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Abstract

We show that for every n≥ 3 there is some number m such that every 4-connected
binary matroid with an M(K3,m)-minor or an M∗(K3,m)-minor and no rank-n mi-
nor isomorphic to M∗(K3,n) blocked in a path-like way, has a minor isomorphic
to one of the following: M(K4,n), M∗(K4,n), the cycle matroid of an n-spoke dou-
ble wheel, the cycle matroid of a rank-n circular ladder, the cycle matroid of a
rank-n Möbius ladder, a matroid obtained by adding an element in the span of the
petals of M(K3,n) but not in the span of any subset of these petals and contracting
this element, or a rank-n matroid closely related to the cycle matroid of a double
wheel, which we call a non graphic double wheel. We also show that for all n

there exists m such that the following holds. If M is a 4-connected binary matroid
with a sufficiently large spanning restriction that has a certain structure of order
m that generalises a swirl-like flower, then M has one of the following as a mi-
nor: a rank-n spike, M(K4,n), M∗(K4,n), the cycle matroid of an n-spoke double
wheel, the cycle matroid of a rank-n circular ladder, the cycle matroid of a rank-n
Möbius ladder, a matroid obtained by adding an element in the span of the petals
of M(K3,n) but not in the span of any subset of these petals and contracting this
element, a rank-n non graphic double wheel, M∗(K3,n) blocked in a path-like way
or a highly structured 3-connected matroid of rank n that we call a clam.
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Chapter 1

Introduction

In this section we give an overview of the current literature on unavoidable minors
and explain they layout of this thesis.

In [7], (1996) Ding, Oporowski, Oxley and Vertigan proved the following theo-
rem.

Theorem 1.0.1. There is a function f1.0.1 such that the following holds. Suppose

that M is a binary 3-connected matroid of rank at least f1.0.1(n), then M has a

minor isomorphic to one of the following:

i) M(K3,n),

ii) M∗(K3,n),

iii) a rank-n wheel,

iv) a rank-n spike.

We say that these matroids are the unavoidable minors for the class of 3-connected
binary matroids.

The notation used for the function in the statement of this theorem is used so that
we are able to refer to the function easily later on. A similar notation is used
throughout the thesis.

The goal of this thesis is to extend this result to finding the unavoidable minors
of binary 4-connected matroids. Unfortunately, due to time constraints, we have
not been able to completely resolve this problem but we have made significant
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2 CHAPTER 1. INTRODUCTION

progress in many of the cases. We want the unavoidable minors of binary 4-
connected matroids to be close to 4-connected (formally, we want them to be
internally 4-connected). In general we are interested in unavoidable minors of
matroids with large internally 4-connected sets.

Theorem 1.0.1 is an instance of a series of results that have been obtained for un-
avoidable minors of graphs and matroids. The simplest example is the following
well-known result for graphs (see, for example, [6].

Theorem 1.0.2. For all n there exists an m such that a simple connected graph

with at least m edges has either a path of length n or a star on n vertices as a

minor.

There is no analogy for matroids, since a star and a path have the same cycle
matroid.

The next theorem is also well known and can be extended to matroids.

Theorem 1.0.3. For every n there exists an m such that if G is a loopless 2-

connected graph on at least m vertices, then G has a cycle with at least n edges

or a bond with least n edges.

This result was generalised to matroids by Lovász, Schrijver and Seymour and
can be found in [13]. That is, they proved the following.

Theorem 1.0.4. If M is a connected matroid on at least 4n elements, then M

contains a circuit or a cocircuit with at least n elements.

These results were extended to 3 and 4-connected graphs by Oporowski, Oxley
and Thomas [12] (1993); the latter theorem is also proved indirectly by Geelen
and Joeris [9] (2008).

Theorem 1.0.5. For every integer n greater than 2 there is an integer m such that

every 3-connected graph with more than m vertices contains a minor isomorphic

to an n-spoke wheel or K3,n.

Theorem 1.0.6. For every integer n greater than 2 there is an integer m such that

every 4-connected graph with more than m vertices contains a minor isomorphic

to K4.n, an n-rung circular ladder, an n-rung Möbius ladder or a double wheel on

n vertices.
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In his thesis [16] (2016), Shantanam gave the set of unavoidable minors of large
5-connected graphs, and in 1997 Ding, Oporowski, Oxley, and Vertigan extended
Theorem 1.0.1 to non-binary matroids [8]. In general, for a fixed k with k≥ 2, we
are interested in the question of finding unavoidable minors of large k-connected
matroids but as connectivity increases the set of unavoidable minors increases and
the results increase in difficulty.

A technique for finding unavoidable minors for binary 4-connected matroids is to
observe that a 4-connected matroid is also 3-connected and therefore has a minor
isomorphic to one of the following:

i) M(K3,n),

ii) M∗(K3,n),

iii) a rank-n wheel,

iv) a rank-n spike.

Since M is 4-connected, there is a collection of bridging sequences of a 3-
connected minor of M that gives a 4-connected matroid. Therefore the problem
of finding unavoidable minors of binary 4-connected matroids splits into cases,
namely, the problem of finding the unavoidable minors when we bridge the 3-
separations in M(K3,n), when we bridge the 3-separations in M∗(K3,n), when we
bridge the 3-separations in a rank-n wheel, and when we bridge the 3-separations
in a rank-n spike. Unfortunately due to time constraints we were not able to con-
sider all these problems. We originally believed that had solved the problem of
finding the structure when we bridge the 3-separations in M(K3,n) or in M∗(K3,n)

under the assumption that the original matroid did not have a spike minor. How-
ever, on closer inspection it turns out that we have instead found the structure
when we bridge the 3-separations in M(K3,n) or in M∗(K3,n) under the assump-
tion that M∗(K3,n) is not blocked in a path-like way. We are close to completing
the analysis for bridging a wheel. We have not considered the spike case but do
not expect the analysis to be too hard.

The two main results in this thesis are the following theorems. In the statement
of the theorems we give matroids that have not yet been defined. The definitions
of these matroids are given in Chapter 4. In the second theorem we talk about
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swirl-like pseudo-flowers. These are generalisations of flowers and are studied in
Chapter 3.

Theorem. For every n, there exists an m such that if M is a 4-connected binary

matroid of rank m with an M(K3,m) or M∗(K3,m) minor, and no minor that isomor-

phic to M∗(K3,n) blocked in a path-like way, then M must have a minor isomorphic

to one of:

i) N(K3,n),

ii) M(K4,n),

iii) (N(K3,n))
∗,

iv) M∗(K4,n),

v) the cycle matroid of an n-rung circular ladder,

vi) the cycle matroid of an n-rung Möbius ladder,

vii) the cycle matroid of an n-spoke double wheel,

viii) a rank-n non-graphic double wheel.

The term path-like relates to a crossing graph described in Chapter 6.

Theorem. For every n there is an m such that the following holds. If M is a binary

4-connected matroid with coindependent set X such that M \X has a swirl-like

pseudo-flower of order m, then M has a minor isomorphic to one of the following:

i) N(K3,n),

ii) M(K4,n),

iii) (N(K3,n))
∗,

iv) M∗(K4,n),

v) the cycle matroid of an n-rung circular ladder,

vi) the cycle matroid of an n-rung Möbius ladder,

vii) the cycle matroid of an n-spoke double wheel,
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viii) a rank-n non-graphic double wheel

ix) a rank-n spike.

x) M∗(K3,n) blocked in a path-like way

xi) a rank-n clam.

This theorem is interesting as we believe that when we bridge a wheel we either
obtain the cycle matroid of a wheel extended by elements in triangles with the
spokes (this is a “clam”) or a matroid M with coindependent set X such that M \X

has a swirl-like pseudo-flower, F . of order n and every 3-separation of M \X

displayed by F is blocked by an element of X .

The material in this thesis is divided as follows. Chapter 2 gives some basic re-
sults on matroids and some Ramsey-type theorems. These results are not new
but will be useful in later sections. In Chapter 3 we look at flowers and pseudo-
flowers. Flowers were first defined by Oxley, Semple and Whittle in [14] (2004)
for 3-separations in 3-connected matroids and the results were extended by Aikin
and Oxley in [1] (2008) for separations of order k for any k ≥ 2. In this thesis we
use structures called “pseudo-flowers” that are extensions of flowers that allow
petals to be both 2-separating and 3-separating. As far as we know these results
are new but it is likely that many already exist as folklore. More investigation into
pseudo-flowers would have been nice as they are useful and interesting structures.
Regrettably we have not had time to do this so the results in this section cover only
information required in later sections. In Chapter 4 we give a survey of the ma-
troids that appear as unavoidable minors of binary 3- and 4-connected matroids.
We describe and give some natural representations of and state facts about these
matroids that will be useful for identifying them later in the thesis. From Chapter
5 onward we finally get into the real content of the thesis and the main results
in the remaining chapters are all new. Chapter 5 is dedicated to blocking pad-
dles, Chapter 6 to blocking copaddles and Chapter 7 is a very short chapter that
brings the results from Chapters 5 and 6 together to find the unavoidable minors
of binary 4-connected matroids with an M(K3,n) or an M∗(K3,n)-minor under the
assumption that M∗(K3,n) is not blocked in a path-like way. Chapters 8 and 9 of
the thesis relate to blocking swirl-like pseudo-flowers. Chapter 8 sets up tools for
blocking swirl-like pseudo-flowers that will be useful in Chapter 9, and Chapter
9 looks at blocking swirl-like pseudo-flowers in detail. The final chapter sums up
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what we have proved in the previous chapters and gives details of future work on
this project.

Due to time constraints some of the more obvious proofs in the thesis have been
omitted, especially in the later chapters.



Chapter 2

Background Material

In this chapter we give results that will be useful throughout the thesis. The reader
is assumed to have a basic knowledge of matroid theory as set forth in [13]. No-
tation and terminology follow [13].

2.1 Basic Matroid Theory

All the results in this section are almost certainly well known and will have proofs
in multiple papers.

2.1.0.1 Binary Matroids

A matroid is binary if it is representable over GF(2) The next lemma was proved
by Tutte and can be found in [13]

Lemma 2.1.1. A matroid is binary if, and only if, it has no U2,4 minor.

It is well known that a simple rank-n binary matroid can be viewed as a restriction
of PG(n− 1,2). We can at times gain additional information when we consider
points of the binary projective space that are not in M. For example if M is a
matroid with 2-separation (A,B) there is some element of the binary projective
space in the span of A and the span of B. This element may or may not be in
E(M). Matroids allow parallel points and loops but projective spaces do not allow
for these. An extended binary projective space of rank n is PG(n− 1,2) with as

7
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many points as needed added in parallel with elements of the projective geometry
and loops added as needed. This fits with the fact that binary matroids can be
represented by matrices over GF(2), since, in our matrices, we may add repeated
columns and zero columns to our heart’s desire. If M is a binary matroid with
A ⊆ E(M), then 〈A〉 is the collection of all elements contained in the span of the
extended binary projective space of rank r(M).

Connectivity

Connectivity plays a huge role in structural matroid theory so what follows is a
brief rundown on important facts about connectivity in matroids.

Definition 2.1.2. The connectivity function of a matroid M is a function, λM,
that maps subsets of E(M) to non-negative integers. We define λM by λM(X) =

rM(X)+ rM(E−X)− r(M) for any X ⊆ E(M).

Sometimes it is useful to regard λM as being a function on a partition of E(M). We
may then refer to λM(X ,Y ), where X ,Y is a partition of E(M), and this is defined
by λM(X ,Y ) = λM(X) = λM(Y ). We also abandon the subscript and refer to λ

instead of λM when the context is clear.

Another useful kind of connectivity function for matroids which will be used later
in the thesis is given below.

Definition 2.1.3. Let M be a matroid and X and Y be disjoint subsets of E(M).
We define κM(X ,Y ) by κM(X ,Y ) = min{λM(S) : X ⊆ S⊆ E(M)−Y}.

Definition 2.1.4. Consider a matroid M and let X ⊆ E(M).

i) We say that X is k-separating if λM(X)< k.

ii) The partition (X ,E(M)−X) is a k-separation if λ (X)< k and |X |, |E(M)−
X | ≥ k.

iii) The partition (X ,E(M)− X) is a vertical k-separation if λ (X) ≤ k and
min{r(X),r(E(M)−X)} ≥ k.

iv) The matroid M is k-connected if it has no (k−1)-separations.

v) The matroid M is vertically k-connected if it has no vertical (k − 1)-
separations.
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vi) A k-separation (X ,Y ) is minimal if min{|X |, |Y |}= k.

vii) A matroid is internally (k + 1)-connected if it has no non-minimal k-
separations.

viii) A k-separation (X ,E(M)−X) is exact if λ (X) = k−1.

ix) A matroid is connected if it is 2-connected.

The following lemma gives two well-known facts about connectivity functions
that will be used freely throughout this thesis. We say that a set function f is
normalised if f ( /0) = 0.

Lemma 2.1.5. Let M be a matroid with connectivity function λ .

i) The connectivity function of M is normalised, symmetric and submodular.

ii) λM = λM∗ .

iii) If N is a minor of M, then λM(X)≥ λN(X) for any X ⊆ E(N).

The next result is a trivial corollary of the submodularity of the connectivity func-
tions.

Lemma 2.1.6. Let M be a matroid and let X ,Y ⊆ E(M) such that λ (X),λ (Y ) ≤
2. If λ (X ∪Y ) ≥ 2, then λ (X ∩Y ) ≤ 2. In particular, if M is 3-connected and

λ (X) = λ (Y ) = 2 then

i) if |X ∩Y | ≥ 2 then X ∪Y is 3-separating, and

ii) if |E(M)− (X ∪Y )| ≥ 2, then X ∩Y is 3-separating.

An application of Lemma 2.1.6 will be referred to as an application of uncrossing.

We often want to be able to keep connectivity in a minor of a matroid. This makes
the following lemma of Tutte [17] very useful.

Lemma 2.1.7. Let M be a connected matroid and e ∈ E(M). Then either M \e or

M/e is connected.
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Recall that a parallel pair is a 2-element circuit and a series pair is a 2-element
cocircuit. We say that a matroid M is 3-connected up to parallel classes if the
simplification of M is 3-connected and we say that M is 3-connected up to series
classes if the co-simplification of M is 3-connected. The following lemma can be
found in [2].

Lemma 2.1.8 (Bixby’s Lemma). Let e be an element of a 3-connected matroid

M. Either M \ e or M/e has no non-trivial 2-separation. Moreover, in the first

case the cosimplification of M \ e is 3-connected, while in the second case the

simplification of M/e is 3-connected.

Tutte’s Linking Theorem

Let M be a matroid and X and Y disjoint subsets of E(M). Recall κM(X ,Y ) =

min{λ (A) : X ⊆ A ⊆ E(M)−Y}. The following theorem is a generalisation of
Menger’s Theorem for matroids.

Theorem 2.1.9 (Tutte’s Linking Theorem). Let M be a matroid and let X and

Y be disjoint subsets of E(M) and suppose λM(X) = λM(Y ) = κM(X ,Y ). There

exists a minor N on X ∪Y such that λN(X) = κM(X ,Y ).

Now consider Tutte’s Linking Theorem together with the lemma below.

Lemma 2.1.10. Let N be a minor of a matroid M and let X ⊆ E(N). If λM(X) =

λN(X), then M|X = N|X.

This gives the following result, which we use frequently throughout this section.
For ease of reference and since this follows almost immediately from Tutte’s Link-
ing Theorem we shall often say “by Tutte’s Linking Theorem” as opposed by “by
Lemma 2.1.11”.

Theorem 2.1.11. Let M be a matroid and let X and Y be disjoint subsets of E(M)

and suppose λM(X) = λM(Y ) = κM(X ,Y ). Then there exists a minor N on X ∪Y

such that λN(X) = κM(X ,Y ). Moreover, N|X = M|X and N|Y = M|Y .

.
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Local Connectivity

Definition 2.1.12. Let M be a matroid with ground set E. The local connectivity

between two disjoint sets X ,Y ⊆ E, denoted uM(X ,Y ), is defined by
uM(X ,Y ) = r(X)+ r(Y )− r(X ∪Y ).

As usual we abandon the subscript where context allows. It is a trivial observation
that when X and Y are disjoint uM(X ,Y ) = λM|(X∪Y )(X).

Lemma 2.1.13. Let M be a matroid and X1,X2,Y1,Y2 ⊆ E(M). If X1 ⊆ X2 and

Y1 ⊆ Y2 then u(X1,Y1)≤ u(X2,Y2).

When M is represented over a field, u(X ,Y ) is the rank of the intersection of the
span of X and the span of Y in the underlying projective space over that field.

We use u∗M(X ,Y ) to denote uM∗(X ,Y ).

Guts and Coguts Elements

Let M be a matroid on groundset E. Let X ⊆ E and e /∈ E. If e /∈ X , it is easy to
see that e ∈ clM(X) if and only if e /∈ clM∗(E− (X ∪ e)).

Lemma 2.1.14. Let M be a matroid, let X ⊆ E(M), and let e ∈ E(M)−X. Then

λM/e(X)< λM(X) if, and only if, e ∈ clM(X) and e is not a loop.

When it is clear from the context we abbreviate clM∗(X) to cl∗(X).

Definition 2.1.15. Let (X ,Y ) be an exact k-separation of a matroid M. An element
e is in the guts of (X ,Y ) if e ∈ clM(X − e) and e ∈ clM(Y − e). Dually, e is in the
coguts of (X ,Y ) if e ∈ cl∗M(X− e) and e ∈ cl∗M(Y − e).

M(K4) Minors

The following lemma from [15] is exceedingly useful and will be used frequently
throughout the thesis.

Lemma 2.1.16. Let {a,b,c} be elements of a 3-connected binary matroid M with

r(M)≥ 3. Then M has an M(K4)-minor using {a,b,c}.
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2.2 Introduction to Blocking

Definition 2.2.1. Let M be a matroid and x ∈ E(M). Let (A,B) be a k-separation
of M \ x. We say that (A,B) is blocked by x in M, or x blocks (A,B) in M, if
λM(A∪{x}),B) = λM(A,B∪{x}) 6= λM\x(A,B).

Let M be a matroid, X ⊆ E(M) and N = M \X . For X ′ ⊂ X we may denote the
matroid M \ (X −X ′) by N +X ′. We say x blocks the separation (A,B) of N if
(A,B) is blocked by x in N + x. If (A,B) is not a k-separation in M but is in M \ x

then we say that deleting x unblocks the k-separation (A,B).

Lemma 2.2.2. Let M be a matroid and N a minor of M. Let (A,B) be a k-

separation in N. An element x ∈ (E(M)−E(N)) blocks (A,B) if, and only if,

x is not a coloop in N + x and x /∈ clN+x(A) and x /∈ clN+x(B).

Proof. Say x blocks (A,B). Then

λN+x(A∪ x,B) = λN+x(A,B∪ x) = λN(A,B)+1.

Therefore

rN+x(A∪ x)+ rN+x(B)− r(N + x) = rN(A)+ rN(B)− r(N)+1.

As x is a blocking element rN+x(B) = rN(B) and so, as the rank function of a
matroid is integral, either r(N + x)< r(N), a contradiction, or

rN+x(A∪ x) = rN(A)+1 = rN+x(A)+1.

Similarly
rN+x(B∪ x) = rN(B)+1 = rN+x(B)+1.

This means that x /∈ clN+x(A) and x /∈ clN+x(B).

Finally a simple rank argument shows that if x were a coloop in N + x we would
have λN+x(A∪ x) = λN(A). Therefore x is not a coloop in N + x.

The other direction is relatively similar and is left to the reader.
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2.3 Introduction to Bridging Sequences

Some background on bridging sequences can be found in [10] but all necessary
definitions and results can also be found below.

Definition 2.3.1. Let M be a matroid. Consider an exact k separation (X ,Y ) in the
matroid N = M \D/C. We say that (X ,Y ) is bridged in M if κM(X ,Y )≥ k.

Let N =M\D/C and suppose X ⊆C∪D. We shall use N[X ] to denote the matroid
M \ (D−X)/(C−X).

Definition 2.3.2. Let V = v1, . . . ,vn be an ordered collection of elements of
E(M)− E(N) and let (X ,Y ) be a k-separation of N that is bridged in M. Let
S = {vi : i odd and i ∈ {1, . . . ,n}} and T = {vi : i even and i ∈ {1, . . . ,n}}. Then
V is a bridging sequence for the k-separation (X ,Y ) if the following hold:

i) There are sets C,D such that {C,D} = {S,T} such that D is an independent
set and C is a coindependent set and N = M \D/C,

ii) if i ∈ {1, ..,n}, then λM(X ∪{v1, . . . ,vi},Y ∪{vi+1....,vn}) = k,

iii) if vi ∈ D, then λM\vi(X ∪{v1, . . . ,vi−1},Y ∪{vi+1....,vn}) = k−1, and

iv) if vi ∈C, then λM/vi(X ∪{v1, . . . ,vi−1},Y ∪{vi+1....,vn}) = k−1.

We call D the delete set for V and C the contract set for V .

Definition 2.3.3. If a k-separation (X ,Y ) of N is bridged in a matroid M, then we
say that M is a bridging matroid for (X ,Y ). If no proper minor of M exists in
which (X ,Y ) is bridged, then M is a minimal bridging matroid for (X ,Y ). If V is a
bridging sequence for (X ,Y ) that is contained in a minimal bridging matroid then
we call V a minimal bridging sequence.

The next few lemmas can be found in [10].

Lemma 2.3.4. Let M be a k-connected matroid that contains a k-separation (A,B)

and let N be a minor of M containing a k-separation. Then there is a minor of M

that contains a minimal bridging sequence for (A,B) in N.
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Lemma 2.3.5. Let V be a minimal bridging sequence with delete set D and con-

tract set C for the k-separation (X ,Y ) in N. Let M be a minimal bridging matroid

for N. If x ∈ D, then M/x is not k-connected and if x ∈ C then M \ x is not k-

connected.

Lemma 2.3.6. Let V = (v0, . . . ,vn) be a bridging sequence for the k-separation

(X ,Y ) in N.

i) If vi is a delete element of V , then vi /∈ clN[v0,...,vi](Y ).

ii) If vi is a contract element of V , then vi /∈ cl∗N[v0,...,vi]
(Y ).

Lemma 2.3.7. Let V = {v0, . . . ,vn} be a bridging sequence for the k-separation

(X ,Y ) in N. Let i < n. Then, in N[v0, . . . ,vi], we have vi ∈ cl(X ∪{v0, . . . ,vi−1})
and vi ∈ cl∗(X ∪{v0, . . . ,vi−1}).

Lemma 2.3.8. Let (A,B) be a k-separation in matroid N that is bridged by a

bridging sequence {v0, . . . ,vn} that starts and finishes with a delete element. Then

(A ∪ {v0, ...vn−1},B) is a k-separation in N[v0, ...,vn−1] that is blocked by vn.

Moreover, vn−1 is in the coguts of (A,B) in N[v0, ...,vn−1].

Proof. The first part of the lemma is obvious. To show vn−1 is in the coguts
of (A,B) in N[v0, ...,vn−1] observe that, since λN(A) = rN(A) + r∗N(A)− |A| =
λN(B) = λN [vn−1](A∪vn−1) = r(A∪{vn−1})+r∗(A∪vn−1)−|A|−1, the element
vn−1 is either in the closure or the coclosure of A. Similarly, vn−1 is either in the
closure or the coclosure of B. Suppose that vn−1 ∈ cl(B). We know that vn ∈ cl(B∪
{vn−1}) so this means vn ∈ cl(B), a contradiction in N[vn−1,vn]. Suppose that
vn−1 ∈ cl(A). If this happens then λN[vn−1](A) 6= λN[vn−1](B), a contradiction.

Note that if an element x is in the coguts of a k-separation (A,B), then (A,B) is a
k−1-separation in M \ x.

Lemma 2.3.9. Let (A∪ {x},B) be a 3-separation of matroid N that is blocked

by a single extension element b. Suppose that x is in the coguts of (A,B) and

suppose that A is a 3-separating triad, {t1, t2, t3}. There is a minor N′ of N with

groundset B∪{ti, t j,x} so that N′|B = N|B, and {ti, t j,x} is a 3-separating triad

that is blocked by b for some i, j ∈ {1,2,3}.
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Proof. Suppose that when we contract t1 the element t2 is in the closure of B,
then when we contract t2 we have t1 ∈ clN/t2(B). Now consider contracting
t3. Say ti ∈ clN/t3(B), for i ∈ {1,2}. Then rN(B∪{t1, t2, t3}) = rN(B∪{t3}) so
λN\x({t1, t2, t3}∪B) = 2, a contradiction.

We now show that if, when we contract t3, neither of t1 or t2 is in the closure
of B, then {t1, t2,x} is a 3-separating triad in N/t3 that is blocked by b. First
rN/t3(B) = rN(B∪ t3)− 1 and r(N/t3) = r(B∪ {t1, t2, t3,x})− 1 = r(B∪ t3)− 1
(since x is not a coloop). Therefore, B is a hyperplane in N/t3 and so {t1, t2,x} is
a triad. It is clear that {t1, t2,x} is 3-separating and (B,{t1, t2,x}) is a 3-separation
in N′ blocked by b.

2.4 Some Ramsey-Type Results

Ramsey’s Theorem tells us that any sufficiently large graph either has a clique or
an independent set of size n as a minor. In general, Ramsey-theoretic results are
of the following form: Let S be a substructure of interesting form A, then any
sufficiently large structure has a substructure of |S| with form A. In this section
we give some Ramsey theoretic results that will be useful throughout the thesis.

The following lemma can be found in [13].

Lemma 2.4.1. There is a function f2.4.1 such that a connected matroid M with

rank at least f2.4.1(n) contains a circuit on n elements or cocircuit on n elements.

The next lemma can be found in Chapter 9 of [6].

Lemma 2.4.2. There is a function f2.4.2 such that if G is a simple connected graph

with at least f2.4.2(n) vertices, then G contains, as an induced subgraph, a graph

isomorphic to Kn,K1,n, or a path of length n.

We assume the reader has a basic knowledge of hypergraphs.

Definition 2.4.3. A hypergraph H is connected if there is a walk between every
pair of distinct vertices in H. A matching in a hypergraph is a set of pairwise
disjoint nonempty hyperedges.

The proof of the following well-known theorem is routine and is omitted.
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Lemma 2.4.4. There is a function f2.4.4 such that the following holds. Let H be

a connected hypergraph with at least f2.4.4(n,m,k) elements. If every edge of H

has size at most k, then either H has a vertex of degree greater than m or H has a

matching using n edges.

We now take a brief detour to define “block decompositions” of matrices. These
will also be used in later chapters of the thesis.

Definition 2.4.5. Let A be a matrix with a set R = {r1, ...,rm} of rows and C =

{c1, ...,cn} of columns. A block decomposition of A is a partition, Ã, of A into
submatrices such that the following hold.

1. If B is a submatrix of A in Ã then all rows of B are consecutive in A and all
columns of B are consecutive in A.

2. If B is in Ã and the rows of B are labelled by ri, ...,rk then for any C ∈ Ã with
a row labelled by an element of {ri, ...,rk}, C contains exactly rows labelled
by ri, ...,rk.

3. If B is in Ã and the columns of B are labelled by ci, ...,ck then for any C ∈ Ã

with column labelled by an element of {ci, ...,ck}, C contains exactly rows
labelled by ri, ...,rk.

Definition 2.4.6. We say that a matrix A is almost diagonal if A has a block de-
composition so that the only non-zero blocks are the diagonal blocks and the di-

agonal blocks are of the form
(

1,1, . . . ,1
)T

. We say that A is n-block almost di-

agonal if A is almost diagonal and the block decomposition has n diagonal blocks.

We assume the following theorem is well known. Regardless the proof is straight-
forward and is omitted

Lemma 2.4.7. There is a function f2.4.7 such that the following holds. Let M be

a binary matrix containing at most k ones in a column and exactly one 1 in a

row. Suppose M has at least f2.4.7(n) columns. Then there is a submatrix of M

obtained by deleting columns and resulting zero rows that has m consecutive rows

that form a column-permuted n-block almost diagonal matrix.

The next lemma follows easily.



2.4. SOME RAMSEY-TYPE RESULTS 17

Lemma 2.4.8. There is a function f2.4.8 such that if M is a matrix with at least

f2.4.8(n,k) columns and exactly one 1 in each column, then there is either a sub-

matrix of M obtained by deleting columns and zero rows and permuting columns

that is an almost-diagonal matrix with at least n elements, or there is a row con-

taining at least k elements.

Proof. This follows by letting f2.4.8(n,k) = f2.4.4( f2.4.7(n),k).

Lemma 2.4.9. There is a function f2.4.9 with the following property. Suppose n

is an integer greater than 2 and M is a matrix over GF(2) with at least f2.4.9(n)

columns. Suppose that every column of M contains at least two ones and no

two columns are identical. By permuting columns, deleting rows and deleting

columns we can find a submatrix with at least n rows of one of the following

forms:



1
1
1
1
1
1
...

1


,



1 1 1 1 1 . . . 1
1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
... . . .

...

0 0 0 0 0 . . . 1


,



1 0 0 0 . . . 0
1 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 1 1 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 1
0 0 0 0 . . . 1


,



A1 0 0 . . . 0
0 A2 0 . . . 0
0 0 A3 . . . 0
...

...
... . . . ...

0 0 0 . . . An


,

where Ai denotes an ai×bi matrix with a 1 in every row and every column.

Proof. First we obtain a hypergraph H from any matrix M. To do this let the rows
be the vertices of the graph and, if column ci had a 1 in rows r j1, ...,r jk then there
is an edge in H incident with r j1, ...,r jk . We may assume that the hypergraph has
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at most n connected components otherwise we are in the case where the matrix is
of the following form. 

A1 0 0 . . . 0
0 A2 0 . . . 0
0 0 A3 . . . 0
...

...
... . . . ...

0 0 0 . . . An


,

.

This means that at least one component, H1 has at least |V (H)|
n vertices.

If there is an edge incident with at least n vertices then there is a submatrix of M

that is a column of 1′s, and if there is a vertex that meets at least k ≥ f2.4.8(n,n)

edges then, by Lemma 2.4.8, we get a submatrix of M of the following form.

1 1 1 1 1 . . . 1
1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 1


.

Assume that every vertex of H1 has degree less than k, and let v be a vertex of H1.
We call this vertex layer 0. Let layer 1 be the set of all edges incident with v that
meet v and all vertices incident with these edges that are not in layer 0. Note that
layer 1 has size at most kn. Let layer i be the set of all edges incident with a vertex
in layer i−1 that are not in layer i−1 and all vertices that meet an edge of layer
i that are not in layer i− 1. This has at most |Li−1|kn vertices. If f??(n) ≥ (kn)n

then there are at least n layers in H. Take a vertex vi from layer Li that is incident
with an edge ei+1. Consider an edge ei 6= ei+1 that is incident with v and consider
some element of Li−1 that meets ei. The collection of vertices and edges obtained
in this way forms a path.

Lemma 2.4.10. Suppose A is a f2.4.10(n)× f2.4.10(m) matrix with at least one 1 in

every row and every column, and no column containing more than k ones. Then

there is a large submatrix of A that is either a column of k ones or a permutation
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of Il where l = min{m,n}.

Proof. This follows immediately from Lemma 2.3 of [7].

The next result is trivial.

Lemma 2.4.11. There is some function f2.4.11(n,k) such that if S is a sequence of

length f2.4.11(n,k) in which every entry is taken from the set {1, ...,k} then there

is a subsequence of S of size at least n in which all elements take the same value.

2.5 A Note on Notation

For a set A, we use P(A) to denote the powerset of A. If A is a set of sets, S1, ...,Sn

then ∪A denotes S1∪ ...∪Sn (see, for example [11][pg 12], and A−S− i denotes
{S1, ...,Si−1,Si+1, ...,Sn}. If A is an ordered set such that A = (S1, ...,Sn) then
A−Si denotes (S1, ...,Si−1,Si+1, ...,Sn).

If F is a set, then an F-matrix is a matrix that takes its entries from F . If A and B

are two matrices with the same number of rows, then we use A _ B to denote the
matrix obtained by augmenting the matrix A by the matrix B. When we represent
matroids we will frequently use a reduced standard representation (see [13] (pg
78)).

When we are considering a matroid M with a fixed basis B we use FB(x) to denote
the fundamental circuit of x with respect to B. When the basis in question is
clear we may abbreviate this to F(x). We refer to the elements of F(x) as the
representatives of the element x.

A lot of this thesis relies on pivoting on matrices. There will often be a sequence
of many pivots where at each stage the matrix we pivot on changes due to pre-
vious pivots. It becomes extremely annoying to have to name each matrix in the
sequence. Therefore, when the matrix we are discussing is clear, we use Mi, j to
denote the (i, j)th entry of of the matrix in question. This notation is subideal but
seems better than having to name hundreds of individual matrices.

Let S = a1,a2, ...,an,a1 be a cyclic order in which one starts from a1 and, moving
clockwise, next comes to a2 then a3 and so on. We use [x1,x2, ...,xi]a j to denote
the fact that, if we start from a j and move around S in a clockwise direction, we
first see x1 then x2 and so on. Note that xi and xi+1 need not be consecutive in



20 CHAPTER 2. BACKGROUND MATERIAL

the cyclic order. Again this is not notation that I am particularly happy with, but
cyclic orders seem particularly nasty to talk about!

The matroids in this thesis are generally binary. To reduce the number of lines we
need and make our matroid drawings looks a little less daunting, when we give
a drawing of a matroid we may sometimes omit dependencies forced by the fact
the matroid is binary if we have enough information from the rest of the picture to
fully determine the matroid.

We make the global assumption here that, unless otherwise stated, t ∈ Z≥4.



Chapter 3

Flowers and Pseudo-Flowers

Definition 3.0.1. Let M be a matroid and F be a partition of E(M) into
(P1, . . . ,Pn). Then, for k ∈ Z≥2 F is a (k+1)-flower of M if the following hold.

1. If n > 1 then λ (Pi) = k for all i ∈ {1, . . . ,n},

2. If n > 2, then λ (Pi∪Pi+1) = k for i ∈ {1, . . . ,n} and addition of subscripts
is modulo n,

3. if (X ,Y ) is a 2-separation of M, then for some petal Pi, either X or Y is a
subset of Pi A flower is a k-flower for some k ≥ 2

We call the elements of F the petals of F . We say that a petal Pi of F is proper

if Pi ⊆ cl(E(M)−Pi). A set S of petals of F is consecutive if, for petals Pi,Pj ∈ S

either Pk ∈ S for all k such that [i,k, j]i, or Pk ∈ S for all k such that [ j,k, i] j.

Since F is an ordered set we can talk about subsets of F . We use F ′ ⊆ F to denote
a flower F ′ where the petals of F ′ are a subset of F and the order in which the
petals occur in F is preserved in F ′.

The class of (k+1)-flowers splits into two subclasses: anemones, and daisies.

Definition 3.0.2. Let F be a (k+ 1)-flower. We call F an anemone if ∪i∈IPi is
exactly k-separating for any I ( {1, . . . ,n}. We call F a daisy if ∪i∈IPi is exactly
k-separating if, and only if, non-empty I ( {1, . . . ,n}, and the members of I form
a consecutive set modulo n.

21
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Theorem 1.1 of [1] proves that all flowers are either anemones or daisies. An alter-
native way of viewing these classes is in terms of the local connectivity between
petals. Recall that the local connectivity of two disjoint sets, X and Y is defined
by u(X ,Y ) = r(X)+ r(Y )− r(X ∪Y ). If we want a definition of an anemone or
daisy in terms of local connectivity to make sense we need the following lemma
which can be found in [1].

Lemma 3.0.3. Let (P1, . . . ,Pn) be a flower in a matroid M with at least five petals.

Ifu(P1,P2)= k thenu(Pi,Pi+1)= k for any i∈{1, . . . ,n}. Moreover, ifu(P1,P3)=

k′ then u(Pi,Pj) = k′ for all i, j ∈ {1, . . . ,n} where i 6= j+1 and j 6= i+1.

In Lemma ?? we introduced the condition that M has at least five petals. This
is because we want to remove the possibility of Vámos-like flowers. These have
four petals and, since they are non-binary, are of no interest to us. Recall that a
connectivity function is self-dual. It is then easy to see that if F is a flower in M,
then F is also a flower in M∗. Therefore Lemma ?? holds when we replace u by
u∗.

We will describe a flower in terms of three parameters.

Definition 3.0.4. Let M be a matroid. A (k+1)-flower, (P1, . . . ,Pn),of M with at
least 5 petals is a (µ,ν ,ξ )-flower in M if u(P1,P3) = µ , if u∗(P1,P3) = ν and if
u(P1,P2)−u(P1,P3) = ξ .

We will shortly prove that once we know any three of k,µ,ν ,ξ , the fourth is fixed.

Lemma 3.0.5. Let F be a (k+1)-flower that is a (µ,ν ,ξ )-flower of a matroid M

and suppose F has at least 5 petals. Then F is a (ν ,µ,ξ )-flower of M∗.

Proof. It is trivial to see that F is a flower in M∗ and that F∗ is a (ν ,µ,σ)

flower for some σ . What remains to prove is that σ = ξ , that is that
u(P1,P2)−u(P1,P3) = u∗(P1,P2)−u∗(P1,P3). To do this notice that u(A,B) =
λM\E−{A∪B}(A,B) so u∗(A,B) = λM/E−{A∪B}(A,B).

Claim 3.0.6. Let F = (P1,P2,P3,P4,P5) be a (k+1)-flower with five petals
such that u(P1,P3) = u(P2,P4). Then u(P1,P2)−u(P1,P3) = u∗(P1,P2)−
u∗(P1,P3).
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Proof. Consider u∗(P1,P3) = λM/P2∪P4∪P5
(P1,P3). We have

λM/P2∪P4∪P5
(P1,P3) = rM/P2∪P4∪P5

(P1)+ rM/P2∪P4∪P5
(P3)− r(M/{P2∪P4∪P5})

= r(P1∪P2∪P4)+ r(P2∪P3∪P4)− r(M)− r(P2∪P4) (2)

= r(M)+ k− r(P3)+ r(M)+ k− r(P1)− r(M)− r(P2∪P4) (3)

= r(M)+2k− r(P1)− r(P3)− r(P2)− r(P4)+u(P1,P3) (4)

= r(M)+2k− r(P1∪P2)− r(P3∪P4) (5)

−u(P1,P2)−u(P3,P4)+u(P1,P3)

= k−2u (P1,P2)+u(P1,P3) (6)

where (3) follows from (2) by definition of connectivity function and not-
ing that the connectivity of a single petal is k, (4) follows from (3) since
u(P1,P2) = u(P2,P4), and (6) follows from (5) by definition of the connectivity
function, definition of flower and the hypotheses of the claim. Thus u∗(P1,P3) =

k− 2u (P1,P2) +u(P1,P3). The result follows by noting that k−u(P1,P2) =

u∗(P1,P2).

If F = (P1,P2,P3,P4...,Pn) is a (k + 1)-flower then so is F ′ = (P′1,P
′
2,P
′
3,P
′
4) =

(P1,P2,P3,P4 ∪ . . .∪ Pn) and uF(Pi,Pj) = uF ′(P′i ,P
′
j) for i, j ∈ 1, . . . ,4. By the

claim uF ′(P1,P2)−uF ′(P1,P3) = u∗F ′(P1,P3)−u∗F ′(P1,P2) and so uF(P1,P2)−
uF(P1,P3) = u∗F(P1,P3)−u∗F(P1,P2). Therefore ξ = σ .

The following lemma can be found in [13].

Lemma 3.0.7. Let X and Y be disjoint subsets of the groundset of a matroid M.

Then u(X ,Y )+u∗(X ,Y ) = λ (X)+λ (Y )−λ (X ∪Y ).

Lemma 3.0.8. Let F be a (k + 1)-flower with at least 5 petals described by

(µ,ν ,ξ ), then µ +ν +2ξ = k.

Proof. By Lemma 3.0.7 we see that u(P1,P2)+u∗(P1,P2) = k. The result follows
from this and the previous lemma.

There are two types of 2-flowers, a (1,0,0)-flower and a (0,1,0)-flower. This can
easily be seen by the lemmas above but also follows from [5].

We now list the different types of 3-flowers.
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Definition 3.0.9. Suppose F = P1, . . . ,Pn, where n≥ 5, is a 3-flower.

i) If F is a (2,0,0)-flower then F is a paddle.

ii) If F is a (0,2,0)-flower then F is a copaddle.

iii) If F is a (1,1,0)-flower then F is spike-like.

iv) If F is a (0,0,1)-flower then F is swirl-like.

Clearly any 3-flowers with at least 5 petals is either a paddle, copaddle, spike-like
or swirl-like.

Definition 3.0.10. A maximal flower, F , of a matroid, M, is a flower of M such
that if F = (P1, ...,Pn) then there is no F ′ = (P1, ...,Pi−1,P′i ,P

′′
i ,Pi+1, ...,Pn) that is

a flower of M when P′i ∪P′′i = Pi. A maximal paddle (copaddle, spike-like flower,

swirl-like flower) is a maximal flower that is a paddle (copaddle, spike-like flower,
swirl-like flower respectively).

3.1 Paddles

Paddles are important because one of the structures we want to bridge is M(K3,n)

which is a paddle. When we bridge M(K3,n), we are able reduce this to blocking
a paddle. This means that general binary paddles are useful objects in this thesis.
We therefore take a detour here to look at paddles.

Definition 3.1.1. If F is a paddle in M and P is a petal of F then P is proper in M

if P /∈ cl(E(M)−P). If P ∈ cl(Pi) for all Pi ∈ F−P then P is a guts petal.

Lemma 3.1.2. Let F be a 3-flower of a binary matroid M that has a maximal

paddle with n proper petals. Then M has a minor M′ that has a maximal paddle,

F = (P1, ...,Pn,G), that can be represented by the following matrix:

A =



P′1 0 0 . . . 0
0 P′2 0 . . . 0
0 0 P′3 . . . 0
...

...
... . . . ...

0 0 0 . . . P′n
G1 G2 G3 . . . Gn


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where each Gi contains at least one non-zero entry in every row and the G′is have

2 rows. Moreover, a petal, Pi, of F contains the elements labelling the columns of

P′i and the rows labelling P′i , and G contains the elements labelling the rows of the

submatrices G1, ...,Gn.

Proof. The matroid M has a paddle P = (P1, ...,Pn,G) with P1, ...,Pn proper petals
and G a guts petal. As P is a paddleu(Pi,Pj)= 2 which means that there must be at
least two basis element in the span of Pi and Pj. This means that, for i ∈ {1, ...,n}
the submatrix Gi contains at least two rows and for j 6= i the submatrices Gi and
G j must contain at least two rows where both Gi and G j contain a 1. Consider
Pi,Pj and Pk. We know both Pj and Pk each must contain 2 rows where there are
non zero entries in both the columns marked by Pj, Pk and the columns marked by
Pi. Suppose that these rows are not the same for both Pj and Pk. This means that
λ (Pi)> 2, a contradiction.

Lemma 3.1.3. Every 3-connected binary matroid M that has a paddle partition

with at least n≥ 5 proper petals has an M(K3,n)-minor.

Proof. This follows from Lemma 2.1.16.

3.2 Pseudo-flowers

Pseudo-flowers are a generalisation of flowers. The results in this section will
almost certainly generalise to k-separations for any k ≥ 3, but for this section we
restrict out attention to the case when separations have order 1 or 2.

Recall that κM(X ,Y ) = min{λM(S) : X ⊆ S⊆ E(M)−Y}.

Definition 3.2.1. Let M be a matroid. A pseudo-flower is an ordered partition
P1,P2, . . . ,Pn of E(M) such that:

i) for any consecutive subset Pi, . . . ,Pj, we have λ (Pi∪·· ·∪Pj) ∈ {1,2}, and

ii) κ(Pi ∪ ·· · ∪ Pj,Pk ∪ ·· · ∪ Pl) = min{λ (Pi ∪ ·· · ∪ Pj),λ (Pk ∪ ·· · ∪ Pl)} for
i, j,k, l ∈ {1, . . . ,n} such that [Pi,Pj,Pk,Pl]i.

The elements of F are called petals.
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A pseudo-flower F = (P1, ...,Pn) is maximal if there is no Pi ∈ (P1, ...,Pn) such that
(P1, ...,Pi−1,P′i ,P

′′
i ,Pi+1, ...,Pn) is a pseudo-flower. A petal Pi in a pseudo-flower

F = (P1, ...,Pn) is minimal if there is no partition of Pi into P′i and P′′i such that
(P1, ...,Pi−1,P′i ,P

′′
i ,Pi+1, ...,Pn) is a pseudo-flower. A consecutive subset of petals

of F is a subset, S = {Pi, ...,Pj} where [P1,Pi,Pj]P− j, of petals of F such that if
Pk ∈ S and k 6= i, j, then Pk+1 and Pk−1 are in S, and both Pi+1 and Pj−1 are in S.

Lemma 3.2.2. Let (P1, . . . ,Pn) be a pseudo-flower of a matroid M. If λ (Pi∪·· ·∪
Pj) = 1, then either the connectivity of the union of any consecutive subset of

(Pi, . . . ,Pj) is 1, or the connectivity of the union of any consecutive subset of the

complement, (Pj+1, . . . ,Pi−1), is 1.

Proof. Suppose the theorem does not hold and consider a consecutive subset
Pa, . . . ,Pb of (Pi, . . . ,Pj) and a consecutive subset (Pc, . . . ,Pd) of Pj+1, . . . ,Pi−1.
Suppose λ (Pa ∪ ·· · ∪ Pb) = 2 = λ (Pc ∪ ·· · ∪ Pd). Then, since (P1, . . . ,Pn) is
a pseudo-flower, κ(Pa ∪ ·· · ∪ Pb,Pc ∪ ·· · ∪ Pd) = 2. However Pa ∪ ·· · ∪ Pb ⊆
Pi∪·· ·∪Pj ⊆ (E(M)− (Pj+1∪·· ·∪Pi−1)), and λ (Pi∪·· ·∪Pj) = 1. By definition
of κ it follows that κ(Pa∪·· ·∪Pb,Pc∪·· ·∪Pd) = 1, a contradiction.

Definition 3.2.3. A displayed 3-separation in pseudo-flower F is a partition of the
petals of F into sets A and B such that λ (∪A) = 2.

Definition 3.2.4. Let Pi be a petal of pseudo-flower F of M. If λ (Pi) = 2, then we
call Pi a 3-petal. If λ (Pi) = 1 then we call Pi a 2-petal.

Definition 3.2.5. Let F = (P1, . . . ,Pn) be a pseudo-flower of a matroid M.

1. A union of the elements of a set, S, of petals of F is a concatenation of S if
the following holds. If Pi and Pj are in S and [i, j]1 then for all k such that
[i,k, j]i or [ j,k, i] j, the petal Pk is in S.

A concatenation of F is a collection of concatenations of disjoint subsets
S1, ...,Sm of petals of F so that every petal in F is contained in some Si for
i ∈ {1, ...,m}.

2. A concatenation of F , (Q1, . . . ,Qm), is a flower concatenation of F in M if
(Q1, . . . ,Qm) is a flower in M.
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3. We say that a pseudo-flower is swirl-like if there is some concatenation of
(P1, . . . ,Pn) that is a swirl-like flower; is a paddle if there is some concate-
nation of (P1, . . . ,Pn) that is a paddle; is a copaddle if there is some con-
catenation of P1, . . . ,Pn that is a copaddle; and is spike-like if there is some
concatenation of (P1, . . . ,Pn) that is a spike-like flower.

4. The order of a pseudo-flower F is the number of petals in a flower concate-
nation of F with a maximal number of petals.

Note that the order defined above is different to the order in a flower as defined in
[14] and [1].

The next lemma follows immediately from the definitions.

Lemma 3.2.6. If F is a pseudo-flower then any concatenation of petals of F is a

pseudo-flower.

Lemma 3.2.7. Let F be a pseudo-flower of a matroid M, and let F ′ be a flower

concatenation of F with at least five petals.

i) If F ′ is swirl-like then any flower concatenation of F with at least five petals

is swirl-like.

ii) If F ′ is spike-like then any flower concatenation of F with at least five petals

is spike-like.

iii) If F ′ is a paddle then any flower concatenation of F with at least five petals

is a paddle.

iv) If F ′ is copaddle then any flower concatenation of F with at least five petals

is a copaddle.

Proof. Let (P′a, . . .P
′
m) be the flower concatenation F ′ of F in M, where P′k = P1∪

·· · ∪Pk− (∪i<kP′i for k ∈ {1, ...,m}. Clearly a concatenation of F ′ with at least
five petals is a flower of the same type as F ′. Consider splitting the petals of F ′

to give a new flower concatenation of F in M. Consider two consecutive petals P′i
and P′j of F ′. Let (P1, . . . ,Pi) be the petals of F that make up P′i and (Pi+1, . . . ,Pj)

be the petals of F that make up P′j. Consider (P′1, . . . ,P
′
i ,Pi+1, . . . ,Pk) for some

k < j. If this is a flower it is of the same type as F since u(P′a,P′b) is the same in
both flowers if {a,b}* {i, j}.
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Blocking and Separations in Flowers and Pseudo-Flowers

Definition 3.2.8. Let M be a matroid with pseudo-flower F . A displayed 3-

separation of M by F is a 3-separation (A,B) of M such that A is a union of
petals of F and B is a union of petals of F . We say that a flower F is blocked in
M by X if M +X has no displayed 3-separations. We say that a petal Pi of F is
blocked by an element x ∈ X if Pi is not 3-separating in M+ x.

When it is clear from context that we are considering a pseudo-flower F as a
pseudo-flower of M we may talk about an element x blocking a petal P of F to
mean x blocks P in M. We may also use a similar abbreviation for sets of elements.

3.3 Swirl-like Pseudo-flowers

We look at swirl-like pseudo-flowers in some detail here since we believe that
the problem of bridging a wheel reduces to the problem of blocking a swirl-like
pseudo-flower. Throughout this section we work under the following hypotheses.

• M is a binary matroid, and

• F = (P1, . . . ,Pn) is a swirl-like pseudo-flower of M of order at least five.

Recall that if M is a matroid and A ⊆ E(M) we use 〈A〉 to denote the elements
from the ambient extended projective space that are in the span of the elements of
A.

Definition 3.3.1.

i) A clump in F is a consecutive subset (Pi,Pi+1, . . . ,Pj) of petals such that the
following holds. For all i such that [i, i′, j′, j]i we have λ (Pi′ ∪·· ·∪Pj′) = 1.

ii) A clump is maximal if it is maximal with respect to this property.

iii) A concatenation of a consecutive set, S = {Pi, ...,Pj}, of petals is weak if
(Pi, . . . ,Pj) is a clump.

The following lemma is trivial.
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Lemma 3.3.2. If (P1, . . . ,Pi) is a clump in F with at least two proper petals then

(P1, . . . ,Pi,Pi+1∪·· ·∪Pn) is a 2-flower.

Recall that there are two types of 2-flower, a (1,0,0)-flower or a (0,1,0)-flower.
The next lemma shows that the petals on either side of a clump “see” this clump
in the same way.

Lemma 3.3.3. Let F = (Q1,C,Q2,Q3,Q4,Q5) be a swirl-like pseudo-flower such

that (Q1 ∪C,Q2,Q3,Q4,Q5) is a flower concatenation of F in M, where C is a

clump and λ (Qi) = 2 for i ∈ {1,2,3,4,5}. Then either:

i) u(Q1,C) = u(Q2,C) = 1, or

ii) u(Q1,C) = u(Q2,C) = 0.

Proof. Since λ (C) = 1 it follows that u(Qi,C) ≤ 1 for i ∈ {1,2}. Suppose
u(Q1,C) = 1. By Lemma 3.2.7 (Q1 ∪C,Q2,Q3,Q4,Q5) is a swirl-like flower,
and hence u(Q1∪C,Q2) = 1. Therefore,

r(Q1∪C∪Q2) = r(Q1∪C)+ r(Q2)−1

= r(Q1)+ r(C)+ r(Q2)−2.

Suppose u(Q2,C) = 0. Then

r(Q1∪C∪Q2) = r(Q1)+ r(Q2∪C)−1

= r(Q1)+ r(C)+ r(Q2)−1.

Together these equations give a contradiction.

Definition 3.3.4. Let F = (P1, . . . ,Pn) be a swirl-like pseudo-flower of a matroid
M. Let C = (Pi, . . . ,Pj) be a clump of F in M. We say that C is joint-based

if for some concatenation (Q1,C,Q2,Q3,Q4,Q5) of F with λ (Qi) = 2 for i ∈
{1,2,3,4,5}, we have u(Q1,C) = 1. We say that C is rim-based if for some
concatenation (Q1,C,Q2,Q3,Q4,Q5) of F with λ (Qi) = 2 for i ∈ {1,2,3,4,5},
we have u(Q1,C) = 0.

We show shortly that a clump will either be joint-based or rim-based (and not be
both).
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Lemma 3.3.5. Let F be a swirl-like pseudo-flower of M and C be a clump of F.

There are no clumps A,B that are subsets of C and are such that A is joint-based

and B is rim-based.

Proof. Let (Q1,C,Q2,Q3,Q4,Q5) be a concatenation of F with λ (Qi) = 2 for
i ∈ {1,2,3,4,5}. Suppose there is a subset A of C that is a joint-based clump.
Then there is some e such that e ∈ (〈A〉∩ 〈Q1〉). Suppose there is some clump B

contained in C that is rim-based, there is some f ∈ (〈B〉−〈Q1〉) with the property
that f ∈ 〈E(M)−∪i∈BPi〉. Since e and f are not equal or parallel then λ (C)≥ 2,
a contradiction.

This means that if a clump C = Pi, . . . ,Pk is joint-based (respectively rim-based)
then any subset of C is also joint-based (respectively rim-based).

The next lemma shows that different concatenations “see” a clump in the same
way.

Lemma 3.3.6. Let F be a swirl-like pseudo-flower of a matroid M. Let

(Q1,C,Q2,Q3,Q4,Q5) and (Q′1,C,Q′2,Q
′
3,Q

′
4,Q

′
5) be concatenations of F where

C is weak and λ (Qi) = λ (Q′i) = 2 for i ∈ {1,2,3,4,5}. Then for j ∈ {0,1} we

have u(Q1,C) = u(Q2,C) = j if, and only if, u(Q′1,C) = u(Q′2,C) = j.

It is clear that if P1, . . . ,Pk is a clump then (P1, ..,Pk,Pk+1∪ ·· · ∪Pn) is a (1,0,0)-
flower or a (0,1,0)-flower. The next lemma follows immediately from this.

Lemma 3.3.7. Let M be a matroid with swirl-like pseudo-flower F. Suppose

C = (P1, . . . ,Pj) is a maximal clump of F in M containing at least two petals. If

(P1, . . . ,Pj) is joint-based then (P1, ..,Pj,Pj+1∪ ·· · ∪Pn) is a (1,0,0)-flower, and

if (P1, . . . ,Pj) is rim-based then (P1, ..,Pj,Pj+1∪·· ·∪Pn) is a (0,1,0)-flower.

The following lemma then follows easily.

Lemma 3.3.8. Let (P1, . . . ,Pn) be a swirl-like pseudo-flower of a matroid M. If

there is a consecutive set of petals S = (P1, . . . ,Pt) such that S is a clump, then

(P′1, . . . ,P
′
t ,Pt+1∪ ...∪Pn) is a swirl-like pseudo-flower of M where all members of

{P′1, . . . ,P′t } are distinct and P′i ∈ {P1, . . . ,Pt} for i ∈ {1, . . . , t}.

This tells us that the petals in a clump can be reordered and we still have a swirl-
like pseudo-flower.
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Definition 3.3.9. Let (P1, . . . ,Pn) be a swirl-like pseudo-flower of a matroid M.
A concatenation Q of petals S is strong if λ (Q) = 2 and whenever {P1, . . . ,Pi}
is a maximal clump either {P1 ∪ ·· · ∪ Pi} ⊆ Q or {P1 ∪ ·· · ∪ Pi} ∩Q = /0. Let
(Q1,Q2,Q3,Q4,Q5) be a concatenation of F . Then {Q1,Q2} is a strong pair if
both Q1 and Q2 are strong and λ (Q3∪Q4∪Q5) = 2.

If {Q1,Q2} is a strong pair, then there is be some element in 〈Q1〉∩〈Q2〉. We say
that two strong pairs are equivalent if this element is the same for both pairs. We
formalise this below.

Definition 3.3.10. Suppose (Q1,Q2) and (Q′1,Q
′
2) are two strong pairs of F in M.

We say (Q1,Q2)∼ (Q′1,Q
′
2) if 〈Q1〉∩ 〈Q2〉= 〈Q′1〉∩ 〈Q′2〉.

Observe that “ ” is an equivalence relation.

The next lemma shows that we can shift (some) maximal clumps into and out of
concatenations in strong pairs.

Lemma 3.3.11. Suppose (Q1,Q2) and (Q′1,Q
′
2) are strong pairs in F.

i) If Q1 ⊆ Q′1 and Q2 = Q′2 then (Q1,Q2)∼ (Q′1,Q
′
2).

ii) If there is some C = Pi∪ ·· · ∪Pj where (Pi, . . . ,Pj) is a maximal joint-based

clump, and (Q1,Q2) = (Q′1−C,Q′2∪C), then (Q1,Q2)∼ (Q′1,Q
′
2).

Proof. i) is clear. For ii) suppose (Q1,Q2) = (Q′1−C,Q′2 ∪C). Consider a ∈
〈Q1〉∩〈Q2〉. This means that a∈ 〈Q′1−C〉 and a∈ 〈Q′2∪C〉. Assume a∈ 〈Q′1〉 and
a /∈ 〈Q′2〉. There is some b ∈ 〈Q′2〉∩ 〈C〉 and if b 6= a then λ (C)≥ 2 contradicting
the fact that C is a clump. This shows that 〈Q1〉∩ 〈Q2〉 ⊆ 〈Q′1〉∩ 〈Q′2〉. A similar
argument shows that 〈Q′1〉∩ 〈Q′2〉 ⊆ 〈Q1〉∩ 〈Q2〉

A way of visualising a swirl-like pseudo-flower is given below:
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where the purple areas represent 3-petals, yellow areas represent rim-based 2-
petals and green areas represent joint-based 2-petals. We want to be able to add
a point everywhere the span of two petals intersects. We call these elements
“joints”, and they turn out to be rather annoying to define.

Definition 3.3.12. Consider the set S of equivalence classes of the strong pairs of
F . Let T be a set containing one strong pair from each part of S. Let the elements
of T be (Q1,R1),(Q2,R2), . . . ,(Qk,Rk). For each i ∈ {1, . . . ,k} we define ji to be
an element of 〈Qi〉∩ 〈Ri〉 that is not in E(M). We say that ji is a joint of F and
that JF = { j1, . . . , jk} is the set of joints of F .

From now on we use M+ to refer to the matroid obtained by extending M by the
set of joints of M.

We define a partition F+ = (Q1, ...,Qm) of E(M+) so that every for every Pi in F

the petal P1 ∈F+ and every element j of E(M+)−E(M) is in an equivalence class
that no element of E(M+)− j. In other words, the classes in the partition of M+

are the classes in the partition F of M along with one class for each element of J.
The pseudo-flower F is swirl-like so has a natural ordering on the petals (that is on
the equivalence classes of F). We introduce an ordering on the equivalence classes
of F+. If (Qi,Ri) is a strong pair in F and (Qi,Ri) = (P1∪·· ·∪Pb,Pb+1∪·· ·∪Pc)

then in F+ let the ordering of the equivalence classes be [Pb, ji,Pb+1]Pb where there
is no Pc such that [Pb,Pc, ji]Pb or [ ji,Pc,Pb+1]Pb . After possible relabelling we may
assume that the joints appear in consecutive order in the same direction as the
petals of F .

Observe the following.
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Lemma 3.3.13. If (Qi,Ri) and (Q′i,R
′
i) are strong pairs in F and (Q′i,R

′
i) ∼

(Qi,Ri), then ji ∈ cl(Q′i)∩ cl(R′i).

We want to show that F+ is a swirl-like pseudo-flower but first we need a couple
of lemmas. These can be found in [10].

Lemma 3.3.14. Let P and Q be sets in a matroid N with λ (P) = λ (Q) = λ (P∩
Q) = λ (P∪Q) = t. Then P and Q are a modular pair.

As a corollary of this we get

Corollary 3.3.15. Suppose P and Q are petals in a swirl-like pseudo-flower and

λ (P) = λ (Q) = λ (P∩Q) = λ (P∪Q) = 2. Then P and Q are a modular pair.

Lemma 3.3.16. Let N be a matroid and z ∈ E(N). Let X and Y be a modular pair

in the matroid N \ z. If z ∈ cl(X) and z ∈ cl(Y ), then z ∈ cl(X ∩Y ).

Lemma 3.3.17. The partition F+ of M+ is a pseudo-flower.

Proof. Suppose F has n joints and for i ∈ {1, . . . ,n} let Mi = M+|((E(M) ∪
{ j1, . . . , ji}) for joints j1, . . . , ji of F . Let Fi be the partition of E(Mi) obtained
by restricting F+ to E(Mi). The result follows immediately from the following
claim.

Claim 3.3.18. For i ∈ {1, . . . ,n} Fi is a swirl-like pseudo-flower of Mi and
ji+1, . . . , jn are joints of Fi.

Proof. We proceed by induction. For the base case notice that F is a swirl-like
pseudo-flower of M and { j1, . . . , jn} are joints of F . Assume that Fi−1 is a swirl-
like pseudo-flower and that { ji, . . . , jn} are joints of Fi−1. Consider extending
Fi−1 by ji. This means that Fi = (P1, . . . ,Pi,{ ji},Pi+1, . . . ,Pn). Consider some
concatenation (P1, . . . ,Pa−1,Pa ∪ ·· · ∪ Pi ∪ { ji} ∪ Pi+1 ∪ ·· · ∪ Pb,Pb+1, . . . ,Pn) =

(P1, . . . ,Pa−1,Y ∪{ ji}∪Z,Pb+1, . . . ,Pn) of Fi. To show that for any a,b such that
[a,b]1 we have that Fi is a swirl-like pseudo-flower, it is enough to show that
λMi(Y ∪{ ji}∪Z)≤ 2.

Suppose λMi−1(Y ) = 2, then ji ∈ clMi(Y ∪ Z) and so λMi(Y ∪ { ji} ∪ Z) = 2.
The argument is similar when λMi−1(Z) = 2, so assume that λMi−1(Y ) ≤ 1 and
λMi−1(Z)≤ 1. We may also assume that both Y and Z are non-empty as otherwise
the result follows. Therefore we may assume that λMi−1(Y ) = 1 and λMi−1(Z) = 1.
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By the definition of a joint we know that Y and Z are not subsets of the same
clump. Therefore, λMi−1(Y ∪Z)≥ 2.

Let (Q1,Q2,Y ∪Z,Q3) be a concatenation of Fi−1 with λ (Q1)= λ (Q2)= λ (Q3)=

2. We know that ji ∈ clMi(Q2 ∪Y ∪ Z) and ji ∈ clMi(Q3 ∪Y ∪ Z). By Corol-
lary 3.3.15 {Q2∪Y ∪Z,Q3∪Y ∪Z} is a modular pair in Mi−1. By Lemma 3.3.16
ji ∈ clMi(Y ∪ Z). Thus λMi(Y ∪ Z ∪{ ji}) = 2, and so Fi is a swirl-like pseudo-
flower.

We must show that ji+1, . . . , jn are joints of Fi. Consider k ∈ {i+1, . . . ,n}. There
is a strong pair (Pk,Qk) with jk ∈ cl(Pk,Qk). Let P′k = clMi(Pk)∩(Pk∪{ j1, . . . , ji})
and Q′k = clMi(Qk)∩ (Qk∪{ j1, . . . , ji}). We see that (P′k,Q

′
k) is a strong pair of Fi

and thus jk is a joint of Fi.

Lemma 3.3.19. There is a bijection between the set of joints of F and the maximal

joint-based clumps of F+. Moreover, each maximal joint-based clump of F+ is

either:

i) a joint of F, or

ii) the union of a joint of F and a maximal jointt-based clump of F

Proof. Assume that (C1, . . . ,C j) is a maximal joint-based clump of F and let C =

C1∪·· ·∪C j. Then there is a concatenation (Q1,C,Q2,Q3) of F such that λ (Qi) =

2 for i∈ {1,2,3} and u(Q1,Q2) =u(Q1,C∪Q2) =u(Q1∪C,Q2) = 1. Moreover,
(Q1,C ∪Q2) ∼ (Q1 ∪C,Q2) so there is a joint j of F so that j ∈ clM+(Q1)∩
clM+(Q2). It follows that { j}∪{C1, . . . ,C j} is a maximal clump of F+.

Now suppose that j is a joint of F . Then j is a member of a maximal joint-based
clump of F+. Either that clump is { j} and there is no corresponding clump in F ,
or that clump is some collection of sets, C. Then C−{ j} is a clump in F .

Lemma 3.3.20. Let S be a minimal set of petals such that the concatenation, P,

of S is a strong concatenation of petals of F and S is minimal with respect to this

property, and let (Q1,P,Q2,Q3,Q4) be a concatenation of F such that λ (Q1) =

λ (Q2) = λ (Q3) = λ (Q4) = 2. Then clM+(P) contains exactly two joints, j1 and

j2 where j1 ∈ cl(Q1) and j2 ∈ cl(Q2).
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Proof. Since (Q1,P) and (P,Q2) are both strong pairs there exist distinct joints
j1 ∈ clM+(Q1)∩clM+(P) and j2 ∈ clM+(Q2)∩clM+(P). Suppose there were some
other j ∈ clM+(P). Then there would have to be a strong pair (A,B) with j in the
closure of both sides and (A,B) 6∼ (Q1,P) and (A,B) 6∼ (P,Q2). This strong pair
would have be such that one of A,B contains some strict subset of P, which is a
contradiction to the minimality of P.

It immediately follows that a 3-petal of a swirl-like pseudo-flower contains exactly
two joints in its closure.

The following lemma is clear

Lemma 3.3.21. If P is a joint-based 2-petal of F then there is exactly one joint, j

such that j ∈ 〈P〉.

We also want the following lemma.

Lemma 3.3.22. If P1 is a rim-based 2-petal of F then there is a unique element in

〈P1〉∩ 〈∪(F−P1)〉 and this element forms a triangle with exactly two joints of F.

Proof. Since λ (P1) = 1, there is a unique element r such that r ∈ 〈P1〉∩ 〈∪(F −
P)〉. Let F ′ = (P1,Q2, ...,Qm) be a concatenation with m ≥ 4 and with the same
set of joints as F and such that λ (Q2) = λ (Qm) = 2. Since u(Qi,P1) = 0 for
i ∈ {2, ...,n} it follows that r is not parallel to any joint of F ′ or F . Suppose that
r does not form a circuit with elements contained in 〈Qm ∪Q2〉. We know that
λ (Qn∪Q2∪ r) = 2, so from this it follows that λ (P1∪Q2)≤ 2 - a contradiction.
Therefore P1 is in a circuit with elements contained in 〈Qm∪Q1〉. To see that these
elements must be j1 and jm - the joints of Qm and Q1 - say that r ∈ 〈Qm ∪Q1〉
and r /∈ 〈{ jm, j1}〉, Since λ (Qm,P1) = 2 we have j0 ∈ 〈P1∪Qm〉. Similarly j1 ∈
〈P1∪Q2〉. Since λ (Qm∪P1) = 2 the result follows.

Definition 3.3.23. If Pi is a joint-based 2-petal or a 3 petal of F then the joints of
P, denoted J(P), are the joints of F that are in 〈P〉∩ 〈∪(F−P)〉. If P is a 3-petal
then the rim element of P is the unique element contained in 〈J(P)〉 and not in
E(M).

If P is a rim-based 2-petal of F then the rim element, r, of P is the unique element
in 〈P〉 ∩ 〈∪(F −P)〉 that is not in E(M). The joints of P are the minimal set of
joints of F containing r in their closure.
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If P is a petal of F , then the basepoints of P, denoted B(P) are the set of joint and
rim-elements of P.

Throughout the remainder of this chapter we let J denote the set of joints of F .

Lemma 3.3.24. J is an independent set.

Proof. Consider F+ and let j be a joint of F . Let Q1 and Q2 be to petals in a
concatenation of F+ with the property that λ (Q1) = λ (Q2) = 2 and Q1 and Q2 are
minimal with respect to this property. Suppose that F+ displays (Q1,{ j},Q2,Q3).
Since Q1 and Q2 are minimal there is no joint in 〈Q1∪Q2〉−〈E(M)−(Q1∪Q2)〉,
so all members of J−{ j} are contained in clM+(Q3). It follows from elementary
results about flowers (see, for example, [14]) that if j ∈ cl(Q3) then F+ would be
spike-like. Therefore, j /∈ cl(Q3), and so j is not in the closure of J−{ j} and thus
the set of joints of F is an independent set.

Definition 3.3.25. A maximal swirl-like pseudo-flower of M is a swirl-like
pseudo-flower of M in which no petals can be partitioned to give a swirl-like
pseudo-flower of M with more petals.

We want to show that if a swirl-like pseudo-flower is maximal in M then it has no
petal containing certain types of 2-separations.

Lemma 3.3.26. Let (A,B) be a 3-separation of M such that A= (P′∪P2∪·· ·∪Pk)

and B = (Pk+1∪·· ·∪Pn∪P′′) where P′∪P′′ = P1 and P′ 6= /0 and P′′ 6= /0. Suppose

λ (P2, . . . ,Pk) and λ (Pk+1 ∪ ·· · ∪Pn) = 2. Then (P′,P2, . . . ,Pn,P′′) is a swirl-like

pseudo-flower.

Proof. Without loss of generality we may assume that P′ ∪P2 ∪ ·· · ∪Pj ⊆ P1 ∪
P2∪·· ·∪Pk for [1, j,k]1. Consider the sets P1∪P2∪·· ·∪Pj and P′∪P2∪·· ·∪Pk.
Since λ (Pk+1 ∪ ·· · ∪Pn) = 2 it must be that |Pk+1 ∪ ·· · ∪Pn| ≥ 2. Therefore, by
uncrossing, λ (P′∪P2∪·· ·∪Pj)≤ 2. The result follows easily for all other subsets
.

The proof of condition ii) of the definition of swirl-like pseudo-flowers follows if
we can show that λ (P′∪P2∪·· ·∪Pj) = 1 implies that either λ (P′∪P2∪·· ·∪Pi) =

1 or λ (Pl ∪ ·· · ∪Pi) = 1 for all l, i such that [1, l, i, j]1. By ii) of the definition of
pseudo-flower condition ii) holds on sets of the form (Pl ∪·· ·∪Pi). Now consider
λ (P1 ∪ ·· · ∪Pi), and λ (P′ ∪P2 ∪ ·· · ∪Pi). By submodularity of the connectivity
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function λ (P1∪·· ·∪Pi)+λ (P′∪P2∪·· ·∪Pj)≥ λ (P1∪P2∪·· ·∪Pi)+λ (P′∪P2∪
·· · ∪Pi). Since F has at least four joints λ (P1 ∪P2 ∪ ·· · ∪Pi) ≥ λ (P1 ∪ ·· · ∪Pj).
Therefore λ (P′∪P2∪·· ·∪Pi)≤ λ (P′∪P2∪·· ·∪Pj).

Lemma 3.3.27. Suppose F is a maximal swirl-like pseudo-flower. Then there is

no petal Pi of F such that M|Pi contains a 2-separation (A,B) with the following

property,

1. If Pi is a joint-based 2-petal then the joint, j1, of P is in cl(A)∩ cl(B).

2. If P is a rim-based 2-petal or a 3-petal with joints j1 and j2, then j1 ∈ cl(A)
and j2 ∈ cl(B).

Proof. Suppose Pi has a single joint, j1. Let X1 and X2 be two disjoint sets of petals
of F−Pi with the property that Xi is a consecutive set and X2 is a consecutive set.
We show that if j1 ∈ cl(A∪X1) then λ (A∪X1) = 2 and thus F is not maximal.
Without loss of generality let j1 ∈ cl(X1)

λ (A∪X1) = r(A∪X1)+ r(B∪X2)− r(M) (1)

= r(A)+ r(X1)−1+ r(B)+ r(X2)−1− r(M) (2)

= r(P)+1+ r(X1∪X2)+1−2− r(M) (3)

= r(M)+2− r(M) (4)

= 2 (5)

Where (2) follows from (1) since j1 ∈ cl(A∩X1) and j1 ∈ cl(B∩X2), and (3)
follows from (2) since r(Pi) = r(A)+r(B)−1 and r(X1∪X2) = r(X1)+r(X2)−1.
The case where Pi had two joints is similar and is left to the reader.

The proof of the following lemma is straightforward.

Lemma 3.3.28. Let F be a maximal pseudo-flower in M.

I) Suppose Pi is a 3-petal F in M, and let the joints of Pi be j1 and j2. There is

a minor M′ of M such that the following holds.

i) M′ = M \A1/A2 for some A1,A2 ⊆ Pi,

ii) M′ \X has a maximal swirl-like pseudo-flower F ′,
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iii) F ′ = (P1, ...,Pi−1,P′i ,Pi+1, ...,Pn)

iv) every 3-separation of M′ displayed by F ′ is blocked by some x ∈ X,

v) P′i is a triangle {a,b,c} with a parallel to j1 and b parallel to j2 in

(M′)+.

II) Suppose Pi is a joint-based 2-petal F in M, and let the joint of Pi be j. There

is a minor M′ of M such that the following holds.

i) M′ = M \A1/A2 for some A1,A2 ⊆ Pi,

ii) M′ \X has a maximal swirl-like pseudo-flower F ′,

iii) F ′ = (P1, ...,Pi−1,P′i ,Pi+1, ...,Pn)

iv) every 3-separation of M′ displayed by F ′ is blocked by some x ∈ X,

v) P′i is a single element a with a parallel to j in (M′)+.

III) Suppose Pi is a rim-based 2-petal of F in M, and let the joints of Pi be j1 and

j2.

i) M′ = M \A1/A2 for some A1,A2 ⊆ Pi,

ii) For some X ⊆ E(M′) the matroid M′ \ X has a maximal swirl-like

pseudo-flower F ′,

iii) F ′ = (P1, ...,Pi−1,P′i ,Pi+1, ...,Pn)

iv) every 3-separation of M′ displayed by F ′ is blocked by some x ∈ X,

v) P′i is a single element a with a in a triangle with j1 and j2 in (M′)+.

It then easily follows that

Corollary 3.3.29. If F is a maximal swirl-like pseudo-flower of M of order n then

M has a wheel minor with n joints.

Lemma 3.3.28 also leads naturally to the following definition:

Definition 3.3.30.

i) Let P be a 3-petal of F in M. The removal of P from F is the matroid obtained
by replacing P by a triangle with elements in parallel with the joints of P and
contracting the element of this triangle that is not parallel with the joints of
P.



3.3. SWIRL-LIKE PSEUDO-FLOWERS 39

ii) If P is a joint-based 2-petal of F in M then the removal of P from F is the
matroid obtained by replacing P by an element of P parallel to the joint of
P. This results in a new swirl-like pseudo-flower whose petals are a subset of
the petals of F . We denote this flower by F−P

iii) If P is a rim-based 2-petal of F in M then the removal of P from F is the
matroid obtained by replacing P by an element e of P in a triangle with the
joints j1, j2 of P and, if P is the only petal with joints j1 and j2 contracting e.

Clearly the removal of P from F gives a minor of M′ and F −P is a swirl-like
pseudo-flower.
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Chapter 4

Unavoidable Minors of Binary 3-
and 4-connected matroids

In the introduction we stated the unavoidable minors of binary 3- and 4-connected
matroids. Now that we know what flowers are it is fairly clear that all these struc-
tures are flowers. Obviously it will be useful to us to be able to identify when we
have one of these matroids as a minor of another matroid so this section focuses
on giving various matrix representations and certificates for these structures.

4.1 Unavoidable Minors of Binary 3-Connected
Matroids

In [7] it is proved that there is a function f1.0.1 such that if M is a 3-connected
binary matroid with rank at least f1.0.1(n) elements, then M has a minor isomor-
phic to one of M(K3,n), M∗(K3,n), a rank-n wheel, or a rank-n spike. The next
few pages are dedicated to an investigation of these structures since they are also
unavoidable minors of binary 4-connected matroids.

4.1.1 M(K3,n)

The graph denoted K3,n is the complete bipartite graph with 3 vertices in one
part and n in the other. The cycle matroid of K3,n is denoted by M(K3,n). It is
convenient to be able to easily distinguish between the part containing exactly

41
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three vertices and the other part in writing. Thus we define the top part of K3,n

to be the partition containing exactly three vertices and the bottom part to be the
other. A 3-connected minor of K3,n is the following graph, which has 3 vertices in
the top part and n-2 in the bottom.

Figure 4.1: K+
3,n−2

Clearly this graph has a K3,n−2 minor. This turns out to be an easier graph to
work with leading to the following definition. We call a graph of the form given
in Figure 4.1.1 K+

3,n−2.

Definition 4.1.1. Let G ∼= K+
3,n and {a1,b1,c1,a2,b2,c2, . . . ,an,bn,cn} be the

edges of the K3,n restriction of G and suppose for i ∈ {1, ...,n} the edges ai,bi,ci

are incident with a single vertex in the bottom part, and {g1,g2,g3} be the edges
of K+

3,n that are not in K3,n. A standard representation of M(K+
3,n) is a matrix

representation of M(K+
3,n) of the following form:



a1 c1 a2 c2 a3 c3 . . . an cn g3

b1 1 1 0 0 0 0 . . . 0 0 0
b2 0 0 1 1 0 0 . . . 0 0 0
b3 0 0 0 0 1 1 . . . 0 0 0
...

...
...

...
...

...
...

...
...

...
...

bn 0 0 0 0 0 0 . . . 1 1 0
g1 1 0 1 0 1 0

... 1 0 1
g2 0 1 0 1 0 1

... 0 1 1


A standard basis for M(K+

3,n) is a basis for M(K+
3,n) that gives a standard repre-

sentation of M(K+
3,n).

Notice that M(K3,n) has a flower F where F = (P1, . . . ,Pn) and for i ∈ {1, ...,n}
the petal Pi = {ai,bi,ci}, and this flower is a paddle. M(K+

3,n) also has a paddle
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and F = (P1, . . . ,Pn,Pn+1) where Pi = {ai,bi,ci} for i ∈ {1, . . . ,n} and Pn+1 =

{g1,g2,g3}. This is the canonical flower of M(K+
3,n). It is worth noting that

{g1,g2,g3} ⊆ cl(Pi)∩ cl({(P1∪·· ·∪Pn)−Pi}) for any i ∈ {1, . . . ,n}.

4.1.2 M∗(K3,n)

This is the matroid that is the dual of M(K3,n). Since K3,n is non-planar (for any
n≥ 3), the dual of M(K3,n) is non graphic. Of course M∗(K3,n) is binary and can
be represented by a matrix A where

A =



c1 c2 c3 . . . cn−1 an bn cn

a1 1 0 0 . . . 0 1 0 1
b1 1 0 0 . . . 0 0 1 1
a2 0 1 0 . . . 0 1 0 1
b2 0 1 0 . . . 0 0 1 1
a3 0 0 1 . . . 0 1 0 1
b3 0 0 1 . . . 0 0 1 1
...

...
...

... . . . ...
...

...
...

an−1 0 0 0 . . . 1 1 0 1
bn−1 0 0 0 . . . 1 0 1 1


.

This is the representation we shall be working with most of the time when we
are talking about M∗(K3,n) and we shall call this a standard representation of
M∗(K3,n). The matroid M∗(K3,n) has a 3-flower F = (P1,P2,P3, . . . ,Pn) where
Pi = {ai,bi.ci} for i ∈ {1, . . . ,n}. Since we know that this flower is a paddle in
M(K3,n), this flower is clearly a copaddle in M∗(K3,n). This is the canonical flower

of M∗(K3,n). We call P1, . . . ,Pn−1 the standard petals of F with respect to M and
Pn the special petal of F with respect to M. Clearly there is really nothing special
about the special petal, any petal can be made special by performing a change of
basis. However, for a fixed representation, it is useful to be able to distinguish
between the petals in this way.

The following lemma gives a useful way of recognising when a matroid is iso-
morphic to M∗(K3,n).

Lemma 4.1.2. Let M be a matroid and suppose that E(M) can be partitioned into

three sets A,B,C such that the following hold.
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1. |A|= |B|= |C|= n,

2. A and B are disjoint circuits,

3. C is a set of elements such that every element of C is contained in a triangle

with exactly one element of A and exactly one element of B and there is a

matching between A and B formed in this way (in other words every element

of A and every element of B is contained in exactly one such triangle.)

Then M ∼= M∗(K3,n).

Proof. Let A= {a1, . . . ,an}, B= {b1, . . . ,bn} and C = {c1, . . . ,cn}. By relabelling
we may assume that ai,bi,ci is a triangle for i ∈ {1, . . . ,n}. Clearly (A\an)∪ (B\
bn) is a basis for M. It is then clear that M can be represented by :



c1 c2 c3 . . . cn−1 an bn cn

a1 1 0 0 . . . 0 1 0 1
b1 1 0 0 . . . 0 0 1 1
a2 0 1 0 . . . 0 1 0 1
b2 0 1 0 . . . 0 0 1 1
a3 0 0 1 . . . 0 1 0 1
b3 0 0 1 . . . 0 0 1 1
...

...
...

... . . . ...
...

...
...

an−1 0 0 0 . . . 1 1 0 1
bn−1 0 0 0 . . . 1 0 1 1


which is a representation for M∗(K3,n).

Clearly the converse of Lemma 4.1.2 is also true.

4.1.3 Spikes

For n≥ 2, a rank-n spike is a collection of n lines, which we call legs, with exactly
two elements on each such that any collection of n− 1 lines the nth line is in the
span of the other n−1. Additionally every two legs form a circuit. These results
can be found in [13]. For a rank-n spike with legs {x1,y1}, ...,{xn,yn} it is often
helpful to draw and visualise the spike as below.
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y3x3

y2

x2

y1

x1

yn

xn

We can choose to add a point in the intersection of the span of all the legs of a
spike. If this point is added it is called the tip of the spike. In general for a fixed
rank n there are many rank-n spikes. However for any n ≥ 2 there is a unique
binary spike [13](12.2.20).

Definition 4.1.3. A rank-n binary spike is a matroid represented by a n×2n ma-
trix, A, of the following form:

1 0 0 . . . 0 0 1 1 . . . 1
0 1 0 . . . 0 1 0 1 . . . 1
0 0 1 . . . 0 1 1 0 . . . 1
...

...
... . . . ...

...
...

... . . . ...
0 0 0 . . . 1 1 1 1 . . . 0


.

A rank-n binary spike with tip is a matroid represented by A _ [1, ...,1]T .

The routine proof of the following well-known lemma is left to the reader.

Lemma 4.1.4. If M is a circuit with elements a,a1, ...,an and we extend M by

a set X = {x1, ...,xn} such that (after possible relabelling) for any xi we have

xi ∈ cl({a,ai}), then M extended by X is a rank-n spike with tip.

4.1.4 Wheels

An n-spoke wheel is a graph of the following form:
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When it is clear from the context that the structure we are discussing is a matroid
we shall refer to the cycle matroid of an n-spoke wheel as a rank-n wheel. We also
sometimes use M(Wn) to denote the cycle matroid of an n-spoke wheel.

A representation of a wheel is given below:



r1 r2 r3 . . . rn−1 rn

j1 1 0 0 . . . 0 1
j2 1 1 0 . . . 0 0
j3 0 1 1 . . . 0 0
j4 0 0 1 . . . 0 0
...

...
...

... . . . ...
...

jn−1 0 0 0 . . . 1 0
jn 0 0 0 . . . 1 1


Geometrically, we visualise a wheel in the following way, where { j1, ..., jn} is an
independent set and {r1, ...,rn} is dependent.

This matroid has flower (P1, ...,Pn) with Pi = { ji,ri} and this is the canonical

flower of a wheel.



4.2 Unavoidable Minors of Binary 4-Connected
Matroids

In this section we give details of the matroids that arise as unavoidable minors of
4-connected binary matroids.

4.2.1 Clams

We start this section with the most annoying minor we found. These are “clams”.
A clam is the cycle matroid of the following graph.

A clam can be represented by the following binary matrix.



r1 r2 r3 . . . rn−1 rn a2 a3 . . . an−1

j1 1 0 0 . . . 0 1 1 1 . . . 1
j2 1 1 0 . . . 0 0 0 0 . . . 0
j3 0 1 1 . . . 0 0 1 0 . . . 0
j4 0 0 1 . . . 0 0 0 1 . . . 0
...

...
...

... . . . ...
...

...
... . . . ...

jn−1 0 0 0 . . . 1 0 0 0 . . . 1
jn 0 0 0 . . . 1 1 0 0 . . . 0


Matroidally we can view a clam in the following way, where { j1, ..., jn} is a basis
and {r1, ...,rn} is a circuit.
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Note that this figure does not include all dependencies, more are forced by the
fact the matroid is binary. We shall later see that we get clams as outcomes when
we block a wheel in a path-like way. Clams have no induced swirl-like pseudo-
flowers but, unfortunately, they have many 3-separations. Clams are therefore
outcomes that will need to be analysed more thoroughly at a later stage.

4.2.2 Circular Ladders

An n-rung circular ladder is a graph of the following form:

When it is clear from the context that the structure we are discussing is a matroid
we shall refer to the cycle matroid of an n-rung circular ladder as an n-rung circular
ladder. Two representations of the matroid of an n-rung circular ladder that will
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be useful later are:



r2 r3 r4 . . . rn an bn

a1 1 1 1 . . . 1 1 0
b1 1 1 1 . . . 1 0 1
a2 0 1 1 . . . 1 1 0
b2 0 1 1 . . . 1 0 1
a3 0 0 1 . . . 1 1 0
ab 0 0 1 . . . 1 0 1
...

...
...

... . . . ...
...

...
an−1 0 0 0 . . . 1 1 0
bn−1 0 0 0 . . . 1 0 1
r1 1 1 1 . . . 1 0 0


and 

a1 a2 a3 . . . an−1 an bn

r1 1 0 0 . . . 0 1 0
r2 1 1 0 . . . 0 0 0
r3 0 1 1 . . . 0 0 0
r4 0 0 1 . . . 0 0 0
...

...
...

...
...

...
...

rn−1 0 0 0 . . . 1 0 0
rn 0 0 0 . . . 1 1 0
b1 1 0 0 . . . 0 1 1
b2 0 1 0 . . . 0 1 1
b3 0 0 1 . . . 0 1 1
...

...
... . . . ...

...
...

bn−1 0 0 0 . . . 1 1 1


A way of visualising a cycle matroid of a circular ladder is given below.
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Clearly this is not a geometric representation but it may be helpful in giving some
intuition for the matroidal structure.

The proof of the following lemma is clear.

Lemma 4.2.1. An n-rung circular ladder is a 4-flower (P1, . . . ,Pn) where Pi =

{ri,ai,bi}.

An unavoidable minor of an n-rung circular ladder is a triangular circular ladder

which, in turn, has a circular ladder as a minor. A triangular ladder is a graph of
the following form:
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The cycle matroid of a triangular ladder is given below.



a1 b1 a2 . . . an−1 bn−1 an bn sn

r1 1 0 0 . . . 0 0 1 0 1
s1 1 1 0 . . . 0 0 1 1 1
r2 0 1 1 . . . 0 0 1 1 1
s2 0 0 1 . . . 0 0 1 1 1
...

...
...

... . . . ...
...

...
...

...
sn−1 0 0 0 . . . 1 1 1 1 1
rn 0 0 0 . . . 0 1 0 1 1


This next lemma is helpful in identifying when a matroid is a triangular ladder or
has a triangular and hence circular ladder as a minor.

Lemma 4.2.2. Let M be a simple matroid and let A⊆ E(M) be a circuit. If there

is an ordering on the elements of A and the elements of E(M)−A = B such that

ai,bi,ai+1 is a triangle for all i ∈ {1, . . . ,n− 1} and an,bn,a1 is a triangle, then

M has a circular ladder with rank r(M) as a minor.

Proof. This follows by letting A = {r1,s1, . . . ,rn,sn}, and noticing this gives a
triangular circular ladder.

4.2.3 Möbius Ladders

An n-rung Möbius ladder is a graph of the following form:

When it is clear from the context that the structure we are discussing is a matroid
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we shall refer to the cycle matroid of an n-rung Möbius ladder as an n-rung Möbius
ladder. Two representations of a Möbius ladder are:



r2 r3 r4 . . . rn an bn

a1 1 1 1 . . . 1 1 0
b1 1 1 1 . . . 1 0 1
a2 0 1 1 . . . 1 1 0
b2 0 1 1 . . . 1 0 1
a3 0 0 1 . . . 1 1 0
b3 0 0 1 . . . 1 0 1
...

...
...

... . . . ...
...

...
an−1 0 0 0 . . . 1 1 0
bn−1 0 0 0 . . . 1 0 1
r1 1 1 1 . . . 1 1 1





a2 a3 a4 . . . an a1 b1

r1 1 0 0 . . . 0 0 1
r2 1 1 0 . . . 0 0 0
r3 0 1 1 . . . 0 0 0
r4 0 0 1 . . . 0 0 0
...

...
...

... . . . ...
...

...
rn−1 0 0 0 . . . 1 0 0
rn 0 0 0 . . . 1 1 0
b1 1 0 0 . . . 0 1 1
b2 0 1 0 . . . 0 1 1
b3 0 0 1 . . . 0 1 1
...

...
...

... . . . ...
...

...
bn−1 0 0 0 . . . 1 1 1


Another drawing of a Möbius ladder graph is:
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From this it is easy to see that another representation of a cycle matroid of a
Möbius ladder is:



r1 r2 r3 . . . rn bn

b1 1 0 0 . . . 0 1
b2 1 1 0 . . . 0 1
b3 1 1 1 . . . 0 1
...

...
...

... . . . ...
...

bn 1 1 1 . . . 1 1
bn+1 0 1 1 . . . 1 1
bn+2 0 0 1 . . . 1 1
...

...
...

... . . . ...
...

b2n−1 0 0 0 . . . 1 1


Lemma 4.2.3. An n-rung Möbius ladder is a 4-flower with petals (P1, . . . ,Pn) with

Pi = {ri,bi,bi+1} where elements are labelled as by the matrix directly above.

4.2.4 Double Wheels

A double wheel is a graph of the following form:
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From this we can see that a double wheel is the dual of a circular ladder.

When it is clear from the context that the structure we are discussing is a matroid
we shall refer to the cycle matroid of a double wheel as a double wheel. A double
wheel can be represented by



r1 r2 r3 . . . rn−1 t2 t3 t4 . . . tn−2 tn−1 rn

t1 0 0 0 . . . 0 1 1 1 . . . 1 1 0
s1 1 0 0 . . . 0 1 1 1 . . . 1 1 1
s2 1 1 0 . . . 0 1 0 0 . . . 0 0 0
s3 0 1 1 . . . 0 0 1 0 . . . 0 0 0
s4 0 0 1 . . . 0 0 0 1 . . . 0 0 0
...

...
...

... . . . ...
...

...
... . . . ...

...
sn−1 0 0 0 . . . 1 0 0 0 . . . 1 0 0
sn 0 0 0 . . . 1 0 0 0 . . . 0 1 1


Matroidally we can view a double wheel in the following way:
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Since this is drawn in rank 3 clearly this is not a traditional matroid drawing.
However, it can be helpful in seeing triangles in the matroid.

Lemma 4.2.4. Let M be a double wheel. Then M has a flower F = P1, . . . ,Pn with

Pi = {ri,si, ti} where the elements in M are labelled as in the matrix above.

4.2.5 Non-Graphic Double Wheel

A double wheel is the dual of a circular ladder. Since a double wheel is planar this
dual is graphic. However we can also consider duals of Möbius ladders. These
structures are very similar to double wheels and we call them non graphic double

wheels. A non graphic double wheel can therefore be represented by the following
reduced standard representation matrix:

0 0 . . . 0 1 1 1 . . . 1
1 0 . . . 0 0 1 1 . . . 1
1 1 . . . 0 0 1 1 . . . 1
0 1 . . . 0 0 0 1 . . . 0
...

... . . . ...
...

...
... . . . ...

0 0 . . . 1 0 0 0 . . . 0
0 0 . . . 1 1 0 0 . . . 1


or, equlvalently
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

0 0 0 . . . 1 1 1 . . . 1 1
1 0 0 . . . 1 1 1 . . . 1 0
1 1 0 . . . 0 1 0 . . . 0 0
0 1 1 . . . 0 0 1 . . . 0 0
...

...
... . . . ...

...
... . . . ...

...
0 0 0 . . . 1 0 0 . . . 1 1


The following picture gives a way of visualising a non graphic double wheel.

Again, this is not a geometric representation of the matroid, but does show many
of the triangles.

4.2.6 M(K4,n)

K4,n is the complete bipartite graph with four vertices in one part of the partition
and n vertices in the other. As with K3,m we can find a minor of K4,n of the
following form:

When there are n vertices in the bottom part this has K4,n as a minor. The matroid
of this graph can be represented by the reduced standard representation matrix
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below.



1 1 1 0 0 0 . . . 0 0 0
0 0 0 1 1 1 . . . 0 0 0
...

...
...

...
...

... . . . ...
...

...
0 0 0 0 0 0 . . . 1 1 1
1 0 0 1 0 0 . . . 1 0 0
0 1 0 0 1 0 . . . 0 1 0
0 0 1 0 0 1 . . . 0 0 1


.

4.2.7 M∗(K4,n)

Of course the dual of M(K4,n) is also an unavoidable minor of binary 4-connected
matroids. The matroid M∗(K4,n) can be represented by the following reduced
standard representation matrix:

1 0 0 . . . 0 1 0 0
1 0 0 . . . 0 0 1 0
1 0 0 . . . 0 0 0 1
0 1 0 . . . 0 1 0 0
0 1 0 . . . 0 0 1 0
0 1 0 . . . 0 0 0 1
0 0 1 . . . 0 1 0 0
0 0 1 . . . 0 0 1 0
0 0 1 . . . 0 0 0 1
...

...
... . . . ...

...
...

...
0 0 0 . . . 0 1 0 0
0 0 0 . . . 0 0 1 0
0 0 0 . . . 0 0 0 1


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4.2.8 N(K3,n)

Definition 4.2.5. Let M be a matroid with reduced standard representation matrix
given below.



x

1 1 0 0 0 0 . . . 0 0 1
0 0 1 1 0 0 . . . 0 0 1
0 0 0 0 1 1 . . . 0 0 1
...

...
...

...
...

... . . . ...
...

...
0 0 0 0 0 0 . . . 1 1 1
1 0 1 0 1 0 . . . 1 0 1
0 1 0 1 0 1 . . . 0 1 1


.

The matroid N(K3,n) is defined to be M/x.

This operation is similar to the operation used to obtain a spike from M(K2,n).
We may obtain a spike from M(K2,n) as follows. First consider a flower, F =

(P1, ...,Pn), of M(K2,n) where Pi consists of the pair of edges joining a vertex vi

in the bottom part to one of the vertices in the top part, We can add a point x to
M ∼= M(K+

2,n) that is in the span of the union of all the petals, but is not in the span
of any strict subset of the petals. The element x blocks all internal 3-separations
of M and when we contract x we obtain a spike. There are various places we
can put x that satisfy the conditions, and these give rise to the different spikes.
However there is only one place for x in binary space and this gives rise to the
(unique) binary spike. The construction described for spikes can be extended to
any M(Km,n), and the construction of N(K3,n) given in the definition is such a
construction for M(K3,n).

4.2.9 Speels

Definition 4.2.6. A speel is a matroid represented by the following reduced stan-
dard representation matrix.
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

d1 d2 d3 . . . dn−2 dn−1 e1 e2 e3 . . . en−2 en−1

b1 1 0 0 . . . 0 1 1 0 0 . . . 0 1
b2 1 1 0 . . . 0 0 1 1 0 . . . 0 0
b3 0 1 1 . . . 0 0 0 1 1 . . . 0 0
...

...
...

... . . . ...
...

...
...

... . . . ...
...

bn−2 0 0 0 . . . 1 0 0 0 0 . . . 1 1
bn−1 0 0 0 . . . 1 1 0 0 0 . . . 1 1
bn 0 0 0 . . . 0 0 1 1 1 . . . 1 1


A rank-n speel is pictured below:

It is immediately clear from the matrix that if M is a speel then
M|{b1, . . . ,bn−1,d1, . . . ,dn−1} is a wheel. It is slightly less clear that
M|{d1,e1,d2,e2, . . . ,dn−1,en−1} is a spike. Since we are excluding a spike as
a minor of the matroids we are considering this outcome does not come up in the
thesis. However it will prove to be a matroid that is an element of the set of un-
avoidable minors of binary 4-connected matroids, and we expect to see this when
we consider blocking spikes.
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Chapter 5

Blocking a Paddle

Recall that a set X blocks a flower F in a matroid M if every 3-separation of M

displayed by F is blocked by some x ∈ X .

The main result of this chapter is the following.

Theorem 5.0.1. There is a function f5.0.1 such that the following holds. Suppose

M is a binary matroid such that for some coindependent set X, the matroid M \X

has a paddle F = (P1, . . . ,Pm) with at least n proper petals. Further suppose that

X is such that every 3-separation of M \X displayed by F is blocked by some

x ∈ X. If n≥ f5.0.1(t), then M has a minor isomorphic to one of the following:

i) N(K3,t),

ii) M(K4,t),

iii) a rank-t double wheel.

In this chapter we work under the hypotheses of Theorem 5.0.1. That is we work
under the following hypotheses.

• M is a binary matroid,

• X ⊆ E(M) is a coindependent set such M \X has a paddle F with at least n

proper petals,

• every 3-separation of M \X displayed by F is blocked by some x ∈ X , (*)

• X = {x1, . . . ,xl},

61
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We also lose no generality by assuming that X is minimal with respect to (*) so
we add the following hypothesis.

• X is minimal with respect to (*).

We call X the set of blocking elements for F .

In the first section we set up some matrices that represent unavoidable minors of
M. The remaining sections simplify these matrices to get a proof of Theorem 5.0.1
The second section in this chapter will consider the case where M \X ∼= M(K3,n).
The third section considers the case when M \X is an arbitrary paddle. We will
often be able to be reduced to the case where M \X ∼= M(K3,n). The final section
gives a proof of Theorem 5.0.1.

If F is a paddle and does not have a guts petal we may delete and contract elements
of some petal of F to obtain a guts petal. We may therefore, without loss of
generality, assume that F has a guts petal. We now add the following hypotheses.

• F has guts petal G and F = (P1, . . . ,Pn,G), where P1, . . . ,Pn all have rank at
least 3 in M.

• B is a basis for M consisting of a spanning subset of G and at least one
element from every Pi for i ∈ {1, ...,n}

5.1 Setting Up Some Matrices

Lemma 5.1.1. If P is a petal of F containing an element of FB(x) that is not in

〈G〉, then P is blocked by x; and, if P is blocked by x, then P contains an element

of the fundamental circuit of x with respect to B that is not in 〈G〉. Moreover, if

P is the set of petals blocked by x, then P is the unique minimal set of petals

containing x in its closure.

Proof. Let FB(x) = Cx and N = M \ X . Suppose e ∈ Cx− 〈G〉. For some i ∈
{1, . . . ,n} we have e ∈ Pi and, since Cx cannot be contained in a single petal of F ,
x /∈ cl(Pi). Similarly, since e ∈ (Cx−cl(G))∩Pi, we observe that Cx * F−Pi, and
therefore x /∈ 〈(E(N)−Pi)〉. It then follows immediately that x blocks Pi. Now
suppose x blocks Pi. Then x /∈ 〈(E(N)−Pi)〉 and x /∈ 〈(Pi)〉. Therefore there is
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some e ∈ Pi that is contained in Cx. This concludes to proof of the first part of the
result.

We now prove that if P is the set of petals blocked by x then ∪P is the unique
minimal set of petals containing x in its closure.

No subset of ∪P contains x in the closure and by the first half of the lemma
F(x)⊆ (∪P)∪G. By definition of G, we see G∈ cl(Pi) for i∈ {1, . . . , l} so x is in
the minimal closure of ∪P . Now suppose there is some set Q of petals such that
Q +P and x∈ cl(Q). It would then follow that F(x)⊆∪Q, a contradiction.

Consider the matroid M. From M we construct a matrix Γ with rows labelled by
P′i and columns labelled by x′j for i ∈ {1, ...,n} and j ∈ {1, ..., l} as follows.

ΓP′i ,x j
=

{
1 if Cx j contains an element from Pi

0 otherwise
(5.1.1)

Thus we have a matrix over GF(2) in which every column contains at least two
ones (since we cannot block a single petal) and no two columns are identical (as
this would mean two elements blocked the same set of petals). Since we may
permute columns, delete rows and delete columns, Lemma 2.4.9 tells us that if
Γ is sufficiently large there is a large submatrix, Γ′, of Γ obtained by deleting
rows and columns and permuting rows and columns so that Γ′ is of the following
forms:



1
1
1
1
1
1
...
1


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1 1 1 1 0 . . . 1
1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 1




1 0 0 0 . . . 0
1 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 1 1 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 1
0 0 0 0 . . . 1


or Γ′ has a block decomposition into m blocks where the only non-zero entries
occur in the diagonal blocks.

Since any 3-separation of M displayed by F is blocked by some x ∈ X , the case
where the matrix has the block decomposition described above does not arise.

Consider a representation of M with respect to basis B, and consider the set X of
blocking elements. The matroid M \X is a paddle (P1, . . . ,Pn,G) for G ⊆ cl(Pi)

for i ∈ {1, . . . ,n} and so can be represented by a matrix ∆ of the following form:

P′1 0 0 . . . 0
0 P′2 0 . . . 0
0 0 P′3 . . . 0
...

...
... . . . ...

0 0 0 . . . P′n
G1 G2 G2 . . . Gn


where, for i ∈ {1, . . . ,n}, P′i and Gi are matrices such that the following hold.

i) Gi has two rows and the rows of Gi are labelled by the elements in G,
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ii) G1, . . . ,Gn represent matrices that each contain at least one non-zero entry in
every row,

iii) the rows of P′i are labelled by B∩ (M|Pi), and

iv) the columns containing columns of P′i label the elements of Pi−B.

In Γ we may consider a ”1” in row P′i to represents a (|r(Pi)|−2)×1 matrix, Γi,
where the rows of Γi are labelled by the basis elements of Pi and there is at least
one ”1” in some row of Γi. Call the matrix constructed from Γ in this way Γ̃. Since
we are working with binary matrices, ∆ _ Γ̃ is a reduced standard representation
matrix for M. In this way we get the following lemma.

Lemma 5.1.2. If n ≥ f2.4.9(t), then there is a minor M′ of M such that M′ \ (X ∩
E(M′)) has a paddle F ′ ⊆ F with at least t +1 petals which, after possible rela-

belling, can be represented by one of the following matrices:

P′1 0 0 . . . 0 Γ1

0 P′2 0 . . . 0 Γ2

0 0 P′3 . . . 0 Γ3
...

...
... . . . ...

...

0 0 0 . . . P′t Γt

G1 G2 G2 . . . Gt ?


(a)



P′1 0 0 . . . 0 Γ1 Γ2 . . . Γt−1

0 P′2 0 . . . 0 Γ′1 0 . . . 0
0 0 P′3 . . . 0 0 Γ′2 . . . 0
...

...
... . . . ...

...
... . . . ...

0 0 0 . . . P′t 0 0 . . . Γ′3
G1 G2 G3 . . . Gt ? ? . . . ?


(b)
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P′1 0 0 . . . 0 0 Γ1 0 . . . 0
0 P′2 0 . . . 0 0 Γ′1 Γ2 . . . 0
0 0 P′3 . . . 0 0 0 Γ′2 . . . 0
...

...
... . . . ...

...
...

... . . . ...

0 0 0 . . . P′t−1 0 0 0 . . . Γt−1

0 0 0 . . . 0 P′t 0 0 . . . Γ′t−1

G1 G2 G3 . . . Gt−1 Gt ? ? . . . ?


.

(c)

Where, for i ∈ {1, . . . ,n}, P′i and Gi are matrices where

1. Gi has two rows and the rows of Gi are labelled by the elements in the guts

petal of P.

2. G1, . . . ,Gn represent matrices that each contain at least one non-zero entry

in every row.

3. The rows of P′i are labelled by the basis elements of (M|Pi) and

4. The columns containing columns of P′i label the elements of Pi−B.

5. Γi, Γ′i represent (|r(Pi)| − 2)× 1 matrices with rows labelled by the basis

elements of Pi and for every i ∈ {1, . . . ,n} there is a 1 in some row of Γi.

We can now split the analysis for blocking a paddle into three cases, one case for
each of the matrices above.

For the remainder of this chapter we work under the following hypothesis.

• The matroid M can be represented by one of (a),(b),(c) from Lemma 5.1.2.

• Γ is the matrix whose construction is described in 5.1.1,

• ∆ is the matrix representing M \X with respect to basis B, and

• Λ is the matrix representing M with respect to basis B and Λ = ∆ _ Γ.
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5.2 Blocking M(K+
3,n)

In this section we focus on the special case where M \X ∼= M(K+
3,n). This will

be useful in the next section since in the general case there is often a minor of M

isomorphic to M′ where M′ \X ∼= M(K+
3,n) and every 3-separation displayed by

the canonical flower of M′ \X is blocked by an element of X .

For the remainder of this section we are working under the following hypotheses:

• M \X ∼= M(K+
3,n),

• F is the canonical flower of M(K+
3,n).

Lemma 5.2.1. If n≥ f2.4.9(t), then there is a minor of M of rank at least t+2 that

can be represented by one of the following matrices:



a1 c1 a2 c2 a3 c3 . . . an cn g3 x

b1 1 1 0 0 0 0 . . . 0 0 0 1
b2 0 0 1 1 0 0 . . . 0 0 0 1
b3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...

bn 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 ?
g2 0 1 0 1 0 1 . . . 0 1 1 ?


(a’)



a1 c1 a2 c2 a3 c3 . . . an cn g3 x1 x2 . . . xn−1

b1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
b2 0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
b3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

bn 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 ? ? . . . ?
g2 0 1 0 1 0 1 . . . 0 1 1 ? ? . . . ?


(b’)
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

a1 c1 a2 c2 a3 c3 . . . an−1 cn−1 an cn g3 x1 x2 x3 . . . xn−1

b1 1 1 0 0 0 0 . . . 0 0 0 0 0 1 0 0 . . . 0
b2 0 0 1 1 0 0 . . . 0 0 0 0 0 1 1 0 . . . 0
b3 0 0 0 0 1 1 . . . 0 0 0 0 0 0 1 1 . . . 0
...

...
...

...
...

...
... . . . ...

...
...

...
...

...
...

...
...

...

bn−1 0 0 0 0 0 0 . . . 1 1 0 0 0 0 0 1 . . . 0
bn 0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 0 1 ? ? ? . . . ?
g2 0 1 0 1 0 1 . . . 0 1 0 1 1 ? ? ? . . . ?


(c’)

Proof. This follows from Lemma 5.1.2.

This means, that for this section, we assume that Λ is of form (a′),(b′) or (c′). We
now split the analysis of the the case of blocking M(K+

3,n) into three cases, one
case for each of the matrices above.

Case (a′)

In this section we are considering the case where Λ is of from (a′). That is we are
considering the case where |X | = 1, so there is a single blocking element, x, that
blocks all 3-separations of M \x displayed by F . In this case we assume that M is
represented by



a1 c1 a2 c2 a3 c3 . . . an cn g3 x

b1 1 1 0 0 0 0 . . . 0 0 0 1
b2 0 0 1 1 0 0 . . . 0 0 0 1
b3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
... . . . ...

...
...

...
bn 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 z

g2 0 1 0 1 0 1 . . . 0 1 1 y


.
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Lemma 5.2.2. If M has an odd number of rows and x 6= y, then there is a change

of basis so that M has a reduced standard representation matrix A where

A =



1 1 0 0 0 0 . . . 0 0 0 1
0 0 1 1 0 0 . . . 0 0 0 1
0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 1 0 1
1 0 1 0 1 0 . . . 1 0 1 0
0 1 0 1 0 1 . . . 0 1 1 0


.

Proof. Suppose that z = 1,y = 0. By performing a change of basis so the new
basis is {a1,a2, . . . ,an,g1.g3}, we see the required matrix. To see this note that
pivoting on Mai,bi for all i ∈ {1, ...,n} gives



b1 c1 b2 c2 b3 c3 . . . bn cn g3 x

a1 1 1 0 0 0 0 . . . 0 0 0 1
a2 0 0 1 1 0 0 . . . 0 0 0 1
a3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
an 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 1 1 1 1 1 . . . 1 1 1 1+n

g2 0 1 0 1 0 1 . . . 0 1 1 0


,

where n is the number of rows of M minus 2. Since M has an odd number of rows
1+n = 0. Pivoting on Mg2,g3 then gives



b1 c1 b2 c2 b3 c3 . . . bn cn g2 x

a1 1 1 0 0 0 0 . . . 0 0 0 1
a2 0 0 1 1 0 0 . . . 0 0 0 1
a3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
an 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 0
g3 0 1 0 1 0 1 . . . 0 1 1 0


,

as required. If z = 0,y = 1 the result follows by symmetry.
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Lemma 5.2.3. If M has an even number of rows and has reduced standard repre-

sentation matrix A, where

A =



a1 c1 a2 c2 a3 c3 . . . an cn g3 x

b1 1 1 0 0 0 0 . . . 0 0 0 1
b2 0 0 1 1 0 0 . . . 0 0 0 1
b3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...

bn 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 1
g2 0 1 0 1 0 1 . . . 0 1 1 1


,

then there is a change of basis so that M is represented by

1 1 0 0 0 0 . . . 0 0 0 1
0 0 1 1 0 0 . . . 0 0 0 1
0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 1 0 1
1 0 1 0 1 0 . . . 1 0 1 0
0 1 0 1 0 1 . . . 0 1 1 1


.

Proof. Perform a change of basis so that the basis is {a1,a2, . . . ,an,g1,g3}. This
gives the required matrix.

To see this note that pivoting on Mai,bi for all i ∈ {1, ...,n} gives



b1 c1 b2 c2 b3 c3 . . . bn cn g3 x

a1 1 1 0 0 0 0 . . . 0 0 0 1
a2 0 0 1 1 0 0 . . . 0 0 0 1
a3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
... . . . ...

...
...

...
an 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 1 1 1 1 1 . . . 1 1 1 1+n

g2 0 1 0 1 0 1 . . . 0 1 1 1


,

where n is the number of rows of M minus 2. Since M has an even number of
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rows 1+n = 1. Pivoting on Mg2,g3 then gives



b1 c1 b2 c2 b3 c3 . . . bn cn g2 x

a1 1 1 0 0 0 0 . . . 0 0 0 1
a2 0 0 1 1 0 0 . . . 0 0 0 1
a3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
an 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 0
g3 0 1 0 1 0 1 . . . 0 1 1 1


,

as required.

Lemma 5.2.4. There is a function f5.2.4 such that the following holds. If n ≥
f5.2.4(t), then there is a minor of M of rank at least t +2 which has representation



a1 c1 a2 c2 a3 c3 . . . at ct g3 x

b1 1 1 0 0 0 0 . . . 0 0 0 1
b2 0 0 1 1 0 0 . . . 0 0 0 1
b3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...

bt 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 0
g2 0 1 0 1 0 1 . . . 0 1 1 0


.

Proof. Let n = f5.2.4(t). If M(K3,n) is blocked by a single element, then
M(K3,n)+ x can be represented by the following matrix:



a1 c1 a2 c2 a3 c3 . . . an cn g3 x

b1 1 1 0 0 0 0 . . . 0 0 0 1
b2 0 0 1 1 0 0 . . . 0 0 0 1
b3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
bn 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 z

g2 0 1 0 1 0 1 . . . 0 1 1 y


.

Suppose that n is odd. By Lemma 5.2.2, if 0∈ {z,y} there is a change of basis that
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gives the required matrix. Therefore we assume that z = y = 1. By contracting bn

and deleting an,cn we get



a1 c1 a2 c2 a3 c3 . . . an−1 cn−1 g3 x

b1 1 1 0 0 0 0 . . . 0 0 0 1
b2 0 0 1 1 0 0 . . . 0 0 0 1
b3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
bn−1 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 1
g2 0 1 0 1 0 1 . . . 0 1 1 1


,

which is a representation of M(K3,n−1) blocked by a single element. Notice that
since n is odd, n−1 is even.

Suppose that n is even. By Lemma 5.2.3 there is a change of basis so that 0 ∈
{z,y}. We may then contract a basis element from some petal and delete the
remaining elements of that petal to get M(K+

3,n−1) blocked by a single element.

In either case we either have z= y= 0 or a matroid with rank at least n represented
by 

1 1 0 0 . . . 0 0 0 1
0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

0 0 0 0 . . . 1 1 0 1
1 0 1 0 . . . 1 0 1 0
0 1 0 1 . . . 0 1 1 1


where this matrix has an odd number of rows. By Lemma 5.2.2, there is a minor
of M(K3,n−2) represented by the following rank-n matroid:

1 1 0 0 . . . 0 0 0 1
0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

0 0 0 0 . . . 1 1 0 1
1 0 1 0 . . . 1 0 1 0
0 1 0 1 . . . 0 1 1 0


.
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Theorem 5.2.5. Suppose M is matroid such that M \ x ∼= M(K+
3,n), and every 3

separation of M \ x displayed by the canonical flower of M \ x is blocked by x. If

n≥ f5.2.4(t), then M has a N(K3,t)-minor.

Proof. There is a minor of M of rank at least t + 2 which, after appropriate rela-
belling can be represented by:



a1 c1 a2 c2 a3 c3 . . . at ct g3 x

b1 1 1 0 0 0 0 . . . 0 0 0 1
b2 0 0 1 1 0 0 . . . 0 0 0 1
b3 0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
bt 0 0 0 0 0 0 . . . 1 1 0 1
g1 1 0 1 0 1 0 . . . 1 0 1 0
g2 0 1 0 1 0 1 . . . 0 1 1 0


.

By definition of N(K3,n) we see that M/x is a representation of N(K3,t).

Case (b′)

In this case we assume that Λ is of (b′) from Lemma 5.2.1. In other words we
assume that M has a reduced standard representation matrix



a1 c1 a2 c2 a3 c3 . . . an cn g3 x1 x2 . . . xn−1

b1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
b2 0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
b3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

...
...

...
... . . . ...

bn 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 ? ? . . . ?
g2 0 1 0 1 0 1 . . . 0 1 1 ? ? . . . ?


,

where x1, . . . ,xn−1 are the elements of X and B, the fixed standard basis for M \X ,
is {b1, ...,bn,g1,g2}. We show that we can obtain a large minor of M that can be
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represented by the reduced standard representation matrix,

1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

... . . . ...
...

...
...

... . . . ...
0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
1 0 1 0 1 0 . . . 1 0 1 0 0 . . . 0
0 1 0 1 0 1 . . . 0 1 1 0 0 . . . 0


.

The first step is to show that there is a minor in which the columns labelled by the
members of X all have the same two final entries.

Lemma 5.2.6. If n≥ f2.4.11(t +1), then there is a minor of M of rank-t +2 repre-

sented by the following matrix:

1 1 0 0 0 0 . . . 0 1 1 1 1 . . . 1
0 0 1 1 0 0 . . . 0 1 0 0 0 . . . 0
0 0 0 0 1 1 . . . 0 0 1 0 0 . . . 0
...

...
...

...
...

... . . . ...
...

...
...

... . . . ...

0 0 0 0 . . . 1 1 0 0 0 0 0 . . . 1
1 0 1 0 . . . 1 0 1 x x x x . . . x

0 1 0 1 . . . 0 1 1 y y y y . . . y


Proof. This follows from Lemma 2.4.11.

Lemma 5.2.7. Suppose M is represented by the following matrix:



a1 c1 a2 c2 a3 c3 . . . an cn g3 x1 x2 . . . xn−1

b1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
b2 0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
b3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

...
...

...
... . . . ...

bn 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 z z . . . z

g2 0 1 0 1 0 1 . . . 0 1 1 y y . . . y


.

Then there is a function f5.2.7 such that the following holds. If n≥ f5.2.7(t), then,
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by relabelling, there is a rank-(t +2)-minor of M represented by



a1 c1 a2 c2 a3 c3 . . . at ct g3 x1 x2 . . . xt−1

b1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
b2 0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
b3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

...
...

...
... . . . ...

bt 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 0 0 . . . 0
g2 0 1 0 1 0 1 . . . 0 1 1 0 0 . . . 0


.

.

Proof. Let n = t +3. First suppose x = y = 1. Perform a change of basis so that
the new basis is {x1,b2, . . . ,bm,g1,g2}, then contract x1 and delete a1,c1 and b1.
This gives the required matrix. To see this we first pivot on Mb1,x1 to get



a1 c1 a2 c2 a3 c3 . . . an cn g3 b1 x2 . . . xn−1

x1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
b2 1 1 1 1 0 0 . . . 0 0 0 1 1 . . . 1
b3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
. . .

...
...

...
...

...
... . . . ...

...
...

...
... . . . ...

bn 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g1 0 1 1 0 1 0 . . . 1 0 1 1 0 . . . 0
g2 1 0 0 1 0 1 . . . 0 1 1 1 0 . . . 0


.

Delete a1,c1,b1 and contract x1 to get



a2 c2 a3 c3 . . . an cn g3 x2 . . . xn−1

b2 1 1 0 0 . . . 0 0 0 1 . . . 1
b3 0 0 1 1 . . . 0 0 0 1 . . . 0
...

...
...

...
... . . . ...

...
...

... . . . ...
bn 0 0 0 0 . . . 1 1 0 0 . . . 1
g1 1 0 1 0 . . . 1 0 1 0 . . . 0
g2 0 1 0 1 . . . 0 1 1 0 . . . 0


,

as required
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Now suppose z = 1,y = 0. Perform a change of basis so that the new basis is
{c1,c2, . . . ,cn,g2,g3}. This gives the desired matrix. To see this first pivot on
Mb1,c1 to get:



a1 b1 a2 c2 a3 c3 . . . an cn g3 x1 x2 . . . xn−1

c1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
b2 1 1 1 1 0 0 . . . 0 0 0 1 1 . . . 1
b3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

...
...

...
... . . . ...

bn 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 1 1 . . . 1
g2 1 1 0 1 0 1 . . . 0 1 1 1 1 . . . 1


.

Pivot on Mbi,ci for i ∈ {2, . . . ,n} to get



a1 b1 a2 b2 a3 b3 . . . an bn g3 x1 x2 . . . xn−1

c1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
c2 1 1 1 1 0 0 . . . 0 0 0 1 1 . . . 1
c3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

cn 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 1 1 . . . 1
g2 1 1 1 1 1 1 . . . 1 1 1 0 0 . . . 0


.

Finally pivot on Mg1,g3 to get:



a1 b1 a2 b2 a3 b3 . . . an bn g1 x1 x2 . . . xn−1

c1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
c2 1 1 1 1 0 0 . . . 0 0 0 1 1 . . . 1
c3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

cn 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g3 1 0 1 0 1 0 . . . 1 0 1 1 1 . . . 1
g2 0 1 0 1 0 1 . . . 0 1 1 1 1 . . . 1


.
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By the arguments above, it is clear that M has a rank-(t +2) minor of the required
form.

Lemma 5.2.8. There is a function f5.2.8 such that the following holds. If M is

represented by



a1 c1 a2 c2 . . . an cn g3 x2 . . . xn−1

b1 1 1 0 0 . . . 0 0 0 1 . . . 1
b2 0 0 1 1 . . . 0 0 0 1 . . . 0
...

...
...

...
... . . . ...

...
...

... . . . ...

bn 0 0 0 0 . . . 1 1 0 0 . . . 1
g1 1 0 1 0 . . . 1 0 1 0 . . . 0
g2 0 1 0 1 . . . 0 1 1 0 . . . 0


,

and n≥ f5.2.8(t), then M has an M(K4,t)-minor.

Proof. Consider M \{a1,c1}. Rearranging the rows and columns of this gives:



a2 c2 x1 . . . an cn xn−1

b2 1 1 1 . . . 0 0 0
...

...
...

... . . . ...
...

...
bn 0 0 0 . . . 1 1 1
g1 1 0 0 . . . 1 0 0
g2 0 1 0 . . . 0 1 0
b1 0 0 1 . . . 0 0 1


,

which is a representation of M(K4,t)

We are now in a position to prove the following theorem.

Theorem 5.2.9. Let M be a binary matroid such that M \X ∼= M(K+
3,n) for some

coindependent set X such that X ⊆ E(M). Further suppose that M can be repre-
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sented by a matrix of the following form:



a1 c1 a2 c2 a3 c3 . . . an cn g3 x1 x2 . . . xn−1

b1 1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
b2 0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
b3 0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

...
...

...
... . . . ...

bn 0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 ? ? . . . ?
g2 0 1 0 1 0 1 . . . 0 1 1 ? ? . . . ?


.

Then, there is a function f5.2.9 such that if n ≥ f5.2.9(t), then M has an M(K4,t)-

minor.

Proof. Let n≥ f2.4.11( f5.2.7( f5.2.8(t))). By Lemma 5.2.6, there is a rank-(m′+2)-
minor, M′, of M represented by

1 1 0 0 0 0 . . . 0 1 1 1 1 . . . 1
0 0 1 1 0 0 . . . 0 1 0 0 0 . . . 0
0 0 0 0 1 1 . . . 0 0 1 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 1 0 0 0 0 0 . . . 1
1 0 1 0 . . . 1 0 1 x x x x . . . x

0 1 0 1 . . . 0 1 1 y y y y . . . y


,

where m′ ≥ f5.2.7( f5.2.8(t)). By Lemma 5.2.7 there is a rank-m′′ minor, M′′, of M′

represented by

1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
1 0 1 0 1 0 . . . 1 0 1 0 0 . . . 0
0 1 0 1 0 1 . . . 0 1 1 0 0 . . . 0


,

where m′′ ≥ f5.2.8(t). By Lemma 5.2.8 this means that M′′, and hence M, has a
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minor isomorphic to M(K4,t).

Case(c′)

Finally consider the case where Γ is of form (c′) from Lemma 5.2.1. That is, the
case where M be represented by:



a1 c1 a2 c2 a3 c3 . . . an cn g3 x1 x2 x3 . . . xn−1

b1 1 1 0 0 0 0 . . . 0 0 0 1 0 0 . . . 0
b2 0 0 1 1 0 0 . . . 0 0 0 1 1 0 . . . 0
b3 0 0 0 0 1 1 . . . 0 0 0 0 1 1 . . . 0
...

...
...

...
...

...
... . . . ...

...
...

...
...

... . . . ...
bn 0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 ? ? ? . . . ?
g2 0 1 0 1 0 1 . . . 0 1 1 ? ? ? . . . ?


.

Throughout this case we assume that M can be represented by the above matrix
and that X = {x1, . . . ,xn−1}.

This is the hardest of the three cases and first we need the following lemma:

Lemma 5.2.10. Let G be a finite group of order m. Then there is a function

f5.2.10 : Z≥0→ Z≥0 such that, for any m, if S is a string a1, . . . ,a f5.2.10(t) of group

elements, then there is some internal substring of S which can be split into m

consecutive sets each of which sum to zero.

Proof. Since G has order m there are m possible values the sum of a sequence of

group elements can take. Let Sk =
k
∑

i=1
ai. If S has length n then there are at least

n
m = p integers, k1, ...kp such that Sk1 = Sk2 = · · ·= Skp . Consider Ski−Ski−1 . It is
clear that the sum of aki−1+1, ...,aki is zero. Therefore f5.2.10(t) = m2 satisfies the
requirements of the lemma.

Lemma 5.2.11. There is a function f5.2.10 such that the following holds. If n ≥
f5.2.10(t),then there is a rank-t + 2 minor of M with can be represented by the

following reduced standard representation matrix:
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

1 1 0 0 0 0 0 0 . . . 0 0 0 1 0 0 . . . 0
0 0 1 1 0 0 0 0 . . . 0 0 0 1 1 0 . . . 0
0 0 0 0 1 1 0 0 . . . 0 0 0 0 1 1 . . . 0
0 0 0 0 0 0 1 1 . . . 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

... . . . ...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
1 0 1 0 1 0 1 0 . . . 1 0 1 0 0 0 . . . 0
0 1 0 1 0 1 0 1 . . . 0 1 1 0 0 0 . . . 0


.

Proof. Every rank-3 petal of F is a 3-separating triad in M. Since M is binary,
there is exactly one point in the ambient binary space that is in the span of Pi

and is not parallel to any element of M. Call this element di. Let M̃ be the
matroid obtained by extending M by {d1, . . . ,dn}. Clearly M̃ \ X has a pad-
dle partition F̃ = (P̃1, . . . , P̃n,G) where P̃i = Pi ∪ di and G = {g1,g2,g3}. Since
X ⊆ 〈M \X〉 and for every 3-separation (A,B) of M displayed by F there is some
x ∈ X that blocks (A,B), it follows that X ⊆ 〈M̃ \X〉 and for every 3-separation
(A′,B′) of M̃ displayed by F̃ there is some x ∈ X that blocks (A′,B′). Since Pi

spans P̃i for i ∈ {1, . . . ,n} we see that x ∈ cl(Pi) if, and only if, x ∈ cl(P̃i), and
x ∈ cl(Pi ∪Pj) if, and only if, x ∈ cl(P̃i ∪ P̃j). Therefore, for any xi ∈ X , there
does not exist a j ∈ {1, ...,n} such that xi ∈ cl(P̃j). However, for any xi ∈ X

we see that xi ∈ cl(P̃i ∪ P̃i+1) for i ∈ {1, . . . ,n}. Consider some xi ∈ X . For ev-
ery element z of P̃i there is a circuit containing xi and an element of P̃i+1. Since
|C14C2| ≥ 2 for any pair of circuits C1 and C2, this means that xi induces a match-
ing between P̃i and P̃i+1. Let xi ∈ cl(Pi∪Pi+1) and xi+1 ∈ cl(Pi+1∪Pi+2) and sup-
pose xi matches (e1,e2,e3,e4) to (e′1,e

′
2,e
′
3,e
′
4), and xi+1 matches (e′1,e

′
2,e
′
3,e
′
4)

to (e′′1,e
′′
2,e
′′
3,e
′′
4) for e j ∈ {ai,bi,ci,di} for e′j ∈ {ai+1,bi+1,ci+1,di+1} and for

e′′j ∈ {ai+2,bi+2,ci+2,di+2} for j ∈ {1,2,3,4} and ei 6= e j, e′i 6= e′j and e′′i 6= e′′j
if i 6= j. When we contract xi+1 this gives a matching between the elements of Pi

and the elements of Pi+2 and this matching takes (e1,e2,e3,e4) to (e′′1,e
′′
2,e
′′
3,e
′′
4).

The matching induces permutations of (a,b,c,d) where ai correspond to a, bi to
b, ci to c and di to d and composition works as described above. By Lemma 5.2.10
there is an internal subset S of (P̃1, . . . , P̃n) such that the following holds.

1. S that can be broken into t sets S1, ...,St , where Si is a union of petals and
S1, . . . ,St partition S,
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2. for any Si for i ∈ {1, . . . , t}, if Si = P̃i, . . . , P̃j), then Si is such that when we
compose petals to get a matching between P̃i and P̃j then this matching is
the identity matching.

Therefore by deleting {d1, . . . ,dn} we see that M has a minor that can be repre-
sented by M(K+

3,n′+1) augmented by a matrix of the following form



x1 x2 x3 . . . xa xa+1 xa+2 . . . xa+t xa+t+1 xa+t+2 . . . xn′

b1 1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
b2 1 1 0 . . . 0 0 0 . . . 0 0 0 . . . 0
b3 0 1 1 . . . 0 0 0 . . . 0 0 0 . . . 0
b4 0 0 1 . . . 0 0 0 . . . 0 0 0 . . . 0

...
...

...
... . . . ...

...
... . . . ...

... . . . ...
ba 0 0 0 . . . 1 0 0 . . . 0 0 0 . . . 0
ba+1 0 0 0 . . . 1 1 0 . . . 0 0 0 . . . 0
ba+2 0 0 0 . . . 0 1 1 . . . 0 0 0 . . . 0
ba+3 0 0 0 . . . 0 0 1 . . . 0 0 0 . . . 0

...
...

...
... . . . ...

...
... . . . ...

... . . . ...
ba+t 0 0 0 . . . 0 0 0 . . . 1 0 0 . . . 0
ba+t+1 0 0 0 . . . 0 0 0 . . . 1 1 0 . . . 0
ba+t+2 0 0 0 . . . 0 0 0 . . . 0 1 1 . . . 0
ba+t+3 0 0 0 . . . 0 0 0 . . . 0 0 1 . . . 0

...
...

...
... . . . ...

...
... . . . ...

... . . . ...
bn′ 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 1
bn′+1 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 1
g1 ? ? ? . . . 0 0 0 . . . ? ? ? . . . ?
g2 ? ? ? . . . 0 0 0 . . . ? ? ? . . . ?


Contract {b1, . . . ,ba,ba+t , . . . ,bn′+1} and delete {w1, . . . ,wa,wa+t , . . . ,wn′} for all
w ∈ {a,c,x} where a,c label the non-basis elements of F . This gives the required
matrix.
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Lemma 5.2.12. If M is represented by the following rank-(t +2) matrix:

1 1 0 0 0 0 0 0 . . . 0 0 0 1 0 0 . . . 0
0 0 1 1 0 0 0 0 . . . 0 0 0 1 1 0 . . . 0
0 0 0 0 1 1 0 0 . . . 0 0 0 0 1 1 . . . 0
0 0 0 0 0 0 1 1 . . . 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

... . . . ...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
1 0 1 0 1 0 1 0 . . . 1 0 1 0 0 0 . . . 0
0 1 0 1 0 1 0 1 . . . 0 1 1 0 0 0 . . . 0


, then M has a rank-t double wheel minor.

Proof. This can be seen from the matrices or by noting that if M is represented by
the matrix above, then M is graphic and of the following form:

From this we can see that M \{e2, . . . ,en−1,g1,g2,g3}/{e1,en} is a double wheel.

Tying the lemmas in this case together we get the following theorem.

Theorem 5.2.13. There is a function f5.2.13 such that the following holds. If M is
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binary matroid such that M \X ∼= M(K3,n) and M can be represented by:



a1 c1 a2 c2 a3 c3 . . . an−1 cn−1 an cn g3 x1 x2 x3 . . . xn−1

b1 1 1 0 0 0 0 . . . 0 0 0 0 0 1 0 0 . . . 0
b2 0 0 1 1 0 0 . . . 0 0 0 0 0 1 1 0 . . . 0
b3 0 0 0 0 1 1 . . . 0 0 0 0 0 0 1 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

bn−1 0 0 0 0 0 0 . . . 1 1 0 0 0 0 0 0 . . . 1
bn 0 0 0 0 0 0 . . . 0 0 1 1 0 0 0 . . . 1
g1 1 0 1 0 1 0 . . . 1 0 1 0 1 ? ? ? . . . ?
g2 0 1 0 1 0 1 . . . 0 1 0 1 1 ? ? ? . . . ?


.

where n≥ f5.2.13(t), then M has a double wheel of rank at least t as a minor.

Proof. Let f5.2.13(t) = f5.2.10(t). By Lemma 5.2.11 M has a rank-(t + 2) minor,
M′, with a reduced standard representation

1 1 0 0 0 0 0 0 . . . 0 0 0 1 0 0 . . . 0
0 0 1 1 0 0 0 0 . . . 0 0 0 1 1 0 . . . 0
0 0 0 0 1 1 0 0 . . . 0 0 0 0 1 1 . . . 0
0 0 0 0 0 0 1 1 . . . 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

... . . . ...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
1 0 1 0 1 0 1 0 . . . 1 0 1 0 0 0 . . . 0
0 1 0 1 0 1 0 1 . . . 0 1 1 0 0 0 . . . 0


. By Lemma 5.2.12, M′, and hence M, has a rank-t double wheel minor.

5.3 Blocking a Paddle

In this section we focus on blocking the 3-separations displayed by F in M when
F is a general binary paddle. Before we do this we set up the following hypotheses
for this section:

• M is a binary matroid.
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• The partition F = (P1, . . . ,Pn,G) of E(M)−X is a paddle of M \X where X

a coindependent set.

• G is a guts petal of F and {P1, ...,Pn} are proper petals of F .

• G contains two points, {g1,g2}.

• There is no partition (P1, ...,P′i ,P
′′
i , ...,Pn,G) that is a paddle.

• The elements of X are a minimal set of blocking elements for the displayed
3-separations of M.

• The set B is a basis of M containing two elements {g1,g2} ⊆ G for every
i ∈ {1, ...,n}, there is some element of Pi ∈ B.

• For x ∈ X , let Cx denote the fundamental circuit of x with respect to B.

Lemma 5.1.2 is restated below.

Lemma 5.1.2. If n ≥ f2.4.9(t), then there is a minor M′ of M such that M′ \
(X ∩E(M′)) has a flower F ′ ⊆ F with at least t + 1 petals which, after possible
relabelling, can be represented by one of the following matrices:

P′1 0 0 . . . 0 Q1

0 P′2 0 . . . 0 Q2

0 0 P′3 . . . 0 Q3
...

...
... . . . ...

...
0 0 0 . . . P′t Qn

G1 G2 G3 . . . Gt ?


,

(a)



P′1 0 0 . . . 0 Q1 Q2 . . . Qn

0 P′2 0 . . . 0 Q′1 0 . . . 0
0 0 P′3 . . . 0 0 Q′2 . . . 0
...

...
... . . . ...

...
... . . . ...

0 0 0 . . . P′t 0 0 . . . Q′n
G1 G2 G3 . . . Gt ? ? . . . ?


,

(b)
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P′1 0 0 . . . 0 0 Q1 0 . . . 0
0 P′2 0 . . . 0 0 Q′1 Q2 . . . 0
0 0 P′3 . . . 0 0 0 Q′2 . . . 0
...

...
... . . . ...

...
...

... . . . ...
0 0 0 . . . P′n−1 0 0 0 . . . Qn−1

0 0 0 . . . 0 P′n 0 0 . . . Q′n−1

G1 G2 G3 . . . Gt−1 Gt ? ? . . . ?


.

(c)

Where, for i ∈ {1, . . . ,n} the submatrices P′i ,Qi and Gi are matrices such that the
following hold.

i) Gi has two rows and the rows of Gi are labelled by the elements in the guts
petal of P,

ii) G1, . . . ,Gn represent matrices that each contain at least one non-zero entry in
every row,

iii) the rows of P′i are labelled by the basis elements of (M|Pi),

iv) the columns containing columns of P′i label the elements of Pi−B, and

v) Qi, Q′i represent (|r(Pi)| − 2)× 1 matrices with rows labelled by the basis
elements of Pi and for every i ∈ {1, . . . ,n} there is a 1 in some row of Qi.

We now split the analysis into three cases, one for each of the matrices above.

5.3.1 Case (a)

We now consider the case where Λ is of form (a) from Lemma 5.1.2. This means
that F is blocked by a single element, in other words M can be represented by the
reduced standard representation matrix

P′1 0 0 . . . 0 Q1

0 P′2 0 . . . 0 Q2

0 0 P′3 . . . 0 Q3
...

...
... . . . ...

...
0 0 0 . . . P′t Qn

G1 G2 G3 . . . Gt ?


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,

where, for i ∈ {1, . . . ,n}, the submatrices P′i ,Qi and Gi are such that the following
hold.

1. Gi has two rows and the rows of Gi are labelled by the elements in the guts
petal of P,

2. G1, . . . ,Gn represent matrices that each contain at least one non-zero entry
in every row,

3. the rows of P′i are labelled by the basis elements of (M|Pi),

4. the columns containing columns of P′i label the elements of Pi−B, and

5. Qi, Q′i represent (|r(Pi)| − 2)× 1 matrices with rows labelled by the basis
elements of Pi and, for every i ∈ {1, . . . ,n}, there is a 1 in some row of Qi.

Lemma 5.3.1. The matroid M \ x has a minor M′ such that M′ \ x∼= M(K
+
3,n) and

every 3-separation displayed by the canonical flower of M′ \ x is blocked by x.

Proof. This follows immediately from Lemma 2.3.9.

This reduces the case where Λ is of form (a) of Lemma 5.1.2 to the case where
Λ is of from (a′) of Lemma 5.2.1, that is we have reduced the case of blocking a
paddle with a single element to the case of blocking K3,n with a single element.
Thus, as an immediate corollary of Lemma 5.3.1 combined with Lemma 5.2.4,
we get the following theorem.

Theorem 5.3.2. Let M be a binary matroid with an element x such that the fol-

lowing hold. The matroid M \ x has a paddle F with at least n ≥ f5.2.4(t) petals,

x ∈ cl(E(M)− x), and x blocks every displayed 3-separation in F. Then M has a

N(K3,n)-minor.
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Case (b)

Consider the matrix (b) from Lemma 5.1.2, that is the matrix given below.

P′1 0 0 . . . 0 Q1 Q2 . . . Qn

0 P′2 0 . . . 0 Q′1 0 . . . 0
0 0 P′3 . . . 0 0 Q′2 . . . 0
...

...
... . . . ...

...
... . . . ...

0 0 0 . . . P′n 0 0 . . . Q′n
G1 G2 G3 . . . Gn ? ? . . . ?


,

where, for i ∈ {1, . . . ,n}, P′i ,Qi and Gi are matrices where

i) Gi has two rows and the rows of Gi are labelled by the elements in the guts
petal of P,

ii) G1, . . . ,Gn represent matrices that each contain at least one non-zero entry in
every row,

iii) the rows of P′i are labelled by the basis elements of (M|Pi),

iv) the columns containing columns of P′i label the elements of Pi−B, and

v) Qi, Q′i represent (|r(Pi)| − 2)× 1 matrices with rows labelled by the basis
elements of Pi and for every i ∈ {1, . . . ,n} there is a 1 in some row of Qi.

In this case assume that M is represented by the matrix above, the elements of G

are the elements labelling the rows of Gi for i ∈ {1, ...,n} and for i ∈ {1, ...,n} the
elements of Pi are the elements labelling the rows and columns of P′i .

Lemma 5.3.3. There is a minor M′ of M such that the following hold.

i) The matroid M′ \X has a flower F ′ = (P1,P′2, . . . ,P
′
n), where P′i ⊆ Pi for i ∈

{2, . . . ,n},

ii) All petals of F ′ but P1 are 3-separating triads,

iii) For every 3-separation of M′ displayed by F ′, there is is an element x ∈ X

that blocks this separation,
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iv) for all xi ∈ X there is a unique Pi such that xi blocks (P1 ∪Pi,E(M′ \X)−
(P1∪Pi)) and xi ∈ clM′(P1∪Pi), and

v) X is a minimal blocking set for the 3-separations of M′ \X displayed by F ′.

Proof. Since all petals except P1 contain a representative of exactly one blocking
element, this follows from Lemma 2.3.9.

We now look at reducing the size of P1 while still keeping the property that every
displayed 3-separation is blocked.

Lemma 5.3.4. There is a minor M′ of M such that the following hold.

i) The matroid M′ \ X has a paddle F ′ = (P′1, . . . ,P
′
n) with the property that

M′|(P′1∪{g1,g2})/e is connected for any e ∈ P′1,

ii) X ⊆ E(M′),

iii) and every 3-separation in M′ displayed by F ′ is blocked by an element of X

and X in minimal with respect to this.

Proof. Since M|(P1 ∪ {g1,g2}) is connected, for every e ∈ P1 either M|(P1 ∪
{g1,g2}) \ {e} is connected, M|(P1 ∪ {g1,g2})/{e} is connected. An element
xi ∈ X blocks Pi if, and only if, xi /∈ cl(P1) and xi /∈ cl(Pi) and xi ∈ cl(P1 ∪Pi).
Therefore we may, without unblocking any petals of F , delete any element of P1

that is such that M|((P1− e)∪{g1,g2}) is connected and r(P1− e) = r(P1). If
r(P1−e) = r(P1) then e is a coloop in M|(P1∪{g1,g2}) so M|(P1∪{g1,g2})/e is
connected. Inductively this means that we can find a minor M′ of M such that the
following hold.

i) M′ \ X has a paddle F ′ = (P′1, . . . ,P
′
n) with the property that M′|(P′1 ∪

{g1,g2})/e is connected for any e ∈ P′1,

ii) X ⊆ E(M′), and

iii) every 3-separation in M′ displayed by F ′ is blocked by an element of X and
X in minimal with respect to this.
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Consider a petal P′1 as described in the lemma above. For every xi ∈ X we know
that xi ∈ cl(P1∪Pi). Let Ai denote the subset of P′1∩B such that xi ∈ cl(Ai∪Pi).
Suppose there were some e∈ P′1 that was not, for some i, contained in Ai. Contract
this element. Now assume that every element e of P′1 is contained in Ai for some i.
We wish to contract all but one element of each Ai, which, for a single Ai at a time,
we are able to do since, if x ∈ 〈({a1, . . . ,an})〉, then x ∈ cl(M/ai)+x({a2, . . . ,an}).
However we may run across a problem that we cannot contract all but one element
of some Ai without causing a problem with A j for some j. For example we have a
problem if A1 = {a2,a3}, A2 = {a2} and A3 = {a3}.

Lemma 2.4.10 is useful in solving this problem.

Lemma 5.3.5. Let M be such that M \X has a paddle F = (P1, . . . ,Pn) with the

following properties.

I) Every element e in P1 is such that M|(P1∪{g1,g2})/e is connected,

II) n≥ f2.4.10(t),

III) No element of P1 can be contracted without unblocking some 3-separation of

M displayed by F.

Then there is a minor, M′, of M such that, for coindependent set X ′ = X ∩E(M′),

the matroid M′ \X ′ has a flower F ′ = (P′1, . . . ,P
′
t ) with at least t petals such that,

after possible relabelling, one of the following holds.

i) For all Pj where j ∈ {1, . . . , t}, Pj is a 3-separating triad,

ii) there is some a ∈ P′1 such that for every x ∈ X there exists i ∈ {2, . . . , t} such

that x ∈ cl(a∪P′i ), or

iii) for every xi ∈ X there exists some i∈ {2, . . . , t} such that x∈ cl(pi∪P′i ) where

pi ∈ P1. Moreover, for i, j ∈ {2, . . . , t}, if i 6= j, then pi 6= p j and Pi 6= P′i .

Proof. As before, let Ai denote the subset of P′1 ∩ B such that xi ∈ cl(Ai ∪ Pi).
Consider a matrix, ϒ, with rows labelled by P2, . . . ,Pn and columns labelled by the
elements of P1. Construct the ϒ as follows:

ϒPi,a j =

{
1 if a j is contained in Ai

0 otherwise
(5.3.1)
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The matrix ϒ has at least one 1 in every row and every column so, by
Lemma 2.4.10, there is a column of ϒ that contains at least t 1′s, or ϒ has a
submatrix, ϒ′ isomorphic to It . Suppose ϒ has a column containing at least t

1’s and let this column be labelled by a. Then there is a large subset of petals
of F , which after relabelling we can consider to be P2, . . . ,Pt , with the property
that xi ∈ cl{Pi∪ a} for i ∈ {2, . . . , t}. Removing all petals of of F that are not in
{P1, . . . ,Pt} and reducing the elements of {P2, . . . ,Pt} to triads as in Lemma 5.3.3,
gives the minor of M described in i).

In the case where there is a submatrix, ϒ′, of ϒ that is isomorphic to It , relabel
elements so that the petals that label the rows of the identity matrix are P2, . . . ,Pt .
Remove all petals not in {P1, . . . ,Pt} and remove all elements of P1 that are not
labels of columns of ϒ′, in such a way as to keep connectivity. This gives a flower
in which P1,Pi is blocked by single element xi and xi ∈ cl(pi∪Pi) for some pi ∈ P1

with pi 6= p j when i 6= j.

Lemma 5.3.6. Suppose M has reduced standard representation

1 0 0 0 0 . . . 0 0 1 1 . . . 1
0 1 1 0 0 . . . 0 0 1 0 . . . 0
0 0 0 1 1 . . . 0 0 0 1 . . . 0
...

...
...

...
... . . . ...

...
...

... . . . ...

0 0 0 0 0 . . . 1 1 0 0 . . . 1
? 0 1 0 1 . . . 1 0 ? ? . . . ?
? 1 0 1 0 . . . 0 1 ? ? . . . ?

.


Then there is a rank-(n+1) minor of this matroid that can be represented by the

matrix from case (b) of Lemma 5.2.1, that is by the following matrix:

1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
1 0 1 0 1 0 . . . 1 0 1 ? ? . . . ?
0 1 0 1 0 1 . . . 0 1 1 ? ? . . . ?


.

Proof. There is a single element, a, in P1. For some j ∈ {1, ...,n− 1}, contract
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x j. Now a ∈ cl(Pj) Therefore as every xk ∈ cl(a∪Pk), for k ∈ {2, . . . ,n} it follows
that xk ∈ clM/x j\a(Pj ∪Pk). This means that M/x j \a is a minor of M isomorphic
to one of the matroids in case (b′) Lemma 5.2.1.

Lemma 5.3.7. Suppose that M is represented by the following matrix

0 0 0 0 . . . 0 0 1 0 . . . 0
0 0 0 0 . . . 0 0 0 1 . . . 0

0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0 0 . . . 1

0 0 . . . 0 1 1 0 0 . . . 0 0 1 0 . . . 0
0 0 . . . 0 0 0 1 1 . . . 0 0 0 1 . . . 0
...

... . . .
...

...
...

...
... . . . ...

...
...

... . . . ...

0 0 . . . 0 0 0 0 0 . . . 1 1 0 0 . . . 1
? ? . . . ? 1 0 1 0 . . . 1 0 ? ? . . . ?
? ? . . . ? 0 1 0 1 . . . 0 1 ? ? . . . ?


where the blue matrix represents P1 and has rank n−1. If n−1 ≥ f2.4.1(4t +1),
and for every x ∈ X, x ∈ cl(pi∪Pi) for some pi ∈ P1 with pi 6= p j for all pi, p j ∈ P1

and Pi 6= P′1. Then M has a minor that can be represented by one of the following

rank-(t +2) matrices:

1 1 0 0 0 0 . . . 0 0 0 1
0 0 1 1 0 0 . . . 0 0 0 1
0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 1 0 1
1 0 1 0 1 0 . . . 1 0 1 ?
0 1 0 1 0 1 . . . 0 1 1 ?


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

1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
1 0 1 0 1 0 . . . 1 0 1 ? ? . . . ?
0 1 0 1 0 1 . . . 0 1 1 ? ? . . . ?


that is, M can be represented by a matrix of the form given in case (a) or case (b)

of Lemma 5.2.1.

Proof. We know M|(P1∪{g1,g2}) is connected.

Claim 5.3.8. M|(P1∪{g1,g2})/{g1,g2} is connected.

Proof. First observe that M|(P1 ∪ {g1,g2})/g1 is connected. For suppose not.
Then there would be a 2-separation in M|(P1∪{g1,g2}) with g1 in the guts. This
would be a 2-separation of M not fully contained in a petal, which contradicts 3
of the definition of flower. Now if M|(P1∪{g1,g2}) is not connected, then there
is a 3-separation in M|(P1∪{g1,g2}) with g1,g2 in the guts. This contradicts the
maximality of F established in the hypotheses of this chapter.

By Lemmas 5.3.5 we can assume that every ai ∈ P1 is in cl(xi ∪Pi) and not in
cl(x j ∪Pj) for any j 6= i. Since P1∪{g1,g2}/{g1,g2} is a connected matroid and
r(P1) = n−1≥ f2.4.1(4t+1), M|(P1∪{g1,g2})/{g1,g2} has a circuit or cocircuit
of size at least 4t

Suppose M|(P1 ∪ {g1,g2})/{g1,g2} has a cocircuit of size 4t as a minor. This
means that M|(P1∪{g1,g2})/{g1,g2} has a parallel class of at least 4t non-loop
elements as a minor N. Coextending N by g1 and g2 gives a minor of M|(P1 ∪
{g1,g2})/{g1,g2} with a parallel class, of at least t elements and this parallel
class is not in cl({g1,g2}). The result then follows easily from Lemma 5.3.6.

Now suppose that M|(P1 ∪{g1,g2}/{g1,g2} contains a t-element circuit. Then
there is a minor of M|(P1 ∪ {g1,g2}) that is a circuit C and is such that |C−
{g1,g2}|= t. The circuit C may or may not contain one or both of g1 and g2. Let
the basis elements of the circuit be e1, . . . ,et−1 and the other element of the circuit
be a1. Therefore we now have a matroid that can be represented by the following
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matrix:



a1 a2 c2 a3 c3 . . . at ct x1 x2 . . . xt−1

e1 1 0 0 0 0 . . . 0 0 1 0 . . . 0
e2 1 0 0 0 0 . . . 0 0 0 1 . . . 0
...

...
...

...
...

... . . . ...
...

...
... . . . ...

et−1 1 0 0 0 0 . . . 0 0 0 0 . . . 1
b2 0 1 1 0 0 . . . 0 0 1 0 . . . 0
b3 0 0 0 1 1 . . . 0 0 0 1 . . . 0
...

...
...

...
...

... . . . ...
...

...
... . . . ...

bt 0 0 0 0 0 . . . 1 1 0 0 . . . 1
g1 ? 1 0 1 0 . . . 1 0 ? ? . . . ?
g2 ? 0 1 0 1 . . . 0 1 ? ? . . . ?


For all i ∈ {1, ..., t−1} pivot on Mei,xi to get:



a1 a2 c2 a3 c3 . . . at ct e1 e2 . . . et−1

x1 1 0 0 0 0 . . . 0 0 1 0 . . . 0
x2 1 0 0 0 0 . . . 0 0 0 1 . . . 0
...

...
...

...
...

... . . . ...
...

...
... . . . ...

xt−1 1 0 0 0 0 . . . 0 0 0 0 . . . 1
b2 1 1 1 0 0 . . . 0 0 1 0 . . . 0
b3 1 0 0 1 1 . . . 0 0 0 1 . . . 0
...

...
...

...
...

... . . . ...
...

...
... . . . ...

bt 1 0 0 0 0 . . . 1 1 0 0 . . . 1
g1 ? 1 0 1 0 . . . 1 0 ? ? . . . ?
g2 ? 0 1 0 1 . . . 0 1 ? ? . . . ?



.

Deleting e1, . . . ,et−1 and contracting x1, . . . ,xt−1, gives a rank-(t + 2) matrix of
the following form.
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

a1 a2 c2 a3 c3 . . . at ct

b2 1 1 1 0 0 . . . 0 0
b3 1 0 0 1 1 . . . 0 0
...

...
...

...
...

... . . . ...
...

bt 1 0 0 0 0 . . . 1 1
g1 ? 1 0 1 0 . . . 1 0
g2 ? 0 1 0 1 . . . 0 1


.

which is a rank t +2 matrix of the form given in case (a) of Lemma 5.2.1.

Theorem 5.3.9. There is a function f5.3.9 such that the following holds. Suppose

M is a matroid such that M \X has a paddle, F, with at least n petals and that F

is blocked by X. If n≥ f5.3.9(t) and M can be represented by the reduced standard

representation matrix,

P′1 0 0 . . . 0 Q1 Q2 . . . Qn

0 P′2 0 . . . 0 Q′1 0 . . . 0
0 0 P′3 . . . 0 0 Q′2 . . . 0
...

...
... . . . ...

...
... . . . ...

0 0 0 . . . P′t 0 0 . . . Q′n
G1 G2 G3 . . . Gt ? ? . . . ?


,

then, M has a N(K3,t)-minor or an M(K4,t)-minor.

Proof. Suppose n ≥ f2.4.10(max{ f2.4.1(max{ f5.2.8(t), f5.2.4(t)} + 2), f5.2.4(t) +

1)).

Then by Lemma 5.3.5 M has a minor M′ that can be represented by one of the
following matrices where
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m≥max{ f2.4.1(max{ f5.2.8(t), f5.2.4(t)})+2, f5.2.4(t)+1).

1 0 0 0 0 . . . 0 0 1 1 . . . 1
0 1 1 0 0 . . . 0 0 1 0 . . . 0
0 0 0 1 1 . . . 0 0 0 1 . . . 0
...

...
...

...
... . . . ...

...
...

... . . . ...
0 0 0 0 0 . . . 1 1 0 0 . . . 1
1 0 1 0 1 . . . 1 0 ? ? . . . ?
0 1 0 1 0 . . . 0 1 ? ? . . . ?


.

where this matrix has at least rank m+3, or



0 0 0 0 . . . 0 0 1 0 . . . 0
0 0 0 0 . . . 0 0 0 1 . . . 0

0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0 0 . . . 1

0 0 . . . 0 1 1 0 0 . . . 0 0 1 0 . . . 0
0 0 . . . 0 0 0 1 1 . . . 0 0 0 1 . . . 0
...

... . . .
...

...
...

...
... . . . ...

...
...

... . . . ...
0 0 . . . 0 0 0 0 0 . . . 1 1 0 0 . . . 1
1 0 . . . 1 0 1 0 1 . . . 1 0 ? ? . . . ?
0 1 . . . 0 1 0 1 0 . . . 0 1 ? ? . . . ?


where the blue matrix represents the elements of P1 and has rank m−1.

Consider the case where M′ can be represented by

1 0 0 0 0 . . . 0 0 1 1 . . . 1
0 1 1 0 0 . . . 0 0 1 0 . . . 0
0 0 0 1 1 . . . 0 0 0 1 . . . 0
...

...
...

...
... . . . ...

...
...

... . . . ...
0 0 0 0 0 . . . 1 1 0 0 . . . 1
1 0 1 0 1 . . . 1 0 ? ? . . . ?
0 1 0 1 0 . . . 0 1 ? ? . . . ?


.

This has rank at least f5.2.4(t) so, by Lemma 5.3.6 and Theorem 5.2.5, M′ has a
N(K3,t)-minor.
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Now consider the case where M′ is represented by

0 0 0 0 . . . 0 0 1 0 . . . 0
0 0 0 0 . . . 0 0 0 1 . . . 0

0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0 0 . . . 1

0 0 . . . 0 1 1 0 0 . . . 0 0 1 0 . . . 0
0 0 . . . 0 0 0 1 1 . . . 0 0 0 1 . . . 0
...

... . . .
...

...
...

...
... . . . ...

...
...

... . . . ...
0 0 . . . 0 0 0 0 0 . . . 1 1 0 0 . . . 1
1 0 . . . 1 0 1 0 1 . . . 1 0 ? ? . . . ?
0 1 . . . 0 1 0 1 0 . . . 0 1 ? ? . . . ?



.

Since the blue matrix has at least rank f2.4.1(max{ f5.2.8(t), f5.2.4(t)}+ 2), by
Lemma 5.3.7 M′ has a minor M′′ of rank m′ ≥max{ f5.2.8(t), f5.2.4(t)}+2 of one
of the following forms:



1 1 0 0 0 0 . . . 0 0 0 1
0 0 1 1 0 0 . . . 0 0 0 1
0 0 0 0 1 1 . . . 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 1 0 1
1 0 1 0 1 0 . . . 1 0 1 ?
0 1 0 1 0 1 . . . 0 1 1 ?


,

or 

1 1 0 0 0 0 . . . 0 0 0 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 0 1 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 1 1 0 0 0 . . . 1
1 0 1 0 1 0 . . . 1 0 1 ? ? . . . ?
0 1 0 1 0 1 . . . 0 1 1 ? ? . . . ?



By Lemma 5.2.5 and Lemma 5.2.9 this means that M′′ and hence M has a N(K3,t)

or M(K4,t)-minor.
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5.3.2 Case (c)

Consider the matrix (c) from Lemma 5.1.2, that is the matrix given below:

P1 0 0 . . . 0 0 Q1 0 . . . 0
0 P2 0 . . . 0 0 Q′1 Q2 . . . 0
0 0 P3 . . . 0 0 0 Q′2 . . . 0
...

...
... . . . ...

...
...

... . . . ...
0 0 0 . . . Pn−1 0 0 0 . . . Qn−1

0 0 0 . . . 0 Pn 0 0 . . . Q′n−1

G1 G2 G3 . . . Gn−1 Gn ? ? . . . ?


,

where, for i ∈ {1, . . . ,n}, P′i ,Qi and Gi are matrices where

1. Gi has two rows and the rows of Gi are labelled by a maximal independent
set contained in the guts petal of F ,

2. G1, . . . ,Gn represent matrices that each contain at least one non-zero entry
in every row,

3. the rows of P′i are labelled by the basis elements of (M|Pi),

4. the columns containing columns of P′i label the elements of Pi−B, and

5. For i ∈ {1, ...,n− 1}, Qi represents (r(Pi)− 2)× 1 matrices with rows la-
belled by the basis elements of Pi and for every i ∈ {1, . . . ,n−1} there is a
1 in some row of Qi.

6. For i ∈ {1, ...,n− 1}, Q′i represents (r(Pi+1)− 2)× 1 matrices with rows
labelled by the basis elements of Pi+1 and for every i ∈ {1, . . . ,n−1} there
is a 1 in some row of Qi.

Throughout this case we assume that M is represented by the matrix above, and
F = (P1, ...,Pn,G), where the elements of Pi are the elements labelling rows and
columns of P′i , and G is the elements labelling rows of G1.

In this section we proceed as follows. We find a minor of M represented by the
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following matrix:

1 1 0 0 0 0 0 0 . . . 0 0 0 1 0 0 . . . 0
0 0 1 1 0 0 0 0 . . . 0 0 0 1 1 0 . . . 0
0 0 0 0 1 1 0 0 . . . 0 0 0 0 1 1 . . . 0
0 0 0 0 0 0 1 1 . . . 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
1 0 1 0 1 0 1 0 . . . 1 0 1 ? ? ? . . . ?
0 1 0 1 0 1 0 1 . . . 0 1 1 ? ? ? . . . ?


After this, this case as been reduced to the previously solved problem of finding
the unavoidable minors of the above matrix.

Since M \X has an M(K3,n)-minor the following result is obvious.

Lemma 5.3.10. Every submatrix of the representation of M given in (c) of

Lemma 5.1.2 with rows labelled by elements of Pi, for i ∈ {2, . . . ,n− 1}, must

contain a submatrix of one of the following forms:

( ai ci xi−1 xi

1 1 1 1
)
,

( ai ci xi−1 xi

1 1 1 0
1 0 0 1

)
,

( ai ci xi−1 xi

1 1 0 0
1 0 1 1

)
,


ai ci xi−1 xi

1 1 0 0
1 0 1 0
1 0 0 1

,


ai ci xi−1 xi

1 1 0 0
1 0 1 0
0 1 0 1

,

( ai ci xi−1 xi

1 1 1 0
1 1 0 1

)
.

For the next few pages, and where it arises throughout the thesis we may use ? to
denote unknown row or column labels.

Lemma 5.3.11. Suppose Pi is a petal of F and C,D⊆ Pi with the following prop-

erties.

1. there is some M′ = M \D/C for C,D ⊆ Pi such that M′ \X has a flower

F ′ = (P1, ...Pi−1,P′i ,Pi+1, ...,Pn),

2. every displayed 3-separation of M′ \X is blocked by some x ∈ X and,
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3. M|P′i can be represented by one of the following matrices:

( ai ci xi−1 xi

1 1 1 0
1 0 0 1

)
,

( ai ci xi−1 xi

1 1 0 0
1 0 1 1

)
,


ai ci xi−1 xi

1 1 0 0
1 0 1 0
1 0 0 1

,


ai ci xi−1 xi

1 1 0 0
1 0 1 0
0 1 0 1

.

Then M has a minor M′′ = M′ \D′/C′ that is blocked by X, with the property that

such that M′′ has a swirl-like pseudo-flower F ′′= (P1, ...,Pi−1,P′′i ,Pi+1, ...,Pn) and

M′′|P′′i can be represented by

( ? ? xi−1 xi

1 1 1 1
)
.

Proof. Let M′|P′i := P and let the final rows of P be labelled p1, . . . , pi for some
i ∈ {1,2}. Suppose P is represented by the following matrix:

( ai ci xi−1 xi

bi 1 1 a b

p1 1 0 c d

)
.

Pivoting on Mai,p1 gives

( p1 ci xi−1 xi

bi 1 1 a+ c b+d

ai 1 0 c d

)
.

In the cases above exactly one of a and c and exactly one of b and d is equal to 1.

Contracting ai then gives
( p1 ci xi−1 xi

1 1 1 1
)
.
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Suppose P is represented by


ai ci xi−1 xi

bi 1 1 0 0
p1 1 0 1 0
p2 1 0 0 1

.

Pivot on Mai,p1 to get


p1 ci xi−1 xi

bi 1 1 1 0
ai 1 0 1 0
p2 1 0 0 1


and on Mp1,p2 to get


p2 ci xi−1 xi

bi 1 1 1 1
ai 1 0 1 0
p1 1 0 0 1

.

This gives a
( p2 ci xi−1 xi

1 1 1 1
)

minor.

Suppose P is represented by


ai ci xi−1 xi

bi 1 1 0 0
p1 1 0 1 0
p2 0 1 0 1

.

Pivot on Mai,p1 and Mci,p2 to get


p1 p2 xi−1 xi

bi 1 1 1 1
ci 1 0 1 0
a2 0 1 0 1



Contracting ai and ci gives
( p2 ci xi−1 xi

1 1 1 1
)
.
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Unfortunately when we have a petal of the form

( ai ci xi−1 xi

1 1 1 0
1 1 0 1

)
, we cannot

find a minor of the form
( p2 ci xi−1 xi

1 1 1 1
)
. To deal with this case we instead

look at pairs of petals. If for some i ∈ {1, ...,n} the matroid M|Pi does not have

a minor of the form
( p2 ci xi−1 xi

1 1 1 1
)

, then M|Pi must have a minor of the
following form:

( ? ? xi−1 xi

bi 1 1 1 0
p1 1 1 0 1

)
.

We look at what happens if we have two adjacent petals with minors of this form,
or a petal of this form followed by a petal of the form

(
1 1 1 1

)
.

Lemma 5.3.12. Let N be a binary matroid with reduced standard representation

of the form 
1 1 0 0 1 0 0
1 1 0 0 0 1 0
0 0 1 1 0 1 0
0 0 1 1 0 0 1


or 1 1 0 0 1 0 0

1 1 0 0 0 1 0
0 0 1 1 0 1 1


where the final three columns of the matrix are labelled by yi,yi+1,yi+2. Then N

has a minor of form
[
1 1 1 1

]
, where the final two columns are labelled by yi

and yi+2.

Proof. Suppose N is represented by the following matrix:



ai ci ai+1 ci+1 yi yi+1 yi+2

bi 1 1 0 0 1 0 0
pi 1 1 0 0 0 1 0
bi+1 0 0 1 1 0 1 0
pi+1 0 0 1 1 0 0 1

.



102 CHAPTER 5. BLOCKING A PADDLE

Pivot on Mpi,ci and Mpi+1,ci+1 to get:



ai pi ai+1 pi+1 yi yi+1 yi+2

bi 0 1 0 0 1 1 0
ci 1 1 0 0 0 1 0
bi+1 0 0 1 0 0 1 1
ci+1 0 0 1 1 0 0 1


Finally pivot on Mbi+1,yi+1 to get



ai pi ai+1 pi+1 yi bi+1 yi+2

bi 0 1 1 0 1 1 1
ci 1 1 1 0 0 1 1
yi+1 0 0 1 0 0 1 1
ci+1 0 0 1 1 0 0 1


Deleting all but the first row and the first and fourth columns of this give the matrix(

1 1 1 1
)

, where the final two columns are labelled by yi and yi+2.

Now suppose N is represented by the following matrix.


ai ci ai+1 ci+1 xi xi+1 xi+2

bi 1 1 0 0 1 0 0
pi 1 1 0 0 0 1 0
bi+1 0 0 1 1 0 1 1


Pivoting on Mbi,ai give the following matrix


bi ci ai+1 ci+1 xi xi+1 xi+2

ai 1 1 0 0 1 0 0
pi 1 0 0 0 1 1 0
bi+1 0 0 1 1 0 1 1

.
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If we now pivot on Mpi,xi+1 we get


bi ci ai+1 ci+1 xi pi xi+2

ai 1 1 0 0 1 0 0
xi+1 1 0 1 1 1 1 1
bi+1 0 0 1 1 0 1 1

.

Deleting the first and last rows and the second, third and sixth column gives the
matrix

(
1 1 1 1

)
, where the final two columns are labelled by xi and xi+2.

Now all that remains is to consider the first and last petals. The first petal must
contain a submatrix of one of the following forms

( ? ? x1

1 1 1
)

or ( ? ? x1

1 1 0
1 0 1

)
.

It is easy to see that we can perform a change of basis and find a minor of M′ with
flower F = (P′1,P2, . . . ,Pn) such that M|P1 can be represented by the following

matrix
( ? ? x1

1 1 1
)
. Clearly we can use the same argument to obtain a minor of

M|Pn represented by

( ? ? xn−1

? ? x1

1 1 1

)
. Since the columns labelled by the block-

ing elements have remained unchanged we get the following:



104 CHAPTER 5. BLOCKING A PADDLE

Lemma 5.3.13. If n≥ 2t then M has a rank-(t +2) minor of the form:

1 1 0 0 0 0 0 0 . . . 0 0 0 1 0 0 . . . 0
0 0 1 1 0 0 0 0 . . . 0 0 0 1 1 0 . . . 0
0 0 0 0 1 1 0 0 . . . 0 0 0 0 1 1 . . . 0
0 0 0 0 0 0 1 1 . . . 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
1 0 1 0 1 0 1 0 . . . 1 0 1 0 0 0 . . . 0
0 1 0 1 0 1 0 1 . . . 0 1 1 0 0 0 . . . 0

.


Theorem 5.3.14. There is a function f5.3.14 such that the following holds. If n ≥
f5.3.14(t), and M is represented by the matrix given in case c′ of Lemma 5.1.2,

then M has a rank-t double wheel as a minor.

Proof. Let n≥ 2 f5.2.13(t). Then, by Lemma 5.3.13, M has a minor M′ of rank at
least f5.2.13(t) that can be represented by the following matrix:

1 1 0 0 0 0 0 0 . . . 0 0 0 1 0 0 . . . 0
0 0 1 1 0 0 0 0 . . . 0 0 0 1 1 0 . . . 0
0 0 0 0 1 1 0 0 . . . 0 0 0 0 1 1 . . . 0
0 0 0 0 0 0 1 1 . . . 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
1 0 1 0 1 0 1 0 . . . 1 0 1 0 0 0 . . . 0
0 1 0 1 0 1 0 1 . . . 0 1 1 0 0 0 . . . 0


.

By Theorem 5.2.13 M′ and hence M has a rank-t double wheel as a minor.

5.4 Proof of Theorem 5.0.1

Putting all this together we get a proof of Theorem 5.0.1.

Theorem 5.0.1 There is a function f5.0.1 such that the following holds. Suppose

M is a binary matroid such that for some coindependent set X, the matroid M \X

has a paddle partition F = (P1, . . . ,Pn). Further suppose that every 3-separation
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of M \X displayed by F is blocked by some x ∈ X. If n ≥ f5.0.1(t), then M has a

minor isomorphic to one of the following:

i) N(K3,t),

ii) M(K4,t),

iii) a rank-t double wheel.

Proof. Let n ≥ f5.1.2(max{ f5.2.3(t), f5.2.2(t), f5.2.4(t)}). By Lemma 5.1.2, there
is a minor of M that has a reduced standard representation matrix of one of the
following forms: 

P′1 0 0 . . . 0 Q1

0 P′2 0 . . . 0 Q2

0 0 P′3 . . . 0 Q3
...

...
... . . . ...

...
0 0 0 . . . P′t Qn

G1 G2 G2 . . . Gt ?


(a)



P′1 0 0 . . . 0 Q1 Q2 . . . Qt−13
0 P′2 0 . . . 0 Q′1 0 . . . 0
0 0 P′3 . . . 0 0 Q′2 . . . 0
...

...
... . . . ...

...
... . . . ...

0 0 0 . . . P′t 0 0 . . . Q′t−1

G1 G2 G3 . . . Gt ? ? . . . ?


(b)

P′1 0 0 . . . 0 0 Q1 0 . . . 0
0 P′2 0 . . . 0 0 Q′1 Q2 . . . 0
0 0 P′3 . . . 0 0 0 Q′2 . . . 0
...

...
... . . . ...

...
...

... . . . ...
0 0 0 . . . P′n−1 0 0 0 . . . Qn−1

0 0 0 . . . 0 P′n 0 0 . . . Q′n−1

G1 G2 G3 . . . Gt−1 Gt ? ? . . . ?


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(c)

Where, for i ∈ {1, . . . ,n}, P′i ,Qi and Gi are matrices such that

1. Gi has two rows and the rows of Gi are labelled by a maximal independent
set contained in the guts petal of F ,

2. G1, . . . ,Gn represent matrices that each contain at least one non-zero entry
in every row,

3. the rows of P′i are labelled by the basis elements of (M|Pi),

4. the columns containing columns of P′i label the elements of Pi−B, and

5. For i ∈ {1, ...,n− 1}, Qi represents (r(Pi)− 2)× 1 matrices with rows la-
belled by the basis elements of Pi and for every i ∈ {1, . . . ,n−1} there is a
1 in some row of Qi.

6. For i ∈ {1, ...,n− 1}, Q′i represents (r(Pi+1)− 2)× 1 matrices with rows
labelled by the basis elements of Pi+1 and for every i ∈ {1, . . . ,n−1} there
is a 1 in some row of Qi.

If M has a minor M′ of form (a) then, since r(M′)≥ f5.2.4(t)+2, by Lemma 5.3.9
M′ and hence M has a N(K3,t)-minor. If M has a minor M′ of form (b) then, since
r(M′)≥ f5.3.9(t)+2, by Lemma 5.3.9 M′ and hence M has a N(K3,t)-minor or an
M(K4,t)-minor. If M has a minor M′ of form (c) then, since r(M′)≥ f5.3.14(t)+2,
by Lemma 5.3.14 M′ and hence M has a rank-t double wheel minor.



Chapter 6

Blocking M∗(K3,n)

In this chapter we prove the following theorem.

Theorem 6.0.1. There is a function f6.0.1 such that the following hold. Suppose M

is a binary matroid and X a coindependent set in M such that M \X ∼= M∗(K3,n)

where n ≥ f6.0.1(t). If every 3-separation of M \X displayed by the canonical

flower of M \X is blocked by some element x ∈ X, then M has a minor isomorphic

to one of the following matroids.

i) A rank-t circular ladder,

ii) a rank-t Möbius ladder,

iii) a rank-t double wheel,

iv) (N(K3,t))
∗,

v) M∗(K3,n) blocked in a path-like way.

In the first copy of this thesis we believed that we had solved this case when the
matroid has no spike minor. However, sadly there was a mistake in the proof of
this theorem and instead we have Theorem ??

107
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Recall that a standard representation for M∗(K3,n) is a representation of the form



c1 c2 c3 . . . cn−1 an bn cn

a1 1 0 0 . . . 0 1 0 1
b1 1 0 0 . . . 0 0 1 1
a2 0 1 0 . . . 0 1 0 1
b2 0 1 0 . . . 0 0 1 1
a3 0 0 1 . . . 0 1 0 1
b3 0 0 1 . . . 0 0 1 1
...

...
...

... . . . ...
...

...
...

an−1 0 0 0 . . . 1 1 0 1
bn−1 0 0 0 . . . 1 0 1 1


and a standard basis for M∗(K3,n) is a basis that gives a representation of this
form.

In this chapter we work under the hypotheses of Theorem 6.0.1. We also take this
opportunity to give some notation local to this chapter. This means that throughout
this chapter we work under the following hypotheses.

• M is a matroid and X a coindependent set in M such that M \X ∼= M∗(K3,n).

• every 3-separation of M \ X displayed by the canonical flower of M \ X

is blocked by some element x ∈ X and X is minimal with respect to this
property.

• B = {a1,b1, . . . ,an−1,bn−1} is a standard basis for M \X .

• M is represented by the binary matrix Γ with respect to a standard basis B.

• ∆ is the matrix representing M \X with respect to basis B.

• Λ is the 2(n− 1)× |X | matrix that is the restriction of A to the columns
labelled by elements of X .

• Λ̃ denotes the (n−1)×|X | matrix where Λ̃i, j = (Λ2i, j,Λ2i+1, j)
T .

• Γ̃ denotes the (n−1)× (n+3+ |X |) matrix where Γ̃i, j = (Γ2i, j,Γ2i+1, j)
T .

We call the elements in X the blocking elements of M.
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The proof of the following lemma is geometrically obvious in the dual 1 and is
omitted.

Lemma 6.0.2. If n≥ 4t then |X | ≥ t.

This chapter splits into five main sections. In the first section we build a crossing
graph for X with respect to M\X and show that this graph must be connected. This
section follows [7] very closely. There are three unavoidable induced subgraphs
of a simple connected graph, they are a path, a star and a complete graph. The
next three sections are dedicated to analyzing these three cases. The final section
brings the results of this chapter together in a proof of Theorem 6.0.1.

6.1 Crossing Graphs

Definition 6.1.1. Let Φ be a matrix which takes entries from a set U and let j and
k be columns of Phi

i) We say that j dominates k in Φ if j and k are identical or there is some α

in U −{0} such that whenever ai,k 6= 0 we have ai, j = α . We use j � k to
denote the fact that j dominates k.

ii) If j dominates k and whenever ai,k 6= 0 we have ai, j = α we say that α is the
dominating element for the pair ( j,k).

iii) We say that j and k cross if neither dominates the other.

Definition 6.1.2. The crossing graph of the matrix Φ is a graph, GΦ, in which
the vertices are labelled by the columns of Φ and there is an edge between two
vertices of GΦ if, and only if, those two vertices cross as columns of Φ.

The following lemma can be found in [7].

Lemma 6.1.3. Suppose that G0 is a connected component of GΦ for some matrix

Φ, and that k0 is an element of V (GΦ)−V (G0) that dominates at least one element

of V (G0). Then k0 dominates every element of V (G0).

1When we coextend by an element x the guts of the paddle goes from being a line to being a
plane. Since the matroids we are considering are binary this plane consists of seven lines. Three
of these lines contain x, the remaining 4 split the paddle into four classes
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For the remainder of this section we work under the following hypotheses.

• All matrices take their entries from the set {(0,0)T ,(1,0)T ,(0,1)T ,(1,1)T}
unless otherwise stated. Operations on these elements are just the normal
vector operations. We use 0 to denote the element (0,0)T .

• All columns of Λ̃ are distinct.

Definition 6.1.4. Let j be a column of a matrix Φ. The support of j, denoted s( j),
is the set of rows that contain a non-zero element in j. If C is a set of columns the
the support of C, denoted s(C), is the union of the supports of the columns of C.

We use t(c) to denote the number of elements of the set
{(1,1)T ,(1,0)T ,(0,1)T ,(0,0)T} that are used in column c of Λ̃.

The following theorem is very similar to Theorem 4.2 of [7].

Theorem 6.1.5. The crossing graph GΛ̃ is connected.

Proof. Suppose not. Then we can choose a component G0 of GΛ̃ according to the
following:

1. If G1 is a component of GΛ̃ then s(V (G0))⊆ s(V (G1).

2. If G1 is a component of GΛ̃ and s(V (G0)) = s(V (G1)) then
|V (G1)| ≤ |V (G0)|.

3. If G1 is a component of GΛ̃ and s(V (G0)) = s(V (G1)) and |V (G1)| =
|V (G0)| then t(V (G1))≤ t(V (G0)).

Claim 6.1.6. If j1 ∈ (V (GΛ̃)−V (G0)) and j0 ∈V (G0) are such that s( j0)∩
s( j1) 6= /0, then j1 dominates j0.

Proof. As j0 and j1 are in different components of GΛ̃ we know that they do not
cross. Therefore it is sufficient to prove that j0 does not dominate j1. Suppose
for contradiction that j0 does dominate j1. By Lemma 6.1.3 this means that j0
dominates all elements of G1. This means that s(V (G1)) ⊆ s( j0) ⊆ s(V (G0))

which, by the choice of G0 means that s(V (G1)) = s( j0) = s(V (G0)). Suppose
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that the entries of j0 take more than one non-zero value. Then if |G0| 6= 1 we must
have another column of Λ̃ in G0 that is a relabelling of j0, as otherwise this would
not cross j0 or would cross an element of GΛ̃−G0. This is a contradiction so in
this case |G0| = 1. If j0 uses only one field element then, as s( j0) = s(V (G1)),
V (G0) = j0. By 2 this means that G1 = { j1} and so as s( j0) = s( j1) we have a
contradiction.

Claim 6.1.7. If j ∈V (GΛ̃)−V (G0) then there is some element α such that
ai, j = α for i ∈ s(V (G0))

Proof. Let j1 be an element in V (GΛ̃)−V (G0) that provides a counterexample.
Clearly s( j1)∩ s(V (G0)) 6= /0 so s( j0)∩ s( j1) 6= /0 for some j0 ∈G0. By the previ-
ous claim this means that j1 dominates all elements of G0 which contradicts our
choice of j1.

We can view s(V (G0)) as a subset of pairs of columns c2i−1,c2i of the identity
matrix I. Define X ⊆ E(M) so that X = V (G0)∪ s(V (G0)). This has size at
least two. Now E(M)−X also has size at least two because it contains an el-
ement from GΛ̃−G0 and also contains the columns (1...1),(10...10),(01...01),
It is clear that r(X) = |s(V (G0)| by the above claim it is also clear that (I −
s(V (G0))∪{(α...α)T}) spans E(M)−X where α = (1,0),(0,1) or (1,1). There-
fore, r(E(M)−X)≤ r(I− s(V (G0))∪ (α...α)T )≤ |I|− |s(V (G))|+1 = r(M)−
r(X)+1 Therefore (x,E−X) is a 2-separation.

Since GΛ̃ is connected it follows, by Lemma 2.4.2, that we can find an induced
subgraph that is either a star, a complete graph or a path.

Definition 6.1.8. The crossing graph of Λ̃ is the crossing graph of X in M.

Theorem 6.1.9. There is a function f6.1.9 such that the following holds. Suppose

M is a binary matroid such that M \X ∼= M∗(K3,n), and X blocks all 3-separations

of M \X displayed by the canonical flower of M \X. If n≥ f6.1.9(t), then there is

a minor M′ of M with the following properties.

1. M′ \ (X ∩E(M′))∼= M∗(K3,t),

2. every 3-separation of M \X displayed by the canonical flower of M \X is

blocked by an element of X, and
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3. the crossing graph of X ′ in M′ is either a star, a path or a complete graph.

Proof. Suppose n ≥ f2.4.2(log4(t)). Consider the crossing graph, GΛ̃, of X in M.
The graph GΛ̃ has an induced subgraph G0 with at least log4(t) vertices and let
the vertex set of G0 be X ′. Consider Γ̃|X ′. Since all columns of X ′ are distinct,
this must have at least t rows which, for some column of Γ̃|X ′, are non-zero. Now
consider Γ̃, and delete all columns labelled by elements of X −X ′, and delete all
rows in which no column of Γ̃|X ′ contains a non-zero entry. Finally if the ith row
of Γ̃ is deleted, also delete the ith column. Call the matrix obtained in this way Γ̃0

and note that Γ̃0 has at least t rows. Let Γ0 be the matrix obtained by considering
each element of Γ̃0 to be two elements in the natural way. The matroid with
reduced standard representation given by Γ0 fulfills the requirements for M′ given
in the statement of the Theorem.

6.2 Complete Graph

In this section we prove the following theorem.

Theorem 6.2.1. There is a function f6.2.1 such that the following holds. Suppose

M is a binary matroid with a coindependent set X such that M \X ∼= M∗(K3,n),

that X is such that every 3-separation displayed by the canonical flower of M \X

is blocked by an element of X, and that the crossing graph of X in M is a complete

graph. If n≥ f6.2.1(t) then M has a minor isomorphic to one of the following:

1. a rank-t Möbius ladder,

2. a rank-t double wheel, or

3. N(K3,t)
∗.

In this section we work under the hypotheses of Theorem 6.2.1. That is we add to
our original hypotheses the following hypothesis.

• The crossing graph of X with respect to M \X is a complete graph.
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Definition 6.2.2. A square matrix, A, is (α,β ,γ)-diagonal if

Ai, j =


α, if i < j

β , if i = j

γ if i > j

(6.2.1)

A 5×5 example of an (α,β ,γ)-diagonal matrix is the following:


β α α α α

γ β α α α

γ γ β α α

γ γ γ β α

γ γ γ γ β


We say that a matrix M is (α,β )-diagonal if M is (α,α,β )-diagonal.

Definition 6.2.3. Let H be a finite field. A matrix A taking entries from H is
(α,β )- complete if the number of rows of A is

(n
2

)
, where n is the number of

columns of A, and, for every two distinct columns j and j′ of A, there is exactly
one row i of A such that Ai,min{ j, j′} and Ai,max{ j, j′} are α and β respectively, and
Ai,k = 0 for all k /∈ { j, j′}

A 4×6 example of an (α,β )-complete matrix is:

α β 0 0
α 0 β 0
α 0 0 β

0 α β 0
0 α 0 β

0 0 α β


The next theorem is Theorem 2.7 of [7].

Theorem 6.2.4. There is a function f6.2.4 with the following property. If t is an

integer greater than one and A is an F-matrix with at least f6.2.4(t) columns such

that every two columns of A cross, then A contains a row and column permuted

submatrix B with t columns that satisfies one of the following conditions:
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i) B has t+1 rows the first t of which form an (α,α,0)-diagonal matrix and the

last of which has all its entries equal to β for some β ∈ F−{0,α},

ii) B has 2t rows the first t of which form a (0,α,α)-diagonal matrix and the

last t of which form an (α,α,0)-diagonal matrix,

iii) B has t rows and is (α,β ,γ)-diagonal with α 6= β , α 6= 0 and γ 6= 0,

iv) B has t + 1 rows the first of which form a (0,α,0)-diagonal matrix and the

last of which has all entries equal to some non-zero β ,

v) B is (α,β )-complete for some nonzero elements α and β of F,

where, for all the above cases, α 6= 0.
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The following lemma is trivial.

Lemma 6.2.5. Consider the matrix Γ where Λ̃ is of one of the forms described in

Lemma 6.2.4 and α,β ,γ ∈ {(1,1)T ,(1,0)T ,(0,1)T ,(0,0)T}. If α 6= (0,0)T then

we can always perform a change of basis to obtain a matrix Γ1 that is a reduced

standard representation of M such that Γ1|(E −X) is a standard representation

of M∗(K3,n), and Γ1|X is of the same form from Lemma 6.2.4 as Γ|X, but α is a

choice of{(1,1)T ,(1,0)T ,(0,1)T}.

Lemma 6.2.6. There is a function f6.2.6 such the following holds. If M is such that

Λ̃ is of the form of i) from Lemma 6.2.4 and n ≥ f6.2.6(t), then M has a Möbius

ladder of rank at least t as a minor.

Proof. By Lemma 6.2.5 we may assume that α = (1,1)T . Therefore β = (1,0)T

or (0,1)T . Without loss of generality let β = (1,0)T . Let n = t + 1. We can
represent M by the following reduced standard representation matrix:



c1 c2 c3 . . . cn−2 cn−1 an bn cn x1 x2 x3 . . . xn−1

a1 1 0 0 . . . 0 0 1 0 1 1 1 1 . . . 1
b1 1 0 0 . . . 0 0 0 1 1 1 1 1 . . . 1
a2 0 1 0 . . . 0 0 1 0 1 0 1 1 . . . 1
b2 0 1 0 . . . 0 0 0 1 1 0 1 1 . . . 1
a3 0 0 1 . . . 0 0 1 0 1 0 0 1 . . . 1
b3 0 0 1 . . . 0 0 0 1 1 0 0 1 . . . 1
...

...
...

... . . . ...
...

...
...

...
...

...
... . . . ...

an−2 0 0 0 . . . 1 0 1 0 1 0 0 0 . . . 1
bn−2 0 0 0 . . . 1 0 0 1 1 0 0 0 . . . 1
an−1 0 0 0 . . . 0 1 1 0 1 1 1 1 . . . 1
bn−1 0 0 0 . . . 0 1 0 1 1 0 0 0 . . . 0


Consider the reduced standard representation matrix of M \ {c1, . . . ,cn−2,cn}
below.
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

cn−1 an bn x1 x2 x3 . . . xn−1

a1 0 1 0 1 1 1 . . . 1
b1 0 0 1 1 1 1 . . . 1
a2 0 1 0 0 1 1 . . . 1
b2 0 0 1 0 1 1 . . . 1
a3 0 1 0 0 0 1 . . . 1
b3 0 0 1 0 0 1 . . . 1
...

...
...

...
...

...
... . . . ...

an−2 0 1 0 0 0 0 . . . 1
bn−2 0 0 1 0 0 0 . . . 1
an−1 1 1 0 1 1 1 . . . 1
bn−1 1 0 1 0 0 0 . . . 0


Pivot on Mbn−1,cn−1 to get:



bn−1 an bn x1 x2 x3 . . . xn−1

a1 0 1 0 1 1 1 . . . 1
b1 0 0 1 1 1 1 . . . 1
a2 0 1 0 0 1 1 . . . 1
b2 0 0 1 0 1 1 . . . 1
a3 0 1 0 0 0 1 . . . 1
b3 0 0 1 0 0 1 . . . 1
...

...
...

...
...

...
... . . . ...

an−2 0 1 0 0 0 0 . . . 1
bn−2 0 0 1 0 0 0 . . . 1
an−1 1 1 1 1 1 1 . . . 1
cn−1 1 0 1 0 0 0 . . . 0


It is then easy to see that when we contract cn−1 and delete bn−1 the resulting
matroid is a Möbius ladder and has rank t.



6.2. COMPLETE GRAPH 117

We now consider the case where Λ̃ is of form ii) from Lemma 6.2.4. A 6× 3
example of a matrix of form ii) of Lemma 6.2.4 is the following:



α 0 0
α α 0
α α α

α α α

0 α α

0 0 α


.

Lemma 6.2.7. There is a function f6.2.7 such that the following holds. If D̃ is of

form ii) from Lemma 6.2.4 and n≥ f6.2.7(t), then M has a Möbius ladder of rank

at least t as a minor.

Proof. Suppose n≥ 2m+1 where

t =

2m if t is even

2m−1 if t is odd

The matroid M can be represented by the matrix on the following page.
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                                        c 1
c 2

c 3
..
.

c m
c m

+
1

c m
+

1
c m

+
3

..
.

c 2
m

a 2
m
+

1
b 2

m
+

1
c 2

m
+

1
x 1

x 2
x 3

..
.

x m

a 1
1

0
0

..
.

0
0

0
0

..
.

0
1

0
1

1
0

0
..
.

0
b 1

1
0

0
..
.

0
0

0
0

..
.

0
0

1
1

1
0

0
..
.

0
a 2

0
1

0
..
.

0
0

0
0

..
.

0
1

0
1

1
1

0
..
.

0
b 2

0
1

0
..
.

0
0

0
0

..
.

0
0

1
1

1
1

0
..
.

0
a 3

0
0

1
..
.

0
0

0
0

..
.

0
1

0
1

1
1

1
..
.

0
b 3

0
0

1
..
.

0
0

0
0

..
.

0
0

1
1

1
1

1
..
.

0
. . .

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. .
.

. . .
a m

0
0

0
..
.

1
0

0
0

..
.

0
1

0
1

1
1

1
..
.

1
b m

0
0

0
..
.

1
0

0
0

..
.

0
0

1
1

1
1

1
..
.

1
a m

+
1

0
0

0
..
.

0
1

0
0

..
.

0
1

0
1

1
1

1
..
.

1
b m

+
1

0
0

0
..
.

0
1

0
0

..
.

0
0

1
1

1
1

1
..
.

1
a m

+
2

0
0

0
..
.

0
0

1
0

..
.

0
1

0
1

0
1

1
..
.

1
b m

+
2

0
0

0
..
.

0
0

1
0

..
.

0
0

1
1

0
1

1
..
.

1
a m

+
3

0
0

0
..
.

0
0

0
1

..
.

0
1

0
1

0
0

1
..
.

1
b m

+
3

0
0

0
..
.

0
0

0
1

..
.

0
0

1
1

0
0

1
..
.

1
. . .

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. .
.

. . .
a 2

m
0

0
0

..
.

0
0

0
0

..
.

1
1

0
1

0
0

0
..
.

1
b 2

m
0

0
0

..
.

0
0

0
0

..
.

1
0

1
1

0
0

0
..
.

1

                                        
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Deleting c1, . . . ,c2m,a2m+1,b2m+1 and contracting a1, . . . ,a2m then gives the fol-
lowing matrix:



c2m+1 x1 x2 x3 . . . xm

b1 1 1 0 0 . . . 0
b2 1 1 1 0 . . . 0
b3 1 1 1 1 . . . 0
...

...
...

...
... . . . ...

bm+1 1 1 1 1 . . . 1
bm+2 1 0 1 1 . . . 1
bm+3 1 0 0 1 . . . 1
...

...
...

...
... . . . ...

b2m 1 0 0 0 . . . 1


which is a representation of a Möbius ladder of rank 2m and therefore rank at least
t.

Lemma 6.2.8. There is a function f6.2.8 such that the following holds. Suppose

Λ̃ is a matrix of blocking elements of form iv) from Lemma 6.2.4. If n≥ f6.2.8(t),

then M has a (N(K3,t)
∗-minor.

Proof. Let n ≥ f5.2.5(t)+ 3. By performing a change of basis we may split this
into two cases

a) α = (1,1) and β = (1,1)

b) α = (1,1) and β = (1,0)
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This can be represented by the following matrix:



c1 c2 c3 . . . cn−2 cn−1 an bn cn x1 x2 . . . xn−2

a1 1 0 0 . . . 0 0 1 0 1 1 1 . . . 1
b1 1 0 0 . . . 0 0 0 1 1 ?0 ? . . . ?
a2 0 1 0 . . . 0 0 1 0 1 1 0 . . . 0
b2 0 1 0 . . . 0 0 0 1 1 1 0 . . . 0
a3 0 0 1 . . . 0 0 1 0 1 0 1 . . . 0
b3 0 0 1 . . . 0 0 0 1 1 0 1 . . . 0
...

...
...

... . . . ...
...

...
...

...
... . . . ...

an−1 0 0 0 . . . 0 1 1 0 1 0 0 . . . 1
bn−1 0 0 0 . . . 0 1 0 1 1 0 0 . . . 1


Delete c1, . . . ,cn and contract b1,a2,b2 to get:



an bn x1 x2 . . . xn−2

a1 1 0 1 1 . . . 1
a3 1 0 0 1 . . . 0
b3 0 1 0 1 . . . 0
...

...
...

... . . . ...
an−1 1 0 0 0 . . . 1
bn−1 0 1 0 0 . . . 1


which is the dual of case (a′) from Lemma 5.2.1 for the matrix M(K3,m) where
m = f5.2.5(t). Therefore, by the dual of Theorem 5.2.5, M has a N(K3,t)

∗-minor.

Lemma 6.2.9. There is a function f6.2.9 such that the following holds. Suppose Λ̃

is of form iii) from Lemma 6.2.4. If n≥ f6.2.9(t) then M either has a N(K3,t)-minor

or a Möbius ladder of rank at least t as a minor.

Proof. Suppose n≥max{ f6.2.8(t)+1,2 f6.2.6(t)}= m.

If α 6= γ then without loss of generality let α = (1,1)T and γ = (1,0)T . Let
m≥ 2m′ for some m′≥ f6.2.6(t). There is a minor M′ of M obtained by contracting
ai,bi when i is even and deleting ci,xi when i is odd for all i ∈ {1, . . . ,m−1}. Let
X ′ = {x2,x4, ...,x2m′ . The matrix M′|X ′ is (α,β )-diagonal. After relabelling we
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get the following representation of M′



c1 c2 c3 . . . cm−2 cm−1 am bm cm x1 x2 x3 . . . xm−1

a1 1 0 0 . . . 0 0 1 0 1 1 1 1 . . . 1
b1 1 0 0 . . . 0 0 0 1 1 1 1 1 . . . 1
a2 0 1 0 . . . 0 0 1 0 1 1 1 1 . . . 1
b2 0 1 0 . . . 0 0 0 1 1 0 1 1 . . . 1
a3 0 0 1 . . . 0 0 1 0 1 1 1 1 . . . 1
b3 0 0 1 . . . 0 0 0 1 1 0 0 1 . . . 1
...

...
...

... . . . ...
...

...
...

...
...

...
... . . . ...

am−2 0 0 0 . . . 1 0 1 0 1 1 1 1 . . . 1
bm−2 0 0 0 . . . 1 0 0 1 1 0 0 0 . . . 1
am−1 0 0 0 . . . 0 1 1 0 1 1 1 1 . . . 1
bm−1 0 0 0 . . . 0 1 0 1 1 0 0 0 . . . 0


Pivoting on Ma1,am gives



c1 c2 c3 . . . cm−2 cm−1 a1 bm cm x1 x2 x3 . . . xm−1

am 1 0 0 . . . 0 0 1 0 1 1 1 1 . . . 1
b1 1 0 0 . . . 0 0 0 1 1 1 1 1 . . . 1
a2 1 1 0 . . . 0 0 1 0 0 0 0 0 . . . 0
b2 0 1 0 . . . 0 0 0 1 1 0 0 1 . . . 1
a3 1 0 1 . . . 0 0 1 0 0 0 0 0 . . . 0
b3 0 0 1 . . . 0 0 0 1 1 0 0 1 . . . 1
...

...
...

... . . . ...
...

...
...

...
...

...
... . . . ...

am−2 1 0 0 . . . 1 0 1 0 0 0 0 0 . . . 0
bm−2 0 0 0 . . . 1 0 0 1 1 0 0 0 . . . 1
am−1 1 0 0 . . . 0 1 1 0 0 0 0 0 . . . 0
bm−1 0 0 0 . . . 0 1 0 1 1 0 0 0 . . . 0



.

Pivoting on Mb1,bm then gives
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

c1 c2 c3 . . . cm−2 cm−1 a1 b1 cm x1 x2 x3 . . . xm−1

am 1 0 0 . . . 0 0 1 0 1 1 1 1 . . . 1
bm 1 0 0 . . . 0 0 0 1 1 1 1 1 . . . 1
a2 1 1 0 . . . 0 0 1 0 0 0 0 0 . . . 0
b2 1 1 0 . . . 0 0 0 1 0 1 0 0 . . . 0
a3 1 0 1 . . . 0 0 1 0 0 0 0 0 . . . 0
b3 1 0 1 . . . 0 0 0 1 0 1 1 0 . . . 0
...

...
...

... . . . ...
...

...
...

...
...

...
... . . . ...

am−2 1 0 0 . . . 1 0 1 0 0 0 0 0 . . . 0
bm−2 1 0 0 . . . 1 0 0 1 0 1 1 1 . . . 0
am−1 1 0 0 . . . 0 1 1 0 0 0 0 0 . . . 0
bm−1 1 0 0 . . . 0 1 0 1 0 1 1 1 . . . 1



.

It is clear that by rearranging rows and columns of this matrix we obtain a matrix
of the form described in the hypotheses of Lemma 6.2.6. Since m ≥ f6.2.6(t), by
Lemma 6.2.6 M has a Möbius ladder of rank at least t as a minor.

Suppose that α = γ . Without loss of generality let α = γ = (1,1)T . Up to rela-
belling we have two choices for β that is β = (1,0)T or (0,0)T . First suppose that
β = (1,0)T . Then M can be represented by:



c1 c2 c3 . . . cm−2 cm−1 am bm cm x1 x2 x3 . . . xm−1

a1 1 0 0 . . . 0 0 1 0 1 1 1 1 . . . 1
b1 1 0 0 . . . 0 0 0 1 1 0 1 1 . . . 1
a2 0 1 0 . . . 0 0 1 0 1 1 1 1 . . . 1
b2 0 1 0 . . . 0 0 0 1 1 1 0 1 . . . 1
a3 0 0 1 . . . 0 0 1 0 1 1 1 1 . . . 1
b3 0 0 1 . . . 0 0 0 1 1 1 1 0 . . . 1
...

...
...

... . . . ...
...

...
...

...
...

...
... . . . ...

am−1 0 0 0 . . . 0 1 1 0 1 1 1 1 . . . 1
bm−1 0 0 0 . . . 0 1 0 1 1 1 1 1 . . . 0


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Pivot on Ma1,am to get:



c1 c2 c3 . . . cm−2 cm−1 a1 bm cm x1 x2 x3 . . . xm−1

am 1 0 0 . . . 0 1 0 1 1 1 1 . . . 1
b1 1 0 0 . . . 0 0 1 1 0 1 1 . . . 1
a2 1 1 0 . . . 0 1 0 0 0 0 0 . . . 0
b2 0 1 0 . . . 0 0 1 1 1 0 1 . . . 1
a3 1 0 1 . . . 0 1 0 0 0 0 0 . . . 0
b3 0 0 1 . . . 0 0 0 1 1 1 1 0 . . . 1
...

...
...

... . . . ...
...

...
...

...
...

... . . . ...
am−1 1 0 0 . . . 1 1 0 0 0 0 0 . . . 0
bm−1 0 0 0 . . . 1 0 1 1 1 1 1 . . . 0


.

Pivot on Mb1,bm to get:



c1 c2 c3 . . . cm−1 a1 b1 cm x1 x2 x3 . . . xm−1

am 1 0 0 . . . 0 1 0 1 1 1 1 . . . 1
bm 1 0 0 . . . 0 0 1 1 0 1 1 . . . 1
a2 1 1 0 . . . 0 1 0 0 0 0 0 . . . 0
b2 1 1 0 . . . 0 0 1 0 0 1 0 . . . 0
a3 1 0 1 . . . 0 1 0 0 0 0 0 . . . 0
b3 1 0 1 . . . 0 0 1 0 0 0 1 . . . 0
...

...
...

... . . . ...
...

...
...

...
...

... . . . ...
am−1 1 0 0 . . . 1 1 0 0 0 0 0 . . . 0
bm−1 1 0 0 . . . 1 0 1 0 0 0 0 . . . 1


.

Deleting cm and contracting am,bm then gives a matroid of the form described in
Lemma 6.2.8. Since m ≥ f6.2.8(t)+1, it follows from Lemma 6.2.8 that M has a
(N(K3,t))

∗-minor. A similar argument works when β = (0,0)T .

Lemma 6.2.10. There is a function f6.2.10 such that the following holds. Suppose

Λ̃ is of form v) from Lemma 6.2.4. If n≥ f6.2.10(t) then M has a double wheel of

rank at least t as a minor.

Proof. When α = (1,1) and β = (1,0) then M/{b1, . . . ,bm} ∼= M∗(Km). The
cases where β = (1,1)T and (0,1)T are similar.
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Claim 6.2.11. Let M ∼= M∗(K2m), then M has a rank m double wheel as a
minor.

Proof. M∗ ∼= M(K2m) and so has an m-rung circular ladder as a minor. Since a
double wheel is the dual of a circular ladder M has a rank-m double wheel as a
minor.

By combining the lemmas in this section, the proof of Theorem 6.2.1 becomes
routine.

Theorem 6.2.1. There is a function f6.2.1 such that the following holds. Suppose

M is a binary matroid with a coindependent set X such that M\X ∼= M∗(K3,n) and

X is such that the following hold. Every 3-separation displayed by the canonical

flower of M \X is blocked by an element of X, and the crossing graph of X in M

is a complete graph. If n≥ f6.2.1(t), then M has a minor isomorphic to one of the

following:

1. a rank-t Möbius ladder,

2. a rank-t double wheel, or

3. N(K3,t)
∗.

Proof. Suppose n ≥ f6.2.4(max{ f6.2.6(t), f6.2.7(t) f6.2.8(t), f6.2.9(t), f6.2.10(t)}).
By Lemma 6.2.4 M has a minor that can be represented by a standard represen-
tation, N, of M∗(K3,m′) augmented by a matrix B with m rows and of one of the
following forms:

i) B has m+1 rows the first m of which form an (α,α,0)-diagonal matrix and
the last of which has all its entries equal to β for some β ∈ F−{0,α},

ii) B has 4m rows the first 2m of which form a (0,α,α)-diagonal matrix and the
last 2m of which form an (α,α,0)-diagonal matrix,

iii) B has m rows and is (α,β ,γ)-diagonal with α 6= β , α 6= 0 and γ 6= 0,

iv) B has m+ 1 rows the first of which form a (0,α,0)-diagonal matrix and the
last of which has all entries equal to some non-zero β ,
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v) B is (α,β )-complete for some nonzero elements α and β of F ,

where where entries of B come from the set {(0,0)T ,(0,1)T ,(1,0)T ,(1,1)T}, α 6=
0 and m≥max{ f6.2.6(t), f6.2.7(t) f6.2.8(t), f6.2.9(t), f6.2.10(t)}. By Lemma 6.2.6 if
M is represented by N augmented by a matrix of the form described in i), then
since m ≥ f6.2.6(t) M has a Möbius ladder of rank at least t as a minor. The
remaining cases are similar.

6.3 Stars

In this section we prove the following theorem.

Theorem 6.3.1. There is a function f6.3.12 such that the following holds. Suppose

M is a binary matroid with a coindependent set X such that M \X ∼= M∗(K3,n),

that X is such that every 3-separation displayed by the canonical flower of M \X

is blocked by an element of X and that the crossing graph of X in M is a star. If

n≥ f6.2.1(t) then M has a minor isomorphic to one of the following:

i) a rank-t circular ladder,

ii) a rank-t Möbius ladder,

iii) a rank-t double wheel, or

iv) N(K3,t)
∗.

In this section we work under the hypotheses of Theorem 6.3.12. That is we add
to our original hypotheses the following hypothesis.

• The crossing graph of X with respect to M \X is a star.

Throughout this section we assume that M \X is represented by a binary matrix
N with respect to basis B.

The following lemma is Theorem 2.8 of [7].

Lemma 6.3.2. There is a function f6.3.2 with the following property. If t is an in-

teger greater than one and A is an F-matrix with at least f6.3.2(t) columns with no



126 CHAPTER 6. BLOCKING M∗(K3,N)

two columns identical and such that some column, a, crosses every other column

and, for every pair of columns b,c ∈ {c1, . . . ,c f6.3.2(t)− a}, b and c do not cross.

Then A contains a row and column permuted submatrix B with at least t rows of

one of the forms below: 

β α α . . . α

δ α α . . . α

δ 0 α . . . α

...
...

... . . . ...

δ 0 0 . . . α

γ 0 0 . . . 0


,

(i)

δ α 0 . . . 0
δ 0 α . . . 0
...

...
... . . . ...

δ 0 0 . . . α

γ β 0 . . . 0
γ 0 β . . . 0
...

...
... . . . ...

γ 0 0 . . . β


.

(ii)

where α 6= 0 and in the first matrix β 6= δ and γ 6= 0 and in the final matrix

β ,δ 6= 0 and γ 6= δ .

In the case we are interested in we have α,β ,γ,δ ∈
{(1,1)T ,(1,0)T ,(0,1)T ,(0,0)T} and 0 = (0,0)T .

Lemma 6.3.3. There is a function f6.3.3 such that the following holds. Suppose

that Λ̃ is of the following form

β α α . . . α

δ α α . . . α

δ 0 α . . . α

...
...

... . . . ...

δ 0 0 . . . α

γ 0 0 . . . 0


,
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where α,γ 6= 0 and β 6= δ . If n ≥ f6.3.3(t), then M has a minor isomorphic to a

rank-t circular ladder, a rank-t Möbius ladder, or a rank-t double wheel.

Proof. We shall show that n ≥ 2m+ 6 when 2m = t gives the required function.
Note that r(M) = 2n− 2 Throughout this proof we may assume, without loss of
generality, that α = (1,1)T . We split into cases for the possible values of δ .

Claim 6.3.4. Suppose δ ∈ {(1,0)T ,(0,1)T}. Then M has a rank-(2m+2)
circular ladder or rank (2m+2)-Möbius ladder as a minor.

Proof. Without loss of generality assume that δ = (1,0)T . Then β ∈
{(0,1)T ,(1,1)T ,(0,0)T}. Consider M′ = M \{c1, . . . ,cn}/{an−1,bn−1}. This can
be represented by the following matrix:



an bn x1 x2 x3 x4 . . . xn−2

a1 1 0 β1 1 1 1 . . . 1
b1 0 1 β2 1 1 1 . . . 1
a2 1 0 1 1 1 1 . . . 1
b2 0 1 0 1 1 1 . . . 1
a3 1 0 1 0 1 1 . . . 1
b3 0 1 0 0 1 1 . . . 1
a4 1 0 1 0 0 1 . . . 1
b4 0 1 0 0 0 1 . . . 1
...

...
...

...
...

...
... . . . ...

an−2 1 0 1 0 0 0 . . . 1
bn−2 0 1 0 0 0 0 . . . 1


If β = (0,0)T then M′ \ an/b1 is a circular ladder of rank 2m+ 2. If β = (a,1)T

then M′ \an/a1 is a Möbius ladder of rank 2m+2.

Claim 6.3.5. Suppose δ = (0,0)T . Then M has a circular ladder of rank
2n−4 or a Möbius ladder of rank 2n−5.

Proof. Suppose β = (1,a)T and γ = (1,b)T for {a,b} ∈ {1,0}. This matroid can
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be represented by:



c1 c2 c3 . . . cn−2 cn−1 an bn cn x1 x2 x3 . . . xn−2

a1 1 0 0 . . . 0 0 1 0 1 1 1 1 . . . 1
b1 1 0 0 . . . 0 0 0 1 1 a 1 1 . . . 1
a2 0 1 0 . . . 0 0 1 0 1 0 1 1 . . . 1
b2 0 1 0 . . . 0 0 0 1 1 0 1 1 . . . 1
a3 0 0 1 . . . 0 0 1 0 1 0 0 1 . . . 1
b3 0 0 1 . . . 0 0 0 1 1 0 0 1 . . . 1
...

...
...

... . . . ...
...

...
...

...
...

...
... . . . ...

an−2 0 0 0 . . . 1 0 1 0 1 0 0 0 . . . 1
bn−2 0 0 0 . . . 1 0 0 1 1 0 0 0 . . . 1
an−1 0 0 0 . . . 0 1 1 0 1 1 0 0 . . . 0
bn−1 0 0 0 . . . 0 1 0 1 1 b 0 0 . . . 0



.

Delete c1, . . . ,cn−1, contract b1 and bn−1 and pivot on Ma1,x1 to get:



an bn cn a1 x2 x3 . . . xn−2

x1 1 0 1 1 1 1 . . . 1
a2 1 0 1 0 1 1 . . . 1
b2 0 1 1 0 1 1 . . . 1
a3 1 0 1 0 0 1 . . . 1
b3 0 1 1 0 0 1 . . . 1
...

...
...

...
...

...
... . . . ...

an−2 1 0 1 0 0 0 . . . 1
bn−2 0 1 1 0 0 0 . . . 1
an−1 0 0 0 1 0 0 . . . 0


.

When we delete an−1 and a1 this gives a circular ladder. Therefore in this case M

has a circular ladder of rank 2n−2 as a minor.

Clearly if β = (a,1)T and δ = (b,1)T we can apply the same argument.
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Suppose β = (1,0)T and γ = (0,1)T . Pivoting on Ma1,an and Mb1,bn gives

1 0 0 . . . 0 0 1 0 1 1 1 1 . . . 1
1 0 0 . . . 0 0 0 1 1 1 1 1 . . . 1
0 1 0 . . . 0 0 1 0 1 0 1 1 . . . 1
0 1 0 . . . 0 0 0 1 1 1 1 1 . . . 1
0 0 1 . . . 0 0 1 0 1 0 0 1 . . . 1
0 0 1 . . . 0 0 0 1 1 1 0 1 . . . 1
...

...
... . . . ...

...
...

...
...

...
...

... . . . ...
0 0 0 . . . 1 0 1 0 1 0 0 0 . . . 1
0 0 0 . . . 1 0 0 1 1 1 0 0 . . . 1
0 0 0 . . . 0 1 1 0 1 0 1 0 . . . 0
0 0 0 . . . 0 1 0 1 1 1 1 0 . . . 0



.

which is covered by the case when δ = (0,1)T and β = (1,1)T .

Claim 6.3.6. Suppose δ = (1,1)T . Then M has a circular ladder of rank
2m+2 or a Möbius ladder of rank 2m+1 as a minor.

Proof. When δ = (1,1)T we have the following matrix:



c1 c2 c3 . . . cn−2 cn−1 an bn cn x1 x2 x3 . . . xn−2

a1 1 0 0 . . . 0 0 1 0 1 β1 1 1 . . . 1
b1 1 0 0 . . . 0 0 0 1 1 β2 1 1 . . . 1
a2 0 1 0 . . . 0 0 1 0 1 1 1 1 . . . 1
b2 0 1 0 . . . 0 0 0 1 1 1 1 1 . . . 1
a3 0 0 1 . . . 0 0 1 0 1 1 0 1 . . . 1
b3 0 0 1 . . . 0 0 0 1 1 1 0 1 . . . 1
...

...
...

... . . . ...
...

...
...

...
...

...
... . . . ...

an−2 0 0 0 . . . 1 0 1 0 1 1 0 0 . . . 1
bn−2 0 0 0 . . . 1 0 0 1 1 1 0 0 . . . 1
an−1 0 0 0 . . . 0 1 1 0 1 γ1 0 0 . . . 0
bn−1 0 0 0 . . . 0 1 0 1 1 γ2 0 0 . . . 0



.
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Pivot on Ma1,an and Mb1,bn to get

1 0 0 . . . 0 0 1 0 1 β1 + γ1 1 1 . . . 1
1 0 0 . . . 0 0 0 1 1 β2 + γ2 1 1 . . . 1
0 1 0 . . . 0 0 1 0 1 1+ γ1 1 1 . . . 1
0 1 0 . . . 0 0 0 1 1 1+ γ2 1 1 . . . 1
0 0 1 . . . 0 0 1 0 1 1+ γ1 0 1 . . . 1
0 0 1 . . . 0 0 0 1 1 1+ γ2 0 1 . . . 1
...

...
... . . . ...

...
...

...
...

...
...

... . . . ...
0 0 0 . . . 1 0 1 0 1 1+ γ1 0 0 . . . 1
0 0 0 . . . 1 0 0 1 1 1+ γ2 0 0 . . . 1
0 0 0 . . . 0 1 1 0 1 γ1 0 0 . . . 0
0 0 0 . . . 0 1 0 1 1 γ2 0 0 . . . 0



.

We are now in the case where δ ∈ {(0,0)T ,(0,1)T ,(1,0)T} and the result follows.

Putting theses claims together we see that if n ≥ t + 6, then then M has a rank-t
circular ladder or a rank-t Möbius ladder as a minor.

When Λ̃ is of the form ii) from Lemma 6.3.2 we shall see that finding the unavoid-
able minors of M reduces to the dual of one of the cases we have already seen for
blocking M(K3,n) as a minor, although the case analysis is painful!

Lemma 6.3.7. Suppose M is represented by

1 1 0 0 0 0 . . . 0 0 1 1 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 1 0 0 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 1 0 0 . . . 0
...

...
...

...
...

... . . . ...
...

...
...

...
... . . . ...

0 0 0 0 . . . 1 1 0 0 0 0 0 0 . . . 1
1 0 1 0 . . . 1 0 1 1 ? ? ? ? . . . ?
1 1 1 1 . . . 1 1 1 1 ? ? ? ? . . . ?



T

.

If n≥ f5.2.9(t) then M has a minor isomorphic to M∗(K4,t).

Proof. This follows from the dual of Lemma 5.2.9.
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Lemma 6.3.8. There is a function f6.3.8 such that the following holds. Suppose Λ̃

is of form 

δ α 0 . . . 0
δ 0 α . . . 0
...

...
... . . . ...

δ 0 0 . . . α

γ β 0 . . . 0
γ 0 β . . . 0
...

...
... . . . ...

γ 0 0 . . . β


,

where α,δ ,β 6= 0 and γ 6= δ . If n≥ f6.3.8(t) then M has a rank-t minor isomorphic

to M∗(K4,t).

Proof. Let n = 2m+ 5 where m = 1
3 f5.2.9(t) and so the rank of the M is 4m+ 8.

We start by showing that M has a minor with reduced standard representation

1 1 0 0 0 0 . . . 0 0 1 1 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 1 0 0 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 1 0 0 . . . 0
...

...
...

...
...

... . . . ...
...

...
...

...
... . . . ...

0 0 0 0 . . . 1 1 0 0 0 0 0 0 . . . 1
1 0 1 0 . . . 1 0 1 1 ? ? ? ? . . . ?
1 1 1 1 . . . 1 1 1 1 ? ? ? ? . . . ?



T

.

.

Claim 6.3.9. There is a minor M′ of M such that M′ can be represented by a
standard representation of M∗(K3,2m+3) augmented by a matrix of the form
given in ii) of Lemma 6.3.2 with α = (1,1) and γ = (0,0).

Proof. Pivot on Man−1,an and Mbn−1,bn to obtain a standard representation of
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M∗(K3,n) augmented by a matrix of the form below.

δ1 + γ1 α1 0 . . . 0 β1

δ2 + γ2 α2 0 . . . 0 β2

δ1 + γ1 0 α1 . . . 0 β1

δ2 + γ2 0 α2 . . . 0 β2
...

...
... . . . ...

...
δ1 + γ1 0 0 . . . α1 β1

δ2 + γ2 0 0 . . . α2 β2

δ1 + γ1 0 0 . . . 0 α1 +β1

δ2 + γ2 0 0 . . . 0 α2 +β2

γ1 + γ1 β1 0 . . . 0 β1

γ2 + γ2 β2 0 . . . 0 β2

γ1 + γ1 0 β1 . . . 0 β1

γ2 + γ2 0 β2 . . . 0 β2
...

...
... . . . ...

...
γ1 + γ1 0 0 . . . β1 β1

γ2 + γ2 0 0 . . . β2 β2

γ1 0 0 . . . 0 β1

γ2 0 0 . . . 0 β2



.

Since the matroid is binary γi + γi = 0 for i ∈ {1,0}. For this to be of form ii)

we must have δi + γi 6= 0 for i ∈ {0,1}. Since δ 6= (0,0)T and δ 6= γ this follows.
Since n = 2m+5, it is now clear that we can obtain the required minor.

For the remainder of the proof let M′ be a minor of M such that M′ can be repre-
sented by a standard representation of M∗(K3,2m+3) augmented by a matrix of the
form given in ii) of Lemma 6.3.2 with α = (1,1) and γ = (0,0).

Claim 6.3.10. When δ = (1,1), M′ has a minor of rank at least 3m with
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reduced standard representation

1 1 0 0 0 0 . . . 0 0 1 1 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 1 0 0 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 1 0 0 . . . 0
...

...
...

...
...

... . . . ...
...

...
...

...
... . . . ...

0 0 0 0 . . . 1 1 0 0 0 0 0 0 . . . 1
1 0 1 0 . . . 1 0 1 1 ? ? ? ? . . . ?
1 1 1 1 . . . 1 1 1 1 ? ? ? ? . . . ?



T

.

Proof. Without loss of generality let β = (1,a)T for a ∈ {0,1}. Consider M \
{c1, . . . ,c2m+4}. This is represented by the matrix below:



a2m+5 b2m+5 c2m+5 x1 x2 x3 . . . xm+3

a1 1 0 1 1 1 0 . . . 0
b1 0 1 1 1 1 0 . . . 0
a2 1 0 1 1 0 1 . . . 0
b2 0 1 1 1 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

am+2 1 0 1 1 0 0 . . . 1
bm+2 0 1 1 1 0 0 . . . 1
am+3 1 0 1 0 1 0 . . . 0
bm+3 0 1 1 0 a 0 . . . 0
am+4 1 0 1 0 0 1 . . . 0
bm+4 0 1 1 0 0 a . . . 0
...

...
...

...
...

...
... . . . ...

a2m+4 1 0 1 0 0 0 . . . 1
b2m+4 0 1 1 0 0 0 . . . a



.
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Pivot on Ma1,c2m+5 to get:



a2m+5 b2m+5 a1 x1 x2 x3 ... xm+3

c2m+5 1 0 1 1 1 0 . . . 0
b1 1 1 1 0 0 0 . . . 0
a2 0 0 1 0 1 1 . . . 0
b2 1 1 1 0 1 1 . . . 0
...

...
...

...
...

...
... . . . ...

am 0 0 1 0 1 0 . . . 1
bm 1 1 1 0 1 0 . . . 1
am+2 0 0 1 1 0 0 . . . 0
bm+2 1 1 1 1 a+1 0 . . . 0
am+3 0 0 1 1 1 1 . . . 0
bm+3 1 1 1 1 1 a . . . 0
...

...
...

...
...

...
... . . . ...

a2m+4 0 0 1 1 1 0 . . . 1
b2m+4 1 1 1 1 1 0 . . . a



.

Contract bm+2, . . . ,b2m+2,b1,c2m+3 and delete a2m+3 and x2. After rearranging
rows we get



b2m+3 a1 x1 x3 ... xm+3

am+2 0 1 1 0 . . . 0
bm+2 1 1 1 0 . . . 0
a2 0 1 0 1 . . . 0
b2 1 1 0 1 . . . 0
...

...
...

...
... . . . ...

am 0 1 0 0 . . . 1
bm 1 1 0 0 . . . 1
am+3 0 1 1 1 . . . 0
...

...
...

...
... . . . ...

a2m+4 0 1 1 0 . . . 1



.

This is a rank 2m+1 matrix of the required form.

Claim 6.3.11. When δ = (1,0) and γ = (0,0), M has a minor of rank at
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least 3m represented by

1 1 0 0 0 0 . . . 0 0 1 1 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 1 0 0 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 1 0 0 . . . 0
...

...
...

...
...

... . . . ...
...

...
...

...
... . . . ...

0 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 1
1 0 1 0 1 0 . . . 1 0 1 1 ? ? ? . . . ?
1 1 1 1 1 1 . . . 1 1 1 1 ? ? . . . ?



T

.

Proof. First suppose that β = (1,a). Delete c1, . . . ,c2m+2 and contract
bm+1, . . . ,b2m+2 to get:



a2m+5 b2m+5 c2m+5 x1 x2 x3 x4 . . . xm+3

a1 1 0 1 1 1 0 0 . . . 0
b1 0 1 1 0 1 0 0 . . . 0
a2 1 0 1 1 0 1 0 . . . 0
b2 0 1 1 0 0 1 0 . . . 0
a3 1 0 1 1 0 0 0 . . . 0
b3 0 1 1 0 0 0 0 . . . 0
...

...
...

...
...

...
...

... . . . ...
am+2 1 0 1 1 0 0 0 . . . 1
bm+2 0 1 1 0 0 0 0 . . . 1
am+3 1 0 1 0 1 0 0 . . . 0
am+3 1 0 1 0 0 1 0 . . . 0
am+4 1 0 1 0 0 0 1 . . . 0
...

...
... . . . ...

a2m+4 1 0 1 0 0 0 0 . . . 1



.
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Pivot on Ma1,x1to give the matrix below



a2m+5 b2m+5 c2m+5 a1 x2 x3 x4 . . . xm+3

x1 1 0 1 1 1 0 0 . . . 0
b1 0 1 1 0 1 0 0 . . . 0
a2 0 0 0 1 1 1 0 . . . 0
b2 0 1 1 0 0 1 0 . . . 0
a3 0 0 0 1 1 0 1 . . . 0
b3 0 1 1 0 0 0 1 . . . 0
...

...
...

...
...

...
...

... . . . ...
am+2 0 0 0 1 1 0 0 . . . 1
bm+2 0 1 1 0 0 0 0 . . . 1
am+3 1 0 1 0 1 0 0 . . . 0
am+4 1 0 1 0 0 1 0 . . . 0
am+5 1 0 1 0 0 0 1 . . . 0
...

...
... . . . ...

a2m+4 1 0 1 0 0 0 0 . . . 1



.

M \{c2m+5,a1}/x1 is represented by



a2m+5 b2m+5 x2 x3 x4 . . . xm+3

am+3 1 0 1 0 0 . . . 0
b1 0 1 1 0 0 . . . 0
am+4 1 0 0 1 0 . . . 0
b2 0 1 0 1 0 . . . 0
am+5 1 0 0 0 1 . . . 0
b3 0 1 0 0 1 . . . 0
...

...
...

...
...

... . . . ...
a2m+3 1 0 0 0 0 . . . 1
bm+3 0 1 0 0 0 . . . 1
a2 0 0 1 1 0 . . . 0
a3 0 0 1 0 1 . . . 0
...

...
...

...
...

... . . . ...
a2m+4 0 0 1 0 0 . . . 1



.

Contracting a2m+4 and bm+3 gives the required matrix.
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Suppose β = (0,1). Pivot on Mbi,ci for i ∈ {m + 1, . . . ,2m + 4} and delete
c1, . . . ,c2m+4,bm+3, . . . ,b2m+4 to get



a2m+5 b2m+5 c2m+5 x1 x2 x3 . . . xm+3

a1 1 0 1 1 1 0 . . . 0
b1 0 1 1 0 1 0 . . . 0
a2 1 0 1 1 0 1 . . . 0
b2 0 1 1 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

am+3 1 0 1 1 0 0 . . . 1
bm+3 0 1 1 0 0 0 . . . 1
am+4 1 1 0 0 1 0 . . . 0
cm+4 0 1 1 0 1 0 . . . 0
am+5 1 1 0 0 0 1 . . . 0
cm+5 0 1 1 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

a2m+4 1 1 0 0 0 0 . . . 1
c2m+4 0 1 1 0 0 0 . . . 1



.

Pivoting on Ma1,x1 the gives



a2m+5 b2m+5 c2m+5 a1 x2 x3 . . . xm+3

x1 1 0 1 1 1 0 . . . 0
b1 0 1 1 0 1 0 . . . 0
a2 0 0 0 1 1 1 . . . 0
b2 0 1 1 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

am+2 0 0 0 1 1 0 . . . 1
bm+2 0 1 1 0 0 0 . . . 1
am+3 1 1 0 0 1 0 . . . 0
cm+3 0 1 1 0 1 0 . . . 0
am+4 1 1 0 0 0 1 . . . 0
cm+4 0 1 1 0 0 1 . . . 0
...

...
...

...
...

...
... . . . ...

a2m+4 1 1 0 0 0 0 . . . 1
c2m+4 0 1 1 0 0 0 . . . 1



.
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Deleting a2m+5 and a1 and contracting x1,b1,b2, . . . ,bm+2 gives the required ma-
trix.

Combining these claims we find that M must have a rank 3m minor of form

1 1 0 0 0 0 . . . 0 0 1 1 1 1 . . . 1
0 0 1 1 0 0 . . . 0 0 1 0 0 0 . . . 0
0 0 0 0 1 1 . . . 0 0 0 1 0 0 . . . 0
...

...
...

...
...

... . . . ...
...

...
...

...
... . . . ...

0 0 0 0 . . . 1 1 0 0 0 0 0 0 . . . 1
1 0 1 0 . . . 1 0 1 1 ? ? ? ? . . . ?
1 1 1 1 . . . 1 1 1 1 ? ? ? ? . . . ?



T

.

Since m = 1
3 f5.2.9(t) it follows from Lemma 6.3.7 that M has a minor isomorphic

to M∗(K4,t).

The proof of Theorem 6.3.12 is now routine.

Theorem 6.3.12. There is a function f6.3.12 such that the following holds. Suppose

M is a binary matroid with a coindependent set X such that M \X ∼= M∗(K3,n),

that X is such that every 3-separation displayed by the canonical flower of M \X

is blocked by an element of X and that the crossing graph of X in M is a star. If

n≥ f6.2.1(t) then M has a minor isomorphic to one of the following:

i) a rank-t circular ladder,

ii) a rank-t Möbius ladder,

iii) a rank-t double wheel, or

iv) N(K3,t)
∗.

Proof. Let f6.3.12 = f6.3.2(max{ f6.3.3, f6.2.9}) Since f6.3.12(t) = f6.3.2(m) where
m = max{ f6.3.3(t), f6.2.9(t)}, it follows easily from Lemma 6.3.2 that M has a
minor, M′, that can be represented by a reduced standard representation of K3,m

augmented by a matrix of for i) or ii) from Lemma 6.3.2. Since m≥ f6.3.3(t), if M′

can be represented by a reduced standard representation of M(K3,m) augmented
by a matrix of for i), then, by Lemma 6.3.3, M′ has a minor isomorphic to a
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rank-t circular ladder, a rank-t Möbius ladder or a rank-t double wheel. Since
m ≥ f6.2.9(t), if M′ can be represented by a reduced standard representation of
M(K3,m) augmented by a matrix of for ii), then, by Lemma 6.2.9, M′ has a minor
isomorphic M∗(K4,t).

6.4 Paths

In the previous version of this thesis we believed we had a way to reduce this case
to a spike. However, this turned out to be incorrect and the analysis of this case
will be done at a later stage.

6.5 Proof of Theorem 6.0.1

We now have all the results we need for a routine proof of Theorem 6.0.1

Theorem 6.0.1. There is a function f6.0.1 such that the following hold. Suppose M

is a binary matroid and X a coindependent set in M such that M \X ∼= M∗(K3,n)

where n≥ f6.0.1(t). If M is not blocked in a path-like way and every 3-separation

of M \X displayed by the canonical flower of M \X is blocked by some element

x ∈ X, then M has a minor isomorphic to one of the following matroids.

i) A rank-t circular ladder,

ii) a rank-t Möbius ladder,

iii) a rank-t double wheel,

iv) (N(K∗3,t))
∗.

Proof. Suppose n ≥ f6.1.9(max{ f6.2.1(t), f6.3.12(t), f??(t))}. By Theorem 6.1.9
M has a minor M′ with coindependent set X ′ = X ∩E(M′) such that M′ \X ′ ∼=
M∗(K3,n), every 3-separation of M′ \X ′ displayed by the canonical flower of M′ \
X ′ is blocked by an element of X ′, the crossing graph on the elements of X in
M′ is either a star, a path, or a complete graph and M′ \X ′ ∼= K3,m′ where m′ =

max{ f6.2.1(t), f6.3.12(t), f??(t))}.
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If the crossing graph of X ′ in M′ is a complete graph then, since m′ ≥ f6.2.1(t), by
Theorem 6.2.1 M′ and hence M has a rank-t double wheel, a rank-t Möbius ladder
or a N(K3,t)

∗-minor.

If the crossing graph of X ′ in M′ is a star, then since m′ ≥ f6.3.12(t), by Theo-
rem 6.3.12 M′ and hence M has a rank-t double wheel, a rank-t Möbius ladder, or
a rank-t circular ladder minor.



Chapter 7

Bridging M(K3,n) and M∗(K3,n)

In this chapter we give the unavoidable minors of a 4-connected matroid with an
M(K3,n) or M∗(K3,n)-minor and no large spike minor. Throughout this chapter we
work under the following hypotheses.

• M is a 4-connected binary matroid of rank n for some large n.

• For some independent set C⊆E(M) and some coindependent set D⊆E(M)

the matroid M/C \D∼= M(K3,n).

In this section we reduce the problem of bridging M(K3,n) and M∗(K3,n) to the
problem of blocking M(K3,n) and M∗(K3,n). The first lemma in this chapter re-
duces the problem to the problem of bridging the displayed 3-separations of M

to the problem of bridging the 3-separations displayed by a restriction of M. The
second lemma reduces the problem of bridging the 3-separations in a restriction
of M to the problem of bridging 3-separations in a spanning restriction of M.

Lemma 7.0.1. There is a function f7.0.1 such that the following holds. If n ≥
f7.0.1(t) then either

i) M∗ has a minor N and N has a coindependent set X such that N \ X ∼=
M∗(K3,t) and all 3-separations of N \X displayed by the canonical flower

of M/C \D are blocked in N, or

ii) M has a restriction N such that N has a paddle with at least t petals.

Proof. By duality we can say that N1 = M∗/D\C ∼= M∗(K3,n). Let the canonical
flower of N1 be F . The set C is a superset of blocking elements for N1. If N

141
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is such that F contains a large set P of petals such that any 3-separation of N1

displayed by subsets of these petals is blocked in M∗/D, then we are in case i)

above. Otherwise M∗/D has a large induced copaddle with at least t petals. If
M∗/D has a copaddle with at least t petals then M \D has a large paddle with at
least t petals.

Lemma 7.0.2. Let M be a binary matroid with a restriction N such that N has a

paddle, F, with at least n petals, and every 3-separation displayed by F in N is

bridged in M. Then M has a minor M′ such that the following hold.

1. N is a restriction of M′,

2. r(N) = r(M′),

3. Every 3-separation displayed by F is blocked in M′.

Proof. Since N is a binary matroid there is a line in 〈E(M)〉 that spans the common
guts of all the 3-separations of N displayed by F . Let {g1,g2} be a basis of this
line. Let Ñ = N + {g1,g2} and let M̃ = M + {g1,g2}. Observe that if (A,B) is
a 3-separation of N displayed by F then (A∪{g1,g2},B) is a 3-separation of Ñ

and (A,B) is a separation of Ñ/{g1,g2}. Observe that. up to loops, M̃/{g1,g2}
is connected. Consider x ∈M such that x /∈ cl(E(N)N). We can either delete or
contract x without unblocking any displayed 3-separations of N. For suppose now
that both M \ x and M/x contain a displayed 3-separation; then M \ x/cl{g1,g2}
would not be connected, and M/x/cl{g1,g2} would not be connected. In other
words M/cl{g1,g2}/x and M/cl{g1,g2} \ x would not be connected. However
from this it would follow that M/cl{g1,g2} is not connected; a contradiction.
Therefore M has a minor M′ that has a restriction N such that N has a maximal
paddle with n petals such that every displayed 3-separation of N is blocked in
clM′(E(N)), every element of M′ is in clM′(E(N′)) and N is blocked in M′.

Thus if we have a 4-connected matroid M with an M(K3,n) or M∗(K3,n)-minor,
this reduces to the case of blocking a paddle or M∗(K3,n). This gives

Theorem 7.0.3. There is a function f such that if M is a 4-connected binary

matroid with an M(K3, f (n)) or M∗(K3, f (n)) minor, then M must have a minor iso-

morphic to one of

i) N(K3,n),
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ii) M(K4,n),

iii) an n-rung circular ladder,

iv) an n-rung Möbius ladder,

v) the dual of one of the matroids in i)-iv),

vi) M∗(K3,n) blocked by a set X where the crossing graph of X is a path.

Proof. Let n≥ f7.0.1(max{ f6.0.1(n), f5.0.1(n)}). By Lemma 7.0.1 either

1. M∗ has a minor N and N has a coindependent set X such that N \ X ∼=
M∗(K3,m) and all displayed 3-separations of N \X are blocked in N, or

2. M has a restriction N such that N has a paddle with at least m petals,

where m≥max{ f6.0.1(n), f5.0.1(n)}.

If M∗ has a minor N and N has a coindependent set X such that N \X ∼= M∗(K3,m)

and all displayed 3-separations of N \X are blocked in N, then the result follows
by Theorem 6.0.1.

If M has a restriction N such that N has a paddle with at least m petals, then, by
Lemma 7.0.2, M has a minor M′ such that the following hold.

1. N is a restriction of M′,

2. r(N) = r(M′),

3. Every 3-separation displayed by F is blocked in M′.

The result then follows from Theorem 5.0.1.
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Chapter 8

Useful Lemmas For Blocking
Swirl-Like Pseudo-Flowers

In Chapter 9 we find unavoidable minors of matroids with blocked swirl-like
pseudo-flowers. Before we do this we need to set up some tools. This is the
purpose of this chapter.

8.1 Crossing Graphs for Swirl-Like Pseudo-Flowers

Recall that a displayed 3-separation in a swirl-like pseudo-flower F is a partition
of the petals of F in sets A and B such that λ (A) = 2. Throughout this section we
work under the following hypotheses.

• M1 is a matroid with a coindependent set X such that M = M1 \X has a
maximal swirl-like pseudo-flower F = (P1, . . . ,Pm) of order m, and

• every 3-separation of M displayed by F is blocked by an element of X .

• M̃ denotes the matroid M extended by the joints of F .

Without loss of generality we may assume that F has no clump C with a blocking
element, e, contained in the closure of C, as otherwise we could consider C∪ e

to be a petal of a flower F ′ of M1 \ (X − e) and the pair M1 and F ′ would fit the
hypotheses of this section.
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In this section we define a graph (V,E) where V = X and there is an edge between
a pair of vertices if, and only if, those vertices “cross”. We then show that this
graph is connected if, and only if, every displayed 3-separation in F is blocked.
Once we know the graph is connected we can use known results for unavoidable
induced subgraphs to find structure in the arrangement of the blocking elements.
Thus our first step will be to give an appropriate definition of when two blocking
elements cross and show that the crossing graph behaves as we want it to.

Definition 8.1.1. Two blocking elements e and f of X do not cross in F if there is
a displayed 3-separation (P,Q) of M by F such that e ∈ cl(P) and f ∈ cl(Q).

Definition 8.1.2. Let B be a basis for M̃ \X that conatains the joints of F . A petal
P of F contains a representative of a blocking element x in P if the fundamental
circuit of x with respect to B, denoted F(x), contains an element of P. An element
x′ in 〈P〉 is called the shadow of x on P, if the fundamental circuit of x′ with respect
to B in M extended by x, denoted F(x′), is equal to F(x)∩P.

Recall that the basepoints of a petal Pi are elements of the ambient extended pro-
jective space that are the joints of Pi or in a triangle with the joints of Pi. We earlier
associated basepoints with petals and sets of petals with blocking elements, now
we assign sets of basepoints to blocking elements. Later we will do a similar
things with joints.

Definition 8.1.3. Let x be an element that blocks a 3-separation of M displayed by
F . The basepoints of x, denoted b(x) are the basepoints of the petals that contain
a representative of x.

We also want to associate petals with basepoints.

Definition 8.1.4. The set of petals of a basepoint b, denoted p(b), is the set of
petals containing b as a basepoint.

Now we shall colour basepoints according to blocking elements as follows:

Definition 8.1.5. Let B be the set of basepoints of F . Let C be a set
of colours with the property that there is a bijection γ : X → C. A
colouring of F is a function ψ : B → P(C) such that ψ(b) = {c : c =

γ(x) for some x with a representative in P(b)} We refer to an element of ψ(b) as
a basic colour of b.
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The function γ is not mathematically interesting. However, it helps with the
colouring analogy we use later and is thus helpful when we draw pictures in later
sections.

Definition 8.1.6. We say that two colours, r and g, assigned to elements of a
cyclically ordered set S alternate if there are distinct elements ai,a j,ak and al of
S such that [i, j,k, l]i and r is a colour of ai and ak and g is a colour of a j and al

or vice versa. If r and g alternate in a colouring, ψ , of S then we say that ψ is an
alternating colouring for r and g.

Definition 8.1.7. Let c : S→P(C) be a colouring of a cyclically ordered set S.
We say that two elements r and g colour-cross if there is a alternating colouring
for r and g in c.

We want to say two blocking elements cross if, and only if, they either contain
representatives in the same petal or their associated colours colour-cross. However
with the definition of colouring for a swirl-like pseudo-flower we currently have
this is not true. For example if we have the following picture

then, none of red, green and blue colour-cross. However, when viewed as blocking
elements we can see that one of red and blue crosses green. This leads us to define
auxiliary colours.

Definition 8.1.8.
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i) Let α : C×C → E ∪ /0 where E is a set of colours with the property that
C∩E = /0 with

α(ci,c j)=

 /0 if there is no 2-petal containing representatives of both γ−1(ci) and γ−1(c j)

ei j otherwise, where ei j = ekl if, and only if, {i, j}= {k, l}.

This function assigns a unique auxiliary colour to pairs of colours if those
colours appear in the same 2-petal.

ii) An auxiliary colouring of a swirl-like pseudo-flower is a function χ : B→
P(C∪E) such that χ(b) = ψ(b)∪{c : c ∈ E and c is an auxiliary colour of
a pair (ci,c j) with at least one of {ci,c j} in a petal of b}.

iii) The elements of χ(b) are the colours of b.

iv) Let ω : X →C∪E be a function such that ω(x) = γ(x)∪{c ∈ E : (γ(x),ci) =

c for some ci ∈C}. We call the elements of ω(x) the colours of x.

Recall that F has no clump C with an element of x contained in
⋃

C.

Lemma 8.1.9. If two blocking elements x and y cross, then either x and y are such

that there is a petal containing a representative of both x and y, or some colour of

x colour-crosses some colour of y.

Proof. If representatives of x and y appear in the same petal then x and y cross.

Suppose there is no petal containing representatives of both x and y and suppose
there is no colour of x that colour-crosses a colour of y. Then for any pair of
colours, (r,g) where r ∈ ω(x) and g ∈ ω(y), we cannot find an alternating colour-
ing with respect to r and g. This means there are two sets, B1 = {bi, . . . ,bm} and
B2 = {b j, . . . ,bn}, of consecutive basepoints, one of which contains all basepoints
assigned colour r and the other containing all basepoints assigned colour g. Since
r and g do not cross, |B1∩B2| ≤ 2. If r and g do not cross and x and y do not have
representatives in the same petal as each other the only way x and y can cross is if
the following hold:

i) all representatives of x and y are in distinct 2-petals that share a basepoint,
and
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ii) there is a representative of an element z contained in a petal that contains a
representative of one of x and y, and

iii) if x and z have representatives in the same petal then there are basepoints
bi,b j,bk and bl with [bi,b j,bk,bl]bi such that the following hold.

a) r,g and γ(z) colours of bi,

b) r a colour for exactly one of b j and bl and γ(z) a colour for the other, and

c) g a colour of bk,

and

iv) if y and z have representatives in the same petal there are basepoints bi,b j,bk

and bl with [bi,b j,bk,bl]bi such that the following hold.

a) r,g and γ(z) colours of bi,

b) g a colour for exactly one of b j and bl and γ(z) a colour for the other, and

c) r a colour of bk.

However in this case there is either an auxiliary colour for (x,z) and this colour
colour-crosses g, or an auxiliary colour of (y,z) that colour-crosses r. This is a
contradiction since this means that some colour of x colour-crosses a colour of
y.

The following lemma is essentially the converse of Lemma 8.1.9.

Lemma 8.1.10. If r,g ∈C∪E colour-cross then x and y cross for some x,y ∈ X

with ω(x) = r and ω(y) = g.

Proof. If r,g ∈ C then this is clear. Suppose that exactly one of r and g is in E.
Without loss of generality let this be r. Then there are at least two elements x1

and x2 that both have representatives in some 2-petal, Pi, of F , and these elements
are assigned the unique auxiliary colour r. Therefore we either see an alternating
colouring from Pi with respect to r and g starting with r or an alternating colouring
from Pi with respect to r and g starting with g. In the first case it is easy to see that
there would be an alternating colouring from Pi with respect to c and g for some
c ∈ C. Therefore assume that we are in the second case. Since r is an auxiliary
colour, r = α(x1,x2) for some unique x1,x2. Suppose that x1 does not cross y.
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Then we can find a displayed 3-separation with x1 on one side and y on the other.
But then x2 crosses this separation. The argument is similar when both r and g are
elements of E and is left to the reader.

Definition 8.1.11. We say that two colours c and d transitively colour-cross if we
can find a path of colours c,c1, . . . ,ck,d so that c crosses c1 and ck crosses d and
for every i ∈ {2, . . . ,k− 1} ci crosses ci−1 and ci+1. We say that two elements
x,y ∈ X transitively cross if a colour associated with x and a colour associated
with y transitively colour-cross.

Definition 8.1.12. The crossing graph of the blocking elements X of F is the
graph G = (V,E) where V = X and there is an edge between two elements x and
y of V if, and only if, x and y cross.

This means that if two vertices x and y are joined by an edge then either:

i) there is some petal in F containing both and representative of x and a repre-
sentative of y or,

ii) some colour of x crosses some colour of y.

It is clear that if there is a path between two vertices x and y of the crossing graph
then x and y transitively cross.

• Throughout the remainder of this chapter we use J to denote the joints of
swirl-like pseudo-flower F .

Theorem 8.1.13. Let H be the crossing graph of the set X of blocking elements of

F. The graph H is connected if, and only if, every displayed 3-separation of F is

blocked.

Proof. Suppose that H is not connected. Consider a graph H̃ that is obtained by
adding edges to H to obtain a graph that has exactly two connected components.
If F is not blocked when we add the crossings induced by the edges of E(H̃) then
F was not blocked originally. Therefore for the remainder of this proof we may
assume without loss of generality that H has exactly two connected components
H1 and H2. For this proof we want to add a new level of colouring which we shall
call the component colouring. The component colouring of the basepoints of F is
an assignment of one or both of r,g to the basepoints of F as follows:
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i) if x∈H1 is such that γ(x) = c then for every j ∈ J with c∈ψ( j) assign colour
r to j, and

ii) if x∈H2 is such that γ(x) = c then for every j ∈ J with c∈ψ( j) assign colour
g to j,

where r,g are distinct from any element of C ∪E. The component colour of a
basepoint is the value it is assigned in the component colouring of F . Let R be the
set of joints with component colour r and let G be the set of joints with component
colour g. Note that R∩G may be non-empty.

Claim 8.1.14. R and G are consecutive sets.

Proof. Since any pair of colours in R transitively cross and any pair of colours in
G transitively cross, if R and G were not consecutive sets then we would have a
vertex in H1 crossing a vertex in H2, a contradiction.

Claim 8.1.15. Let C = {bi, . . . ,bm} be the set of basepoints with component
colour c and let C1 = {b j, . . . ,bk} be a consecutive set of basepoints with
component colour c such that C−C1 = {b1, . . . ,b j−1,bk+1, . . . ,bm} is non-
empty. There is some colour that appears as a colour of both a basepoint in
C1 and a basepoint ba in C−C1 with a /∈ { j−1,k+1}.

Proof. This holds since any element of B transitively crosses some other element
of B for B ∈ {R,G}.

Claim 8.1.16. |R∩G| ≤ 2 and if |R∩G|= 2 then the joints in R∩G are not
adjacent.

Proof. First note that |R| ≥ 2 as if |R|< 2 then the elements of H1 would not block
any displayed three-separation. Similarly |G| ≥ 2. Suppose we have a consecutive
set of basepoints coloured both r and g and this set contains more than one base-
point. Let this consecutive sequence of basepoints be {bi, , , .bk} and let elements
b1, . . . ,bi−1 be in R−G and bk+1, . . . ,bm be in G−R. Note that m may not be equal
to the number of basepoints and if it is not then we have a second consecutive sub-
set with elements in R∩G. We know that for any basepoint bl ∈ {bi, . . . ,bk} we
can find some colour o such that o is assigned both to b and some element of
V (H2). Choose any such pair with the restriction that l ∈ {i, . . . ,k− 1}. There
is some bp with p /∈ {1, . . . , i, l−1, l +1} that is also assigned colour o. Without
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loss of generality let [b1,bl,bp]. Now consider the consecutive subset of R that
is contained in {bp, . . . ,bl+1}. By Claim 8.1.16 above there is some basepoint in
this set assigned colour w where w ∈ ω(x) for some x ∈V (G1) with the property
that some element in {b1, . . . ,bl−1} is also assigned colour w. This means that o

and w cross which contradicts the fact that G is not connected.

This means that no colour of an basepoint of R crosses a colour of a basepoint in
G and so we have a displayed 3-separation in the swirl-like pseudo-flower.

Suppose that we have a 3-separation displayed by F . If we restrict our attention
to the colours in C we see that there is a partition [C1,C2]of C so that no colour of
c1 crosses a colour of c2. Let the blocking elements assigned C1 form a set V1 of
vertices of H. It is easy to see that there is no edge between a vertex of V1 and a
vertex of V (H)−V1.

Finally recall Lemma 2.4.2. This tells us that there exists a function f2.4.2 such
that, if G is a connected graph G with at least f2.4.2 vertices, then there an induced
subgraph of G on n vertices that is either a path, a complete graph, or a star.

This gives structure to the blocking elements of F , as we shall see shortly.

8.2 Structuring the Crossing Elements

Throughout this section we work under the following hypotheses.
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• Let M be a matroid with a coindependent set X such that M \X has a maxi-
mal swirl-like pseudo-flower F = (P1, . . . ,Pm) of order n, and

• every 3-separation of M \X displayed by F is blocked by an element of X .

This means that either we have a single element of X that blocks a lot of 3-
separations, or X has many elements and, since every displayed 3-separation of F

is blocked, by Theorem 8.1.13 the crossing graph is connected. We formalise this
below.

Lemma 8.2.1. There is a function f8.2.1 such that the following holds. Suppose

that M has f8.2.1(m,k) 3-separations displayed by F. Then either |X | ≥m or there

is some x ∈ X that blocks at least k displayed 3-separations.

Proof. Observe that this follows when f8.2.1(m,k) = k(m−1).

The following lemma is clear and the proof is omitted.

Lemma 8.2.2. Suppose that F has f8.2.1( f2.4.2(m),k) displayed 3-separations.

Then there is either some x ∈ X that blocks at least k displayed 3-separations of

M by F, or there is an induced subgraph of the crossing graph of the blocking

elements of F in M that is either a path, a star or a complete graph with at least

m vertices.

Definition 8.2.3. We say that F is partially blocked in M if there is some non-
empty X ′ ⊆ X in which some of the 3-separations of M displayed by F are
blocked.

The following lemma is trivial.

Lemma 8.2.4. Let the crossing graph of X in F be G and suppose G′ is an induced

subgraph of G. If X ′ =V (G′), then N = M \(X−X ′) such that the following hold.

i) N has a minor N \X ′ with a swirl-like pseudo-flower F,

ii) F is partially blocked in N by X ′, and

iii) elements x and y of X ′ cross in F in N if, and only if, they cross in F in M.

For the remainder of this section we work under the following additional hypothe-
ses.
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• |X | ≥ s,

• The crossing graph of X with respect to F in M is G,

• G′ is an induced subgraph of G with vertex set X ′ that is either a path, a star
or a complete graph and |X ′|= m.

Recall that if M has a swirl-like pseudo-flower F , there is a minor, M′, of M

obtained by removing petals of F that also has a swirl-like pseudo-flower.

Lemma 8.2.5. Suppose that the displayed 3-separations of M by F are partially

blocked by X ′. There is a minor, M′, of M such that X ′ = E(M′)∩X, that M′ \X ′

has swirl-like pseudo-flower F ′ ⊆ F and that every displayed 3-separation of F ′

is blocked by an element of X ′. Moreover, all elements of X ′ block some displayed

3-separation of M′ by F ′.

Proof. Partition the joints of F into two sets [J1,J2], where J1 is the set of joints
that appear as in J(x) for some x ∈ X ′. We show that there is minor M′ of M

with pseudo-flower minor, F ′ ⊆ F , in which any j in J1 is a joint of a petal in F ′.
Suppose there are two adjacent joints, ji and ji+1 in J2. Then there is some rim
element ri between ji and ji+1 and there is no x ∈ X ′ with an element of F(x) in a
petal with ri as a basepoint. Therefore we can contract ri. Suppose there is a joint
j2 such that j2 ∈ J1 and j1, j3 ∈ J2. Then r1 and r2 are not basepoints of any petals
containing an element of F(x). Therefore we can remove every petal with r1 or
r2 as a basepoint. The flower is then such that every 3-separation is blocked by an
element of X ′ and all elements of X ′ block some displayed 3-separation.

The following theorem follows from Theorem 8.1.13, Lemma 2.4.2, Lemma 8.2.2
and Lemma 8.2.5.

Theorem 8.2.6. There is a function f8.2.6 such that the following holds. Let M

be a matroid with a coindependent set X such that M \X has a maximal swirl-

like pseudo-flower F = (P1, . . . ,Pm) of order n, and suppose every 3-separation of

M \X displayed by F is blocked by an element of X. If n≥ f8.2.1( f2.4.1(t),k) there

is a minor M′ of M with coindependent set X ′ = X ∩E(M′) such that the following

holds.

i) M′ \X ′ has a swirl-like pseudo-flower F ′,



ii) every 3-separation of M′ displayed by F ′ is blocked by some element x ∈ X ′,

iii) either |X ′|= 1 and M′ \X ′ has k 3-separations displayed by F ′, or the cross-

ing graph of X ′ with respect to F ′ in M′ is either a star, a path or a complete

graph on at least t elements.

Proof. Let n≥ f8.2.1( f2.4.2(t),k) By Lemma 8.2.2 either there is some x ∈ X that
blocks k 3-separations of M \X displayed by F , in which case it is easy to see that
the theorem holds, or the crossing graph of X in M has an induced subgraph that
is either a star, path or complete graph on at least t vertices. Let X ′ ⊆ X be the
vertices in such an induced subgraph. Then by Lemma 8.2.5 there is a minor M′

of M such that M′ \X ′ has a swirl-like pseudo-flower F ′ in which every displayed
3-separation is blocked by some element of X ′ and the crossing graph of X ′ in M′

is either a star, path, or complete graph on at least t elements.

This means that we can find some minor M′ of M with a swirl-like pseudo-flower
F ′ ⊆ F such that F ′ is blocked by a single element, or the blocking elements of F ′

are:

i) a large set of blocking elements every member of which crosses every other
member, or

ii) a large set of blocking elements none of which cross, along with a single
blocking element which crosses every member of this set, or

iii) a set of elements in which all but two cross exactly two members of the set
and the remaining two elements each cross exactly one member of the set and
do not cross each other,

We call these the complete graph case, the star case and the path case respectively.

8.3 Useful Lemmas For Reducing Petals Containing
Representatives of Two Blocking Elements

When a swirl-like pseudo-flower is blocked in a path-like way sometimes a petal
P contains representatives of two blocking elements x1 and x2. We want to reduce
the size of the petal as much as possible without losing joints, or the fact that x1
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and x2 contain representatives in P. In this section we look at finding minors of
connected matroids using three or four particular elements. This will be useful
later on when we are blocking swirl-like pseudo-flowers in a path-like way.

The next two lemmas are trivial.

Lemma 8.3.1. If M is a connected matroid containing elements a,b,c then there

is a minor of M in which either {a,b,c} form a triangle or {a,b,c} are parallel.

Lemma 8.3.2. Let a and b be elements of a connected binary matroid M. If

a ∈ cl(E(M)−{a,b}) and b ∈ cl(E(M)−{a,b}) there is a minor of M that is a

parallel class containing a,b and some e ∈ (E(M)−{a,b}).

Lemma 8.3.3. Let M be a connected binary matroid for rank at least 2 with

r,g,x ∈ E(M). Suppose there is no 2-separation (A,B) in M with r ∈ A and g ∈ B.

Then there is a minor of M of one of the following forms:

Proof. We first show that there is a 3-connected minor, N, of M, and then use
Lemma 2.1.16 to analyse the various possibilities for N. First suppose that there
is a 2-separation (A,B) in M with r,g ∈ A and x ∈ B. By Tutte’s Linking Theorem
there is a minor, M′, of M such that E(M′) = A∪ {x}, and M|A = M′|A, and
x ∈ clM′(A). This means that, for the remainder of the proof, we may assume that
no such 2-separation exists. Now suppose that there is a 2-separation (A,B) in M

with r ∈ A and x,g ∈ B. By Tutte’s Linking Theorem there is a minor M′ of M

such that E(M′) = A∪{x}, M|B = M′|B and r ∈ clM′(B). It is trivial to see that if
(A,B) is a 2-separation of M with r,g,x ∈ A, there is a minor M′ of M on A∪b for
some b ∈ B, where M′|A = M|A and b ∈ clM′(A). Thus we obtain a 3-connected
minor of M of one of the following forms, where the red points indicate r or g and
the green points the other and the blue square represents x.
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A case analysis of the above possibilities then gives the required minors.

The next two lemmas are immediate consequences of Lemma 8.3.3. They are
very similar but one will be useful when the petal we are reducing the size of is
joint-based and the other will be useful when the petal we are reducing the size of
is rim-based.

Lemma 8.3.4. Let M be a connected matroid with r,g,x ∈ E(M). Suppose there

is no 2-separation in M with r on one side and g on the other. Then there is a

minor of M of one of the following forms:

Lemma 8.3.5. Let M be a connected binary matroid with r,g,x ∈ E(M). Suppose

there is no 2-separation in M with r on one side and g on the other. There is a

minor of M of one of the following forms:
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Lemma 8.3.6. Let M be a binary matroid that is minimal with respect to the

following properties:

i) M is connected,

ii) M contains elements x,y,r,g,

iii) {x,y} is independent as are {x,g} and {r,y},

iv) M has no 2-separation A,B with x,g ∈ A and y,r ∈ B.

Then M is isomorphic to one of the following:
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Proof. The proof of this theorem splits into various claims.
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Claim 8.3.7. M is 3-connected up to series pairs and parallel pairs.
Moreover, if M contains a series or parallel pair {a,b} then {a,b} ∈
{{r,g},{x,r},{y,g}}.

Proof. Suppose that M has a 2-separation (A,B).

Suppose all of x,y,r,g∈A. Then there is some minor M′ of M obtained by deleting
B′ and contracting B′′, for B′,B′′ ⊆ B of the following form:

1. (B− (B′∪B′′)) = e,

2. M′|A = M|A, and

3. e ∈ clM′(A).

The matroid M \B′/B′′ is a matroid satisfying i)-iii) contradicting the minimality
of M. Clearly we can apply the same argument if x,y,r,g ∈ B.

Suppose exactly one of x,y,r,g is contained in A. Suppose the element in A is r.
By Tutte’s linking theorem, there is a minor M′, with the property that E(M′) =

E(B)∪r, M′|B=M|B and r ∈ clM′B. This minor satisfies conditions i)-iii) unless r

is parallel to y in M′. The only way y can be parallel to r in M′ is if y∈ cl(A)∩cl(B)
which is a contradiction as this would mean M had a 2 separation with r,y on one
side and g,x on the other. Therefore r will not be parallel to g in M′.

We can apply a similar argument if exactly one of g,x or y is in A.

Suppose exactly two of r,g,x,y ∈ A and call these two elements e, f . By
Lemma 8.3.1 there is a minor M′ of M such that M′|B = M|B, and E(M)−
E(M′) = {e, f}, where {e, f} is either a series pair with basepoint in clM′(B),
or {e, f} is a parallel pair in clM′(B). This minor satisfies i)-iii) unless x,y ∈ A,
x,g ∈ A or y,r ∈ A. If x,g ∈ A then there was a 2-separation in M with x,g in one
side and r,y in the other, a contradiction. Similarly we may assume y,r /∈ A.

Suppose x,y ∈ A. Then r,g ∈ B and so there is a minor M′ such that

1. (B− (B′∪B′′)) = {r,g},

2. M′|A = M|A,

3. {r,g} is a series or parallel pair,

4. if {r,g} is in series then the basepoint of {r,g} is in 〈A〉, and
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5. if {r,g} is in parallel then {r,g} ∈ clM′(A).

Claim 8.3.8. If M contains two series pairs, two disjoint parallel pairs or
one series and one parallel pair then M is one of the matroids described in
the statement of the lemma.

Proof. By Claim 8.3.7 we may assume that M is connected up to series and paral-
lel pairs and if a,b is in series or parallel in M then {a,b} ∈ {{r,g},{x,r},{y,g}}.
Suppose M is not isomorphic to one of the matroids given in the statement of the
lemma.

Suppose M has two parallel pairs. Then these parallel pairs are {x,r} and {y,g}.
Since M is connected there is a minor M′ of M so that si(M′) =U2,3 and {x,r} are
parallel and {y,g} are parallel. Therefor M must be such that si(M′) = U2,3 and
{x,r} are parallel and {y,g} are parallel.

Suppose M has a series pair and a parallel pair. Without loss of generality we
may assume that the series pair is {x,r} and the parallel pair is {y,g}. By Tutte’s
Linking Theorem we can find a minor M′ of M such that M′ \ y∼=U2,3 and y and
g are parallel.

Suppose M has two series pairs. These must be {x,r} and {y,g}. Let A=(E(M)−
{x,y,r,g}). The basepoints of {x,r} and {y,g}must be contained in the closure of
A. For suppose not, then r(E(M)−{r,y}) = r(A)+2 and r(M)≥ r(A)+3. This
means that if the basepoints of {x,r} and {y,g} are not contained in cl(A) then
λ ({x,r}) = 1, a contradiction. Let the basepoint of {x,r} be a and the basepoint
of {y,g} be b. Either there is some element of E(M) parallel to a and b or by
Lemma 2.1.16 M|(A∪{a,b}) has an M(K4)-minor containing a and b. This means
that we have the following picture:
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Contracting e and f and replacing a,b with the original series pairs then shows
that M has the minor of the form given below:

Claim 8.3.9. If {r,x} or {g,y} is a series pair in M or parallel pair in M,
then M is isomorphic to one of the matroids described in the statement of
the lemma.

Proof. Suppose not and assume that {r,x} is a series pair or a parallel pair.
If {g,y} is a series or parallel pair and the result follows immediately from
Claim 8.3.8. Assume {y,g} is not a series or parallel pair and let a be the basepoint
of {r,x} if r,x are in series or an element parallel to {r,g} if r,g are in parallel (note
a may not be in E(M)). By Lemma 2.1.16 there is an M(Kn)-minor of M using
a,g,y. This means that there is a minor of M isomorphic to one of the following:

If r,x is a series pair then contract e and f in A, and e in B and C to get
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respectively.

Suppose {r,x} is a parallel pair then contract e in A, f in B and e in C to get one
of:

Claim 8.3.10. If M is not 3-connected then M is isomorphic to one of the
matroids described in the statement of the lemma.

Proof. By Claim 8.3.8 we may assume that M contains at most one series or
parallel pair. By Claim 8.3.9 we may assume that the series or parallel pair is
{r,g}. If {r,g} is a series pair then let the basepoint of {r,g} be a and if {r,g} is
a parallel pair add an element a in parallel with {r,g}. Note that a may not be in
M. Let M1 be the matroid obtained from M be replacing {r,g} with a. Since M1 is
3-connected we can find an M(K3,n)-minor of M1 using {a,x,y}. This means that
up to symmetry M1 has a minor of one of the forms below:
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where the blue squares represent x and y and the blue circle represents a. Consider
case A. If r,g are in parallel then, when we replace a by the parallel pair {r,g},
this is one of the matroids described in the statement of the lemma. If r,g are in
series then contracting f and replacing a with the series pair with {r,g} gives one
of the minors described in the statement of the lemma. In the remaining cases if
we contract e when r and g are in parallel and replace a by {r,g} we get one of the
matroids described in the statement of the lemma. If {r,g} are a series pair then
contracting f and replacing a with the series pair {r,g} gives one of the minors
described in the statement of the lemma.

For the remainder of this proof we assume that M is 3-connected.

Claim 8.3.11. M has rank at most 3.

Proof. Suppose r(M) > 3. Then there is some element e that is not in
cl(g,x),cl(r,y) or cl(x,y). This element can either be contracted to keep 3-
connectivity up to parallel pairs or deleted to keep 3-connectivity up to series
pairs. If this element can be contracted so that si(M/e) is 3-connected then con-
tract e. Note that when we contract e none of r,g,x,y becomes parallel to any
other of r,g,x,y. Therefore assume that si(M/e) is not 3-connected. This means
that we can assume that e is in the guts of a 3-separation. Consider M \ e. This is
3-connected up to series pairs. If neither {g,x} or {r,y} is a series pair then the re-
sult follows by the claims above. Therefore without loss of generality assume that
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{g,x} is a series pair in M \e. This means that {g,x,e} must be a triad, It is a well
known theorem and can be found in [3] that if e is in the guts of a 3-separation
and {g,x,e} form a triad then x and g are in different sides of the 3-separation.
Consider M/e; the result follows from the claims above.

We have shown that when M is not 3-connected then M must be one of the ma-
troids described in the statement of the lemma. We have also shown that r(M)≤ 3.
Consider M. An element of M can be contracted unless

1. it is in the guts of a 3-separation with g,x on one side and r,y on the other,

2. it is in a triangle with x,g,

3. it is in a triangle with r,y, or

4. it is in a triangle with x,y.

Since we are assuming that M contains no 3-separations with g,x on one side and
r,y on the other, M must be one of the following matroids:

8.4 Useful Lemmas For Reducing Petals Containing
Representatives of a Lot of Blocking Elements

In this section we prove the following theorem.

Theorem 8.4.1. There is a function f8.4.1 such that the following holds. Suppose

M is a binary matroid with a coindependent set X such that is such that M \X

has a maximal swirl-like pseudo-flower F, every 3-separation of M \X displayed
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by F is blocked by an element of X and |X | ≥ f8.4.1(t). Suppose F has a petal

P containing a representative of every x ∈ X. Then either M has a rank-t spike,

M(K3,t) or M∗(K3,t)-minor, or there is a minor M′ of M with coindependent set

X ′ = E(M′)∩X such that the following hold.

I) M′ \X ′ has a maximal swirl-like pseudo-flower F ′ of order t,

II) every 3-separation of M′ \X ′ displayed by F ′ is blocked by an element of X ′

and |X ′| ≥ t,

III) F ′ has a petal P containing a representative of every x ∈ X ′,

IV) If P is a joint-based 2-petal then either

ii) The elements of P form a (t + 1)-element circuit with the joint of P

and all elements of P− J(P) are the shadow of a unique x ∈ X ′, or

iiii) the elements of P form a triangle with the joint of P and one element

in P− J(P) is the shadow of all x ∈ X ′.

V) If P is a rim-based 2-petal then either

(a) The elements of P form a t-element circuit C with the basepoint of P

parallel to some element of C and all elements in C the shadow of a

unique x ∈ X ′, or

(b) P = {e} and e is parallel to the basepoint, b, of P and for all x ∈ X ′,

F(x) contains b.

VI) If P is a 3-petal then either

(a) The elements of P are such that W = M′|P ∼= M(Wt+2) with the joints

of P adjacent to two joints of W, and every joint of W that is not a

basepoint of P is the shadow of a unique x ∈ X ′, or

(b) The elements of P are such that W = M′|P ∼= M(Wt+2) with the joints

of P adjacent to two rim elements of W, and every joint of W that is not

a basepoint of P is the shadow of a unique x ∈ X ′, or

(c) The elements of P are such that W = M′|P ∼= M(Wt+2) with the joints

of P such that one is parallel to a rim element of W and one is parallel

to a joint of W, and every joint of W that is not a basepoint of P is the

shadow of a unique x ∈ X ′, or
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(d) |P| = 1 and this element e is parallel to the basepoint, b, of P and for

all x ∈ X ′, F(x) contains b.

Consider a binary matroid M and some fixed closed set A⊆ E(M). Every element
e of E(M)−A is assigned some value vM(e) where vM(e) ∈ Z≥0. The value of
M, denoted vM is a non-negative integer. The value behaves as follows under
contraction.

I If z ∈ E(M)−A then the following hold.

i) The value of M/z is vM−vM(z)−vM(B) where B is the set of all elements
in the closure of A in M/z,

ii) the value of an element e of M/z is such that vM/z(e) ≥ vM(e) unless
e ∈ clM/z(A) in which case vM/z = 0,

II if two elements e and f become parallel in M/z then replace these elements
by a new element g such that vM/z(g) = vM/z(e)+ vM/z( f ).

To give this some context, consider a flower, F , in a matroid M and a non-
guts petal, P, of this flower containing representatives of blocking elements
X = x1, . . . ,xn. For every e ∈ P assign a number to e, that number being the
number of elements of X that do not contain a non-guts representative in P− e.
These values behave in the way described above when we take minors of M. The
closed set A corresponds to the guts petal of F .

We omit the routine proof of the following lemma.

Lemma 8.4.2. Let M be a matroid and let p ∈ E(M) be such that M \ p is con-

nected. Then for all e ∈ E(M \ p) either

i) {e,p} is a parallel class in M,

ii) M \ e and M \{e, p} are connected, or

iii) M/e and M \ p/e are connected.

Proof. Since M \ p is connected either M \ p/e or M \ p\e is connected. Suppose
that M \ p/e is connected, and suppose M/e is not connected. This means that
e is the the guts of a 2-separation (A,B) of M. However e is not in the guts of
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a 2-separation in M \ e. Since M and M \ e are connected it follows that {e, p}
is a series class. Suppose M \ {e, p} is connected and M \ e is not connected.
Then e must be in the coguts of some 2-separation (A,B) of M. Without loss
of generality say p ∈ A. We know λM(A) = 1 and λM\e(A) = 0, and e is in the
coclosure of A and the coclosure of B. Since M \ p is connected and p is not in a
circuit containing any elements of B−e, and p is not in a circuit with any elements
of A−e. Therefore every circuit containing p must contain e, but then e∈ cl(A), if
e /∈ cl(B) then this is a contradiction, and if e ∈ cl(B), then M/e is not connected,
again a contradiction.

Lemma 8.4.3. There is a function f8.4.3 such that the following holds. Let M be

a matroid and j ∈ E(M) be such that M and M/ j are connected. Suppose the

value of M is f8.4.3(n,k). Then either there is a connected minor M′ of M with

|M′| = n + 1 such that M′/ j is connected and all elements of E(M′)− j have

non-zero value, or there is a minor M′′ of M that is a triangle containing j, and

E(M′′)− j contains an element with value at least k.

Proof. Let vM = nk. Consider e ∈ (E(M)− j) with vM(e) = 0. By Lemma 8.4.2
there is a connected minor M1 of M obtained by either deleting or contracting e

unless {e, j} is a series class. Thus we can find a minor M1 of M such that M1

and M1 \ { j} are connected and M1 contains at most one element e ∈ E(M1)− j

with vM1(e) = 0. Moreover, if vM1(e) = 0 then { j,e} is a series class. If { j,e}
is a maximal series class then contract e to get a minor M2 of M1 with v(e) ≥ 1
for all e 6= j, and vM2 = vM. Thus M2 is a connected matroid such that M2/ j is
connected, VM2 = vM and every element in E(M2)− j has value at least one.

If |E(M2)| ≥ n+ 1, then there are at least n elements of M′ with non-zero value.
Therefore assume that |E(M2)| ≤ n + 1. If there is an element e of M2 with
vM2(e) ≥ k then contract all element of M2 not in the closure of {e, j} and the
result follows. Suppose all e ∈ (E(M2)− j) have vM2(e) ≤ k and vM2(e) ≥ 1.
Contract some e. Then vM2/e ≥ vM−k. If some f in M2/e has vM2/e ≥ k then con-
tract all elements not on a line with f and j, otherwise contract some f in M′/e to
get a minor of M2/e with vM2/e/ f ≥ vM−2k. Clearly we can continue in this way
to find a minor Ma of M with an element e with vMa ≥ k or a minor Mb of M that
is a triangle containing j and v(Mb)≥ vM− (n−1)(k−1)≥ n.

Recall that if M is a large connected matroid then M either contains a large circuit
or a large cocircuit.
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The routine proof of the following lemma is left to the reader.

Lemma 8.4.4. Let M be a connected matroid containing an n-element circuit C.

Then, for any e∈ (E(M)−C), there is a minor of M such that: e∈ cl(C) and there

is a partition (A,B) of C such that either A∪ e or B∪ e is a circuit with at least n
2

elements.

By duality we get the following lemma.

Lemma 8.4.5. Let M be a connected matroid containing an n-element cocircuit

C∗. Then, for any e ∈ (E(M)−C∗), there is a minor M′ of M on C∗ ∪ e with

e ∈ cl∗(C∗) in which A,B partitions C∗ and either A∪e or B∪e is a cocircuit with

at least n
2 elements. Moreover, si(M′) is a triangle and there is no element parallel

to e in M′.

Putting this together we have the following:

Lemma 8.4.6. Let M be a binary matroid with coindependent set X such that the

following hold.

i) |X |= m,

ii) M \X has a swirl-like pseudo-flower F = (P1, ...,Pm), and

iii) X is a minimal set of blocking elements for the displayed 3-separations of

M \X

. If Pi is a joint-based 2-petal of F that contains representatives of at least every

element of X and m ≥ f8.4.3( f2.4.1(2t)) blocking elements, then there is a minor

M′ of M such that the following holds:

i) M′ \ (E(M′)∩X) has a swirl-like pseudo-flower

F ′ = (P1, ...,Pi−1,P′i ,Pi+1, ...,Pt),

ii) X ′ = E(M′∩X) blocks all 3-separations of M′ \X ′ displayed by F,

iii) M′|P′i contains representatives of every element of X ′, and either the repre-

sentatives of these t elements are distinct and form a circuit with J(P′i ), or

there is one element in P′i that is a representative of t blocking elements and

this element is in a triangle with J(P′i ),
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iv) all elements of P′ are either a representative of a blocking element of P, are

j, or are in a triangle with j and an element that is a representative of a

blocking element.

Proof. Let N = M|Pi. Consider the value function described earlier. Let vM/Pi =

m and to every e ∈ Pi assign to it a value equal to the number of unblocked 3-
separations in F in M \ e. It is easy to see that this assignment of values behaves
as required. By Lemma 8.4.3 there is a minor N1 of N with at least f2.4.1(2t)+1
elements such that N1 is connected and all elements of N1 have non-zero value or
there is a minor N2 of N that is a triangle including j and an element with value at
least f2.4.1(2t).

If there is a minor N1 of N with at least f2.4.1(2t)+ 1 elements such that N1 is
connected and all elements of N1 have non-zero value then by Lemma 2.4.1 there
is a minor of N containing a circuit with at least 2t elements or a cocircuit with
at least 2t elements all of which have non-zero value. Therefore by Lemma 8.4.4
and its dual there is a minor, N′, of N with value at least t that is either a circuit or
a cocircuit containing e.

The result then follows easily.

We now look at rim-based 2-petals. This case is very similar to the dual of the
case above. However, very close is not close enough so we have the following:

Lemma 8.4.7. Let M be a matroid and r∈M such that M and M\r are connected.

Suppose the value of M is at least f8.4.3(n,k). There is a minor M′ of M such that

M′ and M′ \ r are both connected and either

i) M′ contains at least n elements of non-zero value, or

ii) M′ is a triangle with value at least k.

Proof. By Lemma 8.4.2 we may assume that every element in M has non-zero
value or M is a triangle. If M is a triangle then ii) follows. Therefore assume
that every element in E(M)− r has non-zero value. If M has at least n elements
then the result follows. Therefore assume that M has fewer than n elements. The
remainder of the proof is inductive. Suppose M′ is a connected minor of M that
has 3 elements, one of which is r, and value at least n. Then ii) holds. Let M′

be a minor of M with value at least vM−a(n−1) for some a ≤ (n−2), with the
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property that both M′ and M′\r are connected. Suppose that there is an element of
M with value at least n, then there is a minor M′ of M that is a triangle containing
r with value at least n. Suppose there is no element of M with value at least n.
Then consider some element e ∈ E(M′) with n > v(e) ≥ 1. We may remove e in
such a way that there is a minor M′′ of M′ with the property that M′′ are M′′ \ r

are both connected. Note that vM′′ ≥ vM′ − (n− 1). Since M′′ has fewer than n

elements the result follows.

The following proof is courtesy of James Oxley.

Lemma 8.4.8. Let M be a binary matroid with an element r ∈ E(M) such that M

and M \ r are connected, and |E(M)| = f2.4.1(2n)+ 1. Then M has a minor M′

containing r with the property that M′ \ r is a circuit C containing n elements and

r is parallel to some element of C, or M′ is a parallel class containing r of size at

least n.

Proof. By Lemma 2.4.1, M \ r has a set X with at least 2n elements such that X

is a circuit or a cocircuit of M \ r. If M has a cocircuit containing r and having
at least n+ 1 elements, then the lemma holds as the contraction of M onto the
elements of this cocircuit is a parallel class. It follows that if X is a cocircuit of
M \ r, then X is a cocircuit of M. Thus X is a circuit or a cocircuit of M, so M has
a minor N with ground set X such that N is a circuit or a cocircuit with at least 2n

elements. By Tuttes Linking Theorem, M has a connected minor N1 with ground
set X ∪ r such that N1|X = N. Suppose X is a circuit. Then r is in the closure of X

in N1. The dual of N1

is a 3-point line with e as a rank-one flat and with two other rank-one flats, X1

and X2, whose union is X . Assume |X1| ≥ |X2|. Take x in X2. Then N1/(X2− x)

consists of a circuit with ground set X1∪ x and with the element r in parallel to x.
If, instead, X is a cocircuit, then, since X ∪ r is not a cocircuit of N1, we see that
N1 has rank two and has {e} as a hyperplane. It follows that N1 has a cocircuit
containing r and having at least n+1 elements.

The proof of the following lemma is similar to that of Lemma 8.4.6 and is omitted.

Lemma 8.4.9. If Pi is a rim-based 2-petal of F that contains a representative of at

least f8.4.3( f2.4.1(2n)) blocking elements, then there is a minor M′ of M such that

M′ \X has a flower F ′ = (P1, ...,Pi−1,P′i ,Pi+1, ...,Pn) and M′|P′i contains represen-

tatives of at least n blocking elements {x1, ...,xn}. Moreover, the representatives
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of {x1, ...,xn} in P′i are either distinct and form a circuit with an element of this

circuit parallel to j, or there is one element in P′i that is a representative of n

blocking elements and this element is parallel to j. Moreover, all elements of P′i
are a representative of some blocking element.

Now consider 3-petals.

Lemma 8.4.10. Let M be a connected binary matroid containing two elements j1
and j2 with the property that for any e, f with v(e),v( f ) 6= 0 there is no proper

2-separation (A,B) with j1,e ∈ A and e /∈ cl(B) and j2, f ∈ B and f /∈ cl(A). Then

there is a connected minor M′ of M, with vM′ = vM, containing j1 and j2 such

that, for any e, f ∈ (E(M′)−{ j1, j2}) with v(e),v( f ) 6= 0, there is no proper 2-

separation (A,B) of M′ with j1,e ∈ A and e /∈ cl(B) and j2, f ∈ B and f /∈ cl(A),
and every g ∈ (E(M′)−{ j1, j2}) with vM′(g) = 0 is on the guts of a 3-separation

(C,D) of M′ with j1,e ∈C and e /∈ cl(D) and j2, f ∈D and f /∈ cl(C) for e, f with

v(e),v( f ) 6= 0.

Proof. Note that any element g ∈ E(M) can either be deleted to keep connectivity
or contracted to keep connectivity. Therefore we may remove any g ∈ E(M) with
v(g) = 0 unless this removal results in a 2-separation (A,B) with j1,e ∈ A and
e /∈ cl(B) and j2, f ∈ B and f /∈ cl(A) for some e, f with v(e),v( f ) 6= 0. Therefore
we can remove any g ∈ E(M) unless f is on the guts of a 3-separation (A,B) with
j1,e ∈ A and e /∈ cl(B) and j2, f ∈ B and f /∈ cl(A) for some e, f with v(e),v( f ) 6=
0.

Lemma 8.4.11. There is some f8.4.11 such that the following holds. Let M be a

connected matroid with vM = f8.4.11(n). Suppose there are elements j1, j2 ∈ E(M)

such that v( j1) = v( j2) = 0 and suppose M is such that the following holds:

I) for any e, f ∈ E(M′) with v(e),v( f ) 6= 0 there is no 2-separation (A,B) of M′

such that both the following holds.

• j1,e ∈ A and e /∈ cl(B), and

• j2, f ∈ B and f /∈ cl(A).

II) Every g∈ (E(M′)−{ j1, j2}) with vM′(g) = 0 is on the guts of a 3-separation

(C,D) of M′ with j1,e ∈ C and e /∈ cl(D), and j2, f ∈ D and f /∈ cl(C) for

e, f with v(e),v( f ) 6= 0.
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Then M has a minor M′ containing j1 and j2 such that either

i) M′ is 3-connected and v′M ≥ n,

ii) vM′ ≥ n and j1, j2 /∈ cl(E(M′)− { j1, j2}) but r1 ∈ 〈E(M′)− { j1, j2}〉 for

r1 ∈ 〈 j1, j2〉, or

iii) vM′ ≥ n and, there is an element r1 ∈ E(M′) such that j1,r1, j2 is a triangle

and either j1 ∈ cl(E(M′)−{ j1, j2,r1}) or j2 ∈ cl(E(M′)−{ j1, j2,r1}) and

not both.

Proof. Let f8.4.11(n) = n2. Suppose that M is not 3-connected. For any Y ⊆ E(M)

let vM(Y ) be the sum of the values of the elements of Y . Suppose (A,B) is a 2-
separation of M with vM(A) ≥ m and j1, j2 ∈ B. By Lemma 2.1.16, and a case
analysis similar to that of Lemma 8.3.4, there is a minor M′ of M satisfying either
i) or ii), with v′M ≥ m. Now assume that there is no 3-connected set A of M with
j1, j2 ∈ A and vM(A) ≥ n. Suppose there are at least n 2-separations, (Ai,Bi) for
i ∈ {1, ...,n}, with j1, j2 ∈ A and an element with non-zero value in B. Then it is
routine to chack that there is a minor of M that is 3-connected and has value at
least n.

Therefore we may assume that every 3-separation (Ai,Bi) that such that j1, j2 ∈ Ai

has v(Bi)< n and there are fewer than n such 3-separations. This means that there
is a 3-connected minor M′ of M with vM′ ≥ n and j1, j2 ∈M′.

Cases ii) and iii) from above reduce to the 2-petal case. Thus we consider reducing
petals where M is 3-connected and vM ≥ n.

First we need the following routine lemma.

Lemma 8.4.12. Let M be a matroid with 3-separation (A,B) that contains an el-

ement e ∈ E(M) such that e ∈ cl(A)∩cl(B). If a1,a2,a3 ∈ (A−e) and b1,b2,b3 ∈
(B−e), then for any 3-connected minor M′ of M containing a1,a2,a3,e,b1,b2,b3,

the element e is in the guts of a 3-separation (A′,B′) with a1,a2,a3 ∈ A′ and

b1,b2,b3 ∈ B′.

We also need the following theorem from [4].
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Theorem 8.4.13. There is a function f8.4.13 such that the following holds. Suppose

M is a 3-connected binary matroid with |E(M)| ≥ f8.4.13(n) and {x,y} ⊆ E(M).

There there is a minor of M using x and y that is isomorphic to M(Wn), a rank-n

spike, M(K3,n) or M∗(K3,n).

Lemma 8.4.14. Let M be a 3-connected matroid with vM = f8.4.14(n). Suppose

that there are elements j1, j2 ∈ E(M) such that v( j1) = v( j2) = 0 and every g ∈
E(M)−{ j1, j2} with vM′(g) = 0 is on the guts of a 3-separation (C,D) of M′ such

that for some e, f ∈ E(M′) with v(e),v( f ) 6= 0, the elements j1,e∈ A and e /∈ cl(B)
and j2, f ∈ B and f /∈ cl(A) for e, f . Then there is a minor of M containing j1 and

j2 that is isomorphic to one of the following.

i) M(K3,n),

ii) M∗(K3,n),

iii) a rank-n spike,

iv) an n+2-spoke wheel with value at least n in which every rim element not in

{ j1, j2} is assigned a non-zero value, or

v) M(K4) with value at least n.

Proof. If M has at least f8.4.13(n+ 8) elements then M has either an M(K3,n)-
minor, an M∗(K3,n)-minor, a rank-n spike or an (n+ 8)-spoke wheel as a minor.
We must check that in the case where M has an (n+ 8)-spoke wheel as a minor,
M has an n-spoke wheel as a minor with value at least n. Suppose M had an n+8-
spoke wheel as a minor. For every ei with v(ei) = 0 there is a 3-separation (Ai,Bi)

with j1,ai ∈Ai for some ai with v(ai) 6= 0 and j2,bi ∈Bi for some bi with v(bi) 6= 0.
Consider two crossing 3-separations of this form and without loss of generality
let them be (A1,B1) and (A2,B2). Without loss of generality let ai ∈ A1∩A2. By
uncrossing A1 ∩A2 is a 3-separation and since |A1 ∩A2| ≥ 3 this is a vertical 3-
separation with ai in the guts. In this way we can uncross all 3-separations to get
a nested sequence of 3-separations and thus a natural ordering on the elements
with zero value; that being an element e with value 0 is greater than an element f

with value 0 if (Ae,Be) is a separation of M with e in the guts that does not cross
(A f ,B f ), a separation of M with f in the guts, and A f ⊆ Ae. Since we have a
sequence of non-crossing 3-separations this ordering is well defined. Assign the
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elements e of M with v(e) = 0 labels from e1, . . . ,em where the subscripts reflect
the ordering on these elements. Consider a wheel minor of M and suppose it
contains more than eight elements with zero value as rim elements. One of these,
call it e, must have the property that there are at least four rim elements less e and
at least four elements greater than e. This e is then in the guts of a 3-separation
which contradicts Lemma ??. Therefore all but eight rim elements must have
value at least one, and the result follows.

Now suppose M has fewer than f8.4.13(n+ 8) elements. Suppose that some ele-
ment e of M has value at least n. Then, by Lemma 2.1.16, M had an M(K4)-minor
using e, j1, j2 with value at least n.

Suppose that there is no element with value at least n. We may contract any
element e with value less than n to find a matroid M′ with vM′ ≥ vM−n unless e

is on the guts of a 3-separation that puts some element with non-zero value and j1
on one side and some other element with non-zero value and j2 on the other side.
Consider all elements e⊆ E(M) of this form. An uncrossing argument similar to
that above shows that we have an ordering on these elements. Consider the first
element in this ordering. There is a separation (A,B) with j1, f ∈ A where j1 has
non-zero value. We may then contract f and, as this may result in a 2-separation,
find a minor of M/ f that is 3-connected, contains j1 and j2 and has value at least
vM−n. We can repeat this process until a 3-connected minor of M containing j1
and j2 either has an element with high value or has a rank-3 3-connected minor
containing j1 and j2 with value at least vM− ( f8.4.13(n)−1))(n−1).

The proof of the following lemma is similar to that of Lemma 8.4.6.

Lemma 8.4.15. There is a function f8.4.15 such that the following holds. Suppose

M is a matroid with a coindependent set X such that is such that M \X has a

maximal swirl-like pseudo-flower F, every 3-separation of M \ X displayed by

F is blocked by an element of X and |X | ≥ f8.4.14(t). Suppose F has a petal P

containing a representative of every x ∈ X. Then either M has a rank-t spike,

M(K3,t) or M∗(K3,t)-minor, or there is a minor M′ of M with coindependent set

X ′ = E(M′)∩X such that the following holds.

I) M′ \X ′ has a maximal swirl-like pseudo-flower F ′ of order t,

II) every 3-separation of M′ \X ′ displayed by F ′ is blocked by an element of X ′

and |X ′| ≥ t,
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III) F ′ has a petal P containing a representative of every x ∈ X ′,

IV) If P is a 3-petal containing representative of at least f8.4.15(t) elements of X

then either.

(a) The elements of P are such that W = M′|P ∼= M(Wt+2) with the joints

of P adjacent to two joints of W, and every joint of W that is not a

basepoint of P is the shadow of a unique x ∈ X ′, or

(b) The elements of P are such that W = M′|P ∼= M(Wt+2) with the joints

of P adjacent to two rim elements of W, and every joint of W that is not

a basepoint of P is the shadow of a unique x ∈ X ′, or

(c) The elements of P are such that W = M′|P ∼= M(Wt+2) with the joints

of P such that one is parallel to a rim element of W and one is parallel

to a joint of W, and every joint of W that is not a basepoint of P is the

shadow of a unique x ∈ X ′, or

(d) |P| = 1 and this element e is parallel to the basepoint, b, of P and for

all x ∈ X ′, F(x) contains b.

Proof. Let N = M|Pi. Consider the value function described earlier. Let vM/Pi =

m and to every e ∈ Pi assign to it a value equal to the number of unblocked 3-
separations in F in M \ e. It is easy to see that this assignment of values behaves
as required. The lemma then follows easily from Lemma 8.4.14

The proof of Theorem 8.4.1 is now routine and is left to the reader.



Chapter 9

Blocking Swirl-Like Pseudo-Flowers

In this chapter we prove the following.

Theorem 9.0.1. There is a function f9.0.1 such that for all t ≥ 5 the following hold.

If M is a binary matroid with a coindependent set X such that M\X has a maximal

swirl-like pseudo-flower F of order n where n≥ f9.0.1(t), and every 3-separation

of M displayed by F is blocked by an element of X, then M has a minor isomorphic

to one of the following:

i) a rank-t circular ladder,

ii) a rank-t Möbius ladder,

iii) a rank-t spike,

iv) a rank-t double wheel,

v) a rank-t non graphic double wheel,

vi) N(K3,t),

vii) M(K4,t),

viii) a rank-t clam.

This chapter splits into five main parts. One for when the swirl-like pseudo-flower
is blocked by a single element, one when the crossing graph for the blocking
elements contains a big star, one when it contains a big complete graph and one
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for when it contains a long path. The final section of this chapter brings all this
together to give a proof of Theorem 9.0.1. Throughout this chapter we work
under the hypotheses of Theorem 9.0.1. We restate these hypotheses below and
introduce some local notation.

• M is a binary matroid with coindependent set X of E(M) such that M \X

has maximal swirl-like pseudo-flower F = (P1, . . . ,Pn) of order m,

• M̃ denotes the matroid M extended by the joints of F ,

• X is a minimal set of blocking elements for F in M,

• |X | ≥ n′ for some n′ ∈ Z≥0,

• J is the set of joints of F ,

• B is a basis for M̃ containing the joints of F ,

• F(x) denotes the fundamental circuit of an element x ∈ X with respect to B.

In a slight abuse of notation we use M̃′ when M′ is a minor of M to denote M′

extended by the joints of F .

We may assume that there is no x ∈ X such that x is contained the closure of
a clump of F in M \X . This is because the flower M \ (X − x) has a maximal
swirl-like pseudo-flower of order n and we could consider this instead of F in M.
Therefore we can, without loss of generality, add the following hypothesis:

• Every x ∈ X blocks some separation of M displayed by F .

We are going to introduce yet another type of colouring and this time instead of
colouring both joint and rim elements we colour just the joints.

Recall that J(Pi) denotes the joints of petal Pi of F .

Definition 9.0.2. The joints of x ∈ X are the members of the set J(x) = { j ∈ J :
there is some Pi with j ∈ J(Pi) and some element of F(x) ∈ Pi}.

.

Further, recall that γ : X → C is a bijective function mapping members of X to
colours. This function does not really do anything but it can be helpful to consider
colours rather than elements of X .
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We shall now colour the joints of F in M.

Definition 9.0.3. Let µJ : J→P(C) be such that µ( j) = {c : γ−1(c) contains a
representative in a petal Pi with j ∈ J(Pi) }. We call µ the joint colouring of F in
M with respect to X .

From now on, when we refer to a colouring we are referring to the joint colouring
unless otherwise stated.

Definition 9.0.4. We say that two elements x1,x2 ∈ X are distinguishable by a set

J1 of joints in the joint colouring of F in M \X with respect to X if J(x1)∩ J1 *
J(x2)∩ J1 and J(x2)∩ J1 * J(x1)∩ J1.

We extend this in the natural way to talk about colours being distinguishable in a
set of joints.

A Note On Pictures

In this chapter it helps to use pictures to illustrate certain features of M and F .
We will frequently use pictures when we are talking about joint colourings. When
we do this the joints of F are represented by circles and the colours of the circles
represent colours in γ(X). When two colours appear in (almost) the same place
this means that the joint is coloured by multiple colours. Each colour represents
a distinct element of γ(X) and two colours are the same in a picture exactly when
they represent the same colour in γ(X). Ellipses are used to show that the pattern
seen in the colours continues. We have more complicated pictures later on but
explain these when they arise.

9.1 Single Blocking Element

Consider the case where a single blocking element contains representatives in at
least k petals.

Lemma 9.1.1. There is a function, f9.1.1, such that the following holds. If at least

k ≥ f9.1.1(t) displayed 3-separations of M are blocked by some element x, then M

has a wheel minor with at least t joints in which every displayed 3-separation is

blocked by a single element, or M has a rank-t spike minor.
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Proof. Let k ≥ 2t2. If x contains representatives in at least 2t clumps then it
follows easily from Lemma 2.1.16 that M has a wheel minor with at least 2t joints
in which at least t displayed 3-separations are blocked by x. Removing petals then
gives a wheel minor with at least t joints in which every displayed 3-separation
is blocked by a single element. If x contains representatives in fewer than 2t

clumps then at least one clump of F contains at least t petals each containing a
representative of x. By removing all petals not in this clump and all but the petals
containing a representative of x in this clump we see that there is a minor M′ of
M such that M′ \ x has a (1,0,0)-flower F ′ and x is not in the closure of a petal of
F ′ and x′ ∈ cl(E(M′)− x). By Lemma 2.1.16 it is easy to see that M′ has a minor
M′′ of M′ such that M′′ \ x has a (1,0,0)-flower F ′′ with at least t petals such that
x not in the closure of a petal of F ′′, that x ∈ cl(E(M′′)− x), and that every petal
P of F ′′ is a series pair with basepoint the basepoint of the petal. It is then easy to
see that M′′ is a spike with cotip x, in other words that M′′/x is a spike.

Lemma 9.1.2. If M is such that M \X is a rank-n wheel and there is some x that

blocks every 3-separation of M \X displayed by the canonical flower of M \X,

then M has a rank-(n−1) circular ladder as a minor.

Proof. M is represented by



r1 r2 r3 . . . rn−1 rn x1

j1 1 0 0 . . . 0 1 1
j2 1 1 0 . . . 0 0 1
j3 0 1 1 . . . 0 0 1
j4 0 0 1 . . . 0 0 1
...

...
...

... . . . ...
...

...
jn−1 0 0 0 . . . 1 0 1
jn 0 0 0 . . . 1 1 1


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Pivot on M j1,x1 to get



r1 r2 r3 . . . rn−1 rn j1

x1 1 0 0 . . . 0 1 1
j2 0 1 0 . . . 0 1 1
j3 1 1 1 . . . 0 1 1
j4 1 0 1 . . . 0 1 1
...

...
...

... . . . ...
...

...
jn−1 1 0 0 . . . 1 1 1
jn 1 0 0 . . . 1 0 1


.

It is then easy to see that M/x1 is a rank-(n−1) triangular ladder and therefore M

has a rank-(n−1) circular ladder as a minor.

Theorem 9.1.3. There is a function f9.1.3 such that the following holds. Suppose

M is a binary matroid with coindependent set X such that M \X has a swirl-like

pseudo-flower F and every displayed 3-separation in M \X is blocked by some

x ∈ X. If some x ∈ X blocks at least k displayed 3-separations of M \X by F and

k ≥ f9.1.3(t), then M has a rank-t circular ladder or a rank-t spike as a minor.

Proof. Let f9.1.3(t) = f9.1.1(t +1). By Lemma 9.1.1 M has a minor isomorphic to
a rank-(t + 1) spike or a rank-(t + 1) wheel in which every vertical 3-separation
is blocked by a single element. If M has a rank-(t + 1) spike as a minor then
the theorem follows. Suppose that M has a rank (t + 1)-wheel in which every
vertical 3-separation by a single element, as a minor. Then the theorem follow by
Lemma 9.1.2.

9.2 Stars

In this section we prove the following theorem.

Theorem 9.2.1. There is a function f9.2.1 such that for all t ≥ 5 the following

holds. If M is a binary matroid with a coindependent set X such that

I) M \X has a maximal swirl-like pseudo-flower of order n where n≥ f9.0.1(t),

II) every 3-separation of M displayed by F is blocked by an element of X,



182 CHAPTER 9. BLOCKING SWIRL-LIKE PSEUDO-FLOWERS

III) the crossing graph of X with respect to F in M is a star,

IV) there is no x ∈ X that contains a representative in k or more petals,

then M has minor isomorphic to one of the following:

i) a rank-t spike,

ii) a rank-t double wheel,

iii) a rank-t non graphic double wheel,

iv) M∗(K3,t).

Throughout this section we work under the hypotheses of Theorem 9.2.1. That is
we add to our original hypotheses the following hypotheses.

• The crossing graph of X with respect to F in M is a star, and

• no element of X contains representatives in k or more petals (where k is
large)

Clearly |X |= n′ ≥ n
k .

We may, without loss of generality, restrict our attention to the set of blocking
elements of X that are distinguishable from the joint colouring of F in M \X with
respect to X . That is we may assume that if x1,x2 ∈ X then J(x1) * J(x2) and
J(x2)* J(x1). Therefore we add the following hypothesis.

• For any pair x1,x2 ∈ X , J(x1)* J(x2) and J(x2)* J(x1).

Lemma 9.2.2. There is a function f9.2.2 such that the following holds. If n ≥
f9.2.2(t), then there is a minor M′ of M such that the following hold:

i) M′ \ (E(M′)∩X) has a swirl-like pseudo-flower F ′ ⊆ F,

ii) E(M′)∩X = X ′ is a coindependent set that is a minimal blocking set of F ′,

iii) F ′ has order at least t,

iv) F ′ is such that no proper petal contains a representative of more than one

element of X ′, and
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v) the crossing graph of X ′ in F ′ with respect to M is a star.

Proof. Consider n ≥ t + k2. Let x ∈ X be the element that crosses all other ele-
ments of X . This is the only element of X that contains representatives in proper
petals that contain representatives of an element of X − x. Therefore at most k

colours are in a petal containing representatives of more than one element. Delete
any element x′ ∈ X except γ(x) that contains representatives in a petal contain-
ing a representative of x. Let these elements be {x1, . . . ,xi} for i ≤ k. We may
have unblocked displayed 3-separations in M \ {x1, . . . ,xi}. However by remov-
ing petals that contained a representative of x j for j ∈ {1, . . . , i} and not x, we get
the required minor.

It follows from Lemma 9.2.2 that we may now add the following hypothesis.

• No proper petal of F contains a representative of more than one element of
X .

We are now almost in a position to reduce this case to the case of blocking a wheel.

Recall J(Pi) denotes the set of joints of Pi, and M̃ denotes the matroid M extended
by the joints of F .

Lemma 9.2.3. If Pi is a petal of F, then for any e ∈ Pi, there is a minor M̃′ of M̃

on ∪(F−Pi)∪ e∪ J(F) such that the following holds:

I) if Pi is joint-based then {J(Pi)∪ e} is a circuit in M̃′ and M′|(∪(F −Pi)) =

M|(∪(F−Pi)).

II) If Pi is rim-based then {J(Pi),e} is a triangle in M̃′ and M′|(∪(F −Pi)) =

M|(∪(F−Pi)).

III) If Pi is a 3-petal of F, there exist a,b ∈ Pi such that

i) {a,b,J(Pi)} ∈ E(M̃′),

ii) one of {a,b} parallel to the rim basepoint of Pi,

iii) one of {a,b} is parallel to ji or ji+1,

iv) e ∈ {a,b}.
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Proof. The case where Pi is a 2-petal is trivial since M|Pi is connected. The case
where Pi is a 3-petal is an easy corollary of Lemma 2.1.16.

If we reduce 3-petals in this way this may result in up to half the displayed 3-
separations not being blocked. However, by contracting rim elements we see that
M has a wheel minor with at least half as many petals as the original flower and
this wheel is blocked in a star-like way.

This leads to the following lemma.

Lemma 9.2.4. There is a function f9.2.4 such that the following holds. If m ≥
f9.2.4(t) then M has a minor M′ in which the following hold.

i) M′ \ (E(M′)∩X) is a rank-t wheel,

ii) X ′ = E(M′)∩X blocks all 3-separations displayed by the canonical flower of

M′ \X ′,

iii) X ′ is minimal with respect to this property, and

iv) the crossing graph of X ′ with respect to M′ is a star with at least t
k vertices.

Proof. By Lemma 9.2.2 and Lemma 9.2.3 this holds when f9.2.4(t) = 2t +k2

Recall that since the crossing graph of X in M is a star this means that there
are n′− 1 members of X that do not cross each other and one element, x, of X

that crosses all others. For the remainder of this section we add to our original
hypotheses the following hypotheses:

• M \X is a wheel,

• Every vertical 3-separation of M is blocked by some element of X ,

• the crossing graph of X in M with respect to the canonical flower of F is a
star with at least n′ elements, and

• x ∈ X crosses all elements of X− x in M.

Lemma 9.2.5. There is a minor of M′ of M such that M′ \{E(M)∩X)} is a wheel

containing a consecutive set of joints J1 such that:

i) no joint in J1 is assigned colour γ(x),
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ii) |J1|= m≥ f2.4.4(n),

iii) if ji and jk are elements of J1 coloured by colour c and [ ji, . . . , jk] j1 then every

element jl such that [ ji, . . . , jl, . . . , jk] j1 is assigned colour c,

iv) every joint in J1 is assigned exactly one colour, and

v) |µ(J1)| ≥ m
k .

Proof. This follows by Lemma 2.4.4 and noting that no colour is assigned to more
than k joints.

Lemma 9.2.6. Suppose n′ ≥ f2.4.4(t). There is a minor M′ of M containing a

consecutive set of joints J1 such that the following hold:

i) M′ \ (X ∩E(M′)) is a wheel with at least t +3 joints,

ii) X ′ = E(M′)∩X is a minimal blocking set of M′ \X ′,

iii) |X ′| ≥ t,

iv) no joint in J1 is assigned colour γ(x),

v) |J1|= m≥ t,

vi) if ji and jk are elements of J1 coloured by colour c then ji and jk are adjacent,

vii) every joint in J1 is assigned exactly one colour,

viii) |µ(J1)| ≥ m
k , and

ix) all colours in γ(X− x) appear in µ(J).

Proof. It is clear that we can remove petals and blocking elements to find this
minor.

Many of the following proofs are omitted. In general when this happens the lem-
mas are routine and often immediate corollaries of the previous lemmas and I
believe it is easier to convince yourself that the lemma is true than it is to under-
stand a proof of it. While these lemmas are essentially immediate, I believe it
helps to separate them into lemmas for easy reference later on.

The following lemma follows from removing petals. The proof is elementary and
is left to the reader.
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Lemma 9.2.7. There is a function f9.2.7 such that the following holds. If n′ ≥
f9.2.7(t), there is a minor of M′ of M such that M′ \ (X ∩E(M′)) is a wheel with

at least t + 3 joints, X ∩E(M′) is a minimal set of blocking elements for X, and

there is a set J1 of at least t joints of M′ with a joint colouring of J1 of one of the

following forms:

where c = γ(x)

We add to our hypotheses the following.

• the joint colouring of F with respect to X contains a consecutive set of joints
J1 of one of the two forms from Lemma 9.2.7 and all colours in X appear
on some joint of this set.

The proof of the following lemma is routine and is omitted.

Lemma 9.2.8. There is a function f9.2.8 such that the following holds. If n′ ≥
f9.2.8(s, t), then there is either some joint in J−J1 is coloured by at least s colours,

or there is a subset X ′ of X such that in the joint colouring of F in M with respect

to X ′ there is a set J3 of J−J1 with at least t joints in which every joint is assigned

exactly one colour, no joint in J3 is assigned colour γ(x), and if ji and jk are

elements of J3 coloured by colour ci then ji and jk are adjacent.

We add to our hypotheses the following.
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• In the joint colouring of F with respect to X a joint is either assigned every
colour of γ(x) or exactly one colour of γ(X).

The proof of the next lemma is trivial and is omitted.

Lemma 9.2.9. If the joint coloring of F in M with respect to X has a consecutive

set J2 in which all colours but γ(x) appear on exactly one joint and J2 ∩ J1 = /0,

then there is a minor M′ of M such that X ⊆ E(M′) and M′ \X has a swirl-like

pseudo-flower, F ′ ⊆ F, in which there is a point assigned all colours in the joint

colouring of F ′ in M′ with respect to X. Moreover, all colours of (X − x) cross

γ(x) in the joint colouring of F ′ with respect to X.

Lemma 9.2.10. There is a function f9.2.10 such the the following holds. If n′ ≥
f9.2.10(t) then there is a minor M′ of M with coindepedent set X ′ = X ∩E(M′)

such that M′ \X ′ has a maximal flower F ′ with a joint colouring of F ′ of one of

the following forms:
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Proof. This follows from easily from Lemma 9.2.7 and Lemma 9.2.9.

We now discard the hypothesis that every joint is assigned exactly one colour or
every colour and instead we add the following hypothesis.

• The joint colouring of F is of one of the forms described in Lemma 9.2.10.

Lemma 9.2.11. Suppose the joint colouring of F in M with respect to X is of the

form of a),b),c) from Lemma 9.2.10. Then if n≥ t +3, M has a double wheel or

non graphic double-wheel of rank t as a minor.

Proof. Suppose the joint colouring of F with respect to X is of form a). The



9.2. STARS 189

representation of M is given below



r1 r2 r3 . . . rn−1 rn x1 x2 . . . xn−3 x

j1 1 0 0 . . . 0 1 1 1 . . . 1 0
j2 1 1 0 . . . 0 0 0 0 . . . 0 1
j3 0 1 1 . . . 0 0 1 0 . . . 0 0
j4 0 0 1 . . . 0 0 0 1 . . . 0 0
...

...
...

... . . . ...
...

...
... . . . ...

...
jn−1 0 0 0 . . . 1 0 0 0 . . . 1 0
jn 0 0 0 . . . 1 1 0 0 . . . 0 1


Pivot on M j1,r1 and M jn,rn−1 to get the following matrix:



j1 r2 r3 . . . jn rn x1 x2 . . . xn−3 x

r1 1 0 0 . . . 0 1 1 1 . . . 1 0
j2 1 1 0 . . . 0 1 1 1 . . . 1 1
j3 0 1 1 . . . 0 0 1 0 . . . 0 0
j4 0 0 1 . . . 0 0 0 1 . . . 0 0
...

...
...

... . . . ...
...

...
... . . . ...

...
jn−1 0 0 0 . . . 1 1 0 0 . . . 1 1
rn−1 0 0 0 . . . 1 1 0 0 . . . 0 1


Deleting j1, rn and jn and contracting rn−1 gives:



r2 r3 . . . rn−2 x1 x2 . . . xn−3 x

r1 0 0 . . . 0 1 1 . . . 1 0
j2 1 0 . . . 0 1 1 . . . 1 1
j3 1 1 . . . 0 1 0 . . . 0 0
j4 0 1 . . . 0 0 1 . . . 0 0
...

...
... . . . ...

...
... . . . ...

...
jn−2 0 0 . . . 1 0 0 . . . 1 0
jn−1 0 0 . . . 1 0 0 . . . 0 1


which is a representation of a double wheel as required.

Suppose the joint colouring of F with respect to X is of form b). Without loss of
generality suppose j1 is assigned γ(x) and so are both jn and j2. The matroid M
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is represented by the matrix:



r1 r2 r3 r4 . . . rn−1 rn x1 x2 . . . xn−3 x

j1 1 0 0 0 . . . 0 1 1 1 . . . 1 1
j2 1 1 0 0 . . . 0 0 0 0 . . . 0 1
j3 0 1 1 0 . . . 0 0 1 0 . . . 0 0
j4 0 0 1 1 . . . 0 0 0 1 . . . 0 0
...

...
...

...
... . . . ...

...
...

... . . . ...
...

jn−1 0 0 0 0 . . . 1 0 0 0 . . . 1 0
jn 0 0 0 0 . . . 1 1 0 0 . . . 0 1


Pivoting on M j1,r1 and M jn,rn−1 gives



j1 r2 r3 r4 . . . jn rn x1 x2 . . . xn−3 x

r1 1 0 0 0 . . . 0 1 1 1 . . . 1 1
j2 1 1 0 0 . . . 0 1 1 1 . . . 1 0
j3 0 1 1 0 . . . 0 0 1 0 . . . 0 0
j4 0 0 1 1 . . . 0 0 0 1 . . . 0 0
...

...
...

...
... . . . ...

...
...

... . . . ...
...

jn−1 0 0 0 0 . . . 1 1 0 0 . . . 1 1
rn−1 0 0 0 0 . . . 1 1 0 0 . . . 0 1


The matroid M \{ j1, jn,rn}/rn−1 is represented by



r2 r3 r4 . . . rn−2 x1 x2 . . . xn−3 x

r1 0 0 0 . . . 1 1 1 . . . 1 1
j2 1 0 0 . . . 1 1 1 . . . 1 0
j3 1 1 0 . . . 0 1 0 . . . 0 0
j4 0 1 1 . . . 0 0 1 . . . 0 0
...

...
...

... . . . ...
...

... . . . ...
...

jn−1 0 0 0 . . . 1 0 0 . . . 1 1


,

which is a representation of a non graphic double wheel.

Suppose the joint colouring of F with respect to X is of form c). The matroid M
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is then represented by the matrix below



r1 r2 r3 r4 . . . rn−1 rn x1 x2 . . . xn−4 x

j1 1 0 0 0 . . . 0 1 1 1 . . . 1 1
j2 1 1 0 0 . . . 0 0 0 0 . . . 0 1
j3 0 1 1 0 . . . 0 0 0 0 . . . 0 1
j4 0 0 1 1 . . . 0 0 1 0 . . . 0 0
j5 0 0 0 1 . . . 0 0 0 1 . . . 0 0
...

...
...

...
... . . . ...

...
...

... . . . ...
...

jn−1 0 0 0 0 . . . 1 0 0 0 . . . 1 0
jn 0 0 0 0 . . . 1 1 0 0 . . . 0 1


First pivot on M j1,r1 to get



j1 r2 r3 r4 . . . rn−1 rn x1 x2 . . . xn−4 x

r1 1 0 0 0 . . . 0 1 1 1 . . . 1 1
j2 1 1 0 0 . . . 0 1 1 1 . . . 1 0
j3 0 1 1 0 . . . 0 0 0 0 . . . 0 1
j4 0 0 1 1 . . . 0 0 1 0 . . . 0 0
j5 0 0 0 1 . . . 0 0 0 1 . . . 0 0
...

...
...

...
... . . . ...

...
...

... . . . ...
...

jn−1 0 0 0 0 . . . 1 0 0 0 . . . 1 0
jn 0 0 0 0 . . . 1 1 0 0 . . . 0 1


.

Next, pivot on M j2,r2 to get



j1 j2 r3 r4 . . . rn−1 rn x1 x2 . . . xn−4 x

r1 1 0 0 0 . . . 0 1 1 1 . . . 1 1
r2 1 1 0 0 . . . 0 1 1 1 . . . 1 0
j3 1 1 1 0 . . . 0 1 1 1 . . . 1 1
j4 0 0 1 1 . . . 0 0 1 0 . . . 0 0
j5 0 0 0 1 . . . 0 0 0 1 . . . 0 0
...

...
...

...
... . . . ...

...
...

... . . . ...
...

jn−1 0 0 0 0 . . . 1 0 0 0 . . . 1 0
jn 0 0 0 0 . . . 1 1 0 0 . . . 0 1


.
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If we contract r1 and delete j1, j2 and rn we get:



r3 r4 . . . rn−1 x1 x2 . . . xn−4 x

r2 0 0 . . . 0 1 1 . . . 1 0
j3 1 0 . . . 0 1 1 . . . 1 1
j4 1 1 . . . 0 1 0 . . . 0 0
j5 0 1 . . . 0 0 1 . . . 0 0

...
...

... . . . ...
...

... . . . ...
...

jn−1 0 0 . . . 1 0 0 . . . 1 0
jn 0 0 . . . 1 0 0 . . . 0 1


,

which is a representation of a double wheel.

Lemma 9.2.12. Suppose n≥ t +4 and the joint colouring of F with respect to X

is of the form of d) from Lemma 9.2.10. Then M has a rank-t spike minor.

Proof. Delete x and let j1 be the joint assigned all colours of X−x. Take r2, . . . ,rn

and j1 as a basis. This has the following representation:

1 1 1 . . . 1 1 0
1 0 0 . . . 0 1 1
0 1 0 . . . 0 1 1
0 0 1 . . . 0 1 1
...

...
... . . . ...

...
0 0 0 . . . 1 1 1


which is a reduced standard representation of a spike.

The following well-known fact about fans has an easy, and omitted, proof.

Lemma 9.2.13. If ( f1, ... fn) is a fan where { f1, f2, f3} and { fn, fn−1, fn−2} are

triangles, then { f1, f2, f4, f6, . . . , fn−1, fn} is an independent set.

Notice that if we contract two non-adjacent rim elements of a wheel M the ground-
set of E(M)−{ j1, j2} is partitioned into two disjoint fans in M/{ j1, j2}.



9.2. STARS 193

Lemma 9.2.14. Suppose F has an even number of joints, and suppose there is

some partition of E(M)− X into two sets { j1,r1, j2,r2, . . . , jn−1,rn−1, jn} and

{rn, jn+1,rn+1, . . . , j2n,r2n} such that the following holds: the element xi is in a tri-

angle with r j and rk for some j ∈ {1, . . . ,n−1} and some k ∈ {n+1, . . . ,2n−1},
and, if xa 6= xb, then the triangles containing xa and xb are distinct. Then M has

an M∗(K3,n−1)-minor.

Proof. Contract j1, jn, ji+1, j2n. Then j2,r2,rn, ...rn−1,rn−2, jn−1 is a cycle and
jn+1,rn+2,rn+3, . . . ,r2n−3,r2n−2, j2n−1 is a cycle, and X is a matching between
two disjoint cycles. Therefore by Lemma 4.1.2 M has an M∗(K3,n−1)-minor.

Lemma 9.2.15. Suppose the joint colouring of F with respect to X is of form e)

of Lemma 9.2.10. Then M has an M∗(K3, n
2
)-minor.

Proof. This follows from Lemma 9.2.14.

The proof of Theorem 9.2.1 is now routine.

Theorem 9.2.1. There is a function f9.2.1 such that for all t ≥ 5 the fol-

lowing holds. If M is a binary matroid with a coindependent set X such

that

I) M \X has a maximal swirl-like pseudo-flower of order n where n≥ f9.0.1(t),

II) every 3-separation of M displayed by F is blocked by an element of X,

III) the crossing graph of X with respect to F in M is a star,

IV) there is no x ∈ X that contains a representative in k or more petals,

then M has minor isomorphic to one of the following:

i) a rank-t spike,

ii) a rank-t double wheel,

iii) a rank-t non graphic double wheel,

iv) M∗(K3,t).
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Proof. Let f9.2.1(t) = f9.2.2( f9.2.4(m)). By Lemma 9.2.2 there is a minor M1 of M

such that the following hold.

M1 \ (E(M1)∩X) has a swirl-like pseudo-flower F1 ⊆ F ,

E(M1)∩X = X1 is a coindependent set that is a minimal blocking set of F1,

F1 has order at least f9.2.4(m) ,

F1 is such that no proper petal contains a representative of more than one element
of X1, and

the crossing graph of X1 in F1 with respect to M1 is a star. By Lemma 9.2.4 M1

has a minor M2 in which the following hold.

i) M2 \ (E(M2)∩X) is a rank-m wheel,

ii) X2 = E(M2)∩X blocks all 3-separations displayed by the canonical flower
of M2 \X2,

iii) X2 is minimal with respect to this property, and

iv) the crossing graph of X2 with respect to M2 is a star with at least m
k vertices.

Since m = f9.2.7( f??(s1,s2)) it follows from Lemma 9.2.7 that there is a minor
of M3 of M2 such that M3 \ (X ∩E(M3)) is a wheel with at least f9.2.8(s1,s2)+ 3
joints, X ∩E(M′) is a minimal set of blocking elements for X , and there is a set
J1 of at least f9.2.8(s1,s2) joints of M3 with a joint colouring of J1 of one of the
following forms:



9.2. STARS 195

where c = γ(x) when x is the element crossing all others. By Lemma 9.2.8 there
is either some joint in J− J1 is coloured by at least s1 colours, or there is a subset
X4 of X3 such that in the joint colouring of F3 in M3 with respect to X4 there is a
set J3 of J− J1 with at least s2 joints in which every joint is assigned exactly one
colour, no joint in J3 is assigned colour γ(x), and if ji and jk are elements of J3

coloured by colour ci then ji and jk are adjacent.

Since s1,s2 ≥ f9.2.10(2t) it follows from Lemma 9.2.10 there is a minor M5 of M3

with coindepedent set X5 = X ∩E(M5) such that M5 \X5 has a maximal flower F5

with a joint colouring of F5 of one of the following forms:

The result then follows by combining Lemmas 9.2.11, 9.2.12, 9.2.15.
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9.3 Complete Graphs

In this section we prove the following theorem.

Theorem 9.3.1. There is a function f9.3.1 such that for all t ≥ 5 the following

holds. If M is a binary matroid with a coindependent set X such that

I) M \X has a maximal swirl-like pseudo-flower of order n where n≥ f9.3.1(t),

II) every 3-separation of M displayed by F is blocked by an element of X,

III) the crossing graph of X with respect to F in M is a complete graph,

IV) there is no x ∈ X that contains a representative in k or more petals for some

k ∈ Z>0.

then M has a minor isomorphic to one of the following:

i) a rank-t spike,

ii) a rank-t double wheel,

iii) a rank-t non graphic double wheel,

iv) M∗(K3,t).

In this section we work under the hypotheses of Theorem 9.3.1, that is we add the
following hypothesis to our previous hypotheses.

• The crossing graph of X with respect to F in M \X is a complete graph, and

• no element x ∈ X contains a representative in k or more petals.

We can also without loss of generality assume that all crossing elements are dis-
tinguishable from the joint colouring of F in M with respect to X . Therefore we
add the following hypothesis.

• Every element of X is distinguishable from every other element of X by the
joint colouring of F in M with respect to X .

Recall that the elements of X can either cross in the colouring of the basepoints of
F or they can cross by having representatives in the same petal.
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Definition 9.3.2. Let F be a swirl-like pseudo-flower and X a set of blocking
elements of F . We say that an element x ∈ X is strongly represented in a petal P

of F if F(x) contains an element of P that is not parallel to a joint of P, or F(x)

contains elements parallel to two joints of P.

For some m ∈ Z≥0 we say that F contains a m-big petal if F has a minimal petal
in which at least m elements of X are strongly represented.

We can view a colouring of a swirl-like pseudo-flower as a hypergraph, with the
joints the vertices and the colours the edges. That is, if there are k joints are
coloured by some c then let the set of these joints be S. The set S is then an edge
in the hypergraph. This means that we can now use the language of matchings.

The next lemma involves an infinite family of functions. This could be rewrit-
ten (as my supervisor would prefer) in terms of a single function with an extra
variable.

Lemma 9.3.3. For i ∈ Z≥1 let f9.3.3,i be the function such that f9.3.3,i(t, l) =

f2.4.4(t, f9.3.3,i−1(t, l)) and f9.3.3,1 = f2.4.4. Suppose the joint colouring of F with

respect to X uses at least f9.3.3,k(t, l) colours and no colour is assigned to more

than k points. Then there is a minor, M′, of M with a swirl-like pseudo-flower

F ′ ⊆ F that is blocked by a set X ′ = X ∩E(M′) with the following properties:

i) |X ′| ≥min{t, l},

ii) the joint colouring of F ′ with respect to X ′ is such that every joint is assigned

either all colours in γ(X ′) or exactly one colour of γ(X ′), and

iii) the crossing graph of the elements of X ′ is a complete graph.

Proof. If k−1 points are assigned n colours in common then, since all colours are
distinguishable from the joint colouring, the remaining colours must be contained
on distinct points and the result follows. Assume some point is assigned at least
f9.3.3,i(t, l) colours. By Lemma 2.4.4 either there is a matching using t colours
or a joint assigned at least f9.3.3,i−1(t, l) colours. If there is a matching using t

colours then there is a minor M′ of M with a coindependent set X ′ ⊆ X ∩E(M′)

such that the following hold:

i) M′ \ X ′ has a swirl-like pseudo-flower F ′ in which every displayed 3-
separation is blocked by an element of X ′,
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ii) the crossing graph of X ′ with respect to F ′ in M′ is a complete graph, and

iii) every joint in F ′ is assigned either all colours or exactly one colour.

As at most k−1 points are coloured by the same colour and all blocking elements
are distinguishable from the joint colouring we must at some point see such a
matching. The result then follows.

The following lemma is a routine corollary of Lemma 9.3.3 and is left to the
reader.

Lemma 9.3.4. There is a function f9.3.4 such that the following holds. If n ≥
f9.3.4(t) then M has a minor M′ such that if X ′ = X ∩E(M′) the following hold:

i) M′ \X ′ has a swirl-like pseudo-flower F ′ ⊆ F of order t,

ii) any displayed 3-separation of F ′ in M′ is blocked by some x ∈ X ′,

iii) the crossing graph of X ′ with respect to F ′ in M′ is a complete graph,

iv) the joint colouring of F ′ in M′ with respect to X ′ is such that every joint is

coloured by either all colours in γ(X ′) or exactly one colour in γ(X ′), and

v) every proper petal in F ′ is either |X ′|-big or contains a representative of ex-

actly one element of X ′.

For the remainder of this section we work under the following additional hypothe-
ses.

• the joint colouring of F in M with respect to X is such that every joint is
coloured by either all colours in γ(X) or exactly one colour in γ(X), and

• every proper petal in F is either |X ′|-big or contains a representative of
exactly one element of X .

We split into two cases, one where every petal contains a representative of exactly
one element of X and one where F contains an n′-big petal.
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9.3.1 No Big Petal

Throughout this subsection we work under the following additional hypothesis

• Every petal of F contains a representative of exactly one element of X .

Lemma 9.3.5. There is a function f9.3.5 such that the following holds. If n ≥
f9.3.5(t), then M has a minor M′ with a coindependent set X ′ such that M′ \X ′ is

a wheel, every vertical 3-separation of M′ \X ′ is blocked by an element of X ′, and

the crossing graph of X ′ with respect to M′ \X ′ is a complete graph.

Proof. The case where Pi is a 2-petal is trivial since M|Pi is connected. The case
where Pi is a 3-petal is an easy corollary of Lemma 2.1.16.

Throughout the remainder of this subsection we work under the following addi-
tional hypothesis

• M \X is a wheel.

• F is the canonical flower of M \X .

Lemma 9.3.6. There is a function f9.3.6 such that if n ≥ f9.3.6(t) the following

holds. There is a minor M′ of M such that M′ \ (X ∩E(M′)) is a rank-m wheel,

|X ∩ E(M′)| = t, and the joint colouring of the canonical flower of M′ \ (X ∩
E(M′)) has a set J1 of one of the following forms:
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and every element of (X ∩E(M′))−{γ−1(c)} crosses γ−1(c).

Proof. Since every element of X is distinguishable from the joint colouring of F ,
this follows from Lemma 2.4.7.
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We say that a joint that is coloured by all colours is a rainbow joint.

Lemma 9.3.7. There is a function f9.3.7 such that if n ≥ f9.3.7(t, l) then the fol-

lowing holds.

i) There is a minor M′, of M with a swirl-like pseudo-flower F ′ ⊆ F of order t

blocked by a set X ′ = X ∩E(M′) such that F ′ has at least 2 rainbow joints in

the joint colouring of F ′ in M′ with respect to X ′ and a set of the following

form:

or

ii) There is a minor M′, of M with a swirl-like pseudo-flower F ′ ⊆ F of order

l blocked by a set X ′ = X ∩E(M′) such that the joint colouring of F ′ with

respect to X ′ is of one of the following forms:
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Proof. Suppose n ≥ f9.3.6(m) where m ≥ fre f zxq(t)}, and γ−1(c) = x. By
Lemma 9.3.6 there is a minor M1 of M such that M1 \(X ∩E(M1)) has a swirl-like
pseudo-flower F1, and the joint colouring of F1 with respect to X1 contains a con-
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secutive set J1 of joints using m colours of one of forms i)-viii) from Lemma 9.3.6
where γ(X1) = {c1, . . . ,cm,c}. If the joint colouring is of form i) or v) then the
lemma follows. Assume that the joint colouring is of form ii) iii) or iv) vi) vii)
viii).

Let J′ = J(F1)− J1. Since every element of X − x crosses x, one of the following
holds:

1. J′ contains exactly one rainbow joint,

2. J′ contains more than one rainbow joint, or

3. there is a minor M2 of M such that M2\(X∩E(M2)) has a swirl-like pseudo-
flower F2 of order m′, and the following holds:

• the joint colouring of F2 with respect to X2 contains a consecutive set
J2 of joints using t colours {c1, ...,ct} such that J3 is of one of the
forms of Lemma 9.3.6, and J1∩ J2 = /0.

If J′ contains a rainbow joint then the result follows.

It follows from a routine case analysis that we may remove petals with basepoints
in J1 or J2 to obtain a minor M′ of M2 such that M′ \ (X ∩E(M′)) has a swirl-like
pseudo-flower F ′ with at least two rainbow joints and a set of the following form:

or the joint colouring of F ′ with respect to X ∩ E(M′) is of one of the forms
a),b),c),d),e),f) above.

Lemma 9.3.8. There is a function f9.3.8 such that the following holds. If n ≥
f9.3.8(t) and the joint colouring of F with respect to X is as in (d) of Lemma 9.3.7,

then M has an M∗(K3,t)-minor.

Proof. This follows from Lemma 9.2.14
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Lemma 9.3.9. There is a function f9.3.9 such that the following holds. If n ≥
f9.3.9(t) and the joint colouring of F with respect to X is as in (a), (b), (c), (e),

( f ), or (g) of Lemma 9.3.7, then M has a minor isomorphic to a rank-t spike, a

rank-t double wheel, a rank-t non graphic double wheel or M∗(K3,t).

Proof. This follows from Theorem 9.2.1.

Lemma 9.3.10. There is a function f9.3.10 such that if n≥ f9.3.10(t), the following

holds. Suppose that the joint colouring of F in M with respect to X has at least

two rainbow joints. Then M has a minor M′ such that M′ \ (E(M′)∩X) has a

swirl-like pseudo-flower F ′, F ′ is blocked by E(M′)∩X and F ′ has a t ′-big petal

P where t ′ ≥ t
k and all colours of γ(X ′) appear on at least one joint that is not a

joint of P.

Proof. Let j1 and ji be rainbow joints. If j1 and ji are adjacent then the result
follows easily by noting that the rim-based 2 petal with basepoint r ∈ cl{ j1, ji}
is an n′-big petal. Suppose j1 and ji are not adjacent then either [ j1, . . . , ji] j1

or [ ji, . . . , j1] j1 is a set of joints containing at least |X |2 colours, and at least half
of the colours contained in this set aredistinguishable by this set. Without loss of
generality suppose [ j1, . . . , ji] j1 is such a section. Remove all petals in [ ji, . . . , j1] j1

that do not have j1 or ji as a joint. There is now exactly one joint jn such that
[ ji, jn, j1] j1 . If this joint is not a rainbow joint then remove any petal with jn as
a joint. The resulting flower then has a joint colouring with either two or three
consecutive rainbow joints. Both of these cases give rise to a minor M′ of M with
swirl-like pseudo-flower F ′ that has an |X |8 -big petal P and every colour appears
on at least one joint that is not a joint of P.

The proof of the next theorem is now routine and left to the reader.

Lemma 9.3.11. There is a function f9.3.11 such that the following holds. If n ≥
f9.3.11(t) then either

• M has a minor M′ with coindepedent set X ′ such that the following hold:

i) M′ \X ′ is a wheel,

ii) X ′ blocks all vertical 3-separations of M′ \X ′,

iii) |X ′| ≥ t,
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iv) the joint colouring of M′ \X ′ has at least two rainbow joints and all

colours distinguishable from the joint colouring,

or

• M has a minor isomorphic to one of the following.

i) a rank-t double wheel,

ii) a rank-t non graphic double wheel,

iii) M∗(K3,t),

iv) a rank-t spike.

9.3.2 Big Petal

In this subsection we work under the following additional hypothesis,

• F has an n-big petal.

There are at most k n-big petals in F so there must be some set J1 of F in which
all joints in J1 are assigned exactly one colour and J1 contains at least n

k colours.
Remove all colours not appearing in this set. Let the set J1 be [ j1, . . . , ji] j1 . Let ja
and jb be two rainbow joints with minimal distance between them. Contract all
rim elements between joints in [ ji, . . . , jn] j1 that are not adjacent to ja and jb. Am
(omitted) case analysis shows that we can either reduce this to a case where we
have one big petal or where we have a wheel with three joints in the closure of all
fundamental circuits of the blocking elements. Combining this with Lemma 2.4.4,
we get the following two lemmas.

Lemma 9.3.12. There is a function f9.3.12 such that the following holds. Suppose

that n≥ f9.3.12(t) and F has an n-big joint-based 2-petal. There is a minor M′ of

M such that M′ \ (X ∩E(M′)) has a swirl-like pseudo-flower F ′ of order t, every

3 separation of M′ \ (X ∩E(M′)) is blocked by an element of X ′ and the joint

colouring of F ′ with respect to x′ is of one of the following forms:
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Lemma 9.3.13. There is a function f9.3.13 such that the following holds. Suppose

that n ≥ f9.3.13(t) and F has an n-big rim-based 2-petal or 3-petal. There is a

minor M′ of M with such that M′ \ (X ∩E(M′)) has a swirl-like pseudo-flower F ′

of order t, every 3 separation of M′ \ (X ∩E(M′)) is blocked by an element of X ′

and the joint colouring of F ′ with respect to x′ is of one of the following forms:

For the remainder of this subsection we work under the following additional hy-
potheses.

• F has exactly one big petal, and

• the joint colouring of F is of one of the forms described in Lemma 9.3.12
or Lemma 9.3.13

Lemma 9.3.14. If F has an n-big joint-based 2-petal P where n≥ f9.3.14(t) where

the elements of this petal form a circuit with the basepoint j of P, and for every

x ∈ X the shadow of x on P is parallel to an element of P and no two shadows of

elements of X are parallel in P, then M has a rank-t spike or an M∗(K3,t)-minor.
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Proof. If F has joint colouring of the first form in Lemma 9.3.12, when we con-
tract all rim basepoints of F we obtain a minor of M that is a circuit with the
property that there is an element of the circuit that is contained in a triangle with
every other point of the circuit. This is a spike. Suppose F ′ has joint colouring of
the second form from Lemma 9.3.12. Let j be the rainbow joint, in other words
j is the basepoint of the n-big petal. Contracting e gives a matching between two
disjoint circuits and therefore M′ has an M∗(K3,n)-minor.

Lemma 9.3.15. If F has an n-big joint-based 2-petal P where the elements of

P are a series pair in M with basepoint the basepoint of P, then M has either a

rank-n
2 spike or a double wheel with at least n

2 −1 joints as a minor.

Proof. If F has joint colouring of the second form from Lemma 9.3.12 then it is
easy to see that M has a rank-n spike minor. Suppose F has joint colouring of
the first from of Lemma 9.3.12. Let j be the joint of P and let P = {a,b}. By a
possible change of basis we can assume that a is in F(x) and j is not for at least
|X |
2 elements. We can delete all colours that do not have a ∈ F(x) and j /∈ F(x),

and find a minor M′ of M such that if X ′ = E(M′)∩X then the following holds.

1. |X ′| ≥ |X |2

2. the joint colouring of the canonical flower, F ′, of F with respect to X ′ is of
first form given in Lemma 9.3.12.

3. F ′ has a |X |2 -big petal P,

4. P∪B(P) is a triangle a,b, j where j is the basepoint of P, and

5. There is a c∈ {a,b} such that for any x∈X ′, the shadow of x on P is parallel
to c

We may contract a rim element of F ′ in M′ so that there is a point parallel to j

and delete any other resulting parallel elements. This can be seen to be a double
wheel.

The proof of the following lemma is similar to that of the previous lemma and is
omitted.

Lemma 9.3.16. If F has an n-big rim-based 2-petal where the elements of this

petal are a circuit, then M has a rank-n spike or an M∗(K3,n)-minor.
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Lemma 9.3.17. If F has an n-big rim-based 2-petal P where the elements are all

parallel to the basepoint of P, then M has a non graphic double wheel with rank

n or a rank-n spike as a minor.

Proof. Suppose the joint colouring of F is of the second form given in
Lemma 9.3.13. In this case M can be represented by a matrix of the following
form:



r1 r2 r3 r4 r5 ... rn−1 rn x1 x2 x3 x4 ... xn−3 xn−2

j1 1 0 0 0 0 . . . 0 1 1 1 1 1 . . . 1 1
j2 1 1 0 0 0 . . . 0 0 1 1 1 1 . . . 1 1
j3 0 1 1 0 0 . . . 0 0 1 0 0 0 . . . 0 0
j4 0 0 1 1 0 . . . 0 0 0 1 0 0 . . . 0 0
j5 0 0 0 1 1 . . . 0 0 0 0 1 0 . . . 0 0
j6 0 0 0 0 1 . . . 0 0 0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
jn−1 0 0 0 0 0 . . . 1 0 0 0 0 0 . . . 1 0
jn 0 0 0 0 0 . . . 1 1 0 0 0 0 . . . 0 1


It is then trivial to see that M \ r1 is a non graphic double wheel. When the joint
colouring of F is of the first form from Lemma 9.3.13 it is easy to see that M has
a spike minor.

Finally we need to consider the 3-petal case. The next lemma is essentially the
same as Lemma 9.3.17.

Lemma 9.3.18. If P is a 3-petal of F in M and the joints of P are in F(x) for

every x ∈ X, then M has a rank-n non graphic double wheel or a rank-n spike as

a minor.

Lemma 9.3.19. There is a function f9.3.19 such that if n≥ f9.3.19(t) the following

holds. Suppose F has an n-big 3-petal P and is such that the following holds.

1. M|(P∪ J(P)) is a wheel,

2. the joints of P are joints of this wheel

3. for every x ∈ X, the shadow of x on P is parallel to an element of P, and

4. no two shadows of elements of X on P are parallel.
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Then M has a rank-t spike, a rank-t double wheel, a rank-t non graphic double

wheel or M∗(K3,t) as a minor.

Proof. By reducing petals containing representatives of only one blocking ele-
ment this case can be reduced to the case covered in Theorem 9.2.1.

Combining this with the results for blocking petals containing representatives of
a large number of blocking elements we get the following theorem.

Theorem 9.3.20. There is a function f9.3.20 such that the following holds. If n ≥
f9.3.20(t) and F has an n-big petal then M has a minor isomorphic to one of

i) M∗(K3,t),

ii) a rank-t spike,

iii) a rank-t double wheel,

iv) a rank-t non graphic double wheel.

Proof of Theorem 9.3.1

We now have all the tools we need to prove Theorem 9.3.1 which, for convenience,
is restated below.

Theorem 9.3.1.There is a function f9.3.1 such that for all t ≥ 5 the following holds.

If M is a binary matroid with a coindependent set X such that

I) M \X has a maximal swirl-like pseudo-flower of order n where n≥ f9.0.1(t),

II) every 3-separation of M displayed by F is blocked by an element of X,

III) the crossing graph of X with respect to F in M is a complete graph,

IV) there is no x ∈ X that contains a representative in more than k petals,

then M has a minor isomorphic to one of the following:

i) a rank-t spike,

ii) a rank-t double wheel,
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iii) a rank-t non graphic double wheel,

iv) M∗(K3,t).

Proof. Let n≥ f9.3.4(max{ f9.3.11( f9.3.20(t)), f9.3.20(t)}).

Since n≥ f9.3.4(m) where m=max{ f9.3.11( f9.3.20(t))), f9.3.20(t)}, there is a minor
M1 of M such that if X1 = X ∩E(M1) the following hold:

i) M1 \X1 has a swirl-like pseudo-flower F1 ⊆ F of order t,

ii) any displayed 3-separation of F1 in M1 is blocked by some x ∈ X1,

iii) the crossing graph of X1 with respect to F1 in M1 is a complete graph,

iv) the joint colouring of F1 in M1 with respect to X1 is such that every joint is
coloured by either all colours in γ(X1) or exactly one colour in γ(X1), and

v) every proper petal in F1 is either |X1|-big or contains a representative of ex-
actly one element of X1.

Since F1 has order at least f9.3.11(m′) where m′ = ( f9.3.20(t)), either

• M1 has a minor M2 with coindepedent set X2 such that the following holds:

i) M2 \X2 is a wheel,

ii) X2 blocks all vertical 3-separations of M2 \X2,

iii) |X2| ≥ m′, and

iv) the joint colouring of M2 \X2 has at least two rainbow joints and all
colours distinguishable from the joint colouring

or

• M has a minor isomorphic to one of the following.

i) a rank-m′ double wheel,

ii) a rank-m′ non graphic double wheel,

iii) M∗(K3,m′),

iv) a rank-m′ spike.
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Since m,m′ ≥ f9.3.20(t) by Lemma 9.3.20 we now see that M has a minor isomor-
phic to one of

i) M∗(K3,t),

ii) a rank-t spike,

iii) a rank-t double wheel,

iv) a rank-t non graphic double wheel.

9.4 Paths

In this section we prove the following theorem.

Theorem 9.4.1. There is a function f9.4.1 such that for all t ≥ 5 the following

holds. If M is a binary matroid with a coindependent set X such that

I) M \X has a maximal swirl-like pseudo-flower of order n where n≥ f9.4.1(t),

II) every 3-separation of M displayed by F is blocked by an element of X,

III) the crossing graph of X with respect to F in M is a path,

IV) there is no x ∈ X that contains a representative in more than k petals,

then M has a minor isomorphic to one of the following:

i) a rank-t spike,

ii) a rank-t double wheel,

iii) a rank-t circular ladder,

iv) a rank-t Möbius ladder,

v) M(K3,t),

vi) M∗(K3,t).
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In this section we work under the hypotheses of Theorem 9.4.1. That is we work
under the following additional hypotheses:

• the crossing graph of X with respect to F in M is a path,

• there is no x ∈ X that contains a representative in more than k petals.

Let γ(X) = {c1, . . . ,cn′} where n′ ≥ n
k and suppose the following holds:

1. ci crosses exactly ci−1 and ci+1, for i ∈ {2, . . . ,a−1},

2. c1 crosses exactly c2, and

3. ca crosses exactly ca−1.

We can relabel joints so that c1 is assigned to j1. To every colour ci assign a
pair ρ(ci) = ( ja, jb) where ja and jb are joints assigned ci and ja and jb have
the property that no joint ja′ with [ ja′, ja] j1 is assigned colour ci and no jb′ with
[ jb, jb′] j1 is assigned colour ci.

Definition 9.4.2. Let C be a collection of colours with the property that the cross-
ing graph of C is a path. We say {c1, . . . ,cd} ⊆ C is nested for F in M if, when
the minimum element of ρ(ci) is less than the minimum element of ρ(c j), the
maximum element of ρ(ci) is greater than the maximum element of ρ(c j) for
i, j ∈ {1, . . . ,d}. We say that F in M \X is partially blocked by a set X in a nested

way if X is nested for F in M \X .

We say that a collection of colours {c1, . . . ,ca} ⊆ C is shell-like for F in M if,
when the minimum element of ρ(ci) is less then the minimum element of ρ(c j),
the maximum element of ρ(ci) is at most the maximum element for ρ(c j). We
say that F in M \X is blocked by a set X in a shell-like way if X blocks all 3-
separations of M \X displayed by F and γ(X) is shell-like in F .

The definition above is a little indigestible so we give an example of a nested
collection of colours and a shell-like collection of colours below.
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The following lemma is clear and thus the proof is omitted.

Lemma 9.4.3. There is a function f9.4.3 such that if n ≥ f9.4.3(t), then F either

contains a nested sequence of blocking elements of size at least t, or a set of F of

size at least t that is blocked in a shell-like way.

We therefore add the following hypothesis.

• Either X is shell-like for F in M or X is nested for F in M.

9.4.1 Nested Blocking Elements

Until stated otherwise we work under the following hypothesis.

• X is nested for F in M.

By removing petals we may assume that every element x ∈ X contains a represen-
tative in exactly two petals. We therefore get the following lemma.

Lemma 9.4.4. There is a function f9.4.4 such that if n≥ f9.4.4(t), then the follow-

ing holds. Let X ′ = E(M′)∩X. There is a minor M′ of M such that |X ′| ≥ t, and

M′ \X ′ has a swirl-like pseudo-flower F ′, and that the joint colouring of F ′ with

respect to X ′ is of one of the following forms.
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Figure 9.1: Figure 9.4.4

In the lemmas below we shall be referring to case a) in Figure 9.4.4 when we refer
to case a) etc.

Lemma 9.4.5. There is a function f9.4.5 such that if n≥ f9.4.5(t), then the follow-

ing holds. If F has joint colouring as in case a) then M has an M(K3,n)-minor.

Proof. If F has joint colouring as in a) then either ja or jb (without loss of gen-
erality say ja) is the basepoint of t 2-petals that each contain a representative of
exactly one blocking element with colour in c1, . . . ,ct , and this blocking element
is not parallel to the basepoint of any of these petals.

Consider the set P1, ...,Pt of petals with basepoint ja. There is a minor M1 of M

obtained by deleting A ⊆ Pi and contracting B ⊆ Pi such that M1 \X has a flower
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F1 = (P1, ..,Pi−1,P′i ,Pi+1, ...,Pt), where M1|(P′i ∪ ja) is a triangle and F(γ−1(ci))

contains an element of P′i (note that ja /∈ P′i ). For every Pi with i∈ {1, . . . , t}, M1|Pi

can be reduced in such a way. Let M′ be a minor of M that is such that M′ \X has
swirl-like pseudo-flower F ′ = (P′1, ...,P

′
t ,Pt+1, ...,Pn) in which every petal, P′i has

basepoint ja and is such that M′|(P′i ∪{ ja}) is a triangle and no shadow of x on a
petal is parallel to ja for x ∈ γ−1({c1, ...,ct}).

Let P′′1 , ...,P
′′
t be the set of petals of F with basepoint jb containing a representative

of one of γ−1({c1, . . . ,ct}). Suppose without loss of generality that P′′i contains
a representative of γ−1(ci) = xi for i ∈ {1, ..., t}. Let M2 be a minor of M′ that
contains exactly one element, ai of P′′i for i∈ {1, ..., t} and is such that the shadow
of xi on P′′i is parallel to ai and ai is parallel to jb in M2. The minor M2 of M has
a reduced representation given by the following matrix:

1 1 0 0 0 0 . . . 0 0
0 0 1 1 0 0 . . . 0 0
0 0 0 0 1 1 . . . 0 0
...

...
...

...
...

... . . . ...
...

0 0 0 0 0 0 . . . 1 1
1 0 1 0 1 0 . . . 1 0
0 1 0 1 0 1 . . . 0 1


Therefore M has an M(K3,t)-minor.

Lemma 9.4.6. There is a function f9.4.6 such that if n≥ f9.4.6(t) then the following

holds. If F has joint colouring as in case b), then M has a spike minor with rank

t.

Proof. Let P1, . . . ,Pn be the rim-based 2-petals with joints jb and jb+1. Suppose
Pi contains a representative of γ−1(ci) and let this point be pi. There is a minor of
M in which p1, . . . , pi form a circuit with rb. When we contract rb it is easy to see
a rank-t spike minor of M.

Lemma 9.4.7. There is a function f9.4.7 such that if n≥ f9.4.7(t) then the following

holds. If F has a joint colouring as in case c), then M has an M∗(K3,t)-minor.

Proof. This follows by Lemma 9.2.15



9.4. PATHS 217

Lemma 9.4.8. There is a function f9.4.8(t) such that if n≥ f9.4.8 then the following

holds. If F has joint colouring as in d) or e) then M has a spike minor with rank

t, or an M(K3,t)-minor.

Proof. These cases can be reduced to case b) or a) respectively by contracting rim
elements.

Lemma 9.4.9. There is a function f9.4.9 such that if n≥ f9.4.9(t) then the following

holds. If F has a joint colouring as in f ) or g), then M has a rank-t spike minor,

Proof. This follows from noting the that rim elements of F form a circuit.

Lemma 9.4.10. There is a function f9.4.10 such that if n≥ f9.4.10 then the following

holds. If F has a joint colouring as in h), then M has a rank-t clam as a minor.

Proof. This is immediate from the definition of a clam.

Lemma 9.4.11. There is a function f9.4.11 such that if n ≥ f9.4.11(t) then the fol-

lowing holds. If F has a joint colouring as in i), then M has an M∗(K3,t)-minor.

Proof. This is the same as the proof of Lemma 9.2.15.

Lemma 9.4.12. There is a function f9.4.12 such that if ≥ f9.4.12(t) then the fol-

lowing holds. If F has a joint colouring as in j) then M has a rank-t spike as a

minor.

Proof. This can easily be reduced to case f ).

The proof of the following lemma is now routine and left to the reader.

Lemma 9.4.13. There is a function f9.4.13 such that the following holds. If n ≥
f9.4.13(t) and X is nested, then M has a minor isomorphic to one of the following

matroids.

1. M(K3,t),

2. a rank-t spike,

3. M∗(K3,t),

4. a rank-t clam.
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Shells

We now discard the hypothesis that F is blocked in a nested way and instead work
under the following hypothesis.

• F is blocked by X in a shell-like way.

In what follows it is handy to use pictures a lot. In general in this subsection pic-
tures of matroids will be pictures of petals in matroids. The points in the matroids
come in several different types in the pictures. A square blue point represents a
joint. If the petal we are drawing is a rim-based 2-petal or a 3-petal, Pi, then ji is
the blue square on the left and ji+1 is the blue square on the right. Black points
are in M. When we block in a shell-like way, for any Pi there is some xi−1,xi ∈ X

with xi−1 ∈ cl(Pi−1∪Pi) and xi ∈ cl(Pi∪Pi+1). Consider the shadow x′i−1 of xi−1

on Pi. If this is parallel to an element of M, then this is denoted by a green circle,
otherwise it is denoted by a green triangle and this point is not in M. Consider the
shadow x′i of xi on Pi. If this is parallel to an element of M then this is denoted
by a red circle, otherwise it is denoted by a red triangle and this point is not in M.
Notice that if we consider adjacent petals Pi and Pi+1, there is a triangle containing
the point of Pi coloured red, and the point of Pi+1 coloured green, and blocking
element xi.

The following lemma follows by concatenating petals.

Lemma 9.4.14. There is a function f9.4.14 such that the following holds. If n ≥
f9.4.14(t), then there is a minor M′ of M with coindependent set X ′ such that M′\X ′

has a swirl-like pseudo-flower F ′ of order at least t and the following hold.

i) F ′ is blocked by X ′ in a shell-like way,

ii) every petal if F ′ is a 3-petal,

iii) every x ∈ X ′ has a representative in exactly two petals and these petals are

adjacent,

iv) if x,y ∈ X cross then there is a petal, Pi, containing a representative of x and

a representative of y. Moreover, if x contains a representative in Pi−1 and

y contains a representative in Pi+1 then there is no 2-separation (A,B) in

M|(Pi∪ J(Pi)) such that {x, ji} ∈ A and {y, ji+1} ∈ B.
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Until otherwise stated we work under the following hypotheses.

• F ′ is blocked by X ′ in a shell-like way,

• every petal if F ′ is a 3-petal,

• every x ∈ X ′ has a representative in exactly two petals and these petals are
adjacent,

• if x,y ∈ X cross then there is a petal, Pi, containing a representative of x and
a representative of y and if x contains a representative in Pi−1 and y contains
a representative in Pi+1 then there is no 2-separation (A,B) in M|(Pi∪ J(Pi)

such that {x, ji} ∈ A and {y, ji+1} ∈ B.

Lemma 9.4.15. Let Pi be a 3-petal of F containing representatives of blocking

elements x1 and x2. Suppose that x1 contains a representative in Pi−1 and x2

contains a representative in Pi+1. Then M has a minor M′ such that X ⊆M′ and

M′\ X has a flower F = (P1, ...,Pi−1,P′i ,Pi+1, ...,Pn) where M′|P′i is of one of the

following forms:
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Proof. Let x′i be the shadow of xi on P. Consider the elements of F(x′1) and F(x′2).

Suppose ji ∈ F(x′1). If ji−1 ∈ F(x′2) there is a minor M′ of M obtained
by deleting A ⊆ Pi and contracting B ⊆ Pi such that M′ \ X has a flower
F = (P1, ..,Pi−1,P′i ,Pi+1, ...,Pn) and M|P′i is of the one of the following forms:
a),b),c),d),e), f ),g) or h). If ji−1 /∈ F(x′2) and ji ∈ F(x′1) or ji−1 ∈ F(x′2)

and ji /∈ F(x′1), then by Lemma 2.1.16 there is a minor M′ of M obtained
by deleting A ⊆ Pi and contracting B ⊆ Pi such that M′ \ X has a flower F =

(P1, ..,Pi−1,P′i ,Pi+1, ...,Pn) and M|P′i is of the one of the following forms:
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So suppose that F(x′1)∩ J(Pi) ∈ { ji−1, /0} and F(x′2)∩ J(Pi) ∈ { ji, /0}. Consider
the non-joint elements of F(x′1) and F(x′2). These must exist as otherwise x1 and
x2 would not cross. There must be some pair of elements, r and g, with g ∈ F(x′1)

and r ∈ F(x′2) that are such that there is no 2-separation of Pi separating r and g.
We may then apply Lemma 8.3.6 to elements r,g, ji−1, ji. The shadow of x1 on P

is then either parallel to g or in the closure of g and ji−1, and the shadow of x2 on
P is then either parallel to r or in the closure of r and ji. A case analysis of this
then gives one of the situations described in the statement of the lemma.

We can consider a minor M′ of M obtained by “composing adjacent petals”, where
composition is described as follows. Let Pi and Pi+1 be two adjacent petals of
F . Suppose Pi is a 3-petal of F containing representatives of blocking elements
x1 and x2. Suppose that x1 contains a representative in some petal Pa, and x2

containsa representative in Pi+1, with none of Pa,Pi,Pi+1 equal. Further suppose
that [Pa,Pi,Pi+1]P1 . Suppose Pi+1 is a 3-petal of F containing representatives of
blocking elements x2 and x3. Suppose that x3 contains a representative in some
petal Pb and we know x2 contains a representative in Pi. We compose Pi and Pi+1

by considering a minor of M′ of M with M′ \X having swirl-like pseudo-flower
F ′ = (P1, ...,Pi−1,P′i ,Pi+2,Pn) where M′|P′i is a minor of M|(Pi∪Pi+1∪{x2}) and
is of one of the forms described in Lemma 9.4.15 (We know this will be possi-
ble as there is no 2-separation with x′1 on one side and x′3 on the other). There-
fore, for every pair of arrangements from Lemma 9.4.15, we have an arrangement
from Lemma 9.4.15 to send this pair to in the composition. There may be sev-
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eral possible choices for composition of two petals but we fix one of these to
be the composition. This gives a multiplication table whose entries come from
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C. We use Pi ◦ Pi+1 to denote
concatenation of Pi and Pi+1, and if we see Pi ◦Pi+1 ◦Pi+2 we concatenate left
to right, in other words (Pi ◦Pi+1)◦Pi+2

The proof of the following lemma is courtesy of Jim Geelen.

Lemma 9.4.16. Let S be a string taking entries from a finite alphabet A, let

S be the set of all substrings of S, and let φ be a function taking elements

of S to elements of A. There is some function f9.4.16 such that if S is a se-

quence of elements from A of length at least f9.4.16(t), then there is an a ∈ A

such that the following holds. There is a substring ai1,ai2, ...,ain+1 of S such that

φ(aik ,aik+1, ...,aik+1−1) = a for i ∈ {1, ...,n}.

Proof. Suppose S = (a1, . . . ,an) and for each i ∈ {1, ...,n} construct a vector bi ∈
ZA where, for each a ∈ A, we let bi(a) denote the longest sequence of consecutive
substrings of S starting at xi that each have value a. Note that no two of the
vectors b1, . . . ,bn are the same, so if n > t |A| then there is some bi(a) that is at
least t +1.

From this we immediately get the following lemma.

Lemma 9.4.17. There is a function f9.4.17 such that the follow-

ing holds. Suppose n ≥ f9.4.17(t). Then there is some α ∈
{a,b,c,d,e, f ,g,h, i, j,k, l,m,n,o, p,q,r,s, t,u,v,w,x,y,z,A,B,C,D,E} such that

there is some subset Pi1, ...,Pit+1 of petals of F such that Pik ◦Pik+1 ◦ ...◦Pik+1−1 = a

for k ∈ {1, ...,n}.

We therefore add the following hypothesis.

• All petals of F − {P1,Pn} have the same form and that form is one of
{a,b,c,d,e, f ,g,h, i, j,k, l,m,n,o, p,q,r,s, t,u,v,w,x,y,z,A,B,C,D,E}.

Therefore we are only interested in composing a petal with another of the same
type, so fortunately we can restrict our attention to the diagonal entries of the
multiplication table for composition of petals.
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The diagonal entries of the multiplication table are as follows where ◦ is the
symbol for composition:

a◦a = a b◦b = e c◦ c = c d ◦d = e

e◦ e = d f ◦ f = d g◦g = r h◦h = r

i◦ i = m j ◦ j = m k ◦ k = r l ◦ l = r

m◦m = s n◦n = s o◦o = j p◦ p = e

q◦q = d r ◦ r = r s◦ s = s t ◦ t = v

u◦u = y v◦ v = v w◦w = v x◦ x = y

y◦ y = y z◦ z = z A◦A = A B◦B = v

C ◦C =C D◦D = D E ◦E = y

Lemma 9.4.18. There is a function f9.4.18 such that the following holds. If

n ≥ f9.4.18(t) and all petals of F are of the same form and this is one of forms

a,b,c,d,e, f ,g,h, i, j,k, l,m,n,o, p,q,r,s, t,u,v,w,x,y,z,A,B,C,D,E, then M has a

minor M′ such that the following hold.

1. M′ has a coindependent set X ′ such that M \X ′ has a maximal swirl-like

pseudo-flower F ′ of order at least t,

2. Every 3-separation of M′ displayed by F ′ is blocked by an element of X ′,

3. X ′ blocks F in a shell-like way,

4. every petal of F is of form a, or every petal of F is of form c, or every petal

of F is of form r or every petal of F is of form s.

Proof. Many of the cases can be easily seen from the composition rules above.
We give details on the cases that cannot.

If F in M \X has 6 consecutive petals P1, ...,P6 of form v), then there is a minor
M′ of M such that M′ \ (X −{x1,x2,x4,x5}) has a flower F ′ = (P,P′,P7, ...,Pn)

such that M′|(P7∪·· ·∪Pn) = M|(P7∪·· ·∪Pn) and P,P′ both have form l). These
two petals can then be composed to give a minor M′′ of M such that M′′ \ (X −
{x1, . . . ,x5}) has a flower F ′′=P′′,P7, . . . ,Pn such that M′|(P7∪·· ·∪Pn)=M|(P7∪
·· ·∪Pn) and P′′ has form r). We can do a similar thing with petals of form y).

If F in M \X has 3 consecutive petals P1,P2,P3 of form z), then there is a minor
M′ of M such that M′ \ (X −{x1,x2}) has a flower F ′ = P′,P4, ...,Pn such that
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M′|(P4 ∪ ·· · ∪Pn) = M|(P4 ∪ ·· · ∪Pn) and P′ has form r). We can do a similar
thing for petals of form A), a) and D).

If F in M \X has 3 consecutive petals P1,P2,P3 of form d) we can compose P1

and P2 to get a petal of form e) followed by a petal of form d). The same things
applies if F has 3 consecutive petals of form e).

If F in M \X has 2 consecutive petals P1,P2 where P1 has form d) and P2 has
form d), then there is a minor M′ of M such that M′ \ (X −{x1}) has a flower
F ′ = P′,P3, ...,Pn such that M′|(P3∪ ·· ·∪Pn) = M|(P3∪ ·· ·∪Pn) and P′ has form
s). We can do the same thing when P1 has form e) and P2 form d).

The following lemma is clear.

Lemma 9.4.19. If the petals of F are all of type a) or all of type c) then M is

graphic.

Lemma 9.4.20. There is a function f9.4.20 such that if n ≥ f9.4.20(t), then the

following holds. If the petals of F are all of type p) or q) then M has a rank-t

circular ladder as a minor.

Proof. If all petals are of type p we have the matroid below where
g1,r1,g2,r2, ...,gn,rn form a circuit.
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We can then see that M|{g1,r1,g2,r2, ...,gn,rn,x1,x2, ...,xn−1,b,c, j} is a circular
ladder. The same proof holds when the petals are of type q.

This means that the proof of the following lemma is routine. In this lemma we
have discarded all hypotheses.

Lemma 9.4.21. There is a function f9.4.21 such that if M is a binary matroid with

coindependent set X such that the following hold:

i) M \X has a maximal swirl-like pseudo-flower F,

ii) F is blocked by X and the crossing graph of X is a path,

iii) there is a consecutive set of petals of F of size at least f9.4.21(n) where the

elements in this section block F in a shell-like way,

then there is a minor of M that is either an n-rung circular ladder, an n-rung

Möbius ladder, a double wheel or M(K4,n).

Proof. We show that if f9.4.21(n)≥ f9.4.14( f9.4.17( f9.4.18(max{ f9.4.19(t), f9.4.20(t)})))),
then the result follows. By Lemma 9.4.14 there is a minor M1 of M with coin-
dependent set X1 such that M1 \X1 has a swirl-like pseudo-flower F1 of order at
least ( f9.4.17( f9.4.18(max{ f9.4.19(t), f9.4.20(t)})) and the following hold.

i) F1 is blocked by X1 in a shell-like way,

ii) every petal of F1 is a 3-petal,

iii) every x ∈ X1 has a representative in exactly two petals and these petals are
adjacent,

iv) if x,y ∈ X1 cross then there is a petal, Pi, of F1 containing a representative
of x and a representative of y, and if x contains a representative in Pi−1 and
y contains a representative in Pi+1, then there is no 2-separation (A,B) in
M|(Pi∪ J(Pi)) such that {x, ji} ∈ A and {y, ji+1} ∈ B.

By Lemma 9.4.17 there is some consecutive subset of petals of F1 that can be
partitioned into f9.4.18(max{ f9.4.19(t), f9.4.20(t)}) parts such that if Pi and Pj are
petals of F ′ contained in the same part then so is Pk for all petals Pk such that
[Pi,Pk,Pj]P1 , and all parts concatenate to give the same thing.
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By the multiplication table for concatenation there is a minor M2 of M1 with coin-
dependent set X2 such that M2 \X2 has a swirl-like pseudo-flower F2 of order at
least max{ f9.4.19(t), f9.4.20(t)}) and the following hold.

i) F2 is blocked by X2 in a shell-like way,

ii) every petal if F2 is a 3-petal,

iii) every x ∈ X2 has a representative in exactly two petals and these petals are
adjacent,

iv) if x,y ∈ X2 cross then there is a petal, Pi of F2 containing a representative
of x and a representative of y, and if x contains a representative in Pi−1 and
y contains a representative in Pi+1, then there is no 2-separation (A,B) in
M|(Pi∪ J(Pi)) such that {x, ji} ∈ A and {y, ji+1} ∈ B.

v) all petals in F2 are of the same form and that form is one of a),c),r),s).

Since the order of F3 is at least max{ f9.4.19(t), f9.4.20(t)}), the result now follows
from Lemma 9.4.19 and Lemma 9.4.20.

The proof of Theorem 9.4.1 is now routine and is omitted.

9.5 Proof of Theorem 9.0.1

We now have all the pieces of the jigsaw that is the proof of Theorem 9.0.1 and
all that remains is to put them together.

Theorem 9.0.1. There is a function f9.0.1 such that for all t ≥ 5 the following hold.

If M is a binary matroid with a coindependent set X such that M\X has a maximal

swirl-like pseudo-flower of order n where n ≥ f9.0.1(t) and every 3-separation of

M displayed by F is blocked by an element of X, then M has minor isomorphic to

one of the following:

i) a rank-t circular ladder,

ii) a rank-t Möbius ladder,

iii) a rank-t spike,
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iv) a rank-t double wheel,

v) a rank-t non graphic double wheel,

vi) N(K3,t),

vii) M(K4,t),

viii) a rank-t clam,

ix) M∗(K3,t) blocked in a path-like way

Proof. Suppose n ≥ f8.2.6(max{ f9.1.3(t), f9.2.1(t), f9.3.1(t), f9.4.1(t)}, f9.1.3(t)).
By Theorem 8.2.6 either there is some x ∈ X that blocks at least f9.1.3(t) dis-
played separations of M or there is a minor M′ of M with coindependent set
X ′ = X ∩E(M′) such that the following hold.

1. M′ \X ′ has a swirl-like pseudo-flower F ′,

2. every 3-separation of M′ displayed by F ′ is blocked by some element x∈X ′,

3. the crossing graph of X ′ with respect to F ′ in M′ is either a star, a path or a
complete graph on at least max{ f9.2.1(t), f9.3.1(t), f9.4.1(t)} elements.

If there is some x ∈ X ′ that blocks at least f9.1.3(t) displayed 3-separations of
M. then by Theorem 9.1.3 there is a minor of M that is isomorphic to a rank-t
circular ladder. If the crossing graph of X ′ is a star, then, since n ≥ f9.2.1(t), by
Theorem 9.2.1 M has a rank-t spike, a rank-t double wheel, a rank-t non graphic
double wheel or M∗(K3,t) as a minor. The remainder of the proof is similar and
left to the reader.
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Summing Up and Future Work

The two main theorems of this thesis are the following.

Theorem. There is a function f such that if M is a 4-connected matroid of rank

f (n) with an M(K3, f (n)) or M∗(K3, f (n)) minor and no minor that that is M∗(K3,t)

blocked in a path-like way, then M must have a minor isomorphic to one of

1. N(K3,n),

2. M(K4,n),

3. (N(K3,n))
∗,

4. M∗(K4,n),

5. an n-rung circular ladder,

6. an n-rung Möbius ladder,

7. a rank-n a double wheel,

8. a rank-n non graphic double wheel.

Theorem. There is a function f such that the following holds. If M is a binary

matroid with coindependent set X such that M \X has a swirl-like pseudo-flower

of order n and every 3-separation of M\X displayed by F is blocked by an element

of X, then M has a minor isomorphic to one of the following.

1. N(K3,n),

229
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2. M(K4,n),

3. (N(K3,n))
∗,

4. M∗(K4,n),

5. an n-rung circular ladder,

6. an n-rung Möbius ladder,

7. a rank-n a double wheel,

8. a rank-n non graphic double wheel,

9. a rank-n spike,

10. M∗(K3,t) blocked in a path-like way

11. a rank-n clam.

The aim of this thesis was to find the unavoidable minors of binary 4-connected
matroids which unfortunately we have not been able to do in the given time. The
next step on the way to this result will be to prove the following conjecture.

Conjecture 10.0.1. For every n there is an m such that the following holds. Let M

is binary 4-connected matroid with a minor N that has a swirl-like pseudo-flower

of order m such that all 3-separations displayed by F are bridged in M. Then

either M or M∗ has a minor M′ such that the following hold.

i) M′ has a spanning restriction N′,

ii) N′ has a swirl-like pseudo-flower F ′, and

iii) all 3-separations of N′ displayed by F ′ are blocked in M′.

We believe that we know how to prove this so hopefully this will be an easy job.
Once we have proved Conjecture 10.0.1 the problem of finding the unavoidable
minors of binary 4-connected matroids with a wheel minor and no large spike
minor will have been resolved up to an analysis of clams.

The first step now is to completely resolve the case when we are blocking M∗(K3,t)

in a path-like way.
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The next step will be the find the unavoidable minors of binary 4-connected ma-
troids with a large spike minor. We expect this to be no more difficult than the
analysis of binary 4-connected matroids with an M(K3,n)-minor. We believe that
all the techniques needed for this will be techniques used in this thesis, although
judging by previous results we may be a little overoptimistic in this belief.

Once we have found the unavoidable minors of a large binary 4-connected matroid
with a rank n-spike, M(K3,n), M∗(K3,n) or rank-n wheel minor we will have a
complete set of unavoidable minors for the set of binary 4-connected matroids
with no clam minor.

The final step to complete the analysis of unavoidable minors of large binary 4-
connected matroids is an analysis of the clam outcome. Unfortunately we do not
yet have a good idea of how to do this or how long this analysis will take.

We also plan to continue with this project and attempt to find unavoidable mi-
nors of representable 4-connected matroids and unavoidable minors of general
4-connected matroids. Of course we really want to be able to be able to dispense
with the assumption of 4-connectedness and find unavoidable minors of matroids
containing a large highly connected component. This should take approximately
until I die and possibly well beyond.
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