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Abstract 

 
A number of analytic solutions have been found for Variable Annuity Guaranteed 

Minimum Death Benefit (GMDB) option values under a variety of mortality laws. To 

date, the solutions are for Risk-Neutral valuation only. Where policyholder decisions are 

allowed, it is assumed that they act to maximize the risk-neutral value of the GMDB. We 

examine situations where the asset allocation decisions are made to maximize expected 

utility rather than option value. We find analytic solutions for both return of premium and 

ratchet options at small values of bequest motive for a number of mortality laws. 

 

 

 

 



1. Introduction 
 

There has been significant interest recently in the valuation of Guaranteed 

Minimum Benefits (GMxB) embedded in Variable Annuity (VA) contracts. While 

analytic valuations are often difficult and to date not many exist, there has been some 

progress made in this area for Guanteed Minimum Death Benefits (GMDB) in particular. 

Milevsky and Posner (2001) find an exact solution for an at-the-money return-of-

premium GMDB option under a constant force of mortality. These results were extended 

by Ulm (2008) to obtain exact solutions for return-of-premium and roll-up GMDB 

options under constant force and uniform mortality laws, as well as extending the results 

to all fund-to-strike ratios. Ulm (2014) found solutions for ratchet GMDB options under 

constant force and uniform mortality laws at all fund-to-strike ratios as well as finding 

solutions under the more realistic Makeham’s Law of Mortality for at-the-money options.  

Gerber et al (2012) use different techniques and are able to find solutions for a 

large array of GMDB option types beyond the simple puts analyzed previously. Gerber et 

al (2013) extend these results to situations where the fund follows a jump diffusion Lévy 

Process with exponentially distributed jumps. A formulation for the solution in terms of 

an integral can be found in Hardy (2003). An overview of solutions and solution methods 

can be found in Ulm (2019). 

All of these solutions are in a risk-neutral context, assuming a complete market in 

which the options reside. A separate strand of literature examines the valuation of these 

options in a utility-based framework where one assumes the options are not tradeable but 

instead the option-holder acts to maximum his expected lifetime utility of consumption. 

To the author’s knowledge no analytic solutions have been found in this context. 



However, a number of numerical studies have been conducted including Gao and Ulm 

(2012), Moenig (2012), Moenig and Bauer (2014), Gao and Ulm (2015), Steinorth and 

Mitchell (2015), Moenig and Bauer (2015) and Moenig and Zhu (2018). 

This paper fills the gap in analytic solutions to allocation and GMDB pricing in 

when the policyholder market is incomplete and he acts to maximize the lifetime utility 

of his VA/GMDB combination. 

 

2. The Differential Equation to be Solved 

 

 We begin by assuming a VA contract with two fund choices, a fixed account 

earning a rate g  and a variable account earning a market rate less fees. The variable 

account is assumed follow a geometric Brownian motion with an expected real-world 

growth rate Mr q−  and a volatity σ . The individual is assumed to have a CRRA utility 

function 
1

( )
1
CU C

γ

γ

−

=
−

. In the absence of a GMDB Option, the policyholder would 

choose to allocate a proportion of the account to the variable fund according to the 

Merton (1969) rule 2
M

M
r q gω
σ γ
− −

= . 

 We will normalize the value of the fund to make the GMDB strike 1X = . Since 

the policyholder has CRRA Utility, this is not an actual restriction on the solution. The 

policyholders value function ( , )V S t  solves the following Hamilton-Jacobi-Bellman 

equation: 
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where ( )tµ  is the force of mortality, δ  is the subjective utility discount rate, λ  is the 

rate of withdrawal and consumption from the VA and b is the strength of the bequest 

motive. The derivation of this equation is found in Appendix A. 

 Using the verification theorem (Pham (2009) page 47), we find: 
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3. The Constant Force of Mortality Solution. 

 

3.1 Return of Premium GMDB 

 

3.1.1 Solution to the HJB Equation 

 

 In this case, ( , )V S t is independent of time. The differential equation is now: 
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An exact solution is not possible. However, we can solve the equation when 0b =  and 

then find the solution for small values of b . 

 One can easily verify that: 

1( ) AA S C S γ−= ; 

( ) ( )( ) ( ) ( )
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solves the equation when 0b = . It also satisfies the boundary condition that ( )V S  and 

V
S

∂
∂

 must be continuous at 1S = . 

 Now suppose ( ) ( ) ( )V S A S bB S= + . One finds that ( )A S  must satisfy the 0b =  

equation and be given by Equation (5). Grouping the terms that are first order in b  we 

find ( )B S  must obey the linear differential equation: 
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Taking the derivatives of ( )A S  and substituting, we find: 
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We find that the general solution to the homogeneous equation is 1 2
1 2

m mB S B S+  where 

1m  and 2m  are the positive and negative solutions to: 
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Including the specific solution to the inhomogeneous equation and choosing the 

exponents so that the solutions do not explode at zero and infinity we find: 
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Since ( )B S  and B
S
∂
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 must be continuous at 1S =  we can show: 
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Being a utility, the size of the value function is arbitrary to within an additive and 

multiplicative constant. However, the optimal control ( )Sω  is well defined and equal to: 
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to first order in b . ( ) MSω ω=  for very large and very small values of S  in agreement 

with Gao and Ulm (2012). ( )Sω  is continuous at 1S =  but is not differentiable, although 

it has a left hand and right hand derivative.  

 The solution for ( )V S  for higher orders in b  follows the same general procedure 

and can be continued indefinitely. Figure 1 shows the optimal value of ( )Sω  as a 

function of S  for an illustrative choice of parameters. The solid line is the solution for 

first-order in b  and the dashed line includes the second order term. Even with this 

relatively high bequest motive, the second order effect is not large. 

The interpretation of the value of b  requires some additional explanation. 

Equation (1) was derived assuming the beneficiary consumes the full account 

immediately. Assume, instead, she invests and withdraws using the same parameters as 

the original policyholder. The policyholder counts his beneficiary’s utility at some 

percentage *b  relative to his own (or that of the combination of policyholder and 

beneficiary living off one account). In this case, the beneficiary utility is * 1
Ab C S γ−  and 

( )* 1Ab b C γ≡ − . It is the value of *b  that is reported in the figures. 

 The peak in ( )Sω  occurs because of an “argument” between the policyholder and 

beneficiary first identified in Gao and Ulm (2012). The policyholder prefers the Merton 

allocation at all fund levels. The beneficiary prefers the Merton allocation at high fund 



levels because the option has little relevance to her when the put option is out of the 

money. Therefore, there is no argument at high fund values. 

However, she prefers a strong allocation to variable accounts when the fund level 

is low and the option is in the money, since she is guaranteed the same payout regardless 

of how far the fund drops but receives a larger payout if the fund rises above the strike. 

Her preference, however, is not strong when the fund is well out of the money since it is 

quite unlikely the fund allocation will alter her results and the policyholder wins the 

argument. The conflict in preferences is most pronounced near the at-the-money point 

and this produces the peak in allocation seen in Figure 1. 

 

3.1.2 Risk Neutral Valuation 

 

 Assuming the allocation given by Equation (11), the risk-neutral value of the 

option must obey the following partial differential equation, again setting the strike 

1X = : 
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We assume the force of mortality is constant to obtain the following differential equation: 
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We will again assume a solution of the form ( ) ( ) ( )V S A S bB S= +  and expand the 

equation in powers of b  which enter through 1 1( ) 1 m
MS bKS γω ω + − = +   for 1S <=  and 
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The solution can be found in Ulm (2006) or Ulm (2008) as: 
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We find that ( )B S  obeys the equation: 
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Solving this equation and choosing the solution that satisfies the boundary conditions that 

both the function and its first derivative should be continuous at 1S = gives: 
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This procedure can be continued in powers of the bequest motive 2b , 3b , etc. in order to 

produce any desired degree of accuracy in theory. 

 Figure 2 shows the effect of bequest motive on the value of the return of premium 

GMDB option. The solid line is the GMDB value with no bequest motive on the part of 

the policyholder1. The lower dashed line is the function ( )B S renormalized so that is 

multiplied by *b  (rather than b ) and added to the solid line to produce the upper dashed 

line. The additional value of the aggressive allocation due to bequest motive peaks below 

                                                 
1 Leaving aside for the moment the issue of why a policyholder with no bequest motive would purchase a 
GMDB at all. 



the at-the-money point. The allocation at that fund level is less aggressive, but the 

potential payoff is higher. 

 Table 1 shows the at-the-money value of the GMDB option for various parameter 

combinations. The increase in the GMDB value when utility-based allocation with 

bequest motive is introduced is substantial. 

 

3.2 Ratchet GMDB 

 

 We now turn our attention to the solution to the HJB equation for a Ratchet 

GMDB. The primary difference in the solution method is in the boundary condition. The 

risk-neutral value at ratchet times should be proportional to the fund level at that time 

[see Ulm (2014)]. Analogously, in the utility-based case, the corresponding subjective 

utility should be 1( )V S CS γ−=  above the boundary. 

The solution to the equation with bequest motive 0b =  will continue to be have 

the form 1( ) AA S C S γ−=  with AC  defined as in Equation (5). The function ( )B S  below 

the boundary will continue to have the form 1
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Figure 3 shows the optimal value of ( )Sω  as a function of S  for an illustrative 

choice of parameters. The solid line is the solution for first-order in b  and the dashed line 

is the return of premium allocation for comparison. The ratchet allocation is not shown 

for 1S >  since this situation will not occur in reality. Surprisingly, the ratchet benefit 

does not substantially increase the optimal allocation to the variable account. 

 The risk-neutral valuation proceeds analogously to the return-of-premium option 

valuation in Section 3.1.2. We again assume the risk-neutral value ( ) ( ) ( )V S A S bB S= +  

satisfies Equations (13) and (17) below the boundary and ( )V S S∝  above the boundary. 

The solution below the boundary can be found as: 
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as in Ulm (2014), and 
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Figure 4 shows the effect of bequest motive on the value of the return of premium 

GMDB option. The solid line is the GMDB value with no bequest motive on the part of 

the policyholder. The lower dashed line is the function ( )B S renormalized so that is 

multiplied by *b  (rather than b ) and added to the solid line to produce the upper dashed 

line. Table 2 shows the at-the-money value of the GMDB option for various parameter 

combinations. The increase in the GMDB value when utility-based allocation with 

bequest motive is introduced is again substantial. 

 

3.3. Optimal Consumption 

 

 We now revisit the solution to the HJB Equation [Equation (1)] assuming that the 

withdrawal rate λ  is a second control variable. The verification theorem suggests: 
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Under constant force of mortality, this becomes: 
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Letting ( ) ( ) ( )V S A S bB S= + We again find: 

1( ) AA S C S γ−= ; 
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If we define: 

( ) ( ) ( )2
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r q g
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γ
µ δ γ

σ γ
λ

γ

 − − −
+ − − − 

  =           (27) 

then AC  is as defined in Equation (5) with Mλ λ→ . 

 We also find: 



( ) ( )2 2 2
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S Sσ γ σ γ
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1M B Max S γµµ λ γ δ

γ
− = + − + −  −

       (28) 

which is identical to Equation (7) with Mλ λ→  and has the same solution. The optimal 

allocation ( )Sω  follows Equation (11) with Mλ λ→ . The optimal withdrawal is: 

( ) ( ) ( ){ } ( )
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1
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11 1M

B S
A S bB S S b

A S

γ
γ γλ γ λ

−
−−  

 = − + = +     
         (29) 

Equation (29) holds for both Return-of-Premium and Ratchet GMDB options as long as 

( )B S  is the function corresponding to the appropriate option type. 

 Figure 5 shows the optimal withdrawal pattern for representative parameters. 

When the risk-aversion parameter is less than 1, withdrawals are lower when the option is 

in the money. When the risk-aversion parameter is greater than 1, withdrawals are higher 

when the option is in the money. This same pattern was found in Gao and Ulm (2012) 

and has the same explanation. That is, when 1γ > , the beneficiary’s utility is actually 

reduced less by a withdrawal than the policyholder’s utility is reduced. The policyholder 

chooses additional consumption at low fund values since this does not harm the 

beneficiary as much as it helps the policyholder. 

 Risk-Neutral Valuation follows the same procedure as in Section 3.1.2. We can 

expand λ  in powers of b  to get, in the return of premium case: 

1 110 1( ) 1 m
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2 12( ) 1 mB
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γλ λ
γ γ

+ −   = − +  
   

  1S >=          (30) 

Letting ( ) ( ) ( )V S A S bB S= + We again find ( )A S  as described in Equation (15) 

with Mλ λ→ . The equation for ( )B S  involves quite a few additional terms relative to 

Equation (17), but can be solved as: 

31 1 1 1
1 2 3 4( ) nm m
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 Figures 6 and 7 show the risk-neutral option value for some representative 

parameters. When 0.7γ = , the additional component ( )B S  increases near 0S =  since 

lapses are reduced there. When 1.8γ = , the additional component ( )B S  is zero near 



0S =  since lapses are increased there. There is also a increase in ( )B S  near the at-the-

money point due to the effect of the more aggressive allocation. This is more clearly 

visible in Figure 7 than in Figure 6. 

 The valuation of the ratchet GMDB follows similarly. ( )A S  as described in 

Equation (15) with Mλ λ→ . ( )B S is defined as in Equation (31) for 1S <= . The 

coefficients 1VB  through 6VB  are defined as in Equation (31) with 
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4. The DeMoivre’s Law Solution 

 

4.1 Return of Premium GMDB 

 

 We start our analysis from Equation (4) an again require ( ) ( ) ( )V S A S bB S= +  for 

small b . If we let: 

( ) 1( )A S a t S γ−=               (33) 

we find ( )a t  obeys the equation: 
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Expressing Equation (34) in the form of Thiele’s Differential Equation we can show: 
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γλ
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where the annuity symbol is evaluated at rate ( ) ( )
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2 1
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. 

Equation (33)-(35) are valid for any general mortality law, not just DeMoivre’s Law. We 

also find, for any general mortality law, that: 
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This is extremely similar to Equation (3) in Ulm (2008) with the definitions **r δ= , 

( )2**
Mq gδ ω σ= − − , **

Mσ ω σ=  and a slightly different driving term. It is solved in the 

same manner, giving: 
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with definitions: 
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Again, being a utility, the size of the value function is arbitrary to within an 

additive and multiplicative constant. However, the optimal control ( )Sω  is well defined 

from Equation (2). Continuing the small b  approximation we find, for all mortality laws: 
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          (39) 

Equation (39) can be shown to reproduce Equation (11) for the constant force of 

mortality case. When mortality follows DeMoivre’s Law, the partial derivatives can be 

done in closed form by differentiating Equation (38). 

 Figure 8 shows the optimal allocation ( ),S tω  as a function of S  for a 

representative choice of parameters. As in Figure 1, the beneficiary is assumed to be an 

optimizing individual with a constant force of mortality 0.01µ = . The DeMoivre’s Law 

mortality rate is quite close to that used in Figure 1 and the allocation is therefore also 

quite similar. 

 Figure 9 shows the optimal allocation ( ),S tω  as a function of S  for the same 

choice of parameters and a maximum age of 120. The at-the-money allocation 

approaches infinity as the age of the policyholder approaches the maximum as the 

beneficiary is now almost certain to get the money and wins the argument in a landslide. 



However, this effect would be mitigated in practice since ( ), 1S tω >  would not be 

possible for real world GMDB contracts. 

 

4.2 Ratchet GMDB 

 

The solution for the Ratchet GMDB also solves Equations (33)-(36), although the 

boundary condition is different. The boundary condition on ( ),B S t  is now 

( )1B B
S

γ∂
= −

∂
               (40) 

The solution for ( ),A S t  is the same as in the Return of Premium case in Section 4.1. The 

differential equation to be solved for ( ),B S t  is quite similar to Equations (1) and (2) in 

Ulm (2014) with the definitions **r δ= , ( )2**
Mq gδ ω σ= − − , **

Mσ ω σ=  with a 

slightly different driving term and boundary conditions. It is solved in the same manner, 

giving:  
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with definitions as in Equation (38) and 
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We can again find the optimal allocation from Equation (39). Figure 10 shows the 

optimal allocation ( ),S tω  as a function of S  for a representative choice of parameters. 

As in Figure 8, the beneficiary is assumed to be an optimizing individual with a constant 

force of mortality 0.01µ = . The optimal allocation is not substantially different from the 

Return of Premium optimal allocation, as was the case for constant force of mortality. 

Figure 11 shows the optimal allocation ( ),S tω  as a function of S  for the same choice of 

parameters and a maximum age of 120. Unfortunately, the PDEs corresponding to the 

valuation equation and the optimal consumption equations are too complicated and have 

resisted attempts at solutions. 

 

5. Conclusions 

 

In this paper, we derive closed form solutions for optimal allocation and 

consumption patterns in Variable Annuities with GMDB riders. In agreement with the 

numerical study of Gao and Ulm (2012), the optimal allocation peaks near the at-the-



money point and significantly affects the value of the option. In addition, new results are 

derived for Ratchet GMDB options and it is shown that the optimal allocation in this case 

is not significantly different than the allocation obtained for Return of Premium options. 
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Appendix A 

Derivation of the HJB Equation for GMDB options with CRRA Utility. 

We find the relevant equation by taking the limit of the finite time equation as 

0t∆ → . At any time t , fund level S  and strike X , the value of the fund is given 

recursively by: 

( ) ( ) [ ], , , , ( )V S X t U c S X t t t bU DB tµ = ∆ + ∆   

       ( ) ( )1 ( ) , , , ,t Xt t V w X c t t t w S rS t c t S t dw
S

µ β σ
∞∆

−∞

 + − ∆ − ∆ + ∆ Φ + ∆ − ∆ ∆ 
 ∫     (A1) 

Where [ ]U c  is the utility function for consumption, ( )tµ  is the mortality rate, β  is the 

subjective discount factor and ( ), ,w Mean StDevΦ  is the pdf of the normal distribution. 

We assume the time step is small enough that the lognormal distribution can be 

approximated by a normal distribution. 

 Let ( ) ( , , )XD w V w X c t t t
S

= − ∆ + ∆ . A Taylor expansion gives: 
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Also, let lnδ β= − ; ( )x w S rS t c t= − + ∆ − ∆  and 

( ) ( ),0, , ,x S t w S rS t c t S tσ σΦ ∆ = Φ + ∆ − ∆ ∆ .  This gives: 
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The integral resolves to give: 
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We will now normalize by dividing by the strike and using the properties of a CRRA 

utility function. Define ( ) ( )* , ,1,V S t V S t= , * SS
X

=  and * cc
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= . Using the scaling 
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Finally, we define the withdrawal rate 
*

*
c
S

λ =  and remove the asterisks from the 

variables to get: 
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which is text Equation (1) with return ( ) ( )1 Mr g r qω ω= − + −  and volatility ωσ . 



Figure 1 
Optimal Allocation for Return of Premium GMDB Options with a Constant Force 

of Mortality 
 

 
 



Figure 2 
Risk Neutral Value of Return of Premium GMDB Option 

With and Without Bequest Motive 
 

 
 



Figure 3 
Optimal Allocation for Ratchet GMDB Options  

 

 
 



Figure 4 
Risk Neutral Value of Ratchet GMDB Option 

With and Without Bequest Motive  
 

 
 
 
 



Figure 5 
Optimal Withdrawals for a Return of Premium GMDB 

 

  



Figure 6 
Risk Neutral Value of Return of Premium GMDB Option 

With Optimal Withdrawals 
 

 



Figure 7 
Risk Neutral Value of Return of Premium GMDB Option 

With Optimal Withdrawals 
 

 
 



Figure 8 
Optimal Allocation for Return of Premium GMDB Options under DeMoivre’s Law 

Mortality 
 

 
 



Figure 9 
Optimal Allocation for Return of Premium GMDB Options under DeMoivre’s Law 

Mortality 
 

 
 



Figure 10 
Optimal Allocation for Ratchet GMDB Options under DeMoivre’s Law Mortality 

 

 
 



Figure 11 
Optimal Allocation for Ratchet GMDB Options under DeMoivre’s Law Mortality 

 

 



Table 1 
Return of Premium At-the-Money GMDB Option Value With and Without Bequest 

Motive 
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0.04 
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0.08 

R
M  

0.01 

0.01 
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0.15 
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0.15 

0.15 
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0.15 
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0.97 
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0.97 

0.97 

0.99 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

β 

1.8 

1.8 

1.8 

3 

1.8 

1.8 

1.8 

1.8 

1.8 

1.8 

1.8 

ϒ 

0.5 

0.5 

0.2 

0.5 

0.5 

0.5 

0.5 
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b* 

0.01 

0.02 
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µ 

0.1 

0.05 

0.05 
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λ 
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M
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0.000554 
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Bequest 
M
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11.62%
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3.93%
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11.04%
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13.69%
 

4.79%
 

9.86%
 

4.84%
 

9.82%
 

%
 Increase 



Table 2 
Return of Premium GMDB Option Value With and Without Bequest Motive 

 0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.02 

0.04 

g 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.07 

0.05 

0.05 

rf  

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.1 

0.08 

0.08 

0.08 

R
M  

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.01 

0.01 

0.01 

0.01 

q 

0.15 

0.15 

0.15 

0.15 

0.15 

0.25 

0.15 

0.15 

0.15 

0.15 

0.15 

σ 

0.97 

0.97 

0.97 

0.97 

0.99 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

β 

1.8 

1.8 

1.8 

3 

1.8 

1.8 

1.8 

1.8 

1.8 

1.8 

1.8 

ϒ 

0.5 
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0.02 
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0.1 
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0.031521 
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0.018379 

N
o Bequest 
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9.02%
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4.65%
 

8.46%
 

6.87%
 

7.98%
 

%
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