (3.14) using (3.13) and (3.22) as

lim
M→∞

M · Cova(Lxy, Lxz)

=
limM(Vxyz|12,k/M)

limM(ECxy/M)(ECxz/M)
− limM(Vxy,xz|k/M)

limM(ECyx/M)(ECxz/M)

− limM(Vxz,xy|k/M)

limM(ECxy/M)(ECzx/M)
+

limM(Vxyz|21,k/M)

limM(ECyx/M)(ECzx/M)
. (3.25)

Similarly we compute

Cov(ωxy|k, ωwz|k) = Cov(cxy|k − Ψxycyx|k, cwz|k − Ψwzczw|k)

= Ecxycwz − Ψxycyxcwz − Ψwzcxyczw + ΨxyΨwzcyxczw

=
1

N2
{EXx|1Xw|1EXy|2Xz|2 − ΨxyEXy|1Xw|1EXx|2Xz|2

− ΨwzEXx|1Xz|1EXy|2Xw|2 + ΨxyΨwzEXy|1Xz|1EXx|2Xw|2}

=
n1n2

N2
{(n′

1πx|1πw|1 + πxw|1)(n
′
2πy|2πz|2 − πyz|2)

− Ψxy(n
′
1πy|1πw|1 + πyw|1)(n

′
2πx|2πz|2 + πxz|2)

− Ψwz(n
′
1πx|1πz|1 + πxz|1)(n

′
2πy|2πw|2 − πyw|2)

+ ΨxyΨwz(n
′
1πy|1πz|1 + πyz|1)(n

′
2πx|2πw|2 + πxw|2)}

=
n1n2

N2
{πxw|1πyz|2 − Ψxyπyw|1πxz|2 − Ψwzπxz|1πyw|2 + ΨxyΨwzπyz|1πxw|2

+ n′
1(πx|1πw|1πyz|2 − Ψxyπy|1πw|1πxz|2 − Ψwzπx|1πz|1πyw|2 + ΨxyΨwzπy|1πz|1πxw|2)

+ n′
2(πxw|1πy|2πz|2 − Ψxyπyw|1πx|2πz|2 − Ψwzπxz|1πy|2πw|2 + ΨxyΨwzπyz|1πx|2πw|2)

+ n′
1n

′
2(πx|1πw|1πy|2πz|2 − Ψxyπy|1πw|1πx|2πz|2

− Ψwzπx|1πz|1πy|2πw|2 + ΨxyΨwzπy|1πz|1πx|2πy|2)}

=
n1n2

N2
{πxw|1πyz|2 − Ψxyπyw|1πxz|2 − Ψwzπxz|1πyw|2 + ΨxyΨwzπyz|1πxw|2

+ n′
1(πx|1πw|1πyz|2 − Ψxyπy|1πw|1πxz|2 − Ψwzπx|1πz|1πyw|2 + ΨxyΨwzπy|1πz|1πxw|2)
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+ n′
2(πxw|1πy|2πz|2 − Ψxyπyw|1πx|2πz|2 − Ψwzπxz|1πy|2πw|2 + ΨxyΨwzπyz|1πx|2πw|2)}

=
n1n2

N2
{vxw,yz|k − Ψxyvyw,xz|k − Ψwzvxz,yw|k + ΨxyΨwzvyz,zw|k}. (3.26)

Again, we rewrite (3.14) using (3.13) and (3.26) as

lim
M→∞

M · Cova(Lxy, Lwz)

=
limM(Vxw,yz/M)

limM(ECxy/M)(ECwz/M)
− limM(Vyw,xz/M)

limM(ECyx/M)(ECwz/M)

− limM(Vxz,yw/M)

limM(ECxy/M)(ECzw/M)
+

limM(Vyz,zw/M)

limM(ECyx/M)(ECzw/M)
. (3.27)

We propose the following estimators for Cov(Lxy, Lxz), Cov(Lxy, Lwz):

Uxyz := Uxyxz := Ĉov(Lxy, Lxz) (3.28)

=
V̂ A

xyz|12k

CxyCxz
− V̂xy,xz

CyxCxz
− V̂xz,xy

CxyCzx
+

V̂ A
xyz|21

CyxCzx

+
V̂ B

xyz|12k

3CxyCxz
+

V̂ B
yxz|12 + V̂ B

zxy|21
3CyxCxz

+
V̂ B

zxy|12 + V̂ B
yxz|21

3CxyCzx
+

V̂ B
xyz|21k

3CyxCzx

and

Uxywz := Ĉov(Lxy, Lwz) =
V̂xw,yz

CxyCwz
− V̂yw,xz

CyxCwz
− V̂xz,yw

CxyCzw
+

V̂yz,xw

CyxCzw
(3.29)

with

v̂A
xyz|abk =

1

N2
k

X2
x|akXyz|bk (3.30)

v̂B
xyz|abk =

1

N2
k

Xx|ak{Xy|bkXz|bk − Xyz|bk} (3.31)

v̂xw,yz =
1

N2
k

{Xx|1Xw|1Xyz|2 + Xxw|1Xy|2Xz|2 − Xxw|1Xyz|2} (3.32)
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and V̂ representing
∑

k v̂k.

The estimators Ĉov(Ψ̂xy, Ψ̂xz) and Ĉov(Ψ̂xy, Ψ̂wz) are computed as

Ĉov(Ψ̂xy, Ψ̂xz) = ΨxyΨxzUxyz

Ĉov(Ψ̂xy, Ψ̂wz) = ΨxyΨwzUxywz

by the delta method (Theorem 2.8.4).

We define Uold
xyz as an estimator consisting only of the second row of equation

(3.28) and of equation (3.31), but which is amended to 1
N2

k
Xx|akXy|bkXz|bk. Then

Uold
xyz is identical to the one proposed by Greenland (1989) for two independent

rows of multinomials. Greenland (1989) did not define an estimator Uxywz, be-

cause Cov(Lxy, Lwz) = 0 (for distinct indices).

Theorem 3.3.4. Uxyz, Uxywz, Ĉov(Ψ̂xy, Ψ̂xz), and Ĉov(Ψ̂xy, Ψ̂wz) are all dually consis-

tent estimators.

Proof. First we show that v̂A
xyz|abk converges under both models to vA

xyz|abk, then

we also show v̂B
xyz|abk converges to v̂B

xyz|abk and v̂xw,yz to vxw,yz under both limiting

models.

Sparse Data

lim
K

(V̂ A
xyz|ab/K) = lim

K
(EV̂ A

xyz|ab/K) = lim
K

1

K

∑

k

1

N2
k

EX2
x|akEXyz|bk

= lim
K

1

K

∑

k

nanb

N2
k

(n′
aπ

2
x|ak + πx|a)πyz|bk = lim

K

1

K

∑

k

vA
xyz|ab

= lim
K

(V A
xyz|ab/K)

lim
K

(V̂ B
xyz|ab/K) = lim

K
(EV̂ B

xyz|ab/K)
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= lim
K

1

K

∑

k

1

N2
k

EXx|ak{EXy|bkXz|bk − EXyz|bk}

= lim
K

1

K

∑

k

nanb

N2
k

πx|ak{(n′
bπy|bkπz|bk + πyz|bk) − πyz|bk}

= lim
K

1

K

∑

k

nanb

N2
k

n′
bπx|akπy|bkπz|bk

= lim
K

1

K

∑

k

vB
xyz|ab = lim

K
(V B

xyz|ab/K)

lim
K

(V̂xw,yz/K) = lim
K

(EV̂xw,yz/K)

= lim
K

1

K

∑

k

1

N2
k

{EXx|1Xw|1Xyz|2 + EXxw|1Xy|2Xz|2 − EXxw|1Xyz|2}

= lim
K

1

K

∑

k

nanb

N2
k

{(n′
1πx|1πw|1 + πxw|1)πyz|2 + πxw|1(n

′
2πy|2πz|2 + πyz|2) − πxw|1πyz|2}

= lim
K

1

K

∑

k

nanb

N2
k

{n′
1πx|1πw|1πyz|2 + n′

2πxw|1πy|2πz|2 + πxw|1πyz|2}

= lim
K

1

K

∑

k

vxw,yz = lim
K

(Vxw,yz/K)

Large Stratum

lim
N

(V̂ A
xyz|ab/N) = lim

N

1

N

∑

k

1

N2
k

X2
x|akXyz|bk

= lim
N

∑

k

nanb

N2
k

(
na

N

[
Xx|ak

na

]2

+
1

N

Xx|a
na

)
Xyz|bk

nb

=
1

N

∑

k

αaαb

(
∑

i αik)2
(αaπ

2
x|ak + 0 · πx|a)πyz|bk

lim
N

(V A
xyz|ab/N) = lim

N

∑

k

nanb

N2
k

{
1

N
πx|ak +

n′
a

N
π2

x|ak

}
πyz|bk
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=
∑

k

αaαb

(
∑

i αik)2
(0 · πx|a + αaπ

2
x|ak)πyz|bk

Hence, limN(V̂ A
xyz|ab/N) = limN(V A

xyz|ab/N)

lim
N

(V̂ B
xyz|ab/N) = lim

N

1

N

∑

k

1

N2
k

{Xx|akXy|bkXz|bk − Xx|akXyz|bk}

= lim
N

∑

k

nanb

N2
k

{nb

N

Xx|ak

na

Xy|bk
nb

Xz|bk
nb

− 1

N

Xx|ak

na

Xyz|bk
nb

}

=
∑

k

αaαb

(
∑

i αik)2
{αbπx|akπy|bkπz|bk − 0 · πx|akπyz|bk}

lim
N

(V B
xyz|ab/N) = lim

N

1

N

∑

k

nanb

N2
k

n′
bπx|akπy|bkπz|bk

=
∑

k

αaαb

(
∑

i αik)2
αbπx|akπy|bkπz|bk

It follows that limN(V̂ B
xyz|ab/N) = limN(V B

xyz|ab/N).

lim
N

(V̂xw,yz/N)

= lim
N

1

N

∑

k

1

N2
k

{
Xx|1Xw|1Xyz|2 + Xxw|1Xy|2Xz|2 − Xxw|1Xyz|2

}

= lim
N

∑

k

n1n2

N2
k

{
n1

N

Xx|1
n1

Xw|1
n1

Xyz|2
n2

+
n2

N

Xxw|1
n1

Xy|2
n2

Xz|2
n2

− 1

N

Xxw|1
n1

Xyz|2
n2

}
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=
∑

k

α1α2

(
∑

i αik)2

{
α1πx|1πw|1πyz|2 + α2πxw|1πy|2πz|2 − 0 · πxw|1πyz|2

}

lim
N

(Vxw,yz/N)

= lim
N

1

N

∑

k

n1n2

N2
k

{
n′

1πx|1πw|1πyz|2 + n′
2πxw|1πy|2πz|2 + πxw|1πyz|2

}

= lim
N

∑

k

n1n2

N2
k

{
n′

1

N
πx|1πw|1πyz|2 +

n′
2

N
πxw|1πy|2πz|2 +

1

N
πxw|1πyz|2

}

=
∑

k

α1α2

(
∑

i αik)2

{
α1πx|1πw|1πyz|2 + α2πxw|1πy|2πz|2 + 0 · πxw|1πyz|2

}

Thus limN(V̂xw,yz/N) = limN(Vxw,yz/N). We recall equation (3.12). Comparing

(3.29) with (3.27) shows Uxywz is dually consistent, hence, also Ĉov(Ψ̂xy, Ψ̂xz). In

contrast to Uxywz, Uxyz does not have exactly the same structure as (3.25). Note

that v̂A
xyz|abk and v̂B

xyz|abk are symmetric in y and z. Also, note vB
xyz|abk = Ψxyv

B
yxz|abk

and vB
xyz|abk = Ψxzv

B
zxy|abk for a 6= b. Hence

limM V B
xyz|abk

limM (Cxy/M)(Cxz/M)
cannot only be es-

timated by
V̂ B

xyz|abk

CxyCxz
, but also by

V̂ B
yxz|abk

CyxCxz
and

V̂ B
yxz|abk

CxyCzx
. The estimator Uxyz (3.28) was

constructed by averaging over 3 such terms each. Therefore Uxyz does indeed

converge to expression (3.25) under both limiting models.

3.4 Generalised Variance and Covariance Estimators

From ΨxyΨyz = Ψxz follows log Ψxy + log Ψyz = log Ψxz. Hence for J ≥ 3, Lxy is

not an unique estimator for log Ψxy. Instead of estimating log Ψxy by Lxy, we use

the generalised estimator

L̄xy :=
1

J

J∑

z=1

(Lxz − Lyz) = (Lx+ − Ly+)/J (3.33)
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as introduced by Greenland (1989) and originally suggested by Mickey and Elashoff

(1985). Note L̄xy = −L̄yx and L̄xz = L̄xy+L̄xz, but Lxy = −Lyx and Lxz 6= Lxy+Lxz .

L̄xy is a linear combination of the Lxy’s, hence, variances and covariances of the

generalised estimators can be easily computed from the variances and covari-

ances of the Lxy’s. If any subscript of the Uxywz’s contains a ”+” sign, then we sum

over this index, e.g. Ux+xz =
∑

h Uxhxz.

Now we write

Cov(L̄xy, L̄wz) = Cov(1/J
∑

h

Lxh − Lyh, 1/J
∑

i

Lwi − Lzi)

=
1

J2

∑

h,i

{Cov(Lxh, Lwi) + Cov(Lyh, Lzi) − Cov(Lxh, Lzi) − Cov(Lyh, Lwi)}

=
1

J2

∑

i

{Cov(Lxi, Lwi) + Cov(Lyi, Lzi) − Cov(Lxi, Lzi) − Cov(Lyi, Lwi)}

+
1

J2

∑

i6=h

{Cov(Lxh, Lwi) + Cov(Lyh, Lzi) − Cov(Lxh, Lzi) − Cov(Lyh, Lwi)}

(3.34)

and express
∑

h 6=i Cov(Lxh, Lwi) as

∑

h 6=i

Cov(Lxh, Lwi) =
∑

h

(i = x)

Cov(Lxh, Lwx) +
∑

i

(h = w)

Cov(Lxw, Lwi)

− Cov(Lxw, Lwx) +
∑

h, i /∈ {x, y}
i 6= h

Cov(Lxh, Lwi)

= −
∑

i

Cov(Lxw, Lxi) −
∑

i

Cov(Lwx, Lwi) (3.35)

+ Cov(Lxw, Lxw) +
∑

h, i /∈ {x, y}
h 6= i

Cov(Lxh, Lwi) (3.36)
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By combining (3.34) and (3.35), we estimate
∑

h,i Cov(Lxh, Lwi) by

U+
xw :=

∑

h,i

Ĉov(Lxh, Lwi) = U+xw − Uxw+ − Uwx+ + Uxww + Sxw

with Sxy =
∑

h,i/∈{x,y}

h 6=i
Uxhyi.

From
∑

h,i Ĉov(Lxh, Lxi) = Ux++ by definition, we can write

U+
xy =





U+
xx = Ux++ =

∑
h,i Uxhi , x = y

U+
xy = U+xy − Uxy+ − Uyx+ + Uxy + Sxy , x 6= y

(3.37)

Summarising, we can express Ĉov(L̄xy, L̄wz) as

Ūxywz := Ĉov(L̄xy, L̄wz) =
1

J2
{U+

xw − U+
xz − U+

yw + U+
yz} (3.38)

with the special cases

Ūxyz := Ĉov(L̄xy, L̄xz) =
1

J2
{Ux++−U+

xz −U+
yx +U+

yz}(≡
1

J2
{U+

xx−U+
xz −U+

yx +U+
yz})

and

Ūxyy := V̂ar(L̄xy) =
1

J2
{Ux++ − 2U+

xy + Uy++}(≡
1

J2
{U+

xx − U+
xy − U+

yx + U+
yy}).

Formula (3.38) is generally applicable for all indices x, y, w, z and is identical to

Greenland’s formula. However, Greenland defined the term U+
xy (x 6= y) as U+

xy :=

U+xy −Uxy+ −Uxy+ +Uxyy, which does not contain Sxy, because Cov(Lxy, Lwz) = 0

for the binomial and multinomial sampling scheme. Equation (3.26) shows that

this is generally not true for our sampling scheme of two rows of multiple re-

sponses, and therefore the term S is indeed required.
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3.5 Extended Generalised Estimators

Suppose r > 2. Each odds ratio Ψxy|ab can be computed from the set of (r − 1) ×

(J − 1) local odds ratios {Ψi,i+1|j,j+1; i = 1, . . . , J ; j = 1, . . . , r} by

Ψxy|ab =

y∏

i=x

b∏

j=a

Ψi,i+1|j,j+1,

which follows from Ψxy|abΨyz|ab = Ψxz|ab and Ψxy|abΨxy|bc = Ψxy|ac. In a similar

way, we can compute Ψxy|ab by

Ψxy|ab =

J∏

i=1

Ψxi|ab

Ψyi|ab

=

r∏

j=1

Ψxy|aj

Ψxy|bj
=

J∏

i=1

r∏

j=1

Ψxi|aj

Ψxi|bj

Ψyi|aj

Ψyi|bj

leading to the generalised estimator L̄xy|ab estimating log Ψxy|ab by

L̄xy|ab =
1

rJ

J∑

i=1

r∑

j=1

Lxi|aj−Lxi|bj−Lyi|aj+Lyi|bj =
1

rJ
(Lx+|a+−Lx+|b+−Ly+|a++Ly+|b+).

Now we could proceed with deriving a generalised (co)variance estimator for

Cov(L̄xy|ab, L̄wz|ac), but this requires an estimator for Cov(Lxy|ab, Lwz|ac). It actually

requires several estimators, because we also need to consider special cases such

as x = w or b = c. We leave the derivation of such estimators and a generalised

(co)variance estimator for future research.

3.6 Example

We reconsider the UTI data in Table 1.1 on page 2 with items: A-oral, B-condom,

C-lubricated condom, D-spermicide, and E-diaphragm. For simplicity, we ex-

clude item E due to zero cell counts and therefore avoid amending the MH esti-
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mator and its variance estimator. The MH approach gives {L̄AB, L̄AC , L̄AD, L̄BC , L̄BD,

L̄CD}={0.28 , −0.43, −0.45,−0.70, −0.73, −0.02} with standard errors {0.21, 0.25,

0.29, 0.13, 0.20, 0.21} by applying formula (3.38). The bootstrap and the gener-

alised (co)variance estimates with B = 50, 000 can be found in Table 3.1. For

instance, comparing the UTI effects for the contraceptives “oral” and “lubricated

condom” the MH estimator is −0.43 with s.e. 0.25, which gives the 95% confi-

dence interval (−0.92, +0.06). The odds of using “oral” (rather than using “lu-

bricated condom”) for a woman without UTI history are exp(−0.43) = 0.65 times

the odds of using “oral” (rather than using “lubricated condom”) for a woman

with UTI history.

Table 3.1: The “bootstrap” with B = 50, 000 and generalised (Ū ) (co)variance
estimates of {L̄ij , i, j = A, . . . , D}, 100× (co)variance

L̄AB L̄AC L̄AD L̄BC L̄BD L̄CD

L̄AB 4.39 (4.43) 4.50 (4.34) 4.50 (4.43) 0.11 (−0.08) 0.11 (0.00) 0.00 (0.66)

L̄AC 6.55 (6.19) 5.47 (5.01) 2.05 (1.84) 0.97 (0.01) −1.08 (−1.18)

L̄AD 9.07 (8.32) 0.97 (0.08) 4.58 (3.90) 3.61 (3.32)

L̄BC 1.94 (1.81) 0.87 (0.80) −1.08 (−1.04)

L̄BD 4.47 (4.06) 3.61 (3.18)

L̄CD 4.69 (4.34)

The odds ratio Ψxy|ab allows us to describe the relationship of the odds be-

tween two items. In contrast, the odds ratio Ψx
ab only describes the odds ratio

based on the item x, chosen versus not chosen.
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3.7 Simulation Study

3.7.1 Simulation Scheme

In this section, we conduct a simulation study to investigate the performance of

the proposed estimators Uxyy and Uxyz, and the generalised estimators Ūxyy and

Ūxyz. We also want to double check the correctness of the proposed dually consis-

tent co- and variance estimators. Unfortunately, we are not aware of any model-

based approach to estimate Ψxy|ab or log Ψxy|ab. To investigate the performance of

the generalised estimator, we choose J = 3 , since for J = 3, estimators Ūxyy and

Uxyy differ generally, but for J = 2 they are identical. A disadvantage of J = 3 is

that we cannot investigate Uxywz.

For given Ψxy, we fix the marginal probabilities of the first row by setting

πx|1k = 0.50 for all x = 1, . . . , J . Then we set π1|2k = 1/(1 + Ψxy) and πx|2k = Ψxy

1+Ψxy

for x = 2, . . . , J . This ensures that the probabilities of the second row are balanced

around 1/2, for example Ψ12 = 1 gives π1|2k = π2|2k = 1/2. For simplicity, we also

set Ψ = Ψ12 = Ψ13 and Nk = N1 = · · · = NK .

Let Yx indicate whether a subject selects item x. Given row a and stratum k, if

a subject selects item x, then Yx = 1; otherwise, Yx = 0. Again as in the previous

chapter (see Section 2.5 on page 59), we define the pairwise dependency between

items x and y in form of an odds ratio θxy|ak as

θxy|ik =
P (Yx = 1, Yy = 1|ak)P (Yx = 0, Yy = 0|ak)

P (Yx = 0, Yy = 1|ak)P (Yx = 1, Yy = 0|ak)
.

For convenience, we assume a constant association θ = θxy|ik for all items x, y =

1, . . . , J , rows a = 1, 2 and strata k = 1, . . . , K.

When we fix the covariance between two items by Cov(Yx, Yy) = −πx|akπy|ak,
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then πxy|ak = P (Yx = 1, Yy = 1|ak) = 0 and consequently θxy|ak = 0. Fixing the

covariance in such a way for all pairs of items yields the multinomial distribution

(see Appendix B on page 296). In the the following, when we set θ = θxy|ak = 0,

we sample from the multinomial distribution with probability πx|ak of choosing

the xth item for row a = 1, . . . , r and stratum k = 1, . . . , K. For the multinomial

distribution
∑J

x=1 πxa|k ≤ 1, meaning the above settings for πx|ak are invalid. In-

stead we set πx|1k = 1/(J + 1), π1|2k = 1/[(J − 1)Ψ + 1] and πx|2k = Ψπ1|2k for

x ≥ 2.

The number of bootstrap simulations was chosen as B = 400 and the number

of simulated datasets as 20, 000. We record the mean and m.s.e. (mean squared

error) of the bootstrap estimate of (co-)variance (denoted by VarBT and CovBT ),

of the newly proposed (co)variance estimators [ Uxyy defined by (3.20) on page 99,

Uxyz by (3.28) on page 105, and Ū defined by (3.38) on page 111] and also of the

“old” (co)variance estimators proposed by Greenland (1989) based on multino-

mial sampling [estimator Uold, see page 105, and estimator Ūold also using equa-

tion (3.38) on page 111 but replacing U by Uold and deleting Sxy]. The empirical

variance (denoted by Varemp) and covariance (denoted by Covemp) of the L’s and

L̄’s over all simulations are regarded as the true (co-)variances. The number of

simulations nMH for which the MH estimators were undefined is also recorded.

3.7.2 Simulation Results

First we compare how the MH and the generalised MH estimator perform for

various configurations. Ideally, we want an estimator with no or small bias (dif-

ference between empirical mean and true value of parameter) and with low (em-

pirical) variance. The mean squared error (m.s.e) summarizes both criteria, since

m.s.e = bias2 + variance.



CHAPTER 3. MH ESTIMATORS FOR 2 ROWS OF MULTIPLE RESPONSES 116

Table 3.2: Simulation results for log odds ratio estimators L and L̄

mean mean m.s.e. m.s.e.
K, Nk, Ψ, θ,nMH L12, L13 L̄12,L̄13 L12, L13 L̄12,L̄13

5 , 20 , 4 , 0 ,101 1.489, 1.481 1.487, 1.484 0.578, 0.569 0.526, 0.525
5 , 20 , 4 , 1 ,1 1.438, 1.438 1.437, 1.439 0.165, 0.166 0.161, 0.162
5 , 20 , 4 , 10 ,1 1.431, 1.434 1.431, 1.433 0.130, 0.134 0.128, 0.131

20 , 5 , 4 , 0 ,1933 1.333, 1.334 1.335, 1.332 0.629, 0.619 0.482, 0.484
20 , 5 , 4 , 1 ,22 1.464, 1.465 1.464, 1.465 0.265, 0.265 0.237, 0.238

20 , 5 , 4 , 10 , 18 1.460, 1.463 1.461, 1.462 0.215, 0.220 0.203, 0.204
1 , 500 , 4 , 0 ,0 1.397, 1.401 1.397, 1.401 1.054, 1.060 1.054, 1.060
1 , 500 , 4 , 1 ,0 1.395, 1.394 1.395, 1.394 1.002, 1.000 1.002, 1.000
1 , 500 , 4 , 4 ,0 1.393, 1.393 1.393, 1.393 0.992, 0.991 0.992, 0.991
100 , 5 , 4 , 0 ,1 1.427, 1.427 1.427, 1.428 1.187, 1.190 1.145, 1.144
100 , 5 , 4 , 1 ,0 1.399, 1.397 1.398, 1.398 1.021, 1.017 1.016, 1.014
100 , 5 , 4 , 4 ,0 1.401, 1.402 1.401, 1.402 1.016, 1.017 1.013, 1.015

log(4)= 1.386294

Table 3.2 shows the generalised estimator L̄ performs slightly better than L

for the sparse data case (Nk = 5 and K = 20, 100, Nk = 20 and K = 5), but it

seems the larger K is, the smaller the difference is between L̄ and L. For the large

stratum case (Nk = 500 and K = 1), both estimators perform equally well.

Next we consider the performance of the existing and newly proposed (co)variance

estimators. Ideally the mean of the formula variance (U ’s) should equal the em-

pirical variance of the MH estimator (likewise for the bootstrap), which would

indicate no bias, and the variance (or the combined measure m.s.e.) should be as

low as possible.

Table 3.3 shows the simulation results of the variance estimators for various

scenarios. The newly proposed estimators, U122 and U123, perform better than the

bootstrap estimates of (co-)variance except for K = 20 and Nk = 5. They are

also superior to Uold
122 and Uold

123 for θ > 0. Only for θ = 0, U and Uold are identical,

because Uadd = 0 for θ = 0 due to the impossible event of observing the pairwise
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Table 3.3: Simulation results for the variance and covariance estimators of the log
odds ratio estimators

Varemp(L12), Covemp(L12, L13) Varemp(L̄12), Covemp(L̄12, L̄13)

VarBT (L12), CovBT (L12, L13) VarBT (L̄12), CovBT (L̄12, L̄13)
U122, U123 Ū122, Ū123

K , Nk, Ψ, θ Uold
122, U

old
123 Ūold

122, Ū
old
123

nMH 100×mean 10000×mse 100×mean 100000×mse

5 , 20 , 4 , 1 16.25, 12.50 −,− 15.82, 12.95 −,−
1 20.38, 13.95 97.23, 39.79 18.84, 13.95 65.99, 45.07

15.39, 11.71 37.39, 30.74 14.96, 12.13 33.80, 31.98
24.54, 16.13 107.3, 41.56 25.40, 12.88 144.9, 22.13

5 , 20 , 4 , 10 12.78, 11.13 −,− 12.61, 11.33 −,−
1 16.73, 13.52 79.41, 45.06 16.00, 13.52 65.34, 52.23

12.07, 10.21 34.00, 32.75 11.85, 10.43 33.22, 32.65
24.83, 16.64 186.01, 61.60 25.81, 13.25 226.1, 27.22

20 , 5 , 4 , 1 25.94, 16.14 −,− 23.13, 18.88 −,−
22 29.71, 12.74 144.7, 151.6 23.73, 12.74 44.24, 42.80

23.76, 14.75 198.0, 84.31 21.28, 17.23 121.3, 103.6
37.58, 20.19 394.5, 88.70 35.82, 19.02 405.2, 79.28

20 , 5 , 4 , 10 20.926, 16.166 −,− 19.718, 17.516 −,−
18 25.54, 16.52 110.0, 53.80 22.47, 16.52 57.50, 41.16

19.38, 14.83 177.5, 116.3 18.19, 16.06 137.5, 127.6
39.51, 23.50 626.5, 165.3 38.80, 21.05 642.2, 120.7

1 , 500 , 4 , 0 7.796, 5.286 −,− 7.796, 5.286 −,−
0 8.194, 5.616 3.966, 4.230 8.194, 5.616 3.966, 4.230

7.872, 5.345 0.539, 0.552 7.872, 5.345 0.539, 0.552
7.872, 5.345 0.539, 0.552 8.321, 4.027 1.304, 2.031

1 , 500 , 4 , 1 2.594, 2.084 −,− 2.594, 2.084 −,−
0 2.611, 2.100 0.218, 0.272 2.611, 2.100 0.218, 0.272

2.542, 2.034 0.088, 0.084 2.540, 2.036 0.088, 0.084
4.149, 2.843 2.499, 0.654 4.376, 2.179 3.299, 0.069

1 , 500 , 4 , 4 2.086, 1.757 −,− 2.086, 1.757 −,−
0 2.202, 1.853 0.191, 0.150 2.202, 1.853 0.191, 0.150

2.138, 1.790 0.081, 0.076 2.136, 1.792 0.081, 0.076
4.146, 2.839 4.325, 1.248 4.371, 2.178 5.339, 0.234

100 , 5 , 4 , 0 16.63, 4.525 −,− 12.68, 8.687 −,−
1 25.921, 0.445 267.0, 187.9 15.57, 0.445 35.93, 12.01

15.982, 4.232 20.74, 1.152 12.037, 8.181 6.947, 4.353
15.982, 4.232 20.74, 1.152 12.425, 7.116 9.569, 5.853

100 , 5 , 4 , 1 4.210, 2.612 −,− 3.798, 3.005 −,−
0 4.938, 2.336 3.514, 2.605 4.050, 2.336 1.073, 0.728

4.087, 2.564 0.581, 0.284 3.699, 2.947 0.390, 0.324
6.734, 3.576 7.085, 1.126 6.385, 3.375 7.324, 0.376

100 , 5 , 4 , 4 3.672, 2.613 −,− 3.415, 2.872 −,−
0 4.450, 2.680 2.795, 1.123 3.871, 2.680 1.258, 0.711

3.565, 2.535 0.544, 0.336 3.316, 2.785 0.422, 0.372
7.012, 3.976 11.96, 2.134 6.775, 3.619 12.02, 0.860
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observation (1, 1).

For example: For K = 1 and Nk = 500, Uold and U are identical for θ = 0 and

show almost no bias and have a low m.s.e., whereas the bootstrap method has a

slighly larger bias and a much higher m.s.e. For the same setting, but for θ = 4, U

and the bootstrap method behave quite similarly, however Uold is now severely

biased and also has a much higher m.s.e. than before.

When taking a closer look at Table 3.3, we see the bigger θ becomes, the bigger

the difference between Uold
xyz and Uxyz becomes. We also see that Ū122 performs

better than U122, however, Ū123 does not perform better than U123. This can be

explained by noting that the m.s.e of U122 is higher than that of U123. Now the Ū ’s

are a linear combination of the U ’s, hence the m.s.e of the Ū ’s lies in between the

mse’s of U122 and U123.

Generally, Uold cannot be recommended for θ > 0, because the Uold’s are

severely biased. For θ = 0, the old and new estimators are identical. Overall

the newly proposed (co-)variance estimators Uxyy, Uxyz and their generalised ver-

sions Ūxyy, Ūxyz perform very well and can be highly recommended, if one is

interested in the conditional association for two independent rows of multiple

responses. Only for very sparse data and a small number of strata (e.g. Nk ≤ 20

and K ≤ 5) do we prefer the bootstrap estimator of (co)variance. Also, we expect

the generalised estimators (L̄ and Ū ) to perform even better for J > 4. We assume

that Uxywz behaves similarly to Uxyz and Uxyy, due to the similar construction of

the estimator.

The simulation results also confirm the correctness the proposed estimators. If

they were incorrect, their performance would deteriorate for growing K or grow-

ing Nk, but the opposite is true. Their performance relative to the other estima-

tors improves consistently for growing K and Nk when Nk and K, respectively,



CHAPTER 3. MH ESTIMATORS FOR 2 ROWS OF MULTIPLE RESPONSES 119

remain fixed.



Chapter 4

Mantel-Haenszel Estimators for One

Row of Multiple Responses per

Stratum

4.1 Introduction

In this chapter, we consider the odds ratio estimation for one row of multiple

responses with J outcome categories per stratum, forming K 2 × J tables. The

first row of each of the K tables comprises the positive responses and the second

row the negative responses. For example, for the UTI data in Table 1.1 on page 2,

we obtain one row of multiple responses per stratum merging women with and

without a prior UTI history. Then we regard the positive and negative responses

as two rows of a table forming, for each of the K = 2 strata, a 2× J = 2 × 5 table.

The kth odds ratio is defined as

Ψxy|k =
πx|kπ̄y|k
πy|kπ̄x|k

, (4.1)

120
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where πx|k denotes the probability of a positive response and π̄x|k that of a neg-

ative response for item x = 1 . . . , J and stratum k = 1, . . . , K. We use the same

notations as in Chapter 2, for instance Xx|k and X̄x|k denote the corresponding

observations. In contrast to Chapters 2 and 3, we omit subscript a referring to the

ath row, because there is only one. This sampling scheme can also be regarded as

J dependent binomials for each of the K tables. Due to the dependence between

items, the ordinary MH estimator is not dually consistent anymore, but only con-

sistent under the large stratum limiting model (model I), as noted by Yanagawa

and Fujii (1995).

First we propose a model-based estimator in Section 4.2. Then in Section 4.3,

we show that the ordinary MH estimator is not consistent under model II, but still

consistent under model I. In Section 4.4, we propose a new MH estimator that is

dually consistent. For this new MH-type estimator, we derive in Section 4.5 the

asymptotic variance for both limiting models and derive in Section 4.6 a dually

consistent variance estimator. Section 4.7 illustrates the method on the UTI data.

Then we conduct a simulation study in Section 4.8 investigating the performance

of the ordinary and new MH-type estimator and their variance estimators.

4.2 An Odds Ratio Estimator

Let Y = (Y1, . . . , YJ) denote the multiple response variable with J items, that

is, having J outcome categories and allowing multiple choices. Let W denote a

control variable having K categories. Then πx|k is the probability that level x of

Y is chosen, when the control variable is at level k ∈ {1, . . . , K}. We consider a
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logistic regression model having the form

log

(
πx|k

1 − πx|k

)
= τk + βx. (4.2)

The odds ratio for the xth and yth outcome of variable Y is

exp(βx − βy) =
πx|k(1 − πy|k)

(1 − πx|k)πy|k
=: Ψxy. (4.3)

The interpretation of Ψxy is that the odds of making a positive response at level x

of Y are exp(βx −βy) times the odds of making a positive response at level y of Y

independently of the level of W . Estimates can be be obtained from generalised

estimation equations (GEE), see Section 5.2.2 on page 150, or from ML estimation,

incorporating the correlation between categories of Y. However, GEE and ML

estimation may not be consistent under model II, because model parameters τk

and sample size grow simultaneously. Alternatively, we may use the common

MH estimator.

4.3 The Ordinary Mantel-Haenszel Estimator

Note Nk = n1k =: nk. Again, we assume a common odds ratio

Ψxy = Ψxy|1 = . . .Ψxy|K (4.4)

from which follows

πx|kπ̄y|k = Ψxyπy|kπ̄x|k. (4.5)
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The ordinary Mantel-Haenszel estimator has the form

Ψ̂xy = Cxy/Cyx (4.6)

with Cxy =
∑K

k=1 cxy|k and cxy|k = Xx|1kX̄y|2k/nk.

Theorem 4.3.1. The Mantel-Haenszel estimator is not consistent under model II, but

still consistent under model I, as mentioned by Yanagawa and Fujii (1995).

Proof. Sparse-Data: Under model II we can write

Ψ̂xy − Ψxy =
Cxy − ΨxyCyx

Cyx

=

∑K
k=1 cxy|k − Ψxycyx|k∑K

k=1 cyx|k

=
(
∑K

k=1 cxy|k − Ψxycyx|k)/K∑K
k=1 cyx|k/K

=
(Cxy − ΨxyCyx)/K

Cyx/K

=

∑K
k=1 ωxy|k/K∑K
k=1 cyx|k/K

=
Ωxy/K

Cyx/K
. (4.7)

with ωxy|k = cxy|k − Ψxycyx|k and Ω =
∑

k ωk.

The term cxy|k is a bounded random variable under limiting model II, hence,

the variance of Cxy is o(K2) and Theorem 2.8.2 on page 74 implies 1
K

(Ωxy −EΩxy)

→p0. We have

Ecxy|k =
1

nk
EXx|kX̄y|k =

1

nk
EXx|k(nk − Xy|k) =

1

nk

(
nkEXx|k − EXx|kXy|k

)

=
1

nk

(
n2

kπx|k − nk

[
n′

kπx|kπy|k + πxy|k
])

= nkπx|k − nkπx|kπy|k + πx|kπy|k − πxy|k

= nkπx|kπ̄y|k + (πx|kπy|k − πxy|k) (4.8)

by using

EXx|kXy|k = nk[n
′
kπx|kπy|k + π11

xy|k] (4.9)
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from (2.20) on page 74 with n′
k = nk − 1. Thus

EΩxy = E(Cxy − ΨCyx)

=
∑

k

{
nkπx|kπ̄y|k + (πx|kπy|k − πxy|k) − Ψxy

(
nkπy|kπ̄x|k + (πy|kπx|k − πxy|k)

)}

=
∑

k

{
nkπx|kπ̄y|k − nkπx|kπ̄y|k + (πx|kπy|k − πxy|k)(1 − Ψxy)

}

= (1 − Ψxy)
∑

k

(πx|kπy|k − πxy|k). (4.10)

Assuming independence between items x and y, we have πxy|k = πx|kπy|k and

consequently EΩxy = E(Cxy − ΨCyx) = 0. We also find E(Cxy − ΨCyx) = 0 for

Ψxy = 1. However, in general EΩxy 6= 0, hence 1
K

Ωxy →pc 6= 0. That is, the

numerator of (4.7) does not converge to zero. By applying the Chebyshev weak

law of large numbers to the denominator, we have

K∑

k=1

cxy|k/K
K→∞−→ p lim

K→∞

K∑

k=1

E(cxy|k)/K. (4.11)

This limit is finite and nonzero. We conclude from Slutsky’s theorem that Ψ̂xy −

Ψxy→pc 6= 0. Consequently, Ψ̂xy is not consistent under model II.

Large-Stratum: Now we consider the case N → ∞ with Nαk = nk and 0 <

αk < 1, that is, as N approaches infinity so the number of subjects nk for all strata

k also approaches infinity.

Now

Ψ̂xy =

∑K
k=1 Xx|kX̄y|k/nk∑K
k=1 Xy|kX̄x|k/nk

=

∑
k

1
nkN

Xx|kX̄y|k∑
k

1
nkN

Xy|kX̄x|k
=

∑
k

nk

N

Xx|k

nk

X̄y|k

nk∑
k

nk

N

Xy|k

nk

X̄x|k

nk

N→∞−→ p

∑
k αkπx|kπ̄y|k∑
k αkπy|kπ̄x|k

= Ψxy

∑
k αkπy|kπ̄x|k∑
k αkπy|kπ̄x|k

= Ψxy, (4.12)
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by (4.5), that is the consistency under model I.

Remark 4.3.2. We showed that the ordinary MH estimator is not only dually con-

sistent under independence of items, but also when Ψxy = 1.

4.4 A New Mantel-Haenszel Type Estimator Ψ̃

We propose the following new estimator for the common odds ratio Ψxy

Ψ̃xy =
C̃xy

C̃yx

(4.13)

with C̃xy =
∑

k c̃xy|k and c̃xy|k = (Xx|kX̄y|k −X10
xy|k)/n

′
k; where by definition X10

xy|k =

X01
yx|k. Note, c̃xy|k differs from cxy|k only by the extra term X10

xy|k and nk is replaced

by n′
k := nk − 1. Under independence of items x and y, we have EX10

xy|k = π10
xy|k =

πx|kπ̄y|k = EXx|kEX̄y|k/nk, hence Ec̃xy|k = (EXx|kEX̄y|k − 1/nkEXx|kEX̄y|k)/n
′
k =

EXx|kEX̄y|k/nk = Ecxy|k. We conclude the construction of c̃xy|k is consistent with

cxy|k when items are independent.

Theorem 4.4.1. The new estimator Ψ̃xy is dually consistent.

Proof. Sparse Data:

Similarly as before, we can write

Ψ̃xy − Ψxy =
(
∑K

k=1 c̃xy|k − Ψxyc̃yx|k)/K∑K
k=1 c̃yx|k/K

=
(C̃xy − ΨxyC̃yx)/K

C̃yx/K

=
(
∑K

k=1 ω̃xy|k)/K∑K
k=1 c̃yx|k/K

=
Ω̃xy/K

C̃yx/K
(4.14)

with ω̃xy|k = c̃xy|k − Ψxyc̃yx|k and Ω̃ =
∑

k ω̃k. We have

Ec̃xy|k = E(Xx|kX̄y|k − X10
xy|k)/n

′
k =

1

n′
k

(
EXx|k(nk − Xy|k) − EX10

xy|k
)
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=
1

n′
k

(
nkEXx|k − EXx|kXy|k − EX10

xy|k
)

=
1

n′
k

(
n2

kπx|k − nk(n
′
kπx|kπy|k + π11

xy|k) − nkπ
10
xy|k
)

=
1

n′
k

(
nkn

′
k(πx|k − πx|kπy|k) + nk(πx|k − π11

xy|k − π10
xy|k)

)

= nkπx|kπ̄y|k +
nk

n′
k

(πx|k − πx|k) = nkπx|kπ̄y|k, (4.15)

hence, EΩ̃xy = E(C̃xy − ΨxyC̃yx) = 0. Under independence of items, we also have

Ecxy|k = nkπx|kπ̄y|k. We apply Chebyshev’s weak law of large numbers and find

C̃xy/K =

K∑

k=1

c̃xy|k/K
K→∞−→ p lim

K→∞

K∑

k=1

E(c̃xy|k)/K = lim
K→∞

EC̃xy/K. (4.16)

It follows now from equation (4.14) and from applying Chebyshev’s weak law of

large numbers to the numerator together with EΩ̃xy = 0 and equation (4.16) that

the new estimator Ψ̃xy is consistent under model II, in contrast to Ψ̂xy.

Large Stratum: Again, we consider the term C̃xy. Ec̃xy = nkπx|kπ̄y|k by (4.15) ,

hence,

EC̃xy|k/N =
K∑

k=1

Ec̃xy|k/N =
K∑

k=1

nk

N
πx|kπ̄y|k =

K∑

k=1

nk

N
πx|kπ̄y|k

N→∞−→ p

K∑

k=1

αkπx|kπ̄y|k.

(4.17)

Also

C̃xy|k/N =

K∑

k=1

c̃xy|k/N =

K∑

k=1

(Xx|kX̄y|k − X10
xy|k)/(n′

kN)

=

K∑

k=1

n2
k

n′
kN

Xx|k
nk

X̄y|k
nk

− nk

n′
kN

X10
xy|k
nk

N→∞−→ p

K∑

k=1

αkπx|kπ̄y|k − 0 · π10
xy|k =

K∑

k=1

αkπx|kπ̄y|k. (4.18)
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Thus, we have for both models

C̃xy|k/M
M→∞−→ p lim

M
EC̃xy|k/M with M ∈ {K, N}. (4.19)

We can also write by (4.5)

lim
M

EC̃xy/M = Ψxy lim
M

EC̃yx/M with M ∈ {K, N}. (4.20)

Now

lim
N→∞

Ψ̃xy =
limN EC̃xy/N

limN EC̃yx/N
= Ψxy

limN EC̃yx/N

limN EC̃yx/N
= Ψxy.

4.5 Asymptotic Variances

We need to compute orders of πst
xy|k and Xst

xy|k and to avoid confusion, we will

omit the superscripts s, t ∈ {0, 1} and write them instead as subscripts, e.g. πst

instead of πst
xy|k. If used, then it will refer to the pair of items (x, y) and stratum k.

Note πst
xy|k = πts

yx|k. Also define L̃xy = log Ψ̃xy.

As in the previous chapters, see Subsection 3.3.1 on page 95, we can write

lim
M→∞

M · Vara(L̃xy) =
1

Ψ2
xy

lim
M→∞

M · Vara(Ψ̃xy)

=
1

Ψ2
xy

limM→∞ M · Vara(Ω̃xy/M)

[limM→∞
∑K

k=1 Ec̃yx|k/M ]2

=
limM→∞ Vara(Ω̃xy|k)/M

[limM→∞
∑K

k=1 Ec̃xy|k/M ]2
(4.21)

with M ∈ {K, N}. For the “sparse data” limiting model Vara(Ω̃xy)/M = limK→∞
1
K
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∑
k Var(ω̃xy|k) by Theorem 2.8.5 on page 75.

4.5.1 Computation of Var(ω̃xy|k)

First we compute Var(ω̃xy|k).

Var(ω̃xy|k) = Var(c̃xy − Ψc̃yx)

= E(c̃xy − Ψc̃yx)
2 − [E(c̃xy − Ψc̃yx)]

2 = E(c̃xy − Ψc̃yx)
2

= Ec̃2
xy + Ψ2

Ec̃2
yx − 2ΨEc̃xyc̃yx

=
1

n′2
k

{E(Xx|kX̄y|k − X10
xy|k)

2 + Ψ2
E(Xy|kX̄x|k − X10

yx|k)
2

− 2ΨE(Xx|kX̄y|k − X10
xy|k)(Xy|kX̄x|k − X10

yx|k)}

=
1

n′2
k

{(EX2
xX̄

2
y + EX2

10 − 2EXxX̄yX10) + Ψ2(EX2
y X̄2

x + EX2
01 − 2EXyX̄xX01)

− 2Ψ(EXxXyX̄xX̄y − EXxX̄yX01 − EXyX̄xX10 + EX10X01)}

=
1

n′2
k

{EX2
xX̄2

y + EX2
10 − 2EXxX̄yX10 + Ψ2

EX2
y X̄2

x + Ψ2
EX2

01 − 2Ψ2
EXyX̄xX01

− 2ΨEXxXyX̄xX̄y + 2ΨEXxX̄yX01 + 2ΨEXyX̄xX10 − 2ΨEX10X01} (4.22)

As noted previously, we assume X = (X11, X10, X01, X00) follows a multinomial

distribution with parameters nk and π = (π11, π10, π01, π00) with π11 + π10 + π01 +

π00 = 1. In order to compute Var(c̃xy − Ψc̃yx), we need to consider the higher

moments of the multinomial distribution. Assume a multinomial distribution

with L possible outcomes and n independent trials; for each trial let pi be the

probability for outcome i = 1, . . . , L with
∑L

i=1 pi = 1. Then let the random

variables Xi be defined as the number of times outcome i was observed over

the n trials. Define X = (X1, X2, . . . , Xk−1), t = (t1, t2, . . . , tk−1), then X has the
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following moment generation function

MX(t) = (p1 exp(t1) + p2 exp(t2) + · · ·+ pL−1 exp(tL−1) + pL)n.

We define N3 := nn′n′′n′′′, N2 := nn′n′′, N1 := nn′, N0 := n with n′ = n − 1,

n′′ = n−2 and n′′′ = n−3. Higher moments of the form EXs1
i1 ·· · ··X

sm
im (m ≤ K−1)

are computed by

∂(
Pm

i=1 si)MX(t)

∂ts1
i1

∂ts2
i2

. . . ∂tsm
im

|t=0 = E(Xs1
i1

Xs2
i2

. . .Xsm
im

).

In this way, we yield the following moments up to the fourth order

EXi = N0pi

EX2
i = N1p

2
i + npi

EXiXj = N1pipj

EX3
i = N2p

3
i + 3N1p

2
i + N0pi

EX2
i Xj = N2p

2
i pj + N1pipj

EXiXjXk = N2pipjpk

EX4
i = N3p

4
i + 6N2p

3
i + 7N1p

2
i + N0pi

EX3
i Xj = N3p

3
i pj + 3N2p

2
i pj + N1pipj

EX2
i X2

j = N3p
2
i p

2
j + N2(p

2
i pj + pip

2
j) + N1pipj

EX2
i XjXk = N3p

2
i pjpk + N2pipjpk

EXiXjXkXl = N3pipjpkpl. (4.23)

For convenience, define XA := X10, XB := X01, XC := X11, XD := X00 to avoid

confusion with the indices s, t ∈ {0, 1}, similarly for the πst’s. Now we write n2
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and n as

n2 = n′′n′′′ + 5n′′ + 4 = n′n′′ + 3n′ + 1 = nn′ + n

n = n′′′ + 3 = n′′ + 2 = n′ + 1,

hence,

n2N1 = n2n′ = N3 + 5N2 + 4N1 nN2 = n2n′n′′ = N3 + 3N2

n2N0 = n3 = N2 + 3N1 + N0 nN1 = n2n′ = N2 + 2N1

n2 = N1 + N0 nN0 = n2 = N1 + N0. (4.24)

Let(·)|Ni
denote the terms of (·) with factor Ni, for example EX3

i Xj|N3 = p3
i pj. By

applying (4.24) with (4.23), we derive the following higher moments (as shown

in Appendix C on page 301)

EX2
A = N1π

2
A + N0πA

EX2
B = N1π

2
B + N0πB

EXAXB = N1πAπB

EXxX̄yXA = N2πxπ̄yπA + N1{2π2
A + πA − πAπB} + N0πA

EXxX̄yXB = N2πxπ̄yπB + N1πAπB

EX̄xXyXB = N2πyπ̄xπB + N1{2π2
B + πB − πBπA} + N0πB

EX̄xXyXA = N2πyπ̄xπA + N1πBπA

EX2
xX̄2

y |N3 = π2
xπ̄

2
y

EX2
xX̄2

y |N2 = πxπ̄y(1 − πB + 5πA)

EX2
xX̄2

y |N1 = πxπ̄y + 4π2
A + 2πA − 2πAπB
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EX2
xX̄2

y |N0 = πA

EX2
y X̄2

x|N3 = π2
yπ̄

2
x

EX2
y X̄2

x|N2 = πyπ̄x(1 − πA + 5πB)

EX2
y X̄2

x|N1 = πyπ̄x + 4π2
B + 2πB − 2πAπB

EX2
y X̄2

x|N0 = πB

EXxXyX̄xX̄y|N3 = πxπyπ̄xπ̄y

2 × EXxXyX̄xX̄y|N2 = (πxπ̄y + πyπ̄x)(2πA + 2πB + 1) − 2(πA − πB)2 − (πA + πB)

EXxXyX̄xX̄y|N1 = πxπ̄y − πA = πyπ̄x − πB

EXxXyX̄xX̄y|N0 = 0. (4.25)

Now we compute (4.22) by collecting all terms with factors Ni, i = 0, 1, 2, 3 for

n′
k
2Var(ω̃xy|k) separately.

n′2Var(ω̃xy|k)|N3

= EX2
xX̄2

y |N3 + EX2
A|N3 − 2EXxX̄yXA|N3

+ Ψ2(EX2
yX̄

2
x|N3 + EX2

B|N3 − 2EXyX̄xXB|N3)

− 2Ψ(EXxXyX̄xX̄y|N3 − EXxX̄yXB|N3 − EXyX̄xXA|N3 + EXAXB|N3)

= π2
xπ̄

2
y + 0 + 0 + Ψ2π2

y π̄
2
x + 0 + 0 − 2Ψπxπyπ̄xπ̄y + 0 + 0 + 0

= π2
xπ̄

2
y + π2

xπ̄
2
y − 2π2

xπ̄
2
y

= 0

n′2Var(ω̃xy|k)|N2

= EX2
xX̄2

y |N2 + EX2
A|N2 − 2EXxX̄yXA|N2
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+ Ψ2(EX2
yX̄

2
x|N2 + EX2

B|N2 − 2EXyX̄xXB|N2)

− 2Ψ(EXxXyX̄xX̄y|N2 − EXxX̄yXB|N2 − EXyX̄xXA|N2 + EXAXB|N2)

= πxπ̄y(1 − πB + 5πA) + 0 − 2πxπ̄yπA

+ Ψ2πyπ̄x(1 − πA + 5πB) + 0 − 2Ψ2πyπ̄xπB

− Ψ(πxπ̄y + πyπ̄x)(2πA + 2πB + 1) + 2Ψ(πA − πB)2 + Ψ(πA + πB)

+ 2Ψπxπ̄yπB + 2Ψπyπ̄xπA − 0

= πxπ̄y [1 − πB + 5πA − 2πA − (2πA + 2πB + 1) + 2πA]

+ Ψ2πyπ̄x [1 − πA + 5πB − 2πB − (2πA + 2πB + 1) + 2πB]

+ 2Ψ(πA − πB)2 + Ψ(πA + πB)

= 3πxπ̄y(πA − πB) + 3Ψ2πyπ̄x(πB − πA) + 2Ψ(πA − πB)2 + Ψ(πA + πB)

= Ψ{3πyπ̄x(πA − πB) + 3πxπ̄y(πB − πA) + 2(πA − πB)2 + (πA + πB)}

= Ψ{3(1 − πx)πy(πA − πB) − 3πx(1 − πy)(πA − πB) + 2(πA − πB)2 + (πA + πB)}

= Ψ{3(πA − πB)(πy − πxπy − πx + πxπy) + 2(πA − πB)2 + (πA + πB)}

= Ψ{3(πA − πB)(πB − πA) + 2(πA − πB)2 + (πA + πB)}

= Ψ{(πA + πB) − (πA − πB)2}

n′2Var(ω̃xy|k)|N1

= EX2
xX̄2

y |N1 + EX2
A|N1 − 2EXxX̄yXA|N1

+ Ψ2(EX2
yX̄

2
x|N1 + EX2

B|N1 − 2EXyX̄xXB|N1)

− 2Ψ(EXxXyX̄xX̄y|N1 − EXxX̄yXB|N1 − EXyX̄xXA|N1 + EXAXB|N1)

= πxπ̄y + 4π2
A + 2πA(1 − πB) + π2

A − 2(2π2
A + πA − πAπB)
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+ Ψ2(πyπ̄x + 4π2
B + 2πB(1 − πA) + π2

B − 2(2π2
B + πB − πBπA))

− Ψ(πxπ̄y + πyπ̄x − πA − πB) + 2ΨπAπB + 2ΨπBπA − 2ΨπAπB

= πxπ̄y(1 − 1) + Ψ2πyπ̄x(1 − 1)

+ π2
A(4 + 1 − 4) + πA(2 − 2) + πAπB(−2 + 2)

+ Ψ2{π2
B(4 + 1 − 4) + πB(2 − 2) + πAπB(−2 + 2)}

+ Ψ{πA + πB + πAπB(2 + 2 − 2)}

= π2
A + Ψ2π2

B + Ψ(πA + πB + 2πAπB)

n′
k
2
Var(ω̃xy|k)|N0

= EX2
xX̄2

y |N0 + EX2
A|N0 − 2EXxX̄yXA|N0

+ Ψ2(EX2
yX̄

2
x|N0 + EX2

B|N0 − 2EXyX̄xXB|N0)

− 2Ψ(EXxXyX̄xX̄y|N0 − EXxX̄yXB|N0 − EXyX̄xXA|N0 + EXAXB|N0)

= πA + πA − 2πA

+ Ψ2(πB + πB − 2πB)

− 2Ψ(0 − 0 − 0 + 0)

= 0

Overall we have

Var(ω̃xy|k) =
N2

n′2Ψ{(πA + πB) − (πA − πB)2}

+
N1

n′2{π
2
A + Ψ2π2

B + Ψ(πA + πB + 2πAπB)}. (4.26)
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Note

n′2Var(ω̃xy|k)|N2 ≡ EX2
xX̄2

y |N2 + Ψ2
EX2

yX̄
2
x|N2 − 2ΨEXxXyX̄xX̄y|N2

≡ n2
kVar(ωxy|k)|N2.

Greenland (1989) derived under J independent binomials

Nk
2Var(ωxy|k) = nx|kny|k{n′

x|kπxπ̄x + n′
y|kπyπ̄y} + nx|kny|k{πxπ̄y + πyπ̄x} (4.27)

with nx|k referring to the totals of the xth binomial in the kth stratum and Nk =
∑

x nx|k. For the sampling model of dependent binomials, the totals nx|k are all

equal: n1|k = · · · = nJ |k = nk = Nk.

Now we rewrite Var(ω̃xy|k)|N2 as

n′2
k Var(ω̃xy|k)|N2 = (πA + πB) − (πA − πB)2

= πA + πB − π2
A − π2

B + 2πAπB

= πA + πB − π2
A − π2

B − 2πC − 2πBπC − 2πAπC

+ 2πC + 2πC + 2πBπC + 2πAπC − 2πC + 2πAπB

= (πA + πC)(1 − πA − πC) + (πB + πC)(1 − πB − πC)

2(πA + πC)(πB + πC) − 2πC

= πxπ̄x + πyπ̄y + 2(πxπy − πxy). (4.28)

Under independence 2(πxπy −πxy) = 0 and it becomes πxπ̄x +πyπ̄y, which is iden-

tical to Var(ωxy|k)|N2 (neglecting factors) under the independent binomial model

considered by Greenland (1989).
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4.5.2 Large Stratum Limiting Variance

In Appendix D on page 309, we apply the delta method (Theorem 2.8.4) and show

that

lim
N→∞

1

N
Vara(ω̃xy|k) = αk{πxπ̄x + πyπ̄y + 2(πxπy − πC)}. (4.29)

Computing limN→∞
1
N

Var(ω̃xy|k) from (4.26) yields

1

N
Var(ω̃xy|k) =

N2

n′2N
Ψ{(πA + πB) − (πA − πB)2}

+
N1

n′2N
{π2

A + Ψ2π2
B + Ψ(πA + πB + 2πAπB)}

=
n′′

n′
n′

n′
n

N
Ψ{(πA + πB) − (πA − πB)2}

+
1

n′
n′

n′
n

N
{π2

A + Ψ2π2
B + Ψ(πA + πB + 2πAπB)}

N→∞−→ αkΨ{(πA + πB) − (πA − πB)2}.

By (4.28), we see that limN→∞
1
N

Var(ω̃xy|k) ≡ limN→∞
1
N

Vara(ωxy|k).

Equation (4.21) now becomes

lim
M→∞

M · Vara(L̃xy) =
limM→∞

∑
k

1
M

Var(ω̃xy|k)

[limM→∞
1
M

∑K
k=1 Ec̃xy|k]2

for M ∈ {N, K}. (4.30)

This also proves that (
√

N ·ωxy|k/N)2 is uniformly integrable by Theorem 2.8.7

on page 75. Hence by Lemma 1 on page 79, we could compute the asymptotic

covariance directly by computing limN→∞
1
N

Cov(ω̃xy|k, ω̃wz|k), instead of applying

the delta method. However, due to the complexity involved in the computation

of the higher moments, we neither compute Cov( ω̃xy|k, ω̃wz|k) nor propose any

covariance estimator.
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4.6 A Dually Consistent Variance Estimator of Ψ̃

Theorem 4.6.1.

Ũxyy := V̂ar(log Ψ̃xy) =

∑
k

1
n′2 (X

2
A − XA)

C̃2
xy

+

∑
k

1
n′2 (X

2
B − XB)

C̃2
yx

+

∑
k

n′′n′+2n′−1
n′2 (XA + XB) + 2

n′2 XAXB − n′′

n′2 (XA − XB)2

C̃xyC̃yx

(4.31)

Ũxyy is dually consistent estimator of Var(log Ψ̃xy) and V̂ar(Ψ̃xy) = Ψ̃2
xy · Ũxyy is a dually

consistent estimators of Var(Ψ̃xy).

Proof. The asymptotic variance (4.30) has denominator limM→∞(limM C̃xy/M)2.

To show the dual consistency of Ũxyy, we also reduce limM→∞ M · Ũxyy such that

the expression has the same denominator (limM→∞[limM C̃xy/M ]2) by applying

formula (4.20). Then we only need to compare the numerators. By noting that

n′′N0 = n′′n = N1 − N0, the numerator of limK→∞ K · Ũxyy is

= lim
K

∑

k

1

n′2K
(X2

A − XA) + Ψ2
∑

k

1

n′2K
(X2

B − XB)

+ Ψ

{
lim
K

∑

k

n′′n′ + 2n′ − 1

n′2K
(XA + XB) +

2

n′2K
XAXB − n′′

n′2K
(XA − XB)2

}

= lim
K

∑

k

1

n′2K
(EX2

A − EXA + Ψ2(EX2
B − EXB)) + Ψ

n′′n′ + 2n′ − 1

n′2K
(EXA + EXB)

+ Ψ lim
K

∑

k

2

n′2K
EXAXB − n′′

n′2K
(EX2

A + EX2
B − 2EXAXB)

= lim
K

∑

k

1

n′2K
{N1π

2
A + N1Ψ

2π2
B} + Ψ

n′′n′ + 2n′ − 1

n′2K
N0(πA + πB)

+ Ψ lim
K

∑

k

2

n′2K
N1πAπB − n′′

n′2K
(N1(π

2
A + π2

B − 2πAπB) + N0(πA + πB))
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= lim
K

∑

k

Ψ
N2

n′2K
{(πA + πB) − π2

A − π2
B + 2πAπB}

+ lim
K

∑

k

N1

n′2K
{π2

A + Ψ2π2
B + Ψ[2(πA + πB) + 2πAπB − (πA + πB)]}

+ lim
K

∑

k

N0

n′2K
(πA + πB)(−1 + 1)

= lim
K

∑

k

Ψ
N2

n′2K
{(πA + πB) − (πA − πB)2}

+ lim
K

∑

k

N1

n′2K
{π2

A + Ψ2π2
B + Ψ[πA + πB + 2πAπB]},

and the numerator of limN→∞ N · Ũxyy is

= lim
N

∑

k

1

n2N
(X2

A − XA) + Ψ2 lim
N

∑

k

1

n2N
(X2

B − XB)

+ Ψ lim
N

∑

k

n′′n′ + 2n′ + 1

n2N
(XA + XB) +

2

n2N
XAXB − n′′

n2N
(XA − XB)2

= lim
N

∑

k

1

N
(
X2

A

n2
+ Ψ2 X2

B

n2
) − 1

nN
(
XA

n
+ Ψ2XB

n
) + Ψ

n′′n′ + 2n′ + 1

n2

n

N
(
XA

n
+

XB

n
)

+ Ψ lim
N

∑

k

2

N

XA

n

XB

n
− n′′

N
(
X2

A

n2
+

X2
B

n2
− 2

XA

n

XB

n
)

=
∑

k

0 · (π2
A + Ψ2π2

B) − 0 · (πA + Ψ2πB) + Ψ · 1 · αk(πA + πB)

+ Ψ
∑

k

0 · πAπB − αk(π
2
A + π2

B − 2πAπB)

=
∑

k

Ψαk{πA + πB − (π2
A + π2

B − 2πAπB)}

=
∑

k

Ψαk{πA + πB − (πA − πB)2}.

By comparing these expressions with the numerator limM→∞
1
M

∑
k Var(ωxy|k) of

(4.30) and (4.26), we conclude that Ũxyy is indeed dually consistent.



CHAPTER 4. MH ESTIMATORS FOR 1 ROW OF MULTIPLE RESPONSES 138

Remark 4.6.2. Greenland (1989) proposed the following variance estimator for

log Ψxy

Uold
xyy =

∑K
k=1 cxy|khxy|k

2C2
xy

+

∑K
k=1 cxy|khyx|k + cyx|kdxy|k

2CxyCyx
+

∑K
k=1 cyx|khxy|k

C2
yx

(4.32)

with hxy|k = (Xx + X̄y)/Nk, which is dually consistent under independence of

items (J independent binomials). Uold
xyy consists of 8 terms, estimating N2

k · Vara(

ωxy|k)|N2 = πxπ̄x +πyπ̄y = πxπ̄x(πy + π̄y)+πyπ̄y(πx + π̄x) by (4.27), which consists of

4 terms. Each of these 4 terms is estimated by averaging over two of the eight of

Uold
xyy. Under dependence of items, (n′)2·Vara(ω̃xy|k)|N2 = πxπ̄x+πyπ̄y+2(πxπy−πxy)

by (4.28). Instead of constructing an estimator Ũxyy by matching (4.26) directly,

we could also use Uold
xyy + Uadd

xyy instead, where Uadd
xyy is an additional part to yield

dual consistency. In such a way, we would incorporate Greenland’s estimator

in the new estimator, which has been accomplished in the previous chapter for

a different sampling model (formula (3.20) on page 99). Such a construction by

averaging over several terms to estimate one term would yield a more sufficient

estimator and is favourable over Ũxyy, given that the variances of the terms to be

averaged over have about the same variance.

4.7 Example

Again we reconsider the UTI data in Table 1.1 on page 2, and again for simplicity,

we exclude item E due to zero cell counts. The UTI data consists of 2 strata

and 2 rows of multiple responses with 5 items. We simply merge row 1 (women

without UTI history) with row 2 (with UTI history), to form stratified multiple

response data with only one row of multiple responses and 5 items per stratum.

The odds ratio estimators are defined for 2 × J tables per stratum. The positive
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responses of women with or without prior UTI history (given the age group) are

now considered as the first row and the negative as the second row, forming such

a 2 × 5 table.

The new MH approach gives {L̃AB, L̃AC , L̃AD, L̃BC , L̃BD, L̃CD}={0.5045 , 1.315,

1.747,0.815, 1.240, 0.428} with standard errors {0.14 ,0.15 , 0.16 , 0.14 , 0.15 , 0.16}

by applying formula (4.31), whereas the old estimates not considering the de-

pendence give {LAB, LAC , LAD, LBC , LBD, LCD}={0.5050 , 1.323, 1.760,0.818, 1.245,

0.425} with standard errors {0.18 ,0.19 , 0.20 , 0.19 , 0.20 , 0.20} by applying for-

mula (4.32). Standard errors obtained by Greenland’s formula (4.32) are higher

than those obtained by the new formula (4.31).

We can only describe the relationship among contraceptives, e.g. which one is

significantly more popular than the other. However, it might not be the main in-

terest for the UTI data. We observe a significant difference for any two contracep-

tives. For instance, the odds for using contraceptive “oral” are exp(0.504) = 1.656

times those for using contraceptive “lubricated condom”. The formula and boot-

strap (co)variance estimates with B = 50, 000 can be found in Table 4.1.

4.8 Simulation Study

4.8.1 Simulation Scheme

As in the previous chapters, we conduct a simulation study to investigate the

performance of the proposed new log odds ratio estimator L̃xy and its variance

estimator Ũxyy. Another aim is to double check the derived formulae, because of

their complicated structure.

The simulation study compares log Ψ̃xy with log Ψ̂xy and γ̂xy := β̂x − β̂y from

model (4.2), which we fit with GEE and an exchangeable correlation structure,
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Table 4.1: The “bootstrap” with B = 50, 000 (first line) and “formulae” (sec-
ond line, first entry Ũ , second entry U) (co)variance estimates of {Lxy, x, y =
A, . . . , D}, shown is 100× (co)variance, ∗ indicates that value is zero by definition,
NA: no estimate available

LAB LAC LAD LBC LBD LCD

LAB 5.85 5.24 4.91 −0.65 −1.01 −0.38
1.94, 3.52 NA, 0.81 NA, 0.73 NA,−1.00 NA,−0.90 NA, 0.00∗

LAC 5.86 5.06 0.57 −0.24 −0.84
2.17, 3.72 NA, 0.50 NA, 0.71 NA, 0.00∗ NA,−0.98

LAD 6.18 0.11 1.20 1.06
2.64, 4.10 NA, 0.00∗ NA, 0.56 NA, 0.86

LBC 1.24 0.78 −0.45
2.00, 3.57 NA, 0.71 NA,−1.13

LBD 2.22 1.45
2.38, 3.93 NA, 0.99

LCD 1.91
2.65, 4.12

similar to Section 2.5 on page 59. The variance estimator for γ̂xy is obtained by

the formula Var(γ̂xy) = Var(β̂x)+Var(β̂y)−2Cov(β̂x, β̂y). As previously, we use the

naive and the robust GEE variance, denoted by VarGEE
naive and VarGEE

robust respectively.

Furthermore, we include the bootstrap estimate of variance denoted by VarBT .

We only consider the case J = 2, because we only derived a variance estimator

referring to two items. Without covariance estimators we are not able to compute

a generalised (co-)variance estimator. Hence, considering more than 2 items is

not sensible.

For given Ψxy, we fix the marginal probabilities of the first item to π1|k = 0.5

and compute π2|k according to Ψxy: π2|k = 1/(1 + Ψxy · ǫ) with ǫ =
1−πx|1

πx|1 ≡ 1 for

π1|k = 0.5. Again we use the odds ratio θxy|ak

θxy|ak =
P (Yx = 1, Yy = 1|ak)P (Yx = 0, Yy = 0|ak)

P (Yx = 0, Yy = 1|ak)P (Yx = 1, Yy = 0|ak)
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Table 4.2: Simulation results for L, L̃ and γ̂12

mean 100· mse

K,Nk,Ψ,θ-nMH ,nGEE L12, L̃12, γ̂12 L12, L̃12, γ̂12

5 , 20 , 1 , 4 - 0 , 657 −0.0009,−0.0009,−0.0009 6.055, 5.854, 6.228
5 , 20 , 4 , 1 - 0 , 0 1.411, 1.411, 1.441 10.81, 10.81, 11.53

5 , 20 , 4 , 10 - 0 , 0 1.431, 1.402, 1.449 7.308, 6.959, 7.718
20 , 5 , 1 , 4 - 0 , 2027 −0.0001,−0.0001,−0.0001 6.662, 5.799, 7.67
20 , 5 , 4 , 1 - 0 , 1861 1.410, 1.411, 1.569 11.20, 11.42, 17.11

20 , 5 , 4 , 10 - 0 , 3809 1.528, 1.405, 1.633 10.36, 7.582, 15.87
1 , 500 , 1 , 4 - 0 , 299 −0.0004,−0.0004,−0.0004 1.116, 1.114, 1.116

1 , 500 , 4 , 1 - 0 , 0 1.389, 1.389, 1.389 2.000, 2.000, 2.000
1 , 500 , 4 , 10 - 0 , 0 1.390, 1.389, 1.390 1.352, 1.350, 1.352

10 , 50 , 1 , 4 - 0 , 299 −0.0008,−0.0007,−0.0008 1.107, 1.092, 1.120
10 , 50 , 4 , 1 - 0 , 0 1.388, 1.388, 1.402 2.063, 2.062, 2.128

10 , 50 , 4 , 10 - 0 , 0 1.398, 1.387, 1.406 1.322, 1.294, 1.367
50 , 10 , 1 , 4 - 0 , 353 −0.0001,−0.0001,−0.0001 1.180, 1.102, 1.264
50 , 10 , 4 , 1 - 0 , 66 1.390, 1.390, 1.466 2.116, 2.119, 2.979

50 , 10 , 4 , 10 - 0 , 328 1.450, 1.391, 1.497 1.826, 1.355, 2.764
100 , 5 , 1 , 4 - 0 , 5804 −0.0011,−0.0010,−0.0012 1.258, 1.095, 1.456
100 , 5 , 4 , 1 - 0 , 6528 1.392, 1.392, 1.554 2.215, 2.228, 5.558

100 , 5 , 4 , 10 - 0 , 9174 1.516, 1.392, 1.624 3.224, 1.370, 7.399
log(4)= 1.386294

as a measure of dependence between items. For convenience, we assume a con-

stant θ = θ12|k for all strata k = 1, . . . , K. The stratum sample sizes n1 = · · · = nK

are set constant. As before, the number of bootstrap samples is chosen as B = 400

and the number of simulations as n = 10000. We record the empirical variance

(denoted by Varemp) of the log odds estimator over n = 10000 simulations and

consider it as the true variances. The number of simulations for which GEE did

not converge is denoted by nGEE and the number for which L (or L̃) could not

be computed is denoted by nMH . The simulation results are based only on those

data sets for which both methods converged.
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Table 4.3: Simulation results for the variance and covariance estimators
100×mean 100000×mse

Varemp(L12), Varemp(L̃12), Varemp(γ̂12)

K , Nk , Ψ , θ VarBT (L12), VarBT (L̃12), VarGEE
robust(γ̂12) VarBT (L12), VarBT (L̃12), VarGEE

robust(γ̂12)

nMH ,nGEE U122, Ũ122, VarGEE
naive(γ̂12) U122, Ũ122, VarGEE

naive(γ̂12)

5 , 20 , 1 , 4 6.056, 5.854, 6.228 −,−,−
0 , 657 5.569, 5.397, 5.744 10.48, 10.50, 9.574

8.203, 5.497, 5.748 46.56, 9.266, 9.503

5 , 20 , 4 , 1 10.75, 10.75, 11.22 −,−,−
0 , 0 10.98, 11.00, 11.14 41.71, 44.69, 26.94

10.63, 11.00, 11.14 14.40, 33.47, 26.28

5 , 20 , 4 , 10 7.108, 6.934, 7.322 −,−,−
0 , 0 7.376, 7.207, 7.265 32.62, 32.51, 22.73

10.85, 6.975, 7.292 155.7, 23.12, 22.85

20 , 5 , 1 , 4 6.663, 5.8, 7.671 −,−,−
0 , 2027 5.71, 5.088, 7.126 17.42, 14.18, 14.56

8.6, 5.839, 7.238 39.16, 14.17, 13.37

20 , 5 , 4 , 1 11.14, 11.36, 13.78 −,−,−
0 , 1861 10.36, 10.64, 13.35 67.54, 89.31, 47.89

10.93, 12.31, 13.29 22.70, 90.67, 42.49

20 , 5 , 4 , 10 8.359, 7.549, 9.792 −,−,−
0 , 3809 8.217, 7.504, 8.338 52.14, 51.39, 374.1

11.91, 7.560, 9.318 152.4, 38.40, 467.8

1 , 500 , 1 , 4 1.116, 1.114, 1.116 −,−,−
0 , 299 1.074, 1.073, 1.071 0.119, 0.119, 0.066

1.603, 1.071, 1.071 2.379, 0.065, 0.066

1 , 500 , 4 , 1 2.000, 2.000, 2.000 −,−,−
0 , 0 2.074, 2.074, 2.061 0.435, 0.435, 0.196

2.058, 2.064, 2.061 0.107, 0.200, 0.196

1 , 500 , 4 , 10 1.350, 1.349, 1.350 −,−,−
0 , 0 1.323, 1.322, 1.315 0.220, 0.220, 0.134

2.059, 1.314, 1.315 5.09, 0.134, 0.134

100 , 5 , 1 , 4 1.258, 1.096, 1.456 −,−,−
0 , 5804 1.104, 0.9818, 1.412 0.347, 0.234, 0.138

1.705, 1.153, 1.436 2.008, 0.140, 0.098

100 , 5 , 4 , 1 2.212, 2.226, 2.754 −,−,−
0 , 6528 1.872, 1.899, 2.602 1.59, 1.595, 0.515

2.13, 2.360, 2.589 0.206, 0.704, 0.522

100 , 5 , 4 , 10 1.531, 1.368, 1.765 −,−,−
0 , 9174 1.487, 1.335, 1.763 0.363, 0.320, 0.249

2.333, 1.450, 1.840 6.614, 0.320, 0.386
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4.8.2 Simulation Results

Table 4.2 shows the performance of the log odds ratio estimators. For the large

stratum case (K = 1, Nk = 500), all three estimators L, L̃ and γ̂ perform well.

The sparser the data becomes, the worse γ̂ is. Also, the higher the dependence,

the better L̃. Only for independent items (θ = 1), L and L̃ behave similarly well.

Estimator L̃ stays almost unbiased for growing dependence, in contrast to L and

γ̂, which only seem unbiased under the large stratum case. Despite choosing the

right correlation structure for GEE (there are only two items and one correlation

parameter), we are surprised that GEE performs even worse than the ordinary

MH estimator, which wrongly assumes independence between items. The bad

performance cannot be explained by convergence problems, because the results

are only shown for those simulations for which the MH and GEE methods con-

verged.

Table 4.3 shows the performance of the variance estimators. As we assumed,

Ũxyy is not a perfect estimator. Under dependence (θ 6= 1), it performs better than

Uxyy, which was to be expected. The bootstrap estimator VarBT (L̃12) performs

better than Ũxyy only a few times: For low sample sizes (either K = 20, Nk = 5

or K = 5, Nk = 20) or when neither K nor Nk is large, otherwise Ũxyy is superior.

This performance pattern is similar to the one observed in Section 3.7 on page

114 for the variance estimator Uxyy|ab of log Ψ̂xy|ab, where the bootstrap estimator

of variance performed better than Uxyy|ab for either K = 20, Nk = 5 or K = 5,

Nk = 20.

The performance of VarGEE
naive(γ̂12) and VarGEE

naive(γ̂12) is quite similar, which can

be explained by the fact that J = 2 items yield only 1 correlation parameter and

therefore the working correlation is automatically correctly specified. For J > 2,

we expect both the robust and naive variance to behave worse, however, the ro-
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bust variance should outperform the naive variance estimator due to the increas-

ing number of correlation parameters and the likely fact that the working correla-

tion is wrong. In general, the performance of the GEE variance estimators is quite

good, however, γ̂12 itself performed weakly, overestimating the actual log odds

ratio resulting in a higher true (empirical) variance. Thus, a bad estimator with

large variances cannot be recommended even though their variance estimators

perform well in estimating this large variance.

The empirical variances of Lxy and L̃xy behave similar to the estimators Lxy

and L̃xy. Under independence, the empirical variance of L is smallest, whereas

under dependence it is that of L̃.

We recommend the following: Under dependence, we clearly favour L̃ with

Ũxyy as the new estimators over L and Uxyy, in contrast to independence, where

we recommend L and Uxyy instead. Estimator γ̂ only performs well under the

large stratum case.

For more than J = 2 items, a new generalised variance estimator also could be

constructed. However, for that we need new covariance estimators. This might

be the subject of future research. Still, we can compute a generalised estimator of

the odds ratio based on L̃, and the bootstrap method gives a fairly good variance

estimator.

Future research might present a more efficient estimator Ũxyy, as we outlined

in Remark 4.6.2, as well as covariance estimators, that along with the asymptotic

covariances are yet to be derived. We expect such a new estimator Ũnew
xyy to per-

form similarly well as Uxyy under independence of items, but outclassing Uxyy

under dependence.

Remark 4.8.1. There is, however, the question whether 2 items x and y are inde-

pendent or not, which is essential in determining which estimator to be used. One
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possibility is to construct a 2 × 2 contingency table, where the rows are the pos-

itive and negative responses for item x and where the columns are the positive

and negative responses for item y. Testing independence is equivalent to test-

ing whether the two-way interaction parameter of a saturated log-linear model is

zero. Another possibility is to apply Pearson’s chi-square test statistic which has

one degree of freedom.



Chapter 5

Methods for Deletion Diagnostics for

Homogenous Linear Predictor

Models

5.1 Introduction

In a study published by Richert, Tokach, Goodband and Nelssen (1993), 262 farm-

ers were questioned about their veterinary information sources. They were asked

to tick one or more of the following items: (A) professional consultant, (B) veteri-

narian, (C) state or local extension service, (D) magazines, and (E) feed companies

and reps. Agresti and Liu (2001) used “education” and “size” of farm as explana-

tory variables. Variable “education” has only two levels, whether the farmers had

at least some college education or not, and “size” has the following levels: Less

than 1,000, 1,000 to 2,000, 2,000 to 5,000, more than 5,000, which are the number

of pigs they marketed annually. The example is referred to as farmers’ data. The

data can be cross-classified into a 2 × 4 × 5 table (see Table 5.1) showing the total

146
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number of positive responses for each item and for each education and farm size

level.

Agresti and Liu (2001) considered several marginal modelling strategies, such

as generalised estimation equations (GEE) (Liang and Zeger 1986), a generali-

sation of quasi-likelihood, and maximum likelihood (ML) estimation for gener-

alised log-linear models (GLLM) (Lang and Agresti 1994), which both take the

dependence between items into account. Preisser and Qaqish (1996) proposed

regression diagnostics for GEE. They introduced simple explicit expressions for

the effect (DBETA) and the influence (Cooks Distance) of deleting an arbitrary set

of observations and some sub-cases, as the deletion of clusters and observations

(responses) within a cluster. The Cook distance (Cook 1977) is a measure of influ-

ence for a set of observations to be deleted. Potential influential observations are

high leverage points and outliers, but neither a high leverage point nor an outlier

must be influential.

In this chapter, we want to investigate deletion diaginostics, such as the Cook

distance, for HLP models (Lang 2005), an extension of GLLM, for analysing mul-

tiple response data, which has not been considered yet. The link function of a

HLP model is many-to-one, in contrast to the one-to-one link function of the GEE

method, making the deletion of observations different for both approaches. The

deletion for HLP models becomes more complex and difficult. Our aim is to

find a simplified but reliable method to calculate deletion diagnostics efficiently.

We investigate three different but equivalent deletion methods for deleting a set

of predictors. In particular, we propose a “delete=replace” method, which as-

signs dummy variables for the predictors/observations being deleted and an-

other method which only deletes a set of predictors zij and the corresponding

linear predictors ηij. In most cases, these two methods are computationally sim-
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pler than the method of direct deletion of joint observation and the corresponding

vectors of predictors zij. We do not only consider full solutions but also provide

one-step approximations of DBETA and the Cook distance.

We proceed as follows. Section 5.2 introduces GEE and HLP models, Section

5.3 follows with introducing some existing GEE deletion diagnostic methods. For

GEE we also investigate in which instances the “delete=replace” method and the

method of direct deletion of observations yield identical model parameter esti-

mates. Then we investigate deletion diagnostics for HLP models by considering

the aforementioned 3 equivalent deletion methods. The methods are illustrated

and compared by using the farmers’ data (Section 5.4) and Section 5.5 finishes

with discussing results and methods. We published these sections previously

(Suesse and Liu 2008) in a similar but more compact form (8 pages only). Dele-

tion diagnostics for generalised linear mixed models (Xiang et al. 2002), another

possible modelling approach for multiple response data, are not considered here.

Table 5.1: Marginal table of farmers’ veterinary information sources by education
and number of pigs

Number of Positive Responses

Information Source

Number Number of

Education of Pigs A B C D E Subjects

No College < 1, 000 2 13 18 22 17 42

1, 000 − 2, 000 2 15 10 11 15 27

2, 000 − 5, 000 7 10 10 14 11 22

> 5000 13 10 7 14 7 27

Some College < 1, 000 3 16 21 33 22 53

1, 000 − 2, 000 2 10 15 22 10 42

2, 000 − 5, 000 1 7 7 7 6 20

> 5000 14 9 7 8 5 29

Total 44 90 95 131 93 262
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5.2 Model Fitting

5.2.1 Marginal Models

We denote the J dimensional multiple response vector for subject i by yi = (yi1,

. . . , yiJ)T , where yij represents the jth item response of subject i = 1, . . . , n, which

is 1 for a positive response and 0 for a negative response. The mean response

Eyij = µij equals the probability of a positive response πij for binary observa-

tions. We assume πij depends on the linear predictor ηij = zT
ijβj through the link

function gj(·) by

gj(πij) = gj(µij) = ηij = zT
ijβj. (5.1)

Column vector zij is the ith subject contribution to the design matrix of the jth

model depending on the ith subject’s covariates, which are stored in column vec-

tor xi.

Let Zi = Diag(zT
i1, . . . , z

T
iJ), also let πi = (πi1, . . . , πiJ)T , similarly define µi, ηi,

g. We can also express (5.1) in vector form as

g(πi) = ηi = Ziβ, (5.2)

with β = (βT
1 , . . . , βT

J )T and where g(πi) stands for the column vector (g1(πi1),

. . . , gJ(πiJ))T . This modelling approach is called marginal modelling (Agresti and

Liu 1999), because we model J univariate marginal distributions of yi.

We can write this in an even more compact form as

g(π) = η = Zβ, (5.3)

with Z = (ZT
1 , . . . ,ZT

n )T , similarly π and η. Here g(π) stands for the column
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vector (g(π1)
T , . . . , g(πT

n ))T .

Agresti and Liu (2001) discussed several models for the farmers’ data. One of

the best that fits well is

log

(
πij

1 − πij

)
= αj + βj · si (5.4)

with equally spaced scores si = 1, 2, 3, 4 depending on the ith subject size of farm

(< 1, 000, . . . , > 5, 000). For example, if farmer i marketed less than 1, 000 pigs a

year, then si = 1. This model is linear in farm size and was called “LIN S”.

The mean response model parameters β are of primary interest; in contrast,

the association parameters or any other higher order parameters are only of very

limited concern. One way of model fitting is to fit a generalised linear model

(GLM) (McCullagh and Nelder 1989) for each of the J items separately, however,

this maximum likelihood (ML) approach does not account for the dependence

between items and yields less efficient parameter estimates. In the next two sub-

sections, we consider the current two most common model fitting approaches.

We introduce the model fitting approaches in detail in order to investigate dele-

tion diagnostics based on these iterative algorithms in the sections thereafter.

5.2.2 Generalised Estimation Equations

In this subsection, we introduce the generalised estimating equations (GEE) ap-

proach developed by Liang and Zeger (1986). GEE is a multivariate extension

of the quasi-likelihood approach (Wedderburn 1974). Let Var(yi) = fi · φ−1 de-

note the variance of yi with variance function fi = f(µi) and scale or dispersion

parameter φ. Let us assume that the univariate distributions of yi are of the ex-

ponential family. Function f(·) gives the mean variance relationship which is
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uniquely determined by the distribution within the class of the exponential fam-

ily, for instance for binary observations Var(yij) = f(πij) = πij(1 − πij). GEE

estimates are obtained by computing the root of the GEE (or quasi-score equa-

tions)

n∑

i=1

∂µT
i

∂β
(AiRi(α)Ai)

−1(yi − µi) = 0, (5.5)

where ∂µi/∂β is a Ji × p matrix, Ai =
√

fi is a Ji × Ji diagonal matrix with

elements
√

Var(yij), Ri(α) is the Ji×Ji correlation matrix for observation (cluster)

i depending on parameter(s) α = (α1, . . . , αL)T , Ji ≤ J is the length of cluster i

accounting for possibly different cluster lengths and define J+ :=
∑n

i=1 Ji. Here

we use the general setting for GEE with varying cluster lengths Ji, for multiple

response data we often have constant length Ji = J , e.g. Ji = 5 for the farmer’s

data. Let us define

Wi = D−1
i A−1

i R−1
i (α)A−1

i D−1
i ,

with Di = ∂ηi/∂µi. Also, let W = Diag(W1, . . . ,Wn), similarly defined for D

and R. Let y := (yT
1 , . . . ,yT

n )T denote all observations stacked in a single vector,

denoted in a similar manner for all other defined vectors and matrices. If design

matrix Z has full column rank, β can be estimated by iterated weighted least

squares (Preisser and Qaqish 1996):

β̂
new

=
(
ZTWZ

)−1
ZT Wp (5.6)

with pseudo-observations p = Zβ̂+D(y−µ), assuming the dispersion parameter

φ and the correlation matrix R(α) = Diag(R1(α), . . . ,Rn(α)) are known and

given. If unknown, they must be estimated consistently for every iterate. The
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correlation matrix R(α̂) with an implicitly given correlation model is then called

working correlation.

The GEE in (5.5) can also be expressed as

n∑

i=1

Ui = 0 (5.7)

with Ui = MT
i V−1

i ri = 0, where Mi = ∂µi/∂βT , Vi = AiRiAi and ri = yi −µi. If

R is unknown, Vi is considered as the working covariance.

Theorem 5.2.1 (Liang and Zeger 1986 - “standard method”). Under mild regularity

conditions and given that :

1. α̂ is n1/2 consistent given β and φ

2. φ̂ is n1/2 consistent given β,

3. |∂α̂/∂φ| is Op(1)

then n1/2(β̂ − β) is asymptotically multivariate Gaussian with zero mean and variance

lim
n→∞

n · J−1
1 J2J

−1
1

where

J1 =

n∑

i=1

MT
i V−1

i Mi and J2 =

n∑

i=1

MT
i V−1

i Cov(yi)V
−1
i Mi.

The covariance Cov(yi) is usually unknown and if replaced by (yi − µ)T (yi − µ)

and substituting the parameters β, φ and α by their estimates, we yield the robust

or sandwich variance estimate

Cov(β̂)robust = Ĵ−1
1 Ĵ2Ĵ

−1
1 . (5.8)
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If the specified correlation R(α) is correct, implying J1 = J2, then this robust

variance simplifies to the naive variance:

Cov(β̂)naive = φ−1

(
n∑

i=1

ZT
i WiZi

)−1

= φ−1
(
ZT WZ

)−1 ≡ J−1
1 . (5.9)

Estimation of α and φ

Liang and Zeger (1986) suggested estimating the correlation and scale parameters

from the Pearson residuals which are defined by

ρ̂ij =
yij − µ̂ij

V̂ar(yij)
. (5.10)

Then we can estimate φ by

φ̂ =

n∑

i=1

J∑

j=1

ρ̂2
ij/[J+ − p]. (5.11)

Given φ, the parameters α = (α1, . . . , αL)T are commonly estimated by the gen-

eral approach

α̂l = φ−1

n∑

i=1

∑

j1,j2∈Sl

ρ̂ij1 ρ̂ij2/[N(n) − p] (5.12)

where Sl is the set of indices j1, j2 for which the correlation parameters Rj1j2(α)

of Corr(yi) = R(α) = (Rj1j2)
J
j1,j2=1 are assumed to be equal to the lth parameter

αl, in formula Sl := {j1, j2 : Rj1j2 = αl}. The number N(n) refers to the number

of Pearson residuals the correlation is estimated over. However, the specific es-

timator depends on the choice of the correlation R(α). We consider now some

popular choices for the working correlation structure.
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An exchangeable structure Rj1j2 = Corr(yij1, yij2) = α is estimated by

α̂ = φ−1

n∑

i=1

∑

j1>j2

ρ̂ij1 ρ̂ij2/

{
n∑

i=1

1/2Ji(Ji − 1) − p

}
(5.13)

specifying S = {j1 > j2 : j1, j2 = 1, . . . , Ji} and N(n) =
∑n

i=1 1/2Ji(Ji − 1). We

estimate the structure Corr(yij, yi(j+1)) = αj by

α̂j = φ−1
n∑

i=1

ρ̂ij ρ̂i(j+1)/(n − p) (5.14)

with the special case of 1-dependence α = αj for j = 1, . . . , J − 1, which can be

estimated by

α̂ =
J−1∑

j=1

α̂j/(J − 1) (5.15)

or to have the general form (5.12) by

α̂ = φ−1

n∑

i=1

J−1∑

j=1

ρ̂ij ρ̂i(j+1)/[n(J − 1) − p].

An unstructured correlation structure Rj1j2 = αj1j2 is estimated by

R̂ =
φ−1

n

n∑

i=1

A−1
i rir

T
i A−1

i (5.16)

or re-expressed as

α̂j1j2 = φ−1
n∑

i=1

ρ̂ij1 ρ̂ij2/n,

where the denominator can also be replaced by n − p to match (5.12). Another

popular and simple structure is the independence structure Rj1j2 = 0 for j1 6= j2

and Rjj = 1. When this structure is chosen, items are treated as independent

and the GEE are identical the likelihood equations when each of the J marginal
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models is fitted as a GLM (McCullagh and Nelder 1989).

We note, N = N(n) in (5.12) depends on the choice of the correlation R(α),

but also on the number of clusters n. For these structures, the estimation of φ is

not required for the estimation of β, because it cancels out in the calculation of

W. For more details, please refer to Liang and Zeger (1986) and its references

therein.

Prentice (1988) and Zhao and Prentice (1990) considered the estimation of β

and additionally the association parameters α, which are also modelled in terms

of some explanatory variables, by extending the GEE approach. Our main focus

is the estimation of β, hence, the association parameters are regarded as nui-

sance parameters and the extended GEE approach is not further considered in

this chapter. The choice and modelling of the correlation and the application of

the extended GEE approach will be discussed in more detail for repeated multiple

responses in Chapter 6.

Multivariate Generalised Linear Models

Let xi be a column vector of covariates and let the observations yi ∈ R
J (i =

1, . . . , n) be conditionally independent and its distribution be from the simple

exponential family. Then the ith contribution of the log-likelihood kernel l =

∑n
i=1 li of a multivariate GLM (MGLM) can be written as follows (Fahrmeir and

Tutz 2001, Chapter 2 and 3)

li = {yT
i θi − b(θi)}/φ, (5.17)

where θi is the natural parameter, Eyi = ∂b(θi)/∂θi = µi , Cov(yi) = Σi =

φ∂2b(θi)/∂θi∂θi
T , φ is the scale or dispersion parameter. The first derivative can
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be written as follows

Ui =
∂li
∂β

= MT
i Σ−1

i [yi − µi], (5.18)

with Mi =
∂µi

∂β
T .

The model is usually expressed as

g(µi) = Ziβ (5.19)

with vector valued link function g(·) and design matrix Zi depending on xi.

The likelihood equations

∂l

∂β
=

n∑

i=1

∂li
∂β

=

n∑

i=1

Ui = 0 (5.20)

are solved to obtain ML estimates β̂. The expected information matrix I has the

form

J = EI =
n∑

i=1

MiΣ
−1
i MT

i , (5.21)

where I =
∑n

i=1 ∂2li/∂β∂βT is the observed information matrix. Obviously, the

likelihood equations (5.20) are identical to the GEE when Σi ≡ Vi within the

class of the simple exponential family, in other word, if the working correlation

Ri (consequently also the working covariance) is correctly specified or is known,

ML estimates and GEE estimates are identical. However, this does not apply

for multiple response data, because the discrete underlying joint distribution is

not fully specified by µi and Σi, and is not a member of the simple exponen-

tial family. A special sub-case of this equivalence between GEE and MGLM is

the equivalence of a GLM and ordinary quasi-likelihood functions for univariate

distributions within the simple exponential family.
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5.2.3 Homogenous Linear Predictor Models

Table 5.1 shows the marginal counts of positive responses for each item j =

1, . . . , J and explanatory variables education and size. The observations from the

underlying joint distribution can be found in Table 5.2. The first column shows

each of the possible 2J (J = 5) binary sequences j′ of the form (j′1, . . . , j
′
J) with

j′J ∈ {0, 1}. We use j and j′ to distinguish between marginal responses with in-

dex j referring to the items and joint observations with index j′ referring to the 2J

outcomes. The other columns show vkj′, the number of observations for sequence

j′ and for covariate setting k = 1, . . . , K.

We can compute the marginal probabilities πkj from the joint probabilities by

a simple matrix multiplication πkj = bT
j τ k, in vector form πk = Bτ k, where B =

(b1, . . . ,bc)
T is a matrix containing only zeros and ones. By using the same matrix

B, we can compute the marginal counts in Table 5.1 from the joint observations

vkj′ by Bvk. For instance, summing over the 16 last observations vkj′ in Table 5.2

(observations for which response for item A was positive, i.e. j′1 = 1) for setting

k = 1 gives 2, the same number we find in Table 5.1 for setting k = 1 and item A.

In this way, b1 is specified; the first 16 entries are zero and last 16 ones.

Note that the probability πkj is identical to πij of model (5.1), if the ith obser-

vation has setting k. We can express model (5.2) in terms of joint probabilities as

g(πk) = g(Bτ k) = Zkβ with g = (g1, . . . , gJ)T .

Assume a logistic link for all J marginal models, then (5.2) can be re-expressed

as a generalised log-linear model (GLLM), which has the form C logM mk = Zkβ,

where mk (mk = vk+τ k) contains the expected cell counts of the joint table (Table

5.2) and where M and C are some matrices.

The parameter estimates of the marginal model only specify the J mean re-

sponses πkj, but they cannot uniquely determine the 2J joint probabilities τkj′ ,
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Table 5.2: Joint table of farmers’ veterinary information sources by education and
number of pigs

Number of Joint Counts
No College Some College

j′ Number of Pigs
Binary 1,000 2,000 1,000 2,000
Coding < 1, 000 -2,000 -5,000 > 5, 000 < 1, 000 -2,000 -5,000 > 5, 000 Total

1=(00000) 0 0 0 0 0 0 0 0 0
2=(00001) 3 4 1 2 11 6 3 2 32
3=(00010) 7 4 4 6 14 14 4 4 57
4=(00011) 5 0 1 0 2 1 1 0 10
5=(00100) 7 3 1 0 6 7 4 2 30
6=(00101) 1 0 0 1 0 0 1 0 3
7=(00110) 4 0 0 0 4 2 0 1 11
8=(00111) 1 1 2 0 0 0 0 0 4
9=(01000) 5 5 2 1 2 4 5 4 28

10=(01001) 2 4 1 0 1 1 0 1 10
11=(01010) 0 0 0 1 1 0 0 0 2
12=(01011) 1 0 0 1 1 0 0 1 4
13=(01100) 0 0 0 1 0 1 0 0 2
14=(01101) 1 0 0 0 0 0 0 0 1
15=(01110) 1 0 0 0 4 2 0 0 7
16=(01111) 2 4 3 1 4 2 1 0 17
17=(10000) 1 0 3 6 0 1 0 10 21
18=(10001) 0 0 0 0 0 0 0 0 0
19=(10010) 0 0 0 1 0 0 0 0 1
20=(10011) 0 0 0 0 0 0 0 0 0
21=(10100) 0 0 0 0 0 0 0 1 1
22=(10101) 0 0 0 0 0 0 0 0 0
23=(10110) 0 0 0 1 0 1 0 0 2
24=(10111) 0 0 0 0 0 0 0 0 0
25=(11000) 0 0 0 2 0 0 0 0 2
26=(11001) 0 0 0 0 0 0 0 0 0
27=(11010) 0 0 0 0 0 0 0 0 0
28=(11011) 0 0 0 0 0 0 0 0 0
29=(11100) 0 0 0 0 0 0 0 1 1
30=(11101) 0 0 0 0 0 0 0 0 0
31=(11110) 0 0 1 1 0 0 1 1 4
32=(11111) 1 2 3 2 3 0 0 1 12

Number of
Subjects vk+ 42 27 22 27 53 42 20 30 262
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because this is a many-to-one relationship. Hence, maximising the likelihood

kernel
∑K

k=1 vT
k log mk is not possible with standard ML procedures where the

likelihood is expressed in terms of the model parameters.

An alternative method is maximising the likelihood subject to a system of

constraints and Lagrange multipliers describing the underlying model. Lang and

Agresti (1994) and Lang (1996) investigated ML estimation for GLLM using a

variant of the constraint approach of Aitchison and Silvey (1958, 1960).

Lang (2004) developed a theory of the constraint approach for the broader

class of multinomial-Poisson homogeneous (MPH) models. A sub-class of MPH

models are homogeneous linear predictor models having the form L(mi) = Ziβ,

which were considered by Lang (2005). The class of linear predictor models con-

sidered by Bergsma (1997) is formally equivalent to HLP models.

According to Lang (2005), models being expressed in terms of τ k are auto-

matically HLP models, hence, our marginal models having the form L(mk) =

g(Bτ k) = Zkβ are within the class of HLP models. HLP models do not only al-

low the logistic link, but also any other smooth link functions gj(·), such as the

probit link, in contrast to GLLM. From τ k = mk/v+k and πkj = bT
j τk, we can write

model (5.4) as

log

(
bT

j mk/v+k

1 − (bT
j mi/v+k)

)
= αj + βj · sk

which is now of the form L(mk) = Zkβ.

HLP models assume K independent samples (or strata) each from either a

multinomial or Possion distribution. The sampling plan (G,GF,v+) determines

the distribution of cell counts v ∈ R
d, where the ith element of v contains the type

i outcome, in our case d = K · 2J . The population matrix G ∈ R
d×K has elements

Gik ∈ {0, 1} with conditions Gi+ = 1 and G+k ≥ 1, in our case, G+k = 2J . If

Gik = 1 then the ith element of v (the type i outcome) from stratum k has a sample
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size of v+k, and if Gik = 0 then stratum k does not contain the type i outcome.

Matrix GF is identical to matrix G if all strata are from a multinomial distribution,

if however the kth column is omitted in GF , then the sample size v+k is a Poisson

variable. For multiple response data, matrix G equals GF and is of size K · 2J ×

K, where each column contains exactly 2J ones and each row contains only one

“one”; the remaining entries are zeros. Vector v+ = (v1+, . . . , vK+) contains the

fixed sample sizes for each of the K strata. The matrices G and GF are needed

later for the fitting algorithm. We leave further details to the interested reader

(Lang 2005).

We express now a HLP model in the more compact form

L(m) = Zβ (5.22)

with Z = (ZT
1 , . . . ,ZT

K)T (similarly define m) and L(m) standing for (L(m1)
T , . . . ,

L(mK)T )T . Define ξ := log m by parameterising m to yield strictly positive es-

timates for m. Let U be the orthogonal complement of Z (assuming Z has full

column rank), then define h(m) := UTL(m) and H := ∂h(m)T

∂m
= ∂LT

∂m
U. From

(5.22) follows h(m) = 0, the general form of multinomial-Poisson-homogeneous

(MPH) models. The following iteration scheme was recommended by Lang (2005)

based on the maximisation of the likelihood kernel l(ξ;v) = vT ξ subject to (5.22)

θ̂
new

= θ̂ − S(θ̂)−1s(θ̂) (5.23)

with

s(θ) =



v − eξ + H(ξ)λ

h(ξ)


 and S(θ) =



−D(eξ) H(ξ)

H(ξ)T 0


 ,

where D(x) := Diag(x), H(ξ) = ∂h(ξ)/∂ξ and θ = (ξT , λT )T , and where λ de-
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notes a vector of Lagrange multipliers. The inverse of the matrix S is expressed

as (Lang 2005)

S−1 =



−D−1 + D−1H(HTD−1H)−1HTD−1 D−1H(HTD−1H)−1

(HTD−1H)−1HTD−1 (HTD−1H)−1


 . (5.24)

Suppose a final unique solution m̂ exists, then it solves the restricted likelihood

equations 

v −m + D(m)H(m)λ

h(m)


 = 0

and the parameter estimates are computed by

β̂ = RZL(m̂) (5.25)

with RZ = (ZT Z)−1ZT . The asymptotic covariance for β̂ is given by

Cov(β) = RZ

(
Ĉ1 − Ĉ1U(UT Ĉ1U)UT Ĉ1 − Ĉ2

)
RZ (5.26)

with

C1(m) = ∂L/∂mT D(m)∂LT /∂m

and

C2(m) = ∂L/∂mT D(m)GFGT
FD(m)∂LT /∂m.

The asymptotic covariance for a HLP model of zero order with full column rank

matrix U simplifies to

Cov(β̂) =

(
ZT ∂L(m̂)

∂mT
D(m̂)

∂L(m̂)T

∂m
Z

)−1

. (5.27)
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Marginal models of the form (5.2) depending on multinomial probabilities τ i

through πi are zero order HLP models and the orthogonal complement U can

always be constructed to have full column rank. Consequently, formula (5.27)

applies for these marginal models. The likelihood-ratio statistic is given by

G2 = 2yT log
( y

m

)
. (5.28)

Note that ML estimates are not properly defined for zero cells in the joint table,

as in our example, see Table 5.2. To overcome this problem, a tiny constant, e.g.

10−5, is added to zero cell counts and the estimates are then called extended ML

estimates.

5.3 Deletion Diagnostics for GEE and HLP models

In this section, we introduce some of the GEE diagnostics considered by Preisser

and Qaqish (1996) and focus on a “deletion = replace“ method. Then we concen-

trate on deletion diagnostics for HLP models also proposing the same “delete =

replace“ method.

5.3.1 GEE-Diagnostics

Let β̂ be the parameter estimate of all observations and β̂[d] be the estimate when

a set d of observations is deleted, similarly for all other quantities, e.g. yd denotes

the set d of observations to be deleted, whereas y[d] denotes all remaining obser-

vations not in set d. For given set d, the deletion diagnostics DBETA and Cook
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distance (Cook 1977) are defined as

DBETA[d] = ∆dβ̂ = β̂ − β̂[d] (5.29)

and

CD[d] = (β̂ − β̂[d])
T Cov(β̂)−1(β̂ − β̂[d])/p. (5.30)

Let matrices and vectors be partitioned in the following way

W =


W[d] W[d]d

Wd[d] Wd


 ,y =


y[d]

yd


 .

Now we list some results from Preisser and Qaqish (1996). GEE estimates

are obtained by applying iterative algorithm (5.6). In the following, we denote

the old parameter estimates by β̂
old

and the new (updated) estimates by β̂
new

,

which then become the old estimates in the next iteration. The final solution of the

iteration scheme is denoted by β̂
final

. The linear predictor is updated by η̂new =

Zβ̂
new

= Hp, where H = QW and Q = Z(ZT WZ)−1ZT . Thus, H can be seen

as a projection matrix which maps the current iterate of the pseudo-observations

p into the subspace of the linear predictor. The leverage of a cluster i can be

defined as tr(Hi). The jth element on the diagonal of tr(Hi) is the leverage of the

jth response in the ith cluster on the fitted value. Define the adjusted residuals

by ei = Di(yi − µi) and also let V = W−1.

Theorem 5.3.1 (Preisser and Qaqish 1996).

β̂[d] ≈ β̂ − (ZTWZ)−1Z̃T
d (W−1

d − Q̃d)
−1ẽd,
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where

Z̃d := Zd −Vd[d]V
−1
[d] Z[d], Q̃d := Z̃d(Z

TWZ)−1Z̃T
d ,

ẽd := p̃d − Z̃dβ̂ = ed − Vd[d]V
−1
[d] e[d], p̃d = pd −Vd[d]V

−1
[d] p[d].

Proposition 5.3.2 (Preisser and Qaqish 1996). The one-step approximation for β̂−β̂[i]

is

DBETACi := (ZT WZ)−1ZT
i (W−1

i −Qi)
−1ei

where i refers to the ith cluster.

For univariate observations DBETACi equals

β̂ − β̂[i] ≈ (ZTWZ)−1ZT
i W

1/2
i (1 − hi)

−1/2rpi
(5.31)

with hi being the ith diagonal element of H = W1/2Z(ZT WZ)−1ZT W1/2 and

rpi
= (yi − µi{fi(1 − hi)}), which is one type of Pearson residuals. The one-step

approximation (5.31) was introduced by Pregibon (1981) for logistic regression

and is also identical to the one Williams (1987) derived for GLM. Preisser and

Qaqish (1996) also derived one-step approximations for ∆β̂ deleting the jth re-

sponse of the ith cluster. They also presented formulae for the Cook distance

measuring the standardised influence on the linear predictor for deleting an ar-

bitrary set of observations, for deleting the ith cluster and for deleting the jth

response of the ith cluster. Again, as for the leverage, the one-step approximation

(5.31) simplifies for univariate responses to the formula presented by Williams

(1987) for GLM. Preisser and Qaqish (1996) also presented a one-step approxima-

tion for the studentised distance for the influence of the ith cluster on the overall

fit.
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Haslett and Haslett (2007) considered a “delete = replace“ method, which re-

places the deleted observations by its conditional best linear unbiased predic-

tor (BLUP). However, their conditional residuals are of different nature than the

marginal residuals ri. Now we consider another “delete = replace“ method by

augmenting the design matrix, which is equivalent to the deletion of a set d. De-

fine the augmented design matrix Z̃ by

Z̃ =




Z[d] 0

0 Id


 . (5.32)

The resulting parameter vector is of length p + |d| and has the form

β̃ =




β̃[d]

β̃d


 . (5.33)

Design matrix Z̃ assigns one parameter for each deleted observation, such that

the added parameter vector β̃d contains exactly |d| parameters. Vector β̃[d] is now

independent of β̃d and is only estimated over those observations that are not

deleted, yielding parameter estimates as if the set d of observations is deleted.

Additionally, the idea is that each parameter of β̃
final

d fits perfectly the assigned

observations, such that r
final
d is zero. Let the method where observations are

deleted be called conventional (deletion) method and the method which replaces

design matrix Z by Z̃ be referred to as “delete = augment” method. This method

can also be seen as a “delete = replace” method, as mentioned by Haslett (1999,

p.605), but we name it differently to distinguish between the two.

For the linear model, it is well known, that the conventional and the “delete =

augment” method yield identical parameter estimates for generalised least squares
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(GLS), that is β̃[d] and β̂[d] are identical. For example Haslett (1999) mentioned

that the here-called “delete = augment” is an alternative to his “delete = replace”

approach. Also Peixoto and Lamotte (1989) noted that deleting “a case is equiv-

alent to adding a dummy variable.” Similarly, the parameters of vector β̃d are

also such added dummy variables. It is clear then, that the ”delete = augment“

method also works for GEE, because the iteration scheme (5.6) has the same form

as for GLS. However, for GLS only one iteration of (5.6) is applied and it does not

use pseudo-observations. It also does not need to estimate correlation structure

parameters α and the scale parameter φ. Therefore, we must carefully investigate

in which instances the two methods, the conventional method and the ”delete =

augment“ method, are identical or are at least approximately equal.

Before we formulate the theorem, which states in which instances the new

iterates and final solutions of the two methods are equivalent, consider the fol-

lowing situations: (i) For some working correlations, e.g. for an exchangeable

(5.13) or unstructured (5.16) correlation structure, the scale parameter cancels out

in the computation of β̂ (with W) and is redundant. (ii) Consider the deletion

of whole clusters. Deletion of responses within a cluster are of different nature,

because clusters are independent, but responses within a cluster are not.

Theorem 5.3.3. 1. Assume situation (ii) and that the old iterates of both methods are

identical.

(a) Suppose (i) is fulfilled and either the correlation structure R(α) is known or

estimation of α̃ is modified according to

α̃modified
l =

[N(n) − p]

[N(n − |d|) − p]
· α̃l. (5.34)

(b) If φ is unknown and (i) is not fulfilled, then we additionally modify the esti-
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mation of φ̃ according to

φ̃modified =
J+ − p

J+ − (
∑

i∈d Ji) − p
· φ̃. (5.35)

Then the new iterates of both methods are identical such that

β̃
new

[d] = β̂
new

[d] .

2. Consider the same situations as under 1. but suppose starting values to be different.

Then

β̃
final

[d] = β̂
final

[d] .

3. Otherwise final solutions are only approximately equal

β̃
final

[d] ≈ β̂
final

[d] .

Proof. We apply the formula for the inverse of a partitioned matrix, e.g. Searle

(1982, p.261):

(
Z̃T WZ̃

)−1

Z̃TWp

=




ZT
[d]W[d]Z[d] ZT

[d]W[d]d

Wd[d]Z[d] Wd




−1


ZT
[d]W[d]p[d] + ZT

[d]W[d]dpd

Wd[d]p[d] + Wdpd




=




(ZT
[d]V

−1
[d] Z[d])

−1 (ZT
[d]V

−1
[d] Z[d])

−1ZT
[d]W[d]dW

−1
d

W−1
d Wd[d]Z[d]Z

T
[d]V

−1
[d] Z[d])

−1 W−1
d Wd[d]Z[d](Z

T
[d]V

−1
[d] Z[d])

−1ZT
[d]W[d]dW

−1
d







ZT
[d]W[d]p[d] + ZT

[d]W[d]dpd

Wd[d]p[d] + Wdpd



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=




(ZT
[d]V

−1
[d] Z[d])

−1ZT
[d]V

−1
[d] p[d]

−W−1
d Wd[d]

(
Z[d](Z

T
[d]V

−1
[d] Z[d])

−1ZT
[d]V

−1
[d] p[d] − p[d]

)
+ pd


 .

We note that p = Z̃β̃
old

+ Dr can be decomposed into p[d] = Z[d]β̃
old

[d] + D[d]r[d] and

pd = β̃
old

d + Ddrd, because D is a J+ × J+ diagonal matrix. So, we derive

β̃
new

[d] = (ZT
[d]V

−1
[d] Z[d])

−1ZT
[d]V

−1
[d] p[d]

= (ZT
[d]V

−1
[d] Z[d])

−1ZT
[d]V

−1
[d] β̃

old

[d] + D[d]r[d] (5.36)

and

β̃
new

d = −W−1
d Wd[d]

(
Z[d](Z

T
[d]V

−1
[d] Z[d])

−1ZT
[d]V

−1
[d] p[d] − p[d]

)
+ pd

= −W−1
d Wd[d]

(
Z[d]β̃

old

[d] − [Z[d]β̃
old

[d] + D[d]r[d]]
)

+ β̃
old

d + Ddrd

= W−1
d Wd[d]D[d]r[d] + β̃

old

d + Ddrd. (5.37)

Generally, we assume that there exists only a unique set of solutions for β, α and

φ and that independently of the starting values the algorithm will converge to

this unique set of solutions. Otherwise the algorithm would provide different

solutions for different starting values and considering in which instances solu-

tions are identical would be meaningless. First, let us assume a set d of clusters

is deleted. It follows Wd[d] = W[d]d = 0. Consider the case (1a) and that the cor-

relation is known, which determines in each step a unique V only depending on

the current mean µ. From (5.6) and (5.36) follows β̃
new

[d] ≡ β̂
new

[d] . Now let us as-

sume that the correlation is unknown and must be estimated according to (5.12).

Unless we start with starting value β̃
old

d , such that rold
d = 0, the residuals from set

d will contribute to the estimation of the correlation parameters. However, the
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parameters β̃d will be updated to obtain finally r
final
d = 0. When this is achieved,

only residuals from the set of clusters that are not deleted will contribute to the

estimation of the correlation parameters. Now it is clear that N(n) is too large in

(5.12) and needs to be changed according to (5.34). Then it is obvious from (5.36),

that both methods will converge to the same parameter estimates.

(1b): The same modification for the estimation of φ is obviously needed if φ is

unknown and condition (i) is not fulfilled.

(2) If starting values are not identical, then final solutions for β, α and φ are

identical, because we assumed that the algorithm converges to a set of unique so-

lutions and the iteration schemes for both methods use exactly the same formulae

for β̃
new

[d] and β̂
new

[d] .

(3): We consider the case of deletion of single components of the clusters. In

contrast, to cluster deletion, we have now Wd[d] = W[d]d 6= 0. Hence, we see

from (5.37), that there is an additional term W−1
d Wd[d]D[d]r[d] contributing to β̃

new

d .

Thus, generally r
final
d 6= 0, which implies that r

final
d contributes to the estimation

of the correlation parameters. These correlation parameters will be slightly differ-

ent at final convergence for the two methods. Consequently V will also differ for

both methods. Thus, the two methods will provide different solutions, however,

the difference between correlation parameters and the scale parameters for both

methods is small, but the basic formula to obtain estimates β remain the same

yielding only slightly different final solutions β̃
final

[d] and β̂
final

[d] . The larger n is,

the smaller is the difference, because GEE yields consistent estimates even if the

working correlation structure is wrongly specified. Here, the working correlation

is the equal for both methods, only the estimates of the correlation parameters are

slightly different.

Remark 5.3.4. In practical terms, under situation 3. of Theorem 5.3.3, when the
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two methods only provide approximately equal final solutions, the difference be-

tween β̃
final

[d] and β̂
final

[d] is relatively small. For example, if the correlation param-

eter for an exchangeable structure is not updated according to (5.34) for model

“LIN S”, then the Euclidean norm of the difference between the final parameter

estimates of the two methods gives ≈ 5 · 10−3. The difference between one-step

approximations is far bigger, for the same model “LIN S” yields differences of

around 0.5.

Remark 5.3.5. (“Sparse Data“) How do these two methods perform under a sparse

data situation? GEE yields consistent estimates even if the (working) correlation

is wrongly specified. Under situation 3. of Theorem 5.3.3, the estimates of the cor-

relation parameters will be slightly different, however the working correlation is

still the same. Under very sparse data, the impact of slightly different correlation

estimates will be higher than for large n. Therefore we would expect that the

“delete=augment” method might yield more inaccurate results under this situa-

tion. Future research might clarify how reliable the “delete=augment” method is

under such a sparse data situation.

5.3.2 HLP Diagnostics

First, we point out some differences between the GEE and HLP approaches. Marginal

model (5.2) refers to n observations yi of length J (assuming Ji = J). The total

length of y and the corresponding mean vector π is n · J . The vector of link func-

tions g(π) is a one-to-one mapping from R
n·J to R

n·J . To apply the HLP model

methodology, we must express the marginal model in terms of expected joint ta-

ble frequencies mk. For each setting k = 1, . . . , K, there are 2J such frequencies,

so that the overall model (5.22) refers to the vector m of length K × 2J . The func-

tion L(m) is not one-to-one but many-to-one and maps from K × 2J to K × J .



CHAPTER 5. DELETION DIAGNOSTICS FOR HLP MODELS 171

Both approaches still refer to the same model, if the ith observation lies in the

kth group (group k comprises of all observations with covariate setting k), then

πij and πkj are identical. The vector π in model (5.3) has vk+ entries for πkj . In

contrast, for the HLP approach, the model function L(mk), which can also be

expressed as g(Bτ k), refers only to one such πkj = bT
j τ k.

For the farmers’ data (J = 5, n = 262, K = 8), g in (5.3) maps from 1310 to

1310(= 5 × 262), but L maps from 256(= 25 × 8) to 40(= 8 × 5). The set d of the

GEE diagnostics refers to any of the 1310 responses.

For the HLP approach, we must first consider what is to be deleted. The HLP

model function L links the linear predictor η = Zβ with the expected cell counts

m of the joint table. We distinguish between the dimension of the argument m of

L(m) and the dimension of the linear predictor. Let index d refer now to any of

the K × J components of η = Zβ, which can be considered as a marginal index

set, because the linear predictor η predicts the marginal probabilities π through

one-to-one link function g. Let index d′ refer to any of the joint observations v of

length K × 2J , which is considered as a joint index set. When we say “delete a

set d of predictors”, we mean that we delete the corresponding rows of predictors

of design matrix Z (or equivalently the components of η) and the components of

link function L(·).

The deletion of the set d′ might be equivalent to the deletion of the set d. For

example, deleting the joint observations with farm size < 1, 000 and some college

education (setting k = 5) is equivalent to deleting the corresponding 1 × J = 5

of the total K × J = 40 predictors. However, for the same model, the deletion of

an item which can be accomplished by deleting a set d of 1 × K = 8 predictors,

cannot be achieved by deleting a set d′ of joint observations. Instead the joint

observations must be manipulated so that the data has one item removed. In
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general, the deletion of a set d might be more meaningful than deleting of a set d′,

because it shows the influence of a set of predictors.

Assume a set d of linear predictors is deleted, along with the corresponding

set of marginal observations which are determined by Bvk. Then we consider

three possible deletion methods. The first is the conventional method, which is

deleting or manipulating the joint observations, whichever applies, so that the

corresponding set d of predictors are deleted (method 1). The second method

(method 2) is the “replace = augment” method, which leaves the observations

untouched and only replaces Z by Z̃ defined in (5.32). We point out for GEE we

had Z = (ZT
1 , . . . ,ZT

n )T , but for HLP we defined Z as Z = (ZT
1 , . . . ,ZT

K)T . The third

method (method 3) only deletes the set d of predictors zij and the corresponding

components of L(m), but leaves the joint observations untouched.

Consider deleting only one item. Method 1 reduces the number of items of the

joint observations to 4. The function L and matrix Z must also be changed, such

that L now maps from K · 2J−1 to K · (J − 1). Method 2 only modifies the design

matrix Z and assigns dummy variables. The third method does not change the

joint observations and also does not change the function L itself; it only deletes

the components (or rows) of L and Z referring to the item to be deleted, such that

L maps now from K · 2J to K · (J − 1).

As previously, we use the hat symbol for estimates/quantities of the first

method (e.g. β̂), the tilde symbol for the second (e.g. β̃) and for the third, we

use the bar symbol (e.g. β̄).

Theorem 5.3.6. Assume a unique solution always exists. (a) Let us assume deleting set

d is equivalent to deleting a set d′. Then the three deletion methods are equivalent in the

sense that

β̂
new

[d] = β̃
new

[d] = β̄
new
[d] .



CHAPTER 5. DELETION DIAGNOSTICS FOR HLP MODELS 173

(b) If the assumption of equivalence of deletion of sets d and d′ does not hold, the ”replace

= augment“ and the third method are still equivalent

β̃
new

[d] = β̄
new
[d] ,

and all three method yield equal final solutions

β̂
final

[d] = β̃
final

[d] = β̄
final
[d] .

Proof. Equivalence of methods 1 and 2: First, we show that the iterative scheme

(5.23) produces equivalent next iterates ξ̃[d′] = ξ̂[d′] with

ξ̃ =




ξ̃[d′]

ξ̃d′


 .

The orthogonal complement U of given design matrix Z can be computed by

(Haber 1985)

U = U − PZU =
(
I − Z(ZT Z)−1ZT

)
U (5.38)

with any full column rank matrix U and projection matrix PZ = Z(ZT Z)−1)ZT .

The orthogonal complement of Z[d] is denoted by U[d] and that of Z̃ by Ũ. From

PZ̃ =




PZ[d]
0

0 Id




follows

Ũ = PZ̃




U[d]

Ud


 =




U[d]

0




assuming that U[d] was constructed as U[d] = (I[d] − PZ[d]
)U[d]. The length of the



CHAPTER 5. DELETION DIAGNOSTICS FOR HLP MODELS 174

Lagrange multiplier vector λ̃ equals the number of columns of Ũ and is iden-

tical to the length of λ[d]. The starting values for both Lagrange multipliers are

assumed to be equal. Now we partition matrix L̃ = L as

∂LT

∂ξ
=

(
∂LT

[d]

∂ξ
∂LT

d

∂ξ

)
=




∂LT
[d]

∂ξ[d′]

∂LT
d

∂ξ[d′]

∂LT
[d]

∂ξd′

∂LT
d

∂ξd′


 .

The off diagonal blocks of ∂L

∂ξ
are zero, because we assume deleting set d′ is equiv-

alent to deleting set d. Consequently matrix H̃ simplifies to

H̃ =
∂LT

∂ξ
Ũ =




∂LT
[d]

∂ξ[d′]

U[d]

0


 =




H[d]

0


 .

It also follows that h̃ = ŨT L̃ = UT
[d]L[d] = h[d]. Matrix S̃ and vector s̃ for the

”replace=augment“ method are partitioned as follows

S̃ =




D(m[d′]) H[d] 0

HT
[d] 0 0

0 0 D(md′)




s̃ =




y[d′] −m[d′] + H[d]λ[d]

h[d]

yd′ − md′




.

We conclude from the block-diagonal form of S̃ and (5.23) that the new iterates

of parameters θ[d] (method 1) and θ̃ (method 2) are equivalent, that is, the pairs

of parameters (ξ[d′], λ[d]) and (ξ̃[d′], λ̃) are identical. The new iterate βnew
[d] can be

directly computed from ξ[d′] or ξ̃[d′], because it is apparent from

β̃ = RZ̃L =




RẐ[d]
L[d]

Ld






CHAPTER 5. DELETION DIAGNOSTICS FOR HLP MODELS 175

that β̃
new

[d] = β̂
new

[d] . Thus, the first and second method are equivalent for each step.

We have Z̄ = Z[d] and can assume that Ū = U[d]. From

∂L̄T

∂ξ
=




∂LT
[d]

∂ξ[d′]

∂LT
[d]

∂ξd′




follows

H̄ =




H[d]

0


 .

It follows S̄−1s̄ = S̃−1s̃ and thus (1a) of the theorem.

Equivalence of methods 2 and 3: Now there is no partition of ξ. We have

∂L̄T

∂ξ
=

∂LT
[d]

∂ξ
,

∂L̃T

∂ξ
=

(
∂LT

[d]

∂ξ
∂LT

d

∂ξ

)

and it follows H̄ = H̃ = H[d]. Therefore: S̄−1s̄ = S̃−1s̃ with

S̄−1s̄ =




D(m) H[d]

HT
[d] 0




−1


y − m + H[d]λ[d]

h[d]


 .

Identical final solutions for methods 1 and 3: We can expect function L(·) to have

identical values (at least approximate) for methods 1 and 3 at convergence, since

both methods are subject to the same model expressed now only in terms of

L[d](·). Matrix Z[d] is identical for both methods, therefore, parameter estimates for

both methods are computed by RZ[d]
L[d](·). Part (b) of the theorem follows.

Theorem 5.3.7. For the deletion of the set d, we have the following one-step approxima-
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tions

m[d] ≈ (−D−1 + D−1H[d](H
T
[d]D

−1H[d])
−1HT

[d]D
−1)(v − m + H[d]1[d])

+ D−1H[d](H
T
[d]D

−1H[d])
−1h[d], (5.39)

and

β[d] = RZ[d]
L[d](m[d]).

If the deletion of set d′ does not correspond to a deletion of any set d, we find the approxi-

mations

m[d′] ≈ (−D−1
[d′] + D−1

[d′]H[d′](H
T
[d′]D

−1
[d′]H[d′])

−1HT
[d′]D

−1
[d′])(v[d′] − m[d′] + H[d′]1)

+ D−1
[d′]H[d′](H

T
[d′]D

−1
[d′]H[d′])

−1h[d′]

and

β[d′] = RZL(m[d′]).

A one-step approximation of the Cook distance is obtained with (5.26). The difference in

the likelihood ratio test due to the deletion of subset d or subset d′ (denoted by d/d′) is

L2(β) − L2(β[d/d′]) = 2yT log(y(m[d/d′]/m))

Proof. The one-step approximations (5.39) and (5.3.7) follow directly from apply-

ing one step of (5.23) and by using (5.24) with λ = 1. The other deletion diagnos-

tics are functions of m[d/d′] and m.

Remark 5.3.8. The formulae involve the orthogonal complement U of Z which

can be computed from (5.38). The matrix H = ∂h(m)T

∂m
= ∂LT

∂m
U is of size (K · 2J)×

(K − p) (L ∈ R
K , m ∈ R

K·2J
and U ∈ R

K×(K−p)).Consequently H[d′] refers to
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the deletion of rows of H and H[d] refers to the deletion of d of the K covariate

settings, such that K is reduced to K − |d|.

5.4 Example

5.4.1 Deletion of Predictors

For the farmers’ data and model ”LIN S“, we investigate the influence of deleting

components of L and Z that are in set d, which is the influence of predictors con-

tained in design matrix Z. Figures 5.1 and 5.2 show full solutions and one step

approximations for the Cook distance for the farmers’ data and model (5.4) with

GEE and HLP fitting algorithms deleting farmsize (Figure 5.1) and item×farmsize

(Figure 5.2). Deleting education levels does not seem sensible, because the pre-

dictors for model ”LIN S“ do not depend on education. Deleting one level of

farmsize can be accomplished by either deleting 2 of the 8 columns of joint obser-

vations in Table 5.2 or by deleting 10 = 2 × 5 components of function L which is

of length 40 = 8 × 5 (K = 8, J = 5). In contrast, deleting item×farmsize can be

achieved by deleting components of L and Z, but not by deletion of joint obser-

vations. The joint observations for the given farmsize level have to be changed in

such a way that the multiple responses have the item removed. We conclude, for

deleting farmsize, there is a set d′ that corresponds to set d, whereas for deleting

item×farmsize is no such set d′ that is equivalent to d.

The results confirm that the 3 HLP deletion methods as well as the 2 GEE

deletion methods are equivalent. Only one-step approximations of method 1 dif-

fer slightly from those of methods 2 and 3, if condition (a) of Theorem 5.3.6 is not

fulfilled. However, the difference is negligible, see Figure 5.2. When comparing

the Cook distance for GEE and HLP, we can say the following: Both methods tend
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Figure 5.1: Cook Distance for model (5.4) and deletion of farm size

0.
0

0.
5

1.
0

1.
5

Deletion of Farmsize

farmsize

C
oo

k 
D

is
ta

nc
e

<1000 1000−2000 2000−5000 >5000

full ML
full−GEE
1−step ML (1.)
1−step ML (2.+3.)
1−step GEE

to give similar results, as small/large values for HLP will also give small/large

values for GEE, however, the exact values differ and tend to vary more for GEE.

Generally, messages regarding influence seem similar. For example, for deleting

item A and farmsize > 5000, the Cook distance for GEE is around 1.2 and for

HLP is only around 0.5. However, both values are relatively large compared to

the other values and suggest that observations for this combination of predictors

are influential on model ”LIN S“. Figure 5.1 indicates that farmsize level > 5000

is influential. Figure 5.2 presents a clearer picture showing that item A with farm-
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Figure 5.2: Cook Distance for model (5.4) and deletion of item×farmsize
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size level > 5000 is most influential and other items with farmsize level > 5000

are probably not influential.

5.4.2 Deletion of Joint Observations

Now we investigate the deletion of joint observations with setting k and outcome

j′. The number of those observations is vkj′. The farmers’ data has K = 8 different

covariate settings. For each setting k, we have 2J = 32 possible outcomes j′. Some

of them were not observed; some, however, were recorded multiple times. If
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vkj′ > 1, then it does not seem sensible to delete only one case, reducing vkj′ by 1,

because the remaining vkj′−1 observations still have an influence on the estimates

similar to the original vkj′ observations. It rather seems plausible to delete all vkj′ ,

such that after deletion vkj′ = 0. One problem remains, some entries of Table 5.2

are relatively large vkj′ = 14, whereas other nonzero entries are small vkj′ = 1.

We expect the influence of those 14 observations to be larger than the influence

of other observations with vkj′ = 1. Hence, it seems wiser to divide the Cook

distance by the number |vd′ | of observations being deleted

CDs
d′ = (β̂ − β̂[d])

T Cov(β̂)−1(β̂ − β̂[d])/(p|vd′|). (5.40)

Figure 5.3 shows the Cook distance for deleting all responses with outcome j′ and

setting k, whereas Figure 5.4 shows the standardised Cook distance defined in

(5.40). In Figure 5.3, the Cook distance is largest for those observations for which

vij′ is largest, for example the highest values are obtained for vij′ = 14, 10, 10,

which is to be expected and not satisfactory in the detection of influential obser-

vations. In contrast, Figure 5.4 shows a much more balanced picture. We can

conclude, no observation seems to have a large influence on β̂.

5.5 Discussion

Both, GEE and HLP (ML) deletion diagnostics have their limitations. GEE is not

based on maximum likelihood and should only be applied if HLP diagnostics

are not applicable due to either too many zero cell counts or the huge number

of multinomial parameters. In particular, for non-grouped observations (vk+ =

1) and a large number of items, the HLP model methodology seems infeasible

because the ratio of nonzero and zero entries is one-to-many.
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Figure 5.3: Cook Distance for model (5.4) and deletion of subjects
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We investigated HLP diagnostics for marginal models for multiple response

data, however, the introduced deletion methods do not depend on marginal mod-

els only, but are generally applicable for GEE and HLP models. Furthermore, the

deletion methods do not depend on GEE and HLP models only, but on the corre-

sponding iteration schemes (5.6) and (5.23) and can also be applied for any other

model approach with an identical fitting algorithm.

Generally, the “delete=augment” method is a useful tool in computing dele-

tion diagnostics, because it only requires the manipulation of the design matrix
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Figure 5.4: Standardised Cook Distance for model (5.4) and deletion of subjects
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and all other quantities can be left unchanged to obtain either full solutions or

one-step approximations. Furthermore, for HLP models it is recommended to

check whether the deletion of a set d′ of (joint) observations is equivalent to delet-

ing a set d referring to the rows of the design matrix. If this is true, the deletion of

d is much simpler to handle than that of d′ and is to be preferred. Again, we can

apply the relative simple “delete=augment” method. The results show that the

deletion of a set of predictors d seems more plausible than the deletion of a set d′

of single joint observations (not corresponding to deleting a set d of predictors).
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This is because the results of Figures 5.3 and 5.4 are more difficult to interpret

than those of Figures 5.1 and 5.2. If such a set d′ is deleted, then we recommend

using the standardised Cook distance (5.40).



Chapter 6

Repeated Multiple Responses

6.1 Introduction

In this chapter, we discuss the modelling of a repeated multiple response vari-

able, a categorical variable for which subjects can select any number of categories

on repeated occasions. Multiple responses have been considered in the litera-

ture by various authors, e.g. Loughin and Scherer (1998), Agresti and Liu (1999),

Agresti and Liu (2001), however, repeated multiple responses have not yet been

considered.

Students of a statistics lecture (STAT 291) at the Victoria University of Welling-

ton (New Zealand) were asked by their lecturer, Dr Ivy Liu, to complete a ques-

tionnaire on 3 different occasions: 2004, July 2005 and October 2005. They were

asked the following questions and to tick the appropriate boxes:

1. “Indicate which of these Wellington bars you have been to” and which of

these ticked is your most favourite bar. Any/75 bars could be chosen plus

the option “other” bar, where the student was also asked to provide its

name.

184
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2. “What type(s) of music do you listen to when you go out to bars? (a) Al-

ternative, (b) Dance, (c) Hip Hop, (d) Karaoke, (e) Pop, (f) Rock, (g) 6os, (h)

7os, (i) 8os, (j) 9os, (k) Other (please specify).”

3. “Do you prefer to dress up to go out to bars? Yes/No”

4. “Do you enjoy playing pool?: Yes/No”

5. “Do you get out to ... ? (a) Socialise with friends, (b) Meet new people, (c)

Listen to music, (d) Get drunk, (e) Other (please specify).”

6. “Do you think your choice of bar is affected by advertising? Yes/No”

7. “How many bars would you visit on a night out? (a) 1−2, (b) 3−4, (c) 5−6,

(d) 7 or more.”

8. “Is a bar’s décor usually important to you? For instance, how the place

looks. Yes/No”

9. “Is a bars popularity important to you? Yes/No”

10. “How often do you go out to bars? (a) Once a day, (b) Every second day, (c)

Once a week, (d) Every second week, (e) Once a month.”

11. “Do you drink alcohol? Yes/No”

12. “Do you smoke cigarettes? Yes/No”

13. “Do you work? (a) Yes (full-time or part-time), No”

14. “How long have you lived in Wellington? (a) ≤ 5 months, (b) 6−11 months,

(c) 12 − 17 months, (d) 18 − 23 months, (e) ≥ 24 months.”
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Our aim is to model how the choice of the favourite bar is affected and as-

sociated by the bars’ features and how it depends on the responses to questions

(2)-(14) but also on some other fixed covariates such as age, sex, major, ethnicity

and type of fees.

Let yijt = 1 if subject i = 1, . . . , n selects category j = 1, . . . , J at time point

or occasion t = 1, . . . , T and yijt = 0 otherwise. Let yi = (yT
i1, . . . ,y

T
iT )T with

yit = (yi1t, yi2t, . . . , yiJt)
T denote the response profile on the J categories and T

time points. Note that superscript T denotes the transpose of a vector/matrix

and subscript T refers to the number of time points. We regard “Drink Deals”,

“Pool Table” and “Sports TV” as responses by recording each student’s favourite

bar at time t = 1, . . . , 3 and by setting yi1t = 1, if the student’s favourite bar

offers “Drink Deals”, yi2t = 1, if the student’s favourite bar is equipped with

a “Pool Table” and yi3t = 1, if the student’s favourite bar also offers some sort

of “Sports TV”, and yijt = 0 otherwise. Actually, the students only select their

favourite bar at occasion t and then, from this univariate response and from the

bar’s features we obtain a multivariate binary sequence yit, which we regard as

multiple responses.

For example: The first student ticked “Zebos” as his favourite bar in 2004

(t=1) and “Kitty” in July 2005 (t=2), whereas in Oct 2005 (t=3) his response was

not available (NA). The third student’s favourite bar was the “Occidental” at all

3 times. The 10th student responded only twice (t=1,2) with “Havana”, unfor-

tunately, the features of “Havana” were not recorded and repeated multiple re-

sponses were all set to “not available” (NA). The bar “Kitty” offers all three fea-

tures “Drink Deals”,“Pool Table” and “Sports TV”. The bar “Zebos” only offers

“Drink Deals” and “Pool Table”, whereas “Occidental” can only offer “Sports

TV”. We obtain the following repeated multiple responses for those students:
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y1 = (yT
1,1, . . . , yT

1,3)
T = (1, 1, 0, 1, 1, 1, NA, NA, NA)T , y3 = (yT

3,1, . . . , yT
3,3)

T = (0,

0, 1, 0, 0, 1, 0, 0, 1)T and y10 = (NA, . . . , NA)T . In the following, we will refer to

this example as STAT 291 data.

Similar to Agresti and Liu (2001) who considered “modelling strategies for

multiple response data”, this chapter considers several strategies for modelling

repeated multiple response data using existing methods.

The next section introduces a marginal model approach for repeated multiple

responses. In the next two sections, we discuss the ML (Section 6.3) and GEE

(Section 6.4) fitting approaches for the marginal models. In Section 6.4, we also

consider possible correlation structures and propose a groupwise correlation es-

timation method, yielding more efficient parameter estimates if the correlation

structure is indeed different for different groups, which is confirmed by a simula-

tion study. Section 6.5 considers generalised linear mixed models (GLMM) with

normal random effects as an alternative to the marginal model approach. Section

6.6 discusses parameter estimation results for the STAT 291 data and the final sec-

tion compares strategies, shows interconnections between them and gives some

recommendations.

6.2 Marginal Modelling

We use similar notations as in Section 5.2 on page 149, where we introduced the

marginal modelling approach for multiple responses. The vector yi contains the

T multiple response variables yit ∈ R
J for subject i and occasion t forming a vari-

able of length J × T . The J × T components of yi are also referred to as items.

Each subject’s response profile (yi11, . . . , yiJT ) contributes to one of the 2J ·T cells

in a contingency table cross classifying the items. We assume that observations
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for such tables are independent and follow a multinomial distribution with 2J ·T

possible outcomes. For covariate setting k = 1, . . . , K, let the number of multi-

nomial (or joint) observations with outcome j′ be denoted by vkj′, j
′ = 1, . . . , 2J ·T ,

where j′ refers to one of the outcomes of the form (j′1,1, . . . , j
′
J,T ), j′j,t ∈ {0, 1}.

This is the same index j′, we introduced in Section 5.2.3 on page 157, the only

difference is that the binary sequences j′ are now of length J × T . Table 5.2 on

page 158 shows responses j′ of length J = 5 for the farmers’ data. In contrast to

Chapter 5 and the farmers’ data, the observations of the STAT 291 data all have a

unique covariate setting, such that vk+ = 1, or in other words, the ith subject has

covariate setting i = 1, . . . , n(= K). Similarly denote the multinomial (or joint)

probabilities for setting k by τkj′, j
′ = 1, . . . , 2J ·T . In the following, we use index

i to refer to the ith subject but also to the ith covariate setting. Also let πijt de-

note the (marginal) probability of a positive response for observation i, category

j and occasion t, which can be computed by πijt =
∑

{(j′1,1,...,j′J,T ):j′j,t=1} τij′t. Note

that 0 ≤∑j,t πijt ≤ J · T . Let πi denote the vector containing the marginal prob-

abilities, similarly vi and τ i. The marginal probabilities can be computed from

the joint probabilities by πi = Bτ i with matrix B containing only 0s and 1s, see

Section 5.2.3 on page 157 for more details.

For each subject i, let a column vector of fixed covariates xi0 and time-dependent

covariates xit, t = 1, . . . , T (also row vectors) be given and let xi = (xT
i0,x

T
i1, . . . ,

xT
iT )T be the vector containing all covariates. Now we model the probabilities πijt

in terms of the covariates xit, t ≥ 0 by

gj(πijt) = αjt + xT
i0β0j + xT

itβtj = zT
ijtβjt = ηijt, (6.1)

where gj is the jth link function, ηijt the linear predictor, αj the j-th intercept
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parameter, zijt the corresponding vector of the design matrix depending on xi, or

in vector form

g(πi) = Ziβ = ηi,

with g = (g1, g2, . . . , gJ , . . . , g1, g2, . . . , gJ)T , Zi = Diag(zT
i11, . . . , z

T
iJ1, . . . , z

T
i1T , . . . ,

zT
iJT ), β := (α1, . . . , αJ , βT

01, . . . , β
T
JT )T , πi = (πi11, . . . , πiJ1, . . . , πi1T , . . . , πiJT )T ,

ηi = (ηi11, . . . , ηiJ1, . . . , ηi1T , . . . , ηiJT )T .

Assume a common effect βj = β1j = · · · = βTj and a logit link then model (6.1)

becomes

log

(
πijt

1 − πijt

)
= αj + xT

i0β0j + xT
itβj . (6.2)

For fixed j and t, the model is the ordinary logit model, where the effect varies

according to outcome category j. For certain data, one might also consider the

same effect over all J categories.

6.3 Maximum Likelihood Estimation

Assuming independence between all items would make the fitting quite simple

by using ordinary software for generalised linear models (GLM) (McCullagh and

Nelder 1989). However, the more efficient way is fitting the J models simultane-

ously. Previously, we introduced marginal and multinomial (joint) probabilities

and observations. Define the multinomial expected cell counts by mij = vi+τij or

equivalently in vector form mi := vi+ · τ i.

Maximum likelihood (ML) estimates are obtained by maximising the log-

likelihood kernel
n∑

i=1

2JT∑

j′=1

vij′ log mij′ =

n∑

i=1

vT
i logmi (6.3)

subject to model (6.1). Lang (2005) introduced homogeneous linear predictor
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(HLP) models which have the form

L(mi) = Ziβ

with homogenous link function L. The approach formulates the ML estimation

problem as a constrained maximisation problem, where the model is formulated

as a system of constraints. Model (6.1), with a sufficiently smooth link function

gj(·), is a HLP model, e.g. logit link or probit link. Fitting of HLP models was

discussed in Subsection 5.2.3 on page 157.

Fitzmaurice and Laird (1993) proposed another ML method to obtain param-

eter estimates. They derived likelihood equations for the mean response and

association parameters by expressing the likelihood in terms of the model pa-

rameters. However, given the estimates, these equations only determine the first

and second order moments of the joint distribution, but the full joint distribution

(including the higher order moments) cannot be determined. They circumvented

this problem by applying the IPF algorithm for given parameter iterates to get a

solution for the joint distribution for each step of the fitting algorithm.

However, ML-estimation has some severe drawbacks for our type of data. For

our example, we have J = T = 3 resulting in 2JT = 29 = 512 joint probabilities

for each of the 122 students. Although some students will be deleted due to

NA entries, the amount of computer memory required is still quite large and

makes the method almost infeasible despite quite small values for J and T . In this

instance, the standard, modern computers available to us failed to give parameter

estimates using the HLP fitting algorithm by running out of memory. Fitzmaurice

and Laird (1993)’s method is even more complex, because it also requires the

application of the IPF algorithm in each step.
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Another problem is that the ML method requires (theoretically) non-zero cell

counts. For non-grouped observations there is only 1 observation per table with

2JT cells. For instance, for J = 2 and T = 1, there is only one out of 2JT = 4

cells that are nonzero. The ratio becomes even worse for larger J and T . Each

joint table i with observations vij′ represents a sample, but one observation can be

hardly considered as such. A very small constant (e.g. 10−5) is usually added to

those zero cell counts to avoid convergence problems. However, the huge num-

ber of those zero cell counts for repeated multiple responses will lead to severe

convergence problems. Unless J and T are very small (the product JT is ≤ 6)

and the observations are grouped (like the farmers’ data, see Table 5.1 on page

148), we do not recommend ML estimation and it will not be considered here.

Robins, Rotnitzky and Zhao (1995, p. 106) point out, that “ML methods can be

sensitive to model misspecification, because they implicitly impute the missing

data from their conditional distribution given the observed data”. Hence, our

concerns do not only arise from the huge number of zero cell counts, but also

from missing data. In the next section, we discuss a quasi-likelihood approach.

6.4 Generalised Estimation Equations

6.4.1 Introduction

As mentioned earlier, when wrongly assuming independence between the J × T

items, the generalised linear models (GLM) (McCullagh and Nelder 1989) method-

ology can be easily applied yielding ML estimates. However, more efficient pa-

rameter estimates can be obtained by the generalised estimation equation (GEE)

method (Liang and Zeger 1986), where marginal models are fitted simultaneously

and a chosen correlation structure is incorporated, which is an extension of the
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quasi-likelihood method (Wedderburn 1974) for multivariate data.

Let Var(yi) = fi · φ−1 with variance function fi = f(πi) = πi(1JT − πi), where

1JT is a vector of length J ·T , and scale or dispersion parameter φ. In the common

GEE terminology µi is used instead of πi and the observations yi are referred to as

clusters with varying cluster length Ji ≤ JT . Note for model (6.1), πi is identical

to the mean µi. Suppose model (6.1) is true, then the GEE estimates are obtained

by computing the root of the generalised estimation (or quasi-score) equations

n∑

i=1

MT
i V−1

i ri = 0, (6.4)

which were introduced in the last chapter by equation (5.5) on page 151 with

Mi = ∂πi/∂β, Vi = AiRi(α)Ai and ri = (yi − πi). Now Mi is a JT × p matrix (p

number of parameters), Ai =
√

fi is a JT × JT diagonal matrix and Ri(α) is the

JT × JT correlation matrix for observation (or cluster) i (i = 1, . . . , n) depending

on correlation parameter(s) α.

If the correlation is unknown, they must be estimated consistently for every

iterate, for example by using the method of moments suggested by Liang and

Zeger (1986). For further details of GEE, the choice of the working correlation

and correlation parameter estimation, see Subsection 5.2.2 on page 150.

6.4.2 Correlation Structure

In this subsection, we consider specific choices of the correlation structure Ri(α)

for multiple response data and repeated multiple response data. The choice of

the working correlation is important, because it determines the estimates and

their variances. We also propose a new groupwise method potentially yielding

more efficient parameter estimates.
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The naive variance will be a good estimate, if
∑n

i=1 Ji is large and if the corre-

lation is correctly specified. On the other hand, the robust estimate will be good

if n, the number of clusters, is large (Lawal 2003). For example, for n < 25, the

robust variance does not provide a good estimate and the correlation structure

should be carefully chosen to make use of the naive variance. Choosing a good

correlation structure is essential to obtain good variance estimates, and also in

obtaining more efficient parameter estimates for β̂, e.g. see simulation study in

Liang and Zeger (1986).

Let us denote the correlation structure Ri = Corr(yi) by

Ri =




Ri11 Ri12 · · · Ri1T

Ri12 Ri22 · · · Ri2T

...
...

...

Ri1T Ri2T · · · RiTT




,

where the indices t1 and t2 of Rit1t2 ∈ R
J×J refer to the occasions. The sub-

matrices Ritt and Rit1t2 have the form:

Ritt =




1 Ritt,12 · · · Ritt,1J

Ritt,12 1 · · · Ritt,2J

...
...

...

Ritt,1J Ritt,2J · · · 1




= (Ritt,j1j1)
J
j1,j2=1

Rit1t2 =




Rit1t2,11 Rit1t2,12 · · · Rit1t2,1J

Rit1t2,21 Rit1t2,22 · · · Rit1t2,2J

...
...

...

Rit1t2,J1 Rit1t2,J2 · · · Rit1t2,JJ




= (Rit1t2,j1j1)
J
j1,j2=1
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Note, generally matrix Rit1t2 is not symmetric, but Ritt is.

Non-Repeated (Standard) Multiple Responses

First we consider non-repeated multiple response data (T = 1), later we continue

with the general case (T > 1). Note that for T = 1, the matrix Ri reduces to Ri11

and we omit index t referring to the occasions. As outlined in Subsection (5.2.2)

on 150, Liang and Zeger (1986) considered the following correlation structures:

• independence: Ri,j1j2 = 0 for all j1 6= j2 (0 parameter)

• exchangeable: Ri,j1j2 = α for all j1 6= j2 (1 parameter)

• (J − 1)-dependence: Ri,j1j2 = α|j1−j2| (J − 1 parameters)

• unstructured: totally unspecified Ri,j1j2 = αj1,j2 (1
2
J(J − 1) parameters)

and estimated the parameters by the method of moments. The structure (J − 1)-

dependence can also be replaced by m-dependence (m ≤ (J − 1)), which is de-

fined as Ri,j1j2 = α|j1−j2| for |j1 − j2| ≤ m and Ri,j1j2 = 0 for |j1 − j2| > m.

That is, two observations taken at time points t1 and t2 for an individual always

have the same correlation provided |t1 − t2| is the same. Another option is an

autoregressive correlation (AR) structure which indicates that two observations

taken close together in time for an individual tend to be more highly correlated

than two observations taken further apart in time from the same individual. For-

mally, Ri,j1j2 = α|j1−j2|. We consider five structures (increasing order in number

of parameters): independence, exchangeable, autoregressive, m-dependence and

unstructured. Given any structure, the correlation is assumed to be equal for all

observations. The index i of Ri only stands for different cluster lengths.
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Repeated Multiple Responses

Let us now consider repeated multiple responses (T > 1). We can apply the same

correlation structures to Ri as we did before for Ri11. However, we would not dis-

tinguish between occasions and items. Consequently it seems wiser to consider

different structures for the submatrices of Ri. First, we consider the submatrices

Ritt. Every submatrix Ritt can have the structures independence, exchangeable,

autoregressive, m-dependence and unstructured, as we considered for standard

(non-repeated) multiple response data. We can also consider similar structures

for the off-diagonal matrices Rit1t2(≡ Rit2t1) with t1 6= t2, however, generally the

diagonal elements of these matrices do not equal one (Rit1t2,jj 6= 1) and we also do

not have symmetry (Rit1t2,j1j2 6= Rit1t2,j2j1 for j1 6= j2 and t1 6= t2). Let us consider

the following correlation structures for Rit1t2

• independence: Rit1t2,j1j2 = 0 ∀j1, j2 = 1, . . . , J (0 parameter)

• exchangeable: Rit1t2,j1j2 = α ∀j1, j2 = 1, . . . , J (1 parameter)

• autoregressive : Rit1t2,j1j2 = α|j1−j2|+1 ∀j1, j2 = 1, . . . , J (1 parameter)

• m-dependence: Rit1t2,j1j2 = α|j1−j2|+1 ∀|j1 − j2| = 1, . . . , m, Rit1t2,j1j2 = 0

otherwise (m parameters)

• unstructured (items): totally unspecified (J2 parameters).

If we use different structures for Ritt and Rit1t2 , we consider two simple options:

One might assume a common structure for all submatrices Ri11 = · · · = RiTT or

different structures for different occasions Ri11 6= · · · 6= RiTT (similarly Rit1t2). We

will refer to these as common and different.

Let us now assume the structures for Ritt and Rit1t2 are not independent, such

that Ritt is a sub-case of Rit1t2 . For given time points t1 and t2 (t1, t2 = 1, . . . , T ), we
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consider the same structures (independence, exchangeable, autoregressive, m-

dependence and unstructured) for Rj1j2,t1t2 as we did before for the submatrices

Ritt and Rit1t2 . We denote such a structure by “structure (item)” to underline that

the structure refers to the items j1 and j2 for any given occasions t1 and t2.

For longitudinal data, the structures exchangeable, m-dependence and au-

toregressive are often used to describe the dependence over time. Now we con-

sider the following correlation structures over time for given items j1 and j2

• exchangeable (time): Rit1t2,j1j2 = αj1j2 (1 parameter)

• autoregressive (time): Rit1t2,j1j2 = α
|t1−t2|
j1j2

(1 parameter)

• m-dependence (time): Rit1t2,j1j2 = α|t1−t2|,j1j2 for |j1 − j2| ≤ m otherwise

Rit1t2,j1j2 = 0 (m parameters for j1 6= j2 respectively. m − 1 parameters for

j1 = j2)

• unstructured (time): Rit1t2,j1j2 = αt1t2,j1j2 (T (T − 1)/2 respectively. T 2 pa-

rameters).

Note some of the following inter-relations: exchangeable (time) and exchange-

able (items) is equivalent to exchangeable for the whole matrix Ri, exchangeable

and different for both Ritt and Rit1t2 is equivalent to exchangeable (items) and un-

structured (time), and unstructured (time) and unstructured (items) is equivalent

to assuming unstructured for the whole matrix Ri.

We believe the second approach, combining the structures for Ritt and Rit1t2

by assuming conditional structures for items given time points and for time-

points given items, with typical time dependence structures, seems a better ap-

proach than the first one, which considers separate structures for the submatrices

Ritt and Rit1t2 . In particular, the higher the number of time-points is, the more

appropriate the second approach becomes.
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Remark 6.4.1. Typical time-dependence structures, such as autoregressive and m-

dependence, are usually applied to different time-points for one variable. Here

items are dependent variables and it is appropriate to apply such time-dependence

structures to different time points for each item. The second approach addressed

this issue by considering different structures over time and items. Within one

time point and different items, it seems inappropriate to apply such time-depen-

dence structures, since the structure between items seems rather arbitrary (“un-

structured”). Therefore the consideration of time-dependence structures for the

first approach seems inappropriate. One could also re-order items and time points,

such that time points of one item are next to each other. In such a way, we could

consider time-dependence structures for the sub-matrices of Ri. We could call

this the third approach. However even items can be closely related and time-

dependence structures can be appropriate in some circumstances.

Groupwise Correlation Estimation

The correlation parameters α can be estimated by the method of moments (Liang

and Zeger 1986), see Section 5.2.2 on page 150 for details. However, they assume

the correlation structure to be equal for all observations. This assumption is prac-

tical in terms of simplicity, but quite unrealistic. Let us assume a second model

for the correlation parameters κi,j1j2 specified by

h(κi) = ZJ
i α

with the vector valued link function h(·), design matrix ZJ
i depending on the ith

subject covariates xi, and parameter vector κi comprising of parameters κi,j1j2 .

Prentice (1988) suggested estimating β and α as the root of two sets of GEE. The
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first set of GEE is given by formula (5.5) on page 151, that is

n∑

i=1

∂µT
i

∂β
V(yi)

−1(yi − µi) = 0,

and the second by
n∑

i=1

∂κT
i

∂α
V(wi)

−1(wi − κi) = 0, (6.5)

where wi is the corresponding vector of sample correlations. Matrix V(yi) = Vi

is the same covariance matrix defined previously; it only uses arguments yi and

wi to refer to the working covariances of the observations yi and the empirical

correlations wi. The second set of GEE has the same form as the first set, replacing

only the quantities of the mean response model by those of the correlation model.

The two sets of GEE can also be written as

n∑

i=1




∂µT
i

∂β
0

0
∂κT

i

∂α







V(yi) 0

0 V(wi)




−1


yi − µi

wi − κi


 = 0. (6.6)

Zhao and Prentice (1990) introduced the following set of GEE, also called GEE2,

to estimate jointly β and α

n∑

i=1




∂µT
i

∂β
∂µT

i

∂α

∂κT
i

∂β
∂κT

i

∂α







V(yi) V(yi,wi)

V(yi,wi) V(wi)




−1


yi − µi

wi − κi


 = 0. (6.7)

It is obvious, that equation (6.6) treats observations (yi and wi) and models as

independent, in contrast to equation (6.7), which uses information about the mu-

tual dependence of both models and observations. For Prentice’s approach, also

called GEE1, the estimation of parameters β and α can be obtained by finding

roots for both sets of GEE jointly but also separately. GEE1 yields consistent pa-
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rameter estimates β̂, even if the correlation model is wrongly specified. In con-

trast, GEE2 does not yield consistent estimates for β given a wrongly specified

correlation model. Also, GEE2 only provides more efficient estimates than GEE1

if the correlation model is indeed correct.

In reality, we are more interested in the mean response model parameters β.

The association parameters, such as the correlation, are often considered as nui-

sance parameters. Therefore, we think GEE2 is not a good method, because there

is too much uncertainty in the correlation model. Let us take a closer look at the

various correlation structures considered in this subsection. Although we have

only considered a limited range of structures (correlation models), we are still

very uncertain which of those models might be the correct one. Therefore, Pren-

tice’s approach seems better, because we do not need the correlation model to be

correct to yield consistent estimates β̂. However, firstly, it needs a second set of

GEE, which generally must be solved iteratively, and secondly, if J ·T is large and

a more complicated structure is chosen, the number of parameters α is large and

will automatically result in more convergence problems. With Liang and Zeger’s

procedure we can estimate the correlation structure in each step directly for the

given iterates of β̂
new

without any iterative method. We presented in Subsection

5.2.2 on page 150 formulae for the estimation of the correlation parameters α for

several popular structures.

Now assume the simple correlation model that the correlation does not vary

for every subject, but only varies for different groups. In the following, we con-

sider a quite simple alternative to GEE1 for the estimation of β and α.

Assume a finite number G of groups is given, otherwise partition data into

groups. Let the number of clusters for group g (g = 1, . . . , G) be denoted by ng

with
∑G

g=1 ng = n and assume limn→∞ n/ng = ag > 0. Now we extend Theorem
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5.2.1:

Theorem 6.4.2 (“groupwise method”). Under mild regularity conditions and given

that :

1. α̂g is ng
1/2 consistent given β and φ for g = 1, . . . , G

2. φ̂ is n1/2 consistent given β,

3. |∂α̂g/∂φ| is Op(1)

then n1/2(β̂ − β) is asymptotically multivariate Gaussian with zero mean and variance

lim
n→∞

nJ−1
1 J2J

−1
1

where

J1 =
n∑

i=1

MT
i V−1

i Mi and J2 =
n∑

i=1

MT
i V−1

i Cov(yi)V
−1
i Mi.

Proof. Liang and Zeger (1986) proved Theorem 5.2.1 on page 152. The only differ-

ence between Theorems 5.2.1 and 6.4.2 is condition (1.) and Vi. In Theorem 5.2.1

index i of Ri only refers to possible different cluster lengths but the correlation

itself is assumed to be equal for all observations i. In contrast, in Theorem 6.4.2

matrix Ri stands for different cluster lengths but also stands for different corre-

lations depending on which group g observation i belongs to. Liang and Zeger

(1986) use the following lines to prove theorem 5.2.1:

Write α∗(β) = α̂{β, φ̂(β)} and under some regularity condition n1/2(β̂ − β) can

be approximated by

[
n∑

i=1

− δ

δβ
Ui{β, α∗(β)}/n

]−1 [ n∑

i=1

Ui{β, α∗(β)}/n1/2

]
,
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where

δUi{β, α∗(β)}
δβ

=
∂Ui{β, α∗(β)}

∂β
+

∂Ui{β, α∗(β)}
∂α∗

∂α∗(β)

∂β

= Ai + BiC.

Let β be fixed and Taylor series expansion gives

∑n
i=1 Ui{β, α∗(β)}

n1/2
=

∑
Ui(β, α)

n1/2
+

∑
∂Ui(β, α)/∂α

n
n1/2(α∗ − α) + op(1)

(6.8)

= A∗ + B∗C∗ + op(1).

Now B∗ = op(1), since ∂Ui/∂α are linear functions of ri’s whose means are zero,

and conditions (1.-3.) give

C∗ = n1/2
[
α̂{β, φ̂(β)} − α̂(β, φ) + α̂(β, φ) − α

]

= n1/2

{
∂α̂(β, φ∗)

∂φ
(φ̂ − φ) + α̂(β, φ) − α

}
= Op(1). (6.9)

Consequently
∑n

i=1 Ui{β, α∗(β)}/n1/2 is asymptotically equivalent to A∗ whose

asymptotic distribution is multivariate Gaussian with zero mean and covariate

matrix limn→∞ J2/n (see Theorem 5.2.1). Finally, it is easy to see that
∑

Bi = op(n),

C = Op(1) and that
∑

Ai/n converges to −J1/n as n → ∞. This completes the

proof of Theorem 5.2.1.

Now we want to prove Theorem 6.4.2, letting α = (αT
1 , . . . , αT

G)T . If observation

i lies in group g, then i = 1, . . . , ng. If we do not refer to index g, then i = 1, . . . , n.

We can apply the same lines as above for Theorem 5.2.1. Now we can re-write B∗
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in (6.8) as

B∗ =
1

n

n∑

i=1

∂Ui(β, α)/∂α =
1

n

G∑

g=1

ng∑

i=1

∂Ui(β, αg)/∂αg.

Now B∗ = op(1), since ∂Ui/∂αg are linear functions of ri’s whose means are zero,

and conditions 1.-3. of Theorem 6.4.2 give

C∗ = n1/2
[
α̂{β, φ̂(β)} − α̂(β, φ) + α̂(β, φ) − α

]

= n1/2

{
∂α̂(β, φ∗)

∂φ
(φ̂ − φ) + α̂(β, φ) − α

}

= n1/2
G∑

g=1

∂α̂g(β, φ∗)

∂φ
(φ̂ − φ) + (n/ng)

1/2
G∑

g=1

n1/2
g (α̂g(β, φ) − αg)

= Op(1)

The remaining lines are the same as above.

Applicability of Groupwise Correlation Estimation

In the following, we label the groupwise correlation estimation method as group-

wise method and the method where we assume the same correlations for all obser-

vations as standard method. What advantages does the groupwise method have?

Clearly, we require αg to be n
1/2
g consistent. In other words, we require ng to

be reasonable large. We cannot estimate the correlation structure for each single

observation separately, because ng = 1 is certainly not a large number. Often,

there are only single observations and the question arises whether, given some

grouping, the groupwise method does make sense in terms of better efficiency

for the estimation of β, our primary goal. To answer these questions, we conduct

a simulation study in the next section.
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6.4.3 Simulation Study

Non-Repeated Multiple Responses

Next, we conduct a simulation study investigating the effect of the chosen work-

ing correlation structure and the effect of choosing either the group-wise or the

standard (non-groupwise) correlation estimation. We consider the model

logit(πij) = Xijβj, i = 1, ..., G , j = 1, ..., J (6.10)

with G = 4 and J = 3.

The correlation structure has the following form (J = 3)

Ri =




1 Ri12 · · · Ri1J

Ri12 1 · · · Ri2J

...
...

...

Ri1J Ri2J · · · 1




≡ Ri11.

Let index i of Ri refer to the ith group, which is sensible, because all observations

for a given group have the same probability of a positive response (πij). Table 6.1

shows the correlation structures considered here.

Table 6.1: Correlation structures for model 6.10

index vec(Ri) = (Ri12,Ri13, Ri23)
1 (-0.1, -0.1, -0.1)
2 (0.1, 0.1, 0.1)
3 (0.3, 0.3, 0.3)
4 (0.5, 0.5, 0.5)
5 (0.1, 0.3, 0.5)
6 (0.2, 0.4, 0.6)
7 (0.1, 0.2, 0.3)
8 (0.3, 0.4, 0.5)
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For simplicity, we only consider the three structures: Exchangeable, unstructured

and independence.

The odds ratio θxy|ik defined by (2.13) on page 60 is another measure of as-

sociation. From the odds ratio θxy|ik and the marginal probabilities πx|ik and

πy|ik, we computed the pairwise probability π11
xy|ik, which then determined, with

the marginal probabilities, the full pairwise distribution for items x and y. Let

Yx denote whether a subject selects item x. Given group i, if a subject selects

item x, then Yx = 1; otherwise, Yx = 0. In a similar way, we can compute

the pairwise probability π11
xy|i from the correlation between Yx and Yy and the

marginal probabilities πx|i and πy|i, where i refers to the ith group. We have

Cov(Yx, Yy) = Pr(Yx = 1, Yy = 1) − Pr(Yx = 1) Pr(Yy = 1) = π11
xy|i − πx|iπy|i.

By using the formula Corr(Yx, Yy) = Cov(Yx, Yy)/(Var(Yx)
1/2Var(Yy)

1/2), we can

compute π11
xy|i. Then we can compute the other pairwise probabilities π01

xy|i, π10
xy|i

and π00
xy|i from π11

xy|i, πx|i and πy|i. Finally, we compute the joint probabilities τij′

from the complete pairwise distributions for all pairs of items by using the IPF

algorithm, as described in Section 2.5 on 59.

We draw n = 50 and n = 200 observations yi randomly from either of the

G = 4 groups and according to the joint probabilities τij , but we require ng > 5

to achieve better convergence, considering that the groupwise method is not ap-

plicable for small groupsizes ng. The covariates Xij were drawn from N(0, 1), but

fixed in advance for all simulations, otherwise it would take too long to gener-

ate a new joint distribution for all simulated data sets. Then we fit model (6.10)

by GEE twice, once using the standard method and once the groupwise method

with G = 4.

Table 6.2 shows the simulation results for the GEE method and for β = (0.1, 0.2,

0.3)T . The first column shows n, the total number of observations generated. The
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second column shows the correlation structure for each of the 4 groups. The ith

number refers to the ith group’s correlation structure Ri, which can be found in

Table 6.1 under the index which equals the ith number. For example, if the sec-

ond number is 4, then the second group has an exchangeable correlation structure

with α = 0.5, because this is the structure that has index 4 in Table 6.1.

The next columns show the relative efficiency RE(β̂) for correlation struc-

tures unstructured (denoted by “unstr”), exchangeable (“exch”) and indepen-

dence (“ind”).

We define the relative efficiency RE(β̂) of β̂ = (β̂1, . . . , β̂J)T ) as

RE(β) =

∑J
j=1 E(β̂TRUE

j − βj)
2

∑J
j=1 E(β̂j − βj)2

=

∑J
j=1 m.s.e.(β̂TRUE

j )
∑J

j=1 m.s.e.(β̂j)
,

where β̂j refers to the estimate of βj for the given working correlation structure

and β̂TRUE
j stands for the estimated βj using the correct (true) correlation struc-

ture. We use the correct correlation of the simulated distribution and NOT the

correct working correlation to estimate the correlation. This ensures that β̂TRUE
j

has the smallest mean square error. Also, the advantage of our definition is

that any other method, such as GEE1 or GEE2, can be easily compared with our

method, since relative efficiency of 1.00 is the highest value.

The groupwise and standard methods can also be regarded as part of the

working correlation itself, because both methods assume a certain underlying

correlation model. The relative efficiency of the method for which the working

correlation (the structure and method groupwise/standard) was correctly chosen

is denoted by “∗” in Table 6.1.

However, for some configurations, such as configuration “1, 1, 4, 4” for the

second column, neither the standard (G = 1) nor the groupwise correlation esti-
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mation (G = 4) is correct, because we simulate two different structures, one for

two of the four groups. The latter would be correct for G = 2. In this instance,

when neither method is correct, we denote the working correlations that are clos-

est to the simulated one by “+”.

We simulated 10, 000 data sets for all configurations. The number x in sub-

script of RE(β̂)x is the number of simulations which did not converge for the

particular working correlation. The first column also shows the number N for

which GEE did not converge for all working correlations including the true cor-

relation. The relative efficiency was computed over 10, 000−N data sets only, e.g.

line 1 in Table 6.2 shows 50348, meaning that the relative efficiency was computed

over 10, 000 − 348 = 9, 652 data-sets. GEE did not converge 203 times for the

working correlation unstructured (unstr) and 175 times for exchangeable (exch)

using the groupwise method, for all other working correlations it did converge

for all 10, 000 data sets.

Repeated Multiple Responses

For repeated multiple responses, we consider the model

logit(πijt) = Xijtβj , i = 1, ..., G , j = 1, ..., J , t = 1, ..., T (6.11)
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Table 6.2: Relative efficiency (RE(β̂)) for model (6.10) and 10, 000 simulated data sets with β = (0.1, 0.2, 0.3)T for non-
repeated multiple response data using correlation structures independence (ind), unstructured (unstr) and exchange-
able (exch), and the standard and groupwise method (G = 4), n stands for number of subjects per data set and N are
the number of data sets for which GEE did not converge, the number which is shown for Ri indicates the correlation
structure of Table 6.1 which was used for group i = 1, . . . , G

correlation working correlation

structure standard method groupwise method

nN R1,R2,R3,R4 unstr exch ind unstr exch

50506 4, 4, 4, 4 0.9580 0.983∗0 0.6620 0.907346 0.964199

50348 1, 1, 4, 4 0.8190 0.843+
0 0.7590 0.884203 0.948+

175

50195 1, 2, 3, 4 0.8730 0.8980 0.8140 0.863133 0.937∗77

50246 5, 5, 5, 5 0.959∗0 0.8950 0.7760 0.833221 0.84437

50306 5, 5, 6, 6 0.948+
0 0.8680 0.6930 0.834+

266 0.82060

50212 5, 6, 7, 8 0.9460 0.9060 0.7620 0.870∗174 0.89644

2000 4, 4, 4, 4 0.9930 0.999∗0 0.7080 0.9750 0.9950

2000 1, 1, 4, 4 0.8700 0.874+
0 0.7840 0.9730 0.991+

0

2000 1, 2, 3, 4 0.9120 0.9180 0.8260 0.9660 0.989∗0

2000 5, 5, 5, 5 0.992∗0 0.9300 0.8230 0.9710 0.9220

2000 5, 5, 6, 6 0.986+
0 0.9150 0.7650 0.967+

0 0.9120

2000 5, 6, 7, 8 0.9790 0.9300 0.7990 0.969∗0 0.9440
∗: correct working correlation, +: close to correct
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with G = 4, J = 2, T = 3. The correlation matrix has the following form

Ri =




1 Ri11,12 Ri12,11 Ri12,12 Ri13,11 Ri13,12

1 Ri12,21 Ri12,22 Ri13,21 Ri13,22

1 Ri22,12 Ri23,11 Ri23,12

1 Ri23,21 Ri23,22

1 Ri33,12

1




=




Ri11 Ri12 Ri13

Ri12 Ri22 Ri23

Ri13 Ri23 Ri33




.

(6.12)

We consider the following working correlations: First, we regard the vectors

yi of length J · T as standard multiple response data and choose unstructured

(unstr), exchangeable (exch) and independence (ind). Then we simply disre-

gard the time-dependence, only choosing an exchangeable working correlation

for J items, but regard observations at different time-points as independent. This

structure is identical to a common exchangeable structure for Ritt and a com-

mon independence structure for Rit1t2 . We denote this working correlation as

“exch(c)-ind”. Then we consider the conditional structures exchangeable (items)

and unstructured (time), and unstructured (items) and exchangeable (time). The

first is denoted by “exch(i) - unstr (t)” and the second by “unstr(i) - exch (t)”.

We define the relative efficiency in the same way as for non-repeated multiple

responses.

Table 6.3 shows the correlation structures being used for the simulated data.

The top few lines list the indices j1, j2 for the items and t1, t2 for the occasions

of the elements Rt1t2,j1j2 of correlation matrix R defined in equation (6.12). In

this way, we can more easily check which value belongs to which correlation

parameter. For convenience, the bottom two lines list the equivalent indices i

and j of the elements Rij of matrix R being expressed as R = (Rij)
J ·T=9
i,j=1 . For
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some people this might be easier to read. The structures 1-4 are exchangeable

structures with varying values. The next 4 structures are of the type “unstr(i) -

exch (t)”, where we assume Rt1t2,12 = Rt1t2,21 to be consistent with Rtt,12 = Rtt,21.

Structures 9 and 10 are of type “exch(i) - unstr (t)”, and structures 11-14 assume

independence between items at different occasions, which is “exch(c)-ind”. The

last 4 structures (15-18) present an unstructured structure.

Table 6.4 shows the relative efficiency for a variety of configurations for β =

(0.2, 0.3)T with n = 50 simulated observations for each of the 10, 000 datasets.

Table 6.3: Correlation structures for model 2

(Rij)
J ·T=9
i,j=1 = R = (Rt1t2,j1j2)

J=3;T=3
j1,j2=1;t1,t2=1

indices j1j2 and t1t2 of parameters Rt1t2,j1j2
j1j2 12, 11, 12, 11, 12, 21, 22, 21, 22, 12, 11, 12, 21, 22, 12
t1t2 11, 12, 12, 13, 13, 12, 12, 13, 13, 22, 23, 23, 23, 23, 33

index parameters Rj1j2,t1t2 respectively Rij
1 -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1
2 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1
3 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3
4 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
5 0.1, 0.2, 0.1, 0.2, 0.1, 0.1, 0.3, 0.1, 0.3, 0.1, 0.2, 0.1, 0.1, 0.3, 0.1
6 0.15, -0.1, 0.15, -0.1, 0.15, 0.15, -0.2, 0.15, -0.2, 0.15, -0.1, 0.15, 0.15, -0.2, 0.15
7 -0.1, 0.2, -0.1, 0.2, -0.1, -0.1, 0.1, -0.1, 0.1, -0.1, 0.2, -0.1, -0.1, 0.1, -0.1
8 0.1, -0.1, 0.1, -0.1, 0.1, 0.1, -0.2, 0.1, -0.2, 0.1, -0.1, 0.1, 0.1, -0.2, 0.1
9 0.1, 0.2, 0.2, 0.5, 0.5, 0.2, 0.2, 0.5, 0.5, 0.3, 0.4, 0.4, 0.4, 0.4, 0.6

10 0.3, -0.2, -0.2, 0.5, 0.5, -0.2, -0.2, 0.5, 0.5, 0.4, -0.1, -0.1, -0.1, -0.1, 0.5
11 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0, 0, 0, 0, 0.3
12 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0.5
13 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0.1
14 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0.4, 0, 0, 0, 0, 0.4
15 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70
16 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10, 0.05, 0.00
17 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40
18 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35

ij 12, 13, 14, 15, 16, 23, 24, 25, 26, 34, 35, 36, 45, 46, 56
indices ij of Rij
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Table 6.4: Relative efficiency (RE(β̂)) for model (6.11) and 10, 000 simulated data sets with β = (0.2, 0.3)T for repeated
multiple response data (T = 3) using correlation structures independence (ind), unstructured (unstr) and exchangeable
(exch), and the standard and groupwise method (G = 4), n stands for number of subjects per data set and N are the
number of data sets for which GEE did not converge, the number which is shown for Ri indicates the correlation
structure of Table 6.3 which was used for group i = 1, . . . , G

correlation working correlation

structure standard method groupwise method

exch(c)- exch(i)- unstr(i)- exch(c)- exch(i)- unstr(i)-

n R1,R2,R3,R4 unstr exch ind ind unstr(t) exch(t) unstr exch ind unstr(t) exch(t)

503394 1, 1, 1, 1 0.9220 0.994∗0 0.9600 0.9540 0.9640 0.9832 0.7101240 0.97822 0.9380 0.6921770 0.7971208

503675 1, 2, 3, 4 0.8350 0.8940 0.9010 0.8780 0.8680 0.8900 0.6571525 0.995∗6 0.88220 0.6202627 0.953140

503115 6, 6, 6, 6 0.9330 0.8800 0.8770 0.8690 0.8490 0.990∗0 0.5991751 0.8721 0.8470 0.6631372 0.849675

502710 5, 6, 7, 8 0.8640 0.9230 0.9170 0.9140 0.8990 0.9210 0.6261650 0.9241 0.8960 0.7231238 0.933∗334

504982 9, 9, 9, 9 0.9342 0.8250 0.6630 0.7010 0.976∗0 0.8180 0.5662138 0.8371 0.68813 0.5173615 0.79779

504763 9, 9, 10, 10 0.9000 0.7450 0.6390 0.7110 0.942+
0 0.7470 0.5372160 0.7861 0.6868 0.521+

3425 0.74786

503005 11, 11, 11, 11 0.9290 0.9170 0.9120 0.994∗0 0.9740 0.9170 0.6751232 0.9092 0.9813 0.6722125 0.87880

503544 11, 12, 13, 14 0.8880 0.8320 0.8270 0.9600 0.9410 0.8340 0.6111343 0.8241 0.982∗18 0.6052676 0.79092

505327 15, 15, 15, 15 0.946∗0 0.8210 0.7420 0.7460 0.9593 0.8280 0.6901730 0.8241 0.72616 0.4264397 0.80779

505324 15, 15, 16, 16 0.532+
0 0.5820 0.5830 0.5360 0.5630 0.580+

0 0.5621671 0.5731 0.5155 0.3504358 0.59895

504955 15, 16, 17, 18 0.7320 0.8030 0.6720 0.6920 0.7640 0.796∗0 0.8211636 0.8000 0.67410 0.4254002 0.81452

∗: correct working correlation, +: close to correct
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Results

The results confirm previous simulations studies, for instance Liang and Zeger

(1986), choosing the correct working correlation gives most efficient parameter

estimates. The groupwise method gives more efficient parameter estimates pro-

vided different groups have different structures. Similarly, the standard method

also yields more efficient parameter estimates provided the correlation is indeed

equal for all observations. This was expected, because assuming one correlation

structure for either all observations or just for observations within a group also

specifies a working correlation. Only when the number of parameters is quite

large and the number of observations is quite small, the advantage of choosing,

correctly, the groupwise method vanishes. For example, in Table 6.2 for config-

uration 5, 6, 7, 8 of the second column, we see that the groupwise method works

worse than the standard method, although we expect the opposite. There are two

explanations. Either the unstructured working correlation simply has too many

parameters or the unstructured working correlation estimated by (5.16) on page

154 does not have exactly the same form as formula (5.12) on page 153 to esti-

mate correlation parameters. Formula (5.16) uses divisor n, whereas according to

formula (5.12), it should be n − p. The simulations are very computationally ex-

pensive. For n = 50 and non-repeated multiple response data, one configuration

(one line in Table 6.2) - simulating 10, 000 datasets and fitting all of the various

GEE methods - requires half a day. Each of the other configurations in Tables 6.2

and 6.4 takes roughly about 5-7 days with standard modern computers available

to us.

Generally, when grouped observations with large group sample sizes are given,

then we suggest the groupwise method, because the large group sample sizes

guarantee good correlation estimates. The more parameters the working correla-
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tion requires, the bigger the group sizes have to be to gain efficiency advantages

from the groupwise method over the standard method. Otherwise, when we do

not assume a subject specific correlation or group sizes are small, the standard

method is recommended. Only when a subject specific correlation model is as-

sumed, GEE1 introduced by Prentice (1988) is preferred. Furthermore, only if the

correlation model can be trusted or the association/correlation parameters are of

primary interest, GEE2 (Zhao and Prentice 1990) is recommended instead.

6.4.4 Missing Data

So far, we have not discussed missing data. Clearly, the STAT 291 data con-

tains missing data. Let the observed responses be denoted by yO and the un-

observed or missing responses by yM . If the missingness is independent of both

yO and yM , the mechanism is called missing completely at random (MCAR). A sub-

case of MCAR is covariate-dependent missingness (Hedeker and Gibbons 2006),

which allows missingness to depend on the observed covariates, e.g. increasing

in time. Covariate dependence can also be considered as conditional indepen-

dence: Given the covariates, the missingness is independent of both yO and yM .

Another missingness is termed missing at random (MAR), which allows missing-

ness not only to depend on fully observed covariates xi, but also on the observed

responses yO. In other words, given xi and yO, the missingness is independent of

yM . GEE can only handle data being missing completely at random (MCAR). For

the STAT 291 data, covariate dependence (MCAR) seems a reasonable assump-

tion, as it can be ruled out that missingness depends on the students’ favourite

bar and its features, but will rather depend on covariates as time, the student’s

major, age, etc. Hence, GEE is applicable and leads to consistent estimates. How-

ever, under the weaker assumption of MAR, GEE does not provide consistency
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anymore in contrast to ML methods, as introduced previously, and generalised

linear mixed models which are introduced later. In the next subsection, a small

modification of GEE which can handle MAR is considered.

6.4.5 Weighted Generalised Estimation Equations

Fitzmaurice, Molenberghs and Lipsitz (1995) and Ali and Talukder (2005) consid-

ered missing data mechanisms for longitudinal binary data deriving weighted

generalised estimation equations (WGEE). Let Di = t denote the dropout time

for given observation i, which is the occasion t from where all data is missing.

T + 1 represents complete data. The authors modified the score equations (6.4)

having the form
∑n

i=1 Ui to
n∑

i=1

1

vit
Ui, (6.13)

with weights 1
vit

where vit = Pr(Di = t|yi,Xi, γ) is the probability of a dropout

of the ith subject on the tth occasion and where γ is some parameter modelling

the dropout times. For details we refer to the articles mentioned above. Repeated

multiple responses can be considered as multivariate longitudinal binary data,

hence, these weighted score equations (6.13) are a useful alternative if MCAR can

be ruled out. For the STAT 291 data we do not need WGEE, because MCAR can

be assumed; however, for other repeated multiple response data, where MCAR

seems an unrealistic assumption but MAR seems sensible, WGEE provides a use-

ful alternative.
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6.5 Generalised Linear Mixed Models

The fixed parameters in ordinary GLM or GEE describing the factors effect are in-

dependent of the sample. In contrast, generalised linear mixed models (GLMM)

additionally include a cluster specific effect, the random effect. As explained

in the introduction, the modelling without random effects is called population-

averaged modelling, whereas the modelling approach containing the random ef-

fects is referred to as subject-specific modelling. Let ui be the random effect vector

for cluster/observation i and let Qi be the design matrix for ith the random ef-

fect. Conditional on ui, the distribution of yijt is assumed to be from the exponen-

tial family type with density f(yijt|ui; β) and conditional mean µijt = E(yijt|ui),

in our case the distribution is binary and µijt ≡ πijt. The linear predictor for a

GLMM is

g(πijt) = zT
ijtβjt + qT

ijtui = ηijt (6.14)

or in vector form

g(πi) = Ziβ + Qiui = ηi

where Zi, g and β have the same meaning as in model (6.1) and where Qi =

(qT
i11, . . . ,q

T
iJT )T . The random effects ui of dimension r are assumed to be normal

N(0,Σ) with unknown positive definite covariance matrix Σ, where the density

is denoted by f(ui;Σ). By the conditional independence, the conditional density

of y given u has the form

f(y|u; β) =
n∏

i=1

f(yi|ui; β) with f(yi|ui; β) =
J∏

j=1

T∏

t=1

f(yijt|ui; β). (6.15)
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We can also write

f(u;Σ) =
n∏

i=1

f(ui;Σ), (6.16)

where y = (y1, . . . ,yn)
T and u = (u1, . . . ,un)T . Note that unconditionally yij1t1

and yij2t2 are positively correlated (Agresti 2002, p.497).

Now, the likelihood function l(β,Σ;y)

l(β,Σ;y) = f(y; β,Σ) =

∫
f(y|u; β)f(u;Σ)du (6.17)

is maximised to obtain ML parameter estimates for β and Σ. This likelihood

function is often called marginal likelihood after integrating out the random effects

(Agresti 2002).

Maximising the (marginal) likelihood is a ML-method, hence the missing data

mechanism allows MAR, in contrast to GEE which only allows the stronger as-

sumption of MCAR. The integral usually cannot be solved analytically and nu-

merical methods must be used. Several approaches maximising (6.17) are dis-

cussed next.

6.5.1 Gauss-Hermite Quadrature Methods

Let the random effect ui be parameterised by ui = Σ1/2ai, with Σ1/2 being the

left Cholesky factor Σ = Σ1/2(Σ1/2)T , such that ai has mean zero and covariance

matrix I, the density is denoted by f̃(ai), and the linear predictor has the form

g(µit) = zT
ijtβ+qT

ijtΣ
1/2ai. Now the likelihood (6.17) does not depend on Σ, but on

the parameter vector vec(Σ1/2) =:
−−→
Σ1/2 containing the elements of the lower tri-

angular matrix Σ1/2, which is denoted by l(α;y) with αT = (βT , (
−−→
Σ1/2)T ). When

integrating (6.17) with respect to a = (a1, . . . , an)T , the reparameterised likelihood
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l(α;y) has the form

∫

R

. . .

∫

R

exp(−x2
1) · · · · · exp(−x2

r)v(x)dx1 . . . dxr. (6.18)

For this type of integral the Gauss-Hermite approximation can be applied and the

integral can be approximated by

li(α;yi) =

∫
f(yi|ai; α)f̃(ai)dai ≈

m∑

j=1

wjf(yi|dj; α), (6.19)

where dj is one of the m quadrature points and wj is the weight associated with

dj . The multivariate case follows from applying the Gauss-Hermite approxima-

tion for each dimension separately (r = 1) and applying the Cartesian product.

For one dimension the quadrature points and the weights follow from the Her-

mite polynomial. The approximated likelihood or log-likelihood can now be

maximised by standard methods, such as Newton-Raphson, to obtain ML esti-

mates β̂ and Σ̂. The number of quadrature points m must be large enough to

yield accurate ML estimates and this number increases exponentially with di-

mension r, which becomes infeasible for quite small dimensions. Liu and Pierce

(1994) considered adapted Gauss-Hermite quadrature to reduce the number of

quadrature points.

6.5.2 Monte Carlo Methods

The simplest Monte-Carlo (MC) approximation has the form

li(α;yi) ≈
1

m

m∑

j=1

f(yi|dij ; α) (6.20)
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where the m values dij are drawn from f(u;Σ). Suppose we can generate sam-

ples dij from another distribution, the importance sampling distribution, with den-

sity h(·). Then the following MC approximation, called importance sampling (Shao

1999), can also be used

li(α;yi) ≈
1

m

m∑

j=1

f(yi|dij; α)f(dij ;Σ)

h(dij)
=

m∑

j=1

wijf(yi|dij ; α) (6.21)

with weights wij = 1
m

f(dij ;Σ)

h(dij)
, which might be advantageous if sampling from

f(u;Σ) is difficult.

6.5.3 Estimation of Random Effects

The subject-specific random effects cannot be estimated by applying the ML prin-

ciple. Applying Bayes’ theorem we have

f(u|y; β,Σ) =
f(y|u; β)f(u;Σ)∫
f(y|u; β)f(u;Σ)du

∝ f(y|u; β)f(u;Σ). (6.22)

The parameters β and Σ are not known, but replacing them with some consistent

estimates β̂ and Σ̂, enables us to apply the empirical Bayes’ principle (Fahrmeir

and Tutz 2001). The ”best” Bayesian point estimator (in square error) is the poste-

rior mean E(u|y). Also the covariance Cov(u|y) is obtainable given the posterior

density. For both quantities, generally, integrals must be computed numerically

with e.g. Gauss-Hermite or MC.

6.5.4 Indirect Maximisation with EM algorithm

As before, let y be the observed data and u be the random effects, which can

be considered as unobserved data and let Ψ = (βT ,
−→
ΣT )T denote both the model
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parameter β and the parameter of the covariance Σ. Assume both y and u are ob-

served, the complete likelihood can be expressed as f(y,u; β,Σ) = f(y|u; β)f(u;Σ),

hence, the complete log-likelihood is (McCulloch 1997)

log f(y,u; β,Σ) =

n∑

i=1

log f(yi|ui; β) + log f(ui;Σ). (6.23)

The expectation-maximisation (EM) algorithm has two steps. First let us define

Q(0)(Ψ|Ψ′) = E(log f(y,u;Ψ)|y;Ψ′) =

∫
log f(y,u;Ψ)f(u|y;Ψ′)du. (6.24)

Note that f(u|y;Ψ′) depends on both β′ and Σ′ with Ψ′ = (β′,Σ′), see (6.22). Ψ′

can be seen as an old estimate in an iteration scheme and Ψ as the new estimate.

At first the expectation in Q(0)(Ψ|Ψ′) (E-step) is computed and at a second step

this expression is maximised (M-step) with respect to Ψ for given Ψ′. The first

term of the complete log-likelihood in (6.23) depends on β and the second on Σ

yielding

Q(0)(Ψ|Ψ′) = E(log f(y|u; β)|y;Ψ′) + E(log f(u;Σ)|y;Ψ′). (6.25)

Therefore the M-step and E-step can be performed separately for β and Σ. A dis-

persion parameter φ could also be included in f(y|u; β) = f(y|u; β, φ).

Generally, the integral in (6.24) respectively (6.25) must be computed numeri-

cally. To approximate the integral numerically by MC approximation, we need to

sample from f(u|y;Ψ′), which can be achieved by the Metropolis-Hasting (MH)

algorithm. Let now h(·) denote a candidate distribution and let uk−1
i be a previous

draw from f(ui|yi;Ψ
′). Draw a new candidate u∗

i from h(ui). Now accept u∗
i as

the new draw from f(ui|yi;Ψ
′) with probability Ak(u

k−1
i ,u∗

i ) by setting uk
i := u∗

i
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with

Ak(u
k−1
i ,u∗

i ) = min

{
1,

f(u∗
i |yi;Ψ

′)h(uk−1
i )

f(uk−1
i |yi;Ψ

′)h(u∗
i )

}
.

Otherwise reject u∗
i and accept the existing point instead. Then continue with

k := k + 1. This procedure still depends on the unknown density f(u|y;Ψ′). By

setting h(ui) := f(ui;Σ
′) the term Ak(u

k−1
i ,u∗

i ) simplifies to

Ak(u
k−1
i ,u∗

i ) = min

{
1,

f(yi|u∗
i ; β

′)

f(yi|uk−1
i ; β′)

}

and now only depends on the known distribution f(yi|ui; β), the conditional like-

lihood function. Thus, the term Q(0)(Ψ|Ψ′) can be approximated by sampling a

large number m of samples u1
i , . . . ,u

m
i from f(ui|yi;Ψ

′) as described above for all

i = 1, . . . , n.

At the second step new estimates for β and Σ can be obtained by maximising

Q(0)(Ψ|Ψ′), or equivalently maximising E(log f(y|u; β)|y;Ψ′) and E(log f(u;Σ)|y;Ψ′)

according to equation (6.25). The maximisation of E(log f(u;Σ)|y;Ψ′) is equiv-

alent to finding the ML estimator for Σ on the ”sample” u1
i , . . . ,u

m
i . In our case

f(u;Σ) is assumed to be multivariate normal and therefore the ML estimator

Σ̂ML has a closed form. Also, f(y|u; β) is assumed to belong to the exponential

family and the ML estimator for β can be obtained similarly to the ML estimation

of generalised linear models via a Newton-Raphson or Scoring iteration scheme.

McCulloch (1997) proposed several algorithms. One of those, termed Monte-

Carlo-Newton-Raphson (MCNR), is:

1. choose starting values β(0),Σ(0) (φ(0)), set k:=0

2. generate m values u0
i ,u

1
i , . . . ,u

m
i from the condition distribution

f(ui|yi; β
(k),Σ(k), φ(k)) for i = 1, . . . , n using the MH algorithm
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3. calculate β(k+1)

β(k+1) = β(k) + Ê[XTWX|y]−1XT

(
Ê

[
W

∂η

∂µ
|
θ=θ

(k) (y − µ)|y
])

with θ = (β, φ)

4. (optional if φ is unknown)

calculate φ(k+1) that solves E(∂ log f(y|u; θ)/∂φ|y) = 0 or with scoring algo-

rithm

5. also determine Σ(k+1) which maximises 1/m
∑m

i=1 log f(u(k)|Σ)

(ui ∽ N(0, Σ), Σ̂k+1 = 1
m

∑m
k=1

∑n
i=1 ul

iu
l
i
T

)

6. set k:=k+1, if algorithm converged, then proceed with next step (7.), other-

wise go back to step 2.

7. consider β(k+1), φ(k+1) and Σ(k+1) as ML estimates

The algorithm uses the following notations: µ = µ(θ, u) = E [Yi|u], W(θ, u)−1

= Diag
{

(
∂ηi

∂µi
)2Var(Yi|u)

}
, ∂η
∂µ = Diag(

∂ηi

∂µi
) and where Ê denotes the MC ap-

proximation of the expectation. Another algorithm without the use of Newton-

Raphson, but with maximising Ê(log f(y|u; β)|y) was called MCEM (McCulloch

1997). Both MCEM and MCNR work on the log of the complete likelihood.

In contrast, importance sampling (see (6.20) and (6.21)) samples directly from

f(yi|ui) and the likelihood is maximised directly, referred to as simulated max-

imum likelihood (SML) by McCulloch (1997). McCulloch showed that MCNR

and MCEM reach the neighbourhood of the true parameters reasonable fast, but

final convergence is achieved slowly. SML only works reasonable well for good

starting values and if an optimal importance sampling distribution is used. A

hybrid method beginning with MCNR to find good starting values and finishing
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with SML by approximating the optimal importance sampling distribution from

the given estimates was suggested. Neither method necessarily converges to the

global maximum.

Sampling from f(ui|yi;Ψ
′) ∝ f(yi|ui; β

′)f(ui;Σ
′) can also be achieved by rejec-

tion sampling as suggested by Booth and Hobert (1999) to yield real independent

samples. Sample a candidate u∗
i from f(ui;Σ

′) and, independently, another w

from the uniform distribution U [0, 1]. u∗
i is accepted, if w ≤ f(yi|u∗

i ; β
′)/τ with

τ = supu {f(yi|ui; β
′)}. The computation of τ for every iteration is not difficult,

which can be seen as a likelihood of a GLM and, hence, is quite easily obtain-

able. For certain models, τ must only be computed once for the given data. In

the case of a very low acceptance rate, the authors also suggest using impor-

tance sampling with the multivariate student t-density whose mean and variance

match the mode and curvature of f(yi|ui; β
′)f(ui;Σ

′). It should be the mode

and curvature of f(ui|yi;Ψ
′), but this density is unknown. However, f(ui|yi;Ψ

′)

is proportional to f(yi|ui; β
′)f(ui;Σ

′) (see (6.22)), such that the maximisation of

f(y|u; β′)f(u;Σ′) with the EM-algorithm still yields correct results. The mode

and curvature can also be approximated by Lagrange approximations, see Booth

and Hobert (1998) and Booth and Hobert (1999). Booth and Hobert (1999) also

considered the MC error which influences the MC approximation of the integral,

which depends on the choice of m. Let us define

Q(1)(Ψ|Ψ′) =
∂

∂Ψ
Q(0)(Ψ|Ψ′), Q(2)(Ψ|Ψ′) =

∂2

∂Ψ∂ΨT
Q(0)(Ψ|Ψ′) (6.26)

and

S(y,u;Ψ) =
∂

∂Ψ
log f(y,u;Ψ).

They showed Ψ is approximately normal distributed with mean Ψ∗ and covari-
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ance

Cov(Ψ|Ψ′) ≈ Q(2)(Ψ∗|Ψ′)−1
E(S(y,u;Ψ)S(y,u;Ψ)T |y;Ψ′)Q(2)(Ψ∗|Ψ′)−1, (6.27)

where Ψ∗ satisfies Q(1)(Ψ∗|Ψ′) = 0. Booth and Hobert (1999) suggest constructing

an approximate 100(1 − α) confidence region for Ψ∗ after the (r + 1)th iteration

using Cov(Ψ(r+1)|Ψ(r)) in (6.27). If the previous value Ψ(r) lies in this region, the

authors suggest increasing m to m := m+m/3 with α = 0.25. Another advantage

of their algorithm is that the information matrix is a by-product. Louis (1982)

showed

I(Ψ|y) := − ∂2l

∂Ψ∂ΨT
= −Q(2)(Ψ|Ψ̂) − Cov(S(y,u;Ψ)|y; Ψ̂) (6.28)

evaluated at Ψ̂. At Ψ̂ = Ψ̂
′
we have

Cov(S(y,u;Ψ)|y; Ψ̂)|
Ψ=

ˆΨ
= E(S(y,u;Ψ)S(y,u;Ψ)T |y; Ψ̂)|

Ψ=
ˆΨ

because E(S(y,u;Ψ|Ψ̂)|
Ψ=

ˆΨ
= 0. We can also write

I(Ψ|y) = Cov(S(y,u;Ψ); Ψ̂) − Cov(S(y,u;Ψ)|y; Ψ̂),

which is simply the difference between the unconditional and conditional vari-

ance. The quantities Q(2)(Ψ|Ψ(r)) and S(y,u;Ψ) have the following form

Q(2)(Ψ|Ψ(r)) =




E( ∂2

∂ββ
T log f(y,u;β|y;Ψ(r))) 0

0 E( ∂2

∂
−→
Σ
−→
ΣT

log f(u;Σ|y;Ψ(r)))




=




E(XTWX|y;Ψ(r)) 0

0 −n
2 (Σ(r+1))

(−1) ⊗ (Σ(r+1))
(−1)



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and

S(y,u;Ψ) =




∂
∂β

log f(y,u;β)

∂

∂
−→
Σ

log f(u;Σ)


 =




XTW(β,u)
∂η
∂µ |

β=β
(k) (y − µ)

−n
2Σ

(−1) + 1
2Σ

(−1)
∑n

i=1 uiui
TΣ(−1)


 .

The dispersion parameter φ was omitted for simplification. For details of the EM

algorithm, see Little and Rubin (1987).

Parameter Transformation

The parameters transformation from β and
−→
Σ to αT = (βT , (

−→
Σ1/2)T ) as described

above has several advantages. In (6.19) the random effect density does not de-

pend on any parameters, because it is simply multivariate normal with mean 0

and covariance matrix Ir. The linear predictor can be written as

ηit =
[
qT

ijta
T
i ⊗ zT

ijt

]



β

−→
Σ1/2


 .

The parameter vector α consists of all unknown fixed parameters and is included

in the conditional likelihood f(yi|ai; α) such that the iteration scheme might look

slightly easier because of the absence of estimating the fixed parameters Σ of the

random effect density f(u;Σ). For details see e.g. Tutz and Hennevogl (1996)

and Fahrmeir and Tutz (2001, Chapter 7).

6.5.5 Approximate Likelihood Methods

Approximate maximum likelihood methods are based on first- and second or-

der Taylor series expansions of the likelihood. Marginal Quasi-likelihood (MQL)

involves expansion around the fixed part of the model, whereas penalised quasi-
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likelihood (PQL) also includes the random part in its expansion. For example,

Stiratelli et al. (1984), Schall (1991) and Breslow and Clayton (1993) derived the

following penalised log-likelihood equations

l(β,u) =

n∑

i=1

log f(yi|ui, β) − 1/2

n∑

i=1

uT
i Σ−1ui, (6.29)

although Stiratelli et al. (1984) derived these equations by using a Bayesian ap-

proach and Schall (1991) by using the BLUP procedure. MQL (Zeger et al. 1988,

Goldstein 1991) focuses on the marginal relationship between covariates and out-

comes.

However, all these approaches can yield poor estimates, which can be severely

biased, in particular for first order expansions (Breslow and Lin 1995). More re-

cently, Raudenbush et al. (2000) introduced a fast method combining a fully mul-

tivariate Taylor series expansion and a Laplace approximation, yielding accurate

results.

6.5.6 Bayesian Mixed Models

For the Bayesian approach, the prior distributions for all parameters f(β|·), f(u|·)

and f(Σ|·) must be specified. The posterior distribution is f(β,u,Σ|y). Sampling

from the posterior distribution enables us to obtain parameter estimates, which

can be accomplished by applying e.g. Gibbs sampling (Fahrmeir and Tutz 2001).

Gibbs sampling is an easy iterative scheme to sample from f(β,u,Σ|y). First, set

any two starting value β(0), Σ(0) and u(0), without loss of generality, let the first

two be given. Set k := 0. Now sample u(k) from f(u|β(k),Σ(k)). Then sample

β(k+1) from f(β|u(k),Σ(k)) and Σ(k+1) from f(Σ|u(k), β(k+1)) and set k := k + 1.

Stop with k = N .The triple (u(k),Σ(k), β(k)), k = 1, . . . , N represent a sample of
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size N from the posterior f(β,u,Σ|y). The (posterior) means from this sample

are regarded as the estimates, e.g. β̂ = 1/N
∑N

k=1 β(k).

6.5.7 Semi- or Nonparametric Maximum Likelihood EM algo-

rithm

Instead of assuming that the distribution of the random effects f(u) follows any

parametric distribution such as the multivariate normal distribution, one can also

assume that f(u) is any discrete distribution with probabilities p = (p1, . . . , pK)

with finite support size K and mass points m = (m1, . . . , mK). If no assumptions

can be made, p,m and K are unknown. When applying the EM algorithm, it

may happen that for fixed K some mass points equal ±∞, which corresponds to

cell probabilities ±1. Hartzel, Agresti and Caffo (2001) discuss this approach and

suggest successively fitting while increasing K. There is no big difference in es-

timates between the parametric EM algorithm and the non-parametric approach.

They suggest using the non-parametric approach to check whether the estimates

from the parametric and non-parametric EM algorithm are approximate equal,

otherwise this could be a sign for the inadequacy of the model.

6.6 Stat 291 Data

The Stat 291 data has T = 3 time-points and has various bar features to be con-

sidered as items. For simplicity, we consider J = 3 items only, namely “drink

deals” (item 1), “pool table” (item 2) and “sports TV” (item 3). The repeated mul-

tiple responses were created by assigning a positive response at occasion t for

item j (e.g. “drink deals”), when the student’s favourite bar at occasion t has

a certain feature (e.g. “drink deals”) to be also considered as item j. We refer



CHAPTER 6. REPEATED MULTIPLE RESPONSES 226

to the introduction (Section 6.1 on page 184), where we explained in detail how

to obtain the repeated multiple responses from the subject’s most favourite bar

and its features. We use the logit link, because the marginal responses are binary,

and consider a common effect, such that marginal model (6.1) has form (6.2). We

tested several models by excluding/including step by step those variables that

are highly insignificant and those variables whose exclusion makes other vari-

ables insignificant. Finally we ended up with a quite simple model with variables

“work” (question 13: working=1/ not working=0), “friends” (5a: yes=1/ no=0)

and “sex” (male=1/ female=0) for item 1, “pool” (4: yes=1/ no=0) and “sex” for

item 2 and finally variable “smoke” (12: yes=1/ no=0) and “sex” for item 3.

We use the same covariates for the random effects model, which is of the form

log

(
πijt

1 − πijt

)
= αj + xT

itβj + xT
i0β0j + uij

with ui = (ui1, . . . , uiJ)T . Random effect vector ui ∈ R
J is assumed to be multi-

variate normal, referring to subject i, where the jth component uij refers to the

jth item. In the literature, as in Agresti and Liu (2001), often only one single uni-

variate random effect is used to account for dependency between items, but this

seems too stringent. On the contrary, allowing JT correlated random effects, one

for each component, does not seem appropriate either. The random effect struc-

ture was chosen in such a way, because we expect that the πit vary more over

items than over time.

Table 6.5 shows the parameter estimates for various GEE and GLMM meth-

ods. For GEE, a good structure seems “unstr(i)-exch(t)”, because the exact struc-

ture between items is very unclear and seems rather heterogeneous between all

pairs of items (unstructured), whereas for the time-dependence, we can assume
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one of the typical time-structures, such as exchangeable. Unfortunately, GEE

only converges for the standard method. Another structure introduced earlier

and considered in the simulation study is “exch(i)-unstr(t)”, for which GEE con-

verges also for the groupwise (G) method. For the groupwise method, we use

the G = 2 groups formed by variable “sex”, which is an explanatory variable for

the marginal responses of all 3 items. It seems sensible that “sex” is an also an ex-

planatory variable for the correlation. For the groupwise method, variable “pool”

has a smaller p-value than for the standard method. For instance, for the structure

“exch(i)-unstr(t)”, the standard method yields the p-value 0.168 (not significant)

and the groupwise method gives a p-value of 0.052 (marginally significant). With-

out applying the groupwise method, variable “pool” would remain undetected.

For the random effect model, we applied the MCNR algorithm (McCulloch

1997) in combination with confidence regions (Booth and Hobert 1999). The pa-

rameter estimates are very similar to the estimates of GEE using structure inde-

pendence. GLMM can only impose non-negative correlations between items, but

it is very unlikely that all of the 1/2(J ·T )× (J ·T −1) correlation parameter of the

multiple responses are non-negative, in fact for an unstructured correlation struc-

ture, GEE gives correlation parameter estimates ranging from −0.121 to +0.254

indicating relatively small correlations, both positive and negative. Therefore, the

method adjusts the random effects to be small imposing only small non-negative

correlations, which is then close to the independence structure. We also fitted the

model with penalised quasi likelihood (PQL). Parameter estimates for PQL dif-

fer from the other estimates, indicating a bias (as mentioned earlier in Subsection

(6.5.5) for quasi-likelihood methods) and providing unreliable estimates.

Let us discuss the parameter estimates for structure “exch(i)-unstr(t)” and

G = 2. The odds of selecting a bar offering drink deals (Pool Table/ Sports
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TV) are 1/ exp(−0.645) = 1/0.52 = 1.91 (1.58/ 2.31) times higher for females

than for males. Females seem to be more aware of the bar’s features and select a

bar as most favourite based on the bar’s features. The odds for working people

choosing a bar that offers drink deals are exp(0.553) = 1.77 (exp(0.575) = 1.78)

times those for non-working people (for people who go out to socialise than

for those who don’t). Also the odds of selecting a bar offering a pool table are

exp(−0.792) = 0.45 times for those who enjoy playing pool than for those who

don’t. We probably would expect the opposite, but eventually the pool table is

not of high importance for selecting a most favourite bar for those who do en-

joy playing pool. The method PQL also suggest variable pool to be marginally

significant, but we regard PQL generally as unreliable. We must consider the

possibility that variable pool is simply insignificant.

For people who smoke the odds of selecting a bar offering some sorts of Sports

TV are exp(0.381) = 1.46 times those for people not smoking. This is not too un-

expected, because some people might see a link between Sports TV and smoking.

6.7 Discussion

In this chapter, we mainly focused on GEE and GLMM methods for modelling re-

peated multiple responses due to the impractical nature of the ML approach. Al-

though both methods seem similar and contain the same fixed effect parameters

β, they are not identical unless Σ = 0 for GLMM and an independence structure

is chosen for GEE. ML estimation does not need any assumption about correla-

tion parameters, however, the method becomes infeasible for small J and T due

to the 2JT joint probabilities. In addition, it requires non-zero joint cell counts,

an almost impractical condition to be met for JT ≥ 6, because of the sparseness
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Table 6.5: Parameter estimates (s.e.) and p-value for GEE and GLMM models

Drink Deals Pool Table Sports TV

method work friends sex pool sex smoke sex

GEE 0.488 0.013 -0.641 -0.843 -0.473 0.201 -0.609

unstr(i)-ex(t) (0.286) (0.512) (0.329) (0.498) (0.355) (0.212) (0.385)

0.087 0.980 0.052 0.091 0.182 0.342 0.114

GEE (G = 2) 0.553 0.575 -0.645 -0.792 -0.460 0.381 -0.837

ex(i)-unstr(t) (0.241) (0.295) (0.323) (0.408) (0.329) (0.188) (0.393)

0.022 0.051 0.046 0.052 0.162 0.042 0.033

GEE 0.439 0.480 -0.685 -0.519 -0.523 0.396 -0.674

ex(i)-unstr(t) (0.215) (0.323) (0.324) (0.377) (0.335) (0.196) (0.401)

0.041 0.136 0.034 0.168 0.118 0.043 0.093

GEE 0.540 0.655 -0.766 -0.207 -0.478 0.298 -0.599

ind (0.279) (0.497) (0.269) (0.370) (0.278) (0.291) (0.340)

0.053 0.187 0.004 0.575 0.085 0.306 0.079

GEE 0.436 0.479 -0.673 -0.223 -0.498 0.262 -0.635

unstr (0.250) (0.421) (0.311) (0.336) (0.346) (0.208) (0.380)

0.081 0.255 0.030 0.507 0.149 0.206 0.095

GEE 0.556 0.528 -0.746 -0.322 -0.549 0.250 -0.706

ex (G = 2) (0.269) (0.402) (0.323) (0.364) (0.355) (0.219) (0.385)

0.039 0.189 0.021 0.375 0.122 0.252 0.067

GEE 0.541 0.528 -0.759 -0.294 -0.545 0.248 -0.692

ex (0.268) (0.407) (0.321) (0.361) (0.354) (0.220) (0.388)

0.043 0.195 0.018 0.414 0.124 0.260 0.075

GLMM 0.544 0.662 -0.775 -0.209 -0.487 0.299 -0.609

MCNR (0.280) (0.498) (0.270) (0.371) (0.278) (0.291) (0.341)

mult 0.051 0.183 0.004 0.571 0.080 0.305 0.074

GLMM 0.796 0.527 -0.996 -0.592 -0.926 0.253 -1.134

PQL (0.228) (0.409) (0.659) (0.321) (0.661) (0.227) (0.686)

uni 0.001 0.198 0.131 0.065 0.161 0.265 0.099
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of the data. If zero cell counts occur, the estimates are called “extended ML esti-

mates”.

In this chapter, we did not consider log-linear models as another ML method.

Loglinear models often provide a better fit than the random effect models, be-

cause they do not impose severe restrictions on the joint distribution of yi. How-

ever, they cannot describe within-subject effects, in contrast to random effect

models. Also, they cannot describe how the probabilities of a positive response

depend on the covariates, which is the basic concept of our modelling approach.

Interpretation of log-linear models is another difficulty. In addition, log-linear

models do specify the cell counts of the joint tables and share the same limita-

tion as the ML method; both deal with 2JT − 1 parameters per joint table. Due to

these difficulties, we do not consider log-linear models as useful for modelling of

repeated multiple response data.

Unconditionally, GLMM does impose a correlation structure on the compo-

nents of yi. However, these correlation parameters are non-negative. The larger

the diagonal elements of Σ are, the larger are these non-negative correlations.

This imposed model assumption might be severely violated for a given data set

due to negative correlations between observations and might lead to too small

estimates for Diag(Σ), an indication of model misspecification. If this occurs, the

parameter estimates β̂ might be inaccurate.

In our view, GEE is the preferable method. It is widely implemented in all

common statistical packages and a simple choice of the correlation structure as

exchangeable yields more efficient estimates than the GLM approach assuming

independence between all items. If one wishes to obtain even more efficient

estimates, we recommend implementing the GEE procedure with some of the

considered more sophisticated correlation structures, for instance autoregressive
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(time) and unstructured (items). If the data is grouped, then we also recommend

estimating the structure for different groups separately provided groupsizes are

reasonable large (> 10).

Regarding missing data (Subsection 6.4.4 on page 212), Little (1995) noted that

covariate-dependence should stand alone and not be thought as a special case of

MCAR, because usually MCAR stands for the missingness being not only inde-

pendent of the observed and unobserved responses, but of the whole data includ-

ing the covariates (Little and Rubin 1987). Hence, there might be a little confu-

sion about the meaning of MCAR. GEE works for the assumption of covariate-

dependence, hence, it is in our view the preferred method in regards to missing

data.



Chapter 7

Graphical Model-Checking

Techniques for the Proportional

Odds Model

7.1 Introduction

Ordered categorical variables occur in many applications. In this chapter, we

consider two examples. Table 7.1 shows the data given by Neter, Wasserman and

Kutner (1985, Chapter 9), where an agronomist studied the effects of moisture

(X1, in inches) and temperature (X2, in 0C) on the yield of a new hybrid tomato

(Y ), which is divided into three levels: high (1) , medium (2), and low (3). Particu-

larly in the health sciences, ordinal scales are very common. Often there are clin-

ical reasons for recording certain continuous measurements in an ordinal scale.

One such example is the Normative Aging Study (NAS), where 682 men aged of

48 to 93 years reported their medical examination, such as fasting blood glucose

(FBG) and two markers of systemic inflammation, namely, white blood cell count

232
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(wbc) and blood levels of C-reactive protein (crp). FBG is is often recorded in three

categories, clinically defined as “normal level” (level 1), “impaired level” (level

2), and “diabetic level”(level 3).

Table 7.1: The yield of a new hybrid tomato

observation 1 2 3 4 5 6 7 8 9
X1 (Moist) 6 6 6 6 6 8 8 8 8
X2 (Temp) 20 21 22 23 24 20 21 22 23

Y 1 2 2 1 2 1 1 1 1

observation 10 11 12 13 14 15 16 17 18
X1 (Moist) 8 10 10 10 10 10 12 12 12
X2 (Temp) 24 20 21 22 23 24 20 21 22

Y 2 1 1 1 2 2 2 2 2

observation 19 20 21 22 23 24 25
X1 (Moist) 12 12 14 14 14 14 14
X2 (Temp) 23 24 20 21 22 23 24

Y 2 2 3 3 3 3 3

Effects of treatment or any other covariates like age, ethnicity on such ordinal

responses can be studied through the multivariate GLM methodology. Let Y be

J-category ordinal response variable and x be a column vector of linear predic-

tors. The proportional odds model

logit[P (Y ≤ j | x)] = αj − xT γ, j = 1, ..., J − 1, (7.1)

which uses logits of cumulative probabilities, is currently the most popular model.

Model (7.1) implies that the cumulative odds ratio referring to two sets of linear

predictors is constant for all categories j. It also does not depend on the scores

assigned, a major advantage when compared to other existing ordinal models

(Agresti 2002, Chapter 7), so different studies assigning different scores still yield

similar conclusions.
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Testing the adequacy of the proportional odds model can be done in several

ways. As we pointed out in the introduction (Section 1.4 on page 32), many meth-

ods fit the partial proportional odds model

logit[P (Y ≤ j | x)] = αj − xT γj, j = 1, ..., J − 1,

and test whether the c−1 effect parameters γj are equal, for example Peterson and

Harrell (1990) and Brant (1990) propose Wald and score tests for testing γ1 = · · · =

γJ−1. Another method was proposed by Lipsitz et al. (1996), who generalised

the popular Hosmer–Lemeshow statistic, originally introduced by Hosmer and

Lemeshow (2000) for checking the adequacy of a logistic regression model, to the

situation of ordinal response models. Toledano and Gatsonis (1996) applied a

receiver operating characteristic (ROC) curve which plots sensitivity against 1 -

specificity for all possible collapsings of the J categories.

All of the above methods check the overall adequacy of the proportional odds

model. They do not give a close view of model mis-specification for the functional

form of specific covariates.

In standard linear regression models, plotting residuals versus an explanatory

variable X is often viewed as a diagnostic tool to examine model mis-specification

in X . The residuals for a binary logistic model are typically defined as the differ-

ence between observed response, and the estimated probability of the response,

conditional on the covariates. The plot of the residuals versus X is hard to inter-

pret in such cases.

Su and Wei (1991) considered a cumulative residual process assessing only the

overall adequacy of a GLM. Lin et al. (2002) extended their idea and presented

graphical methods for assessing the adequacy of the functional form of one or
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more covariates, the functional form of the linear predictor and the overall ade-

quacy of the model by considering similar cumulative residual processes. Their

methods are based on the GEE methodology, which includes GLM and multi-

variate GLM as special cases, and allow quite simple and easy interpretation of

diagnostical plots showing the cumulative residual processes. Recently, Arbogast

and Lin (2005) also proposed such cumulative residual processes for case-control

studies using logistic regression.

The current chapter generalises their methods of checking model mis-specifi-

cation in the context of the proportional odds model for J > 2 using two different

routes.

One approach considers the proportional odds model as J − 1 logistic regres-

sion models, where the response categories are collapsed into the binary outcome

(≤ j, > j), j = 1, . . . , J −1. The cumulative sums of residuals have the same form

as the ones given by Arbogast and Lin (2005) for each of the collapsed logistic

models. In the second approach, the proportional odds model (7.1) is viewed

as a member of the class of multivariate GLM, where the response variable is a

vector of indicator responses yi = (yi1, yi2, . . . , yi,J−1)
T , where yij = 1 if subject i

falls in category j and is 0 otherwise. Consequently, the residual, the difference

between the observed value of the response and the predicted probability of the

response for the ith subject, is a (J − 1) × 1 vector. We consider a multivariate

cumulative residual process consisting of multivariate residuals to assess model

mis-specification, that converges to a multivariate Gaussian process. We can also

apply the univariate residual processes proposed by Lin et al. (2002) to the vector

responses yi. This process is identical to the sum over the components of our

multivariate cumulative residual process.

The remainder of the chapter is organised as follows. In Sections 7.2 and 7.3,
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we introduce the two new approaches, the binary and multivariate, respectively.

In Section 7.4 we conduct a simulation study investigating the relative perfor-

mance of the proposed methods. Section 7.5 illustrates the methods on the two

examples: (1) The agronomist study (Neter et al. 1985, chapter 9) measuring the

yield of a new hybrid tomato with effects moisture and temperature (see Table

7.1), and (2) the recent dataset from the Normative Aging Study (Bell, Rose and

Damon 1966) which studies the effect of the white blood cell count (wbc) and the

C-reactive protein (crp) on fasting blood glucose (FBG) measurement. The last

section finishes with some concluding remarks also discussing the applicability

of multiple response data. We published these sections in a very similar form

(Liu et al. 2008). However, the article does not contain such detailed proofs and

also does not illustrate the methods in the agronomist study. The PhD candidate’s

work of the paper was to find proofs for the proposed new multivariate methods,

to conduct simulation studies to compare methods, to apply these methods to the

examples, creating graphics, and write part of the text.

7.2 Binary Approach

Now we consider the first approach considering the proportional odds model as

J − 1 logistic regression models. Let yi = (yi1, yi2, . . . , yi,J−1)
T be the response for

subject i, where i = 1, . . . , n. If the subject responds as level j, then yij = 1 and

yih = 0 for all h 6= j = 1, . . . , J − 1. If the response is at baseline level J , then

yi = (0, 0, . . . , 0)T .

We first define the collapsed responses as y∗
ij =

∑j
h=1 yih, where j = 1, . . . , J −

1. That is, y∗
ij is a binary response variable having values 1, or 0. It can be con-

sidered as a binary outcome when we collapse the response categories into (≤ j,
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> j), j = 1, . . . , J − 1. If the response category is ≤ j, then y∗
ij = 1. Otherwise,

y∗
ij = 0. For the jth collapsing, the residual r∗ij is defined as

r∗ij = y∗
ij − P (Y ≤ j | xi), (7.2)

where we assume xi is a column vector of predictors for the ith subject and

P (Y ≤ j | xi) satisfies the proportional odds model (7.1), which is simply a

logistic regression model for a fixed j of the form log(π∗
ij/(1 − π∗

ij)) = zT
ijβj with

zij =
[
1 , xT

i

]T
and βT

j = (αj , γ
T ). Therefore, this approach is equivalent to the

method used for the logistic regression model given by Arbogast and Lin (2005)

for each specific collapsing. Consider the following stochastic process

W
(j)
k (t; β̂j) = n−1/2

n∑

i=1

r̂∗ij1(xik ≤ t), (7.3)

where xik is the kth component of xi. 1(·) is the indicator function, which equals

one if the expression in brackets is true, otherwise it is zero. The form W
(j)
k (t; β̂j)

uses a cumulative sum of the residuals r̂∗ij over the values of xik. Following Arbo-

gast and Lin’s argument, under the null hypothesis H0 that model (7.1) is correct,

W
(j)
k (t; β̂j) converges weakly to a zero-mean Gaussian process. The distribution

of the Gaussian process can be approximated by that of

Ŵ
(j)
k (t; β̂j) = n−1/2

n∑

i=1

{1(xik ≤ t) + η̂T (t, β̂j)
[
n−1I(β̂j)

]−1

zij

}
Ni r̂

∗
ij , (7.4)

where

η̂(t, β̂j) = n−1/2∂W
(j)
k (t; βj)/∂βj

= −n−1
n∑

i=1

P̂ (Y ≤ j | xi)
[
1 − P̂ (Y ≤ j | xi)

] 1(xik ≤ t)zij,
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and where I(β̂j) is the information matrix, and {Ni, i = 1, . . . , n} are indepen-

dent standard normal random variables. The proof of this result was given in

Arbogast and Lin (2005).

Now we can plot the observed cumulative residuals along with a large num-

ber of simulated realisations based on the Gaussian process (7.4) and compare

their pattern to detect some model mis-specification. Relatively large observed

cumulative residuals indicate a violation of the model. Arbogast and Lin (2005)

used the Kolmogorov-type supremum statistic GWk
:= supt∈R

|Wk(t; β̂j)|, where

R denotes the real line and Wk stands for W
(j)
k , j = 1, . . . , J − 1 in our case.

Let gWk
denote the observed value of the supremum statistic GWk

. We can-

not compute the p-value Pr(GWk
≥ gWk

) of the test directly, but Pr(GWk
≥ gWk

)

can be approximated by Pr(G
cWk

≥ gWk
), where G

cWk
= supt∈R

|Ŵk(t; β̂j)|. Then

Pr(G
cWk

≥ gWk
) is estimated by generating a large number (≥ 1000) of realisations

Ŵk(t; β̂j). That is, the p-value of the test is obtained by computing the proportion

of the simulated realisations greater than the largest value of |W (j)
k (t; β̂j)| over

t, because the extreme values of W
(j)
k (t; β̂j) would suggest that functional mis-

specification exists for covariate xik. Each collapsed response results in a single

plot and a single p-value. In total, there are J − 1 plots denoted by B1, . . ., BJ−1.

One might use the Bonferroni method to adjust for the significance level while

combining inference from all these plots, so that the overall Type I error rate is

less than or equal to the sum of the individual error rates for all J − 1 plots. The

Bonferroni adjusted significance level is thus the significance level divided by

J − 1. Later, we refer to it as Bonf(B).

Our main focus is on the mis-specification of the functional form of a covari-

ate. Arbogast and Lin (2005) also provided the residual processes W
(j)
o to assess

the overall adequacy of the model and W
(j)
p to assess the adequacy of the link
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function. The processes have the same form as (7.3) and (7.4) only replacing in-

dicator function 1(xik ≤ t) by 1(zT
ijβ̂j ≤ t) for W

(j)
p and by 1(zij ≤ t) for W

(j)
o ,

where zij ≤ t is true if zik ≤ tk for all components zijk of zij.

7.3 Multivariate Approach

In this section, we propose the multivariate approach based on the multivariate

residuals. First, we introduce generalised estimating equations (GEE) and the

results for another univariate approach by Lin et al. (2002) formulated in Theo-

rem 7.3.2. Then, we introduce the new multivariate approach and present results

in Theorem 7.3.3. In the subsection thereafter, we apply the several proposed

processes based on the multivariate approach for the proportional odds model,

which can also be expressed as a multivariate generalised linear model (MGLM),

a subclass of GEE. Finally, we make some comments about efficient implementa-

tion of the processes.

7.3.1 Generalised Equation Equations

Lin et al. (2002) proposed graphical diagnostic methods for generalised estima-

tion equations (GEE), which were introduced by Liang and Zeger (1986). We use

the same notations as above, but we use the more general setting that the length

of observations may differ. Let yij be the (not necessarily ordinal) response of the

ith subject (i = 1, . . . , n) at the jth occasion (j = 1, . . . , Ji) with yi = (yi1, . . . , yiJi
)T .

Similarly define the mean µi and the residuals ri = yi − µi. Let xij be the covari-

ates for the jth occasion of ith subject and let J = max(J1, . . . , Jn) be the max-

imal cluster length. We assume the marginal mean Eyij = µij depends on the



CHAPTER 7. GRAPHICAL DIAGNOSTICAL METHODS 240

p-dimensional column vector zij by

gj(µij) = zT
ijβj, (7.5)

with unknown parameter vector βj = (βj1, . . . , βjpj
)T of length pj. Suppose zij ,

the ijth contribution to design matrix Z, depends on the covariates xij . The model

can also be expressed in the more compact form

g(µi) = Ziβ. (7.6)

For more details of GEE, we refer to Section 5.2.2 on page 150.

Remark 7.3.1. Lin et al. (2002) assumed the model g(µij) = xT
ijβj. However, for

GEE the model function g does not need to be identical for all j and may be

replaced by gj. Also, the design matrix may include some entries not being iden-

tical to a covariate, but may only depend on them, hence we replace xij by zij to

account for a more general setting.

Empirical Processes

Let us define the empirical processes

Wo(t;b, β) = n−1/2
n∑

i=1

Ji∑

j=1

1(t − b < zij ≤ t)rij(β), (7.7)

Ŵo(t;b, β)

= n−1/2

n∑

i=1

[
Ji∑

j=1

1(t − b < zij ≤ t)rij(β) + ηT
Wo

(t, β)Ω(β)−1Ui(β)

]
Ni (7.8)
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with

ηWo
(t;b, β) = n−1/2∂Wo/∂β = −n−1

n∑

i=1

Ji∑

j=1

1(t − b < zij ≤ t)Mij(β), (7.9)

where Mij(= ∂µT
ij/∂β) is the jth column of Mi(= ∂µT

i /∂β) and Ω = n−1
∑n

i=1 Mi

V−1
i MT

i = n−1J1. The quantities Ui, Mi, Vi and J1 were defined in Section 5.2.2

on page 150.

Vector b is constant and 1(t − b < zij ≤ t) reduces to 1(zij ≤ t) for b =

(∞, . . . ,∞). Define the processes Wk(t; b, β) := Wo(t;b, β) and Ŵk(t; b, β) :=

Ŵo(t;b, β) with t = (t1, . . . , tp) and b = (b1, . . . , bp) where tl = ∞ and tl−bl = −∞

for l 6= k and tl = t and bl = b for l = k.

Let the processes Wp(t;b, β) and Ŵp(t;b, β) be similarly defined as Wo(t;b, β)

and Ŵo(t;b, β̂) only replacing 1(t − b < zij ≤ t) by 1(t − b < zijβj ≤ t), where

it occurs in the definition of (7.7), (7.8) and (7.9). The Kolmogorov-type supre-

mum statistics are defined as for the binary approach: GWo = supt∈Rp |Wo(t;b, β̂)|,

GWp = supt∈R
|Wp(t;b, β̂)| and GWk

= supt∈R
|Wk(t; b, β̂)|.

Theorem 7.3.2 (Lin et al. 2002). Under H0, that model (7.5) holds, the processes of any

of the following pairs

1. Wo(t;b, β̂) and Ŵo(t;b, β̂)

2. Wp(t; b, β̂) and Ŵp(t; b, β̂)

3. Wk(t; b, β̂) and Ŵk(t; b, β̂),

are asymptotically equivalent and converge weakly to the same zero-mean Gaussian pro-

cess. The Kolmogorov-type supremum statistic

(i) GWo is consistent against any departures from model (7.5)
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(ii) GWp is consistent against mis-specification of the link function g

(iii) GWk
is consistent against mis-specification of the functional form of zijk.

Let Ho
1, Hp

1 and Hk
1 denote the alternatives of the null hypothesis H0, under

which the tests GWo, GWp and GWk
are consistent against, see (i), (ii) and (iii) of

Theorem 7.3.2. The processes Wo, Wp and Wk fluctuate around zero as t (respec-

tively t) varies. Large values of W (using any subscript p, o or k) indicate a viola-

tion of H0 and that the alternative H1 might be true. As for the binary approach,

we can also plot the observed cumulative residuals W along with a large number

of simulated realisations Ŵ and see how large the observed cumulative residuals

W are relative to the realisations of Ŵ and conclude in favour of either H0 or H1.

Extension to Multivariate Residuals and Processes

Although process W refers to a multivariate model, the residual process sums

over the components of the multivariate residual to obtain a univariate and not

multivariate cumulative residual process. In some instances, it might be wiser

to consider a multivariate cumulative residual process. Now we extend the uni-

variate processes to such multivariate processes and formulate results in Theorem

7.3.3. Let us define

Wo(t;b, β) = n−1/2
n∑

i=1

I(t− b < Zi ≤ t)ri(β) (7.10)

Ŵo(t;b, β) = n−1/2
n∑

i=1

[I(t− b < Zi ≤ t)ri(β) + ηT
Wo

(t, β)Ω−1(β)Ui(β)
]
Ni

(7.11)
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with

ηWo
(t;b, β) = n−1/2∂Wo/∂β = −n−1

n∑

i=1

MiI(t− b < Zi ≤ t) (7.12)

and I(t−b < Zi ≤ t) := Diag{1(t−b < zi1 ≤ t), . . . ,1(t−b < ziJi
≤ t)}. Define

processes Wp(t;b, β), Ŵp(t;b, β), Wk(t; b, β) and Ŵk(t; b, β) similarly to before

with subscripts p and k. Let GWo = supt∈Rp ‖Wo(t;b, β̂)‖ where ‖ · ‖ denotes any

norm on R
J , similarly GWp and GWk

. Such a norm can be seen as a projection to

the real plane. Generally, we can consider a continuous function h(·)

h : R
J−1 → R ,

where R
J−1 denotes the (J − 1)−dimensional real plane. Applying function h to

the vector of stochastic processes Wo yields an univariate process.

The following theorem can be seen as an extension of Theorem 7.3.2:

Theorem 7.3.3. Under H0, the processes of any of the following pairs

1. Wo(t;b, β̂) and Ŵo(t;b, β̂)

2. Wp(t; b, β̂) and Ŵp(t; b, β̂)

3. Wk(t; b, β̂) and Ŵk(t; b, β̂),

are asymptotically equivalent and converge weakly to the same multivariate zero-mean

Gaussian process. The tests GWo , GWp and GWk
are consistent against the same alter-

natives Ho
1, Hp

1 and Hk
1 (see Theorem 7.3.2). h(W) and h(Ŵ) still converge weakly to

the same process (not necessarily Gaussian) provided the function h with h(W) ⊂ R is

almost surely continuous using any of the subscripts o, g and k. If additionally h(0) = 0

and from |c| < |d| it follows that |h(c)| < |h(d)| (monotonicity condition), the tests
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Gh(Wo), Gh(Wp), and Gh(Wk) are still consistent under H1 against the aforementioned

alternatives .

Remark 7.3.4. If from c < d it follows that h(c) < h(d), then h is called strictly

monotone or order preserving. For multivariate comparisons ”<“ stands for the

product order: (c1, . . . , cK) = c < d = (d1, . . . , dK) iff c1 < d1, . . . , cK < dK ,

similarly |c| stands for (|c1|, . . . , |cK |).

Unlike the binary approach, we cannot plot the observed multivariate residu-

als directly, because W(t; β̂) is a vector. According to Theorem 7.3.3, the processes

h(W) and h(Ŵ) are still consistent under the alternative H1, if function h fulfils

the monotonicity condition.

There are several options available for the choice of function h(·). This chapter

suggests the following simple choices all fullfiling the monotonicity condition

sum(W) := h(W) =
∑J−1

j=1 (W )j

max(W) := h(W) = max|W|

prod(W) := h(W) =
∏J−1

j=1 (W )j

where (W )j is the jth component of the vector W.

In addition, the p-value of the test can be calculated in the same way as in

the binary approach using a Bonferroni adjustment. We plot the observed mul-

tivariate residuals r with the simulated realisations separated by rows to create

J − 1 plots, denoted by (W)1, . . ., (W)J−1. If the model is correct, the null hy-

pothesis is accepted for each of the plots. We can adjust the significance level so

that the overall Type I error rate is less than or equal to the sum of the individual

error rates for all J − 1 plots. It leads to another diagnostic method denoted by

Bonf(W).
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Proof of Theorem 7.3.3

Before we start with the proof of Theorem 7.3.3, we discuss the applicability of a

useful theorem (Theorem 7.3.5) and propose an alternative (Theorem 7.3.8) based

on Proposition 7.3.7, which is then used for proving Theorem 7.3.3.

Let Dm be the m-dimensional space of Cadlag functions, right-continuous

functions with an existing left limit, and Cm be the m-dimensional space of con-

tinuous functions, both defined on [0, 1].

Theorem 7.3.5 (Davidson 1994, p.491). Let Wn ∈ Dm be an m-vector of random

elements. Wn→dW, where P(W ∈ Cm) = 1, iff λTWn→dλ
TW for every fixed λ with

λT λ = 1.

We cannot directly apply this theorem, an extension of the Cramer-Wold the-

orem for stochastic processes, because not all entries of the design matrix are

purely continuous and in [0, 1]. However, both are only technical matters, because

we can assume without loss of generality that the entries of the design matrix Z

are in [0, 1], and we can partition Z into Z1 and Z2, the discrete and continuous en-

tries of Z. The processes can be re-written as a double sum over all observations

and over all possible outcomes generated from Z1 following a similar approach

to Su and Wei (1991). We now cite a proposition and derive a similar theorem to

Theorem 7.3.5.

We introduce some new notations that are only used to show the theorem that

follows, which is needed to prove Theorem 7.3.3. Let {Xn,i : i ≤ n, n ≥ 1} be a

triangular array of W-valued random variables, where W ⊂ R
J . Also let T be a

pseudometric space with pseudometric ρ. Let M = {f(·, τ) : τ ∈ T } be a class

of functions (∈ R
s) defined on W and indexed by T . Let us define the empirical

process Wn = n−1/2
∑n

i=1 (f(Xn,i) − Ef(Xn,i)).
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Definition 7.3.6. {Wn, n ≥ 1} is stochastically equicontinuous if ∀ǫ > 0 and ∀η >

0, ∃δ > 0 such that

lim
n→∞

P

[
sup

τ1,τ2∈T :ρ(τ1,τ2)<δ

‖Wn(τ1) − Wn(τ2)‖2 > η

]
< ǫ (7.13)

where ‖ · ‖2 denotes the Euclidian norm.

Proposition 7.3.7 (Andrews 1994, p.2251). If (i) (T , τ) is a totally bounded pseudo-

metric space, (ii) finite dimensional convergence holds: ∀ finite subsets (τ1, . . . , τJ) of T ,

(Wn(τ1)
T , . . . , Wn(τJ)T )T converges in distribution, and (iii) {Wn, n ≥ 1} is stochas-

tically equicontinuous, then there exists a B(T )-valued (the class of bounded functions

on T ) stochastic process W(·) whose sample paths are uniformly ρ continuous with prob-

ability one, such that Wn(·) →d W(·). Conversely, if Wn(·) →d W(·) and (i) holds,

then (ii) and (iii) hold.

Now we formulate a similar theorem to Theorem 7.3.5:

Theorem 7.3.8. Let (T , τ) be a totally bounded pseudometric space. Wn→dW, iff

λTWn→dλ
TW for every fixed λ with λT λ = ‖λ‖2 = 1, where W is a stochastic

process whose sample paths are uniformly ρ continuous with probability one.

Proof of Theorem 7.3.8. ”⇒“: Let Wn→dW. We apply the continuous mapping

theorem to the continuous functional h(x) = λTx and hence λTWn →dλ
TW. We

could also argue as follows:

‖λTWn(τ1) − λTWn(τ2)‖2 = |λTWn(τ1) − λTWn(τ2)|

=|λT (Wn(τ1) −Wn(τ2))| ≤ ‖λ‖2‖Wn(τ1) − Wn(τ2)‖2

=‖Wn(τ1) − Wn(τ2)‖2
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and therefore

lim
n→∞

P
[
sup ‖λTWn(τ1) − λTWn(τ2)‖2 > η

]

≤ lim
n→∞

P [sup ‖Wn(τ1) −Wn(τ2)‖2 > η] < ǫ,

which means {λTWn, n ≥ 1} is equicontinuous and hence by Proposition 7.3.7:

λTWn→dλ
TW.

”⇐“: Now let λTWn→dλ
TW. By Proposition 7.3.7 {λTWn, n ≥ 1} is equicontin-

uous. We want to show Wn→dW and apply Proposition 7.3.7. From the Cramer-

Wold theorem [if for fixed λ and τ the random variable λTW(τ) converges in dis-

tribution to λT W(τ), then W(τ) converges in distribution to W(τ)] follows (ii).

It remains to show (iii), the equicontinuity of {Wn, n ≥ 1}. Let ei be the ith unit

vector. For an arbitrary vector a, we can write a =
∑q

i=1 aiei and ‖aiei‖2 = ‖eT
i a‖2.

By replacing λ by ei, ǫ by ǫ/J and η by η/J , because λ, ǫ and η are arbitrary in the

definition of equicontinuity, we set lim
n→∞

P
[
sup ‖eT

i Wn(τ1) − eT
i Wn(τ2)‖ > η/J

]
≤

ǫ/J . Also let Wn = (Wn,1, . . . , Wn,J)T .

Now we have

‖Wn(τ1) − Wn(τ2)‖2 = ‖
J∑

i=1

Wn,i(τ1)ei − Wn,i(τ2)ei‖2

≤
J∑

i=1

‖Wn,i(τ1)ei − Wn,i(τ2)ei‖2 =

J∑

i=1

‖(Wn,i(τ1) − Wn,i(τ2))ei‖2

=
J∑

i=1

‖eT
i (Wn(τ1) − Wn(τ2))‖2 =

J∑

i=1

‖eT
i Wn(τ1) − eT

i Wn(τ2)‖2.

Hence

lim
n→∞

P [sup ‖Wn(τ1) − Wn(τ2)‖2 > η]
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≤ lim
n→∞

P

[
sup

J∑

i=1

‖eT
i Wn(τ1) − eT

i Wn(τ2)‖2 > η

]

≤ lim
n→∞

P

[
J⋃

i=1

{sup ‖eT
i Wn(τ1) − eT

i Wn(τ2)‖2 > η/J}
]

≤
J∑

i=1

lim
n→∞

P
[
sup ‖eT

i Wn(τ1) − eT
i Wn(τ2)‖2 > η/J

]

<

J∑

i=1

ǫ/J = ǫ.

The second inequality follows from {sup ‖
∑J

i=1 ai‖2 > η} ⊂
⋃J

i=1{sup ‖ai‖2 >

η/J}. Thus, {Wn, n ≥ 1} is equicontinuous and from Proposition 7.3.7 follows

Wn→dW. We can also show the equicontinuity more easily. Andrews (1994, p.

2267) noted that equicontinuity for {Wn, n ≥ 1} follows from univariate equicon-

tinuity (for Wn,i). The components of {Wn, n ≥ 1} are equicontinuous, because

{λTWn, n ≥ 1} is equicontinuous and by setting λ := ej the process λTWn equals

(Wn)j.

Proof of Theorem 7.3.3. Equivalence of h(W) and h(Ŵ):

We show that Wo(t;b, β̂) and Ŵo(t;b, β̂) (or more shortly simply Wo and Ŵo)

converge to a multivariate zero-mean Gaussian process. Wk and Ŵk are special

cases of Wo and Ŵo and do not require a separate proof. Wp and Ŵp can be

proved similarly only replacing arguments of the indicator functions. Let λ =

(λ1, . . . , λJ)T be arbitrary but fixed with ‖λ‖2 = 1 and define λi = (λ1, . . . , λJi
)T ,

Ji ≤ J . Let yi be the random response variables, as defined previously. We

define another random variable ȳ by ȳi = Diag(λi)yi respectively ȳij = λjyij (j =

1, . . . , Ji) and apply residual process Wo to ȳ. We now apply process Wo to ȳ

and process Wo to y, and to avoid further confusion the superscript will show to

which random variable the quantities refer to, for instance rȳ refers to ȳ and ry to
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y.

Note M
ȳ
i = M

y
i Diag(λi), r

ȳ
i = Diag(λi)r

y
i and A

ȳ
i = Diag(λi)Ai

yDiag(λi). Hence

V
ȳ
i = Diag(λi)Vi

yDiag(λi). It follows that

U
ȳ
i = M

ȳ
i (Vi

ȳ)−1r
ȳ
i

= M
y
i Diag(λi)Diag(λi)

−1(Vi
y)−1Diag(λi)

−1Diag(λi)r
y
i

= M
y
i (Vi

y)ry
i = U

y
i

and

Ωȳ =
n∑

i=1

M
ȳ
i (Vi

ȳ)−1(Mȳ
i )T

=

n∑

i=1

M
y
i Diag(λi)Diag(λi)

−1(Vi
y)−1Diag(λi)

−1Diag(λi)(M
ȳ
i )T

=
n∑

i=1

M
y
i (Vi

y)−1(My
i )T = Ωy.

This is expected, because different scales should not lead to different GEE esti-

mates β̂, that is Ui and Ω are scale invariant. Also

η
ȳ
Wo

= −n−1
n∑

i=1

Ji∑

j=1

1(t − b < zij ≤ t)Mȳ
ij

= −n−1

n∑

i=1

Ji∑

j=1

1(t − b < zij ≤ t)λjM
y
ij

= −n−1
n∑

i=1

M
y
i I(t − b < zij ≤ t)λi

=

{
−n−1

n∑

i=1

I(t− b < zij ≤ t)My
i

}
λ = η

y
Wo

λ.
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For Wo we obtain:

W ȳ
o = n−1/2

n∑

i=1

Ji∑

j=1

1(t − b < zij ≤ t)rȳ
ij

= n−1/2

n∑

i=1

Ji∑

j=1

1(t − b < zij ≤ t)λjr
y
ij

= n−1/2
n∑

i=1

λT
i I(t − b < zij ≤ t)ry

i

= λT

{
n−1/2

n∑

i=1

I(t − b < zij ≤ t)ry
i

}
= λTWy

o .

Similarly:

Ŵ ȳ
0 = n−1/2

n∑

i=1

[
Ji∑

j=1

I(t − b < zij ≤ t)r̂ȳ
ij + (ηȳ

Wo
)T (Ω̃

ȳ
)−1Ũ

ȳ
i

]
Ni

= n−1/2
n∑

i=1

[
Ji∑

j=1

I(t − b < zij ≤ t)λj r̂
y
ij + (ηy

Wo
λ)T (Ω̃

y
)−1Ũ

y
i

]
Ni

= n−1/2

n∑

i=1

[
λT I(t− b < zij ≤ t)r̂y

ij + λT
i (ηy

Wo
)T (Ω̃

y
)−1Ũ

y
i

]
Ni

= λT

{
n−1/2

n∑

i=1

[
I(t − b < zij ≤ t)r̂y

ij + (ηy
Wo

)T (Ω̃
y
)−1Ũ

y
i

]
Ni

}

= λTŴ
y
0 .

The processes W ȳ
o and Ŵ ȳ

o are asymptotically equivalent by Theorem 7.3.2. We

just showed that

W ȳ
o ≡ λTWy

o and Ŵ ȳ
o = λTŴy

o , (7.14)

hence λTWo and λTŴo are also asymptotically equivalent. It follows now from

Theorem 7.3.8 that Wo and Ŵo are also asymptotically equivalent. Wk is a sub-

case of Wo and it follows that Wk and Ŵk are asymptotically equivalent. In a

similar manner, this can also be shown for Wp and Ŵp. The asymptotic equiva-
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lence of h(W) and h(Ŵ) follows from the continuous mapping theorem.

Consistency of the supremum tests:

The consistency of similar supremum tests was shown/mentioned in several pa-

pers (Su and Wei 1991, Lin et al. 1993, Lin et al. 2002, Pan and Lin 2005, Arbogast

and Lin 2005). It was shown or mentioned that under certain sufficient condi-

tions n−1/2Wo(t0; β̂) →p J 6= 0 for at least some t0, hence, n−1/2GW0 converges to

a nonzero constant.

We want to show now the consistency of Gh(Wo). First, we show that n−1/2(Wo)j

converges to a non-zero constant Jj . As before we use (7.14) and set λ := ej ,

where ej is the jth unit vector. We have now Wo ≡ eT
j Wo = (Wo)j. From the

above, we can conclude n−1/2Wo →p Jj 6= 0, or equivalently n−1/2(Wo)j →p Jj 6=

0, that is the consistency of GWo .

To show that the test Gh(Wo) is consistent, it is sufficient to show n−1/2 h(Wo)

converges to a nonzero vector for some t0 (then n−1/2Gh(Wo) converges to a nonzero

constant). We just established n−1/2Wo →p c with c being nonzero in all compo-

nents. Thus, n−1/2h(Wo) →p h(c). We have 0 < |c| and it follows from the

monotonicity condition 0 = |h(0)| < |h(c)|, which was to be shown.

Similarly we proceed with Wp and Wg.

Remark 7.3.9. J = EI and I are asymptotically equivalent. For a MGLM, we can

also use I instead of J in the definition of Ω in (7.8). The resulting cumulative

residual processes are still asymptotically equivalent. Arbogast and Lin (2005),

who considered the cumulative residual processes for logistic regression apply-

ing ML methodology, used the observed information matrix I in the definition of

Ŵ .
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7.3.2 Residual Processes for the Proportional Odds Model

We now express the proportional odds model (7.1) as a multivariate generalised

linear model (MGLM), see Subsection 5.2.2 on page 155 for details. The probabil-

ity πij = P (Y = j | xi) ≡ µij can be computed from the cumulative probabilities

π∗
ij = πi1 + πi2 + · · · + πij = P (Y ≤ j | xi) by πij = π∗

ij − π∗
i,j−1 for j > 1 and

πi1 = π∗
i1. We have Σi = Diag(πi) − πiπ

T
i and the proportional odds model can

be re-expressed as

gj(µi) = gj(πi) = log

(
π∗

ij

1 − π∗
ij

)
= αj + xT

i γ, j = 1, ..., J − 1

or in more complex form of a MGLM

g(µi) = Ziβ

with β = (α1, . . . , αJ−1, γ
T )T , g = (g1, . . . , gJ−1)

T , and

Zi =




1 xT
i

1 xT
i

. . .
...

1 xT
i




=
(
Iq, 1q×1 ⊗ xT

i

)
, (7.15)

where Iq ∈ R
q×q is the identity matrix and 1a×b ∈ R

a×b is the matrix containing

only 1’s. See also Fahrmeir and Tutz (2001, pp. 81-98) for cumulative models and

expressing them as MGLM. For completeness, we give compact formulae for the

first and second derivatives of the log-likelihood for the proportional odds model,
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which are needed to apply the previously introduced stochastic processes. Note

∂πT
i

∂π∗
i

=




1 −1

1
. . .

. . . −1

1




∈ R
q×q ∂(π∗

i )
T

∂πi
=




1 1 . . . 1

1 . . . 1

. . .
...

1




∈ R
q×q.

Also

Mi =
∂µT

i

∂β
= ZT

i Diag {π∗
i (1q×1 − π∗

i )}
∂πT

i

∂π∗
i

and

I = − ∂l2

∂β∂βT

=UUT −
n∑

i=1

ZT
i Diag[Diag{(1q×1 − 2π∗

i )π
∗
i (1q×1 − π∗

i )}
∂πT

i

∂π∗
i

Σ−1ri]Zi

with ri = yi − πi.

Let us now focus on the process Wk, which only checks the functional form of

the kth covariate. We use Ui = ∂li/∂β ≡ ∂µi/∂β and Ω = n−1I for the computa-

tion of the processes similarly defined as (7.10) and (7.11) and let these processes

be denoted by Wm
k and Ŵm

k , where m stands for the multinomial residuals ri.

Instead of using the multivariate residuals ri, we can also use the multivariate

cumulative residuals r∗i defined by

r∗i = y∗
i − π∗

i ,

where r∗i = (r∗i1, r∗i2, . . . , r∗i(J−1))
T , y∗

i = (y∗
i1, y∗

i2, . . . , y∗
i(J−1))

T , and π∗
i = (P (Y ≤

1|xi), P (Y ≤ 2|xi), . . . , P (Y ≤ J − 1|xi))
T . Section 7.2 defined the notations r∗ij
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and y∗
ij. We consider the multivariate stochastic process

W∗
k(t; β̂) = n−1/2

n∑

i=1

1(xik ≤ t)r̂∗i .

Similarly, if the model holds, W∗
k(t; β̂) converges weakly to a vector of zero-mean

Gaussian processes, because y∗ can also be considered as observations and the

GEE methodology and Theorem 7.3.3 applies. The distribution of the processes

can be approximated by Ŵ∗
k(t; β̂), which has the same form as Ŵm

k (t; β̂) but re-

placing r̂i with r̂∗i and in η replacing π̂i with π̂∗
i . Table 7.2 gives a summary of all

graphical diagnostic methods for the two approaches for the proportional odds

model.

Table 7.2: Notations used for graphical diagnostic methods

Notation Approach Description

Bj Binary Collapse the response categories into (≤ j, > j)
Bonf(B) Binary Bonferroni: compare the p-value with α/(J − 1)
(Wm)j Mult (r) Using the jth component of residual r
Bonf(Wm) Mult (r) Bonferroni: compare the p-value with α/(J − 1)

sum(Wm) Mult (r) Using function sum(Wm) :=
∑J−1

j=1 (W m)j
prod(Wm) Mult (r) Using function prod(Wm) :=

∏J−1
j=1 (W m)j

max(Wm) Mult (r) Using function max(Wm) := max|Wm|
(W∗)j Mult (r∗) Using the jth component of residual r∗

Bonf(W∗) Mult (r∗) Bonferroni: compare the p-value with α/(J − 1)

sum(W∗) Mult (r∗) Using function sum(W∗) :=
∑J−1

j=1 (W ∗)j
prod(W∗) Mult (r∗) Using function prod(W∗) :=

∏J−1
j=1 (W ∗)j

max(W∗) Mult (r∗) Using function max(W∗) := max|W∗|

Mult ... Multivariate

Remark 7.3.10. Let us extend the dimension of the observations by 1 to yi =

(yi1, . . . , yiJ)T with yiJ = 1 if response Yi = J . In the proof of Theorem 7.3.3,

we consider the univariate process λTW. This univariate process can be thought

of as a process of observations λTyi. First, we note from the same proof it follows
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that the process W is linear in yi. Now we regard λ as a score vector, assigning a

score λj for each response j, for example equally spaced integer scores λj = j con-

sidered by Lipsitz et al. (1996). The process λTW is then identical to −sum(W∗).

Lipsitz et al. (1996) (j = 1) considered another option λj = 1 and sj′ = 0 for

j′ 6= j. Then λTW is identical to the jth component of W. They used the scores

to project the multivariate mean vector to a univariate mean, called the mean score

computed by λT µi for some reasonable choice of scores λ.

Because of the two mentioned equivalences, it is sufficient to consider W, W∗

and the above mentioned functions/projections. Also note, that (W∗)j = λT
j Wm

for λT
j = (1j , 0J−1−j). Hence, we can compute W∗ by the linear transformation

W∗ = ΛWm with matrix Λ containing such rows λT
j , similarly Ŵ∗.

7.3.3 Comments about the Computation of the Gaussian Pro-

cesses

Given the parameter estimates for the data, the computation of the Wk’s is rela-

tively easy. The vector of residuals r = (r1, . . . , rn)T is a by-product of the fitting

and the computation of the Wk’s only requires the computation of the so far un-

known indicator functions 1(xik ≤ t). We do not need to compute 1(xik ≤ t) for

infinite many t, but only for the number m ≤ n of different values t1, . . . , tm for

the kth covariate. We can store all these 1(xik ≤ t) in an n × m matrix I(xk). For

given r and I(xk), the computation of Wk requires simple matrix operations.

The computation of the Ŵk’s is much more laborious, because we need to

resample a large number (M ≥ 1000) of realisations of the Ŵk’s. As a by-product

from the fitting algorithm we obtain Ω, U = (U1,U2, . . . ,Un)T and M = (M1,M2,

. . . ,Mn)T .

From I(xk) and M we can compute η(t1), . . . , η(tm). In the definition of the
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Ŵk’s, which have the form
∑n

i=1[. . . ]iNi, the quantities in the bracket terms [. . . ]i

can be computed by matrix operations and can be stored in an n × (J − 1) × m

array B. Now we generate M times the n realisations N1, . . . , Nn from N(0, 1) and

then store them in the M × n matrix N. Finally, we can compute the Ŵk’s from

N and B by M matrix multiplications. Or we apply a tensor product to reduce

computation time further by avoiding the M matrix multiplications, because in

many computer languages, such as R or Matlab, the summation of products using

loops takes much longer than using matrix/tensor multiplication instead. Also

note that W∗
k = ΛWm

k and similarly Ŵ∗
k = ΛŴm

k , see Remark 7.3.10. In fact, for

the multivariate approach, we only need to compute Wm and the Ŵm’s. Given

these processes, all other processes can be relatively easily computed. We con-

clude, an efficient implementation of the cumulative residual processes and their

approximation is essential in yielding a fast computational routine.

7.4 Simulation Study

We proposed two approaches including 9 graphical diagnostic methods to detect

model inadequacy in the proportional odds model. To compare the performances

of these methods, we undertake a small-scale simulation study to investigate the

power under a fixed alternative H1 and the Type I error rate under H0. We inves-

tigate two forms of functional mis-specification in a single covariate x. We con-

sider discrete x in one scenario and continuous in the other. For each situation,

the empirical Type I error rate and powers are estimated based on the proportion

of rejected null hypotheses in 10,000 simulated datasets.
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Scenario 1:

Let J = 3. We consider the true model as follows:

logit[P (Y ≤ j | X)] = αj − γ1 X − γ2X
2, j = 1, 2. (7.16)

We first generate grouped categorical X observations with values ranging from

-5 to +5 with equal probability, representing a discrete uniform distribution. Con-

ditional on the X-values Y values are generated from model (7.16) by choosing

α1 = −2, α2 = −1, γ1 = +0.25, and γ2 = 0.0,−0.05,−0.1, and then simulating

multinomial random variables with three categories. We generate 110 observa-

tions in each dataset, rendering approximately 10 occurrences for each distinct

X-value on an average.

We try to fit a simple model with just the linear term to the simulated data

with X2 omitted, namely,

logit[P (Y ≤ j | X)] = αj − γ1 X, j = 1, 2. (7.17)

When γ2 = 0.0, the model is correctly specified and we can estimate the rejection

rate under this H0 and compare this estimate of Type I error rate with the sig-

nificance level (α), which was always set at 0.05. When γ2 = −0.05, or −0.1, we

evaluate the performance of the different graphical diagnostic methods by their

power to detect departures from the correct model. Table 7.3 summarises the re-

sults for this scenario in the first 3 columns. Among all the methods compared,

the naive binary collapsing approach exhibits the worst performance. It fails to

maintain the nominal Type I error level and the estimated Type I error rate is

twice the desired level of significance α (= 0.05). The multivariate approaches
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based on the residuals and the cumulative residuals produce better results. Both

of the multivariate residuals (r) and multivariate cumulative residuals (r∗) main-

tain the correct level of significance under a correctly specified model with γ2 = 0.

The power for the multivariate methods based on the functionals sum(Wm) and

sum (W∗) appears to be the best.

Table 7.3: Simulation results for scenarios 1 and 2 showing the power under H0

and H1 for various values of γ

The functional form of xγ for the true model
0.25X + γX2 γ cos(X)

Methods γ = 0.00 γ = −0.05 γ = −0.10 γ = 0.0 γ = −1.0 γ = −3.0
B1 0.148 0.435 0.934 0.168 0.393 0.981
B2 0.097 0.482 0.959 0.155 0.407 0.822
Bonf(B) 0.126 0.491 0.964 0.180 0.433 0.969
Bonf(Wm) 0.042 0.220 0.811 0.046 0.129 0.879
sum(Wm) 0.051 0.285 0.855 0.052 0.179 0.591
prod(Wm) 0.054 0.113 0.386 0.058 0.112 0.704
max(Wm) 0.035 0.102 0.543 0.056 0.086 0.836
Bonf(W∗) 0.043 0.292 0.895 0.049 0.191 0.906
sum(W∗) 0.048 0.357 0.947 0.049 0.344 0.974
prod(W∗) 0.047 0.340 0.941 0.049 0.270 0.958
max(W∗) 0.041 0.266 0.874 0.051 0.203 0.939
Wald-γ = 0 0.050 0.568 0.994 - - -
HL (G=5) 0.049 0.278 0.894 0.046 0.255 0.949

Scenario 2

The second scenario represents a situation where the cumulative logit probabili-

ties associated with the response are related in a non-linear manner with X , but

are linear in cos(X). The correct model is as follows

logit(Pr(Y ≤ j | X)) = αj − γ cos X, j = 1, 2, (7.18)
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where α1 = −1, α2 = 1, and γ = 0,−1,−3. We simulated X from a standard

normal distribution and conditional on X simulated Y from the multinomial dis-

tribution with probabilities defined using (7.18). Again we fit each simulated

dataset using the model (7.17) with a linear term of X . Table 7.3 summarises the

results in the last 3 columns. Similar to the first scenario, the binary collapsing

approach gives a overly liberal result that rejects the null hypothesis more often

than we expect and consequently has inflated power values. Among the methods

in the multivariate approach, the sum(W∗) has the best performance in terms of

maintaining Type I error and attaining higher power values.

A goodness-of-fit statistic as proposed in Lipsitz et al. (1996) based on the

mean score is also included in the simulation study for comparison purposes.

According to the percentiles of the predicted mean score, subjects are partitioned

into G regions as defined in Lipsitz et al. (1996). Given the partition of the data,

the following model is fitted

logit[Pr(Y ≤ j | x)] = αj − xγ +
G−1∑

g=1

1igδg (7.19)

where 1ig are group indicators with 1ig = 1 if λT π̂i is in region g and 1ig = 0

otherwise, for equally spaced integer scores λ = (λ1, . . . , λJ)T with λj = j, see

also Remark 7.3.10 on page 254. If model (7.17) is correct, then δ1 = δ2 = · · · =

δG−1 = 0 independently of the chosen regions and scores. We simply test H0 :

δ1 = δ2 = · · · = δG−1 = 0 and compute a likelihood-ratio (LR), Wald and a

score statistic. We refer to this statistic as Hosmer-Lemeshow (HL)-type statistic,

because the idea stems from the HL statistic developed for logistic regression as

extended to ordinal responses. The LR test, the Wald-test, and the score test in

this case are asymptotically equivalent and showed quite similar power values;
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hence, Table 7.3 lists only the result of the HL-type score tests.

For the first scenario, Table 7.3 also gives the Wald test on the null hypothesis

H0: γ2 = 0. If we do know that the correct model includes the X2 term, this

test is optimal as one would expect, but the Wald test is not applicable when the

true functional form is unknown. Thus in situation 2, we cannot formulate an

appropriate Wald test to compare the two models in terms of a single parameter.

Summary of Simulation Results

In general, the graphical diagnostic methods sum(W) and prod(W) have good

power properties. We do expect the graphical diagnostic methods to provide a

lower power compared with the Wald test when the true model contains the term

X2 as in Scenario 1. Unlike the Wald test, the graphical diagnostic methods do not

focus on any specific term. It checks model mis-specification for a wide range of

the mis-specification in a non-parametric manner (e.g. the functional form could

be anything like X2, log X , X3, cos X , etc). Arbogast and Lin (2005) also pointed

out that the Wald test cannot be used to check whether the chosen functional term

is satisfactory. Remarkably, some of the graphical diagnostic methods are very

comparable with the optimal Wald test in terms of power for Scenario 1, when

one is testing for the missing term in the true model, with a true model known.

For example, the sum(W∗) gives a power of 0.947 when the true coefficient of

X2 is 0.10. The Wald test gives a power of 0.994 in comparison. On the other

hand, the graphical methods of “Bonf”, “sum” and “prod” using the cumulative

residuals (r∗) in the multivariate approach have higher power than the overall

Hosmer-Lemeshow test in scenario 1. The methods with ‘sum’, and ‘prod’ using

the cumulative residuals (r∗) still give higher power than the overall HL test in

Scenario 2. The diagnostic based on sum(W∗) appears to the best choice based in
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our limited simulation settings.

7.5 Examples

In the following, we illustrate the methods of Sections 7.2 and 7.3 using the two

examples mentioned previously.

7.5.1 Yield of New Hybrid Tomato

To illustrate the methods, we first fit the proportional odds model (7.1) to the data

given in Table 7.1. An agronomist studied the effects of moisture (X1, in inches)

and temperature(X2, in 0C) on the yield of a new hybrid tomato (Y ). The model

includes all main effects of the covariates X1 and X2. The coefficient for Moist

is 0.7418 (with s.e. of 0.2355) and the coefficient for Temp is 0.5348 (with s.e. of

0.3299), see Table 7.4. The moisture effects are significant and temperature effects

Table 7.4: Yield of new Hybrid Tomato

Model Predictor Coef S.E. Wald Z P-value
Model 1 Temp 0.5348 0.3299 -1.62 0.1050

Moist 0.7418 0.2355 -3.15 0.0016

Model 2 Temp 1.4478 0.7462 -1.94 0.0524
Moist -11.9012 5.6269 2.12 0.0344
Moist2 0.7212 0.3415 -2.11 0.0347

are moderately significant. The description of the fitted model is that, given the

temperature level is fixed, the odds of having higher yield of a new hybrid tomato

are estimated to be e0.7418 = 2.1 times higher for a one inch decrease in moisture

level.
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Table 7.5: The p-values of testing model mis-specification based on graphical di-
agnostics

Tests Temperature Moisture α (Bonferroni adjustment)
B1 0.0845 0.0016 0.05 (0.025)
B2 0.0383 0.0001 0.05 (0.025)
(Wm)1 0.2216 0.0070 0.05 (0.025)
(Wm)2 0.1984 0.0094 0.05 (0.025)
(W∗)1 0.2216 0.0070 0.05 (0.025)
(W∗)2 0.2654 0.0011 0.05 (0.025)
sum(Wm) 0.2654 0.0011 0.05
max(Wm) 0.2520 0.0157 0.05
prod(Wm) 0.1874 0.0084 0.05
sum(W∗) 0.6927 0.0060 0.05
max(W∗) 0.2682 0.0074 0.05
prod(W∗) 0.2038 0.0423 0.05

We used different plots to check the model mis-specification for Temp and

Moist. Table 7.5 shows the p-values for each plot/process. Figure 7.1 gives the

plot using the method (Wm)2 for Moist. The dark black dashed line indicates the

observed process and the fine solid lines indicate the simulated realisations. The

p-value of testing that the model has a correct functional form in Moist is 0.0094.

Figure 7.2 gives the plot using the method sum(W∗), with p-value of 0.0060. The

results suggest that there is model mis-specification for the proportional odds

model with the covariate Moist, but not with the covariate Temp disregarding the

unreliable method B2.

We re-fit the proportional odds model including the higher-order term for X1

(Moist). All of the coefficients for Temp, Moist, and Moist2 are significant with p-

values 0.05, 0.03, and 0.03, respectively, see Table 7.4. Also, the coefficients are

1.4578, −11.9012, and 0.7213, respectively. Therefore, the logit of the cumulative

probability in Y does not have a linear relationship with the moisture level. The

yield of a new hybrid tomato increases when the moisture level increases to 8
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Figure 7.1: Plot of residuals against Moist using the method (Wm)2 to check the
model mis-specification for the model of Temp + Moist. The dark black line indi-
cates the observed process and the fine lines indicate the simulated realisations.
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Figure 7.2: Plot of residuals against Moist using the method sum(W∗) to check
the model mis-specification for the model of Temp + Moist. The dark black line
indicates the observed process and the fine lines indicate the simulated realisa-
tions.
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inches, and then the yield decreases when the moisture level increases from 8 to

14 inches.

Table 7.6: The p-values of testing model mis-specification based on graphical di-
agnostics for model Temp+Moist+Moist2

Tests Temperature Moisture α (Bonferroni adjustment)
B1 0.2387 0.2680 0.05 (0.025)
B2 0.0001 0.0001 0.05 (0.025)
(Wm)1 0.2567 0.5421 0.05 (0.025)
(Wm)2 0.2560 0.5423 0.05 (0.025)
(W∗)1 0.2567 0.5421 0.05 (0.025)
(W∗)2 0.5818 0.5539 0.05 (0.025)
sum(Wm) 0.5818 0.5539 0.05
max(Wm) 0.2609 0.5423 0.05
prod(Wm) 0.2550 0.5422 0.05
sum(W∗) 0.2666 0.5360 0.05
max(W∗) 0.2567 0.5421 0.05
prod(W∗) 0.4258 0.6460 0.05

Figure 7.3 shows the plot using the method sum(W∗) for the new model. It gives

the p-value of 0.536. Table 7.6 shows the p-values for all introduced methods. All

methods except the unreliable B2 do not show model mis-specification for the

new model. The functional terms chosen in the final model are satisfactory.

7.5.2 Normative Aging Study

The Normative Aging Study (NAS) is a multidisciplinary longitudinal study of

aging in men established by the Veteran’s Administration of the United States

in 1963. NAS subjects have reported for medical examination every 3 to 5 years.

Though the study records data on a wide spectrum of variables, including several

health related measures, dietary and behavioural exposures, exposure to certain

metals in their environment, and psychosocial events, our analysis focuses on

exploring the relationship of fasting blood glucose (FBG), the level of glucose,
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Figure 7.3: Plot of residuals against Moist using the method sum(W∗) to check
the model mis-specification for the model of Temp + Moist + Moist2. The dark
black line indicates the observed process and the fine lines indicate the simulated
realisations.
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with two markers of systemic inflammation, namely, white blood cell count (wbc)

and blood levels of C-reactive protein (crp) after controlling for age and smoking

status. The measurements were taken during January 2000 to December 2004

and we consider only the last complete observation available on the subject in

case multiple measurements were available on the same subject.

The current dataset as shown in Table E on page 313 contains observations

on 682 men in the age range of 48 to 93 years. FBG was categorised into three

categories according to the clinical definition of diabetes (The Expert Committee

1997), with FBG < 110mg/dl termed as normal (category 1), between 110 and 126

mg/dl termed as impaired fasting glucose (category 2) and ≥ 126mg/dl termed

as diabetes (category 3). It has been suggested in the literature that oxidative

stress-induced inflammatory response increases insulin resistance, resulting in

hyperglycemia or elevated levels of FBG which in turn causes oxidative stress

again (Pliquett et al. 2004). Inflammation is known to be a risk factor for dia-

betes (Nakanish et al. 2003). White blood cell count and C-reactive protein can

be viewed as biomarkers of systemic inflammation and thus could potentially be

associated with FBG levels, leading to this analysis.

We first try to fit a simple model that includes linear terms of the covariates

wbc, crp, age, and smoking. In this analysis the effect of wbc on FBG turns out to

be marginally significant with p-value 0.0857 with fitted estimate of β as 0.041;

crp is not significant with p-value 0.27 and fitted estimate of β as 0.094 (see Table

7.7). The interpretation of the fitted model, for example, in terms of the wbc effect

is that given fixed values of all other covariates in the model, the odds of having

fasting blood glucose towards higher end of the FBG scale with one unit increase

in WBC are estimated to be e0.041 or 1.04 times higher than having values on the

lower end of the FBG scale. Neither age nor smoking status was found to be asso-
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Table 7.7: Parameter estimates and p-values for the fitted proportional odds
model using covariates “age+smk+wbc+crp” (Model 1) followed by the model
“age+smk+wbc+wbc2+wbc3+crp+crp2” (Model 2) in the Normative Aging Study
Example.

Model Predictor Coef S.E. Wald Z P -value
Model 1 age -0.00747 0.01255 -0.60 0.5516

smk 0.03331 0.06186 0.54 0.5902
wbc 0.04134 0.02406 1.72 0.0857
crp 0.09408 0.08572 1.10 0.2724

Model 2 age -0.0080846 0.0126358 -0.64 0.5223
smk 0.0442334 0.0624535 0.71 0.4788
wbc 0.5628662 0.2464199 2.28 0.0224
wbc2 -0.0376317 0.0192671 -1.95 0.0508
wbc3 0.0005244 0.0002956 1.77 0.0760
crp 0.3960383 0.1821148 2.17 0.0297
crp2 -0.0297128 0.0198322 -1.50 0.1341

ciated with FBG levels. Hence there appears to be a positive association between

FBG and wbc and crp, but none of them are statistically significant.

We used different diagnostic tools to check the model mis-specification for age,

smoking, wbc and crp. Table 7.8 presents the p-value corresponding to each of the

graphical methods. Figure 7.4 gives the plot using the method (Wm)1 for wbc,

whereas Figure 7.5 shows the same for crp. The dark black dashed line indicates

the observed process and the fine solid lines indicate the simulated realisations.

We calculate the p-value using 1000 simulated realisations, while the figure only

shows 100 of them due to the capacity of the image file. The p-value for testing

that the model has a correct functional form in wbc is 0.055, whereas the p-value

corresponding to right model specification in terms of crp is given by 0.108. The

results suggest that there is a certain degree of model mis-specification for the

proportional odds model with the covariates wbc and crp but not with the co-
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Table 7.8: The p-values of testing model mis-specification based on graphical di-
agnostics for model “age+smk+wbc+crp”

Tests age smk wbc crp α (Bonferroni adjustment)
B1 0.139 0.864 0.056 0.096 0.05 (0.025)
B2 0.145 0.191 0.838 0.643 0.05 (0.025)
(Wm)1 0.175 0.981 0.055 0.108 0.05 (0.025)
(Wm)2 0.545 0.766 0.133 0.298 0.05 (0.025)
(W∗)1 0.175 0.981 0.055 0.108 0.05 (0.025)
(W∗)2 0.352 0.735 0.821 0.791 0.05 (0.025)
sum(Wm) 0.352 0.735 0.821 0.791 0.05
max(Wm) 0.299 0.799 0.069 0.188 0.05
prod(Wm) 0.233 0.898 0.047 0.122 0.05
sum(W∗) 0.332 0.866 0.193 0.209 0.05
max(W∗) 0.235 0.829 0.059 0.156 0.05
prod(W∗) 0.304 0.887 0.323 0.308 0.05

variates age and smoking. The raw scatter plots of actual FBG measurements on a

continuous scale not included in the text also indicated a non-linear relationship

between FBG and wbc and crp. Since the correlation between wbc and crp in the

original dataset was very weak (0.10), we treat the model specification issue in

each predictor separately, which may not be optimal in every situation. We may

rather use Wo or a process containing only a few but not all covariates simulta-

neously. We discuss joint multivariate extensions of the proposed method in our

concluding discussion.

As an illustration, we re-fit the proportional odds model including a quadratic

and cubic term of wbc and a quadratic term in crp in Table 7.7. The linear and

quadratic terms are significant in wbc with the cubic term marginally significant.

The linear term in crp is also significant in the new model. The results correspond-

ing to age and smoking remain almost unchanged in the second model, with both

being non-significant. Table 7.9 presents the p-value of each of the graphical diag-

nostics for the model including higher order powers of wbc and crp. The graphic
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Figure 7.4: Plot of residuals against wbc using the method (Wm)1 to check the
model mis-specification for wbc in the model of “age+smk+wbc+crp”. The dark
black line indicates the observed process and the fine lines indicate the simulated
realisations.
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Figure 7.5: Plot of residuals against crp using the method (Wm)1 to check the
model mis-specification for crp in the model of “age+smk+wbc+crp”. The dark
black line indicates the observed process and the fine lines indicate the simulated
realisations.
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Table 7.9: The p-values of testing model mis-specification based on graphical di-
agnostics for model “age+smk+wbc+wbc2+wbc3+crp+crp2”

Tests age smk wbc crp α (Bonferroni adjustment)
B1 0.262 0.774 0.497 0.662 0.05 (0.025)
B2 0.249 0.148 0.125 0.071 0.05 (0.025)
(Wm)1 0.114 0.961 0.510 0.761 0.05 (0.025)
(Wm)2 0.543 0.875 0.532 0.678 0.05 (0.025)
(W∗)1 0.114 0.961 0.510 0.760 0.05 (0.025)
(W∗)2 0.334 0.712 0.347 0.231 0.05 (0.025)
sum(Wm) 0.334 0.712 0.347 0.231 0.05
max(Wm) 0.235 0.914 0.696 0.811 0.05
prod(Wm) 0.196 0.943 0.679 0.699 0.05
sum(W∗) 0.344 0.745 0.255 0.267 0.05
max(W∗) 0.169 0.818 0.581 0.376 0.05
prod(W∗) 0.428 0.940 0.225 0.299 0.05

diagnostics do not show model mis-specification for the new model. Figure 7.6

shows the plot using the method (Wm)1 for the new model for wbc, and Figure

7.7 shows the same for crp. The p-values are 0.51 and 0.761, respectively, indicat-

ing that the functional terms chosen in the final model are satisfactory. In terms

of the actual FBG data on a continuous scale, it appears that there is a positive

association between FBG and crp and wbc values for lower values of crp and wbc,

below a certain threshold, but the relationship actually reverses or becomes less

pronounced for higher extreme levels of these biomarkers, thus overall showing

a non-linear pattern. There appears to be a non-linear threshold effect in the as-

sociation between FBP with both crp and wbc when we analysed the continuous

FBG data as well (Table 7.7).
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Figure 7.6: Plot of residuals against wbc using the method (Wm)1

to check the model mis-specification for wbc in the model of
“age+smk+wbc+wbc2+wbc3+crp+crp2”. The dark black line indicates the
observed process and the fine lines indicate the simulated realisations.
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Figure 7.7: Plot of residuals against crp using the method (Wm)1

to check the model mis-specification for crp in the model of
“age+smk+wbc+wbc2+wbc3+crp+crp2”. The dark black line indicates the
observed process and the fine lines indicate the simulated realisations.
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7.6 Discussion

Summary This chapter proposes graphical diagnostic methods based on two

approaches to test model mis-specification for the proportional odds regression

models. In the naive binary approach, we treat the proportional odds model as

J − 1 collapsed logistic regression models. Using the cumulative sums of resid-

uals, the graphical diagnostic method extends previously introduced techniques

by Lin et al. (2002) and Arbogast and Lin (2005). However, according to the sim-

ulations, it is more appropriate to treat the residuals in a multivariate format as

in the second approach and then consider a vector of stochastic processes to rep-

resent the limiting behaviour of the residuals. In this manner, the asymptotic

Gaussian processes (Ŵk) take the correlation between the ordinal responses into

account which is ignored in the binary approach.

In the multivariate approach, both the multivariate residuals (r) and the cu-

mulative residuals (r∗) perform better than the binary approach but cumulative

residuals outperform the multivariate residuals in our simulation study. For in-

stance, in both scenarios, the methods based on r∗ are better than the ones based

on r. Furthermore, among the different choices for the function to combine the

components of a vector, h(·), the “sum” tends to be the best in most of our simu-

lations.

Lin et al. (2002) noted that the tests are slightly more powerful when the pro-

cess has the form

W
(j)
k (t; β̂) = n−1/2

n∑

i=1

r̂∗ij1(t − b < xik ≤ t),

where b covers the lower half-plane of the covariates. In the large number of

our simulations that there is not space to report on, including b does not give
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consistently higher power. In general, we suggest taking b = ∞.

For a broad range of applications, we can use Ŵk(t; γ̂) to a general multivari-

ate generalised linear model and then use a function to combine the components

of the multivariate residuals (or processes). These methods provide a good al-

ternative to check the model fit and whether the chosen functional term is sat-

isfactory. Simulation studies indicate they have power advantages compared to

standard Hosmer-Lemeshow type partition-based statistic.

To conclude, in clinical investigations, as in the NAS example, investigators

are often misled about the true nature of association between a predictor and a

response due to fitting an incorrect model. For categorical responses, the task

is even more daunting as there is no clear mandate about a single goodness-of-

fit statistic. These simple graphical tools may provide us better insight into the

inadequacies of the fitted model in such situations. The pattern in these plots

may suggest alternative functional terms to include.

Extensions We mainly focused on the process Wk, checking the functional form

of a covariate of the proportional odds model. For alternative multinomial logit

models to analyse ordinal response data discussed by Liu and Agresti (2005),

such as adjacent-categories logit models and continuation-ratio logit models, one

can extend the multivariate approach to make the graphical diagnostics in a sim-

ilar manner. How to extend these tools to correlated ordinal responses is an in-

teresting avenue for possible research (Pan 2002).

Sometimes, as in the Normative Aging Study, two covariates seem to be mis-

specified when considering only main effects. Instead of focusing on a single

covariate, it seems wiser to focus jointly on two covariates by considering the
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process

Wm
o (t; γ̂) = n−1/2

n∑

i=1

I([xik1, xik2 ] ≤ t)r̂i,

where k1 and k2 are those covariates. Generally, any number of covariates ≤ p

can be included. Similar to process Wk, these processes are special cases of the

process Wo and do not need further proofs. However, it remains to show how

effective these new processes are.

Multiple Response Data Chapters 5 and 6 focused on the modelling of multiple

response data. For each item j, we assumed a different marginal model of the

form

gj(µij) = zT
ijβj, j = 1, . . . , J.

The most appealing fitting approach is GEE. The current chapter developed mul-

tivariate graphical diagnostic methods for GEE (and not only for ordinal data)

which can also be applied to (repeated) multiple response data. In our view,

it seems wise to consider a J-dimensional cumulative residual process, where

the jth component refers to the jth model. In this way, we can check the mis-

specification of J models simultaneously. If one would apply the univariate ap-

proach suggested by Lin et al. (2002), then no information is provided concern-

ing which of the J marginal models is eventually mis-specified. Significance of

the test would lead to an unsatisfactory rejection of all J models, although the

majority of the J models might be correctly specified. As an alternative naive ap-

proach, one could apply the cumulative residual process for each of the J models

separately, however, as with parameter estimation, the simultaneous approach

accounts for dependence between items and is expected to have better properties

than the naive approach.



Chapter 8

Conclusion

8.1 Odds Ratio Estimation

For stratified multiple response data, we considered three ways of defining the

common odds ratio, a summarising measure for the conditional association be-

tween a row variable and the multiple response variable, given a stratification

variable.

Greenland (1989) considered a generalised MH estimator by averaging over

ordinary Mantel Haenszel (MH) estimators following the Mickey and Elashoff

(1985) approach for estimating the common log odds ratio. He considered two

sampling situations: One assumes (a) J independent multinomials per stratum,

and another (b) J independent binomials per stratum, both forming K 2 × J ta-

bles for which the MH estimators are dually consistent, consistent under limiting

model I (large stratum sample size, while number of strata K is fixed) and lim-

iting model II (where K becomes large, while sample size within strata is fixed).

Greenland also derived (co)variance estimators for the ordinary and the gener-

alised MH estimator that are dually consistent and valid for sampling models (a)

278
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and (b).

In Chapter 2, we considered for each item x = 1, . . . , J , the K 2 × r tables

formed by the positive and negative responses for each of the r rows and K strata.

In such a way, we obtain r independent binomials per stratum for item x defining

the kth odds ratio Ψx
ab|k in terms of one item and two rows, item x and rows a

and b. However, for two items x and y, the MH estimators Ψ̂x
ab and Ψ̂y

ac are not

independent, and we derived a new dually consistent covariance estimator for

the covariance between Ψ̂x
ab and Ψ̂y

ac.

Another approach, called the model-based approach, treats the J items as a

J-dimensional binary response vector and then uses logit models directly for the

marginal distribution of each item. The parameter estimates can also be used as

estimators for the common odds ratio. For model fitting, we applied the method-

ology of generalised estimation equations (GEE), a multivariate extension of the

quasi-likelihood method, to account for dependency between items. The MH

type estimators can also be considered as a non-model-based approach, because

they estimate the odds ratios directly.

We investigated the performance of the MH-type estimators, the bootstrap

estimators of (co)variance and the model-based estimators for a variety of con-

figurations under independence and dependence of strata. The results confirm

the good properties of the various MH estimators. Only under high dependence

of strata, the bootstrap estimator and the model-based estimators outperform the

MH estimators, which was expected, because the MH estimators are derived un-

der the assumption of independence between strata.

In Chapter 3, we extended case (a) to (a’): Two independent rows of multi-

ple response data per stratum, defining the kth odds ratio Ψxy|12k in terms of two

rows (rows 1 and 2) and two columns, the same way Greenland did for situation
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(a). We showed that the MH estimator Ψ̂xy is still dually consistent under (a’),

but Greenland’s (co)variance estimators are no longer dually consistent. Then we

derived new dually consistent (co)variance estimators that are a generalisation

of Greenland’s (old) estimators, because his (co)variance estimators are special

cases of ours. A simulation study confirms that the new (co)variance estimators

are superior to the old estimators. Only when sampling under (a), the old and

new estimators are identical and have equal performances, otherwise the new es-

timators perform much more strongly than the old. Unless sample sizes are very

small (K and Nk), the new estimators also perform better than the bootstrap esti-

mators of (co)variance. Unfortunately, we we are not aware of any model-based

estimators, and could not compare the MH and its new (co)variance estimators

with such a model-based approach.

Chapter 4 considers case (b’): One row of multiple response data per stratum,

which can be considered as J dependent binomials, an extension of case (b). The

ordinary MH estimator can still be applied but is only consistent under limiting

model I. We proposed a new dually consistent MH estimator for estimating the

common odds ratio. For this estimator, we also derived a dually consistent vari-

ance estimator. Due to the complex calculations, we decided to propose only a

variance estimator with no covariance estimator. The variance estimator has a

simple form, but each term of the asymptotic variance was estimated by only one

term and not by averaging over several terms, as Greenland’s (co)variance esti-

mators and those in Chapter 3 were constructed, yielding a variance estimator

that is less efficient.

The simulation study showed that the new MH estimator performs much bet-

ter than the ordinary MH estimator except under independence. The new vari-

ance estimator also performs better than Greenland’s estimator and the bootstrap
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estimator of variance, except when tables are sparse and K is small. In those cases

the bootstrap estimator of variance performs better. When items are indeed inde-

pendent Greenland’s estimator performs better. For situation (b’), there is also a

model-approach using a logit model to estimate the odds ratio. However, the log

odds ratio estimator performs badly and its true variance is significantly larger

than that of the new MH estimator. Therefore the model-based approach can-

not be recommended for this sampling situation. The generalised MH estimator

can also be constructed from averaging over the newly proposed MH estimators,

however, we cannot estimate the (co)variance of the generalised MH estimator,

because we lack estimators for the covariance of two (new) MH estimators.

The odds ratios of Chapters 2 and 4 are defined in terms of positive and neg-

ative probabilities. The practitioner should be aware that the (co)variance esti-

mators presented there are invariant under exchanging positive with negative re-

sponses. However the local odds ratio defined in Chapter 3 is defined in terms of

positive probabilities only, similar to the relative risk. Therefore a subject-matter

researcher must be aware of the meaning when exchanging positive with nega-

tive responses and applying any of the MH type estimators presented in Chapter

3.

8.2 HLP Diagnostics

As in the model-based approach, we can treat the J items as a J-dimensional

binary response vector and then directly model the marginal distribution of each

item in terms of some explanatory variables. Since we model the means of the

univariate marginal distributions of the underlying multiple response variable,

this type of modelling is also called marginal modelling. Modelling strategies
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such as generalised linear models (GLM) can be applied to each of the J items.

In Chapter 5, we investigated deletion diagnostics for the marginal modelling

approach expressing the marginal model as a homogeneous linear predictor (HLP)

model, which is based on maximum likelihood (ML) estimation. The marginal

model can also be fitted by generalised estimating equations (GEE) yielding more

efficient estimates than fitting a GLM, which naively assumes independence be-

tween items.

For GEE the link function applies to the mean responses of the items and is

one to one. For HLP, the link function maps from the expected counts of the

joint table to the linear predictor and is many-to-one. Multiple case deletion for

HLP models is different from GEE. We mainly focused on the Cook distance as a

measure of influence. For HLP models and deletion of predictors, we considered

three equivalent methods and concluded that the “delete=augment” method is

our preferred method, because only the design matrix needs to be manipulated

according to the deleted predictors.

For deletion of joint observations, we considered a standardised Cook dis-

tance, dividing the Cook distance by the number of multiple responses being

deleted to account for those observations that are recorded multiple times.

8.3 Modelling of Repeated Multiple Response Data

The modelling of a repeated multiple response variable was considered in Chap-

ter 6, where we distinguished between the marginal model approach and the

random effect model approach. Unfortunately, ML methodology as HLP are not

applicable anymore for the marginal model approach due to the large number

of parameters describing the underlying joint distribution. In contrast, the GEE
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method is still easily applicable. We considered several possible working corre-

lation structures for the GEE approach to account for dependence between items

and between occasions, and proposed a groupwise method, a simple correlation

model assuming different groups have different values of correlation. If this as-

sumption is true, the groupwise method has efficiency advantages over the stan-

dard method, which naively assumes that the correlation structure is equal for

all subjects. The random effect approach is an alternative, but it can only incor-

porate non-negative correlations which might lead to inaccurate results if some

correlation parameters of the data are negative. We illustrated the method using

the STAT 291 data, a survey among students of the statistics lecture STAT 291

about their favourite bars, recording responses to questions related to age, sex,

possible reasons for going out, favourite music, etc. Fitting the various models

also showed that the groupwise and standard methods give substantially differ-

ent results in terms of significance when groups are determined by the variable

sex.

8.4 Graphical Diagnostic Method for Proportional Odds

Model

In Chapter 7, we proposed two different approaches to investigate the mis-specifi-

cation of a specific covariate for the proportional odds model. The binary ap-

proach considers the proportional odds model as J −1 logistic regression models

and applies the cumulative residual process W
(j)
k (t; βj) introduced by Arbogast

and Lin (2005) for logistic regression to each of the J −1 logistic models. For each

collapsed response j, large values of the supremum statistic GWk
indicate such

a mis-specification. A p-value can be obtained by computing the proportion of
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the simulated realisations from a second process Ŵ
(j)
k , which is asymptotically

equivalent to W
(j)
k , for which GWk

exceeds G
cWk

. To see a better picture of the mis-

specification, we can also plot the residual process W
(j)
k along with an artificial

sample from a second process Ŵ
(j)
k versus the kth covariate. If the cumulative

residual process is relatively large in absolute value, then there is an indication

of a mis-specified functional form of the kth covariate. We applied the Bonfer-

roni method to adjust for the significance level while combining inference from

all these plots.

In the multivariate approach, the proportional odds model is viewed as a

member of the class of multivariate generalised linear models (MGLM), where

the response variable is a vector of indicator responses. Consequently, the resid-

ual defined as the difference of mean responses and the vector of indicator re-

sponses is a J − 1 dimensional vector. We considered a multivariate cumulative

residual process Wk consisting of those multivariate residuals to assess the mis-

specification of a specific covariate. Since the process is now multivariate, there

are several ways of obtaining a p-value. One option is to obtain J − 1 p-values

by considering each component of the process separately. Then again the Bon-

ferroni method can be applied. In such a way, the method also gives J − 1 plots

as in the binary approach. A better option is to consider the supremum statis-

tic GWo = supt∈Rp ‖Wo(t;b, β̂)‖ based on any norm ‖ · ‖. Such a norm plots the

J − 1 dimensional values of the multivariate cumulative residual process to the

real plane. Generally, we can apply a function h : R
J−1 → R to the multivari-

ate residual process Wk to yield a univariate process. Then a single p-value can

be easily obtained by considering a supremum statistic of h(Wk) and compar-

ing its value relative to those from another asymptotically equivalent cumula-

tive process h(Ŵk). This method also provides a single plot assessing the mis-
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specification of a specific covariate.

The simulation study showed that the processes sum(W∗
k) and prod(W∗

k)

yielded best results, where W∗
k is the process based on the multivariate cumu-

lative residuals r∗i . This can be expected, because the proportional odds model

is expressed in terms of cumulative probabilities. The naive binary collapsing

approach exhibits the worst performance. It fails to maintain the nominal Type I

error level and the estimated Type I error rate is twice the desired level of signifi-

cance.

The process sum(Wk) was already considered by Lin et al. (2002) for GEE.

Therefore, our cumulative residual processes can be seen as extensions of their

processes, because we prove results for GEE and not only for the proportional

odds model. Although we focused mainly on the mis-specification of a specific

covariate, we also proposed processes for checking the functional form of the link

function and of the overall model adequacy.

The methods were illustrated on two examples and worked well. The meth-

ods first indicated that the functional form of some covariates were mis-specified

and then after a modification suggested that the final chosen functional form of

these covariates was satisfactory.

8.5 Future Work

Some of the research can be further extended. First we consider the odds ratio

estimation for stratified multiple response data. Under sampling model (b’), the

variance estimator of the new MH estimator can still be improved by estimating

each term of the asymptotic variances by averaging over several terms, the way

Greenland (1989) constructed his (co)variance estimators. This is in contrast to
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the way we did construct the newly proposed (co)variance estimators in Chapter

3. Another goal is to find dually consistent (co)variance estimators for the gen-

eralised MH estimator. However, this requires the asymptotic covariances of the

new MH estimator under models I and II. For model II, this is even more com-

plex than for the asymptotic variance, because the covariances refer to three or

four items, whereas the variance refers only to two. This means we have to con-

sider the joint distribution of three and four items consisting of 23 = 8 and 24 = 16

probabilities. For two items, the joint distribution was determined by 22 = 4 joint

probabilities only.

Greenland’s (co)variance estimators for the generalised MH estimators have

the same form for sampling models (a) and (b), but our estimators do have dif-

ferent forms for (a’) and (b’). Ideally, we would find dually consistent estimators

that are applicable for cases (a’) and (b’), simultaneously. Greenland (1989) also

introduced a generalised MH estimator for the person-time rate ratio, a ratio of

two probabilities, and a generalised (co)variance estimator for this generalised

MH estimator under sampling models (a) and (b). In the same way as we con-

sidered the three types of odds ratios, we could also extend the estimation of rate

ratios to multiple response data for situations (a’) and (b’).

The various variance estimators are used to construct confidence intervals of

the Wald-type. The question arises now how the coverage of these intervals is

and how the Wald-type intervals perform compared to other types, such as the

Wilson-type (Wilson 1927), and intervals based on resampling methods, such as

bootstrapping and permutations.

Now let us focus on possible future work for the graphical diagnostic method

based on multivariate cumulative residual processes. We already discussed some

possible future research on page 276. We mainly focused on the process Wk
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checking the functional form of a covariate of the proportional odds model. The

first question is how these methods perform for alternative multinomial logit

models, such as adjacent-categories logit models and continuation-ratio logit mod-

els, to analyse ordinal response data as discussed by Liu and Agresti (2005). How

to extend these tools to correlated ordinal responses is also an interesting avenue

for possible research (Pan 2002).

We focused on the processes Wk, but also proposed the processes Wo and Wp.

The process Wk focuses on the mis-specification of the kth covariate, whereas

Wo focuses on the overall model mis-specification or, more precisely, on the mis-

specification of all covariates simultaneously. In the same way, we could also

consider such a process focusing on two or more covariates only, but not on all

covariates. For example, it would be interesting to know whether such a process

focusing on two covariates jointly performs worse or better than two processes

Wk also focusing on the same two covariates.

The process Wk is defined as the sum over those residuals for which the kth

covariate is less than or equal to a certain value tk. We could also replace “less

than or equal to” with “greater than”. The process would have a completely

different form, but still be applicable. The first process represents one path, the

second another path. In fact, we could also consider any path from summing

the residuals in different ways. We cannot compute the supremum over all such

paths, because, for large data sets and continuous covariates, the total number of

such paths becomes too large. Instead we might consider a limited number or a

random sample from all such paths to yield a more robust test.

In Chapters 5 and 6, we focused on the modelling of multiple response data.

The joint model comprised J marginal models can be fitted with the GEE method.

Hence the cumulative residual processes also apply for this marginal model.
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There are several questions: How do these processes perform for multiple re-

sponse data and the marginal modelling? Is simultaneous model checking for all

J models better than checking the models separately? We expect the simultane-

ous approach to perform better, but the analysis seems more complex. Therefore,

it is debatable which approach is to be recommended.

Another problem is that we do not know the exact distribution of the cumu-

lative residual process. We must sample from another process to approximate

its distribution. Although this resampling is computationally feasible, we would

prefer to construct a process with a known distribution. A similar process with

limiting distribution N(0, 1) was proposed by Khmaladze and Koul (2004). It

needs to be investigated how the processes Wp, Wk and Wo can be constructed

to have the same limiting distribution.



Appendix A

Derivation of the Asymptotic

Variance for Model I of MH

estimator - Chapter 3

In this part of the appendix, we want to derive the asymptotic variance of the MH

estimator Ψ̂xy|ab under the “large-stratum” limiting model (model I) by applying

the delta method, see Subsection 3.3.1 on page 95.

We have N =
∑

k Nk and as N → ∞ Nαak = nak, where 0 < αak < 1. It follows

that Nk =
∑

i nik = N
∑

i αik. We prove the general case with r > 2 rows.

The MH estimator has the following form

Ψ̂xy|ab =

∑
k Xx|akXy|bk/Nk∑
k Xy|akXx|bk/Nk

=

∑
k

naknbk

NNk

(
XA|a

nak
+

XC|a

nak

)(
XB|bk

nbk
+

XC|bk

nbk

)

∑
k

naknbk

NNk

(
XB|a

nak
+

XC|a

nak

)(
XA|bk

nbk
+

XC|bk

nbk

)

with XA|ak = X10
xy|ak, XB|ak = X01

xy|ak and XC|ak = X01
xy|ak.

Let the sample proportions be defined as pak = Xak/nak and vector p as

p = (pT
1 , . . . ,pT

K)T with pk = (pT
1k, . . . ,p

T
rk)

T and pak = (pA|ak, pB|ak, pC|ak)
T , such

289
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that p contains all sample proportions. Similarly define vector π containing all

probabilities πA|ak, πB|ak, and πC|ak.

We want to argue that
√

N · Ψ̂xy|ab and
√

N · g(p) with

g(p) =

∑
k(
∑

i α
−1
ik )−1 Xx|ak

nak

Xy|bk

nbk∑
k(
∑

i α
−1
ik )−1 Xy|ak

nak

Xx|bk

nbk

=

∑
k(
∑

i α
−1
ik )−1

(
XA|a

nak
+

XC|a

nak

)(
XB|bk

nbk
+

XC|bk

nbk

)

∑
k(
∑

i α
−1
ik )−1

(
XB|a

nak
+

XC|a

nak

)(
XA|bk

nbk
+

XC|bk

nbk

)

have the same limiting distributions. The kth summands
√

N · gnum
k :=

√
N ·

(
∑

i α
−1
ik )−1 Xy|ak

nak

Xx|bk

nbk
and Ψ̂num

k :=
√

N · naknbk

NNk

Xx|ak

nak

Xy|bk

nbk
of the numerators of

√
N ·Ψ̂

and
√

N ·g(p) have the same limiting distributions by Slutsky’s theorem, because

the factor naknbk

NNk
converges to αakαbk/(

∑r
i=1 αik). For r = 2, αakαbk/(

∑
i=a,b αik) =

(
∑

i=a,b α−1
ik )−1. Although we prove the general case r > 2, we write for conve-

nience (
∑

i α
−1
ik )−1 instead of αakαbk/(

∑r
i=1 αik), which is only a technical matter.

By the multivariate C.L.T. (Theorem 2.8.6 on page 75), the sample proportions

from the multinomial distributions are asymptotically multivariate normally dis-

tributed
√

N(p − π)→dN(0,Σ)

with Σ = Diag(Σ1, . . . ,ΣK), Σk = Diag( 1
α1k

Σ1k, . . . ,
1

αrk
Σrk) and Σak = Diag(πak)−

πakπ
T
ak. It follows,

√
N · gnum

k and
√

N · Ψ̂num
k also converge to the same normal

distribution. Now because this limiting distribution is normal for all k, the sums
√

N ·∑k gnum
k and

√
N ·∑k Ψ̂num

k also have the same limiting normal distribution.

By noting that the denominators of Ψ̂ and g(p) converge to the same constant (the

sample proportions pak = Xak/nak converge to πak),
√

N ·Ψ̂xy|ab and
√

N ·g(p) also

have the same limiting normal distribution by Slutsky’s theorem (Theorem 2.8.1

on page 74).

Estimator Ψ̂ converges in probability to g(π) =
limN ECxy|ab/N

limN ECyx|ab/N
, which equals Ψ
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under the common odds ratio assumption, see proof of Theorem 3.2.1 on page 92

for details.

The delta method (Theorem 2.8.4) says
√

N(g(p)−g(π))
d→ N(0, Vg = ∂g

∂π
Σ ∂g

∂π

T
).

In the following, we write shorter ∂g/∂π, but mean ∂g/∂p|p=π.

The kth odds ratio is defined as

Ψk = πx|1kπy|2k/πy|1kπx|2k = Ak/Bk

with

Ak = πx|akπy|bk = (πA|ak + πC|ak)(πB|bk + πC|bk),

Bk = πy|akπxk|bk = (πB|ak + πC|ak)(πA|bk + πC|bk)

Define tk := (
∑

i α
−1
ik )−1Bk and wk := tk/

∑
j tj . We express g(π) as

g(π) =

K∑

l=1

wlΨl =
∑

l

exp

{
log(

∑

i

α−1
il )−1 + log(Al) − log[

K∑

j=1

(
∑

i

α−1
ij )−1Bj ]

}
.

First we rewrite Vg as

Vg

=

K∑

k=1

2∑

i=1

1

αik
{ ∂g

∂πA|ik
Σik|A,A +

∂g

∂πB|ik
Σik|B,B +

∂g

∂πC|ik
Σik|C,C

+
∂g

∂πA|ik

∂g

∂πB|ik
Σik|A,B +

∂g

∂πA|ik

∂g

∂πC|ik
Σik|A,C +

∂g

∂πB|ik

∂g

∂πC|ik
Σik|B,C}

=
K∑

k=1

2∑

i=1

1

αik

[
πA|ik

(
∂g

∂πA|ik

)2

+ πB|ik

(
∂g

∂πB|ik

)2

+ πC|ik

(
∂g

∂πC|ik

)2
]

−
K∑

k=1

2∑

i=1

1

αik

[
πA|ik

∂g

∂πA|ik
+ πB|ik

∂g

∂πB|ik
+ πC|ik

∂g

∂πC|ik

]2

, (A.1)

where Σak|m,n denotes the mth row and nth column of Σak.
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Now we compute

∂Ak

∂πA|ak

=πy|bk
∂Ak

∂πA|bk
= 0

∂Bk

∂πA|ak

= 0
∂Bk

∂πA|bk
= πx|ak

∂Ak

∂πB|ak

=0
∂Ak

∂πB|bk
= πx|ak

∂Bk

∂πB|ak

=πx|bk
∂Bk

∂πB|bk
= 0

∂Ak

∂πC|ak
=πy|bk

∂Ak

∂πC|bk
= πx|ak

∂Bk

∂πC|ak
=πx|bk

∂Bk

∂πC|bk
= πy|ak,

therefore, we have

∂g

∂πB|ak

= −
∑

l

wlΨl
1∑
tj

(
∑

i

α−1
ik )−1πx|bk = −πx|bk

(
∑

i α
−1
ik )−1

∑
tj

g(π)

∂g

∂πA|ak

=
wkΨk

Ak
πy|bk

∂g

∂πC|ak
=

wkΨk

Ak
πy|bk − πx|bk

(
∑

i α
−1
ik )−1

∑
tj

g(π) =
∂g

∂πA
ak

+
∂g

∂πB|ak

∂g

∂πB|bk
=

wkΨk

Ak
πx|ak

∂g

∂πA|bk
= −

∑

l

wlΨl
1∑
tj

(
∑

i

α−1
ik )−1πy|ak = −πy|ak

(
∑

i α
−1
ik )−1

∑
tj

g(π)

∂g

∂πC|bk
=

wkΨk

Ak
πx|ak − πy|ak

(
∑

i α
−1
ik )−1

∑
tj

g(π) =
∂g

∂πA|bk
+

∂g

∂πB|bk
.

Now

πA|a
∂g

∂πA|ak

+ πB|ak
∂g

∂πB|a
+ πC|a

∂g

∂πC|a
=

= πA|a
wkΨk

Ak
πy|bk − πB|aπx|bk

(
∑

i α
−1
ik )−1

∑
tj

g(π)

+ πC|a
wkΨk

Ak
πy|bk − πC|aπx|bk

(
∑

i α
−1
ik )−1

∑
tj

g(π)

= πx|akπy|bk
wkΨk

Ak
− g(π)∑

tj
(
∑

i

α−1
ik )−1πy|akπx|bk

=
tk∑
tj

Ψk −
tk∑
tj

g(π) = wk[Ψk − g(π)]. (A.2)
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Similarly

πA|b
∂g

∂πA|b
+ πB|b

∂g

∂πB|b
+ πC|b

∂g

∂πC|b
= wk[Ψk − g(π)]. (A.3)

Now we simplify (A.1) by using (A.2) and (A.3)

Vg

=

K∑

k=1

∑

i=a,b

1

αik

[
πA|i

(
∂g

∂πA|i

)2

+ πB|i

(
∂g

∂πB|i

)2

+ πC|i

(
∂g

∂πC|i

)2
]

−
K∑

k=1

∑

i=a,b

1

αik

[
πA|i

∂g

∂πA|i
+ πB|i

∂g

∂πB|i
+ πC|i

∂g

∂πC|i

]2

=
∑

k

1

α1k
πB|a(−πx|bk

(
∑

i α
−1
ik )−1

∑
tj

g(π))2 + πA|a(
wkΨk

Ak
πy|bk)

2

+ πC|a(
wkΨk

Ak
πy|bk − πx|bk

(
∑

i α
−1
ik )−1

∑
tj

g(π))2 + wk(Ψk − g(π))}

+
∑

k

1

α2k
{πB|b(

wkΨk

Ak
πx|ak)

2 + πA|b(−πy|ak
(
∑

i α
−1
ik )−1

∑
tj

g(π))2

+ πC|b(
wkΨk

Ak
πx|ak − πy|ak

(
∑

i α
−1
ik )−1

∑
tj

g(π))2 + [wk(Ψk − g(π))]2}

=
∑

k

1

α1k
{πB|aπ

2
x|bk

(
∑

i α
−1
ik )−2

(
∑

tj)2
g(π)2 + πA|a

w2
kΨ

2
k

A2
k

π2
y|bk + [wk(Ψk − g(π))]2

+ πC|a
w2

kΨ
2
k

A2
k

π2
y|bk − 2πC|a

wkΨk

Ak
πy|bkπx|bk

(
∑

i α
−1
ik )−1

∑
tj

g(π) + πC|a
(
∑

i α
−1
ik )−2

(
∑

tj)2
g(π)2}

+
∑

k

1

α2k
{πB|b

w2
kΨ

2
k

A2
k

π2
x|ak + πA|bπ

2
y|ak

(
∑

i α
−1
ik )−2

(
∑

tj)2
g(π)2 + [wk(Ψk − g(π))]2

+ πC|b
w2

kΨ
2
k

A2
k

π2
x|ak − 2πC|b

wkΨk

Ak
πx|akπy|ak

(
∑

i α
−1
1k )−1

∑
tj

g(π) + πC|bπ
2
y|ak

(
∑

i α
−1
ik )−2

(
∑

tj)2
g(π)2}

=
∑

k

1

α1k
{πy|akπ

2
x|bk

(
∑

i α
−1
ik )−2

(
∑

tj)2
g(π)2 + πx|ak

w2
kΨ

2
k

A2
k

π2
y|bk

+
∑

k

1

α2k
{πy|bk

w2
kΨ

2
k

A2
k

π2
x|ak + πx|bkπ

2
y|ak

(
∑

i α
−1
1k )−2

(
∑

tj)2
g(π)2}

+
∑

k

(
∑

i

α−1
ik )[wk(Ψk − g(π))]2
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−
∑

k

2

α1k
{πC|b

wkΨk

Ak
πx|akπy|ak

(
∑

i α
−1
ik )−1

∑
tj

g(π)}

−
∑

k

2

αbk

{πC|a
wkΨk

Ak

πy|bkπx|bk
(
∑

i α
−1
1k )−1

∑
tk

g(π)}

=
1

(
∑

tk)2

∑

k

1

α1k

{πy|akπ
2
x|bk

t2k
B2

k

g(π)2 + πx|akπ
2
y|bk

t2kw
2
kΨ

2
k

A2
k

}

+
1

(
∑

tk)2

∑

k

1

α2k

{πy|bkπ
2
x|ak

t2kΨ
2
k

A2
k

+ πx|bkπ
2
y|ak

t2k
B2

k

g(π)2}

+
∑

k

(
∑

i

α−1
ik )[wk(Ψk − g(π))]2 − 2

(
∑

tk)2

∑

k

πC|a
α1k

{πy|bkπx|bk
t2k

BkAk

Ψkg(π)}

− 2

(
∑

tk)2

∑

k

πC|b
α2k

{πx|akπy|ak
t2k

AkBk

Ψkg(π)}

=
1

(
∑

tk)2
{
∑

k

1

α1k

[πy|bk
t2kΨ

2
k

Ak

+ πx|bk
t2kg(π)2

Bk

− 2πC|aπy|bkπx|bk
t2kΨkg(π)

AkBk

]

+
∑

k

1

α2k

[πx|ak
t2kΨ

2
k

Ak

+ πy|ak
t2kg(π)2

Bk

− 2πC|bπx|akπy|ak
t2kΨkg(π)

AkBk

]

−
∑

k

(
∑

i

α−1
1k )[wk(Ψk − g(π))]2. (A.4)

Under the common odds ratio assumption Ψ = Ψ1 = · · · = ΨK and g(π) = Ψ,

consequently the term [wk(Ψk − g(π))]2 = [wk(Ψ−Ψ)]2 = 0 and Vg can be written

as

Vg =
Ψ2

(
∑

tk)2

∑

k

t2k
α1k

[(
πy|bk
Ak

+
πx|bk
Bk

) − 2
πC|aπx|bkπy|bk

AkBk
]

+
Ψ2

(
∑

tk)2

∑

k

t2k
α2k

[(
πx|ak

Ak
+

πy|ak

Bk
) − 2

πC|bπx|akπy|ak

AkBk
]

=

∑
k(
∑

i α
−1
ik )−2 1

α1k
[πx|akπ

2
y|bk + Ψ2πy|akπ

2
x|bk − 2ΨπC|aπx|bkπy|bk]

(
∑

k(
∑

i α
−1
ik )−1πy|akπx|bk)2

+

∑
k(
∑

i α
−1
ik )−2 1

α2k
[π2

x|akπy|bk + Ψ2π2
y|akπx|bk − 2ΨπC|bπx|akπy|ak]

(
∑

k(
∑

i α
−1
ik )−1πy|akπx|bk)2

=

∑
k

(
P

i α−1
ik )−2

α1k
[πx|akπ

2
y|bk + Ψ2πy|akπ

2
x|bk − 2ΨπC|aπx|bkπy|bk]

(
∑

k(
∑

i α
−1
ik )−1πy|akπx|bk)2
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+

∑
k

(
P

i α−1
ik )−2

α2k
[π2

x|akπy|bk + Ψ2π2
y|akπx|bk − 2ΨπC|bπx|akπy|ak]

(
∑

k(
∑

i α
−1
ik )−1πy|akπx|bk)2

. (A.5)

We conclude that under the common odds ratio assumption,
√

N(Ψ̂xy|ab − Ψxy|ab)

is asymptotically Gaussian distributed with zero mean and variance limN→∞ N ·

Vara(Ψ̂xy|ab) = Vg.



Appendix B

Derivation of Multinomial/Binomial

Distribution - Chapter 3

In this part of the Appendix, we want to show under which circumstances the

multinomial and binomial distributions are special cases of the joint distribution

of a multiple response (respectively any/J) variable. The following results are

used at various stages of Chapter 3.

B.1 Multinomial Responses as Special Cases of Mul-

tiple Responses

First note, the multinomial distribution is a special case of the joint distribution

of the multiple responses. For the multinomial distribution with J categories, we

have the following joint probabilities

Pr(Y1 = 0, . . . , Yx−1 = 0, Yx = 1, Yx+1 = 0, . . . , YJ = 0|ak) = πx|ak

296
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with
∑J

x=1 πx|ak ≤ 1. Therefore, all remaining joint probabilities Pr(Y1 = j1, . . . ,

YJ = jJ |ak) with jk ∈ {0, 1} are zero, except Pr(Y1 = 0, Y2, . . . , YJ = 0|ak) > 0 if
∑J

x=1 πx|ak < 1. For example, we cannot observe the sequences (1, 1, 1, . . . , 1) and

(1, 1, 0, . . . , 0). The covariance between two items (categories) of the multinomial

distribution is Cov(Yx, Yy) = −πx|akπy|ak. The binomial is also a special case of

multiple responses, because the binomial is a special case of the multinomial.

B.2 Fixing the Covariance between Two Items

For two items x and y, we set Cov(Yx, Yy) = −πx|akπy|ak, or in other words we set

the covariance between two items so that it matches the covariance between two

categories of a multinomial distribution.

From −πx|akπy|ak = Cov(Yx, Yy) = EYxYy−EYxEYy = EYxYy−πx|akπy|ak follows

EYxYy = 0. The variables Yx are binary and by definition EYxYy =
∑1

i,j=0 ij Pr(

Yx = i, Yy = j) = Pr(Yx = 1, Yy = 1), and it follows that πxy = Pr(Yx = 1, Yy =

1) = 0. Therefore Pr(Yx = 1, Yy = 0|ak) = πx|ak − πxy|ak = πx|ak, Pr(Yx = 0, Yy =

1|ak) = πy|ak, and Pr(Yx = 0, Yy = 0|ak) = 1 − πx|ak − πy|ak; see also (2.18) on

page 73 for relations between the marginal and pairwise probabilities. For the

special case πx|ak + πy|ak = 1, the response for item y is exactly the opposite of the

response of item x, that is, responses for items x and y form a binary distribution.

For πx|ak + πy|ak < 1, we yield a multinomial with 3 possible outcome categories.
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B.3 Fixing the Covariance between More Than Two

Items

Now we set for all pairs of items (x,y), with x < y; x, y ∈ {1, . . . , J}, Cov(Yx, Yy) =

−πx|akπy|ak, which yields the multinomial distribution. We prove this by induc-

tion and use as a base case two items only.

Proof by Induction

Proposition

Let (i1, . . . , im) be an arbitrary distinct index set of length m of the set {1, . . . , J}.

We omit indices i and k standing for the row and stratum.

Pr(Yi1 = 1, . . . , Yil = 1, Yil+1
= 0, . . . , Yim = 0) = 0 for l ≥ 2 (B.1)

Pr(Yi1 = 1, Yi2 = 0, . . . , Yim = 0) = πx (B.2)

Pr(Yi1 = 0, Yi2 = 0, . . . , Yim = 0) = 1 −
m∑

j=1

πij (B.3)

Base Case

Under the condition Cov(Yx, Yy) = −πx|akπy|ak, we derived the following pairwise

probabilities

Pr(Yx = 1, Yy = 1) = 0

Pr(Yx = 1, Yy = 0) = πx

Pr(Yx = 0, Yy = 0) = 1 − πx − πy

for any two distinct indices x, y ∈ {1, . . . , J}.
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Inductive Hypothesis

Pr(Yi1 = 1, . . . , Yil = 1, Yil+1
= 0, . . . , Yim = 0, Yim+1 = 0) = 0 for l ≥ 2 (B.4)

Pr(Yi1 = 1, Yi2 = 0, . . . , Yim = 0, Yim+1 = 0) = πx (B.5)

Pr(Yi1 = 0, Yi2 = 0, . . . , Yim = 0, Yim+1 = 0) = 1 −
m+1∑

j=1

πij (B.6)

for m + 1 ≤ J .

Inductive Step

By (B.1)

0 = Pr(Yi1 = 1, . . . , Yil = 1, Yil+1
= 0, . . . , Yim = 0)

= Pr(Yi1 = 1, . . . , Yil = 1, Yil+1
= 0, . . . , Yim = 0, Yim+1 = 0)

+ Pr(Yi1 = 1, . . . , Yil = 1, Yil+1
= 0, . . . , Yim = 0, Yim+1 = 1) ≥ 0,

(B.4) follows. Now we can show (B.5)

Pr(Yi1 = 1, Yi2 = 0, . . . , Yim = 0, Yim+1 = 0)

= Pr(Yi1 = 1, Yi2 = 0, . . . , Yim = 0) − Pr(Yi1 = 1, Yi2 = 0, . . . , Yim = 0, Yim+1 = 1)

= πx − 0 = πx

by (B.2) and (B.4). Finally we derive (B.6)

Pr(Yi1 = 0, Yi2 = 0, . . . , Yim = 0, Yim+1 = 0)

= Pr(Yi1 = 0, Yi2 = 0, . . . , Yim = 0) − Pr(Yi1 = 0, Yi2 = 0, . . . , Yim = 0, Yim+1 = 1)
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= 1 −
m∑

j=1

πij − πim+1 = 1 −
m+1∑

j=1

πij

by (B.3) and (B.5).

Conclusion For any two items x and y, the condition Cov(Yx, Yy) = −πx|akπy|ak on

the multiple responses results in the special case of the multinomial distribution.



Appendix C

Derivation of Higher Moments for

Multiple Responses - Chapter 4

In Chapter 4, we need to compute Var(ω̃xy|k) expressed by 10 terms in equation

(4.22) on page 128. Only three of these 10 terms can be easily computed and the

purpose of this part of the appendix is to compute the remaining 7 terms. First

we compute the terms EXxX̄yX10 and EXyX̄xX10 of (4.22).

We begin with

EXxXyXA = E(XA + XC)(XB + XC)XA

= EX2
AXB + EX2

AXC + EXAXBXC + EXAX2
C

= (N2π
2
AπB + N1πAπB) + (N2π

2
AXC + N1πAπC)

+ N2πAπBπC + (N2πAπ2
C + N1πAπC)

= N2(π
2
AπB + π2

AXC + πAπBπC + πAπ2
C) + N1(πAπB + πAπC + πAπC)

= N2πxπyπA + N1(πAπB + 2πAπC)

301
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EXxXyXC = E(XA + XC)(XB + XC)XC

= EXAXBXC + EXAX2
C + EXBX2

C + EX3
C

= N2πAπBπC + (N2πAπ2
C + N1πAπC)

+ (N2πBπ2
C + N1πBπC) + (N2π

3
C + 3N1π

2
C + N0πC)

= N2(πAπBπC + πAπ2
C + πBX2

C + π3
C) + N1(πAπC + πBπC + 3π2

C) + N0πC

= N2πxπyπC + N1πC(3πC + πA + πB) + N0πC

Before we continue with EXxXyXD, we consider several types of symmetry. Con-

sider two types of exchanging indices: (1) Exchanging items x and y (x → y and

y → x), (2-x) exchanging positive with negative responses for item x (Xx ↔ X̄x).

These operations can also be regarded as transformations forming a transforma-

tion group. The pairwise observations change as follows under (1): XA → XB ,

XC → XC , XD → XD, under (2-x): XA → XD, XB → XC , under (2-y): XB → XD,

XA → XC , and under (2-x)◦(2-y) : XA → XB , XC → XD, where ◦ denotes the

operator executing two transformations.

We do not need to compute EXxXyXB directly, but only note that XxXyXB

can be obtained by applying (1) to XxXyXA. We have EXxXyXA = N2πxπyπA +

N1(πAπB + 2πAπC), hence, EXxXyXB = N2πxπyπB + N1(πAπB + 2πBπC). Now we

can compute

EXxXyXD

= E(XA + XC)(XB + XC)(n − XA − XB − XC)

= nEXxXy − EXxXyXA − EXxXyXB − EXxXyXC

= (N2 + 2N1)πxπy + (N1 + N0)πC − N2πxπyπA − N1(πAπB + 2πAπC)
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− N2πxπyπB − N1(πAπB + 2πBπC) − N2πxπyπC − N1πC(3πC + πA + πB) + N0πC

= N2(πxπy − πxπyπA − πxπyπB − πxπyπC)

+ N1{2πxπy + πC − πAπB − 2πAπC − πAπB − 2πBπC − πC(3πC + πA + πB)}

= N2πxπyπD + N1(2πxπy − 2πAπB + πC − 3πAπC − 3πBπC − 3π2
C)

= N2πxπyπD + N1(2πxπy − 2πxπy + πC − πAπC − πBπC − π2
C)

= N2πxπyπD + N1πC(1 − πA − πB − πC) = N2πxπyπD + N1πCπD.

We summarise

EXxXyXA = N2πxπyπA + N1(πAπB + 2πAπC)

EXxXyXB = N2πxπyπB + N1(πAπB + 2πBπC)

EXxXyXC = N2πxπyπC + N1πC(3πC + πA + πB) + N0πC

EXxXyXD = N2πxπyπD + N1πCπD (C.1)

Now we obtain EXxX̄yXA from EXxXyXC by (2-y)

EXxX̄yXA = N2πxπyπC + N1πA(3πA + πC + πD) + N0πC

= N2πxπyπC + N1(3π
2
A + πAπC + πA(1 − πA − πB − πC)) + N0πC

= N2πxπyπC + N1(2π
2
A + πA − πAπB) + N0πC

and EXxX̄yXB from EXxXyXD also by (2-y):

EXxX̄yXB = N2πxπ̄yπB + N1πAπB.
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Using (1), we also easily obtain EX̄xXyXA and EX̄xXyXB. Next, we compute

EX2
xXy = E(XA + XC)2(XB + XC) = E(X2

A + X2
C + 2XAXC)(XB + XC)

= EX2
AXB + EX2

AXC + EXBX2
C + EX3

C + 2EXAXBXC + 2EXAX2
C

= (N2π
2
AπB + N1πAπB) + (N2π

2
AπC + N1πAπC) + (N2πBπ2

C + N1πBπC)

+ (N2π
3
C + 3N1π

2
C + N0πC) + 2N2πAπBπC + 2(N2πAπ2

C + N1πAπC)

= N2

{
π2

AπB + π2
AπC + πBπ2

C + π3
C + π2

AπC + 2πAπBπC + 2πBπ2
C

}

+ N1

{
πAπB + 3πAπC + πBπC + 3π2

C

}
+ N0πC

= N2(π
2
A + π2

C + 2πAπC)(πB + πC) + N1(πA + πC)(πB + 3πC) + N0πC

= N2π
2
xπy + N1πx(πB + 3πC) + N0πC

and

EX2
xX2

y

= E(XA + XC)2(XB + XC)2 = E(X2
A + X2

C + 2XAXC)(X2
B + X2

C + 2XBXC)

= EX2
AX2

B + EX2
AX2

C + 2EX2
AXBXC + EX2

BX2
C + EX4

C + 2EXBX3
C

+ 2EXAX2
BXC + 2EXAX3

C + 4EXAXBX2
C

= {N3π
2
Aπ2

B + N2(π
2
AπB + πAπ2

B) + N1πAπB}

+ {N3π
2
Aπ2

C + N2(π
2
AπC + πAπ2

C) + N1πAπC} + 2{N3π
2
AπBπC + N2πAπBπC}

+ {N3π
2
Bπ2

C + N2(π
2
BπC + πBπ2

C) + N1πBπC} + {N3π
4
C + 6N2π

3
C + 7N1π

2
C + N0πC}

+ 2{N3πBπ3
C + 3N2πBπ2

C + N1πBπC} + 2{N3πAπ2
BπC + N2πAπBπC}

+ 2{N3πAπ3
C + 3N2πAπ2

C + N1πAπC} + 4{N3πAπBπ2
C + N2πAπBπC}

= N3{π2
Aπ2

B + π2
Aπ2

C + 2π2
AπBπC + π2

Bπ2
C + π4

C + 2πBπ3
C

+ 2πAπ2
BπC + 2πAπ3

C + 4πAπBπ2
C} + N2{π2

AπB + πAπ2
B + π2

AπC + πAπ2
C



APPENDIX C. HIGHER MOMENTS FOR MULTIPLE RESPONSES - CH. 4 305

+ 2πAπBπC + π2
BπC + πBπ2

C + 6π3
C + 6πBπ2

C + 2πAπBπC + 6πAπ2
C + 4πAπBπC}

+ N1{πAπB + πAπC + πBπC + 7π2
C + 2πBπC + 2πAπC} + N0πC

= N3{(π2
A + π2

C + 2πAπC)(π2
B + π2

C + 2πBπC}

+ N1{7π2
C + 3πAπC + 3πBπC + πAπB} + N0πC

+ N2{6π3
C + 7πBπ2

C + 7πAπ2
C + π2

BπC + 8πAπBπC + π2
AπC + π2

AπB + πAπ2
B}

= N3π
2
xπ

2
y + N1{7π2

C + 3πAπC + 3πBπC + πAπB} + N0πC

+ N2(πA + πB)(πB + πC)(πA + πB + 6πC)

= N3π
2
xπ

2
y + N2πxπy(πA + πB + 6πC) + N1{7π2

C + 3πAπC + 3πBπC + πAπB} + N0πC .

The term EX2
xX̄2

y is computed from EX2
xX2

y by (2-y)

EX2
xX̄2

y

= N3πxπ̄
2
y + N2πxπ̄y(πC + πD + 6πA) + N1{πxπ̄y + 6π2

A + 2πA(πC + πD)} + N0πA

= N3πxπ̄
2
y + N2πxπ̄y(πC + 1 − πA − πB − πC + 6πA) + N0πA

+ N1{πxπ̄y + 6π2
A + 2πAπC + 2πA − 2π2

A − 2πAπB − 2πAπC}

= N3πxπ̄
2
y + N2πxπ̄y(1 − πB + 5πA) + N1(πxπ̄y + 4π2

A + 2πA − 2πAπB) + N0πA.

Summarising, we can write

EXxXyX̄xX̄y = EXxXy(n − Xx)(n − Xy)

= n2
EXxXy − nEX2

xXy − nEXxX
2
y + EX2

xX2
y . (C.2)

For a better overview, we do not compute EXxXyX̄xX̄y at once, but only for the

terms with factors N3, N2, N1, N0 separately. Let(·)|Ni
denote the terms of (·) with

factor Ni, for example EX2
xX2

y |N3 = π2
xπ

2
y .
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Using (C.2) and (4.24) we collect the following terms for EXxXyX̄xX̄y

EXxXyX̄xX̄y|N3

= (n2
EXxXy − nEX2

xXy − nEXxX
2
y + EX2

xX
2
y )|N3

= {(N3 + 5N2 + 4N1)EXxXy|N1 + (N2 + 3N1 + N0)EXxXy|N0 + EX2
xX2

y

− 2((N3 + 3N2)(EXxX
2
y + EX2

xXy)|N2 + (N2 + 2N1)(EXxX
2
y + EX2

xXy)|N1

+ (N1 + N0)(EXxX
2
y + EX2

xXy)|N0)}|N3

= EXxXy|N1 − EX2
xXy|N2 − EXxX

2
y |N2 + EX2

xX2
y |N3

= πxπy − π2
xπy − πxπ

2
y + π2

xπ
2
y = πxπy(1 − πx − πy + πxπy)

= πxπyπ̄xπ̄y

EXxXyX̄xX̄y|N2

= (n2
EXxXy − nEX2

xXy − nEXxX
2
y + EX2

xX2
y )|N2

= {(N3 + 5N2 + 4N1)EXxXy|N1 + (N2 + 3N1 + N0)EXxXy|N0 + EX2
xX2

y

− 2((N3 + 3N2)(EXxX
2
y + EX2

xXy)|N2 + (N2 + 2N1)(EXxX
2
y + EX2

xXy)|N1

+ (N1 + N0)(EXxX
2
y + EX2

xXy)|N0)}|N2

= 5EXxXy|N1 + EXxXy|N0 + EX2
xX2

y |N2 − 3{EX2
xXy|N2 + EXxX

2
y |N2}

− {EX2
xXy|N1 + EXxX

2
y |N1}

= 5πxπy + πC + πxπy(πA + πB + 6πC) − 3{π2
xπy + πxπ

2
y}

− {(3π2
C + 3πAπC + πAπB + πBπC) + (3π2

C + 3πBπC + πAπB + πAπC)}

= πxπy{5 + πA + πB + 6πC − 3πx − 3πy} − 6π2
C − 2πAπB − 4πAπC − 4πBπC + πC

= πxπy{5 − 2πA − 2πB} − 6π2
C − 2πAπB − 4πAπC − 4πBπC + πC
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= −2πxπy(πA + πB) + (πx + πy)(πA + πB) − (πx + πy)(πA + πB)

− 6π2
C − 2πAπB − 4πAπC − 4πBπC + 5πxπy + πC

= (πx + πy − 2πxπy)(πA + πB) + 1/2(πx + πy − 2πxπy) − (πx + πy)(πA + πB)

− 6π2
C − 2πAπB − 4πAπC − 4πBπC + 5πxπy + πC − 1/2(πx + πy − 2πxπy)

=
1

2
{(πx(1 − πy) + (1 − πx)πy)(2πA + 2πB + 1) − 2(πx + πy)(πA + πB)

− 12π2
C − 4πAπB − 8πAπC − 8πBπC + 10πxπy + 2πC − (πx + πy − 2πxπy)}

=
1

2
{(πxπ̄y + π̄xπy)(2πA + 2πB + 1) − 2(πA + πB + 2πC)(πA + πB)

− 12(π2
C + πAπB + πAπC + πBπC) + 8πAπB + 4πAπC + 4πBπC + 12πxπy + 2πC − (πx + πy)}

=
1

2
{(πxπ̄y + π̄xπy)(2πA + 2πB + 1)

− 2(π2
A + 2πAπB + π2

B + 2πAπC + 2πBπC)

− 12πxπy + 12πxπy + 8πAπB + 4πAπC + 4πBπC + 2πC − (πA + πB + 2πC)}

=
1

2
{(πxπ̄y + π̄xπy)(2πA + 2πB + 1)

− 2π2
A − 2π2

B + 4πAπB − πA − πB + 4πAπC − 4πAπC + 4πBπC − 4πBπC}

=
1

2
{(πxπ̄y + π̄xπy)(2πA + 2πB + 1) − 2(πA − πB)2 − (πA + πB)}

EXxXyX̄xX̄y|N1

= (n2
EXxXy − nEX2

xXy − nEXxX
2
y + EX2

xX2
y )|N1

= {(N3 + 5N2 + 4N1)EXxXy|N1 + (N2 + 3N1 + N0)EXxXy|N0 + EX2
xX2

y

− 2((N3 + 3N2)(EXxX
2
y + EX2

xXy)|N2 + (N2 + 2N1)(EXxX
2
y + EX2

xXy)|N1

+ (N1 + N0)(EXxX
2
y + EX2

xXy)|N0)}|N1
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= 4EXxXy|N1 + 3EXxXy|N0 + EX2
xX2

y |N1 − 2{EX2
xXy|N2 + EXxX

2
y |N2}

− {EX2
xXy|N0 + EXxX

2
y |N0}

= 4(πAπB + πAπC + πBπC + π2
C) + 3πC + (7π2

C + 3πBπC + 3πAπC + πAπB)

− 2{(3π2
C + πBπC + 3πAπC + πAπB) + (3π2

C + 3πBπC + πAπC + πAπB)}

− (πC + πC)

= πAπB + πC − πAπC − πBπC − π2
C

= πxπ̄y − πA = πyπ̄x − πB

EXxXyX̄xX̄y|N0 = (n2
EXxXy − nEX2

xXy − nEXxX
2
y + EX2

xX
2
y )|N0

= {(N3 + 5N2 + 4N1)EXxXy|N1 + (N2 + 3N1 + N0)EXxXy|N0 + EX2
xX2

y

− 2((N3 + 3N2)(EXxX
2
y + EX2

xXy)|N2 + (N2 + 2N1)(EXxX
2
y + EX2

xXy)|N1

+ (N1 + N0)(EXxX
2
y + EX2

xXy)|N0)}|N0

= EXxXy|N0 + EX2
xX2

y |N0 − {EX2
xXy|N0 + EXxX

2
y |N0}

= πC + πC − (πC + πC) = 0.



Appendix D

Computation of Asymptotic Variance

for Model I of New MH estimator -

Chapter 4

In Subsection 4.5.2 of Chapter 4 on page 135, we consider the asymptotic variance

under the large-stratum limiting model of the newly proposed Mantel-Haenszel

estimator Ψ̃xy. In this part of the appendix, we use the delta method to compute

this asymptotic variance.

We can write ω̃xy|k/N as

ω̃xy|k/N =
nk

N

nk

n′
k

{(
Xx|k
nk

X̄y|k
nk

+
1

nk

XA|k
nk

)
− Ψxy

(
Xy|k
nk

X̄x|k
nk

+
1

nk

XA|k
nk

)}

and define g(p) as

g(pk) = αk

{
Xx|k
nk

X̄y|k
nk

− Ψxy

Xy|k
nk

X̄x|k
nk

}

= αk

{
(pA|k + pC|k)(1 − pB|k − pC|k) − Ψxy(pB|k + pC|k)(1 − pA|k − pC|k)

}
,

309
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where the sample proportions are defined as pk = (pA, pB, pC) with p = X
n

. In the

same way, we define πk := (πA|k, πB|k, πC|k).

According to the multivariate C.L.T. (Theorem 2.8.6 on page 75),
√

N(pk −

πk)→d N(0,Σk) with

Σk = (Σ)C
i,j=A = α−1

k {Diag(πk) − πkπ
T
k }.

The random variables
√

N · pk and
√

N · (ω̃xy|k/N) consists of two summands,

each a product of the sample proportions (one has additional factor Ψ), and fac-

tors αk and nk

N
nk

n′
k
. Because nk

N
nk

n′
k

converges to αk, we conclude that the limiting nor-

mal distributions of the summands of both expressions are identical. It follows

that
√

N · pk and
√

N · (ω̃xy|k/N) also have the same limiting normal distribution.

In the same way as we wrote g(pk), we can write

g(πk) := αk

{
πx|kπ̄y|k − Ψxyπy|kπ̄x|k

}

= αk

{
(πA|k + πC|k)(1 − πB|k − πC|k) − Ψxy(πB|k + πC|k)(1 − πA|k − πC|k)

}
.

Clearly, g(p) →p g(πk)[= E g(p)], because p →p πk, but also ω̃xy|k/N →p g(πk).

We apply now the delta method (Theorem 2.8.4 on page 75) to g(pk). The delta

method says that
√

N{g(pk)−g(πk)} is asymptotically normally distributed with

mean zero and variance Vg = BTΣkB, where B = ∂g
∂p

is the partial derivative

matrix evaluated at πk.

Next we compute the derivatives. For convenience, we write ∂g/∂π for ∂g/∂p|p=π.

We compute

∂g

∂πA|k
= αk

[
π̄y|k + Ψπy|k

]
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∂g

∂πB|k
= −αk

[
πx|k + Ψπ̄x|k

]

∂g

∂πC|k
= αk

[
π̄y|k + Ψπy|k

]
−αk

[
πx|k + Ψπ̄x|k

]
.

Now we write Vg = ∂g
∂π

Σk(
∂g
∂π

)T as

Vg =

C∑

i,j=A

∂g

∂πi|k

∂g

∂πj|k
Σij|k =

∑

i

(πi − π2
i )

(
∂g

∂πi|k

)2

−
C∑

i=A

∑

j 6=i

πiπj
∂g

∂πi|k

∂g

∂πj|k

=

{
πA|k

(
∂g

∂πA|k

)2

+ πB|k

(
∂g

∂πB|k

)2

+ πC|k

(
∂g

∂πC|k

)2
}

−
{

πA|k
∂g

∂πA|k
+ πB|k

∂g

∂πB|k
+ πC|k

∂g

∂πC|k

}2

= αk

{
πA [π̄y + Ψπy]

2 + πB [πx + Ψπ̄x]
2 + πC [(π̄y + Ψπy) − (πx + Ψπ̄x)]

2}

− αk {πA [π̄y + Ψπy] + πB [πx + Ψπ̄x] + πC [(π̄y + Ψπy) − (πx + Ψπ̄x)]}2

= αk{πx[π̄
2
y + Ψ2π2

y + 2Ψπ̄yπy] + πy[π
2
x + Ψ2π̄2

x + 2Ψπxπ̄x]

− 2πC [πxπ̄y + Ψ2π̄xπy + Ψπxπy + Ψπ̄xπ̄y] − [(πxπ̄y − Ψπ̄xπy) + (Ψ − 1)πxπy]
2}.

Under the common odds ratio assumption πxπ̄y − Ψπ̄xπy = 0 and Vg = αk{T1 +

Ψ2T2 + 2ΨT3}, where

T1 = πxπ̄
2
y + πyπ

2
x − 2πCπxπ̄y − π2

xπ
2
y

T2 = πyπ̄
2
x + πxπ

2
y − 2πCπyπ̄x − π2

xπ
2
y

T3 = πxπyπ̄y + πxπyπ̄x − πC π̄xπ̄y − πCπxπy + π2
xπ

2
y .

We re-express T1 as

T1 = πxπ̄
2
y + πyπ

2
x − 2πCπxπ̄y − π2

xπ
2
y

= πxπ̄
2
y + π2

x(−π̄y + 1) − 2πCπxπ̄y − π2
xπy(−π̄y + 1)
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= πxπ̄y(π̄y − πx − 2πC + πxπy) + π2
x(1 − πy)

= πxπ̄y(π̄y − 2πC + πxπy),

similarly T2 = πyπ̄x(π̄x − 2πC + πxπy). Let us write T3 as

= πxπyπ̄y + πxπyπ̄x − πC π̄xπ̄y − πCπxπy + π2
xπ

2
y

= (−π̄x + 1)πyπ̄y + πxπyπ̄x − 2πC(−π̄x + 1)πy − πC + πCπx + πcπy + (−π̄x + 1)πxπ
2
y

= π̄xπy(−π̄y + 2πC − πxπy) + πyπ̄y − 2πCπy + πCπx + πCπy + πxπ
2
y − πC + πxπ̄xπy

= π̄xπy(−π̄y + 2πC − πxπy) + πyπ̄y + πC(πx − πy) + πxπy(πy + π̄x) − πC .

In the same way, we can express T3 also as

π̄yπx(−π̄x + 2πC − πxπy) + πxπ̄x + πC(πy − πx) + πxπy(πx + π̄y) − πC ,

yielding

2·T3 = π̄xπy(−π̄y+2πC−πxπy)+π̄yπx(−π̄x+2πC−πxπy)+πxπ̄x+πyπ̄y+2(πxπy−πC).

Under the common odds ratio assumption, we summarise

T1 + Ψ2T2 + 2ΨT3 = πxπ̄x + πyπ̄y + 2(πxπy − πC).

Finally, we can write

[
lim

N→∞
N · Vara(ω̃xy|k/N) = lim

N→∞

1

N
Vara(ω̃xy|k) =

]
Vg = αk{πxπ̄x+πyπ̄y+2(πxπy−πC)}.

(D.1)



Appendix E

Normative Aging Study - Chapter 7

Table E.1: Normative Aging Study (NAS) - data set for all 682 men
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1 1 66 4 6.0 0.1360 2 1 75 4 4.5 0.2210 3 1 70 4 7.6 0.0681
4 3 67 4 8.6 0.4350 5 1 69 3 9.5 0.0245 6 1 67 1 6.1 0.0360
7 2 69 1 6.5 2.6730 8 1 74 4 4.4 0.1717 9 2 68 1 7.0 0.0810

10 1 66 1 6.5 0.1870 11 1 75 1 3.6 0.0520 12 1 68 4 7.6 0.1090
13 1 71 1 4.8 0.0980 14 1 67 4 7.4 0.2160 15 1 94 1 5.6 0.0100
16 2 76 4 6.1 0.2270 17 1 78 4 6.1 0.1420 18 1 74 1 5.1 0.1120
19 2 77 1 7.4 0.4100 20 3 71 4 4.8 0.1010 21 1 77 4 9.3 0.4570
22 2 86 1 7.5 0.5610 23 1 82 4 5.4 0.5400 24 1 67 4 4.4 0.0470
25 3 77 1 4.6 0.0108 26 2 82 1 5.5 0.1040 27 1 78 4 8.5 0.4160
28 1 76 4 6.0 0.4330 29 2 72 1 7.7 2.3130 30 2 81 4 5.6 0.0510
31 1 82 3 5.6 0.0250 32 1 74 1 8.9 0.1290 33 2 77 4 5.8 0.1650
34 3 62 4 7.9 1.3870 35 1 77 4 5.0 0.2300 36 2 63 4 7.0 0.4940
37 1 72 4 6.8 0.1450 38 2 82 4 8.4 0.0183 39 1 84 4 4.9 0.0400
40 1 78 4 5.5 0.0340 41 1 86 4 5.7 0.5440 42 2 77 1 6.9 0.2730
43 2 82 4 5.4 0.1110 44 1 76 4 5.3 0.1450 45 3 85 1 9.8 0.1987
46 1 70 1 5.4 0.2680 47 1 83 4 5.3 0.0990 48 2 77 4 6.6 0.0140
49 2 75 4 9.1 0.0059 50 2 69 4 6.1 0.1420 51 3 69 4 5.9 0.3580
52 2 71 1 6.1 0.0660 53 1 70 4 4.2 0.2400 54 1 69 1 7.5 0.0820
55 1 84 1 5.2 0.3390 56 1 70 4 5.6 0.1680 57 1 81 1 4.3 0.1090
58 1 70 4 4.9 0.9700 59 2 68 4 5.9 0.0190 60 1 80 4 5.7 0.1620
61 2 68 4 4.9 0.0860 62 1 74 1 6.2 0.2410 63 2 76 4 5.3 0.4060
64 1 89 4 5.7 0.0710 65 2 77 4 4.9 0.1170 66 3 69 4 5.1 1.8880
67 1 74 1 7.6 0.6500 68 3 74 4 12.4 0.0860 69 1 73 4 5.7 0.4970
70 3 69 1 6.9 0.0107 71 1 79 4 36.6 0.1330 72 1 78 1 4.8 0.0026
73 1 75 4 4.2 0.6700 74 2 77 4 6.3 0.1040 75 2 79 1 8.7 0.0360
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76 1 82 4 8.3 0.5820 77 1 78 1 4.2 0.2750 78 1 66 4 5.8 0.1280
79 1 68 1 5.8 0.3330 80 1 81 1 5.1 0.2460 81 2 75 3 8.3 0.5880
82 1 87 4 5.0 0.6550 83 1 78 4 6.0 0.3210 84 2 69 4 6.5 0.1690
85 1 73 1 6.1 0.0650 86 1 68 4 6.8 0.0610 87 1 79 4 7.9 0.1940
88 1 75 4 6.4 0.0570 89 2 81 1 6.5 0.1670 90 2 69 4 4.4 0.1570
91 1 71 4 4.8 0.1950 92 1 65 3 12.1 0.0153 93 1 74 1 6.3 0.1050
94 1 68 4 6.9 0.3360 95 1 73 4 7.8 0.0043 96 1 79 1 6.2 0.2830
97 1 77 4 7.2 0.0176 98 1 71 1 8.8 1.3970 99 2 74 1 7.8 0.1480

100 3 73 4 5.6 0.1120 101 3 68 4 6.5 0.1630 102 1 70 4 6.4 0.0610
103 2 69 4 5.6 0.1400 104 2 66 1 9.3 0.0970 105 3 76 1 6.6 0.0113
106 1 68 4 8.5 0.0073 107 1 66 4 5.4 0.0320 108 1 71 1 6.5 0.2290
109 1 71 4 7.7 0.0840 110 1 74 4 7.4 0.1010 111 1 66 4 7.3 0.0660
112 1 67 1 7.1 0.6340 113 1 83 4 8.6 5.5350 114 1 77 4 5.5 0.3720
115 1 78 1 5.7 0.1990 116 1 77 4 8.5 2.0750 117 3 72 4 4.3 0.2420
118 1 69 4 4.1 0.1580 119 1 72 4 5.2 0.0820 120 3 85 1 7.4 0.0810
121 3 74 4 8.8 0.2840 122 1 83 4 5.4 0.0490 123 2 79 4 7.7 0.3780
124 1 75 4 5.5 0.1150 125 2 64 1 8.4 0.6000 126 1 77 4 7.1 0.1710
127 1 80 1 5.4 0.0610 128 1 83 1 7.8 0.0389 129 1 73 4 4.2 0.1900
130 1 80 4 4.5 0.2240 131 1 80 1 5.1 0.2670 132 1 80 1 7.3 0.0580
133 2 83 1 6.4 1.4690 134 1 76 1 9.1 1.6740 135 3 86 1 4.2 0.6000
136 1 76 4 5.2 0.0680 137 3 71 4 4.6 0.0560 138 2 81 4 4.9 0.0980
139 3 76 4 8.8 0.1820 140 3 76 4 5.6 0.0147 141 3 79 4 4.1 0.2730
142 1 74 1 4.1 0.2890 143 1 86 4 15.1 0.8600 144 1 75 4 5.3 0.3010
145 3 78 1 6.5 0.3180 146 1 84 1 5.4 0.0890 147 3 69 4 10.8 0.4380
148 3 77 3 5.9 0.0211 149 1 81 4 5.4 0.6800 150 1 70 1 5.5 0.4770
151 2 74 1 8.1 1.4870 152 2 74 1 4.4 0.4200 153 1 68 4 4.8 0.1970
154 1 80 3 10.8 0.1410 155 1 83 4 8.3 0.2020 156 1 68 4 5.4 0.5010
157 2 63 4 5.5 0.2090 158 1 79 4 4.8 0.2040 159 3 78 4 6.5 0.1080
160 1 80 4 5.9 0.0418 161 1 74 4 6.6 0.1160 162 1 72 4 6.1 0.3830
163 2 84 4 7.0 0.2790 164 1 75 4 5.4 0.1910 165 1 67 3 4.8 0.0610
166 1 71 4 5.9 0.0058 167 1 69 4 5.3 0.2710 168 1 65 4 6.0 0.1440
169 2 73 4 8.0 0.3090 170 1 68 4 7.5 0.3030 171 1 89 4 10.4 0.1220
172 1 75 4 11.0 0.8480 173 3 62 4 3.3 0.0760 174 1 75 4 6.1 0.2500
175 1 81 1 5.9 0.1270 176 1 71 1 4.7 0.9500 177 1 82 4 11.1 17.2800
178 1 77 4 5.2 0.0760 179 1 75 3 3.4 0.4130 180 1 76 4 6.1 0.2500
181 1 75 1 5.3 0.0420 182 3 87 1 6.1 0.9490 183 1 69 4 9.3 0.3300
184 1 78 3 6.1 0.2520 185 1 86 1 6.2 0.4540 186 3 73 1 6.6 0.8750
187 1 71 4 4.8 0.2400 188 3 74 3 5.4 0.1430 189 2 82 4 6.0 0.2170
190 1 71 4 6.6 0.1480 191 1 68 4 4.4 0.4700 192 1 84 1 5.8 0.3530
193 3 74 4 7.2 0.2220 194 1 81 4 6.6 0.1660 195 3 75 1 4.6 0.1500
196 1 100 1 8.1 0.2390 197 1 80 4 7.5 0.6940 198 1 91 1 6.7 0.0551
199 2 68 1 5.8 0.1730 200 1 80 4 5.9 0.1080 201 3 70 4 6.4 0.5100
202 1 71 1 4.2 0.2270 203 1 67 4 5.2 0.1380 204 1 71 4 3.9 0.6840
205 3 68 4 7.2 0.3750 206 1 86 1 7.0 0.0590 207 1 79 4 6.7 0.2220
208 1 86 1 4.9 0.0120 209 1 76 4 6.8 0.3930 210 2 64 3 5.6 0.0550
211 1 89 4 7.0 0.0383 212 1 88 1 8.8 0.0850 213 1 89 1 10.1 0.2310
214 1 79 4 4.8 0.0980 215 1 81 4 8.2 2.4900 216 1 80 1 3.4 0.0101
217 1 81 4 5.3 0.0250 218 2 73 4 6.9 0.0660 219 1 65 4 4.7 0.1530
220 1 77 1 6.7 0.2100 221 1 65 1 5.3 0.0730 222 1 74 3 10.1 0.2330
223 1 84 1 5.4 0.6180 224 2 71 3 13.4 1.7440 225 1 87 4 6.1 0.0690
226 1 79 4 5.7 0.1760 227 3 78 1 7.3 0.1200 228 2 80 1 8.3 0.0223
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229 1 79 1 6.1 0.0880 230 1 72 4 4.5 0.6100 231 1 75 3 7.6 0.3840
232 1 82 1 7.2 0.2100 233 2 70 4 9.1 1.9260 234 1 76 4 8.0 0.0840
235 1 74 1 5.3 0.5170 236 1 75 4 7.3 0.5200 237 1 70 1 5.3 0.0790
238 1 86 4 8.8 0.0460 239 2 71 1 6.8 0.0530 240 2 86 1 8.7 0.9110
241 3 77 1 5.7 0.6800 242 1 77 4 5.8 0.1560 243 1 79 4 4.5 0.0850
244 3 84 1 5.0 0.0900 245 1 83 4 5.6 0.3100 246 1 83 1 4.1 0.1360
247 1 76 1 6.8 0.1160 248 2 71 4 14.6 8.6280 249 1 79 4 5.4 0.0660
250 1 66 1 4.9 0.1060 251 1 74 1 7.3 0.1370 252 1 78 4 8.9 0.0390
253 1 80 4 6.2 0.2950 254 2 68 4 5.4 0.0144 255 1 82 4 6.0 0.1660
256 3 68 4 5.6 0.3920 257 1 79 4 2.1 0.0600 258 3 69 4 9.9 0.3430
259 1 77 1 6.6 0.8710 260 2 82 4 8.8 0.6300 261 2 76 4 4.6 0.4600
262 1 77 1 4.2 0.8420 263 1 69 4 4.3 0.0150 264 1 61 3 12.0 0.3330
265 1 65 4 4.7 0.4250 266 2 76 4 5.7 0.0390 267 1 78 4 3.9 0.1470
268 2 70 4 5.6 0.0160 269 1 79 4 8.2 0.2220 270 1 72 4 6.4 0.0480
271 1 69 4 6.3 0.2470 272 1 70 4 6.4 0.2990 273 1 71 4 5.9 0.1320
274 1 69 4 4.7 0.2910 275 1 64 4 6.7 0.5890 276 1 79 4 3.6 0.6000
277 1 71 4 2.7 0.1140 278 2 72 1 6.4 0.4600 279 2 81 4 9.2 0.2150
280 2 75 3 10.1 0.5760 281 3 79 4 6.9 0.1260 282 2 73 3 6.8 0.1610
283 1 90 4 8.7 0.0022 284 1 89 4 7.7 0.1350 285 1 89 1 6.9 0.0990
286 3 70 4 6.2 1.8610 287 3 82 4 4.7 0.1030 288 3 70 4 4.7 0.0420
289 1 71 4 6.5 0.0440 290 1 79 4 5.5 0.8000 291 1 71 4 41.1 0.0640
292 1 73 1 5.3 0.0570 293 1 72 1 3.7 0.0760 294 3 75 4 4.3 0.0080
295 3 70 1 6.6 0.5400 296 3 79 4 6.0 0.0920 297 1 78 1 7.9 0.2160
298 1 76 4 7.6 0.2050 299 1 74 4 6.5 0.4080 300 1 66 4 7.0 0.2500
301 1 78 4 6.7 0.4710 302 3 78 4 5.3 0.3580 303 1 74 4 6.7 0.6710
304 2 77 4 4.9 0.0022 305 1 83 4 4.3 0.1967 306 1 74 1 4.9 0.0259
307 1 73 4 8.0 0.1760 308 2 73 4 6.8 0.0310 309 2 77 4 5.6 0.2260
310 1 78 4 7.1 1.2690 311 1 72 1 5.9 0.1340 312 2 75 4 4.8 0.1110
313 1 70 4 4.6 0.1650 314 1 76 1 9.0 0.4050 315 1 68 4 4.4 0.7170
316 1 75 4 4.7 0.0510 317 1 70 4 4.9 0.3400 318 1 69 4 7.1 0.1130
319 1 70 4 7.4 0.0720 320 3 80 4 7.8 0.0770 321 3 66 4 7.0 0.6480
322 3 80 4 4.8 0.0070 323 1 76 4 7.1 0.1970 324 1 69 1 6.3 0.1670
325 1 70 4 6.9 1.4700 326 1 77 4 10.7 0.3010 327 1 73 4 5.3 0.3160
328 1 63 4 4.1 0.0710 329 2 92 4 5.9 0.2214 330 1 68 4 3.5 0.0800
331 2 85 4 7.0 0.0185 332 1 75 4 8.9 3.7530 333 1 69 4 2.6 0.3110
334 3 71 4 4.6 0.0081 335 1 90 1 5.8 0.0990 336 2 73 4 5.6 0.0141
337 1 59 1 5.1 0.1330 338 3 71 4 8.4 0.0208 339 1 67 4 7.1 2.2090
340 1 66 1 5.3 0.3470 341 3 68 4 6.8 0.1610 342 1 76 1 8.6 0.4000
343 3 70 1 7.4 0.0550 344 1 69 1 5.7 0.0200 345 1 73 4 4.4 0.0098
346 1 78 1 4.2 0.3870 347 1 69 4 4.7 0.1050 348 3 72 4 5.7 0.3210
349 2 72 1 7.1 0.2070 350 1 69 4 5.7 0.0930 351 1 72 3 7.4 0.0144
352 3 74 4 4.6 0.0300 353 2 82 4 6.0 0.1710 354 1 73 1 6.2 0.0407
355 1 82 1 6.6 0.1060 356 1 70 4 4.9 0.1630 357 1 75 1 6.0 0.0810
358 2 78 4 3.7 0.4800 359 1 67 4 8.0 0.1630 360 1 73 4 5.7 0.1170
361 2 68 1 6.5 0.2700 362 1 78 4 6.4 0.3980 363 1 72 4 4.6 0.0790
364 1 78 1 7.4 0.0290 365 1 64 4 5.7 0.1380 366 1 75 4 9.2 0.2700
367 1 68 4 5.4 0.0690 368 1 78 4 7.7 0.5210 369 1 70 1 4.4 0.0620
370 1 77 4 7.0 0.4030 371 1 71 4 7.7 1.8430 372 1 75 1 6.9 0.3640
373 1 73 4 10.0 1.5940 374 1 68 4 16.4 0.0370 375 1 65 1 5.1 0.0480
376 1 65 4 6.0 0.1260 377 2 75 4 6.9 0.2450 378 3 74 4 5.9 0.2290
379 1 70 1 20.6 0.0220 380 1 76 1 6.5 0.1710 381 1 69 1 7.4 0.1520
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382 1 78 1 5.4 0.0053 383 1 62 4 5.5 0.2650 384 1 70 4 5.0 0.0950
385 1 77 1 6.3 0.0780 386 1 73 4 5.3 0.0830 387 1 71 1 5.6 0.0020
388 1 77 1 6.2 0.0320 389 1 89 4 6.1 0.2420 390 2 75 4 4.5 0.2250
391 1 80 4 5.3 0.5950 392 1 62 4 5.1 0.0950 393 3 66 4 7.0 6.7300
394 1 61 4 4.1 0.1200 395 1 80 4 4.7 0.0840 396 3 76 1 6.8 0.2880
397 1 73 4 6.4 0.2450 398 1 63 3 9.2 0.3470 399 1 71 4 5.3 0.3400
400 1 73 4 4.7 0.7400 401 1 75 1 5.0 0.0560 402 2 85 1 6.2 0.2360
403 1 80 4 6.3 0.3460 404 1 65 3 7.3 0.4270 405 1 70 4 8.7 0.0560
406 1 89 1 5.1 0.1310 407 1 70 1 6.7 0.2410 408 1 68 4 5.9 0.0330
409 3 69 1 5.2 0.3990 410 1 80 4 5.4 0.3420 411 1 79 4 6.7 0.1030
412 2 70 4 4.9 0.6300 413 1 67 4 4.2 0.0770 414 1 71 1 6.8 0.1380
415 1 69 4 9.1 0.7570 416 3 76 4 7.8 0.1720 417 1 79 4 3.8 0.0100
418 1 75 1 6.5 0.0397 419 1 70 4 6.1 0.9250 420 2 74 4 8.2 0.5690
421 1 78 4 6.1 0.3010 422 1 73 4 6.2 0.5770 423 2 70 4 5.8 0.0840
424 1 67 4 7.6 0.1700 425 1 91 1 5.3 0.1440 426 1 79 4 5.7 0.1920
427 1 72 4 5.5 0.1250 428 1 84 1 8.3 0.1500 429 1 76 4 5.6 0.1370
430 1 71 3 7.5 0.1130 431 3 71 1 8.5 2.2100 432 1 75 1 6.3 2.5210
433 2 79 4 9.4 0.2620 434 3 61 4 6.1 0.0830 435 1 82 1 4.4 0.2240
436 2 76 4 7.1 0.4030 437 1 68 4 8.3 0.3530 438 1 60 4 7.6 0.3280
439 1 86 4 4.8 0.2000 440 1 64 4 3.0 0.1000 441 1 74 4 7.7 0.7200
442 2 64 4 8.0 0.1020 443 1 73 4 6.6 0.1700 444 1 70 1 5.3 0.0750
445 2 75 1 7.2 0.1480 446 1 81 3 6.8 0.6520 447 1 66 4 10.0 0.1620
448 1 67 4 5.8 0.0770 449 2 78 4 4.0 0.0640 450 1 76 4 8.0 0.4720
451 1 65 1 4.1 0.0320 452 1 75 4 6.3 0.1230 453 2 70 4 7.2 0.5290
454 1 81 4 6.6 0.1060 455 1 76 4 7.0 0.8300 456 1 80 1 7.0 0.1260
457 1 68 4 4.5 0.7070 458 3 87 1 59.1 0.0180 459 1 75 1 2.2 0.3620
460 1 65 3 7.4 0.1840 461 3 70 4 6.2 0.2900 462 1 76 4 5.2 0.1510
463 1 61 4 4.9 0.1130 464 1 74 4 10.4 0.0297 465 1 63 3 6.1 0.1080
466 1 62 1 5.3 0.3030 467 1 74 4 7.4 0.2370 468 1 86 4 23.0 0.0400
469 1 74 4 4.3 0.1200 470 1 83 4 6.6 0.1260 471 1 67 1 5.6 0.3400
472 1 70 1 5.6 0.0025 473 1 69 4 5.1 0.7130 474 1 80 4 6.3 0.6570
475 1 80 1 5.8 0.1160 476 1 66 4 4.9 0.0750 477 1 66 1 6.7 0.0700
478 1 75 4 4.5 0.0660 479 1 80 4 10.2 0.6860 480 1 80 4 8.0 0.3430
481 1 71 1 5.2 0.5560 482 2 62 1 5.8 0.5370 483 3 76 1 4.6 0.3550
484 1 75 4 8.0 0.4360 485 1 76 4 7.5 0.1440 486 1 68 4 5.8 0.1500
487 2 78 4 7.6 0.1220 488 1 68 4 4.9 0.4300 489 2 68 3 11.0 0.6560
490 1 75 4 5.1 0.7700 491 1 68 4 5.9 0.0770 492 1 69 1 6.6 0.3490
493 1 69 4 4.6 0.4380 494 1 62 4 7.1 0.1770 495 1 78 1 11.2 0.7500
496 1 70 4 4.8 0.2290 497 1 70 4 6.0 0.6020 498 1 67 4 8.9 0.3190
499 1 76 4 4.8 0.3830 500 3 73 4 8.2 0.5480 501 1 80 4 6.1 0.2990
502 3 60 4 7.2 0.2630 503 1 86 1 5.9 0.0050 504 1 81 4 5.6 0.1500
505 1 72 1 4.8 0.0790 506 1 71 4 5.5 0.0630 507 3 66 4 6.6 0.6800
508 1 65 1 6.3 0.0088 509 1 80 1 5.8 0.0230 510 1 70 4 7.0 0.0990
511 1 77 1 5.9 0.5900 512 3 80 4 6.7 0.0071 513 1 64 3 8.5 0.5290
514 2 66 1 7.4 0.1910 515 1 71 4 8.1 0.7460 516 3 75 4 5.7 0.8000
517 1 76 1 4.6 0.6000 518 1 78 1 5.5 0.8350 519 3 74 1 6.4 0.3640
520 1 75 4 3.4 0.0710 521 3 80 4 3.6 0.2010 522 1 64 3 11.7 0.1620
523 1 62 4 6.7 0.9700 524 1 66 1 5.1 0.1060 525 2 67 4 6.3 0.3430
526 1 76 1 6.0 0.2160 527 3 62 3 10.4 0.1877 528 1 74 4 4.0 0.0106
529 1 78 1 3.1 0.0220 530 1 65 4 3.7 0.7030 531 2 79 4 8.6 0.0062
532 1 86 1 6.6 0.5260 533 1 84 1 5.9 0.3910 534 1 78 1 4.5 0.2630
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535 1 74 1 5.5 0.0850 536 2 76 4 4.8 0.2100 537 1 80 1 9.6 0.1670
538 2 77 1 5.3 0.1200 539 2 62 4 6.7 0.0310 540 3 66 4 7.1 0.4390
541 1 72 4 6.4 0.2070 542 1 67 4 4.5 0.1420 543 1 73 4 6.6 0.6000
544 1 82 4 6.4 0.3810 545 1 72 1 6.4 0.4880 546 3 76 4 9.2 0.8120
547 1 70 4 5.5 0.2190 548 1 89 4 8.2 0.0490 549 1 71 4 6.9 0.0750
550 1 67 1 3.0 0.4400 551 1 72 4 5.8 0.3130 552 2 72 4 7.8 0.6350
553 1 81 4 6.4 0.0038 554 1 65 1 6.1 0.1880 555 2 72 4 6.2 0.0147
556 1 68 4 5.4 0.1540 557 1 61 4 5.2 0.4200 558 1 65 1 7.1 0.2520
559 1 63 1 5.9 0.0560 560 2 63 4 7.7 0.1530 561 1 75 4 6.0 0.0610
562 2 68 4 4.5 0.1360 563 2 80 4 5.3 0.1360 564 2 76 3 1.8 0.1960
565 1 67 1 6.8 0.2580 566 1 74 1 5.7 0.6900 567 1 84 1 6.0 0.0032
568 1 69 4 7.7 1.7540 569 2 69 4 5.6 0.3060 570 1 59 1 6.9 0.3980
571 3 80 4 6.9 0.3290 572 1 80 1 4.6 0.0210 573 2 85 4 6.1 0.1030
574 2 70 1 4.7 0.2770 575 1 91 4 5.6 2.4520 576 1 69 4 6.5 0.4640
577 1 78 1 5.6 0.0730 578 1 72 4 3.8 0.0170 579 1 64 1 3.3 0.1830
580 1 79 4 8.2 0.2510 581 1 70 4 6.7 0.4600 582 1 73 3 5.8 0.0400
583 1 77 4 6.9 0.2290 584 1 70 4 5.7 0.1890 585 1 78 4 4.7 0.1780
586 1 75 1 6.0 0.1210 587 1 79 1 6.4 0.1720 588 1 71 4 7.1 0.1920
589 2 71 4 7.1 0.1820 590 3 76 4 8.4 0.0026 591 1 65 1 6.7 0.2480
592 3 67 4 8.2 0.5250 593 3 76 4 8.3 0.1780 594 3 73 4 6.7 1.4830
595 1 76 1 6.0 0.0038 596 1 64 4 6.7 0.3120 597 1 77 4 5.7 0.3520
598 1 75 1 5.9 0.3800 599 1 75 4 10.1 0.2120 600 2 80 4 6.8 4.0940
601 1 75 4 7.4 0.0450 602 1 77 4 5.9 0.4170 603 1 83 4 5.4 0.2620
604 1 67 4 4.7 0.0320 605 2 64 1 4.6 0.6510 606 1 82 4 5.1 0.0019
607 1 77 1 6.6 0.0950 608 1 64 3 4.7 0.0530 609 2 77 4 5.5 2.4330
610 1 67 4 4.7 0.0470 611 1 69 1 5.9 0.0680 612 1 73 1 5.4 0.0021
613 1 79 1 5.9 0.1470 614 1 82 1 3.8 0.2470 615 1 75 4 5.7 0.0540
616 1 72 1 11.3 0.1920 617 1 67 4 5.2 0.0360 618 1 80 4 4.6 0.4140
619 1 78 4 5.2 0.0135 620 1 74 1 6.1 0.1370 621 1 66 4 3.9 0.1140
622 3 61 4 6.6 0.0600 623 3 78 4 5.9 0.2240 624 3 76 1 8.6 0.2840
625 1 61 4 7.6 0.0200 626 1 72 4 6.2 0.0173 627 3 73 4 4.6 0.4700
628 1 64 4 5.1 0.1470 629 3 74 1 6.0 0.5080 630 2 73 4 6.3 0.4350
631 1 64 4 5.1 0.3390 632 3 74 1 5.3 0.2960 633 1 74 1 6.1 0.0880
634 1 70 4 6.8 0.1280 635 3 89 4 10.5 0.1220 636 1 73 4 7.6 0.4600
637 2 71 4 6.5 0.2590 638 1 64 3 10.1 0.2390 639 1 67 4 4.6 0.0470
640 3 73 1 5.1 0.1730 641 1 79 1 6.6 0.6280 642 3 57 4 6.4 0.2910
643 3 76 4 4.0 0.1810 644 1 66 4 9.8 2.8820 645 2 78 4 4.6 0.5900
646 1 73 4 8.5 0.1300 647 1 79 4 10.3 0.4000 648 1 75 1 7.1 0.2700
649 2 65 4 9.4 0.1020 650 1 79 4 4.1 0.0710 651 3 66 1 8.2 0.2890
652 2 77 3 7.1 0.7700 653 1 64 4 5.5 0.3060 654 1 65 4 3.0 0.0330
655 1 69 4 5.2 0.3030 656 1 82 4 7.1 0.0070 657 1 55 4 6.9 0.0600
658 1 61 4 4.8 0.4180 659 1 79 1 5.9 0.0510 660 3 64 1 6.0 0.1050
661 1 78 1 5.5 0.1480 662 1 64 4 4.7 0.1500 663 1 74 4 6.5 0.0840
664 1 75 4 5.2 0.1080 665 3 74 4 8.2 1.7740 666 1 66 4 7.6 0.9900
667 1 72 4 6.3 1.5070 668 1 63 4 6.4 0.0042 669 1 67 4 7.5 0.2830
670 1 62 3 6.2 0.1910 671 1 80 4 5.8 0.1180 672 1 63 4 6.6 0.0479
673 1 62 4 8.4 0.2160 674 3 68 1 5.9 0.3710 675 2 64 4 7.0 0.9500
676 1 64 4 6.3 0.2410 677 1 63 4 5.5 0.0042 678 1 60 4 4.6 0.0730
679 1 60 4 4.9 0.0800 680 1 70 4 7.0 0.2010 681 1 81 1 6.7 0.0600
682 1 73 4 7.2 0.2670
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Symbols/Notations

Symbol Explanation

R, R
s, R

s×t space of real numbers with dimensions: 1, s and s × t

a ∈ R scalar

A ∈ R
s×t s × t real valued matrix

a ∈ R
s s dimensional real valued column vector

AT , aT transpose of matrix A, transpose of vector a

‖a‖p, |a| p-norm of vector a, absolute value of scalar a

Is identity matrix of size s × s

1s column vector containing only ones of size s

Diag(a1, . . . , an) diagonal matrix with elements a1, . . . , an on diagonal

Diag(A1, . . . ,An) block-diagonal matrix with matrices A1, . . . ,An on diagonal

⊗ Kronecker operator1{exp} or 1(exp) indicator function, is one if expression exp is true and zero

otherwise

→d convergence in distribution

→d convergence in probability

E, Var, Cov expectation, variance and covariance

Ea, Vara, Cova asymptotic expectation, variance and covariance

p̂ar, ˆpar indicates estimator for parameter par

∂f

∂y
partial derivative of function f with respect to y

χ2(k), df = k chi-squared distribution with k degree of freedom (df)
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