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Abstract 
 

Dynamic weighing has become an essential requirement in a diverse range of 

industries. Dynamic weighing is different from static weighing in that static weighing 

involves determining the weight while the product being weighed is stationary 

whereas dynamic weighing weighs the products while they are moving. Force sensors 

are commonly used in these weighing systems. In static weighing, the weighed object 

is placed stationary on the platform and the steady state of the sensor signal is used to 

assess the weight. However, in dynamic weighing the sensor signal may not reach the 

steady state during the brief time of weighing, hence the weight is assessed for 

example, by averaging the tail end of the signal after it has been through a low-pass 

filter. The resulting mass estimates can be inaccurate for faster heavier items. It is 

useful to consider better ways of estimating the true weight, in high speed weighing 

applications.  

The proposed method is to employ the 1-D Kalman filter algorithm to estimate the 

optimal state of the signal. The improved steady state signal is then used in weight 

estimation. The proposed method has been tested using data collected from a loadcell 

when different masses pass over the loadcell. The results show a significant 

improvement in the filtered signal quality which is then used to improve the weight 

assessment.    
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Chapter 1.0  

Introduction 

 

1.1 Dynamic weighing  

Dynamic weighing refers to the system that weighs products while they are being 

conveyed over a weighing platform within a production line. Force sensors are 

commonly used in both of these weighing systems. In static weighing, the weighed 

object is placed stationary on the platform and the steady state of the sensor signal is 

used to assess the weight. However, in dynamic weighing the sensor signal may not 

reach the steady state hence the weight is assessed by averaging the tail end of the signal. 

It is, therefore, necessary to determine the average value of the signal in the fastest 

possible time, in high speed weighing applications.  

 

1.2 The need for dynamic weighing  

Dynamic weighing has become an essential requirement in many industries. It 

significantly increases the productivity and efficiency that results in reduction in costs 

and increased profits.  

The dynamic weighing systems are developed and available in a diverse range of 

applications. Weighing in motion (WIM) applications are designed to capture and record 

the vehicle weights that are useful in bridge and pavement designs, enforcing size and 

weight restrictions. This information is then used by road transport authorities and 

administrative departments for planning and legislative processes. 

Process weighing systems are employed in recipe formulation and control in 

manufacturing, food and beverage, bakery, chemical, concrete and pharmaceutical 

industries.  

In the area of mass production, products are weighed while they are in motion. The 

weight information are then used for other quality control purposes. The products range 
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from packaging, bottles, fruit and vegetables and many more. The dynamic weighing 

systems also known as ‘checkweigher’ have been a part of production systems for 

decades.  

The dynamic weighing allows automation of the weighing process and it has become an 

integral part of today’s automated production processes.  

Precise weight measurements are needed to generate the product labels including the 

price which is weight dependent. Weighing accuracy is also important as the weight can 

be translated to the other physical quantities of the product being weighed which in turn 

is used to decide the quality and the value of the product.  

Manufacturers must ensure that the weighed product meets the minimum specification 

laid down by law or contract. However, the products should not exceed the specifications 

which results in giving the customers more than they pay for. 

As the new developments of technology result in increase of the production rates, there 

is an increasing need in industry for high speed checkweighing systems with greater 

accuracy, higher reliability and enhanced control systems. This has been brought about 

by economic and legal factors.  

 

1.3 Current developments 

When today’s dynamic weighing systems are used, they capture and record the required 

data within a few seconds and 100% of manufactured products are checked. The 

advantages of checkweighers go beyond the speed and 100% weight assessment. There 

are stations for quality assurance integrated into the same production facility and they 

use the information captured by the checkweighers.  

There are several different designs of checkweighers depending on their application 

requirements. The primary components of a checkweigher are an in-feed section, a 

weighing platform and an out-feed section (The checkweighing guide, 2016). 

Items are fed onto the weighing conveyor (Weigh table) from the in-feed conveyor which 

is typically mounted on a force transducer. A signal processing unit receives a signal 

from the force sensor and estimates a value of the weight for the product that is being 

passed over the weigh table.   



Introduction 

3 

 

 

 

 

1.4 The Weighing technology 

The weighing technology is required to demonstrate different characteristics depending 

on the application of the checkweigher. The required level of accuracy, throughput, 

environmental conditions at the installation site and the product specifications are key 

considerations in selecting a suitable checkweigher for a specific application. 

Environmental conditions such as temperature, humidity and undesirable vibrations play 

a considerable role in checkweigher accuracy.  

  

For precision in weighing products, the weighing cell or the weighing sensor technology 

and the signal process method are the most important components in the checkweigher.  

There two types of weighing sensor technologies that are commonly available: 

(laboratory balances, n.d.). 

• Electromagnetic Force Compensation (EMFC) type.  

• Electro-mechanical Compensation type (Commonly known as strain gauge type).  

 

1.4.1 Electromagnetic Force Compensation (EMFC) type 

Also known as Magnetic force restoration (MFR), the compensation principle has 

superior performance characteristics than the conventional systems. (MFR weigh cell 

features, n.d.)  

Figure (1.1): Checkweigher arrangement 

In-feed conveyor Out-feed conveyor 

Force sensor  

Weighing conveyor  
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The weighing sensor comprises a lever arm, and electromagnetic system, an optical 

sensor to detect position. 

The applied load is counteracted by a restoration force produced by the electromagnet. 

Any slight movement of the compensation arm initiates a feedback current through a coil 

and causes the load to be returned to its original position. The current is proportional to 

the displacement and in turn, proportional to the weight. It is converted into a digital 

signal and is processed in the microprocessor.  

In comparison to the strain gauge load cells, EMFR load cells can be more accurate and 

can measure at a faster rate (The checkweighing guide, 2016). The self-damping weigh 

cell achieves a settling time less than 200 ms. This feature of EMFR type loadcells 

guarantees high precision with shorter measurement times (MFR weigh cell features, 

n.d). 

 

1.4.2 Electro-mechanical Compensation type  

Electro-mechanical compensation type load cells (strain gauge load-cells) are the 

common type of weight transducers in checkweighers and are applicable to a wider range 

of weights. 

Mechanical stress on a strain gauge causes deformation of the gauge. The strain gauge 

is adhered to the object under test and acts like the material it is adhered to. The strain 

gauge deforms under applied load and the resistance of the strain gauge varies as the 

strain gauge material deforms. The change in resistance of the strain gauge is 

proportional to the deformation and in turn, it is proportional to the applied stress/force.  

Figure (1.2): A schematic diagram of EMFR type load cell (Weighing principle [online 

image]. Retrieved 07th June 2019 from https://www.wipotect.com/en/company/weighing-

principle/ 
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The small changes in resistance are turned into more precise values by using the 

Wheatstone bridge arrangement of the resistors. 

The circuit is designed so that the voltmeter reading is zero when there is no load applied 

on the strain gauges hence there is no change in resistance of the strain gauges.  

The voltmeter shows a reading when the load is applied and the resistor circuit is 

unbalanced (Sharma, 2019). 

 

   

Strain gauge load cells are often equipped with mechanical overload stops to prevent 

damage to the load cell if the applied load exceeds the capacity of the load cell.  

Some major defects with sensor signals are noise or influence of unwanted signals, 

parameter drift (change in the item parameters over the time), non-linearity and cross 

sensitivity, i.e. Change of signal as a result of change in an indirect property such as 

ambient temperature.  

 

1.5 Project background 

Compac Sorting Equipment is a New Zealand company that manufactures high speed 

sorting machines for fruits and vegetables. Fruit is transported in individual plastic 

carriers attached to a chain, forming a conveyer belt or a lane and each carrier is pulled 

across a weighing bridge via a floating link attached to a chain. The lanes are of 5 m – 

100 m   length and the typical number of lanes in a machine varies from 6 to 8.  

Each fruit is weighed separately as it passes over the load cells at a rate of 10 – 12 fruit 

per second. Current weighing system yields a repeatability standard deviation better than 

0.5 with 200 g test weight at 10 fruit per second. Weighing accuracy deteriorates with 

fruit heavier than 250g and at speeds higher than 10 fruit per second. 

  

Figure (1.3): (a) Strain gauge (b) Wheatstone bridge circuit (Sharma, 2019) 
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Compac requires an improved signal processing method for determining the true weight 

of fruits. As a part of the expected improvement, the settling period of the signal required 

to be reduced so that the signal reaches the steady state prior to the data sampled for 

weight assessment (Compac sorting equipment, personal communication, 2005).  

Time series data of the load cell readings of fruits passing over the load cell are provided 

from number of fruits at three different speeds. 

Compac have indicated the possibilities of using position sensors to select a set of data, 

data showing a response to the weight of the fruit. 

 

1.6  Aims and Objectives 

The overall aim of the project is to develop a method to improve the weighing accuracy 

of fruit with fruit heavier than 250 g and at speeds higher than 10 fruits per second.   

The dynamic behaviour of the current weighing system will be studied in detail with the 

use of a mathematical model. Time series data provided will be used to test the system.  

 

The focus of this research is to develop a better signal processing method that improves 

the accuracy of measurements by,  

(i) Obtaining a smoother steady state signal by removing the influence of unwanted 

signals (noise). 

(ii) Improve the filter response time and thereby reduce setting time of the signal.  
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Chapter 2.0 

Literature Review 

 

2.1 Introduction 

Many methods have been proposed and investigated to improve the weight estimation in 

high speed weighing in the past few decades. The rest of this chapter discusses the various 

solutions proposed in previous years.  

   

Application of analogue compensation filter   

Jafaripanah, Al-Hashmi & White (2005) proposed an analogue, compensation filter as a 

possible method to improve the accuracy of mass ascertainment in dynamic weighing 

systems.  

The sensor (loadcell) dynamics was modelled in the form of a second order system, 

(𝑀 +𝑚)
𝑑2𝑥(𝑡)

𝑑𝑡2
 + 𝑐

𝑑𝑥(𝑡)

𝑑𝑡
+  𝑘𝑥(𝑡) = 𝐹(𝑡).   (2.1) 

where M – mass of the carrier 

 m – mass of the fruit 

 x – deflection of the loadcell 

 c – damping coefficient 

 k – spring constant 

 F – Force applied on the load cell by the fruit  

The transfer function of the load cell, 

𝐺(𝑠) =  
𝑋(𝑠)

𝐹(𝑠)
 =  

1
(𝑀 +𝑚)

𝑠2 +
𝑐

(𝑀 +𝑚)
𝑠 +

𝑘
(𝑀 +𝑚)

 . 

  where 𝑋(𝑠) and F(𝑠) are the Laplace transforms of x(t) and F(t).  

The pair of complex conjugate poles of the system has been written in the form  𝑎 ± 𝑖𝑏 and 

both  𝑎 and 𝑏 are functions of unknown mass that is to be estimated.  
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𝑎 =  −
𝑐

2(𝑀+𝑚)
,     𝑏 =  √

𝑘

(𝑀+𝑚)
−

𝑐2

(𝑀+𝑚)2
. 

An analogue compensation filter was designed using the pole locations of the system,  

𝑎 ±𝑖𝑏, as zeros of the filter. Two additional poles have been added to the filter and the 

location of the additional poles has been selected using the trial and error method.  The zeros 

of the filter cancel the poles of the sensor.  

The transfer function of the compensation filter is a bi-quadratic function, with 𝑎 ± 𝑖𝑏 as 

locations of the zeros and poles at 𝑑 ±  𝑖𝑒 where 𝑑 and 𝑒 specify the location of the additional 

poles. 

The transfer function of the compensating filter is, 

𝐻(𝑠) =  𝐴 
(𝑠 − 𝑎 − 𝑖𝑏)(𝑠 − 𝑎 + 𝑖𝑏)

(𝑠 − 𝑑 − 𝑖𝑒)(𝑠 − 𝑑 + 𝑖𝑒)
 . 

 

An analogue, state variable low pass filter with a biquadratic structure was used as the 

compensating filter. In order to make the analogue filter adaptive, a voltage-controlled 

resistor has been used. The voltage-controlled resistor models the mass to be estimated.  

The filter produces an output voltage that is proportional to the mass to be estimated which 

also changes the value of the resistance in proportion to the mass. Using the filter transfer 

function, the locations of the corresponding pole locations can be determined which in turn 

can be used to calculate the mass of the fruit.  

The simulated results show that the state variable, biquadratic filter provides an accurate and 

flexible adaptive compensation filter.  

However, in the simulation results presented the poles had been selected by trial and error 

so that the output of the filter quickly reaches the steady state with minimum oscillations.   

The speed of the system is not stated.  

 

System identification method 

Shu, (1993) proposed a system identification based method for mass estimation for 

checkweighers. The checkweigher is modelled as the spring-mass-damper system and the 

input to the checkweigher is a step function with a magnitude of m𝑔. The discrete model for 

the spring – mass- damper system is derived from the continuous system equation that is 

similar to the system equation employed by Jafaripanah, Al-Hashmi & White (2005) 

(Equation (2.1).)  
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(𝑀 +𝑚)
𝑑2𝑥(𝑡)

𝑑𝑡2
 + 𝑐

𝑑𝑥(𝑡)

𝑑𝑡
+  𝑘𝑥(𝑡) = 𝑚𝑔 𝑢(𝑡)    (2 .2) 

A Laplace transformation of the second order equation has been used to develop the z- 

transform of the system equation. (Equation (2.3)). 

𝑋(𝑧) = 𝑚𝑔 𝑈(𝑧)
1

𝑘

𝑥(0)+ 𝑏1
′𝑧−1+𝑏2

′𝑧−2

1+𝑎1𝑧
−1+𝑎2𝑧

−2
       (2.3) 

 

where 𝑧  is a complex number and  𝑏1
′  and 𝑏2

′  are coefficients that contain the mass to be 

estimated. 

 

With the use of the end value theorem1, it is shown that the values at the infinity are 

proportional to the mass of the fruit. Thus, the latter part of the signal can be used to 

determine the mass of the fruit.  

The unknown parameters of the model are estimated by fitting the model to the measured 

signal and the optimal fit is achieved using the recursive least square algorithm. The 

estimated model parameters are then used to estimate the mass being weighed.  

Shu, (1993) also shows that the algorithm is independent of the initial conditions and thereby 

the method is independent of the initial conditions.  

In order to obtain better results, a low pass filter is cascaded with the algorithm to improve 

the data quality.  

 

Dominant Frequency method  

McGuiness, Jenkins & Senaratne (2005) investigated the use of the dominant frequency of 

the system to estimate the mass. Solving the mathematical model of the loadcell (equation 

2.1) gives the natural frequency of oscillations for simple harmonic motion, 

𝜔 = 
𝑘

𝑀+𝑚
 .    (2.4) 

 It can be seen that the natural frequency 𝜔  decreases as the mass increases. The tests had 

been carried out to obtain the dominant frequency of each data set which can be used to 

estimate the mass on the loadcell with the use of the equation (2.4).  

Power spectra analysis was used to obtain the dominant frequency of the system.  The results 

of numbers of tests infer that a dominant frequency of 120 Hz was almost independent of 

the mass. It had been also noted that there were two or three dominant frequencies in each 

 
1 End value Theorem: If 𝑋(𝑠) is multiplied by 𝑠 and take limit as  𝑠 

          
→   0,  the result will be the final value of 

𝑥(𝑡), i.e. 𝑥(∞), (Bateson, 2002). 
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spectrum. The higher frequency of 120 Hz had been found to be out of phase between the 

two loadcells and to be associated with the rocking motion of the fruit. The lower frequencies 

that are in phase between the loadcell had been found to be associated with the bouncing 

motion of the fruit. 

 

Shown in figure (2.1) are the power spectra obtained for 200 g moving at 0.5 m/s and 1.5 

m/s, as a part of this thesis. In addition to the dominant frequency of 120 Hz which is present 

in all the power spectra, a peak is observed around 70 Hz in 200 g moving at 0.5 m/s and the 

peak in 200 g at 1.5 m/s is around 20 Hz. The level and frequency components change with 

the speed implying that the conveyor belt speed contributed to the peaks of the power spectra 

which need to be considered in estimating the mass using the dominant frequency method. 

Further analysis of power spectra is given in ‘Data analysis’ in Chapter 4.0.  

 

 

 

 

 

Figure (2.1): Power Spectra for 200 g at 0.5 m/s and 1.5 m/s 
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The requirement of this project is to obtain weight estimates of high accuracy, in the range 

of ± 1 𝑔. 

Given that the elastic property of a harmonic oscillator is represented by 𝑘 and the mass is 

𝑚1, the natural frequency of the harmonic oscillator is, 

𝜔1 = √
𝑘

𝑚1
   

 

and if the mass is increased to 𝑚2, the new natural frequency is,  

𝜔2 = √
𝑘

𝑚2
 

Then,  

(𝜔1 − 𝜔2)
2 = (√

𝑘

𝑚1
− √

𝑘

𝑚2
)

2

 

                 

For very small changes of mass (i.e. from 0.2kg to 0.3 kg)   𝑚1  ≈  𝑚2,  

(√
𝑘

𝑚1
− √

𝑘

𝑚2
)

2

= (𝜔1 − 𝜔2)
2 ≈ 0 

The change in frequency corresponds to the small change in mass is very small. Observed 

in the power spectra, filtering frequencies to a higher accuracy in the range of ±1Hz cannot 

be achieved in practice.   

 

McGuiness et al. (2005) also propose a new system model based on undamped free vibration 

of a cantilever beam shown in equation (2.5). 

𝜌𝐴
𝑑2𝑦

𝑑𝑡2
+ 𝐸𝐼

𝑑4𝑦

𝑑𝑥4
= 0     (2.5) 

 

It can be seen that the model developed (equation (2.5)) has similar characteristics to the 

previous mathematical models developed (e.g. equation (2.1)).  Both system models are 

second order differential equations in the time domain. In equation (2.5), the coefficient of 

the acceleration term, 𝜌𝐴, represents the mass properties of the beam (the mass of the 

loadcell per unit length) and the coefficient of the displacement term, 𝐸𝐼, represents the 
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elastic properties (flexural stiffness2) of the beam.  The damping coefficient and the input 

function have been set to zero for undamped, free vibration considered in the proposed 

system model. 

This model provides a better representation of the vibration properties of the loadcell if 

suitable damping properties are included.  

 

ARMA model  

Calpe, J. et al. (2002) propose a two stage filtering technique. An adaptive filter is used to 

remove the mechanical vibration in the system in the first stage and the resulting signal is 

deconvolved using a second order ARMA3 model. The mass of the fruit was estimated by 

averaging the filtered signal.  

In the first stage of filtering, the filter value is set to a constant, the error between the constant 

and the signal value is minimised using the least mean square algorithm. 

The resulting signal represents the dynamics of the load cell under the applied load. The 

coefficients of the ARMA model were determined using an iterative, robust quadratic 

prediction error method. The deconvolution of the original signal based on the ARMA model 

has resulted in a relatively plain signal which was used to estimate the weighing using a 

calibration method. 

The weight obtained using this method has been in the range of ± 1g at the speed of 16 fruits 

per second.  

 

Artificial neural network 

Yasin & White (1999) proposes a technique based on artificial neural network. The load 

sensor is a tri-beam loadcell which consists of three cantilever beams coupled together which 

was modeled as a non-linear system. The input to the non-linear system is the unknown load 

and the output is the output voltage signal.  

Simulated response of 100 g and 600 g was used to show the final value can be anticipated 

from three successive extreme points. These three points were chosen as the features of the 

output signal.    

 
2 Measure of the ability to bend or deform. 
3 ARMA – Mathematical models that combine the effect of weighted sum past data and weighted sum of 
moving average of past data. 
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The neural network was trained using a selected set of masses. A number of test results were 

presented for 150 g, 350 g, 550 g, 750 g and 950 g which are different from the masses used 

for training the neural network. A random error of ±1.5% with mean close to zero has been 

observed.  

The results were then verified by means of practical experiments. A maximum error of 

±1.5% has been recorded repeatedly when tested with different conditions: by changing the 

number of layers and by changing the number of neurones in each layer.  

 

The authors have presented a new method for dynamic weighing. However, the information 

about the speeds used, was not presented. 

 

Summary 

Many methods that can be used to improve the weighing accuracy are found in literature. 

Some methods are model-based and some use a model-free approach.  

In the model-based approach, the strain gauge load cell has been modelled as a second order 

differential equation with respect to the time variable.  

The methods proposed can be classified as follows: 

• Model parameter estimation method. 

• Neural network method. 

• Frequency compensation method.  

 

Advantages and disadvantages of each method were discussed under each method.  

 

 

2.2 Project approach 

One of the key mathematical operations in digital filtering is convolution. The convolution 

of the two signals are defined as, 

𝑥(𝑛) ∗ ℎ(𝑛) =  ∑ ℎ(𝑘)∞
𝑘=−∞ 𝑥(𝑛 − 𝑘); where 𝑛 =  0,1, . . (𝑀 − 1) and  𝑀 =  𝑁1 +  𝑁2 − 1.  

𝑁1 and 𝑁1 are the lengths of sequences 𝑥(𝑛) and ℎ(𝑛) respectively.  
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The output of the digital filter, 𝑦(𝑛) is obtained by convolution of the input signal 𝑥(𝑛) and 

the impulse response4 of the filter (filter Kernel) ℎ(𝑛) in the time domain (Efeachor & Jervis, 

1995), i.e. 

𝑦(𝑛) =  𝑥(𝑛) ∗ ℎ(𝑛) 

The problem involves finding the steady state of the load cell output signal that can be used 

to estimate the mass of the fruits accurately, through calibration. The existing Butterworth 

filter satisfactorily removes noise in the unfiltered signal but the filtered signal sometimes 

takes a considerable time to settle sufficiently before an accurate estimate for the mass is 

achievable.  

 

It is reasonable to draw the following inferences from data analysis and preliminary research. 

• The filter needs to be an adaptive filter to handle the varying noise characteristics 

introduced to the signal at various speeds and at various masses of the fruits. 

• Observed in power spectra of the unfiltered signals there is no clear evidence that the 

noise and information signals are not overlapping.  In cases where the noise and the 

information signals are overlapped in spectrum where frequency based methods are 

not effective, information is retrieved through estimations, smoothing or prediction 

(Khan, 2011).  

 

 Adaptive filters 

An adaptive filter has adjustable filter parameters. The output signal of the filter is compared 

to a desired response signal by subtracting the two samples at a given time. The difference 

is known as the error signal which is used as the input to a mathematical process which alters 

or adapts filter parameter in a well-defined manner.   

Adaptive filters can be realised using software or hardware techniques. The focus of this 

project is to propose a mathematical form of adaptive filter.  

 

Estimation theory 

Estimation theory is a branch of statistics which also used in signal processing. Estimating a 

set of parameters that describes a state of a system from noisy measurements along with a 

model for the relationship between the measurement and the underlying state. The dynamics 

 
4 The response of a system when the input is an impulse (“a signal consists of a single sample at time 0 having 
amplitude 1, preceded and followed by zeros” (Smith, 2007)).  
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of the states are represented by a mathematical model. The uncertainties of the system model 

and the uncertainties in measurements are incorporated into the estimation process by using 

the Bayesian Rule of conditional probability to obtain an optimal estimate of the state. 

 

Research was carried out in the area of state estimation based filtering techniques.  

Predictive filters are a family of estimation techniques and are essential tools in fields such 

as robotics, computer graphics and economics. Based on the estimation techniques, the 

predictive filters assimilate uncertain prediction from the dynamics of the system and noise 

corrupted observations to estimate the optimal state of a system.  

The Kalman filter is of the simplest form of the predictive filters (Goldstein, 2004).  In his 

famous publication in 1960, Rudolf Kalman proposed the Kalman filter algorithm as an 

improvement to the Wiener filter (An optimal state estimating technique) which is based on 

convolution of the input signal with the impulse response of the Wiener filter (Kalman, 

1960). Explaining the limitations of the Wiener filter he states that “Numerical determination 

of the optimal impulse response is often quite involved and poorly suited to machine 

computation. The situation gets rapidly worse with increasing complexity of the problem.”  

The Kalman filter estimates the optimal state of a given set of data (Goldstein, 2004), hence 

the filter is adaptive to the given data.   

Development of the system model and the use of the Kalman filter algorithm are explained 

in Chapter 5.0.  
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Chapter 3.0 

Current Weighing system 

3.1 Weighing system 

The weighing system consists of an in-feed conveyor, weighing station and out-feed 

conveyor. Fruit are transported in individual carriers and the chain driven carriers travel over 

the weighing station which is equipped with a dual load cell system, i.e. platform mounted 

on two strain gauge load cells as depicted in Figure (3.1).  

 

where;        𝑚1𝑔 − weight of the fruit 

        𝑚𝑔   –   weight applied on the one loadcell 

The load cells are mounted on either side of the weighing station and are subjected to half 

the weight of the fruit being weighed. The load cells are cantilevered to allow deflection. 

Weighing stations are isolated from the rest of the machine to eliminate the effect of 

vibrations propagating through other machine components.  

 

 

 

Figure (3.1): Schematic Diagram of the dual load cell arrangement 

𝑚1𝑔 

𝑚𝑔 𝑚𝑔 

where 𝑚1 = 2𝑚 

Figure (3.2): Fruit carriers 
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The dual load cell arrangement provides stability to the weighing mechanism. It reduces the 

possible effects of rocking motion of fruit on the actual weight measured. The load cells used 

are 6 kg, single point load cells. Single point load cells accurately measure weights 

regardless of the position on the scale the load is applied. They are strain gauge type load 

cells which measure the change in resistance in response to the strain applied to the load cell. 

The small changes in resistances are turned into more precise values by using the Wheatstone 

bridge arrangement of the resistors.  The output voltage of the strain gauge circuit (load cell) 

is proportional to the strain in the load cell which is proportional to the applied load. 

The output voltage of the load cell is amplified and filtered by a fifth order, analogue 

Butterworth filter and sampled at a rate around 4 kHz by a 12 bit ‘analogue to digital 

converter’ (ADC).  

The readings in the filtered signal are averaged over a set ‘weighing window’. This window 

is a given percentage of the full cycle. It is also given that the current system achieves a 

repeatability standard deviation of less than 0.5 when 200g moving at 10 fruit per second.  

 

The data provided by Compac include filtered and unfiltered data from the load cells. Figure 

(4.1) in Chapter 4.0 shows an example of the response of the load cell, filtered and unfiltered 

data observed during one weighing cycle.  

There are several types of load cells: Shear beam, bending beam, compression types are to 

name few. The dynamic behaviour of these load cells can be represented as spring-mass- 

damper systems. 

 

Figure (3.3):  A four lane fruit sorting machine 



Current Weighing system 

18 

 

3.2 Modelling the weighing mechanism 

The mathematical model is a set of mathematical expressions that represent the dynamics of 

the system using laws of physics. This mathematical model permits prediction and study of 

the system transients and steady state performance.  

Primarily, the weighing mechanism is a cascaded system of the ‘strain gauge load cell’ and 

the ‘fifth-order, analogue Butterworth filter’.  

 

 

 

 

3.2.1   The load cell 

The load cells are cantilevered to allow deflection. As the fruit and the carrier apply the 

weight force on the load cell, it deflects and set in to oscillations.  

Two mathematical models have been used to model the weighing system in previous studies. 

Jafaripanah et al. (2005) model the system as a spring- mass- damper system as shown in 

figure (3.4). The mathematical model used is of the form,  

(𝑀 +𝑚)𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑚𝑔 𝑈(𝑡)    (3.1) 

 

 

 

 

 

 

 

𝑀 – component of the mass of the fruit carrier on one loadcell 

𝑚 – component of the mass of the fruit on one loadcell 

𝑐 – damping coefficient of the spring - mass-damper system 

𝑘 –  spring constant of the spring - mass-damper system 

𝑥 – deflection of the load cell under the applied load at time 𝑡 

𝑈 – unit step function 

Load cell 

 

Filter 

 

Filtered data 
Unfiltered data 

Figure (3.4): The block diagram showing the data flow through the weighing system 

𝑐 𝑥̇ 𝑘𝑥 

M + m 

Figure (3.5): Spring- mass- damper system 

 

Weight of 

the fruit 
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McGuiness et al. (2005) model the load cell as a cantilever beam and the mathematical model 

used represents the free vibration of a cantilever beam (equation 2.4).  Both models share 

similar characteristics as explained in Chapter 2.3.  

 

Laplace transform5 of a continuous time domain function 𝑓(𝑡) is denoted 𝐿{ 𝑓(𝑡)} or by an 

alternative notation 𝐹(𝑠)  and defined as,  

𝐿{ 𝑓(𝑡)} = 𝐹(𝑠) =  ∫  𝑒−𝑠𝑡
∞

0

 𝑓(𝑡) 𝑑𝑡 

 

The transfer function was obtained by taking the Laplace transform of equation (3.1), 

(𝑀 +𝑚)(𝑋(𝑠)𝑠2 − 𝑠𝑥(0) − 𝑥̇(0)) + 𝑐(𝑠𝑋(𝑠) − 𝑥(0)) + 𝑘𝑋(𝑠) = 𝑚𝑔 𝐿{𝑈(𝑡)} 

 

where  𝑋(𝑠) is the Laplace transform of   𝑥(𝑡).  

Using, 𝐿{𝑈(𝑡)} =  
1

𝑠
 

𝑋(𝑠)((𝑀 +𝑚)𝑠2 + 𝑐𝑠 + 𝑘) = 𝑚𝑔 (
1

𝑠
) + (𝑀 +𝑚)(𝑠𝑥(0) + 𝑥̇(0)) + 𝑐𝑥(0)  

 

The transfer function of the system,  

𝐻(𝑠) =  𝑋(𝑠)  =  
𝑚𝑔

𝑠((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
+ 

(𝑀+𝑚)(𝑠𝑥(0)+𝑥̇(0))+𝑐𝑥(0)

((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
   

 (3.2) 

 

Using the initial value theorem:  lim
𝑡→0
𝑥(𝑡) = lim

𝑠→∞
𝑠𝑋(𝑠) , (Bateson, 1999, p. 140) the value of 

the transfer function: 

lim
𝑠→∞

𝑠𝑋(𝑠)  =  lim
𝑠→∞

𝑠 [
𝑚𝑔

𝑠((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
+ 

(𝑀+𝑚)(𝑠𝑥(0)+𝑥̇(0))+𝑐𝑥(0)

((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
] = 0 

 

Using the final value theorem, lim
𝑡→∞

𝑥(𝑡) = lim
𝑠→0
𝑠𝑋(𝑠), (Bateson, 1999, p. 140) the value of 

the transfer function: 

 

 
5 Laplace transform converts a time domain signal into a frequency domain where the magnitude and the 
phase angle of the signal is determined. The transform also converts differential equations into algebraic 
equations. (Bateson, 1999, p. 120).   
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lim
𝑠→0
𝑠𝑋(𝑠)  =  lim

𝑠→0
 𝑠 [

𝑚𝑔

𝑠((𝑀 +𝑚)𝑠2 + 𝑐𝑠 + 𝑘)
+
(𝑀 +𝑚)(𝑠𝑥(0) + 𝑥̇(0)) + 𝑐𝑥(0)

((𝑀 +𝑚)𝑠2 + 𝑐𝑠 + 𝑘)
] 

 

lim
𝑠→0
𝑠𝑋(𝑠) = 

𝑚𝑔

𝑘
                    (3.3) 

These limits describe the system response to a step function when t = 0 (the initial value) 

and as 𝑡 → ∞ (the final value). When 𝑡 → ∞ , the system reaches the steady state therefore 

the final value (𝑚𝑔 𝑘⁄ ) is also the steady state value of the system response.  

 

Assuming that the initial velocity, 𝑥̇(0) = 0 and the initial displacement , 𝑥(0) = 0, the 

equation (3.2) can be re-written as,  

𝐻𝐿(𝑠) =   
(
𝑚𝑔

𝑘
)𝜔𝑛
2

𝑠(𝑠2+2𝜉𝜔𝑛𝑠+ 𝜔𝑛
2)

   (3.4) 

where,   𝜔𝑛 = √
𝑘

𝑀+𝑚
 𝑎𝑛𝑑  𝜉 =

𝑐𝜔𝑛

2𝑘
 

For an under-damped system, 𝜉 < 1, the system has three poles and no zeros. One of the 

poles is located at the origin, and the other two poles form a complex conjugate pair, 

−𝜉𝜔𝑛 ± 𝑖𝜔𝑛√1− 𝜉
2

. 

 

 

 

Real 

Imaginary 

𝜉𝜔𝑛 

𝜔𝑛ඥ1 − 𝜉
2 

Figure (3.6): Pole-zero plot of the step response of the second order function 
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The pole at the origin defines a constant component of the system. The complex conjugate 

pair in the left half of the s-plane forms an oscillatory component of the system response in 

time domain indicating ‘damped sinusoidal response’ of the system.  

The time constant, τ is given by 
1 

𝜉𝜔𝑛
 and the magnitude of the product 𝜉𝜔𝑛 determines the 

rate of exponential decay of the response function.  

The settling time is the time that the error between the system response and the steady state 

value reach and stay within a given percentage of the steady state value. The common values 

of these percentages are 2% and 5%. The setting time based on the 2% criterion is 

approximately 
4

ξωn
 seconds. Hence the response function is significant only for 

approximately 
4

𝜉𝜔𝑛
 seconds.   

The settling time is 
3

𝜉𝜔𝑛
 if the 5% criterion is considered.  

 

The time domain behaviour of the step response is obtained using the partial fraction and 

inverse Laplace transform of equation (3.4). 

 

𝑥(𝑡) =  
𝑚𝑔

𝑘
−
𝑚𝑔

𝑘

(2𝜉𝜔𝑛+1)

𝜔ඥ1−𝜉2
𝑒−𝜉𝜔𝑡ඥ1−𝜉

2
   (3.5) 

 

The expected time domain behaviour of the load cell output represented by the second order 

differential equation is shown in figure (3.7). The actual voltage output of the unfiltered 

signal for 200 g at 0.5 m/s and 573.1g at 0.5 m/s 1.5 m/s are shown in figure (3.8 (a)) and 

(3.8 (b)). 

The model response and actual data plots shows that the values suddenly increase to a new 

value (a constant component of the values) where it settles as the time progresses. The model 

settles faster after two dominant peaks. The unfiltered data for 200g at 0.5m/s, shows a 

similar characteristics to that of model response, however, the presence of extra oscillations 

makes the graph fluctuate around a constant value.  

573.1g at 0.5 m/s, demonstrates the constant component.   The signal is highly oscillatory 

during the entire signal time.  

In comparison, the actual data plots exhibit some similarities to the model behaviour with 

some deviations.  
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The second order system equation is developed based on Newton’s second Law therefore it 

precisely represents the system dynamics in ideal conditions. Deviation from this expected 

pattern implies the presence of other elements such as system disturbances, interference and 

other vibrations noise in the system.  

 

 

 

The equations and analysis done in this section ignores coupling between the two load cells 

in the dual cell arrangement in the existing system. It assumes the dynamic behaviour of a 

single load cell under the applied load. 

 

Figure (3.7) Step response to a second order differential equation 

𝑚𝑔/𝑘 

Time   

(a) 
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3.2.2 Fifth order Butterworth filter 

The Butterworth filter designed to pass low frequency signals and attenuate the amplitude 

of high frequency signals. The Butterworth filter achieves flat filter gain in the pass band, at 

the expense of a relatively wide transition region from pass band to stop band. The sharpness 

of the roll-off from pass band to stop band is determined by the filter order. 

Butterworth filter is an all pole filter, fifth order Butterworth filter having 5 poles spaced 

equidistant on a circle in the complex s-plane around the origin and having the radius of the 

circle equal to the cut-off frequency (Acharya et al., 2014). 

The filter used in the weighing system is an analogue filter.  

Properties of the Butterworth filter used in the weighing system at Compac, are not available. 

Therefore, the transfer function of the normalised Butterworth filter (filter gain =1, cut off 

frequency =1 rad/s) was used to study the effects of the Butterworth filter on the weighing 

signal.  

The frequency response of the 5th order of a normalised Butterworth filter, where cut-off 

frequency 𝜔𝑐 = 1  and the filter gain = 1, is given by (Yilmas & Tola, 2011), 

𝐻𝐵(𝑗𝜔) =  
1

(𝑠 + 1)(𝑠2 + 0.618𝑠 + 1)(𝑠2 + 1.618𝑠 + 1)
 

 

The transfer function can be scaled up to the required cut-off frequency (𝜔𝑐) by replacing s 

with 𝑠 𝜔𝑐⁄  as below. 

Figure (3.8): The response of one of the load cells for calibrated mass of  

(a) 200g at 0.5 m/s and (b) 573.1g at 0.5 m/s 

(b) 
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𝐻𝐵(𝑗𝜔) =  
𝜔𝑐
5

(𝑠 + 𝜔𝑐)(𝑠2 + 0.618𝜔𝑐 + 𝜔𝑐2)(𝑠2 + 1.618𝜔𝑐 + 𝜔𝑐2)
 

 

Filtered signal is produced by convolving the ‘load cell output’ with the impulse response 

of the ‘filter kernel’. This also can be achieved by multiplying the transfer functions in 

frequency domain.  

The entire weighing mechanism including the filter is represented by a transfer function 

shown below. 

 

 

 

The number of poles in the system has increased. Additional poles alter the step response of 

the system.  The filter gain attenuates the high amplitudes of the oscillations in passband 

frequencies.   

The graphs of filtered and unfiltered data of 200g mass at 0.5 m/s and 200g at 1.5 m/s are 

shown in Figure (3.8(a)) and (3.8(b)). Visualised in these graphs, is the filtered response is 

less oscillatory when compared with the unfiltered response as expected.  It is also observed 

that there is a time lag between the unfiltered and filtered responses.  In analogue filters, the 

delay is introduced by the electronic components of the filter circuit e.g. capacitors.  

 

(
𝑚𝑔
𝑘
)𝜔𝑛

2𝜔𝑐
5

𝑠(𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2)(𝑠 + 𝜔𝑐)(𝑠

2 + 0.618𝜔𝑐 + 𝜔𝑐
2)(𝑠2 + 1.618𝜔𝑐 + 𝜔𝑐

2)
 

𝑚𝑔 ∗ 𝑢(𝑡) 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 

Figure (3.5): The transfer function of the weighing system including the Butterworth filter 

(a) 
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Figure (3.8): Filtered and unfiltered data (a) 200 g moving at 0.5 m/s (b) 200 g moving 

at 1.5 m/s 

(b) 
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Chapter 4.0 

Data analysis 

4.1 Introduction 

The experimental data provided by Compac sorting Ltd are the raw output data of the 

analogue to digital converter (unfiltered data) and the data filtered by the fifth order 

Butterworth filter, analogue filter (filtered data) for each load cell of the dual load cell 

system described in Chapter 1, for three different fruits at various speeds.  Filtered and 

unfiltered data are available from both load cells, for empty cups, at two different speeds.  

 

4.2 Preliminary observations 

Unfiltered and filtered voltage output data are examined, and the observations made are 

discussed in this section.  The signal properties and the variation of its behaviour with the 

change of the input conditions are recoded below. 

The speed of the conveyor belt is given in ‘cups per minute’. The length of the cup is 

assumed to be 100 mm and the conveyor belt speed was converted to metres per second 

(m/s) values. 

 

 

 

 

Figure (4.1): Schematic diagram of cup attached to the belt 

100 mm 
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300 𝑐𝑢𝑝𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 =  30 𝑚 /𝑚𝑖𝑛𝑢𝑡𝑒 

                            =   0.5 𝑚/𝑠 

 

4.2.1. Observations of data as fruits pass over the weigh table 

A number of unfiltered data sets provided by Compac sorting Equipment were examined.  

The plateau heights, signal times and the settling times listed in table (4.1) and (4.2) were 

approximate values observed from the unfiltered data versus time graphs as shown below.  

  

  

 

 

The voltage signal is oscillatory before the fruit approaches the weigh table and as it passes 

over the weigh table. There is a clear increase in amplitude of the oscillations around 180 

ms as the fruit slides on to the load cell. 

When the fruit is moving at 0.5 m/s, the signal time is 200 ms.  

There is an increase in the average signal value creating a plateau around the weight to be 

estimated, as fruits slide on to the load cell and the signal drops as the fruit slides off the 

load cell. Weight of the fruit is responsible for the increase in the signal value between 

200 ms and 380 ms. The increase in the mean value will be referred to as the ‘plateau 

height’ in this thesis and is expected to give the mass of the fruit through calibration. Some 

offsets are introduced to some data sets to clearly visualise the signals.  

Similar graphs for the other fruits at different speed values were examined. Observations 

made from these graphs are summarised below.  

 

 

Figure (4.2): Unfiltered data as 200g mass at 0.5m/s belt speed for one of the 

load cells.  

Plateau heights 

Signal time 

Settling 
time 
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Speed (m/s) Plateau 

height 

Signal time on 

LC (ms)  

Settling time 

(ms) 

Weighing 

time 

0.5 400 200 70 Up to 110 ms 

1.0 450 100 50 40 ms 

1.5 1100 60 Does not reach a steady value.  

  

 

 

 

 

Visualised in the graph shown Figure (4.3) is an increasing trend between the ‘plateau 

height’ and the speed of the conveyor belt. 

The increase of the conveyor belt speed results in shorter signal times and smaller transient 

response durations. At faster speeds, the averaging window used to estimate the weight of 

the fruit is in the former part of the transient response and the average signal values 

obtained will be influenced by the higher amplitudes of oscillations of the signal as the 

mass slides on to the weighing table.  

 

 Plateau 

height 

Signal time 

on LC (ms)  

Settling time 

(ms) 

Weighing time 

(ms) 

200g at 0.5 m/s 400 180 70 Up to 110 ms 

403.5g at 

1.0m/s 

890 110 Raw signal is highly oscillatory right 

through out. 

High amplitudes reduces after 40, 50 

ms. 
573.1g at 

0.5m/s 

1143 180 Raw signal is oscillatory right 

through out but lower amplitudes 

when compared to 403.5g at 1m/s.  

High amplitudes reduces after  40 – 

50ms 

 

Table (4.1): Observation of signal values of 200g at 0.5 m/s, 1.0 m/s and 1.5 m/s 

Table (4.2):   Observation of signal values of different masses  

 

Figure (4.3) – Graph showing the variation of the plateau height of 200g mass with the 

conveyor belt speed. 



Data analysis 

29 

 

 

 

 

The graph shown in Figure (4.4) shows an increasing trend between the average signal 

value and the mass of fruit.  

This is an expected trend as the weight of the fruit is responsible for the plateau height.  

 

4.2.2. Observations of data as empty cups passing over the weighing 

table 

Data were available for empty cups at two belt speeds; 0.25 m/s and 1 m/s. The graphs of 

signal versus the time were examined. Visualised in these graphs are; 

• The difference between the mean values of the signal before it arrives at the weigh 

table and as it pass over the weigh table is negligible in both cases.  

• Amplitudes of oscillations suddenly increase as the empty cups slide on to the 

weigh table. This indicates possible system vibrations as the fruit slides on to the 

weigh table. At the speed of 0.25 m/s, the amplitude vibrations increases to 2800, 

600 units above the mean value of 2200 units, and decays, approximately in 100 

ms.  

Presence of external vibrations that last for the 1st part of the load cell output signal is 

evident in these graphs. The graph of the raw signal when the empty cups moving at 0.25 

m/s is show in figure (4.5).  

 

 

Figure (4.4): Graph showing the variation of the plateau height with the increase 

of mass of the fruit 
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4.3 Power spectrum analysis  

The power spectrums of the unfiltered signals were studied to understand the relationship 

between the system frequency for each fruit at a given speed and the mass of the fruit.  

 Power spectral density (PSD) function is a way of illustrating the variation of signal 

power with frequency (Wilson, 2016). The graph of ‘power density’ in the signal versus 

‘frequency’ is a representation of the magnitude of various frequency components of a 

signal.  

Power is proportional to the square of the signal amplitude (Wilson, 2016).  

There are many methods for estimating power spectral density. Fast Fourier Transform 

(FFT) was the method employed in estimation of PSD (Wilson, 2016).  

Similar to Fourier analysis which decomposes a function of known period into a sum of 

sine and cosine functions of different frequencies and amplitudes, Fourier transform is a 

mathematical method that decomposes a non-periodic signals and time series data of 

unknown period into a number of sinusoidal functions having different frequencies and 

amplitudes (Wilson, 2016). It measures the fluctuations in a signal or a data series by 

comparing it with its constituent sinusoidal functions. Fourier transform represent the 

frequency spectrum of the non-periodic signal. If a continuous signal is sampled, it 

becomes a set of discrete values and Discrete Fourier Transform (DFT) is applied to find 

its frequency spectrum.  FFT is an algorithm that computes DFT of a discrete signal 

efficiently. FFT clearly identifies the dominant frequency that exists in the signal (Wilson, 

2016). 

Figure (4.5): Filtered and unfiltered data as empty cups pass over the weigh table at 0.25m/s 

belt speed. 
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 Frequency spectra of the data provided was examined to obtain dominant frequency in 

each spectrum. Observations made are listed below.  

• FFT analysis reveals a peak around 110-120 Hz in most of the cases before the fruit 

moves on to the load cell.  

• When the 200g mass is on the load cell, there is a peak of around 50 Hz too but this 

peak is still dominated by other frequencies around 50 Hz too. This is consistent 

with the behaviour of 200g mass at all the three belt speeds.  

• When the 403.5g is on the load cell, peaks are around 50 Hz and 150 Hz. 

• When the 573.1g is on the load cell, the peaks are around 30 Hz and 125 Hz.  

• These frequency distributions are very similar for data on load cell 2 too.  

 

Visualised in these graphs, the peak frequencies varies with the speed of the conveyor 

speed for the same mass. The peaks in the FFT plots are also dominated by other 

frequencies therefore using the natural frequency method for estimating the mass of the 

fruit was not practically achievable in this case. FFT plot of some data sets are shown in 

figure (4.6).  
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Frequency spectra attached in Appendix shows the FFT plots of data obtained from load 

cell 1 for following cases. 

(i) Empty cups at 0.25 m/s and 1.0 m/s. 

(ii) 200g, calibrated mass at 0.5m/s, 1.0 m/s and 1.5 m/s.  

(iii) 403.5g at 1.0 m/s. 

(iv) 573.1g at 0.5 m/s 

 

4.4 Data analysis using system identification method 

System identification is a methodology for building a mathematical model of dynamic 

systems with the use of output data as a response to a given input. The system is assumed 

to be a ‘black box’ and input and output data are used to estimate a mathematical 

expression that defines the system.  

System identification tool (SID) in ‘MATLAB’ is a useful tool to study the data and 

predict the dynamics of the weighing mechanism. The system identification tool uses an 

‘Automatic non- linear line search algorithm’ to estimate the transfer function of a given 

system.  The process of identifying a data driven system function requires input and output 

data, a model structure.    

A step function (representing the constant weight applied on the load cell) as the input and 

unfiltered output data of the load cell as the output of the system. The model structure 

used is the ‘transfer function’.  

Figure (4.6): FFT plots for 200 g moving at 0.5 m/s and 1.5 m/s 
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Results obtained from the simulations shows that the transfer function of the weighing 

mechanism varies with the mass as well as with the change of belt speed. These transfer 

functions obtained were higher order functions instead of the expected second order 

systems.  

 

 

 

 

System identification analysis of the load cell 

A unit step function was used to represent the constant force applied on the load cell during 

the period that fruit is on the plate attached to the load cell.  Output data was the unfiltered 

data provided by Compac.  

 

Figure (4.8): Data flow through the load cell 

 

The tests were carried out using the three different set of output data, i.e. 200 g at 0.5 m/s, 

200 g at 1.0 m/s and 200 g at 1.5 m/s.  

 

The time plots used for 200 g moving at 0.5 m/s are shown in the figure (4.9).  

 

 

Figure (4.7): Data flow through the weighing system  

Step function 

Figure (4.9):  Time plot of 200 f at 0.5 m/s  
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As shown in figure (4.10), when a second order transfer function was used as the model 

structure, best fit yielded was 6.04% (shown in blue). The highest percentage of best fit 

obtained was 59.23% (shown in red) and the transfer function has three zeros and five 

poles. Shown in black is the plot of unfiltered data at 200g at 0.5 m/s.  

 

 

 

 

 

Tests carried out on other data sets showed similar results.  The best fitting transfer 

functions obtained for data at higher speeds were of higher order. The higher order of the 

transfer function implies a higher order weighing systems.  

The existing weighing system is a dual load cell system. The fruit is carried over the 

weighing systems in a fruit carrier which has 4 contact points, two on each side. The carrier 

moves along a steel plate which is mounted on load cells. One possible reason for a higher 

order transfer function is the coupled load cells that transmit oscillations and vibrations 

from one to the other.   

 

  

Figure (4.9):  Model plots of the step response of second order transfer function (blue), 5th 

order transfer function (red).   
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Chapter 5.0 

Development of the filter 

 

5.1  Introduction to Kalman filter 

The Kalman filter is an optimal estimation algorithm named after the Rudolf E. Kalman who 

developed the algorithm (Kalman, 1960). The recursive estimation algorithm was published 

in 1960 and has been vital in implementation of navigation systems, radar systems, control 

systems, computer graphics and many more (Goldstein, 2004). The Kalman filter was 

originally developed for control engineering applications and was regarded as a control 

theory (Bernhard & Deschamps, 2017). However, it is based on estimation theory; 

consequently also viewed as a signal processing theory.  

The optimal state estimator algorithm essentially estimates the unmeasured states of linear 

dynamic systems or processes from noisy observations.  Extensions of the algorithm were 

also developed for non-linear systems (Welch & Bishop, 2006).  

The states (parameters of the system of interest) of a system are often directly not measurable 

but are estimated on indirect measurements. The measurements, or a series of measurements 

in some cases, are then translated into a state using known relationship between the 

measurements and the state.  The measurements taken using the sensors contain 

measurement noise and other uncertainties and it is a challenging task to estimate states 

precisely and accurately.  

With use of the laws of physics, system dynamics may be included in the state estimation 

process.   However, the system dynamics are not completely known and often associated 

with deviations and errors.   

In the Kalman filter approach, partial uncertainty in both measurement and system dynamics 

are expressed in terms of probability. The information from both measurements and system 

dynamics are then assimilated in a statistical way to ‘filter out’ the noise and obtain the best 

estimate of the system state.  It is an efficient recursive filter that minimises the mean square 
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error between the estimated state and the expected state based on a state space model of the 

system. 

The state space model consists of two equations; the state equation containing the 

information of system dynamics and the measurement equation providing the relationship 

of the observations to the state to be estimated (Doraiswami, 2014). Both contain 

uncertainties that have known probability distributions. The state equation projects the 

current state based on the physics of the system and measurement update adjusts the 

projected estimate by an actual, current measurement. 

The state equation, the covariance of probability distributions of the process uncertainty, and 

the measurement uncertainty play a crucial role in the performance of the Kalman filter.  

 

The linear dynamic systems can be modelled as continuous time systems by using 

differential equations or discrete time systems with the use of difference equations.  The 

Kalman filter algorithm was originally developed for discrete time systems and later 

extended for continuous time systems. The Kalman filter algorithm developed for 

continuous time systems was presented as the ‘Kalman – Bucy filter’ and first published in 

1962.   

 

The Kalman filter algorithm can be used as a prediction algorithm, a filter or a ‘smoother’ 

depending on the method used for estimating the state from the measurements (The State 

Space Models, n.d).  

It is a prediction algorithm if the current state, 𝑥𝑘 is estimated from previous 

measurements,  𝑦𝑘−1, 𝑦𝑘−2. It is a filter if the current state, 𝑥𝑘, estimated from current and 

previous measurements, 𝑦𝑘, 𝑦𝑘−1. It is a smoother if the current state, 𝑥𝑘, is estimated from 

𝑦𝑛, where n> k.  

There are two approaches to deriving the Kalman filter: Deterministic approach and 

probabilistic approach (Doraiswami, 2014). The derivation of the filter algorithm using the 

deterministic approach, is explained in detail in section 5.2.   

 

5.2 Kalman filter theory and algorithm  

The mathematical model of the system is expressed in state-space form that can express 

univariate as well as multivariate systems. The state space model can also handle time variant 

and time invariant systems.  
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5.2.1 Kalman filter algorithm for a single variable system 

The system dynamics of a dynamical system that evolves in time is represented in a state 

transition equation or the system equation (Welch & Bishop, 2006):  

 

𝑥𝑡+1 = 𝐹𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 ;  𝑤𝑡~  𝑁 (0,  𝜎𝑤
2)      (5.1) 

 

where  𝑥𝑡 , a scalar, is the state or the system parameter to be estimated at time 𝑡.  

𝐹𝑡 is a state transition value that describes the effect of the  current state  𝑥𝑡 on  𝑥𝑡+1 , the 

updated state. 

𝑢𝑡 is a control input disturbance to the system, and 𝐵𝑡 is the effect of the control input 

disturbance, 𝑢𝑡 on the state  𝑥𝑡.  

𝑤𝑡 is the process noise term associated with 𝑥𝑡 . The process noise is assumed to be 

Gaussian with zero mean and a known variance of  𝜎𝑤
2 .  

 

The measurement equation is; 

𝑦𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡    ;  𝑣𝑡~  𝑁 (0,   𝜎𝑣
2)        (5.2) 

   where  𝑥𝑘  is a current state, 𝐻𝑡 is a transformation coefficient that 

maps the system states into the measurement domain, 𝑣𝑡 is observation noise distributed 

according to Gaussian distribution with zero mean and a known variance of  𝜎𝑣
2.  

𝑣𝑡  and 𝑤𝑡 are uncorrelated so that    𝐸[𝑣𝑗 , 𝑤𝑘] = 0. 

Both 𝑣𝑘  and 𝑤𝑘 are stochastic processes. Driven by these, 𝑥𝑡   also will have some 

randomness.  

The Kalman filter algorithm improves the posterior estimate, recursively, by aiming to 

minimise the error between the new estimate and the predicted estimate.   

There are several derivations of the filter available in the literature (Wells, 1996). Podesta 

(Podesta, 1994) shows the derivation of the Kalman filter estimation algorithm as outlined 

below. The system equation is simplified by setting 𝑢𝑡 , the control input to zero which does 

not make significant changes to the derivation. 
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Initial conditions of the state parameters ( 𝑥𝑜) is a random variable with a known probability 

function. This is assumed to have Gaussian distribution with mean of   𝑥̅𝑜 and a known 

variance of  𝜎0
2. 

𝑥𝑜 ~  𝑁 (𝑥̅𝑜, 𝜎0
2) 

where   𝜎0
2 = 𝐸[(𝑥𝑜− 𝑥̅𝑜)2]. 

Equation (5.1) describes the state vector  𝑥𝑘 in terms of exact physical laws.  

 

The unbiased estimate of the state is 𝑥̂𝑡   at time 𝑡  is the priori estimate. An updated or 

improved estimate for the state vector (𝑥̂𝑡+1) (the posterior estimate) can be obtained by 

combining the current estimate 𝑥̂𝑡 and the current measurement of the state 𝑦𝑡 as follows. 

 

The expected value is a measure of the long term average of random process (Thaeh, 2018). 

Hence 𝑥̂𝑡 ,  𝑥̂𝑡+1 and the measurement 𝑦𝑡 are assumed to have the same expected value 

of  𝑥̅. 

Based on the assumption that the predicted estimate has a linear relationship with its previous 

estimate and the previous measurement, 

𝑥̂𝑡+1 = 𝑘𝑡𝑦𝑡 + 𝑘𝑡
′ 𝑥̂𝑡       (5.3) 

Then,  

𝑥̂𝑡+1 − 𝑥𝑡+1 = 𝑘𝑡𝑦𝑡 + 𝑘𝑡
′ 𝑥̂𝑡 - 𝐹𝑡𝑥𝑡 − 𝑤𝑡. 

Substituting for 𝑦𝑡 

𝑥̂𝑡+1 − 𝑥𝑡+1 = 𝑘𝑡(𝐻𝑡𝑥𝑡 + 𝑣𝑡) + 𝑘𝑡
′  𝑥̂𝑡 - 𝐹𝑡𝑥𝑡 − 𝑤𝑡, 

      =  𝑥𝑡(𝐻𝑡𝑘𝑡 − 𝐹𝑡) + 𝑘𝑡
′ 𝑥̂𝑡 + 𝑘𝑡𝑣𝑡  − 𝑤𝑡. 

Taking the expected value of both sides, 

E [𝑥̂𝑡+1 − 𝑥𝑡+1]  = 𝐸[𝑥𝑡(𝐻𝑡𝑘𝑡 − 𝐹𝑡)] + 𝐸[𝑘𝑡
′  𝑥̂𝑡] + 𝐸[𝑘𝑡𝑣𝑡 ] − 𝐸[𝑤𝑡] 

= (𝐻𝑡𝑘𝑡 − 𝐹𝑡)𝐸[𝑥𝑡] + 𝑘𝑡
′𝐸[ 𝑥̂𝑡] + 𝑘𝑡𝐸[𝑣𝑡]  − 𝐸[𝑤𝑡]      (5.4) 

𝑣𝑡  and 𝑤𝑡 have Gaussian probability distributions with zero mean. 

𝐸[𝑣𝑡]   = 0, 

𝐸[𝑤𝑡] = 0 

𝑥̂𝑡 is assumed to be the unbiased estimate of the priori state and therefore 
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𝐸[ 𝑥̂𝑡] = 𝐸[𝑥𝑡] 

In unbiased estimation of  𝑥̂𝑡+1,   

E [𝑥̂𝑡+1 − 𝑥𝑡+1] = 0 

This substitution simplifies equation (5.4) to give an expression for  𝑘𝑡
′ , 

  𝑘𝑡
′ = 𝐹𝑡 −  𝐻𝑡𝑘𝑡 

Then,  

𝑥̂𝑡+1 − 𝑥𝑡+1 =  (𝐹𝑡 −  𝐻𝑡𝑘𝑡) (𝑥̂𝑡 − 𝑥𝑡)  + 𝑘𝑡𝑣𝑡  − 𝑤𝑡     (5.5) 

 

Squaring equation (5.5) and taking the expectation on both sides, 

𝐸[(𝑥̂𝑡+1 − 𝑥𝑡+1)
2] =  (𝐹𝑡 −  𝐻𝑡𝑘𝑡)

2 𝐸(𝑥̂𝑡 − 𝑥𝑡)
2  +  𝑘𝑡

2𝐸[𝑣𝑡
2]  + 𝐸[𝑤𝑡

2]              (5.6) 

 

If 𝑃𝑡 is the square error of the priori estimate, 𝑥̂𝑡, then: 

𝑃𝑡 = 𝐸[(𝑥̂𝑡 − 𝑥𝑡)
2] 

Similarly, the error variance of the posterior estimate, 𝑃𝑡+1 is given by:  

𝑃𝑡+1 =  𝐸[(𝑥̂𝑡+1 − 𝑥𝑡+1)
2] 

Substituting 𝑃𝑡  and 𝑃𝑡+1 in equation (5.6), 

    𝑃𝑡+1 =  (𝐹𝑡 −  𝐻𝑡𝑘𝑡)
2𝑃𝑡 +  𝑘𝑡

2𝐸[𝑣𝑡
2]  + 𝐸[𝑤𝑡

2]                                               (5.7)                

𝐸[𝑣𝑡
2] can be written as  E [(𝑣𝑡 − 0)

2]  which is the variance of observation noise,  𝜎𝑣
2. 

Similarly, 𝐸[𝑤𝑡
2]   = E [(𝑤𝑡 − 0)

2]   =  𝜎𝑤.
2             

Substituting for 𝐸[𝑣𝑡
2]   and 𝐸[𝑤𝑡

2] in equation (5.7) 

      𝑃𝑡+1 =  (𝐹𝑡 −  𝐻𝑡𝑘𝑡)
2𝑃𝑡 +  𝑘𝑡

2𝜎𝑣
2  + 𝜎𝑤.

2                                                         (5.8)             

 

In order to obtain 𝑘𝑡 so that the posterior error variance is minimum, 

𝑑𝑃𝑡+1 

𝑑𝑘𝑡
= 0, 

= −2(𝐹𝑡 −  𝐻𝑡𝑘𝑡) 𝑃𝑡 𝐻𝑡 + 2𝑘𝑡𝜎𝑣
2 = 0 

         −2(𝐹𝑡 −  𝐻𝑡𝑘𝑡) 𝑃𝑡 𝐻𝑡 + 2𝑘𝑡𝜎𝑣
2 = 0                                                                     (5.9) 

This yields the optimal value of  𝑘𝑡 ,  

𝐾𝑡 =  
𝐹𝑡𝑃𝑡𝐻𝑡

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2) 
                (5.10) 

Taking the second derivative of 𝑃𝑡+1  𝑡o verify if this a minimum or a maximum,  
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𝑑2𝑃𝑡+1

𝑑2𝑘𝑡
 = 2𝑃𝑡𝐻𝑡

2 + 2𝜎𝑣
2 

𝐻𝑡
2, 𝜎𝑣

2 and 𝑃𝑡 = 𝐸[(𝑥̂𝑡 − 𝑥𝑡)
2] are all positive therefore, 

2𝑃𝑡𝐻𝑡
2 + 2𝜎𝑣

2 > 0 

This implies that 𝑃𝑡+1 (equation 5.8) is minimum when,  

𝐾𝑡 =  
𝐹𝑡𝑃𝑡𝐻𝑡

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2) 
 

Substituting 𝐾𝑡 in equation (5.8), 

 

𝑃𝑡+1 =  (𝐹𝑡 −  𝐻𝑡
𝐹𝑡𝑃𝑡𝐻𝑡

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2) 
)2𝑃𝑡 + [ 

𝐹𝑡𝑃𝑡𝐻𝑡

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2) 
]
2

𝜎𝑣
2  + 𝜎𝑤.

2  

𝑃𝑡+1 =  [
(𝐹𝑡(𝑃𝑡𝐻𝑡

2+ 𝜎𝑣
2)− 𝐹𝑡𝑃𝑡𝐻𝑡

2

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2)
]2𝑃𝑡 + [ 

𝐹𝑡𝑃𝑡𝐻𝑡

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2) 
]
2

𝜎𝑣
2  + 𝜎𝑤.

2  

𝑃𝑡+1 =  [
𝐹𝑡𝜎𝑣

2

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2)
]2𝑃𝑡 + [ 

𝐹𝑡𝑃𝑡𝐻𝑡

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2) 
]
2

𝜎𝑣
2  + 𝜎𝑤.

2  

𝑃𝑡+1 = 
𝐹𝑡
2𝜎𝑣
2𝑃𝑡(𝑃𝑡𝐻𝑡

2+ 𝜎𝑣
2)

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2)
2 + 𝜎𝑤

2   

𝑃𝑡+1 = 
𝐹𝑡
2𝜎𝑣
2𝑃𝑡

(𝑃𝑡𝐻𝑡
2+ 𝜎𝑣

2)
+ 𝜎𝑤

2                       (5. 11) 

  

An equivalent form of equation (5.11) is, 

𝑃𝑡+1 =  𝐹𝑡(𝐹𝑡 − 𝑘𝑡𝐻𝑡)𝑃𝑡 + 𝜎𝑤
2                                                (5.12) 

 

𝑲𝒕 is known as ‘Kalman gain’ at time t, that is determined by minimising the variance of 

the posterior state estimation error, the gain term of the filter that stabilises the filter. 

When the measurement error variance,  𝜎𝑣
2 approaches zero, 

lim
𝜎𝑣
2→0
𝐾𝑡 = 

𝐹𝑡
𝐻𝑡

 

When the measurement error variance, 𝑃𝑡 approaches zero, 

lim
𝑃𝑘→0

𝐾𝑡 = 0 

Substituting for 𝐾𝑡, 𝑦𝑡 𝑎𝑛𝑑   𝑘𝑡′  in equation (5.3) yields an expression for the predicted value 

of state, 𝑥̂𝑡+1, 

𝑥̂𝑡+1 = 𝐹𝑡𝑥̂𝑡 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡𝑥̂𝑡)     (5.13) 
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The posterior estimate error variance 𝑃𝑡+1 reflects the variance of the state, i.e. the 

probability distribution of 𝑥̂𝑡+1 is given by  

𝑥̂𝑡+1 ~  𝑁 (𝑥̂𝑡+1, 𝑃𝑡+1 ) 

 

 

5.2.2 Kalman filter algorithm for multivariate systems 

The Kalman filter is often used for multivariate systems, i.e. systems with multiple states to 

be estimated.  

Similar to the 1- dimensional case, the algorithm used in Kalman filter will be implemented 

recursively, (e.g. Kalman gain, the posterior states, and posterior error covariance will be 

updated) using vector calculus (Podesta, 1994). 

For an n - dimensional system (a system with n states), the Kalman filter is designed to 

operate on systems in linear state space form, i.e. 

𝑥𝑡+1 = 𝐹𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 ;  𝑤ℎ𝑒𝑟𝑒 𝑤𝑡~  𝑁 (0, 𝑄)                          (5.14) 

𝑦𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡; 𝑤ℎ𝑒𝑟𝑒 𝑤𝑡~  𝑁 (0, 𝑅) 

 where the variables are defined as below.  

 𝑥𝑡: State vector (n x 1) 

𝐹𝑡:  State transition matrix (n x n) 

𝐵𝑡: Control input matrix (n x u) 

𝑢𝑡:  Input disturbance vector (n x1)  

𝑤𝑡:  A process noise vector (n x 1) 

𝑦𝑡:  Measurement vector (m x 1) 

𝐻𝑡: Observation matrix (m x n) 

𝑣𝑡: Measurement noise vector (m x 1) 

 

The Kalman filter algorithm for a multivariate system is summarised below.  

• Obtain initial conditions for state vector 𝑥̂𝑡 and initial error covariance 𝑃𝑡 

respectively given by 𝑥̂𝑜 and 𝑃𝑜, 

• The Kalman gain is calculated from equation 𝐾𝑡 = 𝐹𝑡𝑃𝑡𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡𝐻𝑡

𝑇 + 𝑅𝑡)
−1,   

• Posterior state vector is calculated from,  𝑥̂𝑡+1 = 𝐹𝑡𝑥̂𝑡 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡𝑥̂𝑡), 

• Posterior estimate error covariance is calculated from the equation, 
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 𝑃𝑡+1 = (𝐹𝑡 − 𝑘𝑡𝐻𝑡)𝑃𝑡𝐹𝑡
𝑇 + 𝑄𝑡, 

• Increment t and repeat the process beginning with calculation of 𝐾𝑡 by substituting 

the updated error covariance  𝑃𝑡+1 . 

 

5.3 Modelling the weighing system  

The process involved in the Kalman filter algorithm can also be understood as fitting the 

data observed (measurements) into a curve specified by the state transition model. The 

weighing mechanism is modelled as a second order differential equation in previous studies. 

An attempt was made to use the second order differential equation as the state space model 

in Kalman filter algorithm as shown below.   

 

5.3.1  Kalman filter (Using the Second order differential equation as the 

system model)  

 

The second order differential equation has been used to represent the system dynamics. The 

state equation was derived from the second order differential equation.  

(𝑀 +𝑚)𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑔𝑚(𝑢(𝑡))       (5 .15) 

 

An equivalent discrete time equation was developed so that the model can be used with the 

time series data available.  

Writing this as a system of fist order difference equation using the substitution, 

𝑥1 = 𝑥 

𝑥2 = 𝑥̇ 

    Then,  

𝑥1̇ = 𝑥̇ 

𝑥2̇ = 𝑥̈ 

𝑥1̇ = 𝑥2  

(𝑀 +𝑚)𝑥2̇ + 𝑐𝑥2 + 𝑘𝑥1 = 𝑔𝑚(𝑢(𝑡)) 

𝑥2̇ +
𝑐

(𝑀 +𝑚)
𝑥2 +

𝑘

(𝑀 +𝑚)
𝑥1 =

𝑔𝑚(𝑢(𝑡))

(𝑀 +𝑚)
 

 

[
𝑥1̇
𝑥2̇
] =  [

0 1
𝑘
(𝑀 +𝑚)⁄ 𝑐

(𝑀 +𝑚)⁄
] [
𝑥1
𝑥2
] + [

0
𝑔(𝑢(𝑡))

(𝑀 +𝑚)⁄ ]𝑚     (5.16) 
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Using, 𝑥̇ =  
∆𝑥

∆𝑡
= 

𝑥(𝑡+1)−𝑥(𝑡)

∆𝑡
  the equation 5.16 is re-written as,  

 

[
𝑥1
𝑥2
]
𝑡+1
− [
𝑥1
𝑥2
]
𝑡
=  [

0 1
𝑘
(𝑀 +𝑚)⁄ 𝑐

(𝑀 +𝑚)⁄
] [
𝑥1
𝑥2
] (∆𝑡) + [

0
𝑔(𝑢(𝑡))

(𝑀 +𝑚)⁄ ]𝑚(∆𝑡) 

 

[
𝑥1
𝑥2
]
𝑡+1

= [
𝑥1
𝑥2
]
𝑡
+ [(∆𝑡)

0
𝑘
(𝑀 +𝑚) ⁄

∆𝑡
(∆𝑡)𝑐

(𝑀 +𝑚) ⁄ ] [
𝑥1
𝑥2
]
𝑡
+ [

0
𝑚𝑔(𝑢(𝑡))

(𝑀 +𝑚) ⁄ ] 

 

The multivariate state transition equation can be written in the form of, 

 

[
𝑥1
𝑥2
]
𝑡+1

= [
1 ∆𝑡

(∆𝑡)𝑘
(𝑀 +𝑚)⁄ (1 +

(∆𝑡)𝑐
(𝑀 +𝑚)⁄

)] [
𝑥1
𝑥2
]
𝑡
+ [

0
𝑚𝑔(𝑢(𝑡))

(𝑀 +𝑚)⁄ ]+ [
𝑤1
𝑤2
] 

 

where 𝑤1 and 𝑤2 are noise associated with 𝑥1and 𝑥2 respectively. 

 

The only measurement observed is the output voltage of the loadcell which is 

proportional to the displacement of the loadcell (𝑥1). Therefore the measurement 

equation will be in the form of,  

[
𝑦1
𝑦2
] = [

1 0
0 1

] [
𝑥1
𝑥2
] + [

1 0
0 1

] [
𝑣1
𝑣2
] 

 

where 𝑣1 and 𝑣2 are noise associated with 𝑦1and 𝑦2 respectively. 

 

In summary, the state space model that represents the system dynamics will be as follows. 

 [
𝑥1
𝑥2
]
𝑡+1

= [
1 ∆𝑡

(∆𝑡)𝑘
(𝑀 +𝑚)⁄ (1 +

(∆𝑡)𝑐
(𝑀 +𝑚)⁄ )] [

𝑥1
𝑥2
]
𝑡
+[

0
𝑔(𝑢(𝑡))

(𝑀 +𝑚)⁄ ]𝑚(∆𝑡)+ [
𝑤1
𝑤2
] 

[
𝑦1
𝑦2
] = [

1 0
0 1

] [
𝑥1
𝑥2
] + [

1 0
0 1

] [
𝑣1
𝑣2
] 

 

By comparing the derived state transition equation with equation (5.14), the state transition 

matrix, 

𝐹𝑡 = [
1 ∆𝑡

(∆𝑡)𝑘
(𝑀 +𝑚)⁄ (1 +

(∆𝑡)𝑐
(𝑀 +𝑚)⁄ )] 
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As explained in section 5.2.2, the Kalman filter algorithm begins with calculating the 

Kalman gain 𝑘𝑡 which requires the knowledge of the system such as initial conditions, state 

transition matrix 𝐹𝑡 and observation matrix 𝐻𝑡.  

The state transition equation contains the description of nominal system dynamics including 

k and c which can be determined empirically. The difficulty in this approach, however, is 

having the unknown variable ‘m’ (the mass to be determined) in the state transition equation.   

The Kalman filter algorithm cannot be implemented to estimate the state 𝑥1 with known 

parameters in the state transition equation. 

 

5.3.2 Kalman filter (1 – D, Discrete-time model) 

In a different approach, a data driven, time series model was developed and 1- dimensional 

Kalman filter algorithm was used to estimate the optimum steady state of the time series 

data.  

The process followed is explained in this section.  

Data provided by Compac are voltage output of the load-cells sampled at regular intervals 

of 0.25 ms. A plot of voltage data versus time shows the voltage output of an unloaded load-

cell followed by a plateau around the actual weight.  

The proposed method uses a selected set of data; data showing a response to the weight of 

the fruit. 

Two optical position sensors are to be used to start and end weight sampling. When the first 

sensor is blocked by the cup, the signal for collection of weight data is triggered and when 

the second sensor is blocked, the weight sampling is to be ended. The data sampled between 

the sensor signals is used in weight estimation.   

A Discrete time state space model was employed for time series data sampled at regular 

intervals, and the Kalman algorithm was used as a predictor.  

5.3.2.1 Developing a state- space model for selected data. 

The general linear Gaussian state space model can be written in a variety of ways (Durbin 

& Koopman, 2012). The form of the model used in developing the state space model in this 

application is presented in equation (5.1) and (5.2).  

Observed in the graphs shown in figures 5.1 and 5.2, the individual plot displays some 

oscillatory pattern corrupted with noise. However, the oscillations do show common 
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properties (frequency, periodic time) for all the plots. Noisy, random oscillations regress 

towards a steady state.   

The distribution could be described as a combination of deterministic and stochastic 

processes. However, the process is considered as stochastic in order to develop a common 

state space model for all the data sets provided, i.e. voltage data of different fruits moving at 

various speeds.  

 

 

 

 

 

Equation (5.1) was employed as the 1- dimensional state equation.  

 

Figure (5.2) shows the graph of unfiltered data for 200g moving at 0.5 m/s. Visualised in 

this graph, the oscillatory data regresses towards constant state corrupted with some 

oscillations. Explained in section 3.2.1, the signal reaches a constant state of 𝑚𝑔/𝑘 as the 

time progresses towards the end of the signal time.  

 

Figure 5.1: Scatter plot showing selected data of 573.1 g weight moving at 0.5 m/s 

 

Figure 5.2: Scatter plot showing selected data of 573.1 g weight moving at 0.5 m/s 
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Marked with black, dashed line is a hand-drawn approximation to illustrate the underlying 

constant state. It is also the simplified response that shows the change in voltage when the 

load cell is loaded with a fruit (mass).  

The data was separated into two sets: 

 

Between A and B, unloaded response 

Between C and D, loaded response (constant state of the step response).  

 

 

 

The loaded and unloaded responses were treated as two sets of time series data. Steady state 

value of each was estimated separately, and the difference between the two steady state 

values can be used to estimate the mass of the fruit.   

The model proposed does not capture the system dynamics at the level of the second order 

differential equation (2.1). The attempt is to estimate the underlying constant states in each 

case of ‘unloaded response’ and ‘loaded response’.  

In ‘loaded’ conditions, the underlying constant state is proportional to the mass to be estimated 

(equation (3.3)).  

The state is assumed to be constant in the absence of any external inputs.  

 

Explained below is the development of state space model that can be used with the  

1-dimensional Kalman filter algorithm.   

It is also assumed that there are no effects of external disturbances while the fruit is on the 

weighing table, therefore, 

𝑢𝑡 = 0 

A B 

C D 

Figure 5.2: Graph of unfiltered data for 200 g moving at 0.5 m/s  
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The model represent the constant state where the time update is 𝑥𝑡+1 = 𝑥𝑡  (i. e. 𝐹𝑡 = 1) and 

the process noise variance   𝜎𝑤 is set to zero.  

Hence the state transition equation is a constant dynamic model,  

𝑥𝑡+1 = 𝑥𝑡 + 𝑤𝑡;   𝑤𝑡(0,   𝜎𝑤),   where   𝜎𝑤 = 0, 

 

By setting the process noise variance to zero, perfect constant dynamics is assumed, i.e. It is 

assumed that there are no mismatches between the model and the expected state.    

The state transition equation simplifies to a constant dynamic model of, 

𝑥𝑡+1 = 𝑥𝑡 

The system model represents a linear6, time invariant7 system. 

 

5.3.2.2  Measurement equation 

The measurement equation of the 1- dimensional state space model was given by equation 

(5.2) in section 5.2.  

𝑦𝑡  is the scaler output, the measured output voltage at the loadcell and 𝑥𝑡 is the voltage as 

the state to be estimated. It is assumed that 𝐹𝑡= 1. The equation (5.2) simplifies to; 

𝑦𝑡  =  𝑥𝑡 + 𝑣𝑡:   𝑣𝑡~  𝑁 (0,   𝜎𝑣) 

 

The difference between 𝑦𝑡  and 𝑥𝑡 is the noise associated with the measurements, i.e. any 

uncertainties of the measurement. The measurement uncertainty defines an interval around 

the measured value and the true value of the measurand lies within the interval with some 

probability. (Leito, n.d.) 

 

In summary, the state space model proposed is, 

𝑥𝑡+1 = 𝑥𝑡       (5.15) 

𝑦𝑡  =  𝑥𝑡 + 𝑣𝑡:   𝑣𝑡~  𝑁 (0,   𝜎𝑣)    (5.16) 

The systems with zero process noise are also known as ‘output error’ models.  

 

 
6 The output is has a linear relationship to the input. 
 
7 The output for particular input does not depend on the time of application of the input. 
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Kalman filter convergence 

Observability measures the ability of the measurements (sensor configurations) to provide 

all the information necessary to estimate all the states of the system and implies that the error 

covariance remains bounded.  

Controllability of the system model measures if the state variable of the state space model 

can be controlled from the input to achieve the desired output.  The two conditions can be 

tested using two tests offered in control theory. (Heidelberg, 2011. pp 275 – 297).  

 

If the state space model of an n – dimensional system is given by,  

𝑥(𝑡 + 1) =  𝐹 ∗ 𝑥(𝑡) +  𝐵 ∗ 𝑢(𝑡) 

        𝑦(𝑡) = 𝐶 ∗ 𝑥(𝑡) +  𝑣(𝑡) 

 

The  𝑛 × 𝑛 matrix (𝐵, 𝐹𝐵,   𝐹2𝐵,… . 𝐹𝑛𝐵) is called the controllability matrix. The condition 

for controllability is that the system is completely controllable if and only if that rank of the 

controllability matrix is 𝑛. 

In a similar manner, the system is observable if and only if the rank of the observability 

matrix, 

(C, 𝐶𝐹,   𝐶𝐹2, … . 𝐶𝐹𝑛−1) is equal to 𝑛 (Heidelberg, 2011. pp 275 –  297). 

 

The proposed model presented by equations (5.15) and (5.16) is an output error model where 

the process noise is zero. Zhang (2017) discusses the convergence properties of output error 

models and states that the optimal Kalman filter for ‘output error’ systems is stable 

(converge) if the complete observability conditions are met. This is in addition to the 

requirement that all the computed variables are bounded for any recursive algorithm running 

in real time.   

 

For the state space model proposed in equation (5.15) and (5.16), 

The number of states to be estimated = 1 

The rank of the observability matrix (C) = 1. 

The model satisfies the observability conditions.  

As shown below, this is also computed in MATLAB which returns the same results.  
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The boundedness of the computed variables, i.e. error variance, Kalman gain will be tested 

for each case for optimality of the Kalman filter output.  

 

5.3.2.3 Measurement noise modelling 

The measurement noise model represents the probability distribution of the measurement 

uncertainty which depends on the sensor.  Therefore a stationary measurement noise model 

with constant variance is assumed.  It is determined by repeating a measurement and 

computing the mean and standard deviation of the results (“What is the uncertainty of my 

sensor” n.d.).  

The load cells provide accurate readings with an estimated percentage error in the range of 

± 0.15%. However, there are some factors affecting the accuracy of load cell readings. Non-

linearity of the calibration curves, hysteresis, environmental forces (vibrations) and 

sensitivity to temperature changes are some common reasons for measurement uncertainty 

(“Five factors that can affect your weighing system’s accuracy”, n.d.).   

Exact specifications of the load cells used in the system are unavailable. The measurement 

noise model is developed as explained below.  

Data obtained for 200g moving at 0.5m/s, which yields satisfactory weight estimates, was 

used as the base for estimating the uncertainty in measurements. 

 

For loaded region (between C and D in Figure (5.1)),  

Instrumentation error of the load cell is taken to be ± 0.2%  

For 200g at 0.5m/s,  

At loadcell1, voltage output when loaded               = 2150 

± 0.2 % of 2150                      = ± 4.3 

 Standard deviation of the measurement distribution = 4.3 

 Variance of the measurement distribution         = 18.5 
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The measurement noise is assumed to have a Gaussian distribution. The mean value of the 

error distribution is zero with a variance of 18.5.  

 

    

5.4 Implementation of the Kalman filter algorithm 

Implementation of the Kalman filter algorithm to obtain estimation for the steady state is 

explained below using time series data for 200g at 0.5m/s for both loadcells. 

The flowchart in figure (5.8) shows the implementation of the Kalman algorithm on the state 

space model suggested (Equation (5.15) and (5.16) in section 5.3.3.   

 

 

Figure 5.2: Implementation of Kalman algorithm 

Time increment 
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Initial estimations 

Figure 5.3 shows the plot of the selected data of 200g at 0.5m/s for loadcell1 between  

175 ms – 375 ms.  

 

 

 

The sample calculations are explained below.  

The steady state value has a Gaussian distribution and the first estimate or the initial value 

of the estimate is assumed to be the voltage datum at 174.75 ms, i.e.  𝑥𝑜 = 1916. 

Variance of the process noise model of the selected set of data was used as the initial variance 

of the process noise, 𝑃0 = uncertainty of unfiltered data  

The value of the standard deviation of the unfiltered data set.  

For the selected set of data, the standard deviation is calculated to be   

Uncertainty of the measurement noise distribution,  𝜎𝑣
2 = 18.5 (as determined in section 

5.3.3) 

 

Calculate 𝐾1 =   
𝑃0

𝑃0+𝜎𝑤
2  = 

33.9

33.9+18.5
 

=  0.64 

𝑥̂𝑡+1 = 𝑥̂𝑡 + 𝐾𝑡(𝑦𝑡 − 𝑥̂𝑡) 

𝑥̂𝑡+1 = 1916 + 0.64 (1915.11 − 1916) 

𝑥̂1 = 1915.4 

𝑃1 = (1 - 𝐾1 ) 𝑃0 + 𝜎𝑤
2  

𝑃1 = (1 – 0.64) 33.9 

       =  12.2 

Figure (5.3): Data sampled between the laser signals for 200g moving at 0.5 m/s 



Development of the filter 

52 

 

𝑃1 is then used in calculate the next update for the Kalman gain,  𝐾2 and the calculations 

repeats for all the measurements. 

The same calculation process was repeated for data of 200g at 0.5 m/s in unloaded 

conditions. 

The state estimate improves through these iterations. The average of the last 100 ms was 

used as the steady state.  

Compac also uses an averaging window of 100 ms in estimating the weight of the fruit in 

the current system. The same averaging window (100 ms) was used in the initial comparison 

between the outputs of the Kalman filter with that of the existing Butterworth low pass filter. 

 The results obtained are listed in the table below and compared with the outputs of the 

Butterworth filter.  

Halimic & Balachandran (1995), uses a quality factor measure the performance of the filter 

as below.  

1

𝑄
=  
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙

𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙
 

 

The performance of proposed Kalman filter was compared to that of the 5th order 

Butterworth filter using the same quality factor. 

A lower standard deviation for a given mean value will result in higher values for  𝑄  which 

indicates that the variables are closer to the mean or the expected value. Therefore, the higher 

𝑄 indicates better filter performance. 

 5th Order Butterworth Kalman filter 

No-load Loaded No -load Loaded 

Mean 1129.4 1562.75 1953.3 2353.9 

Variance 17.5 96.12 0.8 2.99 

% Variation about 

the mean 

1.4% 2.3% 0.16% 0.33% 

Plateau height - 432 - 400.6 

Q 270.34 159.39 2186 1231.5 

Settling time - 105 ms - 26 ms 

 

 

 

Table 5.1: Results comparison for 200g at 0.5 m/s during 100ms period at the end of the 

signal time for load cell 1. 
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 5th Order Butterworth Kalman filter 

No-load Loaded No -load Loaded 

Mean 1033.9 1419.7 1676.9 2130.2 

Variance 8.1 34.2 5.4 8.81 

% Variation about 

the mean 

1.6% 1.8% 0.55% 0.33% 

Plateau height - 385 - 453.3 

Q 363.4 242.7 720.7 793.3 

Settling time - 100 ms - 50 ms 

 

 

 

 

The comparison showed in the table 5.1 and 5.2 shows that the Kalman filter outperforms 

the Butterworth low pass filter in many aspects. 

• It reduces the settling time from 105 ms to 26 ms in loadcell1 and 100 ms to 50 ms in 

load cell 2. This enable the transient response to reach the steady state faster resulting 

in larger ‘averaging window’.  

• The variance, and therefore the standard deviation, has a lower value when compared 

with that of the Butterworth filter.  This reduces the 95% confidence interval reducing 

the margin of error of the filtered signal.  

• The quality factor which measures the filter performance has increased implying better 

filter performance in this application.  

 

However, the following differences between the two filters were noted. 

• Butterworth low pass filter attenuates the high frequency components of the signal 

throughout the signal time.  

• In the Kalman filter, the state converges towards the steady state towards the end of the 

signal time. It also provides attenuation of the high frequency components of the signal 

as the signal converges towards the steady state. A suitable averaging window of 50% 

of the signal time was selected after examining all the results.  

Table 5.2: Results comparison for 200g at 0.5 m/s during 100ms period at the end of the 

signal time for load cell 2. 
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The outputs of Kalman filter algorithm is then used to develop a calibration method to 

estimate the weight of the fruits. The results and simulations are listed and explained in 

chapter 6.0.   
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Chapter 6.0 

Results and Simulations 

 

6.1 Introduction 

The Kalman filter algorithm was tested on numbers of data sets provided by Compac. The 

results and simulations are listed and discussed in this chapter. The results obtained from the 

Kalman filter were used to propose a calibration method. However, the calibration method 

needs to be verified using more data samples. 

A set of data (‘loaded’ data) was sampled between the laser signals when the cup containing 

the fruit was on the weighing table, and was used to estimate the average value of the filtered 

data around the plateau.  Data was collected before the cup arrived at the load cell referred 

to as unloaded data, was analysed separately. The difference between the averages in ‘loaded 

data’ and ‘unloaded data’ was the increase of the mean value of the signal (plateau height) 

that is used to develop a calibration method.  

 

Results of number of tests were presented in two sections; 

•   Constant mass at varying speeds. 

•   Varying masses at constant speed. 

 

6.1.2 Constant mass at varying speeds 

Among the data provided by Compac, four data sets were available for 200 g mass at three 

different speeds.  

• 200 g at 0.5 m/s 

• 200 g at 1.0 m/s 

• 200 g at 1.5 m/s  
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Filtered signal around the plateau (Loaded data) 

The figure 6.1 shows the  ‘loaded data’ for 200g fruit moving at 0.5m/s, 1.0 m/s and  

1.5 m/s. 

 

 

 
Figure (6.1): Graphs of unfiltered and filtered data of 200g moving at (a) 0.5m/s  

(b) 1.0 m/s (c) 1.5 m/s    
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 The results obtained from the filtered signal using the Kalman filter algorithm is compared 

with that of the existing low pass filter output and the summary of the results is listed in 

Table 6.1 and 6.2.  

Compac uses a weighing window that is a given percentage of the full cycle in the latter part 

of the signal as shown in Figure (6.3). Similar weighing window of 50% of the signal time 

was used in obtaining the results shown in Table (6.1) and Table (6.2).  

 

 

 

Conveyor 

speed 

(m/s) 

Butterworth Kalman % reduction  

(improvement) 

in Std 
Mean Std8 Mean Std 

0.5 1419.7 34.1 2363.0 7.7 77.4 

1.0 1487.1  2458.0 9.0  

1.5 1703.3 48.5 2822.5 15.8 74.4 

 

 

 

The standard deviation is a measure of variation of the set of data in the filtered signal. The 

reduction in the standard deviation implies lower variation of data thus increases reliability 

of the estimate of the mean.  

 
8 Std- Standard deviation. 

Figure (6.2): The weighing window used in the current system (‘Compac Sorting Equipment’, 

personal communication, June 2017).  

 

Table (6.3):  Comparison of ‘loaded data’ for 200g moving at 0.5 m/s, 1.0 m/s and  

1.5 m/s. 
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The improvements in the standard deviation made by the Kalman filter is above 74% for 

200g mass moving at all three speeds. This yields a more reliable mean value for the filtered 

signal in the weighing window.  

As presented in Table 6.2, the mean values increase as the speed increase in both cases. The 

results obtained from both filters exhibit an increasing trend and the trend is not linear in 

both cases.  The graph uses only 4 sets of data; thus the results need to be verified by more 

tests.   

 

Settling time   

Settling time tabulated in Table (6.2), is the time required for the system response curve to 

reach and stay within 2% about the mean value. The data was examined using spread sheets 

in MS Excel and a trial and error method was used to estimate the settling time in each case. 

When the system parameters are known, the settling time can be calculated using the 

damping ratio and the natural frequency of the system (equation (3.)).  

 

Conveyor 

speed 

(m/s) 

Settling time (LC1) Settling time (LC2) 

Butterworth Kalman Butterworth Kalman 

0.5 112 28 100 31 

1.0 67 47 63 17 

1.5 - 27 - 32 

 

 

In summary, the Kalman filter shows significant improvement in steady state signal and the 

settling time for lower speeds, i.e. 0.5 m/s and 1.0 m/s for 200 g mass.  

At 1.5 m/s, the existing filtered signal does not reach a state where the error margin is 2% or 

lower. With the use of the Kalman filter, the system response reaches and stays within 2% 

of the mean value in 32 ms which is approximately 50% of the signal time. This leaves a 

weighing window of 28 ms. 

The signal filtered with the Butterworth filter only reaches 9.6% error margin in 32ms. The 

percentage error decreases as the time progresses during the signal time but does not reach 

3% error margin. 

 

Table (6.2):  Comparison of settling times for 200g moving at 0.5 m/s, 1.0 m/s and 1.5 m/s. 
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Filtered signals before arrival at the load cell (Unloaded data) 

The test results for unloaded data for 200g moving 0.5 m/s, 1.0 m/s and 1.5 m/s are presented 

in this section. The figure 6.4 shows the graphs of filtered and unfiltered data in ‘unloaded’ 

conditions. 

 

Conveyor 

speed 

(m/s) 

Butterworth Kalman % reduction  

(improvement) 

in Std 
Mean Std Mean Std 

0.5 1033.8 8.1 1953.3 0.8 90.1 

1.0 1031.8 44.7 1959.5   

1.5 1031.8 24.6 1952.5 5.7 76.8 

 

 

The summary of results presented in Table (6.3) for ‘unloaded data’ shows that the overall 

mean values do not increase with the increase of speed for unloaded data in both cases. The 

mean values obtained from the Butterworth filter and Kalman filter are approximately 1033 

and around 1953, respectively.   

Similar to the performance in ‘loaded data’, the Kalman filter shows significant 

improvements in standard deviation in filtering ‘unloaded data’.  

 

6.2.2 Varying masses at a constant speed. 

The data for two masses moving at the same speed have been used to study the characteristics 

of variation of mass at a given conveyor speed. In this analysis, six sets of data have been 

used as below. 

• 200g at 0.5 m/s ( one set of data) 

• 573.1g at 0.5 m/s ( five sets of data) 

 

The mean value of the signal has increased as the mass increases from 200g to 573.1g.  

The increasing trend of the mean value was an expected result that validates the expected 

behaviour of the load cell under the application of load.  

The signal time is 185 ms at the conveyor speed of 0.5 m/s for the selected data set. The 

settling time (time to reach 2% error margin) is in the range of 170 ms for heavier fruits. The 

Table (6.3):  Comparison of unloaded data for 200g moving at 0.5 m/s, 1.0 m/s and 1.5 m/s. 
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results tabulated in the Table (6.4) show a weighing window less than 15 ms for most of the 

data sets.  

The Kalman filter improves the settling time by reaching the steady state approximately in 

40 ms, leaving a weighing window of about 145 ms. This is approximately 75% of the signal 

time.  

Similar to the results in the two previous comparisons, significant improvement in the 

standard deviation is observed when using the Kalman filter.  

Mass (g) 

 

Butterworth Kalman 

Mean Std 
Settling 

time (ms) 
Mean Std 

Settling 

time (ms) 

200.0 1562.8 9.8 112 2130.2 1.7 36 

573.1 2323.1 43.9 172 2874.1 9.0 45 

573.1 2363.0 36.7 158 2924.9 5.0 30 

573.1 2343.9 68.9 - 2891.9 11.1 40 

573.1 2286.5 35.9 174 2846.4 4.0 35 

573.1 2315.1 52.8 174 2884.8 6.3 35 

 

 

Single carrier 

Data provided by Compac shows the weigh graph of a single cup moving over the weighing 

table. There are two clear regions where ‘loaded’ and ‘unloaded’ data can be sampled for 

analysis.  

The sudden change in signal value, (that was referred to as the ‘plateau height’ in this thesis), 

was estimated by calculating the difference between the average values of ‘loaded data’ and 

‘unloaded data’. 

Table (6.4):  Comparison of ‘loaded data’ for 200 g and 573.1 g moving at 0.5 m/s 
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Observed inthese graphs are: 

• Both Butterworth filter and the Kalman filter response yield similar variation as the 

speed increases. The gap between the average plateau heights has increased at the 

highest speed available, i.e. 1.5 m/s. 

Figure (6.5): variation of the plateau height with the increase of conveyor speed 

Figure (6.6): variation of the plateau height with the increase of mass 
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• The variation of the plateau height with the increase of mass shows similar trends. 

However, the graph uses the information of two masses, i.e. 200g and 573.1g.  

 

Multiple carriers 

Figure (6.2) (provided in the initial presentation made by Compac) shows a typical weigh 

graph of multiple carriers.    

Visualised in the graph, sampling of ‘loaded data’ is possible, however, ‘unloaded’ region 

is not available for data sampling in real time.  

The sudden increase of signal value can be calculated by obtaining the difference between 

the average signal value around the plateau and a pre-calculated reference value.   

Therefore, both plateau height and the averages of weighing windows values are calculated 

and plotted for comparison. 

 

 

 
Figure (6.7) Variation of the Average signal value (loaded) with the increase of the 

conveyor speed. 
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Observed in these graphs are: 

• The variation of plateau heights calculated using the Kalman filter shows some 

deviation from the output of the Butterworth filter at higher speeds.  

• A very similar increasing trend is observed in the ‘Average signal value’ vs ‘mass’ 

which was drawn using data for two masses.  

 

The results will be discussed in Chapter 7.0.  

 

 6.2.3 Proposed calibration method 

The observations explained in section 6.2.1 and 6.2.2 shows that the mean value of the 

filtered signal increases with the increase of the mass as well as the increase of speed.   

Therefore, the estimation of is of the form shown in equation (6.1). 

Mass estimation, 𝑚(𝑒𝑠𝑡) = 𝛼(∆𝑣) +  𝛽(∆𝑣); 

  where,   

∆𝑣 = the mean voltage output at a given time – reference voltage 

𝛼 =  the coefficient based on the change of speed from a reference value.  (e.g. the gradient 

of the graph of increase of plateau height vs conveyor speed, assuming that the graph is 

linear.) 

𝛽 = the coefficient based on the change of the mass.  

Figure (6.8) Variation of the Average signal value (loaded) with the increase of mass. 
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However, the variation stated above may be not be linear.  

The proposed calibration method is to use a look up table (LUT).  

A lookup table is an array that contains multidimensional data. The numerical data stored in 

the array are either pre-calculated or experimental data. It provides means mapping inputs 

to outputs using an array indexing method.  

It allows a digital processor to calculate a value of a function without performing complex, 

advanced mathematical operations.   
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Chapter 7.0 

Conclusion 

7.1 Introduction 

A one-dimensional Kalman filtering technique has been explored as a possible solution 

that will enable improved accuracy of dynamic weighing.  

The dynamic behaviour of the weighing mechanism was studied and analysed using a 

mathematical model: a second order differential equation.  

The step response of the second order differential equation is given by the equation (3.5), 

 

𝑥(𝑡) =  
𝑚𝑔

𝑘
−
𝑚𝑔

𝑘

(2𝜉𝜔𝑛 + 1)

𝜔ඥ1 − 𝜉2
𝑒−𝜉𝜔𝑡ඥ1−𝜉

2
 

 

𝑥(𝑡) = steady state response + transient response 

 

It consists of a constant state (or a steady state) of magnitude 
𝑚𝑔

𝑘
 and a decaying 

oscillatory component.  The constant state, or the steady state, that is responsible for the 

weight of the fruit was estimated using the 1- dimensional Kalman filter algorithm.  A 

simplified step response of the system was considered as two sets of random data. The 

difference between the steady state of each set of data was used to estimate the mass of 

the fruit being moved over the weighing table.  

A calibration method was the proposed to estimate the mass. The results obtained are 

discussed in section 7.2. 

 

7.2 Results 

It is given that the Butterworth filter yields satisfactory results at speeds lower than 1.0 

m/s and masses less than 250g. The results obtained from the Kalman filter show similar 

behaviour to that of Butterworth filter at lower speeds (Figure (6.7)). Some variations 
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are observed at the higher speeds available, i.e. 1.5 m/s. These results need to be verified 

by more data samples.  

 

 

Standard deviation 

The standard deviation of the filtered data which quantifies the variation or the dispersion 

of data about its mean value was one of the tools used to compare the outcome of the 

Butterworth filter and the Kalman filter. The constancy of the mean values also taken 

into account when comparing the two filtered signals using the standerd deviation. A 

significant reduction in the standard deviation was observed at all the speeds and the 

masses when using the kalman filter.  

 

Settling time 

Reducing the settilng time of the filtered signal was one of the key requirements of this 

project. The settling times were estimated monitoring the percentage error and the 

constancy of the mean value of the filtered voltage signal.  

The settiling times of the filtered signal were also compared to study the improvements 

made be the Kalman filter.  

Significant improvements were observed in setting times when the Kalman filter was 

used, e.g. the signal did not reach the steady state (2% percentage error margin) at 1.5 

m/s but reaches the steady state in 27ms when the kalman filter was used.   

 

These improvements observed in standard deviation and the settling time have made 

some changes to the plateau heights when compared with that of the existing values.  The 

percentage changes are shown in table 7.1 and 7.2 below.  

 

Observed in Table 7.1 and Table 7.2, the changes in the plateau heights are within 10% 

for lower speeds, i.e. 200g moving at 0.5 m/s and 573.1 g moving at 0.5 m/s for both 

load cells.  The plateau heights obtained using the Kalman filter at 1.5 m/s deviates from 

that of the Butterworth conditined filter by 37.1% for load cell1 and 23.0% for load cell 

2. The increase in percentage deviation needs to be verified by more data samples and 
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should be investigated futher to see if the change causes any improvements in the weight 

estimation at higher speeds.  

 

 

Speed 

(m/s) 

Load cell 1 Load cell 2  

Butterworth Kalman % Change Butterworth Kalman % Change 

0.5 m/s  433.35 466.6 7.7% 385.9 409.7 6.1% 

1.0 m/s 359.3 308.4 14.1% 498.3 498.5 9.4% 

1.5 m/s 1347.6 1714.8 37.2% 692.4 925.5 23.0% 

 

 

 

Mass 

(g) 

Load cell 1 Load cell 2 

Butterworth Kalman % Change Butterworth Kalman % Change 

573.1 1215.6 1244.9 2.4% 1138.8 1143.8 0.45% 

573.1 1232.6 1214.03 1.5% 1104.2 1195.3 8.2% 

573.1 1153.3 1161.44 0.7% 1184.5 1234.5 4.2 % 

573.1 1186.3 1205.5 1.5% 1165.2 1201.8 3.1% 

 

 

 

In the existing Butterworth system, it is possible the signal exceeds the 2% percentage 

error margin due to the presence of oscilltions about a constant mean value, in some 

cases. These oscillations, however, get cancelled when calculating the average of the 

signal.  

Calculating the average provides an effect of two cascading filters thus a smoother output 

signal results.  

 

 

 

 

 

 

   Butterworth 

filter 

Averaging 

Figure (7.1): Existing Butterworth filter output. 

Table (7.1): Comparison of plateau heights for 200 g moving at various speeds.  

Table (7.2): Comparison of plateau heights for 573.1g moving at 0.5 m/s  
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Averaging the filtered signal has a little benefit on the Kalman filter output that already 

has a stronger mean value with a lower standard deviation.  

 

Calibration method 

Information about the current calibration method is not available for comparison. 

However, the plateau heights vary with the changes of the masses of the fruit as well as 

the change of speed. A look-up-table that takes both of these variations is recommended 

as a calibtation technique.  

 

7.3 Kalman filter 

The Kalman filter was regarded as the optimal solution to data tracking and prediction 

problems. The filter was constructed as a mean error minimiser in the deterministic 

derivation. The Kalman filter has many advantages in state estimation in continuously 

changing systems. The system equation is in the form of a first order difference equation 

that uses only the information of the previous state. Hence the computation of the states 

is faster. The filter gain is updated every iteration of its calculations, minimising the 

residual with an updated gain factor in every step.      

The filter is also adaptive to the data being used.  All these features results in a fast 

response enabling the system reaching the steady state fast. The Kalman filter was 

explored as a possible solution for its favourable features. 

In my recent research, it is found that the continuous time Kalman filter has previously 

been used in weight estimation in high speed dynamic weighing system using the second 

order differential equation as the system model. In a different approach used in this 

thesis, the loadcell output signal is separated into two sets of time series data. The 1 – 

dimensional Kalman filter was used to estimate the underlying steady state of each data 

set and the difference between the loaded and unloaded data was used in weight 

estimation. The method is somewhat similar to the existing method where the 

Butterworth filtering technique where the change in average signals value of the filtered 

signal is used in weight estimation.  Advantages of the application of Kalman filter in 

two stages are; 

•    Inherent property of the Kalman filter algorithm of fast response. 
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• Use of the Kalman filter in two stages eliminates delay introduced by the sudden 

change of the signal value.   

The new method yields positive results in reducing the settling time of the system 

response. However, its effect on estimation of mass required testing with more 

experimental data.  

 

7.3.1 Stability of the Kalman filter 

The stability of the Kalman filter was briefly discussed in Chapter 5.0.  

The state space model used was tested for ‘observability’ to ensure the convergence of 

the filter output for the model. The convergence of the computed variables is also a 

requirement to establish that the Kalman filter converge for the model used.  

The convergence of the ‘priori error variance’ with time and the variation of the Kalman 

gain with time for 200 g at 0.5 m/s and 1.5 m/s are shown in the Figure (7.3).  

 

 

 

 

Figure (7.3): Variation of the Kalman gain with time and Error variance with time (a) 

Kalman gain for 200 g at 0.5 m/s (b) Kalman gain for 200 g at 1.0 m/s (c) Error variance 

for 200 g at 0.5 m/s (d) Error variance for 200 g at 1.0 m/s 
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7.3.2 Tuning filter parameters 

The Kalman filter, if properly tuned, gives better results than a filter that uses only model 

or measurement information. Proper selection of the system model and selecting error 

covariance  𝜎𝑤
2  and 𝜎𝑣

2 to exactly match the actual noise conditions will minimise the 

error between the prediction and the actual states (Wilson, 2016). 

The determination of process noise is generally more difficult. It is used to account the 

mismatches between the assumed model values and true values. With the constant 

dynamic model used in this thesis, a perfect straight line is expected by setting the 

process noise variance to zero.  

Determining the measurement error variance (𝜎𝑣
2) can be done prior to the 

implementation of the filter by collecting samples of measurement and calculating the 

variance of the samples. Uncertainty of the measurements due to the intrinsic noise of 

the sensor is used as the measurement error variance. 

The measurement uncertainty of the load cell used in the weighing system was estimated 

from the information obtained from load cell user guides. With zero process noise, the 

steady state value varies with the measurement uncertainty, 𝜎𝑣
2. When the measurement 

uncertainty is higher, filter was slower to ‘believe’ the measurements.  

Figure (7.2) shows the steady state values obtained when 𝜎𝑣
2 = 4.3 and 𝜎𝑣

2 = 453. 

      

 

 

 

 

 

 

 

  

 

 

The measurement noise variance of 18.5 was used in the graphs presented in this thesis.   

The selected value was determined based on the information obtained from load cell user 

guides. 

 

  

(a) (b) 

Figure (7.2): The filter response for 200 g at 0.5 m/s (a) when  𝜎𝑣
2 = 4.3 (b) 𝜎𝑣

2 = 453 
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Initial estimate and initial error variance 

The initial estimate used for the simulations is the first reading in each data set in the 

simulations shown in thesis. The recursive algorithm begins its computations with the 

second reading in each data set.  The alternative initial estimate tested was the average 

value of the sampled data set.  

The choice of initial estimate did not affect the steady state value (figure (7.3)). The first 

reading of each data set was selected as it reduces computations as well as enables real 

time implementation of the algorithm. 

 

 

 

 

Initial error variance  

The initial error variance was the square of the difference between the two first readings in each 

data set. The two other error variances tested were; 

•   the variance of the first two readings 

• the square of the difference between the first reading and the average value of 

the sampled data set.  

All the three initial variances yield the same steady state values. There was also no effect 

on the settling time.  

The square of the difference between the first reading and the second reading was 

selected as it enables real time implementation of the algorithm. It was also the most 

simplistic in calculations.  

Figure (7. 3): The Kalman filter output for 200 g at 0.5 m/s for two different initial 

estimates; 𝑥0 = 1995 (the initial reading) 𝑎𝑛𝑑 𝑥0 =  2129 (The average value of the 

sampled data) 
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Initial measurement 

Each data set was sampled by activation of laser signals. In the former part of the plateau 

the signal was highly oscillatory resulting in considerable changes in the signal value 

within few milli-seconds. The steady state value was not affected by the stating position 

however the settling time could be increased depending on the position of the laser 

switch.    

 

 

 

Figure (7.4): The Kalman filter output for two different initial error variance  

Figure (7.6): Filtered signal of 200 g at 1.5 m/s for starting at 40 ms. 

 



Conclusion 

 

73 

 

 

 

 

7.4 Fitting Vs filtering 

The existing 5torder Butterworth filter is a low pass filter that filters out the higher 

frequencies. The proposed Kalman filter algorithm can be considered as fitting the data 

into a curve specified by the state equation.  

Common filtering objective of convolution based filters is to remove the signals of 

unwanted frequencies, (e.g. low pass filters) i.e. in low pass filtering a number of 

frequency components are retained in the output signal relatively unchanged. 

Curve fitting (polynomial fitting) does suppress the abrupt changes and smoothed out 

the signal. Curve fitting alters both high frequency components as well as the low 

frequency of components of a signal resulting in an output function of multiple 

frequencies.  

 

7.5 Future recommendation 

In the proposed method, the weight estimation is done in three steps; estimating the ‘no-

load steady state’ estimating the ‘loaded steady state’ and calculating the difference to 

estimate the weight through calibration. A constant state model was used in two stages 

to obtain the steady states. Research can be carried out to study the possibilities of using 

a piece-wise function as the system model.  

Further studies can also be carried out in using the steady state Kalman filter which is 

implemented for time invariant systems when the noise variances are also time invariant.  

Figure (7.5): Filtered signal of 200 g at 1.5 m/s starting at 62 ms 
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A new system model with different noise models can be considered when using the 

steady state Kalman filter.  

The value of the Kalman gain is updated through the recursive implementation of the 

filter algorithm. Therefore the Kalman gain is also time-varying. As observed in figure 

(7.3), the Kalman gain converges to a constant value as the system reaches the steady 

state. It is also seen that the error covariance converges towards a constant value as the 

signal reaches the steady state. The constant value of the Kalman gain is called the steady 

state Kalman gain (Wilson, 2016).   

The steady state error covariance is determined by solving for  𝑃𝑘 in the Riccati equation 

(Wilson, 2016) and then using this constant error variance to calculate the constant 

Kalman gain.    

𝑃𝑘 = 𝜎𝑤
2 +  𝐴𝑃𝑘 − 𝐴𝑃𝑘(𝜎𝑤

2 + 𝐶𝑃𝑘)
−1𝐶𝑃𝑘𝐴    (7.1) 

 

The equation can be solved using the MATLAB function dare.  

    This is a computationally efficient procedure for calculating the steady state Kalman 

gain.   

 

7.6 Summary 

It was given that the existing Butterworth filter yields satisfactory results at lower speeds. 

The Kalman filter improves the filter performance in reducing the settling time of the 

filtered signal. This increases the stable region of the weighing window, especially at the 

higher speed discussed in this thesis, 1.5 m/s. Most of the data tested in this thesis are 

less than 1.0 m/s. There was only one set of data available at speeds higher than 1.0 m/s. 

However, further tests need to be carried to investigate the impact of the speed on 

estimation of mass.  

 

As detailed in section 7.3, the settling time is affected by the initial reading.  Some 

experiments would be required to position the laser switches in order to capture the best 

set of data for optimum results.  

 

 

 



75 

 

 

           

           

           

 

 

           

           

           

    

 

Appendix A 

 Kalman filter MATLAB code 
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Appendix B 

Graphs of Kalman filter output and stability  
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Appendix C 

Power spectra analysis 
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