Active Learning Methods for
Dynamic Job Shop
Scheduling using Genetic
Programming under

Uncertain Environment

Deepak Karunakaran

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Doctor of Philosophy

in Computer Science.

Victoria University of Wellington
2019

Abstract

Scheduling is an important problem in artificial intelligence and opera-
tions research. In production processes, it deals with the problem of alloca-
tion of resources to different tasks with the goal of optimizing one or more
objectives. Job shop scheduling is a classic and very common scheduling
problem. In the real world, shop environments dynamically change due
to events such as the arrival of new jobs and machine breakdown. In such
manufacturing environments, uncertainty in shop parameters is typical. It
is of vital importance to develop methods for effective scheduling in such
practical settings.

Scheduling using heuristics like dispatching rules is very popular and
suitable for such environments due to their low computational cost and
ease of implementation. For a dynamic manufacturing environment with
varying shop scenarios, using a universal dispatching rule is not very ef-
fective. But manual development of effective dispatching rules is difficult,
time consuming and requires expertise. Genetic programming is an evo-
lutionary approach which is suitable for automatically designing effective
dispatching rules. Since the genetic programming approach searches in
the space of heuristics (dispatching rules) instead of building up a sched-
ule, it is considered a hyper-heuristic approach.

Genetic programming like many other evolutionary approaches is com-
putationally expensive. Therefore, it is of vital importance to present the
genetic programming based hyper-heuristic (GPHH) system with schedul-
ing problem instances which capture the complex shop scenarios captur-
ing the difficulty in scheduling. Active learning is a related concept from
machine learning which concerns with effective sampling of those training

instances to promote the accuracy of the learned model.

The overall goal of this thesis is to develop effective and efficient ge-
netic programming based hyper-heuristic approaches using active learn-
ing techniques for dynamic job shop scheduling problems with one or

more objectives.

This thesis develops new representations for genetic programming en-
abling it to incorporate the uncertainty information about processing times
of the jobs. Furthermore, a cooperative co-evolutionary approach is devel-
oped for GPHH which evolves a pair of dispatching rules for bottleneck
and non-bottleneck machines in the dynamic environment with uncer-
tainty in processing times arising due to varying machine characteristics.
The results show that the new representations and training approaches
are able to significantly improve the performance of evolved dispatching

rules.

This thesis develops a new GPHH framework in order to incorpo-
rate active learning methods toward sampling DJSS instances which pro-
mote the evolution of more effective rules. Using this framework, two
new active sampling methods were developed to identify those schedul-
ing problem instances which promoted evolution of effective dispatching
rules. The results show the advantages of using active learning methods
for scheduling under the purview of GPHH.

This thesis investigates a coarse-grained model of parallel evolution-
ary approach for multi-objective dynamic job shop scheduling problems
using GPHH. The outcome of the investigation was utilized to extend
the coarse-grained model and incorporate an active sampling heuristic to-
ward identifying those scheduling problem instances which capture the
conflict between the objectives. The results show significant improvement

in the quality of the evolved Pareto set of dispatching rules.

Through this thesis, the following contributions have been made. (1)
New representations and training approaches for GPHH to incorporate
uncertainty information about processing times of jobs into dispatching

rules to make them more effective in a practical shop environment. (2) A

new GPHH framework which enables active sampling of scheduling prob-
lem instances toward evolving dispatching rules effective across complex
shop scenarios. (3) A new active sampling heuristic based on a coarse-
grained model of parallel evolutionary approach for GPHH for multi-
objective scheduling problems.

iv

List of Publications

1. Karunakaran, Deepak, Yi Mei, Gang Chen, and Mengjie Zhang. “Dy-
namic job shop scheduling under uncertainty using genetic program-
ming.” In Proceedings of the Intelligent and Evolutionary System:s,
Springer, 2017, pp. 195-210, Canberra.

2. Karunakaran, Deepak, Yi Mei, Gang Chen, and Mengjie Zhang. “Evolv-
ing dispatching rules for dynamic Job shop scheduling with uncer-
tain processing times.” In Proceedings of IEEE Congress on Evolu-
tionary Computation (CEC), IEEE, 2017, pp. 364-371, San Sebastian.

3. Karunakaran, Deepak, Yi Mei, Gang Chen, and Mengjie Zhang. “To-
ward evolving dispatching rules for dynamic job shop scheduling
under uncertainty.” In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), ACM, 2017, pp. 282-289, Berlin.

4. Karunakaran, Deepak, Gang Chen, and Mengjie Zhang. “Parallel
multi-objective job shop scheduling using genetic programming.” In
Proceedings of Australasian Conference on Artificial Life and Com-
putational Intelligence (ACALCI), Springer, 2016, pp. 234-245, Can-

berra.

5. Karunakaran, Deepak, Yi Mei, Gang Chen, and Mengjie Zhang. “Sam-
pling Heuristics for Multi-objective Dynamic Job Shop Scheduling

Using Island Based Parallel Genetic Programming.” In Proceedings

v

vi

of International Conference on Parallel Problem Solving from Nature
(PPSN), Springer, 2018, pp. 347-359, Coimbra.

6. “Active Learning Methods for Dynamic Job Shop Scheduling under
Uncertainty Using Genetic Programming based Hyper-heuristics”
(Journal paper in preparation).

Acknowledgments

I would like to thank my parents and wife for their continuous support
and sacrifices throughout this journey.

I am grateful to Victoria University of Wellington for the financial sup-
port through the Victoria Doctoral Scholarship and Victoria Doctoral Sub-
mission Scholarship. I am also grateful to the administrative staff at the
Engineering and Computer Science school for their support throughout
my study.

I'would like to acknowledge my gratitude to my supervisors Prof. Mengjie
Zhang, Dr.Aaron Chen and Dr.Yi Mei for their support and supervision to-
ward the completion of this PhD thesis.

Vil

viii

Contents

List of Publications iv
Acknowledgement vii
List of Figures xii
List of Tables XV
1 Introduction 1
1.1 Problem Statement 1

1.2 Motivations e e 4

1.3 Research Goals 9

14 Major Contributions 13

1.5 Organizationofthesis 15

2 Literature Review 17
21 Scheduling o L 18
2.1.1 Job Shop Scheduling Problem 19

2.1.2 Uncertainty in Scheduling 23

2.1.3 Dynamicsin Scheduling 24

2.2 Machine Learning and Hyper-heuristics 25
22.1 Machine Learning 25

2.2.2 Heuristics, Meta-heuristics and Hyper-heuristics . . . 28

2.3 Evolutionary Computation 30

iX

CONTENTS

23.1 Evolutionary Algorithms 30
232 SwarmIntelligence 31
24 ActiveLearning L. 32
2.4.1 Active Learning in Evolutionary Algorithms 34
2.5 Parallel Evolutionary Algorithms 35
2.6 Genetic Programming 39
2.6.1 Multi-objective GP(MOGP) 44
2.6.2 Genetic Programming based Hyper-heuristics (GPHH) 46
2.7 Related Work to Job Shop Scheduling 46
2.7.1 Solution Approaches for StaticJSS 46
2.7.2 Solution Approaches for DynamicJSS 51
273 GPHHforscheduling 53
2.74 Cooperative Co-evolution for JSS. 56

2.7.5 Difference in Solution Approaches to Static and Dy-
namic JSS Problems 57
2.7.6 Approaches for Dealing with Uncertainty in JSS . . . 57
2.8 Parallel Hyper-heuristicsand MOEAs 59
2.9 Summary of Literature Survey 60

Genetic Programming based Hyper-Heuristics for Dynamic Job

Shop Scheduling under Uncertainty 63
31 Introductiono L. 63
311 ChapterGoals. 66
3.1.2 Chapter Organization 66
3.2 New representations 67
3.21 Simulation Model with Uncertainty 67
3.2.2 Exponential Moving Average (EMA) Terminal 69
3.2.3 Ex-post and Ex-ante Optimization 70
3.24 ExperimentDesign 75
325 Resultsand Discussions 79

326 Analysis 85

CONTENTS xi

327 SectionSummary L. 87
3.3 Cooperative Co-evolutionary method 88
3.3.1 ExperimentDesign 98
3.3.2 Resultsand Discussions 100
333 Analysis L. 105
334 SectionSummary 106
3.4 Further Discussion 107
35 ChapterSummary. 107

4 Active Sampling Methods for Dynamic Job Shop Scheduling un-

der Uncertainty 110
41 Introduction L. 110
41.1 Shop Scenarios in Dynamic Environment 111
412 Multiple DispatchingRules 112
413 Active Learningmethods 114
414 ChapterGoals. 116
415 Chapter Organization 116
42 TheProposed Methods 117
421 Clustering of DJSS Problem Instances 117
42.2 GPHH Framework Using Active Sampling 119

42.3 GPHH with Active Sampling using e-greedy strategy 122
424 GPHH with Active Sampling using Gaussian Pro-

cessBandits Lo 129
4.3 ExperimentDesign 135
4.4 Resultsand Discussions 141
45 ChapterSummary. 147

5 Active Sampling Heuristics for Multi-objective DJSS Problems

Using Island Based Parallel Genetic Programming 149
51 Imtroduction 149
511 ChapterGoals 154

512 Chapter Organization 154

xii CONTENTS

52 Islandmodels
521 ExperimentDesign
522 Resultsand Discussions
523 SectionSummary
5.3 Successive Reject Heuristic.
53.1 ProposedMethod
53.2 ExperimentDesign
5.3.3 Resultsand Discussions
534 Analysis
535 SectionSummary Lo L

54 ChapterSummary.

6 Conclusions
6.1 Achieved Objectives
6.2 Major Conclusions

6.2.1 DJSS under Uncertain Processing Times

6.2.2 Toward Evolving Dispatching Rules for Multiple Shop

Scenarios o

6.2.3 Active Sampling Heuristics for GPHH toward Multi-
Objective JSS o oo
6.3 FutureWork

Bibliography
Appendices
A Supplementary Results for Chapter 4

B Supplementary Results for Chapter 5

199

229

231

235

List of Figures

21
2.2
2.3
24

2.5

3.1
3.2

3.3

34
3.5
3.6

3.7

4.1

51

Venn diagram of classes of non-preemptive schedules [182]. 21

Overfitting 26
Example of a genetic program [1] 40
Example of a crossover operation in genetic programming.

left to right: Parent A, Parent B, Child A, ChildB 42
Example of a mutation operation in genetic programming.left

to right: Parent, Replacement, Child. 43
Gamma distributions o 000000 68

Boxplots: The order of boxplots is same as mentioned in
the caption. The significantly better result is shown with a
coloredboxplot. Lo 80
Boxplots: The order of boxplots is same as mentioned in
the caption. The significantly better result is shown with a

colored boxplot. L. 81
Histogram of Frequency of Terminals 86
Boxplots for training instance 87

Boxplots: The order of boxplots is same as mentioned in the

caption. The result with lowest medians are marked in green.104

Histogram of Frequency of Terminals 105
Proposed GPHH framework using active sampling. 120
Island topologies, . 156

Xiv

52
53

54
55

5.6

57

Al
A2

A3

A4

B.1

B.2

B.3

B.4

B.5

B.6

LIST OF FIGURES

Bi objective : combined Pareto fronts.. 165

Bi-objective optimization (up arrow indicates higher the bet-
ter) ... 166

Multi-objective pareto fronts. (top: train, bottom: test) 167

Multi-objective optimization (up arrow indicates higher the

(a)Standard island model, (b) Island model for successive

rejectheuristic oo o L 173
Comparing Cy; (selected) and Cs;, (rejected) using HV. 184
Boxplots: TestSetIL. 231
Test Sets XII, XVIII and XXV: The result with highest medi-

ans are marked inorange. 232
The boxplot pertaining to the DJSS instance for which GPB

performed poorly is highlighted. 233

The boxplots marked in green are better than the rest and

the ones marked in orange indicate poor performance. . . . 234

Test sets: 3-) and 4-). For HVI, the higher value corre-

sponds to better performance. 236
Test sets: 3-) and 4-). Lower value of the metric (SPREAD)
corresponds to better performance. 237

Test sets: 3-) and 4-). The order of boxplots is same as
mentioned in the caption. Lower value of the metric (IGD)

corresponds to better performance. 238
Test sets: 3-1, 3-1, 3-IIT and 3-IV. For HVI, the higher value
corresponds to better performance. 239
Test sets: 4-1, 4-1, 4-IIT and 4-IV. For HVI, the higher value
corresponds to better performance. 240

Test sets: 3-1, 3-1, 3-III and 3-IV. Lower value of the metric
(SPREAD) corresponds to better performance. 241

LIST OF FIGURES XV

B.7 Test sets: 4-1, 4-1, 4-II1 and 4-IV. Lower value of the metric

(SPREAD) corresponds to better performance. 242
B.8 Test sets: 3-I, 3-1, 3-III and 3-IV. Lower value of the metric
(IGD) corresponds to better performance. 243

B.9 Test sets: 4-1, 4-1, 4-1I and 4-IV. Lower value of the metric
(IGD) corresponds to better performance. 244

Xvi LIST OF FIGURES

List of Tables

21
2.2
2.3

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

39
3.10

3.11
3.12

3.13
3.14
3.15
3.16

Notation 19
Example: Johnson’srule 48
List of Dispatchingrules 52
Notation L 72
PT terminals for ex-ante and ex-post approaches. 74
Test Configurations 77
Function and Terminal Sets forGP. 78
ENT-2 (Ex-ante method, 2-job types training) 82
ENT-5 (Ex-ante method, 5-job types training) 82
EXP-5 (Ex-post method, 5-job types training) 83
EMA-5 (Exponential moving avg. method, 5-job types train-

Ing) 84
EXP-2 (Ex-post method, 2-job types training) 84
EMA-2 (Exponential moving avg. method, 2-job types train-

ING) 84
Terminal Set: Jakobovié-GP3 (Decisionrule) 90
Machine uncertainty (scale parameter () values of expo-

nential distributions) Lo oL 99
Training and Test Configurations 100
GP1(l) (Configuration-III) 101
GP1(h) (Configuration-VI) 102
GP3 (Configuration Il & VI), 102

XVii

xviii LIST OF TABLES
3.17 GP2-K (ConfigurationIlI & VI) 103
3.18 CoGP2-K (ConfigurationIlI & VI) 103
41 JobFeatures 118
42 Notationo 121
43 DJSS simulation parameters 136
44 Parametervalues 137
45 TerminalSetsforGP. 139
4.6 FunctionSetforGP. 139
47 egreedyvs. GPHH 142
48 GPBvs.GPHH 143
49 GPBvs.egreedy 143
5.1 Functional and Terminal Sets for genetic programs. 160
5.2 Population size perisland inbraces. 161
5.3 Idle power and working power of machines. 161
54 JobFeatures 172
55 Notation 175
5.6 DJSS simulation parameters 179
5.7 Terminal SetsforGP. 180
5.8 FunctionSetforGP. 180
5.9 Migration Policies 181
5.10 Island-Model versus NSGA-IT 182
5.11 SRH-Island Model versus NSGA-IT 182

5.12 SRH-Island Model versus Island model 183

Chapter 1
Introduction

This chapter provides the introduction to the thesis. It starts by describing
the problem statement followed by the motivations for this research work.
The research goals and the major contributions are described next. Finally,

the organization of the thesis is presented.

1.1 Problem Statement

The job shop scheduling problem is a combinatorial optimization prob-
lem [75]. It has a wide range of practical applications in industrial pro-
cess [179], airline scheduling [61], distributed computing systems [15], and
many other domains [63]. The job shop scheduling problem deals with
the assignment of tasks or jobs to different resources or machines. The
quality of schedule depends on the objective(s) of the problem, e.g., the
completion time or makespan. In practice, most of these problems are NP-
hard [78]. When the complete information of jobs and machines is known
and it does not change with time, it is known as a static job shop schedul-
ing problem. On the other hand, when new jobs arrive with no prior infor-
mation known about them, the problem is more challenging and is known
as a dynamic job shop scheduling problem (DJSS) [194, 156]. Furthermore,

in practice, the parameters of the jobs such as processing times and release

1

2 CHAPTER 1. INTRODUCTION

dates are uncertain. For example, the release of a job maybe pushed back
due to unavailability of raw material, the processing of a job may get de-
layed due to sudden power outage. Generating (near) optimal schedules
under dynamic and uncertain environments makes the job shop schedul-

ing problem more challenging and mostly infeasible.

Exact optimization methods have been used for finding solutions to
particular problem instances of job shop scheduling. These methods are
slow and need to be performed again for new instances [182]. For dy-
namic scheduling, when a new (set of) jobs arrive, the algorithm needs to
be run all over again. Heuristic methods are fast and appropriate for prac-
tical scenarios but do not give any analytical bounds on optimality. Devel-
oping heuristics (dispatching rules) is time consuming but once generated,
the dispatching rules are able to generate schedules very fast. Therefore,
dispatching rules are more suitable in such practical applications [225,
161]. Dispatching rules generally use machine and job attributes [172].
Examples of simple dispatching rules [172] are: (select job with) shortest
processing time (SPT), fewest operations remaining (FOPNR), minimum
setup-time (MINSEQ), operation where machine has least work (WINQ),
etc. Dispatching rules can further be composed of multiple job and ma-
chine attributes, e.g., SPT/FIFO selects the job by sorting them shortest
processing time and then by the arrival time. Such dispatching rules are
called composite dispatching rules.

However, manually designing dispatching rules is challenging because
it requires domain expertise and rigorous experimentation. Therefore, ma-
chine learning methods have been successfully used to design composite
heuristics which can capture complex relationships among the variables
of a job shop [187]. At the interface of machine learning and operations re-
search lies the area of hyper-heuristic approaches toward automating the
design and adaptation of heuristic methods. Basically, hyper-heuristics are
heuristics which in turn produce problem-solving heuristics rather than

the final solutions. In order to generate the dispatching rules automat-

1.1. PROBLEM STATEMENT 3

ically, hyper-heuristics approach has been proposed [42]. The heuristics
produced are typically dispatching rules which are then used to gener-
ate the schedules. Genetic programming based hyper-heuristic (GPHH)
approaches have been successfully used for developing the dispatching
rules [30, 41, 157, 161] in job shop scheduling. Considering the flexible
representation of genetic programs this approach has shown to be very
promising [157]. Many effective dispatching rules particularly for dy-
namic job shop scheduling problems have been developed recently e.g.
ASP2013-Rule #6 [162], EC2014-TREE_EXT_NORM_ND-Rule [33], etc.

In practice, uncertainty is ubiquitous in shop environments [110, 141,
142]. DJSS problems are characterized by continuous arrival of new jobs to
the shop and no prior information about them is known. Most research on
job shop scheduling use a deterministic model [109]. In the deterministic
case, once the information of a new job is known, it stays constant. How-
ever, in an uncertain scenario, the information varies at the time of realiza-
tion of the schedule. For example, the processing time of a job varies when
a schedule is realized and is different from its expected value. Moreover, the
dynamic nature of DJSS problems leads to variability in the shops which is
closely associated to the uncertainty. In practice, the job shop environment
always has uncertainty which makes scheduling a challenging and diffi-
cult task [125]. Handling uncertainty during scheduling is of practical im-
portance. Processing time variability, change in job arrival pattern, equip-
ment downtime, resource outage, demand uncertainty, poor performance

of control systems, etc. are some of the many sources of uncertainty [141].

Furthermore, when such a practical shop environment is considered, a
number of complex scenarios arise, more so, when multiple objectives are
considered. Developing methods for scheduling by dealing with the chal-
lenges of such practical environments is the major motivation behind this
research. It has been shown in literature [137] that dispatching rules deal
better with uncertainty compared to other algorithmic solutions. Con-

sidering the flexible representation of genetic programs and its ability to

4 CHAPTER 1. INTRODUCTION

represent complex features of job shop scheduling, developing heuristic
approaches under the purview of uncertainty is a current research direc-
tion [34, 164]; particularly for dynamic scheduling [240]. Even though
GPHH has been a good tool to design dispatching rules, more work is re-
quired for their applicability to practical shop environments, for example,
by dealing with the aspects of representation and computational aspects
in GPHH. The current studies on GPHH do not focus on these issues.

1.2 Motivations

In shop environments with uncertainty, the dynamic arrival of jobs mani-
fests into varied scenarios for scheduling. In order to further demonstrate
the kinds of issues arising due to uncertainty, we cite more practical ex-
amples from scheduling problems [104, 130, 189, 191]. An automobile
production line is required to be configured to produce cars with differ-
ent specifications, e.g., specific leather seating, choice of standard or pre-
mium wheels, exterior paint color and other specifications for accessories.
Variability in these specifications causes uncertainty in set up times, and
other delays. Similarly, in print industry, where scheduling and planning
is an important activity, the jobs arrive dynamically to the print shop. A
print job requires resources like printers, cutters, collators and other simi-
lar equipment. Machine breakdowns, operator’s breaks and complex ma-
chine set-ups leading to delays are some of the sources of uncertainty in
this shop environment [104]. The varying characteristics of the arriving
jobs along with the sources of uncertainty has a detrimental effect on the
scheduling objective(s). The arriving jobs show a pattern in their char-
acteristics [104], e.g., recurring marketing print jobs, transactional reports
etc. Consequently, in order to address these problems, [104] considers di-
viding the shop into cells and assigning the jobs to different cells based
on their specifications. They also take into account the effects of machine

breakdowns and operator breaks in this consideration. Furthermore, [190]

1.2. MOTIVATIONS 5

proposes grouping the jobs by classifying them based on their features
(e.g. number of resources required) and then use specific scheduling poli-
cies (simple dispatching rules) for the different cells. Essentially, in order
to alleviate the problems described above, these methods are trying to di-
vide the DJSS problems based on different shop scenarios and then solve
them independently using specific scheduling policies.

We had stated earlier that for DJSS problems the dynamic nature of
shop and the uncertainty are closely related. In the previous example this
point was illustrated many times. For instance, the arrival of jobs with dif-
ferent characteristics requires complex set-ups of machines. This causes
uncertainty in processing times of the jobs. For generating good schedules
in practical shop environments taking uncertainty into account is crucial.
Previous works have leveraged the flexible representation of genetic pro-
grams to evolve good dispatching rules for DJSS problems [100, 158]. It
has been shown that GPHH has the ability to incorporate complex shop
information in the form of machine and shop attributes into the evolved
rules. Therefore, considering the importance of taking into account the ef-
fect of uncertain shop parameters in the shops, developing methods to in-
corporating the uncertainty information into the dispatching rules seems
to be an important research direction and a good step to generate effective
schedules.

But the performance of an evolutionary algorithm and GP in partic-
ular is highly dependent on the choice of representations which in turn
is highly influenced by the characteristics of the problem and its diffi-
culty [197]. Therefore, unless aided by better representations, the existing
GPHH approaches will not be able to evolve rules for practical JSS prob-
lems in an uncertain shop environment. To conclude, though GPHH has
shown potential and is a good candidate for evolving dispatching rules
which take uncertainty into account, its success will depend on the under-
lying choice of representations. The new GPHH representations should
be able to incorporate the uncertainty information into the dispatching

6 CHAPTER 1. INTRODUCTION

rules e.g. through newly defined terminals. Furthermore, motivated by
the ability of genetic programs to incorporate complex features, it is also
worth exploring methods for classifying the shop scenarios corresponding
to the different levels of uncertainty which could aid the evolution of an

effective set of rules.

From the examples of practical job shops described earlier, we can rec-
ognize the importance of designing scenario-specific dispatching rules.
There are some other works [88, 209], which have highlighted the fact
that designing a single dispatching rule to work well across all the sce-
narios is not possible. From the perspective of hyper-heuristics, particu-
larly GPHH, it is desired to automatically design rules for different shop
scenarios. In a DJSS problem, the variability in the shop arising due to its
dynamic nature defines the shop characteristics. For a GPHH system to
automatically design scenario-specific rules, it is necessary to extract in-
formation (features) from the shop characteristics e.g. [213]. This brings
about the need to utilize machine learning techniques to identify the shop
scenarios and group them. Theoretically, it is possible to identify infinite
number of such shop scenarios. However, GPHH is a computationally
expensive approach and evolving rules for a very large number of shop
scenarios is not feasible. Therefore, which of the shop scenarios to select
for learning the rules, or more particularly, which of the DJSS problem in-
stances representing the shop scenarios should be selected is an important

question.

Active learning [204], which is a sub field of machine learning, is based
on the idea that a learning algorithm will perform better with less training
if it is allowed to choose its training data. More formally, active learn-
ing problems involve selectively and adaptively sampling from the in-
put space toward estimating unknown parameters. Active learning ap-
proaches have been quite successful in areas like semi-supervised learn-
ing [51]. Genetic programming could also be considered as a machine

learning tool. With respect to the research question described above, we

1.2. MOTIVATIONS 7

want the GPHH system to be provided with training instances which can
aid in learning of effective dispatching rules. Clearly, the research question

can be seen under the purview of an active learning problem.

The current active learning methods, like uncertainty sampling tech-
nique [3], when applied to problems like classification, try to leverage
the underlying distribution of the input space and sample those instances
which present with maximum information to the learning system. Itis also
quite straightforward to provide feedback to the active learning method,
for example by measuring the error in a classification problem which can
then be used by the method in further iterations (e.g. expected-error re-
duction technique [204]). In the context of GPHH, this is not straightfor-
ward because GPHH is a hyper-heuristic approach and by using a sample
of DJSS instance for training, if a dispatching rule is evolved, it cannot
directly convey any information about the efficacy of the used sample in-
stance. The evolved dispatching rule needs to be further evaluated on a set
of new DJSS instances and its performance on these new instances is then
indirectly a measure of the quality of the sampled DJSS instance. Clearly,
we need a more powerful GPHH framework which can handle both these
tasks simultaneously. One task focuses on evolving rules using sampled
DJSS instances while the other task evaluates the sampled DJSS instance
indirectly evaluating the evolved rule. Since our computational budget is
limited, we essentially need to find a tradeoff between assigning compu-
tational resource to these tasks. Essentially, this is a multi-armed bandit

problem.

In a multi-armed bandit (MAB) problem [16], a fixed set of resources
must be allocated to competing choices (arms) to maximize profit. The
intuition is developed by imagining a gambler who has to pull a slot ma-
chine with multiple arms. Each arm is associated with a different probabil-
ity of winning, which are unknown to the gambler. The gambler, who has
limited resources (number of times he can pull the arm), faces the dilemma

of whether to explore the arms to find the optimal arm which gives maxi-

8 CHAPTER 1. INTRODUCTION

mum reward or to exploit the arm which is currently the most rewarding.
This is called the exploration versus exploitation dilemma. By analogy, ex-
ploring the space of DJSS training instances while exploiting the already
identified good training instances is the multi-armed bandit problem in

our context.

With this background, we can see that these ideas motivate a research
direction toward using MAB framework and active learning techniques
in GPHH to evolve dispatching rules which can perform well on a large
number of complex shop scenarios. There are some similar works which
explore such ideas for other problems [12, 32]. Furthermore from these
discussions, it is also clear that the existing GPHH framework lacks the
provisions to incorporate these techniques and efficiently address the ex-

ploration versus exploitation dilemma discussed above.

As we had mentioned earlier, a major motivation for this research is
to develop methods for practical scheduling problems. In practice, it is
important for considering more than one objective in a scheduling prob-
lem. For example, considering the earlier example [104] from print in-
dustry apart from makespan some of the other objectives considered were
number of late print jobs and turn around time. GPHH becomes compu-
tationally more expensive when dealing with an increasing number of ob-
jectives because of the higher complexity of EMO algorithms [57]. When
we consider the complex shop scenarios for multi-objective DJSS problems
the application of active learning techniques becomes more complicated.
This is because the solution of a multi-objective optimization problem is
a Pareto set of solutions instead of a single solution. Evaluation of Pareto
sets is computationally more expensive than evaluating a single solution.
Therefore the exploration task discussed earlier with respect to the sin-
gle objective case becomes much more expensive. Therefore, the compu-
tational issues and the difficulty in using the existing GPHH framework
for MAB and active learning techniques become exacerbated for multi-
objective DJSS.

1.3. RESEARCH GOALS 9

Parallel EAs have been very useful when it comes to speeding up the
evolutionary process. Because of ease of parallelizability of evolution-
ary algorithms, it is encouraging to address the aforementioned compu-
tational issues using parallel evolutionary algorithms [220]. There are two
main categories of parallelization, parallelizing an independent run and is-
land models. Island models are particularly interesting because of their abil-
ity to deal with local optima [220]. The island model uses a spatially struc-
tured network of subpopulations (on different processors) to exchange
promising individuals among each other in an effective approach. One
of the major advantages of the island model is that it inherently captures
the dynamics of exploration versus exploitation through the design of its
migration policies and topologies. Due to this feature it is motivating to
consider island model for developing active sampling methods which ex-
ploit this feature along with parallelization of GPHH for multi-objective
DJSS problems. The success of some works like [244] in applying island
models for MOEAs is further motivating. Even though there is good theo-
retical foundation for island models, we still lack understanding of many
aspects of island model. Moreover, the design choices such as migration
frequency and island topology have a big impact on the effectiveness of
island models. Therefore, for solving any problem using the island model

for parallel EAs, determining these design parameters is crucial.

1.3 Research Goals

The overall goal of this thesis is to develop effective and efficient genetic
programming based hyper-heuristic approaches using active learning tech-
niques for dynamic job shop scheduling problems for one or more objec-
tives.

Following are the more specific research questions to be addressed in
this thesis.

e How to incorporate uncertainty information of the shop into the dispatching

10

CHAPTER 1. INTRODUCTION

rules? How to evolve rules for different levels of uncertainty in the shop?

The representation in genetic programming is a key aspect which
decides the performance of GP for any learning task. In fact, for
JSS problems many different GP representations have been consid-
ered [161]. We aim to develop new representations for genetic pro-
gramming which can incorporate uncertainty information into the
dispatching rules. More specifically, we will try to find what kind
of new terminals could be used in genetic programming when un-
certainty in processing times of the jobs is considered. Moreover,
since the uncertainty levels vary in a dynamic shop, we will try to
develop new methods which can detect these variations and explore
the ability of GPHH to develop dispatching rules for these varying

scenarios.

How to use machine learning techniques e.g. clustering, to identify and
group the varying shop scenarios? What active sampling methods to use
for identifying good training instances while evolving dispatching rules?

Since GPHH is computationally demanding, it is not feasible to con-
sider the training instances from all shop scenarios for training. More-
over, like in machine learning problems, not all training instances
have the same potential to be used for evolving good rules. For ex-
ample, a very easy problem instance might not challenge the evolu-
tionary algorithm, resulting in evolved rules which cannot general-
ize well on more difficult problems. A major challenge is to iden-
tify these potentially good training instances while simultaneously
evolving the rules. Therefore, we need a strategy to actively search
for good training instances while using the already sampled train-
ing instances. Basically using the currently sampled DJSS instances
for evolution is exploitation where as searching for better instances
is exploration. Thus, one of the major research goals is to tackle this

exploration versus exploitation dilemma.

1.3. RESEARCH GOALS 11

Furthermore, in order to aid the active sampling approach, we need
to associate the DJSS instances with shop scenarios. Essentially, we
aim to develop methods which can extract features from DJSS prob-
lem instances so that we can cluster them together where each cluster
corresponds to a shop scenario. We will identify the features of the
shop which characterize the different shop scenarios and develop a
feature extraction procedure for the DJSS instances.

e How to use parallel evolutionary methods for evolving a Pareto front of
dispatching rules for multi-objective DJSS problems? How to incorporate

active sampling techniques in this framework?

Evolutionary multi-objective algorithms are generally computation-
ally more expensive than their single-objective counterparts [57]. There-
fore, extending the active sampling methods to multi-objective DJSS
problems is hard because active sampling framework requires explo-
ration, which in turn will need frequent and expensive evaluation of
Pareto fronts. Moreover, island models have the inherent ability of
tackling exploration versus exploitation dilemma [168].

Thus one of the important research questions is, how to use the is-
land model framework to evolve dispatching rules for multi-objective
DJSS problems? Secondly, how to leverage the potentially useful fea-
tures of island models, i.e. its migration policies, to develop an active
sampling method for multi-objective DJSS problems?

In order to address these research questions, the following research ob-
jectives have been framed.

1. Develop new terminals for genetic programs and training methods
for genetic programming to incorporate uncertainty information into
dispatching rules. Develop a co-operative co-evolutionary approach
to evolving dispatching rules for different levels of uncertainty.

12

CHAPTER 1. INTRODUCTION

We will develop new methods and training approaches which focus
on encapsulating the uncertainty information directly into the termi-
nals of the dispatching rules.

The varying uncertainty levels in the shop manifest as changes in the
bottleneck characteristics of the machines [124]. Also in [106], bottle-
neck characteristics have been considered for a static JSS problem.
This needs further investigation when we consider a dynamic JSS
problem because the continuous arrival of jobs could result in vari-
ations in these bottleneck levels. Classification of these bottlenecks
could help in evolving rules with different characteristics and will
therefore capture the uncertainty information. The objective is to de-
velop a cooperative co-evolutionary approach to evolve dispatching
rules for machines with different bottleneck levels.

. Develop a new GPHH framework which incorporates active sam-

pling strategies toward identifying potentially good training instances
and evolve scenario-specific dispatching rules effectively for DJSS
problems under uncertainty.

Toward developing methods for effective active sampling of DJSS in-
stances in GPHH tackling the exploration versus exploitation is iden-
tified as a key research goal. We will develop multi-armed bandit
techniques which can tackle this issue. Due to characteristics of the
hyper-heuristic approaches (which essentially search in the heuristic
space and then the searched heuristic generates a solution), incorpo-
rating MAB techniques into current GPHH framework is problem-
atic. Therefore we will develop a new GPHH framework which will
enable the active sampling and MAB techniques to work together.

. Develop island model approaches to evolving dispatching rules for

multi-objective JSS problems. Develop active sampling heuristics us-
ing the island model approach for DJSS problems under uncertainty.

1.4. MAJOR CONTRIBUTIONS 13

Designing a parallel EA system using island model requires identi-
tying appropriate design parameters for the island model to be effec-
tive. These parameters depend on the problem domain. Therefore,
we will explore different design choices for the island model toward
evolving dispatching rules for the multi-objective DJSS problem.

Furthermore, we will develop an active sampling heuristic which
identifies potentially useful DJSS instances by leveraging the island
model topology and migration policies. The heuristic will promote
evolution of better Pareto set of dispatching rules for multi-objective
DJSS problems.

1.4 Major Contributions
This thesis has made the following major contributions:

e This thesis has shown how to incorporate uncertainty information
into GPHH for DJSS. New methods are investigated to incorporate
uncertainty information, each exploiting the ability of genetic pro-
gramming to have flexible and novel representations. Furthermore,
a cooperative co-evolutionary method is developed to classify the
machines as bottle-neck and non-bottleneck (which are an effect of
varying uncertainty levels in processing times) and to evolve a pair
of dispatching rules for each machine type. The results show that our
proposed methods are successful in incorporating the uncertainty
information into the evolutionary learning framework and are able
to evolve dispatching rules which show significant improvement in

performance.

Part of this contribution has been published in:

- Karunakaran, Deepak, Yi Mei, Gang Chen, and Mengjie Zhang.

“Dynamic job shop scheduling under uncertainty using genetic

CHAPTER 1. INTRODUCTION

programming.” In Proceedings of the Intelligent and Evolution-
ary Systems, Springer, 2017, pp. 195-210, Canberra.

- Karunakaran, Deepak, Yi Mei, Gang Chen, and Mengjie Zhang.
“Evolving dispatching rules for dynamic Job shop scheduling
with uncertain processing times.” In Proceedings of IEEE Congress
on Evolutionary Computation (CEC), IEEE, 2017, pp. 364-371,

San Sebastian.

- Karunakaran, Deepak, Yi Mei, Gang Chen, and Mengjie Zhang.
“Toward evolving dispatching rules for dynamic job shop schedul-
ing under uncertainty.” In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO), ACM, 2017, pp.
282-289, Berlin.

e This thesis has shown how a new GPHH framework is established to
support the methods trying to tackle the exploration versus exploita-
tion dilemma. The salient feature of the new framework is that it in-
troduces a validation step into GPHH which aids the active sampling
method. Essentially, the training and validation are exploitation and
exploration respectively. Using this framework two active sampling
approaches are developed to sample potentially good training in-
stances, namely e-greedy method and Gaussian process bandits ap-
proach. Both these methods are inspired from multi-armed bandits
literature. The results show that GPHH is more effective when evolv-
ing scenario-specific rules for DJSS problems.

— “Active Learning Methods for Dynamic Job Shop Scheduling
under Uncertainty Using Genetic Programming based Hyper-

heuristics” (Journal paper in preparation).

e This thesis investigates the migration policies and topologies for is-
land model based parallel evolutionary approach for job shop schedul-
ing problems. Then this approach is extended for DJSS problems to-

1.5. ORGANIZATION OF THESIS 15

wards developing an active sampling heuristic which exploits fea-
tures of island model to identify potentially more useful training
instances. The proposed heuristic enables the GPHH to success-
fully evolves Pareto front of dispatching rules which outperforms the
rules evolved using EMO approaches without using such a heuris-
tic. Further analysis of the sampled training instances shows that
they represented scenarios which highlight the conflicting nature of

objectives, which is in line with our expectations.

Part of this contribution has been published in:

- Karunakaran, Deepak, Gang Chen, and Mengjie Zhang. “Paral-
lel multi-objective job shop scheduling using genetic program-
ming.” In Proceedings of Australasian Conference on Artificial
Life and Computational Intelligence (ACALCI), Springer, 2016,
pp- 234-245, Canberra.

- Karunakaran, Deepak, Yi Mei, Gang Chen, and Mengjie Zhang.
“Sampling Heuristics for Multi-objective Dynamic Job Shop Schedul-
ing Using Island Based Parallel Genetic Programming.” In Pro-
ceedings of International Conference on Parallel Problem Solv-
ing from Nature (PPSN), Springer, 2018, pp. 347-359, Coimbra.

1.5 Organization of thesis

This thesis is organized as follows. Chapter 2 presents a literature survey
of related works. Chapters 3-5 address the three objectives and Chapter 6
concludes the thesis.

Chapter 2 presents a detailed description of DJSS problems and GPHH
framework. The basics concepts of genetic programming are explained.
Background and related work on job shop scheduling under uncertainty
is provided. It also provides review of current research in hyper-heuristics
with more focus on work related to research objectives of this thesis.

16 CHAPTER 1. INTRODUCTION

Chapter 3 presents the methods developed to incorporate uncertainty
information into dispatching rules. This chapter discusses two main ap-
proaches which are developed for achieving this objective. The results
from both the methods are analysed to get more insights.

Chapter 4 presents a new GPHH framework and its three components,
namely training, testing and validation. The chapter presents two ac-
tive sampling methods and compares the evolved rules with the standard
GPHH framework.

Chapter 5 proposes island model approaches for DJSS problems with
multiple objectives. Firstly, static job shop scheduling problems are con-
sidered for investigating the island models. Then active sampling heuris-
tics based on island models for DJSS problems under uncertain processing
times are presented.

Chapter 6 summarizes the thesis. In particular, the key findings and
conclusions are listed. Also opportunities for future work are presented.

Chapter 2

Literature Review

This chapter starts by introducing the concepts of scheduling, in particular,
the formal introduction of job shop scheduling problems. Then we pro-
vide a background for considering uncertainty in scheduling problems.
After the problem discussion, a review of basic concepts in machine learn-
ing and hyper-heuristic approaches is presented. Following that we pro-
vide an overview of the evolutionary computation approaches. Then we
introduce the active learning methods and also highlight evolutionary ap-
proaches which have used active learning concepts. We also provide a
detailed overview of parallel evolutionary algorithms. The key concepts
of genetic programming and GP based hyper-heuristics are introduced.
We present a detailed review of solution approaches for job shop schedul-
ing, with a particular focus on GPHH approaches. We also discuss ap-
proaches for dealing with uncertainty in scheduling problems. This is fol-
lowed by a brief review of parallel hyper-heuristics and MOEAs. Finally,
the summary of literature review highlighting the gaps in the literature is

presented.

17

18 CHAPTER 2. LITERATURE REVIEW

2.1 Scheduling

Scheduling [182, 52] is the decision making process of allocating limited
resources to task over a time period with the goal of optimizing one or
more objectives. For different application domains the resources and tasks
take different forms. For example, in an airport, the runways and the gates
are the resources and take-off and landings are the tasks; in a construction
project, crews and workmen are resources who need to complete differ-
ent construction tasks; in a computing environment, computers are the
resources and execution of the computer programs are tasks. Scheduling
is an important process in most manufacturing industries and computing

environments along with most of the service industries.

Considering the large number of applications of scheduling the num-
ber of scheduling models considered is also high. We could describe a
scheduling problem with a triplet [52] as « | 8 | 7. The parameter « is
used to define the machine environment viz., single machine (1), identi-
cal machines in parallel (Pm), machines in parallel with different speeds
(Qm), unrelated machines (Rm), flow shop (Fm), flexible flow shop (FFc),
job shop (Jm), flexible job shop (FJc), open shop (Om) etc. The param-
eter 3 could be associated with multiple entries and define the process-
ing constraints and restrictions e.g. precedence constraints (prec), break-
downs (brkwdn) etc. The final parameter + is associated with the schedul-
ing objective. Makespan, weighted tardiness, flow time are some of the
scheduling objectives frequently considered. We describe them in more
detail later.

For example, a flow shop consists of m machines and each job goes
through all the machines in a fixed route. A generalization of the flow
shop is a flexible flow shop which has many stages and there are iden-
tical machines in each stage. The jobs move from stage to stage in fixed
sequence but can be processed in of the machines in a stage. With respect

to the notation above, F'Fc | rj | > w;T; denotes a flexible flow shop with

2.1. SCHEDULING 19

release dates (r;) and the objective is to minimize weighted tardiness. An-
other example, Jm||C,,.. is a job shop with makespan as the scheduling
objective. Each job visits a machine only once. This is a classical model for
scheduling and a large number of research works have considered it. In

this thesis, we focus on job shop scheduling.

2.1.1 Job Shop Scheduling Problem

Job shop scheduling problem, also known as the sequencing problem, deals
with assigning jobs to machines (resources) at particular times. We for-
mally describe this problem by using the notation in Table 2.1.

Symbol Definition

M, My, ..., M,, arem machines.

T IN are N jobs.

[number of operations in a job J;.

O (Mj1,p(5,1)), ..., (M, p(j, ;) is a sequence of y;

operations where each operation is the

(machine,processing time) pair in job J;.

Ro,, operation ready time.

Ry, job release time.

S A job shop schedule.

C; completion time of job J;.
Crmaz makespan.

T; tardiness of job J;

D; Due date for a job J;.

Table 2.1: Notation

In a job shop with m machines, each job J; that arrives has ;; opera-
tions. Each operation O;; could be denoted as a tuple. For example, the

20 CHAPTER 2. LITERATURE REVIEW

ithoperation, (M, p(j,)) of the job J; should be processed on the machine
M;; and is associated with a processing time of p(j, 7). Thus a job 7, will
have i, such tuples. The operation ready time Rp,, is the time when an
operation is prepared and set to begin processing over the machine. The
operation ready time of the first operation in a job is called its job release
time R7,.

An operation is performed on a machine without interruption. In other
words the operations are non-preemptive. The operations follow precedence
constraints i.e. an operation cannot be started till its preceding operation
is not completed. If all jobs have same order of processing of operations,
then it is called the flow shop scheduling. A variant of job shop schedul-
ing is the flexible job shop scheduling problem in which an operation has
the flexibility of being processed on more than one machine. If the infor-
mation about the jobs is not known apriori and new jobs can randomly
arrive at the job shop over time, it is known as dynamic job shop schedul-
ing problem. When the number of jobs is fixed and their information is
known, it is called static job shop scheduling problem.

Classes of Schedules

A schedule is called as non-delay when no machine is forced to be idle if
an operation is queued at it for processing. A schedule is active if a new
schedule cannot be generated from it by changing the order of processing
on the machines with at least one operation finishing earlier but none later.
An optimal schedule must be active [216]. Non-delay schedules are a sub-
set of active schedules as shown in the Figure 2.1 from [182]. A semi-active
schedule is a schedule such that none of the operations can be completed
earlier without altering the order of processing in any one of the machines.
An active schedule is also a semi-active schedule but not necessarily the

other way round.

2.1. SCHEDULING 21

Optimal Schedule

All Schedules

Figure 2.1: Venn diagram of classes of non-preemptive schedules [182].

Objectives for Job Shop Schedules

A schedule generated for a job shop should optimize some objective. Job
shop scheduling problem is NP-hard [138]. Depending on the objective
which the schedules tries to optimize, the hardness of the problem varies.
The most frequently used quality measure is the makespan. 1f C; is the com-
pletion time of the job 7;, then makespan is defined as:

Crnaz = maxC;. (2.1)
Ji
An optimal schedule for makespan is thus expected to result in minimum
makespan for the job shop.

For a job shop scheduling problem, a schedule could satisfy many dif-
ferent criterion [227]. Flowtime and tardiness are the two other objectives
which are considered. They are more directly linked to the cost of process-
ing and customer satisfaction [21, 225]. Flowtime of a job is the time spent
on the shop floor, which is the difference between release time and com-

pletion time. A schedule with this objective should have minimum mean

22 CHAPTER 2. LITERATURE REVIEW

flowtime for all jobs. The mean flowtime [182] is given below:
XN
mean flowtime = N ;(CZ —R7)

The jobs are also associated with a due date, D;. A schedule should be
such that, tardiness which is the positive difference between the completion
time C; and due date D; is minimized. If the jobs are weighted (penalty
factor w;), then the objective to be minimized is known as total weighted
tardiness and is of the form shown below:

N
total weighted tardiness = Z w; x max(C; —D;,0)
j=1

Different works have considered different sets of objectives for job shop
scheduling problem. Mean flowtime, maximum flowtime and variance of
flowtime, percentage of tardy jobs, mean tardiness, maximum tardiness
and variance of tardiness are some of the objectives discussed in [193] for
dynamic job shop and flow shop scheduling. They have developed dis-
patching rules for scheduling while considering each objective at a time.
Similarly maximizing machine utilization, workforce utilization, minimiz-
ing total waiting time, waiting time variance, lateness, total machine work-
load, critical machine workload etc. are many other relevant objectives.
With rising energy costs and concerns for climate change objectives re-
lated to energy usage which have come into significance lately. Some of
them are energy minimization, peak power minimization, power cost min-
imization [145].

Now we discuss the different scheduling methods for job shop schedul-
ing problems. A large number of scheduling problem instances are NP-
hard [182]. Therefore, many optimization techniques based on heuristics
and meta-heuristics have been proposed to solve them [248]. Based on
the task availability the scheduling problems could be split in to dynamic
and static. In static problems the information about all the jobs is avail-

able when the scheduling process starts, where as in dynamic problems,

2.1. SCHEDULING 23

the jobs continuously arrive at the shop and their information is available
only after they have arrived. For these two kinds of problems the different
scheduling approaches are discussed later.

2.1.2 Uncertainty in Scheduling

Most of the existing works assume that during scheduling the known data
(e.g. processing times, release date) is constant [109]. In recent years con-
sideration of uncertainties in the job shops has got more attention. In
practice, a model of a scheduling environment is far from accurate. Pro-
cess variables like processing times of operations, set-up times etc. are
uncertain. Even though scheduling theory has been developed for many
decades, it is still not used in practice as much as it should be, because of
this very reason [109]. Aytug et al. [17] proposes four dimensions for cate-
gorizing uncertainty. (i) Cause is the object (e.g, material,process,etc.) and
the (ii) state (ready, damaged, broken down etc.) leading to uncertainty.
(iii) Context refers to environmental conditions e.g. operator skills. Major-
ity of the research is context-free [17]. (iv) Impact refers to the consequence
of the uncertain event e.g., quality,delay etc. It is impossible to address all
sources of uncertainty but it is essential to reasonably alleviate the ones

which are significant.

The sources of uncertainty could be classified into two categories. One
is from the shop environment, e.g. machine failure, operator’s error, de-
lay in supply of raw material, etc. The other is from the parameters of the
jobs, e.g. sudden change in job arrival rates, change in due dates, change
in job priority, cancellation of jobs, etc. The uncertainty of the manufactur-
ing system could be described as a bounded form description when there is
not enough information to develop a probabilistic model. Otherwise gen-
erally a probability description is generated form the historical data. In [110]
the probabilistic description of uncertainty has been discussed with nor-

mal probability distribution, difference of normal probability distribution,

24 CHAPTER 2. LITERATURE REVIEW

general discrete probability distribution, binomial probability and poisson
probability distribution for processing times. Fuzzy description has also
been used to model uncertainty [239].

2.1.3 Dynamics in Scheduling

Most of the existing research works focus on static job shop scheduling
problems [158]. In static JSSP, the information about all the jobs and the
parameters of the shop are known and no new information is presented
once the processing of jobs begins. In dynamic JSS problems, new infor-
mation is revealed with time and the problem configuration changes e.g.
new jobs can arrive continuously at the shop. Thus with every new job
the scheduling problem is changed. When arrival of new jobs is consid-
ered, the problem definition in Section 2.1.1 must incorporate some more
parameters. The arrival of the jobs is considered as a Poisson process as
itis a good approximation of the job arrival in practice [162]. The Poisson
process is defined with a parameter A which controls the rate of job arrival.

In Section 2.1.2, uncertainty in the shop parameters was discussed. The
uncertainty in a JSS problem refers to a situation when the values of shop
parameters are known but not exactly. On the other hand, in the dynamic
problem the problem configuration itself changes with time, e.g. due to
arrival of new jobs, removal of machines due to breakdown, etc. Further-
more, a dynamic JSS problem could also be uncertain in the values of its
parameters. It must be noted that many research works use the terms
‘uncertain” and ‘dynamic’ to refer the same shop environment, generally
referring to an uncertain shop as dynamic.

In Section 2.7, the solution approaches to job shop scheduling problems
are discussed. It must be noted that the characteristics of solution method-
ologies are dependent on the nature of job shop scheduling problems. For
a static problem, since the problem configuration does not change, it is

possible to employ computationally expensive methods from mathemati-

2.2. MACHINE LEARNING AND HYPER-HEURISTICS 25

cal optimization. On the other hand for dynamic JSS problems which vary
with time it is not feasible to solve the problem again and again when-
ever a dynamic event occurs. In this context, an event is responsible for the

change in problem configuration e.g. arrival of a job is an event.

2.2 Machine Learning and Hyper-heuristics

We introduce basic concepts of machine learning and hyper-heuristic tech-
nologies which are closely related to the objectives of this thesis.

2.21 Machine Learning

Machine learning is a field of artificial intelligence which primarily uses
statistical techniques and enables the systems to learn patterns from data
in order to improve performance on specific tasks, without providing ex-
plicit instructions.

Machine learning methods consist of three categories [28], namely (a)
supervised learning, (b) unsupervised learning and (c) reinforcement learn-
ing. In supervised learning, the system learns from already existing data
which contains the information about desired output obtained from past
observations. Classifying emails into spam and useful is an example, where
the past actions from the user who are used to determine the class of a
new email. In other words, the data is labelled under the purview of
supervised learning. In unsupervised learning, the training data is un-
labelled and clustering is one example of learning from unlabelled data.
Reinforcement learning concerns with an agent who must learn to take
optimal actions in a specific environment towards an objective. In rein-
forcement learning [222], there is no strict input-output pair in training
data, but the focus is on performance requiring a balance between explo-
ration and exploitation. Some popular machine learning techniques in-

clude [28] decision tree, logistic regression, artificial neural networks and

26 CHAPTER 2. LITERATURE REVIEW

genetic programming,.
Building machine learning models requires data which usually resides
in multiple data sets. Generally, three data sets are used to develop a ma-

chine learning model.

e Training set

This is the first data set which is used to build the machine learning
model. For example, in a neural networks model, the weights of the
connections between neurons are determined using an appropriate
algorithm (supervised learning) which uses the training set. For su-
pervised learning, the training set usually consists of pairs of data,
with an input vector and a corresponding class label. The learning
process usually involves adjusting the model parameters toward fit-
ting the model accurately on the training data. Gradient descent is
an example of one such frequently used method. The model fitting
could also include instance selection while estimating the parame-

ters.

Model Accuracy

N\

. Test set

\ overfitting ~
~ . -

\ "
-

Training set

Model Complexity

Figure 2.2: Overfitting

2.2. MACHINE LEARNING AND HYPER-HEURISTICS 27

e Validation set

Before a machine learning model is fit, some parameters are set for
the algorithms which are called as hyper-parameters. These hyper-
parameters have an impact on the quality and accuracy of the final
model. Selecting these hyper-parameters is an important task. A
validation set is generally used for this purpose. The model fitted on
the training set is used to predict the responses on the validation set.
This model accuracy is then used to finetune the hyper-parameters
e.g. number of hidden units in a neural network. Validation stage
could be used to prevent overfitting via regularization. When the
machine learning model is being fit on the training set it is important
to control the model complexity as eventually the model needs to
be used on unseen data. If the model ovetfits the training set then
it will not generalize well on unseen data. Model complexity could
be regularized using validation stage, by stopping the training if the
accuracy on validation set starts to drop. Note that a validation set
cannot be used to induce/learn the learned model.

o Test set

The test set is the dataset which is used to evaluate the final machine
learning model. It consists of unseen data and gives an idea about

the quality of the learned model.

In Figure 2.2, overfitting is explained in terms of model complexity. As
the model complexity increases, the accuracy of the model on training set
increases but it does not generalize well on the test set. The point at which
the overfitting starts (shown using the vertical bar) is the point at which
the training should be stopped.

28 CHAPTER 2. LITERATURE REVIEW

2.2.2 Heuristics, Meta-heuristics and Hyper-heuristics

Heuristics are developed to solve problems which are computationally
expensive when using methods, also called exact solvers, which deter-
mine optimal solutions. A large number of combinatorial optimization
problems fall into this category, e.g. routing, bin pacing, scheduling [182].
According to [151] following are some of the important reasons for the dif-
ticulty in solving such problems: modeling complexity, large and heavily
constrained search spaces, poor applicability of human problem solvers,
etc. Heuristics are essentially thumb rules which are used to solve such
problems with produce sufficiently good solutions with low computa-
tional cost but with no guarantee of optimality.

Meta-heuristics are non problem specific strategies to guide the search
process employed to solve difficult optimization problems with the goal
of efficiently exploring the search space and find near-optimal solutions.
They are generally non-deterministic and use the low level heuristics to ex-
plore the solution search space. Based on their search strategy, they could
be classified into local search and population based. The general tenet of local
search methods is to start with a solution and then through improvement
iteratively move towards better solutions. e.g. simulated annealing [121],
tabu search [77], variable neighborhood search [85] etc. Population based
heuristics e.g. ant colony optimization, evolutionary optimization and
particle swarm optimization [184] consider a population of solutions to
search the solution space. Many of these methods are nature-inspired and
develop strategies based in evolution, ant behavior etc. Similar to heuris-
tic approaches these methods do not give any guarantee to the optimality
of a solution.

Hyper-heuristics are a class of search methods which generate heuris-
tics to solve optimization problems [53]. Their goal is to automate the
design of heuristics which solve the optimization problems, appropriately
called as “heuristics to search heuristics’ [39]. Essentially, they search for a

method which can solve the problem effectively rather than a direct solu-

2.2. MACHINE LEARNING AND HYPER-HEURISTICS 29

tion to the problem. Hyper-heuristics approaches are generally not prob-
lem specific [39].

Even through heuristics have been effective in solving real world prob-
lems, designing them and tuning them for new problems or new problem
instances is hard and time consuming. In particular, designing problem
specific heuristics which are more effective is challenging. This require-
ment has led to the research in hyper-heuristic techniques which auto-
mate the design and tuning of heuristics for complex real world prob-
lems [40]. More specifically, the motivation behind the development of
hyper-heuristics is based on two fundamental ideas. Firstly, recognizing
the design and selection of efficient heuristics as a computational search
problem in itself and secondly recognizing the potential of learning mech-
anisms to improve the search methodologies toward adaptively guiding
the search [39]. In this thesis, we consider the following definition of a
hyper-heuristic [39]: “A hyper-heuristic is a search method or learning
mechanism for selecting or generating heuristics to solve computational

search problems.”

Hyper-heuristic approaches can be broadly classified into: (i) heuris-
tic selection and (ii) heuristic generation. Heuristic selection methodolo-
gies focus on searching or selecting from the existing heuristics. Heuristic
generation approaches are the class of methodologies which generate new
composite heuristics by utilizing the components of the existing ones. Ge-
netic programming based hyper-heuristics (GPHH) [41] is considered to
better than many other learning mechanisms toward heuristic generation
and have been very popular in the recent years. We will discuss GPHH in

more detail later.

Another classification of hyper-heuristics is: learning and non learning
learning hyper-heuristics [39]. If a hyper-heuristic approach utilizes feed-
back from the search process then it is called a learning hyper-heuristic
and non-learning hyper-heuristic in the other case.The learning hyper-

heuristics are further classified into (i) online learning hyper-heuristics

30 CHAPTER 2. LITERATURE REVIEW

and (ii) offline learning hyper-heuristics depending on the source of feed-
back. In online learning hyper-heuristics the feedback is provided while
solving a problem instance; use of meta-heuristics e.g. [38] for high level
search strategies in one example. In the offline learning hyper-heuristics,
the training instances are used to gather knowledge in the form of rules
and programs which are expected to effectively solve unseen instances.
Learning classifier systems and GPHH are two prominent examples.
Hyper-heuristic approaches have been successfully used to solve real
world problems like production scheduling [158], bin packing [178], con-

straint satisfaction [11] and vehicle routing [150].

2.3 Evolutionary Computation

Evolutionary computation (EC) is a sub-field of artificial intelligence com-
prising of algorithms which are inspired from biological evolution. They
are primarily population based algorithms with stochastic characteristics.
Basically, a population of solutions are evolved using steps like selection
and mutation toward improving their fitness (fitness definitions are prob-

lem specific).

2.3.1 Evolutionary Algorithms

Evolutionary algorithms (EA) are a main area of research in EC. Some pop-

ular algorithms EA algorithms from literature are:

e Genetic algorithms [152] (GA), which are frequently used for opti-
mization and search problem. The individuals are represented as
fixed-length arrays of bits, real numbers, integers, etc. and rely on

nature-inspired crossover, mutation and selection operators.

e Genetic programming [126] (GP), which is closely related to GA;
they use variable length computer programs to represent individu-

als. This flexible-representation enables GP to be applied to complex

2.3. EVOLUTIONARY COMPUTATION 31

problem in machine learning and artificial intelligence. We present a

more detailed review later in Section 2.6.

e Evolution strategy is based on biological evolution and predomi-
nantly uses mutation and selection operators. Covariance matrix
adaptation based evolutionary strategy (CMA-ES) [84] is a popular
method for ES.

e Evolutionary programming [245] is similar to GP where the structure
of its programs are of fixed length but the numerical parameters are
evolved. They are capable of producing highly optimized solutions
to problems. [19]

2.3.2 Swarm Intelligence

Swarm intelligence (SI) is a decentralized and self-organized system ex-
hibiting collective behaviour which is employed in work on artificial in-
telligence [31]. SI systems consist of a population of agents whose interac-
tion with each other as well as the environment is defined by simple rules.
This interaction results in a emergent behaviours. Ant colonies, bird flock-
ing, fish schooling and microbial intelligence are some of the examples of
swarm intelligence in nature.

Two of the popular swarm intelligence techniques are ant colony opti-

mization and particle swarm optimization.

e Ant colony optimization (ACO) [64] is a technique which is used
very frequently applied to combinatorial optimization problemse.g.,
vehicle routing. Basically it simulates the behavior of an ant which
leaves a pheromone on its path which keeps on vaporizing and is re-
inforced only if an ant takes the same path again. Eventually, the ants
start using the shortest path. This idea has led to many extensions of
ACO and have been applied to many real world problems.

32 CHAPTER 2. LITERATURE REVIEW

e Particle swarm optimization (PSO) [119] is a nature inspired method
which optimizes a problem by iteratively improving a candidate so-
lution. Basically, it utilizes a population of particles and moves them
toward the best solution by using a simple mathematical formulae
which uses the position and velocity of the particle. PSO was in-
spired by fish schooling or bird flocking and has been successfully
applied to problems in many areas including biomedical engineer-

ing, finance, networks, combinatorial optimization etc.

2.4 Active Learning

One of the challenges in machine learning problems is to obtain labelled
instances for training [3]. For example, in problems like classification and
filtering problems, speech recognition and information extraction a large
number of labelled instances are required to achieve the required accu-
racy [204]. Moreover, many of these labelled instances are noisy and a
higher accuracy can be achieved if such instances are removed from the
training set. Active learning is a sub-field of machine learning which is
based on the key idea that “a machine learning algorithm can achieve
greater accuracy with fewer training labels if it is allowed to choose the
data from which it learns” [204].

Broadly there are three strategies for active learning based on the learn-
ing problem. Firstly, membership query synthesis where the learner actively
synthesizes instances from the input space, e.g., choosing arbitrary spatial
co-ordinates for a sea surface temperature prediction system [3]. Secondly,
selective or sequential sampling [204] in which case the samples are drawn
from the input space and the learner makes a decision if it should be la-
belled and included for the training. Thirdly, pool based sampling is relevant
for practical scenarios where there is a large pool of unlabelled data and
a small set of labelled data. The active learner draws the samples from
this pool and decides if it should be added to the training set. Most of the

2.4. ACTIVE LEARNING 33

active learners consider pool based sampling [127].

All these active learning approaches require the evaluation of the syn-
thesized or sampled instance for it to be included into the training set. This
is called as the query strategy. The key question for a query strategy to an-
swer is: “Which sample should be selected so as to maximize the accuracy
of the classification process?” [3].

Broadly the query strategies are classified into three categories.

e Heterogeneity-based models: This is one of the most commonly used
query frameworks where the instance which is most dissimilar to the
existing training data is chosen. Three of the widely used methods
under this model are: (i) Uncertainty sampling; the active learner
tries to label those instances for which the certainty of the label to
be correct is the lowest [140]. (ii) Query-by-committee; a commit-
tee of different classifiers are trained on the existing set of labelled
instances, and then these classifiers label each of the unlabelled in-
stance. The instance with the highest disagreement among the clas-
sifiers is selected by the learner [207]. (iii) Expected model change,
is applicable only to models where gradient-based training is used
e.g. discriminative probabilistic models. It is essentially a decision
theoretic approach which selects that particular instance which has
the potential to show to contribute to the maximum change in the
model if the sample were used to train the model [206].

e Performance-Based Models: One of the drawbacks of the hetero-
geneous based models is that heterogeneity could actually lead to
noisy data. For such cases, performance based models which de-
pend on the performance of classifier are employed. Two of these
models are: (i) Expected error reduction, is a method which com-
plements the uncertainty sampling in a way that it selects those in-
stances which when added to the training data minimizes the label

uncertainty [81], (ii) Expected variance reduction is similar to the

34 CHAPTER 2. LITERATURE REVIEW

previous except that it reduces the variance and helps in reducing

the computational costs [201].

e Representativeness-Based Models: These models query the data in
such a way that the overall representativenes of the distribution of
data is better. In other words, the selected instances are informa-
tive not only if they are uncertain but also need to be representative.
Density based models are an example [205].

241 Active Learning in Evolutionary Algorithms

Active learning framework has been integrated into evolutionary algo-
rithms to achieve different goals, though in a limited way. We survey such

research works in this section.

Katsuna et al. [131] present an active learning algorithm based on ge-
netic algorithms and self-organizing maps to interactively annotate im-
ages and accurately classify them. In [235] an active learning approach is
used for classification problems with microarray data in conjunction with
feature selection approaches based on genetic algorithms. [237] presents a
surrogate assisted particle swarm optimization algorithm using commit-
tee based active learning method. Essentially, it uses an ensemble consist-
ing of polynomial regression model, Kriging model and radial basis func-
tion model in a query-based committee active learning framework as the
surrogate. The optimizer is a particle swarm optimization method. [200]
develop an active learning approach based on Gaussian processes for multi-
objective optimization problem using NSGA-IIL. Basically, it is also a sur-
rogate assisted optimization applied to problems arising in sustainable
building design.

2.5. PARALLEL EVOLUTIONARY ALGORITHMS 35
2.5 Parallel Evolutionary Algorithms

Due to the advancements in computing hardware there has been a surge
in the number of recent research works which employ parallel evolution-
ary algorithms [25, 115]. Evolutionary algorithms are embarrassingly par-
allel [43]. Parallel evolutionary algorithms are known to converge faster
and also provide better performance [79].

Parallel EAs have been applied to many challenging problems, includ-
ing NP-hard problems particularly from combinatorial optimization. [9]
presents a survey of applications of parallel EAs. Applications of paral-
lel meta-heuristics have been surveyed in [7, 54]. The survey focuses on
applications like graph coloring, partition problems, travelling salesman
problem and vehicle routing problems among others. [147] employs par-
allel EAs for workforce planning, natural language processing and prob-
lems from bioinformatics.

The parallelization of evolutionary algorithms can be done using many
ways. For example specific operations could be parallelized or the whole
evolutionary process itself could be parallelized. Some of the popular
methods from the literature are discussed below.

Master Slave Models

Under master slave model [115], one of the machines represents the mas-
ter which distributes the workload among the other machines which are
the slaves. It is particularly useful for parallelizing specific operations on
separate processors. For example, function evaluations which are gener-
ally expensive are good candidates for this model of parallelization. One
of the disadvantages [80] of master slave models is that scalability beyond
a certain level could lead to a situation where the master becomes a bottle-
neck. Moreover, keeping the workload balanced in heterogeneous systems
is challenging. The master slave model is generally synchronous whose
behaviour is not much different from sequential EAs [115]. Though asyn-

36 CHAPTER 2. LITERATURE REVIEW

chronous models are also possible [115] provided the master does not wait
for too long.

Independent Runs

By independently running [44] the evolutionary algorithms on different
machines, where each run is different from the other, the probability of
obtaining the best result in less time is increased. This is called proba-
bility amplification [136]. Essentially there is no communication between
the different machines and for that reason the setting up such a system
is relatively easy. Some communication could be introduced between the
machines so that they can stop if the optimal solution is found in one of
them. Furthermore, they have been used to explore the parameter space of
evolutionary algorithms [115]. If there is large variance in running times
among different runs, employing independent runs is rewarding in prob-
lems with local optima, because the optimization time is the time until
global optima is found [70, 243].

Island Models

The previous two approaches for parallelization not consider any system-
atic form of communication between the different machines. The main
advantage of parallelization in both the cases is more efficient running
times [115]. In the island model [115], the population associated with each
machine is called an island, but unlike the independent runs, the islands
periodically exchange solutions among them.

The island models are also known as coarse grained model or multi-
deme model. The process of periodically exchanging the solutions is called
migration. The benefit of this migration between the islands was first
shown in [133]. The island model requires a migration topology, which
is a directed graph with islands as its nodes. The connected islands can
communicate with each other through the exchange of individuals, also

2.5. PARALLEL EVOLUTIONARY ALGORITHMS 37

called as migrants. This communication is defined by a directed graph
whose each node is an island. An island which is stuck in local optima
could use a good individual from another successful island and conse-
quently focus on more promising regions of the search space. Thus the
migration enables the effective usage of available resources.

Lassig et al. [133] show that a proper migration policy and choice of
topology is essential for the parallelization based on island model to be
useful. Martin et al. showed that the different islands maintain diversity
by maintaining different promising regions of search space. Essentially,
the island models, by design, incorporate the dynamics of exploration and
exploitation. Through diversity maintenance across the different islands
the exploration is promoted while focusing on a specific region of search
space, the islands promote exploitation [55]. The dynamics of exploration
and exploitation have been empirically demonstrated further in [168].

These works have highlighted that the choice of appropriate design of
island model is very important for it to be effective, which is defined by
the following elements.

Emigration policy decides if the migrant individual should actually be
copied or removed from the source island. The selection of individ-
uals for migration is very important e.g. selection of best, worst or

random individuals could lead to different outcomes.

Immigration policy decides which individuals should be replaced by
the migrants in the destination island. For example, the similar in-
dividuals could be identified using a crowding operator [59] and re-
placed. Another approach could be to replace the worst individual
in the population.

Migration interval is the time between migrations which essentially
characterizes the communication intensiveness of the model. A high

frequency of migration will result in rapid spread of information.

38 CHAPTER 2. LITERATURE REVIEW

The migration frequency directly controls the duration of exploration

and exploitation.

Number of migrants is an important parameter which determines how
much an island controls its neighbors. The exploitation could be in-
tensified By transferring large number of individuals and vice versa.

Migration topology: Unidirectional rings, grid graphs, hypercubes etc.
are some of the many topologies which have been considered for
island models [115]. The choice of topology has an impact on the
extent to which the information is propagated to the different is-
lands [211]. [135] discusses an interesting idea of adaptively chang-
ing the number of islands depending upon the observed improve-
ment. If there is no improvement, the number of islands is doubled
and if there is improvement the number of islands is reduced. They
observed considerable speedups in many cases i.e. different topolo-
gies.

In [134], it has been experimentally shown that an appropriate choice
of these parameters is very important for the islands to successfully avoid
local optima on the one hand and also maintain diversity among them-
selves on the other hand. They also studied the robustness of migration
intervals across different topologies. Even though rigorous experiments
have thrown light over the underpinnings of the island models, the un-
derstanding is still limited and it is being explored vigorously [115].

Cellular EAs

Cellular EAs, also known as fine-grained models and are connected in a
tixed topology predominantly using a ring or a grid topology [8]. Each
island (or cell) in the cellular EA is a just an individual and it mates only

with its neighbors, every generation. Therefore, the migration interval is

2.6. GENETIC PROGRAMMING 39

just 1. Due to such characteristics they are aptly used with parallel hard-
ware like FPGAs (field-programmable gate arrays). Cellular EAs have a
lot of similarity to cellular automata.

2.6 Genetic Programming

Genetic Programming (GP) [126] is an evolutionary computation method,
which is inspired by the Darwinian evolution observed in nature. Evo-
lutionary computation algorithms are optimization methods which use a
population of candidate solutions. They simulate the concept of “the sur-
vival of the fittest” over the candidate solutions which breed with each
other and generate solutions to the optimization problem. In the case of
GP, these candidates are automatically generated programs. GP has been
applied to numerous applications [19, 146] including the job shop schedul-
ing problem.

Representation

Individuals in a GP population need not have a fixed length. They are
constructed from a terminal set and a function set. For the commonly
used tree-based representation of GP, the terminal set consists of symbols
which form the leaves of the tree. An example of the tree-based genetic
program is given in the Figure 2.3. The terminal set is {X,Y,R"} and the
function set is {+, —, x, =, cos}.

Depending on the application, the terminal set and the function set
could use complex representations of the problem. For example, for the
job shop scheduling problem one possible terminal set could be (as used in
[161]) {RJ, RO, RT,PR,W, DD, RM,4#} which denotes operation ready
time, number of remaining operations, work remaining of job, operation
processing time, weight, due date, machine ready time and constant re-

spectively.

40 CHAPTER 2. LITERATURE REVIEW

(+)
SR
OO

(2.2 —(%))+(7*cos(Y))
Figure 2.3: Example of a genetic program [1]

Inititalization

Evolutionary computation methods start their evolution process with an
initial set of individuals. Various initialization methods have been used
with GP. Two of the popular approaches [126] are full and grow. In these
methods, the depth of the tree, largest number of edges needed to reach
the leaf node, is restricted. In the case of full approach, full trees are gener-
ated with terminals located at the leaf nodes. First the nodes are selected
using the function set only and when the tree is grown till the leaf node,
the members of the terminal set are used. The growth approach does not
require the genetic programs to have all its terminals to be at maximum
depth. Therefore, the nodes are randomly picked from both the terminal
set and the function set. In ramped half-and-half [126] half of the popula-
tion is generated using full approach and the other half using the grow
approach.

Evaluation

The fitness of the evolved program must be determined for the selection
step under the evolutionary process. Fitness is also referred to as the ob-
jective function. In the case of multiple objectives, the fitness could be a

2.6. GENETIC PROGRAMMING 41

vector instead of a single numerical value. In the case of tree representa-
tion of genetic programs, the evaluation is done by tree traversal.

In the case of job shop scheduling problem, a genetic program is ap-
plied as a priority-based dispatching rules on the training instances which
result in different schedules. The quality of these schedules is then eval-
uated depending on the objectives. For example, if minimization of the
tardiness is the desired objective of the schedule, then the mean of total
tardiness across all the training instances, which results from a particular
schedule; which in turn is generated by the GP individual is its fitness.
In case of static job shop scheduling, the training instances are basically a
dataset giving details about a jobs and machines.

In the case of dynamic job shop scheduling, a discrete-event stochastic
simulation [34] is used for generating jobs. The whole fitness evaluation
is done on a job shop simulation environment. It should be noted that
fitness evaluation in the case of job shop scheduling is a time consuming
process. Many works have contributed to this problem of expensive opti-
mization [226].

Selection

After the evaluation of genetic programs, the assigned fitness values are
used to select individuals for breeding. This is similar to the Darwinian
principle of evolution where fit individuals are more likely to survive
and pass their traits to the offsprings (children). Roulette wheel selection
method and the tournament selection are the two popular methods [18]
used for selection. In roulette wheel selection method (also known as fit-
ness proportionate selection), fitness value is used to assign probability
values to individuals. Thus individuals with higher fitness values have
a higher ‘chance’ of selection. This could be a problem sometimes when
individuals with poor fitness values might have very less chance for se-
lection. In tournament selection, a sample of individuals is selected ran-

domly from the whole population. The fittest individual from this sample

42 CHAPTER 2. LITERATURE REVIEW

+ X + X
- _ RT + = _ RT +
x _ . - x 2.4
PR RT PR 24| |PR| |RT PR
pp| |o7| |PD RT pp| |Rr| |PD 0.7

Figure 2.4: Example of a crossover operation in genetic programming. left
to right: Parent A, Parent B, Child A, Child B

is then selected and the rest of the individuals are sent back to the popula-
tion. Tournament selection is more frequently used with genetic program-
ming [126].

Genetic Operators

Crossover and mutation are the two main genetic operators used in evo-
lutionary computation. To perform crossover (Fig. 2.4), in a genetic pro-
gramming representation, two individuals from the population are se-
lected, and a random node is identified as the crossover point from each of
them. This is known as subtree crossover. In the Fig. 2.4, Parent A and Par-
ent B are selected for crossover. The two individuals exchange the selected
subtrees to create new Child A and Child B.

In the case of mutation only one parent is needed to produce a new
child. A random node is chosen from the selected parent and the subtree
from that node is removed. Then a new subtree is grown at that node.
This is known as subtree mutation. An example of mutation is shown in
the Fig. 2.5.

Crossover rate and mutation rate are the parameters which decide the
probability of crossover and mutation respectively, for each individual in

every generation.

2.6. GENETIC PROGRAMMING 43

4
4
. _ X \

\ - o PR RT - PR

PR RT PR ’
DD X
DD RT
RT 5

Figure 2.5: Example of a mutation operation in genetic programming.left

to right: Parent, Replacement, Child.

Basic GP Algorithm

We present a basic genetic programming algorithm towards optimization
(minimization) of a function in Algorithm 1. p*, the best performing indi-
vidual GP found at the end of the evolutionary algorithm is returned.

In line 1 of the algorithm, the initialization is done to create a popula-
tion P of size n. The best solution p* is set to () in line 3 and its fitness is
initialized to O (line 4). After initialization the evaluation, selection, mu-
tation and crossover are applied on the population. In lines 6-8, each in-
dividual in the population is evaluated. In lines 9-14, each individual in
the population is compared with the fitness of the current best individual.
If a new individual with better fitness is identified then it is initialized as
the new current best. In lines 15-20, the selection, mutation and crossover
operators are applied to produce the next population P.. The size of the

new population is also n.

The whole process of evaluation, selection, application of genetic oper-
ators is repeated for every generation till MaxGeneration are completed.
Finally, the best individual obtained at the completion of MaxGeneration

generations is returned as the solution.

44

CHAPTER 2. LITERATURE REVIEW

Algorithm 1: Genetic Programming Algorithm

1 Initialization. Using the available functions and terminals generate

[¢%)

'S

10

11

12

13

14

15

16

17

18

19

20

21

a random population P of size n, P < {p1,pa,....Dn}
gen <0
p* < 0, (best solution)
fitness(p*) « oo

while gen < MaxGenerations do

fori=1...ndo
‘ Evaluate and assign fitness to p;
end
fori=1...ndo
if fitness(p;) < fitness(p*) then
p* D
fitness(p*) < fitness(p;)

end

end
P+ 0
while |P,| <n do
Apply Mutation,Crossover, Elitism operators to generate
new individual p using selected individuals using selection
operator on P
Py {Ps.p}
end
P+ Ps

end
Return, p*

2.6.1 Multi-objective GP (MOGP)

Multi-objective optimization deals with optimization problems which have

many conflicting objectives. Many practical decision making problems in

2.6. GENETIC PROGRAMMING 45

the real-world require more than one criterion to be satisfied.

One of the ways to perform multi-objective optimization is to do a lin-
ear combination of the objectives to transform the problem into a single
objective problem and then use the methods for single optimization to
solve it. Deciding the weights for linear combination might require some
domain knowledge about the problem which might be unavailable.

The other prominent method to handle multi-objective optimization is
to determine a set of solutions instead of a single solution using the con-
cept of Pareto dominance. According to this concept, a solution dominates
another solution only if it is inferior to it one all the objectives. When there
are many conflicting objectives this will result in a large number of non-
dominating solutions. In order to assess the performance of this Pareto set
of solutions many measures have been proposed [250] like, hypervolume
indicator, generalized spread, inverted generational distance etc.

The following are two of the popular evolutionary approaches for multi-
objective optimization problems which also work well for genetic pro-
gramming. Both employ elitist strategies.

e Non-dominated sorting genetic algorithm II (NSGA-II) [59]: is based
on the non-dominated sorting approach and the crowding distance
operator which are utilized to rank the population of candidate so-
lutions. The best solutions are selected based on their rank and the
genetic operators are employed to generate the next generation of

population.

e Strength Pareto evolution algorithms (SPEA2) [251] utilizes an archive
of solutions which is updated every generation. The fitness of the in-
dividual is a combination of its strength and area density. Strength is
determined by the number of individuals in the population and the

archive which this individual dominates.

Another popular MOEA technique in the literature is MOEA /D [171].

46 CHAPTER 2. LITERATURE REVIEW

NSGA-III [58] is popular for solving problems with more than three con-
flicting objectives, which is typically named as many-objective optimization.

2.6.2 Genetic Programming based Hyper-heuristics (GPHH)

Genetic programming based hyper-heuristics (GP-HH) has become promi-
nent [41] because of the ability of GP to represent and evolve complex pro-
grams or rules. The work by Bolte and Thonemann [30] is one of the first in
using genetic programming to evolve new heuristics for quadratic assign-
ment problem. Their results showed that their method could find near op-
timal solutions for the quadratic assignment problem outperforming the
existing simulated annealing algorithms. Using a local search algorithm
for satisfiability problem, Fukunaga [73] used a genetic programming rep-
resentation. Other prominent applications of genetic programming based
hyper-heuristics for combinatorial optimization problem are in bin pack-

ing [41], traveling salesman problem [118] and time tabling heuristics [20].

2.7 Related Work to Job Shop Scheduling

In this section, we discuss the large number of solution approaches for job

shop scheduling problems in the literature.

2.7.1 Solution Approaches for Static JSS

There are a large number of different techniques for scheduling in job
shops like disjunctive programming, constraint programming, shifting bot-
tleneck [182], branch and bound [132] etc. We discuss some of them below.

Johnson’s Rule

Johnson's rule [114] is a popular method in operations research for schedul-

ing. It is a method considered for a basic environment in the job shop

2.7. RELATED WORK TO JOB SHOP SCHEDULING 47

consisting of only two machines. The procedure is described below. The
following are the preconditions required by this method. The method is
presented in the Algorithm 2.

e The processing times are constant.

e The processing time of jobs must be mutually exclusive of the job

sequence.

e Each job is first processed on the first machine and then on the sec-

ond.

e Alljobs have equal priority.

Algorithm 2: Johnson’s rule for 2-machine shop

1 List the jobs and their times at each work center.

2 Select the job with the shortest processing time. If this processing
time corresponds to Machine 1, then schedule the job first else
schedule it last.(Tie break is arbitrarily.)

3 Eliminate the shortest job from further consideration.

1 Repeat steps 2 and 3, working towards the center of the job schedule

until all jobs have been scheduled.

In the Table 2.2, the description of the jobs used in our example is pre-
sented. There are five jobs denoted as A, B, C, D and E. Their processing
times on the two machines are given. We illustrate the application of this
rule using lines 2 and 3 of the Algorithm 2 to generate the complete sched-
ule.

The shortest processing time corresponds to Job B (1.4 hours) and since
it is associated with Machine 2, it is scheduled the last.

73777 B

48 CHAPTER 2. LITERATURE REVIEW

Table 2.2: Example: Johnson's rule

Job Machine1l Machine 2

A 29 4.1
B 46 1.4
c 21 51
D 57 4.1
E 30 2.7

The next shortest processing time corresponds to Job C (2.1 hours) which
is scheduled first as it is associated with Machine 1. Job C is eliminated
from further consideration.

C—=7—=7—=7—B

The next smallest processing time after that is for Job E (2.7 hours) in Ma-
chine 2. This is scheduled from the last before B. Eliminate Job E from
further consideration.

C =727 F—>B

Similarly, Job A is scheduled from the first. Job A is eliminated from

turther consideration.
C—+A=?"—-E—B
Job D which is the only job left is then scheduled.
C—+A—-D—FE—DB
So, the jobs must be processed in the order
C—+A—-D—FE—DB

and must be processed in the same order on both the machines.

2.7. RELATED WORK TO JOB SHOP SCHEDULING 49

Branch and bound

Branch and bound [132] is an exact method for combinatorial optimiza-
tion problems as it determines optimal solutions. It is an enumerative
search algorithm which systematically enumerates candidate solutions by
means of state space search. A branching rule partitions the set of can-
didate solutions into subsets. Then it is checked against the upper and
lower estimated bounds of the optimal solution and is discarded if it is
not better than the current best. The efficiency of algorithm depends on
the estimation of these bounds. Branch and bound has been applied to
many scheduling problems [186]. It is computationally expensive for large
scheduling problems.

Lagrangian approximation

Lagrangian relaxation [91] method approximates a difficult optimization
problem into a simpler problem and then solves that to determine an
approximate solution to the original problem. One approach to use La-
grangian relaxation is to model the job shop scheduling problem as mixed
integer linear program then apply Lagrangian relaxation toward solving
this problem. This method is also computationally expensive like branch
and bound for scheduling problems [186]. Moreover, Lagrangian relax-

ation could be combined with branch and bound as well.

Meta-heuristic approaches

Finding optimal solutions using exact approaches [75] for JSS problems is
hard, therefore meta-heuristic approaches have been employed for static
JSS problems. Meta-heuristics do not guarantee optimality of solutions.
Local search method [230], Tabu search [60], simulated annealing [232],
guided local search [236], etc., are some of the prominent method in this
category. These methods start with a solution and rely on neighborhood

search to iteratively move to the next solution. Basically they require three

50 CHAPTER 2. LITERATURE REVIEW

entities namely search space, cost function and neighborhood relation.
Search space is related to the combinatorial optimization e.g. in the case
of scheduling permutation of tasks on the different machines forms the
search space. The neighborhood relation defines the neighborhood of a
candidate solutions (a local modification which leads to the neighbor) and
the cost function is used to assess the quality of a solution. [232] presents
a simulated annealing approach for job shop scheduling and outperform
the existing heuristics while considering makespan as the scheduling ob-
jective. [60] presents a Tabu search method for JSS problem which perform

similar to the existing heuristics and other iterative methods.

Evolutionary algorithms have been successfully applied to JSS prob-
lems. In particular, GA has been a very popular meta-heuristic for schedul-
ing problems [27]. [27] presents one of the initial applications of GA for
job shop scheduling in manufacturing industry. Many hybrid algorithms
combining GA and other meta-heuristics have also been proposed. For
example, [103] presents a multi-objective local search based genetic algo-
rithm for flow shop scheduling with promising results. [48] presents a sur-
vey of many such hybrid approaches.

Particle swarm optimization methods have also been explored to solve
scheduling problems. For example, [143] presents a PSO based memetic
algorithm to for flow shop scheduling to minimize makespan. Through
their experiments they demonstrated the superiority of their algorithms in
terms of search ability and robustness. [208] presents a multi-objective PSO
for job shop scheduling. In their study they modified the particle position
representation, particle movement, and particle velocity and through this
modification achieved better results. [99] presents a hybrid algorithm us-
ing Tabu search and ant colony optimization to obtain competitive results
for job shop scheduling. They even find the best known result on some of
the problems. [29] develops an ant colony optimization algorithm for open
shop scheduling problems and improves upon the best known results for
more than 50% of the problems considered. Recently, [159] develops PSO

2.7. RELATED WORK TO JOB SHOP SCHEDULING 51

based hyper-heuristic (PSOHH) approach for DJSS problems. They de-
velop new representations for PSO which are flexible enough to repre-
sent diverse dispatching rules for DJSS problems. They compare their
method with GPHH approaches (from [166]) and show the effectiveness
of PSOHH.

2.7.2 Solution Approaches for Dynamic JSS
Dispatching Rules for JSS

Dispatching rules are heuristics which assign priority to every operation
queued on a machine. We explain this in Algorithm 3. In lines 1-3, for
each operation queued on a machine in the job shop, priority values are
assigned using the dispatching rule. The operations are then sorted based
on the assigned priority values. This forms the sequence of operations for
processing on the machine. For a dynamic JSS problem, when a new job
arrives, the queue on the machine changes and the sequencing has to be
done all over again. Compared to a meta-heuristic approach or an exact
algorithm the computational cost for assigning priority values is very low
(line 2). Therefore, for DJSS problems dispatching rules are the preferred
method.

Algorithm 3: Sequencing using Dispatching Rule

Input: Dispatching rule, DR. Operations queued on a machine M,,
M,
Output: Sequence of operations to be processed Sy,
1 for each operation o € Q 4, do

N

assign priority value to o using DR

3 end

1 Sy, = Sequence generated by sorting the operations based in their
assigned priority values.

5 Return, Sy,

52

CHAPTER 2. LITERATURE REVIEW

A large number of dispatching rules have been proposed in the litera-

ture. We can classify them into the following categories.

o Simple priority rules [172, 203] are the rules which are mostly based

on the characteristics of the jobs. A list of such rules is presented in

Table 2.3.

o Combination of DRs [203]: Depending on the prevailing shop floor

characteristics linear combination of dispatching rules are employed

for scheduling.

o Composite dispatching rules [111] combine a number of simple pri-

ority rules, not necessarily in a linear way. [225] evolve composite

dispatching rules for flow shop scheduling using genetic program-

ming and show that they outperform the composite rules developed

through human expertise.

Table 2.3: List of Dispatching rules

Dispatching Rule Description

SPT Shortest processing time

LPT Longest processing time

ECT Earliest completion time
STPT Shortest total processing time
LTPT Longest total processing time
FCFS First come first serve

EDD Earliest due date first

LTWR Least total work remaining
MTWR Most total work remaining

Many other classifications of dispatching rules have been proposed for

dispatching rules e.g. Pinedo [182] classifies the dispatching rules as static

and dynamic rules [46]. Another classification could be done on the basis

2.7. RELATED WORK TO JOB SHOP SCHEDULING 53

of the information which the dispatching rule captures. If the dispatching
rule relies only on the local information of the jobs then it is called a lo-
cal rule. On the other hand if the dispatching rule captures information
from the characteristics of the shop as a whole, then it is called a global
rule. [172] provides a comprehensive survey of dispatching rules which
are widely used along with their classifications.

2.7.3 GPHH for scheduling

Genetic program representation of dispatching rules have been used in

many works.

Single machine scheduling

GP has been used to evolve priority tree based dispatching rules for static
single machine scheduling problem in [62] with minimizing the tardiness
as the objective. They have reported that their dispatching rules perform
better than the traditional dispatching rules. Similarly in [107] dispatch-
ing rules have been used for parallel machines for both static and dy-
namic scheduling problems. Some other prominent examples of appli-
cation of genetic programming based hyper-heuristics in single machine
scheduling from the literature are [76, 108, 247]. [76] use GPHH to solve
simple (polynomial time) as well complex instances (NP-hard) of job shop
scheduling problems. [108] use GPHH for solving single machine schedul-
ing problems with non-zero release dates to minimize total weighted tar-

diness.

Job shop scheduling

Miyashita [153] have used genetic programming to evolve dispatching
rules in a multi-agent setting. They consider the machines as agents and
evolve multi-agent dispatching rules. They consider three different mod-

els namely homogeneous, distinct and mixed agent models. The first

54 CHAPTER 2. LITERATURE REVIEW

model tries to evolve a homogeneous dispatching rule for all agents, the
second one considers a separate dispatching rule for each agent and the
third one is a hybrid version of the two. Their motivation is to leverage GP
to automatically evolve dispatching rules with same level of performance
as observed with single machine scheduling. [161] performs a computa-
tional study of different representations of genetic programming for to-
ward evolution of dispatching rules and also propose new representations
which take into consideration the machine and system attributes. Through
rigorous experimentation, they show that their proposed representations
can evolve effective rules outperforming existing representations. [175] in-
vestigates ensemble combination schemes for GPHH approaches to DJSS
problems. They investigate four ensemble approaches based on major-
ity voting, linear combination, weighted linear combination and weighted
majority voting and through experimentation found that linear combina-
tion schemes are better than other ensemble techniques. [149] highlights
the importance of feature selection in GPHH for DJSS problems. They
develop a niching based search framework for extracting a diverse set of
dispatching rules while reducing the computational complexity of fitness
evaluations by using surrogate models. Their experiments reveal that their
approach is both efficient and effective in evolving rules. [101] tries to ad-
dress the lack of global perspective dispatching rules by evolving “less-
mypoic” dispatching rules for DJSS problems using GPHH. They achieve
this by incorporating wider shop characteristics and their results show sig-
nificant improvement in performance of the evolved rules. A comprehen-
sive survey of application of GPHH for job shop scheduling is presented
in [35, 158, 165].

Scenario-specific dispatching rules for complex environments

Now we review some of the works which consider evolving multiple dis-
patching rules for different scenarios arising in a complex shop. Pickardt
et al. [177] combine GP and an EA heuristic to develop a two-stage hyper-

2.7. RELATED WORK TO JOB SHOP SCHEDULING 55

heuristic approach. In the first stage the GPHH approach evolves dis-
patching rules which is combined with existing rules from the literature
using an evolutionary algorithm in the second stage. Essentially, with two
stages they try to search two different search spaces. Finally, they obtain
work-centre specific rules. This approach is applied to a semiconductor
manufacturing industry to minimize total weighted tardiness. Their ex-
periments show that the evolved rules using their approach substantially
outperform the manually designed rules. Jakobovic et al. [107] use GPHH
for both single machine and job shop environments. They considered
the bottleneck and non-bottleneck states of the machines separately and
evolved specific rules for them. They developed a GP3 method which
consists of three rules, one each for the specific machines and a third rule
acts as a binary classifier and separates the machines into the bottleneck
and non-bottleneck classes. Their results showed that the approach using
machine specific rules outperformed the one using a universal rule. An-
other work exploring similar idea by Miyashita [153] in which the author
considered a mixed agent model for evolving dispatching rules specific for
bottleneck and non-bottleneck machines. Recently, Heger et al. [88, 87, 89]
have developed many works which consider dynamically switching of the
dispatching rules for different shop scenarios. [89] considers multiple shop
scenarios in a dynamic shop environment and apply Gaussian process re-
gression to switch dispatching rules between EDD, MOD, 2PTPlusWing-
PlusNPT [193]. They have considered the utilization and due date factor
as the two features to determine the state of the shop. Their rule switching
approach outperforms the single rule scheduling approaches. One limi-
tation of their work is that they have considered only utilization and due
date factor as features defining a shop scenario where as in a practical
shop scenario there are many other factors which are important, e.g., the
varying characteristics of the jobs arriving at the shop in terms of their

processing times and number of operations per job.

56 CHAPTER 2. LITERATURE REVIEW

Multi-objective JSS

Now we discuss some of the works in literature which consider more than
one objective for scheduling. [21] have considered flowtime and tardiness
as the two objectives for scheduling. [225] have developed new dispatch-
ing rules for minimizing mean makespan, mean tardiness and mean flow-
time for static job shop scheduling. They used a scalar combination of the
objectives for minimization. Ngyuyen et.al. [162] have used 5 objectives
(mean flowtime, max flowtime, perentage of tardy jobs, maximum tardi-
ness and mean tardiness) for generating dispatching rules using a genetic
programming representation. It is of interest to note that 2 of the objectives
namely maximum tardiness and maximum flowtime show a correlation
among each other in the approximated Pareto front.

Recent energy aware scheduling has become very important across
manufacturing industries [5]. Therefore, minimization of energy and its
cost have been considered as one of the objectives for scheduling. [56] con-
sider an energy aware scheduling approach for flow shop problem using a
simulated annealing approach. They consider makespan and total energy
consumption as the two objectives for minimization. Some of the recent
works which consider energy aware scheduling in a multi-objective set-
ting are [145, 167, 210].

2.74 Cooperative Co-evolution for JSS

Cooperative co-evolution algorithms (CCEA) are characterized by two or
more interacting subspaces within a search space such that the fitness of
an individual is evaluated based on its interactions with other individ-
uals (subspace) [241]. A problem is decomposed into subproblems and
solutions to the subproblems are then evolved. These are then combined
together to form the final solution. The subpopulations belong to different
“ecological niches” [185].

CCEA have been employed before for different DJSS problems. Park et

2.7. RELATED WORK TO JOB SHOP SCHEDULING 57

al. [173] propose a cooperative co-evolution based multi-level genetic pro-
gramming approach to evolve ensembles of dispatching rules for DJSS.
They had also developed a similar co-evolutionary approach to evolve en-
sembles of rules for static JSS problems [176]. In a related work [120], a co-
evolutionary algorithm is proposed to integrate the planning and schedul-
ing activities in flexible manufacturing systems. Nguyen et al. [160] co-
evolve scheduling policies by considering due-date assignment and schedul-

ing simultaneously.

2.7.5 Difference in Solution Approaches to Static and Dy-

namic JSS Problems

Due to the difference in the nature of static and dynamic problems their
solution approaches were discussed separately in this section. Moreover,
when uncertainty JSS problems is considered, the same arguments hold
for employing different types of solution methodologies for the two kinds
of JSS problems. In fact, the research works, as can be seen in this review,
are characteristically different for the two types of problems and the ac-
cordingly the state-of-the-art methods drastically vary. For example, a lo-
cal search method or a genetic algorithm approach (explained in previous
subsections) are suitable for a static problem but infeasible for a dynamic
JSS problem. On the other hand, a GPHH approach is much more suit-
able for a dynamic JSS problem. In the research works reviewed above,
the benchmark approaches are also selected appropriately. For example, a
mixed-integer linear programming approach [128] cannot be used to com-
pare with a GPHH approach [158] when solving a DJSS problem as the
former is simply not feasible for this problem.

2.7.6 Approaches for Dealing with Uncertainty in JSS

In an uncertain environment, two main steps for scheduling are schedule

generation and schedule revision [50, 199]. Schedule generation could be

58 CHAPTER 2. LITERATURE REVIEW

off-line where all available jobs are scheduled at once or it could be on-line
which is done when needed.

To deal with uncertainty in the production environment, reactive schedul-
ing is applied which modifies the existing schedule to adapt to the un-
certainty. Most of the reactive scheduling methods use dispatching rules
which use the local information to generate schedules. There are also
works which allow the system to select dispatching rules dynamically
e.g. [88]. Reactive scheduling is thus a short-term scheduling problem.
The approaches under reactive scheduling update the current schedule
to provide an immediate response to the unexpected event e.g. machine
breakdown, change in job priority, etc. A number of approaches in liter-
ature have used mixed integer linear programming for reactive schedul-
ing [6, 10, 183]. Sophisticated dispatching rules have been developed by
researchers to tackle uncertainty. Chen et al. [47] propose a neural network
approach to predict the dispatching rule to be used under a certain system
state. Sabuncuoglu et al. [199] show that dispatching rules perform well
in the face of stochastic disturbances. Gurel et al. [83] generate heuristics
for minimizing the number of jobs delayed and the manufacturing cost.
Jain et al. [105] examine different strategies for using complex heuristics
for handling uncertainties in automated manufacturing systems. Jensen et
al. [112] develop robust and flexible schedules with low makespan using
genetic algorithms. They show that for machine breakdown, their method
performs significantly better than other methods. Park et al. [174] investi-
gate DJSS problem with the dynamic arrival of jobs while also considering
machine breakdowns. They propose new terminals for GP and evaluates

their effectiveness for DJSS problems.

As compared to reactive scheduling, preventive scheduling uses the his-
torical data and forecasting methods to derive information about uncer-
tainties. Stochastic scheduling is very commonly used approach in literature
for preventive scheduling [66, 72, 188]. In two-stage stochastic program-

ming first a single policy is developed and then a collection of recourse

2.8. PARALLEL HYPER-HEURISTICS AND MOEAS 59

actions to compensate the uncertainty are taken. In chance-constrained
stochastic scheduling (e.g. [169]) the focus is on the reliability of the sys-
tem i.e., the schedule meeting its quality in an uncertain environment.
The reliability is expressed by imposing the requirement on probability
of satisfying constraints. Simulation approaches for stochastic schedul-
ing have been proposed, like [97] where the Monte Carlo sampling [97]
is used to generate random instances of the uncertain parameters and de-
veloping schedules for each instance. Robust Scheduling is a preventive
scheduling approach to minimizing the effects of disruption on the per-
formance measure such that the realized schedule and predictive schedule
have a low difference. An important concept is the distinction between
schedule robustness and model robustness developed by [154] where a
schedule (solution) is robust if it remains close to optimal for all scenar-
ios and model robust if it is feasible for a very large number of scenarios.
Some of the prominent works in this direction are [26, 110, 142]. Jia and
Ierapetritou [113] proposed a multi-objective robust optimization model
with model robustness, schedule robustness and solution robustness as
the three objectives for scheduling under uncertainty. Fuzzy programming
method is another preventive scheduling approach which could be used
when the probabilistic models to describe the uncertain parameters are
not available. In this approach, the uncertainty is represented using fuzzy
set theory and interval arithmetic [14, 221, 239].

2.8 Parallel Hyper-heuristics and MOEAs

Multi-objective optimization algorithms are more complicated than their
single objective counterparts because unlike single-objective case their so-
lution consists of a Pareto set of solutions. This makes development of par-
allel MOEAs more difficult. Many of the parallel MOEAs are extensions
of well known MOEAs like NSGAII, MOEA /D etc. In [67] a parallel ver-

sion of NSGAII based on master slave model is presented. [36] develops a

60 CHAPTER 2. LITERATURE REVIEW

cone separated NSGAII method which uses the island model to focus on
specific areas of Pareto front. In [69] a multi-objective allocation problem
for drinking water distribution is solved using an island model based NS-
GAII algorithm. In [68], a parallel version of MOEA /D is presented and
tested over eight different problems to evolve Pareto fronts with higher
quality. Xiao et al. [244] developed new island models specialized for
multi-objective optimization.

More recently there have been many parallel hyper-heuristic approaches
developed, particularly for optimization algorithms. For example, Ber-
tels et al. [25] explained in their work about the importance of parallel
evolutionary algorithms specifically for hyper-heuristic approaches when
applied to solving SAT (Boolean Satisfiability) problems. Similarly, [86]
develop a parallel Cartesian GP algorithm and show its strength by ap-
plying it on a n-bit parity digital circuit problem. [202] develops a parallel
hyper-heuristic approach based on island model for frequency assignment
problem in a GSM network. They provide more computational resources
to islands which are more promising. [102] develop a parallel GPHH ap-
proach toward improving the performance of SAT solvers by automati-
cally configuring them for a SAT problem. Similarly [214, 233, 246] are
some other works which develop parallel hyper-heuristic approaches. We
did not find any existing work which specifically uses GPHH for multi-
objective DJSS using parallel MOEAs.

2.9 Summary of Literature Survey

We presented a literature review which covers the introduction to basic
concepts followed by a more detailed review of recent works related to the
objectives of this thesis. We summarize the key findings from the literature

review below.

e Even though uncertainty in scheduling environment is omnipresent,

most of the works do not consider its effects. For practical scheduling

2.9. SUMMARY OF LITERATURE SURVEY 61

problems, it is necessary to take uncertainty into account. The lit-
erature review demonstrates that GPHH based techniques to solve
DJSS problems have a lot of potential and many researchers have
contributed to this area in recent years. Existing research works have
shown that the flexible representation of genetic programs have been
able to incorporate complex characteristics of shop environment. To
summarize, taking these findings into consideration, it is prudent
to explore the ability of GPHH to solve DJSS problems under uncer-
tainty.

e Multiple dispatching rules are required for different characteristics
of the shop in a DJSS problem. Machine learning techniques have
been employed for switching the dispatching rules subject to the
varying characteristics. For practical scheduling problems in uncer-
tain shop environments, considering the variation in the shop char-
acteristics becomes very important. This requires investigation of
machine learning techniques to identify the large number of differ-
ent shop scenarios. Consequently, the ability of GPHH to automati-
cally design rules could be leveraged to consider the different shop
scenarios and design specific rules. Since GPHH is computationally
expensive, machine learning techniques should be employed to care-
fully explore the range of possible shop characteristics, thus extend-
ing the scope of current GPHH framework.

e GPHH has been applied with good results for multi-objective DJSS
problems even though it is a computationally expensive technique.
Furthermore, the literature review shows that recent studies strongly
advocate the use of parallel evolutionary techniques for hyper-heuristics
approaches. For a practical DJSS problem, it is important to con-
sider multiple objectives under an uncertain environment. These
findings show that it is a good research direction to consider par-

allel evolutionary algorithms for GPHH. Furthermore, the literature

62 CHAPTER 2. LITERATURE REVIEW

review also shows that the island model approaches defined by spe-
cific topologies and migration policies provide an opportunity for
investigations under the purview of multi-objective DJSS.

With gaps identified by literature review and the conclusions derived

from this survey, the following chapters will address them.

Chapter 3

Genetic Programming based
Hyper-Heuristics for Dynamic Job
Shop Scheduling under
Uncertainty

3.1 Introduction

The literature review emphasized that in practical job shop scheduling
problems, particularly dynamic scheduling problems, the shop parame-
ters are uncertain. In spite of this, most of the existing works focus only on
deterministic scenarios. It was highlighted that uncertainty in processing
times, machine breakdowns, fluctuating arrival rates, modification of due
dates, cancellation or modification of orders and uncertain arrival time
of raw materials can significantly affect scheduling. In particular, focus
is given to uncertainty in processing times. This could be attributed to
the fact that variability in processing times has an impact on almost all

scheduling objectives, e.g., makespan, mean flowtime, tardiness, etc.

The literature review also emphasized that GPHH approaches have

63

64 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

shown promise in evolving effective dispatching rules for the DJSS prob-
lems. Many recent works have successfully leveraged the characteristics
of genetic programming like flexible representation and the ability to learn
complex features. Therefore, it is a good research direction to further
explore the aforementioned qualities of genetic programming to evolve
dispatching rules for practical scheduling problems under uncertain shop

conditions.

The choice of representation of the genetic programs is an important
decision which depends on the problem. The different representations of
GP could be achieved in many ways. One of them is through varying its
structure e.g. linear tree, multi tree representations, etc. A more problem
specific way to design representations of GP is by modifying the function
sets and the terminal sets of the genetic programs. This is particularly
relevant for DJSS problems which require the genetic programs to cap-
ture large number of shop and job features [158]. Our research direction
is to explore the ability of GPHH for practical DJSS problems by taking
uncertainty into account. Therefore, investigating GP representations by
considering terminals which capture the uncertainty information is a good

approach.

Apart from the flexible representations of genetic programming, an-
other of its major strengths is its ability to learn complex scenarios without
being provided with explicit features. This is aided by many novel evolu-
tionary techniques like evolution strategy, cooperative co-evolution, etc.,
and [160] is a good recent example of such techniques under the purview
of DJSS problems. From the perspective of our research direction, it is wise
to investigate GPHH approaches for DJSS problems under uncertainty by
exploiting this ability of genetic programming while investigating novel
evolutionary approaches suited to our problem. For DJSS problems, the
variability and uncertainty in the shop manifests into various complex
scenarios. One of these is in the form of continuously varying bottleneck
levels of the machines [124].

3.1. INTRODUCTION 65

The idea of considering different bottleneck levels for evolving dis-
patching rules have been explored for static scheduling problems [108].
But for dynamic scheduling under uncertainty, there are complex interac-
tions between the components of the shop which vary continuously. For
example, the nature of jobs arriving at the shop vary due to which the diffi-
culty of machine set-ups changes with time. Since issues with machine set-
up, usually involving an operator is a common source of uncertainty [234],
it is reflected as the uncertainty in processing times on different machines.
This, in effect, manifests as varying bottleneck levels of the machines. The
schedules which govern the sequence of the operations on these machines
thus define the interactions between them. These interactions are more
prominent and complex in dynamic job shop than in a static job shop.
For systems with interacting components such as these, cooperative co-
evolutionary techniques have been employed because of their strength in
capturing the interactions during evolution. Therefore, it is motivating to
explore the ability of GPHH helped by evolutionary techniques viz., co-
operative co-evolution, to learn from different complex scenarios, like the

one involving bottleneck and non-bottleneck machines.

We identified two parallel directions for investigating the ability of
GPHH approach to evolve effective dispatching rules for DJSS problems
under uncertainty. The first one is a direct approach which will try to
leverage the strength of GP to consider different useful representations.
The second direction hopes to leverage the potential of GP to learn from
complex scenarios. Under the purview of DJSS problems, these complex
scenarios are basically an effect of the uncertainty present in the shop. By
considering such scenarios like varying bottleneck levels while evolution
of dispatching rules GPHH could deal with the uncertainty in the shop,
indirectly.

Furthermore, as mentioned earlier uncertainty in processing times has
an effect on most of the scheduling objectives. Also, events like machine

break downs and lack of skill in operators mostly impact the processing

66 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

times of the operations. To accomplish our research goals effectively itis a
good idea to study the DJSS problems under the the scope of uncertainty

In processing times.

3.1.1 Chapter Goals

The goal of this chapter is to develop new GPHH methods for DJSS un-
der uncertain processing times. In order to achieve this goal, two parallel
directions are considered in the form of two sub-goals. The first sub-goal
investigates new representations for GPHH focusing on incorporating un-
certainty information into the dispatching rules. Secondly, an approach to
classify the bottleneck and non-bottleneck machines is presented which
then employs cooperative co-evolution to evolve a pair of dispatching
rules for each machine type. More specifically, the sub-goals are:

¢ To investigate new representations of GP by developing new termi-
nals for incorporating uncertainty information into the evolved dis-

patching rules using GPHH.

e To develop a cooperative co-evolutionary approach for evolving a
pair of dispatching rules for machines with varying bottleneck levels
due to uncertainty in processing times.

3.1.2 Chapter Organization

The remaining chapter is organized as follows. In the next two sections,
the methods related to the two sub-goals mentioned above are described.
The Section 3.2 describes the methods which are developed for integrat-
ing uncertainty information into the dispatching rules. The Section 3.3 de-
scribes the co-evolutionary approach to evolve a pair rules for bottleneck
and non-bottleneck machines. Finally, the chapter summary is presented
in Section 3.5.

3.2. NEW REPRESENTATIONS 67

3.2 New Representations for GP : Toward Inte-

grating Uncertainty Information into DRs

With the aim of developing new representations for GP, for incorporat-
ing uncertainty information into the dispatching rules, new terminals are
investigated in this section. Since we focus on uncertainty in processing
times, the proposed terminals must contain information related to pro-
cessing time uncertainty. Firstly, we provide the details of the simulation
model for uncertain processing times which will then enable us to develop
the desired terminals. Then we develop three new methods which exploit
the representation of GP while introducing extra changes to the terminals.
These three methods are denoted by EMA, ENT and EXP.

3.2.1 Simulation Model with Uncertainty

It is assumed that the uncertainty in the processing time of a particular job
is associated with a probability distribution. This probability distribution
may change from one job to another. This is similar to many other studies
in related work e.g. [95, 191, 231]. Rai et al. [191] consider scheduling in
printing industry, where operator skills and job characteristics are main
sources of variation in processing times. They state that even jobs with
same work flow (route) could have different variation in processing times.
So it is reasonable to assume dissimilar uncertainty distributions for dif-
ferent types of jobs. Akker et al. [231] considered processing times with a
deterministic component and a random disturbance, which is identically
distributed for each job.

We model uncertainty in processing times using the gamma distribu-
tion (Figure 3.1), which is widely used to model positive or skewed param-
eters, and has been used to model uncertainty e.g. [137]. It is a continuous
probability distribution with two parameters, shape (o« € R*) and scale
(8 € RT). The deviation from the processing time (p(0)) is defined as 9,

68 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

such that

p'(0) = p(0) + p(o) x 6 3.1)

where, § follows a gamma distribution and different jobs are assigned
gamma distribution parameters viz. shape («) and scale (3) from a set.
Henceforth, we call the term § as the delay ratio. In all the experiments,
«a is set to 1. The choice of o = 1 is motivated by the evidence from lit-
erature that the information contained in standard deviation of uncertain
processing times is useful for scheduling [137, 181].

For a gamma distribution, the standard deviation is equal to o x 3? and
the mean is equal to a x 3. If a = 1, then the mean and the standard de-
viation of this gamma distribution are 3 and /3 respectively. Essentially,
the mean and standard deviation parameters are the information which
could enable a scheduler (a dispatching rule) to generate good schedules
for a DJSS problem which considers uncertain processing times. Since in
this model, both the parameters are functions of 3, this model is advanta-
geous for the GPHH system as estimating the mean is easier than standard
deviation. Moreover, note that when a = 1, the distribution essentially be-
comes exponential, which has been frequently used to model uncertain

processing times.

25}
20}
1.5
1.0

0.5}

0.8 1.0 1.2 1.4

Figure 3.1: Gamma distributions

3.2. NEW REPRESENTATIONS 69

3.2.2 Exponential Moving Average (EMA) Terminal

The terminals of a genetic program representing a dispatching rule con-
sist of job and shop parameters, like processing time (PT), due date (DD),
remaining number of operations (RO), etc. In order to incorporate uncer-
tainty into the genetic program’s terminal, we must incorporate the in-
formation about uncertainty. According to our simulation model in Sec-
tion 3.2.1, this information is associated with the value of delay ratio 9,
and its distribution over a job is defined by the parameter 5. Therefore,
toward our goal to designing a terminal, we define the terminal EMA as
the expected value of § which is equal to 5.

Since the information about the delay in processing of the operations in
ajob is known only after it has been completed, and since these operations
are ordered, estimating the mean of ¢ is a repetitive calculation, repeating
every time an operation is completed. A related technique in statistics is
that of the moving average. The moving average is a rolling mean over
different subsets of data. In a related method called the exponential mov-
ing average, the data points are weighted such that for the older data the
weight keeps decreasing. It is presented in Equation 3.2, where ¢; is the
exponential moving average at step i(> 0) and Y; is the new data. x is a
constant smoothing factor.

Si=k XY+ (1 —kK)x 6, (3.2)

Due to this methodology, we find that the exponential moving aver-
age is a suitable method for estimating the mean of delay ratio, §. § is
maintained for every job arriving at the shop. For a job j whenever a new
operation o;; is completed, the delay ratio ¢;; is calculated thereupon us-
ing Equation 3.3, which comes from the simulation model (Equation 3.1).
p'(0j,:) is the realized processing time including the delay.

Yi =65 = p'(04) /p(0j) — 1 (3.3)

70 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Once the delay ratio J;; is obtained, the mean is updated with this new
data using Equation 3.4.

0ji =k X 055+ (1= k) X 8,4 (34)

According to literature [96], < 0.3 is considered good. We used
k = 0.2 in our experiments, and did not observe any difference in per-
formance. We assigned ;o = §;; as the starting value of mean at the
beginning as per the common initialization method used for calculating
exponential moving average.

The exponential moving average, which is maintained for every job,
captures the expected mean of delay ratio from the processing times of op-
erations that are already completed. As earlier explained, due to the choice
of our simulation model, estimating the mean of delay ratio is essentially
equivalent to determining the standard deviation, which is considered as
useful information for scheduling under uncertainty [181]. Therefore, we
expect that the GPHH approach will evolve genetic programs which could
utilize the information from the EMA terminal to create better schedules
for DJSS problems under uncertain processing times.

3.2.3 Ex-post and Ex-ante Optimization

The next two methods are based on the concepts of ex-ante and ex-post op-
timization which we introduce now. Ex-ante means ‘before the event” and
its antonym ex-post means “after the event’. In ex-post optimization, de-
cision is made after the uncertainty is revealed where as it is the opposite
case with the ex-ante optimization. These ideas originate in economic the-
ory, first proposed by Myrdal [155] and subsequently considered in many
areas including decision theory, game theory [4], bayesian statistics [123]
and stochastic optimization problems [125, 224].

Kouvelis et al. [125] considered these ideas to define robustness of solu-

tions to discrete optimization problems under uncertainty. For a decision

3.2. NEW REPRESENTATIONS 71

obtained through ex-ante the robustness is calculated by comparing the
ex-ante decision against the optimal decision obtained through ex-post
(perfect information is known). Belien et al. [22] consider ex-post opti-
mization to determine the optimal strategy in fantasy sport games toward
team selection and management. Tapiero et al. [224] propose an ex-post
inventory control approach for the just-in-time control problem, using the
information after the demand uncertainty is realized. They compare it
with ex-ante optimization approach which determines the optimal inven-
tory control policy using the demand forecasts.

The intuition behind ex-post optimization is to develop solutions which
are optimal in an uncertain environment when the complete information
about the uncertainty is revealed. In ex-ante optimization, the solutions
are obtained before the unknown information is revealed. In theory, these
two concepts are used to measure the robustness of solutions in uncer-
tain environment [125]. In this research, we develop hyper-heuristic ap-
proaches and the methodology which they employ in solving a problem is
to search in the heuristic space to find optimal (or near optimal) heuristics,
which are then used to generate the final solution. Therefore, exploring
the intuition of ex-ante and ex-post optimization for developing hyper-
heuristic approach is not only novel but also a good research direction to
tackle the effect of uncertainty in DJSS problems. Moreover, since we are
considering GPHH problems, the flexible representation of GP aids us to
develop methods which use cues from the concepts of ex-post and ex-ante
optimization. Two GPHH methods inspired by each of these concepts are

presented below.

Ex-post Training (EXP) Method

The ex-post optimization develops solutions for problems after the un-
certainty information is revealed. The EXP method is a GPHH approach
which evolved dispatching rules using the DJSS training instances for which
the delay in processing times is already known. Consequently, EXP method

72 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Table 3.1: Notation
Description

ENT Ex-ante training approach.
EXP Ex-post training approach.
EMA Using exponential moving average terminal. [116]
NAT Standard GP approach (No additional terminals).

evolves dispatching rules which perform well on the instances for which
the realized processing times are known. In order to use these dispatching
rules on test instances i.e. practical DJSS instances with no information
about uncertainty in processing times, we replace the processing time ter-
minal (PT) with its estimate. The method to obtain this estimate is the
same as for EMA method. We explain this below.

DEXP

Suppose, is a dispatching rule evolved using ex-post training
approach, by using the realized processing times. When D#*” is used to
generate schedules for test instances, each processing time terminal P7**?

is replaced by the modified terminal P7™ such that:

In order to determine the value of 4, we consider the exponential mov-
ing average value of the delay ratio which was used with the EMA termi-

nal.

Ex-ante Training (ENT) Method

Now, inspired by the ideas in ex-ante optimization, we propose the ENT
method. For ex-ante optimization, the aim is to determine the optimal so-
lution for the problem without actually knowing the complete information
about uncertainty, but using a good anticipation about it [45]. In theory,
this is expected to provide a solution which does consistently well over

the different possible outcomes of the unknown.

3.2. NEW REPRESENTATIONS

73

Algorithm 4: EMA, EXP and ENT methods for GPHH

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Input:

e G, total number of generations.

e DJSS training instance with uncertain processing times, P.

DJSS training instance with realized processing times, P".

Algorithm selection parameter, alg € {EMA, ENT, EXP}

T terminal set for standard GPHH excluding terminal PT

(processing time).

Output: Dispatching rule : A
Initialize population S
Setg <+ 0
if alg = EMA then
T ={T,PT,EMA}
else
if alg = ENT then
| T ={T,(PT+ EMA x PT)}
Use T as the terminal set for GPHH.
while ¢ < G, do
g—g+1
foreach individual T € S; do
if alg = EXP then
‘ assign fitness to Z using DJSS simulation on P".

else

‘ assign fitness to Z using DJSS simulation on P.

end

Evolve individuals in S using crossover and mutation.
end
A + Best rule from S
if alg = EXP then

Replace all terminals PT in A with (PT 4+ PT x EMA)
end
Return A

74 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Table 3.2: PT terminals for ex-ante and ex-post approaches.

Dispatching rule train test

DEX P pTerr pPT*
DENT PT* PT*

The ENT method is a GPHH approach to evolving dispatching rules by
using DJSS training instances along with an estimate of the delay in pro-
cessing times. In order to include the information about this estimate, we
again exploit the representation of the genetic program. Since, the infor-
mation about the processing times is stored in the PT terminal, we use the
modified terminal PT™, as shown in Equation 3.5. The difference between
the EXP and ENT methods is subtle but quite prominent. We describe this

in more detail below.

The differences can be easily understood by considering how the two
approaches differ in the use of terminals during training and testing. The
different terminals used with the training and testing instances for the two
approaches are shown in Table 3.2. For the dispatching rules evolved us-
ing ENT method, denoted by DFNT, both the training and test runs con-
sider the same terminals. But for the EXP method, in the evolved dispatch-
ing rules DFX? there is a clear distinction in the terminals. In contrast to
the EMA method, D" the processing time terminal is modified to incor-

porate the estimate of delay ratio instead of using an additional terminal.

In order to illustrate the difference between the three methods more
clearly, we also present the Algorithm 4. Essentially, the three methods
just described have been designed with the same objective, that is to inte-
grate §;; (estimate) into the terminal of a genetic program but the modus
operandi differs. In Algorithm 4, the algorithm selection parameter in the
input is used to separate the three different procedures. The set T is de-
fined as the terminal set used for evolving genetic programs, which ex-
clude the PT terminal. For each of the methods T is modified. These mod-

3.2. NEW REPRESENTATIONS 75

ifications are explained through this algorithm below.

For EMA method, the terminal set is changed to include one more ter-
minal EMA. For this method, §;, is considered as a new terminal by itself
and forms a part of the evolved dispatching rules. So the terminal set be-
comes {T, PT, EM A} as in line 4. For ENT method, instead of using the
processing time terminal PT, the terminal PT+EMA xPT is used (line 7). So
the uncertainty information §;, is integrated with the PT terminal. Now
the EXP method is slightly tricky. Firstly, the DJSS training instances use
ex-post information, i.e. the complete information about the delays in pro-
cessing time is known. These training instances are denoted by P" (line
13). Furthermore, after the completion of evolutionary steps in the EXP
method, the PT terminal in the evolved rules is replaced by PT+EMA xPT

as in line 21.

3.2.4 Experiment Design

The aim of our experiments is two-fold. Firstly we compare our proposed
methods with each other and also with standard GP which does not con-
sider incorporation of uncertainty information. Secondly, we aim to ana-
lyze the generalization of our methods on DJSS under uncertain process-
ing times. Generalization is the ability of our method to perform well on
unseen data. So we test our methods on test configuration which are dif-
ferent to the training configurations.

We describe our experiment starting with the simulation configuration.
We use a discrete event simulation system (see Jasima [92]) to generate
problem instances of DJSS problems. Each problem instance is made of
ten machines and eight operations per job [100]. The processing times
of the operations are sampled uniformly from [1,49]. This configuration
has been considered in other studies [161]. The arrival of the jobs follows
a Poisson process with a rate A = 0.85 [116]. In order to evaluate the

performance of our methods we need to choose a scheduling objective

76 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

which is affected by the uncertainty in processing times. Tardiness, total
flowtime, makespan, etc., are some of such objectives. Total flowtime is an
objective which is frequently used in literature and is completely based on
the processing times [170]. We believe that the methods will be applicable
to other objectives as well.

N
total flowtime = Z(Cl —Ryz)

i=1
where R s, is the release time of job J; and C; is the completion time.

The jobs from 500 — 2000 are considered for analysis, out of a 2500 total
jobs arriving at the shop [161]. The delay factor J,, follows a Gamma dis-
tribution. The different gamma distributions are obtained by varying its
parameters, namely scale () and shape («). The specific training and test
configurations are described below.

Training and Test Configurations

We considered different settings of parameters for generating the problem
instances for testing and training. By associating a particular level of un-
certainty to a job, we characterize a job type. Then by varying the ratio
of the job types we create problem instances. These problem instances en-
able us to simulate the variability in the shop. Basically, by using different
ratios of jobs pertaining to the different job types, we are able to generate
different arrival patterns in the shop. The parameter configurations are
described below.

For training, we use two configurations by considering different num-
ber of job types. We use these two training configurations because they
represent problem instances with contrasting variability in job shop. In
the first configuration the number of job types is just two which is less but
they are very different with respect to their uncertainty levels. In the sec-
ond configuration, the number of job types is high which cover the range

of uncertainty levels from low to high. Our aim is to explore the ability

3.2. NEW REPRESENTATIONS 77

Table 3.3: Test Configurations

Test-set scale () #job-type-ratio
I {0.1,0.6} 1:1

II {0.1,0.6} 2:1

11 {0.1,0.6} 3:1

v {0.1,0.3,0.6} 1:1:1

v {0.1,0.3,0.6,0.8} 1:1:1:1

VI {0.1,0.2,0.3,0.4,05} 1:1:1:1:1
VII {0.1,0.3,0.6,0.8,12} 1:1:1:1:1

of GPHH to learn from the DJSS training instances with such contrasting
characteristics.

e In the first training configuration, two job types are considered equi-
proportion such that delay ratio follows the gamma distribution with
(¢ =1,5=0.6) and (o = 1, 8 = 0.1) respectively.

e In the second training configuration, five job types are considered
equi-proportion and the gamma distribution parameters are a@ =
1,8 € {0.1,0.2,0.3,0.4,0.5}

For testing, the configurations are give in Table 3.3. The last column
#ob-type-ratio tells the ratio between the number of jobs in each type.
Note that the number of configurations is much higher than training, which
is important to study the generalization of our methods. Furthermore,
by skewing the ratio of job types in the test configurations LII and III we
would like to study the performance of our methods under varying levels
of uncertainty.

The GP System

The genetic programming system uses a population of individuals which
are evolved using the crossover and the mutation operators. The fitness

78 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

is assigned using a DJSS simulation [92]. After each round of evolution,
individuals with high fitness values are selected. After completing all the
generations of evolution, the best individual from the population is used

as the final solution.

A list of the functions and terminals for GP is given in Table 3.4. The
function i f has 3 argument; it returns second argument if the first is greater
than 0, and the third one otherwise. The protected division returns 1 when
divided by 0. The population size is 1024, generation count is 50, maximal
tree depth is 8, crossover rate is 0.85, mutation and elitism are 0.1 and 0.05
respectively. These set of terminals, functions and the rest of the parame-

ters have been used earlier in similar experiments e.g. [161].

Table 3.4: Function and Terminal Sets for GP.

Function Set Meaning

+ Addition
— Subtraction
* Multiplication
/ Protected Division
Max Maximum
Min Minimum
If Conditional

Terminal Set Meaning

DD Due date of job
PT Processing time of operation
RO Remaining operations for job
RJ Ready time of job
RT Remaining processing time of job
RM Ready time of machine
ERC Ephemeral Random constant

EMA Exponential moving average of delay ratio*

*(terminal not used with standard GP, NAT method)

3.2. NEW REPRESENTATIONS 79

3.2.5 Results and Discussions

The notation used for different methods is given in Table 3.1. Since we
have used two training configurations, we suffix the method name with
‘2’ or ‘5" depending on the #job-types used for training. E.g. ENT2 denotes
that the ENT method is using the training instances with 2 job-types .

As seen in Table 3.1, we have 4 methods to compare. For each method,
we consider 2 training configurations. This leads to 8 sets of results col-
lected in Tables 3.5- 3.10 for a total of 7 test configurations. Each element
of the table is represented as a triplet in the form of [Win — Draw — Lose]
which is a result of the Wilcoxon-rank-sum-test under a significance level
of 0.05, used to compare the 30 test instances for each test configuration.
For example, consider the column corresponding to the test configuration
111 and the row corresponding to ENT5 in Table 3.5. [2 — 25 — 3| means
that ENT2, when compared with ENT5, performs significantly better in 2
test instances, poorly in 3 test instances and shows similar performance
in the remaining 25; among a total of 30 test problem instances. Thus we
have done an exhaustive comparison across all methods with varied test
and training configurations.

Firstly, we compare the proposed methods with standard GP approach
(NAT). Secondly, we consider the generalization capabilities by comparing
the evolved rules associated with different training configurations.

We present our observations for the comparisons with the existing meth-
ods. We use the first two plots in Figure 3.2 for this discussion. In each
plot, a group of boxplots pertain to a single problem test instance. For ex-
ample, in the first plot, with the caption [ENT2-EXP2-EMA2-NAT2] (Test
Set-I), the boxplots are grouped 4 at a time. The caption also says that the
test problem instances belong to test configuration I. In every group, the
order of methods is the same as mentioned in the caption. The method(s)
which performs the best are colored in yellow. So in the first group of box-
plots, ENT2 outperforms all other methods. To get a complete result on all
30 problems refer the Tables 3.5 - 3.7.

80 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

8
g =
g) ° L 7
o h o © o -
£ m o - - o T Q °©
= S [¢) TT | E_,_
E s EEEE ° T - E%. °©
o I ° -
c -— o T T
R - oH7 T 5
2 EQE§ EEI L EE E
- T oL+ — LT
5 LT
I T I T I I I I T I T I I I I
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
(ENT2 - EXP2 - EMA2 — NAT?2) [Test Set- I]
[e)
5 o)
Q - (¢] o ©O
E & ° 8 ° _ o o
2 s] 830, TofoT ©°°0 288 °
T &1 -8 EEEQ o © 6 T - o
s | BTES e.-t 281- Gabm 172
§ :] 288 ©o T isd TEET 5hal
& 7 - = = + ° =
= 4 o o BSES
2 ~ 5 - 8
§ I
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

(ENT5 - EXP5 - EMAS — NATS5) [Test Set- VI]

Figure 3.2: Boxplots: The order of boxplots is same as mentioned in the
caption. The significantly better result is shown with a colored boxplot.

In particular, if we focus on the two-job-configuration, i.e. ENT2, the
results are much better than the standard GP (NAT) and the exponential
moving average terminal based approach (EMA?2) for test configurations
I-V. This can be inferred from the first five columns in the second and third
rows of Table 3.5. The corresponding cells are shown in bold. Similarly
ex-post training approach (EXP2) outperforms EMA2 and NAT?2 for the
same test configurations. The corresponding cells are shown in bold in Ta-
ble 3.9. Therefore, both our proposed methods show significant improve-
ment when compared against the existing methods.

3.2. NEW REPRESENTATIONS 81

g)
g ° 5 T
.E - ° o - o © T oo :Q
E =] T8 - : "'TE
3 8 -~ T - o o
v §_] E%EEE v EEELO Og
5§ 7 :Tgéé o Tt e 8 L°° TTTéE
3 T [— o ! o
= 3| B8 BosT] BTE5
2 0o L
" T T T T T T T T T T T T 17 T T T T T T T T 1
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
(ENT5 - EXP5 - ENT2 - EMA2 — NAT2) [Test Set-]
g 0
R o
.E - ° o) o © °© o
E g4 o ° L+ 1 ° o - [
[T =1 - T -
g T T .- BEg -2 T 94
s A omogg soeos .. 8988, o
g Sy ==L e Q ~ 7 2
= £ 5 ==sHS = e
T T T [
3 5 5 5

11 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4

(ENT2- EXP2 - ENT5 — EMAS - NATS5) [Test Set- VI]

Figure 3.3: Boxplots: The order of boxplots is same as mentioned in the
caption. The significantly better result is shown with a colored boxplot.

When the test configurations VI-VII are considered while comparing
ENT5/EXP5, none of the methods is a clear winner. In fact, in some cases
the proposed method under-performs, e.g., see the cells marked in blue
in Table 3.6. This is understandable, as five-job-type configuration is as-
sociated with higher variability in the job shop and evolving good rules
using the estimation of uncertainty parameter yields poor results, due to

difficulty in accurate estimation.

EXP vs ENT

When we compare the EXP and ENT with each other, we observe that
ENT?2 is slightly better than EXP2 and ENTS5 is slightly better than EXP5.

82 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Table 3.5: ENT-2 (Ex-ante method, 2-job types training)
I I III v A% VI VII

EXP-2 | [13-17-0] [5-25-0] [2-28-0] [8-22-0] [4-26-0] [5-25-0] [0-30-0]
EMA-2 [22-8-0] [29-1-0] [29-1-0] [29-1-0] [24-6-01 [0-29-1] [6-17-7]
NAT-2 [28-2-0] [30-0-0] [30-0-0] [29-1-01 [29-1-0] [3-24-3] [11-13-6]
ENT-5 [12-18-0] [2-28-0] [2-25-3] [3-27-0] [8-22-0] [6-24-0] [6-24-0]
EXP-5 [19-11-0] [9-21-0] [1-29-0] [10-20-0] [25-5-0] [11-19-0] [6-24-0]
EMA-5 [27-3-0] [29-1-0] [30-0-0] [29-1-0] [29-1-0] [2-19-9] [15-12-3]
NAT-5 [27-3-0] [30-0-0] [29-1-0] [29-1-0] [30-0-0] [4-22-4] [13-12-5]

Table 3.6: ENT-5 (Ex-ante method, 5-job types training)
I I III v \Y VI VII

SRSl T e

EXP-2 [1-29-0] [2-28-0] [7-23-0] [3-27-0] [0-30-0] [4-25-1] [0-30-0]
EMA-2 [12-17-1] [28-2-0] [27-3-0] [25-5-0] [13-17-0] [1-24-5] [1-12-17]
NAT-2 [25-5-0] [30-0-0] [29-1-0] [27-3-0] [23-7-0] [2-21-7] [7-11-12]
EXP-5 [2-28-0] [4-26-0] [6-24-0] [0-29-1] [3-27-0] [1-29-0] [0-30-0]
EMA-5 [25-5-0] [29-1-0] [29-1-0] [28-2-0] [26-4-0] [2-11-17] [11-14-5]
NAT-5 [25-5-0] [29-1-0] [29-1-0] [28-2-0] [25-5-0] [3-18-9] [9-12-9]

This can be observed in the first plot of Figure 3.3. And more clearly in
#row-1 and #row-5 in Tables 3.5 & 3.6 respectively. The corresponding
rows are shown in grey.

Till now we presented the observations of comparison among methods
that use identical training configurations. In order to determine the gen-
eralization of our methods, we compare dispatching rules evolved using

different training configurations.

e two-job-type-configuration

Firstly, we consider the two-job-type-configuration which is associ-
ated with less variability in the job shop. The first plot in Figure 3.3

3.2. NEW REPRESENTATIONS 83

Table 3.7: EXP-5 (Ex-post method, 5-job types training)
I II III v \% VI VII

ENT-2 [0-11-19] [0-21-9] [0-29-1] [0-20-10] [0-5-25] [0-19-11] [0-24-6]
b2 SO (272 (000
EMA-2 [7-21-2] [28-2-0] [24-6-0] [22-8-0] [9-21-0] [0-20-10] [3-14-13]
NAT-2 [26-4-0] [30-0-0] [30-0-0] [27-3-0] [19-11-0] [2-18-10] [9-13-8]
ENT-5 [0-28-2] [0-26-4] [0-24-6] [1-29-0] [0-27-3] [0-29-1] [0-30-0]
EMA-5 [25-5-0] [29-1-0] [28-2-0] [27-3-0] [21-9-0] [1-10-19] [12-13-5]
NAT-5 [24-6-0] [29-1-0] [28-2-0] [27-3-0] [22-8-0] [2-15-13] [10-14-6]

gives an intuition to the comparison, where we compare the five
methods against each other on test configuration I. If we compare
EXP5/ENTS with EXP2/ENT2 on test configurations I to V and con-
sider the comparison of EMA5 with EMA2, we can conclude that the
generalization characteristics of the methods ENT and EXP are better
than EMA.

We explain this observation using some of the examples. Consider
the cells marked in green in Tables 3.6, 3.7 & 3.8. The cells corre-
sponding to test configuration I are [0-18-12], [0-27-3] and [0-10-20]
for ENT5, EXP5 and EMAS respectively. The generalization of EMAS
is the worst among the three methods in this example. The same
trend could be observed in other columns too.

o five-job-type-configuration

Refer the second plot in Figure 3.3. Now we try to compare the per-
formance of ENT2/EXP2/EMA2/NAT?2 against

ENT5/EXP5/EMAS/NATS on test configurations VI-VIL. Referring
cells marked in Tables 3.5, 3.9 & 3.10, the generalization characteris-

tics of ENT and EXP methods show high competitiveness.

84

CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Table 3.8: EMA-5 (Exponential moving avg. method, 5-job types training)

I I I v \Y% VI VII
ENT-2 [0-3-27] [0-1-29] [0-0-30] [0-1-29] [0-1-29] [9-19-2] [3-12-15]
EXP-2 [0-4-26] [0-2-28] [0-4-26] [0-2-28] [0-3-27] [18-11-1] [3-15-12]
v [EESIEE 210 (-2
NAT2 [0-30-0] [2-28-0] [8-22-0] [0-30-0] [0-28-2] [3-27-0] [0-18-12]
ENT-5 [0-5-25] [0-1-29] [0-1-29] [0-2-28] [0-4-26] [17-11-2] [5-14-11]
EXP-5 [0-5-25] [0-1-29] [0-2-28] [0-3-27] [0-9-21] [19-10-1] [5-13-12]
NAT-5 [0-30-0] [2-28-0] [1-29-0] [1-29-0] [0-30-0] [3-27-0] [0-23-7]

Table 3.9: EXP-2 (Ex-post method, 2-job types training)

I I 111 v \Y% VI VII
ENT-2 [0-17-13] [0-25-5] [0-28-2] [0-22-8] [0-26-4] [0-25-5] [0-30-0]
EMA-2 [12-17-1] [28-2-0] [20-10-0] [22-8-0] [17-13-0] [0-24-6] [2-21-7]
NAT-2 [27-3-0]1 [30-0-0] [28-2-01 [27-3-0] [26-4-0] [2-19-9] [8-16-6]
ENT-5 [0-29-1] [0-28-2] [0-23-7] [0-27-3] [0-30-0] [1-25-4] [0-30-0]
EXP-5 [3-27-0] [1-28-1] [0-27-3] [0-30-0] [6-24-0] [2-27-1] [0-30-0]
EMA-5 [26-4-0] [28-2-0] [26-4-0] [28-2-0] [27-3-0] [1-11-18] [12-15-3]
NAT-5 [25-5-0] [30-0-0] [28-2-0] [28-2-0] [29-1-0] [2-16-12] [8-16-6]

Table 3.10: EMA-2 (Exponential moving avg. method, 2-job types training)

I i I v \% VI VII

ENT-2 [0-8-22] [0-1-29] [0-1-29] [0-1-29] [0-6-24] [1-29-0] [7-17-6]
EXP-2 [1-17-12] [0-2-28] [0-10-20] [0-8-22] [0-13-17] [6-24-0] [7-21-2]
NAT-2 [24-6-0] [17-13-0] [18-12-0] [16-14-0] [12-18-0] [2-27-1] [11-19-0]
ENT-5 [1-17-12] [0-2-28] [0-3-27] [0-5-25] [0-17-13] [5-24-1] [17-12-1]
EXP-5 [2-21-7] [0-2-28] [0-6-24] [0-8-22] [0-21-9] [10-20-0] [13-14-3]
EMA-5 [20-10-0] [13-17-0] [6-24-0] [15-15-0] [23-7-0] [0-21-9] [26-4-0]
NAT-5 [23-7-0] [19-11-0] [13-17-0] [19-11-0] [22-8-0] [0-28-2] [12-18-0]

3.2. NEW REPRESENTATIONS 85

3.2.6 Analysis

We developed our methods for DJSS problems under uncertain processing
times. Though we considered total flowtime as our scheduling objective in
the experiments, it should be expected that other objectives which depend
on processing times also show similar results. To summarize, we observed
that for the scheduling objective of total flowtime, the performance of the
different methods is approximately in the following order.

ENT > EXP >> EMA > NAT

We analyze our key results and try to gain more insights to our meth-
ods. Firstly, we show one of the best dispatching rules evolved using the
EXP method and illustrate how the processing time terminals are changed
at the time of using the rule to generate schedules on test cases. The Dis-
patching Rule shown below is the rule which was evolved during training.
The terminals PT*?, which are shown in bold are replaced by PT™ (refer
Equation 3.5)

Dispatching Rule 3.1: EXP method - Training

(If (Max (If (+ PT°P (If RO RM RM)) (- (Max
RJ RT) (Max 0.002 RM)) (If DD 0.59 0.47)) (+ (-
(* DD RO) (Max 0.002 RM)) (Max RJ RT))) (* (/
(If (x DD RO) (x RO PT®P) (If DD RJ 0.72))

(« (/ 0.78 PT®P) (- 0.24 0.28))) (If (/

(/ DD RJ) (-RM PT¢P)) (/ (If RM RT RM)

(If RJ RJ RO)) (If RM RT RM))) (If (/ RJ RT)

(

+ PTP RO) (x DD RO)))

Secondly, we determine the frequency of terminals in 30 best rules
evolved using each method. The histogram plot is shown in Figure 3.4.
The histogram plot shows that there is a consistent pattern for the fre-
quency of terminals among all methods. Since the maximum depth of
the genetic programs is fixed, the introduction of terminal EMA reduces

the number of other terminals in the genetic programs. Also it makes the

86 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

BEm DD Bm RO [RM [PR
BN RT [N EMA [EE R

PR Rt PR RT PR
RT
600 | RT 1
00l o M RM ||
RM
o)
- o RM
O 400} 1
c RJ (o}
@ A
S RJ
S 300} P R D D]
™ R)
D
200} 1
100} 1
ol MA MA MA |
NAT EMA EXP ENT
Terminals

Figure 3.4: Histogram of Frequency of Terminals

search space more complex due to an extra terminal. These observations
point to the reason for the ENT and EXP to outperform EMA.

Thirdly, we look at the performance of the evolved rules on the training
instance. The box-plots for this comparison is shown in Figure. 3.5. The
plot shows the performance of best rules evolved from the 30 indepen-
dent runs. As expected, dispatching rules evolved using the EXP method
perform the best on the training instance as it uses the realized processing
time during evolution. We believe that EXP method suffers from high-
variance problem and overfit to the ex-post DJSS training instances. The
ENT method, on the other hand, considers the estimate of the delay ratio
during training. Due to this reason the ENT is more competitive than EXP.

3.2. NEW REPRESENTATIONS 87

—
i L
— :
o T
o I_I_I'
8 P T
p— —_—
o
O O
E S
ER—
LL
o
C
T
0)8_
> S
(e}
—
N
s |
o
8|
8__I_
o 1 1 1
—

EXP2 ENT2 EMA2 NAT2

(EXP2 - ENT2 — EMA2 — NAT2) [Training]

Figure 3.5: Boxplots for training instance

3.2.7 Section Summary

In this section, three methods which exploit the GP representations to in-
corporate uncertainty information of processing times into dispatching
rules were presented. The results show that the proposed methods are
successful in evolving effective dispatching rules for DJSS problems un-
der uncertainty. The three methods namely, EMA, ENT and EXP, pro-
posed different approaches to introduce changes to the terminal set of the
genetic programs. All the methods performed better than the GP represen-
tation which does not consider uncertainty. Furthermore, the experimen-
tal results show that the ENT performs the best among the three methods.
Also, both ENT and EXP methods, which are inspired by the ex-ante and

ex-post optimization approaches respectively, perform much better than

88 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

EMA.

These methods used the assumption that the delays in the processing
times of the operations of a job follow a probability distribution, which
relates well to many existing scheduling problems. In the next section, we
consider the delays in processing times which are a characteristic of the
machines, which are detected in the form of varying bottlenecks. This is
achieved through exploring the power of GPHH to learn from complex
scenarios without the need for explicit features.

3.3 Cooperative Co-evolution of DRs for Bottle-

neck and Non-Bottleneck Machines

In the previous section, the approaches to integrating uncertainty infor-
mation into dispatching rules were presented. The goal was to improve
the scheduling performance by providing additional information to the
dispatching rules. Another potential way of improving the scheduling
performance under uncertain processing times is to evolve dispatching
rules which are specific to shop scenarios which arise due to uncertainty.
As already discussed, the different jobs, due to their inherent characteris-
tics, are composed of operations whose delay in processing times may be
pertaining to different probability distributions. Moreover, the machines
are associated with different characteristics which vary in the profiles of
break downs, complexity in set-ups, etc. In a dynamic shop with con-
tinuous arrival of jobs these characteristics change with time resulting in
varying shop scenarios. Of particular interest to us, in this section, are
the scenarios which manifest as the varying bottleneck characteristics of
the machines, which has been an important topic for study [71, 106]. We
explain this further with an example below.

Consider the scheduling problem in a print industry [189]. Setting up

the required ink cartridges and getting the correct mix for the specific color

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD 89

is an important and complex set-up requirement. This is specific for each
print job. Also the printing is done across many printers to get the final
document/product. The characteristic of the previous operation done on
the printer has an effect on the time required for set-up and maintenance
tasks. This leads to uncertainty in the processing times of the operations.
Depending on the characteristics of the arriving jobs, workloads on differ-
ent printers continuously vary. More specifically, in such job shop schedul-
ing problems, the bottleneck levels of these machines continuously vary.
Clearly, the bottlenecks manifest as a result of the uncertainty in process-
ing times.

Coming back to our goal of using GPHH to evolve effecting dispatch-
ing rules under uncertainty, we want to exploit the ability of genetic pro-
gramming to learn from complex scenarios. The two scenarios are associ-
ated with bottleneck and non-bottleneck machines. The first step should
to identify these bottlenecks or in other words to classify machines into
bottleneck and non-bottleneck. But firstly, we look at some of the closely

related works in this direction from the literature.

Adams et al. [2] developed a shifting bottleneck procedure for job shop
scheduling to minimize makespan. This work has been modified to solve
varied classes of problems [48, 180]. Moreover, bottleneck identification
has been shown to be a useful step in order to provide additional computa-
tional resources to optimize the sequencing at the bottleneck machine [249,
238]. Jakobovit et al. [107] propose a genetic programming based method
for static job shop scheduling where they consider evolving separate rules
for bottleneck and non-bottleneck machines. The machines are classified
using a decision rule which is a genetic program with a different set of

terminals.

Now, the work by Jakobovi¢ et al. [107] which proposes an adaptive
scheduling heuristic for bottleneck and non-bottleneck machines in a static
job shop scheduling problem is discussed in more details. Before that,

we give a brief outline of the methods presented in this section. We use

90 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

some of the ideas for bottleneck identification from Jakobovi¢ et al. [107].
These method presented in their work needs some enhancements for it to
work on DJSS problems, which we will describe using our proposed meth-
ods. Their method, which is named as GP3 and the standard GP approach
are also used as benchmarks. We propose a new method (GP2-K) which
uses unsupervised clustering of machines’ states to classify the bottleneck
and non-bottleneck machines are presented. If we look at the previous
example, assuming that we are able to identify the bottleneck and non-
bottleneck machines, we can try to evolve separate rules for each bottle-
neck scenario. But in the shop, the sequences generated by these rules
interact with each other as the operations of different jobs span across
the machines. Therefore, in order to evolve rules which are able to con-
sider this interaction, a cooperative co-evolutionary (CoGP2-K) approach
is proposed which aims to evolve dispatching rules for the two types of
machines.

Jakobovi¢ et al. [107] propose an adaptive scheduling heuristic, where
they evolve a pair of dispatching rules, one for the bottleneck machine and
the other for non-bottleneck machine. In order to classify a machine into
the two types, they use a third rule, decision rule, which uses a different

set of terminals. These terminals are shown in Table 3.11.

Table 3.11: Terminal Set: Jakobovi¢-GP3 (Decision rule)

Terminal Definition

MTWK Total processing time of all operations on a machine
MTWKr Processing time of all remaining operations on a machine
MTWKav Average duration of all operations on a machine.
MNOPr Number of remaining operations on a machine.

MNOPw Number of waiting operations on a machine.

MUTL Machine Utilization.

Compared to static job shop scheduling, in DJSS problems under un-

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD 91

certain processing times, the variation in the bottleneck characteristics of a
machine is more prominent. Therefore, in particular, the machine utiliza-
tion (MUTL) terminal should represent the current state of machine. In
order to determine machine utilization, exponentially decreasing weights
for older time periods are used, so as to emphasize more on the recent load

on the machine.

GP2-K-means (GP2-K)

Although GP3 moves a step towards the scenario-dependent rule learn-
ing, it is difficult to evolve both the dispatching rules and the decision
rule together. This is because the error made by the decision rule can po-
tentially affect the dispatching rule learning, since the dispatching rule is
applied to a wrong scenario. To address this issue, a new GP training
process is proposed, which is called GP2-K. GP2-K separates the dispatch-
ing rule learning from the decision rule learning. Moreover, since bot-
tleneck machines are associated with higher level of uncertainty and the
non-bottleneck machines are associated with lower level of uncertainty, it
is imperative that the training sets also capture this trait. Therefore, two
DJSS training instances consist of two sets, one with high uncertainty and
the other with low uncertainty. This requires two sub-populations, one for
DR, and the other for DR),. In this way;, it could be guaranteed that dis-
patching rule is consistently applied to the correct scenario, and thus its
performance can be evaluated more accurately.

Note that the difference between the uncertainty levels of the two con-
figurations should not be too high, as the goal is to evolve solutions which
work under subtle variation in uncertainty levels, which is also more prac-
tical. If the difference in uncertainty levels were more, then the dispatch-
ing rules will be evolved for one type of machine with high workload and
for another with comparatively much lower workload which is a rare oc-
currence. Normally, in DJSS problems where the bottleneck levels fluctu-

ate, the difference in uncertainty levels of the bottleneck and non-bottleneck

92 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Algorithm 5: GP2-K [Training]
Input:

e G., total number of generations.
e DJSS training instance (P;).

- Simulation parameters
— U; uncertainty configuration (low)
— U, uncertainty configuration (high)

Output: Pair of dispatching rules: {DR;, DR}
1 Initialize subpopulations S;, S,

2 Setg <« 0

3 while g < G, do

4 g—g+1

5 foreach individual T € S; do

6 ‘ assign fitness to Z using DJSS simulation with ¢/ config.
7 end

8 foreach individual in Sy do

9 ‘ assign fitness to Z using DJSS simulation with 4, config.
10 end

11 Evolve individuals in §;, S, using crossover and mutation.
12 end

machines is not very high. Therefore, if the variation were stark, both the
bottleneck classification and the design of dispatching rules would be eas-
ier but not effective, The specific choice of the uncertainty levels is dis-
cussed further with our experiment design (Section 3.3.1).

The proposed training process is described in Algorithm 5. The two
sub-populations are then evolved independently (lines 3-12). The pair of

best evolved rules from sub-populations at the end of last generation is

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD 93

the final output. Note that the newly proposed training process does not
include the decision rule learning. During the test process, it is required to
classify the current state to decide which dispatching rule to use. To this
end, a clustering approach is proposed to replace the need of the decision

rule.

94 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Algorithm 6: K-means-clustering approach: GP2-K & CoGP2-K

Input:
e Pair of dispatching rules : {DR;, DR}, }

e DJSS problem instance.

— uncertainty configuration.

— set of machines M.

Output: Total flow time :7;

[y

Set of system state vectors: H <« ().
2 Cluster Centroids: {C;,Cp,} + 0.
while new jobs arrive do

w»

4 foreach m € M do
5 F(m) =
[MTW K, MTW Kr, MTW Kav, MNOPr, MNOPw, MUTL).

6 if size(H) > 2 then

7 {C1,Cs} <~ KmeansCluster(H)

8 {C1,Ch} < associateClusters({Cy,Cs})

9 if distance(C;, F(m)) < distance(Cy, F(m)) then
10 ‘ Use DR, for sequencing on machine m
1 else
12 ‘ Use DR, for sequencing on machine m
13 else
14 Use DR, for sequencing on machine m.
15 Add F(m) to H.
16 end
17 Update 7;.
18 end

The K-means clustering component of the method is explained using
Algorithm 6. Note that the choice of K-means algorithm is based on its
popularity and any other clustering algorithm should also work. A ma-

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD 95

chine state vector is constructed using the terminal set used in GP3 method
(line 5). Initially the set of machine state vectors # is empty. As the simu-
lation progresses, the machine-state vectors are stored in H.

At the outset, when the simulation is just warming-up and the size of
H is very small the following steps are taken. Initially the algorithm starts
simply by using the queue lengths (M NOPr, number of remaining op-
erations on a machine) to classify between bottleneck and non-bottleneck
machines; higher value of M NOPr implies high level of bottleneck. Once
the number of state vectors is greater than 2 (k = 2), it is possible to apply
clustering method but we continue associating (labeling) the centroids to
bottleneck and non-bottleneck machines using the feature M NOPr; this
is done for a small number (10) of jobs during the warm-up period. There-
after, in line 7, when H becomes sufficiently large, for every new pair of
centroids their distance is calculated from the pair of centroids obtained
in the previous step which are already labeled as bottleneck (C,) and non-

bottleneck (C;). Based on the distance values, the new centroids are then
labeled (line 8).

Once the labeled centroids are obtained, (either using M NO Pr initially
or using the preceding centroids labels) their distance from the current ma-
chine state vector is determined (lines 9-12) and those values are used to
decide the dispatching rule from {DR,, DR;}, to be used for sequencing.
The preliminary study showed that after the warm-up period of DJSS sim-
ulation, during which a fixed number of jobs which have been processed
but will be ignored for total flow time computation, there are sufficient
number of machine-state vectors for the cluster centroids C; and C;, to be
distinct. After the sequencing on the machine m is completed by the cho-
sen dispatching rule (line 10 or 12), the total flow time 7; is updated (line
17).

96 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Co-evolutionary GP2-K (CoGP2-K)

GP2-K is designed to evolve a pair of DRs independently in separate sub-
populations and then they are applied to a DJSS problem instance where
they interact with each other through sequencing decisions. GP2-K method
does not take into account the effect of this interaction between the two
dispatching rules. Cooperative co-evolution is a technique which is appli-
cable to a problem with interacting sub-components. Therefore we pro-
pose a cooperative co-evolutionary GP2-K i.e. CoGP2-K.

In CoGP2-K we divide the evolution into two stages as described in
Algorithm 7. The notion behind using two separate stages is to allow suf-
ticient generations of evolution for the dispatching rules to capture the
required characteristics from the two configurations of training instances
used in the first stage. And then further co-evolve to incorporate the inter-
actions ensuing due to the sequencing decisions from each rule. By keep-
ing the two separate stages in evolution, we better control the learning
process of our GPHH method.

In the first stage, for some generations the dispatching rules are evolved
in separate sub-populations. In this stage, each subpopulation is associ-
ated with a specific uncertainty configuration, similar to GP2-K method.
In the second co-evolutionary stage, each individual in a sub-population
is paired with the best individual from the other subpopulation. In this
stage, a single uncertainty configuration is used for both subpopulations
which corresponds to lower uncertainty level.

In the lines 3-12 of Algorithm 7, the first stage of the method is pre-
sented. The evolution in the subpopulations is performed separately us-
ing specific uncertainty configurations without any interaction between
the two. The co-evolutionary stage is described in lines 13-24. For each
generation, the best individuals from each subpopulation is determined
(lines 15-16). For calculating the fitness of an individual, the best individ-
ual from the other subpopulation is paired with it, this pair is evaluated

using the procedure described in Algorithm 6, which is same as what was

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD

Algorithm 7: Co-evolutionary method - CoGP2-K

1

10

11

12

14

15

16

17

18

19

20

21

22

23

Input:

¢ G, the generation after which co-evolutions starts.
e ., total number of generations.
e DJSS training instance (P;).

- U, uncertainty configuration (low)

- Uy, uncertainty configuration (high)

Output: Pair of dispatching rules: {DR;, DR, }
Initialize subpopulations &;, S;

Setg <+ 0

while g < G. do

g g+1
foreach individual 7T € S; do

‘ assign fitness to Z using DJSS simulation with ¢/ config.
end

foreach individual in S; do

‘ assign fitness to 7 using DJSS simulation with U4, config.

end

Evolve individuals in S, S, using crossover and mutation.

end
while G. < g < G, do

g—g+1
7, < BestIndividual(S;)
I, + BestIndividual(Ss)
foreach individual T € S; do
assign fitness to the pair {Z} using Algorithm 6 with /,
configuration and {DR;, DR}, } + {Z,Z,} for
problem-instance P;.
end
foreach individual T € S, do
assign fitness to the pair {Z} using Algorithm 6 with /,
configuration and {DR;, DR}, } < {Z;,Z} for
problem-instance P;.
end

Evolve individuals in S, S, using crossover and mutation.

end

97

used

98 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

for GP2-K. So the lines 18 and 21 of Algorithm 7 call the Algorithm 6. The
configuration used for fitness evaluation is ¢, which corresponds to the
low level of uncertainty. After all the generations are complete, the combi-

nation of best individuals from the last generation is returned as output.

3.3.1 Experiment Design
Uncertainty Configurations

In order to simulate a practical shop environment it is important to con-
sider different types of uncertainty configurations due to different job ar-
rival patterns. Also, not all the machines have equal workload, for exam-
ple, a finishing equipment required to fix small issues in a workshop. Tak-
ing into account such considerations, We have considered six uncertainty
configurations for the machines which are presented in Table 3.12. The
columns correspond to the machines. Each machine is associated with one
or more ¢ parameter settings which follow exponential distributions. The
scale parameter (/3) of the associated exponential distributions are given.

Moreover, in practice, a production environment is characterized by
varying defect and rework rates [196] which is reflected through the vari-
ation in levels of uncertainty. Therefore, some of the machines are associ-
ated with a pair of parameter values, e.g. m6 in configuration /71 is asso-
ciated with two scale parameters, {0.6,0.3}. The duration for which a ma-
chine is associated with a specific uncertainty level is uniformly sampled
from [1000, 1700]. This was chosen based on the requirements imposed
by our simulation, so that there is a sufficient duration for the machine to
move through transient to a steady bottleneck level.

We require two levels of uncertainty configurations during training for
the methods GP2-K and CoGP2-K. These two configurations are shown in
bold in Table 3.12. The configurations //] and VI correspond to the low
and high levels respectively. As explained earlier for GP2-K method, the

difference between the uncertainty levels of two configurations is not high.

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD 99

Table 3.12: Machine uncertainty (scale parameter (3) values of exponential
distributions)

md ml m2 m3 m4 m5 mb6 m7 m8 m9

I 01 01 01 01 01 01 01 01 01 01
{035, {035, {02, {03,
01} 01} 01} 0.1}
{0.6, {06, {02, {03,
03} 03} 01} 0.1}
{08, {08 {04, {05,
05} 05} 03} 03}
{12, {12, {0.65, {0.75,
075} 075} 04} 04}
VI 01 01 01 035 035 035 0.65 065 0.65 0.65

m o1 01 01 01 01 02

m o1 01 01 01 01 03

Iv. 03 03 03 03 03 05

v 03 03 03 03 03 09

In the configuration VI, for the machines m6 — m9 associated with g =
0.65 the uncertainty level is marginally higher but consistent. Similarly
for machines m3 — m5, 8 = 0.35 which is marginally higher. If we had
chosen the configurations / and V' instead, then we would have evolved
rules for a scenario where the shop has very high variability or with very
low variability. Such extremes are not the normally observed states of a
productive shop.

The different test and train configurations used are summarized in the
Table 3.13. GP1(l) and GP1(h) are the standard GP methods. For testing all
the six configurations are considered. Since our proposed methods and the
GP3 method utilizes the two configurations for training, we also train the
standard GP separately on these configurations and use them to compare
with the other methods.

We compare our proposed approaches with standard GP and GP3 [106].
GP3 considers the bottleneck machine and therefore forms a good bench-

mark to compare with. It must be noted that GP3 was applied to determin-

100 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

istic static JSS problems where as this work focuses on dynamic JSS prob-
lems under uncertainty. There is no other work which considers hyper-
heuristic approach for this type of problems.

The JSS objective is total flow time.

N
total flowtime = Z(C’ —Ryz)

=1

where R 7, is the release time of job J; and C; is the completion time.

Table 3.13: Training and Test Configurations

Train Test

GP1(1) III L II IIL, IV, V, VI
GP1(h) VI L 1L IIL, IV, V, VI
GP3 oI, vi L ILIL IV, V, VI
GP2-K 11, vi- L 1IL IIL IV, V, VI
CoGP2-K 1II, VI I ILILIV,V, VI

3.3.2 Results and Discussions

Now we present our set of experiments corresponding to GP3, GP2K and
CoGP2K. Referring Table 3.13, we compare the five methods over siz test
configurations. For each method the solutions are tested over 30 problem
instances. As for the previous experiments, the Wilcoxon-rank-sum-test is
used to compare the performance of the methods. A significance level of
0.05 is considered.

The results are summarized in Tables 3.14-3.18. Each cell in the tables
consists of a triplet detailing the corresponding statistical test result. Con-
sider the first cell of Table 3.14, [25-5-0] which should be read as [win-draw-
lose]. The Table 3.14 compares the GP1(l) method against the other 4 meth-

ods. The cell [25-5-0] corresponds to the column of test configuration / and

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD 101

row of method GP1(h). It means that the GP1(l) performed significantly
better in 25 problem instances, is similar in 5 instances and is significantly
poor in 0 instances. Furthermore, for those cells which show a significant
difference in more than 5 problem instances, color shading is used. The

color is used to show those cases where significant improvement is
observed in more than 5 problem instances i.e. win > max(5, loss). Simi-
larly denotes significantly worse performance, lose > max(5, win).
For each table, heading mentions the method name and associated train-
ing configurations.

In Table 3.14, we compare the standard GP method, GP1(l) which is
trained on configuration //1. For the test configuration I, which is char-
acterized by low uncertainty level, GP1(l) outperforms all methods. It is
better than CoGP2-K by a thin margin. However, as the level of uncer-
tainty increases, its generalization drops rapidly. For test configurations
IV to VI, GP1(l) performed noticeably worse than other methods. Refer
the cells marked in orange.

Table 3.14: GP1(l) (Configuration-III)
I II 1T 1A% \Y VI

GP1(h) [25-5-01 [18-12-0] [0-26-4] | [0-5-25] [0-0-30] [0-1-29]
GP3 [29-1-0] [25-5-0] [0-27-3] | [0-8-22] [0-1-29] [0-4-26]
GP2-K [19-11-0] [18-12-0] [0-26-4] ' [0-7-23] [0-0-30] [0-1-29]
CoGP2-K [5-25-01 [3-27-0] [0-26-4] | [0-4-26] [0-0-30] [0-1-29]

In Table 3.15, the standard GP method trained on higher uncertainty
level corresponding to configuration VI is compared to all other meth-
ods. Its performance is significantly better than GP1(l) for configurations
IV — V1, as evidenced by the cells marked in green. These cells corre-
spond to configurations with relatively higher uncertainty levels. GP1(h)
performs poorly for configurations I — 11 for GP1(l) and CoGP2-K. Refer
the colored cells in the first two columns. Its is almost an exact draw with

102 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

GP2-K across all configurations. For configurations with a higher level of

uncertainty it is significantly similar to CoGP2-K for most test problems.

Table 3.15: GP1(h) (Configuration-VI)
I II III v \Y VI

GP1() |[0-5-25] [0-12-18] | [4-26-0] [25-5-0] [30-0-0] [29-1-0]
GP3 [4-26-0] [3-27-0] [0-30-0] [0-29-1] [1-27-2] [3-26-1]
GP2-K [0-29-1] [0-30-0] [0-30-0] [0-30-0] [0-30-0] [0-30-0]
CoGP2-K | [0-21-9] [0-22:8] [0-27-3] [1-27-2] [4-26-0] [2-28-0]

In Table 3.16, the performance of GP3 is presented. It outperforms
GP1(l) on configurations IV — VI but is significantly poor for most of the
test problems on configuration I — I (refer the orange cells). Apparently,
the bottlenecks arising for higher level of uncertainty configuration (con-
figuration V1) have had a dominating influence during training. Conse-
quently, the generalization characteristic of GP3 is poor.

Table 3.16: GP3 (Configuration III & VI)
I II III v \Y VI

GP1(1) | [0-1-29] [0-5-25] [3-27-0] [22-8-0] [29-1-0] [26-4-0]
GP1(h) [0-26-4] [0-27-3] [0-30-0] [1-29-0] [2-27-1] [1-26-3]
GP2-K [[0-21-9] [0-28-2] [1-29-0] [1-28-1] [0-30-0] [0-29-1]
CoGP2-K |[0-3-27] [0-12-18] [0-25-5] [1-29-0] [1-29-0] [0-29-1]

In Table 3.17, the results from GP2-K, which uses clustering method
during testing, are shown to be similar to GP1(h), as mentioned earlier.
It outperforms GP3 for test configuration /, even though they both use
same configurations in training. This is because in GP2-K the dispatching
rules for bottleneck and non-bottleneck scenarios are learned using spe-

cific training configuration and later a clustering method is used to choose

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD 103

the rules during testing against a non-linear GP classifier in the former.

Table 3.17: GP2-K (Configuration III & VI)
I II 1T v \Y VI

GP1() [[0-11-19] [0-12-18] [4-26-0] [23-7-0] [30-0-0] [29-1-0]
GP1(h) [1-29-0] [0-30-0] [0-30-0] [0-30-0] [0-30-0] [0-30-0]
GP3 [9-21-0] [2-28-0] [0-29-1] [1-28-1] [0-30-0] [1-29-0]
CoGP2-K [0-26-4] |[0-21-9] [0-27-3] [0-28-2] [3-27-0] [2-28-0]

In Table 3.18, the performance of the co-evolutionary method is shown.
Across all the test configurations this method is able to perform well. Though
it is marginally poor in test configuration / with a very low uncertainty
level. It outperforms GP1(h), GP3 and GP2-K on configurations [— I1] as
evidenced by green cells. In the case of test configurations IV — VI, the
performance CoGP2-K outperforms GP1(l) and is almost similar to other
methods. This shows that the generalization characteristic of the proposed
method is superior to all other methods considered in this work. The
co-evolution process takes into account the interactions of the dispatch-
ing rules through their sequencing decisions in combination with a more
effective clustering method to classify the bottleneck and non-bottleneck
dispatching rules.

Table 3.18: CoGP2-K (Configuration III & VI)
I II III v \Y VI

GP1(l) |[0-25-5] [0-27-3] [4-26-0] [26-4-0] [30-0-0] [29-1-0]
GP1(h) [9-21-0] [8-22-0] [3-27-0] [2-27-1] [0-26-4] [0-28-2]
GP3 [27-3-0] [18-12-0] [5-25-0] [0-29-1] [0-29-1] [1-29-0]
GP2-K [4-26-0] [9-21-0] [3-27-0] [2-28-0] [0-27-3] [0-28-2]

In Figure 3.6, we present boxplots to compare generalization perfor-

104 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

mance of the methods on individual instances. We picked 5 out of the total
30 problem instances under the two test configurations 17/ and V'I. The
groups of 4 boxplots correspond to one problem instance each. A boxplot
is marked in green if its median is lower than the medians corresponding
to all other boxplots in the same group. The order of methods is same as
mentioned in the caption. In a large number of the cases, the boxplot cor-
responding to CoGP2-K enjoyed the smallest median value, with respect

to these two configurations.

2 g | I G S
= ééTT T T mE e ;QEE
o s | T~ EE =S == H -~ -
§ é _ - e -~ = . .
=] =S

E T T 7T T T 1 L T T 1T 7T T T 1

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
(GP1(h) - GP3 - GP2-K - CoGP2-K) [Test — Uncertainty Configuration— IlI]

o 2 | ' I : -
£ 3 E .1 Ho-+ Q - :
: L1 IEEE TBma ==l T T
LL ? - e ! e - _:_ _:_ R -
s 5 - ! TS =H
<5} — T - T -
= 5| H =1=

" T T

(GP1(l) - GP3 - GP2-K - CoGP2-K) [Test — Uncertainty Configuration— VI]

Figure 3.6: Boxplots: The order of boxplots is same as mentioned in the

caption. The result with lowest medians are marked in green.

3.3. COOPERATIVE CO-EVOLUTIONARY METHOD 105

3.3.3 Analysis

We compare the pair of dispatching rules evolved using CoGP2-K. We de-
termine the frequency of the terminals obtained from the 30 runs, which is
shown in Figure 3.7. There is a clear difference between the evolved rules
with respect to their choice of terminals. The rules which were evolved
using a configuration with higher level of uncertainty tend to use the ter-
minals corresponding to the jobs more often. A higher level of uncertainty
leads to bottleneck machines, leading to a larger queue length. This makes
the problem harder. Therefore, the dispatching rule which is evolved on
this configuration tends to use more of the terminals which correspond to

the job characteristics as explained below.

300 : T T T T
I Uncertainty Configuration VI
[Uncertainty Configuration 1l]]
250 + i
200 + i
. _
O _
c
8150+ i
o
o
L _
100 + -
50 - -
0
RO RJ RM RT PR
Terminals

Figure 3.7: Histogram of Frequency of Terminals

106 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

Dispatching Rule 3.2: CoGP2-K - (low)

(» (If (If (Min RJ RO) PR (If (- RM PR)
0.580 RM)) (+ (x (Min 0.522 RJ) (xRT PR))
(x PR PR)) RT) (- (Max (- (If RO RT PR)
(Min 0.0837 RM)) (Max (/ RJ PR) (Min
0.0597 RT))) RT))

Dispatching Rule 3.3: CoGP2-K - (high)
Min (Min (+ RO RO) (+ (- (= (/ RT RM) (+
Min PR PR) (» RO PR))) (Max 0.250 RT))

/ RM (x (* RO PR) (% (Min RJ RT) PR)))))
- (/ (+ RO (Min RJ RT)) (/ PR RO)) (* (Min
PR PR) (* (Min RJ RT) PR))))

(
(
(
(

For a bottleneck machine, the priority value is expected to be very dif-
ferent for a job with many pending operations compared with a job with
fewer pending operations, due to their higher impact on scheduling objec-
tive when compared with a non-bottleneck machine. Therefore, the two
terminals RO and RJ corresponding to remaining operations for job and
ready time of job respectively are more prominently used in dispatching
rules for bottleneck machines. An example of one of the best pairs of dis-
patching rules evolved using CoGP2-K is given above. The terminals RO
and RJ are shown in bold in both the rules.

3.3.4 Section Summary

In this section, we developed new GPHH approaches which explored the
ability of genetic programming to evolve dispatching rules for specific sce-
narios in DJSS problems under uncertainty. We considered the varying
bottleneck and the non-bottleneck machines in the shop as the two sce-
narios. Firstly, we developed a clustering based method to identify bottle-
neck machines in DJSS problems. Then using this method two new GPHH
methods, CoGP2-K and GP2-K. CoGP2-K were developed for evolving
a pair of rules for bottleneck and non-bottleneck machines. The results

3.4. FURTHER DISCUSSION 107

show that CoGP2-K which is a cooperative co-evolutionary method out-

performed all the other benchmark methods.

3.4 Further Discussion

We would like to highlight the subtle differences between the two ap-
proaches developed in each of the sections in this chapter. The ENT, EXP
and EMA approaches essentially consider the job characteristics to im-
prove the scheduling performance. The jobs in a print industry are an
example where the varying characteristics of jobs [191] lead to uncertainty
in processing times e.g. the processing time of a print job which is sensitive
to paper quality will generally get affected because the paper is obtained
from various sources. On the other hand, when the varying machine char-
acteristics play an important role on the scheduling performance then an
approach like CoGP2-K is effective. Consideration of the varying char-
acteristics of machines is very important in production systems where
frequent set-ups and maintenance activities are unavoidable. In fact, in
many such production environments machine characteristics undergo a
cycle [196] of variations between maintenance activities. Therefore, even
though these approaches deal with uncertain processing times, their ap-

plicability is suitable for different shop environments.

3.5 Chapter Summary

The goal of this chapter was to develop GPHH techniques for evolving
dispatching rules for DJSS problems with uncertainty in processing times.
This goal was successfully achieved through two major sub-goals.

This chapter presents a first attempt to incorporate uncertainty infor-
mation into dispatching rules using novel GP representations. Also, this
is the first work which tries to combine the ideas of ex-post and ex-ante

optimization into hyper-heuristic approaches for problems in uncertain

108 CHAPTER 3. GPHH FOR DJSS UNDER UNCERTAINTY

environments. We developed new representations for GP with the abil-
ity to incorporate the uncertainty information into the dispatching rules.
Firstly, a new representation was developed by introducing a new termi-
nal EMA which incorporated the information about uncertainty into the
genetic programs. Then, inspired by ex-ante and ex-post optimization,
two novel GPHH approaches were developed namely ENT and EXP. Our
methods using the new representations were successful in evolving ef-
tective dispatching rules for DJSS problems under uncertain processing

times.

This chapter presents a first method to consider separate dispatching
rules for the bottleneck and non-bottleneck machines in a DJSS problem
under uncertain processing times while taking into account the interac-
tions between the two rules, through their sequencing decisions. We de-
veloped a novel cooperative co-evolutionary method called CoGP2-K for
evolving a pair of dispatching rules each for the specific machine type. We
also developed a new method to identify bottleneck machines in dynamic
scheduling problems which is based on clustering and extends the exist-
ing work from [106]. Furthermore, by evolving the dispatching rules in
two stages, our proposed algorithm enables the GPHH to effectively learn
all the desired features into the dispatching rules. Thus, CoGP2-K was
successful in evolving effective dispatching rules which outperformed the
existing benchmark methods.

By achieving these two sub-goals, this chapter has exploited two major
strengths of genetic programming. Firstly, the flexible representation of
GP was utilized to directly incorporate the uncertainty information of pro-
cessing times into the terminals of dispatching rules. Secondly, the power-
tul ability of genetic programming to learn from complex scenarios with-
out being explicitly provided with features was utilized to evolve a pair of
rules for bottleneck and non-bottleneck machines. Since the bottlenecks
are a result of variability and uncertainty in the dynamic shop, the ef-
fect of uncertainty is indirectly taken into account by the GPHH approach.

3.5. CHAPTER SUMMARY 109

This was benefited by the useful ability of cooperative co-evolutionary ap-
proaches to effectively learn from the interactions among the components
of a system.

Though both these sub-goals were achieved by developing GPHH ap-
proaches for DJSS problems under uncertainty, there some subtle differ-
ences which must be noted. For the first sub-goal, the new representations
relied on the assumption, which is practical, that uncertainty in the op-
erations comprising a job follow a probability distribution. In the second
sub-goal, the machine characteristics are given prominence and the uncer-
tainty in the operations queued on them are considered. This subtle differ-
ence is another reason for this chapter to investigate two parallel research
directions. Considering the large number of different job shop scheduling
problems, both of these considerations and their assumptions are common
in the practical job shops.

This chapters considers only two specific scenarios pertaining to bot-
tleneck levels of the machines. In practice, due to uncertainty in process-
ing times, many different scenarios arise in the shop environment. Is it
possible to evolve rules for each of these scenarios? How to identify the
scenarios which are important? Or in other words, what DJSS training
instances must be sampled during GPHH for evolving better dispatching
rules? Moreover, when more than one objective is considered, should we
consider parallel evolutionary methods? In the next two chapters, we try
to explore the methods to address these questions.

Chapter 4

Active Sampling Methods for
Dynamic Job Shop Scheduling

under Uncertainty

4.1 Introduction

In our previous chapter, we were successful in designing rules for two
specific DJSS scenarios, corresponding to bottleneck and non-bottleneck
machines, using GPHH approach. In general, designing a single dispatch-
ing rule for all the shop scenarios is difficult and will be hard to yield the
(near) optimal scheduling performance [88, 219]. As demonstrated in the
previous chapter and also highlighted in the literature survey, GPHH is
a promising technique for automatically designing dispatching rules. In
light of this, we develop the premise of this chapter, which is to consider
GPHH approaches for designing more than one rule for the dynamically
varying shops scenarios. We will present some examples which show the

varying shop scenarios in a dynamic environment.

110

4.1. INTRODUCTION 111

4.1.1 Shop Scenarios in Dynamic Environment

In print industry, more broadly also known as document management ser-
vices, using an example we considered earlier in Chapter 1 [189, 190, 191,
192], we discussed about a large number of shop scenarios arising due to
the dynamic environment characterized by events like break downs, op-
erator mistakes, spurt in arrival of high priority jobs, etc. The resources
in a print shop are printers, cutters, shrink wrapper, binder, etc. In a dy-
namic print shop, different jobs have different patterns, e.g. shortjobs with
short deadlines, or recurring jobs with specific characteristics like market-
ing pamphlets [104, 192]. These get disrupted when jobs with a different
pattern arrive at the same time, e.g., a large number of jobs with long pat-
terns when shorter jobs are nearing deadline. This leads to uncertainty in
the shop and adversely affects the scheduling objective(s). [192] proposes
using dynamic cells which essentially change the structure of print shop
by grouping together similar jobs and also grouping together the required
equipment (machines) dynamically, with respect to changing (aforemen-
tioned) shop patterns. We will refer to these patterns as scenarios. The
idea of dynamic cells is born out of the need to recognize and deal with a
large number of shop scenarios arising in the dynamic environment. We
can clearly see that this example highlights the importance of recognizing
the large number of shop scenarios in the dynamic shop and developing
methods to deal with them.

Similarly, in the automobile manufacturing industry, modern produc-
tion units use automated robots to manufacture the components of an au-
tomobile. A single production unit has the ability to manufacture vehi-
cles of many designs and specifications. The orders for these products
arrive dynamically and many of the set-ups are automated in the robots
e.g. [198]. But when new orders with new specifications arrive, the de-
fect rate initially is high which leads to uncertainty in processing times.
Thus, the sudden arrival of a new order with complex specifications re-

sults in a new scenario in the shop, which has an effect on all the other

112 CHAPTER 4. ACTIVE SAMPLING METHODS

jobs which require the same resources. Similarly, if a particular passen-
ger vehicle model becomes popular, new orders for that vehicle with high
priority arrive at the production unit, with short deadlines. This scenario
could get further complicated when an imminent software upgrade of a
system leads to delays in manufacturing of a set of components. Such
variability is very common in the manufacturing industries [105]. Design-
ing a universal dispatching rule which can deal with all such scenarios is
not practical. Instead, we need dispatching rules which are designed for
specific shop scenarios.

4.1.2 Multiple Dispatching Rules

While we discussing the importance of designing scenario specific rules
instead of a universal rule, a related idea in machine learning is in the
context of global learning versus local learning [98]. A global learner con-
siders the whole data and looks for patterns at the global level. A local
learner, on the other hand, considers subsets of data and is able to find
useful patterns which could be missed by the global learner. Local learn-
ing directly utilizes critical information for sub-tasks rather than obtaining
a global perspective. The notion of grouping similar problems based on
their characteristics and developing solutions has been considered in other
contexts. In particular, evolutionary multitasking [82] attempts to solve
multiple optimization problems simultaneously by exploiting the implicit
parallelism of population-based search. By utilizing the similarities and
differences across the tasks, they are solved simultaneously. Multitasking
facilitates the implicit knowledge transfer between diverse tasks and helps
achieving optimization across the problem domains. In hindsight, these
ideas essentially highlight the research directions which focus on dividing
a global problem into multiple tasks and use more specific task oriented
information to solve them. In our context, this further reinforces the im-

portance of considering a large number of shop scenarios and designing

4.1. INTRODUCTION 113

scenario-specific rules.

The idea of using more than one dispatching rules has been considered
to a limited extent in recent works [88, 89]. Their focus is more on switch-
ing the dispatching rules for dynamically varying shop scenarios. There-
fore, they do not attempt in designing new rules for the varying shop sce-
narios. Instead, they experiment with already existing manually designed
rules. Secondly and more importantly, the shop scenarios which they sim-
ulate only consider variation in utilization and due date factor. In our
previous examples, we could see that the combination of jobs of different
characteristics which arrive at the shop lead to a large number of distinc-
tive patterns or shop scenarios. Therefore, it is important to consider the
effect of the different characteristics of arriving jobs in a complex shop
environment. Following that we will need to develop methods for identi-
fying the challenging scenarios (as described in Section 4.1.1) which arise
in the shop. Once they are identified, the next step is designing dispatch-
ing rules for those challenging scenarios. Finally once the scenario-specific
rules are designed, selecting the appropriate dispatching rule when a cor-
responding scenario for which the rule was designed is encountered in the
shop. Since GPHH has shown a lot of potential in automatically designing
dispatching rules, it is a good research direction to exploit this approach
to designing rules for the specific scenarios. We now discuss the various
challenges which we need to address in our endeavor to address these

requirements.

In theory, the number of patterns or scenarios which could be observed
in a complex shop is infinite. A production system which gets a large num-
ber of different kinds of orders is expected to encounter more complex
scenarios than a shop with low productivity. Since the productivity varies
for a shop (decided by many factors like market supply and demand), the
shop scenarios also vary. For improving the overall productivity of the
shop, the scheduling effectiveness needs to be improved for those shop

scenarios which are ‘complex’. Thus, identifying these complex shop sce-

114 CHAPTER 4. ACTIVE SAMPLING METHODS

narios is an important step. In this context, the term complex is used to
reflect the large number of factors involved in the description of schedul-
ing problem in a dynamic shop. Even though GPHH approach has been
successful in evolving good dispatching rules, it is still computationally
expensive. Therefore, on the one hand we have a huge number of possible
DJSS scenarios and on the other hand we have the computational con-
straint for GPHH which cannot evolve specific rules for each and every
shop scenario. In terms of the GPHH approach, a large number of DJSS
shop scenarios are essentially part of the DJSS training instances, implying
that we need methods to identify DJSS training instance corresponding to
complex shop scenarios. So, essentially the challenge is in efficiently iden-
tifying those training instances which capture the complex shop scenarios.

4.1.3 Active Learning methods

These challenges lead us to a sub-field of machine learning called active
learning. Active learning [204] is a concept based on the idea that a ma-
chine learning algorithm will perform better if it has the choice to select the
training instances to learn from. The active learning problems selectively
and adaptively samples from the input space to deal with the estimation of
unknown parameters. Over the recent years, this idea has inspired many
algorithms for semi-supervised learning. The question which an active
learning approach tries to address is: “How do we select instances from
the underlying data to label, so as to achieve the most effective training for
a given level of effort?” [3].

If we desire to consider active learning techniques in the context of
GPHH for efficiently identifying those training instances which capture
complex shop scenarios, we need to address some specific issues. The
active learning techniques, like uncertainty sampling [204] for example,
could leverage the underlying distribution of the input space and in gen-
eral convenienced by the ease of evaluation of the sampled instance’s abil-

4.1. INTRODUCTION 115

ity to improve the model. Since GPHH is a hyper-heuristic approach,
which means the evolved dispatching rule needs to generate a solution,
we cannot directly evaluate the sampled instances just with the evolved
rules. We actually need to apply the dispatching rules on a set of DJSS
instances and evaluate its performance which could indirectly evaluate
the sampled DJSS instances. Essentially, the evolution of the dispatching
rules using an identified training instance is actually exploitation while
sampling newer training instances and then evaluating their efficacy to
evolve rules amounts to exploration. This is actually a multi-armed bandit
problem. Since the computational budget is limited, allocating resources
toward the sampling of instances from the input data space versus evo-
lution of dispatching rules using already sampled DJSS instances can be
considered as a dilemma between exploration and the exploitation. In
fact, active learning and the theory of multi-armed bandits (MAB) are
closely related [74]. By definition, the multi-armed bandit problem is a
problem dealing with allocation of a limited set of resources among com-
peting choices to minimize regret. In essence, the theory of multi-armed
bandits and its applications particularly focus on the trade off between
exploration and exploitation. Therefore, a research direction which con-
siders these techniques for evolving scenario-specific dispatching rules for

DJSS problems in complex environments is quite promising.

Integrating active learning methods into GPHH has some important
challenges. Firstly, the current GPHH framework has no facility to ac-
tively sample training instances while evolving dispatching rules. Sec-
ondly, there is no existing method to evaluate the ability of training in-
stances in promoting the evolution of scenario-specific rule or to evaluate
how good a training instance represents a complex shop scenario. With-
out addressing these two challenges, the techniques from active learning
and the theory of multi-armed bandits cannot be employed. Furthermore,
since GPHH is already computationally intensive, the integration of these

techniques should consider aspects of computational efficiency as well

116 CHAPTER 4. ACTIVE SAMPLING METHODS

and should form the main criteria for selection of appropriate methods. In
this line of discussion, it is worthwhile to note that Bayesian optimization
is an area which deals with optimizing functions that are very expensive
to evaluate. Moreover, Gaussian process bandits which falls under the
purview of Bayesian optimization, multi-armed bandit is a related tech-
nique which could be a key to tackling our issues.

Based on these research challenges and the motivation to employ active
learning methods with GPHH, now we construct the goals of this chapter.

4.1.4 Chapter Goals

The goal of this chapter is to develop new GPHH approaches which ac-
tively sample DJSS training instances toward evolving scenario specific
dispatching rules for DJSS problems.

The following are the two sub goals.

e Develop a new GPHH framework which facilitates the active sam-
pling of DJSS training instances. This also includes developing a
method to compare the training instances in their ability to support

the evolution of effective dispatching rules.

e Develop two new active sampling methods using the e-greedy strat-
egy and the Gaussian process bandits (GPB) technique as a part of
the new GPHH framework.

4.1.5 Chapter Organization

The remaining chapter is organized as follows. The next section describes
the proposed algorithms. The Section 4.3 presents the design of experi-
ments. The Section 4.4 presents the results and discussion. The final sec-

tion provides a summary to the chapter.

4.2. THE PROPOSED METHODS 117

4.2 The Proposed Methods

In order to achieve the goals in this chapter, we need to incorporate some
new facets into the current GPHH framework to enable the active sam-
pling methods. In particular, the GPHH approach must be enabled to eval-
uate the DJSS problem instances which were sampled to train a scenario-
specific dispatching rule.

Before we describe our new framework, we need a method to asso-
ciate the DJSS training instances with the shop scenarios which they rep-
resent. Since our aim is to enable the GPHH to evolve dispatching rules
each specific to different scenarios, we should first be able to map the DJSS
instances to the complex shop scenarios. Consequently, for the GPHH sys-
tem to train, it should be provided with groups or clusters of DJSS prob-
lem instances where each cluster of problem instances corresponds to a
specific shop scenarios. Therefore, firstly we describe a feature extraction
and clustering method for the DJSS problem instances.

4.2.1 Clustering of DJSS Problem Instances

Referring back to our previous examples of dynamic job shops, in par-
ticular, the example from print industry, the shop scenarios are defined
mainly by the characteristics of the arriving jobs [104, 189]. These charac-
teristics pertain to #operations, processing time of these operations, their
due date, etc. The other factors which influence a shop scenario are dy-
namic events like machine break downs, variability in set-up times, etc.,
which lead to uncertainty in shop parameters. Since processing time is an
important job parameter influencing most of the objectives, we consider
the uncertainty in the processing times, which in essence captures the ef-
fect of aforementioned dynamic events. Due to the same reason, we had
considered uncertainty in processing times in Chapter 3 as well.

Now, with this background, we extract features from the DJSS problem

instances. Firstly, the basic features for each job are extracted as described

118 CHAPTER 4. ACTIVE SAMPLING METHODS

Table 4.1: Job Features

Feature Description

#operations number of operations per job.

p estimated processing time of the job.

AP %, p' is the actual processing time with uncertainty.

due date factor (ddf) M ; where 64,c4ate 1S the due date and

Oreldate 18 the release date

in Table 4.1. These features, as explained above, are closely related to the
shop scenarios. We would also like to mention that similar feature extrac-
tion methods have been employed by [213] though for static scheduling
problems and also their work is not related to GPHH or the goals of this
chapter. A?,in the Table 4.1 is the delay ratio as defined in Chapter 1. The
estimated processing time p is the expected processing time which is used
by the dispatching rule to make sequencing decisions. The realized pro-
cessing time p' is the actual processing time obtained after the job is com-
pleted on the machines. The number of operations, due date factor and
the processing time are the parameters which help in defining the charac-
teristics of a job which in turn influences a shop scenario.

Once the basic features for each of the jobs in a DJSS problem instance
are extracted, we need to create a feature vector for the dynamic JSS prob-
lem. In order to do that, firstly each of the basic features for each of the jobs
is aggregated. And then, the first, second and third quartiles of each aggre-
gate are calculated to form a 12-dimensional feature vector characterizing
each problem instance. We illustrate this feature extraction methodology
using an example below.

Consider an example of a DJSS problem instance with just 10 jobs

{j17j27j3a o= 'le}

For each job, the features described in Table 4.1 are calculated and aggre-

4.2. THE PROPOSED METHODS 119
gated e.g., for processing time the aggregated feature values are:

{p17p27p37 .- ‘pIO}

Then for each feature aggregate, the quartiles are calculated. The feature
vector of the DJSS instance is of the form

{#0])8@1, #OPSQ27 #OPSQg, PQ1,PQ2, PQ3, A%la A%Qa Agga ddeb dde2> dded}

Here, ops and p refers to operations and its processing time respectively
while ddf refers to due date factor. The subscripts 1,)2, ... refer to the
qaurtiles.

After extracting the feature vectors from each of the DJSS training in-
stances, they are clustered to form groups of similar problem instances.
Since we started extracting features from each job and then aggregated
them for the jobs arriving at a shop, we expect that the combination of
job characteristics arriving at the shop is reflected in our aggregated fea-
tures. Therefore, after clustering the DJSS instances, we should expect that
the problem instances corresponding to a cluster pertain to similar shop
scenarios.

Now we propose our new GPHH framework.

4.2.2 GPHH Framework Using Active Sampling

Before delving into the details of our proposed framework, we briefly out-
line the commonly used GPHH approach. In the current GPHH approach,
the genetic programming evolutionary process uses a set of DJSS training
instances. The total number of the DJSS training instances used is quite
low. If G is the total number of generations, then usually it is just a small
multiple of G. For example [163] considers four DJSS training instances
per generation. At the end of the algorithm, it is common for the best dis-
patching rule to be considered as the final result e.g. [100, 161]. Both these

aspects are different from the proposed framework for GPHH.

120 CHAPTER 4. ACTIVE SAMPLING METHODS

The proposed GPHH framework is explained using the flowchart in
Fig. 4.1. The framework consists of three main components, namely: train-
ing, testing and validation. These are shown using blue boxes in the flowchart.

Training Active
Set Sampling

Y

Training
Epoch

Y

raining
ompleted?

Yes

v

{ Test Set L» Testing / ?alisd;tion;

End

Nop-| Validation

A

Figure 4.1: Proposed GPHH framework using active sampling.

Before the GPHH procedure starts, we divide the set of problem in-
stances (X') evenly into three sets: training set S, validation set V and test
set 7. The notation is defined in Table 4.2. We also set aside a smaller set
(H) of problems for hyper-parameter optimization, required by one of our
algorithms. Since the details about hyper-parameter optimization are al-
gorithm specific, we present them later when we discuss our experiments.
In the flowchart, this step should be considered as a part of active sam-
pling. Using the methodology described above, we extract features from
each of the problem instances from the three sets and cluster them. These

4.2. THE PROPOSED METHODS 121

three sets are used for the training, validation and testing respectively, as
shown in the flowchart.

Table 4.2: Notation

Symbol Definition

X set of all DJSS problem instances

SV, T training, validation and test sets respectively.

H set of problems for hyper-paramter optimization.

S V., T.,,/H. denote clustered sets.

N, number of instances in each cluster of V

p(Vi, 1) ith problem instance from the cluster vy. similarly for S and 7.
G total number of generations

ol number of generations for which a subpopulation is evolved
& number of epochs & = G%~y

N, number of gens. for which all subpops. are evolved initially.
R rank order of all dispatching rules for a cluster vy,

T, average rank of a dispatching rule over all clusters

The training step consists of many evolutionary (training) epochs. In
the parlance of evolutionary computation, an epoch, v, consists of a fixed
number of generations. Thus if G is the total number of generations, then
the number of epochs £ is G%, where % is modular division operator.
At the end of each epoch, a set of dispatching rules is obtained. This is
a common procedure across all our proposed active sampling algorithms
under this framework.

As seen in the flowchart, a training epoch is preceded by the active
sampling procedure. The goal of active sampling is to effectively sample
those DJSS instances which represent the shop scenarios which have the
ability to promote evolution of good rules. For the purpose of quantifying
this ability of the DJSS instances, the validation step is considered. After

the completion of an epoch, which considers a the specific set of sampled

122 CHAPTER 4. ACTIVE SAMPLING METHODS

DJSS instances for training, new dispatching rules can be obtained corre-
sponding to specific DJSS training instances. By evaluating these dispatch-
ing rules on the validation set, the usefulness (quality of) DJSS instances
can be indirectly evaluated. The validation procedure depends on the ac-
tive sampling algorithm, therefore, we explain it in detail later. For now,
consider that the validation step is able to quantify the quality of DJSS in-
stances. The active sampling uses this information to sample better DJSS
instances for the next epoch.

After the completion of all the training epochs, the final set of dispatch-
ing rules is obtained. Now the question is how to determine which dis-
patching rule is to be used when a test DJSS instance is presented. The
testing component of the framework is designed to address this question.

Having outlined our GPHH framework with a flowchart, we explain in
more detail our active sampling methods which are based on multi-armed

bandits. We discuss two such methods in the following sections.

4.2.3 GPHH with Active Sampling using e-greedy strategy

The purpose of active sampling methods is to tackle the exploration vs.
exploitation dilemma. This dilemma has been extensively studied in the
multi-armed bandit (MAB) [16] framework. In a typical multi-armed ban-
dit problem, an agent is modeled which attempts to acquire new knowl-
edge (explores) while simultaneously optimizing the decisions based on
existing knowledge (exploits). The agent tries to balance these competing
tasks in order to maximize the payoff over the considered period of time.
In the MAB framework, the agent chooses an action from a discrete set of
actions (arms), for which it gets a reward. In a sequence of trials the agent
performs actions and gets rewards. In order to quantify the performance
of agent a notion of regret is used which is the difference between the col-
lective rewards of the agent and the reward of an optimal strategy.

4.2. THE PROPOSED METHODS 123

Algorithm 8: GPHH with Active Sampling based on € — greedy ap-

proach

5

6

Input: 5.V,

Output: Set of dispatching rules associated with clusters in S,
Create n subpopulations, where n is the number of clusters in S, .
fork < 1:ndo

forg < 1: Ng do
Sample an instance 7 € sy.
Run ¢*" iteration of GPHH using 7.

end

7 end

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Collect the best dispatching rule from each subpopulation:

{wi,wa, ..., wp}.

for epoch < 1: € do

Randomly select a number eps € [0, 1]
if eps < e then
Rank the dispatching rules {w;,ws, ..., w,} using
Algorithm 9, which outputs avg. rank {w] ... ,w]}
Determine subpopulation ks whose dispatching rule has
best average rank in {w] ... ,w} }.
end
else
Kpest is selected randomly.
end
forg<« 1:~vdo
Sample an instance 7 € sy,_,
Run g generation of GPHH using Z for the Kj..th
subpopulation.
end

Increment € < € + 4,

end
Collect the best dispatching rule from each subpopulation:

{wi, wa, ..., wp}.

25 Output the final pairs of dispatching rules and associated clusters.

{(w1, $1), (w2, 52), -, (Wn, Sn)}

124 CHAPTER 4. ACTIVE SAMPLING METHODS

The e-greedy [129] is a widely used heuristic in the MAB framework. It
is very simple to use and in many cases it outperforms more sophisticated
methods [129]. Therefore, we employ this heuristic in our first active sam-
pling method, which also provides us with a benchmark. e-greedy method
is used for sequential decision problems.

In each round of decision making, it chooses the arm with the highest
empirical mean reward with a probability of ¢ and a random arm with
a probability of 1 — e. Usually, € increases with every round. With this
background, we explain the active sampling method based on the e-greedy
method using Algorithm 8.

Training

In lines 1-7 of the Algorithm 8, for each cluster in S = {s1,52,...,5,},
a sub-population is created (using the usual initialization methods used
for GP) and after GP evolution for N generations, n dispatching rules
pertaining to each cluster are obtained, {w;,ws, ..., w,} (line 8).

The rest of the GPHH procedure comprises of epochs. In each epoch,
7 generations, the e-greedy strategy either picks the ‘best’ sub population
for the next evolution with a probability of ¢ or chooses a random sub-
population with a probability of 1 — € (line 11). By best sub population, we
actually mean the cluster of DJSS instances which shows the maximum
promise in evolution of an effective dispatching rule. This is identified
using the validation step in line 12.

Using the ¢ — greedy approach, the most promising sub population is
given a chance for evolution with a higher probability (¢). This is shown
in lines 10-17. We rely on the validation set to quantify the quality of a
sub population. Algorithm 9 is employed for this purpose (line 12) which
is explained below. The validation procedure ranks the dispatching rules
according to their performance on the validation set. The sub-population
Kpest (line 16) which corresponds to the evolved dispatching rule with the
highest rank assigned by validation is used for evolution (line 18-21). This

4.2. THE PROPOSED METHODS 125

sub population using DJSS training instances from the associated cluster.
The value of ¢ is incremented at the end of every epoch till it reaches the
value of 1 in the end (line 22). We can observe that our active sampling
method identifies those clusters that serve as better candidates for train-
ing the dispatching rules and expends comparatively more computational

resources while using them for training.

Validation

The aim of the validation step is to evaluate the efficacy of the training
cluster in evolution of effective dispatching rules. But the efficacy can be
measured only after a dispatching rule has been evolved using that cluster.
Since the requirement is to compare the clusters among each other, we use
a separate validation set which also consists of clusters of DJSS problem
instances. By ranking the evolved dispatching rules on each of the clusters,
and determining the average rank, we are therefore able to quantitatively
compare the efficacy of training clusters. The validation step of our GPHH
framework is explained in Algorithm 9.

The input to this algorithm is the clustered set V. = {v;, vs,...,v,,} and
the set of best dispatching rules {w;, ws, . . ., w, }, from each sub population.
In order to rank these dispatching rules, each of them is evaluated on a
set of problem instances from the clusters. In lines 1-11 of the algorithm,
on each cluster, for each dispatching rule the sum of the objective values
resulting from the evaluation is determined (line 7). p(vy, i) denotes a DJSS
problem instance in the cluster v;. Consequently, for every cluster each
dispatching rules is associated with a value. Therefore, for each cluster,
the dispatching rules can be sorted based on the calculated summation
values (line 11). Thus each dispatching rule has a rank on each cluster.
In lines 13-19 of the algorithm, the average rank of each dispatching rule
across the all the clusters is obtained as {w] ..., w! }.

At the completion of training step of the GPHH procedure, the out-

put comprises of a set of dispatching rules each associated with a cluster

126 CHAPTER 4. ACTIVE SAMPLING METHODS

from the training set { (w1, 51), (w2, 52), . . ., (Wn, s,) }, line 25 of Algorithm 8.
Now we explain the testing component of our proposed framework using
Algorithm 10.

Algorithm 9: Validation for Active Sampling using e-greedy

Input: V, = {vy,v9, ..., 0}, D = {w,wa, ..., wn}
Output: Avg. rank of dispatching rules {w] ..., w}

n

1 fork < 1:mdo

2 Ry« 0

3 Y0

4 for each dispatching rule w € D do

5 Sumk «+ 0

6 for each problem instance p(vy, i) € v, do

7 ‘ Sum?® + Sum + DJSSsimulate(p(vy, i), w)
8 end

9 Yi {2, Sumk}

10 end

11 Ry < Sorting(Xy)

12 end

13 for z < 1:ndo

14 740

15 fork <+ 1:ndo

16 ‘ r <+ r+ Rank of w; in R,

17 end

18 Wl < 1/|V
19 end

20 return {w] ..., w}

4.2. THE PROPOSED METHODS

127

Algorithm 10: Testing

10

11

12

13

14

Input: Test Instance Z; and {(wy, s1), (wa, S2), ..., (Wn, Sn) }
Output: Objective Value : TWT
Schedule the first N; jobs in Z; using the dispatching rule SPT
Determine the feature vector f, for N, jobs in Z,
Apin, — 00
w0
fork < 1:ndo
fr + feature vector of centroid of s
if distance(fy, ft) < d,nin, then
Wi — Wy
dyin < distance(f, ft)

end

end

Use the dispatching rule w; for remaining jobs in Z,.
Evaluate TWT

Return TWT

Testing

Our evolved solution is a set of dispatching rules associated with specific

clusters of DJSS instances. When a new test instance Z; is presented, we

must select the most suitable dispatching rule for scheduling. Essentially,

we want to determine the association between the shop scenario and cor-

responding test instance.

We propose to calculate the feature vector of the test instance. This is

described in Algorithm 10. The first few jobs in a problem instance are

usually ignored for calculation of the scheduling objective, as it is con-

sidered as the warm-up period. So we schedule this set of jobs using a

standard rule (SPT i.e., shortest processing time) to determine the feature

vector of the test instance. This is shown in the lines 1-2 of the algorithm.

128 CHAPTER 4. ACTIVE SAMPLING METHODS

The feature vectors are extracted using the procedure developed in Sec-
tion 4.2.1.

After the feature extraction, the Euclidean distance of this feature vec-
tor from feature vectors of the centroids of the clusters in S, is evaluated.
Then the dispatching rule corresponding to the cluster with minimum dis-
tances is chosen. This is shown in the lines 5-11 of the algorithm.

If we consider the computational complexity of GPHH, then it is deter-
mined by the number of simulations of the DJSS environment required to
determine the fitness of each individual in the population, which is equiv-
alent to

Ng x G

where Ny is the population size and G is the number of generations.

For the proposed approach, the number of simulations are incremented
by the those required in the validation stage. Therefore, the computational
cost has three components. Firstly, the simulations required as in lines 2-7
of Algorithm 8, secondly the simulations corresponding to the lines 18-21
pertaining to the evaluations within an epoch and the third component is
that of validation (line 12). The summation of the three components leads

to
N
(NXNG)+(€><7><g)—f—(é'xzwk\—i—l)xzwk])
k k

where |v;| is the number of problem instances in the validation set v;, and
N is the population size. Moreover, (£ x), |vy|) is arrived at by con-
sidering the fact that only one dispatching rule in D (see Algorithm 9) is
changed at the end of an epoch.

It is important that the computational resource utilized by our pro-
posed approach does not exceed that of the standard GPHH. This can be
easily achieved by tuning the values of £ and N.

The e-greedy approach is simple and one of the first methods which
is usually applied in the multi-armed bandits context [90]. However, for

larger problems this technique is inefficient [228]. This is because for larger

4.2. THE PROPOSED METHODS 129

problems, the multi-armed bandit formulation results in large number of
arms and e-greedy is not efficient for dealing with, particularly because it
remembers on the best arm. In the context of our case, as we mentioned
earlier, the number of possible workshop scenarios is actually infinite and
therefore we should explore a large number of clusters of DJSS instances
to evolve scenario-specific rules. Clearly, the e-greedy method for active
sampling is not enough for this task. Therefore, in the next section we
present a new active sampling approach based on Bayesian optimization

to address the aforementioned limitations.

4.2.4 GPHH with Active Sampling using Gaussian Process
Bandits

Bayesian optimization [37] employs a sequential strategy to do black box
optimization by building a probabilistic model of the function to be op-
timized and then exploiting this model to decide on which point in the

input space the next evaluation of the function should be performed.

max f(z) (4.1)

In Eq. 4.1 we show a function f(x) which needs to be maximized on the
feasible set A. f is a function which is very expensive to evaluate. In other
words, it is an optimization problem with an expensive objective function.

For the prior distribution required by the probabilistic model, Gaus-
sian processes [195] are used due to their tractability and flexibility. The
strength of Gaussian processes in expressing rich distribution of functions
is dependent on the choice of covariance functions (or kernel). Essentially
the covariance functions define the Gaussian process’ behavior. A fre-
quently used kernel function is the exponential kernel function in Eq. 4.2.

K(x1,X2) = exp (M) 4.2)

202

130 CHAPTER 4. ACTIVE SAMPLING METHODS

The kernel function assigns the covariance between the function eval-

uations on the points x; and x.

Methodologically, Bayesian optimization closely relates to active learn-
ing and multi-armed bandits [37]. In order to solve the problem of multi-
armed bandit, the tools of Gaussian processes have been shown to be very
useful [217], particularly when the optimization involves a noisy environ-
ment and an unknown function which is expensive to evaluate, thus re-
quiring minimization of sampling from the input space. The objective is
to find the maximum (or minimum) of the function or in other words find
the point where the function evaluation gives maximum reward. After
a set of trials, a Gaussian process [195] is fit on the data points obtained.
More formally, say for n, points the function f was observed. The poste-
rior probability distribution is updated on f using this data. This gives a
model of the function with the posterior mean and confidence intervals.

Now a mechanism is required to identify the next point which should
be explored; this is determined by an acquisition function (also called a util-
ity function). The acquisition functions use the Gaussian process model to
acquire the next point to be explored. For example, the points for which
the confidence interval is high are associated with most uncertainty, and
such a point when sampled will yield maximum information gain (max-
imum exploration). If a point is sampled from a region where the mean
value is maximum, the immediate reward is expected to be high (maxi-
mum exploitation). The acquisition function takes both the mean and the
variance into consideration. Thus, the acquisition function is basically ad-

dressing the exploration vs exploitation dilemma.

More formally, let z,, be the point returned by the acquisition function,
then observe f(x,) and update the posterior distribution after including
the new observation. This process is iterated till the budget of function
evaluations is exhausted. The final solution is the point for which f(z)
was maximum or the the point where the posterior mean was maximum.

Recently, Gaussian process-Upper conference bound (GP-UCB) [217]

4.2. THE PROPOSED METHODS 131

has been considered as a useful acquisition function. They use the upper
confidence bounds in terms of information gain from the sampling to min-
imize regret over the course of optimization. The GP-UCB rule is given in
Eq. 4.3.

x¢ = argmax f1,_1(x) + v/Bioi_1(x) (4.3)

xeD
where ;1 and o are mean and variance of the posterior GP distribution
over the optimization function. This method has been supported by sound
theoretical and empirical analyses [217].

The methods described above is expected to be more efficient than e-
greedy especially when the input space is larger. This is because e-greedy
does not have a memory of the exploration already done where as the
methods described above exploit the information already gained through
sampling.

With this background, we now present an active sampling algorithm
based on Gaussian process bandits (GPB) for our proposed GPHH frame-
work. When we considered active sampling using the e-greedy heuristic,
the number of sub populations used for evolving dispatching rules was
equal to the number of clusters in the training set, which is also same as
the number of dispatching rules evolved after a run. Now we consider a
much higher number of clusters and consider evolving a larger number
of rules, but it is not feasible to increase the number of sub populations
due to computational issues. Consequently, for this multi-armed bandit
problem, the number of arms is much higher. The GPB active sampling
approach is presented in Algorithm 11 which we describe below.

In line 1 of Algorithm 11, we randomly select p of clusters from S,, the
training set and assign it p subpopulations each. In lines 2-7, we obtain
a set of p dispatching rules through GP evolution. In line 8, the initial
solution is obtained which is a set of pairs of the dispatching rules and
the feature vector of DJSS instance corresponding to the centroid of each
of the p clusters. These steps are similar to the previous active sampling

132 CHAPTER 4. ACTIVE SAMPLING METHODS

algorithm. Furthermore, in line 9, C, is assigned the set of feature vectors
of DJSS instances corresponding to each of the centroids of S.. The total
number of clusters in S, is much higher than p. For any cluster s, € S,
C(s,) stands for the feature vector of the centroid of s,.

Now, after exploring a limited set of clusters initially and obtaining
the initial solution A, the question is which cluster to explore next. This
is addressed by our validation procedure which we describe using Algo-
rithm 12. The input to this algorithm is the current solution A, the training
S. and the validation V. clusters. For each of the evolved dispatching rule
in the current solution A, its rank for each of the clusters in V, is assigned.
This is done in the lines 1-12. After this, the average rank is calculated for
each of the dispatching rule. These steps are exactly the same as in the val-
idation procedure with e-greedy. But e-greedy explored only a limited set
of clusters, and its main goal was to identify the cluster which was best for
training among them. But now, the number of clusters which we consider
is much higher, and a dispatching rule is not associated with each of them.
Therefore, we need a method which can approximate the ranking of the
dispatching rule pertaining to a cluster without the expensive evolution.

Using the concepts of Bayesian optimization described earlier, we model
the approximation of the average rank of a dispatching rule on a cluster
using Gaussian processes. In line 20 of Algorithm 12, we build a dataset
D by collecting the pairs of the average rank of the dispatching rules (w]
and the feature vector C(s,)), of clusters (centroid).

Using this dataset, in line 22, the Gaussian process regression outputs
the mean and variance of the posterior distribution of function evaluations
on each cluster. In other words, without actually evolving the dispatching
rule for a cluster s, the approximate average rank of the rule is determined
using the features of the cluster. After this step, the acquisition function
based on Eq. 4.3 is used to determine the next cluster which should be

explored.

4.2. THE PROPOSED METHODS 133

Algorithm 11: GPHH with Active Sampling using Gaussian Process
Bandits approach

Input: 5.V,

Output: Set of dispatching rules associated with clusters in S,

1 Create p subpopulations. Randomly choose p clusters from S..
2 fork < 1:pdo

3 forg < 1: Ng do

4 Sample an instance Z € s,,.

5 Run ¢*" iteration of GPHH using 7.
6 end

7 end

8 Collect the best dispatching rule from each subpopulation:

A+ {(wlv C(Sl))7 (w27 6(82))7 R (Wm C(‘SP))}
C. < {C(s1),...,C(sp)}, where C(s,) is the feature vector of centroid

=)

of s,
10 s, < GP-UCB-Validation(A, V., Cs) using Algorithm 12.
11 for epoch < 1: £ do

12 distance + oo

13 C(s;) < feature vector of centroid of s,

14 force C,. do

15 dist < euclidean distance(C(s,), ¢)

16 if distance < dist then

17 distance = dist

18 K < index of subpop. corresponding to c
19 end

20 end

21 forg«+ 1:~vdo

22 Sample an instance 7 € s,

23 Run g generation of GPHH using Z for the Kth
subpopulation.

24 end

25 54 < w, < best dispathching rule from subpop. K
26 | A+ {A, (W, C(s2))}
27 | GP-UCB-Validation(A, V., Cs) using Algorithm 12.

28 end

29 return A

134 CHAPTER 4. ACTIVE SAMPLING METHODS

Algorithm 12: Validation using GPB approach
Input: SV, A
Output: s,, next selected cluster from S,

1 fork < 1:mdo

2 Ry« 0

3 Y0

4 for each dispatching rule w € A do

5 Sumk «+ 0

6 for each problem instance p(vy, i) € v, do

7 ‘ Sum?® <+ Sum + DJSSsimulate(p(vy, i), w)
8 end

9 Yk < {2, Sumk}

10 end

11 Ry < Sorting(Xy)

12 end

13D+ 0

14 forz < 1:ndo

15 740

16 fork < 1:ndo

17 ‘ r < r+ Rank of w; in R,
18 end

19 | wl<71/|V

20 | D+ {D,(w],C(s,))}

21 end
2 {(p1,01), -y (tpy)y - -« s (Wptepochs Optepoch) } <— GaussianProcess(D)
23 Choose sx = argmax/i;(Sy) + \/Bepocn0i(Sy)

sy€D

24 return s,

Once the next cluster to be explored is identified, the next epoch, line

11 in the Algorithm 11 is started. Now, we need to determine which sub-

4.3. EXPERIMENT DESIGN 135

population to use for this evolutionary epoch. We do this by finding the
Euclidean distance between the feature vector of the centroid of the chosen
cluster s, with the feature vectors in {C(s1),...,C(s1)} and the subpopu-
lation corresponding to shortest distance is chosen (lines 12-20). After the
GP evolution, lines 21-24, the best dispatching rule from the subpopula-
tion is identified and the solution A is updated (lines 25-26). After the
completion of each epoch, the next round of validation steps commences.
Thus the number of dispatching rules in the solution A is continuously
incremented as the newer clusters are actively sampled. Also the value of
Bepoch 18 decremented in every epoch [217]. This essentially means that the
algorithm will focus more and more on exploitation than exploration.

The testing component of this approach is exactly same as for the pre-
vious GPHH approach with active sampling using e-greedy, described in
Algorithm 10.

4.3 Experiment Design

Since the definition of dynamic job shop scheduling problems which we
considered is the same throughout the thesis, we do not repeat the def-
inition here. We considered weighted total tardiness as the objective for
DJSS in this chapter. Since tardiness is evaluated using due date, the addi-
tional parameter makes the problem more complex. Thus offering better
scope for evaluating the proposed methods. This objective is frequently
considered in literature [163], as the scheduling objective. Moreover, since
our feature extraction considers due date factor, it makes sense to focus on

tardiness as the scheduling objective.

N
TWT =) " w; x max(C; — d;, 0),
j=1
where () is the completion time, d; is the due date and w, are the weights
of ajob j.

136 CHAPTER 4. ACTIVE SAMPLING METHODS

In order to simulate DJSS we use a discrete event simulation system
(Jasima) [93]. For each simulation, 500 jobs in the beginning are considered
as warm-up and the objective value is determined for the following 2000
jobs. Referring Algorithm 10, in line 1, we use these warm up jobs for
extracting test instance features. Here, the number of warm-up jobs N; =
500. This is adopted in many of the existing works e.g. [156].

The estimated processing time of an operation, i.e. p; ;, is usually differ-
ent from the actual processing time (p ;) due to uncertainty. p/;; is known
only at the time of realization on the machine. Also p’;; > p;; is a practical
assumption which is supported by the relationship below [117]:

p;Z = (1 +0;4)pji, 05 > 0.

¢ follows exponential distribution.

Table 4.3: DJSS simulation parameters

Simulation parameter Values

Processing time range [0,49],[20,69]
Uncertainty scale (5) {0.2,0.4}
Due date tightness {1.5,2.5}

operations perjob {8,10}

DJSS problem instances are generated using the parameters specified
in Table 4.3. We had explained the importance of these parameters in Sec-
tion 4.2. Two levels are considered for each of the parameter towards
defining different shop scenarios. In particular, we chose the number of
operations per job as 8 and 10, which are close, as we would like our ap-
proach to be sensitive to subtle differences in the shop scenarios. These
four pairs of parameters can be used to simulate 16 types of jobs. A DJSS
problem instance is composed of 3 types of jobs at a time. The ratio of job
types arriving at shop is 1 : 1 : 1. The unique combinations with repetition

results in 816 possible configurations. For each of these configurations, 60

4.3. EXPERIMENT DESIGN 137

DJSS problem instances are created which are then evenly distributed into
training, validation and test sets. Our preliminary study showed that a
larger set of instances do not show any advantage. Because if we increase
the number of instances then the size of a particular cluster will increase,
which does not provide any edge to the algorithm.

Table 4.4: Parameter values
GPHH e-greedy GPB

1 # sub population - 4 4

2 population size 1500 600 x 4 600 x 4
3 #generations 200 100 100

4 #clusters validation - 20 20

5 #instances used per i 20 20

validation cluster
#clusters training - 4 500
10 10

7 #generations per epoch

We present our choice of parameters for the different approaches in Ta-
ble 4.4. For active sampling using GPB, the number of training clusters is
500 which is much higher than the 4 clusters considered with e-greedy. For
just two levels of each parameter value, a size of 500 is appropriate con-
sidering there are 816 shop configurations. It is enough to challenge our
algorithm while each cluster essentially maps to more than one of the 816
configurations. The number of sub-populations for both the algorithms
is 4. The size of populations have been chosen to ensure that the compu-
tational budget of the different approaches are such that none of them are
not in any advantage with respect to computational resources.

The number of instances in the validation clusters is 20, which is ar-
rived at by doing some preliminary investigations. For this preliminary
investigation, we evolved a set of 5 dispatching rules by randomly choos-

ing a 5 clusters from #, the set for hyper-parameter optimization. Then

138 CHAPTER 4. ACTIVE SAMPLING METHODS

we tried to rank them using a different number of clusters for validation.
We found that for a lower number of clusters, the ranks were not consis-
tent, because when the number is low more shop scenarios correspond to
same cluster. When the number of clusters was closer to 20, we observed
consistency in the ranks.

The number of generations per epoch is set to 10, again using pre-
liminary investigations. We observed that usually within just 20 gener-
ations the evolved dispatching rule becomes effective. Since the subpopu-
lation which we use already has undergone evolution, 10 generations in an
epoch are sufficient to learn the characteristics of a newly sampled cluster
of DJSS instances. The performance of proposed approaches is compared
with standard GP (SGP) which uses a population size of 1500 and 200
generations for evolution. This ensures similar computation budget for all

algorithms for a fair comparison.

The GP System

Now , we describe the genetic programming system considered in our ex-
periments. The populations are randomly initialized using ramp half-and-
half method. The set of terminals and functions which we considered are
listed in Tables 4.5 & 4.6 respectively. The protected division in Table 4.6
outputs 1 when divided by 0. The mutation, crossover and tree depth are
0.1, 0.85 and 6 respectively [161].

Note that the terminal set is different from the experiments in Chapter
3, because the JSS objective considered is different. Similarly, the param-
eter settings for GP system are different to ensure that the computational

cost of our proposed approaches is same for fair comparison.

Hyper-parameter Optimization

Hyper-parameter optimization is an important step for machine learning

algorithms to do well. When more than one parameters are involved, it is

4.3. EXPERIMENT DESIGN 139

Table 4.5: Terminal Sets for GP.
Terminal Set Meaning

PT Processing time of operation
RO Remaining operations for job
RJ Ready time of job
RT Remaining processing time of job
RM Ready time of machine
DD Due date
\ Job weight
ERC Ephemeral Random constant

Table 4.6: Function Set for GP.

Function Set Meaning

+ Addition

— Subtraction

* Multiplication

/ Protected Division
Mazx Maximum
Min Minimum

not a trivial job to identify the optimal parameters for an algorithm [23, 24].
The choice of parameters is dependent on the problem. In this work we
use RBF kernel [195] for the Gaussian processes. Two parameters sigma
(0) and noise (1) are required for this algorithm, Equation 4.4. noise (1)
is not a part of the kernel but is used by the Gaussian process model to
accommodate noise in training data.

HX — x’HQ) n noise(nz) (44)

202

et - oo

In order to find a good set of parameters we design an experiment

140 CHAPTER 4. ACTIVE SAMPLING METHODS

which tries to emulate the optimization problem. We present our approach
below to optimize these parameters.

We utilize the set of DJSS problems ‘H which has much smaller number
of instances compared to the training set S. We apply the feature extrac-
tion and clustering approach, explained in Section 4.2.1, to H and obtain
H.. Say the number of clusters in #. is h. We chose h = 30 for this ex-
periment. This choice was done to keep the computational cost to min-
imum while ensuring that the hyper-parameter optimization is effective.
For each of these DJSS problem instances cluster, we evolve dispatching
rules which uses the training instances drawn from the cluster. We use
the same terminal set and the function set, and other set of parameters for
genetic programming, and the total number of generations is 50 and pop-
ulation size is 500. Choosing a larger cluster size would make the hyper-
parameter optimization quite expensive as we would need to evolve more
rules. We denote the evolved set of rules by Dy, which comprise of the
best rule from each population.

We assign ranks to the dispatching rules in Dy, using Algorithm 9. The
average rank of the dispatching rules is essentially the rank of the corre-
sponding clusters in H.. Consequently, each centroid of a cluster in #, can
be mapped to a value. We construct this dataset, denoted by {#., R« }.

We divide {#., Ry} into training and test sets and use the Random
grid search [23] method for hyper-parameter optimization. In order to
determine the range of the parameters, we initially apply manual search
and once we decide on a good range, we apply random search with cross
validation to find a near optimal set of parameters. The manual search
for optimal parameters narrowed it down to the following ranges; o €
[—4,4] and n € [-2,2]. We chose a random search method because on the
one hand it is computationally efficient and also is able to determine near
optimal parameters [23].

The hyper-paramter optimization yielded 0.8 and 0.2 for ¢ and 7 re-

spectively.

4.4. RESULTS AND DISCUSSIONS 141

4.4 Results and Discussions

In this section, we describe our results. In order to perform comparisons,
30 independent runs of a method are used to produce 30 sets of solutions.
For each method, the evolved solutions are compared over each of the 30
problem instances in a test subset which are denoted using Roman nu-
merals. With a significance level of 0.05 Wilcoxon-rank-sum test is used to
compare the performance. The results are summarized in Tables 4.7-4.9.

A cell in the table consists of a triplet which must be read as [win-draw-
lose]. As an example, the first cell in Table 4.7 is [7-23-0]. This means that
for the training set I, out of the 30 problem instances, the method e-greedy
significantly outperformed standard GP in 7 instances (win) and there is
no significant difference in 23 (draw). On none of the test instances stan-
dard GP outperforms e-greedy approach.

We obtained the testing sets from 7. which is obtained using feature
extraction and clustering explained in Section 4.2.1. We obtained 30 such

testing sets using that methodology.

Firstly, we discuss the comparison results between our GPHH approach
with active sampling based on e-greedy, which we denote as e-greedy in
short. This is presented in Table 4.7. The performance of e-greedy is mixed.
In many of the test sets like I, II, III, IV, VI, XIII, XVI, XVII, XXII, etc. this
active sampling method has succeeded in giving improved results. These
cells are marked in green. We color a cell in if at least on 5 instances
the proposed method outperforms and also does not under perform on a
large number of instances (allowed up to 5). On the other hand, if it under

performs on more than 5 instances, the cell is marked in

The reason for the poor performance of e-greedy in some of the test sets
could be attributed to the fact that in order to evolve more specific rules,
some of the characteristics on other clusters are not taken into account.
This variation in performance is indicative of the fact that scenario-specific

rules, which are trained using specific clusters of DJSS training instances,

142 CHAPTER 4. ACTIVE SAMPLING METHODS

do work well on those scenarios but are outperformed by a general rule
which is trained over all the scenarios. Clearly, the evolved rules suffer

from overtitting on DJSS instances corresponding to some shop scenarios.

Table 4.7: e-greedy vs. GPHH

I 11 I v \% VI VII VIII
NZ280] [4-25-1] [4-26-0] [1-26-3] [4-26-0] [NB2B01Y [9-14-7] [3-25-2]
X X XI XII XIIT XIV XV XVI
[3-26-1] [2-10-18] [4-18-8] [1-3-26] [5-24-1] [5-23-2] [0-8-22] [6-24-0]
XVII XVII XIX XX XXI XXII XXII XXIV

[4-26-0] | [1-5-24] | [3-26-1] [14-5-11] [4-25-1]

XXV XXVI XXVII XXVII XXIX XXX
[0-1020] [2226] [1-1-28] FSI50] [6-17-7] [4-25-1]

By incorporating a larger number of clusters we expect to alleviate this
problem in the GPHH approach with active sampling using Gaussian Pro-
cess Bandits which we call as GPB method, in short. The comparison re-
sults between GPB method and the standard GP are presented in Table 4.8.
Our proposed method has significantly outperformed the standard GP on
almost all the test sets. The improvement is quite consistent. Once again
we have marked the cells in green if the number of instances on which our
algorithm outperforms is at least five.

Therefore, by developing an algorithm which can actively sample large
number of clusters of DJSS training instances and address the limitation
of e-greedy significant improvement in performance can be achieved. Fur-
thermore, considering the fact that we were successful in developing the
active sampling techniques as part of our objective, it is worthwhile to do

a comparative run-time analysis of the two algorithms, by considering a

4.4. RESULTS AND DISCUSSIONS 143

Table 4.8: GPB vs. GPHH

I II 111 I\Y% \Y% VI VII VIII
N (2001 [0 (2o R)
IX X XI XII XIII XIV XV XVI

XVII XVIII XIX XX XXI XXII XXIII XXIV

[4-26-0] [3-25-2] [2-26-2] [3-24-3]

XXV XXVI XXVII XXVIII XXIX XXX

[3-25-2] [4-24-2] [4-24-2] [I62E0] [S2H0) [4-26-0]

Table 4.9: GPB vs. e-greedy
I I I v A% VI VIl VIII

[4-26-0] [4-26-0] [6-24-0] [14-14-2] [1-25-4] [4-26-0] [9-16-5] [4-22-4]

IX X XI XII XIII XIvV XV XVI

[11-19-0] [18-12-0] [2-28-0] [18-12-0] [6-24-0] [4-25-1] [14-16-0] [5-24-1]

Xvl XVIII XIX XX XXI XXII XXIIT XXIV

[10-18-2] [17-12-1] [4-26-0] [4-26-0] [3-27-0] [15-14-1] [3-27-0] [2-28-0]

XXV XXVI XXVII XXVIII XXIV XXX

[15-15-0] [16-13-1] [14-14-2] [11-15-4] [4-21-5] [4-26-0]

combination of different parameters. It might lead to some insights and
improve our understanding of these methodologies further. We will con-

sider this in future work.

144 CHAPTER 4. ACTIVE SAMPLING METHODS

Finally, we also compare the performance of e-greedy with GPB and
as expected we observe significant improvement particularly on those test
sets where e-greedy fared poorly against the standard GP. Such test sets
are marked in bold.

We have included more detailed results in Appendix A.

Further Analysis

In this section, we try to determine the characteristics of the different clus-
ters of DJSS problem instances and map them to the possible shop scenar-
ios and then reflect upon the reasons for the observed results.

We represent the characteristics of a DJSS instance by using the matrix
representation shown below. The matrix G has three rows such that each
row corresponds to a job type. A job type is characterized by the param-
eters (Table 4.3) like due date tightness, number of operations in a job etc.
as explained in detail in Section 4.2.1. Since we used two levels for each
parameter, they are represented by + and — for high and low respectively.
So, for the first row in the matrix, the job type corresponds to a job with a
less tight due date, more number of operations per job, higher processing
times and with higher uncertainty in the processing times. The § column
denotes delay ratio. Similarly, the other two rows characterize the other
two job types.

When dispatching rules are evolved using GPHH by training in DJSS
instances with such characteristics as in G we denote these dispatching
rules by D9.

dd. #op pt. &

-+ o+ 4+
g =

+ o+ o+ -

+ o+ - -

By analyzing the different runs of GPHH approach with active sam-

pling using Gaussian process bandits, we found that for 22 out of 30 runs,

4.4. RESULTS AND DISCUSSIONS 145

the dispatching rules evolved using DJSS instances with characteristics
similar to G ranked highly on a lot of clusters on the validation set. Note
that the clusters in validation set represent a wide range of shop scenarios.
This is not surprising, because this configuration with tighter due dates
and a higher number of operations is harder. Therefore, by training the
rules on such instances we expect good performance. Even though obvi-

ous, this outcome of the analysis adds credibility to our approaches.

dd. #op pt. &

- - = 4+

— _I,_ — —
Similarly, the matrix B represents a class of DJSS instances which have
usually evolved dispatching rules with poor ranks on the validation clus-
ters. Again, the reasons are similar, these instances are not hard when

compared to B. We use the notation
D9 > DP

to denote this observation.

As already mentioned, these observations are not surprising and we
are more interested in identifying those DJSS training instances which re-
sulted in scenario-specific rules. In order to identify such instances, we
tried to find those dispatching rules which do very well on some vali-
dation clusters but not so good on the others. One such training cluster
which was consistently responsible for evolution of dispatching rules with

such characteristics is Q.

dd. #op p.t.

146 CHAPTER 4. ACTIVE SAMPLING METHODS

Q represents a class of DJSS instances in which the characteristics of
the job types is quite dissimilar. It represents a shop scenario which deals
with arrival of jobs with higher number of operations but lower due date
tightness and shorter processing times and of jobs with low number of op-
erations, longer processing times but tighter due dates. This is a complex
shop scenario. We compare the dispatching rules evolved using Q, D9 on
two different validation clusters represented by X and Z.

We observed that the rank of D on X was generally poor compared
with DY. An example of the dispatching rules which show such behaviour

is discussed later. We denote this observation as
DY(X) > D(X)

The reason for this observation is that the DJSS training instances with
characteristics like those of & are not very complex, e.g. all the job types
have similar due date tightness. Therefore, a dispatching rule evolved

over G, can clearly perform better.

dd. #op pt. &
i + — —
- - -+

-+

Now the interesting observation is that D does better than DY on
many of the clusters whose DJSS instances are similar to Z. The matrix

Z shows a class of DJSS problem instance which has again got dissimilar

job types.
dd. #op pt. 6
|- + + 4
+ - - 4+
+ - -+

Z and Q are thus similar in this manner which leads to

4.5. CHAPTER SUMMARY 147

DY(2) > D2(2)

We present an example of D€ and DY below. an interesting observation
is that the number of terminals RO, i.e., the number of remain operations
for job is quite. This is understandable, because if you look at the matrix
Q, one of the differences between the job types is in their number of op-
erations. The higher number of the terminal RO in dispatching rules in
D<€ indicate that it has been able to capture the characteristic of the shop
scenario. This is supported by our observation that for the 30 runs, the
total count of terminal RO for D< was 182 and for DY it was 153 across the

dispatching rules.

Dispatching Rule 4.1: D©

(» (+ (» (» (Max RJ RO) (Max RJ RT)) (If

(/ RO DD) (If RJ W PR) (/ RJ W))) (Min (Min

W (+ 0.93 W)) (- (x RT RO)

(Min W W)))) (= (/ (x (Max RJ RO) (Max RJ
RT)) (- PR (+ 0.65 0.24))) (/ (+ (+ RJ RM)
(Max RO RT)) (x (+ DD W) (If RO RT DD))))) RO

Dispatching Rule 4.2: DY

(Max (+ (/ (+ (- RO RT) (Max RT RJ)) (/ (/
W DD) (- RT DD))) (+ (/ W RT) (x RJ DD)))
(/ (Min (Max (/ 0.17 DD) (Max

0.43 0.88)) (Min (/ W PR) (If PR RO 0.52)))

(Min DD (x (Max RM 0.65) (If RJ RJ DD)))))

4.5 Chapter Summary

The goal of this chapter was to incorporate active learning techniques into
GPHH approach toward evolving scenario-specific dispatching rules. To

148 CHAPTER 4. ACTIVE SAMPLING METHODS

achieve this goal, firstly, we developed a feature extraction and cluster-
ing methodology to map DJSS training instances with the dynamic shop
characteristics. Then we identified the exploration versus exploitation
dilemma in sampling good training instances, representative of complex
shop scenarios, while evolving the dispatching rules using GPHH.

We developed a new GPHH framework, which enables developing
active sampling techniques to tackle the exploration versus exploitation
dilemma. Using this framework, we developed an active sampling method
for GPHH using e-greedy heuristic. In order to alleviate the limitations
of e-greedy method we developed another active sampling method for
GPHH using Gaussian process bandits.

Through our experiments, we showed that our proposed active sam-
pling methods for GPHH significantly outperforms the existing approach.
Furthermore, the active sampling approach based on GPB is more robust
and outperforms e-greedy method. We also analyzed the characteristics
of shop scenarios which led to our observations and our findings provide
more understanding of our results.

In this chapter, we considered only one objective for DJSS. But in prac-
tical production systems, more than one objective are considered while
scheduling. When we consider more than one objective, the computa-
tional challenges scale up. In order to deal with this, parallel evolutionary
algorithms are frequently employed. Moreover, the exploration versus
exploitation dilemma which we discussed in this chapter, become more
tricky. In our next chapter, we will try to address these issues and develop

active sampling approach for multi-objective DJSS problems.

Chapter 5

Active Sampling Heuristics for
Multi-objective DJSS Problems
Using Island Based Parallel

Genetic Programming

5.1 Introduction

A study of the literature shows that many existing research works fea-
ture the use of sequential scheduling methods and focus primarily on op-
timizing a single performance objective, such as the makespan or the total
tardiness. In practice, however, it is frequently shown [57, 65] that multi-
objective optimization is essential for successful job shop scheduling es-
pecially when useful schedules must meet multiple performance criteria.
Moreover the objectives to be optimized are usually conflicting in nature.
As a result, not a single optimal solution but a collection of Pareto opti-
mal solutions will need to be identified in order to properly schedule jobs
in a job shop. Pareto ordering [57] is a mathematical concept used to de-

fine the optimal solutions of a multi-objective optimization problem. This

149

150 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

uses the concept of domination which compares two solutions for a multi-
objective problem. Considering a bi-objective optimization problem, a so-
lution will dominate another solution if it is better in at least one of the
objective functions and not worse in the other. For a multi-objective opti-
mization problem Pareto optimal solutions are the set of solutions which
are not dominated by any other solution [57].

In Chapter 4, we had shown that for GPHH to be effective for a sin-
gle objective DJSS problem, it is important to use large training instances
which are representative of complex shop scenarios. Furthermore, when
we consider multiple objectives the importance of using diverse and large
training set representing the complex scenarios is further compounded.
For example, makespan and total tardiness are two frequently considered
conflicting objectives. Minimizing the makespan results in high through-
put where as minimizing tardiness requires jobs to be not very late. A
conflicting scenario arises when a set of jobs with long processing times
but shorter deadline compete with a set of jobs with shorter processing
times and longer deadlines. For higher throughput, the shorter jobs must
be completed first as against the longer jobs which adversely affects the
tardiness. For evolving good dispatching rules, it is important to present
the evolutionary system with training instances which capture scenarios
highlighting all such conflicts amongst the objectives, under different shop

scenarios.

We highlight the importance of considering large number of shop sce-
narios for multi-objective scheduling problems arising due to variabil-
ity and uncertainty in a shop environment with a more practical exam-
ple [104] of printing industry, where planning and scheduling of print jobs
is an important problem. The printing industry considered here is a part
of the more broader documentation management services. In general, the
printing jobs show patterns, for example, monthly credit card statements,
marketing materials, etc. have similar print characteristics and recurring

nature. The nature of these patterns must be considered in the schedul-

5.1. INTRODUCTION 151

ing routine. Prior to applying the scheduling routine, a simulation is run
to determine the size of the print jobs which essentially gives the value
of the estimated processing times. For this print shop, machine down-
time and operator’s breaks are a major source of uncertainty in processing
times. This uncertainty has the ability to disrupt the characteristics of the
patterns mentioned above. Consequently, it is equally important to also
consider the impact of this uncertainty in the multi-objective DJSS prob-
lems. For example, due to change in weather conditions, an older printer
might require more time for printing of a specific set of medium sized jobs
due to heating but having little impact on relatively smaller jobs. For a
scheduling problem considering both total tardiness and makespan, this
pattern, which arises due to uncertainty in processing times, could be a
potentially conflicting scenario if the due dates of the effected jobs is tight.
But considering the added effect of uncertainty along with other patterns
the difficulty in identifying potentially good training instances increases.

Therefore, in order to evolve effective dispatching rules to solve multi-
objective DJSS problems under uncertain shop environments, it is even
more important for the GPHH approach to consider active sampling of
DJSS instances. In the previous chapter, we had successfully employed
the active learning methods, in particular, the Gaussian process bandits
method to address this problem. We had used a mathematically sound
algorithm with good theoretical foundation to develop active sampling
techniques for GPHH for a single objective scheduling problem. However,
when we consider a larger number of objectives, our solution is a Pareto
set of dispatching rules rather than a single rule. Recalling the GPHH
framework which we had proposed in our previous chapter, validation
step was an important component of the framework. The validation step
required multiple comparisons of the performance of evolved rules. If we
consider a similar framework for the multi-objective DJSS problems, the
validation step would require comparing Pareto fronts of solutions. This is

very expensive, particularly when the validation step is repetitive. More-

152 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

over, for effectively comparing the Pareto fronts we require more than one
metric [122] demanding a large computational cost. For this reason, even
though the proposed active sampling algorithms in the previous chapter
were very effective for single objective DJSS problems, their applicability
to multi-objective problems is problematic.

One possible solution to address this computational issue is to use sur-
rogate models [94] as an alternative; but they suffer from poor accuracy
among many other drawbacks [158]. In our literature survey, we had high-
lighted the importance of parallel evolutionary algorithms. We had dis-
cussed many existing parallelization models to speed up the evolutionary
algorithms including MOEAs. In particular, island models stood out not
only because they are efficient but also because they have the ability to pro-
duce more effective solutions. It was also highlighted that island models
have this ability to capture the dynamics of exploration and exploitation
due to its migration policies. Recalling the active learning concepts from
Chapters 2 and 4, it was mentioned that exploration versus exploitation
is a key issue which is addressed by the active learning methods toward
sampling of DJSS instances. Taking this into consideration and the inher-
ent dynamics of island models mentioned above, it is encouraging to em-
ploy island models to not only speed up the multi-objective optimization
algorithms but also leverage it to develop methods for active sampling of
DJSS instances for the multi-objective DJSS problem.

In the literature survey, we had also discussed the importance of the
design choices we make for an island model and how it has a huge impact
on its performance. Migration policies, number of islands, island topol-
ogy, migration frequency etc. are some of the important design parame-
ters for an island model. Even though island models have been applied
to many problems and has some theoretical foundation, our understand-
ing about them is still not complete [115]. In fact for every new problem,
the appropriate design parameters of the island model must be identified
carefully, preferably supported by empirical evidence. The application of

5.1. INTRODUCTION 153

parallel EAs to hyper-heuristics in general and of island models to GPHH
in particular, is still nascent. Moreover, with respect to our aim to develop
active sampling methods based on island models it is very important that
we identify the design parameters mentioned above through careful ex-
perimentation. It is important to determine migration policies and appro-
priate topologies for the island model which are able promote evolution
of effective Pareto set of dispatching rules.

One of the major factors responsible for the high computational cost in
the experiments involving GPHH is the cost of function evaluation which
in essence owing to the JSS simulations preformed by the discrete event
simulator. Considering our requirement to develop empirical support for
the choice of appropriate design parameters for island model, which will
require large number of experiments, it is a good idea to actually start our
experiments using static JSS problem, because essentially the mechanisms
of GPHH for both the static and dynamic problems are largely similar.
In fact the only major difference, is that for dynamic JSS problems, the
arrival of jobs needs be additionally simulated where as in the case of static
JSS it is known at the outset. Once the appropriate design parameters
are identified, we can switch back to DJSS problems for developing active
sampling methods. If the static JSS problem is used in lieu of DJSS for
studying the island models, it is also sensible to consider a less complex
job shop by not taking into account the uncertainty and variability.

Having demonstrated the ability of GPHH to develop effective dis-
patching rules for DJSS problems under uncertainty by considering dif-
ferent machine specific scenarios in Chapter 3 and successfully combin-
ing active learning with the GPHH framework to evolve rules for many
shop scenarios in Chapter 4, now we consider multi-objective DJSS prob-
lems with the aim of developing active sampling methods using the is-
land model parallel EA framework. To this end, we firstly need to identify
the design parameters for the island model which is suitable for GPHH

for DJSS problems and secondly we need to develop methods which can

154 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

leverage the exploration and exploitation dynamics of island models to-
ward active sampling. We present the more specific chapter goals below.

5.1.1 Chapter Goals

The goal of this chapter is to develop active sampling heuristics for multi-
objective DJSS problems using GPHH approach leveraging the dynamics
of island model parallelization framework.

We aim to achieve this through the following sub-goals.

e Investigate different island models defined by the parameters such
as migration topology and identify the ones which are capable of
evolving an effective Pareto set of dispatching rules using MO-GPHH
approach.

In order to ease the computational burden of these experiments, static
JSS problems are considered by recognizing the similarity of GPHH

mechanisms for both problems.

e Develop an active sampling heuristic for MO-GPHH, namely succes-
sive reject heuristic (SRH) based on the island model which iteratively
rejects training instances in favour of those which have the potential
to improve the Pareto front.

This also requires determining the migration policies of the island
model which can promote the efficacy of the proposed sampling
heuristic. This will be accomplished by utilizing the empirical re-

sults from the previous sub-goal.

5.1.2 Chapter Organization

The remaining chapter is organized as follows. In the Section 5.2 we present
our investigations on island model for static JSS problems using GPHH.
The Section 5.3 describes the active sample heuristic based on the island

model. The final section provides a summary to the chapter.

5.2. ISLAND MODELS 155

5.2 Investigating Island Model for JSS problems
using GPHH

We briefly recall from Chapter 2, the description of the island model ap-
proach to parallelization. Evolutionary algorithms run over many iter-
ations and generally have high convergence time. Parallel evolutionary
algorithms are known to converge faster and also provide better perfor-
mance [79], particularly when parallel models which consider exchange
of individuals are employed. Different variants of island model have been
proposed [229]. In general, an island model consists of different subpop-
ulations each running a parallel evolutionary algorithm. The subpopula-
tions have a communication topology for migration of individuals among
each other. The migration policies could be synchronous or asynchronous.
The policy involves selection of the individuals to be migrated to the dif-
ferent subpopulations.

Parallelization models for evolutionary algorithms have been studied
for quite some time [79]. Investigations with island model [211] for non-
panmictic population [215] have been conducted. One of the directions of
the research has been in using different topological structures [229] and
their analysis. The other major investigation is related to the population
and its migration policies [13, 212].

Island model have been proposed for applications in multi-objective
optimization problems [139, 148, 244]. Different topological structures
have been used by Xiao et al. [244] toward using island model for multi-
objective optimization. In general, determining the island model by defin-
ing its migration policies, topology, etc is not straightforward. For exam-
ple, a higher migration frequency will have a detrimental effect on the
ability of the island to explore the promising regions of search space as the
currently most successful island will dominate the others while a lower
frequency will result in local optima. This implies that the characteristics

of search space which are difficult to study and vary with the considered

156 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

1
C
C
2
2 3 a
I 1
a
1 3
b
a C
a C
IIT
IT

Figure 5.1: Island topologies

problem have an effect on the performance of the island model. Similarly,
a topology which makes it difficult for the migrants to reach islands which
are further away in the network might result in some of the islands to be
stuck in a local optima.

Considering these difficulties, it is sensible to adapt some of the exist-
ing models from works which have considered multi-objective optimiza-
tion with island models. Xiao, et al. [244] is one such work which has
inspired us to use some of their island model topologies and empirically
analyze the performance on a job shop scheduling problem with multi-
objectives.

For this sub-goal, we have considered up to three objectives for the
scheduling problems. This choice direct influences the design of topolo-

gies which we consider. Based on these considerations, we investigate

5.2. ISLAND MODELS 157

three different island topologies in our work. We refer them as Topolo-
gyl, Topologyll and TopologylIl respectively. They are shown in Figure 5.1.

The communication between the nodes is bi-directional and the indi-
viduals can migrate in and out of each island. Also the communication
is synchronous in our experiments. In a synchronous communication, the
islands ‘wait’” for all the migrations to complete across all islands for that
epoch. An epoch is the number of generations considered for evolution
before the migration begins. Asynchronous communication does not in-
volve waiting and is thus usually faster because the islands do not wait
for each other to complete the evolution or the exchange of individuals.
But it results in staggered completion of evolution across different islands
with some of them finishing early while the others still sending their best

individuals across.

Different islands in a particular topology optimize the different subsets
of the objectives. We refer to the islands which run EA for a subset of objec-
tives which is less than maximum number of objectives with an alphabet
{a,b, c}. The islands represented by {a, b, c} in Figure 5.1 find solutions us-
ing EA for a subset of objectives. As an example, consider an optimization
problem with 3 objectives namely {01, 02,03}. In our experiments, these
objectives represent makespan, totaltardiness and energy respectively. Let
us consider the Topologyll, shown in Figure 5.1. The islands a, b, c will op-
timize the subsets {01, 02},{01, 03} and {02, 03} respectively and the island
1 will optimize all the objectives, {01, 02, 03}. Topologylll is basically using
the three units of Topologyll, communicating among each other where is-
land 1,2 and 3 transfer individuals on the one hand and islands a,b,c each
communicate within themselves on the other. The islands 1, 2 and 3 opti-
mize all the three objectives.

The motive behind such an assignment of the objectives to the different
islands is to study the effect of migration on the final solution (Pareto set of
dispatching rules) when different islands focus on different subsets of ob-

jectives. Essentially, the characteristics of the search space in each of these

158 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

islands is different but since the objectives overlap, the migration of the
individuals from these islands could actually promote the improvement
of the Pareto front.

Algorithm 13: JSS using Island Model
Input: 7,, Dataset(train)
Output: {Q,,...,Q,}

1 fors< 1: Fdo

2 fork < 1:|7,| do

3 Run s'" iteration of A for island Z.

4 for < 7! h’,ul" >€ M, do

5 ‘ Transfer top-u} fit individuals to Z} from Z,.
6 end

7 end

8 Wait for all the communication to complete.

9 end
10 Evaluate the pareto front.

11 Collect the corresponding genetic programs : {2, s, ..., Q,}.

We explain our island model based GPHH algorithm using Algorithm 13.
Let A be the multi-objective optimization algorithm and F' is the total
number of iterations. In our case we use A = NSGA-II with island models.
NSGA-II is one of the most popular MOEA algorithms preferred when ob-
jectives are three or less. Note that the choice of MOEA does not effect the
outcome of our experiments because the proposed methods will work for
any MOEA, as we will show in our experiments. The proposed methods
are not aimed at improving MOEAs, instead the goal is to improve the
solutions to multi-objective JSS problem.

We define an island topology 7, as set of tuples < 7;, M; > where 7, is
an island and M; is its migration policy. M, of an island Z; defines how
many top-m individuals should be transferred to which other islands at

what interval of generations. Thus M; is the set of triplets < Z¢, h!, u* >

5.2. ISLAND MODELS 159

where £} is the interval after which »]* individuals are transferred. The
migration policies are static i.e. u]" and h} do not vary.

In line 3 of Algorithm 13, for each island in the topology, an iteration of
the algorithm A is completed. The top individuals are sent for migration
to all other islands (line 5). In line 8, the islands wait to get synchronized.
Finally after all iterations are completed, the Algorithm 13 gives the output
as the genetic programs {2, s, ..., ,}

5.2.1 Experiment Design

The dispatching rules in the experiments are represented by genetic pro-
grams constructed from a list of function and terminal sets, as summa-
rized in Table 5.1. Function If-then-else includes three arguments and if
the value from the first argument is greater than or equal to zero, the sec-
ond argument is returned else the third argument is returned. The pro-
tected division returns 1 if the second argument is 0. With a tree depth
of 6, the crossover and mutation are 0.85 and 0.1 respectively [100]. We

conduct 51 iterations for all runs.

Migration policies

In this experiment, static migration policies are considered, shown in Fig.
5.1. Every island will exchange 40 individuals with each adjacent island
after every 5 generations. We arrived at these numbers by observing the
size of the first non-dominating front in a single run of the NSGA-II al-
gorithm. We also observed that it usually takes 5 generations (especially
during the initial stages) to show considerable improvement. The popu-
lation sizes for different algorithms have been presented in Table 5.2. The
values enclosed in brackets refer to population sizes of every island (or
subpopulation) when island models and Algorithm 13 are used.

We use the dataset generated by Taillard et al. [223] for our exper-

iments. This dataset consists of 8 subsets that together cover JSS prob-

160 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

Table 5.1: Functional and Terminal Sets for genetic programs.

Function Set Meaning
+ Addition
— Subtraction
* Multiplication
/ Division
Mazx Maximum
Min Minimum
If —then — else Conditional
Terminal Set Meaning
DueDate Due date of job (DD)

MachineldlePower = Power consumed by idle machine(MWP)
MachineWorkPower Power consumed by working machine(MIP)

ProcessingTime Processing time of each operation(PR)
RemainingOperations Remaining operations for each job(RO)
RemainingTime Remaining processing time of each job(RT)
ERC Ephemeral Random constant

lems with varied number of jobs and number of machines. The maximum
number of jobs considered in any subset is 100 jobs, which will have to
be scheduled on 20 separate machines. The JSS problem instances within
each subset will be further divided into 60 : 40 train and test set. This divi-
sion is completely random and all instances will have an equal probability
of being used either for training or testing.

Since a maximum of 20 machines will be included in any problem in-
stance, for all the 20 machines, their idle power rates and working power
rates are further determined randomly under a general restriction that the
working power rate of any machine must be greater than its idle power
rate. Generally, in industries it is not possible to power down the machine
when it is idle and power it up when it is required as set-up times are cru-

cial. Moreover, powering up frequently might result in an overall higher

5.2. ISLAND MODELS 161

Table 5.2: Population size per island in braces

NSGA-II SPEA-2 Top-I Top-1I Top -I1I
Bi objective 4096 4096 3072 {1024} — —
3-objective 4096 4096 12288 {4096} 16384 {4096} 12288 {1024}

consumption of power. Therefore, two rates for energy consumption are
considered. The obtained power rates, organized in order according to
the 20 machines, are given in Table 5.3. No specific models have been
utilized in our experiments to determine these power rates. We believe
that this enables us to evaluate the power consumption of job shops with-
out being restricted to specific type of machines and application domains.
However, to further evaluate the usefulness of evolved dispatching rules
in practical applications, realistic power consumption settings will need
to be adopted. We are interested in addressing this issue in our future
work. Meanwhile, in our experiments, we assume that the machines are
always on. Even though temporary turn-off of machines is proposed to
save energy [144], in general many machines used in real job shops cannot
be powered down. For example, the printers in a print industry are not
shut down when idle as powering them up requires considerable energy
and also complex set-ups in some cases.

Table 5.3: Idle power and working power of machines.
Idle power 093 034 077 040 0.09 025 058 0.70 023 0.95
066 051 048 022 048 088 013 078 0.19 0.28
Working power 094 0.74 095 087 0.61 056 0.77 097 0.55 0.99
088 10 072 047 08 097 039 08 085 044

In order to determine the due dates, we use a job specific assignment
procedure [49]. This follows the procedure of endogenously finding due
date by using total work content (TWK) [49]. The due date is assigned
with a tightness of 1.25 with all jobs released at the outset. Basically, the

162 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

due date is the product of due date tightness and the total processing time
of the job.

JSS objectives

We considered makespan, total tardiness and total energy as the three ob-
jectives for this experiment. These are described below.

It is generally desirable for a schedule S to minimize its makespan. For
any job J;, let’s use C; to refer to its completion time according to schedule
S. The makespan of schedule S can hence be determined as the maximum

completion time over all jobs, i.e.

Crnaz = mﬁx C;. (5.1)

K3

Besides the makespan, the tardiness of any job J; in a schedule S, i.e. 7T;,
is defined as max{0,C; — D;}, where D; is the due-date of job J;. Thus, the
total tardiness becomes

total tardiness = Z T (5.2)
Ti

Energy-aware scheduling is considered strictly harder than construct-
ing schedules that minimize merely the makespan [5]. We will adopt an
energy consumption model that is fundamentally identical to the one pre-
sented in [144]. Specifically, it is assumed in the model that total energy
consumption (equivalent to energy cost if we assume constant power tar-
iff) of any working machine is completely independent from the schedule
to be used in a job shop. In other words, for a set of jobs 7, two different
schedules S; and S, will result in the same consumption of total working
power. Moreover, the machines have constant working and idle power
consumption rates. Thus the total energy could be considered as the sum
of the idle energy and the working energy.

(c:total _ Sidle + gwork (53)

price price price

5.2. ISLAND MODELS 163

The total idle energy cost across all machines is defined in (5.4), where
S; and Cj stand for the start and completion time of an operation mj,
performed on machine M, respectively. Pj%¢ indicates the machine’s idle

power rate.

Epmice = Y B x| max(CF) —min(S}) —) (G} — S) (5.4)
k

The total working energy cost across all machines is defined in (5.5), where

Ppork indicates machine’s working power rate.

gurk =3 L Pk | Y0 - Sp) (5.5)

My, mr

5.2.2 Results and Discussions

In order to compare the Pareto fronts obtained for each run we use hy-
pervolume indicator [250], generational distance [250] and generalized
spread [59] as the three metrics. These metrics need a true Pareto front
for evaluation which is not known to us. Because of that, following a sim-
ple strategy demonstrated in [59], we combine the individual Pareto fronts
obtained by NSGA-II, SPEA-2 and our Algorithm 13 together and jointly
determine an approximated Pareto front. Separate approximated fronts
are created with respect to the train and the test sets. A higher value of hy-
pervolume indicator means better performance while for generational dis-
tance and generalized spread a lower value is better. We use the Wilcoxon
signed-rank test [242] to verify the significance of our results.

In order to understand whether Algorithm 13 can outperform NSGA-
IT and SPEA-2 even with commonly used optimization objectives, includ-
ing both the makespan and total tardiness, a series of experiments have
been conducted and the results obtained have been presented in Subsec-
tion 5.2.2. Inspired by these encouraging results, further experiments that

164 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

include energy as the third optimization objective have been conducted
and reported in Subsection 5.2.2.

Experiments on bi-objective JSS problems

In this experiment, we consider only the optimization of makespan and
total tardiness. Since Topologies II and III in Fig. 5.1 involve the use of
multiple types of islands, all of which are not necessary for bi-objective
optimization, we conduct the experiment using only Topology I. In Topol-
ogy I, each island will consider both the makespan and total tardiness.

We compare our work against the standard implementation of SPEA-2
and NSGA-II. We combine Pareto fronts from all the runs and generate a
single Pareto front from the combined solutions for each algorithm. The
combined Pareto fronts are shown in Fig. 5.2. The Pareto front of Topol-
ogy I dominates the fronts from single population runs of SPEA-2 and
NSGA-IL. One the one hand the computational resource required by the
Topology-I is less than the single population runs and yet the Topology-I
could produce a Pareto front which is better. We show the box-plot com-
parisons from the runs in Fig. 5.3. For the Wilcoxon test to be significant
we need the p-value to be lower than 0.05. The hypervolume indicator
shows Topology I to outperform NSGA-II and SPEA-2 for the train set.
For the hypervolume indicator and generalized spread we obtained the
p-values of 7e — 15 and 0.09 (not significant) respectively against NSGA-II.
For the generational distance, Algorithm 13 shows no improvement. For
the test set we observe similar performance, with the p-values of 7e — 15
and 0.02 for hypervolume indicator and generalized spread respectively
against NSGA-IL

More importantly the total population size used for Topology I is less
than for the other two methods. As shown in Table 5.2, the population
used for Topology I is 1024 per island which sums to 3072 individuals for
the topology. In our experiments we observed that NSGA-II took close to
3.8 hours for completion against approximately 0.76 hours for Topology I.

5.2. ISLAND MODELS

Tardiness

Tardiness

2200
m SPEA2
% NSGA-Il
2100 |- \. ¢ TOP-
-
2000 |
1900
1800
1700 +
1600
1500 "
hage TN
1400 1 1 1 1 1 1]
2500 2600 2700 2800 2900 3000 3100 3200
Makespan
(a) Train
2300
m SPEA2
= NSGA-II
2200 -, = ¢ TOP-I
~
‘ L[]
o100 &
og:*
2000 - i
0‘ :i
L g
1900 | ",
0.{4!.,'.
.
1800 | *dg
Q{-;a.‘
. ,'; "*
1700 LS o3
wy
::‘ te
1600 o mVam
e S
* QQ~
1500 1 ! ! 1 * . |
2700 2800 2900 3000 3100 3200 3300
Makespan
(b) Test

Figure 5.2:

Bi objective : combined Pareto fronts.

165

166

0.625 0.635 0.645

0.615

0.0007 0.0009 0.0011

0.0005

1.2

1.0

0.8

0.6

\ \ \
NSGA-II SPEA2 TOP-I

(a) Hypervolume indicator (train) 1

-

.

\ \ \
NSGA-II SPEA2 TOP-I

(c) Generational distance(train) |

'
.

| \ \
NSGA-Il SPEA2 TOP-|

(e) Generalized spread(test) |

0.7 0.8 0.9

0.6

0.61 0.62 0.63 0.64

0.60

0.0015 0.0020 0.0025

0.0010

CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

\ \ \
NSGA-Il SPEA2 TOP-I

(b) Generalized spread (train) |

-

| \ \
NSGA-Il SPEA2 TOP-I

(d) Hypervolume indicator(test) 1

-

\ \ \
NSGA-Il SPEA2 TOP-I

(f) Generational distance(test) |

Figure 5.3: Bi-objective optimization (up arrow indicates higher the better)

5.2. ISLAND MODELS

2000 3000

MAKESPAN

TARDINESS

3

ENERGY

186000

000

18

2600 3000

000" 186000 &
—

=NSGA-II =SPEA2 =TOP-I =TOP-II =TOP-III

1600 2200

MAKESPAN

00

2800 " 32

TARDINESS

ENERGY

“T18000

15000

28003200

115000 1180

=NSGA-II =SPEA2 =TOP-I =TOP-II =TOP-III

Figure 5.4: Multi-objective pareto fronts. (top: train, bottom: test)

167

168 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

040 042 044 046
|

0.38

| |

T T T T T
SPEA2 NSGA-II TOP-I TOP-II TOP-llI

(a) Hypervolume indicator(train)

0
IS}
=3 H
S '
o '

n Q
T}
N
=]
O_,
o -

'
0 '
— '
=4 L
Q,
(=]
' -
o :
= B g
= H ' -
S L
T

T T T T
SPEA2 NSGA-II TOP-I TOP-II TOP-IlI

(c) Generational distance(train) |

T T T T T
SPEA2 NSGA-II TOP-I TOP-II TOP-llI

(e) Generalized spread(test) |,

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.45 0.50 0.55

0.40

0.004 0.005 0.006

0.003

N

N

H

T T T T T
SPEA2 NSGA-II TOP-I TOP-II TOP-llI

(b) Generalized spread(train) |

T T T T T
SPEA2 NSGA-Il TOP-I TOP-Il TOP-III

(d) Hypervolume indicator(test) 1

R I S

T T T T T
SPEA2 NSGA-II TOP-I TOP-II TOP-llI

(f) Generational distance(test) |

Figure 5.5: Multi-objective optimization (up arrow indicates higher the

better)

5.2. ISLAND MODELS 169

The increased performance and saving in time comes at the price of
some communication complexity as the exchange of individuals based on

the migration policy requires communication.

Experiments on 3-objective JSS problems

In this set of experiments, we evolve solutions to the multi-objective opti-
mization problem (three objectives) and use all the proposed topologies in
Fig. 5.1.

Algorithm 13 again shows improvement over NSGA-IL. The pairs plot
of the Pareto front is shown in Fig. 5.4. The training set shows that there
is significant difference in the quality of solutions generated from the dif-
ferent methods. This is more clear when we show the results using the
box plots (Fig. 5.5). But we do not observe a significant difference in the
test, as the solutions represented by different methods are not visually dis-
tinguishable in the plot. Therefore, we need to rely on statistical tests to
determine the effectiveness of our algorithm.

We again use the metrics of hypervolume indicator, generalized spread
and generational distance to compare the different methods and the Wilcoxon
signed-rank test to determine the significance (0.05) of our results. The
box plot of the results is shown in Fig. 5.5. For the train set, Topology I
outperformed NSGA-II with a p-value of 2.4¢ — 06 and 0.0002 for the hy-
pervolume indicator and generational distance respectively. For the test
set Topology I and Topology II outperformed NSGA-II, with respect to the
hypervolume indicator, showing p-values of 3e—8 and 1e—14 respectively.
The Topology II also outperformed Topology I with a p-value of 0.02 for
the same metric. There is no significant difference for performance based
on generational distance in the test set.

Though Topology III outperformed SPEA-2 but not NSGA-II, it must
be noted that the computation time needed in Topology III is much lower
than that of NSGA-II. On average, the processing times of 5.2 hrs, 5.5
hrs, 6.4 hrs and 2.7 hours were needed for NSGA-II and Topologies I, 1I

170 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

and III respectively per run. For the population sizes as indicated in Ta-
ble 5.2, although Topology I and II required longer processing time than
NSGA-II due to the communication and synchronization overhead, they
can achieve significantly better performance.

To summarize, of the three island topologies used with Algorithm 13,
Topology I generally performed better than both NSGA-II and SPEA-2, as
confirmed particularly by the hypervolume indicator. Though Topology II
also performed well in Subsection 5.2.2, it did not outperform Topology I
significantly. Because only simple and static migration policies have been
utilized in our island models, useful individuals cannot be effectively ex-
changed among multiple islands in Topology III. As a result Topology III
tailed to perform as we hoped. However, considering the fact that Topol-
ogy III could potentially reduce the total time required for evolving useful
dispatching rules, its practical usefulness should be further investigated

in the future.

5.2.3 Section Summary

In this section, we investigated the island models for static multi-objective
JSS problems using GPHH. We tried to identify the parameters which
could be used to design island models which are capable of promoting the
evolution of effective Pareto set of dispatching rules. In general, we found
the island model to perform significantly better than other MOEAs. In
particular the Topology-I performed significantly better than single popu-
lation MOEAs like NSGA-IT and SPEA-2 for the bi-objective optimization.
Topology-I is not only efficient in using the computational resources but is
also very good in evolving effective Pareto set of dispatching rules. This
tinding is very important for our next sub-goal related to the development
of active sampling heuristics.

We also conducted out experiments for 3-objective JSS with three ob-

jectives which included minimization of energy cost. Generally, JSS prob-

5.3. SUCCESSIVE REJECT HEURISTIC 171

lems do not consider such objectives and this work is novel with respect
applying GPHH approach toward energy-aware scheduling.

The other topologies, even though were computationally efficient, showed
mixed results when compared with single populations MOEAs. Consid-
ering the higher complexity of their topologies, a more complex migration
policy, possibly dynamic in nature could be considered in our future work.

5.3 Active Sampling Heuristic for DJSS problems
using Island Model

In this section, we present our active sampling heuristic for multi-objective
DJSS problems. We recall the feature extraction and clustering methodol-
ogy from Chapter 4 and then present our proposed methods. Following
that, we present the experiment design, results and analysis.

We discussed in the Section 5.1 about the importance of active sam-
pling of DJSS instances for multi-objective DJSS problems. Essentially, the
DJSS instances represent shop scenarios some of which are more impor-
tant (as explained through our examples in Section 5.1) in promoting the
evolution of better dispatching rules (Pareto set of dispatching rules in
multi-objective case). Since it is our goal to develop active learning tech-
niques which can identify such instances, we need a methodology which
can group similar instances which correspond to shop scenarios with sim-

ilar characteristics.

In Chapter 4, we had described a feature extraction and clustering
methodology in order to facilitate the application of our active learning
methods. We use a similar methodology in this chapter. Table 5.4 is repro-
duced from chapter 4 and described the features which are extracted from

a DJSS instance.

172 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

Feature Extraction and Clustering

We extract the job features for each job arriving at the shop using Table 5.4.
The features are related to the number of operations in a job, the processing
time, the uncertainty in processing time and the due date. Once these
features are obtained, the quartiles are obtained for each feature and a
12 dimensional feature vector is constructed. This is used as the feature
vector of a DJSS instance.

Table 5.4: Job Features

Feature Description

#operations number of operations per job.

p estimated processing time of the job.

AP %, p' is the actual processing time with uncertainty.

due date factor (ddf) M ; where ,edqte 1S the due date and

Oreldate 18 the release date

5.3.1 Proposed Method

The active sampling heuristic which we are about to present is called suc-
cessive reject heuristic (SRH). The intuition behind this heuristic is to suc-
cessively remove those DJSS instances (cluster of DJSS instances) which
are comparatively less useful toward promoting the evolution of an effec-
tive Pareto front. This heuristic has an iterative nature and therefore, we
need the clustering to be hierarchical so that the SRH could exploit the
hierarchy to actively sample (or reject) cluster of DJSS instances.

More formally, 7 is the training set containing n DJSS problem in-
stances. We extract features for all these problems and cluster them into
C, and C, using K-means clustering. We apply K-means clustering again
on each of these clusters to yield {Ci1, Ci2} and {Ca1, Ca2 } respectively. This

5.3. SUCCESSIVE REJECT HEURISTIC 173

process can be repeated to obtain more sub-clusters {{Ci11, Ci12}, {C121,C122} }
and {{02117 C212}, {0221, CQQQ}} and SO On.

Island Model

In Section 5.2, we conducted many experiments with different topolo-
gies for multi-objective DJSS problems. We observed significant improve-
ment when using Topology-I for bi-objective optimization. Therefore, in
this section, for developing our active sampling method we employ the
Topology-I of island models.

As mentioned earlier, the SRH iteratively rejects the cluster of DJSS
instances. In order to facilitate this process, the SRH exploits the island
model. We use two classes of islands in our evolutionary system. The
first class of islands, represented as G in Figures 5.6(a) & 5.6(b), sample
training instances from the set 7 throughout the evolutionary process. The
second class of islands represented as A and B in Figure 5.6(b) sample
problem instances from the different clusters the choice of which varies
with generations. The appropriate choice of the cluster is controlled by
the successive reject heuristic. The heterogeneous island model is exploited

by the SRH in its iterative process of rejecting the clusters.

©
€8

(a) (b)

Figure 5.6: (a)Standard island model, (b) Island model for successive reject

heuristic

We first describe the evolutionary process of island G in Algorithm 14.
At every generation, a new training instance is sampled from 7. Un-

less otherwise mentioned, we use sample to denote a simple random sam-

174 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

Algorithm 14: Island G
Input: 7
Output: {wy,ws,...,wy}
1 forg«+ 1: Ngdo

2 | SampleaninstanceZ € 7.

3 | Run ¢" iteration of NSGA-II using Z.

4 Receive/Send individuals using migration policies.
5 end

6 Collect the genetic programs corresponding to the Pareto front :

{wi,wa, ... wp}.

Algorithm 15: Island Z (Z € {A, B})
Input: C;, Nsru

Output: {wf, w3, ..., w}
1 forg«+ 1: Ngdo
2 Sample an instance 7 € Cy.
3 | Run ¢" iteration of NSGA-II using Z.
4 Receive/Send individuals using migration policies.
5 if g € Ngry then
6 | | Cz+ SRH(P, PP.CACp)
7 end

®

Collect the genetic programs corresponding to the Pareto front :

{wf,wi, ... Wi

ple [218]. Due to our familiarity with NSGA-II [59] and the fact that we
consider only two objectives in this work, we chose NSGA-II as our un-
derlying evolutionary algorithm. In line 3, an iteration of NSGA-II is per-
formed. After each generation, the migration policy determines (line 4) if
there will be an exchange of individuals among the islands. The output
is a set of dispatching rules which jointly form a Pareto front. Note that

the final output of the parallel evolutionary system is the combination of

5.3. SUCCESSIVE REJECT HEURISTIC 175

outputs from all individual islands.

Table 5.5: Notation

Notation Description

T set of all DJSS problem instances for training.

Ng total number of generations for evolutionary process.

Cz cluster corresponding to island Z € {4, B}.

P? top k individuals from island Z € {A, B}.

Mz migration policy from island X to Y.

Py combined list of top £ individuals from islands A and B.

TOP, list of top k individuals across island A and B.
TOP# #individuals which are present both in PZ and TOP,, Z € {A, B}

Nsru set of generations at which SRH is invoked.

In Algorithm 15, we describe the evolutionary process of the islands
A and B (Figure 5.6(b)). Both islands are similar, except that they sam-
ple their training instances from different clusters. Their migration poli-
cies, which we will define in detail later, are the same. The cluster C; is
changed at discrete stages during the evolutionary process. The set Nsru
contains the generations at which the successive reject hypothesis is in-
voked to change C; (line 6). The rest of the procedure is the same as in
Algorithm 14.

Successive Reject Heuristic

The successive reject heuristic (SRH) is described in Algorithm 16. When
the SRH is invoked by islands A and B at generation g € Nsgg, the top-k
individuals from each island, P! and PP respectively, are sent to the island
G on which the SRH algorithm is run. The two sets of individuals are then
combined to get P, (line 3). A new set of DJSS problem instances,Z is
sampled from 7 and utilized to evaluate the new fitness values of each

individual in Py (lines 4-11).

176

CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

Algorithm 16: Successive Reject Heuristic

10

11

12

13

14

15

16

17

18

19

20

21

22

Input: P, PP Ca,Cp

Output: {C}*"},{C}™} to respective islands.

T < set of all DJSS training instances.

I <—sample from T

Py + {PA, PP}

foreach p € P, do

tot.fit. «— 0

foreach 7 € I do
obj.values < Simulation for (p, Z).
tot.fit. < tot.fit. + obj.values

end

fit(p) < tot.fit.

end

Sort Py, using NSGA-II fitness startegies.
TOP, + Extract top-k individuals from Py.
TOP! + |[PANTOR

TOPP + |PENTOP|

if TOP{ > TOPP then

Reject Cp.

{Ch*} {Cx™} + K-means cluster(C,)
else

Reject C4.

{Chev} {CE™} + K-means cluster(Cp)

end

After the fitness assignment, we use the NSGA-II fitness strategies to

sort the individuals. NSGA-II first ranks the individuals based on domi-

nance relation and then the individuals with same rank are ordered based

on crowding distance [59]. We use the same approach to sort the indi-

5.3. SUCCESSIVE REJECT HEURISTIC 177

viduals in P, (line 12). After sorting, the best k individuals are extracted
from P, into the list TOP, (line 13). Then we count the number of indi-
viduals corresponding to each island in the list TOP,; (lines 14-15). The
cluster corresponding to the island with the lower number of individuals
in TOP, is rejected (line 17 or 20). The C; of the winning island is further
clustered into two sub-clusters (lines 18 or 21). The new clusters which are
the output of SRH algorithm are then randomly assigned to the islands.
Till the next invocation of SRH, the evolution in the islands is continued
using DJSS problem instances sampled from the new clusters.

Now we describe the migration policies which are key to the success

of the proposed heuristic.

Migration Policies

Migration policies play a major role in the performance of the island mod-
els [168]. A migration policy states the number of individuals to be sent
to the destination island, frequency of migration and the generation from
which the migration starts. For the standard island model shown in Fig-
ure 5.6(a) designing a policy is straightforward. Due to homogeneity, a
single policy for all the islands will suffice. Since we consider two classes
of islands, different migration policies must be designed for islands of dif-
ferent classes.

Formally, a policy M;— from island /; to I, is defined by a triplet
<start generation, frequencéy, #individuals to send>. We consider the mi-
gration policy M to be different from Mz —. The selection of individu-
als for migration is based on elitism, i.e, a proportion of fittest individual(s)
are chosen from the population for migration.

For island G, it is more productive to receive individuals from A and
B frequently as this will improve solution diversity. This is because the
evolved rules in A and B are exposed to training instances which are dif-
ferent from G. On the other hand, a high frequency of migration between
A and B will homogenize the islands, making SRH less effective. More-

178 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

over, the frequency of migration in M- is much higher than M (similar
for island B) for the same reasons. The same analysis applies to determin-
ing the number of individuals to be migrated between the two. Further-
more, the migration policy M is restricted to exchanging individuals

only and immediately after invocation of SRH.

5.3.2 Experiment Design

The simulation model used for this experiment is consistent with our other
experiments in this thesis. We repeat some of the important details for
clarity. The job arrival follows a Poisson process with A = 0.85 [117]. This
assumption has been used in large number of works [34, 158, 162]. For
every run of the simulation, the first 500 jobs are considered as warm-up
and the objective values are calculated for the next 2000 jobs.

The uncertainty in processing times is simulated using the model con-
sidered earlier in Chapters 3 and 4. Basically for an operation o, the rela-
tionship between the processing time with uncertainty p’;; and processing

time without uncertainty p; ; is:
P = (L +050)pja, 05 = 0.

g follows exponential distribution [117]. In Table 5.6, the parameter [cor-
responds to the scale parameter of the exponential distribution.

In order to create problem instances with varying characteristics, DJSS
problem instances are generated with many combinations of the simula-
tion parameters shown in Table 5.6. The combination of these four pairs of
parameters can simulate 16 types of jobs. When building a training DJSS
problem instance, 3 job types are considered at a time. On counting the

unique combinations of 3 job types we find a total of 816 possible configu-

n+k—1
k

from problem instances in order to perform clustering we create 20 DJSS

rations (combinations with repetitions ()). Since we extract features

problems for each configuration to build the training set 7. Our prelimi-

nary study showed that a large training set would show no advantage but

5.3. SUCCESSIVE REJECT HEURISTIC 179

Table 5.6: DJSS simulation parameters

Simulation paramter Values
Processing time range [0,49],[20,69]
Uncertainty scale parameter (3) {0.2,0.4}
Due date tightness {1.5,2.5}

operations per job {8,10}

require more computational effort because by increasing the number of
DJSS instances per configuration will only increase the cluster size which
adds no additional benefit to the algorithms.

For testing, we create a new set (say V) of DJSS problems using the
816 possible configurations mentioned above. We sample 30 DJSS prob-
lem instances from) to obtain our first test set. Due to large number of
problem configurations it is not possible to test on each of them separately.
Therefore, we create four more test sets by clustering J and sampling 30
problem instances from each. These test sets are denoted by 3-), 3-1, 3-1I,
3-IIT and 3-IV , where 3 stands for number of job types.

We also want to observe the generalization ability of our methods over
more complex configurations. Therefore, DJSS instances comprising of 4
job types are created. On counting, the total number of unique config-
urations in this case are as reaches 3876 (combinations with repetitions).
Performing the same procedure described above generates the following
test sets: 4-), 4-1, 4-11, 4-11I and 4-1V.

The GP System

The terminal set for genetic programming is listed in Table 5.7 and the
function set in Table 5.8. The protected division returns 1 when the sec-
ond argument is 0. For all our islands we use a population size of 800
each. We also compare the performance of our method with the standard
NSGA-II for which the population size is set at 2500. With a tree depth

180 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

of 6, the crossover and mutation are 0.85 and 0.1 respectively [158]. Each

evolutionary algorithm is run for 150 generations.

Table 5.7: Terminal Sets for GP.

Terminal Set Meaning

PT Processing time of operation
RO Remaining operations for job
RJ Ready time of job
RT Remaining processing time of job
RM Ready time of machine
DD Due date
W Job weight
ERC Ephemeral Random constant

Table 5.8: Function Set for GP.

Function Set Meaning

+ Addition

— Subtraction

* Multiplication

/ Protected Division
Mazx Maximum
Min Minimum

Island model

The SRH algorithm also requires the simulator to assign fitness to indi-
viduals. Furthermore, for GPHH to utilize the problem instances from a
cluster, considerable number of generations are required. So frequently in-

voking SRH will not yield the desired outcome but only incur additional

5.3. SUCCESSIVE REJECT HEURISTIC 181

computational cost. Therefore the size of Nsgy is small and generations
selected are far apart. Therefore, we use the SRH algorithm at generations
49 and 99, i.e., Nspr = {49,99}. We have used ~ 50 as the number of
generations in many of our works for GPHH, including our experiments
on island model investigations in Section 5.2. Therefore, these many gen-
erations should be enough for the evolutionary algorithms to evolve effec-
tively.

The migration policies are presented in Table 5.9. While deciding the
frequency parameter of the migration policies involving islands A and B,
Nsru has been taken into account. The exchange of individuals starts after
a delay as the evolved rules in the early generations are not good. For the
TOP, individuals the value £ = 30 was chosen. We arrived at this value

after observing the size of non-dominated Pareto fronts in the islands.

Table 5.9: Migration Policies

Island-pairs Policies

Ge < 20,20,30 >
AB < 50,50,60 >
BA < 50,50,60 >
AC <20,20,30 >
BC <20,20,30 >
GB <50,25,10 >
GA <50,25,10 >

5.3.3 Results and Discussions

In this section, we present the results from our experiments with SRH us-
ing island model. We compare the performance of our method with the
standard NSGA-II algorithm and the standard island model approach.
The hypervolume ratio (HV), inverted generational distance (IGD) and

182 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

Table 5.10: Island-Model versus NSGA-II

3-y 3-1 3-11 3-1IT 3-1IvV 4-y 4-1 4-11 4-1I1 4-1vV

HV [1812-0] [11-19-0] [18-12-0] [19-11-0] [17-13-0] [14-16-0] [15-15-0] [18-12-0] [16-13-0] [12-18-0]
IGD [24-60] [21:9-0] [25-5-0] [29-1-0] [27-3-0] [24-6-0] [21-9-0] [22-8-0] [22-8-0] [19-11-0]
SPREAD [3-22-5] [0-18-12] [4-23-0] [5-25-0] [2-28-0] [3-21-6] [6-22-2] [4-23-3] [5-20-5] [2-24-2]

Table 5.11: SRH-Island Model versus NSGA-II
3y 31 311 30 3V 4y 41 411 4T 41V

HV [23-7-0] [17-3-0] [23-7-0] [25-5-0] [24-6-0] [20-10-0] [24-6-0] [22-8-0] [24-6-0] [21-9-0]
IGD [30-0-0] [30-0-0] [27-3-0] [29-1-0] [30-0-0] [30-0-0] [27-3-0] [30-0-0] [28-2-0] [29-1-0]
SPREAD [1-23-6] [0-25-5] [1-27-2] [3-26-1] [0-28-2] [4-21-5] [1-27-2] [1-27-2] [2-22-6] [0-25-5]

spread (SPREAD) indicators are again considered for comparison. In or-
der to approximate the true Pareto front as required by performance indi-
cators, the individuals from all the methods across all runs are combined.
For each method, the solutions are compared over 30 problem instances
from a test set. 30 independent runs produce 30 sets of dispatching rules
for each method. The Wilcoxon-rank-sum test is used to compare the per-
formance. We consider a significance level of 0.05.

The results are summarized in Tables 5.10-5.12. Each cell in the tables
consists of a triplet which represents [win-draw-lose|. For example, in Ta-
ble 5.10 the comparison between standard island model and NSGA-II ap-
proach is summarized. For the training set 3-), if we consider hypervol-
ume indicator, then island model has significantly outperformed NSGA-II
in 18 problem instances and there is no significant difference observed for
12 problem instances.

In Table 5.10, we compare NSGA-II with standard island model. As
expected, the performance of island model is much better, which is line
with the observations made in Section 5.2. For HV and IGD performance
indicators, the performance is very good, but for SPREAD indicator there
is no clear winner. This significant difference in performance is consistent

across all the test sets including 4-job type configurations.
In Table 5.11, we compare the performance of NSGA-II and SRH-based

5.3. SUCCESSIVE REJECT HEURISTIC 183

Table 5.12: SRH-Island Model versus Island model

3-y 3-1 3-1I 3-1IT 3-1V 4-y 4-1 4-11 4-1I1 4-IV

HV [10-20-0] [5-24-1] [6-22-2] [9-21-0] [14-16-0] [10-20-0] [10-20-0] [8-21-1] [9-21-0] [11-19-0]
IGD [18-12-0] [20-10-0] [19-11-0] [19-11-0] [20-10-0] [15-15-0] [14-15-1] [13-17-0] [15-15-0] [18-20-0]
SPREAD [5-18-7] [10-20-0] [3-24-3] [1-25-4] [0-23-7] [5-20-5] [1-227] [2-20-8] [4-17-9] [3-24-3]

island model (SRH). Across all the test sets the proposed method per-
formed well. Particularly for HV indicator, the SRH method has signif-
icantly done better than NSGA-II in more than 20 problem instances for
almost every test set. Similar performance is observed for IGD as well.
Once gain, however, with respect to SPREAD, there is no verifiable dif-
ference. This is because the obtained Pareto fronts are sparse for all the
algorithms.

Finally we compare, the SRH approach with the standard island model.
Once again the SRH approach performs significantly better on an average
of 10 problem instances from each test set and no significant difference on
the others. This confirms that SRH approach was able to associate useful
training instances through the successive rejection of clusters of training
instances.

We have included more detailed results in the Appendix B.

5.3.4 Analysis

A frequently observed path taken by the successive reject heuristic is rep-
resented below.

T — {€1,C2} — {Ca1,Ex:} = {Ca11, Cara}

In retrospect, we analyze the clusters which showed potential to guide
the GPHH toward evolving better rules. In order to further validate the
ability of SRH, we took the clusters represented by Cs; and Cy;, as training
sets. We performed 30 independent runs of NSGA-II algorithm on each.
We observed that the cluster rejected by SRH (C,2) performed significantly

184 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

poor on both HV and IGD indicators. Figure 5.7 shows a box plot for HV
indicator on a test problem instance from the set 3-).

L] —_—
o |
o : —
= 1
L 1
. — 1
r‘n: —]
= 1
I |
|
— |
D | T
LUn J— | 1
= —_ R —

| |
selected rejected

Figure 5.7: Comparing Cy;(selected) and C,, (rejected) using HV.

Furthermore, we also analyzed the problem configurations associated
with cluster Cy;. One of the reasons for analyzing C,; rather than C; is its
smaller size and also the fact that, out of 30 independent runs, this path
was chosen by SRH for 20 of the runs. We observed that the DJSS instances
whose job types were pertaining to equal proportion of high and low level
of uncertainty were in high numbers. Also, DJSS instances comprising
jobs with low and high number of operations per job were found in large
numbers. In other words, SRH is biased towards instances with high vari-
ability in their jobs. A high variability in the training instances has more
potential to present the GPHH with difficult and conflicting scenarios, as

explained in a previous example in Section 5.1.

5.4. CHAPTER SUMMARY 185

5.3.5 Section Summary

In this Section, we developed an active sampling heuristic for multi-objective
DJSS problems. The proposed successive reject heuristic employed the
Topology-I (Section 5.2) to evolve Pareto set of dispatching rules which
are significantly better than the NSGA-II and also better than the standard
island model based on Topology-I. We also developed migration policies
specifically for SRH to assist the method in identifying useful clusters of
DJSS instances.

Further analysis revealed that the active sampling heuristic was able to
identify those instances which have the potential to highlight the conflict
between the objectives.

54 Chapter Summary

The goal of this chapter was to investigate the island model approach for
GPHH toward evolving dispatching rules for multi-objective JSS problems
and then extend the active sampling techniques to multi-objective DJSS
problems.

To achieve this goal, different topologies of island model were explored
for static JSS problems. The empirical results were promising and the
key findings were used to develop an active sampling technique called
successive reject heuristic (SRH). The proposed heuristic leveraged the
island model topologies and migration policies to show significant im-
provement in evolving Pareto fronts for DJSS problems. Further analysis
was conducted to reveal the characteristics of frequently selected train-
ing instances. The findings were consisted with the assumptions made
earlier about the importance of selecting potentially more useful training
instances.

Having explored the ideas for evolution of multiple dispatching rules

for different scenarios for DJSS problems using GPHH in the previous two

186 CHAPTER 5. ACTIVE SAMPLING WITH ISLAND MODELS

chapters, these ideas were brought to a conclusion by extending them suc-
cessfully to the multi-objective problems. The first two chapters mainly
focused on improving the effectiveness of GPHH while considering the
effect uncertainty in processing times in DJSS problems. This chapter was
successful in developing algorithms which are both effective as well as
efficient while dealing with more complex problems involving multiple-

objectives.

Chapter 6
Conclusions

The overall goal of this thesis is to develop effective and efficient genetic program-
ming based hyper-heuristic approaches using active learning techniques for dy-
namic job shop scheduling problems for one or more objectives.

We successfully achieved this goal in this thesis. In order to achieve
this goal, we developed new GPHH approaches and new active sampling
methods to evolve effective dispatching rules for dynamic job shop schedul-
ing problems. More specifically we developed new GPHH methods to
evolve dispatching rules considering uncertain processing times, a new
GPHH framework which incorporates active learning methods to evolve
scenario-specific dispatching rules, and an efficient active sampling heuris-
tic for parallel GPHH toward multi-objective DJSS.

The rest of this chapter presents the conclusions and highlights from
each of the research objectives. The summary of research is presented
where main conclusions are described with discussions on key issues and
findings. Finally, potential research directions for future work are sug-
gested.

6.1 Achieved Objectives

In this thesis, the following research objectives have been fulfilled:

187

188 CHAPTER 6. CONCLUSIONS

e The dynamic job shop scheduling environment is characterized by
uncertainty and this thesis specifically focuses on uncertain process-
ing times. Through this thesis, two new GPHH approaches were
developed to solve DJSS problems under uncertain processing times
(Chapter 3).

The first approach consists of three methods for incorporating the
uncertainty information into the dispatching rules. This thesis presents
a first study which considers incorporation of uncertainty in process-
ing times into GPHH. In the first method (EMA), a new represen-
tation for genetic programming is developed by proposing a new
terminal. The other two methods, ENT and EXP propose new train-
ing methodologies to incorporate the uncertainty information. These
methods are compared with standard GPHH approach. All the three
methods outperformed the standard GPHH approach. In particular,
ENT method was the best and it also showed better generalization.

In the second approach, a new method to identify the bottleneck and
non-bottleneck machines for the dynamic scheduling environment is
developed. Then a new cooperative co-evolutionary method is de-
veloped to evolve dispatching rules for each type of machine. This
method is compared with standard GPHH approach and an exist-
ing method from literature called GP3. GP3 also considers bottle-
neck and non-bottleneck machines but for static scheduling prob-
lems. The proposed method significantly outperforms the existing

approaches.

These two approaches address the issue of uncertainty in process-
ing times which manifests due to the dynamic nature of the shop
environment. In particular, two varying scenarios which arise in this
dynamic environment, the bottleneck machine scenario and the non-
bottleneck machine scenario are addressed. In order to co-evolve a

pair of rules for each of these scenarios, we considered two differ-

6.1. ACHIEVED OBJECTIVES 189

ent types of training instances which highlighted the corresponding
machine states. Essentially, we used the idea of using different sam-
ples of training instances to evolve rules for different shop scenarios.
The next research objective explores this idea by developing active
sampling methods for GPHH to evolve multiple scenario-specific dis-

patching rules.

e Through this thesis, a new GPHH framework was developed which
introduces new elements into GPHH in order to facilitate the pro-
posed active sampling mechanism. In particular, a validation stage
was introduced into GPHH which is a unique characteristic of the
proposed framework compared with the existing ones. A new method
to extract features from instances of DJSS problem under uncertainty
was developed to cluster the training instances. This is also one of
the preliminary requirements for the active sampling methods. Two
new active sampling methods, respectively based on e-greedy and
Gaussian process bandits (GPB) approaches were developed.

This thesis presents the first work which considers use of GPB as
an active learning method for GPHH approaches. These active sam-
pling methods were integrated into the new GPHH framework to
identify potentially useful training instances and evolving multiple
dispatching rules corresponding to different shop scenarios identi-
fied using the clustering approach. Essentially, the two active sam-
pling methods have been leveraged to tackle the exploration versus
exploitation dilemma which arises when it is required that we ex-
plore the space of DJSS training instances while exploiting the al-
ready identified good training instances to evolve dispatching rules.

Finally, we also developed a method to associate the scenario-specific
evolved rules with unseen DJSS problem instances.The GPHH ap-
proach based on the GPB method outperformed the standard GPHH

approach as well as the one using e-greedy method.

190 CHAPTER 6. CONCLUSIONS

This research objective focused on evolving scenario-specific dispatch-
ing rules using GPHH with the help of active learning methods for
a single scheduling objective. The next research objective develops
new active sampling methods for DJSS problems which consider
multiple objectives.

e This thesis developed a new active sampling heuristic for GPHH to-
ward evolving an effective Pareto set of dispatching rules for multi-
objective dynamic job shop scheduling problems. The first step in
achieving this objective was to investigate the island model approach
for parallel evolutionary algorithms under the purview of GPHH for
static and multi-objective JSS problems. Different topologies for the
island model were evaluated. It was empirically verified that with
lower computational cost than standard GP, the performance of is-
land model approach was significantly better. We achieved this by
identifying the appropriate design parameters for the island model,
particularly its topology and migration policy, which is known to
promote the evolutionary algorithms to get out of local optima [220].

Furthermore, leveraging the migration policies of the island mod-
els a successive reject heuristic for active sampling was developed
with the aim of identifying potentially better training instances for
GPHH. The proposed successive reject heuristic successfully achieved
this aim by taking advantage of the inherent ability of island mod-
els to tackle exploration versus exploitation through its topology and
migration policies. The proposed GPHH method using the new sam-
pling heuristic outperformed both the standard GPHH and the is-
land model based parallelized approach to GPHH.

6.2. MAJOR CONCLUSIONS 191
6.2 Major Conclusions

We present the summary of research highlighting the main conclusions

and present some discussions.

6.2.1 DJSS under Uncertain Processing Times

This thesis is the first work which explores the ability of GPHH to evolve
dispatching rules for DJSS problems under uncertainty. In chapter 3, we
develop methods which are successful in taking into consideration the ef-
fect of uncertainty in processing times in the DJSS problems. In particu-
lar, we developed simple yet effective new training approaches for GPHH
leveraging the flexible representation of genetic programs. Moreover, even
though the interpretability of the evolved dispatching rules is still hard,
the genetic programs still give more insight when compared to say a neu-
ral network. Due to this reason it was possible to incorporate the uncer-
tainty information directly into the terminals.

The ability of genetic programs to capture complex characteristics of
a system was utilized to co-evolve dispatching rules for varying charac-
teristics of machines, which is a manifestation of varying uncertainty lev-
els of the dynamic job shop. Furthermore, cooperative co-evolution was
successfully used to co-evolve a pair of dispatching rules which closely
interact with each other during the sequencing process.

Scenario specific dispatching rules

Furthermore, in the dynamic job shops under uncertain processing times,
two different types of machines, namely bottleneck and non-bottleneck
machines are considered. Using appropriate machine features a cluster-
ing method was used to identify these machines with varying character-
istics in a dynamic environment. Having successfully evolved a pair of

dispatching rules for each of these machines, it was further validated that

192 CHAPTER 6. CONCLUSIONS

using a single universal dispatching rules for all scenarios is not effective.
In a complex shop environment, there are many other dynamic factors
viz. varying job characteristics which give rise to different shop scenarios.
Therefore, after evolving the machine specific rules, the next step was to
consider the different complex shop scenarios arising in the shop and ex-
ploring the ability of GPHH to evolve scenario-specific rules. But when
more of these scenarios need to be considered, there is an important prob-
lem of effectively sampling useful training instances which are addressed
through the newly proposed active sampling techniques.

6.2.2 Toward Evolving Dispatching Rules for Multiple Shop

Scenarios

A complex shop environment is defined by varying characteristics of jobs,
differentjob arrival patterns, uncertainty in shop parameters and dynamic
events like breakdown etc. The combinations of these factors lead to a
very high number of shop scenarios. In Chapter 4, methods were de-
veloped to effectively identifying those scenarios which demand a more
specific dispatching rule and evolve them using GPHH. A feature extrac-
tion and clustering methodology to associate the DJSS problem instances
to the shop scenarios was developed, similar to the clustering approach
employed in the context of the two scenarios arising due to the bottleneck

levels of machines.

Active sampling in GPHH for DJSS problems

The very high number of shop scenarios leads to a large input space of
DJSS problem instances and therefore active learning methods were re-
quired for effective sampling of the instances. Active sampling requires a
method to measure the potential of a DJSS problem instance to promote
evolution of effective dispatching rules. To this end, a new GPHH frame-

work was developed by introducing a validation stage which facilitates

6.2. MAJOR CONCLUSIONS 193

the quantification of the ability of DJSS problem instances to support evo-
lution of good rules. Essentially, the validation stage of the GPHH is re-
sponsible for exploration of the input space of DJSS problem instances and
evolution of dispatching rules using the identified DJSS instances is ex-
ploitation. The dilemma between exploration and exploitation arises when
the two tasks need to be performed under a limited computational budget.

This dilemma of exploration versus exploitation has been well stud-
ied in the multi-armed bandit theory [16]. We developed new GPHH ap-
proaches which employ the active learning techniques based on the multi-
armed bandit approaches and tackled the exploration versus exploitation

dilemma in the context of active sampling of DJSS instances.

The first of the active sampling methods, e-greedy heuristic, considered
only four possible dispatching rules. For considering larger number (hun-
dreds) of scenarios we integrated Gaussian process bandits as the active
sampling method with GPHH. The new GPHH approaches using these
active sampling methods could evolve effective scenario-specific dispatch-
ing rules. To associate the dispatching rules with unseen DJSS instances
and solve them, the feature extraction methodology used earlier was ex-
tended.

We empirically evaluated the performance of the GPHH approaches
using the two active sampling methods and the existing GPHH frame-
work. Significant improvement was observed over most of the test sets.
The main conclusion derived from Chapter 4 is that the new GPHH ap-
proaches developed using the active sampling methods utilizing the clus-
tering methodology were successful in evolving effective scenario-specific
dispatching rules.

194 CHAPTER 6. CONCLUSIONS

6.2.3 Active Sampling Heuristics for GPHH toward Multi-
Objective JSS

After considering the complex shop scenarios for DJSS problems for a sin-
gle objective in Chapter 4, the advantages of using active learning for
GPHH were explored for DJSS problems when multiple scheduling ob-
jectives are involved. GPHH for evolving dispatching rules for multi-
objective scheduling problems is more difficult due to more complex search
space [57]. Moreover, since for multi-objective scheduling problems a
Pareto set of dispatching rules is evolved the GPHH framework consisting
of validation stage becomes very expensive. This is because for evaluating
a Pareto front requires comparing many metrics such as hypervolume and

inverted generational distance.

For dealing with these computational issues in multi-objective schedul-
ing a parallel GPHH framework was considered in Chapter 5. In partic-
ular, island model for parallelization was considered due to its qualities
like ability to tackle problem of local optima and the inherent dynamics of

exploration and exploitation in its subpopulations.

Since the efficacy of island model relies heavily on its design parame-
ters, an empirical investigation of the different topologies of island model
was conducted. Another salient point of this investigation is that we con-
sidered energy-aware scheduling by using minimization of energy cost as
one of the scheduling objectives. This is a first study which considers en-
ergy as an objective while evolving dispatching rules for scheduling using
GPHH. The results from this investigation were used to determine ap-
propriate design parameters for island model which are effective toward
evolving dispatching rules using GPHH for JSS problems. With the help
of this supporting empirical evidence we identified a topology which was
very effective and efficient for GPHH.

6.3. FUTURE WORK 195

Active sampling heuristics using island model

Similar to the single objective case, it is important to identify those DJSS in-
stances which highlight those shop scenarios which highlight the conflict
between the scheduling objectives. An active sampling technique, called
successive reject heuristic was developed in Chapter 5. The key findings
from the earlier experiment encouraged us to use the island model topolo-
gies and migration policies for integrating the active sampling techniques
for GPHH in the multi-objective JSS case. One key property of this sam-
pling heuristic is that it successively narrows down the search space of
training instances using the different islands. The performance of this ap-
proach is very good, significantly outperforming the existing approaches
using most of the metrics namely hypervolume, inverted generational dis-
tance and spread which are used for comparing EMO algorithms.

On further analyzing the characteristics of frequently selected train-
ing instances, more insights were obtained providing more clarity on the
reasons for the favourable outcome. In particular, we could observe that
the selected DJSS instances highlighted the conflict between the schedul-
ing objectives. It further highlighted the necessity of active sampling ap-
proaches for GPHH.

6.3 Future Work

This thesis presents the research in the direction of addressing the difficul-
ties evolving effective dispatching rules for a dynamic job shop schedul-
ing problem using GPHH in a complex and uncertain shop environment.
There are many directions which could be further explored. Some of these
are presented below.

e The flexible representation of genetic programs was leveraged to in-
corporate uncertainty information into the dispatching rules. However,

in the whole thesis only uncertainty in processing times was consid-

196

CHAPTER 6. CONCLUSIONS

ered. There are many other dynamic factors like sudden arrival of
jobs, sudden change in priority of jobs, etc., which are responsible
for the uncertainty in the shop environment. Therefore, in order to
further achieve the goal of practical scheduling approaches, GPHH
techniques which incorporate more such factors must be studied.

For multi-objective scheduling, this becomes even more difficult. For
example, the bottleneck and non-bottleneck machines are associated
with specific dispatching rules. But for a multi-objective JSS prob-
lem, the solution is a Pareto front corresponding to a set of dispatch-
ing rules. Therefore, when different classes of machines are con-
sidered, more nuanced methods are required to handle the multi-

objective problems.

This thesis developed methods to extract features from DJSS prob-
lem instances which are essentially numeric. The shop is a compli-
cated system with varying characteristics and complex interaction
between its components. Therefore, it is important to develop better
feature extraction techniques which can capture the complexity of
the shop. For example, structural features represented using graph
data structures could be extracted from the DJSS instances. This will
require more sophisticated feature selection and pattern recognition

techniques in combination with some pre-processing steps.

The research in the application of parallel evolutionary algorithms,
island models in particular is growing. This thesis presented a sim-
ple heuristic toward active sampling of training instances. There is
a clear scope for incorporating the techniques from the theory of
multi-armed bandit, though it is comparatively more complicated
due to the involvement of multiple objectives. Furthermore, the re-
lationship between the selected training instances and the regions of
Pareto front is not studied. This will help in developing new EMO

algorithms for JSS with significantly improved performance of the

6.3. FUTURE WORK 197

Pareto set of dispatching rules. In order to address the computa-
tional challenges, more topologies and migration policies of the is-
land model should be investigated.

198 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Genetic Programming. https://upload.wikimedia.org/

wikipedia/commons/7/77/Genetic_Program_Tree.png.

Accessed: 2015-10-04.

[2] ADAMS, J., BALAS, E., AND ZAWACK, D. The shifting bottleneck
procedure for job shop scheduling. Management science 34, 3 (1988),
391-401.

[3] AGGARWAL, C. C., KONG, X., GU, Q., HAN, J., AND PHILIP, S. Y.

Active learning: A survey. In Data Classification. Chapman and Hal-
1/CRC, 2014, pp. 589-623.

[4] AGHASSI, M., AND BERTSIMAS, D. Robust game theory. Mathemat-
ical Programming 107, 1-2 (2006), 231-273.

[5] AGRAWAL, P., AND RAO, S. Energy-aware scheduling of distributed

systems. Automation Science and Engineering, IEEE Transactions on 11,
4 (2014), 1163-1175.

[6] AGUIRRE, A. M., L1U, S., AND PAPAGEORGIOU, L. G. Mixed inte-
ger linear programming based approaches for medium-term plan-

ning and scheduling in multiproduct multistage continuous plants.
Industrial & Engineering Chemistry Research 56,19 (2017), 5636-5651.

[7] ALBA, E. Parallel metaheuristics: a new class of algorithms, vol. 47. John
Wiley & Sons, 2005.

199

https://upload.wikimedia.org/wikipedia/commons/7/77/Genetic_Program_Tree.png
https://upload.wikimedia.org/wikipedia/commons/7/77/Genetic_Program_Tree.png

200

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

ALBA, E., AND DORRONSORO, B. Cellular genetic algorithms, vol. 42.
Springer Science & Business Media, 2009.

ALBA, E., AND TROYA,]J. M. A survey of parallel distributed genetic
algorithms. Complexity 4, 4 (1999), 31-52.

ALLAHVERDI, A., PEscH, E., PINEDO, M., AND WERNER, F.
Scheduling in manufacturing systems: new trends and perspectives,
2018.

AMAYA, 1., ORTIZ-BAYLISS, J. C., ROSALES-PEREZ, A,
GUTIERREZ-RODRIGUEZ, A. E., CONANT-PABLOS, S. E.,
TERASHIMA-MARIN, H., AND COELLO, C. A. C. Enhancing
selection hyper-heuristics via feature transformations. IEEE
Computational Intelligence Magazine 13, 2 (2018), 30-41.

ANTOS, A., GROVER, V., AND SZEPESVARI, C. Active learning in
multi-armed bandits. In International Conference on Algorithmic Learn-
ing Theory (2008), Springer, pp. 287-302.

ARAUJO, L., MERELO, J. J., MORA, A., AND COTTA, C. Genotypic
differences and migration policies in an island model. In Proceedings
of the 11th Annual conference on Genetic and evolutionary computation
(2009), ACM, pp. 1331-1338.

ARIK, O. A., AND TOKSARI, M. D. Multi-objective fuzzy paral-
lel machine scheduling problems under fuzzy job deterioration and
learning effects. International Journal of Production Research 56, 7
(2018), 2488-2505.

ARUNARANI, A., MANJULA, D., AND SUGUMARAN, V. Task
scheduling techniques in cloud computing: A literature survey. Fu-
ture Generation Computer Systems 91 (2019), 407-415.

BIBLIOGRAPHY 201

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

AUER, P., CESA-BIANCHI, N., AND FISCHER, P. Finite-time analysis
of the multiarmed bandit problem. Machine learning 47, 2-3 (2002),
235-256.

AYTUG, H., LAWLEY, M. A., McKaAyY, K., MOHAN, S., AND Uzs0y,
R. Executing production schedules in the face of uncertainties: A

review and some future directions. European Journal of Operational
Research 161, 1 (2005), 86-110.

BACK, T. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford uni-
versity press, 1996.

BAcCK, T., FOGEL, D. B., AND MICHALEWICZ, Z. Evolutionary com-
putation 1: Basic algorithms and operators. CRC press, 2018.

BADER-EL-DEN, M., PoLl, R.,, AND FATIMA, S. Evolving
timetabling heuristics using a grammar-based genetic programming
hyper-heuristic framework. Memetic Computing 1, 3 (2009), 205-219.

BARMAN, S. Simple priority rule combinations: an approach to im-
prove both flow time and tardiness. International Journal of Production
Research 35,10 (1997), 2857-2870.

BELIEN, J., GOOSSENS, D., AND VAN REETH, D. A mixed inte-
ger programming model for ex post optimization in fantasy sport
games. In European Conference on Operational Research (EURO XXVI-
2013) (2013), pp. 423-423.

BERGSTRA, J., AND BENGIO, Y. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012),
281-305.

BERGSTRA, J. S., BARDENET, R., BENGIO, Y., AND KEGL, B. Al-
gorithms for hyper-parameter optimization. In Advances in neural
information processing systems (2011), pp. 2546-2554.

202

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

BIBLIOGRAPHY

BERTELS, A. R., AND TAURITZ, D. R. Why asynchronous paral-
lel evolution is the future of hyper-heuristics: A cdcl sat solver case
study. In Proceedings of the 2016 on Genetic and Evolutionary Computa-
tion Conference Companion (2016), ACM, pp. 1359-1365.

BERTSIMAS, D., AND SIM, M. The price of robustness. Operations
research 52,1 (2004), 35-53.

BIEGEL, J. E., AND DAVERN, J. J. Genetic algorithms and job shop
scheduling. Computers & Industrial Engineering 19, 1-4 (1990), 81-91.

BisHOP, C. M. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

BLUM, C., AND SAMPELS, M. An ant colony optimization algorithm
for shop scheduling problems. Journal of Mathematical Modelling and

Algorithms 3, 3 (2004), 285-308.

BOLTE, A., AND THONEMANN, U. W. Optimizing simulated an-
nealing schedules with genetic programming. European Journal of
Operational Research 92,2 (1996), 402—416.

BONABEAU, E., MARCO, D. D. R. D. F., DORIGO, M., THERAULAZ,
G., THERAULAZ, G., ET AL. Swarm intelligence: from natural to artifi-
cial systems. No. 1. Oxford university press, 1999.

BOUNEFFOUF, D., LAROCHE, R., UrRvOy, T., FERAUD, R., AND
ALLESIARDO, R. Contextual bandit for active learning: Active
thompson sampling. In International Conference on Neural Informa-

tion Processing (2014), Springer, pp. 405-412.

BRANKE, J., HILDEBRANDT, T., AND SCHOLZ-REITER, B. Hyper-
heuristic evolution of dispatching rules: A comparison of rule rep-
resentations. Evolutionary computation (2014).

BIBLIOGRAPHY 203

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

BRANKE, J., NGUYEN, S., PICKARDT, C., AND ZHANG, M. Auto-
mated design of production scheduling heuristics: A review.

BRANKE, J., NGUYEN, S., PICKARDT, C. W., AND ZHANG, M. Au-
tomated design of production scheduling heuristics: A review. IEEE
Transactions on Evolutionary Computation 20, 1 (2016), 110-124.

BRANKE, J., SCHMECK, H., DEB, K., AND MAHESHWAR, R. S. Par-
allelizing multi-objective evolutionary algorithms: cone separation.
In IEEE Congress on Evolutionary Computation (2004), vol. 2, pp. 1952—
1957.

BROCHU, E., CORA, V. M., AND DE FREITAS, N. A tutorial on
bayesian optimization of expensive cost functions, with applica-

tion to active user modeling and hierarchical reinforcement learn-
ing. arXiv preprint arXiv:1012.2599 (2010).

BURKE, E., KENDALL, G., SiLvA, D. L., O’BRIEN, R., AND
SOUBEIGA, E. An ant algorithm hyperheuristic for the project pre-
sentation scheduling problem. In Evolutionary Computation, 2005.
The 2005 IEEE Congress on (2005), vol. 3, IEEE, pp. 2263-2270.

BURKE, E. K., GENDREAU, M., HYDE, M., KENDALL, G., OCHOA,
G., OzcaN, E., AND QU, R. Hyper-heuristics: A survey of the state
of the art. Journal of the Operational Research Society 64, 12 (2013),
1695-1724.

BURKE, E. K., HYDE, M., KENDALL, G., OCHOA, G., OZCAN,
E., AND WOODWARD, J. R. A classification of hyper-heuristic ap-
proaches. In Handbook of metaheuristics. Springer, 2010, pp. 449-468.

BURKE, E. K., HYDE, M. R., KENDALL, G., OCHOA, G., OZCAN,
E., AND WOODWARD, J. R. Exploring hyper-heuristic method-
ologies with genetic programming. In Computational intelligence.
Springer, 2009, pp. 177-201.

204

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

BIBLIOGRAPHY

BURKE, E. K., HYDE, M. R., KENDALL, G., AND WOODWARD, J.
Automatic heuristic generation with genetic programming: evolv-
ing a jack-of-all-trades or a master of one. In Proceedings of the 9th an-
nual conference on Genetic and evolutionary computation (2007), ACM,
pp- 1559-1565.

CANTU-PAZ, E. Efficient and accurate parallel genetic algorithms, vol. 1.
Springer Science & Business Media, 2000.

CANTU-PAZ, E., AND GOLDBERG, D. E. Are multiple runs of ge-
netic algorithms better than one? In Genetic and Evolutionary Compu-
tation Conference (2003), Springer, pp. 801-812.

CARRION, M., ZARATE-MINANO, R., AND DOMINGUEZ, R. A
practical formulation for ex-ante scheduling of energy and reserve
in renewable-dominated power systems: Case study of the iberian
peninsula. Energies 11, 8 (2018), 1939.

CHAN, F.,, CHAN, H., LAU, H., AND IP, R. Analysis of dynamic
dispatching rules for a flexible manufacturing system. Journal of Ma-
terials Processing Technology 138, 1-3 (2003), 325-331.

CHEN, C., AND YIH, Y. Indentifying attributes for knowledge-
based development in dynamic scheduling environments. Interna-
tional Journal of Production Research 34, 6 (1996), 1739-1755.

CHENG, R., GEN, M., AND TSUJIMURA, Y. A tutorial survey of job-
shop scheduling problems using genetic algorithms, part ii: hybrid
genetic search strategies. Computers & Industrial Engineering 36, 2
(1999), 343-364.

CHENG, T., GUPTA, M., ET AL. Survey of scheduling research in-

volving due date determination decisions. European journal of opera-
tional research 38, 2 (1989), 156—166.

BIBLIOGRAPHY 205

[50] CHURCH, L. K., AND Uzs0OY, R. Analysis of periodic and event-
driven rescheduling policies in dynamic shops. International Journal
of Computer Integrated Manufacturing 5, 3 (1992), 153-163.

[51] COHN, D. A., GHAHRAMANI, Z., AND JORDAN, M. 1. Active learn-

ing with statistical models. Journal of artificial intelligence research 4
(1996), 129-145.

[52] ConwAy, R. W.,, MAXWELL, W. L., AND MILLER, L. W. Theory of
scheduling. Courier Corporation, 2003.

[53] COWLING, P., KENDALL, G., AND SOUBEIGA, E. A hyperheuristic
approach to scheduling a sales summit. In International Conference
on the Practice and Theory of Automated Timetabling (2000), Springer,
pp- 176-190.

[54] CRAINIC, T. G., AND TOULOUSE, M. Parallel strategies for meta-
heuristics. In Handbook of metaheuristics. Springer, 2003, pp. 475-513.

[55] CREPINSEK, M., L1U, S.-H., AND MERNIK, M. Exploration and ex-

ploitation in evolutionary algorithms: A survey. ACM Computing
Surveys (CSUR) 45, 3 (2013), 35.

[56] DA, M., TANG, D., GIRET, A., SALIDO, M. A., AND LI,
W. D. Energy-efficient scheduling for a flexible flow shop using
an improved genetic-simulated annealing algorithm. Robotics and
Computer-Integrated Manufacturing 29, 5 (2013), 418—429.

[57] DEB, K. Multi-objective optimization. In Search methodologies.
Springer, 2014, pp. 403—449.

[58] DEB, K., AND JAIN, H. An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, part i: solving problems with box constraints. Evolution-
ary Computation, IEEE Transactions on 18, 4 (2014), 577-601.

206

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

BIBLIOGRAPHY

DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transac-
tions on evolutionary computation 6, 2 (2002), 182-197.

DELL’AMICO, M., AND TRUBIAN, M. Applying tabu search to the

job-shop scheduling problem. Annals of Operations research 41, 3
(1993), 231-252.

DEVECI, M., AND DEMIREL, N. C. A survey of the literature on air-

line crew scheduling. Engineering Applications of Artificial Intelligence
74 (2018), 54-69.

DIMOPOULOS, C., AND ZALZALA, A. M. Investigating the use of
genetic programming for a classic one-machine scheduling problem.
Advances in Engineering Software 32, 6 (2001), 489-498.

DOLGUL, A., IVANOV, D., SETHI, S. P., AND SOKOLOV, B. Schedul-
ing in production, supply chain and industry 4.0 systems by opti-
mal control: fundamentals, state-of-the-art and applications. Inter-
national Journal of Production Research 57,2 (2019), 411-432.

DORIGO, M., AND BIRATTARI, M. Ant colony optimization. In En-
cyclopedia of machine learning. Springer, 2011, pp. 36-39.

Du, W., TANG, Y., LEUNG, S. Y. S., TONG, L., VASILAKOS, A. V.,
AND QIAN, F. Robust order scheduling in the discrete manufactur-
ing industry: A multiobjective optimization approach. IEEE Trans-
actions on Industrial Informatics 14, 1 (2018), 253-264.

DuaN, C., DENG, C., GHARAEI, A., WU, J., AND WANG, B. Selec-
tive maintenance scheduling under stochastic maintenance quality

with multiple maintenance actions. International Journal of Production
Research 56, 23 (2018), 7160-7178.

BIBLIOGRAPHY 207

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

DURILLO, J. J., NEBRO, A.J., LUNA, F., AND ALBA, E. A study
of master-slave approaches to parallelize nsga-ii. In Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium
on (2008), IEEE, pp. 1-8.

DURILLO, J. J., ZHANG, Q., NEBRO, A. J., AND ALBA, E. Distri-
bution of computational effort in parallel moea/d. In International
Conference on Learning and Intelligent Optimization (2011), Springer,
pp. 488-502.

EwALD, G., KUREK, W., AND BRDYS, M. A. Grid implementation
of a parallel multiobjective genetic algorithm for optimized alloca-
tion of chlorination stations in drinking water distribution systems:
Chojnice case study. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews) 38, 4 (2008), 497-509.

FRIEDRICH, T., OLIVETO, P. S., SUDHOLT, D., AND WITT, C. Anal-
ysis of diversity-preserving mechanisms for global exploration. Evo-
lutionary Computation 17, 4 (2009), 455-476.

Fu,].,ZHAO, C., XU, Q., AND HO, T. C. Debottleneck of multistage
material-handling processes via simultaneous hoist scheduling and
production line retrofit. Industrial & Engineering Chemistry Research
52,1 (2012), 123-133.

Fu, Y., DING, J., WANG, H., AND WANG, J. Two-objective stochas-
tic flow-shop scheduling with deteriorating and learning effect in
industry 4.0-based manufacturing system. Applied Soft Computing
68 (2018), 847-855.

FUKUNAGA, A. S. Automated discovery of local search heuristics
for satisfiability testing. Evolutionary computation 16,1 (2008), 31-61.

GANTI, R., AND GRAY, A. G. Building bridges: viewing active
learning from the multi-armed bandit lens. In Proceedings of the

208 BIBLIOGRAPHY

Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (2013),
AUAI Press, pp. 232-241.

[75] GAREY, M. R., JOHNSON, D. S., AND SETHI, R. The complexity of
flowshop and jobshop scheduling. Mathematics of operations research
1,2 (1976), 117-129.

[76] GEIGER, C. D., Uzsoy, R., AND AYTUG, H. Rapid modeling and
discovery of priority dispatching rules: An autonomous learning
approach. Journal of Scheduling 9,1 (2006), 7-34.

[77] GLOVER, F., AND LAGUNA, M. Tabu search. In Handbook of combi-
natorial optimization. Springer, 1998, pp. 2093-2229.

[78] GONZALEZ, T., AND SAHNI, S. Flowshop and jobshop schedules:
complexity and approximation. Operations research 26, 1 (1978), 36—
52.

[79] GORGES-SCHLEUTER, M., AND GORGES-SCHLEUTER, M. Genetic al-
gorithms and population structures: a massively parallel algorithm. 1991.

[80] GRAJDEANU, A. Parallel models for evolutionary algorithms.
ECLab, George Mason University 38 (2003).

[81] GUO, Y., AND GREINER, R. Optimistic active-learning using mutual
information. In IJCAI (2007), vol. 7, pp. 823-829.

[82] GurTA, A., ONG, Y.-S., AND FENG, L. Multifactorial evolution:
toward evolutionary multitasking. IEEE Transactions on Evolutionary
Computation 20, 3 (2016), 343-357.

[83] GUREL, S., AND CINCIOGLU, D. Rescheduling with controllable
processing times for number of disrupted jobs and manufactur-
ing cost objectives. International Journal of Production Research 53, 9
(2015), 2751-2770.

BIBLIOGRAPHY 209

[84]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

HANSEN, N., AND OSTERMEIER, A. Adapting arbitrary normal mu-
tation distributions in evolution strategies: The covariance matrix
adaptation. In Evolutionary Computation, 1996., Proceedings of IEEE
International Conference on (1996), IEEE, pp. 312-317.

HANSEN, P., AND MLADENOVIC, N. Variable neighborhood search:

Principles and applications. European journal of operational research
130, 3 (2001), 449-467.

HARTER, A., TAURITZ, D. R., AND SIEVER, W. M. Asynchronous
parallel cartesian genetic programming. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (2017), ACM,
pp- 1820-1824.

HEGER, J., BRANKE, J., HILDEBRANDT, T., AND SCHOLZ-REITER,
B. Dynamic adjustment of dispatching rule parameters in flow
shops with sequence-dependent set-up times. International Journal
of Production Research 54,22 (2016), 6812—6824.

HEGER, J., HILDEBRANDT, T., AND SCHOLZ-REITER, B. Switching
dispatching rules with gaussian processes. In Robust Manufacturing
Control. Springer, 2013, pp. 91-103.

HEGER, J., HILDEBRANDT, T., AND SCHOLZ-REITER, B. Dispatch-

ing rule selection with gaussian processes. Central European Journal
of Operations Research 23,1 (2015), 235-249.

HEIDRICH-MEISNER, V. Interview with richard s. sutton., 2009.

HELD, M., AND KARP, R. M. The traveling-salesman problem and

minimum spanning trees: Part ii. Mathematical programming 1, 1
(1971), 6-25.

HILDEBRANDT, T. Jasima — an efficient java simulator for manufac-
turing and logistics. http://code.google.com/p/jasima (2012).

210

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

BIBLIOGRAPHY

HILDEBRANDT, T. Jasima; an efficient java simulator for manufac-
turing and logistics. Last accessed 16 (2012).

HILDEBRANDT, T., AND BRANKE, J. On using surrogates with ge-
netic programming. Evolutionary computation 23, 3 (2015), 343-367.

HorLowaAy, C. A., AND NELSON, R. T. Job shop scheduling with

due dates and variable processing times. Management Science 20, 9
(1974), 1264-1275.

HOLT, C. C. Forecasting seasonals and trends by exponentially
weighted moving averages. International journal of forecasting 20, 1
(2004), 5-10.

HONKOMP, S., MOCKUS, L., AND REKLAITIS, G. A framework for

schedule evaluation with processing uncertainty. Computers & chem-
ical engineering 23, 4 (1999), 595-609.

HuANG, K., YANG, H., KING, I., AND LYyu, M. R. Local learn-
ing vs. global learning: An introduction to maxi-min margin ma-
chine. In Support vector machines: theory and applications. Springer,
2005, pp. 113-131.

HUANG, K.-L., AND LIAO, C.-J. Ant colony optimization combined
with taboo search for the job shop scheduling problem. Computers &
operations research 35, 4 (2008), 1030-1046.

HUNT, R., JOHNSTON, M., AND ZHANG, M. Evolving less-myopic
scheduling rules for dynamic job shop scheduling with genetic pro-
gramming. In Proceedings of the 2014 conference on Genetic and evolu-
tionary computation (2014), ACM, pp. 927-934.

HUNT, R., JOHNSTON, M., AND ZHANG, M. Evolving "less-
myopic” scheduling rules for dynamic job shop scheduling with
genetic programming. In Proceedings of the 2014 Annual Conference

BIBLIOGRAPHY 211

on Genetic and Evolutionary Computation (New York, NY, USA, 2014),
GECCO "14, ACM, pp. 927-934.

[102] ILLETSKOVA, M., BERTELS, A. R., TUGGLE, J. M., HARTER, A.,
RICHTER, S., TAURITZ, D. R., MULDER, S., BUENO, D., LEGER,
M., AND SIEVER, W. M. Improving performance of cdcl sat solvers
by automated design of variable selection heuristics. In Computa-
tional Intelligence (SSCI), 2017 IEEE Symposium Series on (2017), IEEE,

pp- 1-8.

[103] IsHIBUCHI, H., AND MURATA, T. A multi-objective genetic local
search algorithm and its application to flowshop scheduling. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 28, 3 (1998), 392—403.

[104] Jacoss, T. W., AND GIL, A. E. Method and system for print shop
job routing, Nov. 3 2015. US Patent 9,176,690.

[105] JAIN, S., AND FOLEY, W. Dispatching strategies for managing un-
certainties in automated manufacturing systems. European Journal of
Operational Research 248, 1 (2016), 328-341.

[106] JAKOBOVIC, D., AND BUDIN, L. Dynamic Scheduling with Genetic
Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006,
pp. 73-84.

[107] JAKOBOVIC, D., AND BUDIN, L. Dynamic scheduling with genetic
programming. In Genetic Programming. Springer, 2006, pp. 73-84.

[108] JAKOBOVIC, D., JELENKOVIC, L., AND BUDIN, L. Genetic program-
ming heuristics for multiple machine scheduling. In Genetic Pro-

gramming. Springer, 2007, pp. 321-330.

[109] JaMRus, T., CHIEN, C.-F., GEN, M., AND SETHANAN, K. Hy-

brid particle swarm optimization combined with genetic operators

212 BIBLIOGRAPHY

for flexible job-shop scheduling under uncertain processing time for
semiconductor manufacturing. IEEE Transactions on Semiconductor
Manufacturing 31,1 (2017), 32-41.

[110] JANAK, S. L., LIN, X., AND FLOUDAS, C. A. A new robust opti-
mization approach for scheduling under uncertainty: Ii. uncertainty
with known probability distribution. Computers & chemical engineer-
ing 31, 3 (2007), 171-195.

[111] JAYAMOHAN, M., AND RAJENDRAN, C. New dispatching rules for

shop scheduling: a step forward. International Journal of Production
Research 38, 3 (2000), 563-586.

[112] JENSEN, M. T. Generating robust and flexible job shop schedules us-

ing genetic algorithms. Evolutionary Computation, IEEE Transactions
on 7,3 (2003), 275-288.

[113] J1A, Z., AND IERAPETRITOU, M. G. Uncertainty analysis on the
righthand side for milp problems. AICKE journal 52,7 (2006), 2486—
2495.

[114] JOHNSON, S. M. Optimal two-and three-stage production sched-
ules with setup times included. Naval research logistics quarterly 1, 1
(1954), 61-68.

[115] KACPRZYK, J., AND PEDRYCZ, W. Springer handbook of computational
intelligence. Springer, 2015.

[116] KARUNAKARAN, D., ME]L, Y., CHEN, G., AND ZHANG, M. Dy-
namic job shop scheduling under uncertainty using genetic pro-
gramming. Intelligent and Evolutionary Systems (2016), 195.

[117] KARUNAKARAN, D., MEI, Y., CHEN, G., AND ZHANG, M. Toward

evolving dispatching rules for dynamic job shop scheduling under

BIBLIOGRAPHY 213

uncertainty. In Proceedings of the Genetic and Evolutionary Computation
Conference (2017), ACM, pp. 282-289.

[118] KELLER, R. E., AND PoOLI, R. Cost-benefit investigation of a genetic-
programming hyperheuristic. In Artificial Evolution (2008), Springer,
pp. 13-24.

[119] KENNEDY, J. Particle swarm optimization. In Encyclopedia of machine
learning. Springer, 2011, pp. 760-766.

[120] K1v, Y. K., PARK, K., AND KO, J. A symbiotic evolutionary algo-
rithm for the integration of process planning and job shop schedul-
ing. Computers & operations research 30, 8 (2003), 1151-1171.

[121] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimization
by simulated annealing. science 220, 4598 (1983), 671-680.

[122] KNOWLES, J., AND CORNE, D. On metrics for comparing nondom-
inated sets. In Evolutionary Computation, 2002. CEC’02. Proceedings of
the 2002 Congress on (2002), vol. 1, IEEE, pp. 711-716.

[123] KoopP, G., POIRIER, D. J., AND TOBIAS, J. L. Bayesian econometric
methods. Cambridge University Press, 2007.

[124] KOUVELIS, P., DANIELS, R. L., AND VAIRAKTARAKIS, G. Robust

scheduling of a two-machine flow shop with uncertain processing
times. lie Transactions 32, 5 (2000), 421-432.

[125] KOUVELIS, P., AND YU, G. Robust discrete optimization and its appli-
cations, vol. 14. Springer Science & Business Media, 2013.

[126] KoOzA, J. R. Genetic programming: on the programming of computers by
means of natural selection, vol. 1. MIT press, 1992.

[127] KREMER, J., STEENSTRUP PEDERSEN, K., AND IGEL, C. Active
learning with support vector machines. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery 4, 4 (2014), 313-326.

214

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

BIBLIOGRAPHY

KU, W.-Y., AND BECK, J. C. Mixed integer programming models
for job shop scheduling: A computational analysis. Computers &
Operations Research 73 (2016), 165-173.

KULESHOV, V., AND PRECUP, D. Algorithms for multi-armed bandit
problems. arXiv preprint arXiv:1402.6028 (2014).

KULKARNI, K., AND MANOHAR, P. Methods and systems for
routing and scheduling print jobs, Mar. 9 2017. US Patent App.
14/848,445.

KUTSUNA, N., HIGAKI, T., MATSUNAGA, S., OTSUKI, T., YAM-
AGUCHI, M., Fujti, H., AND HASEZAWA, S. Active learning frame-
work with iterative clustering for bioimage classification. Nature
communications 3 (2012), 1032.

LAND, A. H., AND DOIG, A. G. An automatic method of solving

discrete programming problems. Econometrica: Journal of the Econo-
metric Society (1960), 497-520.

LASSIG, J., AND SUDHOLT, D. The benefit of migration in parallel
evolutionary algorithms. In Proceedings of the 12th annual conference
on Genetic and evolutionary computation (2010), ACM, pp. 1105-1112.

LASSIG, J., AND SUDHOLT, D. Experimental supplements to the
theoretical analysis of migration in the island model. In International
Conference on Parallel Problem Solving from Nature (2010), Springer,
pp. 224-233.

LASSIG, J., AND SUDHOLT, D. Adaptive population models for off-
spring populations and parallel evolutionary algorithms. In Pro-
ceedings of the 11th workshop proceedings on Foundations of genetic al-
gorithms (2011), ACM, pp. 181-192.

BIBLIOGRAPHY 215

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

LASSIG, J., AND SUDHOLT, D. Analysis of speedups in parallel evo-
lutionary algorithms and (1+ \) eas for combinatorial optimization.
Theoretical Computer Science 551 (2014), 66-83.

LAWRENCE, S. R., AND SEWELL, E. C. Heuristic, optimal, static,
and dynamic schedules when processing times are uncertain. Jour-
nal of Operations Management 15,1 (1997), 71-82.

LENSTRA, J. K., AND KAN, A. R. Computational complexity of dis-

crete optimization problems. Annals of Discrete Mathematics 4 (1979),
121-140.

LEON, C., MIRANDA, G., SEGREDO, E., AND SEGURA, C. Par-
allel hypervolume-guided hyperheuristic for adapting the multi-
objective evolutionary island model. In Nature Inspired Cooperative
Strategies for Optimization (NICSO 2008). Springer, 2009, pp. 261-272.

LEwis, D. D., AND CATLETT, J. Heterogeneous uncertainty sam-
pling for supervised learning. In Machine Learning Proceedings 1994.
Elsevier, 1994, pp. 148-156.

L1, Z., AND IERAPETRITOU, M. Process scheduling under uncer-
tainty: Review and challenges. Computers & Chemical Engineering 32,
4 (2008), 715-727.

LIN, X., JANAK, S. L., AND FLouDAS, C. A. A new robust op-
timization approach for scheduling under uncertainty:: I. bounded
uncertainty. Computers & chemical engineering 28, 6 (2004), 1069-1085.

Liu, B., WANG, L., AND JIN, Y.-H. An effective pso-based memetic
algorithm for flow shop scheduling. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 37,1 (2007), 18-27.

Liu, Y. Multi-objective optimisation methods for minimising total
weighted tardiness, electricity consumption and electricity cost in job shops
through scheduling. PhD thesis, University of Nottingham, 2014.

216

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

BIBLIOGRAPHY

L1u, Y., DONG, H., LOHSE, N., AND PETROVIC, S. Reducing en-
vironmental impact of production during a Rolling Blackout policy

A multi-objective schedule optimisation approach. Journal of Cleaner
Production, 0 (2015), .

L1U, Y., MEL Y., ZHANG, M., AND ZHANG, Z. A predictive-reactive
approach with genetic programming and cooperative co-evolution

for uncertain capacitated arc routing problem. Evolutionary compu-
tation (2019), 1-25.

LUQUE, G., AND ALBA, E. Parallel genetic algorithms: Theory and real
world applications, vol. 367. Springer, 2011.

MARCO, N., PERIAUX, J., ET AL. A parallel genetic algorithm for

multi-objective optimization in computational fluid dynamics.

MEI], Y., NGUYEN, S., XUE, B., AND ZHANG, M. An efficient fea-
ture selection algorithm for evolving job shop scheduling rules with
genetic programming. IEEE Transactions on Emerging Topics in Com-
putational Intelligence 1, 5 (2017), 339-353.

MEI, Y., AND ZHANG, M. Genetic programming hyper-heuristic for
multi-vehicle uncertain capacitated arc routing problem. In Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion
(New York, NY, USA, 2018), GECCO "18, ACM, pp. 141-142.

MICHALEWICZ, Z., AND FOGEL, D. B. How to solve it: modern heuris-
tics. Springer Science & Business Media, 2013.

MITCHELL, M. An introduction to genetic algorithms. MIT press, 1998.

MIYASHITA, K. Job-shop scheduling with genetic programming. In
Proceedings of the 2Nd Annual Conference on Genetic and Evolutionary
Computation (San Francisco, CA, USA, 2000), GECCO’00, Morgan
Kaufmann Publishers Inc., pp. 505-512.

BIBLIOGRAPHY 217

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

MULVEY, J. M., VANDERBEI, R. J., AND ZENIOS, S. A. Robust op-
timization of large-scale systems. Operations research 43, 2 (1995),
264-281.

MYRDAL, G. Monetary equilibrium. London: W. Hodge, 1939.

NGUYEN, S. Automatic design of dispatching rules for dispatching rules

for job shop scheduling with genetic programming. PhD dissertation,

Victoria University of Wellington, 2013.

NGUYEN, S. Automatic design of dispatching rules for job shop
scheduling with genetic programming.

NGUYEN, S., ME], Y., AND ZHANG, M. Genetic programming for
production scheduling: a survey with a unified framework. Complex
& Intelligent Systems 3, 1 (2017), 41-66.

NGUYEN, S., AND ZHANG, M. A pso-based hyper-heuristic for
evolving dispatching rules in job shop scheduling. In Evolutionary
Computation (CEC), 2017 IEEE Congress on (2017), IEEE, pp. 882-889.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. A co-
evolution genetic programming method to evolve scheduling poli-
cies for dynamic multi-objective job shop scheduling problems. In
IEEE Congress on Evolutionary Computation (2012), pp. 1-8.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. A
computational study of representations in genetic programming to
evolve dispatching rules for the job shop scheduling problem. Evo-
lutionary Computation, IEEE Transactions on 17,5 (2013), 621-639.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Dy-
namic multi-objective job shop scheduling: A genetic programming
approach. In Automated Scheduling and Planning. Springer, 2013,
pp. 251-282.

218

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

BIBLIOGRAPHY

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic design of scheduling policies for dynamic multi-objective job
shop scheduling via cooperative coevolution genetic programming.
IEEE Transactions on Evolutionary Computation 18, 2 (2014), 193-208.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic programming via iterated local search for dynamic job shop
scheduling. Cybernetics, IEEE Transactions on 45, 1 (2015), 1-14.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Genetic
programming for job shop scheduling. In Evolutionary and Swarm
Intelligence Algorithms. Springer, 2019, pp. 143-167.

NGUYEN, S., ZHANG, M., AND TAN, K. C. Surrogate-assisted ge-
netic programming with simplified models for automated design of
dispatching rules. IEEE transactions on cybernetics 47,9 (2016), 2951
2965.

NILAKANTAN, J. M., HUANG, G. Q., AND PONNAMBALAM, S. An
investigation on minimizing cycle time and total energy consump-

tion in robotic assembly line systems. Journal of Cleaner Production 90
(2015), 311-325.

Nowak, K., 1zzo, D., AND HENNES, D. Injection, saturation and
feedback in meta-heuristic interactions. In Proceedings of the 2015 An-
nual Conference on Genetic and Evolutionary Computation (2015), ACM,
pp. 1167-1174.

ORGUN, S., ALTINEL, I. K., AND HORTACSU, O. Scheduling of
batch processes with operational uncertainties. Computers & chemical
engineering 20 (1996), S1191-51196.

OUELHAD]J, D., AND PETROVIC, S. A survey of dynamic scheduling
in manufacturing systems. Journal of scheduling 12, 4 (2009), 417.

BIBLIOGRAPHY 219

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

OZDEMIR, S., BARAA, A. A., AND KHALIL, O. A. Multi-objective
evolutionary algorithm based on decomposition for energy efficient

coverage in wireless sensor networks. Wireless personal communica-
tions 71,1 (2013), 195-215.

PANWALKAR, S. S., AND ISKANDER, W. A survey of scheduling
rules. Operations research 25,1 (1977), 45-61.

PARK, J., MEI, Y., NGUYEN, S., CHEN, G., JOHNSTON, M., AND
ZHANG, M. Genetic Programming Based Hyper-heuristics for Dynamic
Job Shop Scheduling: Cooperative Coevolutionary Approaches. Springer
International Publishing, Cham, 2016, pp. 115-132.

PARK, J., MEI, Y., NGUYEN, S., CHEN, G., AND ZHANG, M. In-
vestigating a machine breakdown genetic programming approach
for dynamic job shop scheduling. In European Conference on Genetic
Programming (2018), Springer, pp. 253-270.

PARK, J., MEI, Y., NGUYEN, S., CHEN, G., AND ZHANG, M. An
investigation of ensemble combination schemes for genetic pro-

gramming based hyper-heuristic approaches to dynamic job shop
scheduling. Applied Soft Computing 63 (2018), 72-86.

PARK, J., NGUYEN, S., ZHANG, M., AND JOHNSTON, M. Evolv-
ing ensembles of dispatching rules using genetic programming for
job shop scheduling. In European Conference on Genetic Programming
(2015), Springer, pp. 92-104.

PICKARDT, C. W., HILDEBRANDT, T., BRANKE, J., HEGER, J., AND
SCHOLZ-REITER, B. Evolutionary generation of dispatching rule
sets for complex dynamic scheduling problems. International Journal
of Production Economics 145, 1 (2013), 67-77.

PILLAY, N., AND QU, R. Packing problems. In Hyper-Heuristics:
Theory and Applications. Springer, 2018, pp. 67-73.

220 BIBLIOGRAPHY

[179] PINEDO, M. Planning and scheduling in manufacturing and services,
vol. 24. Springer, 2005.

[180] PINEDO, M., AND SINGER, M. A shifting bottleneck heuristic for
minimizing the total weighted tardiness in a job shop. Naval Research
Logistics 46, 1 (1999), 1-17.

[181] PINEDO, M., AND WEISS, G. The largest variance first policy
in some stochastic scheduling problems. Operations Research 35, 6
(1987), 884-891.

[182] PINEDO, M. L. Scheduling: theory, algorithms, and systems. Springer
Science & Business Media, 2012.

[183] P1rROUZI, S., AGHAEI, J., VAHIDINASAB, V., NIKNAM, T., AND
KHODAEI, A. Robust linear architecture for active/reactive power

scheduling of ev integrated smart distribution networks. Electric
Power Systems Research 155 (2018), 8-20.

[184] PoOLL, R., KENNEDY, J., AND BLACKWELL, T. Particle swarm opti-
mization. Swarm intelligence 1, 1 (2007), 33-57.

[185] POTTER, M. A., AND DE JONG, K. A. Cooperative coevolution: An

architecture for evolving coadapted subcomponents. Evolutionary
computation 8, 1 (2000), 1-29.

[186] PoTTs, C. N., AND STRUSEVICH, V. A. Fifty years of scheduling: a
survey of milestones. Journal of the Operational Research Society (2009),

541-568.

[187] RABELO, L., AND JONES, A. Job shop scheduling. In Encyclopedia of
Operations Research and Management Science, S. Gass and M. Fu, Eds.
Springer US, 2013, pp. 817-830.

[188] RAHMATI, S. H. A., AHMADI, A., AND GOVINDAN, K. A novel
integrated condition-based maintenance and stochastic flexible job

BIBLIOGRAPHY 221

shop scheduling problem: simulation-based optimization approach.
Annals of Operations Research (2018), 1-39.

[189] RAI, S. System and method for assigning print jobs to autonomous
cells in a transaction printing environment, Nov. 15 2011. US Patent
8,059,292.

[190] RAI, S. Workflow scheduling method and system, May 13 2014. US
Patent 8,725,546.

[191] RAILS., DUKE, C. B., LOWE, V., QUAN-TROTTER, C., AND SCHEER-
MESSER, T. Ldp lean document production-or-enhanced productiv-
ity improvements for the printing industry. Interfaces 39, 1 (2009),
69-90.

[192] RAI, S., GODAMBE, A. V., DUKE, C. B., AND WILLIAMS, G. H.
Printshop resource optimization via the use of autonomous cells,
July 18 2006. US Patent 7,079,266.

[193] RAJENDRAN, C., AND HOLTHAUS, O. A comparative study of dis-
patching rules in dynamic flowshops and jobshops. European journal
of operational research 116, 1 (1999), 156-170.

[194] RAMASESH, R. Dynamic job shop scheduling: a survey of simula-
tion research. Omega 18,1 (1990), 43-57.

[195] RASMUSSEN, C. E. Gaussian processes in machine learning. In Ad-
vanced lectures on machine learning. Springer, 2004, pp. 63-71.

[196] ROSENBLATT, M. J., AND LEE, H. L. Economic production cycles

with imperfect production processes. IIE transactions 18, 1 (1986),
48-55.

[197] ROTHLAUF, F. Representations for evolutionary algorithms. In Pro-
ceedings of the 11th Annual Conference Companion on Genetic and Evo-

222 BIBLIOGRAPHY

lutionary Computation Conference: Late Breaking Papers (2009), ACM,
pp. 3131-3156.

[198] SABOORI, B., SABOORI, B., CARLSON, J. S., AND SODERBERG, R.
Introducing fast robot roller hemming process in automotive indus-
try. World Academy of Science, Engineering and Technology 3 (2009).

[199] SABUNCUOGLU, I., AND BAY1Z, M. Analysis of reactive scheduling

problems in a job shop environment. European Journal of operational
research 126, 3 (2000), 567-586.

[200] SAFARZADEGAN GILAN, S., GOYAL, N., AND DILKINA, B. Active
learning in multi-objective evolutionary algorithms for sustainable
building design. In Proceedings of the Genetic and Evolutionary Com-
putation Conference 2016 (2016), ACM, pp. 589-596.

[201] SCHEIN, A. I., AND UNGAR, L. H. Active learning for logistic re-
gression: an evaluation. Machine Learning 68, 3 (2007), 235-265.

[202] SEGURA, C., MIRANDA, G., AND LEON, C. Parallel hyperheuris-

tics for the frequency assignment problem. Memetic Computing 3, 1
(2011), 33—49.

[203] SELS, V., GHEYSEN, N., AND VANHOUCKE, M. A comparison of
priority rules for the job shop scheduling problem under different
flow time-and tardiness-related objective functions. International
Journal of Production Research 50, 15 (2012), 4255-4270.

[204] SETTLES, B. Active learning literature survey. 2010. Computer Sci-
ences Technical Report 1648 (2014).

[205] SETTLES, B., AND CRAVEN, M. An analysis of active learning strate-
gies for sequence labeling tasks. In Proceedings of the conference on
empirical methods in natural language processing (2008), Association for

Computational Linguistics, pp. 1070-1079.

BIBLIOGRAPHY 223

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

SETTLES, B., CRAVEN, M., AND RAY, S. Multiple-instance active
learning. In Advances in neural information processing systems (2008),
pp- 1289-1296.

SEUNG, H. S., OPPER, M., AND SOMPOLINSKY, H. Query by com-
mittee. In Proceedings of the fifth annual workshop on Computational
learning theory (1992), ACM, pp. 287-294.

SHA, D., AND LIN, H.-H. A multi-objective pso for job-shop
scheduling problems. Expert Systems with Applications 37, 2 (2010),
1065-1070.

SHIUE, Y.-R. Data-mining-based dynamic dispatching rule selection
mechanism for shop floor control systems using a support vector
machine approach. International Journal of Production Research 47,13
(2009), 3669-3690.

SHROUF, F., ORDIERES-MERE, J., GARCIA-SANCHEZ, A., AND
ORTEGA-MIER, M. Optimizing the production scheduling of a sin-
gle machine to minimize total energy consumption costs. Journal of
Cleaner Production 67 (2014), 197-207.

SKOLICKI, Z. An analysis of island models in evolutionary compu-
tation. In Proceedings of the 7th annual workshop on Genetic and evolu-
tionary computation (2005), ACM, pp. 386-389.

SKOLICKI, Z., AND DE JONG, K. The influence of migration sizes
and intervals on island models. In Proceedings of the 7th annual con-
ference on Genetic and evolutionary computation (2005), ACM, pp. 1295
1302.

SMITH-MILES, K. A., JAMES, R. J., GIFFIN, J. W., AND Tu, Y.
A knowledge discovery approach to understanding relationships
between scheduling problem structure and heuristic performance.

224 BIBLIOGRAPHY

In International Conference on Learning and Intelligent Optimization
(2009), Springer, pp. 89-103.

[214] SORIA-ALCARAZ, J. A., ESPINAL, A., AND SOTELO-FIGUEROA,

M. A. Evolvability metric estimation by a parallel perceptron for
on-line selection hyper-heuristics. IEEE Access 5 (2017), 7055-7063.

[215] SPRAVE, J. A unified model of non-panmictic population structures
in evolutionary algorithms.

[216] SPRECHER, A., KOLISCH, R., AND DREXL, A. Semi-active, ac-
tive, and non-delay schedules for the resource-constrained project
scheduling problem. European Journal of Operational Research 80, 1
(1995), 94-102.

[217] SRINIVAS, N., KRAUSE, A., KAKADE, S. M., AND SEEGER, M.
Gaussian process optimization in the bandit setting: No regret and
experimental design. arXiv preprint arXiv:0912.3995 (2009).

[218] STARNES, D. S., YATES, D., AND MOORE, D. S. The practice of statis-
tics. Macmillan, 2010.

[219] SUBRAMANIAM, V., LEE, G., HONG, G., WONG, Y., AND RAMESH,

T. Dynamic selection of dispatching rules for job shop scheduling.
Production planning & control 11, 1 (2000), 73-81.

[220] SUDHOLT, D. Parallel evolutionary algorithms. In Springer Handbook
of Computational Intelligence. Springer, 2015, pp. 929-959.

[221] SuN, L., LIN, L., GEN, M., AND LI, H. A hybrid cooperative co-
evolution algorithm for fuzzy flexible job shop scheduling. IEEE
Transactions on Fuzzy Systems (2019).

[222] SUTTON, R. S., BARTO, A. G., BACH, F., ET AL. Reinforcement learn-
ing: An introduction. MIT press, 1998.

BIBLIOGRAPHY 225

[223] TAILLARD, E. Benchmarks for basic scheduling problems. european
journal of operational research 64,2 (1993), 278-285.

[224] TAPIERO, C. S. Ex-post inventory control. International journal of
production research 38, 6 (2000), 1397-1406.

[225] TAY,]J. C., AND HO, N. B. Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-shop
problems. Computers & Industrial Engineering 54, 3 (2008), 453-473.

[226] TENNE, Y., AND GOH, C.-K. Computational intelligence in expensive

optimization problems, vol. 2. Springer Science & Business Media,
2010.

[227] TKINDT, V., AND BILLAUT, J.-C. Multicriteria scheduling: theory, mod-
els and algorithms. Springer Science & Business Media, 2006.

[228] TokIC, M., AND PALM, G. Value-difference based exploration:
adaptive control between epsilon-greedy and softmax. In Annual
Conference on Artificial Intelligence (2011), Springer, pp. 335-346.

[229] TOMASSINI, M. Spatially Structured Evolutionary Algorithms: Artifi-
cial Evolution in Space and Time (Natural Computing Series). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[230] VAESSENS, R. J. M., AARTS, E. H., AND LENSTRA, J. K. Job shop
scheduling by local search. INFORMS Journal on Computing 8, 3
(1996), 302-317.

[231] VAN DEN AKKER, M., AND HOOGEVEEN, H. Minimizing the num-

ber of late jobs in a stochastic setting using a chance constraint. Jour-
nal of Scheduling 11, 1 (2008), 59-69.

[232] VAN LAARHOVEN, P. J., AARTS, E. H., AND LENSTRA, J. K. Job
shop scheduling by simulated annealing. Operations research 40, 1
(1992), 113-125.

226

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

BIBLIOGRAPHY

VAN ONSEM, W., AND DEMOEN, B. Parhyflex: A framework for
parallel hyper-heuristics. In Proceedings of the 25th Benelux Conference
on Arti cial Intelligence (2013), vol. 28, pp. 231-238.

VERDERAME, P. M., ELIA, J. A., LI, J., AND FLOUDAS, C. A. Plan-
ning and scheduling under uncertainty: a review across multiple
sectors. Industrial & engineering chemistry research 49, 9 (2010), 3993—
4017.

VOGIATZIS, D., AND TSAPATSOULIS, N. Active learning for mi-

croarray data. International Journal of Approximate Reasoning 47, 1
(2008), 85-96.

VOUDOURIS, C., AND TSANG, E. P. Guided local search. In Hand-
book of metaheuristics. Springer, 2003, pp. 185-218.

WANG, H., JIN, Y., AND DOHERTY, J. Committee-based active
learning for surrogate-assisted particle swarm optimization of ex-
pensive problems. IEEE transactions on cybernetics 47,9 (2017), 2664—
2677.

WANG, J.-Q., CHEN, J., ZHANG, Y., AND HUANG, G. Q. Schedule-
based execution bottleneck identification in a job shop. Computers &
Industrial Engineering 98 (2016), 308-322.

WANG, Y, JIN, X., XIE, L., ZHANG, Y., AND LU, S. Uncertain pro-
duction scheduling based on fuzzy theory considering utility and
production rate. Information 8, 4 (2017), 158.

WERNER, F. Scheduling under uncertainty. Unpublished doc-
ument. Online at: https://feb. kuleuven. be/eng/tew/academic/prod-
bel/PMS2012/pdf% 20file% 20talk% 20werner [1]. pdf (2012).

WIEGAND, R. P. An analysis of cooperative coevolutionary algorithms.
PhD thesis, George Mason University, 2003.

BIBLIOGRAPHY 227

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

WILCOXON, F. Individual comparisons by ranking methods. Bio-
metrics bulletin (1945), 80-83.

WITT, C. Worst-case and average-case approximations by simple
randomized search heuristics. In Annual Symposium on Theoretical
Aspects of Computer Science (2005), Springer, pp. 44-56.

XI1AO, N., AND ARMSTRONG, M. P. A specialized island model
and its application in multiobjective optimization. In Genetic and
Evolutionary Computation Conference (2003), Springer, pp. 1530-1540.

YAoO, X., L1U, Y., AND LIN, G. Evolutionary programming made
taster. IEEE Transactions on Evolutionary computation 3, 2 (1999), 82—
102.

YAO, Y., PENG, Z., AND XIAO, B. Parallel hyper-heuristic algorithm

for multi-objective route planning in a smart city. IEEE Transactions
on Vehicular Technology 67, 11 (2018), 10307-10318.

YIN, W.-]., L1U, M., AND WU, C. Learning single-machine schedul-
ing heuristics subject to machine breakdowns with genetic program-
ming. In Evolutionary Computation, 2003. CEC’03. The 2003 Congress
on (2003), vol. 2, IEEE, pp. 1050-1055.

ZHANG,]., DING, G., Z0oU, Y., QIN, S., AND Fu, J. Review of job
shop scheduling research and its new perspectives under industry
4.0. Journal of Intelligent Manufacturing (2017), 1-22.

ZHANG, R., AND WU, C. Bottleneck identification procedures for
the job shop scheduling problem with applications to genetic algo-
rithms. The International Journal of Advanced Manufacturing Technol-
ogy 42,11-12 (2009), 1153-1164.

ZITZLER, E., THIELE, L., LAUMANNS, M., FONSECA, C. M., AND
DA FONSECA, V. G. Performance assessment of multiobjective op-

228 BIBLIOGRAPHY

timizers: An analysis and review. IEEE Transactions on evolutionary
computation 7,2 (2003), 117-132.

[251] Z1ZTLER, E., LAUMANNS, M., AND THIELE, L. Spea2: Improving
the strength pareto evolutionary algorithm for multiobjective opti-
mization. Evolutionary Methods for Design, Optimization, and Control
(2002), 95-100.

Appendices

229

Appendix A

Supplementary Results for
Chapter 4

In Chapter 4, we presented a summary of our results to highlight the
significant improvement observed in scheduling performance using our
proposed algorithms, particularly GPB. Here we present more detailed
boxplots corresponding to the different test sets considered in our experi-

ments.
Q- T T T T T T T e T
o ! H 1 ' H 1 \ T [1
= [T T T 'Yt o+ TU'T T o, TT 11T LT
8_ A T [I | | . T I T v
E ‘9_ [Lo ' ol | | 1 ol o [[
= =1 B3 o o B0 005 658 Ao o 68 oo
o — ::: :I: :|| :I: |:: ::: |:: ::: ::: ||:
o [[[[[[[[[[
o _| 4 1o 1 1 1 1 14 4 11 1 L L 11 L 14 4 1L 4 14 4 1 1
§ T T T T T T T T T T
11 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

[GPHH - e-greedy - GPB] Test Set- Il

Figure A.1: Boxplots: Test Set II.

Since each test set consists of 30 DJSS instances, we randomly picked
10 instances from a test set and plotted the box plots for the total weighted
tardiness (TWT) values obtained after scheduling using the evolved dis-

231

APPENDIX A. SUPPLEMENTARY RESULTS FOR CHAPTER 4

232

F- {3
F- 13-
H- L

T
8

T TTT
5 5 6 6

I TTT
2 2

_ _ _
90+99 90+9¢

1ML

9 9 10

7 7 8

3 3 4 4

[GPHH - e-greedy - GPB] Test Set- XIlI

T
8

[[
5 5§ 6 6

[
2 2

90+98 90+9G 90+9¢

1ML

9 9 10

7 7 8

3 3 4 4

[GPHH - e-greedy - GPB] Test Set- XVIII

Q

[GPHH - e-greedy - GPB] Test Set- XXV

7

ik

-

2 2 3 3 4 4

ko= H -
Fe-- —
koo —

[O
L0+30°L 90+30°C

1ML

9 9 10

8

8

Figure A.2: Test Sets XII, XVIII and XXV: The result with highest medians

are marked in orange.

patching rules obtained using each of the methods. The boxplots for the

methods are ordered as GPHH, e-greedy and GPB. Consider Fig. A.1 which
shows boxplots for the test set II. Each triplet of boxplots (of a total of 10

such triplets) corresponds to a particular DJSS test instance. The boxplots

are those whose medians are low (scheduling objective is

marked in

to minimize tardiness) and indicate good performance. On the other hand,

233

the boxplots colored in indicate poor performance. We can see in
Fig. A.1 that the performance of (standard) GPHH is significantly poor for
the instances 1 and 4. We also point out that for the instances 6 and 9 as
well, the performance of GPB is good. In Table 4.8, which summarizes the
results using [win-draw-lose], for test set II, the observed result was [4-26-
0]. The boxplots in Fig. A.1 illustrate this observed fact. Furthermore, the
performance of the e-greedy method is poor for the test instance 5.
Similarly, for the test sets XII, XVIII and XXV the performance of the
e-greedy method was poor. This is illustrated through the boxplots in
Fig. A.2. In Table 4.7, the corresponding result for the test sets XII, XVIII
and XXV was [1-3-26], [1-5-24] and [0-10-20] respectively. As expected, the
performance of the e-greedy method on a large number of DJSS test in-
stances from these test sets is poor, as shown using the boxplots marked

in orange.
S
S 4 T H
o 1 1
o | I
N T+ T TT T+ T T TTT T TT 5 T T
= e N e i
E o R EE: pagi :EB P :H; ENREEN Y
o
:] pnifeaaiue Ruallanalns
8 4 L 1 411 4 L L 4 L oL R R 4 L L J-JI-J. R A R R 4 L L1
T T T T T T T T T T
11 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

[GPHH - e-greedy - GPB] Test Set- XIX

Figure A.3: The boxplot pertaining to the DJSS instance for which GPB
performed poorly is highlighted.

For the test set XIX, the performance of GPB over some DJSS instances
was poor ([3-25-2] as in Table 4.8). The 5th DJSS instance in Fig. A.3 illus-
trates this observed fact.

Finally, in Fig. A.4, we present more boxplots corresponding to differ-
ent test sets. We highlight a boxplot in orange if its performance is very

poor and in green when the performance of the corresponding method

APPENDIX A. SUPPLEMENTARY RESULTS FOR CHAPTER 4

234

(particularly GPB) is good.

T T T T T
G0+99 G0+9¢

1ML

10

5 5 6 6 7 7 8 8 9 9

2 2 3 3 4 4

[GPHH - e-greedy - GPB] Test Set- V

g 1 B SR
..... o S
e i S
S B SRR
e I I]
o I o
-] -
| -
F----1 --d
e B ST
s B SR
e B SR
| 1 SRR
e I S
e I Ry &
| -—d
F--= -—d
| -—d
g I SRR
gl I S
! I RS
- - D -4 -
S I S
koI |
e i SR
..... O 3--F
s i S
e I ST
1 I S
g I SERT
T T I
000000} 00000C
1ML

10

2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

1

1

[GPHH - e-greedy - GPB] Test Set- Xl

F---{TF--4
b
F---{T1--4
r---{ T }--A4
F---TF--4
F---[1T1--4
k-~
F---{TF--4

F---CTF--A
I W
k-~ ---
F---[T}--4
Fo--}--4
oo -4
k-~ -~
- - S - -
et B W
r---{---4
F---0---4
F---[T1---4
k- k-
b+
el W
F---TF--4
F--{T]---4
F---T1]---4
-k~
et 1
et B B
F---{1T1]---4
FT T T T T T
G0+99 G0+9L
1ML

10

2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

1

1

[GPHH - e-greedy - GPB] Test Set- XXX

Figure A.4: The boxplots marked in green are better than the rest and the

ones marked in orange indicate poor performance.

Appendix B

Supplementary Results for
Chapter 5

In Chapter 5, we presented a summary of results which showed the signif-
icant improvement observed in multi-objective scheduling performance
using the proposed active learning heuristic. Here we present more de-
tailed plots to highlight the observed results. We plot boxplot to visual-
ize the improvement observed with respect to each of the metrics which
we considered, namely hypervolume indicator (HVI), spread and inverted
generational distance (IGD).

Firstly, we present the box plots for test sets 3-) and 4-) which are
not clustered. In Fig. B.1, we present boxplots showing the performance
of NSGAII, island model and our proposed successive reject heuristic on
10 of the test DJSS instances for HVI metric. It can be observed that our
proposed approach outperforms on almost all the test instances which is
consistent with the results shown in Table 5.12. Similarly, for the same pair
of datasets, for the metrics SPREAD and IGD, the boxplots are presented
in Figs. B.2 & B.3 respectively. Again this is consistent with our earlier
observations which showed improved performance with respect to IGD
but not with SPREAD.

For the test sets 3-I, 3-1, 3-III & 3-IV and 4-1, 4-1, 4-1I1 & 4-IV, similar

235

236 APPENDIX B. SUPPLEMENTARY RESULTS FOR CHAPTER 5

comparisons using box plots are made. For HVI, Figs. B.4 & B.5 show the
boxplots and which show similar characteristics to 3-) and 4-). similarly,
tor SPREAD, the Figs. B.6 & B.7 and for IGD, the Figs. B.8 & B.9 supple-
ment the observations made earlier.

rrv— 11717 171717 177177 T©TT7T71T TTT TTT TTT TTI
2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

HHB e i L
gl BT SR
JEE |

Test Set- 3-Y : [NSGAII - Island Model - SRH Island Model] : HVI

; L A SRR . P .
3 gd HT ﬁ i B ?Eﬂﬂ B

0.4
|
-~

0.2
L

I 171717 117717 T©TT1TT TTT TTT TTT
11 2 2 3 3 4

5 5 6 6 7 7 8 8 9 9 10

Test Set- 4-Y : [NSGAII - Island Model - SRH Island Model] : HVI

Figure B.1: Test sets: 3-) and 4-). For HVI, the higher value corresponds
to better performance.

237

3 4 4 5 5 6 6 7 7 8 8 9 9 10

2 2 3

Test Set- 3-Y : [NSGAII - Island Model - SRH Island Model] : SPREAD

T T
7 7

I
5

2 2 3

I
1

6 6 8 8 9 9 10

3 4 4 5

Test Set- 4-Y : [NSGAII - Island Model - SRH Island Model] : SPREAD

Figure B.2: Test sets: 3-) and 4-). Lower value of the metric (SPREAD)

corresponds to better performance.

APPENDIX B. SUPPLEMENTARY RESULTS FOR CHAPTER 5

238

FIH-

9000

10

7 8 8 9 9

3 4 4 5 5 6 6 7

2 2 3

1

Test Set- 3-Y : [NSGAII - Island Model - SRH Island Model] : IGD

:

1

I
I
4
I

0€00°0

_ _ _
02000

01000

10

7 8 8 9 9

3 4 4 5 5 6 6 7

2 2 3

Test Set- 4-Y : [NSGAII - Island Model - SRH Island Model] : IGD

Figure B.3: Test sets: 3-) and 4-). The order of boxplots is same as men-

tioned in the caption. Lower value of the metric (IGD) corresponds to

better performance.

239

k- J--4 - R LI 3+ S = F - =
FH{_LF----- - b---C----4 - - b -
T t---+ - 2 P -+ - 2 R - 2 F-H -
F - — o W F---[T_1-4 - o W F--[I--A - o W F---4 -
. - - F-11]---- - - F-[- -~ o~ -
SRR - - o = b4 o = N - o 3 k[0 -+ =
©
P - P <! HH L o 9 F {4 — W FLIT -
(I - S FIH - = | - - - -
-4 - © D HC—F---+ - o 2| +[IJ-- - o 2 + -0 -
® o
P} O s = -~ B eI -~ 2 -0 -
S — - - | v - - | T3 - e S -
b=+ -~ O -~ x| -3 -~ Z| e -
7] %)
i S I L - © b-o= -+ R R N I SR R g i =
F--[LJ----+ — [} F--C L J----- 4 - g L F---A - 3 F-[I)-+ -
N - o 8 S i i - o B8 Fore L TF------ “Fe 8 F-L10-+ -
= =
b---{Q-+ | © o HIH R = R M B SEECI - T B B e 4 -
TR S |+CO---+ - o e - — - & -4
b o | P SRR e I E— SENCIR B ST s m— SR
e - = bee - ST I N S = R -
AT —_ - < F-CLJ---- - < | T - R G — -
I I -« 9 k- L_J-- -« @ O SR 2 s m =
Z
F-[O-+ = ™ Z b--{T_F----4 - o W. F--{_}-+) = F-- -4 -
k- — Z - - = F---{1}-+ — = -1+ —
k--_0---4 - © & - - o & k-~ T}--+ - o3 o -
s -~ 3 S ST NP U) R B -~ B i -
S B - bt g - @ I+ - @ k-0 -4
= -~ B ot Y NI FIH - B O -
T
F I I) - - F Fo--{}4 L - v -
S I - e S S e | =
. | - - oL J----4 - e |- I -
T T T T 1 _ _ _ _ _ T T T T T 1 _ _ _ _ _
80 90 7’0 60 80 L0 90 €90 o'l 80 90 7’0 0L 80 90 ¥0 <0 00

8 8 9 9 10

7

7

3 4 4 5 5 6 6
Test Set- 3-1V : [NSGAII - Island Model - SRH Island Model] : HVI

Figure B.4: Test sets: 3-1, 3-1, 3-III and 3-IV. For HVI, the higher value cor-

responds to better performance.

240

0.5 0.7 0.9

0.3

1.0

05 06 07 08 09

1.0

00 02 04 06 08

1.0

00 02 04 06 038

APPENDIX B. SUPPLEMENTARY RESULTS FOR CHAPTER 5

F-C1--H

F----[1T 14
-
+H

e I i

i
N -

i m—
-
I1-+
-t
HILF

F--[1T 14
FHCI---4

I 1--4

S

HIH+
T3

rrr 1117 177177 TT1TT1T TTT T©TTT TTT TTTI
3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

Test Set- 4-1 : [NSGAII - Island Model - SRH Island Model] : HVI

- = o= ——
TIT T -L-LéET
= BT e > B
= . ai)
?i"' _:_ |
T |
i :'H
L IQ'
L
i
4
1
L
TTT T 11T TTT TT1TT TTT TTT TT71T TT1T7T TTT TT1
11 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

Test Set- 4-11 : [NSGAII - Island Model - SRH Island Model] : HVI

=0 A&

T Pt
|
n

=-=E

i S

. e
;. O

T I
3 3 4 4 5

T
7 7

T TTT TTT
8 8 9 9 10

.
1
1
|
.

1 1
[S
1

TH:H
i

i i

!

|

L

T

6

L
I I
5 6

Test Set- 4-1ll : [NSGAII - Island Model - SRH Island Model] : HVI

-

oo

.
.
L -0

4

4

F--{IH

-
F-
=

[
11

T T T
2 2 3 3

T
I

I

n

| T
5 5

6 6 7 7

rrr T 1T
8 8 9 9 10

Q== - TT .7l
T4 - BBt g
EQ H H éég i¢¢ n g@¢
:
4

T
4

Test Set- 4-1V : [NSGAII - Island Model - SRH Island Model] : HVI

Figure B.5: Test sets: 4-1, 4-1, 4-I1I and 4-IV. For HVI, the higher value cor-
responds to better performance.

241

8 8 9 9 10

7

7

3 4 4 5 5 6 6

: [NSGAII - Island Model - SRH Island Model] : SPREAD

Test Set- 3-1

10

: [NSGAII - Island Model - SRH Island Model] : SPREAD

Test Set- 3-lI

10

: [NSGAII - Island Model - SRH Island Model] : SPREAD

Test Set- 3-lll

FCIHH
F---CT]--4
R

10

Test Set- 3-1V : [NSGAII - Island Model - SRH Island Model] : SPREAD

Figure B.6: Test sets: 3-1, 3-1, 3-III and 3-IV. Lower value of the metric

(SPREAD) corresponds to better performance.

APPENDIX B. SUPPLEMENTARY RESULTS FOR CHAPTER 5

242

7 8 8 9 9 10

7

3 3 4 4 5 5 6 6

Test Set- 4-1 : [NSGAII - Island Model - SRH Island Model] : SPREAD

Test Set- 4-11 : [NSGAII - Island Model - SRH Island Model] : SPREAD

0l

80 90 ¥O0

Test Set- 4-11l : [NSGAII - Island Model - SRH Island Model] : SPREAD

F---[T]---
e
i

I I I
0L 80 90

Test Set- 4-1V : [NSGAII - Island Model - SRH Island Model] : SPREAD

Figure B.7: Test sets: 4-I, 4-I, 4-III and 4-IV. Lower value of the metric

(SPREAD) corresponds to better performance.

243

i

.
i
I

8 8 9 9

2
I

F-0}-4 +
F{I}-+
F{I}-4

I
0%00°0

I I I I I
62000 01000

10

7

7

3 4 4 5 5 6 6

:1GD

: [NSGAII - Island Model - SRH Island Model]

Test Set- 3-I

PO -
HI-+ -
e I
- -
M+ -
e 1 NI =
P-4
F-0-4 -
[ttt -4 —
b= -4 -
3 HEE] -
S i =T
FI-4
FI-4
WO
-4
I} -
HI-4 -
F--C--+
F-{I}-+ -
s i = =
HO-4 -
F--[T--4
o R =
F-{I3-4
1 s
N n=E
- -
s I
s HET
T T T T T T I
0¥00°0 G200°0 01000

3 4 4 5 5 6 6 7 7 8 8 9 9 10

3

2

:1GD

: [NSGAII - Island Model - SRH Island Model]

Test Set- 3-lI

{11+

8 8 9 9

G000

€000

10070

10

7

7

3 4 4 5 5 6 6

:1GD

: [NSGAII - Island Model - SRH Island Model]

Test Set- 3-llI

F-[IF+
1+

HIH

1 1B
I+

I+
-

I

-

4

HOH
A

i |

4

F{IHA

8 8 9 9

7

T TTT 1 I
7

I
G000

€000

1000

10

3 4 4 5 5 6 6

:1GD

Test Set- 3-IV : [NSGAII - Island Model - SRH Island Model]

Figure B.8: Test sets: 3-1, 3-1, 3-IIl and 3-IV. Lower value of the metric (IGD)

corresponds to better performance.

244

Figure B.9: Test sets: 4-1, 4-1, 4-IIT and 4-IV. Lower value of the metric (IGD)

0.003 0.005 0.007

0.001

0.003 0.005

0.001

0.00 0.01 0.02 0.03 0.04

0.003 0.005 0.007

0.001

APPENDIX B. SUPPLEMENTARY RESULTS FOR CHAPTER 5

.
g i I

-

I ———
F{I[H
m-
"
4
CI 4
CT t--
13-
F-
I+
-~
1+
HH
HIh
-4

T
T I i
T éT T.L@Q_LI "
l% ;%%* 5@ j %T
rrv— 117 1717 171 11717 T°1TT TT1TT TTT TTT TTI
11 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

T+

H ‘;'?é T

L TTE & T
-2 BB R 9 H

-4
gy 1 M
-
I F---H o
I+
Ii-+
{Tt-

F-

s I B
- 1----4

{1+

4L
L T T T T T T T T T
11 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

Test Set- 4-11 : [NSGAII - Island Model - SRH Island Model] : IGD

|

;

F--]---H
P ¥4

H

I

FH{I}F-A4

c

1
g‘% s @ii

T
11 2 2 3 3 4 4 5 5 6

L
7 7 8

o - HIH

b, Pl
[
9

Test Set- 4-11l : [NSGAII - Island Model - SRH Island Model] : IGD

T

Y
F-C I t---4

i SRR

T T T 11 T
4

Test Set- 4-1V : [NSGAII - Island Model - SRH Island Model] : IGD

corresponds to better performance.

	List of Publications
	Acknowledgement
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Motivations
	Research Goals
	Major Contributions
	Organization of thesis

	Literature Review
	Scheduling
	Job Shop Scheduling Problem
	Uncertainty in Scheduling
	Dynamics in Scheduling

	Machine Learning and Hyper-heuristics
	Machine Learning
	Heuristics, Meta-heuristics and Hyper-heuristics

	Evolutionary Computation
	Evolutionary Algorithms
	Swarm Intelligence

	Active Learning
	Active Learning in Evolutionary Algorithms

	Parallel Evolutionary Algorithms
	Genetic Programming
	Multi-objective GP (MOGP)
	Genetic Programming based Hyper-heuristics (GPHH)

	Related Work to Job Shop Scheduling
	Solution Approaches for Static JSS
	Solution Approaches for Dynamic JSS
	GPHH for scheduling
	Cooperative Co-evolution for JSS
	Difference in Solution Approaches to Static and Dynamic JSS Problems
	Approaches for Dealing with Uncertainty in JSS

	Parallel Hyper-heuristics and MOEAs
	Summary of Literature Survey

	Genetic Programming based Hyper-Heuristics for Dynamic Job Shop Scheduling under Uncertainty
	Introduction
	Chapter Goals
	Chapter Organization

	New representations
	Simulation Model with Uncertainty
	Exponential Moving Average (EMA) Terminal
	Ex-post and Ex-ante Optimization
	Experiment Design
	Results and Discussions
	Analysis
	Section Summary

	Cooperative Co-evolutionary method
	Experiment Design
	Results and Discussions
	Analysis
	Section Summary

	Further Discussion
	Chapter Summary

	Active Sampling Methods for Dynamic Job Shop Scheduling under Uncertainty
	Introduction
	Shop Scenarios in Dynamic Environment
	Multiple Dispatching Rules
	Active Learning methods
	Chapter Goals
	Chapter Organization

	The Proposed Methods
	Clustering of DJSS Problem Instances
	GPHH Framework Using Active Sampling
	GPHH with Active Sampling using -greedy strategy
	GPHH with Active Sampling using Gaussian Process Bandits

	Experiment Design
	Results and Discussions
	Chapter Summary

	Active Sampling Heuristics for Multi-objective DJSS Problems Using Island Based Parallel Genetic Programming
	Introduction
	Chapter Goals
	Chapter Organization

	Island models
	Experiment Design
	Results and Discussions
	Section Summary

	Successive Reject Heuristic
	Proposed Method
	Experiment Design
	Results and Discussions
	Analysis
	Section Summary

	Chapter Summary

	Conclusions
	Achieved Objectives
	Major Conclusions
	DJSS under Uncertain Processing Times
	Toward Evolving Dispatching Rules for Multiple Shop Scenarios
	Active Sampling Heuristics for GPHH toward Multi-Objective JSS

	Future Work

	Bibliography
	Appendices
	Supplementary Results for Chapter 4
	Supplementary Results for Chapter 5

