Representing, matching, and generalising
structural descriptions of complex
physical objects.

by David Brian Andreae

A thesis

submitted to the Victoria University of Wellington
in fulfillment of the requirements for
the degree of Doctor of Philosophy

Victoria University of Wellington
1994

VICTORIA UNIVERSITY OF W _LLINGTON

Abstract

This thesis addresses the problem of representing, matching, and generalising descriptions
of complex structured physical objects, in the absence of functional and domain-specific
knowledge. A system called GRAM is described, which includes a représentation scheme, an
instance-constructor, a matcher, and a generaliser. These components incorporate and extend
ideas from a number of other structured-object learning systems, as well as introducing several
new ideas.

A central contribution of this thesis is to show that descriptions of complex physical objects
can be matched and generalised effectively and efficiently by exploiting their structure. GRAM
does this by a number of means, such as by representing objects at multiple levels of detail;
using ‘neighbour relationships’ to allow a more flexible traversal of object graphs during
matching; explicitly distinguishing between substructure and context to allow partial matching
and a simple form of disjunction; and using an explicit representation of groups to describe
several similar objects as a single descriptive entity.

A second contribution is to show that complex objects can be matched without having to
enforce consistency between object correspondences. This is possible partly because of the
richness of physical objects, and partly because GRAM represents concepts as simple entities
defined by relationships with other concepts, rather than as a complete set of subcomponents
defined locally within the concept description itself. This scheme leads to greater simplicity,
efficiency, and robustness.

il

iil

Acknowledgements

I would like to thank my supervisor, Peter Andreae, for giving such good advice and support
throughout this thesis, even when I ignored his suggestions. His feedback during the writeup
stage was invaluable.

I am very grateful to my parents and my sister, Gillian, for their love and support throughout
this project. Thankyou to my friends for their friendship throughout this sometimes-difficult

time, and especially to my friends in the Free Daist community who have helped me to complete
this thesis.

Thanks also to Pat Langley for his motivating comments when he visited this department.

I was financially supported by a University Grants Committee scholarship, an IBM schol-
arship, a William Georgetti scholarship, and various teaching positions in the Department of
Computer Science at Victoria University. I am very grateful for this support which made my
living situation considerably easier.

Contents

1 Introduction

1.1

1.2
1.3

1.4
1.5

The Domainand Task it i v on oo
1.1.1 Kinds of classificationtasks.0
1.1.2 Kindsofleamingtasks. « o s s v s o v 0o v w0 o s o0 n e
1.1.3 Characteristics of classification and learning tasks in a physical domain.
1.1.4 The domain and tasks of the GRAM system.
RelatedWork « 5 : o s vv 20 2 s s e was sr k@ 5K Bd wa oom ob
REpreSEnitation ¢ . « « s v s+ ¢4 v o s v w s a s T4 & aE e ww e ssd
1.3.1 An instance is represented as an object graph, with parent, neighbour,
and subpart relationships. 0oL
1.3.2 Structure and context are explicitly distinguished.
1.3.3 Groups are represented by a multi-relationship to a typical-member
COMEBPL:. cp 45 75 svv awarvEy SE oo T8 @ S8 s ae g0 v
1.3.4 A concept is a generalised object, defined in terms of other concepts. .
1.3.5 Structure and context can each be described disjunctively.
1.3.6 Concept descriptions are probabilistic.
1.3.7 Concepts can have a variety of interpretations.
1.3.8 The richness of the representation scheme can be exploited by the
matcherand generaliSer. . « : « . ¢« v v s v s v v m A e e e w e v
The Instance/CONSHUCION <« » 5 s = 5 w5 s o 916 56 v o B s dx s 5w as
TheMAatCher' « < + o s o6 56 n56 v o 50 g s o 085 5 B ow v ows e
1.5.1 The GRAM matcher does not maintain or enforce a set of consistent
correspondence bindings. oL
1.5.2 A breadth-first beam search with iterative-deepening isused.
1.5.3 Neighbour relationships largely resolve the “level-hopping™ problem. .
1.5.4 Classification of a scene can begin at any seed correspondence

26

31
31
32

vi

CONTENTS

1.5.5 Twotypes of similarity scores are distinguished: Fit-scores and Proximity-

SCOTES & o a s 5f i o w oome v oo e @ B s m e s g B 32
16 TheGeneraliSer « . s v v 5 25 6 % v v d mwe s 6@ o 86 ddinwss vues 33
1.7 GRAMinalargersystem. it i it 33
I.3d Classiication . «c s v msn s o vsan e s mrms s i s 34
1.7.2 Multiple Concept Learning. 35
Related Work 39
2.1 'Winston’s “Archleamer” . . : .0 55 ¢ o5 s s vw samsn sasee s 39
22 ACRONYM . . . e e e e e e e e 43
23 CLUSTERIS . i o « 6 5 % 5 0 v v o s vn m s i b 8 8 s oo s we om0 4w ss 45
ZA MARVIN :c: o imsmiimmosomeni i mfomd #0808 «newe s 47
23 MERGE + 7. s v e s g amnmsdass s das s a0 o gdnns . 49
28 NOHY « 45 560 06 o v 6w g 5m s Go Hw s G o @® S 856 0% W3 52
27 ComEllandBragy - < wv v v o s wswm s 5§ Hd o vo we e a® 5w 53
2.8 LabyrinthandCOBWEB 55
29 PARND . .05 8300 08 55 pom cmamwo sg udl 56 Sk pbmes =« 60
Representation 63
3.1 Requirementsof the Representation. . . . « « x v e s 5 w4 v ¢ 0 e 0 s s ns 64

3.1.1 Structural descriptions should include functionally important informa-
WOR.. c awv A7 JU AFRAH G @ s 56 s Mg ANNE TAEWET &5 64
3.1.2 The representation should support the performance of the matcher. . . 64

3.1.3 Objects must be describable at multiple levels of abstraction and ap-
PEOXTIDATON. ot 1 51 i bamismo—s o o 5 5 @ PSR & bk« S B 64
3.1.4 The representation language should be richly expressive. 65
3.1.5 The context of an object must be explicitly representable. 66

3.1.6 Structure and context should be explicitly distinguishable to allow
disjunctive concepts and partial matching. 66
3.1.7 Groups must be explicitly representable. 67

3.1.8 The representation should include descriptive entities and relations that
humans seemtouse.o e 69
3.1.9 Concept descriptions must be probabilistic. 69
3.1.10 Partial descriptions must be representable. 69
3.1.11 The representation must be extendible. 70

3.1.12 Description construction mechanisms must be available. 70

CONTENTS

32

3.3

34

3.5

3.6

vii
INStANCE TEPrESentation. . « ¢ s v » o s s s w o ww o o 6 55 & 8 5 4 o0 » o 71
3.2.1 GRAMrepresents the physical world as an object-decomposition hierarchy. 71
3.2.2 Neighbour relationships are necessary to capture the context of each part. 71
3.2.3 Each relationship is a rich descriptiveentity. 72
3.2.4 Each object has its own set of parent, neighbour, and subpart relationships. 74
3.2.5 Structure and context are explicitly distinguished, to allow disjunctions
andpatialmatching. < . ¢ s v v v v s v r v oo s B E e 74
3.2.6 A multi-relationship is a generalised relationship to a concept. 75
3.2.7 An object may be a grouped object defined by a typical-member concept. 77
Properties and relationships. 78
3.3.1 Each object has a frame-of-reference for describing properties and
relationships. « « o ¢ < ¢ v v v o w s B G B F AW & T s o Wk 78
332 Typesofaftribute valtie, . . o v v v v« v 0 v s 6 s m d pap v o 79
333 SIUCHrSPIOPEIIES. « = = v o o 5w wow v & oo @ d0 &ow Wil sw 80
334 Contextproperties.« ¢ v v # s ww ms 5 4 & @ o w o w0 Y w0 81
3.3.5 Parent and subpart relationships.o L 82
3.3.6 Neighbourrelationships. : « « « « v s v o v o v v 4% @ 8le s 0 0 & v 83
ConceptRepresenmtation. v o o s v v v a v 0 oo o 0w w0 s 0w 87
3.4.1 Context or structure may be ‘imported’ from other concepts. 88
3.4.2 Concept variability is expressed by attribute distributions, instance-
counts, and disjunction.o 89
3.4.3 Concepts can have a variety of interpretations. 98
GIOUPS « « « « =& o 5 6 s 4 o a s 00 emwm wos oo s 558 m s s w5 104
3.5.1 There are several types of group, distinguished by their inter-member
relationships. . « . ¢ ¢ v v v v om0 i i C i i e e e e 104
352 GIOUpPIOPErties. . - wo s wam s m s pw o mw mE Gb s w 5w m 109
3.5.3 The typical-memberconcept. 110
3.54 A non-member object may have a multi-relationship to a typical-
MEMDEFCONCEPL. . + « « v v v o s w o 5 ¢ s s s o 55 a5 o5 ¢ 5 ¢ 110
3.5.5 Individual subparts of a grouped object may or may not be included in
thedeSCHPHON. . & v 4 v v v o v o0 s o s v s s o s 0 s v wn o e 112
3.5.6 The structure of a typical-member concept may be imported from
ANOtHErCONCePL. « < ¢ v o ¢ 50 s+ w o v o s wb LF B e v wE e 114
3.5.7 The structure of a typical-member concept may be disjunctive. 115
358 Groupsofgroups 116
359 Geperalised groups. . 7 =« « sw v v s v a v v @ owww Aoy 119
Reference summary of the representation scheme. 122

CONTENTS

viii

4 The Matcher 123
KE REGUURIEHIN. = » « « ropw s s d cma s oo P56 % dq 5 G50 EFS 124
4.1.1 Inputand output requirements. 124

4.1.2 An ‘any-time’ matcher with effort-control and scope-restriction pa-
rametersisrequired. 124
4.1.3 The matcher should not assume canonical descriptions. 125
4.1.4 The objects being matched may be generalised or ungeneralised. . . . 125
4.1.5 Two types of scoring are required: fit-scoring and proximity-scoring. . 125
42 IssuesandContributions. . « « + « o 5 + s « ¥ ¥« v s v 5 2 v o v 5 55 5 w5 127
4.2.1 The two primary issues are similarity and search. 127
4.2.2 Object similarity evaluation is complex and recursive. 127

4.2.3 Requiring a globally consistent set of correspondence is expensive and
UNOECESSATY: 5/ = 5 8 51 % o o mone o Bl 3 [8 Gaeeg o 5] w75 Byoes o oo 128
424 The “Level Hopping” problem. 128
4.2.5 A description may need to be augmented. 129

4.2.6 Estimates of similarity should be obtainable from superconcept or
subconcept similarity scores. 130
4.2.7 Instance-counts and feature variances affect similarity. 130

4.2.8 Object similarity depends on axis correspondences, and may require
ATIDIECORTOION,, = = 5 5w« wc v m i 3 50 S a5 B 5 g F 8 98 5 @8 130
43 SUDAHY. « oo rmys 5m vs EBmE MRS D T E RS 5 B AR e 132
4.3.1 The basic definition of similarity. 132
432 Attribute similarity 133
4.3.3 Relationship and relatee similarities. 137
434 Local consistency between correspondences is not enforced. 142
4.3.5 Global consistency between correspondences is not enforced. 145
436 Weightings: « .« v35 555 s 0 0w awsmsnes ssa% «4 93 147

4.3.7 Scope restriction is used to measure structure-only or context-only
similarity. L e e e e 149
4.3.8 Proximity-scoring versus Fit-scoring. 151
4.3.9 Structure and context interpretations affect similarity. 153

4.3.10 Superconcept and subconcept similarity can be used to estimate the
BEDIE. - o v mmip 6 5 % 81 & @ & LW 5 67 ¥ R WM EE 5 WK S 157
4.4 The Matching Algorithm 163

4.4.1 Match results are represented in cnotes. 163

CONTENTS ix

442 The “Incremental-Spread” search strategy. 165
443 Anexample. 173
4.44 Level-hopping is implicitly performed. 175

4.4.5 Disjunctive structures and contexts are also evaluated using incremental-
spread. o : v w vn e s wan oy s pee e w o AE e wor e s 177
446 ScopeRestricton. . . « o« s v o o v v a3 0 s b w o v me 177
447 Augmentation: Dealing with missing relationships and relatees. . . . 180
4.4.8 Usingthe AKO hierarchy. 188

4.49 Fit-scores are obtained by traversing winning correspondences in the

cnoteraph. . . . v i v s e e s v e e B e s e e e 190
4.4.10 Details of the algorithm., 191
5 The Generaliser 197
58 IoputandOmpul. .. i @s s noamw o m e WE I8 FOR s 55 85 Ba GW 199
5.1.1 The input is explicitly a single cnote, but implicitly an entire cnote graph. 199
5.1.2 A “side effect” of a generalisation is many other generalisations. . . . 199
5.1.3 Scope restriction parameters are required. L 199

5.2

53
5.4
55

5.1.4 Parameters for determining generalisability and modifiability are needed.200

5.1.5 The input objects may be concepts or instances. 200
Issues and Contributions.« v v v v v i e e e e e e e e 203
5.2.1 Over-generalisation and under-generalisation should be avoided. . . . 203
5.2.2 A relationship/relatee may be unmatched. 203
5.2.3 Partial similarity may require disjunct formation. 204
5.2.4 Several kinds of ambiguity must beresolved. 204
5.2.5 Structure and context interpretation must be considered. 205
5.2.6 The cnote-graph may contain inconsistencies. 205
5.2.7 Objects can be generalised independently from other objects. 205
The generalisation algorithm. 207
Attribute generalisation o0 e e e oo e e 210
Determining what is to be generalised. 212

5.5.1 Scope restriction can be achieved by marking the generalisable objects. 212
5.5.2 Scope restriction can be achieved by specifying the required spread. . 213

5.5.3 Proximity-scores and fit-scores determine whether to generalise or
ModifY. X ssigccci @ gs v s e aF S AWM vu w 216

5.5.4 The matcher may needtobe reinvoked. 216

5.6 Dealing with unmatched parents, neighbours, and subparts. 217

5.6.1 Method-1: The generalisation refers to the original unmatched object. 218

5.6.2 Method-2: Unmatched objects are copied. 219

5.7 Partial similarities and disjunct formation. 222
5.7.1 Generalisation (by disjunct formation) may be justified by structure-

only or context-only similarity. 222

5.7.2 Some examples of disjunct generalisation and formation. 222

5.7.3 Import-from relationships could be created. 224

5.7.4 Disjuncts could be converted to an ‘any’ interpretation. 224

58 AMBIGUNY: c wvv ws v w0 p @ FHE £ FBE G S ES TR HE R 228

5.8.1 Similar-similarity ambiguity and different-similarity ambiguity. 228

5.8.2 Local and global ambiguity. 232

5.8.3 Vertical and horizontal AKO ambiguity. 233

5.9 Structure and context interpretation affects generalisation. 236

The Instance Constructor 239

6.1 Object-FOMMAtION < 5. .« 50 & o o0 % 0 % wm o 20 % 8 % 0 ondt w100 o 0 5w o 242

6.1.1 Object-Formation Criteriao v v 243

6.2 GroupFinding e 251

6.2.1 Grouping Criteria v oo e 252

6.2.2 Group Finding Search Strategies. 259

6.2.3 The Seed-Expansion Algorithm 263

6.2.4 The Propose-and-Prune Algorithm 268

6.3 Relationship Selection: = . o« s o sw e wm « 5w omsmimememe o w5 o o0 & o 270

6.3.1 Criteria for Selecting Neighbour Relationships. 272

6.3.2 Criteria for Selecting Subpart Relationships.. 276

6.3.3 Criteria for Selecting Parent Relationships. 279

6.3.4 Search strategies for selecting relationships. 279

Evaluation 281

7.1 Effectivenessof the Matcher, 282

7.1.1 Matching identical descriptions of the same object 282

7.1.2 Matching different descriptions of the same object 282

7.1.3 Matching two different bicycles 285

7.1.4 Matching large numbers of objects against eachother 289

CONTENTS X1

7.2 Efficiencyofthe MAlcher . . v wwmes sompm s smame v o os 297
7.2.1 Comparison with an exhaustive and ‘all-pairs’ strategies 298

7.2.2 Efficiency of matching identical objects 300

7.2.3 A summary of the bicycle matchingresults 301

7.2.4 The matcher is conducive to a parallel implementation 301

7.3 Effectivenessof the Generaliser’ « « « v« v v w v v v w s v 05w @ s o 302
7.3.1 Matching and generalising the generalised bicycle. 303

TdZ INSUDCHOH - 5 v i s nm Mo s a5 s MRS 2 5B EME%E & e e 303

7.4 Effectivenessof Grouping . . . « « « + ¢« s st vt e e e e s e e e 306
7.5 Limitationsand Future Work 311
8 Conclusion 317
8] RepresenBalon « c v+ s 4 s 2 A B4 93 WS AT E FIRTE G4 &F dod 4 318

8.1.1 Multiple levels of approximation and abstraction are important for
matching and generalising. 318

8.1.2 The distinction between parent, neighbour, and subpart relationships
helps guide and constrain the matcher. 318

8.1.3 Generalisation is simplified by giving each concept and instance its
own set of relationships.o 319

8.1.4 Physical objects are represented in terms of context as well as structure. 319

8.1.5 Concepts can be conveniently defined by relationships to other con-
cepts, rather than by a local part graph. 320

8.1.6 The explicit distinction between structure and context supports partial
matching and a simple form of disjunction. 320

8.1.7 Explicit groups reduce memory usage, support efficient matching, and
enable different-sized collections of similar objects to be generalised. . 320

8.1.8 Multi-relationships allow relationships to be grouped. 321

8.1.9 Instance-counts are necessary to specify the degree of optionality of a
COMPOTEHE. s ws % 5% o 6 0 mow & 5o ¥ g B E %8 ss @® Y EY 322

8.1.10 The distinction between contents and arrangement is necessary in some

8.1.11 The import-from relationship provides a flexible way of reducing re-
peated information, and increasing information transfer. 322

8.1.12 Itis useful to explicitly distinguish between several different ‘interpre-
tations’ of structure and context descriptions. 323

8.1.13 Structure and context disjunction can be conveniently specified by
subconcepts in the AKO hierarchy. 323

Xii

8.2

83

8.4

CONTENTS

8.1.14 Enriched representation of properties and relationships support partial

MACRING: & ¢ 5 v 45 5. do06 Bumions mowsawsws s 323
8.1.15 Important information should be made explicit, to prevent loss of in-

formation during generalisation. 324
Matehing - = o 5 6 % 5 5 ¢ a5 #82 55 605 o G v ommmmen e oma 325

8.2.1 A matcher can and should exploit the structural organisation of objects. 325
8.2.2 Relationships enable direct indexing for classifying an instance. . . . 325

8.2.3 Efficient and effective matching of structural descriptions is possible
without maintaining bindings between correspondences. 326

8.2.4 Robust matching is made possible by searching in any direction through
the object graph, starting from any hypothesised seed classification. . . 326

8.2.5 Efficient ‘any-time’ matching is possible by using a breadth-first ‘iter-

ative deepening’ SEAtCh. . » .« &« 55 v o v ws ¥ @ B wwm owE v A w s 327
8.2.6 The level-hopping problem is resolved by exploiting neighbour rela-
GHOBSHIPS. 5 o F w8 B o'k S M r o8 vk Bap braac v a s v 327
8.2.7 Instance-counts are important for syntactic recognition. 327
8.2.8 A concept is a “probabilistic predictor” of parents, neighbours, and
SObPAS . 5 . o« v s s e s s w e ki e e s mE HEE B E S 328
8.2.9 Mismatches can sometimes be confirmed or resolved by augmenting
aninstance description. u e e e . 328
8.2.10 Fit-scores versus proXimity-sCOres. « v« v v o v oo . 329
Generalisationo e e e e 330

8.3.1 Generalisation is simplified by representing concepts as small inde-

pendent descriptive enfities. « : « v . s s s s v s s s wE s 5w w0 330
8.3.2 Various forms of ambiguity have been distinguished. 330
8.3.3 The representation supports a simple form of disjunction creation. . . 331
8.3.4 Over-generalisation is reduced by requiring a minimum match effort,

a minimum fit-score, and a winning classification 331
8.3.5 Fault-finding is possible without using negative examples. 331
Instanice CotStruStion, « ww « m v v s 910 5 5. 55 w5 @ s 5 © w0 w e ww 333

8.4.1 GRAM’s instance constructor augments primitive descriptions to sup-
port more efficient and effective matching and generalisation. 333

8.4.2 Group construction during instance construction pre-empts group for-
mation during generalisation. 333

8.43 Groups are found using the Seed Expansion algorithm. 333

Chapter 1

Introduction

This thesis addresses the problem of building a system that can represent, construct, match,
and generalise descriptions of complex structured physical objects, without using functional
or domain-specific knowledge. The thesis describes an implemented system, called GRAM,
which operates in a domain of static two-dimensional structured objects, such as those shown
in Figure 1.1.

The original inspiration for building GRAM was based on a long-term vision of building an
“instructable autonomous robot” that could learn to perform tasks in the physical world. Tasks
such as vacuuming a room, finding and retrieving objects, or drying and putting away dishes,
require the robot to have effective and efficient classification mechanisms for recognising the
objects encountered in the world. The robot must also be able to learn descriptions of object
categories (or ‘concepts’) so that it can adapt to new or changing environments. The robot
should be able to learn either on its own in response to encountering a new instance of a known
category, in response to explicit instruction from a teacher, or in response to demands from
other components of the robot system.

A basic strategy for classifying an object consists of several steps. First, a description of the
object is constructed from image data. Indexing mechanisms are then used to access a selection

of concepts in a potentially vast memory. A matcher then compares the object (or instance)
with each concept.

The central component of a learning system is a generaliser, which generalises an existing
concept to cover an observed instance. The learning system must also be able to create and
add new concepts to concept memory, and to reorganise concept memory if necessary.

GRAM provides four components to support the classification and learning tasks: a repre-
sentation scheme, an instance constructor, a matcher, and a generaliser. This thesis discusses
the issues in designing each of these components, and presents the new ideas and mechanisms
that have been developed. Mechanisms for indexing and memory organisation, and the way
in which all of the mechanisms are to be integrated into a complete classification and learning
system, are the subject of future research.

There has not been a great deal of other research that encompasses all four of the above
components (representation, instance construction, matching, and generalisation) in the domain

CHAPTER 1. INTRODUCTION

Figure 1.1: Some objects in GRAM’s domain.

of complex structured objects. Most of the work in visual object representation and recognition
does not address the problems of concept learning, and most of the systems developed for
concept learning do not deal with or exploit the characteristics of complex structured physical
objects. Therefore, although the work in this thesis draws on the research done in each of these
areas, it presents some new ideas and techniques which directly support the development of an
integrated classification and learning system.

One claim of this thesis is that complex structured objects can be effectively matched and gen-
eralised without functional or domain-specific knowledge. Lebowitz [Lebowitz, 1986] made a
similar claim some years ago, although with less emphasis on structural objects, and certainly
not addressing the complexity that GRAM deals with. GRAM achieves this by using a represen-
tation scheme that is richly expressive and allows redundancy, so that functionally important
information is more likely to be implicitly embodied in the explicit structural descriptions, and
less likely to be lost during the generalisation process. Representing objects at multiple levels
of approximation and abstraction is an important aspect of this. Another aspect is the explicit
distinction between structure and context. This enables GRAM to notice that two objects have
similar isolated structure (or ‘form’) but different contexts (or ‘role’), or vice versa, and also
allows a simple form of disjunction to be represented.

In a structured domain in which scenes and objects may be composed of hundreds or
thousands of components, an exhaustive or simple general-purpose matching strategy cannot
provide sufficient efficiency (or even effectiveness) in a real-time system. Therefore, a second
claim of the thesis is that complex objects can be matched more effectively and efficiently by
exploiting the structural relationships between components of the objects to guide and constrain
the search. This is a somewhat obvious claim, and other systems have also used it, primarily
by representing objects in multiple levels of detail to allow top-down traversal of the objects
[Wasserman, 1985], [Connell, 1985], [Marr, 1982]. However, GRAM’s contribution is to show
that context information can be exploited as well as substructure information by distinguishing
between three types of inter-part relationships — parent, neighbour, and subpart relationships
— each of which is itself a rich descriptive entity. Relationships can be used by the matcher
to guide the search, not only down the decomposition hierarchies, but also via parent and
neighbour relationships, thus providing multiple paths to the correct correspondences. This
resolves the ‘level hopping’ problem in which corresponding components are on different
levels of the decomposition hierarchies and would not be found by a strict top-down search.
A further consequence is that GRAM is more robust since it does not require canonical object
descriptions.

Another aspect of exploiting the structure of objects is the formation of groups of similar
and similarly related components, where each group description summarises its members in
terms of a ‘typical member’. If the individual members are then removed, the overall object
description is reduced in complexity, hence reducing the search required by the matcher when
comparing such descriptions.

A third claim of the thesis is that descriptions of physical objects can be matched effec-
tively and efficiently without enforcing global consistency between correspondences during
the search. This approach is significantly different from the usual graph matching approach,

4 CHAPTER 1. INTRODUCTION

and has surprising advantages in terms of simplicity, efficiency, and robustness: It avoids the
need for a backtracking mechanism by keeping multiple competing hypotheses active simulta-
neously; it permits a much greater degree of parallel implementation; and it enables components
of an object to play multiple roles when matched with another object.

As an example of what the implemented GRAM system ! is able to do, the matcher was
presented with descriptions of the two bicycles shown in figure 1.2, each consisting of 80
and 100 composite and primitive parts respectively, organised as a part hierarchy. GRAM
correctly found 65 of the 69 desired correspondences, and then successfully generalised 57 of
them. Two identical descriptions of BIKEI were also matched, and GRAM identified all 80
of the correct correspondences. Furthermore, a description of BIKE] was matched against a
different description of the same bike, with significant differences between the decomposition
hierarchies, thus testing GRAM’s level-hopping ability. The matcher correctly found 73 of the 74
of the desired correspondences. The one incorrect correspondence was only marginally higher
scoring than the correct correspondence, which GRAM also found. These results are described
in more detail in chapter 7 which also presents the important result that GRAM’s efficiency
seems to be linear relative to the number of components in the objects being matched.

A methodology that is used throughout this thesis to address each problem, is to first identify
the kinds of requirements, situations, characteristics, etc, of the problem, and only then consider
the mechanisms that could be used to solve it. This helps to ensure that the solutions are fitted
to the problem, rather than fitting the problem to some arbitrary solution.

QOutline of this section and the thesis.

This introductory chapter begins the thesis by giving an overview of the main issues and ideas
considered in the thesis. Section 1.1 describes the characteristics of the domain and task which
the GRAM system supports, and which form the basis for justifying the various design decisions
made throughout the development of GRAM. It presents several examples of the kinds of tasks
that GRAM can perform.

Sections 1.2 to 1.6 give an overview-summary of the main issues and ideas presented in the
five main chapters of the thesis.

Section 1.2 places this thesis in the context of other related research, and summarises the
limitations of that research. This is explored in more detail in chapter 2.

Section 1.3 outlines the issues of how to represent complex structured physical objects, in
generalised and ungeneralised form, and gives a brief overview of the key contributions of the
GRAM representation scheme. This section is a summary-overview of chapter 3.

Section 1.4 briefly presents the issues of constructing a description of an observed object,
based on information that is assumed to be available from a low-level vision system. Various
components of this instance-construction process that have been developed for GRAM are briefly
described. This includes a discussion of the various criteria used to justify the formation of

!The system is written in Common Lisp, and works directly from postscript data produced by a graphics package
called IDRAW and a text file that specifies the part decomposition hierarchy.

Figure 1.2: Two bicycles matched and generalised by GRAM.

composite objects within an instance description, and the criteria for forming explicit rela-
tionships between objects. Criteria and mechanisms for finding groups of similar components
within a scene or object, are also discussed. This section is a summary-overview of chapter 6.

Section 1.5 introduces the main issues of how to match complex structured physical objects
(both instances and concepts), and briefly describes how the GRAM matcher addresses these
issues. The two main issues addressed are, firstly, how to measure the similarity between
a concept and an instance, and secondly, how to search for correspondences between their

6 CHAPTER 1. INTRODUCTION

components. This section is a summary-overview of chapter 4.

Section 1.6 outlines the main issues of how to generalise a concept description so that
it accounts for a new instance. The main characteristics of the GRAM generaliser are also
presented. This section is a summary-overview of chapter 5.

The implemented GRAM system is partially evaluated in chapter 7, and the main ideas and

conclusions of the thesis are summarised in chapter 8.

An understanding of the main contributions of this thesis can be obtained by reading the
introduction and conclusion chapters. The section headings throughout the thesis (and in the
table of contents) can also be read as a rough summary.

1.1 The Domain and Task

Although the long term goal of GRAM is to be a component of an “instructable autonomous
robot”, which might be used as a household helper or a workshop assistant, this thesis is just one
small contribution towards it, since such a project will also require many other mechanisms for
planning, procedure learning, reasoning, language understanding, and so on, to be developed,
covering almost all areas of Artificial Intelligence research.

GRAM is focussed specifically towards supporting the tasks of classifying physical objects and
learning descriptions of categories of physical objects. In particular, it addresses the problem
of representing, constructing, matching, and generalising object descriptions.

This section gives a brief overview of the kinds of classification and learning tasks that
GRAM supports, and the characteristics of these tasks which have implications for the design
of the system. It then briefly outlines the main features of GRAM’s simplified two-dimensional
domain and explains why this is sufficient for demonstrating the potential of GRAM to operate
in a real-world three-dimensional domain.

1.1.1 Kinds of classification tasks.

There are several different kinds of classification tasks that need to be supported by GRAM. The
simplest kind of classification task is of the form “Is that an egg-beater?”. Since the concept
is given, there is no need to search concept memory. The instance is simply compared with the
concept, and a measure of similarity is produced.

If the system knows about other concepts that are similar to the specified concept, then it
may also need to match the instance with those. For example, if it knows that the concept
handdrill is similar to the egg-beater concept, then it may need to compare the object with
that, since the measure of similarity between an observed handdrill and the egg-beater concept
might otherwise seem acceptable.

The task “What is wrong with that X?” is an extension to the “Is that an X?” task, because
it involves identifying and reporting the key differences between the concept and the instance.

1.1. THE DOMAIN AND TASK 7

The most common classification task is of the form “What is that?”, and involves observing
an object (such as a room or a hammer or a chair-leg), and classifying it by finding the best-
matching previously-learned concept in memory. This task might also be extended to an entire
scene, or to all of the components of an object, in the form “Classify the components of that
scene or object.”

To perform the task “Find an X", the system does not need to search concept-memory, but it
must search the observed scene or environment for an object that matches the specified concept.

An autonomous robot might have to perform a task such as “Assemble those bicycle parts”,
and this may involve all of the above, since it needs to classify the parts, find particular parts
(and tools) that it needs, and determine when the assembly is completed and correct. Similarly,
the task “Go to the bedroom and tidy it” has similar requirements.

1.1.2 Kinds of learning tasks.

Learning tasks come in two forms, supervised and unsupervised. The basic form of supervised
learning task occurs in response to the instruction “That is an X", and involves generalising
the concept features to take into account the features of the new instance. If the concept is not
already known, then the instance is recorded as new concept.

Unsupervised learning occurs in response to the system’s own classification of an observed
object. Such learning is therefore susceptible to errors, since the classification may be incorrect.
Therefore, the system could also seek confirmation from a teacher after classification, especially
if the instance is unusual in some way. If an observed object is unrecognisable, then a new
concept can be automatically created.

Unsupervised concept learning is made more complicated by the fact that each learned
concept may have a number of subconcepts, forming a concept hierarchy, such as for different
varieties of chair and different varieties of office-chair. Thus the system must be able to create,
reorganise, use, and maintain such hierarchies.

In systems such as GRAM, where every component of an object is an instance of a concept,
supervised learning is almost always accompanied by unsupervised learning. More specifically,
if an object is given a classification by a teacher, which enables a particular concept to be
generalised, the system is still responsible itself for determining the classifications of the
subcomponents of the object, and for determining whether and how to incorporate the new
subcomponents into concept memory. Thus a learning system in a structured domain always
involves some unsupervised learning, unless its concepts are represented as complete part
hierarchies rather than in terms of other concepts, or if the teacher specifies classifications for
every subcomponent.

1.1.3 Characteristics of classification and learning tasks in a physical domain.

The descriptions of the classification and learning tasks above do not indicate the complexity
of what is involved, and so this section discusses some of the characteristics of a real-world
physical environment which must be taken into account.

8 CHAPTER 1. INTRODUCTION

Objects are composed of subcomponent objects, and concepts are therefore defined in
terms of subcomponent concepts.

One of the main characteristics of dealing with a structural domain, such as a real physical
environment, is that every observed instance of a concept is composed of smaller subcomponent
objects which are themselves instances of other concepts. Therefore, the task “Is that an X?”
not only involves comparing the object with the concept X (such as chair), but also involves
classifying and matching its subcomponents with other concepts by which X is defined (such
as chair-leg or cushion). Similarly, in order to recognise a room as being a bedroom, the system
must recognise its main components, such as bed, desk, erc. Each of these concepts may
exist within a hierarchy of concepts, and so the system must be able to deal with a potentially
complex inter-dependence between concepts in memory.

The world can be viewed at multiple levels of detail.

Objects in a real-world domain are often recognisable from a rough level of detail, as has been
discussed by [Biederman, 1985]. In many cases, classification is possible from just a few of
an object’s largest subcomponents perceived as rough shapes (such as cylinder, rod, cube, etc),
and rough spatial relationships between them. For example, humans can recognise an object
as being a bicycle without having to observe its exact shape and all of its details, which could
vary considerably amongst different specialised varieties of bicycle. This suggests that concept
descriptions should include abstract and approximate features to enable such classification, and
also suggests that the matcher should exploit this property to enable rapid recognition.

However, finer details are also necessary for tasks such as fault-finding, which may require
that the matcher takes into account every subcomponent. Finer details are also necessary for
performing more specialised classifications, such as for discriminating between different kinds
of cars. This implies that objects and concepts need to be represented in multiple levels of
abstraction and approximation, and the classification system should exploit this.

A physical domain is characterised in terms of objects, relationships, properties, surfaces,
and edges.

There are a variety of basic descriptive entities and features that characterise the physical world
(for humans). The object is perhaps the most obvious descriptive entity, but equally important
is the structural relationship between two objects. There are many kinds of information that
humans seem to use to characterise a structural relationship, such as relative position, size,
orientation, and alignment. Various forms of connectivity are also distinguished, such as fixed
joins, articulated joints, contact, or ‘same-piece’ connections, such as between the bowl, stem,
and base of a wineglass.

Objects also have a variety of different kinds of properties, such as shape, colour, texture,
material, solidity, and so forth. Other kinds of components, such as surfaces, edges, corners,
and axes, also characterise physical objects. All of these types of descriptive feature need to
be taken into account by the classification and learning system.

1.1. THE DOMAIN AND TASK 9

Concepts may be highly variant.

An important characteristic of the kinds of domains in which a general-purpose autonomous
robot would operate, such as a household or workshop, is that concepts can be highly variant.
For example, there are many variations of the concept hammer, in terms of its shape, colour,
structure, etc. This situation contrasts with that of specialised classification systems that operate
in highly constrained environments, such as bin-picking robots or assembly-line quality-control
robots that can assume that each object category is highly or completely invariant.

One aspect of variance is that the attributes that characterise the concept can have ranges of
values, such as for length and colour. Another aspect is that components might be optional,
with some measure of frequency of occurrence. For example, a television may or may not
have an aerial on top of it, a chair may or may not have arms, and a door may or may not have
a keyhole. Since an important aspect of a classification and learning system is the ability to
make predictions, the variability of concepts suggests that concept descriptions should include
probabilistic measures for the presence or absence of its sub-components and neighbouring
objects.

In addition to having optional components, a concept may also be defined in terms of
alternative, or disjunctive, sets of components. For example, the definition of a door might
have to indicate that the door-handle can have any one of a variety of alternative door-handle
structures. The door-handle might be described non-disjunctively at a coarse level of detail,
with the disjuncts providing more detailed information to enable tasks such as fault-finding,
or discriminating between types of doors, to be performed. The disjuncts could be specified
simply by referring to a door-handle concept that has several subconcepts.

A concept may be defined in terms of its contents, independent of their arrangement.

Most object categories are defined in terms of a fairly rigid well-defined substructure, as in the
case of a hammer, desk, or vacuum-cleaner. However, there are also some object categories
of which the arrangement of their subparts (or ‘contents’) is highly variable, and therefore less
important. For example, a bedroom typically contains a bed, desk, lampshade, wardrobe and
so on, but the arrangement of these within the room is highly variable. Similarly, concepts
such as shopping-center, childrens-playing-area, or computer-lab are also defined primarily in
terms of their contents. Some of the relationships between the components may be important,
but there is a great deal of variability.

Conversely, some concepts are defined primarily by their arrangement only. For example,
the characteristics of the subcomponents of a tower or an arch are not particularly important,
since it is the structural organisation of those subcomponents which is crucial.

Objects may be only partially visible.

An object may be partially occluded, either by other objects or just by the fact that it can only
be viewed from one direction. There may also be insufficient time for more than a brief glance

10 CHAPTER 1. INTRODUCTION

at the object, or the object may be observed from too far away to see more than a fuzzy blob.
Therefore, the system should be able to cope with partial information, and be able to predict
missing information on the basis of previously learned concept descriptions.

Object boundaries may not be available prior to classification.

Another difficulty for classification is that the distinction between component objects may not
be available prior to classification. In other words, the ‘objectness’ of a region of a scene
may not be identifiable by the low-level vision system. For example, when finding a hammer
in a jumbled toolbox, the boundaries between objects can only be identified on the basis of
classification, rather than prior to classification. Thus the process of processing an image
cannot necessarily progress in a simple manner from low-level visual perception of pieces and
blocks and objects and so forth, up to abstract recognition. Rather, a two-way up-and-down
process may be necessary.

Concepts may be defined in terms of substructure (or ‘form’) and context (or ‘role’).

Although an object is often recognisable from its substructure, some concepts are defined just
as much, or even more, by their surrounding context. For example, a chair-leg is defined in
terms of its relationships with the chair concept, and other chair components. Similarly, a chair
needs to be partially defined, or at least described, in terms of its typical context (such as being
upright on a floor, and usually in a room). Context information can not only lead to the correct
classification of an object, but can also be used in the reverse direction to predict classifications
of its surroundings. For example, if a chair has been recognised from its substructure alone,
then the context information in the chair concept can suggest that the object on top of it is a
person, and the object next to it is a desk.

Scenes and objects often contain groups of similar components.

Scenes and objects often contain groups of similar and similarly related items, such as buttons
on a shirt, windows on a building, fruit in a fruit bowl, or spokes on a bicycle wheel. The system
should be able to exploit this to enable more compact ‘summary’ description, since a group can
be characterised by a generalised description of its typical member, generalised descriptions
of the typical relationships between members, and properties of the group as a whole. The
formation of a group description, therefore, enables transfer of information between instances,
since each member is effectively being generalised by replacing it by the description of the
typical-member.

Groups also enable more efficient and effective matching, since two groups can be compared
as whole entities, rather than attempting to find correspondences between every member of
two groups, which might not be possible if the groups have different cardinalities. In fact, if
the groups have different cardinalities, it is necessary for the groups to be explicitly noticeable
and representable so that the generaliser can produce a generalised variable-sized group.

1.1. THE DOMAIN AND TASK 11

Another reason why the system should explicitly notice groups, is that this is a form of
concept discovery. Normally a concept is learned by observing several instances over time, but
a concept should also be formed if several similar objects are observed within a single scene.
Thus, the creation of a typical-member description to characterise a group, is the creation of a
concept. It is an unusual concept because is partially defined by relationships with itself, which
denote the typical relationships between members of the group.

A concept may be a pre-condition for a robot action.

Another kind of concept that a robot system needs to learn are action pre-conditions. In fact,
this was one of the original motivations for the GRAM project, since it was intended to fit into
a procedure learning system developed by [Andreae, 1985] which required a subsystem that
could learn visual pre-conditions for actions in a generalised procedure. These conditions are
often partial scenes, rather than objects. For example, the concept “full shelf” could trigger
a dishwashing robot to start stacking plates on the shelf above, or the concept “untidy room”
would trigger a household robot to commence a tidying activity.

Objects are often characterised by the way they move, the way they interact with other
objects, and their function.

There are aspects of objects other than their structural properties that are also important to the
definition of a concept. For example, an important characteristic of a bicycle is that the wheels,
pedals, and front fork (and many other parts) move in certain ways. Therefore, to fully capture
the definition of a bicycle, this kind of information should be representable.

Similarly, the kinds of activity that a bicycle is typically involved in, such as rolling along a
road from one location to another, is also important. In fact, this kind of information would
comprise the definition of the function of a bicycle. Most man-made objects serve some
function, and therefore functional knowledge is clearly important in a concept description. It
should be noted that the function of an object is often partially defined by its structural context,
such as the way in which a bicycle is structurally related to the parts of a human body.

Rapid classification must be possible because scenes may consist of many components.

In a real-world domain it is necessary to perform classification very rapidly because a scene
or object may contain a huge number of component objects. If a robot is navigating through
a room or building, such as when doing the vacuuming or searching for an object, its eyes are
presented with vast quantities of information which must be chunked into large numbers of
recognisable objects. This suggests that the mechanism for indexing from instances to concepts
must be very efficient, as must be the process of comparing instances and concepts.

12 CHAPTER 1. INTRODUCTION

There are a vast number of concepts that characterise a physical environment.

In addition to the problem of coping with scenes that contain huge numbers of objects, big
and small, there is also the problem of dealing with a vast number of different concepts. If
I look around the office I am in, every single object can be considered to be an instance of
a concept, such as relephone, lockable-door-handle, space-bar, dust-speck, scratch-on-desk,
desk-keyhole, and row-of-books. Some concepts, such as telephone, have labels associated
with them, while others such as desk-keyhole may not, since they are often referred to in speech
in the form “the keyhole of the desk™ or “a row of books”.

A concept might also be defined solely in terms of one particular instance, such as the
‘concept’ my-set-of-keys. Therefore, concept memory may be vast, and this suggests that
efficient memory access and organisation mechanisms must be available.

1.1.4 The domain and tasks of the GRAM system.

The development of a classification and learning system which takes into account all of the
domain and task characteristics discussed above, is clearly not a trivial matter, let alone the
problem of building a complete autonomous robot. GRAM goes some way towards extending the
research in this area by focusing on three core components of such a system: a representation
scheme, a matcher and a generaliser. Some aspects of instance-construction are also addressed,
in particular the group-finding process. The discussion below explains in more detail what
GRAM actually does, and the domain in which it operates.

GRAM deals with a two-dimensional domain, where objects are comprised of simple
‘blocks’.

I have chosen to work with a two-dimensional domain because it simplifies the development
of the system while still capturing most of the important features of a real-world domain
discussed in the previous section. Most of the objects dealt with in the thesis are, in fact,
very close to projections of three-dimensional objects. Recent work discussed in chapter 26 of
[Winston, 1992] shows that recognition of three-dimensional objects is actually possible from
just a few two-dimensional projections, without even requiring any volumetric description.

The only significant limitation of a strictly two-dimensional domain is that objects are always
completely visible, and the system does not have to deal with the problem of partial views. The
current system allows two-dimensional objects to overlap, but there is no notion of occlusion.
However, the issue of occlusion could be addressed without having to deal with a full three-
dimensional domain, by adding depth information. The problem of coping with the hidden
two-(and-a-half)-dimensional objects can be considered equivalent to the problem of coping
with the hidden portion of a three-dimensional object.

The input to the GRAM system is a description of an object or scene consisting of simple
primitive ‘blocks’ which can be rectangles, ellipses, or simple polygons, such as those in
Figure 1.1 above. Each block is considered to have a bounding rectangular box which defines

1.1. THE DOMAIN AND TASK 13

its dimensions and orientation relative to other blocks, as illustrated in Figure 1.3. Additionally,
the input also includes a set of ‘fuzzy blocks’ such as those indicated by the dotted boxes for
the humanoid in Figure 1.4. These are visual approximations of a set of smaller blocks, at a
coarser level of detail.

Figure 1.3: Primitive block shapes.

GRAM assumes that a low-level vision system (such as described in [Connell, 1985]) is
available to produce descriptions of blocks at multiple levels of approximation, although at
present the input comes directly from a graphics/drawing program. However, an issue that
is not significantly addressed in this thesis is how the high-level recognition system should
interact with the low-level vision system, since it is not always the case that a vision system
can construct block descriptions bottom-up, without guidance based on the expectations of the
high-level recognition system. However, GRAM can cope with partial information, so that if the
vision system is not able to produce a full block description from an image, the matcher can
still make use of what it is given. ACRONYM [Brooks, 1981] takes a different approach, in
which the recognition system works more in the opposite direction, generating expected two-
dimensional image features from its three-dimensional generic models, rather than producing
a three-dimensional model from the image.

Figure 1.4: Composite parts of a humanoid.

Each block in GRAM’s domain can have various properties, such as aspect-ratio, shape, number

14 CHAPTER 1. INTRODUCTION

of edges, erc. Currently it does not include colour, texture, material, stiffness, etc, although
these could easily be added. A simple extension to allow blocks to be generalised cylinders *
would also enrich the domain considerably, and would only require the representation language
to include a few additional properties specifying the spine and taper functions.

The system is able to obtain information about how pairs of blocks are spatially related to
each other, including relative size, proximity, direction, orientation, and alignment. Currently
there is no distinction between different kinds of connection relationship between blocks. For
example, there is no distinction between blocks that are fixed together, merely touching, or have
an articulated joint. Nevertheless, the description of relationships in GRAM are still sufficiently
rich to give good performance, and the addition of more connection types would only improve
its performance.

The simplified two-dimensional domain has made development of GRAM easier, because it
is has not been necessary to develop mechanisms for processing a mass of low-level details.
However, it also means that blocks are not as easily distinguishable on the basis of properties
alone, as can be seen in the examples in figure 1.1. Blocks are primarily distinguished by their
substructure and/or contextual relationships.

If the domain was extended to include more property and relationship distinctions, this would
certainly help GRAM to classify objects more effectively, since such information would help
discriminate between classes, as humans may find when looking at black and white photos.
However, the argument of this thesis is that if GRAM can work reasonably effectively without
such information, then it will certainly work even better in a domain in which more information
is available, and so I do not consider the simplified domain to indicate a limitation of GRAM.
The thesis is primarily focusing on dealing with rich structure, in terms of substructure and
context relationships, rather than many kinds of property such as colour, texture, etc

This thesis claims that extending GRAM to deal with three-dimensions is straightforward:
Firstly, object properties would be modified to account for the three axes of the object. For
example, the aspect-ratio property could be split into two or three properties, specifying the
ratio of the longest axis with the middle-length axis, and with the shortest axis. Secondly,
relationships would need to be defined with respect to the three-dimensional coordinate frames
of the objects, rather than their two-dimensional coordinate frames. Thirdly, the matcher would
have to consider more alternative axis correspondences when comparing two objects. Other
than these relatively minor extensions, the representation, matcher, and generaliser can remain
unchanged.

Only structural (rather than functional or behavioural) knowledge is to be used.

One of the goals of this thesis was to find out whether effective concept learning can be
performed by a system which deals only with syntactic structural descriptions, without consid-

2Generalised cylinders are defined by a cross-sectional area swept along a spine with some taper function.
Systems such as Brooks® ACRONYM [Brooks, 1981] and Connell-and-Brady [Connell and Brady, 1985] use this
representation. In two-dimensions a generalised cylinder is perhaps better called a generalised rectangle, since the
cross-section is just a line-segment.

1.1. THE DOMAIN AND TASK 15

ering functional or behavioural knowledge. GRAM therefore deals with only one static scene
or object at a time, without any notion of time between different observations, and without any
knowledge of, or ability of reason about, how the object is used, or intended to be used.

One justification for this approach is that in many cases there is no functional or behavioural
knowledge available for an observed object, and matching and generalisation must be able to
manage with only static structural information. For example, if a teacher asks a robot-helper
to find “one of these”, while showing the robot an unfamiliar object, but does not say what it
is used for, then only structural information can be used. Similarly, a robot workshop assistant
should be able to learn to recognise a class of tool prior to learning what it is used for.

Another justification is that the ‘function’ of an object is often definable largely in terms
of structure anyway. For example, the function of a chair is that it allows a person to be
attached to it in a particular structural pose. Likewise, the function of a table-leg can be
defined (in part) in terms of the way in which it is vertically beneath the table-top. Obviously
knowledge about gravity, support, uses of tables, etc, may help to recognise an unusual table,
but for more standard tables, recognition from structure alone is simpler and more efficient than
having to perform functional reasoning about whether an observed object satisfies the required
function. Structural descriptions could be said to ‘operationalise’ functional descriptions.
Other arguments for the utility of structural descriptions, with no functional knowledge, have
been discussed by Lebowitz in [Lebowitz, 1986].

The task is to construct, match, and generalise object descriptions.

GRAM performs three tasks. The first task is to construct a structured instance description
from the set of blocks provided by a low-level vision system. This involves creating an object
description for each block, by producing properties and relationships that characterise the
structure and context of the object. Also, various other composite objects may be created by
combining sets of smaller objects that collectively form some interesting abstract whole, such
as a group of similar items, or a topologically distinct structure. This can be considered a
form of constructive induction [Dietterich and R., 1986]. In a future GRAM system, the process
of producing an instance description could also include classifying the component objects.
This would enable the system to predict missing or occluded information, and to suggest the
formation of additional composite objects. Thus, this first task would somewhat overlap with
the second task.

The second task is to match an object description with a specified concept description. The
object may be any component within an observed scene or some other enclosing object. To do
this, the matcher needs to match the descriptions of the object’s subcomponents and structurally
related objects with the descriptions of the substructure and context of the concept. The result
of the matcher is a comparison description that specifies the similarity (and dissimilarity) of
the two descriptions, and the best correspondences between the components of their structure
and context descriptions, each of which also has its own comparison description.

The third task is to produce a generalisation of a concept to cover an observed object, making
use of the results of their comparison produced by the matcher. In doing this, the generaliser

16 CHAPTER 1. INTRODUCTION

may need to generalise other concepts that define the substructure and context of the concept,
to cover the object’s subcomponents and context. For example, Figure 1.5 shows a number of
chairs which could be shown to the GRAM system. It would create a new chair concept from
the first chair, and then for each successive chair observed it would generalise the chair concept
to account for the features of the new instance.

Therefore the three components of GRAM are the instance-constructor, the matcher, and
the generaliser. The issue of classifying an instance by indexing into, or searching, concept
memory, and the issue of how to reorganise concept memory in response to a new instance, are
discussed briefly later in this chapter, but are not significantly addressed by the thesis.

1.2 Related Work

There has been relatively little research done in the area of structured object learning, and even
less in the domain of physical objects. Chapter 2 describes some of the systems that address
this problem and are most relevant to this thesis. A brief outline of the main contributions and
limitations of these systems is given in this section.

Winston’s learning system [Winston, 1975] (described in section 2.1) learned generalised
structured descriptions from examples, represented as semantic networks in which the nodes
were parts or properties. The system provided much of the motivational basis for this thesis,
and some of the ideas have been adopted and extended, especially the methods for finding
groups of similar objects and representing them as a single descriptive entity characterised by
a description of the ‘typical-member’.

An important contribution of Winston’s system was the idea of using “near-miss” negative
examples. GRAM, in contrast, uses only positive examples, using frequencies of observation to
indicate the importance of a each feature. In fact, this thesis argues that near-miss examples
(such as a chair with a missing leg) should still be classified as a chair. The missing leg is a
‘fault’, rather than a feature that, if missing in an instance, indicates that the instance is not a
chair. This issue is discussed futher in section 8.3.5.

Winston’s system operated in a “toy” blocks-world domain and did not deal with complex
objects. It did not make explicit use of multiple levels of detail, such as for improving the
efficiency of the match algorithm, which was not described in the paper. The system was not
able to represent optional parts, or specify probabilities of the presence of a part. The system
introduced several important generalisation operations for structured objects, although it did
not deal with ambiguity or disjunction formation.

Brooks’s ACRONYM, discussed in section 2.2, has the most expressive representation
scheme of the systems discussed in this thesis. Objects are represented as a part hierarchy,
and properties and relations can be described in terms of conjunctions of complex arithmetic
expressions that can include variables and parameters of the parts (such as height, orientation,

1.2. RELATED WORK

17

Figure 1.5: Some chairs.

18 CHAPTER 1. INTRODUCTION

etc). However, ACRONYM does not address the problem of learning, which is why the repre-
sentation can be so rich, since it is not clear how the arbitrary arithmetic expressions could be
generalised.

An important contribution of ACRONYM is that it addresses the problem that it is not
usually possible to obtain a complete volumetric description of an observed object using a
bottom-up data-driven approach. Instead, ACRONYM uses geometrical reasoning about three-
dimensional model descriptions to make predictions of expected two-dimensional features.

CLUSTER/S [Stepp and Michalski, 1986a] (discussed in section 2.3) is a non-incremental
unsupervised learning system that finds conceptual clusters of structured objects. The key idea
of relevance here is that it converts a structured description into an attribute-vector description
that can then be processed by the attribute-based CLUSTER/2 system [Stepp, 1987a]. This idea
has, in some sense been adopted by Labyrinth (discussed below) and also GRAM, by representing
concepts as simple entities defined in terms of a few relationships to other concepts, rather than
as a complex part hierarchy defined locally to the concept.

Wasserman’s MERGE (described in section 2.5) performs incremental concept acquisition
and organisation for objects that have a hierarchical structure, such as physical objects or
corporate management structures. MERGE distinguishes between G-trees and F-trees, where
each G-tree is a subconcept hierarchy or taxonomy for a particular class of objects, and each
F-tree is a part hierarchy for a particular instance object or generalised object. A G-tree is a
hierarchy of F-trees, and an F-tree is defined by a set of subparts, which are in fact nodes in
a G-tree. Thus every component of an object is an instance of a concept, rather than merely
being an instance of a component of a concept. This approach has also been adopted by
Labyrinth (below) and GRAM. The system allows inheritance, and deals to some extent with
the “level hopping” problem in which corresponding components in two objects cannot be
matched because they are on different levels of the part hierarchies.

The key limitation of MERGE is that an observed object and its parts are already pre-
classified, by their names, as belonging to a particular G-tree. Thus the classification and
matching problems are made relatively trivial.

NODDY [Andreae, 1985] (described in section 2.6) is a procedure-learning system of which
GRAM was originally intended to be a component. Since the actions of a general-purpose
robot system should be able to be conditional on visual input, GRAM was to be a subsystem
that could build generalised descriptions of visual observations, which could then be used in
the conditional statements of a generalised procedure. The process of matching and learning
procedures is similar to the task of GRAM in that it involves matching and generalising structured
descriptions, and forming groups of repeated components. However, procedures have a simpler
sequential structure, without multiple levels of detail, and so the techniques used in Noddy are
not particularly extendible to the domain of physical objects.

Connell and Brady’s system [Connell and Brady, 1985] (described in section 2.7) was built
with similar goals to GRAM. It learns descriptions of two dimensional objects, and was intended
to form part of a “mechanic’s mate” project which would assist a mechanic in various ways,
such as finding a desired category of tool. It represents concepts and instances as a semantic

1.3. REPRESENTATION 19

network, with coarse details at the center of the network, and finer details nearer the fringe.
The matcher works by spreading outwards through the network, and this approach is similar
to that used in GRAM, except that Connell and Brady’s matcher only searches from coarse
details to fine details, rather than in any direction through the network. It also does not address
the level-hopping problem. The representation does not support optional parts, groups, or
disjunctive substructure, and the generaliser does not deal with ambiguities. An important idea
of the system is the use of Gray Coding, which enables a unified matching and generalisation
scheme to be employed.

Labyrinth [Thompson and Langley, 1991] (described in section 2.8) is an incremental unsu-
pervised concept learning system for the domain of structured objects. It deals specifically with
the issue of acquiring and organising multiple concepts in memory. An instance is represented
as a part hierarchy, and each concept is defined by a set of subparts and the concepts of which
these subparts must be instances. Relationships between the parts are also represented, and
probabilities can be associated with features. To classify an instance, its subparts are classi-
fied, and then a modification of the COBWEB algorithm [Fisher, 1987a] is used to traverse a
concept hierarchy to find the most similar concept. An important limitation of Labyrinth is
that it does not include context in its concept descriptions. A more significant limitation is
that its classification scheme relies on concepts not being defined in terms of context, since it
could not otherwise classify leaf nodes of an instance part-hierarchy prior to classifying parts
higher in the hierarchy, or even siblings. It also requires that every instance part is classified
separately, using the modified COBWEB algorithm, rather than directly accessing a candidate
concept via the expectations of other classifications.

The PARVO system [Bergevin and Levine, 1993] (described in section 2.9) performs object
recognition from two-dimensional line-drawings. It does not address the problem of learning.
The relevant contribution of PARVO to this thesis is that it demonstrates that physical objects
can often be classified on the basis of their coarse details alone, without requiring the finer
details to be matched (unless more specialised classifications are required, or for the task of
fault-finding). This characteristic of the domain of physical objects also means that if the
matcher is able to operate from coarse levels of detail to fine levels of detail, then the coarser
levels of the description are likely to be correctly matched, and therefore will be able to guide
the matching of finer details.

1.3 Representation

The representation scheme is central to GRAM, since it underlies all of its other components.
The way in which concepts and instances are represented largely governs the design and the
performance of the rest of the system. This section gives a very brief outline of some of the
main principles and contributions of GRAM'’s representation language.

20 CHAPTER 1. INTRODUCTION

1.3.1 Aninstance is represented as an object graph, with parent, neighbour, and
subpart relationships.

To describe a complex physical structure, it is necessary to represent it in multiple levels of
detail. GRAM does this in the form of an object decomposition hierarchy, in which each object
(except primitive objects at the bottom of the hierarchy) is an abstraction or approximation of
the subpart objects beneath it. Each object can be described by its set of subparts.

However, objects also need to be represented in terms of their context, not only their sub-
structure. The context of an object includes not only its enclosing objects (that are higher in
the decomposition hierarchy), but also the objects connected to it, close to it, or otherwise
interestingly related to it.

Therefore, GRAM’s representation provides three types of relationship, namely parent, neigh-
bour, and subpart relationships, where each relationship is a rich descriptive entity charac-
terising how one object is structurally related to another object in terms of position, size,
connectivity, alignment, orientation, erc. This allows objects to be represented not just as a
decomposition hierarchy, but as a graph. A description of an object also includes a set of
structure properties (such as aspect-ratio, shape, etc) and a set of contextual properties (such
as a connectivity profile).

Figure 1.6 shows an example of an object-graph, where each node denotes an object that has
explicit relationships with other objects. The solid lines denote parent or subpart relationships,
and the dotted lines denote neighbour relationships.

One new idea here is that the representation does not deal with arbitrary relations between
nodes, such as left-of, bigger-than, etc, but instead combines the information about the re-
lationships between objects into parent, subpart, and neighbour relationships, each of which
is defined by an attribute vector consisting of both qualitative and quantitative information.
Therefore, when comparing the relationships between two pairs objects, it is not necessary to
deal with a multitude of separate relations. Instead, a single attribute-vector comparison is
performed, giving a single overall similarity score.

Each relationship is not only a descriptive entity that partially characterises the structure or
context of an object, but also acts as a direct link between objects, in any of three directions
through the object graph. These links are exploited by the matcher to constrain and guide
the search for correspondences between objects and learned concepts. The use of neighbour
relationships for this purpose is especially significant, since it enables the matcher to cross
levels of the hierarchy, rather than being restricted to a top-down search. This is discussed
further in section 1.5.

1.3.2 Structure and context are explicitly distinguished.

Another contribution of the GRAM system is the explicit distinction between context (defined by
parent and neighbour relationships, and various contextual properties) and structure (defined by

3Each line should actually be depicted as two distinct directed lines, since each object has its own set of
relationships, and they are not shared by other objects. This simplifies the generaliser.

1.3. REPRESENTATION 21

parent/subpart relationship
— — — neighbour relationship

Figure 1.6: An object graph.

subpart relationships and various structural properties). This supports partial matching, since
it enables the matcher to notice that two objects have similar structure (or ‘form’) but different
contexts (or ‘role’), or vice versa. The distinction also allows structure and context disjuncts
to be represented.

1.3.3 Groups are represented by a multi-relationship to a typical-member con-
cept.

A characteristic of everyday physical domains that was identified earlier is that scenes and
objects often contain groups of similar items, such as rows of books, or cookies in a bowl, as
illustrated in Figure 1.7. Groups should be explicitly representable for a number of reasons:
to enable several objects to be represented compactly in summary form as a single entity; to
enable properties of the group as a whole to be made explicit; to enable efficient matching
by comparing groups as single entities, rather than comparing individual members; to enable
generalisation of groups that have different cardinalities; and to provide transfer of information

22 CHAPTER 1. INTRODUCTION

amongst group members.

Winston introduced the idea of representing a group in terms of a typical member. GRAM
extends this idea by allowing the typical member to be a complex structured generalised
concept. The group object has a multi-relationship to this typical-member concept, which is
a generalised subpart relationship with a howmany count indicating how many instances of
the concept are present in the group. In a generalised group, the howmany count may also be
generalised.

A typical-member concept can also have neighbour relationships to itself, which represent the
typical inter-member relationships, thus capturing the topology of the grouping. Various kinds
of grouping topologies are possible, such as a linear chain, a grid-like array, an unstructured
cluster, or a loop.

GRAM takes this notion of a multi-relationship further by allowing any instance or concept
description to include multi-relationships to any concept, and this is interpreted to mean “there
are n instances of that concept related to this in such and such a way.” Thus groupings
can be described without even having an explicit group-object. For example, a bedroom or
bookshelf might have a multi-relationship to the concept pot-plant, without having to represent
the collection of potplants as an explicit entity.

1.3.4 A concept is a generalised object, defined in terms of other concepts.

A crucial component of GRAM’s representation scheme which is largely responsible for enabling
complex structures to be dealt with in a manageable way is its representation of concepts.
During the earlier stages of working on this thesis, the representation included three types of
descriptive entity: the concept, the instance, and the part [Andreae, 1993]. Each concept and
each instance was represented as a complete graph of parts, so that the definition of a concept
consisted of an explicit set of all parts and their relationships. To compare a concept with an
instance, the matcher needed to find non-conflicting one-to-one correspondences between the
parts of the two graphs.

For large complex objects, such as a bicycle or bedroom, this scheme proved very problematic.
One problem was that descriptions of concepts such as bicycles and bedrooms must allow
disjunctions, to represent alternative and optional substructure and context. This led to very
complex concept graphs which were unwieldy to match and generalise. For example, if all of
the chairs in Figure 1.5 are generalised to form a single part graph that characterises all of the
common and variant features, then the part graph will be very complex.

Another problem was that concepts must often be defined in terms of components that should
be concepts in their own right, such as wheels, handlebars, beds, pillows, etc, and which
should be recognisable directly without having to necessarily deal with an enclosing bedroom
or bicycle description. This suggests that subgraphs need to be extracted out when appropriate,
and the original graph somehow refer to them, perhaps via inheritance.

The complexities of this representation scheme were overcome by the development of a rep-
resentation scheme in which each concept description is a small compact chunk of information

1.3. REPRESENTATION

23

Figure 1.7: Some examples of groups in a bookshelf.

24 CHAPTER 1. INTRODUCTION

that consists of a set of properties, and a set of parent, neighbour, and subpart relationships to
other concepts. If a concept X has a relationship to a concept Y, then this is interpreted to mean
that for each instance of concept X, there exists an instance of concept Y which is related to
the X instance in the specified way. This means that there is no explicit set of parts stored in
a concept description, but only references to other concepts. A concept’s part decomposition
hierarchy and its context are now less explicit, although concepts can still capture the richness
and complexity of the domain.

The simplicity and uniformity of this representation has significant implications for the
matcher and generaliser. There is no need to deal with two kinds of entity — concepts and
concept-parts. Instead, memory consists only of concepts, each of which is a small manageable
description. Also, the matcher does not have to find a one-to-one correspondence between two
nodes of two graphs. Instead, a simpler, more flexible, and more robust method is possible, as
will be outlined later. Disjunction is now representable simply by defining a concept by a set
of subconcepts, and any other concept that is defined in terms of such a concept is therefore
implicitly disjunctive.

Labyrinth [Thompson and Langley, 1991] also used this idea to some degree, but the con-
tribution of GRAM is, firstly, that it includes context in a concept description, thus making
each concept a more richly described and more constrained entity. This reduces the kinds of
problems that Labyrinth had due to the under-constrained nature of their concepts which were
defined only in terms of subparts. Secondly, the GRAM matcher exploits parent and neighbour
relationships to guide the search, allowing a multi-directional search, rather than a merely top-
down tree traversal which suffers from the “level-hopping” problem when two similar objects
have been decomposed into hierarchies that do not correspond level-to-level. Thirdly, GRAM
includes multi-relationships and groups (by referring to a typical-member concept) giving the
representation greater expressiveness, and thus improving the performance of the matcher and
generaliser.

1.3.5 Structure and context can each be described disjunctively.

GRAM explicitly distinguishes between structure (or form), defined by a set of properties and a
set of subpart relationships, and context (or role), defined by a set of properties and a set of parent
and neighbour relationships. This distinction also means that the structure (and/or context) of
a generalised concept can be described disjunctively. This is done simply by indicating that the
structure (and/or context) is disjunctive, which causes the matcher and generaliser to use the
structure (and/or context) of the subconcepts of the concept as the disjuncts. Each subconcept
is a disjunct, or variant, of its parent concept.

For example, the concept door-handle could be defined by multiple forms that fulfill the same
role. More specifically, it could be defined by a single non-disjunctive context description
(consisting of a relationship to the concept ‘door’) and a disjunctive structure description
defined by the set of structures of the subconcepts of the door-handle concept.

Conversely, the concept swivel chair could be defined by a single form but multiple roles.
More specifically, it may have a single non-disjunctive structure description, and a disjunctive

1.3. REPRESENTATION 25

context description defined by the contexts of the subconcepts of the concept, each character-
ising a different role of a swivel chair, such as with and without a person on it.

Sometimes a concept has disjuncts of both structure and context. For example, instances
of the more general concept chair can appear in a variety of contexts and can have a variety
of substructures. In this situation, the structure and context disjuncts are not distinguished,
but are both defined by the complete set of subconcepts. Some of the subconcepts may have
a highly generalised context and a specific structure (such as the subconcept for a standard
four-legged chair); others may have a highly generalised structure and a specific context (such
as a chair with a person sitting on it); and others may have a specific structure and a specific
context (such as a dentists chair). The current GRAM representation scheme is not able to
explicitly distinguish between ‘structure subconcepts’ and ‘context subconcepts’, as this would
complicate the concept hierarchy considerably.

1.3.6 Concept descriptions are probabilistic.

Section 1.1 stated that concepts in GRAM’s domain can have highly variable properties and
relationships. A generalised concept description in GRAM expresses the permissible variability
of its instances in two ways, both of which have been used in other earlier systems, most
notably COBWEB |[Fisher, 1987a]. Firstly, each numerical attribute value (such as for size,
orientation, etc) is represented as a distribution with a mean and variance, and each nominal
attribute value is represented as a frequency distribution. Secondly, each parent, neighbour, and
subpart relationship of the concept description has an instance-count which indicates how many
observed instances of the concept included that relationship. The concept as a whole also has
an instance-count, which is the total number of instances that contributed to the generalisation.
Thus the ratio of the instance-count of a relationship over the instance-count of the concept as
a whole can be interpreted as a probability or expectation of a new instance having that feature.
For example, the concept ‘door’ may have a subpart relationship to the concept ‘door-lock’
with an instance-count ratio of 0.3, meaning that 30% of doors have door-locks.

1.3.7 Concepts can have a variety of interpretations.

GRAM allows concepts to be interpreted in several ways, depending on how the concept was
formed. If a concept is formed from the parent, neighbour, and subpart relationships that are
common to all or most of its instances, ignoring any atypical relationships, then the concept
has a partial interpretation, meaning that the matcher should permit a new instance of the
concept to have any additional parents, neighbours, and subparts, so long as it satisfies the
concept’s structure and context properties. On the other hand, if a concept is formed by taking
the union of the instance’s parent, neighbour, and subpart relationships, then it has a complete
interpretation. If a new instance has additional relationships that are not present in the concept
description, then these indicate a mismatch.

This distinction was made by [Stepp, 1987b]*, who pointed out that a number of learning

“Stepp used the terms ‘contains’ semantics and ‘is’ semantics.

26 CHAPTER 1. INTRODUCTION

systems did not explicitly take the distinction into account, and therefore suffered from semantic
ambiguity. GRAM explicitly allows both interpretations, and therefore allows the generaliser
to perform either intersection or union when creating a concept. GRAM also distinguishes a
number of more specialised variants of these two interpretations, which are used to define how
group concepts and disjunctive concepts are to be interpreted by the matcher and generaliser.

1.3.8 The richness of the representation scheme can be exploited by the matcher
and generaliser.

This section has shown that GRAM’s representation scheme is sufficiently rich to enable the
important features of complex generalised physical objects to be explicitly represented. The
scheme allows explicit context and substructure, groups, optional and alternative features,
instance-counts associated with features, relationships and multi-relationships with other con-
cepts, and several alternative interpretations. This richness enables the matcher and generaliser
to exploit the structure of physical objects to achieve more efficient and effective performance.

1.4 The Instance Constructor

The instance constructor takes information obtained from a low-level vision system (which is
currently simulated manually by input from a drawing program) and produces a description
in GRAM’s representation language. The information from the vision system specifies a set of
blocks described in some visual coordinate frame. Some of these may be ‘fuzzy’ blocks which
are approximations of several smaller blocks.

More specifically, the instance constructor must construct an object graph, at multiple levels
of detail. One issue is to determine what objects should be created, where each object should
be a useful abstraction or approximation of other smaller objects. Most of these can be formed
directly from the blocks provided by the vision system, but some objects may be formed on the
basis of other object-formation criteria, such as groupness, connectivity, symmetry, ezc. One
contribution of this thesis is to identify the kinds of criteria that justify object-formation with
respect to the requirements of the matcher and generaliser. Another contribution is a set of
criteria for selecting which parent, neighbour, and subpart relationships should be explicitly
included in the object graph.

A more significant contribution of the instance constructor is the set of ‘groupness’ criteria
for justifying group formation in an instance. A mechanism for searching for groups has also
been developed, called seed-expansion, which first identifies seed groups consisting of two
objects that could potentially expand into a group, and then incrementally adds new objects
to the group until a clear group-boundary is reached, or until the group is abandoned. This
method contrasts with another method described called propose-and-prune, which begins with
a generous grouping, and then prunes off members until a stable group with a clear member-
nonmember boundary is reached.

1.5. THE MATCHER 27

The work on group-finding is based on Winston’s early group-finding system [Winston, 1975].
Winston seemed to use a seed-expansion approach to find sequences of similar and similarly
related objects, although the algorithm was not described, and seemed to deal only with simple
chains. His system also used a propose-and-prune algorithm to find groups of objects that
were similarly related to some other object. The seed-expansion algorithm presented in this
thesis extends Winston’s work in several ways: It integrates the capabilities of Winston’s two
group-finding techniques; it provides a more elaborate scheme for proposing an initial seed
groupings; it measures group strength and member typicality in a more general manner; and it
is applicable to GRAM’s richer representation.

1.5 The Matcher

The purpose of the matcher is to compare two descriptions, usually a concept description
with an instance description. This involves finding and evaluating correspondences between
the parent, neighbour, and subpart relationships of the two descriptions, producing various
measures of similarity that indicate overall similarity, structure similarity, context similarity,
and the similarity of each pair of corresponding relationships and related concepts or objects.

In an earlier version of GRAM when concepts were represented as a complete part-graph, the
matcher had to find the best set of one-to-one correspondences between the parts of the concept
part-graph and the parts of the instance part-graph. One approach to this is to exhaustively
evaluate all possible correspondences between the components of the two descriptions. Suchan
approach did not use the description structure to guide or constrain the search, and was therefore
computationally expensive, and even infeasible for large objects such as the bicycles in Figures
1.8 and 1.9. The part-graph for bike-1, shown in Figure 1.10, has about 120 composite and
primitive parts, so there are roughly 120! sets of correspondences between the parts of the two
bicycles. In fact this is an underestimate since it does not include correspondence sets in which
some parts are left unmatched. Also, it does not consider axis-correspondences: A pair of parts
may correspond in a number of ways depending on which axes are put into correspondence.
Two rectangular parts can be corresponded in 4 ways (or 8 if reflection is considered). So,
clearly, an exhaustive search is computationally infeasible.

Similarly, a purely top-down search that traverses subpart relationships of the two descriptions
(as in the systems by Brooks [Brooks, 1981] and Wasserman [Wasserman, 1985]) is also
inadequate because we cannot assume canonical part decomposition hierarchies, and because
we may also want to compare the context of the two items. A more flexible method is necessary
which is able to search upwards and outwards via parent and neighbour relationships as well
as downwards via subpart relationships.

Therefore, another method for part-graph matching was developed. In this method [Andreae, 1993]
the matcher first chose a seed correspondence between two parts. The best corresponding par-
ent, neighbour, and subpart relationships were then used to propose new correspondences to

28 CHAPTER 1. INTRODUCTION

Figure 1.8: A Bicycle

be added to a pool of candidate correspondences. Then the best candidate correspondence
was selected, in the manner of a “greedy” search, where ‘best’ meant not only having sim-
ilar properties, but also most consistent with the previously selected correspondence. Then
more candidate correspondences were proposed on the basis of the best corresponding parent,
neighbour, and subpart relationships. This “spreading activation” process continued until the
(hopefully) best globally consistent set of one-to-one correspondence bindings between all
parts of the two graphs was found.

Although the basic algorithm worked efficiently and effectively for straightforward cases,
extending the algorithm to cope with more complex situations proved difficult.

One aspect of the problem was that it was often necessary to compare significant portions
of the substructures of two parts before they could confidently be put into correspondence,
or before ambiguity between two competing correspondences could be resolved. This re-
quired that the matcher be invoked recursively to compare the two substructures, with their
contextual correspondences kept ‘hidden’, or at least made unchangeable, during the scope
of the recursive match. This meant that a new subgraph comparison description had to be
created, and then later integrated into the original graph comparison description if appropriate.
The recursive match sometimes needed to make use of previously-selected correspondences
between surrounding objects, and cope with any previously-selected correspondences of the
subparts of the subgraphs. Since there could be many levels of recursive matching, and hence
nested graph comparison descriptions, the maintenance of consistency, and the integration of

1.5. THE MATCHER 29

proRi] JHEAR] [PIRE] JRSEOKES

"N BSPROC BERAVT,] Gd [[)
i \ S ". . = = X
AL TR N S SRy
Lo 2% oy B e S
‘« a x R \\‘\\r\' 3 S
(g] EIEl VB2 3 B o s TR))) o s

g g

| Jrsrare - Tering

Figure 1.10: The object-graph for a bicycle

the nested comparisons, was complex.

30 CHAPTER 1. INTRODUCTION

Another problem was that a correspondence might be selected and then later found to be a
bad choice, and this required some form of backtracking. The system had to determine which
correspondences to unselect, and when. One difficulty was that for backtracking to be effective
it was necessary to undo a set of correspondences, rather than just one at a time, since otherwise
the matcher would tend to get stuck on local maxima of the hill-climbing search space. The
system also needed to avoid cycles. '

Another problem was that the representation scheme included a special kind of relationship
that referred to another concept, rather than to another part within the same hierarchy. Therefore,
the matcher had to deal with both kinds of relationship, and be able to recursively apply the
matcher to that other concept and a subgraph of the instance, while also maintaining a globally
consistent set of bindings, thus adding another level of complexity. Also, structure and context
disjunctions of a concept were represented as sets of alternative substructure descriptions, and
each of these had to be matched with the structure and context of the instance, in the manner
of a recursive match. The problem of inheritance of complex structures, from superconcept
descriptions, also needed to be addressed.

Although consistent one-to-one bindings were required, it was required that the matcher notice
and record ambiguities so that groups could be created during the generalisation process. This
meant that the matcher needed to maintain multiple alternative subgraph comparisons. If a
group was already present in a concept description, but not in the instance description (or vice
versa), then it was necessary to maintain multiple alternative subgraph comparisons between
the typical member of the group, and individual parts of the instance (or vice versa).

Although a matcher for dealing with these issues could no doubt be developed, and many of
the individual issues have been dealt with in other systems, the complexity and cumbersomeness
of the process indicated that perhaps a different concept representation scheme was necessary.
Also, the earlier scheme did not take into account the fact that most of the components of most
physical objects are themselves instances of concepts, such as the buttons on a telephone, the
zip of a pencil case, and the cushion on a chair. The matcher did not exploit or even account
for this fact, since it was designed primarily for concepts that were represented as a complete
part hierarchy.

The new representation scheme takes the complete opposite approach, representing every
concept only in terms of other concepts, with no local part hierarchy. This means that a much
simpler matcher is possible.

1.5.1 The GRAM matcher does not maintain or enforce a set of consistent corre-
spondence bindings.

The key idea in the new GRAM matcher is that there is no requirement that a consistent set of
correspondence bindings be created and maintained. This is a somewhat radical approach, but
has proved surprisingly successful. Consistency seems to be implicitly maintained by the rich
constraints inherent in physical objects themselves.

To determine how well a concept matches an instance, the correspondences between the
concept’s parent, neighbour, and subpart relationships, and the instance’s parent, neighbour,

1.5. THE MATCHER 31

and subpart relationships, are evaluated. A set of reasonable candidate correspondences are
chosen, and these are then evaluated more thoroughly by recursively applying the matcher
to compare the concept and instance to which each pair of relationships refers. The best
correspondences are then chosen, and similarity scores for these, and similarity scores for the
properties of the concept and instance, are used to compute overall measures of similarity.
Similarity scores are computed using weighted averages of numerical measures of similarity
of the attributes that characterise the properties and relationships.

Thus, the matcher employs a kind of backward-chaining manner, similar to the instantiation of
a Prolog Horn clause, since to evaluate a concept-instance comparison, other concept-instance
comparisons must be evaluated. Therefore, the matcher spreads up, out, and down through the
parent, neighbour, and subpart relationships, matching instances with concepts as it goes.

The main difference between this matcher and the old matcher is that each concept-instance
comparison is performed without taking into account the selection of best relationship corre-
spondences for any other concept-instance comparisons. Only the similarity scores of other
correspondences are used. There is no notion of “fixing” a correspondence, since all corre-
spondence selections are made only locally.

This approach works surprisingly well, and has made the matcher more simple, flexible, ro-
bust, and efficient, and it can be made significantly more efficient because it is more amenable
to a parallel implementation. Inconsistency amongst correspondences is not a problem, be-
cause a good classification only requires that the parent, neighbour, and subpart relationships
and relatees of an instance match sufficiently well with the parent, neighbour, and subpart
relationships and relatees of the concept. Consistency is implicitly enforced by the richness of
the domain, since inconsistencies will tend only to occur when there really are ambiguities, in
which case we want the matcher to produce multiple correspondences, since these can be used
by the generaliser to suggest the formation of groups or multiple ‘roles’ in the new concept.

1.5.2 A breadth-first beam search with iterative-deepening is used.

To ensure search efficiency, the matcher applies successively increasing levels of effort to
the comparison, thus preventing the matcher from spreading outwards except via the most
promising correspondences. This is done by a kind of breadth-first search using iterative-
deepening, pruning off poor branches as it goes. If rough and rapid matching is required, then
only a low-effort comparison is necessary. If a thorough detailed comparison is required, then
a high-effort comparison is performed. Also, if the match is clearly a bad match, then the
comparison may be abandoned early, before it has invested much effort.

1.5.3 Neighbour relationships largely resolve the “level-hopping”’ problem.

An important contribution of GRAM is the use of neighbour relationships to explicitly char-
acterise the structural relationship between connected, close, or interestingly related objects.
One of the reasons why this is significant is that it enables the matcher to “cross levels” of the

32 CHAPTER 1. INTRODUCTION

object decomposition hierarchy. Other systems such as Brooks [Brooks, 1981] and Wasser-
man [Wasserman, 1985] have suffered from the “level hopping” problem, since their matchers
worked by a top-down traversal of the part-hierarchy. Parts in two descriptions that are not
on corresponding levels, could not be matched except by using some kind of additional level-
hopping techniques. In GRAM, however, the matcher can traverse in any direction through the
object graph, not only up and down parent and subpart links but also along neighbour links.
Thus, even if two objects are on different levels of their decomposition hierarchies, neighbour
relationships from other objects will often allow their correspondence to be found.

1.5.4 Classification of a scene can begin at any seed correspondence

The multi-directional spread also means that the matcher can begin from any ‘seed’ correspon-
dence, not just from the top node of an instance hierarchy. For example, suppose an observed
object is partially occluded, but the system is able to index from one observed component to
the concept ‘bicycle-seat’. When that component is matched with the concept ‘bicycle-seat’,
the matcher spreads outwards via parent, neighbour, and subpart relationships, and hence is
able to make the prediction that the object is a bicycle. In the process, many of the surrounding
components (such as the frame, wheels, gears, etc) are also classified.

The above characteristic also helps resolve the problem of not being able to identify the
boundaries between objects. For example, if the task is to find a hammer in a jumbled toolbox,
but the vision system cannot identify the hammer as a distinct object but is able to identify the
hammer head as a distinct part, then the matcher could spread outwards to establish a complete
match with the hammer concept.

The ability of the matcher to traverse neighbour relationships also means that the context of a
concept and instance can be matched, and this is important for classification of concepts which
are defined (at least partially) in terms of context, such as a door handle or bicycle wheel.

1.5.5 Two types of similarity scores are distinguished: Fit-scores and Proximity-
scores

The results of the matcher are used in different ways by different components of the system.
A consequence of this is that two different kinds of similarity scores have been distinguished:
proximity-scores and fit-scores. Proximity-scores measure the absolute similarity of two objects
within object-space, and fit-scores measure the typicality of an instance with respect to a
concept, where typicality is measured on the basis of the ratio of feature-differences to the
variance of the concept features.

Proximity-scores are used within the matcher itself for evaluating object correspondences,
and within the generaliser to determine whether two objects are similar enough to justify
generalisation. Fit-scores are used by the generaliser to determine whether an instance fits a
concept well enough to justify modifying that concept to cover the instance, rather than creating
a new concept. Fit-scores are also required for fault-finding to identify the faulty or unusual
features.

1.6. THE GENERALISER 33

1.6 The Generaliser

The generaliser is responsible for generalising an existing concept description to include an
observed instance. It can either produce a new concept, or modify the existing one. .

In its most basic form, the generaliser is quite straightforward, since most of the important
work is performed by the matcher. The basic method for generalising two descriptions is to
(a) generalise their properties, (b) generalise their best-corresponding relationships, and (c)
generalise their best-corresponding relatees, by recursively applying the generaliser to each
pair of relatees. Thus the generaliser spreads outwards like the matcher, but only via the
best-correspondences of parents, neighbours, and subparts that were found by the matcher.

The complexities of the generaliser lie in the areas of spread-control, disjunct generalisation,
ambiguity resolution, special cases that arise due to the different kinds of structure and context
interpretation, and deciding when to create a new concept, or modify or copy an existing
concept.

One problem of generalisation in a structured domain is that a classification may have been
obtained on the basis of a low-effort comparison that only takes into account the coarser
details of the concept and instance. This may be sufficient for recognition, but insufficient for
determining what generalisation action should be performed. Therefore, the generaliser needs
to be able to request the matcher to apply further effort to the comparison.

Another problem is determining whether generalisation should be performed before or after
matching has completed. If a robot is navigating through a room it will be continually
classifying what it observes, and each classification will lead to other classifications via parent,
neighbour, and subpart relationships. So in effect there is no notion of ‘completing a match’.
Concept generalisation would have to occur concurrently with matching, which means that
the system’s control strategy must be very flexible and robust. In the current GRAM system I
have made the simplifying assumption that a single scene or object is observed, then a seed
classification is provided for one instance object, and then the remaining instance objects are
matched via the spreading comparison process. Generalisation is performed only after this
process has completed. However, the nature of GRAM’s matcher is such that it allows a great
deal of flexibility in the way it can be integrated with other components of the system. This
is because each concept is just a simple description, rather than an entire complex part graph,
and, more importantly, because it does not enforce global consistency during the search.

1.7 GRAM in a larger system.

The current version of GRAM only provides mechanisms for matching and generalising. This
section outlines the issues that need to be addressed for extending GRAM to perform full

34 CHAPTER 1. INTRODUCTION

classification and multiple-concept learning.

1.7.1 Classification

The kind of task that the classifier is responsible for is shown in Figure 1.11. On the right is
an object graph for an observation, with solid lines indicating parent relationships and subpart
relationships, and dotted lines indicating neighbour relationships. On the left is an illustration of
concept memory, in which the thick lines are AKO links, the thin lines are subpart relationships
and parent relationships, and the thin dotted lines are neighbour relationships. Similarity-links
may also be included, which provide direct access between concepts that are similar. The
task is to find correspondences (i.e. classifications) between one, some, or all of the observed
objects, and the concepts in memory.

concept memory

object graph for an
observed scene or object

consists of concepts connected by

subconcept links parent/subpart relationship
____ Pparentrelations — — - neighbour relationship
~ neighbour relationships
— subpart relationships
... and others.

Figure 1.11: The classification task.

There are three stages in classifying an observed object. Firstly, one or more concepts in
memory must be accessed. Secondly, each concept must be matched with the observation
to determine the similarity. Thirdly, a search may be required to find a more appropriate
classification, either via AKO-links to find a more abstract concept, or subconcept links to find
a more specialised concept, or similarity-links to find an improved match.

There are three ways of accessing a concept to match with an observed object:

From task specifications. If the larger task requires an observed object to be matched with a
specified concept, then concept access is not an issue. Such a task may be given by a

1.7. GRAM IN A LARGER SYSTEM. 35

teacher or by some other component of the robot system.

By direct indexing. A particular feature or combination of features of an observed object may
be used to directly access one or more concepts in memory. The concepts found are then
passed to the matcher for comparison with the instance. If too many concepts are found,
then multiple indexing can be used, and only the concepts that are accessed by all or
most of the indexes are considered. For example, if we index an object on the basis of
its colour alone we may obtain many concepts, but if we take the intersection of those
concepts and the concepts obtained by indexing on size or shape, then we might obtain
a smaller set of hypothesised classifications.

Via the classification of a related object, during matching. When GRAM’s matcher compares
two descriptions, it usually spreads upwards, outwards, and downwards, comparing their
parents, neighbours, and subparts. In other words, correspondences (i.e. classifications)
may be obtained on the basis of some other comparison. For example, the compari-
son of an observed object with the concept chair may lead (via neighbour-relationship
correspondence) to the classification of an object on top of the chair as being a ‘person’.

Currently GRAM does not include a direct-indexing mechanism, and therefore relies on the
first or the third of the access-mechanisms above. Although direct indexing would obviously
be essential for a full system, the concept access that results from the ‘spreading comparison’
process is often sufficient for classifying many objects in a scene. Forexample, when you walk
into an office, knowing that it is an office, many of the contents are often recognisable based
on expectation, such as the desk, windows, telephone, chair, filing cabinet, etc. In other words,
if there is a relationship from one concept to another, then an instance of the latter will often
be classifiable on the basis of recognising an instance of the former.

Future work on the GRAM system will address the issues of indexing, and also of searching
for better classifications via AKO links and similarity-links between concepts.

1.7.2 Multiple Concept Learning.

Concept learning is the overall process of building up an organised memory of concepts on
the basis of observed scenes and objects. Although this thesis focuses only on the generaliser
component of this, this section outlines some of the tasks and issues of the concept learning
system to show how the generaliser fits in to it, and also to indicate the kinds of future work
to be undertaken. Other systems such as Labyrinth have addressed concept learning (referred
to as concept formation in the Labyrinth work), but without the richness of representation
language, in particular the use of context relationships, groups, and disjuncts.

Figure 1.12 illustrates the kind of situation that faces the concept-learner. It is the same
diagram that was shown earlier in Figure 1.11, except that some results of classification are
shown by the dotted lines from each instance part to concepts in memory. The number
on each line is a similarity score, and thus only the high-scoring correspondences are good

36 CHAPTER 1. INTRODUCTION

concept memory

-) T~ some correspondences
= produced by the matcher
(some good, some bad)

object—graph for an
—0:93_ observed scene or object

parent/subpart relationship

subconcept links — —— neighbour relationship
~— parent relations

consists of concepts connected by

neighbour relationships
subpart relationships
... and others.

Figure 1.12: The learning task.

classifications. Each classification could either have been obtained via direct indexing, or via
the spreading activation matching process, or from direct teacher or task specifications.

The concept learner must decide which of the classifications justify generalisation. If an
instance fits an existing concept sufficiently well (according to the fit-score), then that concept
could be generalised to cover that instance. On the other hand, if the instance is similar to the
concept, but does not have a good fit-score (such as swivel chair with respect to the concept four-
legged-chair) then a new parent concept could be created which has the original concept and
the new instance as its two subconcepts. Various other reorganisations of the AKO hierarchy
are also possible, such as merging existing concepts, adding new subconcepts, removing a no-
longer-useful concept, or removing a concept and promoting its subconcepts. The COBWEB
system [Fisher, 1987a] performed this kind of process in domains of unstructured objects.

In a structured domain, the creation and maintenance of an AKO hierarchy is somewhat
more complex than in an unstructured domain. This is because concepts are defined in terms
of other concepts, and so each change in one concept may affect many other concepts. For
example, a concept may need to be removed from concept-memory if it becomes overly general,
overly specialised, or otherwise not useful, but it cannot simply be deleted, because the parent,
neighbour, and subpart relationships of other concepts may refer to it. Similarly, if a concept
is overgeneralised, this has the effect of overgeneralising all other concepts that are defined in
terms of it. Therefore, a conservative approach to generalisation is especially important in such
adomain. A basic heuristic is that when in doubt, create a new concept rather than generalising

1.7. GRAM IN A LARGER SYSTEM. 37

an existing one. However, this can have the consequence of a complex cluttered memory. Also,
under-generalisation can mean that less is learned, since the information obtained from each
instance will tend not to be combined with information from other instances.

Although concept-memory must primarily be organised as an AKO hierarchy, it is useful
to maintain similarity-links (or difference-links) between some pairs of concepts. This can
enable the classification and concept learning systems to traverse these links to find better
correspondences, on the basis of correspondences found via indexing or the matcher’s spreading
activation. Since each comparison is represented as a match description, these descriptions can
be used as the similarity links, thus not only providing direct access between similar concepts,
but also specifying the way in which they are similar.

Designing a concept learning system for a domain of structured objects is non-trivial. The
“Background” chapter looks at a few systems that have addressed this problem to some degree.
The Labyrinth system was the first system to address this problem using a representation where
concepts were defined in terms of other concepts, and it proved not very successful in a number
of ways. The enriched representation scheme of GRAM addresses some of the main limitations
of Labyrinth, in particular the lack of context information, and also the inflexible matching
algorithm. However, it remains for future work to develop a complete concept learning system
on the basis of the work done for this thesis.

38

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This chapter provides a background to the work in this thesis by discussing some of the most
relevant systems that have already been developed for representing, matching, or generalising
concepts in the domain of structured physical objects. Each section briefly describes the
relevant features of the system, and then outlines the main limitations with respect to the
requirements of the GRAM system discussed in chapter 1.

2.1 Winston’s “Arch Learner”

Winston made the first significant attempt to represent and learn structured descriptions of
physical objects. His learning system [Winston, 1975], which operates in a simple “blocks
world” domain, introduced many important ideas about representing, matching, and general-
ising structured objects, and has been a motivational basis for much of the work on the GRAM
system in this thesis (as well as for much of the other work in machine learning).

The system incrementally learns a concept by being shown individual instances by a teacher.
The system does not address the problem of discovering and organising multiple concepts, but
instead focuses on supervised learning of a single concept, from examples specifically chosen
by a teacher.

Instances are represented using a semantic network in which a node can denote either a part of
the object, or a qualitative predicate (such as rectangular, small, or standing). Nodes can have
relations between then, such as has-property, supported-by, or one-part-is. A simple example
of this is given in Figure 2.1.

A concept is initially formed from a single instance provided by a teacher, and is generalised
by merging it with a new instance. To do this, the concept and the instance are matched
to find corresponding nodes and relations, and then a comparison description is created for
each correspondence. A variety of generalisation operations are available, and an appropriate
one is selected for each correspondence, based on the nature of the similarity. These include

39

40 CHAPTER 2. RELATED WORK

has—pm%f 1y

Figure 2.1: Object representation in Winston’s system.

operations such as “climb the AKO hierarchy” to find a common generalised concept, “drop
the feature” to remove the node or relation from the concept if it is not present in the instance,
or “ignore the feature” to ignore an instance feature that is not present in the concept. An
example of the use of the drop-feature operation is when a concept television includes an aerial
component which is not present in a new instance. The aerial may be dropped from the concept
description.

An important contribution of the system is the idea of using near-miss negative examples. If
a near-miss negative example has a feature that is not present in the concept, then this feature
is added to the concept, with the annotation “MUST-NOT-HAVE”. Conversely, if a concept
has a feature that is absent in the near-miss negative example, then that feature is given a
“MUST-HAVE” annotation.

In the kind of domain that GRAM is to operate in, such as a house or a workshop, it seems
unlikely that near-miss examples would be available. Instances of other similar concepts may
serve as negative examples, or even near-miss examples, such as a stool being a near-miss
for the concept chair. But it does not seem feasible to rely on a teacher to provide near-miss
examples, perhaps by removing one leg of a chair, or misaligning the drawers of a desk. In fact,
in these two examples the ‘fault’ does not cause the instance to be a non-member of the class,
but simply indicates that a particular feature is important for the functionality of the object. A
chair with a missing leg is still a chair, but it is a faulty or broken chair.

One problem with Winston’s system is that the use of the drop-feature (or ignore-feature)
operation implies that generalised descriptions must have a “contains” semantics, rather than an
“is” semantics, as discussed by [Stepp, 1987b]. A “contains” semantics means that a concept
description implicitly allows additional features that are not present in the concept description,
to be present in an instance. An “is” semantics means that an instance must not have additional
features that are not present in the concept. Therefore, Winston’s system seems to necessarily

2.1. WINSTON’S “ARCH LEARNER” 41

have a “contains” semantics, since otherwise it would not allow an instance to have features
that had been observed in previous positive instances and then ignored or dropped because
they were not shared by all observations. However, this has the unsatisfactory consequence of
allowing an instance to have any features in addition to those in the concept. For example, a
chair and a person on it could, as a composite whole, be classified as a ‘chair’ simply because
it contains all the necessary components of the chair concept.

Winston does not directly address this issue, although the use of MUST-NOT-HAVE anno-
tations does help to constrain a concept to a small degree. However, this is not a practical
way of enforcing an “is” semantics, since it requires that every non-allowable feature has to
be explicitly included in the description. Also, each MUST-NOT-HAVE feature has to be

specified by a teacher via near-miss negative examples.

The problem could be alleviated by not using the drop-feature or ignore-feature rule, and
instead allowing each feature to have a frequency measure associated with it, to indicate how
many observed instances had that feature present, and therefore to indicate the importance of
that feature and the probability of it being present in a future valid instance. Even just the ability
to annotate a feature as being optional would avoid the need for the drop-feature operation,
therefore allowing a concept to have an “is” semantics, which in turn would make the need for
negative examples less necessary, except perhaps for giving a especially strong emphasis to the
required presence or absence of a particularly functionally significant feature.

Winston’s system is not able to represent structural disjuncts (such as the back of a generalised
chair having several alternative substructures) except perhaps by referring to another concept
(such as chair-back) which has several subclasses. His paper does not address how such a
concept hierarchy is formed, hence the only disjuncts supported are those involving predefined
concept hierarchies (such as the brick class and its two subclasses wedge and cube).

A contribution of Winston’s system which has particular significance to the GRAM system
is that his representation allows groups of similar components (such as a tower of bricks) to
be represented as a single entity. A group is characterised by a typical-member, which is a
generalisation of the individual members, formed by extracting the features common to most
or all of them. His representation of groups has been extended in several ways in the GRAM
system, as have the algorithms for finding groups within an object. This is discussed in the
“Representation” and “Instance Construction” chapters later in the thesis.

The issues involved in matching two descriptions, and the algorithm for doing it, are not
discussed in his paper. The focus of the work was on identifying different kinds of similarity
and the kinds of generalisation operation required for each of them. There is no mention of
using the structure of descriptions to guide the matching process. In particular, although the
representation includes a one-part-is relation, the system does not provide a way of representing
large complex objects in multiple levels of detail, and of enabling the matcher to exploit the
decompositional nature of physical objects.

Overall, Winston’s system presents a number of important ideas, but only implemented in
a simple way. The GRAM system described in this thesis shows how some of these ideas
can be extended to cope with more complex objects, in particular those pertaining to group

42 CHAPTER 2. RELATED WORK

representation and group finding.

2.2. ACRONYM 43

2.2 ACRONYM

Brooks’s ACRONYM [Brooks, 1981] is not a concept learning system, but is a system for
representing class-hierarchies of three-dimensional viewer-independent models of complex
physical objects, and using these models to interpret and predict two-dimensional image data.
A central contribution of the system is its geometric reasoning and constraint manipulation,
which is not directly relevant to this thesis, although it might be applicable in future work in
an extended GRAM.

One relevant aspect of ACRONYM for this discussion is its representation scheme, which,
in many ways, is more elaborate than the GRAM representation, since ACRONYM is not
constrained by the requirement that model descriptions should be learnable.

As in the case of many of the systems discussed in this chapter, ACRONYM represents
multiple concepts in a hierarchy defined by the “subclass-of” relation, and represents individual
concepts as a part hierarchy based on the “part-of” relation. Each part is represented as a
generalised cone, which is the volume formed when a two dimensional planar cross-section is
swept along a spine curve while being held at a constant angle to the spine and transformed
according to a ‘sweeping rule’ (such as a change in dimensions). Each generalised cone is
describable using just a few attribute values, and is therefore a simple but powerful way of
representing complex objects with a wide variety of shapes. Future work on the GRAM system
is likely to adopt this representation scheme, since it enriches the descriptions of objects
considerably, without affecting the rest of the system at all. It only requires the addition
of a few more attributes. However, it does also require a vision system which can produce
generalised cone descriptions.

A feature of ACRONYM that is not present in the other systems in this chapter is that the
properties and relations characterising parts can be described using conjunctions of complex
algebraic expressions involving parameters of the parts (such as height, orientation, quantity,
and so on). This means that models can be extremely complex, capturing almost any spatial
constraint between its components. GRAM adopts a simpler, though not quite as general,
approach.

Groups are representable in ACRONYM by specifying a value greater than 1 in the ‘quantity’
slot of an ‘affixment’ relation to a component. In fact, the value can be a free variable that is
constrained by algebraic expressions involving other parameters of other components. As a
simple example, a model could specify that there are n flanges and m motors, with the algebraic
constraint that n = (2 x m) + 3.

A component that is optional can be represented by specifying its ‘quantity’ slot to be “0 or
1”. Structural disjuncts are not supported, although it is possible to state that an object has
either a flange or a base but not both, using an expression such as:

((flange-quantity = 0) and (base—quantity = 1))
or (flange-quantity = 1) and (base-quantity = 0))

or perhaps as: flange-quantity = I(1-base-quantity)l

44 CHAPTER 2. RELATED WORK

However, the prediction and interpretation systems are not able to deal with such constraints.
Such disjuncts could only be represented by referring to a special-purpose class which has two
subclasses, a flange, and a base.

In addition to the representation scheme, another relevant aspect of ACRONYM is that it
deals with the issue of comparing volumetric models with two-dimensional image data. Other
systems in this chapter that deal with physical objects, assume that instance descriptions are
in the same form as concept descriptions. That is, instance and concept descriptions are both
described in part-based viewer-independent volumetric models, and can therefore be directly
compared. Such systems assume that it is possible to form volumetric instance descriptions
from an observed image prior to classification, using a vision system that can recognise
primitive volumetric solids. Brooks argues that this may be impossible or very difficult, due
to ambiguities or lack of information in the image description. ACRONYM is significant
because it does not make the assumption that a volumetric model can be obtained from image
data produced by low-level visual mechanisms, and instead provides a means to perform
classification using two-dimensional image features. It does this by making predictions of
invariant two-dimensional observable image features, computed from the three-dimensional
viewer-independent concept description. These can be used to form rough hypotheses of model
to image feature correspondences. These predictions can also act as instructions on how to use
measurements of image features to deduce three dimensional information about the object to
which it has been hypothetically matched.

ACRONYM'’s matching task is more complex and computationally expensive than for sys-
tems that assume volumetric instance descriptions. Therefore, it seems undesirable, and in fact
unnecessary, to completely abandon the assumption that the volumetric instance descriptions
can be obtained. Instead, a combination of a low-level volume-perception mechanism (such as
PARVOS in section 2.9, a volumetric matcher, and an ACRONYM-like image prediction and
interpretation mechanism, might be a more optimal approach. The volume-perception mech-
anism could produce volumetric descriptions to the extent possible by bottom-up techniques,
and an ACRONYM-like system could produce classified volumetric descriptions of some of
the other components using its more top-down expectation-driven mechanism. The results
of these two systems could be used to classify other as-yet unclassified components, and the
object as a whole, by direct volumetric matching. The volumetric matcher could be applied as
soon as there are sufficient volumetric descriptions of subcomponents, produced by the other
systems.

The main limitation of ACRONYM relative to the domain and task requirements of this
thesis, is that it does not address the problem of learning object models, and the representation
was not specifically designed to support learning. Models are instead input to the system
manually via a graphical modelling system. Many features of an object are made implicit (via
quantitative algebraic expressions) rather than as explicit qualitative descriptors. Also, it is not
clear how these complex arbitrary algebraic expressions, and the free variables in them, could
be learned from example objects.

2.3. CLUSTER/S 45

2.3 CLUSTER/S

CLUSTERY/S [Stepp and Michalski, 1986a] is a non-incremental unsupervised learning system
that finds conceptual clusters of structured objects. It is the least relevant to the work in this
thesis, but it is mentioned here because it is significant in the development of systems that deal
with structured objects. The key idea presented is to convert a structured object description into
an attribute-vector description so that attribute-based clustering mechanisms can be applied.
CLUSTER/S uses this technique to enable the previously developed CLUSTER/2 system
[Stepp, 1987a] to be applied in a structured domain.

CLUSTER/S represents objects using an annotated form of predicate calculus that was
developed for the earlier INDUCE systems [Michalski, 1983], but with the addition of n-ary
predicates. For example, the ‘chair’ object in Figure 2.2 could be represented in the following
way:

chair(x) ==> 3 pl,p2,p3
[part-of p1 X] [part-of p2 X]
[part-of p3 X] [part-of p4 X]
[color(p1)=brown] [shape(pl)=rectangle]
[color(p2)=brown] [shape(p2)=rectangle]
[color(p3)=black] [shape(p3)=rectangle]
[color(p4)=black] [shape(p4)=rectangle]
[orientation(p1)=vertical] [orientation(p2)=horizontal]
[orientation(p3)=vertical] [orientation(p4)=vertical]
[on(p1,p2)]
[on(p2,p3)]
[on(p2,p4)]
[left-of(p3,p4)]

pl

p2

p3 p4

Figure 2.2:

CLUSTER/S converts the descriptions of a set of structured objects into attribute-based
descriptions, which can then be clustered using CLUSTER/2. It does this by finding a ‘core’
description that is the common substructure of the set of objects. This common substructure
enables the individual object descriptions to be converted to attribute-based descriptions, since

46 CHAPTER 2. RELATED WORK

the corresponding parts can be treated as ‘named parts’. When clustering, there is no need to
deal with structured object matching, since correspondences have already been found during
this preliminary stage.

Since the clustering aspect of CLUSTER/S is not directly relevant to the focus of this thesis,
the primary relevance of CLUSTER/S is its representation scheme, and the way in which
objects are matched to produce the ‘core’ description.

One limitation of the representation is that it allows arbitrary predicates and attributes, which
are not organised or partitioned in a way that enables the matcher to exploit the structure of the
description. There is no explicit notion of representing objects in multiple levels of detail, and
the matcher does not allow objects to be processed at a coarse level of detail before considering
the finer details. In fact, the work on CLUSTER/S has not directly addressed the problem of
dealing with large complex structured objects, but is instead based on a more general form of
graph-matching, with some degree of pruning the search to prevent combinatorial explosion.
However, it seems that it would be unreasonably computationally expensive for dealing with
objects as complex as, for example, the bicycle in Figure 1.1 on page 2. The fact that it is non-
incremental also makes it inappropriate in a domain where learning must occur incrementally
in response to newly observed instances.

The representation scheme also does not support probabilistic information about the expected
presence of the features of a concept and instead seems to employ the “drop-feature” generali-
sation operation. This means that generalisations have a “contains” semantics, which has the
same consequences that were discussed earlier for Winston’s system in section 2.1.

It seems that the central ‘mistake’ in the development of CLUSTER/S is that the problem of
concept acquisition in the domain of structured objects was addressed without first considering
the issue of what kind of representation would best support this task and domain. Instead,
CLUSTER/S uses a representation scheme and clustering mechanisms that were originally
developed for attribute-based domains, and it is not clear that these mechanisms are applicable
to structured domains, since they do not explicitly exploit the structure of descriptions.

24. MARVIN 47

24 MARVIN

MARVIN [Sammut and Banerji, 1986] is a semi-supervised concept-learning system in which
concepts are described in terms of other concepts, and which can deal with structured objects.

Concepts are represented as Horn Clauses, such as the example below for the chair in Figure
2.2 given earlier:

CHAIR(X) :- 3P1,P2,P3,P4,Y:
(PARTOF P1 X) & (PARTOF P2 X)
& (PARTOF P3 X) & (PARTOF P4 X)
& (VERTICAL P1) & (HORIZONTAL P2)
& (VERTICAL P3) & (VERTICAL P4)
& (ONP1 P2) & (ONP2P3) & (ON P2 P4)
& (CHAIRBACK P1) & (CHAIRSEAT P2)
& (ROD P3) & (ROD P4)
& (ONXY) & (FLOOR Y)

The main idea proposed is that of iteratively learning a concept by automatically constructing
instances to test the validity of, and to refine, the concept. A concept is initially created from
a single instance, which is then generalised by performing a ‘replacement’ operation. This
involves replacing one or more of the predicates on the right hand side of the concept (or clause)
being learned, with the left hand side of some other previously acquired clause.

For example, BRICK(A) might be replaced by ANY-SHAPE(A) by using the clause:
ANYSHAPE(A):-BRICK(A).
Similarly, the set of predicates
BRICK(X) & BRICK(Y) & BRICK(Z) &
ON(Z,X) & ON(Z,Y) & SEPARATE(X,Y)
might be replaced by a single previously-acquired predicate ARCH(X,Y,Z).

An instance is then constructed which satisfies the new concept but does not satisfy the
previous concept prior to the replacement. A teacher is asked whether the instance is valid,
and if so, then the generalisation is presumed to be acceptable. If not, then the concept must
be specialised by performing a further replacement which involves some of the predicates
previously removed. The new concept is then generalised again, and the above steps are
repeated. This process continues for all possible replacement operations.

This is similar to Winston’s “near-miss” training in the sense that it involves making use of
instances that are ‘almost correct’, and refining the concept accordingly. However, Winston
relied on near-miss examples to be provided by the teacher, while MARVIN constructs these
itself. A teacher is only required to verify these instance.

Although the papers describing MARVIN deal with examples in the domain of physical
objects, such as ‘arches’, MARVIN was not developed particularly for structured objects, and
therefore (as for CLUSTER/S) the system does not exploit the structured nature of the concepts
it learns. All predicates are treated equivalently, and the structure of objects is not explicitly

48 CHAPTER 2. RELATED WORK

reflected in the structure of their descriptions. For example, there is no distinction made
between contextual and substructural components.

MARVIN uses an unusual method of representing groups of similar components, by recur-
sion. For example, the concept ‘column’ would be defined by the following clauses:

COLUMN(X) :- BRICK(X) & STANDING(X) & ON(X,Y) & COLUMN(Y).
COLUMN(X) :- BRICK(X) & STANDING(X) & ON(X,Y) & GROUND(Y).

This definition means that an individual brick is an instance of the concept ‘column’. This
does not seem to be a ‘natural’ way of representing groupings, and does not make the grouping
explicit, nor allow predicates on the group as a whole to be made explicit.

MARVIN learns from a single observed instance, which is then generalised via domain
knowledge and teacher feedback. It does not provide any method of incorporating newly
observed instances into the concept description, and this would prevent it from being applicable
to an autonomous robot that must learn and refine concepts on the basis of unsupervised
observation of new instances. It is not possible for such a robot to generate trial instances
for validation, except perhaps by pulling the legs of chairs or bending television aerials. It
could perhaps ask verbal questions, such as “can the seat of a chair be elliptical?”, or perhaps
draw pictures of a test instances, but primarily it must learn from positive examples, or from
discriminating between examples of similar concepts. In the domain of complex physical
objects there are so many possible generalisations that could be made, and so many possible
trial instances that could be proposed, that such an approach would be infeasible, unless there
was sufficient reasoning ability or domain knowledge to identify the important questions or
test instances.

It is not clear how well MARVIN would perform on more complex examples in a real physical
domain. The system does not make use of the decompositional structure of objects to constrain
and guide the classification and generalisation processes, but seems to take a more exhaustive
approach, in the manner of a PROLOG interpreter. It also does not address the issue of partial
structural matching, or of dealing with alternative partitioning of instances.

Despite the limitation of MARVIN for the domain of structured objects, a central idea which
has also been adopted in GRAM, is that concepts are defined in terms of other concepts, rather
than in terms of a complete set of components that are organised as a part graph (as is the case
in Winston’s learning system, Brooks’s ACRONYM, and Connell&Brady’s system (described
later)). This means that concept memory is essentially a learned description language consisting
of clauses that can be used within other clauses. A concept description does not consist of a
global set of all of its components (structural and contextual), but only a local set of its directly
related components. The matcher only has to establish classifications of its components,
locally, rather than finding a consistent set of one-to-one correspondences between two graphs.

2.5. MERGE 49

2.5 MERGE

Wasserman’s MERGE performs incremental concept acquisition and organisation for objects
that have a hierarchical structure, such as physical objects or corporate management structures.

MERGE represents an instance as a hierarchy of components, where the hierarchy is defined
by some fundamental relation such as “part-of” or “has-boss”. Such a hierarchy is called an
F-tree. For the rest of this discussion we will assume an F-tree is a part hierarchy organised
according to a part-of relation.

F-trees are stored in memory in generalisation hierarchies called G-trees. Each node of a
G-tree is an F-tree, and the nodes below it are its subclasses, or variants. Since each variant
F-tree is similar to its parent F-tree, MERGE avoids the need to store identical information
redundantly, by supporting inheritance in several forms: a variant can be defined by specifying
parts that are to be added, deleted, or substituted. All other parts are implicitly inherited from
the parent F-tree, and so do not need to be explicitly included in the description of the variant,
unless they are necessary for indicating the branch on which a lower-level part is to be added,
deleted, or substituted.

Every kind of part has its own G-tree, which is essentially a hierarchical clusterings of
instances of that kind of part. To illustrate this, figure 2.3 shows two chairs which have been
represented in memory as a number of G-trees. The notation is different from that used in
Wasserman'’s thesis, and has been chosen to enable a better comparison with the GRAM system.
Each node of a G-tree is an F-tree, although it is defined in the diagram by just specifying its
subparts, which are F-trees in other G-tree. The diagram only shows information relevant to
this discussion.

For example, the chair G-tree consists of a generalisation of both chairs, at the top, and
two variants beneath it. The subparts of the generalised chair are chairback, chairseat, and
chairsupport-#, each of which is an F-tree in another G-tree. For example, chairsupport-# is
the top node of the chairsupport G-tree, and has two variants, one of which is the two-legged
support, and the other is the central-leg support.

The variants of the generalised chair inherit the details of their parent, although the generalised
chairsupport-#is substituted with chairsupport-1 or chairsupport-2. The hierarchy could extend
to any number of levels if more instances were observed.

The representation also allows various properties to be associated with each F-tree node, and
also allows non-fundamental relations between components, such as “left-of” or “bigger-than”.

Although this representation scheme seems reasonable, there is a significant assumption made
by the system which makes the task addressed by MERGE significantly different from that of
GRAM. This assumption is that when a new instance is observed, and is to be incorporated
into memory, each part of the instance (and the instance itself) has already been classified as
belonging to a particular G-tree, by virtue of its name. For example, if a third chair is observed
which is identical to the second chair, the names of its parts, such as chairback-3, chairseat-3,
or chairsupport-3, immediately enable the system to determine which G-tree each part should
be incorporated into. The only task required by the system is to determine which node of the

50 CHAPTER 2. RELATED WORK

G-tree should be generalised, or where the new instance should be added as a variant. This is
done basically by searching the G-tree, matching each F-tree with the instance F-tree to find
the best correspondence.

Two F-trees are matched by applying the MATCH procedure to the root nodes of the F-trees.
MATCH then recursively matches all pairings of the subparts of the nodes, to find the best set
of bindings. The similarity of leaf nodes is based on two measures, firstly a measure indicating
the hierarchical distance from the two nodes to their lowest common ancestor in their G-tree,
and secondly, a measure of the similarity of their properties and relations. The match process
is strongly constrained because such parts are only compared if they belong in the same G-tree,
and this is immediately known by their name.

MERGE addresses the “level-hopping” problem, in which similar objects are represented
with corresponding components on different levels of their F-trees, and thus cannot be matched
using a strict top-down traversal of the hierarchy. MERGE deals with this by inserting “null
nodes” into the hierarchy to test all possible adjustments of the hierarchies (by one level) in
the hope that a better match may be found. This scheme does not cope with level hops of more
than one level difference, and the strategy seems computationally expensive.

The assumption of named parts means that MERGE is not really able to classify objects
on the basis of their structure, other than identifying which node of a given G-tree an object
best corresponds to. The whole search is constrained dramatically by the pre-classification of
parts by their names. This assumption was presumably made because MERGE was based on
Lebowitz’s work on reading patent abstracts for complex physical objects, where the parts of
the objects are identifiable by their names.

Therefore, MERGE does not support the task which GRAM is addressing, which is to be able
to match complex objects by comparing their unlabelled substructure and context.

It is not clear how much of the MERGE system could be extended to cope with unlabelled
objects. It would require searching through all G-trees in memory, and G-trees are not organised
or indexed in any manner which allows this. Also, the exhaustive recursive matcher would be
unacceptable for complex objects, especially if the pre-classification assumption does not hold.

One feature of MERGE that has also been used in GRAM is the idea of representing all
components of objects as concepts. The advantage of this is that it enables each concept to be
defined directly in terms of other concepts, rather than part hierarchies, and this results in a
simpler and more homogeneous representation scheme, without having to distinguish between
concepts and parts of concepts, or having to decide when to extract out portions of substructure
as concepts in their own right.

2.5. MERGE

"chair'" G-tree

 chair—#
subparts: chairback
chairseat

chairsupport—#
chair-1 chair-2
subparts: substutute chairsupport—# subparts: substutute chairsupport—#
with chairsupport—1 with chairsupport-2

|

[

|

"chairback" G-tree
; ""chairsupport' G-tree

chairback
subparts:

chairsupport—#
subparts:

sant Vg
. arionh ar,a”,

chairsupport-1 chairsupport-2
subparts: add chairleg subparts: gdd middleleg
add chairleg add legbase

"chairseat" G-tree

chairseat
subparts:

| "chairleg" G-tree "legtop" G-tree "middleleg" G-tree

chairleg Tegtop ddleleg
. subparts:)
subparts: legtop subparts:
legbase
"leghot' G-tree ""legbase' G-tree
legbot legbase
subparts: subparts:

Figure 2.3: Wasserman'’s representation scheme.

52 CHAPTER 2. RELATED WORK
2.6 Noddy

NODDY [Andreae, 1985] is the system of which GRAM was originally intended to be a com-
ponent. NODDY incrementally learns robot procedures from examples, by matching the steps
of example traces of a procedure, and generalising the existing procedure description by form-
ing loops, conditional branches, and simple expressions of variables. Since the actions of a
general-purpose robot system should be able to be conditional on visual input, GRAM was to be
a subsystem that could build generalised descriptions of visual observations, which could then
be used in the conditional statements of a generalised procedure.

In many ways, the procedure learning task is a similar to the physical object learning task, in
the sense that both involve representing, matching, and generalising structured descriptions.

For example, loop formation is similar to group-finding, since a loop is formed to summarise
a repetition of actions, and a group is formed to summarise a repetition of objects. However,
NODDY only forms loops during the matching process to resolve ambiguity, while GRAM
is also able to form groups prior to matching, thus avoiding ambiguity and improving the
efficiency of the matcher.

Another similarity between the two domains is that procedures and physical objects can both
be described in multiple levels of abstraction and detail (although NODDY deals only with
‘flat” procedures), and procedures can have relationships with other procedures (i.e. procedure
calls). NODDY deals with components described by numerical properties, but has a much
simpler set of properties than GRAM.

One important difference between the two domains is that there is less complexity in the
structure of procedures, since procedures are sequential, with the relationships between compo-
nents basically limited to ‘follows” and ‘precedes’. The sequential ordering guides the matcher
in a way that is not possible for physical objects.

NODDY’s matcher begins by finding a few ‘seed’ correspondences between distinct steps of
the current generalised procedure and steps of the example procedure trace (such as the first
and last), and then propagates linearly from these.

2.7. CONNELL AND BRADY 53

2.7 Connell and Brady

Connell and Brady’s system [Connell and Brady, 1985] was built with similar goals to GRAM. It
learns descriptions of two dimensional objects, and was intended to form part of a “mechanic’s
mate” project which would assist a mechanic in various ways, such as finding a desired category
of tool.

Instance descriptions are obtained from a low-level vision mechanism called the Smoothed
Local Symmetries program [Brady, 1983] which breaks a two-dimensional image into seg-
ments. Such a system could also be used to provide input to the GRAM system, which assumes
that a vision system is available.

Connell and Brady’s system represents the results of the segmentation by a semantic net,
in which nodes denote object components (such as parts, part-ends, and part-sides) and edges
denote relations or properties (such as ‘has’, ‘join’, ‘very long’, efc). The network spreads
outwards from a ‘root’ node via several kinds of relations, with larger and coarser details close
to the root node, and smaller and finer details further away.

An important aspect of the representation is the use of Gray Coding, in which each property is
described by a set of predicates, rather than a single predicate. Each predicate adds a distinction
to the property, such as the predicate ‘very’ which can be combined with the predicate ‘long’.
This means that similarity can be measured simply by counting how many predicates are shared,
rather than requiring hidden domain-specific similarity metrics. This helps to support Connell
& Brady’s requirement that semantic similarity is directly reflected in ‘syntactic’ similarity.

Gray Coding enables a single generalisation mechanism to be used, which simply ‘drops’
predicates that are not common to both descriptions. However, this does require that predicates
be chosen carefully to ensure that the methods of matching and generalisation do in fact give
appropriate results.

The representation does not support optional components, or disjunctive sets of alternative
substructures. The only form of disjunction provided is at the level of the whole concept, which
can be described in terms of a disjunctive set of models and non-models. Another limitation of
the representation is that it cannot explicitly represent groupings of similar components.

The matcher works by spreading outwards from the root node of the network, extending
the “match horizon” outwards via relations if the current similarity is sufficiently good. The
system keeps track of the best bindings between nodes of the two descriptions being compared,
and performs backtracking if necessary. Differences that are more distant from the root node
are treated as being less important than differences that are close to the root node. This is
based on the assumption that larger and coarser details are semantically (or functionally) more
important than smaller and finer details. If this assumption is valid, then the ‘syntax’ of the
semantic network reflects its semantics, as required.

This matcher is more similar to the GRAM matcher than any of the other systems discussed
in this chapter. One difference is that it deals with concepts and instances that are complete
graphs, and therefore must maintain a globally consistent set of bindings between nodes. This
means that backtracking is necessary, since it is not possible to always correctly determine the

54 CHAPTER 2. RELATED WORK

best correspondences of nodes at the horizon of the match without considering details that only
become available later as the matcher spreads outwards. The details of the algorithm were
not specified in the paper, and so it is not clear how effective the backtracking mechanism is,
since in theory it would require a complex ATMS-like system to correctly determine which
correspondences (or sets of correspondences) should be unselected. [Provan, 1987] has shown
that an ATMS approach is infeasible for large objects, and therefore a backtracking scheme
that relies only on partial information would seem to be necessary. Also, it is not clear how
well Connell&Brady’s backtracking scheme would perform in situations where ambiguities
are only resolvable by descriptive features that are several levels beyond the current horizon of
the match.

A second difference is that the matcher does not address the level-hopping problem, and
instead assumes that two objects can only be considered identical or very similar if they have
been partitioned in the same way, with corresponding components being at the same level in
the hierarchy.

The generaliser involves the single technique of ‘ablation’ in which common features are
retained in the generalised description, while unshared features are dropped. If two descriptions
differ significantly, then a new model can be added to the concept. Models may later be replaced
by a single model if more intermediate instances are observed. A concept may also include
non-models which are like Winston’s censors [Winston, 1984], and achieve an effect similar
to Winston’s ‘MUST-NOT’ conditions. If an instance matches a model but also matches a
non-model, then it is considered to fail the match. A non-model may also be overridden by
more models, which themselves may be overridden by more non-models.

One problem with this scheme is, as has been the case for several of the systems in this
chapter, that concept descriptions necessarily have a “contains” semantics, since the drop-
feature generalisation operation is employed. To a small degree this is alleviated by the use of
non-models, as for Winston’s MUST-NOT conditions, but these non-models also suffer from
the same problem. Also, the use of non-models is an expensive way to constrain a description,
since they are themselves complete descriptions of a negative example, and must be matched
and generalised independently.

2.8. LABYRINTH AND COBWEB 33

2.8 Labyrinth and COBWEB

The Labyrinth system [Thompson and Langley, 1991] is an incremental unsupervised concept
learning system for the domain of structured objects. It deals specifically with the issue of
acquiring and organising multiple concepts in memory.

Labyrinth is built upon the COBWEB mechanism [Fisher, 1987a] for incorporating instances
into a concept hierarchy in a way that maximises the measures of ‘utility’ for the concepts.
The key contribution of Labyrinth is that it extends the COBWEB mechanism to deal with
structured objects, rather than merely attribute vectors.

Instances are represented as a part decomposition hierarchy, in which each part in the hierarchy
is linked to its subparts via the ‘part-of” relation. The topmost node of the hierarchy represents
the observed object as a whole, and the leaf nodes represent primitive parts that have no further
decomposition. Each part is also characterised by an attribute-vector specifying information
such as shape and colour. The subparts of each part can have arbitrary relations between them,
such as left-of, or connected-to.

Labyrinth does not make the assumption of MERGE that the parts of an instance are already
partially pre-classified by being implicitly associated with a concept hierarchy for a particular
kind of object. Rather, Labyrinth stores all concepts in memory in a single concept hierarchy,
and the system itself must classify the instance parts with no prior information. The concept
hierarchy acts as a kind of indexing structure, since it allows the classifier to traverse the
hierarchy top-down, following the branches on which the concepts best match the instance,
thus obtaining a successively more specialised classification.

Concepts are represented in a manner similar to instances, except that a concept’s part-
hierarchy is only one level deep. The subcomponents of the concept are not decomposed
further within the concept description itself. Instead, each subcomponent is defined as being
an instance of some other concept. For example, a bedroom might be represented in terms of
three subcomponents, x, y, and z, which are defined to be instances of the concepts ‘chair’,
‘bed’, and ‘desk’, respectively. This avoids the problem of dealing with concepts that are large
complex part hierarchies or part graphs, since the substructure of each concept is ‘hidden’ in
the descriptions of other concepts. This particular aspect of Labyrinth is basically the same as
for MARVIN and MERGE, and is also the scheme used by GRAM.

The representation scheme supports a more precise form of feature prediction than the other
systems described in this chapter, in the sense that attributes, relations, and subcomponents of a
concept have probabilities associated with them, indicating how frequently they have occurred
in the observed instances of the concept.

Figure 2.4! illustrates the kind of concept memory that might exist after observing two chairs.
Each node is a concept, some of which are defined in terms of subparts, with occurrence
probabilities indicated. The properties and relations between subparts have not been shown.

IThis example was not generated by Labyrinth, but was created by hand for this chapter, and is only intended
to convey the general idea of the Labyrinth system, rather than giving precise details of exactly how the two chairs
would be represented in concept memory.

56 CHAPTER 2. RELATED WORK

The names on each concept have been given only for readability, since instance parts are not
given concept names (in contrast with MERGE).

An instance is classified by first classifying its subpart objects. These in turn are classified by
classifying their subparts. This recursive process bottoms-out at the leaf nodes, which have no
substructure, and so can be classified by the attribute-based COBWEB system. This involves
searching the concept hierarchy, top-down, to find the best-matching concept.

After the leaf subparts have been classified, their parent parts at the next level up the hierarchy
can be classified, since their subparts are now labelled. This is done by using a modified
COBWESB algorithm that can deal with sets of subparts, each described by an attribute vector
specifying its properties, and by relationships with other subparts. (The previous COBWEB
only dealt with instances and concepts represented as a single attribute-vector). Each label is
represented as a property of a subpart. The modified COBWEB traverses the concept hierarchy
top-down, comparing concepts with the instance by comparing their overall properties, the
properties of their subparts (including the label property), and relations between the subparts.

The technique of labelling subparts, to simplify the classification task, is similar in principal to
the technique used by CLUSTER/S (described in section 2.3) to convert a structured description
into a non-structured description, or, in the case of Labyrinth, to a minimally structured
description.

The classifying process continues back up the instance part hierarchy until the root part
(i.e. the object as a whole) has been classified. Hence classification of an instance involves a
depth-first divide-and-conquer technique, breaking up the overall classification problem into
a series of simpler classifications, one for each subtree of the instance part hierarchy. During
the classification process, concept memory is also updated by generalising existing concepts,
creating new concepts, or reorganising concept memory.

The modified COBWEB mechanism compares a concept and an instance by an exhaustive
search of all possible sets of bindings between their labelled subcomponents. The label (i.e. the
classification) of each subcomponent contributes to the measures of similarity. This differs from
MERGE, which uses labels to directly constrain which subcomponent bindings to consider.

One significant limitation of Labyrinth (which was to be addressed in future work) is that
a concept is only defined in terms of its substructure, and does not include any context, or
‘role’, information. This means that there is less information in the concept descriptions to
distinguish between concepts, and also means that predictions about context cannot be made.
Over-generalisation tends to occur, since a concept can be generalised to cover a new instance
even if their contexts are very different.

An even more significant limitation is that Labyrinths’ classification scheme relies on not
having context information. If concepts were defined in terms of contextual parent and neigh-
bouring parts, as well as subparts, then it could not classify an instance in its bottom-up fashion,
since to classify the primitive ‘leaf” parts of an instance, the system would have to classify its
parents and neighbouring parts. It seems that the whole strategy used by Labyrinth would have
to be modified considerably to cope with this.

Another important limitation of the Labyrinth system is that every component of an instance

2.8. LABYRINTH AND COBWEB 57

is classified by an independent COBWEB search through the concept hierarchy. Since new
concepts are formed for every distinct kind of component of every observed object, the concept
hierarchy would be enormous for any real-world system (especially if context were also used,
since that would create even more distinctions between instances). Labyrinth does not provide
any indexing mechanisms for directly accessing concepts from instance features, and so it is
not clear that the scheme would be sufficiently efficient for rapid classification.

An important form of direct indexing, which is the basis of the GRAM matcher, is not employed
in Labyrinth at all. This method is to use a hypothesised classification of one instance part to
directly suggest likely classifications of its structurally related parts. For example, if a concept
C1 is being matched with instance I1, and concept C1 has subparts which must be instances of
concepts C2, C3, and C4, then the subparts of I1 can be directly compared with those concepts,
without having to search concept memory. Those comparisons can then provide positive or
negative confirmation of the C1:I1 correspondence, which may have been originally proposed
on the basis of its properties, or relations with other already-matched concepts and instances.
This process is discussed in detail later in this thesis. It could perhaps be incorporated into the
Labyrinth system, although the manner in which Labyrinth incorporates instances into memory
is somewhat dependent on a top-down hierarchical search. In any case, the process would not
possible via relations between connected or nearby parts, since context is not representable.
For example, if a chair-leg is roughly recognised as a chair-leg (perhaps on the basis of it being
a tall thin rod standing on the floor), then Labyrinth could not use this classification to lead
directly to the classification of the chair-seat as being a chair-seat. Rather, the chair-seat must
be classified independently, by searching down the concept hierarchy.

Also, Labyrinth’s strategy of classifying in a post-order manner, beginning with the leaf
nodes, means that matcher cannot perform classification using just a coarse level of detail.
This could perhaps be achieved by simply ignoring the substructure of the instance parts below
some depth in the hierarchy, and treating them as primitive components. However, this may
have implications on other aspects of the system.

A related problem is that Labyrinth can only recognise sets of components that have al-
ready been partitioned into a distinct instance object. Partitioning cannot be driven by the
classification process itself. For example, if a chair and a person on it are treated as a single
object, then the classification mechanism cannot discover, on the basis of classification of the
subcomponents, that the chair and person can usefully be treated as distinct objects.

Another problem with Labyrinth is that it does not address the level-hopping problem, where
instances that should belong in the same concept have been decomposed into different part
hierarchies. Labyrinth is not able to find correspondences between parts at different levels of
the hierarchy, and therefore must assume canonical descriptions of all instances.

A representation issue that is not addressed in Labyrinth is that of representing explicit
groupings of similar objects. This means that an object containing several similar subparts
must specify all of the subparts individually, rather than in summary form. This has the added
consequence that there will be ambiguities when matching two such objects, and this has not
been addressed by the system. Also, if the objects have a different number of similar subcom-
ponents, then it is not possible to find a set of one-to-one bindings to enable generalisation to

58 CHAPTER 2. RELATED WORK

be performed.

59

2.8. LABYRINTH AND COBWEB

qrdoyday | | eydoSay 1) 10080 () wre .
o IS e | [0 | T
:Supdqns (1) ZBopey (0') 132jreyd
_ unum_.__a__o_ [-Soprey (1) Teasmmen) o..c TR
(0']) Yovqueyo:sundqns (0°1) Yoeqareyo :supdqns
-1 I
T L (£0) 100501 O L R P g
(¢5°0) dovSay :suvdgns ~._.
SIRY)
e P20 Tanogga] [eoqea D s A ﬁv i
0'1) sajireyd
/ /u\ 5@% m% (0'7) Sopareqd
duny-[ejuozLioy 119859 : (07) weasirey

"SUOND]2 SSDJIGNS 210U
ydv.3 ay1 up sadpa I 210N

(0'1) Yorqreyo :Spdgns

i

Anjiqopoas 10f uan1s
Kquo a1v sauiou 3daauod ayy :ajoN

Figure 2.4: Labyrinth’s representation scheme.

60 CHAPTER 2. RELATED WORK

2.9 PARVO

The PARVO system [Bergevin and Levine, 1993] performs object recognition from two-dimensional
line-drawings. Its approach is based on the idea proposed by [Biederman, 1985] that it is usu-

ally possible to classify physical objects from a relatively small number of components at a
coarse level of detail. PARVO demonstrates this by correctly classifying a number of common
man-made objects.

PARVO uses various feature extraction and segmentation techniques to produce a set of
parts that characterise an observed object at a coarse level of detail. Each part is associated
with a geon, which is a particular kind of simple volumetric shape, such as cone, cylinder,
banana-shape, pyramid, and so on. Parts are represented in a graph, where each edge of the
graph denotes a physical connection, of which there are several generic kinds. The system then
matches the instance graph against concept graphs (i.e. graphs of generic object models), to
find the best classification.

In order to reduce the number of concepts considered, PARVO prunes the search space by
finding, for each part in the instance graph, the set of concepts that contain a part of the same
geon type. The intersection of the sets of concepts obtained for all of the instance parts, is the
set of concepts that are then matched more thoroughly. This seems to be a robust and efficient
way of indexing directly from instances to concepts. However, the ‘intersection’ requirement
implies that concept descriptions always contain a superset of the components of observed
instances. This would not be the case if the system were dealing with incremental concept
learning, and an instance contains a feature not present in previously observed instances.

To match an instance graph with a concept graph, an exhaustive search of all sets of ‘com-
patible’ part bindings is performed. A compatible part binding is one for which both parts
are of the same geon type, and have a similar aspect ratio. This constraint prunes the search
considerably. For each set of bindings, PARVO computes a similarity score based on the
properties and connection-types between the nodes of the graphs. The similarity score for the
best binding set is used as the similarity score for the instance-to-concept comparison. The
matcher can cope with missing or extraneous parts and connections, and is thus able to perform
object recognition from partial views. This is possible because physical objects tend to be
characterised by a very wide variety of combinations of geons, and therefore a subset of geons
characterising an observed object is often sufficient to uniquely identify its generic class. This
is an important characteristic of the domain of common man-made objects, and is specifically
exploited by PARVO.

There are many issues of the domain and task requirements in chapter 1 that the PARVO
system does not address. Most significantly, since it deals only with coarse levels of detail, it
can be said to be based primarily on discriminant descriptions of object categories concepts,
rather than characteristic descriptions, as distinguished by [Michalski, 1983]. In other words,
category descriptions consist of sufficient information to discriminate between categories, but
they do not actually provide a full description of the concept as a whole, in detail. This means
that tasks such as fault-finding are not possible except at a rough level of detail. Objects in
PARVO are not represented using multiple levels of detail, and object graphs are therefore

2.9. PARVO 61

‘flat’, and do not capture the decompositional structure of the object.

This also means that PARVO does not have to address issues of matching complex structured
objects, since it only deals with the topmost level of the part hierarchy.

The work on PARVO is not intended to deal with the problem of learning generic object
models, and this is one reason why the representation and matching schemes are sufficient.
In many ways, PARVO can be compared with Labyrinth, since it transforms a complex task
into a simpler task by labelling the direct subcomponents of an object, so that a simple semi-
exhaustive match becomes feasible. PARVO labels each component as being an instance of
one of a predefined set of geon types, while Labyrinth labels each component as being an
instance of one of its previously acquired concepts. Labyrinth therefore allows concepts
to be richly described, in detail, but has also been found to be rather un-robust, due to
over-generalisation of concepts, and the lack of context information to help identify part
correspondences. PARVO seems to be more robust since geons are predefined, and are not in
danger of being overgeneralised by a concept learning mechanism. Also, PARVO’s indexing
scheme is more robust than Labyrinth’s, since the latter relies on the traversal of a concept
hierarchy formed by the system itself, which involves comparisons for each node considered.
Labyrinth could perhaps alternatively use an indexing scheme like PARVO’s, where instead
of finding intersections of sets of concepts that share each component’s geon-type, it finds
intersections of sets of concepts that share each component’s concept classification. This
would simply require that every concept description includes a reference to all other concepts
that contained it.

PARVO does not deal with context information, or structural disjuncts, or occurrence-
frequency information, and therefore is not able to make predictions about occluded instance
features which depend on such information. However, PARVO’s central and intended contri-
bution is very important, since it demonstrates Bierderman’s claim that effective and efficient
recognition is possible on the basis of a small, simple description consisting of predefined
generic shape-types. This is encouraging for GRAM since it suggests that the coarser levels of
the description are likely to be correctly matched, without requiring a match of all of the finer
details, and therefore the coarser match will be able to guide the matching of finer details.

The system also demonstrates that partial descriptions, obtained from partial views, are
usually sufficient for classification, even without any kind of functional knowledge or reasoning
abilities. Since three-dimensional objects are always partially occluded, this is an important
property of the domain of common physical objects. Also, the mechanisms for producing
volumetric part descriptions from two-dimensional images could be directly applicable to a
system such as GRAM, which assumes the availability of such mechanism.

62

CHAPTER 2. RELATED WORK

Chapter 3

Representation

The design of a good representation scheme is crucial to most machine learning systems. This
is because the quality of the representation largely determines the possible performance of
the other components of the system, such as the matcher and generaliser, and also determines
which aspects of the domain can be explicitly described and processed. In other words, the
representation scheme must support and be consistent with the characteristics of the tasks and
domain.

Chapter 1 discussed the overall characteristics of GRAM’s domain and tasks, and on the basis
of this, a number of requirements of the representation scheme have been identified. Each of
these is presented in section 3.1.

Sections 3.2 through 3.5 describe GRAM’s representation scheme in detail. Section 3.2
describes how ungeneralised instance objects are represented; section 3.3 explains how prop-
erties and relationships are represented; section 3.4 describes how generalised concepts are
represented; and section 3.5 discusses the issue of group representation.

As with the other chapters, the boldface section headings provide a summary-overview of
the chapter. Section 3.6 gives a reference summary of the representation features discussed.

63

64 CHAPTER 3. REPRESENTATION
3.1 Requirements of the Representation.

This section examines various characteristics of the representation scheme that are required to
support and be consistent with the characteristics of the domain and tasks discussed in chapter
1.

3.1.1 Structural descriptions should include functionally important information.

Section 1.1.4 explained that this thesis is only concerned with structural (rather than functional
or behavioural) knowledge about objects. However, since concepts in the domain of physical
objects are formed largely on the basis of common function, the structural description of an
object must include information that is likely to be important to its function. For example, a
functional description of a chair might state that a chair must be ‘stable’ and that it is used for
people to sit in. A structural description should, therefore, at least be able to explicitly specify
that the lengths of the legs of a chair are of the same length, and that its context may include a
person in a particular posture.

Another way of stating this requirement is that the functional similarity of objects in the
same category should be reflected or embodied in the measures of similarity of their structural
‘syntactic” descriptions. If the representation is sufficiently rich, this will often be the case,
since the function of an object is ‘implemented’ in its structure, and therefore objects that have
similar function usually have similar structure.

3.1.2 The representation should support the performance of the matcher.

In a system that deals with large numbers of complex real-world objects, it is essential that the
matcher be efficient, and this means that the representation scheme should capture the right
kind of information to enable the matcher to be guided and constrained by the structure of the
descriptions being matched.

The representation scheme should also enable the matcher to produce useful and meaningful
comparison descriptions that can be used by the fault-finder and generaliser. In other words, the
language should be expressive enough to enable the important features of similarity between
two objects to be explicitly noticeable.

3.1.3 Objects must be describable at multiple levels of abstraction and approxi-
mation.

Physical objects need to be represented at multiple levels of detail, for a number of reasons,
each of which is discussed below.

Coarse descriptions are often sufficient for recognition. Object recognition can often be
effectively and efficiently performed by considering only the overall structure and prop-
erties of an object, ignoring finer details unless or until a more refined classification

3.1. REQUIREMENTS OF THE REPRESENTATION. 65

is required. For example, a bicycle can often be recognised on the basis of observing
two round components with several bars connecting them. Therefore, the representation
scheme should allow abstract and approximate descriptions to support this characteristic
of the domain and task.

The matcher can be guided by the abstraction/approximation hierarchy. The task of matching
two object descriptions can be achieved much more efficiently and effectively with multi-
ple levels of detail because the process of finding correspondences between components
can be guided by the decomposition hierarchy. Large coarse components can be matched
first, and these correspondences can form the basis for matching finer details.

Abstractions and approximations may reduce storage requirements. The finer details of an
object can often be summarised by a single abstract component, thus reducing storage
requirements. For example, it may not be necessary to remember the details of the
back of an observed chair since it could be summarised as a single rectangular ‘block’.
Similarly, it is not necessary to record details of every apple in a bowl, since the collection
(or grouping) of apples can be represented as a single entity whose description refers to
a generalised description of the ‘typical” apple.

Coarse levels of abstraction and approximation may make similarity explicit, and generalisa-
tions possible. Two objects might be similar only at a coarse level of approximation or
abstraction, and in order to match and generalise the two objects, abstract and approx-
imate features must therefore be representable. For example, the details of two chair
backs may differ considerably, but they may be very similar if they are viewed as single
simple ‘blocks’.

Coarse features must be representable because fine details may be unavailable. Sometimes
the finer details of an object or scene are unavailable, and therefore it is necessary to be
able to represent the observation at a coarse level. For example, an autonomous robot
may only have time for a brief glance at an object, or the object may be too far away for
fine details to be observed.

Both coarse and fine details are necessary for fault-finding. Although coarse levels of
description may be sufficient for some tasks, finer details are usually necessary for
fault-finding. For example, it is obviously impossible to notice that a stereo turntable is
missing a stylus if the turntable concept is only described at a coarse level of detail.

Fine details may be necessary for discrimination during classification. An object category
may have a number of sub-categories which differ only in their fine details, and therefore
the representation must allow fine as well as coarse levels of descriptions.

3.1.4 The representation language should be richly expressive.

A rich representation language is one that allows an object to be explicitly described in a wide
variety of ways, and allows redundancy. If a description contains a wide variety of information,

66 CHAPTER 3. REPRESENTATION

then it is more likely that functionally significant information will be explicitly present, rather
than merely implicit, and hence this information is less likely to be lost during generalisation.
Also, redundancy (in the sense of having the same information specified in several ways) is
desirable because it means that the common properties of two objects are more likely to be
explicit in their descriptions, and so will not be lost during generalisation.

For example, if it is possible to specify that all four legs of a chair have the same length,
then the descriptions of two chairs that have different leg lengths, can be produced simply by
finding the common features of the descriptions, without losing the “same-length” constraint,
and without having to perform more complex constructive induction.

A representation language can be enriched in several ways. Firstly, a wide variety of possibly-
redundant descriptive entities and attributes should be provided to represent the many kinds of
components, properties, and spatial relationships in the physical world, using values of various
kinds, including numerical, symbolic, boolean, categorical, and directional. Both qualitative
and quantitative values should be allowed.

Secondly, the representation should support a variety of schemes for describing an object,
such as "Generalised Cylinders", "Boundary Descriptions”, and "Constructive Solid Geometry"
and groupings.'

Thirdly, the representation should allow a scene or object to be partitioned in a variety of
ways, rather than just as a single decomposition hierarchy in which each object is a subpart of
only one composite parent object. Composite objects should be able to overlap other composite
objects, since each may capture an important kind of approximation, abstraction, or summary
of its subparts.

3.1.5 The context of an object must be explicitly representable.

Chapter 1 discussed how some concepts may be defined largely on the basis of their context (or
‘role’) rather than their isolated structure (or ‘form’). Their context is directly related to their
function, as in the case of the concepts chair-seat and telephone-button. Other concepts, such
as bicycle, are primarily defined by their structure (or ‘form’), although their expected context
may be useful to aid recognition (such as when recognising a bicycle being ridden on a road in
the distance), and to enable the system to predict unobservable surroundings of an object.

3.1.6 Structure and context should be explicitly distinguishable to allow disjunc-
tive concepts and partial matching.

Concepts that have a relatively invariant structure may have a highly variant context, such as
bicycle or scissors. To describe such concepts it is useful to be able to specify a disjunction
of context descriptions. Conversely, a concept such as chair-back has a relatively invariant

'The Generalised Cylinder scheme represents objects in terms of a central spine and a cross-section that sweeps
along the spine according to some function. The Boundary Description scheme represents an object as a set
of surfaces and/or edges. The Constructive Solid Geometry scheme represents an object as a set of subparts or
subregions.

3.1. REQUIREMENTS OF THE REPRESENTATION. 67

context, but a variety of structures, and so the structure should be representable disjunctively.
To allow such disjunctive descriptions, the representation scheme must explicitly distinguish
between structure and context.

The distinction between structure and context is also necessary to support an important kind of
partial matching, where similarity is measured either with respect to structure alone, or context
alone. Two objects that have high structural similarity may still be considered generalisable,
even if their contexts are dissimilar, as in the case of two bicycles, one on the road, and one
in a bicycle shop. Likewise, two objects that have the same contextual role, but with different
structural form, could be generalised to create a ‘role’ concept.

3.1.7 Groups must be explicitly representable.

The physical world is full of repetitions of similar objects, and this is the basis for forming gen-
eralised concepts that support prediction-based activity within the world. However, in chapter
1 we also considered the fact that the physical world contains many groups of components that
are not only similar to each other (as are instances of a concept) but are also structurally related
to each other, and to other objects, in a similar way. In other words, the structural organisation
of the group as a whole is regular. Examples of such groups include books on a bookshelf,
chairs in a room, or petals on a flower. Since the primary purpose of a concept-learning system
is to notice and make explicit the regularities in the world, it is clearly useful and necessary to
explicitly represent groups of similar and similarly related objects.

A description of a group should include the following information: a set of properties
characterising the group as a whole, a generalised description of its typical member, and
a generalised description of the typical relationships between consecutive or neighbouring
members.

There are a number of more specific reasons for representing groups, and these are discussed
below.

A group makes an N -ary relationship explicit. An obvious requirement of a representation
scheme is to allow relationships between pairs of objects. A group, however, captures
the structural relationship between several objects. This is especially important for
fault-finding in a situation where a multi-part constraint is functionally significant. For
example, a grouping of the legs of a chair can capture the requirement that all of the legs
be of the same length. This constraint might otherwise be lost through the generalisation
process if groups could not be made explicit.

Grouping allows collective properties of several objects to be made explicit. A grouping is a
way of forming an abstraction or approximation of several objects, and therefore makes
it possible to explicitly specify collective properties which would otherwise be hidden,
such as the overall shape and organisation of the set of objects. Thus grouping enriches
the representation.

68 CHAPTER 3. REPRESENTATION

Groups enable more efficient matching. As discussed earlier, the formation of abstract
or approximate components from more primitive components supports more efficient
matching. Grouping is another form of this, since several objects are combined into a
single summary approximation. This allows the matcher to match the group as a whole,
simply by matching the overall group properties and the typical-member description,
rather than trying to find correspondences between every individual member.

Groups may reduce memory usage. By summarising several similar objects as a single
generalised typical-member, the individual members can often be dropped from the
description, thus reducing storage requirements.

Groups enable the matcher to match two collections of objects that have different cardinalities.
Groups enable two different-sized collections of objects to be matched and generalised,
resulting in a description that explicitly allows a variable number of members. This is
because the matcher need only compare the typical-member descriptions, rather than
trying to match each possible pairing of members. For example, a desk with three
drawers can be matched with a desk with five drawers by matching the groups, rather
than getting “stuck” with ambiguous correspondences.

The typical-member concept transfers information amongst members. Since the typical-
member description is a generalisation of the group members, the formation of a group is
effectively generalising each member. The typical-member specifies that any member of
the group can have any of the variations observed amongst the members. For example, in
Figure 3.1 the formation of the group in object A results in a greater tolerance of variation
in each member than if each member was described individually, thus enabling object B
to be considered similar. The differences between the corresponding components of the
A and B groups are considered less significant due to the transfer of information via the
typical-member generalisation.

Figure 3.1: Transfer of information by group formation.

This is especially useful during instance-construction since the formation of a typical-
member concept from just a few observed members can be used to predict the details
of other members without having to look at more than a few details. For example, if
we see a room full of chairs that look very similar at a coarse level of detail, we can
form a typical-member concept by observing and generalising (in detail) just a few of

3.1. REQUIREMENTS OF THE REPRESENTATION. 69

the chairs. We can then infer that the remaining chairs in the group most likely share the
same details, without having to observe them closely. In other words, the typical-member
generalisation supports prediction not only of members of groups in future observations,
but also within the present observation.

Group formation is concept discovery. The process of finding and forming a group is really
a way of discovering a new concept from within a single observed scene (as opposed
to forming a concept from several observations at different times). In other words, by
generalising the members of a group, the resulting typical-member description is a new
concept.

However, there is an important distinction between a group and a concept (or class), since
a group specifically characterises a particular set (or collection) of several objects that
are spatially related to each other, while a concept is simply a generalisation of several
objects that are similar and may have been observed at different times and places. This
distinction is discussed further in [Markman, 1979].

3.1.8 The representation should include descriptive entities and relations that
humans seem to use.

This thesis does not address cognitive modelling, and therefore the representation scheme is
not intended to model a human representation scheme. However, a general purpose robot must
interact with humans, and must therefore be able to represent and learn concepts that were
originally created by humans. The descriptive features of the representation scheme should
correspond to descriptive features that humans seem to consider important.

3.1.9 Concept descriptions must be probabilistic.

Within a generalised description, the variability of the features should be explicitly representable
to enable the matcher to make probabilistic predictions of the presence or absence of features.
This is especially necessary for the fault-finding process, in which a missing feature of an
instance of a concept is significant only if the feature has appeared in a majority of the
previously observed instances. Since the system is not dealing with ‘functional’ knowledge,
and since the occurrence of particular features (such as an aerial on top of a TV) is not
necessarily directly dependent on other features of the object itself, the only way to capture the
expectedness of a feature is by recording probabilities based on frequency counts.

3.1.10 Partial descriptions must be representable.

An observed object may be partially occluded and details of an object may not be available from
the instance-constructor (perhaps until explicitly requested). Therefore, it must be possible
to explicitly state that details are either unavailable, or available only on request, so that the
matcher will not merely consider the features to be missing.

70 CHAPTER 3. REPRESENTATION

3.1.11 The representation must be extendible.

The representation should be designed so that important extensions (such as converting to three-
dimensions) are possible without having to completely redesign the existing scheme, or redesign
the matcher and generaliser. Some possible extensions to GRAM’s current representation are
considered during the chapter.

3.1.12 Description construction mechanisms must be available.

The representation scheme must take into account limitations of the robot eye, viewing oper-
ations, and the instance-construction process. Mechanisms must be available (or able to be
developed) that can construct descriptions in the representation scheme, given the nature of the
domain and task.

3.2. INSTANCE REPRESENTATION. 71
3.2 Instance representation.

This section describes the representation of an ungeneralised scene or object. This will be
referred to as instance representation.

3.2.1 GRAM represents the physical world as an object-decomposition hierarchy.

One of the representation requirements was that physical objects should be represented as
multiple levels of detail. GRAM achieves this by representing an observed scene or object as an
object-decomposition hierarchy, where an object is a single component, piece, or ‘chunk’ of
the observed physical world. It may either be a composite object comprising several subparts
(each of which may themselves be composite objects), or a primitive object that has no further
decomposition. Each composite object is an abstraction or approximation of its subparts.

This is illustrated in Figure 3.2, which shows a humanoid on the left, and the rectangular
bounding boxes of its composite parts shown on the right. The left foot is a primitive object,
while the left arm is a composite object, as is the humanoid as a whole. At the bottom of the
figure is the object-decomposition hierarchy. GRAM also allows an object to have more than
one parent, and thus the hierarchy is really an acyclic graph. This means that a scene or object
can be partitioned in a variety of ways.

A variety of criteria are considered in the process of partitioning an object into a decomposition
hierarchy, and these are discussed in detail in the “Instance Construction” chapter. The primary
criterion for creating a composite object is that its set of subparts, when treated as a whole,
has properties which capture a useful and hopefully ‘functionally significant’ abstraction,
approximation, or summary of the subparts, and which clearly distinguish the object from
its surroundings. Such properties may include shape, symmetry, repetition (i.e. grouping),
topology, and category.

3.2.2 Neighbour relationships are necessary to capture the context of each part.

In the object-decomposition hierarchy for the humanoid in Figure 3.2, each object is only
related to its parent(s) and its subparts. One of the requirements of the representation was
that the context of each object should also be representable. Relationships with parent objects
capture the context to some degree, but we also need to be able to specify how ‘neighbouring’
objects are structurally related to each other. For example, the description of a humanoid
should include a description of how the head is related to the torso, and how the left leg is
related to the right leg. Therefore, GRAM not only represents relationships with subpart and
parent objects, but also with neighbouring objects. Thus, each object is not just a node of a
hierarchy, but a node of an object-graph.

A ‘neighbour’ of an object is any other object which is interestingly related to it according to
a variety of neighbourliness criteria, which are intended to ensure that ‘functionally important’
neighbour relationships are made explicit in a description. The criteria are discussed in detail
in section 6.3.1 and include factors such as proximity, connectivity, and alignment.

72 CHAPTER 3. REPRESENTATION

remmme———- em———— -
' 1 5 :
. .
; : ; :
: : : ;
: H : :
: v P RE SRR :)
: i B o | : Composite part
L] .
ST A
' N . e (R .)
] i (5 e Y 2
H) W
1] '
T r L4 - ')
I R | D
L] A\l
' 1} :l Iy s !
' ' N .t A |
. . LN M) v !
% ph s 4.8 Y L) :
: ' :,"‘T‘:‘:‘l- [y !
. I.'-. . - H s thad
8 iy s |y [
P b & v) A
[P ';'. e ' ‘.,o‘f
L *
P £ 04 :
. !
. . =8 L} :
' : T ' '
' s ¢ : :
Vo IO ' H
: " J l- : : OO)
! K v : Primitive part
v I T
: ‘ v :
5e y 1 ' '
f AT ' ' '
[, [SR T L]
.]

arml

hand1 1O g

Figure 3.2: Composite and Primitive Parts

Figure 3.3 illustrates the selection of parents, subparts, and neighbours for several component
objects of the humanoid “mary”. Each shaded box denotes the bounding box of a particular
primitive or composite object. The boxes enclosed in it indicate its subpart objects; the finely-
dotted box(es) surrounding it indicate its parent objects; and the coarsely dotted boxes indicate
its neighbouring objects. Thus, the description of each object may be highly constrained since
it may include relationships with numerous other objects.

3.2.3 Each relationship is a rich descriptive entity.

Most representation schemes for structured objects (such as [Wasserman, 1985],[Winston, 1975],
and [Connell and Brady, 1985]) include a variety of relations such as on-top-of, bigger-than,
etc, each of which is a single atomic predicate on two objects. GRAM takes a different approach

3.2. INSTANCE REPRESENTATION. 73

the instance

i parents of the instance

neighbours of the instance

subparts of the instance

Figure 3.3: Parents, neighbours, and subparts.

by representing all of the information about how two objects are structurally related in a sin-
gle richly descriptive entity. More specifically, all of the relations between two objects are
represented in an attribute vector that includes qualitative and quantitative information char-
acterising the relative position, size, orientation, proximity, alignment, etc of the two objects.
The rectangular bounding boxes of the objects are used as frames of reference for defining this
information. Each object has a primary axis with respect to which directions and orientations
are measured. Individual attribute values can be of a variety of types, such as numerical,
nominal, angular, boolean, etc. Further details of these are given in section 3.3.

Throughout the rest of this thesis, the term relationship is used to refer to an attribute
vector of this kind. In this scheme, each relationship acts as a direct link from one object

74 CHAPTER 3. REPRESENTATION

to another, and can therefore be exploited by the matcher, since it enables the matcher to
traverse the object graph to find correspondences between parent, neighbour, and subpart
objects. The exploitability of the representation by the matcher was one of the requirements
discussed in section 3.1. Also, the richness of each relationship description means that candidate
correspondences between the parents, neighbours, and subparts of two objects being matched,
can be quickly rejected on the basis of the comparison of their relationships.

3.2.4 Each object has its own set of parent, neighbour, and subpart relationships.

The above discussion has implied that each pair of objects may have a parent-subpart relation-
ship or a neighbour relationship associated with it. However, GRAM actually associates each
relationship with just one object, not a pair of objects. Each object has its own set of parent
relationships, neighbour relationships, and subpart relationships, and a duplicate version of
each relationship is associated with each relatee. The reason for this is that it keeps each
object description independent. This means that an object can be generalised without directly
affecting the descriptions of its relatee objects.

In most of the diagrams of object descriptions throughout this thesis, the relationships between
two objects are depicted for convenience as just one line on an object graph, but this should be
interpreted as two lines. For example, the bicycle in 3.4 is represented as the object-graph in
Figure 3.5, where each dotted line denotes two (identical) neighbour relationships, and each
solid line denotes parent relationship of the lower object, and a subpart relationship of the
higher object. This graph was generated automatically by GRAM. Most of the other diagrams
throughout this thesis were created by hand, and in these, the parent, subpart, and neighbour
relationships are all shown as solid lines. Neighbour relationships extend from the sides of the
rectangular boxes that denote objects; parent relationships extend from the top; and subpart
relationships extend from the bottom.

If a line between two objects in an object graph is shown with an arrow in one direction, then
this indicates that the relationship is only explicitly included in the description of the object at
the origin of the line.

3.2.5 Structure and context are explicitly distinguished, to allow disjunctions
and partial matching.

Another requirement of the representation is that structure (or ‘form’) and context (or ‘role’)
should be explicitly distinguished so that separate similarity scores can be produced by the
matcher, and so that disjunctions of them can be represented in a generalised description.
Therefore, each instance object description consists of, firstly, a structure description, which
includes a set of structural properties (such as shape, aspect-ratio, density profile, etc) and its set
of subpart relationships, and secondly, a context description, which includes a set of contextual
properties (such as connection profile) and its set of parent and neighbour relationships. Section
3.3 gives more details about properties and relationships.

3.2. INSTANCE REPRESENTATION. 75

. N ‘ ".‘
: \\t\’" '~.-,
DO ‘\\
G Cp T
4. 12 | 47)
48, [

Figure 3.5: The object graph for a bicycle.

3.2.6 A multi-relationship is a generalised relationship to a concept.

A feature of GRAM’s representation that is not present in systems such as Labyrinth and
MERGE, is the multi-relationship. A multi-relationship is a generalised relationship to a

76 CHAPTER 3. REPRESENTATION

particular concept, and specifies that there are n instances of that concept that are related to
the source object in a particular way. This is, in fact, a way of representing groupings without
actually having an explicit ‘group’ entity (although explicit groups are also representable). For
example, a shelf could have a multi-relationship to the concept book, with a howmany count
of 7, meaning that it has 7 books on it.

Multi-relationships are a simple and effective way of reducing the size of a description, and
also enabling better generalisation. For example, suppose two shelves are to be matched and
generalised, one of which has 7 books on it and the other 15. If multi-relationships were not
used, then each of the shelves would have to be described using many distinct relationships,
and the matcher could not find unambiguous one-to-one correspondences for generalisation.
Furthermore, it would not be possible to represent the fact that the generalised shelf can have a
varying number of books on it. The use of a single multi-relationship reduces memory usage
and enables the matcher to unambiguously match the two relationships of the shelves, which
can then be generalised. The resulting generalised multi-relationship can have a generalised
howmany count.

A multi-relationship also enables an instance description to be represented in a slightly
generalised form, since a multi-relationship is a generalisation of the individual relationships.
Forming a multi-relationship is a way of generalising a single instance.

Another example of multi-relationships is given in Figure 3.6. If we suppose that the small
attached parts of C1 have been generalised to form the concept plinket, then the description
of CI has two multi-relationships and two ordinary relationships, all referring to the same
generalised plinket, as shown at the right of the figure. The two multi-relationships represent
the two clusters of relationships to the plinkets at the top and to the right.

In all of the diagrams in this thesis, howmany counts are shown as ‘“*n’. Relationships shown
without howmany counts are ordinary relationships, and have a default howmany count of 1.
(Note that instance-counts shown on diagrams are distinguished by not having a “*’.)

More examples of multi-relationships are given in section 3.5 which discusses groups, since
multi-relationships commonly refer to the typical-member of a group.

 plinket

*3> plinket
plinket

plinket

Figure 3.6: Multi-relationships.

3.2. INSTANCE REPRESENTATION. 77

3.2.7 An object may be a grouped object defined by a typical-member concept.

A requirement of the representation is that it should support group descriptions. GRAM does
this by allowing sets of similar objects within an observed scene or object to be represented
as a single composite object whose substructure is characterised by a single subpart multi-
relationship to a concept which is a generalisation of its subparts. This concept is referred to
as a typical-member concept. The idea of representing a group in terms of a typical-member
was introduced by [Winston, 1975], and GRAM extends his representation in a number of ways.
However, since concept representation has not been explained yet, the discussion of groups
will be delayed until section 3.5.

78 CHAPTER 3. REPRESENTATION
3.3 Properties and relationships.

This section describes the attributes that are used to characterise the properties and relationships
in GRAM’s instance and concept representation scheme. There are many other attributes that
could also be included, but these capture the most important information, and form a basis
for future extensions. The purpose of this section is to show the kinds of information that are
required, and so the specific details are not particularly important.

3.3.1 Each object has a frame-of-reference for describing properties and rela-
tionships.

Most of the attributes characterising properties and relationships of an object or objects require
a frame of reference for the objects involved, so that relative positions, orientations, sizes,
alignments, erc can be described. Therefore, each instance object has a dominant axis (or
x-axis) and secondary axis (or y-axis) which define a coordinate system for specifying the
properties and relationships of that object. The dominant x-axis is also referred to as the spine
of the object.

Axes are defined to be the axes of the minimal rectangular box that bounds each object. It
does not matter which axis of this box is chosen to be the x-axis, since the matcher can ‘coerce’
properties and relationships if two corresponding objects have been defined with different axes.
However, to minimise the amount of coercion needed, GRAM maximises the canonicality of
descriptions by choosing the x-axis to be the longest dimension pointing rightwards relative to
the ‘world’ in which the object appears. For example, Figure 3.7 shows the primary axes for
several primitive and composite objects.

Since a concept is a generalisation of several instance objects, its properties and relationships
are defined with respect to a generalised frame of reference.

R
world orientation

Figure 3.7: Primary axes.

3.3. PROPERTIES AND RELATIONSHIPS. 79

3.3.2 Types of attribute value.

Before considering the specific attributes used to characterise the properties and relationships
of a concept, this section first describes the generic rypes of attribute value included in GRAM’s
representation scheme. A summary of these is given in Figure 3.8, and each is explained below.

- |

Numerical

Ungeneralised: 0.1 I
Generalised: e Mean
e variance

e instance—count

Directional
Ungeneralised: —180 .. +180 degrees
Generalised: e Mean
e variance

e instance—count

Ungeneralised: symbol: asingle symbol (eg. ‘red’)
‘ symbol-set: aset of symbols (eg. {rectangular, square})

| Generalised: » instance—count
e { (symbol count) (symbol count) ...}

Positional
Ungeneralised: ~ (0..1,0..1)

Generalised: (generalised—numerical, generalised—numerical)

Boolean

Ungeneralised: ~ ‘true’ or ‘false’

Generalised: ¢ instance—count
s true—count

Profile
Ungeneralised: (value, value, ..., value)
all of the same type.
Generalised: (generalised—value, ..., ...)
all of the same type.

Figure 3.8: Types of Attribute Value.

A Numerical attribute value in GRAM is a real-valued measurement between 0 and 1, which
gives quantitative rather than qualitative information. Many attributes, such as aspect-ratio,
relative size, and object-density, have numerical values. Numerical attributes values are all
normalised to the 0..1 range so that the matcher can efficiently obtain a normalised similarity
measure when comparing any numerical attributes.

A generalised numerical attribute value is represented as a mean, variance, and range. The

80 CHAPTER 3. REPRESENTATION

number of instances that contributed to the generalisation is also specified.

A directional attribute value is used to describe the orientation and direction of one object
with respect to the frame of reference of another object, and is in the range -180 to +180 degrees.
A generalised direction is represented as a mean, variance, range, and an instance-count, as for
a numerical value. Matching and generalising an direction value is slightly more complex than
for an ordinary numerical value because modulo arithmetic must be used.

A nominal attribute value specifies qualitative information, such as shape-name, alignment,
connectivity, etc. A nominal attribute can either be a symbol or a symbol-set. A symbol is a
single nominal value such as connected, red, etc. A symbol-set is a set of symbols, such as
(square rectangle polygon).

A generalised nominal attribute value (independent of whether it is a generalisation of
symbols orsymbol-set) consists of a set of symbols and their instance-counts, where each count
is the number of observed instances having that symbol value. A count of the total number
of instances observed is also specified. The ratio of each symbol count to the total instance-
count indicates the probability of that value occurring in a future instance. This is the same
representation as used in COBWEB [Fisher, 1987a] and CLASSIT [Gennari et al., 1989].2

As an example of a generalised nominal value, suppose the system has observed 60 windows,
of which 56 are rectangular, 30 are square (and rectangular), and 4 are round. The generalised
value for the shape attribute of the generalised window will be as follows:

(count=60 (rectangular:56, square:30, round:4))

A positional attribute value is a pair of numerical values that specify a cartesian coordinate
in some reference frame, and a generalised position is a pair of generalised numerical values.

A boolean attribute value is a specialised form of nominal value which has the value true or
false. A generalised boolean value has a count of the total number of observations, and a count
indicating how many of these had the value true.

A profile is a fixed-length vector of attributes of the same type. For example, a profile of the
connectivity of an object might consist of a vector of boolean values, each specifying whether
the object has a connection along a particular portion of its edge. A generalised profile is of
the same form but consists of generalised values.

Now that we have identified the general types of attribute value, we can consider the specific
attributes used to characterise properties and relationships.
3.3.3 Structure properties.

The properties characterising the structure of an object are represented as an attribute vector
consisting of the attributes listed in Figure 3.9. Each of these is explained as follows.

2Symbol-sets are based on the idea of Gray Coding proposed by [Brady et al., 1984], although the purpose
of Gray Coding was to allow the system to compare and generalise two attributes simply by computing their
intersection, while GRAM performs a union when generalising, and takes into account the instance-counts on each
value when matching.

3.3. PROPERTIES AND RELATIONSHIPS. 81

The shape is a symbol-set nominal value that specifies one or more of {circle, ellipse,
rectangle, etc}. In the current version of GRAM, all composite objects have the shape rectangle
(and perhaps square), since mechanisms have yet to be developed to determine the shape of a
composite object.

The number-of-direct-subparts indicates the number of objects that are directly below in
the object-decomposition hierarchy. If the object is a grouped object, then this is the cardinality
of the group. Since this attribute is a numerical value, it is normalised logarithmically to the
range 0 and 1, so that 0 means no subparts, and 1 means ‘lots’.

The complexity of an object is the number of objects in the entire substructure, not just the
direct subparts.

The aspect-ratio is the width-to-length ratio, and is thus another way of characterising the
rough shape of an object. The dx-dy is the ratio of the x-axis length to the y-axis length (which
may or may not be the width and length, respectively). This attribute is necessary to help to
ensure that two objects being matched are given the correct axis correspondences, since the
aspect-ratio is independent of whether the x-axis is chosen to be the width or the length.

Density is a measure of how much ‘solid stuff’ there is within the rectangular box that bounds
the object. All primitive objects have density 1. Some composite objects, such as a chair or a
bedroom, have relatively low densities, while others, such as a telephone, have high densities.

shape one or more of: {circle, ellipse, triangle, square, rectangle, polygon, etc}

number—of—direct—subparts (if grouped, then this is the number of members)
complexity (the total number of descendents in the part hierarchy)
aspect—ratio (ratio of width to length)

dx—dy-ratio (ratio of the x—axis and y—axis dimensions)

density (the ratio of solid material to space within the object’s bounding box)

Figure 3.9: Structure attributes.

There are many other structure properties that could be added to the representation, such as
colour, texture, etc, but those described above have been sufficient for giving reasonably good
results for the examples considered in this thesis.

3.3.4 Context properties.

Context properties provide a summary of the surroundings of an object, and in the current
version of GRAM these are represented as two profile attributes. The connection-profile
characterises the connectivity of each of a set of portions of the boundary of the object.
For example, Figure 3.10 shows an object (darkly shaded) with 9 portions of its boundary
indicated by the solid lines. The connection-profile has a numerical value associated with each

82 CHAPTER 3. REPRESENTATION

portion, indicating how much of that edge-segment is connected to another object. Similarly,
the distance-profile indicates the ratio of the perpendicular distance from that edge-segment
to the nearest neighbour, to the dimension of the object along that direction. The ratio is
logarithmically normalised to the range O to 1, where 0 means touching, and 1 means far away.
The details of the normalisation formula are not important.

There are other alternative kinds of profiles that could be used, and the above two are just an
indication of what is possible. They are very useful for enabling the matcher to estimate the
similarity of the contexts of two objects prior to comparing their neighbour relationships.

‘ connection—profile: eg. (06, 0, 1, 0, 0,0, 0, 0.5, 0, 0,0,0)
distance—profile: eg. (0, 1,0, 1,03,03, 1,0, 07, 1,1,1) |

Figure 3.10: Context attributes.

3.3.5 Parent and subpart relationships.

Relationships are represented as an attribute vector that specifies the spatial relationships
between two objects. This section discusses the attributes used to characterise parent and
subpart relationships.

Parent relationships and subpart relationships are both described in terms of the orientation,
position, and size of the subpart relative to the frame of reference of the parent object. Figure
3.11 lists the attributes used in the current version of GRAM.

The orientation is an directional value that specifies the rotation of the subpart’s x-axis with
respect to the parent’s x-axis. The x and y displacements are the numerical distances from the
centre of the parent to the centre of the subpart, along the parent’s x and y axes, and relative to
the x and y dimensions, respectively. Coverage is a profile attribute that specifies the fraction
of each region of the parent (evenly subdivided) covered by the subpart. The size of the subpart
with respect to the parent is given in four values, each being a ratio of one of the subpart
dimensions to one of the parent dimensions.

A subcomponent of a object is only included as a direct subpart if it is considered directly

‘important’ to the description of the object. For example, it is not normally useful to include
each drawer-handle as a direct subpart of a desk, since the orientation, position, and size of each

3.3. PROPERTIES AND RELATIONSHIPS. 83

drawer-handle are better described with respect to the drawer it belongs to, rather than with
respect to the desk as a whole. As a general rule (for which there are numerous exceptions), a
subcomponent is not included as a direct subpart if that component is a subpart of one of the
object’s other components, especially if the subcomponent is small compared with the object.
A more elaborate discussion of subpart-selection is given in chapter 6.

Orientation (rotation of the subpart’s x—axis wrt the parent’s x—axis)

x—displacement (Cartesian distance from center of parent to center of subpart,
y—displacement with respect to the parent’s coordinate frame)

\

| Coverage (Fraction of each region of the parent that is covered by the subpart.) i § g
I . s T
| Size xdi ion of subpart ydim of subpart xdim of subpart ydim of subpart)

| (xdimension of parent * ydim of parent * ydim of parent * xdim of parent

Figure 3.11: Representation of parent/subpart relationships.

3.3.6 Neighbour relationships.

Neighbour relationships are represented in a more complex way than parent and subpart
relationships because more frames of reference are involved. Parent and subpart relationships
are described solely with respect to the parent’s coordinate frame, while a neighbour relationship
is characterised by two attribute-vectors, each of which describes the relative size, position, etc,
of one of the objects with respect to the frame of reference of the other. Thus a description of a
chair could include a neighbour relationship to a desk, and the relationship would be described
both relative to the chair and relative to the desk. The description of the desk could include an
identical relationship. The attributes describing a neighbour-relationship are shown in Figure
3.12.

The orientation is the rotation of the x-axis of the neighbour with respect to the frame of
reference of the object. Direction is the direction of the centre of the neighbour with respect
to the object. The x and y displacements are the distances of the neighbour’s centre from the
centre of the object, along the x and y dimensions of the object. Size is a list of ratios of the
neighbour dimensions with respect to the object dimensions.

Connectivity and alignment are both symbol-sets whose values qualitatively characterise
the way the neighbour is connected and aligned with the object. Each of the possible values
is an atomic predicate specifying a connection or an alignment between a pair of axes, edges,
or vertices. If the objects are composite objects, or non-rectangular primitive objects, then the
axes, edges, and vertices of their rectangular bounding boxes are used. The tables below shows
the possible connectivity and alignment values used in GRAM:

84 CHAPTER 3. REPRESENTATION

Connectivity values:
value meaning

separate | the neighbour is not connected to the object.

connected | the neighbour is connected to the object.

enclosed | the neighbour is completely within the region of the object.
enclosing | the object is completely within the region of the neighbour.
overlap the neighbour overlaps the object.

ee an edge of the object is connected to an edge of the neighbour.

ev an edge of the object is connected to a vertex of the neighbour.

ve a vertex of the object is connected to an edge of the neighbour.

4% a vertex of the object is connected to a vertex of the neighbour.

left the neighbour is connected to the left edge of the object.

right the neighbour is connected to the right edge of the object.

top the neighbour is connected to the top edge of the object.

bottom the neighbour is connected to the bottom edge of the object.
Alignment values:

value meaning

parallel the x-axes of the object and neighbour are parallel.

perpendicular | the x-axes of the object and neighbour are perpendicular.

XX the object’s x-axis is collinear with the neighbour’s x-axis.

yy the object’s y-axis is collinear with the neighbour’s y-axis.

Xy the object’s x-axis is collinear with the neighbour’s y-axis.

yx the object’s y-axis is collinear with the neighbour’s x-axis.

1 the object’s left edge is co-linear with the neighbour’s left edge.

Ir the object’s left edge is co-linear with the neighbour’s right edge.

bl the object’s bottom edge is co-linear with the neighbour’s left edge.

etlc

The choice of which pairs of objects are to be explicitly related as neighbours is based on a
number of factors, such as proximity, connectedness, and alignment. These and other factors
are discussed in section 6.3.1.

Multiple frames of reference are used to minimise loss of information during generalisa-
tion.

Section 3.1 talked about the need for a rich representation language to ensure that important
information can be made explicit to prevent it from being lost through the generalisation
process. The need for two frames of reference for neighbour relationships is another example
of this principle, and is illustrated in Figure 3.13 below.

Suppose the matcher is matching the relationship between Al and A2, and between B1 and
B2. If the two relationships were described only with respect to A2 and B2 respectively, then
there would be a mismatch, since the directions and displacements of Al relative to A2, and of
B1 relative to B2, are significantly different.

3.3. PROPERTIES AND RELATIONSHIPS. 85

Orientation (rotation of the neighbour’s x—axis relative to the part’s x—axis)

(direction of neighbour’s center with respect to the part. angle in range -180..179)
otk

Direction

§j:‘:g}:§:$::: (displacement of neighbour’s center with respect to the part)

Connectivity (a list of symbols characterising the connection, separation, or overlap of the two parts)

Alignment (a list of symbols characterising the alignment of the neighbour with respect to the part)

Size (xdimension of neighbour _ydim of neighbour xdim of neighbour ydim of neighbour)
xdimension of part * ydim of part * ydim of part * xdim of part

Figure 3.12: Representation of neighbour-relationships.

|
|
|
|

Figure 3.13: The need for multiple frames of references for neighbour relationships.

The frame of reference of a common parent could be used.

An extension to GRAM’s neighbour relationship representation, which has only partially been
implemented, is to allow the relationship between two neighbouring objects to be also described
with respect to the frame of reference of acommon parent object. The benefit of this is illustrated
in Figure 3.14: When matching the relationships between C2 and C3, and between D2 and
D3, both descriptions match poorly, whether using the frame of reference of the rectangle,
or the frame of reference of the oval. However, the direction and distance between the two
objects relative to their respective enclosing composite objects (C1 and D1) are very similar.
Therefore, if this information is able to be included in the representation, then better matching
and generalisation performance is possible.

Figure 3.15 illustrates the minimum information that would be needed. This includes the
direction between the two objects, and the distances between their centres, with respect to
the x and y axes of the parent. This information could either be included in each neighbour
relationship, or it could be stored in the description of the parent object.

86 CHAPTER 3. REPRESENTATION

Figure 3.14: The need for the frame of reference of a common parent.

Direction

(from the center of subpart] to the center of subpart2,
with respect to the frame of reference of their parent.)
x—Distance
y—Distance
(from the center of subpart] to the center of subpart2,
with respect to the dimensions of the parent.)

Figure 3.15: Using the frame of reference of a common parent.

3.4. CONCEPT REPRESENTATION. 87

3.4 Concept Representation.

A concept in the GRAM system is a descriptive entity in concept-memory that characterises
a class of physical objects. It is either a generalisation of several instance objects, or an
ungeneralised description of a single instance object that has been stored in concept-memory
as a concept in its own right. Concepts are organised in memory as an AKO hierarchy, where
each concept may have several subconcepts, and one or more superconcepts.

This section begins by giving a brief overview of the concept representation scheme, and
then sections 3.4.1 to 3.4.3 address specific aspects in more detail.

A concept is represented in much the same manner as an instance: It includes a structure
description, which specifies a set of structure properties and a set of subpart relationships,
and a context description, which specifies a set of context properties and a set of parent and
neighbour relationships. It may also have multi-relationships to other concepts, and may be
represented as a generalised group. The main difference between concepts and instances is that
the attribute values characterising properties and relationship of a concept may be generalised.
Also, the structure and/or context of a concept may be represented disjunctively, or by referring
to another concept (which may or may not be a superconcept) by an import-from relationship.

Another difference is that a relationship of an instance refers to a particular instance object,
while a relationship of a concept usually refers to another concept, and is interpreted to mean
“one of those”. The interpretation of a concept, from the point of view of the matcher, is
roughly as follows: for an observed object to be considered a valid instance of a concept, the
relationships of that instance object must be similar to the relationships of the concept, and
the relatees of the instance should be valid instances of the corresponding concept relatees.
Chapter 4, on matching, explores this in more detail.

Throughout the thesis, concepts are depicted graphically. For example, Figure 3.16 (a) shows
the definition of a single concept, where each link denotes a parent, neighbour, and subpart
relationship to some other concept. Figure 3.16 (b) shows multiple concepts depicted in the
same graph. Sometimes, for clarity, the diagrams only show one line between concepts, and
(unless the line has a single arrow-head) this is to be interpreted as two distinct relationships.

The graphical depictions of concepts (or instances) do not convey the richness of the descrip-
tions, since the properties associated with each node, and the attributes characterising each
relationship, are not shown. It is hard to illustrate a concept graphically because attributes
are usually generalised. However, the graphical illustrations are sufficient for most of the
discussions in the thesis.

Unlike concept descriptions in systems such as Labyrinth [Thompson and Langley, 1991], a
concept description in GRAM does not include explicit relationships between its subparts. This
is because the concepts that the subpart relationships refer to, have neighbour relationships
with other concepts, and this provides sufficient constraint. Figure (b) illustrates this, where
the required relationships between the subparts of an instance of concept C1 are represented
as the neighbour relationships of the concepts C2, C8, C4, and C31. In Labyrinth, concepts
do not have context information, and so the inter-subpart relationships have to be explicitly
included in the concept description.

88 CHAPTER 3. REPRESENTATION

€1 I
C8 ’
31 |
C4
cfs ce L
(a) A single concept depicted graphically. .

(b) Multiple concepts depicted graphically

Figure 3.16: Concepts depicted graphically.

In GRAM’s scheme, each concept description is small and simple, since there is no need to
include a set of local variables representing its subparts, or a set of relationships between them.
However, since each concept is defined in terms of richly described relationships with other
concepts, in the manner of a semantic net, a concept may still be implicitly very complex. For
example, the description of the concept letter-box could implicitly include the constraint that
it has a door-handle nearby, if it is defined in terms of the concept house which is defined in
terms of the concept front-door.

A consequence of GRAM’s representation scheme is that when a new concept is formed
from an observed instance, every component of that instance must also be added to concept-
memory as a new concept (unless it is an instance of a previously learned concept). It is not
possible to create just one concept defined by a local part-graph, since every concept is only
definable by relationships with other concepts (or instances interpreted as concepts). Therefore,
concept-memory could include a concept for left-chair-legs, bottom-screws-of-wall-sockets,
top-halves-of-Bic-pens, and countless other classes of ‘object’ that we do not normally think
of as being objects, and that do not have common names in the English language. The
Labyrinth system and the MERGE system [Wasserman, 1985] also share this characteristic,
although Labyrinth does not represent context and so it can learn a smaller variety of concepts,
distinguished solely by substructure.

3.4.1 Context or structure may be ‘imported’ from other concepts.

It is useful to be able to define the structure or context of a concept (or even an instance)
by referring to the structure or context of an existing concept, rather than including details
explicitly. This helps to reduce memory usage and enables a greater transfer of information
amongst descriptions. Suppose the system observes bedroom] in Figure 3.17 and creates an
ungeneralised concept for each of its components. Each of chairl, deskl, clockl, and bedI
have complete structure and concept descriptions. However, if the system has already learned
the generic concepts chair, desk, clock, and bed, then the description of bedroom-1 should not
have to include complete descriptions of its subparts. Instead it should be able to make use of
descriptions of the existing concepts.

3.4. CONCEPT REPRESENTATION. 89

One way of doing this is for bedroom1 to refer directly to the previously learned concepts
chair, bed, etc, as shown in Figure 3.17 (a). However, it would then lose the information
about how these components are related to each other. The relationships of each component
with the bedroom as a whole would be explicit in the subpart relationships, but the neighbour
relationships berween the subcomponents would not be, since they would be defined only in
terms of generalised concepts. In some cases this is acceptable if only a rough description is
required, but in other cases the neighbour relationships between subparts are important.

Another way to deal with this is to use GRAM’s import-from relationship. This allows
the structure or context of a concept (or an instance) to be specified by referring to another
concept. This is shown in Figure 3.17 (b), where the structure of concept chairl is defined by
an import-from relationship to the more general chair. It is not necessary for chair to be an
explicit superconcept of chairl, and later we will see examples where a concept’s import-from
relationship refers to a concept that is not even more general. Therefore, the import-from
relationship subsumes the usual form of inheritance.

If a concept is defined using import-from, it may also include explicit local relationships
which override or specialise the information imported from the other concept. For example,
if chairl had an unusual kind of back, but was otherwise just a standard chair, then it could
include a single subpart relationship to chairback1, as shown in the figure. To be an instance of
chairl, the structure of an instance must not only match the structure of chair (via import-from)
but must also include a matching subpart relationship to a back that matches chairbackl. The
description of chairl does not include explicit bindings to indicate that the subpart relationship
corresponds to a particular subpart relationship of the imported chair. Such bindings are not
necessary, since, when matching a new object with chairl, the appropriate correspondence can
be found by matching. This does require additional effort in that the matcher must compare the
local subpart relationship with instance subpart relationships, rather than being able to make
use of explicit bindings with the already-matched subpart relationships of chair (or vice versa).
However, it also avoids the need for dealing with bindings, and this is considered beneficial
because it simplifies the representation scheme, the matcher, and the generaliser. This is an
approach taken throughout the GRAM system.

An import-from specification may also refer disjunctively to several concepts. We will see
examples of this in section 3.4.2.

Import-from specifications could actually be added to an instance description, not just to a
concept description, so that details of classifiable components can be removed. This would
be done by the instance-constructor, although GRAM does not currently support this. Such a
process is actually generalising the instance, since the relationships of the modified instance
refer to generalised relatees.

3.4.2 Concept variability is expressed by attribute distributions, instance-counts,
and disjunction.

Concepts are generalisations of instances, and must therefore capture the variability of permis-
sible instance features. This is achieved in several ways:

90 CHAPTER 3. REPRESENTATION

I —

bedrooml

bedrooml

@—)desk 1

bedroom1 bedroom1

Iwalll A .
| [chairT |G desk1 [deskT (7041 |
chairl clockl “mwalll floorl floor! |
Iwalll floorl ceilingl backl1Vllegl \

seat] rlegl

bedroom1
chairl edi
| CockT 4!
| &(ﬁw‘ AN Nt
‘ llegl bighand lithand2 |
’ (a) Method—1: Refer directly to generic concepts.
|
|
|
l chair rwall
| lwall ~ floor ceiling |
L |
(b) Method—2: Use IMPORT—FROM relationship. |
|
|
bedroom1 any context chair ‘
[et Em)
| P chairseat
partial __‘_,g"" chairback rchairle m Ichairleg
local structure hai t g .
. potiess Ichairleg
chairback1 |
e - |

Figure 3.17: Imported structure.

Attribute distributions

One kind of variability is characterised by representing attributes as value distributions. More
specifically, a generalised numerical attribute value is represented as a mean, standard deviation,
and range. A generalised nominal attribute value is represented by the frequencies of each
observed value. This was explained in section 3.3.2.

3.4. CONCEPT REPRESENTATION. 91

Instance-counts

The second way of representing concept variability is by giving each parent, neighbour, and
subpart relationship an instance-count indicating how many observed instances of the concept
included this relationship. The concept as a whole also has an instance-count, so that the ratio
of each relationship’s instance-count to the concept’s instance-count indicates the degree of
optionality of that relationship, and can therefore be used to make predictions about a partially
unobservable object, or for determining the significance of a missing feature. This ratio is
called the instance-count-ratio.

Through the process of generalisation, the sets of parent, neighbour, and subpart relationships
of a concept may gradually increase in length as new instances are observed that have rela-
tionships that were not present in previous instances. For example, new models of telephone
might be observed, each with some different subparts and different relationships, although
retaining the basic telephone structure. The most common subpart relationships will have high
instance-counts, and these will be given most significance by the matcher.

As another example, consider the four objects in Figure 3.18. After generalising the instance-
concepts A, B, C, and D to form a new concept E, the subpart relationships of E have various
instance-counts as shown on the diagram. The ratio of the instance-count of each of these, to
the instance-count of E, is its instance-count-ratio, and can be treated as a probability for the
presence of that subpart relationship in a future instance. A larger number of observations will
result in probabilities that have greater predictive accuracy.

(4) E = A+B+C+D
4 " El = Al1+B1+C1+DI
E2 = A2+C24D2
E3 = A3+B3+C3+D3

El E2 E3 A4 E5 ES= Al+B14C14DI

Figure 3.18: instance-counts.

One apparent limitation of GRAM’s representation is that it does not allow a concept description
to explicitly include the relationships berween its parents, neighbours, and subparts. This also
means that the co-existence of optional relationships/relatees is not explicit. However, the
dependencies between the relatees are usually captured in the relatee descriptions themselves.
Consider the example in Figure 3.19. Object A and object B have been generalised to produce
the concept AB shown at the bottom of the figure. Concepts AB6 and AB7, which were each

92 CHAPTER 3. REPRESENTATION

constructed from the single instances A6 and A7 respectively, are also shown. AB has subpart
relationships to AB6 and AB7, each with an instance-count of 1. The problem is that there is
no indication of whether these must be both present or both absent in an instance of AB, or
whether they can be independently present or absent. However, the description of concept AB6
has a non-optional relationship to AB7, and AB7 has a non-optional relationship to AB6. Thus
if the matcher compares AB with an object that contains an AB6-like part but no AB7-like
part, then a mismatch would be detected, since the AB6-like part would not match the AB6
concept perfectly.

Therefore, the neighbour relationships of optional relatees of a concept provide co-existence
constraints without having to represent them explicitly within their parent concept description.
Of course, this is only true if the optional relatees have explicit relationships between them.
When optional components are not explicitly related via a neighbour relationship, then co-
existence is much less explicit, such as if A7 had been on the other side of object A, rather
than next to A6. However, this limitation is not a problem, since if two components are not
structurally connected or close to each other, then in general (in the absence of functional
knowledge) it is more likely that their presence or absence is independent.

ABI1 AB2 AB3 ABS AB6 AB7

1 . AB7
Al AB6 ! 1:51

Figure 3.19: Co-existence dependencies between optional components.

3.4. CONCEPT REPRESENTATION. 93

Structure and Context Disjunction

Sometimes it is undesirable for the generaliser to simply merge two descriptions into single
lists of components with instance-counts indicating the degree of optionality. If two structures
or two contexts being generalised are significantly different, then it is better to represent the
structure or context as a set of structure disjuncts or context disjuncts, which means that co-
existence dependencies are explicit. This is the third way of representing concept variability.

For example, Figure 3.20 shows two doors with handles that are sufficiently different that
they cannot be generalised to form a single generalised structure without resulting in a large
list of optional subpart relationships, with coexistence dependencies specified only implicitly
via the subpart concept descriptions. To deal with this, the generalised handle concept should
be represented disjunctively.

Figure 3.20: A generalised door requires a disjunctive door-handle description.

Several ways of representing disjunctions have been considered for the GRAM system. The
first way is illustrated in Figure 3.21 (a), which shows a concept Al whose structure is dis-
junctively defined. The three small grey squares denote three alternative structure descriptions.
Each is represented by its own set of structure properties and subpart relationships. In addition
to the disjuncts, a disjunctive concept in this scheme can also include a set of properties that is
a generalisation of all of the disjunct properties, and also a set of any subpart relationships that
are common to all or most of the structure disjuncts.

Likewise, figure (b) shows a concept B1 whose context is defined disjunctively, where each of
the context disjuncts has its own set of context properties, neighbour relationships, and parent
relationships. A concept can also include a set of parent and neighbour relationships common

94 CHAPTER 3. REPRESENTATION

that are to all or most of the context disjuncts.

A concept may also have disjunctions of structure and context, such as for a concept chair,
which could be defined in terms of a variety of structures and a variety of contexts, with a few
structure and context features common to most chairs, such as being upright on a floor, and
having a vertical back and horizontal seat and some kind of support structure beneath.

————— e e e e

o e i e 1

| % g X |
g % =z partial|

: ?ﬁ ~ /$ context| ‘

\

non—disjunctive
context

partial |
structure

[
| s e o JEE AN

Figure 3.21: Method-1: Include a set of structure disjuncts and/or context disjuncts.

One limitation of this scheme is that it assumes that structure and context are always inde-
pendent. The generaliser creates disjuncts whenever there is a significant mismatch with the
existing structure or context descriptions of a concept and an instance that are to be generalised.
If successive generalisations of a concept result in it having both structure and context disjuncts,
then these must be interpreted to mean that any pairing of structure disjunct and context disjunct
is permitted in an instance, since there is no information specifying co-existence dependencies.
Therefore, over-generalisation will tend to occur. In the case of a chair concept, the system
is not able to represent the fact that swivel chairs tend to appear in offices rather than living
rooms.

Another limitation of this scheme is that it cannot represent a multi-level taxonomy, since a
disjunction consists of just one level of disjuncts which are not further subdivided into more
specialised variants. However, concepts are represented in an AKO hierarchy anyway (although
this thesis does not address the details of this), and so the set of disjuncts is redundantly
specifying what is already specified as subconcept descriptions. For example, if a chair
concept has several structure disjuncts, one for each variety of chair it has seen, then each of
these varieties will also be represented as subconcepts of the chair. For example, Figure 3.22
illustrates how the description of Al from Figure 3.21 has its structure disjuncts redundantly
duplicated in the subconcept descriptions.

This suggests that perhaps it is sufficient to allow the AKO hierarchy to capture the disjuncts
of a disjunctive concept. Common features could be retained explicitly in the top-level concept
description, while its details would be defined as being “any of its subconcepts”. Figure 3.23
shows the concept Al represented in this manner. This avoids the problems of duplicated
information, and also simplifies the representation scheme since there is no need to deal with
additional disjunct descriptions.

Figure 3.24 shows a more complex example where the structure and context of the concept
chair are both defined disjunctively. A few features common to all or most of the subconcepts
(such as relationships to the concept chair-back, chair-seat, floor, and room) are included in

3.4. CONCEPT REPRESENTATION. 95

partial |
structure

Figure 3.22: Method-1 problem: Disjuncts are duplicated as subconcepts.

the chair concept itself, as a partial description. (The distinction between partial and complete
descriptions is discussed in section 3.4.3).

For an instance to match the chair concept, its structure must match one of the subconcepts,
and its context must also match one of the subconcepts. The percentages on the AKO links
indicate the proportion of concept instances that were instances of each subconcept, and these
can be used for making predictions about the structure and context of a partially observed
instance.

There is no explicit distinction between subconcepts that define structure disjuncts, and
subconcepts that define context disjuncts, since that would require two different kinds of AKO
link, and a more complex memory organisation system.

This may seem to be a limitation of this scheme, since the matcher must match the structure
of a candidate instance with the structure of all of the subconcepts, and must also match its
context with all of the subconcepts. However, the use of the import-from relationship prevents
unnecessary work, and also reduces memory usage, since it can be used to define the structure
or context of a concept in terms of the structure or context of another context, or a disjunction of
other concepts. For example, the armchair concept has its own local structure description, but
its context can be imported from either chair-in-living-room or chair-in-office. The percentages
shown in the figure indicate the proportion of observed instances of the concept that had each

96 CHAPTER 3. REPRESENTATION

Figure 3.23: Method-2: Disjuncts are represented only by subconcepts.

of the contexts. Similarly, the concept chair-in-office has its own local context description, but
its structure is imported from swivel-chair or standard-chair.

As another example from Figure 3.24, the subconcept standard-chair-in-office of standard-
chair has a context that is the same as chair-in-office, and a structure that is imported from
standard-chair. The latter case is like the usual form of inheritance, since it refers to a
superconcept.

The import-from relationship allows a concept to have overlapping subconcepts, some of
which define distinct kinds of structure, some of which define distinct kinds of context, and
others (such as the dentists-chair-in-dentist-office) which define a subconcept that is distinct
in both structure and context. Each structure-defining subconcept can refer to the context of
a context-defining subconcept, and vice-versa, and thus the import-from enables a transfer
of information amongst concepts. If a concept is generalised, then any concepts that are
defined in terms of it, via import-from (or any other relationship, in fact) are also implicitly
generalised. Of course, this has the danger of over-generalisation occurring, and the concept-
learning and memory-organisation systems must deal with this. This is a difficult problem
which is not addressed in this thesis. In fact, GRAM is not currently able to create import-from
relationships, since this is part of the larger learning and memory-organisation system, rather
than the generaliser. However, the matcher is able to deal with them.

It is important to note that the matcher is only required to match a new candidate instance

97

3.4. CONCEPT REPRESENTATION.

;
(areyo-prepueis) ‘woy-podwt |
=2Indnans *

|

|

|

| ew 2011305, pLaEp
m AP S PIA UI-J1BY)—PIBPUE}S
| se?m*;%

(areqo—prepumrs | swoy-podun {1reyo—prepuess | swoxy-uodurt

_
|
* —ampnns | | =ampnns |
! WooI-FuIAI[—ur f | aoigo-ur| |
_ - IIByd—-pIBpUE)S V | —~I1BY>—-PIEPUE)S W
|
—SUIAT—Ul— -SE—oUIE 0UJO-UI-IEYD) :Se—IUIES

| e | e

| R ——, R
Lo M_Mmmwﬂwﬂ_ﬂw_ {(%01) Jreyo-prepumis 1
‘wiogj-podu (3509) reyo—[asIms)
=2amjonns ‘wonj—yoduit

|
, ,
, m—
| (oomo-ur-ieyp) || M —u-Jpey-sispuap “
|)

) _

¥]

\ , 4 4
[wip-pivpuvss] opuse |
f |

I

|

| ,

* ﬁ g

_ 3 [/ “ _ I

_ WooJ—oulAl = * .

| W —Uul-Ieyd ﬁ oﬂv ot ._:Eu | | {(20¢) woo1-BtmAn-ut-1reqo {(37) 20u30-ur-i1eyd
| | "

_ | L

“(05) oujo-ui-Iey) WOOI-BUIAI|~Ui-ITPg wog-podul | T
& ‘woxy—podut | | (86) M:o._p.xwhn___: f e e R f |||||||||
woos-3uall S i SRR |||||l|||";ms.ut =1¥a100

(sideouooqns jo Aue -ar) TSP
aanounfsip =amonns

100§

(s1doouooqns jo Aue "a1)
aanounfSip =jxayioy WoOI

Figure 3.24: Method-2: A more complex example.

98 CHAPTER 3. REPRESENTATION

with the subconcepts of a concept if the concept is defined disjunctively. In the case of the
standard-chair in the figure, whose structure is not defined disjunctively, the matcher does not
need to compare the structure of an instance with standard-chair-in-office or standard-chair-
in-living-room, since all the required information is captured in the local structure description.
However, the classification system would need to match the instance with the subconcepts if a
more specialised classification is required.

A more elaborate scheme for representing disjunction is to allow arbitrary disjunctions of
parent, neighbour, and subpart relationships. However, dealing with arbitrary disjunctions is
a difficult problem because, when performing generalisation, there may be innumerable ways
of creating disjunctions, and it is difficult to backtrack later if a wrong decision was made.
Therefore, GRAM only allows disjunction of the larger chunks of information that characterise
structure and context.

Overall concept variance

A fourth way of representing concept variability is to include, in each concept, measures of
variance (or ‘fuzziness’) of the concept as a whole, of structure and context, and of each parent,
neighbour, and subpart relationship. It is useful to know how ‘fuzzy’ a generalised concept
is, since this indicates how useful it is for making detailed predictions. If detailed predictions
are required, and the concept has a high variance, then this indicates that it may be necessary
to consider its subconcepts. These measures are also used by the matcher as importance-
weightings when combining similarity scores of the features being matched. Measures of
concept variance could also be used by the larger concept-learning system when reorganising
concept-memory, such as when determining whether a concept has become too general to be
usefully retained in concept-memory.

3.4.3 Concepts can have a variety of interpretations.

Stepp [Stepp, 1987b] made the distinction between two kinds of concept interpretation —
“contains” or “is”. If a concept has an “is” interpretation then it requires that an instance has
all of the specified features, and no additional features. A “contains” interpretation is much
weaker: an instance is considered to be a valid instance of the concept if it has all of the specified
features, even if it also has additional features. For example, a “contains” interpretation of a
chair concept might allow a ‘chair+person’ object to be classified as a chair, since it contains
the required subcomponents and relationships between them.

It may seem that an “is” interpretation is obviously the most desirable. However, if an “is”
interpretation is required, then this means that when two or more instance descriptions are
generalised to form a new concept, the generaliser cannot employ the “drop feature” operation
[Michalski, 1980] which simply excludes features that are not common to all or most of the
instances. This is because after dropping features, the concept would need to have a “‘contains”
interpretation to allow the dropped features to be present in new instances without them being
treated as mismatches.

3.4. CONCEPT REPRESENTATION. 99

If the “drop feature” operation is not used, then concept descriptions can become quite
cluttered with low-occurrence relationships. Therefore, GRAM does allow the generaliser to
drop features, and does allow concepts to have a ‘contains’ interpretation in that situation.
This is acceptable because a concept has other features, such as its structure and context
properties, and subpart-concept relationships, which usually constrain what instances can match
the concept. For example, suppose a chair concept is represented as a “contains” description
that specifies a relationship to a back and a relationship to a seat. Although additional parent,
neighbour, and subpart relationships in an instance are permitted without being considered a
mismatch, the structure and context properties, such as overall shape, aspect-ratio, density-
profile, etc, would prevent the chair concept from matching an observed ‘chair+person’ object.
Furthermore, the details of the subpart relationships of the chair to its seat and back would
not closely match the subpart relationships of the ‘chair+person’ to the chair and seat, since
the ‘chair+person’ has a different bounding-box with respect to which the relationships are
defined.

In GRAM, the “is” interpretation is referred to as complete, and the “contains” interpretation
is referred to as partial. Each concept description specifies the interpretation of its structure
description and the interpretation of its context description.

The idea of allowing a description to have either a partial or a complete interpretation, each
of which affects how the matcher and generaliser operate on it, has not been used in the other
systems reviewed in this thesis, although it is similar to the distinction between characteristic
and discriminant descriptions proposed by [Michalski, 1980]. A characteristic description is a
‘full’ description of the details of a concept, while a discriminant description include sufficient
details to distinguish instances of it from instances of other concepts. However, a partial
interpretation is not specifically intended for discriminant descriptions.

It is also possible for an instance description to have a partial interpretation, which means
that information is incomplete or unavailable. For example, if a bicycle is observed with a
brief glance, then its structure could be described partially. This indicates to the matcher
that, if possible, further observation of the instance should be performed if a more thorough
classification of the instance is required.

Although the above discussion has suggested that a partial interpretation is used when
features have been dropped, this is not always true: A partial interpretation is normally used
in GRAM when relationships have not just been dropped, but when they have been replaced
by other information, such as a disjunction, a multi-relationship to a typical-member concept,
or an import-from specification. Consequently there are several different types of partial
interpretation.

The first kind of partial interpretation is partial+disjunctive. This indicates, firstly, that
the structure (or context) is disjunctive, and secondly, that the structure (or context) features
included explicitly in the description (non-disjunctively), are only partial. This means that
when the matcher compares the non-disjunctive description with a new instance, it allows any
additional subpart relationships (or parent and neighbour relationships for a context) without
treating them as a mismatch. However, the instance must also match at least one of the
disjuncts.

100 CHAPTER 3. REPRESENTATION

For example, the context of a chair concept might also be described with a partial+disjunctive
interpretation, as illustrated in Figure 3.25, where a concept chair has been formed from the
instances chairl and chair2, and likewise for the concepts back and seat. The contexts of chair,
back, and seat are partial+disjunctive, and their structures are complete. In the case of chair,
no neighbour or parent relationships have been explicitly included in the example, but in the
case of the back and seat, both have include parent and neighbour relationships to the chair
as a whole and to its other parts. Since the description is partial, the matcher would allow a
candidate chair, back, or seat instance to have other relationships as well (such as to a table, to a
person, or to an elephant). However, because their descriptions are also disjunctive, the context
of the instance must match one of the disjuncts, all of which have complete interpretations, and
which effectively override the partial interpretation.

Another kind of interpretation is partial+typical. This applies to structure descriptions
(and not context descriptions) for groups, and where most or all of the individual subpart
relationships have been removed, leaving only a multi-relationship to the typical-member
concept and perhaps a few subpart relationships to atypical members. This interpretation
allows the matcher and generaliser to ignore unmatched subparts of an observed instance, so
long as they match the typical-member concept. The discussion of groups in section 3.5 and
the discussion of group matching in section 4.3.3 explore this in more detail.

If a grouped structure has not had its individual subpart relationships removed, then it has an
ordinary complete interpretation, although the matcher and generaliser still treat these relation-
ships with less importance, since the multi-relationship to the typical-member characterises
them in summary form.

If a concept structure (or context) is imported from another concept, then it has a par-
tial+imported interpretation. From the point of view of the matcher, importing is very similar
to disjunction, since in the former case the structure or context of an observed instance must
match one of the specified concepts, and in the latter case the structure or context of an ob-
served instance must match one of the concept’s subconcepts. In both cases, if the concept also
includes a partial local structure or context description, this must also match the instance.

Another kind of structure interpretation that I considered including in the GRAM representation
is contents-only. This was to be used for concept structures that are primarily defined by their
contents rather than the arrangement of their contents. Section 3.1 discussed a bedroom
as an example of this, and it is illustrated in Figure 3.26 which shows descriptions of the
components of bedroom2. At the bottom of the figure is a description of bedroom12 which is
a generalisation of bedroomI (from Figure 3.17 on page 90) and bedroom2. The arrangement
of these generalised components is very variable and so the generalised bedroom is defined
primarily by what it contains, rather than how its contents are arranged. The advantage of
allowing an explicit contents-only interpretation is that it immediately indicates to the matcher
that the subpart relationships themselves are not useful for determining the best correspondences
amongst the subcomponents of such a concept and a new instance. The matcher needs to
compare the subpart object descriptions themselves, without the guidance and constraint of
subpart relationship similarity.

However, a contents-only interpretation in not included in GRAM’s representation because

3.4. CONCEPT REPRESENTATION. 101

tablel
back2 Y llegZ a00
backl ¥ lle seat2 g
seat] o rlegl
chair2
chairl
seat2
»headl | back2 |-—>-tabletopl
seatl < rpacrTkZtorsol lleg
llegt< X thighl
chair2
cha«irl bﬁck%
back]l torsol eg2<—]seat2 |
llegI;- thighl rleg2
rlegl - calfl
|
Concepts defined using ‘partial+disjunctive’ interpretation:
context =
partial+disjunctive
juncrx= (chairl chair2)
structure=
complete baCkseat lleg rleg
P text = context =
chair ““ 8 b edigunceive chair partial+disjunctive
disjuncts= (backl, back2) dis, ‘unc{:: (seatl, seat2)
]Seat] ac
\lleg | seat | lleg
structure= structure= rleg
complete complete

Figure 3.25: “partial+disjunctive” interpretation.

it does not specify the degree of arrangement-independence. This is better indicated by
the variances of the subpart relationships. High-variance relationships contribute less to the
similarity score computed by the matcher, and so the arrangement-independence is accounted
for more accurately than by using a contents-only interpretation which would cause the matcher
to either use all of the subpart relationships or none of them.

One more kind of structure or context interpretation is any, which is almost equivalent to a
partial interpretation with no relationships specified, except that properties are also ignored.

102 CHAPTER 3. REPRESENTATION

bedroom2

desk2
| bed2 j<3 clock2

Structure

import—from
{bed})
bedroom?2 bedroom2
rwall2 hair2
[chair2 [desk2 sgﬁl: bed?2
chair2 gdesk2 Y bed2\ clock2 Twall2 i‘;“pg‘r‘t’ﬁmm floor2 import—from 10012
Iwall2 floor2 ceiling2 {chair) {desk]
bedroom?2

eiling2
Iwall2

structure
import—from
{clock2)

chairl2g/desk12ybed I, clock12 Twall12
Iwall12 floor12 ceiling12

I B A

Figure 3.26: Structure may be characterised by contents not arrangement.

To summarise the structure and context interpretations discussed above, each is listed and
briefly explained below.

Complete: An instance must match all of the concept’s relationships, with no additional
relationships.

Partial: The concept’s relationships must match the instance’s properties and relationships,
but the instance may have additional relationships.

Disjunctive: An instance must match the structure [or context] of one of the disjuncts (i.e.
the subconcepts).

Any: An instance can have any properties and relationships.

Partial+Disjunctive: An instance must contain the specified structure (or context) relation-
ships, and must also match the structure (or context) of one of the disjuncts (i.e. the
subconcepts).

3.4. CONCEPT REPRESENTATION. 103

Partial+Typical: [For grouped structures.] An instance must match the partial list of subpart
relationships, and all of its subpart relationships must match the multi-relationship to the
typical-member.

Partial+Imported: An instance must contain the specified structure (or context) relationships,
and must also match the structure (or context) of one of the import-from concepts.

104 CHAPTER 3. REPRESENTATION
3.5 Groups

A requirement of the representation is to be able to explicitly represent groups of similar and
similarly related components of an object. This section explains how this is achieved in the
GRAM system.

A group object in GRAM is an ordinary concept or instance, with the usual structure and concept
properties and relationships, but with the addition of a multi-relationship to a typical-member
concept, and a few special properties that characterise the group as a whole. The typical-
member concept is also an ordinary concept, except that it can have neighbour relationships 7o
itself, and these capture the typical inter-member relationships between neighbouring members
of the group, such as between neighbours in a row of bicycles. Other concepts (or instances, if
the group has been formed within an instance-graph) may also have multi-relationships to the
typical-member concept.

This scheme is very similar to the scheme initially proposed by [Winston, 1975], except that
his system defined typical inter-member relations by relations from the typical-member node
to an “another-member” node. Also, his system did not include multi-relationships, and dealt
only with simple qualitatively-defined, non-disjunctive objects.

Before considering group representation in more detail, the following section describes the
different types of group that commonly occur in the kinds of domain that GRAM is intended
for, and should therefore be representable.

3.5.1 There are several types of group, distinguished by their inter-member
relationships.

There are several different types of group, each distinguished primarily by the nature of their
inter-member relationships. These are illustrated in Figure 3.27, and are explained below.
Other examples of these group types can be found in the bookshelf in Figure 3.28. Figure
3.29 illustrates the typical-inter-member relationships for each type of group, depicted as
self-referring relationships of the typical-member concept.

A chain is a linear sequence of similar parts.

The most common and important type of group is the chain, consisting of a linearly ordered
series of similar parts for which the relationships between consecutive parts are also similar.
For example, each row of books on the bookshelf in Figure 3.28 can be represented as a chain.
Many examples of chains can be observed in the world, such as stacks of plates, rows of chairs,
queues of people (not necessarily in a straight line), and chests of drawers.

In GRAM’s representation, the typical-member concept of a chain group has two neighbour
relationships to itself, one for each direction along the chain, as shown in Figure 3.29 (a).

3.5. GROUPS 105

—similar members
— linearly ordered.
—similar inter—member relations

(a) Chain

(b) Loop

— as for chain, but no end members.

— similar repeat series of members.

(¢) Chain-cycle

— similar inter-member relations.

(d) Loop-cycle

(e) Array

— similar members
— similar vertical & horizontal relations
— close proximity, forming a distinct region.

() Cluster

— similar members
- no ordering.
— close proximity, within a common region.

Noticeboard — varying degrees of regularity of

u relations to neighbours.

(g) Collection

— no organisational regularity.

— not in close proximty. Dispersed.
— similar members, but no similarity in inter—member relations.

eg. potplants in a room

Figure 3.27: Types of Group.

106 CHAPTER 3. REPRESENTATION

Figure 3.28: Examples of Groups.

A loop is a chain that is joined at the ends.

Loops are very similar to chains except that there are no end-most parts. For example, the
petals on a flower and the hour-marks on a watch are loop groups. A loop is represented in
exactly the same way as a chain, except that the grouped object has the value ‘loop’ for its
group-type property. Also, all of the members contributing to the typical-member concept
have inter-member neighbour relationships in both directions, while in the case of a chain all
but the two end-members have, and so the instance-counts on the self-referring relationships
will be one less than the instance-count of the typical-member concept itself.

An array is a vertically and horizontally aligned group of similar parts.

Another type of group is the array, whose members are organised in regular vertical and
horizontal rows and columns, as in the case of the buttons on a telephone, or windows on a
building. An array can be viewed as a chain of chains, in either of two alternative dimensions.
However, GRAM can also represent an array explicitly by its typical member.

3.5. GROUPS 107

backwards Sforwards))
(a) The typical relation between

consecutive members.

The typical relations between
consecutive members

(b)

The typical relations between consecutive

(c) array: ; etwe
members in each direction.

(d) cluster: The typical relations between each member

and its closest neighbour.

(six relationships, one for each hexagonal direction)

() collection: No typical inter—member relations.

(ie. an ordinary concept)

Figure 3.29: Typical inter-member relationships.

The typical-member of an array has at least four self-referring neighbour relationships, each
for one vertical or horizontal direction, as illustrated in Figure 3.29 (c). Relationships on
the diagonal are excluded by GRAM’s group-constructor because they are significantly weaker
neighbour relationships than the vertical and horizontal relationships.

A clusteris an unorganised group of similar parts clumped together in the same region.

A cluster is a collection of similar objects that are located in close proximity to each other
within a region, but are otherwise unordered and unorganised structurally. The cookies on the
bookshelf are an example of this. A pile of shirt buttons, a stack of bricks, a crowd of people,
and the notices on a notice-board, are some other examples. Various degrees of regularity
of inter-member relationships are possible, such as the highly regular honeycomb pattern in
Figure 3.27 (d), or the irregular plate of cookies on the bookshelf, in which the only regularity is
the distance between each cookie and its closest neighbour. These different forms of regularity
are implicitly represented by the self-referring neighbour relationships of the typical-member
concept, but are otherwise not made explicit as distinct group types, with the exception of the

108 CHAPTER 3. REPRESENTATION

array type which can be considered to be a cluster that is explicitly distinguished.

The typical inter-member relationship for a cluster has a high variance, at least with respect
to direction and position. For example, the neighbour relationships of the cookies on the
bookshelf would be generalised into a single neighbour relationship for the typical-member
that characterises the cluster of cookies, as shown in Figure 3.30 below. Each cookie has a
significantly different set of neighbour relationships to its neighbouring cookies, some having
two neighbours, others having four or five, in a variety of arrangements. Therefore, when
the group-constructor merges the cookie descriptions into a single generalised typical cookie
concept, the neighbour relationships are also merged into a single multi-relationship that has
a generalised howmany count in the range 2 to 5 (with mean of 3), meaning that there are
typically between 2 and 5 cookies that are explicit neighbours of a cookie in the bowl.

cookie2
ey et kie8
cookied cookie . cookie
cooﬁeg cookiel()
cookie

typical ‘
member ‘

Figure 3.30: Inter-member relationships for a cluster.

A collection is an unorganised and dispersed group of similar parts.

A collection is a group of similar items that are not structurally related at all, other than being
contained within the same object. This is an unusual sort of group because it cannot really be
considered to be an ‘object’ in the sense that other groups can. It does not have any structural
identity. Rather, the presence of a collection in the description of an object, means that “there
exist several parts like this”. For example, a description of room may include a collection-group
of potplants, meaning that there are several potplants in the room.

Although ‘collection’ has been included as a distinct group type, GRAM does not actually
construct group-objects for collections. Instead, it just creates a typical-member concept (which
is really just an ordinary concept formed from instances within the same scene) and other objects
can have multi-relationships to it. So a room could have a subpart multi-relationship to the
pot-plant concept, with a howmany count of 6, while one shelf of the room may have a
multi-relationship to the same pot-plant concept with a howmany count of 2. All the required
information is available without requiring a group object. The only reason for having a group

3.5. GROUPS 109

object is when the group as a whole has collective properties that are worth making explicit,
such as the topology, overall shape, or inter-relatedness of the members.

Chain-cycles and loop-cycles have two or more alternating typical members.

A less common form of group is the cycle, which has a linear structure like a chain or loop but
is characterised by several typical members that alternate in a cyclical manner along the chain
or loop, as shown in Figure 3.27 (c) and (d). Cycles observed in everyday objects are most
commonly characterised by just two, rather than more than two, alternating typical members.
One of the typical members is often a connector between instances of the other, as in the case of
a line of horses joined by ropes. The leaves on a (two-dimensional) stem can also be described
as a chain-cycle consisting of a ’left’ leaf and a ’right’ leaf, as in the bookshelf in Figure 3.28.
An example of a loop-cycle is a bead necklace with a cyclical pattern of different shaped or
coloured beads.

It may seem that a cycle could just as easily be represented as an ordinary chain or loop.
For example, the bead necklace in Figure 3.27 (d) could be described as a loop in which each
typical member consists of a fixed sequence of distinct beads. Similarly, the bookshelf in
Figure 3.28 could be represented as a chain with a typical member consisting of a shelf and
a pair of brick-stacks. However, this is not possible in the case of a line of horses joined by
ropes since there may be one fewer ropes than horses. It is more meaningful and correct to
represent such a group as a cycle of several distinct typical members, where each has neighbour
relationships to the other, as shown in Figure 3.29 (b).

The current version of GRAM does not support cycles because it would require group rep-
resentation to be non-homogeneous, since the group must specify two typical-members, and
the matcher must determine which corresponds with which when matching two cycles. Since
cycles do not occur as commonly as the other types of group, this aspect has been left for future
work.

3.5.2 Group properties.

This section and the following sections explain in more detail how a group is represented.
A group is not actually an additional descriptive entity in the GRAM representation scheme,
but is an ordinary instance or concept whose structure description includes some additional
information — in particular, a multi-relationship to a typical-member concept, and several
properties that characterise the group as a whole

The first group-property is the group-type, which can be any one of the types that were
discussed earlier, such as chain, loop, cluster, etc.

The second group property is the cardinality of the group, which may be a generalised
numerical value if the group is generalised. However, it is not actually necessary to include
cardinality as an additional structure property, since it is already captured by the number-of-
subparts property of an ordinary structure description.

110 CHAPTER 3. REPRESENTATION

The third property, or rather set of properties, are several measures of the regularity of the
group, which is the inverse of variance. These indicate how regular the members are, in terms
of (a) their structure, (b) their context, and (c) their inter-member relationships. These measures
are used to indicate the strength or ‘groupness’ of the group, and to indicate which aspects
of the group are most crucial during matching. In the case of a collection group, structure-
regularity is usually high and context-regularity is much lower. In the case of a chain, context
and inter-member relationship regularity is high, and structure regularity is also normally high
but may be lower than in a cluster or collection, as in the case of a row of different shaped cups
and glasses along a shelf.

3.5.3 The typical-member concept.

The typical-member concept of a group characterises not only the typical substructure of the
members, but also the context of the members. The generalised typical context includes self-
referring neighbour relationships that characterise the inter-member relatedness of the group,
as illustrated for the various kinds of group topology in the previous section.

The typical-member concept usually also contains generalised typical relationships to non-
member objects or concepts. For example, a book typical-member concept may have a
generalised relationship to a particular bookshelf. In addition, a typical-member concept also
includes a generalised relationship to the group-object as a whole. In the case of the book,
this relationship indicates that each book is at roughly the same vertical position within, and
roughly the same height as, the group of books as a whole.

A more complex example of a group is given in Figure 3.31, which shows the typical-member
concept (tm1) for a sequence of chairs. The concept tm1 has a parent relationship to the chairs1
concept, neighbour relationships to the non-member walll and floor] concepts, and neighbour
relationships to itself indicating the ‘next’ and ‘previous’ chair in the chain. The number on
each relationship is its instance-count.

The group constructor only forms typical inter-member relationships for the root part of
the typical member concept, not for its subparts, and these are explicitly distinguished in
the representation, as indicated by the heavy lines in the figure. Therefore, the neighbour
relationships for the generalised seat and rleg in figure 3.31 do not include generalised self-
referring relationships to represent the relationships with subcomponents of the neighbouring
chairs. Originally GRAM was designed to allow this, but it lead to rather confused typical-
member descriptions for which the matcher could not successfully disambiguate between
inter-member and intra-member relationships.

3.5.4 A non-member object may have a multi-relationship to a typical-member
concept.

Objects that are not members of a group, can also have multi-relationships to a typical-member
concept. For example, the wall and floor in Figure 3.31 are both close to or connected to at

3.5. GROUPS

111

se0082

i

rooml

(note: the concept labels are not actually present in the description.

They have been included here for clarity.)

| walll floor1 chairsl tml
[Fleg |3 /2
room|l chairs i]ec?‘; 1
r
walll TS Q tm1
| chairs1 | floor] walll
+5 floorl back
m lleg
tm1 back seat lleg rleg rleg

rooml
‘ walll
[foor | ha o
S chairs [walll_J<—chairs
tml tml

Figure 3.31: A typical-member concept of a chain

least one of the chairs, and so their context descriptions should include neighbour relationships
to tm1, as well as neighbour relationships to the chairs object as a whole.

More specifically, floor] has a neighbour multi-relationship to tmI with a howmany count
of 5, indicating that it is related to five chairs in the manner specified in the generalised
relationship. It also has a relationship with the chairs group as a whole. Walll is described in a
slightly different way, since it is only directly related to the leftmost chair, and therefore has an
ordinary (not multi) relationship to tm1. Notice that although this relationship represents only
the relationship to the leftmost chair, the relatee of this relationship is the generalised chair,
and thus the wall description has also been implicitly generalised.

112 CHAPTER 3. REPRESENTATION

3.5.5 Individual subparts of a grouped object may or may not be included in the
description.

One of the advantages of representing a set of objects as a group is that the descriptions of
the individual objects can be dropped from the description altogether. This not only reduces
memory use, but it also makes it unnecessary for the matcher to find correspondences between
members of two groups, which requires significantly more computational time than for just
comparing two typical-member concepts, especially for very large groups. If the two groups
have different cardinalities, then one-to-one correspondences cannot be found anyway, and a
generalisation of the two groups must necessarily exclude individual members.

The chairs concept in Figure 3.31 above is an example of a concept which has no subpart
relationships to any individual chairs, and is thus a more compact description. The description
is also more generalised than if individual members were retained, since there is a transfer or
sharing of information amongst the now-implicit members.

However, it may be important to retain individual member descriptions if they are sufficiently
distinct from other members that to remove them would be an over-generalisation. This situation
can take two forms:

Firstly, the group might be quite a weak group, with all of the members being quite distinct
from many or most of the other members, such as a pencil case containing a variety of different
pens and pencils. A grouping may be justified, but the removal of the descriptions of each of
the members may not be. GRAM’s group-constructor removes all individual members only if
a group has more than a certain number of members and if all the members are sufficiently
similar. Currently GRAM has fixed cutoff levels for this, but in a complete robot system the
decision would depend on the task being performed: If space and speed are most important,
individual members can be dropped even if the generalised typical member loses quite a lot
of the details of the.individual members. If accuracy and detail are important, individual
members are only removed if the typical-member concept is a very strong (i.e. low-variance)
generalisation. The chair in Figure 3.32 is an example where the individual members are not
removed, since there are only a few of them, and their contexts differ sufficiently that member
removal would lose too much information.

;M

legl leg2 leg3 legd leg

Figure 3.32: Individual members may be retained.

The second situation for which members could be retained is when there are a few atypical

3.5. GROUPS 113

members, where atypicality is measured simply by the similarity of the member and the typical-
member concept. The most common occurrence of an atypical member is the end-most member
of a chain. For example, the end-most chairs of the row of chairs in Figure 3.31 are atypical
because they do not have chairs on both sides of them. They could therefore be retained in the
chairs description as explicit subparts (although for the purposes of the earlier discussion they
were not included).

As another example, the leftmost and rightmost balls in Figure 3.33 are distinct because
they have a side of the box next to them and only have one neighbouring ball. Therefore they
have been retained as subparts of the balls concept, and the structure is given a partial+typical
interpretation.

This achieves the same effect as Michalski’s [Michalski, 1980] group representation which
alloweda ‘LST’ and a ‘MST’ member, meaning the first (LeaST) and the last (MoST) members
of the group respectively. However, GRAM’s method is more general because atypical members
are not restricted to being at the ends. For example, the distributor cap in Figure 3.34 shows a
group that has a single atypical member in the middle, rather than at the ends. Other examples
of groups with atypical members include a desk whose top-drawer has a keyhole, a bad apple
in a box of apples, and the space-bar on a keyboard.

|
balls |
partial Zienm;

‘ firstball lastball ball
|

ball ball A

firstball leftside lastball rightside ball =%, .
base base

Figure 3.33: Atypical end-most members.

distributor—cap

midconnector connector

connectors

connector base

Figure 3.34: Atypical members.

In the above examples, the generalised typical-member was shown with only the typical

VICTORIA UNIVERSITY OF W _LLINGTON

114 CHAPTER 3. REPRESENTATION

relationships. For example, the ball concept in Figure 3.33 has a neighbour relationship with
the base but not with the left or right sides of the box. This is because GRAM’s group-construction
mechanism removes atypical relationships from the generalisation so that the typical-member
concept is not cluttered with low-frequency relationships.

One situation that forces the removal of individual members is when matching and general-
ising two grouped concepts that both contain complete sets of subparts which have different
cardinalities. In such a situation it is not possible to establish unambiguous one-to-one cor-
respondences between the subparts, and so the generalised grouped concept cannot include a
complete set of individual generalised subparts, unless some are marked as optional. A partial
set of members could be included, however. Each of these would be a generalisation of the
distinct, unambiguously matched members of the two contributing groups. This is illustrated
in Figure 3.35, where groupA has 4 subparts, groupB has 6 subparts, and the generalisation of
them is described only in terms of a single multi-relationship to the generalised typical-member
concept, and the two relationships to the generalisation of the pairs of end-members.

| - | |

| typical 2
member 6 I’h\);):’(;gi .
Al £
AZ A3 A4 B B6
typmemA B2 B3B4B4 typmemB

Figure 3.35: Members may be removed during generalisation.

3.5.6 The structure of a typical-member concept may be imported from another
concept.

In many situations the members of a group are instances of some existing concept, as for chairs
in a room, shoes in a cupboard, or books on a bookcase. Therefore it may be unnecessary
to specify the entire substructure of the typical-member concept, but rather to import from
an existing concept, as illustrated in Figure 3.36. The context description must be specified
locally, so that the organisation of the group is explicit. Therefore, a typical-member concept
normally only has its structure imported, not its context, since otherwise the organisation of
the group as a whole, specified by its typical inter-member relationships, would be lost. This
is also why the group-object cannot be described simply by a multi-relationship directly to the
chair concept itself.

3.5. GROUPS 115

previously learned ‘chair’ concept

-’

chairback Ichairleg™~
chairseat rchairleg

imported structure

Figure 3.36: Typical-member structure may be imported.

3.5.7 The structure of a typical-member concept may be disjunctive.

Section 3.4.2 showed how the structure (or context) of a concept may be described disjunctively.
Since a typical-member concept is just like any other concept, it can also be described disjunc-
tively. For example, in Figure 3.37 the grouped concept things refers to the typical-member
concept thing whose structure is described disjunctively by referring to its subconcepts blidget
and plidget.

o

box—of—things

box things

box—of-things

things
grouptype= m box
cluster hin
typical £ g
e disjunctive
thing structure
subconcept (*5) 2N subconcept (*4)
N
U
rFe * ’ \\

\

Figure 3.37: A disjunctive typical-member concept

116 CHAPTER 3. REPRESENTATION

A typical-member may also be defined disjunctively by a disjunctive import-from specifica-
tion, as shown in Figure 3.38 where the structure of the typical-member of the items on the
shelf is imported from either the wineglass concept or the mug concept.

‘
any-context any—context |
‘

7N

items

base fitem | @

structure import—from: |
(wineglass(*2), mug(*3))

Figure 3.38: Disjunctive importing.

Instance-counts associated with disjuncts (i.e. subconcepts) or concepts in an import-from
specification, indicate how many members are of each type. For example, a typical-member
concept representing the pens and pencils in a pencil-case may have a count of 8 for the pen
disjunct, and 2 for the pencil disjunct, indicating that 80 percent of the group members are
expected to be pens.

Unfortunately, when two pencil cases are generalised, the instance-counts of the pen and
pencil disjuncts might no longer capture the expected frequency in an instance. For example,
if the second pencil case had 8 pencils and 2 pens (i.e. the inverse of the first pencil case)
then the generalised typical-member concept would have an instance-count of 10 for the pen
disjunct and 10 for the pencil disjunct, indicating that a pencil case is expected to have 50
percent of each. For an ordinary concept this is not a problem, since we do want the concept
to state that fifty percent of the instances of the concept have been pens, and fifty percent have
been pencils. But groups are a little different. The current GRAM representation has no way
of explicitly representing the proportion of each disjunct for the typical-member of a group,
although extending the representation to include this would not be difficult.

3.5.8 Groups of groups

The typical-member of a group may itself be grouped, as illustrated in Figure 3.39 which
shows a row of stacks of blocks. The typical-member concept, stack, is a generalisation of the
concepts stack I, stack2, stack3, and stack4. Thus the typical-member of stack, called item, is a
generalisation of the typical-member concepts item1, item2, item3, and item4, and is therefore
a generalisation of all 19 rectangular blocks.

3.5. GROUPS

117

stacks

stack1 | stack2

typical
member

item1

stack1

stacks

stacks stacks
[stack? | stackd [~ stack3
typical typical
member member
item2 item4
stack2 stack3

fen2] Sk

Figure 3.39: Groups of groups.

118 CHAPTER 3. REPRESENTATION

Another more complex example of groups containing groups is given in Figure 3.40. This
also shows how the representation allows parts to be grouped in a number of different and
overlapping ways, although the current group-constructor is not (quite) able to build such a
description.

The shelves concept is a grouping in which the typical shelf contains a shelfbase and a
grouped-concept called shelfcontents. The typical member of shelfcontents is a generalisation
of all 18 glasses and mugs. Each shelf-item is described using import-from specification
consisting of a disjunction of the wineglass and mug concepts.

\
! shelfsystem |
‘L Iside shelves allcontents rside shelfbase;

shelfsystem ‘ (e s S ‘
|
[\ '
|
| | , ISI'C:]C |
| ‘ rside
| |

xrypmem
item |
= = _
(s?xel%cntéﬁtsi o “ “N ~ shelves \ e e
‘ | | ‘ 1‘ any context | [
; Iside | wineglass | | " any context |
| =2 o [hearliE LR | |
[eiase e AN |
| Structure= ’ J ‘ ——————— A
‘ | import—from: (wineglass [shelfbase shelfcontents | l,g,g,_ﬁ\
| L o ormug) o oo shelf |
S shelfbases shelf || ' [
: Isid | 4lsgge |
i i rode | |lshelfcontents flsl‘ lFb |
——>{shelfbase [shelfbase
| N | porer |
L 7§helf—1tem |

il
\, e a e e P —

- ’s*hEle“an’teBts’ et

| ?
| | =
[

structure=
import—from: (wineglass
or mug)

Figure 3.40: Groups of groups, and relationships between groups.

The shelfsystem concept also contains another grouped concept, called allcontents, which
represents all of the glasses and mugs as a grouping (independent of the shelves). This
grouping, could also refer to the shelf-item concept, but in fact refers to a separate concept
called item. This is because shelf-item is created by the generaliser when it generalises the
four shelves, while item is created from the grouping of all 18 mugs and glasses earlier in the

3.5. GROUPS 119

instance-construction process.
Another grouping called shelfbases consists only of the bases of the four shelves.

Thus the three grouped concepts, shelves, allcontents, and shelfbases are alternative ways of
grouping the components of the shelf-system.

Typical-member concepts may have neighbour relationships with other typical-
member concepts.

Figure 3.31 on page 111 showed a neighbour relationship from the walll concept to the typical-
member concept tml, and also showed a multi-relationship from the floor] concept to tm1. It
is also possible for a typical-member concept to have a relationship to another typical-member
concept. For example, the typical-member of the shelfbases group (i.e. shelfbase) has a
neighbour multi-relationship with the typical-member of the shelf-items concept (i.e. shelf-
item), with a generalised howmany count of 4..5. This indicates that a typical shelfbase has 4
or 5 shelf-items on it.

3.5.9 Generalised groups.

Most of the examples given so far have been of ungeneralised groups, as found in instance
graphs. We now consider groups that are generalisations of two or more groups from within
instance graphs.

Firstly, the properties characterising a generalised group as a whole have generalised values.
For example, the cardinality (or rather, the number-of-subparts property) specifies a mean,
standard deviation, and range, to indicate the permissible sizes of instances of the group.
Likewise, the measures of regularity are generalised numerical values, and the group-type
property is a generalised nominal value which could specify multiple group types.

Secondly, the generalised group refers to a generalisation of the typical members of the
instance groups. Thus the formation of a generalised group from two instance groups is one
situation where the matcher and generaliser have to deal with two concepts, rather than a
concept and an instance, or two instances, since both typical-members are concepts. The
generalised group is always as ‘weak’ or weaker than the strongest original group because the
self-referring relationships of the two typical-members are combined, and may lose some of the
structure of the original groups. For example, if an array group is generalised to cover a cluster
group, the result will be a cluster, since the four self-referring relationships characterising the
array will be merged into the self-referring relationship(s) characterising the cluster. This is
discussed in chapter 5.

A generalised group should retain the significant constraints and regularities common to the
contributing instance groups. To explore this issue, consider the two grouped concepts Al
and B1 on the left of Figure 3.41 whose typical-members have aspect-ratios > of 1:4 and 1:2
respectively.

3the width-to-length ratio

120 CHAPTER 3. REPRESENTATION

The generalisation of Al and B1 results in a grouped concept AB1 with a typical-member
concept AB1t, as shown on the right of the figure. The aspect-ratio of this generalisation is
variable, in the range 1/4..1/2. It may seem that the generalised description no longer captures
the constraint that all of the blocks must be of the same height. In other words, the matcher
might consider object C (in the Figure below) to be a valid member of the concept.

However, the inter-member relationships for both A1t and B1t specify that consecutive blocks
must be of the same height, and this constraint is not lost through the generalisation process,
and hence object C would be considered a mismatch. This is an example of the principle that
redundancy helps prevent loss of important constraints through generalisation.

—

A

after generalisation:

f
|
1
|
A B | AB |
|
—=AB2
A2 B2 : typmem(*5..6)
typmem typmem
\ | ABI1t
Alt Bit |
ABI
Al Bl
A L_ABI! Q
BI== =— ABII==, AB2
A2 ~——=B2 aspect-ratio=1/4..1/2
aspect—ratio=1/4 aspect—ratio=1/2

|
\
|
\
!
l
| Does AB match C?
l
|
\
J
|

Figure 3.41: Maintaining regularity constraints in generalised groups.

Now consider the set of shelves, D, in Figure 3.42. When the instance-constructor is creating
the typical shelf description, it has to generalise each of the four shelves. In doing so it will
have to generalise the four groups of shelf-items, and this will result in a typical item whose
structure is defined disjunctively in terms of wineglass and mug. Thus it may seem that the
generalised shelf no longer captures the constraint that all of the items on each shelf should be
of the same type. Thus the set of shelves, E, would perhaps be considered a near-perfect match
with D, since the mismatch in terms of irregular shelf contents could not be noticed.

However, as in the previous example, other information in the description prevents this
constraint from being lost, this time in the form of the measures of regularity of the group
itself. In other words, each of the generalisations of the shelf-contents has a high measure of
structure-regularity since all items are identical. When the four shelves are generalised, this

3.5. GROUPS 121

Figure 3.42: Maintaining regularity constraints in generalised groups.

constraint is common to all of them, and is therefore not lost. When matching against the set of
shelves E, which does not have a high structure-regularity for the shelf-contents, the mismatch
can be noticed.

In addition, if GRAM was to include a similarity attribute in the description of a neighbour
relationship, then this information would also be present in the generalised typical inter-
member relationships, and would reduce the information loss due to the generalisation. This
again illustrates the importance of including redundant information that specifies the same
characteristics of an object in different ways, each of which makes some aspects more explicit
than in the other ways.

122 CHAPTER 3. REPRESENTATION
3.6 Reference summary of the representation scheme.

This section gives a reference summary of the components of the representation scheme
described in this chapter.

Object: (instance or concept)

Super-concepts.

Sub-concepts.

Instance-count. (1 if ungeneralised)

Instance-count. (! if ungeneralised)

Context:

Properties. (connectivity-profile, etc). (See page 82)

Parent-relationships.

Neighbour-relationships.

Interpretation. (Complete, Partial, Disjunctive, Any, Imported,
Partial+disjunctive, Partial+imported)

Import-from specification. (a disjunctive list of concepts)

Variance.

Structure:

Subpart-relationships.

Interpretation. (Complete, Partial, Disjunctive, Any,
Partial+disjunctive, Partial+typical, Partial+imported)

Properties. (shape, aspect-ratio, etc.) (See page 81)

Typical-member concept. (if grouped)

Group properties. (type, regularity measures)

Import-from specification. (a disjunctive list of concepts)

Variance.

Relationship: (parent, neighbour, or subpart)
Instance-count. (! if ungeneralised)
Attributes. (relative orientation, direction, etc). (See pages 83 and 85)
Relatee. (an object)
Howmany-count. (1 if not a multi-relationship.)
Variance.

Chapter 4

The Matcher

The matcher is the central component of the GRAM system. This is because the generaliser,
classifier, fault-finder, and group-finder all rely on its results to determine their behaviour. This
chapter considers the issues of matching complex structured objects and describes GRAM’s
matching algorithm.

Section 4.1 identifies the requirements of the matcher, based on the characteristics of the
domain and task discussed in chapter 1. Section 4.2 then gives an overview of the issues of the
matching problem, and outlines the main contributions of the GRAM matcher.

Section 4.3 explores what it means for two structured objects to be ‘similar’, and defines the
scoring scheme used in GRAM.
Section 4.4 considers the issues of how to search for the best correspondences between

the parents, neighbours, and subparts of two objects being compared, and describes GRAM’s
“incremental-spread’”” matching algorithm.

123

124 CHAPTER 4. THE MATCHER
4.1 Requirements.

4.1.1 Input and output requirements.

The input to the matcher is two generalised or ungeneralised object descriptions', and the output
is a description of their similarity. This description must specify (a) the overall similarity score,
(b) structure and context similarity scores, and (c) the similarity scores for the best (and “almost
best”) correspondences between their parent, neighbour, and subpart relationships and relatees.

The distinction between structure and context similarity is necessary because generalisation
may be justifiable on the basis of a high score of just one or the other. The distinction is
also necessary to enable the generaliser to determine when to create a disjunctive structure or
context description. The fault-finder also needs both scores to be able to make reports such as
“that X is in an unusual location”.

Similarity scores for relationship and relatee correspondences are required by the generaliser
to determine whether individual relationships should be generalised, or whether a relationship
should be considered unmatched. Likewise, the fault-finder can use these scores to identify
the specific differences between a concept and an instance, since each low score indicates a
particular fault or unusual feature. If there is ambiguity in selecting the best correspondences
between parents, neighbours, and subparts of the objects, the “almost best” correspondences
should also be included in the output so that the generaliser can create multi-relationships or
groups if necessary.

An additional kind of similarity score that has not yet been implemented is contents-similarity
which measures the similarity of the subparts of two objects, independent of their arrangement.
This could be used by the generaliser to justify generalisation. For example, two bedrooms
may have a high contents-similarity score, and this could justify creating of a new concept
defined by a set of subpart concepts with a highly variable arrangement.

4.1.2 An ‘any-time’ matcher with effort-control and scope-restriction parame-
ters is required.

Since the GRAM matcher is to be eventually used in a real-time robot system interacting
in a complex physical environment, it must provide means for controlling how much effort
is applied to a match, so that rapid and approximate comparisons can be performed when
efficient classification is crucial (such as when walking through a building), and slower detailed
comparisons can be performed when accuracy is crucial (such as when performing quality
control on a product). Thus the matcher must have some kind of effort-control parameters.

Also, the matching process should not have to be continued until ‘completion’ before a
similarity score is available. Rather, the matcher should employ a robust ‘any-time’ algorithm
that can be unexpectedly interrupted and still provide a usable estimate of similarity.

Sometimes it is necessary to focus the attention of the matcher towards a particular portion of
an observed scene or object. For example, when comparing an observed item with a concept in

!"Throughout this chapter, the term ‘object’ is used to refer to either a concept or an instance.

4.1. REQUIREMENTS. 125

memory, the task might only require the structure of the item to be considered, not its context.
Thus the matcher should provide a means for specifying what portion of the instance graph is
to be matched. This can be called scope-restriction.

4.1.3 The matcher should not assume canonical descriptions.

The GRAM matcher should not assume canonical object descriptions. In particular, it should
not assume a canonical subpart decomposition hierarchy, and it should not assume that the
same relationships are made explicit in both descriptions. The instance-constructor justifies
creating a relationship or a composite object on the basis of a feature-utility score defined in
terms of various criteria. If, for a potential feature of an object-graph, this score is just below
the required threshold, but the score for a corresponding feature in the other object-graph is
just above the threshold, then the two resulting descriptions will differ, even if the objects are
very similar.

The matcher should also not assume that a description is complete, since an object may be
partially obscured or only partially observed. Therefore it should be able to cope with partial
information, perhaps requesting the instance-constructor for more information when required,
if it is available.

4.1.4 The objects being matched may be generalised or ungeneralised.

The matcher is primarily used to compare an observed instance with an existing concept in
memory, where the concept may either be generalised or (if only one instance of it has been
observed) ungeneralised. However, the matcher must also be able to compare two instances
or two generalised concepts. Instance—instance comparison is required when matching two
objects within the same scene, such as when forming groups. Concept—concept comparison
is necessary when comparing the generalised relatees of two multi-relationships, or when the
larger concept-learning system needs to compare two concepts in memory to reorganise the
AKO hierarchy.

Many of the examples in this chapter deal with comparing an instance (or ungeneralised
concept) with another instance, since it is difficult to depict generalised object descriptions,
and it is only necessary to address the concept—instance situation for particular issues, such as
disjunction matching.

4.1.5 Two types of scoring are required: fir-scoring and proximity-scoring.

The matcher should be able to produce two types of similarity scores: fit-scores and proximity-
scores. A proximity-score should measure how close an instance is to a concept, based on
an absolute measure of what ‘close’ means. A fit-score, on the other hand, should measure
how close an instance is to a concept, based on the variance of the concept. For example, the
proximity-score for an observed swivel-chair with respect to the concept standard-chair should

126 CHAPTER 4. THE MATCHER

be high, but its fit-score should be low (assuming that all instances of standard-chairs have had
four legs), since it is very atypical.

This distinction is necessary for the generaliser to determine how to incorporate a new
instance into concept memory. If an instance has a high fit-score with respect to an existing
concept, then that concept can be modified to cover the instance. Otherwise, if the fit-score
is low but the proximity-score is sufficiently high, then a new concept can be created that is a
generalisation of the original concept and the instance, without affecting the original concept.

Fit-scores are also necessary for fault-finding, since they indicate when a feature is atypical.
Proximity-scores are required by the matcher for finding correspondences between objects.

4.2. ISSUES AND CONTRIBUTIONS. 127
4.2 Issues and Contributions.

This section discusses various issues in the design of a matcher that satisfies the requirements
given in section 4.1, and outlines the main contributions of the GRAM matcher.

4.2.1 The two primary issues are similarity and search.

The design of the matcher can be characterised by two issues: firstly, the meaning of ‘similarity’
must be defined, and secondly, an algorithm for evaluating similarity must be developed. The
first issue is declarative, since it involves defining a formula for measuring the similarity of
two objects, on the assumption that the best correspondences between parents, neighbours, and
subparts are known. The second issue is procedural, since it deals with how to search for the
best correspondences between parents, neighbours, and subparts, and how to actually compute
similarity scores.

These two issues (addressed in section 4.3 and section 4.4 of this chapter) are inter-dependent,
since the problem of finding the best correspondences is based on measures of similarity, and
measures of similarity are based on a chosen set of correspondences.

4.2.2 Object similarity evaluation is complex and recursive.

Since an object is defined in terms of other objects, within a potentially vast object graph,
similarity evaluation is recursive and complex. In order to determine the best correspondences
of parents, neighbours, and subparts of two objects, many other pairs of objects may have to
be compared. The process of matching two objects could involve an expensive and complex
search through the object graphs, spreading up, out and down through parent, neighbour, and
subpart relationships. Therefore, to ensure efficiency, the matcher’s search strategy must avoid
unnecessary comparisons whenever possible.

The GRAM matcher does this by employing a breadth-first beam search using iterative deepen-
ing: The matcher initially compares two objects using minimal information (just their properties
and relationships, ignoring their relatees), and then applies more effort to the comparison by
comparing the properties and relationships of corresponding relatees, and then comparing the
relatees of those relatees, and so on, incrementally extending the ‘horizon’ of the match, aban-
doning poor correspondences whenever possible. Thus, the object-graphs guide and constrain
the search using an “incremental spread” approach. [Connell and Brady, 1985] employed a
similar scheme, although it only operated top-down from coarse details to fine details, while
GRAM operates in any direction through the object graphs, and uses a more elaborate similarity
scoring scheme.

Since object graphs usually contain circularities, the matcher must avoid re-evaluating com-
parisons that have already been performed, or are currently being performed. GRAM does this
by keeping track of the level of spread effort that has already been applied to a comparison,
and only re-invokes the matcher if a greater level of spread effort is required.

128 CHAPTER 4. THE MATCHER

An additional complication is that since the similarity of two objects is defined in terms
of the similarity of other relatee objects, which are defined in terms of the first two objects,
a similarity score is recursively defined in terms of itself. Since there is no base-case for
this recursive definition, GRAM must rely on computing estimates. Its “incremental-spread”
algorithm enables recursively-defined similarity scores to converge on a reasonable estimate.

The incremental-spread approach also satisfies the requirement that the matcher be an any-
time algorithm, since it can be interrupted at any point and still provide a reasonable estimate
of similarity. In fact, [Bergevin and Levine, 1993] have demonstrated that many objects are
recognisable on the basis of coarse features alone, and thus even if the GRAM matcher spreads
by just one step via parent, neighbour, and subpart relationships, this will often be sufficient for
obtaining a good estimate of similarity. Further spreading will just refine the score, since the
distance through the relationship network is inversely proportional to the importance of those
features to the measure of similarity.

4.2.3 Requiring a globally consistent set of correspondence is expensive and
unnecessary.

In a usual graph match, a comparison is performed by finding a globally consistent set of
one-to-one correspondence bindings, meaning that the evaluation of each correspondence is
dependent on a particular selection of other correspondences. This is an expensive process: If
the two graphs each contain n objects, then n! sets of correspondences need to be evaluated. If
the requirement for finding the best set of consistent correspondences is relaxed, then a “greedy
algorithm” could be used, which would reduce the expense considerably. A compromise
solution would be to employ some kind of backtracking to give better but still non-optimal
performance, as in the system developed by [Connell and Brady, 1985].

However, this thesis claims that good matching performance can be achieved by relaxing
altogether the requirement for a globally consistent set of one-to-one correspondences. The
matching algorithm can therefore be simpler because consistency-checking and backtracking
need not be performed. More importantly, it is potentially more efficient because parallel
computation can be exploited more fully, since a comparison between two objects can be
performed independently from other comparisons (except for making use of their similarity
scores). The justification for this approach is that the richness of the property and relationship
descriptions and the nature of physical objects tends to enforce consistency.

4.2.4 The “Level Hopping” problem.

Since the matcher cannot assume canonical descriptions, and in particular cannot assume
a canonical part decomposition hierarchy, it must cope with the “level-hopping” problem
[Wasserman, 1985]. For example, objects AO and B0 in Figure 4.1 should be considered
similar, even though object BO includes an additional level in the decomposition hierarchy
because parts B3 and B4 are combined into a single composite object. If the matcher takes
a top-down approach, traversing down from the root objects, A0 and B0, and only considers

4.2. ISSUES AND CONTRIBUTIONS. 129

correspondences between subparts of objects that match at each level, then it cannot find the
correspondences between A2 and B3, or between A3 and B4. Therefore, although it is desirable
for the matcher to be guided by the decomposition hierarchy, it should not be overly constrained
by it, since it should be able to find correspondences between components at different levels.

Wasserman’s MERGE coped with the level-hopping problem by inserting ‘null nodes’ into
the part hierarchy to account for all possible alternative decomposition hierarchies, and then
matching each alternative. However, this strategy only deals with hops of one level, and it is not
clear whether the mechanism could be easily extended to efficiently cope with hops of multiple
levels. In GRAM, correspondences between components at different levels can be automatically
found via the traversal of neighbour relationships. For example, in Figure 4.1, when comparing
objects A1 and BI, their neighbour relationships lead to the discovery of the correspondence
between A2 and B3, and between A3 and B4, even though these correspondences cross levels
in the hierarchy.

Figure 4.1: The “level-hopping” problem.

4.2.5 A description may need to be augmented.

Since the matcher cannot assume that descriptions are canonical and complete, it may need to
invoke the instance constructor to augment a description with more information so that it can
obtain a more accurate measure of similarity. This requires making a new relationship explicit,
or creating a new composite object.

In the example in Figure 4.1, a relationship between BOand B3 could be created, thus enabling
A0 to be compared more accurately with BO, and likewise for B2 and B3. This relationship
would be created on the basis of finding the A2:B3 correspondence via neighbour relationships
from the A1:B1 correspondence. Alternatively, or additionally, a new composite object could
be created, consisting of objects A2 and A3, so that this new object could be matched with B2.

130 CHAPTER 4. THE MATCHER

New neighbour relationships could also be created to resolve the “sideways level hopping”
problem: if A2 did not have an explicit neighbour relationship with A3, then one would need
to be created in order to compare it with the B3—B4 relationship.

4.2.6 Estimates of similarity should be obtainable from superconcept or subcon-
cept similarity scores.

An object is usually an instance of several concepts, ranging in degree of specificity (eg.
phillips-screw-driver and hand-tool), and the classification system may require more than just
one classification. Therefore, when comparing an observed object with a concept in memory,
the matcher should be able to produce an estimated similarity score on the basis of previous
comparisons between the object and the superconcepts or subconcepts of the concept, if they
are available, since the estimate may be sufficient for the task without having to perform a
complete comparison.

Sections 4.3.10 and 4.4.8 discuss how this can be done by treating a superconcept similarity
score as an upperbound, and a subconcept score as a lowerbound, adjusted according to the
typicality of the concept within the superconcept, or of the subconcept within the concept.

4.2.7 Instance-counts and feature variances affect similarity.

The matcher needs to take into account the instance-counts and variances of features when
evaluating similarity. This is because an instance-count indicates the degree of optionality of
feature, and variance indicates the range of acceptable values. Therefore, these measures are
incorporated into GRAM’s similarity evaluation scheme.

4.2.8 Object similarity depends on axis correspondences, and may require at-
tribute coercion.

The matching task is made more expensive by the fact that the measure of similarity of two
objects depends on how their axes are put into correspondence. For example, suppose we are
matching objects A2 and B2 in Figure 4.2, whose primary axes are shown by the arrows. If
the two primary axes are assumed to be in correspondence, then the overall similarity score is
not high, since their contexts are significantly different. If, on the other hand, the primary axis
of A2 is put in correspondence with the negative-secondary axis of B2, then the structures and
contexts are both reasonably similar.

Whenever two objects are compared in such a way that their primary axes are not in corre-
spondence, as in the example above, then it is necessary to coerce the attribute values of one
of the descriptions so that similarity can be evaluated correctly. For example, the direction
attribute of the relationship from B2 to B1 is 90 degrees relative to B2’s primary axis. To
compare the direction attributes of the A2-A1[relationship and the B2-B]1 relationship, where
A2’s primary axis corresponds to B2’s negative-secondary axis, the B2-B]1 direction must be

4.2. ISSUES AND CONTRIBUTIONS. 131

coerced to be relative to B2’s negative-secondary axis, giving a direction of 180 degrees, which
can now be meaningfully compared with the A2-A1 direction.

GRAM assumes that two two-dimensional objects can be corresponded in four ways, one for
each 90 degree rotation. Currently correspondence by reflection is not accounted for. In a
three-dimensional domain there are a minimum of 24 possible axis correspondences. This is
one reason why the matcher should be amenable to a parallel architecture, since it should be
able to evaluate many alternatives simultaneously. On the other hand, the evaluation of the
alternatives is usually computationally inexpensive, since a comparison using a low spread
effort is sufficient to reject most of the alternatives.

Figure 4.2: Axis Correspondences.

132 CHAPTER 4. THE MATCHER
4.3 Similarity.

This section considers GRAM’s definition of ‘similarity’. It begins by explaining the basic
definition of similarity of two objects, and then explores various aspects of the definition in
more detail. This section is not concerned with how the evaluation is actually performed.

4.3.1 The basic definition of similarity.

An object is defined by its structure and context, which are in turn defined by its properties,
relationships, and relatees. Therefore, the similarity of two objects is defined in terms of the
similarities of these features.

The definition of similarity is given more precisely by the formula in Figure 4.3. The overall-
similarity score is defined to be a weighted average of the structure similarity and context
similarity, where the weights are based on the variances of the structure and context, such that
high variance means a low contribution to the overall score.

The context-similarity score is defined as a weighted average of the similarity of the context
properties and the similarities of the parent and neighbour relationships and relatee objects. The
weights are based on various factors such as variance, relationship ‘importance’, and instance-
counts, as will be discussed in section 4.3.6. The choice of which relationship similarities
contribute to the score (since all possible combinations of pairings could potentially contribute)
is explained in section 4.3.3.

Structure-similarity is defined in much the same way as context-similarity: itis a weighted av-
erage of the similarity of the structure properties and the similarities of the subpart relationships
and relatees.

The definition of similarity must also account for groups, disjunctions, multi-relationships,
import-from relationships, and the various interpretations of structure and context descriptions.
These issues are discussed in later sections.

Ao ;
! - similarity of context—properties
context—similarity = “;’fe‘r%’gg‘f of similarities of parent relationships
and relatees
similarities of neighbour relationships

overall-similarity = weighied . N\ and relatees
v

similarity of structure—properties

similarities of subpart relationships

R \ and relatees

structure-similarity = Jeichied

Figure 4.3: The basic definition of similarity.

4.3. SIMILARITY. 133

4.3.2 Attribute similarity

Since the properties and relationships of an object are represented as attribute-vectors, their
similarity is defined by a weighted average of the similarities of the individual attribute values,
where the weights are based on various factors discussed in section 4.3.6. The definition of
attribute value similarity is different for each type of attribute, whether numerical, nominal,
directional, boolean, etc. This section explains the definitions of similarity for each of these
attribute types.

There are many possible scoring schemes that could be used for comparing attributes, and
the detailed formulas are not particularly important. Therefore, the purpose of this section is to
convey the kinds of scoring that can be done, and the basic requirements of the scoring scheme.

Attribute similarity scores must be normalised so that a measure of similarity of two attribute
values of one kind has the same meaning as a measure of similarity of two attribute values
of another kind. If, for example, the similarity score for two nominal-valued shape attribute
values is 0.8, and the similarity score for two numerical-valued aspect-ratio attribute values is
also 0.8, then these two scores should have the same meaning, and should therefore be able to
be combined sensibly when computing the overall ‘structure-similarity” score. In GRAM, this
is achieved by normalising all scores into the range 0 and 1, with the following interpretations:

¢ 0 means “very different”
e (.5 means “bordering between similar and dissimilar”

e 1.0 means “identical”

There are four factors that need to be considered when comparing two values: Firstly,
the absolute difference between the values; secondly, a measure of what a “very different”
difference is, so that the result can be normalised to the interpretation given above; thirdly, the
variance of the values if they are generalised, as this can be used as a normalisation factor;
and fourthly, whether fit-scoring or proximity-scoring is required, since this determines how
tolerant of differences the matcher is to be.

Given these factors, we can now consider how particular kinds of attribute values are com-
pared.

Figure 4.4 illustrates the definition of similarity of numerical values. Diagram (a) shows
the situation for two ungeneralised values, where the horizontal axis of the graph represents
the magnitude of the difference between the two values, and the vertical axis is the similarity
score. The score slopes down quite gradually for some distance, where this distance is a
“default tolerance” for that attribute, such that any value difference in this range is given a
high similarity score. Beyond this point the score drops down more sharply, where the slope is
based on a globally pre-defined measure of a “very different” difference for that attribute, so
that a zero score indicates that the difference between two values (minus the tolerance) is least
that amount.

134 CHAPTER 4. THE MATCHER

Diagram (b) defines the similarity of a generalised (concept) value and an ungeneralised
(instance) value, using proximity-scoring. This is the same (a) except that the tolerance factor
is based on the variance of the generalised value, which may be smaller or larger than the
default tolerance.

Diagram (c) is the same as (b) in that the tolerance is based on the variance. However,
fit-scoring is required, and this means that the slope of the sharp drop is also based on the
variance, rather than being the default “very different” difference, and thus it may potentially
be a very steep drop if the variance of the generalised value is very small, thus giving very bad
scores for all instance values that are even a small difference from the mean. (The more general
distinction between fit-scoring and proximity-scoring will be discussed in section 4.3.8.)

If the generalised value has been obtained from only a few instances, then the tolerance factor
in (b) and (c), and the “very different” difference in (c), are based partly on the variance and
partly on the default values. The fewer the instances, the less the variance contributes. In the
case of a ‘generalised’ concept value formed from just one instance, the variance is not defined
and situations (b) and (c) reduce to the situation in (a).

Directional (i.e. angular) values are compared in the same way as ordinary numerical values,
except that modulo arithmetic is used to compute differences.

The similarity of nominal values is defined in various ways, depending on whether the values
are single symbols, sets of symbols (symbolsets), or generalised symbols (gsymbols) for which
each symbol has an instance-count. The top of Figure 4.5 gives the definitions of each of
these more precisely, as from section 3.3 in chapter 3. The term ‘frequency’ is used in this
discussion to mean the ratio of the instance-count of a particular symbol in a gsymbol, to the
total instance-count of the gsymbol. The frequency of a symbol in a gsymbol indicates the
probability of that symbol occurring in a future instance.

The similarity of two ungeneralised symbol values is defined in Figure 4.5 (a). It is simply 1
(‘identical’) if the two symbols are the same, and O (‘very different’) otherwise.

Figure 4.5 (b) gives the definition of similarity of two symbolsets. It is defined by the
cardinality of the intersection of the sets divided by the cardinality of their union, thus measuring
the proportion of symbols that are common to both symbolsets. This is the same as the formula
used by [Winston, 1975] to measure membership in a group. Currently GRAM uses the same
formula for fit-scoring and proximity-scoring, although a future implementation should be less
tolerant of differences in the case of fit-scoring.

The definition of similarity of a gsymbol and a symbol is in shown in Figure 4.5 (c). It is
defined to be 0 if the symbol is not present in the gsymbol. Otherwise the score is 0.5 (meaning
‘poor-but-acceptable’) plus half the ratio of the frequency of the symbol in the gsymbol to
the largest frequency of any symbol in the gsymbol. Thus if the gsymbol consists of a large
number of low-frequency symbols (such as car colours), and if the instance symbol is one of
these, then the similarity score is high. If, on the other hand, the gsymbol includes a symbol
that was observed in most instances (such as the ‘rectangular’ shape attribute value of the
concept table), and several other low-frequency symbols (such as for a few round or triangular
tables), and if the instance symbol is one of the low-frequency symbols, then the score will be

4.3. SIMILARITY. 135

\ 1
(a) Similarity of numerical values:
ungeneralised + ungeneralised : default tolerance
(both values are in range 0..1) = [
2 I
| default "very different" difference
0 l J
<< 1
difference between
the two values
. . . .]
(b) Similarity of numerical values: tolerence) '
generalised + ungeneralised (based on variance of generalised value)
‘ Using "proximity—scoring" 2
g
default "very different” difference
0 i1
S > : 5 . [
difference between ungeneralised value |
and mean of generalised value
(c) Similarity of numerical values: 1
generalised + ungeneralised tolerence
(based on variance of generalised value) |
Using "fit-scoring" o
8
Q
w1

"very different" difference,
(based on variance)

difference betwe]en ungeneralised value
and mean of generalised value

Figure 4.4: Similarity of numerical attribute values.

not much higher than 0.5. In other words, the maximum symbol-frequency for a gsymbol is
used as a tolerance factor. As for symbolset similarity, the current version of GRAM does not
distinguish between fit-scoring and proximity-scoring. The above formula was not based on
other research, and needs to be more thoroughly evaluated.

The similarity of a gsymbol and a symbolset is defined by averaging the similarities of the
gsymbol and each of the individual symbols in the symbolset, using the definition in (c). The
formula for this is shown in (d).

The definition of similarity of two gsymbols is more complex, and is not shown in the figure.
It is similar to the definition of similarity of two symbolsets except that the differences between
the frequencies of each symbol is taken into account.

Boolean values are a special case of nominal values where only two symbols are allowed,

136 CHAPTER 4. THE MATCHER

"'symbol" : asingle nominal value. eg. rouching
"symbolset' : asetof nominal values. eg. (rectangle, square)
"gsymbol" : a generalied symbol or symbolset, defined by

— a set of symbols
—a ‘symbol-count’ for each symbol.
(ie. the frequency of observation)
— an instance—count
(ie. the total number of observed instances)

eg. count=0 (touching:5, separate:l)
eg. count=7 (rectangle:6, square:4, circle:1)

(@) . ; WS R
proximity—score (symboll, symbol2) = [O(HYCW ‘?‘ﬁ‘?’re':‘t) if different
=fit=score 1 ("identical") if same
(b) Iinterseclion(symbolset1, symbolset2) I
proximity—score (symbolsetl, symbolset2) =)
= fit—score |umon(symbolsetl, symbo]setZ)l
' (e)

proxitmity-seate. { giymiboll; Symbol2) = 0 ("bad") if symbol2 is not present in Gsymbol 1

S _ frequency of symbol2
bol <~ in gsymboll..
otherwise: 0.5 + —Symbol-count
2 * max(symbolcount)
\\\ maximum frequency of
a symbol in gsymboll.

(d)
proximity—score (gsymboll, symbolset2) = ZSimilarity(gsymboll, symbo])

= fit-score IsymbolsetZI

Figure 4.5: Similarity of nominal attribute values.

namely “true” and “false”. The definition of an ungeneralised boolean value, and the definition
of a generalised gboolean, are given at the top of Figure 4.6.

If both values are single ungeneralised boolean values, then similarity is 1 if they are the
same, and O otherwise, as shown in Figure 4.6 (a). If one value is a gboolean, then the score is
the frequency of the single boolean value within the gboolean, as shown in (b). If both values
are gbooleans, then the score is based on the difference in the true-count frequencies, as shown
in (¢).

The similarity of two profile values (i.e. vectors of values of the same type) is the average
of the similarities of the individual values. This assumes that the two profiles are of the same
type: they must have the same length, and each position of one profile vector has the same
meaning as the corresponding position of the other profile vector.

4.3. SIMILARITY. 137

"boolean'' : either true or false

"ghoolean" : a generalied boolean, defined by
— true—count. (the count of true instances.
— instance—count

(ie. the total number of observed instances)

eg. ((true—count=35)
(instance—count = 7))

(a) proximity—score (booleanl, boolean2) = 0 ("bad") if different
= fit—score 1 ("perfect") if same

(b) proximity—score (gbooleanl, boolean2) = [’if boolean? is true: truecount/ instancecount l
= fit—score if boolean?2 is false: 1 — (truecount/ instancecount)

(c) proximity—score (gbooleanl, gboolean2) =
= fit—score
1 — |(truecountl / instancecount]) — (truecount2 / instancecount2)

Figure 4.6: Similarity of boolean attribute values.

4.3.3 Relationship and relatee similarities.

The definition of similarity given in section 4.3.1 referred to measures of similarity for pairs of
relationships and relatees, but did not state which pairs contribute. This section explains this
in detail. Throughout this section, and the rest of the chapter, the term relationship/relatee will
be used to refer to a relationship and its associated relatee object.

First we must consider the similarity score for two relationship/relatees. This is defined to be
a weighted average of the similarity of the two relationships (defined in terms of their attribute
similarities) and the similarity of the two relatees (defined by the overall-similarity formula
given earlier in Figure 4.3). The weights are predefined parameters.

The similarity of two structures or two contexts is defined in terms of property similarity
scores and the scores of the set of winning correspondences between their parent, neighbour,
and subpart relationship/relatees. A winning correspondence is a pairing of two relation-
ship/relatees for which the similarity score is higher than the score of any other correspondence
involving one or both of the relationship/relatees.

The best way to understand this is by referring to the example in Figure 4.7, which shows two
objects A0 and B0O. Suppose we are concerned with the similarity of objects Al and BI (the
large central blocks). Below the pictures are lists of the relationship/relatees for Al and B1, and
between these are dotted lines that indicate the winning correspondences, each labelled with a
similarity score. Lines that have arrows at both ends indicate that the correspondence is higher
scoring than any other correspondence involving either of the relationship/relatees. Lines that
have arrows at just one end indicate that the correspondence is higher scoring than any other
correspondence involving the relationship/relatee at the source of the line. For example, AI-

138 CHAPTER 4. THE MATCHER

A5 is most similar to B1—-B4, but not vice versa since B1-B4 is much more similar to A1-A6.
Each of the scores shown in the diagram contribute to the context-similarity score for Al and
B1. (In this particular case there are no subparts, and so the structure-similarity score is defined
only in terms of properties similarity.) The scores for all the possible correspondences that do
not contribute are not shown.

Thus, the set of winning correspondences includes the best correspondence for each relation-
ship/relatee for each of the two objects, even if these conflict with each other. This scheme has
various beneficial consequences that are discussed in section 4.3.4. Before this, however, we
will consider how multi-relationships are incorporated into the above scheme.

T TR R it
I
[
|
I
I
L £
Al B1
parent relationship/relatees: parent relationship/relatees:
A1-A0 ~———— ! 0.7 _ _ _ s BI-BO
neighbour relationship/relatees: neighbour relationship/relatees:
Al-A2 € ————08 > B1-B2
075 ————"" -
Al-A3 ———— 0.95 _——3> B1-B3
Al-A4 < —— "0;’,__,_-;—7- B1-B4
AL-AS =~ 77 _op
Al-A6 <~
Figure 4.7: Winning relationship/relatee correspondences.
Multi-Relationships.

A multi-relationship is treated in exactly the same way as an ordinary relationship, except that
its winning correspondence may contribute more to the overall similarity score. The weighting
scheme is discussed in section 4.3.6.

Figure 4.8 shows the simplest situation, where two objects Al and B both have a multi-
relationship to a generalisation of several neighbouring circles. (It is assumed that individual
relationships to the circles have been dropped from the description, either during instance con-
struction or during generalisation.) The correspondences are straightforward and unambiguous,
as shown at the bottom of the figure. The difference between the howmany counts contributes
minimally to the similarity score of the two multi-relationships, since it is desirable to be quite

4.3. SIMILARITY. 139

tolerant of such differences. Distinct individual relationship/relatees should contribute more to
the similarity score than similar relationships that can be clustered into a multi-relationship.

In Figure 4.9, object Al only has ordinary neighbour relationships with its neighbouring
circles, rather than a multi-relationship. The winning correspondence for each of these is with
B1’s multi-relationship. However, the winning correspondence for B1’s multi-relationship is
with the AI-A2 relationship because only A2 has a circle on both sides of it, as have B3 and
B4. The fact that A and B have a different number of circles is not explicitly accounted for
by the similarity scheme, except by properties such as number-of-subpart. Dissimilarities are
reflected by the fact that the AI-A2 and A1-A4 relationship/relatees do not match the Bl
multi-relationship perfectly, since the generalised multi-relationship relatee expects 75% of
instances to have a circle on the left, and 75% of instances to have a circle on the right, and A2
and A4 only satisfy one of these conditions.

Figure 4.10 shows a situation in which the difference in the number of circles is much
more significant. Again, the scoring scheme does not explicitly take this into account, but
the difference is adequately captured in the similarity score because A2 does not match the
generalised relatee of BI’s multi-relationship particularly well, since it does not have circles
on either side.

Figure 4.11 shows a comparison for which object BI includes not only a multi-relationship
to the generalised circle, but also has two ordinary relationships to the circles, B2 and B6,
which are atypical (since neither of them have circles on both sides, and B6 has a rectangular
block immediately to its right). Similarity is evaluated in the same way as above, with each
relationship contributing its winning correspondence. In this case, the AI-A2 relationship
matches B1-B2, the AI-A3 relationship matches BI’s multi-relationship, and the AI-A4
relationship matches B1-B6. The correspondence involving the multi-relationship contributes
the most, which ensures that a mismatch for this relationship will have a greater negative effect
on the overall score than a mismatch on the ordinary (atypical) relationships.

Two objects may be related to the same relatee.

A minor aspect of comparing relationship/relatees is that sometimes two objects being matched
might both have a relationship to the same relatee object. This occurs most frequently when
comparing instances within the same scene, as when the group-finder is looking for groups of
similar objects. For example, the similarity of A2 and A3 in Figure 4.12 both have a neighbour
relation to the same object, Al, and both have a parent relationship to the same object, A0.
The two relationships differ, but the relatee similarity must obviously have a perfect similarity
score, and does not require any evaluation.

This situation may also occur when comparing two concepts in concept-memory, both of
which have a relationship to the same relatee concept. For example, two existing generalised
concepts, swivel-chair and four-legged-office-chair, may both have a parent relationship to

CHAPTER 4. THE MATCHER

A0
%3
[A2+3+4]

A5

Al
parents relationship/relatees:

neighbour relationship/relatees:
Al1-[A2+A3+A4] (*3) =

BO

[B2+B3+B4+B5]
T—a B6

parents relationship/relatees:

B1

neighbour relationship/relatees:
> B1-[B2+B3+B4+B5] (*4)

A0 BO
A2
A2 *4 [B2+B3+B4+B5]
=l A3 T B6
AS
Al B1
parent relationship/relatees: parent relationship/relatees:
Al-A) «—————— — — —— > B1-B0
neighbour relationship/relatees: neighbour relationship/relatees:
Al-A2 —— —— ——— — = = =23 B1-[B2+B3+B4+B5] (*4)
Al-A3 <—— =TT "7 51 Be
- 0892 = -
Al-A4 — ’/ i 485
Al-AS =~

Figure 4.9: Multi-relationship similarity.

the same concept office and a neighbour relationship to the same concept desk. Therefore,
although the relationships with the office and desk concepts may differ, the scores of the relatee
similarities must be perfect, without requiring evaluation.

4.3. SIMILARITY.

AO BO
A2
A2 *4 [B2+B3+B4+B5]
A3 B~ B6
AS
Al B1
parent relationship/relatees: parent relationship/relatees:
Al-A) s ——— — — — — — — > B1-B0
neighbour relationship/relatees: neighbour relationship/relatees:
Al-A2 € ————— Q07— ——— > B1-[B2+B3+B4+B5] (*4)
Al=AS g == e s e =~ B1-B6

Figure 4.10: Multi-relationship similarity.

_A2
A2
A3
A5

Al
parent relationship/relatees:

—— — — — — — — — — — — — — .

Figure 4.11: Multi-relationship similarity.

142 CHAPTER 4. THE MATCHER

same relatee
——— — —
Al = =

Figure 4.12: Two objects with the same relatees.

4.3.4 Local consistency between correspondences is not enforced.

A distinctive characteristic of the similarity definition is that it does not enforce local consistency
between the winning relationship/relatee correspondences that contribute to the object similarity
score. This contrasts with a scheme that requires a consistent set of one-to-one bindings.
This section discusses some of the beneficial consequences of this approach. (The similarity
definition also does not require global consistency, and this will be discussed later.)

Local ambiguities are accounted for by ‘implicit grouping’.

A consequence of allowing locally conflicting correspondences, and a reason why it is ap-
propriate, is that it implicitly accounts for ambiguities (local to the comparison) that could be
resolved by the creation of explicit multi-relationships or groups. To illustrate this, consider
the example in Figure 4.7 given earlier. Object Al has an additional circular neighbour, A3,
that B1 does not have. However, this does not lower the similarity score significantly, since the
A1-A3 relationship still matches the BI-B2 relationship quite well, and its similarity score
contributes to the overall similarity score, rather than contributing a zero score because it con-
flicts with the higher-scoring (A1-A2):(B1-B2) correspondence. Thus, the scoring scheme
implicitly assumes that A2 and A3 could be generalised to form a concept (or a typical-member
concept of a group) and referred to via a single multi-relationship, which could then be matched
unambiguously with the B1-B2 relationship.

On the other hand, the A I-A5 relationship has no high-scoring correspondences with the rela-
tionships of B1, and so it does contribute a poor score, since the highest-scoring correspondence
is with BI-B4.

Therefore, a missing parent, neighbour, and subpart only contributes a poor similarity score
if it doesn’t match any of the parents, neighbours, and subparts of the other object.

Another more obvious example of the usefulness of this scheme is given in Figure 4.13, in
which it is assumed (for the sake of this example) that C2..C5 and D2..D7 have not already

4.3. SIMILARITY. 143

been explicitly grouped. The overall similarity score of CI and D1 is high, as it should be,
even though there are two extra D circles.

The winning correspondences of the two extra circles (considered to be D4 and D5) are
higher-scoring than the A1-A3 correspondence in the previous example, since in that situation
the extra part, A3, differed more significantly from B2 because it had a circle on one side, while
both of the extra D circles match very well with one or more of the C circles. Thus the similarity
scheme has the desirable consequence that it is implicitly more tolerant of extra ‘unmatched’
relatees that are within a large group of similar relatees (whether explicitly grouped or not).

C1 D1
parent relationship/relatees: parent relationship/relatees:
C1-C0 €«——————_091_ > D1-D0
neighbour relationship/relatees: neighbour relationship/relatees.
Ot o e e D 5 > DI1-D2
Cl-G3eg——————0%6 > D1-D3
Cl-Cdese— QA _ pi-p4
C1-C5 i OO
~ - —_ S (103 D1-D5
0.97 i I ——>D1-D6
> D1-D7

Figure 4.13: Locally ambiguous correspondences.

Local ambiguities are accounted for by implicitly allowing ‘multiple roles’.

Sometimes the locally conflicting winning correspondences may not be due to several relatees
of one or both objects being similar to each other, but due to several differing relatees in one
object ambiguously matching one or several relatees of the other objects in different ways. The
similarity scores may be roughly the same, but as a consequence of different forms of similarity.
For example, Figure 4.14 shows two objects A0 and B0, and the winning correspondences that
contribute to the similarity score of the A1:B1 correspondence. From the point of view of the
Al:B1 comparison, the highest similarity score for both the A1-A3 and A1-A4 relationships
is with the B1-B3 relationship. The former has a high context similarity and a low structure
similarity, while the latter has a high structure and a low context similarity. The highest score
for the BI1-B3 relationship is with the AI-A3 relationship, although this is only marginally
better, on the basis of the relationship similarity and the context similarity of A3 and B3, since
B3 is structurally more similar to A4.

144 CHAPTER 4. THE MATCHER

Thus, although object B1 could be considered to be missing a neighbour, the overall similar-
ity score for AI and B1 is not significantly lowered by the fact that BI has fewer neighbours
(although the difference will be reflected to a smaller extent in other ways, such as the dis-
similarity of the context profiles of Al and B1, and the dissimilarity of the aspect-ratios and
density-profiles of A0 and B0.) Thus GRAM’s similarity definition implicitly accounts for the
fact that object B3 partially matches both A3 and A4 (in different ways), and could therefore
be generalised in two alternative ways by the generaliser (as is discussed in chapter 5).

BO
B2
B3 '
Al B1
parent relationship/relatees: parent relationship/relatees:
Al- M € s—————— — — — — > B1-B0
neighbour relationship/relatees: neighbour relationship/relatees:
AL AR s ot o] D s > B1-B2
Y N1 O P — R - B1-B3
Al=M e i P J

Figure 4.14: Local ambiguities.

Similarity can be more efficiently evaluated.

The absence of a requirement for local consistency has beneficial consequences not only for the
effectiveness of the matcher, but also for its efficiency. This is because the search for the winning
correspondences only involves finding the best correspondence for each relationship/relatee
independently, rather than having to find the best consistent set of correspondences. Thus the
comparisons of relationships for a particular correspondence can be evaluated in O(n?) rather
than O(n!) time, where n is the number of relationships.

4.3. SIMILARITY. 145

4.3.5 Global consistency between correspondences is not enforced.

Another characteristic of the scoring scheme is that the set of winning correspondences that
define the similarity of two objects do not have to be consistent with the set of winning cor-
respondences of any other object comparisons. In other words, in addition to not explicitly
enforcing local consistency, the matcher also does not enforce global consistency. This sim-
plifies the definition of similarity, and makes evaluation simpler and more efficient, since each
comparison can be performed independently (except for wsing similarity scores produced by
other comparisons) without having to search for or maintain a globally consistent set of cor-
respondences between objects. It keeps multiple competing hypotheses active simultaneously,
thus avoiding the need for a backtracking mechanism, and potentially permits a much greater
degree of parallel computation. It also enables components of an object to play multiple roles
when matched with another object.

Forexample, in Figure 4.7, the winning relationship/relatee correspondences that contribute to
the similarity score of A4 and B3 do not have to be consistent with winning relationship/relatee
correspondences that contribute to the similarity score of Al and BI, or vice versa. However,
in this particular example they are consistent, with both “points of view” having the same
winning correspondences.

An example of an inconsistency is illustrated in Figure 4.15. The similarity of Al and
Bl is defined in terms of two winning neighbour correspondences, (A1-A2):(B1-B2) and
(A1-A3):(B1-B3), as shown in (a) of the figure. During the process of finding these winning
correspondences, the matcher may try to evaluate the A2:B3 correspondence, shown in (b),
whose similarity is defined in terms of the winning correspondence (A2—-A1):(B3-B1). This
is inconsistent because it is based on the similarity score for Al and B1, which in turn is based
on the assumption that A2 is matched with B2, not B3. This inconsistency is ignored. The
similarity of A2 and B3 simply requires that the neighbours A1 and B1 are similar, and is not
concerned with the selection of winning correspondences on which the A1:B1 score is based.

The inconsistency in this particular example does not indicate a problem with the similarity
scheme, since the A2:B3 correspondence is not a globally-best correspondence anyway. A2
matches B2 better, and B3 matches A3 better. In general, the local winning relationship/relatee
correspondences of a globally-best object correspondence will be consistent with those of other
globally-best object correspondences, unless there are ambiguities. In the case of ambiguities
we want the matcher to produce multiple alternative correspondences, so that the generaliser
can deal with them appropriately.

Global ambiguities may be accounted for by ‘implicit groupings’.

In the case of local ambiguities discussed earlier, the matcher assumes that the competing
relationship/relatee correspondences could be combined into a single multi-relationship, and
this justifies allowing inconsistencies between the correspondences. In much the same way, the
matcher assumes that the competing object correspondences could be combined into a single
group, and this justifies allowing inconsistencies between the correspondences.

146 CHAPTER 4. THE MATCHER

winning correspondence

| winning correspondence
o yp— e B T [Pt

' (b) o e,

Al B1 |
A3 \>B2 !
g, //
\\ ______ -’/

winning correspondence (poor)

Figure 4.15: Global inconsistencies.

Global ambiguities may be accounted for by ‘implicit multiple generalisations’.

Inconsistencies are also permitted because objects sometimes play multiple roles (structural or
contextual), depending on the “point of view” from which they are considered. Section 4.3.4
discussed how objects can play multiple roles locally within a single comparison. This section
considers it at the global level.

For example, Figure 4.16 shows two objects AO and B0, and the winning correspondences
for the comparisons of A3 and B3, and of A4 and B3. The similarity of A3 and B3 is defined
in terms of a winning correspondence (A3-A2):(B3-B2), while the similarity of A4 and B3 is
defined in terms of a winning correspondence (A4—A5):(B3-B2). Locally there is no ambiguity
or inconsistency, but globally there is an inconsistency because B2 is matched with both A2 and
A5. However, it is desirable that such inconsistency is accepted within the similarity scheme
since otherwise it would not be possible for A3 and A4 to both be considered similar to B3 on
the basis of having a tall rectangular block immediately to the right. From the point of view of
the A4:B3 comparison, object A5 satisfies this role, while from the point of view of the A3:B3
comparison, object A2 satisfies it.

4.3. SIMILARITY. 147

\ . .
winning corre ce
~ g sponden _ o

T — — s —

—— —— —
— ——

T>5BI

Al (B~
| A5 - B2

—_—

——— — — — —

Figure 4.16: Global ambiguities.

4.3.6 Weightings.

Section 4.3.1 stated that overall similarity, structure similarity, and context similarity, are all
defined by weighted averages of feature similarities, where the weights determine how much
that feature contributes to the score. This section explains the different kinds of weights that
are used. For clarity it is assumed that a (generalised) concept is being compared with an
(ungeneralised) instance.

Attributes are weighted by importance and variance.

The similarity of attribute vectors is defined by a weighted average of the individual attribute
similarities, and each weight is based on two factors. The first factor is a globally defined
domain-specific measure of importance of an attribute within a particular kind of attribute
vector. For example, in the structure-properties attribute vector, colour might be given a lower
weight than shape, especially in a domain where objects in the same categories frequently have
a variety of different colours.

The second factor is the variance of the concept’s attribute, which can be considered to be
a learned measure of attribute importance. For example, if the colour attribute of the concept
book has a high variance as a result of seeing many books of different colours, then that attribute
should not contribute much when trying to classify an observed object as a book. This has been
discussed by [Fisher, 1987a], who referred to a high-variance feature as having low predictive

148 CHAPTER 4. THE MATCHER
utility.

Relationship/relatees are weighted by importance, variance, and instance.

In the definition of structure and context similarity, the contribution of the similarity score for
each winning relationship/relatee correspondence is weighted on the basis of several factors.
One factor is relationship-importance which is computed by the instance construction mech-
anism. In the case of neighbour relationships this is the neighbourliness of the two objects
involved, which (as explained in section 6.3.1 of chapter 6) is based on factors such as distance,
relative size, connectivity, efc. Likewise, subpart and parent relationships are weighted primar-
ily on the basis of relative size. A subpart relationship/relatee involving a very small subpart
is assumed (in the absence of other knowledge) to be less important than a relationship/relatee
involving a large subpart.

The weighting of the similarity for a winning relationship/relatee correspondence is also
based on instance-counts. If the relationship of the concept has a low instance-count (relative
to the instance-count of the concept), and if the similarity score is low, then that score is given
a low contribution weight. If, on the other hand, the similarity score is high, then the score
contributes fully, even though the instance-count is low.

For example, if a concept television-set has a low-occurrence neighbour relationship with the
concept aerial, then if we observe a television without an aerial, the similarity score should not
be reduced by this ‘mismatch’. But if we see a television that does have an aerial that matches
the aerial concept, then its similarity score should contribute fully to the overall similarity score,
thus providing predictive evidence that the object is a television. To take this into account, the
relationship/relatee can be weighted by the maximum of the relationship frequency and the
similarity score.

The contribution weighting for a relationship/relatee is defined as the minimum of the two
factors discussed above, as shown in the following formula. If both relationships are gen-
eralised, then a slightly more complex formula must be used, which takes into account the
variances and instance-counts of both descriptions.

weighting [relationshipl/relateel, relationship2/relatee2] =

minimum (maximum (relationshipl —importance, relationship2—importance),

instance—count|[relationshipl |
instance—count[conceptl |

maximum % similarity—score %

)

A multi-relationship weighting is based on its howmany count.

The contribution weight of a multi-relationship is based on its howmany count, as shown by the
graph in Figure 4.17, where the horizontal axis is the range of howmany values from 1 upwards,
and the vertical axis is the weight. The weights on ordinary relationships, as considered in
the previous section, are all assumed to be in the value O to 1, but since a multi-relationship

4.3. SIMILARITY. 149

is a summary of several ordinary relationships, it can contribute more. The weights shown
in the graph may, however, be lowered by relationship unimportance, high variance, and low
instance-count.

3

contribution
weight

the "howmany’ count

Figure 4.17: Multi-relationship weightings.

4.3.7 Scope restriction is used to measure structure-only or context-only simi-
larity.

Sometimes it is necessary to measure the similarity of only the structure of two objects, ignoring
context; at other times it is necessary to measure the similarity of only the context, ignoring
structure. Forexample, if an operator who is holding onto an object instructs a robot to “find one
of these in that pile of objects”, the robot should not search for another object which also has a
hand wrapped around it. The robot should focus its attention only on the structure of candidate
objects, not their context. Conversely, if the operator instructs the robot to “collect whatever
is in the letterbox™, it should identify “whatever” on the basis of it having a letter-box context,
and should ignore its structure. Thus, measures of similarity may require scope-restriction.

The simplest way to measure structure-only similarity is defined by the structure-similarity
formula given earlier in Figure 4.3. Likewise, context-only similarity can be defined by the
context-similarity formula.

Unfortunately this is not sufficient to give an accurate measure, because the structure-
similarity score actually measures some context similarity as well, and the context-similarity
score measures some structure similarity. This is because the subpart objects of an object A may
have neighbour relationships to other objects that are not within the substructure of A. Like-
wise, the neighbours of A might have neighbour relationships (or even subpart relationships)
to objects that are within the substructure of A.

150 CHAPTER 4. THE MATCHER

For example, in Figure 4.18, the structure-similarity formula applied to potplantl and pot-
plant2 would ignore the neighbour relationships from potplant1 to desk1, and from potplant2
to shelf2, but would not ignore the neighbour relationships from pot! to desk1, and from pot2
to shelf2. Likewise, the context-similarity formula would ignore the subpart relationships, but
would not ignore the neighbour relationships from desk1 to potI and from shelf2 to pot2.

Figure 4.18: Structure-only similarity.

The structure and context similarity formulas as given earlier are adequate for giving a rough
structure-only or context-only similarity score for basic matching and generalising, since the
relationships that are mistakenly included (such as the potI-deskI relationship) are never direct
relationships of the two root objects being matched, and hence they do not contribute as much
to the score as the direct relationships. However, if accurate scope restriction is required, the
entire substructure, or entire context, must be excluded from contributing to the measure of
similarity.

For example, a measure of structure-only similarity for chairl and chair2 in Figure 4.19 would
need to ignore all of the relationships from the subcomponent objects that refer to other objects
in the room that are not part of the chair substructure. Likewise, a context-only similarity
must be based on the parent and neighbour relationships of the two chairs, but ignoring any
relationships from contextual objects to subcomponents of the chairs. It could be argued that, to
be even more accurate, the similarities of the neighbour relationships from the subcomponents
of the chairs to non-subcomponents should be included in the context-only score, but this would
require a more elaborate evaluation mechanism.

Scope restriction need not be used just for obtaining object context-only or structure-only
scores, since any selection of objects could be treated as in-scope for a particular similarity
measure. For example, when matching the potplants in Figure 4.18 it might be desirable to
match the relationships to the external context, such as to the desk and shelf, but without
actually matching the relatees themselves. Thus the matcher would find that the pots of both
potplants are on top of something horizontal and much larger than the pot, but would not be
concerned with the difference between those two somethings.

Contents-similarity ignores the arrangement of subparts.

A special kind of scope-restriction would be needed to obtain a contents-similarity score. This
score is defined to be high if the two objects have similar contents (i.e. subpart relatees), even
if the arrangement of the subparts differs considerably. This is the case when comparing the

4.3. SIMILARITY. 151

Figure 4.19: Structure-only

two bedrooms in Figure 4.20. The contents-similarity score could be used by the generaliser
to justify the creation of a new generalised concept from two instances, even if the ordinary
structure-similarity score is poor.

An estimated measure of contents-similarity can be defined in terms of the similarity scores
of the subpart relatees, ignoring the similarity scores of the subpart relationships. This is simple
to evaluate, but it suffers from the same limitations as for the simple method of computing
structure-only and context-only similarity described earlier: The subpart similarities are defined
in terms of neighbour relationships to other subparts, and thus their arrangement is not actually
being ignored. Therefore, an accurate measure must be defined in terms of the structure-only
similarities of the subparts.

4.3.8 Proximity-scoring versus Fit-scoring.

Section 4.1 stated that two kinds of scoring are required by the matcher: proximity-scoring and
fit-scoring. This section explains this distinction in more detail.

Both forms of scoring are defined by dividing the measure of absolute difference between an
instance and a concept by some factor, where this factor indicates what difference is considered
to mean “very different”. The result is then normalised to give a score between 0 and 1, so that
a pair of “very different” objects will score 0, and identical objects will score 1.

152 CHAPTER 4. THE MATCHER

Figure 4.20: Two objects with high contents-similarity.

The absolute difference measure is defined by the ‘distance’ in object-space between the
instance and the boundary of the concept, and this is inversely proportional to the measure of
similarity. The ‘boundary’ of a concept is defined in terms of the variance of the concept, such
that the larger the variance, the wider the boundary. This is illustrated abstractly in Figure
4.21 which shows two regions within object-space, each indicating the boundary of a concept.
(Atypical instances may be outside the boundary.) The dot on the diagram denotes a particular
observed object.

The factor defining “very different” depends on which kind of scoring is required. In
proximity-scoring, it is a globally-defined value that defines what “very different” means
within object-space as a whole. In fit-scoring, it is based on the variance of the concept itself.
(This was discussed in section 4.3.6 for the specific case of numerical attribute values.) Thus,
for the example in Figure 4.21, the instance has the same proximity-score with respect to both
concepts, but has a much lower fit-score with respect to concept2 than conceptl, since the
variance of concept2 is much smaller.

A proximity-score indicates how close an instance is to a concept, regardless of its variance
(except to define the concept boundary), and is used by the generaliser to determine whether an
instance is close enough to a concept to justify generalisation. A fit-score, on the other hand,
indicates how typical an instance is of a concept, and indicates to the generaliser whether the
existing concept could be generalised to cover the observed instance, without causing too large
a drop in specificity, or whether a new concept should be created.

Proximity-scoring, rather than fit-scoring, is used within the matching process itself to find
winning correspondences between relationship/relatees. This is necessary to prevent it from
producing a very low score for an obviously correct relationship/relatee correspondence just

4.3. SIMILARITY. 153

because the generalised relationship or relatee has a very low variance. For example, consider
Figure 4.22 which shows two chairs, one of which has a number of ‘faults’, or at least unusual
features. Suppose the system has already observed 100 chairs identical to chairl, and has created
a concept chair from these. If the matcher is given a description of chair2, then the fit-score (and
the fit-scores for the correspondences between its subcomponents and the subcomponents of
chair) will be very low, due to the very low variances of chair features. However, chair2 clearly
matches chair well (within the space of all possible objects, which includes elephants and paper-
clips) and the correspondences between its components are strong. The proximity-scores will
be high, and are therefore more appropriate for evaluating and selecting relatee/relationship
correspondences.

_—m—

space of all objects (actually infinite)

instance

/O

; concept2

concept

proximity—score (conceptl, instance) = proximity—score (concept2, instance)

fit—score (conceptl, instance) > fit—score (concept2, instance)

Figure 4.21: Proximity-scoring versus Fit-scoring

4.3.9 Structure and context interpretations affect similarity.

Section 3.4.3 of chapter 3 explained the various types of interpretation that each structure de-
scription and context description can have, including complete, partial, disjunctive, imported,
any, partial+disjunctive, partial+imported, and partial+typical. Each of these affects the defini-
tion of similarity. To simplify the discussion, most of the examples will refer only to structure
similarity, but the same points apply to context similarity. Also, the examples deal with the
situation of matching a concept with an instance, except where indicated otherwise.

The previous examples of structure similarity in this chapter have involved structures with
complete interpretation, in which case the best correspondences of all relationship/relatees of
both structures contribute to the similarity score. If, at the other extreme, the concept structure
has an any interpretation, then it matches perfectly with everything. However, the weighting
of such a structure will normally be zero so that the “perfect score” does not contribute to the
overall object comparison score anyway.

154 CHAPTER 4. THE MATCHER

chairl chair2

Figure 4.22: Proximity-scoring versus Fit-scoring

If the concept structure is partial and the instance structure is complete, then only the
winning correspondences for the concept’s relationship/relatees contribute to the score. This is
illustrated in Figure 4.23 where the subparts of the complete structure of B1 that ‘miss out’” do
not affect the similarity score, and therefore Al and B have quite a high measure of similarity.
However, since a structure description that has partial interpretation must also have a high
variance, this prevents the structure similarity from contributing significantly in the overall
similarity score, unless the context similarity score also has a low weighting.

Figure 4.23: partial compared with complete

If both objects being matched are generalised concepts, and if both structure descriptions
are partial, then there are two ways of measuring similarity, depending on whether we require
fit-scoring or proximity-scoring: In the case of fit-scoring, the first concept is assumed to be
more generalised than the second, and therefore the subparts of the first concept should be a
subset of the second concept’s subparts, since the former can be assumed to be more partial, as
a consequence of the generalisation process. Therefore, only the winning correspondences for
the first concept’s relationship/relatees contribute to the similarity score, and any of the second

4.3. SIMILARITY. 155

concept’s subparts that miss out do not affect the score, just as for the partial:complete situation
above. An example of this is given in Figure 4.24, where only the best correspondences
involving A2, A3, and A4 contribute to the similarity score, using equation (a), thus allowing
any additional B1 subparts to be present without affecting the score.

In the case of proximity-scoring it is less clear how to measure similarity. GRAM simplifies the
problem by assuming that both concepts are equally general, and should have the same partial
set of relationship/relatees to be considered similar. Therefore, the similarity score is measured
in the same way as for complete:complete similarity, where all winning correspondences of
both concepts contribute to the score. This is shown by equation (b) in Figure 4.24.

|

[B1] ‘
partial partial |
winning correspondences
Ad B B3 B4 BS
\\\\\\\4)\4_ ::=__=:::_)_/,//////’0.56
o _ -

T —— . — —

(a) fit=score = (0.72 + 0.4 + 0.85) /3 =0.66

(b) proximity—score = (0.72 + 0.4+ 0.85 +0.3 + 0.56)/5 =0.57

Figure 4.24: partial compared with partial

The similarity of disjunctive concepts is the similarity of the best disjunct pairing.

When the structure (or context) of the concept being matched has a disjunctive interpretation,
then similarity is defined by the highest disjunct (i.e. subconcept) similarity, using structure-
only scope restriction. For example, Figure 4.25 shows a chair concept whose structure
is defined disjunctively by the subconcepts kneelerchair, armchair, and swivelchair. The
structure-similarity of chair and chairl is defined as the highest score of the structure-only
similarity of chairl and the disjunct subconcepts.

If the chair concept also includes some partial structure, then this partial structure is matched
with the chairl structure in the manner defined earlier for partial:complete comparisons, and
the similarity score is combined with the best disjunct similarity to give the overall structure
similarity.

If the two objects being matched are both generalised concepts (such as when matching the
relatees of two multi-relationships, or when reorganising concept memory), and both have
disjunctive structures, then the comparison is more complex. For example, consider the three
shelves in Figure 4.26, for which each shelf and each shelf-base are described in terms of a
multi-relationship to a disjunctively-defined concept, such as shelfl-item. The disjuncts for

156 CHAPTER 4. THE MATCHER

I — —_—
any—context
structure: disjunctive
9 v N H
&7 8 %, chairl =3
0“/ S ’Ic
¢ s &
Y 3 |
&/ 2 ~
| / g e
}’ ‘V any—-context
anssconen any—conrexr [swivelchair |
[kneelerchair | [armchair| \

RS A

1= ae— e =

Figure 4.25: Disjunctive structure comparison

each shelf-item concept are indicated with frequency ratios indicating how many instances of
each disjunct contributed to the generalisation.

If we are matching the disjunctive concept shelfl-item with the disjunctive concept shelf2-
itemn, then the best correspondences between the disjuncts are identified in the same manner as
for finding winning correspondences for parent, neighbour, and subpart relationship/relatees, as
illustrated in Figure 4.27. In other words, the best correspondence for each disjunct contributes
to the score, even if it conflicts with other winning correspondences. A single similarity score
is defined as an average of these winning scores, as shown by the equations (a) and (c) in the
figure. Although not shown on the figure (for simplicity) these scores are weighted by the
instance-frequencies (i.e. the ratio of the instance-counts to the concept’s instance-count).

In addition to the disjunct similarities, the similarities between the instance frequencies are
also averaged, and both of these scores are combined to form the overall disjunction similarity
score. For example, when matching shelfl-item with shelf3-item, the differences in instance-
frequencies for the pots, jugs, and frypans lower the similarity score, as shown in equation (d)
of Figure 4.27, where instance-frequency similarity is only 0.74 rather than 0.89 (from equation
(b)).

In the current version of GRAM, disjunction similarity for two generalised concepts is defined
in the same way for both fit-scoring and proximity-scoring. It has not yet been determined
how to meaningfully define and distinguish the two types of scoring when dealing with two
generalised disjunctive descriptions.

If the structure or context of one concept is defined by an ‘import-from’ specification that

refers to a disjunction of other concepts, then similarity is defined in the same way as for
ordinary disjunction, since both specify a list of concepts, with associated instance-counts.

disjuncts(
pot 4/7
jug 2/7

[frypan 1/7)

base2 =——==[shelf2-item|

disjuncts(

= shelf3-item
disjuncts(

pot 5/8
Jug 4/8)

Figure 4.26: Similarity of two disjunctive concepts.

4.3.10 Superconcept and subconcept similarity can be used to estimate the score.

Section 4.2.6 stated that the matcher may sometimes be asked to match two objects, one of
which one has already been matched with a superconcept or a subconcept of the other. In
this situation, an estimate of similarity should be definable in terms of the subconcept or
superconcept similarity. This section explains how this can be done, although it has not yet
been implemented in the GRAM system. It is only applicable to proximity-scores.

Figure 4.30 (a) shows an example where a measure of similarity for object23 and chair is
required, given that the similarity score between object23 and swivelchair has already been
computed. This score can be used as a lower-bound on the required score, as illustrated
abstractly in (b) of the figure: This shows the boundaries of a concept and a subconcept, and
an object (the dot) to be compared with the concept. The length of the line from the object to

158 CHAPTER 4. THE MATCHER

pot (*4) .<_____1-Q___—9-P0t(*4)

. 40 T

jug (*2) "———M‘/ e jug (*2)
_D

frypan (*1) =2~ — — — — — 03—~ spoon (*1)

(a) average of best disjunct similarities =
1+1+07+05)/4 = 0.8
(b) average of instance—frequency similarities=

shelf-item1 disjuncts shelf-item2 disjuncts
|

!

L=(4/7=4/T + 12/T=2/T1 + W/T =47 + 1/7-1/7)/4 = 0.89
|

shelf—item1 disjuncts shelf—item3 disjuncts ‘
pot(*4) ——07 ey
jug (*2) 2—— == - :;“\ frypan (*3)

| _de——"
frypan (¥1) = ——

(c¢) average of best disjunct similarities = |
07+1+1)/3 = 09 |
(d) average of instance—frequency similarities = '
1 —(14/7-3/81 + 12/7-5/81 + 11/7T-3/8)/3 = 0.74 |
|

Figure 4.27: Similarity two disjunctive concepts.

the boundary of the subconcept is inversely proportional to the similarity score, and it can be
seen that this is a lower-bound on the proximity-score for the object and the concept

However, this assumes that the subconcept is sufficiently typical of the concept that it lies
within the concept boundaries relative to which proximity-cores are measured. Figure (c) shows
why the object:subconcept score is not a true lower-bound if this is not the case. Therefore,
the estimated similarity score must be based not only on the available object:subconcept score,
but also on the typicality of the subconcept with the concept, assuming that this is recorded in
each subconcept description.

A lower-bound score obtained in this way is useful because it may enable the matcher to
immediately abandon further evaluation of other object comparisons if their upper-bound scores
are lower than this lower-bound.

Proximity-scores can be estimated in a similar manner when an object has already been
matched with a superconcept. This situation is shown in Figure 4.29 (a), where a measure of
similarity between object23 and swivelchair is to be defined in terms of the already-available
similarity score between object23 and the superconcept chair.

In this situation, the superconcept similarity score is an upper-bound on the required score.

4.3. SIMILARITY. 159

o o o]
to be matched
(@ |[chair| —————————_____ _
o
X/ ——
fb —parhie’
= ~hed
— =gy
—7 ared
5 sybgon{:ept e concept The (object : subconcept) score
- (b) similarity score \\ is a lower—bound. |
|
| * t
: object o=
i
/
P
required score

not a true lower—bound.

subconcept

(c) If subconcept is atypical, then the (object : subconcept) is

concept

similarity score™

Figure 4.28: Similarity using subconcept and superconcept similarities.

The reason for this can be seen in (b), where the distance from the object to the superconcept
(which is inversely proportional to the measure of similarity) is less than the distance to the
concept. However, as before, this assumes typicality of the concept within the superconcept,
and so the upper-bound must be modified according to the measure of typicality specified in
the concept description.

An upper-bound score obtained in this way is useful because it may enable the matcher to
immediately abandon further evaluation of the comparison if that upper-bound is lower than
the minimum score required by the larger system that invoked the matcher, such as when the
classification system has already found one classification for object23, and is trying to find a
better classification.

Sometimes the matcher might be asked to match two objects which have both been previously
classified as belonging to different subconcepts of the same superconcept. Figure 4.31 (a) gives
an example of this situation. Suppose that object! in officel has already been matched well

160 CHAPTER 4. THE MATCHER

| S -
already matched earli
(a) Chair] — — ——realymaiched earlier
2 T 2
va« g
O =l
- o tche
— 10
-
(b) required score - — — i superconcept
A\ .
Y (object : superconcept) score |
object o= is an upper—bound. ‘
/
subconcept ~ #
similarity score
1

(c) If concept is atypical, then the (object : superconcept) score is
not a true upper—bound.

subconcept superconcept |

similarity score™

required score

Figure 4.29: Similarity using subconcept and superconcept similarities.

with the concept swivel-chair, perhaps during instance-construction, but has not been explicitly
matched with the more general concept chair. Suppose also that object2 in office2 has already
been matched well with the concept standard-chair. If the system is now required to compare
officel and office2, then in doing so it will need to compare object! and object2. Given their
previous classifications, an estimated measure of similarity can be defined in terms of the
similarity of swivel-chair and standard-chair, and this can be estimated in terms of the variance
of their common superconcept, chair. More specifically, an upper-bound on the objectl-object2
similarity can be defined in terms of the variance of the chair concept.

This is illustrated abstractly in (b) of the figure, where the large circle denotes the boundary
of chair, and the smaller enclosed circles denote swivel-chair and standard-chair, with object]
and object2 lying within these. The maximum width of the chair boundary must be larger than
the distance between object] and object2, assuming that the two subconcepts are sufficiently
typical. If they are atypical, then the upper-bound must be modified accordingly.

4.3. SIMILARITY. 161

The upper-bound score defined in this manner is most useful if the common superconcept is
not much more general than the subconcepts. In other words, the lower its variance, the closer
the upper-bound score will be to the actual score.

|
| |
(a) | to be matched :
| R |
[Y, " !
| o — o’ '
- f/natche |
P y
~ ares?
(b)
o a_lrﬁldl matched earlier

Figure 4.30: Similarity using subconcept and superconcept similarities.

162

CHAPTER 4. THE MATCHER

/ already matched

already matched | !
with the concept

with the concept '\

‘swivel—chair’ \ / ‘standard—chair’
/
\\ The AKO hierarchy /
\ i
N chair 7/
N N 4,{4 /
%0 &
A / Ny
swivel—-chair standard—chair

The width of the ‘chair’ boundary
is the upperbound for the similarity
of object] and object2.

Figure 4.31: Similarity using superconcept similarities.

4.4. THE MATCHING ALGORITHM 163

4.4 The Matching Algorithm

The previous section focussed on defining the meaning of ‘similarity’ in GRAM’s matcher.
This section considers the problem of how to evaluate a similarity score and describes GRAM’s
matching algorithm.

Section 4.1 considered the requirements of the matcher, and these included the requirement
that descriptions of similarity (or dissimilarity) are produced as output, so that they can be used
by other components of the system). These descriptions must specify scores for overall object
similarity, structure similarity, context similarity, and relationship/relatee correspondences.
The matcher must therefore have some way to represent this information, and this is discussed
in section 4.4.1.

Central to the definition of similarity is the notion of ‘winning correspondences’ between the
relationship/relatees of the two objects. Central to the design of the matcher is, therefore, the
problem of how to search for these correspondences. The main difficulty is that a similarity
score for a pair of objects is defined directly and indirectly in terms of similarity scores for a
potentially vast number of other pairs of objects, including itself. Thus the matcher must employ
techniques for pruning and controlling the search, and for enabling converging estimates of
recursively-defined scores to be obtained. This is achieved by GRAM’s “incremental-spread”
algorithm which is discussed in section 4.4.2.

Various aspects of the process, such as level-hopping, disjunct comparison, and scope-
restriction, are considered in sections 4.4.4 through 4.4.6. Section 4.4.7 discusses the problem
of improving the accuracy of a similarity score by augmenting an instance graph with additional
relationships and composite objects. Section 4.4.8 considers a situation where it is useful to be
able to make use of subconcept and superconcept similarity scores.

A detailed description of the algorithm is given in section 4.4.10.

4.4.1 Match results are represented in cnotes.

The first issue to be addressed is how to represent the information produced by the matcher,
both for its own use during the search, and for use by other systems such as the generaliser
and fault-finder. The information in these descriptions must specify scores for overall object
similarity, structure similarity, context similarity, and relationship/relatee correspondences.

GRAM represents match information in cnotes, which is short for ‘comparison-note’, and
was borrowed from [Winston, 1975]. Each cnote specifies comparison information about two
descriptive entities, such as objects, structures, contexts, or relationship/relatees. The output
of the matcher is a single object-cnote, which consists of a structure-cnote, a context-cnote, an
overall similarity score, and an effort value which indicates how much effort was applied to
produce the similarity score. If the two objects have been generalised, then a pointer to the
concept is also included.

164 CHAPTER 4. THE MATCHER

A context-cnote specifies the comparison between two contexts. It includes a context-
similarity score, a cnote that specifies the similarity of the context properties, and the winning
(and losing) correspondences between the parent and neighbour relationship/relatees of the
two contexts. Each of these correspondences is represented in a correspondence-cnote which
describes the comparison between the two relationships and the comparison between the two
relatee objects. If either or both of the concepts have disjunctive contexts, then object-cnotes
describing the comparisons of each disjunct (i.e. subconcept) pairing are also included.

A structure-cnote specifies the similarity between two structures in much the same way as for
a context-cnote, except that it consists of subpart correspondence-cnotes rather than parent and
neighbour correspondence-cnotes. Also, a structure-cnote may include a contents-similarity
score.

GRAM stores each object-cnote so that it is directly accessible from both of the objects
it involves. This is important because it allows the matcher to immediately find all of the
comparisons produced for any object during the search for winning relationship/relatee corre-
spondences, since each object may have been matched with many other objects.

Although the matcher only produces one object-cnote as direct output, it may also generate
many other object-cnotes, since during the search for winning relationship/relatee correspon-
dences, each object may be matched with many other objects. These object-cnotes can be
considered to form a cnote-graph, as illustrated in Figure 4.32, where the similarity score for
each cnote is defined in terms of the similarity scores of its related cnotes.

object-cnotes could be retained in concept memory, long term, to provide information about
the similarity or difference between concepts. Such cnotes could be considered to be ‘difference
links’ [Bareiss and Porter, 1987] which provide another means for accessing items in memory.

For reference, the following gives a summary definition of each of the main kinds of cnote.

object-cnote =

e Score (of overall-similarity). (including a lower and upper bound)
e A structure-cnote.

e A context-cnote.

Effort-applied.

e A concept. (if the objects have been generalised)

context-cnote =

e Score (of context-similarity).
e A context-properties-cnote

e Correspondence-cnotes (for the relationship/relatees of the two objects.)

e Disjunct object-cnotes (if necessary)

structure-cnote =

4.4. THE MATCHING ALGORITHM 165

Figure 4.32: An object-cnote graph.

Score (of structure-similarity)

A structure-properties-cnote.

e Correspondence-cnotes (for the relationship/relatees of the two objects.)
e Disjunct object-cnotes (if necessary)
e Contents-similarity score (optional)
correspondence-cnote =
e Score. (including a lower and upper bound)

e A relationship-cnote (for the two relationships)

e An object-cnote (for the two relatees)

4.4.2 The “Incremental-Spread” search strategy.

This section considers how to search for the winning correspondences of relationship/relatees of
two objects being matched, and thereby obtain a similarity score. We begin by considering the
simplest, most obvious algorithm, and then consider various refinements to improve efficiency
and to account for circularities, recursive similarity, disjunction, effort control, scope restriction,
and augmentation.

166 CHAPTER 4. THE MATCHER

Figure 4.34 shows two television sets, of which the component objects tvmain1 and tvmain2
(i.e. the television set excluding the aerials and legs) are to be compared. (This particular
comparison is considered, rather than the comparison of the whole televisions, so that parents
and neighbours need to be matched.) The simplest algorithm is a depth first search which
recursively invokes the matcher for every pairing of parent relationship/relatees, every pairing
of neighbour relationship/relatees, and every pairing of subpart relationship/relatees. These
pairings are indicated by the dotted lines between the relationship/relatees at the bottom of
Figure 4.34. The similarity scores produced for these correspondences are then used to
determine the winning correspondences to contribute to the similarity score. This algorithm is
shown below:

MATCH-OBJECTS (objectl, object2)
For each parent of object1:
For each parent of object2:
Match the relationships.
MATCH-OBJECTS (parentl, parent2).
Compute the correspondence score.
Repeat for neighbours and subparts.

Select winning correspondences.

Compute similarity score.

Figure 4.33: A simple (and ineffective) algorithm.

There are two major problems with this algorithm. Firstly, it is highly inefficient because
it performs a complete depth first search for every relatee correspondence. For each object
comparison, the number of invocations of the matcher is O(nz), and each of these invocations
leads to a further O(n?) invocations, extending on through the object graph. The second
problem with the algorithm is that it does not work: it rapidly gets stuck in infinite cycles,
reevaluating comparisons that are currently already being evaluated. This is because objects
are defined in terms of other objects, and vice versa, and therefore the measures of object
similarity are recursively defined in terms of themselves.

The first problem requires the matcher to prune the search by abandoning a comparison as
soon as it is clearly not a winning relationship/relatee correspondence. This means that a depth
first search is inappropriate, since a depth-first search completely evaluates a correspondence
before evaluating another, even though a partial evaluation might be sufficient to reject it if
partial evaluations of other correspondences are available.

The second problem requires that the matcher should not recursively invoke itself to perform
a comparison that is already being processed. Rather it must be able to make use of estimates

4.4. THE MATCHING ALGORITHM

of similarity scores for comparisons that are currently active.

tvl

aeriall aerial2
[tvmain | aerialbasel e) aerialbase2
llegl lleg2
rlegl rleg2
box1 screenl buttonsl box2 screen2 buttons2
tvmain1: tvmain2:
parent relationship/relatees: parent relationship/relatees:
tvmainl -tvi1 ———————————— tvmain2 — tv2
neighbour relationship/relatees: neighbour relationship/relatees:
tvmainl - aeriall <—==—T"T"T" " "= tvmain2 — aerial2

—

tvmainl - aerialbasel 1?—;:;%-:’&_" —

tvmain2 — aerialbase2

tvmainl - llegl === :;—,_.»1:{: — —=o= tvmain2 - lleg2
— "’k;—g’
tvmainl - rlegl 2E==——————— - = tymain2 - rleg2
subpart relationship/relatees: subpart relationship/relatees:
tvmainl - aeriall <sS==—="" " " == tvmain2 - aerial2
tvmainl — aerialbasel q\‘fi_;:—z__ /:-’:;: ==== tvmain2 - aerialbase2
tvmainl — llegl == === === S S —=>= tvmain2 - lleg2
4 S —'%h
tvmainl —rlegl =-=~=————————— tvmain2 - rleg2

Figure 4.34: The search problem.

167

GRAM’s “incremental spread” algorithm is a breadth-first beam search using iterative

deepening.

GRAM'’s matching algorithm deals with the above problems by using a breadth-first beam search

with iterative deepening, as explained below:

168 CHAPTER 4. THE MATCHER

The matcher begins by performing a “1-spread” comparison of the two objects. This means
that the structure and context properties are compared, and all pairings of relationship/relatee
correspondences are evaluated comparing only the relationship descriptions, ignoring the re-
latees. The winning correspondences are then selected from these, and a similarity score
computed. An approximate lower-bound and an upper-bound on the score is also computed,
based on a predefined measure of inaccuracy of a 1-spread comparison. Thus, a 1-spread com-
parison gives a rough and inexpensive estimate of object similarity, and also provides estimates
of the relationship/relatee correspondences scores. In fact, GRAM actually first performs a 0-
spread comparison, which only considers properties, and the only continues with the 1-spread
comparison if the score is sufficiently high.

The matcher then performs a “2-spread” comparison. This involves recursively invoking
the matcher to perform a 1-spread comparison on each pair of relatees. Thus the matcher
is extending or deepening its ‘horizon’ or ‘fringe’ incrementally. However, it only invokes
the matcher on a relationship/relatee correspondence that could potentially become a winning
correspondence for either or both of the two relationship/relatees. This is determined on the
basis of lower and upper bounds that are computed and stored with each correspondence-cnote:
If the upper-bound for a relationship/relatee correspondence is higher than the lower-bound of
a currently winning relationship/relatee correspondence involving either of the two relatees,
then the relatees are matched using a 1-spread comparison. Otherwise that correspondence
is ignored. Later it might become a potential winner again, if the score of the winner drops
sufficiently as a result of more accurate comparison.

After reevaluating the potentially winning (and already winning) correspondences, a new
set of winning correspondences is identified, and a more accurate similarity score is thereby
computed.

The matcher next performs a 3-spread comparison in exactly the same way as for a 2-
spread comparison, except that the potentially-winning relationship/relatee correspondences
are reevaluated by recursively invoking the matcher using a 2-spread comparison on the pairs
of relatees. Each of these comparisons will cause (some) pairs of relatees of those relatees to
be compared using a I-spread match.

A 4-spread comparison is then applied, and so on, up to an n-spread, where n is the required
effort for the comparison. Thus, the matcher is incrementally spreading outwards (using a kind
of breadth-first beam search) through the object graphs via good correspondences between
parent, neighbour, and subpart relationships. Figure 4.35 shows a rough hand-generated
illustration of the object comparisons that are considered in a O-spread, 1-spread, 2-spread,
and 3-spread comparison, with Al and Bl being the root objects of comparison. At each
increased effort, the fringe of the comparison extends outwards. The different shadings on the
object-boxes indicate the spread-level at which an object is considered by the matcher.

Effort is controlled by a required-spread parameter.

Earlier we discussed the requirement that the matcher must have an effort-control parameter,
and this in fact defines how much spread is applied to a comparison. In the rest of this chapter

4.4. THE MATCHING ALGORITHM 169

(a) 0—spread comparison

- only properties -

are compared

(b) 1-spread comparison

Each dotted line in figures (b) to (d) indicates
_______ a I-spread comparison of properties and relationships.
_ only properties and Relatee similarity scores are used if already available.

relationships are
compared

(¢) 2-spread comparison

Figure 4.35: 0-spread, 1-spread, 2-spread, and 3-spread comparisons.

170 CHAPTER 4. THE MATCHER

it is called the required-spread parameter.

Each time the matcher recursively invokes itself to compare pairs of relatees, it passes some
value of required-spread. Likewise, the larger system that originally invokes the matcher must
also specify required-spread.

A standard top-down comparison could achieve this kind of effort-control by restricting the
depth of traversal down the subpart hierarchy, but in GRAM the effort control is also applied to
context matching via parent and neighbour relationships.

Effort is also controlled by the acceptability-cutoff and rejection-cutoff parameters.

The effort applied by the matcher is also controlled by two optional parameters which can force
the matcher to prematurely abandon the comparison.

The rejection-cutoff parameter prevents unpromising matches from being explored further.
For example, when performing rapid classification of large numbers of objects in a scene, we
do not want the matcher to spend much time matching an object with a concept when it is
already clear from a rough comparison that the similarity is worse than the object’s similarity
to some other concept previously considered. Thus the rejection-cutoff parameter indicates the
minimum similarity score required. As soon as the upper-bound of the object-cnote score is
worse than the rejection-cutoff, then it is not worth evaluating the comparison more thoroughly,
and the match is abandoned.

The acceptability-cutoff parameter prevents good comparisons from being evaluated further.
Sometimes when performing rapid classification it is desirable to accept a classification as soon
as it is clearly better than any other classification. Thus it is only concerned with finding a
comparison with a sufficiently good score, rather than obtaining an exact measure of similarity.
If this is the requirement, then whenever the lower-bound of the object-cnote score is higher
than the acceptability-cutoff score, then no further evaluation of the comparison is necessary.

Cycles are avoided by recording how much spread has been applied.

We have not yet addressed the problem of getting stuck in infinite cycles. This is easily solved
by the “incremental-spread” algorithm: Firstly, each object-cnote must record the effort (or
more precisely, the spread) that has already been applied to a comparison. Secondly, if the
matcher is invoked on a pair of objects, A and B, which have already been matched, and whose
current spread is already at least as high as the required-spread, then nothing needs to be done.

The algorithm in its most basic form.

Having discussed the main features of the algorithm in its most basic form, it is now possible
to presents it more formally, as given in Figure 4.36. The first step of MATCH is to create a
cnote if the two objects have not already been matched. It then matches relationship/relatees
with an incrementally increasing spread, until the required-spread has been completed.

4.4. THE MATCHING ALGORITHM 171

Refinements to the algorithm are considered in the remainder of the chapter, and a more
complete description of the algorithm is given section 4.4.10.

MATCH (objectl, {the concept (or perhaps an instance)}
object2, {the instance (or perhaps a concept)}
required-spread {the spread-effort to be applied}

)

IF objectl and object2 have already been matched THEN
cnote + the recorded cnote.
ELSE
cnote +— create a cnote using a 0-spread comparison.
(i.e. compare properties)
IF the score is sufficiently high,
Evaluate the cnote using a 1-spread comparison.
(i.e. compare pairs of relationships)

WHILE (cnote-spread < required-spread)
AND (cnote-score is sufficiently high)

Increment cnote-spread.

FOR each potentially-winning relationship/relatee correspondence:
MATCH (relateel, relatee2, (cnote-spread — 1))

Reselect winning correspondences.

Recompute structure, context, and overall similarity scores.

RETURN the cnote.

Figure 4.36: The “incremental spread” algorithm (in its most basic form)

A 1-spread comparison can make use of available relatee similarity scores.

Although a 1-spread comparison does not recursively invoke the matcher to compare relatees,
it can make use of similarity scores for any pairs of relatees that have been already compared.
Thus a 1-spread comparison may actually be more accurate than its spread-effort suggests. In
fact this is true at any spread level, since every relationship/relatee reevaluation can make use
of existing relatee similarity scores even if they are more accurate than the reevaluation actually
requires.

Scores converge iteratively.

This algorithm also accounts for the fact that similarity scores are defined recursively. For
example, suppose two objects Al and Bl are compared, and one of their winning neighbour

172 CHAPTER 4. THE MATCHER

relationship/relatee correspondences is between A2 and B2, the similarity of which is defined
in terms of the AI:B1 correspondence. The A1:BI correspondence is first evaluated using a
1-spread search and then a 2-spread search, neither of which require the A2:B2 comparison to
refer back to the A1:B1 score. When a 3-spread comparison for Al and B1 is performed, it will
require the A2:B2 comparison to obtain a 1-spread score for the A1:B1 comparison. In fact, a
2-spread estimate of this is already available, and so it can be used immediately in the A2:B2
comparison. The resulting A2:B2 score is used to compute the 3-spread score of A1:BI, which
will then have been computed in terms of itself (or rather, a previous estimate of itself). The
same process continues as the spread increases, and the recursively-defined similarity score is
iteratively improved in accuracy.

An informal proof of convergence is based on the fact that each best relationship/relatee
correspondence for an object comparison only contributes roughly 1/nth of the score, where
n is the number of relationships of the object. Therefore, in the example above, 1/nth of the
Al:B1 score comes from the A2:B2 score, which in turn comes from 1/nth of the A1:B1 score.
Thus, when the A1:B1 score changes, the effect of that change on itself has a contribution of
at most 1/(n?). This change will therefore be small, and so the change resulting from that
change will be an order of magnitude smaller again.

The winning relationship/relatee correspondences for a cnote, as defined by GRAM’s similarity
measures, is guaranteed to be found if, firstly, sufficient effort has been applied so that an
unambiguous clear winner has been identified for each relationship/relatee, and secondly, if
the computed lower and upper bounds on the scores are correct. Since these bounds are only
estimated by GRAM, occasional errors may occur.

Fewer relationship/relatee correspondences are evaluated for high-spread comparisons.

It may seem that a high-spread comparison of two objects will be very expensive to evaluate,
since all potentially-winning relationship/relatee correspondences must be evaluated using
a spread comparison of only 1 less than the required spread of the objects. However, the
higher the spread that has already been applied to a comparison, the fewer potentially-winning
relationship/relatee correspondences there will be. This is because the lower and upper bounds
of the correspondence scores will define a much smaller error range, and so there will be fewer
potential winners that need to be evaluated. Conversely, the score for a low-spread comparison
is less reliable, and so there will be more relationship/relatee correspondences that need to be
evaluated, but these can be evaluated at significantly less cost.

The algorithm is ‘any-time’.

The incremental-spread algorithm satisfies the requirement for an ‘any time’ matcher, since if
a comparison is interrupted at any point, the best estimate based on the comparisons performed
so far is available. It also enables the amount of effort applied to a comparison to be explicitly
controlled, thus allowing rough and rapid matching if necessary. It is also guided completely
by the structure of the objects themselves, via relationships.

4.4. THE MATCHING ALGORITHM 173

Since each increase in spread-effort has less effect on the score than the previous increase
(because distant object correspondences contribute less to the similarity score than nearby
object correspondences), an adequate measure of similarity for basic classification is often
obtained from just a 2 or 3 spread comparison. This characteristic of the algorithm is based on
the assumption that objects are defined primarily by their ‘closest’ details in the object graph.

Global consistency is not enforced.

Section 4.3 discussed how the definition of object similarity in GRAM does not require global (or
even local) consistency between object correspondences. Consequently, the incremental-spread
algorithm does not enforce consistency. Each comparison is performed independently from
other comparisons, apart from making use of their results (in the manner of a backward-chaining
rule-evaluation system). This makes the algorithm amenable to a parallel implementation to
give significantly greater efficiency. Future versions of GRAM might explore this.

4.4.3 An example.

This section presents a simple example of the matching process for the comparison of the
objects tvmainl and tvmain2 in Figure 4.37. Object graphs for the two televisions are also
shown. This comparison as chosen, rather than the tv1:tv2 comparison, because it involves
context matching. Although the graphs are of two instances, they can also be interpreted as
graphs of concepts in concept-memory. It is assumed for simplicity that the buttons objects are
defined only in terms of a single multi-relationship to a button object, without atypical subparts
being included.

The trace of the search below does not show the actual similarity scores, since these are not
important here. To avoid clutter, the trace only includes invocations of the matcher that require
additional work to be performed. In other words, if a comparison requires a similarity score
for a pair of relatees that have already been compared to the required spread effort, then that
invocation of the matcher is not shown in the trace. The indentation indicates which invocations
were called from within which comparison.

It begins by doing a 1-spread comparison of tvmainl and tvmain2, and then a 2-spread
comparison, which invokes a number of 1-spread comparisons between its parents, neighbours,
and subparts. Some of these 1-spread comparisons can make use of the 1-spread similarity score
for tvmainl and tvmain2, and can also make use of the 1-spread scores for the comparisons
above them in the trace, hence the scores will actually be more accurate than a 1-spread
suggests.

A 3-spread comparison of tvmainl and tvmain2 then applies a 2-spread comparison to the
parent, neighbour, and subpart relationship/relatee correspondences that are potential winners.
Most of these do not require much effort, since 1-spread scores for their relationship/relatee

174 CHAPTER 4. THE MATCHER

correspondences are already available. The only new correspondences identified are between
the aerial subcomponents.

In the 4-spread comparison of tvmainl and tvmain2, even fewer correspondences need to
be considered, since the others can be confidently considered non-potential winners. Most of
those that do need to be considered do not have to spread far, since scores are already available
at the required spread level.

Applying 5-spread, 6-spread, etc would not change the score significantly, since no new
correspondences are identified, and most of the comparisons performed already have a higher
accuracy that their spread-level indicates, since they have been able to make use of existing
relatee similarity scores. This would not be the case if there was more context surrounding the
televisions, unless scope-restriction was being employed.

1-spread (tvmainl, tvmain2)
2-spread (tvmainl, tvmain2)
1-spread (tv1, tv2) (uses the I-spread tvmainl-tvmain2 score)
1-spread (box1, box2) (uses the 1-spread tvl-tv2 score)
1-spread (screenl, screen2)
1-spread (box 1, screen2)
1-spread (screenl, box2)
1-spread (buttons], buttons2)
1-spread (screenl, buttons2)
1-spread (buttons], screen2)
1-spread (aeriall, aerial2)
1-spread (aerialbasel, aerialbase2)
1-spread (llegl, lleg2)
1-spread (rlegl, rleg2)
1-spread (llegl, rleg2)
1-spread (rlegl, lleg2)
(many of these can now be rejected as potential winning correspondences)
3-spread (tvmainl, tvmain2)
2-spread (tv1, tv2) (uses the 2-spread tvmainl-tvmain2 score)
2-spread (box 1, box2) (uses the 2-spread tvi-tv2 score)
2-spread (screenl, screenZ2)
2-spread (box 1, screen2)
2-spread (screenl, box2)
2-spread (buttons1, buttons2)
2-spread (aeriall, aerial2)
1-spread (aerialleft], aerialleft2)
1-spread (aerialleft], aerialright2)
1-spread (aerialright2, aerialleft])
1-spread (aerialright2, aerialright2)
2-spread (aerialbasel, aerialbase2)
2-spread (llegl, lleg2)
2-spread (rlegl, rleg2)
2-spread (llegl, rleg2)

4.4. THE MATCHING ALGORITHM 175

2-spread (rlegl, lleg2)
4-spread (tvmainl, tvmain2)
3-spread (tv1, tv2)
3-spread (box1, box2)
3-spread (screenl, screen2)
3-spread (buttons1, buttons2)
3-spread (aeriall, aerial2)
2-spread (aerialleft], aerialleft2)
2-spread (aerialleftl, aerialright2)
3-spread (aerialbasel, aerialbase2)
3-spread (llegl, lleg2)
3-spread (rlegl, rleg2)

4.4.4 Level-hopping is implicitly performed.

Section 4.2.4 discussed the level-hopping problem that occurs when two similar objects have
been represented as different decomposition hierarchies such that corresponding components
are not on the same level. Forexample, the two televisions in Figure 4.38 have been decomposed
differently, so that in tv] the main object is a subpart of the mainplus object which includes the
main part of the tv and the left and right legs. In tv2, the legs are considered to be subparts of
the root object tv2, and there is no mainplus object. If a top-down search was employed, by
finding correspondences at each level of the hierarchy, the correspondences between the legs
and the main objects could not be found. However, GRAM’s matching algorithm allows these
correspondences to be found via the traversal of neighbour relationships, since it spreads in all
directions through the object graphs.

This is shown by the abbreviated trace below. When spreading from the tv1 and tv2 compar-
ison, the correspondence between mainl and main2 is not found. However, when performing
the comparison between aeriall and aerial2, the correspondence between mainl and main2 is
found via neighbour relationships. This comparison then also leads to the legs being compared.

However, the tvl and tv2 comparison will still have a poor similarity score, since the
mainl:main2 comparison does not contribute to it directly (only indirectly, via the aerial
similarity score. This is resolved by augmentation techniques described in detail later. In brief,
when reevaluating the tv1:tv2 comparison to obtain its 3-spread score, the matcher notices that
the subpart main2 has been matched well with mainl. This causes it to try and create a subpart
relationship between tv1 and mainl, which consequently can be used to improve the score.

1-spread (tvl, tv2)

2-spread (tvl, tv2)
1-spread (mainplus1, main2)
1-spread (aeriall, aerial2)
1-spread (aeriall, llegs2)
1-spread (aeriall, rlegs2)

3-spread (tvl, tv2)

176 CHAPTER 4. THE MATCHER

|aerialbasel

Figure 4.37: Object graphs for two televisions.

4.4. THE MATCHING ALGORITHM 177

2-spread (mainplus1, main2)

2-spread (aeriall, aerial2)
1-spread (mainl, main2)

4.4.5 Disjunctive structures and contexts are also evaluated using incremental-
spread.

This section describes the method by which the matcher compares disjunctively defined con-
cepts, based on the definition of disjunction similarity given in section 4.3.9.

If the matcher is comparing a concept and an instance for which the structure of the concept
is described disjunctively, then each disjunct (i.e. subconcept) is matched against the structure
of the instance, using structure-only scope restriction. The score of the best pairing is used
as the structure similarity score (perhaps combined with the winning correspondence scores
for any partial set of subpart relationships also included in the structure description). If both
objects are disjunctively defined concepts, then all pairings of disjuncts are compared, and the
winners chosen.

The disjunct pairings are evaluated using whatever required-spread s currently being applied
to the object comparison, and thus the winning pairing may change as the spread increases.

The method as explained above suggests that all disjunct pairings are reevaluated for every
increased spread-effort. However, efficiency is improved by employing the same pruning
strategy as for evaluating relationship/relatee correspondences: Since each disjunct comparison
is an ordinary object comparison, with lower and upper bounds on its similarity score stored in
its object-cnote, these bounds can be used to determine whether a disjunct pairing is potentially
a winning pairing, and if not, it need not be reevaluated. If, later, the score of the winning
pairing drops sufficiently, then it may be reevaluated.

The above method (which is based on the definition of disjunction similarity given in section
4.3.9) is also applied to concepts that have disjunctive contexts.

4.4.6 Scope Restriction.

A requirement of the matcher is that it should be possible to restrict the scope of the match
by indicating which objects in the object graphs are to be compared or ignored. This is most

178 CHAPTER 4. THE MATCHER

MAINPLUS1

parent relationship and
subpart relationship.

...... neighbour relationship.

Figure 4.38: The level-hopping problem when matching two televisions.

4.4. THE MATCHING ALGORITHM 179

commonly required for performing a structure-only or context-only comparison, although other
possibilities (such as a partial-context or partial-structure comparison) must also be supported.

Section 4.3.7 discussed how similarity can be measured using such scope-restriction. To
measure structure-only similarity (or context-only similarity) the simplest method is to just
ignore the context (or structure) description of the two objects being compared. However, this
is inaccurate because the subparts (or neighbours) may have relationships to objects that are
not within the substructure (or context) of the two objects. Therefore, as discussed in section
4.3.7, it is necessary to identify all of the objects that are “in scope”, so that the matcher can
ignore all relationships to objects that are out of scope. We now consider how this is done, and
some of the problems with this method.

In the case of a structure-only comparison, the matcher traverses all subpart relationships of
the two objects being matched, marking each object reached as being in-scope. For a context-
only comparison, it does the same, except that it marks the objects as being out-of-scope, and
the search process ignores relationships to objects that are marked as such. In other words,
there are two alternative ways of marking and of ignoring objects.

One limitation of this scheme is that it does not account for the structure and context properties
of the objects being matched. In particular, context properties include profile attribute vectors
that describe the context of an object in summary form, and therefore, when performing
a structure-only comparison of two objects, some of the values within the profiles of their
subpart objects should be ignored (or the profiles recomputed). Currently this is not done by
GRAM.

Another problem with the method occurs in the case of a structure-only comparison of a con-
cept that has direct or indirect subpart concepts that also define the context of the concept. For
example, the concept lecture-room-chair and its subcomponent concepts might have neighbour
relationships to themselves, defining the typical relationships between lecture-room-chairs.
This is shown by the concept graph at the top of Figure 4.39, which is formed from the row of
chairs. Suppose it is to be matched with the chairl object using structure-only similarity. The
relationships from lecture-room-chair to itself can easily be ignored by ignoring the entire con-
text description of the root objects of the match, but this is not possible for the subcomponent
concepts (such as seat and seatl). GRAM does not explicitly distinguish between relationships
that are ‘typical-inter-member’ relationships and ordinary relationships. Therefore, using the
scoping method described above, the typical-inter-member relationships will not be ignored
by the matcher, since they refer to objects that are in-scope, and so the measure of structure
similarity for the chair descriptions will be slightly inaccurate.

One solution to the problem is to only mark instance objects as in-scope, and perform
the structure-only comparison by assuming that concept objects have a partial interpretation.
This means that the similarity score will not be negatively affected by additional out-of-scope
concept relationships (such as typical inter-member relationships) that do not correspond with
the in-scope instance relationships. However, this leads to further inaccuracies, since it will
not detect missing instance relationships.

A better solution would be to extend the representation slightly so that it does distinguish

180 CHAPTER 4. THE MATCHER

between the two kinds of relationships. Each typical-inter-member relationship would have to
specify which root concept it is associated with. For example, the neighbour relationship from
rleg to lleg (of the typical ‘next’ chair in the row) would specify that it is a relationship to a
lleg of a different lecture-room-chair. ([Winston, 1975] seemed to represent typical-member
descriptions of a group in a manner similar to this.) Thus, scope-restriction in this case could
ignore such relationships since all context of chair is to be ignored. This extension to the
representation could also help to resolve ambiguities when matching such relationships, and to
prevent relationships of different kinds being generalised. Future work on GRAM may address
this.

back 1 arm1 seat] tlegl — lleg1 |

Figure 4.39: A scope-restriction problem.

4.4.7 Augmentation: Dealing with missing relationships and relatees.

Section 4.1.3 stated that the matcher should not assume that two objects being compared are
described canonically. In particular, if the objects are similar, but have been partitioned into
different decomposition hierarchies, or have descriptions with different relationships made
explicit, then the matcher should still be able to determine that the objects are in fact similar.

Section 4.4.4 has addressed this problem in part by showing how correspondences can be

4.4. THE MATCHING ALGORITHM 181

found between objects that are on different levels of the decomposition hierarchy. We now
consider when and how mismatches due to non-canonicality can be resolved by creating new
relationships and relatees to improve the accuracy of a similarity score. Such augmentation
could be called expectation-driven perception, since it causes GRAM to ‘see’ new relationships
or composite objects that it expects on the basis of an existing concept or another object.

Figure 4.40 illustrates a number such situations requiring augmentation. For example, AQhas
a subpart relationship with A9, which is a composite object consisting of A2and A3. Object BO
does not include such a composite object, even though B2 and B3 clearly correspond with A2
and A3. This situation can be viewed in two ways. On the one hand, A0 is missing the direct
subpart relationships to A2 and A3. On the other hand, B0 is missing a composite subpart.
Thus, improved similarity evaluation requires either a new composite part to be created, or two
new subpart relationships to be created, or preferably both.

A similar situation occurs for neighbour relationships. For example, A1 and A5 have a direct
neighbour relationship, but B1 and BS do not, since B5 is so small that it is not considered
sufficiently ‘neighbourly’ for an explicit relationship to be included. Thus the matcher needs
to create a new neighbour relationship so that the similarity score can be more accurate.

Figure 4.40: Matching may require augmentation.

The main problem to be addressed in this section is how the matcher should decide when
and in what way to augment a description with a new relationship or composite objects. More
specifically, when matching two objects X1 and Y1, if a relationship of X1 to a relatee X2
does not have a good correspondence with any relationship in object Y1, how does it know
which relatee of Y1 to create a relationship with in order to establish a correspondence, and
when this should be done? Likewise, how does it know which objects could be combined into
a composite object?

182 CHAPTER 4. THE MATCHER

being matched
- T
unmatched 9
(or poorly matched) X2 !
‘ relationship

New relationships can be created on the basis of existing relatee comparisons, or an
explicit search.

One solution to relationship augmentation is that if X1’s relatee X2 (in the above example)
has been previously matched with some object Y2, and with a reasonably high score, then a
relationship between Y1 and Y2 can be created and compared with the X1-X2 relationship. An
example of this strategy was briefly discussed in section 4.4.4 with regard to the level-hopping
problem when matching tv1 and tv2. Other examples will be given later.

Another strategy is to actively search for an object that is implicitly related to Y1 in the same
way that X2 is explicitly related to X1, and which is similar to Y2. However this should only
be done if X1 and Y1 are already known to be quite similar, otherwise every weak comparison
could lead to many new relationships being formed. Examples of this strategy will be given
shortly.

The creation of new composite objects is a more complex problem for which a solution has
not been fully implemented.? The decision to create a new object involves noticing that a set
of objects in one description matches a set of several objects in the other description, and that
only one set has been combined into a single composite object. This signals the matcher to
request the creation of a new object in order to establish a better match.

Spurious augmentation should be avoided.

The matcher should not arbitrarily create new relationships or composite parts in the object
graphs, in the hope that augmentation might improve similarity, since spurious augmenta-
tion can clutter or distort the original description, as well as requiring additional computa-
tion. If many additional relationships were added to an object description, then the matcher’s
incremental-spread algorithm would have to perform considerable more work since it would
have to find relationship/relatee correspondences for all of the new relationships, even if they
are obscure or ‘weak’ relationships (unless it employed a strategy of explicitly ignoring ‘weak’
relationships.)

However, new relationships can be created for purposes of similarity evaluation without

actually modifying the object graph. In fact, the current version of GRAM does not change the
object graphs at all. Rather, new relationships are stored with the object-cnotes as required, and

2A basic mechanism for creating new objects has been implemented, but I have not yet implemented the
mechanism for incorporating a new object into the current match process, since this requires modifying existing
object-cnotes. This is not a difficult problem, and will be implemented in future versions.

4.4. THE MATCHING ALGORITHM 183

it is up to the generaliser to decide what to do with them. Thus the incremental-spread search
only traverses relationships that were present in the original descriptions, and only uses new
relationships to obtain more accurate similarity scores. Augmentations are therefore ‘invisible’
to the search process, although they are used to evaluate similarities.

Only instance descriptions are augmented.

In addition to the above constraint, GRAM only produces new relationships between instances,
not concepts. This is because all instances of an instance graph are defined within a single
visual coordinate system, such that relationship details can be computed easily from absolute
coordinates, orientations, and dimensions, or can be requested directly from the vision system.

This is not the case for concepts, for which creating new relationships is computationally
more complex. Concept relationships can only be computed on the basis of other (perhaps
generalised) relationships. Future versions of GRAM may include this capability. For example,
suppose the system observes chairl next to filing-cabinetl, and then compares the chair with
the known concept chair. Chairl has a neighbour relationship to filing-cabinet which has
no corresponding relationship in the chair concept, as shown in Figure 4.41. However, if
the chair concept has a relationship with the concept desk, which has a relationship with the
concept filing-cabinet, then a generalised relationship between chair and filing-cabinet could be
computed on the basis of those relationships, and then compared with the chairl—filing-cabinet2
relationship.

concept memory instance-graph ‘

|
| matched_ |
Pl - i N
T>[d‘35k17>l filing—cabinet] filing—cabinet1
\\ e s
~— . - #
~——_ __ __ _matched -

— e . (S

A relationship from concept chair to filing—cabinet
could be computed from relationships rl and r2,
and the properties of chair and filing—cabinet.

Figure 4.41: Adding a relationship between concepts.

Augmenting to match a parent relationship.

Although the general strategy for relationship augmentation is the same for parent, neighbour,
and subpart relationships, the specifics of the process differ for each type. This section considers
parent relationship augmentation in more detail.

Figure 4.42 shows two chairs that have different subpart hierarchies and, as a consequence,

different relationships. Chairl has an additional composite object, back+legl, and chair2 has
an additional composite object, wholeseat?2.

184 CHAPTER 4. THE MATCHER

Suppose the matcher is comparing seat! and seat2, the former of which has a direct parent
relationship to chairl, and the latter only has a parent relationship to wholeseat2. Based on
the existing relationships, the similarity score is weaker than it could be if an additional parent
relationship is added which corresponds with the seatl—chairl relationship. This requires
finding an indirect parent of sear2 which matches chairl.

The first strategy for finding a matching indirect parent is to make use of existing comparisons
with chairl, by looking at the object-cnotes that are associated with it. Each object that chairl
has already been found to be similar to is checked to see whether it is an indirect parent of
seat2. If so, then a parent relationship can be created between seat2 and that object. It is
straightforward to determine whether an object is an indirect parent of another object, simply
by climbing the path of parent-relationships of the latter object. This method of augmentation
is therefore very inexpensive, but does rely on already having matched the direct parent (chairl)
with the indirect parent (chair2).

The second strategy for finding the required indirect parent is to simply compare chairl with
all indirect parents of seat2. Since objects usually have only one or perhaps two parents, this
strategy is not overly expensive, especially if heuristics are used to constrain the search, perhaps
by terminating the climb up the hierarchy if the size of the indirect parent is obviously too large
for a good correspondence to be possible.

This second method is only applied if the current similarity score (of seatl and seat2) is
good enough to justify a more thorough comparison using augmentation. More specifically,
the score should be better or almost as good as any other competing correspondence (such as
the seatl:wholeseat2 correspondence).

Both of the above situations are illustrated in Figure 4.43, where chair2 is found either on
the basis of existing object-cnotes or by an explicit search via parent relationships. The new
relationship created is shown as a heavy line.

A different kind of mismatch situation is where there is no corresponding indirect parent.
For example, when matching Ileg! with lleg2, the llegl’s parent relationship to back+legl is
not matchable with any of the parent relationships of Ileg2, and there is no indirect parent of
lleg2 which matches back+leg1. This mismatch is only resolvable by creating a new composite
object consisting of lleg2 and back2.

As stated earlier, GRAM does not yet have the capability to do this fully. It requires noticing
that all of the subparts of back+legI (i.e. llegl and backl) have been matched well with objects
of the other chair (i.e. lleg2 and back2 (assuming that the leg match is sufficiently strong
even without the parent relationship correspondence)), and creating a new composite object
consisting of those corresponding objects (Ileg2 and back?2). This also requires the addition of
new relationships in the object graph. Furthermore, it requires that the new composite object
be incorporated into the object-cnotes of all of its related objects, and this will result in the
leg1-leg2 comparison having an improved score.

One more kind of parent mismatch needs to be considered, and that is when a parent relation-

ship of an instance object does not have any acceptable correspondence with relationships of
a concept. If we again assume for the sake of this example that chairl, backl, etc are concepts

4.4. THE MATCHING ALGORITHM 185

|
whdleseat2

Figure 4.42: Two chairs with unmatched relationships.

______]chair2|
- ~ Best existing match with chairl, . ;
chairl already matched earlier, The new parent relationship
OR by explicit search up the wholeseat2
parent branch.
= it
Currently being matched

Figure 4.43: Creating a new parent relationship.

rather than instances, then this mismatch situation occurs when comparing seatl and seat2,
for which the seat2-wholeseat2 relationship does not match any of the relationships of seatI.
Resolving this would involve creating a new concept in concept-memory, consisting of the
concepts seat2 and cushion2 as subparts, and this is not permitted. It would only be meaningful
if these two concepts had neighbour relationships between them, and if so, the properties and
relationships of the composite concept would have to be computed on the basis the properties
and relationships of the seat2 and cushion2. The current version of GRAM does not support
this.

186 CHAPTER 4. THE MATCHER

However, it is worth noting that when creating a generalisation of seatl and seat2 (or
generalising seatl to cover seat2), new objects might be added as optional features, so that
wholeseat2 would become an optional parent of the new concept, and this would allow a future
observation of a chair containing a ‘wholeseat’ composite object to be matched reasonably
successfully, without having to perform augmentation.

Augmenting to match a subpart relationship.

Most of the above discussion is also applicable when there are unmatched subpart relationships.
This is illustrated in Figure 4.44 where the subpart relationship between chairl and seatl
requires augmenting the chair2 description with a direct relationship to seat2.

The main difference between subpart augmentation and parent augmentation is that GRAM
does not perform any explicit search for a corresponding indirect subpart because such a search
would require traversing down the entire subpart hierarchy, at least to some level, rather than
merely up a single non-splitting (or minimally-splitting) parent branch. For example, when
comparing chairl and chair2, finding a correspondence with the unmatched subpart lleg2 would
require matching it with all subparts of chairl.

Therefore, augmentation is only done when the unmatched subpart has already been matched
well with an indirect subpart of the other object. It is inexpensive to test whether an object is
an indirect subpart of another object, since this only involves a tree traversal without any object
or relationship comparisons required.

The example in Figure 4.44 actually has an important difference from the parent-relationship
example in Figure 4.43. The difference is that the subpart relationship from chairl to seatl
does have a well-matching correspondence with a subpart relationship of chair2, namely with
wholeseat2. Therefore it would seem that augmentation would not be performed. However,
GRAM notices that seat] matches better or almost as well with seat2 than with wholeseat2, and
therefore will still create a new relationship in order to try improving the similarity score. In
other words, it creates new relationships to any objects that have already been matched better
(or almost as well) with any of the subparts of chairl.

One characteristic of GRAM is that augmentation can either work from the bottom up, as when
creating new parent relationships, or top-down as when creating new subpart relationships.
It may also work ‘sideways’ via neighbour relationships, as discussed in the next section.
The behaviour of the incremental-spread process determines which augmentations are done,
and when. If two objects low in the part hierarchy are processed for augmentation before
the higher objects, but after the higher objects have at least been partially matched, then
parent relationships will be created first. Conversely, if the higher objects are processed for
augmentation first, but after the lower objects have been matched sufficiently to justify a
correspondence, then new subpart relationships are created first.

4.4. THE MATCHING ALGORITHM 187

: ched N :
Currently being MBI T e = chair2
— — - = - . .
[chairl] The new subpart relationship
| . -
Best match with seatl,
already matched earlier.

Figure 4.44: Creating a new subpart relationship.

Augmenting to match a neighbour relationship.

An object can be augmented with neighbour relationships in much the same manner as for
subpart relationships. For example, in Figure 4.42 lleg] has an explicit neighbour relationship
with rlegl, but lleg2 does not have a neighbour relationship with rleg2 (perhaps because they
are not parallel). When matching lleg! and lleg2, if we assume that rlegl has already been
matched (at least partially) with rleg2, then this justifies creating a relationship between Ileg2
and rleg2 to improve the accuracy of the similarity score, as shown in Figure 4.45. However,
this is only done after making sure that rleg2 is not a subpart (direct or indirect) of lleg2, or vice
versa, since this would indicate that a neighbour relationship between them is not meaningful.

Neighbour relationship augmentation is only done on the basis of already-matched indirect
neighbours, and not by doing an explicit search, since too many comparisons would be re-
quired (unless complex search-pruning heuristics were applied). Also, in most situations, the
incremental-spread process tends to find all reasonable correspondences anyway. In fact, each
time more spread effort is applied to a comparison, more correspondences with unmatched
relatees will become available to justify augmentation where it is necessary.

Currently being matched

S ——— — — —
e _——

The new neighbour relationship

Best match Eth—rEgl_, -
already found earlier.

Figure 4.45: Creating a new neighbour relationship.

188 CHAPTER 4. THE MATCHER

4.4.8 Using the AKO hierarchy.

Section 4.3.10 discussed how an estimate (or rather, a lower or upper bound) of the similarity
of two objects can be defined in terms of previously computed similarity scores for their
superconcepts or subconcepts. This section looks at a particular situation for which this can be
applied.

Suppose the system has observed the four chairs at the top of Figure 4.46 (i.e. chairl,
chair4, chair4, and chair4), only the last of which has an arm. To form a generalised concept
(chair) from these, one of the techniques used by GRAM’s generaliser when dealing with a
new unmatched object (such as arm4) is to create a relationship from the generalised object
to the unmatched and ungeneralised instance object (such as from chair to arm4), and vice
versa, as shown in the figure. This avoids the need to create a new copy of the unmatched
instance object (arm4) to be a relatee of the generalised concepts. (This process is discussed in
chapter 5). Although this strategy is convenient for the generaliser, and requires less memory
for representing the concept, it creates difficulties for the matcher:

Suppose the system has to compare the concept chair with a newly observed object chair5,
shown at the bottom of the figure. Two possible situations are considered below, each of which
illustrates a different way in which the AKO hierarchy can be used.

Firstly, suppose the matcher compares chair with chair5 using a 1-spread and then a 2-spread.
This will involve matching arm4 with arm5, back and backS5, and other pairs of their subparts.
The problem is that to match arm4 with arm35, the matcher will spread throughout the graph
of chair4 subcomponents, comparing them with chair5 components, while simultaneously
spreading throughout the generalised chair subcomponent concepts. It is comparing chair5
with the entire chair4 instance as well as with the generalised chair, all for the purpose of
evaluating the arm4-arm5 similarity.

In some sense this is appropriate, since it could be the case that arms can only be on chairs that
are identical to chair4 (with its particular back and leg lengths), and thus the matcher should
only give a perfect score to the arm4-arm5 comparison if the context of arm5 perfectly matched
the context of arm4. This context similarity score would not contribute significantly to the
chair—chair5 match, since the direct subpart correspondences contribute much more strongly,
and this is desirable because we want the chair concept to capture a transfer of information
amongst the instances, otherwise the chair concept may as well be represented as a disjunction
of four instances. However, the problem of the search effort being doubled as a consequence
of the chair-arm4 relationship still remains.

A solution to this is to make use of superconcept and subconcept comparisons to obtain
similarity estimates in the manner described in section 4.3.10. For example, the steps below
shows how chair could be matched with chair5. The 2-spread comparison initially computes
scores for a variety of relationship/relatee correspondences, including arm4:arm5. The 3-spread
then produces a more accurate score for the back:back5 comparison. Later, the arm4:arm5
is evaluated more thoroughly, and this requires a 1-spread comparison of back4 and backs5.
However, since back4 is a subconcept of back (assuming this AKO link is created when the
chair concept is formed), the matcher should be able to produce a more accurate similarity

4.4. THE MATCHING ALGORITHM 189

AKO hierarchy: i

back

N7
/\\iacktl

Figure 4.46: Using subconcept or superconcept similarity scores.

score on the basis of the previous back:back5 comparison. This may enable the matcher to
immediately reject other otherwise potentially-winning correspondences, such as back4:lleg5.
In other words, more accurate scores are obtained sooner than would be possible without
making use of the subconcept to superconcept similarity scores.

190 CHAPTER 4. THE MATCHER

l-spread (chair, chair5)

2-spread (chair, chair5)
l-spread (back4, back5)
l-spread (back4, Illeg5)

l-spread (arm4, arm5)
3-spread (chair, chair5)
2-spread (back, back5)

2-spread (arm4, arm))
l-spread (back4, back5) (should make use of (back, back5) score.)
l-spread (back4, Ileg5) (should be immediately rejectable.)

The inverse process could also occur if the search was performed in a different order: The
back:back5 comparison could make use of the score of the back4:back5 score, since back4 is
a subconcept of back.

The process discussed in this section is interesting from a cognitive science point of view
because it still allows an instance to be matched simultaneously with general and specific
descriptions in concept-memory. This seems (from personal introspection) to be the kind
of process that humans perform: when we observe some object, we not only recognise its
generic category, but we also simultaneously notice correspondences between more specialised
concepts or particular previously-observed instances.

This thesis has not significantly explored the implications of this aspect of the matching
strategy since it requires a more elaborate system for creating and maintaining AKO hierarchies.
Currently GRAM only creates concept hierarchies in a very simplistic manner.

4.4.9 Fit-scores are obtained by traversing winning correspondences in the cnote
graph.

During the match search, the only similarity scores that are computed are proximity-scores,
since these are required for finding correspondences. However, once the match has completed,
the generaliser needs fit-scores for determining whether existing concepts can be modified
to cover a new instance, or whether a new concept should be created. To obtain a fit-score
for a cnote, the matcher first computes a fit-score based on property similarity and winning
relationship/relatee correspondences scores. This score is stored in the cnote to prevent cycles.
Then the fit-scores for pairs of relatees (for the winning relationship/relatee correspondences)
are obtained by recursively invoking the fit-scoring mechanism. These scores can then be

4.4. THE MATCHING ALGORITHM 191

used to compute a more accurate (and recursively defined) fit-score. If the objects are defined
disjunctively, then this must also be taken into account.

This is similar to the way the matcher obtains proximity-scores, except that it is simpler, and
most importantly it only evaluates scores for the already-found winning relationship/relatee
correspondences, and so the process is just an inexpensive traversal of the cnote graph.

4.4.10 Details of the algorithm.

The previous sections have discussed the basic match algorithm and various specific compo-
nents of it. This section now presents the algorithm as whole, incorporating all of the details
that have been described.

Figure 4.47 shows the main steps of the MATCH procedure. Its arguments include the two
objects to be matched (which are normally a concept and an instance, but could be two concepts
or two instances), and several control parameters. The first control parameter, required-spread,
indicates the spread-effort to be applied. The scope and scope-mark parameters specify what
kind of scope-restriction (if any) is required.

The rejection-cutoff parameter indicates that if the upperbound score of the comparison
drops below this level, then no further evaluation should be performed. The acceptability-
cutoff parameter indicates that if the lowerbound score of the comparison rises above this level,
then the correspondence can be considered acceptable, and no further evaluation needs to be
performed.

The algorithm begins with a couple of preliminary tests to decide whether a match is in fact
necessary:

First it tests whether object] and object2 are the same object. If they are, then they obviously
match perfectly, and so a ‘dummy’ object-cnote with a score of 1 is returned. This may occur
if we are matching two components within the same scene, both of which have relationships
to same object.

Second, the matcher tests whether object2 is a subconcept (directly or indirectly) of objectl,
and if so, it returns a score of 1. This is because GRAM currently considers all subconcepts as
having a perfect match with their superconcepts. A more accurate score would be based on the
typicality of object2 within object].

Third, the matcher tests whether object] and object2 have already been matched. If so, there
is no need to create a new object-cnote. However, the recorded object-cnote might not have
been evaluated to the level of required-spread, in which case further matching using greater
spread-effort must be performed.

If an object-cnote does not already exist, then one is created by CREATE-CNOTE, which is
shown in Figure 4.49. This compares the two objects using a 1-spread effort, by comparing their
properties and in-scope relationships (for each possible axis correspondence). Relationships

192 CHAPTER 4. THE MATCHER

may need to be coerced to account for the axis correspondence before comparing the attributes.
The procedure does not compare relatees, although it makes use of scores for any pairs of
relatees that have already been compared. If the objects are defined disjunctively, then pairs of
disjunct subconcepts are matched using a structure-only or context-only 1-spread comparison,
as discussed in section 4.4.5. Upper and lower bounds on similarity scores are also computed.

Two more tests are then applied. The first test considers whether object2 has already been
matched with a direct or indirect superconcept of object] (assuming object! is a concept). If so,
the recorded similarity score, combined with the typicality of object] within the superconcept,
can be used as an upperbound for the objectl:object2 comparison, as discussed in section
4.3.10. However, it only changes the upperbound of the object-cnote if it is lower than the
current upperbound. The second test checks whether object2 has already been matched with a
direct or indirect subconcept of objectl, and if so, the recorded similarity score can be used as
a lowerbound for the objectl:object2 comparison, if it is higher than the current lowerbound.

The main loop of the algorithm then begins, which incrementally applies more effort to
comparison, by applying SPREAD-CNOTE, and abandons the loop when the required spread
has been completed, or when the scores satisfy the rejection-cutoff or acceptability-cutoff
requirements.

The SPREAD-CNOTE procedure, shown in Figure 4.48, reevaluates parent, neighbour,
and subpart relationship/relatee correspondences, recomputes similarity scores, and augments
descriptions if necessary.

First it attempts to augment the instance with new relationships if necessary and if possible,
as follows: For each in-scope relationship of each object, it considers each of the existing
object-cnotes of the relatee. If that relatee is matched sufficiently well with an indirect relatee
of the other object, then a relationship between the other object and that relatee can be created
and matched, since it might be a potentially winning relationship/relatee correspondence. This
process was discussed in section 4.4.7. Relationships may also be created on the basis of an
explicit search for matching relatees, but this is only done for parent relationships.

The next step is to reevaluate each potentially winning relationship/relatee correspondence
using the required spread (in new-spread). This is done by recursively invoking the MATCH
procedure to compare the relatees. This may immediately return if the relatees have already
been matched to the required spread level.

If the structure (or context) of one of both objects is defined disjunctively, then the pairings of
disjunct correspondences (i.e. subconcept correspondences) are reevaluated using the required
spread and using structure-only or context-only scope.

When all potentially winning relationship/relatee correspondences and disjunct correspon-
dences for the structure and/or context of the two objects have been reevaluated, new structure
and/or context similarity scores are computed, based on the set of winning correspondences.
An overall similarity score is computed from these. The interpretation of the structures or
contexts must be taken into account when evaluating these scores, as explained in section 4.3.9.

If the structure and/or context of one or both objects is disjunctive, then disjunct pairings are
also evaluated by applying CREATE-CNOTE to each pairing.

4.4. THE MATCHING ALGORITHM 193

MATCH (objectl, {the concept (or perhaps an instance) }
object2, {the instance (or perhaps a concept)}
required-spread, {the spread-effort to be applied }
scope { complete, structure-only, context-only, as-marked}
scope-mark, {don’t process objects with/without this mark}

rejection-cutoff {immediately abandon the match if the
upperbound score drops below this. Default=-99}

acceptability-cutoff {immediately quit the match if the
lowerbound score rises above this. Default=+99}

)

IF object] and object2 are the same object THEN
RETURN a cnote with score of 1.

IF objectl is a superconcept of object2 (direct or indirect) THEN
RETURN a cnote with score of 1.

IF object]l and object2 have already been matched THEN
cnote + the recorded cnote.

ELSE
cnote + CREATE-CNOTE (objectl, object2, scope-mark)

IF object2 has already been matched with a superconcept of object] THEN
upperbound <+ fn (similarity score (of superconcept and object2),
typicality (of objectl within superconcept))
cnote-upperbound + min(cnote-upperbound, upperbound)

IF object2 has already been matched with a subconcept of object] THEN
lowerbound « fn (similarity score (of subconcept and object2),
typicality (of subconcept within objectI))
cnote-lowerbound « max(cnote-lowerbound, lowerbound)

WHILE (cnote-upperbound > rejection-cutoff)
and (cnote-lowerbound < acceptability-cutoff)
and (cnote-spread < required-spread)

SPREAD-CNOTE (cnote, (cnote-spread + 1), scope, scope-mark
rejection-cutoff, acceptability-cutoff)

RETURN the cnote.

Figure 4.47: The MATCH Algorithm

194 CHAPTER 4. THE MATCHER

SPREAD-CNOTE (cnote, new-spread, scope, scope-mark,
rejection-cutoff, acceptability-cutoff)

IF scope is not structure-only: { reevaluate context similarity }
FOR each in-scope parent relationship of object]:

{ create new relationships if necessary, based on existing comparisons. }
IF object2 is an instance {i.e. is augmentable} THEN
FOR all cnotes involving parentl:
IF parent2 (of the cnote) is an indirect parent of object2:
IF potentially a winning correspondence
Create object2— parent2 relationship (but don’t add to the description)
Compute correspondence-score.
IF potentially a winning correspondence THEN
Add to the list of potential winning correspondence-cnotes.

{ create new relationships if necessary, based on explicit search. }
IF the objectl- parentl relationship has no good correspondence THEN
Explicitly search up parent relationships of object2.
If a good parentl: parent2 match is found THEN
Create object2— parent2 relationship.
Compute a correspondence-score.
IF potentially a winning correspondence THEN
Add to the list of potential winning correspondence-cnotes.

{ reevaluate relatee comparisons using increased spread. }
For each potentially-winning correspondence-cnotes for object]- parent]:
MATCH (parentl, parent2, (new-spread - 1), scope, scope-mark)
Recompute the correspondence-cnote score.

Repeat the above for in-scope parent relationships of object2
Repeat the above for in-scope neighbour relationships of objectl and object2
(but without the explicit search)

IF context] and/or context2 is defined disjunctively THEN:
For each potentially-best disjunct pairing (ob1,0b2):
Mark context using a new scope-mark.
MATCH (obl, ob2, new-spread, context-only, new-scope-mark,
lowerbound of best disjunct pairing (as rejection-cutoff),
1 (as acceptability-cutoff))

Compute a new context-score.
IF scope is not context-only { reevaluate structure similarity }
Repeat the above for in-scope subpart relationships of object] and object2.
IF structurel and/or structure? is defined disjunctively THEN:
Reevaluate disjunct pairs, as for context disjunction.

Compute a new structure-score.

Compute a new overall score for the cnote.
cnote-spread + required-spread

Figure 4.48: SPREAD-CNOTE

4.4. THE MATCHING ALGORITHM

CREATE-CNOTE (objectl, object2, scope, scope-mark)

Match the contexts
If scope is not structure-only

Compute similarity of context properties.

FOR each in-scope parent relationship of object!:
FOR each in-scope parent relationship of object2:
FOR each possible axis-correspondence:
relationship-score « similarity of the relationships
(coerce relationship2 if necessary)
Create a correspondence-cnote and compute similarity score.
(if relatees have been matched, use the similarity score)

Repeat the above for in-scope neighbour relationships.

IF one or both contexts are disjunctive:
Invoke CREATE-CNOTE for each subconcept pairing.

Compute the context-similarity score.
(using winning relationship/relatee correspondences)

| Match the structures

| If scope is not context-only
| Compute similarity of structure properties.
Repeat the above in-scope subpart relationships.

IF one or both structures are disjunctive:
Invoke CREATE-CNOTE for each subconcept pairing.

Compute the structure-similarity score.
(using winning relationship/relatee correspondences)

Compute the overall object similarity score.

Store the results in a new object-cnote.

Figure 4.49: CREATE-CNOTE

195

196 CHAPTER 4. THE MATCHER

Chapter 5

The Generaliser

This chapter addresses the problem of producing a generalisation from two concept or instance
descriptions, given a description of their comparison produced by the matcher. Various issues
are explored, and GRAM’s generaliser is described.

As discussed in chapter 1, the generaliser is to be part of a larger concept learning sys-
tem which updates concept-memory in response to observed objects. The learning system is
responsible for deciding which existing concepts are to be modified, or new concepts to be cre-
ated, and for performing appropriate generalisations by invoking the generaliser. The learning
system is also responsible for maintaining and reorganising concept-memory to ensure optimal
classification and learning performance. This may involve removing concepts that are no longer
useful; merging two or more concepts; splitting concepts into several subconcepts; removing
spurious low-frequency features from concept descriptions; and various other maintenance and
optimisation operations.

In a domain of complex structured objects, concept learning is by no means trivial, and
has not been significantly addressed in machine-learning research. Systems such as MERGE
and Labyrinth have addressed the problem to some degree, but the effectiveness of these
systems is limited by the limitations in their representation schemes, matching strategies, and
generalisation mechanisms, as discussed in chapter 2. Some of these limitations have been
addressed in the previous two chapters, and others (relating to generalisation) are discussed in
this chapter. The methods employed by GRAM’s generaliser are expected to provide a good
foundation for future development of a full learning system.

Organisation of this chapter.

Section 5.1 begins this chapter by defining the input and output requirements of the generaliser.
Section 5.2 then outlines the issues that have been addressed and the contributions of the
generaliser.

Section 5.3 presents an overview of the generalisation algorithm. The remaining sections
discuss particular components of the algorithm in more detail.

197

198 CHAPTER 5. THE GENERALISER

Section 5.4 explains how properties and relationships are generalised, or more specifically,
how attribute values are generalised, since all properties and relationships are represented by
attribute vectors.

Section 5.5 considers how the scope, or focus of attention, of the generaliser can be restricted,
if necessary. It also discusses how the generaliser decides whether to generalise a description
(of a concept or instance), and if so, whether the original description should be modified, or a
new concept description created.

Section 5.6 explains how unmatched relationship/relatees of a concept or instance are dealt
with by the generaliser.

Section 5.7 explores the problem of partial similarity and disjunct formation. More specif-
ically, it considers when and how context or structure disjuncts are formed if two objects are
similar in structure but not context, or vice versa.

Section 5.8 addresses the problem of ambiguities. It describes several different kinds of
ambiguity and the mechanisms that can be used to resolve them.

Finally, section 5.9 explains how the interpretation of a structure or context description
affects the way generalisation is performed.

5.1. INPUT AND OUTPUT. 199

5.1 Input and Output.

The input to the generaliser is a single object-cnote produced by the matcher, and the output
is a generalisation of the two objects in the cnote. This generalisation might either be a new
concept or one of the original objects, modified.

The input cnote specifies various similarity scores and the winning (and any marginally
losing) parent, neighbour, and subpart relationship/relatee correspondences. Figure 5.1 shows
an example of a cnote for the comparison between tvmainl and tvmain2. The dotted lines
between the relationship/relatees indicate the winning correspondences. In this example there
are no marginally losing correspondences.

5.1.1 The input is explicitly a single cnote, but implicitly an entire cnote graph.

Since each relationship/relatee correspondence in a cnote refers to another cnote that describes
the comparison of the two relatees, the input is, in effect, an entire cnote graph, rather than
a single cnote. The cnote graph for the tvmain example is given in Figure 5.2 in which each
node is a cnote, and each edge denotes a parent, neighbour, or subpart relationship/relatee
correspondence.

5.1.2 A “side effect” of a generalisation is many other generalisations.

The inter-dependency between cnotes means that a generalisation of two objects requires
generalisations of other pairs of objects. For example, to produce a generalisation of tvmainl
and tvmain2, the generaliser would have to obtain a generalisation of tvl and tv2, of llegl
and lleg2, and of the other pairs of corresponding parent, neighbour, and subpart relatees.
Therefore, although the output of the generaliser is a single cnote, it also produces other
generalisations as a “side effect”. Thus GRAM’s generaliser is required to deal with multiple
concept learning, although not to the extent that is required of a full concept learning system,
since the generaliser focuses its attention on a particular correspondence, while the full learning
system must deal with concepts and instances at a more global level.

5.1.3 Scope restriction parameters are required.

In addition to the input cnote, the generaliser also requires scope-restriction parameters that
specify how much of the cnote graph surrounding the input cnote should be generalised. For
example, the matcher may have been applied with a large spread, perhaps for the task of
classifying a complete scene and all of its components, but the generaliser may be required
to focus its attention on, say, the substructure and a small amount of the context of the two
objects of the input cnote. Conversely, the matcher may have been applied with a low spread,
and the generaliser is required to generalise with a higher spread, in which case it will have to
re-invoke the matcher on some or all of the cnotes in the cnote graph.

200 CHAPTER 5. THE GENERALISER

5.1.4 Parameters for determining generalisability and modifiability are needed.

An input parameter is also required that specifies the minimum similarity needed to justify
producing a generalisation of two objects. Likewise, another input parameter is needed to
specify the minimum similarity needed to justify modifying one of the original objects to cover
the other object, as opposed to creating a new concept. These parameters must be able to
be passed to the generaliser, rather than being predefined global parameters, since different
learning tasks will require different behaviour of the generaliser.

5.1.5 The input objects may be concepts or instances.

In most cases the generaliser will be required to generalise a concept to cover an instance,
or to create a new concept from two instances. However, it must also be able to produce a
generalisation from two generalised concepts. This is required when generalising two multi-
relationships (either of concepts or instances) since the relatee of a multi-relationship is always
a generalised concept. Concept—concept generalisation would also be required by the larger
learning system when reorganising concept-memory.

5.1. INPUT AND OUTPUT.

201

subpart relationship/relatees:

tvmainl -box]1 ——————————7—"" tvmain2 — box2
tvmainl - screenl ————

: tv2
aeriall aerial2
: aerialleft] - aerialrgt2
aerialrgtl aerialrgt2
\ Jleg] lleg2
rlegl rleg2
box1 screenl s coyhaid
The cnote for concept Al and instance Bl
overall similarity = 0.96
context similarity = 0.94
context—properties similarity = 0.93
structure similarity = 0.98
structure—properties similarity = 0.99
tvmainl: tvmain2:
parent relationship/relatees: parent relationship/relatees:
tymainl—-tyl ———————————— tvmain2 — tv2
neighbour relationship/relatees: neighbour relationship/relatees:
tvmainl - aeriall —————— — — — — — - tvmain2 — aerial2
tvmainl - aerialleftl — — — — — — — tvmain2 - aerialleft2
tvmainl - aerialrgtl — — — ___ __ __ _ tvmain2 — aerialrgt2
tvmainl —llegl —— ——— — —— —— — —. tvmain2 — lleg2
tvmainl —rlegl ———————————— tvmain2 — rleg2

subpart relationship/relatees:

——————— tvmain2 — screen2

Figure 5.1:

A cnote graph.

202

CHAPTER 5. THE GENERALISER

aeriall | =———=>|tvmainl f———=+| llegl === rlegl
tvmain2

aerialleft] f—>-{ aerialrgt] |—=>
aerialleft2 aerialrg(? |

screen|
screen?2

: object cnote

— = winning parent, subpart, or neighbour relatee/relationship correspondence

Figure 5.2: A cnote graph.

5.2. ISSUES AND CONTRIBUTIONS. 203
5.2 Issues and Contributions.

This section discusses the various issues of generalisation that are addressed in this chapter,
and outlines the main contributions of GRAM’s generaliser.

5.2.1 Over-generalisation and under-generalisation should be avoided.

The problem of over-generalisation is common to most machine learning systems. The problem
is accentuated in a structured domain such as GRAM because each concept is defined in terms
of other concepts, and therefore over-generalising one concept results in over-generalising
all concepts that are defined in terms of it. Even if the teacher is specifically requesting a
generalisation, the problem still remains, since the teacher cannot specify the generalisability
of every component that the two objects are defined in terms of.

Apparently over-generalisation was one of the problems encountered in the Labyrinth system
[personal communication]. One reason for this could be that it does not include context
information in its concepts, since instances that should be kept distinct on the basis of their
context (such as a chair-leg and a coffee-table-leg) would be generalised. GRAM’s use of
context helps to reduce this cause of over-generalisation. In a full learning system, functional
knowledge, reasoning abilities, and task requirements would reduce the problem even more
significantly.

Under-generalisation, by creating new concepts rather than generalising existing ones, is also
a problem, since it can lead to a large and cluttered concept-memory.

In GRAM, these problems are addressed to some degree by the use of the two parameters
discussed in section 5.1.4 for determining generalisability and modifiability. This is discussed
in section 5.5.3, which explains how GRAM bases generalisability on the proximity-score of a
comparison, and bases modifiability on the fit-score of a comparison, since the former measures
absolute similarity, while the latter measures how well the instance fits a concept.

5.2.2 A relationship/relatee may be unmatched.

In the example of the two televisions in Figures 5.1, each relationship/relatee has a clear unam-
biguous high-scoring winning correspondence with a relationship/relatee of the object object.
However, if the aerial of tv2 had a base (aerialbase2, say), then the neighbour relationship from
tvmain2 to aerialbase2 would not have any high-scoring correspondence with a relationship
of tvmainl. Aerialbase can therefore be considered unmatched, hence the generaliser must be
able to deal with unmatched relationship/relatees appropriately.

Since there is only one example of an aerialbase, it is not clear how to generalise it. In
particular, it is not clear whether the generalised tv should refer to a new copy of aerialbase2
which is altered to relate to other new generalisations of the tv1 and tv2 components, or whether
tv should refer to the original aerialbase2 which is defined by relationships to other components
of tvmain2. This issue is discussed in section 5.6. Currently GRAM takes the former choice,

204 CHAPTER 5. THE GENERALISER

because it prevents the matcher from having to spread through the part-graphs of instances and
subconcepts from which a concept that was formed. is simpler and leads to fewer spurious
concepts being created, although it has other consequences for the matcher, since the new
concept becomes partially defined in terms of a specific instance.

5.2.3 Partial similarity may require disjunct formation.

Two objects may be considered generalisable by GRAM on the basis of a particular kind of
partial similarity, where either the structures of the two objects are very similar, or the contexts
are very similar, but not both. For example, two telephones, one on the wall and one on a desk,
would be justifiably generalised on the basis of structure similarity alone. There are many
classes of objects whose instances have a relatively invariant structure and a variant context,
which may be initially formed from two instances that are partially similar in terms of structure
alone. Likewise, two chair-backs may have very similar context, but dissimilar substructure,
and this partial similarity should also be sufficient to justify generalisation.

This requirement leads to the problem of creating a concept whose structure or context is
defined disjunctively, rather than merging the relationship/relatees of the contributing objects
into a single non-disjunctive description. The issues and techniques used by GRAM to achieve
this are discussed in section 5.7.

GRAM is able to perform this limited but useful kind of disjunction formation as a consequence
of distinguishing structure and context in its representation scheme. Without this distinction, it
would have to deal with the very difficult problem of creating arbitrary disjunctions of properties
and relationships, which can lead to undesirable under-generalisation. This is presumably why
the other learning systems discussed in chapter 2 avoided disjunction altogether.

5.2.4 Several kinds of ambiguity must be resolved.

Sometimes one or more relationship/relatees of an object may match ambiguously with rela-
tionship/relatees of another object, in which case the cnote will include winning and marginally-
losing correspondences. For example, if one desk has one telephone on it, and the other desk
has two telephones on it (side by side), then the comparison of the desks will include two
ambiguous correspondences between the desk—telephone relationships. Dealing with such
ambiguity is one of the most difficult issues of generalisation. None of the other systems
discussed in this thesis (in chapter 2) dealt with this problem.

In developing ambiguity-resolution mechanisms for GRAM, as discussed in section 5.8, it
has been necessary to distinguish between two types of ambiguity. The first is called similar-
similarity, meaning that each pair of corresponding relationship/relatees is similar in the same
way that the other competing pairs are, as is the case in the desk—telephone example above. The
second type of ambiguity is called different-similarity meaning that each pair of corresponding
relationship/relatees is similar in a different way from the other competing pairs. More specif-
ically, some of the correspondences may be based on structure similarity of the relatees, while
other correspondences may be based on context similarity.

5.2. ISSUES AND CONTRIBUTIONS. 205

It has also been necessary to make a distinction between local ambiguity resolution and global
ambiguity resolution. The former deals only with the ambiguous correspondences of parent,
neighbour, and subpart relatees for one particular cnote, while the latter deals with ambiguous
correspondences amongst cnotes produced by the matcher. Currently GRAM only performs
local ambiguity resolution, and leaves global ambiguity resolution as the responsibility of the
larger learning system, for reasons discussed in section 5.8.

Various methods to resolve ambiguity have been developed in the GRAM system, including the
formation of groups or multi-relationships to ‘wrap up’ the ambiguous items into a single entity;
multiple generalisation to account for all of the ambiguous correspondences; and best-only
generalisation which simply ignores all but one of the correspondences.

5.2.5 Structure and context interpretation must be considered.

The interpretation of structures and contexts affects how they should be generalised. For
example, if a concept to be generalised to cover an instance has a partial interpretation,
then any unmatched relationship/relatees in the instance should be ignored. This and several
other aspects of the generaliser pertaining to interpretation are considered in section 5.9. If
the interpretation is disjunctive then the generaliser must deal with the winning (and any
marginally-losing) disjunct correspondences produced by the matcher, as discussed in section
5.7.

5.2.6 The cnote-graph may contain inconsistencies.

Section 4.3.5 of chapter 4 discussed how inconsistencies can be produced in the results of the
matcher. An example of a portion of a cnote-graph containing inconsistencies is shown in
Figure 5.3, where cnote A1:B1 assumes A10 is best matched with B12, but A10:B12 assumes
that Al is best matched with B2. Thus, the generalisation of Al and BI will be defined in
terms of a generalisation of A5 and B7, which will be defined in terms of the generalisation of
Al and B2. GRAM’s generaliser does not check for this kind of situation, and so it may seem
that the concepts it produces could be nonsensical.

However, as discussed in section 4.3.5, the richness of object descriptions tends to prevent
such situations as in Figure 5.3 from occurring unless there are actual ambiguities, in which
case the cnote graph would not be as shown (since marginally-losing correspondences would
also be included), and the ambiguity resolution mechanisms would deal with it, as discussed
in section 5.8.

5.2.7 Objects can be generalised independently from other objects.

A characteristic of GRAM’s generaliser is that it can perform a generalisation of two objects
independently from the generalisation of their related objects (except for making use of the
results of other generalisations). This is partly due to not requiring consistency, and partly
due to the representation scheme which an object is defined in terms of its relationships to

206 CHAPTER 5. THE GENERALISER

, A0
| BO
A4l _[Al Al
B5 IS 1 B2 Bl

|

|

\ Al0 A5 A6
l

Figure 5.3: A cnote graph with inconsistencies

other objects, rather than in terms of a set of parts defined locally within the object description.
This allows an object to be considered a separate entity that does not even include its subparts.
Independence is also a result of storing each relationship with only one object, rather than it
being common to both of the objects involved, thus enabling relationships to be generalised

independently for each object correspondence.

5.3. THE GENERALISATION ALGORITHM. 207
5.3 The generalisation algorithm.

This section presents an outline of GRAM’s generalisation algorithm, the details of which are
examined more thoroughly in the rest of the chapter.

The basic generalisation process is very simple. To generalise two objects in an cnote, GRAM
generalises the structure and context properties and generalises the corresponding relationships,
with the relatee of each generalised relationship referring to a generalised relatee obtained by
recursively invoking the generaliser on the original relatees. Thus the generaliser spreads
outwards through the cnote graph. For example, to generalise objects tvmainl and tvmainZ2 in
Figure 5.2, the generaliser must recursively invoke itself to obtain generalisations of tvI and
tv2, aeriall and aerial2, box1 and box2, screenl and screen2, llegl and lleg2, and rlegl and
rleg2. These generalisations may also have to obtain generalisations of other pairs of objects.

Currently GRAM performs depth-first traversal, although this could easily be converted to a
breadth-first traversal which would give the generaliser an interruptible ‘any-time’ behaviour.
In terms of efficiency, the choice of traversal algorithm is not particularly important, since the
generaliser is not performing a search. Rather, it is just following through the graph of winning
correspondences that have already been identified by the matcher.

Although the basic generalisation strategy is straightforward, the full algorithm has a number
of complexities due to the problems of circularities, ambiguity, unmatched relationship/relatees,
and disjuncts. An outline of the algorithm is given in Figure 5.4, which we will now consider
step by step.

The main parameter to the generaliser is a cnote. This cnote describes the comparison
between two objects, object] and object2. Other parameters will be introduced later in the
chapter.

The process begins by testing whether the generalisation has already been performed earlier
(or is already currently being processed). This is necessary to prevent infinite loops. A cnote
that has already been (or is currently being) processed has the resulting (perhaps incomplete)
concept stored in it. Therefore, this concept can be immediately returned if it is available.

The next step tests whether the two objects are sufficiently similar to justify generalisation.
This may involve reinvoking the matcher to obtain a more accurate similarity score, since the
match may have been performed with a low spread. If the objects are not generalisable, then a
null result is returned.

The generaliser then determines whether the two objects are sufficiently similar to justify
modifying objectl to cover object2, or whether a new concept should be created, with object!
and object2 as subconcepts. This involves obtaining a fit-score for object2 with respect
to objectl. If modification is appropriate, then newconcept is set to be objectl, otherwise
newconcept is set to be a copy of object]. This step and the previous step are discussed further
in section 5.5.

The newconceptis now stored in the cnote to prevent recursive cycles, and its instance-count
is set to be the sum of the instance-counts of object] and object2. The rest of the algorithm

208 CHAPTER 5. THE GENERALISER

generalises the features of newconcept (which is currently objectl, or a copy of objectl) to
cover the features of concept2.

The next section of the algorithm is responsible for generalising the context of the objects.
The context properties are processed by generalising the individual attribute values that describe
the properties. Section 5.4 explains how this is done.

If the objects are described disjunctively, then the winning disjunct correspondences (pro-
duced by the matcher) are processed in the manner discussed in section 5.9.

The next step tests whether the non-disjunctive details of the contexts are similar enough that
the parent and neighbour relationships can be generalised. If not, then the context of object2 is
added as a new disjunct of objectl, or generalised to cover an existing disjunct. The problem
of determining when and how to form disjuncts is discussed in section 5.7.

If, on the other hand, the parent and neighbour relationships can be generalised, then it
performs three further steps. First, it processes each parent and neighbour relationship/relatee
of objectI as follows: If the relationship/relatee has a good unambiguous correspondence with
a relationship/relatee of object2, then the attributes describing the relationships are generalised
(including the instance-counts), and the two relatees are generalised by recursively invoking the
GENERALISE procedure. The relationship of newconceptis set to refer to the new generalised
relatee.

Second, all unmatched relationship/relatees of object2 are processed, as discussed in section
5.6. This needs to take into account the interpretation of the contexts, since if object]’s context
is partial then unmatched relationship/relatees of object2 may be able to be ignored. The issue
of how the generaliser deals with different structure and context interpretations is discussed in
section 5.9.

Third, any ambiguous relationship/relatee correspondences are processed, as explained in
section 5.8. This may involve forming multi-relationships or groups, or performing multiple
generalisations to account for objects that match two or more other objects in different ways,
thus satisfying ‘multiple roles’.

The structures of the two objects are then generalised in the same manner as for contexts.

5.3. THE GENERALISATION ALGORITHM. 209

GENERALISE (cnote) (for objectl and object2)
IF generalisation has already been done
RETURN the concept stored in the cnote.

IF objects are not generalisable THEN
RETURN null.
(section 5.5)
IF objectl should be modified then
Use objectl as newconcept
ELSE
newconcept +— a copy of objectl,
with objectl and object2 as subconcepts.
(section 5.5)

Store newconcept in the cnote (to prevent recursive loops).
Set instance-count to be sum of the two original instance-counts.

Generalise context:

Generalise newconcept’s context properties to cover object2’s properties.
(section 5.4)

Process winning context disjunct correspondences (if any).
(section 5.9)

IF context is not similar enough to generalise relationship/relatees THEN
Add object2 as a context disjunct of objectl,
or generalise an existing disjunct to cover object2.
(section 5.7)

OTHERWISE
FOR all parent and neighbour relationship/relatees of objectl:

IF it has a good unambiguous (or both-winning) correspondence with object2 THEN
Generalise newconcept’s relationship to cover object2’s relationship.
(section 5.4)
newrelatee +— GENERALISE (relatees-cnote).
Set the generalised relationship to refer to newrelatee.

Process unmatched relationship/relatees of object2.
(section 5.6)

Process ambiguous relationship/relatee correspondences.
(section 5.8)

Generalise structure:

(as for context)

Figure 5.4: The GENERALISE algorithm.

210 CHAPTER 5. THE GENERALISER
5.4 Attribute generalisation

Since properties and relationships are represented as attribute vectors, the most basic component
of the generaliser is the attribute-value generaliser. This section describes the different kinds
of generalisation performed for each of the different kinds of attribute (i.e. numerical, nominal,
boolean, etc, as defined in section 3.3.2).

Numerical attribute values are generalised simply by computing a new mean and standard de-
viation to account for the two contributing values, which may be generalised or ungeneralised. !

Directional attribute values are generalised in a similar manner to ordinary numerical at-
tributes, except that modulo arithmetic is used.

Nominal attribute values are generalised by combining the probability distributions of the
symbols in the contributing values. This is done by forming a union of their symbols and
summing the instance-counts for each pair of corresponding symbols.? The instance-count
for the generalised attribute value as a whole is the sum of the instance-counts of the two
contributing values. Some examples of this are given below. An ungeneralised value is
specified as a single symbol or a set of symbols (a symbolset) in which each symbol has an
implicit instance-count of 1. A generalised value is specified with its overall instance-count at
the start, followed by a list of symbols and their individual instance-counts. (Notice that since
an instance may be a symbolset containing several symbols, the overall instance-count of a
generalised value is not necessarily the sum of the instance-counts of its individual symbols.)

(1 (red:1)) + (red) — (2 (red:2))

(4 (red:1, blue:3)) + (green) — (5 (red:1, blue:3, green:1))
(4 (red:1, blue:3)) + (red green) — (5 (red:2, blue:3, green:1))
(4 (red:4, blue:3)) + (2 (red:1, green:1)) — (6 (red:5, blue:3, green:1))

Currently GRAM’s generaliser does not perform any ‘climb-hierarchy’ operations to generalise
symbols (such as producing polygon from the symbols rectangle and hexagon). Instead it is
assumed that all possible generalisations are (if necessary) included in the instance descriptions
themselves. The combined instance-counts of two attribute values reflect what is common, as
shown by the following example, which results in a generalised value for which polygon has
100% ‘probability’, and rectangle and square have 50% probabilities.

(1 (rectangle:1, polygon:1)) + (1 (polygon:1) (hexagon:1))

— (2 (polygon:2, rectangle:1, hexagon:1))

"This is achieved by recording the sums, sums-of-squares, and instance-counts of the instance values.

2GRAM does not need to perform a ‘climb-hierarchy’ operation because it assumes all values at all levels of
generality are present in the instance, such as hexagon and polygon. In this sense it is similar to Connell and Brady’s
Gray coding scheme described in section 2.7. However, it differs from their scheme because the generalisation is
the union rather than the intersection of the values, and thus loses less information.

5.4. ATTRIBUTE GENERALISATION 211

Boolean attributes are a special case of nominal attributes, where only two values, true and
false, are allowed, and so they are generalised by summing the instance-counts, true-counts,
and false-counts of the two values.

Position values are simply a pair of numerical values, and so are generalised by generalising
each of the two values independently. It may seem that this is an over-generalisation. For
example, generalising two positions (0.1, 0.1) and (0.2, 0.2) would produce a new position
which will match well with positions whose x coordinate is (roughly) in the range 0.1..0.2 and
y positions whose y coordinate is also (roughly) in the range 0.1..0.2. This generalisation has
lost the fact that the x and y coordinates are the same, or more importantly, that the positions
are both on a line in the direction of 45 degrees. However, since direction and distance are
included explicitly as attributes anyway, this is not a problem.

Profile values are generalised in the same manner as positions, by independently generalising
each of the values in the profile vector.

212 CHAPTER 5. THE GENERALISER
5.5 Determining what is to be generalised.

This section considers various methods for controlling and determining which objects are to be
generalised. The first method is by the use of scope-restriction parameters that can be passed to
the generaliser from an external source, such as a teacher, or the larger learning system, or from
the generaliser itself via a recursive invocation. These can be considered ways of “focusing the
attention” of the generaliser. The second method is by the use of various criteria to determine
whether a pair of objects are sufficiently similar to justify generalisation. These criteria may
also be passed as parameters.

5.5.1 Scope restriction can be achieved by marking the generalisable objects.

In order to control which objects are to be generalised (or more precisely, which cnotes are to
be processed), GRAM allows instance objects to be marked as in-scope or out-of-scope. This is
a similar method to that used by the matcher, except that the matcher also needs to mark the
concepts, so that both object-graphs are restricted, otherwise mismatches would occur. The
generaliser only needs to restrict the instance graph, since it does not have to perform any
search: correspondences are already established.

For example, if a teacher pointing to a handdrill wants a robot to generalise its existing
handdrill concept to cover the new instance, ignoring the context of the handdrill (i.e. the room,
the workbench, other tools, etc), then s/he only needs to indicate the restricted scope of the
instance, rather than restricting the scope of concept-memory.

In the case of concepts being matched with concepts, only the second concept and its in-scope
related concepts are marked. Likewise, when generalising two instance graphs, only the second
is marked.

The most useful form of scope-restriction is to restrict generalisation to the substructure of
an observed instance, rather than its context, since many of the concepts that a robot system
would be required to learn are relatively concept-independent, such as handdrill (as above),
chair, telephone, bicycle, etc.

An example of the effects of using scope restriction is given in Figure 5.5, where the
substructure portion of the instance graph is marked, as indicated by the shaded object nodes.
If we assume that the original concepts can be modified, rather than new ones created, then the
only concepts affected are Al, A2, A3, A4, and A5 (if we also assume that these are the only
acceptable correspondences with the marked objects of the instance graph). This is illustrated
by figure (a) in which the dark-shaded concept nodes have been modified by generalising them
to cover the corresponding B objects. All of these generalisations occur by spreading from the
seed cnote, which in this case happens to be A1:B1.

Although the out-of-scope An objects are not generalised, the relationships from Al, A3,
and A5 to the out-of-scope objects A6, A7, A8, A9, and AIO are generalised to cover the
relationships from B1, B3, and BS5 to the out-of-scope objects B6, B7, B8, B9, and B10, if the
correspondences are sufficiently strong.

5.5. DETERMINING WHAT IS TO BE GENERALISED. 213

Notice also that A5 now has a neighbour relationship with B11, since there was no corre-
sponding neighbour of the original A5. Thus the generalised and ungeneralised object graphs
have been linked together via a neighbour relationship. This issue of dealing with unmatched
objects is discussed in section 5.6.

If it is necessary to create new concepts for all generalisations, rather than modifying existing
concepts, then new concepts are only created for cnotes involving an in-scope instance, as
shown in (b) of the figure. If a relationship of an original concept has a relatee concept that
is not matched with an in-scope instance, (as in the case of the AI-AG6 relationship), then the
generalisation of that concept includes a copy of the original relationship, which will still refer
to the original unchanged relatee concept, as shown by the relationship from A1+BI to A6.

An alternative scheme is to actually generalise the relationship to cover the instance relation-
ship (assuming there is an unambiguous winning correspondence) but without generalising the
relatee. In this scheme, the scope-restriction is being interpreted in a slightly weaker manner,
since relationships from in-scope objects to out-of-scope objects are processed.

If a robot system is operating in a relatively unfocused manner (without a teacher or specific
task to be achieved, such as when ‘wandering’ or ‘pondering’) then generalisation scope may
be left unspecified, so that the generaliser just spreads throughout the cnote graph produced by
the matcher. In fact, in a full learning system, matching and generalisation could be performed
concurrently, with the generaliser requesting more results from the matcher as required, and
results of the matcher causing the generaliser to be invoked when a good classification is
obtained.

5.5.2 Scope restriction can be achieved by specifying the required spread.

Another convenient way of specifying the generalisation scope is by the use of a required-
spread parameter that specifies how far the generaliser should spread through the cnote graph.
One spread value can be given for substructure-spread and one for context-spread. This can
be interpreted to be a way of specifying the ‘effort’ to be applied, or the amount of detail
considered important for generalisation. Again, this is similar to the use of the required-spread
parameter by the matcher.

The generaliser uses the required-spread parameter to determine which instance-objects are
to be marked as in-scope or out-of-scope. For example, in the handdrill example above, a
context-spread of 1 and a structure-spread of 3 would cause the generaliser to mark subparts
that are 3 deep in the decomposition hierarchy, and to mark context objects that are directly
related to the seed object or to a marked subpart. This is illustrated in Figure 5.6, where the
dark-shaded object is the seed object, and the light-shaded objects are those that are in-scope.

If existing concepts in memory are to be generalised to cover the objects in this instance-graph,
the concepts person, hand (or perhaps clenched-hand), and workbench can only have their
properties generalised, with no further spread, although since hand is a subpart concept of the
person concept, person will implicitly be generalised more than just by property generalisation.
Using this low-context-spread restriction, the system will learn more about the context of

214 CHAPTER 5. THE GENERALISER

A portion of

concept memory: An instance graph:

(Generalisation scope is indicated
by lightly—shaded object nodes.)

(a) If concepts are MODIFIED:

only concepts A1,A2,A3,A4,and AS are
generalised to cover the instances

(b) If NEW concepts are created:

the following concepts are added to concept memory:

A7

A6

Al6y Al7 Al0

\

[< 511

Figure 5.5: Scope restriction.

handdrills, such as what kinds of rooms they appear in, what kinds of people use them, what
kinds of hands hold handdrills (i.e. usually a clenched hand), etc, but without investing effort
into generalising details of the context that are not directly related to the handdrill.

5.5. DETERMINING WHAT IS TO BE GENERALISED.

Figure 5.6: Spread restriction

215

216 CHAPTER 5. THE GENERALISER

5.5.3 Proximity-scores and fit-scores determine whether to generalise or modify.

Section 4.3.8 discussed the distinction between fit-scoring and proximity-scoring, and men-
tioned that proximity-scores are used to determine whether two objects are similar enough to
justify forming a generalisation, and fit-scores are used to determine whether the second object
“fits’ the first object well enough to justify modifying the first object’s description or whether a
new concept should be created with the original descriptions unchanged but linked to the new
concept as subconcepts.

The threshold cutoff values for generalisability and modifiability are therefore another means
for controlling what cnotes are processed by the generaliser. These values can be either passed
as parameters to the generaliser, or obtained from globally predefined defaults.

The generalisability and modifiability parameters must be able to be overridden, since some
concepts, such as furniture or hand-tools, are formed from instances that are significantly
different, and must be formed on the basis of explicit instruction from a teacher, or from a
larger system that deals with functional knowledge.

The generaliser might leave the concept unchanged

If the fit-match score is very high, and if a large number of instances of the concept have already
been seen, then it might not even be necessary or desirable to generalise the concept at all.
Thus a system operating in a familiar environment day after day would not need to continually
modify its concepts on the basis of every object it observes. This is perhaps the most important
means for controlling the generalisation spread. In the example of the handdrill given earlier,
the neighbouring concepts person, hand, workbench, etc would most likely be left unchanged,
even without the scope-restriction.

5.5.4 The matcher may need to be reinvoked.

As the generaliser spreads through the cnote network, it may reach a cnote that was evaluated
by the matcher with low-spread effort (perhaps due to being on the fringe of the match
scope) and hence the lowerbound of the score might be too low to justify generalisation,
even if the estimated similarity score is high. Two possibilities can occur here. Either the
generaliser can simply bottom-out, leaving the original concept unchanged, or it can request
the matcher to perform a more thorough comparison based on the required-spread parameter
of the generalisation process. The decision depends on task requirements, and is thus an
additional parameter to the generaliser.

5.6. DEALING WITH UNMATCHED PARENTS, NEIGHBOURS, AND SUBPARTS. 217
5.6 Dealing with unmatched parents, neighbours, and subparts.

This section explains how the generaliser processes a relationship/relatee that is unmatched, or
more precisely, that has a winning correspondence whose score is too low to justify generali-
sation.

The simplest situation to deal with is illustrated in Figure 5.7, in which X0is to be generalised
(by modification) to cover YO. In this situation, the relationships X0-X3 and X1-X3 do not
have any acceptable correspondences with the relationships of Y0 and Y1. Generalisation
is straightforward: The relationships and objects that do correspond well can be generalised
(with their instance-counts incremented from 1 to 2), and the extra unmatched relationships
to and from AQ and x1 are left unchanged (with their instance-counts remaining as 1). The
unmatched features are not dropped from the description (in contrast to Winston’s system), but
instead become optional features. The resulting modified X objects are shown at the bottom of
the figure.

concept:

X0
[
I
I

Figure 5.7: An unmatched instance-part

A more difficult situation is when new relationship/relatees have to be added to an object
description. For example, in Figure 5.8, the BO-B3 subpart relationship/relatee has no accept-
able correspondence with the subpart relationship/relatees of A0, and so the generalisations of
some of the A objects must have new relationship/relatees added. Two alternative methods
could be applied here, as described in the following sections. At this stage it is not clear which
method is best, since more evaluation in the context of a full learning system needs to be
performed to determine this. Therefore, this thesis simply describes the alternative methods
that are supported by GRAM, and indicates their overall advantages and disadvantages.

218 CHAPTER 5. THE GENERALISER

R ™ T S S T Y T S S,
| concept: instance: 1
|
|

Figure 5.8: An unmatched instance-part

5.6.1 Method-1: The generalisation refers to the original unmatched object.

The first method involves copying the unmatched relationships and adding them to the corre-
sponding generalised objects. The new generalised relationships refer to the original unmatched
objects. This is illustrated at the top of Figure 5.9 in which new concepts AO+B0, A2+B2,
and AI+BI are created as generalisations of the An and Bn objects. A0+B0 has a copy of
the BO-B3 relationship (with an instance-count of 1), which refers to the original B3 object.
Likewise, A1+BI has a copy of the BI-B3 relationship. However, the B3 object does not have
relationships to AI1+B1 and A0+B0, but instead remains unchanged, with relationships to B0
and B3.

This method is very simple for the generaliser, but leads to problems for the matcher. This
is because the generalised objects (A0+B0 etc) are now defined in terms of two object graphs:
the graph of the other generalised concepts, and the graph of the original Bn objects. This
means that to match a new instance with the concept, the matcher has to compare the instance
with both graphs. For example, to match A0+B0 with CO shown in the lower half of Figure
5.9, the matcher must compare B3 with C3. This then requires the neighbours B2 and C2 to be
compared, which leads throughout the Bn and Cn graphs. At the same time, the matcher must
compare C1, C2, and C3 with the objects in the An graph. If the objects A0, B0, and C0 were
much more complex, then the relationship between A0+B0 and B3 would lead the matcher
into a considerable of work which is mostly redundant, since the most of the Bn objects are
subconcepts of the An-Bn objects.

One way to reduce this redundant matching is to make use of the AKO hierarchy, as explained
in section 4.4.8 of chapter 4. For example, since B2 is a subconcept of A2+B2, then if the
matcher has already compared the new object C2 with A2+B2 then this result could be used as
an estimate for the desired B2:C2 comparison. Conversely, if B2 and C2 were matched first,
then when the matcher tries to match B2 with A2+B2, the B2:C2 result could be used as a
lower-bound on the score.

However, another problem with this method is that an explicit generalisation of the unmatched

5.6. DEALING WITH UNMATCHED PARENTS, NEIGHBOURS, AND SUBPARTS. 219

object is not produced. In the example above, the optional subpart B3 of the new concept AO+B0
is not generalised by making its relationships refer to the new An+Bn concepts, and thus there
is no explicit ‘transfer of information’.

This method may seem to lead to a further problem: if the An+Bn concepts are later
generalised with more instances, then generalisation could lead to object B3 being generalised,
which would therefore alter B0 and the other original instance objects that are defined in terms
of B3. However, this is only a problem if B3 is modified (rather than by being generalised as a
new concept), and modification only occurs when it is acceptable.

Requires matching with all of the
objects shown above.

Matcher should make use of the AKO hierarchy to
reduce redundant matching:

A0+BO A2+B2 Al+BlI
I ako ,aka ’uk()
[BO B2 Bl ’

Figure 5.9: Method-1: Add relationships referring to the unmatched objects.

5.6.2 Method-2: Unmatched objects are copied.

The second method for dealing with an unmatched object is to create a copy of it, altering
the relationships of the copy so that their relatees are the new generalised concepts. This
is illustrated in Figure 5.10, where a concept newB3 is created by copying B3 and creating
relationships to refer to and from the other An+Bn concepts. Thus newB3 is generalised
because it is now defined in terms of generalised objects.

This is a more complex process than the first method, and also leads to a larger and more
complex concept-memory, especially if the unmatched object has unmatched substructure
and/or unmatched context (which in most cases it will) since this must also be copied. The
AKO hierarchy is made more elaborate since the new description must be specified as a

220 CHAPTER 5. THE GENERALISER

superclass of the original description. However, these complications are necessary to resolve
the problems of the first method.

One difficulty in this method is determining what relationships to create for the new object.
It is straightforward in the situation above, since the relatees of B3 (i.e. B0 and BI), both
have unambiguous winning correspondences with A0Q and A1 respectively, and so the new
object, newB3, can be given relationships to the generalisations of these, namely A0+B0 and
Al+BI. However, if there were ambiguities, these would have to be resolved. For example,
Figure 5.11 shows a situation in which the neighbour B1 of the unmatched triangle B3 could be
corresponded with either of A2 or A5, and there is no way to choose between them. However,
this ambiguity means that it does not particularly matter which correspondence is chosen. In
fact, in this situation the objects A1, A4 and B4 are likely to be generalised (by the ambiguity-
resolution mechanism) to form a single typical-member concept for a group, and so the copied
version of B3 can refer to the components of this concept rather than just to either the A2+B1
or A5+B1 generalisation.

But, how are the relationships from newB3 obtained?

Figure 5.10: Method-1: Create a copy of the unmatched instance.

5.6. DEALING WITH UNMATCHED PARENTS, NEIGHBOURS, AND SUBPARTS. 221

Figure 5.11: Unmatched and ambiguous.

222 CHAPTER 5. THE GENERALISER
5.7 Partial similarities and disjunct formation.

In this section we explore when and how disjunctive concept descriptions are created and
generalised by GRAM. We first consider the two main kinds of partial similarity that necessi-
tate disjunct formation, and then consider the issues of creating disjunctive descriptions and
generalising them with future instances.

5.7.1 Generalisation (by disjunct formation) may be justified by structure-only
or context-only similarity.

Generalisation can sometimes be justified on the basis of a partial similarity between two
objects, even if the overall similarity score is not particularly high. ‘Partial similarity’ is used
here to mean that two objects are similar in some aspects but not others. The two kinds of
partial similarity that justify generalisation in GRAM are context-only similarity (which leads
to structure disjunction) and structure-only similarity (which leads to context disjunction).

Forexample, in Figure 5.12 objects A2 and B2 clearly correspond, based on their high context
similarity (and also their overall shape), even though their structures differ significantly. The
structures of these two objects cannot be generalised by generalising their properties and
merging their relationships. Instead, the new concept must have a disjunctive structure, of
which the disjuncts are the structures of the subconcepts A2 and B2, as shown at the bottom
of the figure. (A0, Al and A3 are sufficiently similar to B0, BI, and B3 respectively, that
they could perhaps be modified, but for the purposes of the discussion it is assumed that new
concepts are created.)

In Figure 5.13 objects B2 and C2 correspond only on the basis of high structure similarity,
since the context similarity is poor. The resulting generalisation has a generalised structure and
a disjunctive context, as shown at the bottom of the figure. The context disjuncts of B2+C2 are
the contexts of the subconcepts B2 and C2. Notice also that BI+C1 and B3+B3 each have two
relationships to B2+C2, since these are considered insufficiently similar to generalise.

5.7.2 Some examples of disjunct generalisation and formation.

In the above examples, the original descriptions were non-disjunctive. The following se-
quence of examples show how disjunct generalisation and formation occurs when one of the
descriptions is already disjunctive. They also give more examples of the use of fit-scores and
proximity-scores to determine generalisability and modifiability.

Figure 5.14 shows an object DO which is to be generalised to cover the AO+B0 concept shown
in Figure 5.12. In this case there is a structure-only similarity between A2+B2 and D2, since
D2’s structure does not match either of the structure disjuncts of A2+B2. This may seem to
suggest that a new concept A2+B2+D2 should be created, as for the earlier situation in Figure
5.12. However, the variance of the structure of A2+B2 is high, due to the disjunction, and this
causes GRAM to compute fit-scores primarily on the basis of context similarity. Therefore, the
fit-score of D2 with respect to A2+B2 is actually quite high, and so A2+B2 can be modified to

5.7. PARTIAL SIMILARITIES AND DISJUNCT FORMATION. 223

A2+B A1+Bl A3+B
dzsjuncuve
structure I \
/ “\.AKO
/ AKO %
/ N\,
’/ N\

Figure 5.12: Context-only similarity.

cover D2. The results of the generalisation of A2+B2 are shown at the bottom of the figure.
(If fit-scoring did not take into account disjunction in this manner, then every new object such
as D2 would force the creation of new ‘A2+B2+..." object.)

Figure 5.15 shows another object E0, whose subcomponent E2 is similar to the disjunct D2
of A2+B2. Therefore, there is no need to add a new disjunct to A2+B2, since the structures
of D2 and E2 are generalisable. The only significant difference between them are the small
circles in E2. The fit-score is not high enough, however, to justify modifying D2, and therefore
a new concept D2+E2 is created, to which D2 and E2 are linked as subconcepts. D2+E2 is not
defined disjunctively though, since a full description of the substructure (including the optional
small circles) is specified non-disjunctively in D2+E2. D2 and E2 are just specialisations of
D2+E2.

Suppose the next object observed is F0, as given in Figure 5.16. In this example, A2+B2
and F2 have similar structures (since the disjunct D2 matches F2 very closely) but different
contexts. The fit-scores for all of the Fn objects with respect to the An+Bn objects is poor, due
to the differing contexts, and so new concepts must be formed. The new concept A2+B2+F2
is interesting because it is now defined by a disjunctive structure and a disjunctive context.
(Recall from chapter 3 that the subconcepts of such a concept define both the structure and the
context disjuncts). The new disjunct (subconcept) D2+F2 has a disjunctive context defined in
terms of D2 and F2.

224 CHAPTER 5. THE GENERALISER

B0+C0

disjunctive
context

B2+C2 B1+C1<>[B3+C3]
B4+C T

“Bs+cs\ B7
B6+C6

AKO \oKO
/ N

Figure 5.13: Structure-only similarity.

The next object to be considered is GO, in Figure 5.17. In this case, the structure of GO
does not match any of the disjuncts’ structures, and its context also does not match any of the
disjuncts’ contexts. Therefore, it does not have a sufficiently high score to justify generalisation.

5.7.3 Import-from relationships could be created.

When disjuncts are formed, it is often desirable to define them using import-from relationships
(as defined in section 3.4.1) since this can reduce redundancy and allow a greater transfer
of information amongst the disjuncts. For example, concept B2+E2 in Figure 5.16 could be
defined by importing its context from the other disjunct AZ.

However, the current version of GRAM does not create import-from relationships, since it
involves issues pertaining to the problem of memory organisation in the larger learning system.
Therefore, although the representation and matcher support import-from relationships, the
generaliser does not.

5.7.4 Disjuncts could be converted to an ‘any’ interpretation.

If a disjunctively-defined concept acquires, through generalisation, a large number of structure
[or context] disjuncts, then it may be desirable to give the structure [or context] an ‘any’

5.7. PARTIAL SIMILARITIES AND DISJUNCT FORMATION. 225

Structure \\\\\
1 i\ N
S e
y Y %
<—[B2

Figure 5.14: Creating a new structure disjunct.

interpretation. This means that future matching will ignore the structure [or context] when
computing the overall similarity score, so that the concept will be matched solely on the basis of
its context (or structure]. However, the subconcept disjuncts could still be retained as ordinary
subconcepts, or even as disjuncts if the context [or structure] is defined disjunctively in terms
of some or all of those subconcepts.

As with the operation of creating import-from relationships in section 5.7.4, this operation
is not done by the GRAM generaliser, but is the responsibility of the memory-organisation
component of the larger learning system. This and other operations for ‘cleaning up’ or
optimising concept-memory could be performed during idle ‘sleep’ time, rather than during
the process of generalisation itself.

226

CHAPTER 5. THE GENERALISER

disjunctive
structure I \ N

A2+B2 4 Al+B1 A3+B3

2I }\
;74(0 ARO0
* \
~—[B2+E2)
B4+E4 /B6+E6 ES
B5+E5 B7+E7 E9
&
AK
/91
<—{B2]

Figure 5.15: Generalising an existing structure disjunct.

5.7. PARTIAL SIMILARITIES AND DISJUNCT FORMATION.

disjunctive
context X
B A2+B2+ = 1 _{AI+BI1+F 3 A3+B3+F3
disjunctive ~
structure I \ ~
\ ~
o 2\ S8
AKO AKO™
AkO ‘\ S
\\ disjunctive
N context
B4+E4 ”B6+E6 ES
B5+E5S B7+E7 E9
\
AK91/ IVKO
/ \
‘
<—|B2]

Figure 5.16: The new concept is disjunctive in both structure and context.

G2

Figure 5.17: A new object is too different to justify generalisation.

227

228 CHAPTER 5. THE GENERALISER
58 Ambiguity.

In most of the examples we have looked at in this chapter so far, there have been clear-
winning unambiguous one-to-one correspondences between the parent, neighbour, and subpart
relationship/relatees of the objects being generalised. This section addresses the problem of
ambiguity, where it is not obvious which correspondences should be selected for generalisation.

The section identifies several different kinds of ambiguity that can occur in GRAM’s domain,
and discusses the most desirable output of the generaliser for each kind of ambiguity situation.
It then considers the issues in achieving this, and explains the ambiguity-resolution mechanisms
used in the GRAM system.

5.8.1 Similar-similarity ambiguity and different-similarity ambiguity.

Ambiguity comes in two main forms, namely similar-similarity ambiguity and different-
similarity ambiguity, each of which requires a different kind of generalisation. Similar-
similarity occurs when several correspondences all score equally well in all respects. This
situation occurs when several similar concepts, or several similar instances, are similar to each
other, since any correspondences with them will necessarily compete with each other. An
example of this is given in Figure 5.18 where A3 matches B3 in a similar way to its match with
B4, because B3 and B4 are similar to each other.

Figure 5.18: Ambiguity due to ‘similar-similarities’

Different-similarity, on the other hand, occurs when several correspondences score equally
well overall, but have different scores for the finer details. In other words, the items are partially
similar in different ways. This is illustrated in Figure 5.19 where the overall similarity scores
for the A4:B3 and A3:B3 correspondences are approximately the same, but the former has a
good structure similarity and poor context similarity, and the latter has the converse. In this
situation, the set of concepts, and/or the set of instances, are not similar to each other. In the
example, A3 and A4 are quite different, but B3 is partially similar to both of them, in different
ways.

Similar-similarity ambiguity is resolved by forming a multi-relationship.

The desired resolution of similar-similarity ambiguity is to merge ambiguously matching
relationships and relatees into a single multi-relationship with a generalised howmany count

5.8. AMBIGUITY. 229

L o B

Figure 5.19: Ambiguity due to ‘different-similarities’

and a single generalised relatee, perhaps also forming a group of which this is the typical
member. For example, the result of generalising the objects in Figure 5.18 above is as shown
in Figure 5.20, which includes a generalisation of the circles A3,B3,and B4, and a multi-
relationship to it from A0+B0 and also from A1+BI, both with generalised howmany counts
indicating the range 1..2. The A3+B3+B4 concept also has two neighbour relationships to
itself, one which refers to the ball on the right (obtained from B3) and the other which refers
to the ball on the left (obtained from B4) both of which have instance-counts of only 1, since
only one of the contributing instances had each of the relationships. A grouped object has not
been formed in this particular example.

\ *1..
*].02
A2+B2 A1+Bllz_>|E+B3+B@

Figure 5.20: Similar-similarity ambiguity resolution.

Different-similarity ambiguity is resolved by multiple generalisations.

The desired resolution of competing-similarity ambiguity cannot involve multi-relationships or
grouping, since the objects involved are not similar. A distinct generalisation is produced for
each of the ambiguous correspondences, since each captures distinct and potentially important
information. For example, in the situation of Figure 5.19 the best generalisation would specify
that there is ‘something’ at the top right of A1+B1, something at the bottom left, a circle attached
somewhere, and a square-thing attached somewhere. The generalised objects in Figure 5.21
capture this information. Notice that the relationships between A5+B5 (the vertical rectangle)
and A3+B3 (the generalisation of the two circles) has an instance-count of only 1, since only
A3 has a direct relationship with AS5.

230 CHAPTER 5. THE GENERALISER

Figure 5.21: Different-similarity ambiguity resolution.

Vertical ambiguity.

A special form of different-similarity ambiguity is illustrated in Figure 5.22 and is called
vertical ambiguity. A2 matches B4 well on context, but poorly on substructure, and it matches
B2 (which is a subpart of B4) well on structure but poorly on context. Thus A2 ambiguously
matches two objects that are along the same branch of the object decomposition hierarchy.

The key characteristic of vertical ambiguity is that there is a composite object X which
consists of a large subpart X1 and one or more small attachments, such that if, in another
observed object, the object corresponding to X is non-composite, then that object will also
match X1.

-
T — ————

=
=
———

\ different context
similar structure

Figure 5.22: Ambiguity due to ‘different-similarities’

Vertical ambiguity should also be resolved in the same way as for ordinary different-similarity
(by producing a separate generalisation for each correspondence) since each correspondence
is distinct and captures important information. For the example above, this would result in the
object A0+BO (the whole “T”) having two subpart relations, one to A2+B2 (the generalisation
of both solid vertical rods), and the other to A2+B4 (the generalisation of the solid A rod

5.8. AMBIGUITY. 231

and the composite B rod), as shown in Figure 5.23. The result differs from the resolution of
ordinary different-similarity because one of the generalisations becomes a subpart of the other.

Figure 5.23: Ambiguity due to ‘different-similarities’

Multi-relationship ambiguity is a special kind of similar-similarity.

A special case of similar-similarity ambiguity is multi-relationship ambiguity, where two or
more relationship/relatees of one object match the generalised multi-relationship of the other
object, as illustrated in Figure 5.24. Object Al has a multi-relationship to A2, and B1 has
three ordinary relations to B2, B3, and B4. When matched, A2 ambiguously matches all of
B2, B3, and B4. The resolution of this form of ambiguity is straightforward, since the relatee
of the multi-relationship can be generalised to cover all of the other relationship/relatees, and
the howmany count updated accordingly, as shown at the bottom of the figure.

i
— —
—
p——
_—
— —

—
—— —

|

*3..4 5{A2+B2+B3+BA |
|

Figure 5.24: Multi-relationship ambiguity.

‘Both-winning’ correspondences can be generalised individually.

Sometimes in a situation of similar-similarity ambiguity there may be some relationship/relatee
correspondences that are winning correspondences for both of the two objects involved, even
though they are only marginal winners. In such a case it is reasonable to generalise each of

232 CHAPTER 5. THE GENERALISER

these pairs of relationship/relatees individually and include the generalisations explicitly in the
resulting generalisation, in addition to the multi-relationship.

For example, the top hinges of the two doors in Figure 5.25 match each other better than any
of the other hinges, and so their generalisation can be included as relatees of the generalised
door, and likewise for the bottom two hinges.

One of the effects of allowing ‘both-winning’ correspondences to be generalised even when
they are only marginal winners, is that atypical relatees will be retained in the generalisation,
without requiring any special-purpose mechanism for dealing with atypical members explicitly.
The ends of ‘chain’ groups, such as the endmost books in a bookshelf, are examples of this.
There is no need for methods such as using the FST (first) and MST (most) generalisation
operation employed by Michalski [Michalski, 1983].

doorA doorB

hB1

hB2

hB3

doorA+doorB

hAl1+hA2+hA3+hA4
+hB1+hB2+hB3

plankA+plankB

Figure 5.25: Multi-relationship ambiguity.

5.8.2 Local and global ambiguity.

Ambiguity can also be characterised as local and/or global ambiguity. Local ambiguity refers
to ambiguity amongst parent, neighbour, and subpart relationship/relatee correspondences for a
particular cnote. Global ambiguity refers to the ambiguity amongst all cnotes generated during
the match process.

5.8. AMBIGUITY. 233

For example, suppose the matcher has matched roomA and roomB in Figure 5.26, and in
doing so it has matched all of the potplants in roomA with all or most of the potplants in roomB.
If we consider the correspondence between the two desks, there is local ambiguity (with respect
to the desks) between the potplant correspondences, since either of the two potplants on top of
deskA could be corresponded with the potplant on deskB. The potplants that are not directly
related to the desks are excluded from the consideration of local ambiguity. (The potplant
to the left of deskA can be considered unmatched, unless an explicit neighbour relationship
between deskB and ppA2 was formed.) Local ambiguity of the potplants with respect to the
desks is based not only on the similarity scores for the potplants, but also the relationships
from the desks to the potplants. Therefore, local ambiguity resolution would choose to merge
only the potplants that are on top of the desks. It would produce a concept which could be
interpreted as “the kind of potplant typically found on desks”. The generalised desk would
have a multi-relationship to this concept with a howmany count of 1..2.

Global ambiguity of the potplants, on the other hand, is not associated with any particular
correspondence between the room components, but instead refers to the ambiguity between all
potplant cnotes that were generated when comparing the rooms. Therefore, global ambiguity
resolution could deal with all pairings of potplants, including ppAl, ppA4, ppB1, and ppB2,
which might not even be noticed by local ambiguity (except perhaps with respect to the floor
correspondence). Although it could also notice the ambiguity between the potplants on the
desks, it would not place any extra significance on the relationships to the potplants from the
desks. This relationship would just be treated as one feature of the context description of
the potplants. Therefore, global ambiguity resolution is able to initiate the creation of larger
and (from a global perspective) more complete groups of objects than would local ambiguity
resolution. In the pot-plant example, it could invoke the group-constructor to produce a single
generalisation of all 7 potplants. The generalised desk could then have a multi-relationship to
this concept with a howmany count of 1..2, although it might also have a multi-relationship to
the more specialised concept created locally with respect to the desk correspondence.

Since global ambiguity is not associated with a particular cnote, its resolution is the responsi-
bility of the larger learning system, which must take into account the AKO hierarchy as a whole
when determining what new concepts, groups, and multi-relationships to create, and how to
reorganise the AKO hierarchy if necessary. Therefore, it has not been addressed fully in this
thesis. Currently GRAM only performs local ambiguity resolution. In a future version of GRAM,
local and global ambiguity resolution should be integrated, since it is not usually appropriate
to form groups and/or multi-relationships on the basis of local ambiguity alone. Rather, local
ambiguity should be the trigger for invoking the global mechanism.

5.8.3 Vertical and horizontal AKO ambiguity.

A special form of global ambiguity is where an observed instance matches more than one
concept down the same branch of the AKO hierarchy. For example, an observed chair may
match the concept seat, chair, and armchair, as shown in Figure 5.27 (a). This kind of ambiguity,
which can be called vertical AKO ambiguity, occurs for almost every classification, and clearly

234 CHAPTER 5. THE GENERALISER

ST roomB

local ambiguity
(for the deskl:desk2 correspondence)
[ppAl — structure similarity it ppB3
ppAZ— =" '
ppA3 —

A local resolution:

*
|deskA+deskB ~ ppA2+ppA3+ppB3 | Al

global ambiguity T

Figure 5.26: Local and global ambiguity.

5.8. AMBIGUITY. 235

should not be resolved by merging all of the concepts into a single concept (at least not usually).
Rather, each should be generalised separately to cover the new object.

All other forms of ambiguity involving concepts in the AKO hierarchy can be called horizontal
AKO ambiguity. For example, Figure 5.27 (b) shows a situation where a new object matches
several subconcepts of the same superconcept equally well. This indicates that one of the
subconcepts could be generalised to cover all the others, and these others could then be removed
from memory, or made to be subconcepts of that subconcept. Alternatively, a new concept

could be created which is a generalisation of, and a superconcept of, all of the ambiguously
matched subconcepts.

AKO hierarchy:

T —— — —

iguity"

|
|
|
/
/
/
anlfbl
/

E
|
l
|
|
l
|
l"
/
/

\
 vertical AKO |
\
\
\ i
\ |
v
3
=
s

bar-stool swivelchair armchair ~

|
|
|
|

| AKO hierarchy:

l reading—material
[

|

N

singlepage multipage

new instance
,\ -7

. </
magazine book .
~ Sy Bl o5 - o P
S~ ~ I —
Horizontal AKO ambiguity

Figure 5.27: Vertical and horizontal AKO ambiguity.

236 CHAPTER 5. THE GENERALISER
5.9 Structure and context interpretation affects generalisation.

This section considers how the generaliser needs to behave differently for the different kinds
of structure and context interpretation, such as complete, partial, any, etc. These were defined
in the representation chapter, and a summary can be found at the end of section 3.4.3 on page
102.

Most of the examples in this chapter are ‘complete+complete’ generalisations, where both of
the two descriptions being generalised specify all permissible and required relationships and
relatees. In these situations, any relationships that are only present in one of the descriptions
are included in the new concept. One exception to this is when the two descriptions differ
significantly in their structure or context so that a disjunction is created, in which case the
new description only retains relationships that are common to both descriptions, since the
non-shared relationships are specified in the disjuncts. The resulting generalisation therefore
has a partial interpretation.

When generalising two descriptions of which one already has a partial interpretation, the
generaliser operates slightly differently. In particular, if the generaliser is generalising a
concept and an instance, and the concept has a partial interpretation and the instance has
a relationship that has no acceptable correspondence in the concept description, then the
relationship is ignored, and the resulting generalisation remains partial.

If, on the other hand, a relationship in the partial concept description does not have any
acceptable correspondence with an instance relationship, then it is not dropped immediately, but
instead is only dropped if the instance-count-ratio drops below some parameterised threshold
value and if a sufficient number of instances have already been observed. For example, suppose
that X1 in Figure 5.28 is to be generalised to cover Y1. The X1-X2 and X1-X3 relationships
match the Y1-Y2 and Y1-Y3 relationships respectively, so the instance-counts of the former
relationships are incremented. The relationship of X1 to X4 is unmatched, but since it has a
reasonably high instance-count-ratio it is retained in the description. However, if we suppose
that dropping occurs if less than two-thirds of at least 18 instances have the relationship, then
the unmatched relationship to X5 must be dropped.

For the extreme value of the ‘drop-relationship’ parameter for which dropping occurs when
an instance-count-ratio is less than 1 and at least two instances have been observed, then
all concepts acquired by the system will either be complete descriptions with no optional
relationships, or partial descriptions. This leads to simpler concepts, but the matcher must
make greater use of the AKO hierarchy (by matching subconcepts) when classifying or finding
faults in observed objects, since optional details of concepts will only be specified in their
subconcept descriptions. This thesis does not state whether this is better or worse than having
a high-tolerance threshold for optional components, but rather just points out the difference, so
that the larger learning system can use either approach.

Complete descriptions can periodically be ‘pruned’ by a clean-up module (which has not
been implemented) which checks for concepts that are defined in terms of a multitude of
relationships mostly having low instance-count-ratios, and removes all but the high-instance-
count-ratio relationships, changing the interpretation to partial, as illustrated in Figure 5.29.

5.9. STRUCTURE AND CONTEXTINTERPRETATION AFFECTS GENERALISATION.237

partial
wntexl

unmatched
X4 unmatched Y4
X5 unmatched

Figure 5.28: Dropping relationships from a partial description.

This not only saves memory, but also reduces the effort required by the matcher to process
such descriptions. This may seem to lose special-case information that could be important
for making predictions, such as, for example, losing the fact that a door might occasionally
have a “Do not disturb” notice on it. However, such information will usually be retained in
subconcept descriptions. For example, the concept motel-room-door could have an explicit
optional relationship with the concept do-not-disturb-notice, while the superconcept door might
not, due to the instance-count-ratio being too low.

_— I _7_*7ﬁ|
j complete 7 A2
context
‘ A3
8

| A4

AS

after pruning low—frequency relationships ...
partial A2
s context
8

Figure 5.29: Cleaning up by removing low-frequency relationships.

Although it is not possible for a partial description to be changed back to a complete
description (since details have already been lost) it may be changed to an any interpretation.
This occurs when all or most of the relationships have become no longer common to most
instances, and have thus been removed, either by the clean-up module described above, or
during generalisation.

238 CHAPTER 5. THE GENERALISER

In a full robot system, functional knowledge would, of course, be important to help justify
retaining or dropping relationships, but the simple threshold-cutoff method is the best that is
possible for a syntactic system such as GRAM.

If a structure or context has a disjunctive interpretation, then the generaliser uses the disjunct
correspondences produced by the matcher. If the winning correspondence are good enough,
then the generaliser is recursively invoked to generalise the corresponding disjunct subconcepts.
If a new concept is created, then this is added as a new disjunct (subconcept). Otherwise the
original disjunct is modified. (There is no danger of generalising a disjunct with an instance
twice, as could potentially occur if a concept has a structure and context disjunction, since
the cnote describing the disjunct correspondence indicates whether generalisation has already
been performed.) The same method is applied to structures and contexts with import-from
specifications.

If the interpretation is partial+disjunctive, or partial+typical, or partial+imported then a
combination of the methods discussed above is applied.

Chapter 6

The Instance Constructor

This chapter discusses the Instance Constructor, whose role is to produce a description of an
observed scene or object. GRAM distinguishes between three stages of this ‘perception’ process.
The first and most primitive stage is block approximation which involves identifying a set of
simple blocks that characterise the scene at multiple levels of detail. The second stage is object-
graph formation which involves creating a hierarchy of composite and primitive objects linked
by parent, neighbour, and subpart relationships. The formation of objects may be based not only
on the set of blocks, but also on other factors such as grouping, connectedness, and topology.
The third and most abstract stage of perception is classification which involves classifying the
objects in the object graph as instances of previously learned concepts. Classification may also
enable the object-graph to be augmented further on the basis of the expected features of these
concepts, especially if the instance was initially observed only partially or at a coarse level of
detail.

The first stage, block approximation, is performed by a low-level vision system. This has not
been developed in the thesis since there has already been considerable research done on iden-
tifying distinct two or three-dimensional blocks, pieces, or regions from images [Chin, 1988].
Therefore, GRAM merely assumes that a vision system is available which will produce a set
of rectangular, elliptical, or polygonal shapes described with respect to a coordinate system.
Various information is specified, such as the position of the center of each block, the dimensions
and orientation of its rectangular bounding box, the shape type, and the number of edges.

The second stage, object-graph formation, is the main subject of this chapter. It describes
various criteria that could be used to justify the formation of a composite object from a set
of smaller objects and the selection of which parent, neighbour, and subpart relationships
should be made explicit. It also discusses the kinds of mechanisms needed to find and create
composite objects, in particular the group-finding mechanism. The process of finding and
creating composite objects is called object-formation, and it is the subject of sections 6.1 and
6.2, the latter of which addresses the group-finding problem. The process of selecting parent,
neighbour, and subpart relationships for each object is called relationship-selection, and is the
subject of section 6.3. Only the group-finding and relationship-selection mechanisms have
been implemented (to some degree) in the current GRAM system.

239

240 CHAPTER 6. THE INSTANCE CONSTRUCTOR

The third stage, classification, is discussed in chapter 1, and involves indexing and matching
objects with concepts. Indexing is an area of future work since it requires mechanisms for
building and maintaining concept-memory.

These three stages of perception and the three systems or processes responsible for them,
as shown in Figure 6.1, are overlapping and interdependent. This is because perception must
proceed not only in a bottom-up fashion where the results of the block-approximation vision
system govern the results of the higher levels, but simultaneously in a top-down manner,
where the higher levels drive the lower levels, such as when expectations based on previously
learned concepts drive object-graph construction and even block-perception. Furthermore, the
creation of groups in the description involves both the matcher and the generaliser to produce
the typical-member concept, and hence the process of perception requires the inter-dependent
participation of all components of the GRAM system. However, it is useful for purposes of
discussion and system development to make a distinction between the three levels.

‘ Blocks at mulitple levels of detail:
| Rivck Appioximaticn locks at mulitple levels of detai

(Vision System)

Object-Graph Formation |

|
‘ Object—Formation |
object graph

Group Finding

Relationship—Selection

Classification
|
‘ I Matching

Figure 6.1: Stages of perception.

The most important aspect of the design of a perception system is the choice of criteria used to

241

justify the selection and formation of various descriptive entities. The perception mechanisms
are obviously important but are secondary and are really just ways of operationalising the crite-
ria. Without first identifying the criteria (on the basis of overall domain and task requirements),
the mechanisms cannot be justified. Therefore, the main contributions of this chapter are the
sets of criteria for justifying object formation (especially grouped objects) and relationship
selection. A secondary, although important contribution, is the group finding mechanism. The
chapter distinguishes between two basic group-finding search strategies, “Seed-Expansion”
and “Propose-and-Prune”, of which the former is used by GRAM’s group-finder.

242 CHAPTER 6. THE INSTANCE CONSTRUCTOR
6.1 Object-Formation

Chapter 3 discussed the reasons for representing a scene or object in terms of a hierarchy of
parts at multiple levels of approximation and abstraction. Each part is either a composite or
primitive object. A brief review of these reasons is given below, since they provide a basis for
justifying the criteria and mechanisms of object-formation that are presented in this section.
The reasons are as follows:

e An object can be recognised efficiently at a coarse level of detail by just considering a
few abstract or approximate components and their relationships.

e Memory usage can be reduced by ‘summarising’ an object in terms of more abstract or
approximate components or ‘chunks’.

e Efficiency and effectiveness of the matcher is improved by allowing correspondences
between coarse details to guide and constrain the search for correspondences at finer
levels of detail.

e Two objects may be able to be generalised on the basis of corresponding abstract or
approximate features, even if they differ significantly in their finer details. If

e Multiple levels of approximation and abstraction enable the fault-finder to report differ-
ences at both a coarse and fine level of detail, depending on task requirements.

e A composite object captures constraints and properties of a collection of several compo-
nents as a whole, and these features might not otherwise be representable.

e GRAM creates concepts by generalising instance objects, and therefore, if multiple levels
of abstraction were not supported, it would not be possible to create abstract concepts
from composite instance objects.

On the basis of these reasons, this section presents various specific criteria which could be
used to justify the formation of an object to characterise an observation. It also discusses the
kinds of mechanisms needed to find and create objects. The group-finding mechanism has
been partially implemented in the current GRAM system, and is discussed in detail in section
6.2.

In a full parallel system, each of the object formation mechanisms would independently
search for candidate sets of composite of primitive objects that could be combined into a single
composite object. If a set is sufficiently strongly supported by one or several of the mechanisms,
then a composite object would be created. New objects might then be created on the basis of
these, and then again from those objects, repeating until no further composition can be done.

6.1. OBJECT-FORMATION 243

6.1.1 Object-Formation Criteria

There are many criteria that could be used to justify the formation of composite objects that
partition an object or scene into larger chunks. A factor that underlies all of them is that there
should be a clear boundary between the components of a composite object and non-components.
More specifically, there should be a clear distinction between the collective and/or individual
features of components and non-components. If this were not the case, then the boundary
would be arbitrary and descriptions would not be sufficiently consistent to support effective
matching and generalisation.

Figure 6.2 lists the criteria that are or could be used in the GRAM system, and also shows simple
illustrations of their meaning. These are discussed below. Each of these criteria provides a
way of identifying useful boundaries or partitions between sets of components within an
observed object or scene. Some of these criteria are similar to the Gestalt “Laws of Perceptual
Organisation” which were proposed fifty years ago [Ellis, 1939], but the criteria presented here
are more specific, since we are concerned with actually building a real perception system.

The discussion also mention the various kinds of object-formation mechanisms that are or
could be based on each of them.

(a) Blockness

The simplest and most important form of composite-object-formation is based directly on the
blocks produced by the low-level vision system. Each block is an approximation of some
portion of the observed object at some level of detail. If a block has a clear and simple
boundary then this justifies the formation of a composite object. Primitive objects are created
from blocks that are not decomposable into any finer level of detail.

For example, Figure 6.2 (a) shows three objects with portions of their substructure marked by
dotted boxes. In the left two objects, the marked regions indicate strong blocks which should
be perceived by the vision system, since their boundaries are clear and simple. In the rightmost
object, the marked region should not be perceived as a block by the vision system, since its
boundary does not form a simple shape that distinguishes it from the rest of the object. If you
make your eyes go out of focus, it does not stand out as a distinct component.

‘Holes’ are perceived by the vision system in much the same was as ordinary solid objects,
since GRAM represents a hole as an ordinary object with a density property of zero, and a
block-type property with the value ‘hole’. Therefore, holes can be combined into composite
‘hole’ objects in the same way as solid objects. The middle object in Figure 6.2 (a) includes a
primitive hole.

A real vision system would require edge-detectors and so forth, and could perceive fuzzy
blocks directly by detecting edges at a coarse level of detail, without having to first detect the
smaller blocks of which it is composed. However, fuzzy blocks could also be detected in a
bottom-up fashion by clustering groups of smaller blocks into larger blocks. For development
purposes, a simple system was implemented to do this which, in effect, observes a scene at a
number of different levels of detail, each defined by some tolerance factor. For each level of

CHAPTER 6. THE INSTANCE CONSTRUCTOR

(a) Blockness

(b) Subpart Connectedness

(¢) Isolation

(d) Grouping
(Repetition)

very strong quite strong weak

g 7
= — uite strong

o ——

(because ambiguous ™~

membership)

(f) Recognition
and Expectation

(from recognition within
the same object)

Figure 6.2: Partitioning Criteria.

6.1. OBJECT-FORMATION 245

detail, it merges blocks if the empty space within their rectangular bounding box is smaller
than the tolerance factor defining that level. Thus a series of ‘views’ of the object is obtained,
each representing the object at a particular level of detail. An example of a series of views
produced for a chair is given in Figure 6.3. However, composite objects should not necessarily
be created for all of the blocks. Rather, objects are only created for those blocks that persist
through several levels of detail, and thus can be considered ‘stable’. Stable blocks are most
likely to be perceivable in other similar instances, and are therefore more important to represent
explicitly to support matching and generalisation. However, weaker blocks might also be used
if they satisfy the other object-formation criteria discussed below.

Unfortunately the above system is limited in that it deals only with rectangular blocks that
are all aligned with the axes of the coordinate system, as in Figure 6.3. Therefore, since a
real low-level vision system has not been available, most of the work on GRAM has used input
obtained directly from a simple graphics package ! in the form of a set of primitive shapes,
such as rectangles, ellipses, and polygons, with blocks indicated explicitly by the teacher.

(b) Subpart Connectedness

One of the simplest criterion for object-formation is connectivity. If a set of objects are not
connected, then they are less likely to be functionally or structurally dependent on each other,
since their relative position and orientation are not subject to direct structural constraints.
Therefore it is less appropriate to combine them into a single composite object than if they
were connected.

For example, Figure 6.2 (b) shows two proposed composite objects (indicated by the dotted
boxes), where the first satisfies the subpart-connectedness criterion, and the second is not. The
composite objects shown here might, of course, be still justifiable on the basis of other criteria.

Currently GRAM only considers parts to be either connected or not connected. An extension
to GRAM’s representation could include more types of connection which would give varying
degrees of justification for object-formation, such as fixed joins, articulated joins, or mere
contact. In fact, several blocks perceived by the vision system might even be portions of
the same piece of material, such as the base, stem and the bowl of a wine glass. This
form of connection can be called a same-piece connection. Same-piece or fixed-joins are the
strongest justification for combining objects into the same composite object, since they imply
the strongest functional inter-dependence and structural constraint. On the other hand, the weak
contact connection between a person and a chair does not strongly justify the formation of an
object consisting of both the person and the chair, although other object-formation criteria,
such as blockness and isolation (discussed below) might.

Often it is not possible to know whether the connection between two objects is same-piece,
fixed-join, or contact, unless they are observed to move in relation to each other, or unless prior
domain knowledge is available. This thesis suggests that in the absence of such information,
the system should presume that the objects are fixed-joins, since composite objects formed

!Idraw for X-windows on a Unix system, which is a demonstration application for the Interviews project.

CHAPTER 6. THE INSTANCE CONSTRUCTOR

246

e
%5;/7’ 7

7 ,Z’//
7 %
_

Figure 6.3: A series of ‘block’ views at different levels of detail.

6.1. OBJECT-FORMATION 247

incorrectly on the basis of this can always be removed later from concept memory, while it is
more difficult or impossible to later create composite objects from already-generalised objects
in order to resolve mismatches. In other words, it is better to err on the side of excess redundant
descriptive entities.

Currently GRAM does not use this criterion, since its input comes directly from the teacher.
However, this criterion would be easy to implement by computing the maximum distance
between pairs of subblocks of the blocks provided by the vision system.

(c) Isolation

Th isolation criterion is closely related to the previous criterion. It causes the instance con-
structor to favour object-formation for candidate composite objects which are distant from, or
at least separated from or very weakly connected to, other neighbouring objects, where ‘weakly
connected’ means that only a small area of the surfaces or edges are involved in the connection,
such as a chair on a floor. For example, Figure 6.2 (b) shows three objects ranging from strong
to weak isolation.

As with the previous criterion, this is not currently used by GRAM, but could be easily
implemented by computing the minimum distance between the candidate object and other
objects, or, if the object is connected to other objects, by computing the degree of connectivity.

(d) Grouping (or repetition)

The grouping criterion justifies the formation of a composite object from a set of similar and
similarly related objects. A strong group is one in which there is a clear distinction between
members and non-members, and where the members have strong similarity of structure, context
and inter-member relatedness. Groups might be an unstructured cluster, or a linearly ordered
chain, or any of the other kinds of groupings such as array, loop, or collection. Groups have
already been discussed in some detail in the representation chapter, and section 6.2 describes
specific kinds of grouping criteria and mechanisms for finding groups.

(e) Symmetry

Symmetry of a set of objects or blocks is another justification for object-formation, since it
suggests a collective dependence between the objects involved. The most common form of
symmetry is when a set of objects are co-linear, such as the base, stem and bowl of a wineglass,
or the components along a drive shaft. A chair is a more complex symmetrical object, and
this symmetry could help to distinguish a chair as a distinct object prior to recognition within
a crowded room. Figure 6.2 (d) shows two artificial composite objects, one with strong
symmetry and the other with weak symmetry. Brady’s “Smoothed Local Symmetries” system
[Connell and Brady, 1987] also used this principal for identifying the important regions of an
image.

248 CHAPTER 6. THE INSTANCE CONSTRUCTOR

One simple way to test for symmetry (introduced by [Winston, 1975]) is to match the set of
subpart objects of a proposed composite object against itself, after first performing a mirror-
image transformation of their parent, neighbour, and subpart relationships. This is somewhat
expensive computationally, so to avoid doing this for all possible sets of objects, it could be
done only for composite objects that have already been proposed (at least weakly) on the basis
of other criteria, and whose overall shape and density profile is also symmetrical, which can
be determined by much simpler computation. The GRAM matcher has not yet been applied to
this task.

(f) Recognition and Expectation

If a sub-component of an object or scene is recognised as being an instance of a known concept,
then that may cause the system to expect to see instances of the concept’s parent, neighbour,
or subpart concepts, and this may give justification for creating new composite objects.

For example, in Figure 6.2 (f), the person and the chair might not initially be identified as
being distinct objects on the basis of other object-formation criteria. However, the head is a
distinct block, and could be recognised. Since a head is expected to be attached to a torso,
and close to an arm, these could also be recognised. From these, other components could
be recognised. These classifications would provide sufficient justification to create a new
composite object in the instance graph, consisting of the classified person components.

This demonstrates how object-formation cannot always be completed before classification,
since the two processes are inter-dependent.

In the second example in the figure, the indicated composite object is not justified on the
basis of such recognition.

In the third example, the formation of the legs as distinct objects is clearly not justified on
the basis of any of the criteria discussed previously. However, the humanoid as a whole could
be recognised via recognition of the head and face structure, in the manner described above,
and on this basis the legs could be recognised by expectation, and this justifies formation of
distinct objects in the instance graph.

The fourth example is closely related to the repetition, or grouping, criterion, since the
formation of the composite part X indicated on the left side is justified because it matches the
composite part Y on the right side. If we assume that Y was created on the basis of other
criteria, and if we assume that every instance object can be immediately treated as a concept
in its own right, then part X on the left will be recognised as an ‘instance’ of it. This also
assumes that X has either been already proposed (weakly) as a distinct object on the basis of
blockness and/or symmetry, or is formed on the basis of expectation after recognising one of
its subcomponents, such as the ellipse in the middle, as matching one of Y’s subcomponents.

Chapter 2 described the Labyrinth system which employs a bottom-up recognition process
to classify primitive parts so that it can classify composite parts composed of them, and then
continue up the part hierarchy until the object as a whole can be classified based on the
classifications of its direct subparts. A limitation of this forward-chaining-style approach is

6.1. OBJECT-FORMATION 249

that it assumes that subpart object-formation has already been done prior to classification of
the parent part. With the recognition-expectation criterion, GRAM can not only do bottom-
up recognition, but can also use a classification of a parent part to guide the formation of
its subparts, using a more backward-chaining expectation-driven approach. For example, a
bicycle might be recognised on the basis of its overall shape and properties, and this could
guide the formation (i.e. perception) of its subparts.

(g) Match Leftoverness

In Figure 6.2 (g) we see a person without a hat and a person with a hat. If the system does not
know the concept person, then there is no justification for treating the hat as being distinct from
the head. However, when matching the hatless person with the hatted person there are two
unmatched objects, and this can be used to suggest a composite object comprised of them, since
their 50% absence and 50% presence indicates a co-dependency and a structural distinctness
from the head. Other criteria such as connectivity need to be combined with this criterion, and
since the two hat parts are connected, and are also aligned along their central axes, they can be
combined into a single object in the generalised person, as shown in the figure.

This criterion does not really belong in the instance constructor, since it is a task of the
matcher (as is also the case for the recognition-expectation criterion). However, since it
pertains to object formation, it is included in this discussion. Match-leftoverness has not yet
been implemented, since the current matcher is not able to cope with new composite objects
being formed during the matching process itself.

(h) Function, behaviour, and knowledge about construction.

A full robot system would also partition a scene into composite objects on the basis of knowledge
and reasoning about function and behaviour, and also of knowledge and reasoning about
construction, whether by human beings or by other parts of nature. For example:

e If a chair has a rubbish bin sitting on it, then the system might treat the chair and rubbish
bin as a single object, possibly creating a new variety of chair concept. However, if
knowledge about the function of a chair is available, then the system will know that the
rubbish bin is a separate object.

e If the system observes a bicycle and sees that the pedals are moving in relation to other
parts of the bicycle, while their internal structure remains unchanged, this indicates that
the pedals are distinct objects. Likewise, if the concept chair was not previously known
by the system, and it then saw a chair leaning against a desk, it might think that the chair
and desk were one object. However, as soon as the chair is moved relative to the desk
(or even just when it is observed separately from the desk) the distinction is clear.

¢ If a system observes a bicycle for the first time, but knows something about physics and
how objects are constructed, it might be able to guess that the frame is one piece of
material, or perhaps several very strongly connected pieces, and therefore can be treated
as a single composite object.

250 CHAPTER 6. THE INSTANCE CONSTRUCTOR

Function, behaviour, and construction knowledge is far beyond the scope of this thesis, and
is only mentioned here for completeness.

6.2. GROUP FINDING 251
6.2 Group Finding

Group finding involves finding collections of component objects within a scene or object that
are sufficiently similar that they can be represented in summary form as a single object with a
multi-relationship to a typical-member concept.

This section considers two aspects of the group-finding process. Firstly, and most importantly,
it looks at various kinds of criteria that can be used to justify group formation. Secondly, it
describes two mechanisms, “Seed-Expansion” and “Propose-and-Prune”.

The reasons why grouping is important were discussed in chapter 3, but it is worth reviewing
these briefly in order to provide motivation and justification for GRAM’s group-finding criteria.
These reasons, listed below, are refinements of the general reasons discussed in section 6.1 for
representing objects at multiple levels of detail.

To improve match efficiency: Two groups can be matched as single entities, thus avoiding the
need to match each of their individual members.

To enable generalisation: Grouping enables two collections of similar parts to be put into cor-
respondence and generalised (as single entities), even if they have different cardinalities.
This results in a generalisation that is defined in terms of a variable number of instances
of the generalised typical-member concept.

To reduce memory usage: Since a collection of similar parts can be summarised in terms of
a generalised description of the typical member, often the descriptions of individual
member subparts can be removed, thus reducing memory requirements.

For constraint discovery and representation: A group is really an n-ary similarity relationship
between several items, and therefore group finding can be considered to be a way of
explicitly noticing and representing important regularities and constraints between a
collection of objects. The kinds of regularities that the group-finder notices should
be those that are likely to have functional or structural significance, indicating that
the grouping has a common or collective function, or an underlying unifying cause or
constraint.

As a form of concept acquisition: Since the process of grouping involves noticing repetition
of similar items and forming a generalisation of them, group formation is a process
of concept acquisition within a single scene (as opposed to concept acquisition from a
series of scenes observed at different times). Concept acquisition enables predictions to
be made about similar objects observed in the future, or elsewhere in the scene. This
also means that individual members (if retained in the description) are being implicitly
generalised, since they are being classified as instances of the typical-member concept,
and thus future matching with individual members will be more tolerant of differences
that are acceptable to the implicitly inherited typical-member features.

1t should be noted that GRAM’s group-finder is not intended to model the way humans find
groups, but only to support the above requirements. However, since the system is intended to

252 CHAPTER 6. THE INSTANCE CONSTRUCTOR

operate in a human world, the kinds of descriptions it produces should contain at least roughly
the same kinds of information that humans seem to consider important. We know so little
about this matter that the requirement must be treated somewhat loosely.

A typical-member concept may be formed without a grouped object.

Sometimes it may be inappropriate for a proposed grouping to be represented as a single
new object, even though the grouping is sufficiently strong to justify generalising the objects
into a new concept. If this is the case, then other objects can be related to the concept via
multi-relationships, but cannot be explicitly related to the a group as a whole since it is not
represented. This situation arises when the grouping is an unstructured cluster or collection,
and for which the grouping as a whole does not satisfy the other object-formation criteria,
particularly ‘blockness’.

6.2.1 Grouping Criteria

Section 3.5 described a variety of types of groups, such as chains, clusters, arrays, etc, each of
which was distinguished by the kinds of features that were common to the members. We now
consider in more detail the kinds of criteria used to actually discover and justify such groups.
All of these criteria are based on the overall reasons for grouping given above, such that if
a proposed group of objects satisfies enough of these criteria strongly, then the group can be
considered a strong group, and therefore one worth representing explicitly.

Before describing GRAM’s grouping criteria, the kinds of criteria and group-finding mecha-
nisms proposed by Winston [Winston, 1975] are outlined, since his early system has been a
motivating factor in the work on group-finding in this thesis.

A key idea proposed by Winston is that all members of a group should have “equal right to
membership”. On this basis, he used the specific requirement that each member of a stable group
should have at least 80% of the features that are common to more than half of the members.
His ‘common-features’ group-finding algorithm worked by proposing a generous grouping,
and then pruning out atypical members — those that do not satisfy the above requirement.

However, Winston also suggested that there cannot be just one universal group-finding
mechanism, but many, each based on different demands, such as for finding collections of
items that fit together like jig-saw pieces, or groups based on a single common property (such
as all red objects in the room), or groups based on overall properties which do not characterise
individual members but the group as a whole (such as its overall shape).

Winston also discussed sequences (equivalent to GRAM’s chains) as the most simple form
of group. The criteria for a sequence as outlined briefly in his paper were that a sequence
must have at least three members which are linked, in sequence, by the same relation, such as
SUPPORTED-BY or IN-FRONT-OF. A sequence also must not have junction points, and the
consecutive members must not dramatically change in size or relative position.

6.2. GROUP FINDING 253

One of the (perhaps intentional) problems with Winston’s group-finding system was that the
sequence-finder and ‘common-features” mechanism were distinct processes, each using very
different membership criteria. The sequence-finder did not incorporate the ‘80%’ rule, and
conversely the ‘common-features’ mechanism did not take into account relationships between
the members. Therefore, these two grouping criteria could not both contribute to the formation
of a group.

In GRAM, these mechanisms have been integrated more closely as a result of first elaborating
and refining the criteria proposed by Winston, and only then considering what grouping mech-
anisms are needed. This approach follows the overall methodology of this thesis of identifying
criteria before mechanisms. Whether a single general-purpose grouping mechanism can be
developed to account for all of the grouping criteria, or whether multiple distinct and perhaps
cooperative mechanisms are preferable, is a secondary issue.

We will now consider the various specific grouping criteria in more detail. The discussion

often refers to the bookshelf in Figure 6.4, as this illustrates many different kinds of groupings.
The grouping criteria are summarised in the list below.

e Strong similarity of structure, context, and inter-member relationships.
e Clear membership boundary.

e ‘Tightness’ of inter-member relationships.

e Parent non-groupedness.

e Cardinality.

e Structure complexity of members.

Members should be similar to each other with respect to structure, context, or inter-
member relationships.

The most important and obvious criteria for grouping is that the members are similar to each
other. The more similar they are, the stronger the group. Three kinds of similarity can be
distinguished as follows:

Structure similarity is the similarity of the members’ structure in isolation, independent of
their context. External context similarity takes into account the relationships between members
and non-members, such as the relationship between each of the books on a shelf, and the shelf.
Inter-member relationship similarity takes into account the relationships between members
themselves.

For example, each of the two stacks of bricks supporting the shelves satisfies structure
similarity and inter-member similarity, since the bricks are structurally identical and they are
organised as a linear (and almost connected) sequence. The context of the bricks varies,
however.

As a another example, the bottles on the bookshelf all have very similar structure, moderately
similar context in that they all sit on a shelf, but their inter-member relationships are not regular.

254 CHAPTER 6. THE INSTANCE CONSTRUCTOR

Figure 6.4: A bookshelf containing groups.

6.2. GROUP FINDING 255

On the basis of this, the bottles are clearly generalisable to form a new concept, and multi-
relationships could be created from the shelves to the bottle concept, but it is less justifiable
to represent the bottles as a single group object, since such a group does not have any overall
structural regularity or blockness.

If inter-member relationships form an ordered sequence, such as for the row of books or stack
of bricks, then this justifies a chain grouping, which is considered an especially strong form
of grouping since orderedness is often a functionally significant feature. On the other hand,
the cookies in the bowl on the bookshelf do not form an ordered sequence, but each cookie is
related to at least one other cookie by contact. In an array grouping, such as the windows of
a building, or squares on a chequer board, or the blocks in the Rubic’s cube on the bookshelf,
the relationships between members are more regular although they do not form a single linear
sequence. Rather, there are two different kinds of inter-member relationships, one vertical, one
horizontal pairs.

This introduces the problem of deciding which inter-member relationships should be con-
sidered when evaluating and creating a group. The simplest method is to consider only the
most tightly related (i.e. the closest, most aligned, etc) neighbours of each member object. In
a chain, the tightest relationships for each member will normally be the relationships with the
next and the previous members in the chain. In a cluster, there may be several equally tightly
related neighbours. In an array there will be four equally tight relationships to the members to
the left, to the right, above, and below.

In Winston's system, structure and context were not distinguished, and member similarity
was measured in terms of the number of common relationships such as (ON-TOP-OF x) or
(HAS-PROPERTY green). The representation was much simpler than GRAM’s, and group
members were single blocks rather than potentially very complex structures, and so it was
simpler to match the proposed group members with each other. His system formed a “common
features list” for the proposed group, and the size of this list indicated the strength of the group.
Individual candidate members could be compared with this list to determine their atypicality.
In GRAM, the equivalent of the “common features list” is a structural generalisation of the
members (i.e. a concept), and the strength of the grouping is indicated by the variance of
the concept, since that indicates the regularity of the members. The lower the variance, the
stronger the group.

A group should have a clear boundary between members and non-members.

Similarity is not, however, a sufficient criteria on its own for justifying a group. For example,
four of the apples in a large bowl of thirteen apples may be very similar to each other but
should not be represented as a group. Another criteria is required, namely that there is a clear
boundary between members and non-members. This does not mean that the members should
appear in a distinct spatial region of the scene (although this may be one aspect of it) but rather
that there are no non-members that have as equal a right to membership as the members. This
is illustrated in Figure 6.5, showing two groupings of apples, one with a strong membership
boundary and one with a weak boundary.

256 CHAPTER 6. THE INSTANCE CONSTRUCTOR

Winston’s ‘common-features’ group finding system did not make this criteria explicit because
the system worked by proposing an initial overly generous group and then pruned it, and so the
clear-boundary criteria was implicitly satisfied. His sequence-finder did explicitly embody this
criteria however, by preventing a sequence from containing members with a sudden change of
size or relative position. Such sudden changes indicate the boundary.

The requirement of a clear-boundary ensures that members are not being missed out. A
clear boundary also means that the group is more likely to be able to be matched with other
instances of the same concept. If there is a fuzzy boundary, then other instances might include
more or fewer items as members of the corresponding group, and this would not be matched as
successfully. Such a group is therefore less useful for supporting the matching and generalising
process.

weak boundary

\

|
1 weak boundary strong boundary with respect [
’ ’ to inter—member relationship

- ERSSNEREEE |

Figure 6.5: Strong and weak group boundaries.

The strength of the boundary between members and non-members must be based on the
variance of the generalisation of the members, which is a measure of its regularity. More
specifically, the difference between a non-member and the typical-member concept is measured
as a ratio of the variance, or in other words as a fit-scoring comparison. Thus, if a grouping
is highly regular, then even if a non-member is only a little different from the members, the
group boundary would be considered strong if this difference were significantly larger than the
variance. For example, the two groups of petals (one group for each flower) have reasonably
clear boundaries, even though some of the petals overlap. This is because the petals in each
group have highly regular inter-member relationships for a large number of instances, and also
because they collectively form a circular block. So the overlapping petals from the other group
clearly do not belong.

The interestingness or ‘tightness’ of inter-member relationships increases the group
strength.

The discussion above has implied that if group members have very similar structure, non-
member relationships, and inter-member relationships, and if the group has a clear boundary,
then it is a strong group. However, this is not quite true because it is also important that the rela-
tionships are ‘interesting’, meaning that they are more likely to have functional or behavioural
significance in the physical domain, or in other words, capture important constraints. Since

6.2. GROUP FINDING 257

functional knowledge is not available, the term tightness is more specifically what is required
in GRAM'’s structural domain. The tightness of a relationship is measured in terms of proximity,
alignment, and ‘visibility’ (meaning that the two objects do not have other objects between
them). For example, in Figure 6.6 (a) the ellipses 4,5,6, and 7 clearly form an ‘interesting’
group because not only do the members have similar structure and inter-member relationships,
but the inter-member relationships are tight. In (b), on the other hand, the objects 4,5,6, and
7 also have similar structure and inter-member relationships, but these relationships are less
tight, and so the group is considered less interesting.

(a) (b)

Figure 6.6: Relationship ‘tightness’.

The group must have sufficient cardinality.

Since one of the purposes of group formation is to decrease memory usage and increase match
efficiency, a grouping with lots of members should be considered stronger or more justified than
a grouping with only a few members. However, the effectiveness of the matcher and generaliser
is usually helped by explicitly representing even small groups, since they will enable one-to-one
correspondences between sets of objects with different cardinalities. Therefore, the current
version of GRAM does not use cardinality as a grouping criteria at all, except that a group must
have at least 2 members, or 3 members if it is to be explicitly represented as a chain.

258 CHAPTER 6. THE INSTANCE CONSTRUCTOR

Member structure should be sufficiently complex if the grouping is justified by structure
alone.

If we were to focus on memory usage and match efficiency, then not only the cardinality
of the group would be relevant, but also the complexity of the individual members. The
complexity of an object can be simply measured in terms of the number of subcomponents it
has. Forming a grouping of complex structures is more beneficial in terms of memory usage
and match efficiency because the typical-member concept is a summary of a larger quantity
of information. This advantage is only achieved, of course, if the individual members are
removed from memory, or at least ignored by the matcher.

However, for the same reasons of match effectiveness discussed above for cardinality, GRAM
normally ignores complexity, and treats a group of single blocks as being just as worthwhile
representing as a group of complex structures. An exception to this is when the proposed
group is a collection — that is a dispersed set of similar objects which are not organised into a
cluster or sequence. The reason is that GRAM’s representation does not include a wide variety
of attributes such as texture, colour, edges-shape details, material, ezc, and therefore highly
similar primitive objects (with no substructure) can often appear all over an object or scene.
For example, a piece of a bicycle frame might be grouped with a chair-leg if there was no
requirement for sufficient complexity to ensure that the similarity is ‘interesting’.

A group need not be formed if the members parents are grouped.

If the members of a proposed group are all subcomponents of members of an equally strong
group with the same cardinality, then the grouping may be redundant. For example, it is not
necessary to form a grouping of the backs of several chairs if the chairs have already been
grouped. This criterion is called parent-non-groupedness.

For example, in Figure 6.7, the group of objects U, V, W, and X is not worth representing

explicitly since their parent objects, A, B, C, and D form an equally strong group. However,
objects 1 to 6 do form a worthwhile group, since only some of their parent objects are grouped.

Figure 6.7: Parent-non-groupedness.

The term parent-non-groupedness is slightly misleading, because it actually should refer to
grandparents, or any super-parents. For example, in the case of the chair backs, each chair-back
may be composed of several subparts which may not have a direct parent relationship with

6.2. GROUP FINDING 259

their chair object, and we do not want groups of these pieces (one piece from each chair-back)
to be made into a group.

Task specific grouping may be justified on the basis of a single common feature.

A grouping may be formed from a collection of objects that all share a single (or perhaps just
a few) common features, such as category, colour, shape, a distinct subcomponent, and so on.
The members of such a group can otherwise be quite different, or may be similar but such that
there is no clear boundary with non-members except on the basis of their particular common
feature. For example, the group might consist of “all plastic objects on the bench”, or “all
chairs in the room that have arms”.

There are as many ways of forming such groups as there are combinations of object attributes.
For example, the desk I am working at could be grouped into plastic objects, objects that
are about 3cm along one dimension, objects which contain a circular component and a red
component, and so on. Therefore, the single-common-feature grouping criteria must be task
specific, rather than being included in the general automatic group-finder, and so will not be
considered further.

6.2.2 Group Finding Search Strategies.

This section explores the problem of how to find sets of objects that satisfy a sufficient number
of the above grouping criteria sufficiently strongly that a group-object, or at least a typical-
member concept, should be formed. We are not concerned with the details of assigning
numerical importance to the various criteria, but only with identifying the kinds of search
strategy that can be used and the factors that must be taken into account during the search.

Since the search algorithm must be based on the grouping criteria, this section considers
each of these criteria as a way of identifying what kinds of search heuristics and strategies it
suggests.

Following this, the section considers how these strategies can be integrated into a single
group-finding mechanism by making the distinction between two overall search approaches,
Propose-and-Prune and Seed-Expansion.

Search heuristics and strategies suggested by the grouping criteria.

(a) Structure similarity: Any pair of objects in a scene may be structurally similar, suggesting
that all pairs must be considered.

The criteria of structure similarity suggests that we need to consider objects that are similar,
independent of their context or relationships between each other. This does not provide much

260 CHAPTER 6. THE INSTANCE CONSTRUCTOR

constraint on the search, since the objects could appear distributed all over the scene, as in the
case of the bottles on the bookshelf on page 254. It would obviously be expensive to perform a
complete comparison of all pairs of objects in a scene, remembering that an ‘object’ includes
composite and primitive components at all levels of detail. Therefore we need some way to
prune this search.

One way is to assume that we only need to consider grouping objects of roughly similar
absolute size, and to make use of the decomposition hierarchy to prune the search on this basis.
More specifically, if two objects have sizes that are too dissimilar to warrant being members
of the same group, then there is no point considering groupings consisting of the larger of the
two objects and any of the subpart descendents of the other smaller object. For example, in
an observed office in which the desk is significantly larger than the potplant, there is no need
to compare the desk and the potplant for structural similarity, or to compare the desk with
any of the bits of the potplant, since they must obviously be smaller too. This very simple
heuristic reduces the search enormously, since every pair of objects considered and found to
be too dissimilar in size, means n other comparisons need not even be considered, where n is
the number of subpart descendents of the smaller object, and may be large.

A second way of reducing the search is to make use of an indexing system that enables
concepts in memory to be directly accessed on the basis of particular features. If the system
treats every observed object as a concept in its own right and adds information to the feature
indexes to make it directly accessible (as shown in Figure 6.8), then the group-finder can simply
scan the objects in the object graph and whenever the features of an object are indexed to one
or more other objects in the object graph, then this suggests a possible grouping. The search
is therefore linear, since each object is only considered once. The success of this approach
depends on the effectiveness of the indexing (or associative memory) mechanisms. Efficiency
could also be improved by creating a separate ‘short-term memory’ index rather than using the
indexes of main concept memory.

feature index

Figure 6.8: Group-finding by indexing from features.

The simplest way of identifying groups of objects with similar structure is when the objects
have already been classified as being instances of the same concept. For example, a group of

6.2. GROUP FINDING 261

pots on a shop shelf can be identified not by having to compare each of the pots, but because
they have all been classified as being pots. Such groups can be found simply by recording
references in the concept description to all recently observed instances. Each object in the
scene can be checked to see whether it has been already classified, and if so, all of the other
instances in the scene are immediately available for group proposal.

The last two search strategies have not been implemented, since they require mechanisms
that are part of the larger classification system which has not been the focus of this thesis.

(b) Context similarity: Consider grouping objects that are related to some other object in the
same way.

The criteria of context similarity suggests a more constrained search since potential group
candidates must be similarly related to at least one common (or at least similar) neighbour or
parent. Therefore, a simple search strategy is to consider grouping the neighbours and subparts
of each object. This only needs to be done if the relationships are sufficiently similar. For
example, all of the keys on a keyboard (except the space-bar) have similar size and orientation
relative to the keyboard as a whole, and so these can be considered for grouping on the basis of
possible context similarity, and then a more thorough comparison can be performed. Similarly,
all of the bricks in each of the two shelf support stacks of the bookshelf are related in a
similar way to the stack as a whole (assuming that the brick stack already exists as an explicit
ungrouped object formed on the basis of ‘blockness’). On the other hand, the arm and head
subparts of a person object have significantly different relationships with the person as a whole,
and so they would not be considered for grouping.

This technique was used by Winston in his ‘common-features’ grouping mechanism: a
grouping was proposed on the basis of a common relation with some other object. However,
GRAM combines all of Winston’s relations (such as ON-TOP-OF, BIGGER-THAN, etc) into
a single descriptive entity called a parent, neighbour, or subpart relationship. Therefore, the
group-proposition strategy must involve comparing relationships and considering grouping the
relatees for which the similarity scores are sufficiently high.

(c) Inter-member relationship similarity, and relationship ‘tightness’: Traverse the neigh-
bour relationships.

The third form of similarity, inter-member relationship similarity, and the requirement that
the relationships be sufficiently tight, is the simplest to incorporate into a search strategy. This
is because the criteria for ‘tightness’ are a stronger version of neighbourliness criteria. If we can
assume that neighbour relationships have already been created, then groups based on similar
and sufficiently tight inter-member relationship similarity can be found by just considering
groups of objects that are neighbours in the object graph, where the neighbour relationships
are similar.

One way of identifying potential groups of neighbours is to somehow traverse neighbour
relationships, accumulating objects that are related in a similar manner.

Another approach, more in the form of the object feature-indexing approach mentioned above,

262 CHAPTER 6. THE INSTANCE CONSTRUCTOR

is to directly index from relationships to pairs of objects, thus finding groups of pairs of objects
that share some relationship feature. However, GRAM’s current representation would have to
be enriched, by adding features such as colour, texture, material, edge-shape, etc, to ensure that
this method would not produce large numbers of spurious sets of similar relationships.

(d) Groupedness of members’ parent objects: Use the decomposition hierarchy.

Another grouping criteria discussed earlier was that a grouping proposal is weakened if the
members of the group are all subparts of objects which are themselves already grouped just as
strongly, as in the case of the seats of a row of chairs. This suggests that the search algorithm
could make use of the decomposition hierarchy, by working top-down through the levels,
abandoning the group search for subparts of already grouped objects.

However, a simpler way which is not constrained and complicated by the top-down strategy
is to evaluate proposed groups of larger objects before evaluating proposed groups of smaller
objects. When evaluating a proposed grouping, the system must check whether the parents
are already grouped just as strongly, and adjust the group score accordingly. By processing
larger before smaller, unnecessary group formation is reduced, and the need to re-check parent-
groupedness later is removed.

The search heuristics.

A summary-list of the search heuristics considered above is given below:

e Use the decomposition hierarchy, and object size comparison, to constrain the search.
e Use the object-feature indexing mechanism to propose groupings.

e Use object classifications to propose groups. If several objects have all been classified
to the same concept, then they may form a group.

e Use the parent, neighbour, and subpart relationships of each object to propose groupings
of relatees.

e Traverse neighbour relationships to propose groupings of similarly related objects.

e Index from neighbour relationship features to propose groupings of pairs of objects
related in a similar way.

e Create groups of large objects before evaluating groups of small objects.

e Check for parent groupedness before forming a group.

Two basic search strategies: Propose-and-Prune, and Seed-Expansion

Now that we have considered various specific group-finding heuristics and strategies, each
based on a particular grouping criteria, we can now look at how to integrate them into a single
algorithm.

In developing a group-finder it has been necessary to distinguish two different overall search
strategies. The first — Propose-and-Prune — involves proposing a generous group (on the basis

6.2. GROUP FINDING 263

of some common feature) and then pruning it until a stable group is obtained which has a strong
membership boundary. This process is illustrated in Figure 6.9 (a). The feature-indexing, com-
mon classification, and object-relatees heuristics above clearly support the proposal component
of such a scheme. Winston’s ‘common-features’ algorithm mentioned earlier is precisely of
this form, although there was not an emphasis on having a strong boundary, and the group
evaluation did not take into account the variety of grouping criteria presented in section 6.2.1.
An outline of an algorithm for the Propose-and-Prune strategy is given in section 6.2.4.

The second strategy — Seed-Expansion — involves identifying two (or perhaps three) objects
that could potentially belong in a group, and then expanding this ‘seed’ group by adding new
members until a clear membership boundary is reached, or until it is decided that the grouping
is not good enough. This process is illustrated in Figure 6.9 (b). Winston’s other method, for
finding sequences, appears to take this form, although that is not made explicit. He talks about
finding “sets of objects that are chained together” and “terminating chains at junction points

. or size differences”, but does not describe this in the context of a search algorithm or an
expansion process. Also, and more importantly, he only uses this strategy for finding sequences,
rather than for other non-ordered groups. GRAM’s Seed-Expansion algorithm (presented in the
next section) is intended for any kind of group.

(a) Propose-and-Prune (b) Seed Expansion
{ABCDEFG} {C D}
{ABCDEF} {A C D}

| {ACDEF} {ACDE}

| {ACDEF)

.- B _—

Figure 6.9: Propose-and-Prune and Seed-Expansion.

6.2.3 The Seed-Expansion Algorithm

The seed expansion algorithm is outlined in Figure 6.13. The first step is seed-group-proposal
which involves finding pairs or triples of objects which could potentially expand into a group.
The second step is seed-expansion which focuses on a particular seed-group and incrementally
adds the best new member to the group until a good group is found, or until the grouping is
abandoned.

Seed-group-proposal is based on the various criteria and strategies already discussed above,
such as structure similarity (via feature indexing or common classification), neighbour relation-
ships, common parent or neighbour, and similar and tight neighbour relationships (via feature
indexing or graph traversal). Currently GRAM only produces seed pairs, not triples.

These seed-groups (in the set SeedGroups) are then sorted according to a priority score which
is primarily based on how likely they are to be expanded into a good group, determined by

264 CHAPTER 6. THE INSTANCE CONSTRUCTOR

the strength of the various grouping criteria for each seed object. The priority score is also
partially based on the size of the objects so that pairs of larger objects will be processed before
pairs of smaller objects, to help satisfy the ‘parent-non-groupedness’ criteria.

The seed-group with the highest priority is then chosen, and a candidate grouping consisting
of its two (or three) members is created by producing a typical-member generalisation of the
objects. Then a ‘fringe’ set of candidate new members is created by finding all other seed-
groups which overlap this seed-group (i.e. contain one of its members). For example, in Figure
6.10, if the seed chosen happened to be {B C}, then the fringe would be {A, F, H, and D}
obtained from the other seed-groups that contain B or C.

Each of these candidate members is evaluated by matching the candidate object (and its
relationships with current group members) with the typical-member generalisation of the
group. A fit-scoring comparison is done because we want to determine how well the object
belongs to the concept. Some candidate members can be immediately rejected from further
consideration on the basis of this.

all seeds:
{BC] {CD] (AB} (D E} \
(BF}[FG}{DH}(HI} '
{CF]{CH}[AF]{HE} l
{G1}{FH]

After choosing seed {B C}

its fringeis {A, F, H, D} obtained from w

the overlapping seeds:
{AB] {BF}(CD][{CF}{CH]

Figure 6.10: A simple seed-expansion example.

The best new candidate member is selected from the fringe set, and if adding it to the group
would lower the strength of the group by a significant amount (relative to the current strength)
then this indicates a clear boundary. If the current grouping is sufficiently strong, then it is
added to FixedGroups so that it can be later added to the object graph as a grouped object.

The new member is then added to the group so that further expansion can continue. This
is done even if there is a clear boundary and a new group was added to FixedGroups, since a
larger and weaker — but still valid — group could be found. For example, in Figure 6.10, after
expanding {B C} to form the group {A B C D E}, expansion could continue as a weaker cluster
group resultingin {ABCDEFGHI}.

After each new member is added, the fringe-set of candidate members is updated by finding
any other seeds-groups that contain the new member and also contain another object that is not
already in the group or in the fringe-set.

Group expansion finishes when the group is no longer sufficiently regular, or when it is
weaker a group in FixedGroups of which it is a subgroup.

This latter condition helps prevent unnecessary expansion, and often prevents seed-groups
from being expanded at all. For example, in Figure 6.10, after forming the group of {A B C

6.2. GROUP FINDING 265

D E} from the seed-group {B C}, the seeds {A B}, {C D} and {D E} will not be expanded,
since they will be already contained in a FixedGroup, and are not stronger (in the sense of their
similarity and relationship tightness). On the other hand, in Figure 6.11, if the first seed chosen
happened to be {4,5}, it would be expanded first into the group of increasing-height objects
{1,2,3,4,5,6}, and then further expanded into the weaker group {1,2,3,4,5,6,7,8,9,10,11}.
Although the seed-group {8,9} (for example) will now be contained within a FixedGroup, it
will still be expanded because it is stronger than the containing group, since the tightness of
the inter-member relationship of the containing group is lower. (Tightness of a generalised
relationship takes into account the variance of the relationship).

—_—

Figure 6.11: Groups within a weaker group.

Seed pairs are also ignored if they do not satisfy the ‘parent-non-groupedness’ criteria: For
example, in Figure 6.12, after forming the group of {A,B,C,D}, the seed {1 2} is ignored
because the parents already belong in a group, and {1 2} could not expand into a stronger (i.e.
more regular) group. However, since seeds {4 5} and {5 6} do not satisfy this condition, they
are not ignored, and so could be expanded to find the group {1,2,3,4,5.6}.

After group expansion has completed, the next best seed-group is then selected, and the
expansion process begins again. This continues until there are no more seed-groups.

Figure 6.12: Parent-groupedness

An alternative algorithm is to expand groups in a competitive manner: at each iteration,
the strongest group is selected, and one new member added to it. Thus a group will only be
expanded when it is currently the best group. When its strength drops, some other group will
have its turn at being expanded. However, this algorithm leads to wasted effort because several
subgroupings of a group would be expanded simultaneously. For example, initial groups each
consisting of two apples from a bowl would be expanded simultaneously, competing with each

266 CHAPTER 6. THE INSTANCE CONSTRUCTOR

other until one group was completed and encompassed all the others. There would have to
be continual testing whether one group already included another group. It is more efficient to
simply expand one group at a time until completion, thus making expansion of contained seeds
unnecessary.

FIND-GROUPS (scene)
FixedGroups +{}.
SeedGroups <+—all pairs (or triples) of objects that could expand into a group.
Sort SeedGroups.
WHILE SeedGroups is not empty:
seedgroup +—pop strongest seedgroup from SeedGroups.
Create a set of candidate ‘fringe’ members for seedgroup.
EXPAND-GROUP (seedgroup)

EXPAND-GROUP (group)

IF group is sufficiently regular to continue expanding THEN

AND stronger than all containing groups in FixedGroups THEN
best-new-member «+best next candidate member to add
IF group has a sufficiently strong boundary
AND is sufficiently strong THEN

Add group to FixedGroups.

Add best-new-member to group.
Add new candidate ‘fringe’ members to the group, based on best-new-member.
EXPAND-GROUP (group)

Figure 6.13: Seed-Expansion Algorithm

Seed-expansion for chain groups.

The seed-expansion algorithm as given above does not distinguish between chain groups and
other kinds of groups, such as clusters. However, chain groups are a special case because they
are ordered, and this must be considered explicitly in the algorithm. New members must be only
added to the ends of the chain, and if a new member could potentially be added as a neighbour
of a middle member then this would indicate a fork in the chain, and should force abandonment
of the chain, although the group it may continue to be expanded as a cluster rather than a chain.
Figure 6.14 shows a situation where there is a fork in a chain. If the grouper is expanding the

6.2. GROUP FINDING 267

group of objects {2,3,4,5,7}, then object 6 might be considered as the next candidate to add,
since the relationship between 4 and 6 is typical of the current group. However, because object
4 is not an end-member, this indicates a fork, and so the chain expansion should be abandoned.

On the other hand, the sequence of objects {1,2,3,4} could be represented as a chain, although
the membership boundary is weak since the relationships between 4 and 6, and between 4 and
5, are both typical of the {1,2,3,4} group.

Figure 6.14: A chain with a fork.

An example of seed-expansion.

The following example shows the seed-expansion process for the objects in Figure 6.12. The
proposed seed-groups shown are given below, ordered by priority score. (Note that the differing
contexts of the objects at the left and right ends reduce the scores of the seed-groups involving
them.)

{BC} {AB} {CD}

{23} {34} {45} {12} {56}

{VW} {UV}{WX}

{bc} {cd} {de} {ef} {fg} {ab} {gh} (these are weak)

The first seed-group chosen is { B C}. Seed-Groups that have sufficient neighbour relationship
tightness are always assumed to be a potential chain at the beginning of expansion, and this
assumption is only abandoned when a fork is found. The candidate fringe members of {B C}
are A and D, obtained from the overlapping seed-groups {A B} {C D}. None of these imply a
fork, and so the group can remain as a chain.

Object A is added to the group to form {A B C}, ordered by the neighbour relationship. he
ordering is simple to determine because the overlapping seed-group {A B} indicates that A
should be added to the ‘B’ end of the chain.

The fringe of this new group is now just D, which still supports chain-ness, and the group is
still strong enough for expansion. Since D fits the group well, there is not a clear boundary to
justify fixing the group as it is, so D is added to the other end, resulting in the chain-group {A B
C D}. Now there are no further candidate members, which is obviously a strong boundary and
so the group can be added to the instance graph as a new object, and expansion is abandoned.

The seed-groups {A B} and {C D} are then compared with this new group and found to be
no stronger, and so they are not expanded.

268 CHAPTER 6. THE INSTANCE CONSTRUCTOR

In addition, the seed-groups {1 2}, {2 3}, {3 4}, {U V}, {V W} and {W X} will not be
expanded since both objects of each pair are subparts of consecutive members of the {A B C}
group, and are not significantly stronger. Therefore, the only seed-groups that will be expanded
at this point are as follows:

{45} {56} {bc} {cd} {de} {ef} {fg} {ab} {gh}
Seed-group {4 5} is selected, and expanded in the same way as above until the group {1 2 3

45 6} is obtained and added as a new group object. The seed-group {5 6} is ignored because
it is contained within this.

The remaining seed-groups are somewhat weak, and would not be created if lower ac-
ceptability threshold parameters were chosen for the group-finding system. However, they
have been included here to illustrate how they do not get removed on the basis of the ‘no-
parent-groupedness’ requirement, since the objects in each pair are not subparts of consecutive
members of the {A B C D} group. Therefore, the best seed-group {b c} is expanded into the
group {abcdefgh}.

The same process occurs for clusters and other types of groups, except that the chain-ness

assumption is dropped at some point during expansion, and so the group ordering becomes
unimportant and members are added at any place in a group.

Groups of groups.

The algorithm can be extended very slightly to also cope with groups of groups, such as the
group of four rows of books in the bookshelf on page 254. Whenever a new group-object is
formed, further seed-groups that contain that new group-object are created, so that groups can
be formed from these.

6.2.4 The Propose-and-Prune Algorithm

The Propose-and-Prune algorithm has not been implemented in the GRAM system since the
Seed-Expansion algorithm has proved sufficient for all of the kinds of groups that have consid-
ered. However, an outline of a Propose-and-Prune algorithm is given here.

Propose-and-Prune operates in the reverse direction from Seed-Expansion, beginning by
obtaining a generously proposed grouping on the basis of the various criteria discussed earlier.
For example, proposed groups might include a group of all objects that are related in a similar
way to some particular object, or a group of objects which have all been indexed from the
same object features or relationship features, or a group of objects with the same classification.
Winston’s system proposed groups on the basis of only the first of these criteria,

In GRAM-based Propose-and-Prune algorithm, a generalised concept would be created from
the proposed members. This is more complex than Winston’s system which creates a ‘common-
features’ list.

6.2. GROUP FINDING 269

Then, each member is matched with that concept. If one or several members are sufficiently
atypical relative to the other members, then they are removed from the group. This requires
the concept to be specialised to exclude these members. Then each remaining member is again
compared with the concept, and pruning occurs again if necessary. The process continues until
a stable group is reached, or until the group is too weak to be considered further.

An assumption of this method is that the initially proposed grouping has a clear boundary,
since there is no way to test for this in the algorithm unless a set of ‘fringe’ non-members is
identified, as in the Seed-Expansion algorithm. Therefore, the feature-indexing and common-
classification proposal mechanisms should err on the side of too many proposed members, so
that they can be pruned until a clear member-nonmember boundary is found.

One minor difficulty of implementing this algorithm in the GRAM system would be the task of
specialising a typical-member concept to exclude atypical members. This can involve removing
disjunctions, ungeneralising attribute values, and removing objects and relationships, none of
which are supported by the existing generalisation mechanism.

270 CHAPTER 6. THE INSTANCE CONSTRUCTOR
6.3 Relationship Selection

The instance constructor is not only responsible for creating objects, but also for creating
parent, neighbour, and subpart relationships between them. This section discusses the kinds of
criteria that can be used to select which relationships should be made explicit in each object
description.

First, the section presents four general requirements which form the basis for relationship
selection. Following this, it considers a variety of specific relationship selection criteria. The
mechanisms for searching for the best selection are also briefly discussed.

The four general selection requirements, all of which are specialisations of the overall
requirements of the representation scheme discussed in chapter 3, are as follows.

1. Memory usage should be minimised by avoiding unnecessary relationships.

For a scene containing n objects, there are n? possible relationships, and this would require
significant memory usage for a typical scene. A typical scene in a house or factory might be
represented in terms of hundreds or thousands of objects, which would mean tens of thousands
or millions of relationships. It is therefore desirable to minimise memory usage by only
including relationships that are useful.

Reducing the number of relationships also reduces the computation time for generating
instance descriptions.

2. Relationships should capture structurally or functionally important information.

Concept descriptions are intended to consist of information that usefully characterises the
concept, so that they can be used to identify the important faults or unusual features of an
instance, or to make predictions about the details of an instance without having to observe (or
even being able to observe) all of its details. For example, after recognising a bicycle from
a quick glance, it is not useful to be able to predict that the back tyre is not at the expected
distance and direction from the left handlebar, or to notice if it is not. On the other hand, we
might want to be able to predict that the chain is connected to the front and back sprockets, and
to notice if it is not.

Since man-made objects are primarily created serve some function, the information in a
concept description should therefore be related to that function. However, GRAM does not deal
with functional or behavioural knowledge, or even domain specific knowledge, and hence the
measure of what information might be functionally important must be based on, or embodied
in, general heuristics pertaining to structure.

3. Relationships should support “incremental spread” matching.

Since the GRAM matcher makes use of parent, neighbour, and subpart relationships to constrain
and guide its incremental-spread comparison process, the choice of neighbour relationships is
important to ensure that comparisons lead to good classification and generalisation performance.

6.3. RELATIONSHIP SELECTION 271

If there are too few relationships made explicit, then some object correspondences might not
be found. On the other hand, if there are too many explicit relationships, the matcher will be
overloaded with candidate correspondences to evaluate and reject.

For example, in Figure 6.15 (a) the object X is only linked to one other object, via a parent
relationship. Therefore, when matching this instance graph with a concepts in memory, a correct
correspondence for X is only possible if its parent has been matched classified successfully.
In example (b), on the other hand, object X has more relationships made explicit, and this
enables the incremental-spread process to propose classifications for X on the basis of any of
its neighbour and parent classifications.

PR ——— r==

(b)

X is isolated, X is highly dependent,
and so its correct match—correspondence and so its correct match—correspondence
is less likely to be found. is more likely to be found.

Figure 6.15: Relationships support the matcher.

4. Selected relationships should help to convincingly support a match correspondence
and to resolve ambiguities when matching and generalising.

An object should include sufficient explicit relationships that a correspondence proposed and
evaluated by the matcher can be convincing. The more relationships that are made explicit, the
more convincing a correspondence is if a high similarity score is obtained. If only one or two
relationships are included, then a high similarity score might not mean very much.

An object should also include relationships that help resolve ambiguity when generalising.
Chapter 4 showed that the matcher does not have to address ambiguity, since it does not attempt
to find one-to-one correspondences. However, the generaliser does have to deal with ambiguity.
Therefore, we do not want ambiguity to result simply from a description lacking relationships
that could resolve the ambiguity. As a simple example, if the two chairs in Figure 6.16 are to
be matched, then the correspondences between the legs Al and A2, and B1 and B2, might be
ambiguous if the relationship between the legs of each chair is not made explicit.

272 CHAPTER 6. THE INSTANCE CONSTRUCTOR

Figure 6.16: Relationships may help reduce ambiguity.

6.3.1 Criteria for Selecting Neighbour Relationships.

On the basis of the general requirements given above, we can now identify a number of specific
criteria for relationship selection, beginning with those for neighbour relationships.

It should be remembered that neighbour relationships are directional, in the sense that each
relationship is associated with and recorded in the description of only object, even though an
identical relationship may also be associated with and recorded in the description of the relatee.
Both neighbour relationships are described in terms of position, orientation, etc relative to both
objects involved. However, the issue being considered here is whether to explicitly include a
neighbour relationship in the description of a particular object, independent of whether it is
made explicit in the description of the relatee.

Each of the selection criteria discussed below are listed in Figure 6.17, along with simple
examples. A candidate relationship is given a score for each criterion, and these scores are
combined into a single score for a relationship. If the score is above a certain threshold, then
the relationship is made explicit.

Proximity.

The proximity of objects is the most obvious and most important criterion for selecting
neighbour relationships, since the closer two objects are together, the more likely they are to
be functionally dependent on each other. For example, the mouse of a computer is close to
the mouse pad, and so that relationship can be considered more important than the relationship
between the mouse and the keyboard, or the office door handle. In Figure 6.17 (a), the A—
B relationship is considered stronger than the A—C relationship according to the proximity
criterion.

In GRAM, the proximity criterion is measured in terms of the distance between the objects
as a ratio of the largest dimensions of the neighbour (remembering that each relationship is
associated with just one object). So in Figure 6.17 (a), the C-A relationship is considered more
important (in the description of C) than the A—C relationship (in the description of A). From
the point of view of C, A is a significant neighbour, just as the sun is a significant neighbour
of the earth because it defines its location in the universe. But from the point of view of A,
C is not as significant, just as the earth is not as significant to the sun. In other words, larger

6.3. RELATIONSHIP SELECTION 273

(a) Proximity The A-B relationship is stronger than the A-C relationship
(b) Connectivity
The A—B relationship is stronger than the A—C relationship
() Visibility The A-D relationship is stronger than
the A—C relationship
(d) Alignment
© I:I::le—nltlelatedness The C—E relationship is weakened
because their parents are related.
M\ /D N
E
(f) Similarity
An A-B relationship may help to resolve ambiguity.

Figure 6.17: Neighbourliness Criteria.

neighbours are considered to be more significant, and hence the proximity criterion is also a

274 CHAPTER 6. THE INSTANCE CONSTRUCTOR

size criterion.

Connectivity.

If two objects are connected, then this is an especially strong indication that they are dependent
on or constrained by other. Connections are particularly important for indicating how an object
is constructed. Figure 6.17 In Figure 6.17 (b), the A—B relationship is considered stronger than
the A—C relationship.

Visibility.

The visibility criterion measures how much of a neighbouring object B would be visible from
an object A if object B had an eye on it. For example, for the chair in Figure 6.18, the legs
1 and 2 are clearly visible from each other, but leg I and back 5 are not visible to each other
because the seat is in the way. The thesis suggests that the more invisible a neighbour is to
an object, the less useful that relationship is, because the dependence between the objects is
mediated by the objects between them.

For example, legs 1, 2, 3, and 4 are constrained by their position, size, and orientation etc
relative to the seat 6, and so their relationship with back 5 is less important. In the case of leg
1, however, the alignment criterion described below might outweigh the invisibility criterion.

Figure 6.17 (c) shows some more examples. The A—C relationship and the A-D relationships
score equally well for proximity, but A—C is much weaker on visibility.

Figure 6.18: Neighbour visibility.

The visibility criterion is very useful for pruning large numbers of relationships between
objects that might otherwise be considered good neighbours on the basis of other factors such
as proximity.

The precise definition of ‘visibility’ is not given here. It could be based on visibility from the
center of the object (as in the current version of GRAM), or from a range of positions on it, or
numerous other possibilities. Each scheme will give slightly different results, and will vary in
its computational complexity. The emphasis in this chapter is on the kinds of criteria required,
rather than the specific details.

Alignment

6.3. RELATIONSHIP SELECTION 275

Objects whose edges and/or axes are aligned, in the sense of being co-linear or parallel, are
often functionally dependent on each other, even if they are not particularly close, as in the case
of shelves in a bookshelf, sides of a drawer, the legs of a chair, the components along a drive
shaft, or the centrally aligned parts of a handdrill. Figure 6.17 (d) shows several examples of
parallel and co-linear objects.

Many co-linearities and parallelisms are not significant though, such as between a book
on a desk and a shoe on the floor. However, these probably would not even be easily no-
ticeable anyway. GRAM assumes that the low-level vision system is able to detect clear and
obvious alignments, and that all noticed alignments should contribute to justifying neighbour
relationships.

Parent non-Relatedness

On the basis of the criteria given so far, a desk might be described in terms of neighbour
relationships to the lead of a pencil that is on top of it, a chair leg, and a back book cover.
Such relationships are unnecessary because the relationship between the desk and the whole
pencil and whole chair and whole book are sufficient to characterise the desk and to support
recognition. The position, size, orientation, etc of the individual subcomponents of the pencil,
chair, and book are sufficiently constrained by their relationships within their parent objects.
Similarly, it is not desirable or necessary that a desk in a building be explicitly related to
the building next door, even though this relationship may have a strong score based on the
proximity criterion. The relationship between the two buildings is sufficient. This criterion is
important otherwise there would be a huge conglomeration of redundant relationships which
increase memory usage and decrease match efficiency.

Figure 6.17 (e) shows another example of this, where the relationship between C and E scores
poorly on this criterion because the parents of C and E are related at least as strongly.

To account for this, an additional criteria is needed, called parent-non-relatedness. This
criterion helps to avoid making relationships explicit between objects for which the parent
(or super-parent) of one object is strongly related to the other object or one of its parents (or
super-parents). Of course, other criteria such as connectivity and alignment (discussed below)
might still lead to the inclusion of the relationship.

The relationship between the desk (or desk-top) and the pencil-lead, would score low on this
criterion. On the other hand, the desk and the pencil do not have any related parent objects,
and so would be included. They have the same parent object, that is, the room as a whole, or a
desk+contents object, but they do not have any related parents,

One consequence of this criterion is that each object will tend to be related to large rather than
small objects, since relationship selection is based on a kind of climb-the-hierarchy process.
However, this criterion does not prevent relationships to small objects: for example, if a desk
has a single pin on it, then a relationship between the desk and the pin would be made explicit,
even though the pin is very small. If the pin is in a pin cushion, then this would not be the case.

Another consequence of this criterion is that relationships between direct subparts of a parent
object are likely to be included. So, for example, the relationships between the parts of a chair

276 CHAPTER 6. THE INSTANCE CONSTRUCTOR

would be made explicit, but the relationships between the parts of the chair and other objects, or
parts of other objects, are less likely to be included unless they are particularly strongly related.
This means that descriptions of concepts such as “chair-leg” are less likely to be cluttered
with inconsequential context information. Instead, information about the expected context of a
chair-leg (beyond the boundaries of the chair) will be captured in the context description of the
chair as a whole. This helps to improve the classification process since to recognise a chair in
an office, the matcher is more likely to be able to find high-scoring correspondences between
the legs of the chair and the legs of the chair concept even if the chair is in an unusual context.

Similarity

Earlier, in Figure 6.16, we saw that ambiguity can be resolved by explicit relationships
between objects, such as the two chair legs. In this situation the two objects were very similar,
and this caused the ambiguity. Likewise, in Figure 6.17 (f) we see two objects A and B which
are similar, and so should have an explicit neighbour relationship created between them in
order to help resolve ambiguity during future matching.

Therefore, another criteria that contributes to neighbour relationship selection is the similarity
of the two objects. This would seem to require matching every pair of objects in an observed
scene, but in fact it is not necessary to match a pair of objects whose relationship scores
sufficiently poorly on the other criterion that even a perfect similarity would not bring the overall
selection score above the required threshold. Also, matching can be done very efficiently by
first only performing a rough match, and then doing a more detailed match only if they are
sufficiently roughly similar. In fact, a rough comparison alone is sufficient for this criterion.

Mismatch during matching or generalisation.

The above criteria are all data-driven. There is also an expectation-driven criterion that
involves the matcher, since relationships can be created not only during instance construction,
but also during matching when resolving mismatches. When a concept description contains a
relationship that is not present in the description of an instance with which it is being compared,
the matcher can request the creation of a relationship, even if it scores poorly on all of the
criterion given above. This is considered further in section 4.4.7.

6.3.2 Criteria for Selecting Subpart Relationships.

The criteria for selecting subpart relationships are more straightforward than for neighbour
relationships, since there are already more constraints due to the decomposition structure that
has been created by the object-formation process. Firstly, relationships can only be created
between an object and its subcomponents, and secondly, a set of subpart relationships will
already have been specified by the object-formation mechanism, since it works by identifying
sets of objects to combine into a single composite object.

6.3. RELATIONSHIP SELECTION 2717

Therefore, the subpart relationship selection task assumes that objects are already represented
as some kind of subpart hierarchy, and the issue is to determine whether the hierarchy can be
refined by adding or removing relationships. The discussion in this section refers to the
examples in Figure 6.19.

Avoid redundant subpart relationships.

The simplest criterion for optimising the hierarchy is to avoid all redundant subpart relation-
ships. If a subcomponent of object X is also a subcomponent of another of X’s subcomponents,
then according to this criterion there is no need to include an explicit relationship to it. For
example, a subpart relationship between a desk and drawer-handle should be excluded because
there is already a subpart relationship with the drawer. Similarly, in Figure 6.19, the description
of “Bob” (as a whole) should not include the subpart relationship to his left forearm, since it is
already a subcomponent of the left arm. Details about the forearm are not kept directly in the
description of Bob, but only in the description of the arm.

This minimises the complexity of the hierarchy, and thus reduces memory requirements and
increases match efficiency because there are fewer relationships to deal with.

The other criteria below serve to refine this minimal hierarchy by causing additional indirectly
related subparts to be included as direct subparts, or even to remove subparts.

Bypass Weak Subparts.

If an object is ‘weak’ in the sense that it was only barely considered worth creating by the
object-formation system, then additional subpart relationships should be added to bypass this
object. For example, in Figure 6.19 the ‘Door-X’ hierarchy consists of an object handle+catch
consisting of the handle and the catch, but this object is somewhat weak on the basis of
object formation criteria. If another door is observed, say door-Y, it is quite possible that a
corresponding object will not be included due to its object-formation score falling just below
the threshold. This means that a mismatch would occur, and the correspondences between
the handles and the catches would have to be found via neighbour relationships. Therefore,
in this situation it is worth creating an explicit subpart relationship between door-X and the
handle, and between door-X and the catch. This enables door-X and door-Y to be matched
more successfully.

Another example of this is the buttons on TV1 in Figure 6.19: The array of nine buttons and
the large button below it could be combined into a single part, but this is a somewhat weak
composite object. Therefore the Bypass Weak Subparts heuristic would suggest that the array
and the large button should also be direct subparts of tvmainl, as indicated by the two heavy
lines on the figure.

Bypass Doubtful Parent.

A slightly different situation arises when a subpart is strong, but one of that subpart’s subparts
does not clearly and unambiguously belong in it. For example, it is clearly useful to have an
aerial object in the TV description, but it is not so clear as to whether the base (abase) should be

278 CHAPTER 6. THE INSTANCE CONSTRUCTOR

“Door-X"

[hinges| [6] [handle] [catch]

2] [3][4 [3]

Figure 6.19: Subpart selection situations

included within this, or treated as part of tvmain, or perhaps both. In other words, the boundary
between abase and tvmain is not clear. This ambiguity indicates that two observed TVs might be
partitioned differently (depending on threshold parameters of partitioning criteria), as shown in
the two alternative part hierarchies in the figure. In such a situation the correct correspondence
of the aerial bases might be harder to find.

The Bypass Doubtful Parent heuristic suggests the creation of a direct relationship from an
object X to an object Z if Z is a subpart of an object Y, Y is a subpart of X, and Z is only
ambiguously or weakly a subpart of Y. In the TV example, subpart relationships between TV1
and abasel, and between TV2 and abase2 could be created, as indicated by the heavy line.

6.3. RELATIONSHIP SELECTION 279

Mismatch during matching and generalisation.

As in the case of neighbour relationship selection discussed earlier, subpart relationships
may also be created during the matching and generalising process in response to expectations
of the concept description being considered. This is discussed in the matcher and generaliser
chapters.

6.3.3 Criteria for Selecting Parent Relationships.

The selection of parent relationships uses the same selection criteria as for subpart relationships
above, but inverted, thus giving almost symmetric results.

6.3.4 Search strategies for selecting relationships.

The above criteria for evaluating relationship selection do not specify how to search for can-
didate relationships. Subpart and parent relationships are not a problem, since the search is
strongly constrained by the subpart hierarchy that is already given. However, the search for
neighbour relationships is more difficult because the search space is much less constrained.
The current implementation simply does an exhaustive search of all possible neighbour pair-
ings, computing selection scores based on the above criteria. This is clearly impractical and
unnecessary for a large scene, but has been sufficient for the purposes of this thesis. Several
techniques could be used in future to improve this, as follows.

The first method is to make use of the decomposition hierarchy. If two parts higher up
in the hierarchy are found to have a low selection score, then pairs of their subparts must
also score even lower for most of the criteria. The alignment and similarity criteria might
still hold, but these pairs could be found by special visual alignment mechanisms and feature
indexing, respectively. For example, the front wheel and the seat of a bicycle score poorly
on the neighbour relationship selection criteria. Therefore it is unnecessary to consider the
pairings of their subparts, such as the front axle and the seat tightener, which must necessarily
have much poorer proximity, parent-non-relatedness, and visibility.

Another method depends on having a real robot eye which scans the observed scene. Scanning
could be done by moving outwards from the part being considered, and not extending outwards
further than is necessary. At a lower resolution it could extend further, in order to find large
neighbours, while at a finer level of detail it would scan to a more limited range. The level of
detail is still governing the search, as in the previous method, but not by using the decomposition
hierarchy.

These methods are not discussed further, since the intention here is only to indicate that the
search for relationships need not be an unreasonably expensive task.

280 CHAPTER 6. THE INSTANCE CONSTRUCTOR

Chapter 7

Evaluation

This chapter gives initial steps towards substantiating the claims of the thesis by evaluating
the performance of the implemented GRAM system. It also discusses the main limitations
of the system and identifies the areas of the described system that have not yet been fully
implemented, or which could be extended and improved in future work.

The three main claims of this thesis, which were given at the beginning of chapter 1, are the
following:

1. Complex physical objects can be matched effectively by using structural descriptions
only, without requiring functional knowledge.

2. The effectiveness and efficiency of matching descriptions of complex physical objects
can be improved by exploiting the structural relationships between the components of
the objects.

3. Complex objects can be matched effectively without maintaining global consistency
while searching for correspondences between their parts.

The first three claims are addressed in sections 7.1 and 7.2 which describe the results of
matching complex descriptions of two bicycles, and also of matching all pairs of 27 much
simpler object descriptions.

The fourth claim is considered in section 7.4 which shows an example of how grouping can
significantly reduce the size of a description of a complex household object.

The performance of the generaliser is discussed in section 7.3 which presents the results of
generalising the two bicycles.

281

282 CHAPTER 7. EVALUATION

7.1 Effectiveness of the Matcher

7.1.1 Matching identical descriptions of the same object

Any good structural-object matcher should be able match two identical descriptions and find
all correct correspondences between the subcomponents. GRAM’s matcher was therefore given
two identical descriptions! of BIKEI in figure 7.1, with the decomposition hierarchy shown
in figure 7.2. For every part, the highest scoring correspondence found by GRAM was correct,
indicating that identical objects can be matched successfully by GRAM without functional
knowledge, and without enforcing global consistency during the search.

It is doubtful whether a system such as Labyrinth (discussed in section 2.8) could achieve
this since Labyrinth does not represent contextual information in its object descriptions, and
therefore would not be able to disambiguate between components with similar substructure,
such as the pedals, tyres, sections of the mudguards, and so on. Wasserman’s MERGE (section
2.5) could also not achieve this, since it requires parts to be partially pre-classified by name.

7.1.2 Matching different descriptions of the same object

An important aspect of the effectiveness of a matcher is its robustness, especially the ability
to cope with non-canonical part decompositions of the objects being matched, since the cor-
responding components may be on different levels of the two hierarchies, or may be subparts
of different parent parts. Section 4.2.4 states that GRAM can successfully deal with this situa-
tion by exploiting the contextual neighbour relationships between components. This claim is
supported by the results of matching the description of BIKEI, pictured in figure 7.2, with a
different description of the same bicycle, pictured in figure 7.3. Several of the corresponding
components of these two descriptions are at different levels of the hierarchies, such as the front
fork (FFORK), and/or have different parents, such as the top of the chain (CHAINTOP).

The author produced a list of 74 required winning correspondences, with 6 composite parts
of BIKE] considered unmatchable (including SEAT, PEDETC, HBARFORK, FWMID, and
FRONT, and this was compared with GRAM’s results. 73 out of 74 of the winning correspon-
dences produced by GRAM were correct, giving a performance of 98.7%. GRAM also determined
that the six parts above were unmatchable, producing no continuable cnotes for them.

The one incorrect correspondence was between BPEDBAR of one bike and TPEDBAR of
the other bike, with an axis correspondence of 180 degrees. Hence GRAM found the rotational
similarity of the two pedals, which is not unreasonable. The score was marginally higher
than the correct correspondence, which GRAM also found. The higher score was primarily
due to the fact that BPEDBAR and TPEDBAR were only evaluated with a spread effort
of 1. In other words, only the properties and relationships were considered, and not their
relatees. If another iteration of the match algorithm were applied, thus giving more effort to

'GRAM works directly from the postscript data produced by a graphics package called IDRAW and a text file that
specifies the decomposition hierarchy. The selection of neighbour relationships is performed by GRAM.

283

7.1. EFFECTIVENESS OF THE MATCHER

Figure 7.1: BIKE1

CHAPTER 7. EVALUATION

284

19 - - S
Namuow 10g)10JJ

|7 lp URWAIIMG yoidsq prunjiojj AD[MJ 7
1TeqIap AQ[Mq qnyq donyjroy donyioyy UIRUAD[M] |
. - dowreqy ool
/ \\ A\ mmaq% ayeIq \/ |
ly A\ i Eo_z“wﬂ — AT
\ i/ N _o.._u%hc ,
W X qny |
I
....... N/ Ployayeiqy _
, ’ c-s \JUOYRIQ) \

aogarfiq \ / Prunpoidsy xepadq yepods
quakig \ | oyeiqq —xooha& padq pody UTPWIAS[IEAS

\/
_ y oyagyrIgq . L aseqieas 1 Aopeas
V4) /. 7 \ / \i \ | rqq \ uremeos | Jioysopes &

Vs N/

1eqpadq \N/ sanaigh
Teqpad
~

S/

—

1310uIe)
j03q
\ -

Figure 7.2: Decomposition hierarchy for BIKEI.

7.1. EFFECTIVENESS OF THE MATCHER 285

the BPEDBAR-TPEDBAR comparison, its score would have dropped below that of the correct
correspondence.

These results demonstrate the robustness of GRAM’s matcher and its ability to exploit neigh-
bour relationships to deal with non-canonical descriptions, especially those that lead to the
level-hopping problem.

7.1.3 Matching two different bicycles

BIKE] in Figure 7.1 (with the decomposition hierarchy shown in Figure 7.2) was also matched
with a different bicycle, BIKE2, shown in figure 7.4. BIKEZ2’s decomposition hierarchy was
as shown in figure 7.5, which is similar to that used for BIKEI. The author identified 69
winning correspondences that should be found by a matcher, and compared these with the
results produced by GRAM. 2

When a spread effort of 6 was applied, 65 of the 69 required correspondences were correctly
proposed by GRAM as winning correspondences, giving a performance measure of 94%. The
4 incorrect correspondences were as follows: FHUB of bike2 was best-matched with FWMID
of bikel (composed of FHUB and FWLEVER), when it should have been best-matched with
FHUB of bikel (and vice versa). This was because although the substructure of bikel’s
FWMID and bike2’s FHUB were considered quite different, their contexts were considered
more similar than bike1’s FHUB and bike2’s FHUB. Bikel’s FWMID and bike2’s FHUB both
have very similar relationships with the wheel and front fork, but bikel’s FHUB has wheel
lever parts attached to it, which bike2’s FHUB does not. Although not unreasonable, this does
seem to indicate a problem in the similarity metrics which will need to be explored in future
work.

The other three required correspondences that were not found were between GLEVMAIN,
GLEV, and HBAR of each bike. After applying a spread effort of 6, GRAM had no cor-
respondences for these parts (for either bikel or bike2), either because the scores of the
correspondences found earlier were too low to justify keeping the cnote in memory, or because
the spread never even proposed any correspondences because there were no sufficiently strong
correspondences from which to propose them.

Two additional incorrect winning correspondences were created when more effort was applied
to the match, which indicated a further problem in the matcher. The first was for bike2’s TPED-
BAR which was best-matched with bikel’s BPEDBAR, although bikel’s TPEDBAR was cor-
rectly best-matched with bike2’s TPEDBAR, and the two BPEDBAR’s were correctly reported
as a winning correspondence. The incorrect BPEDBAR:TPEDBAR correspondence scored
only very marginally higher than the correct TPEDBAR:TPEDBAR correspondence, with less

211 parts of BIKEI were considered by the author to be unmatchable, or rather, only matchable with parts of
BIKE2 that are better matched with other components). These are FWLEVER, FWLEVMAIN, FWLEV, FWMID,
REFLECTOR, REFLECT, REFLECTBOT, REFLECTHOLD, BWLEVMAIN, BWLEV, BWLEVER.

Of BIKEZ2’s 100 parts, 31 were also considered unmatchable: the mudguards and stand (and their components),
FFORKTBOT, FFORKMIDT, FFORKMIDB, FFORKBOTMID, HBAR3, HBAR2, HBAR1, FHUBOUT, FHU-
BIN, FBRAKEI, FBRAKE2, BBRAKEI, and BBRAKE2.

CHAPTER 7. EVALUATION

286

71op UTRWAI[IBAS
quaiklq zieqiop AQ[IBas

I9 n oyayel UrewAd[Mm
sogasag LD B W e BE_% supallq, XePod) yunsmocidsy ploUAaNEas

v /7S VRN \/ w&m _Sse Yooxds) \l/
> g \ 1/ 1810wey ‘\
. QRIS Eﬂ@

Ieqpadq aseqieas

wapdy \If _~"

F -
qruayeiq;

L |
\/

urewA9[s v

doweay N/ joqyuoyy

N/ V;
v

dojowrely yjouresy &

PloYeIq)

M A9[8 . Wuuﬁﬁ dwnd;y |
/ N & ; -

G P prungiop
ployeqy ” Emo%é
/ \\

UIBUWIAR[M] nauuu._mwuu._ £
AS[M] \ u 3
Ly
1/
4

qnyy §

Figure 7.3: BIKE1dd: Same bicycle as BIKE1, but different decomposition

287

7.1. EFFECTIVENESS OF THE MATCHER

qnIdIAYj

Figure 7.4: BIKE2

CHAPTER 7. EVALUATION

288

739p qprunjIoyy
A d [1op IpruNyol 10gy1033 v
H0ICSA zrequap pIunoqyIox
I Lpasp v 0GP0 [reqy 7
dopyioyy Tieqq A9[3
_ é. . A _. I €Rqy =a4>w_m " |
a\ puapueEs g[oyox
V ﬁv urewpue)s N\ /E\ A_oé Y WM&MMM% e am.ﬁu i ”
| a[0yeIkIq &.6::5 F— :oE:MM aeIq ﬁmm;m._ PIOYaYeIq] to%:Ew _— 17
qnua1k1q ?E?..En— Vﬁe_sﬁ dqpuels PIoyA3[IeaS oyreqy “O qniapa piuipnu iqnyj
VAL Ve B P e e AN R
UeNeIqq Xepadq AR Ty 3
LVl Ve W oy PO padn Ry Ty % i
ﬁ : ~ E.k ‘ e Vg : QE:& -
\ Ao Sopoypnuy NS

dojourery

oLy
7

l”

= /// |

Figure 7.5: Decomposition hierarchy for BIKE2.

7.1. EFFECTIVENESS OF THE MATCHER 289

than 0.01 difference. However, what is important here is that the BPEDBAR:TPEDBAR cor-
respondence was only evaluated to spread-1, and thus could not significantly take into account
the contextual differences. The TPEDBAR:TPEDBAR correspondence, on the other hand,
had already ‘survived’ through an effort of 5, and was based on a significant evaluation of
contextual similarity.

Another incorrect correspondence that was added when more effort was applied was almost
identical to the above, but involved TPED and BPED.

The BPEDBAR:TPEDBAR and TPED:BPED problems are essentially the same as the
BPEDBAR:TPEDBAR mentioned in section 7.1.2 in the case of matching the two differ-
ent descriptions of BIKE1, except that this time there was no rotation of 180 degrees involved.
This error seems to indicate that the spread effort applied to a correspondence should be taken
into account before making use of the results of the matcher. In fact, GRAM does this when
using the results of the matcher: the generaliser does not operate on cnotes that have been
evaluated to less than some minimum spread effort, and requires the matcher to be reinvoked
before it can produce a generalisation from the correspondence. In the situations above, the
generaliser would reinvoke the matcher, which would very quickly lower the scores of the
incorrect TPED: BPED and BPEDBAR: TPEDBAR cnotes, thus resolving the problem.

Section 4.1 on page 124 stated that the matcher should employ an ‘any-time’ algorithm
which allows useful results to be obtained even if only a small amount of effort was applied,
or if the match is interrupted. The graph in Figure 7.6 shows the results of the matcher
as it is progressively applying more effort, and also shows the similarity score produced
at each step. The five correspondences found at spread-2 were BIKEI+BIKE2 (i.e. the
given seed correspondence), FRONT+FRONT, BACK+BACK, FRAMETOP+FRAMETOP,
and FRAMELEFT+FRAMELEFT. As more effort was applied, more correspondences between
parts further down the hierarchy were found, since the spread was able to access them. This
indicates, not surprisingly, that the matcher does tend to first find correspondences at a coarse
level of detail, providing useful results even from low spread effort. Also, and more importantly,
the similarity score in the BIKE example converges quite quickly.

It should also be noted that the matcher does not have to start from the root parts of the
part-graphs. For example, if the matcher was applied to the SEAT of a bike and a learned
bicycle seat concept, many of the bicycle parts could be recognised via spreading, even if
the bicycle was partially occluded. A strictly top-down matcher, starting from the root of the
bike part graph, might terminate quickly due to significant dissimilarities that prevent further
spreading.

7.1.4 Matching large numbers of objects against each other

The previous experiments tested the effectiveness of GRAM at finding the correct correspon-
dences between components of large objects. Another experiment involved matching each of
the 27 much simpler objects, shown in figure 7.7, against each of the others. The purpose
was to test whether pairings of objects that belong in the same category score higher than all
other pairings involving one of the objects and another object from a different category. This

290 CHAPTER 7. EVALUATION

Effort versus Correctness
when matching

\ BIKEI1 and BIKE2. ‘

|
69 T] B]]
\
\
\

35

#Correct (/69)

Similarity ¢ g 0.96 093 0.89 0.88 0.87 0.86 0.86
score:

Figure 7.6:

7.1. EFFECTIVENESS OF THE MATCHER 291

experiment dealt only with ungeneralised instances, but does provide some measure of GRAM’s
classification ability.

The results are shown in the tables below, which show the scores of all pairs of objects from
the same category, and the highest scoring competing pairs of objects that are from different
categories. These results indicate how much distinction GRAM makes between the correct and
incorrect classifications.

Out of the 31 intra-category pairings, 24 were found by GRAM to be higher scoring than
all other competing inter-category pairings, giving a performance of 77%. The only mistakes
involved the TVS and CLOCKS, while the objects from all of the other categories were correctly
best-matched with other members of the same category. Since there are 351 possible pairings
altogether, GRAM is clearly performing quite well, although this experiment would ideally be
done on a much larger number of objects, and compared with results from other systems.
However, only one of the systems described in section 1.2 produced a comparable experiment.
The PARVO system [Bergevin and Levine, 1993] performed a similar kind of experiment for
which 15 out of 23 (or 65%) objects scored higher when matched with the correct object model
than with other object models.

The problem with the TV1 and TV3 match was that the substructure of the root node of
the part graphs is significantly different: TVI has two sets of legs, and no aerial, while TV3
has an aerial and no legs. Therefore, only one out of the three combined subparts have good
correspondence scores. According to the similarity scheme created for GRAM , the two objects
are significantly different. However, GRAM was also used to produce a generalised television
from four instances, one of which did not have legs (although all had aerials), and therefore
was able to learn the optionality of legs, and thus be more tolerant of missing legs. Thus, the
low TV1 and TV3 score only seems to be a failure of GRAM because we (as humans) already
know about TVs.

The low score for TV2 and TV3 seems less justified, since both have the main body and
aerial. However, because both of the legs are unmatched, and because they each contribute
roughly 25% of the score for the root cnote, they pull down the contribution of the higher scores
for the main body and aerial correspondences. It is not clear how to resolve this. The current
implementation of GRAM does not use the relative lengths of the subparts to weight their score
contributions, and this would help to some degree. It would also be possible to give a higher
weight to subparts with more complex substructure, but this would not be justified in other
situations, such as giving more weight to the drawers of a desk than to the desktop. So, without
artificially tweaking the system to give a good result for this particular example, it would seem
that the low score is justified. However, as pointed out above, the generalisation process is the
primary means by which the relative importance of subcomponents is learned, so that in the
case of the TV concept, the presence and similarity of the main body would contribute most to
the scores of future instances.

The other problem with almost all of the results of this experiment is that although most of
the correct pairings scored higher than competing incorrect pairings, they did not score much
higher, even for objects that humans would consider to be completely different, such as a TV
and a handdrill. This seems to be partly a consequence of GRAM’s scheme of not enforcing

292 CHAPTER 7. EVALUATION

global consistency, since it allows any relatee of one part to play the corresponding role of
any relatee of the corresponding object, even if it plays a different role relative to some other
correspondence. For example, the aerial of TV2 might be matched (albeit weakly) with the
trunk of a cactus, since the relationship between the trunk and the plant pot is similar to the
relationship between the aerial and the TV body. Simultaneously, the leg of TV2 might be also
matched with the trunk, but rotated by 180 degrees, since its relationship with the TV body is
similar to the relationship between the trunk and plant-pot upside down. The allowance for
inconsistencies means that scores tend to be higher than they would be if consistency were
maintained, although such scores are still low and are unlikely to justify generalisation.

The problem with the five low clock-pairing scores is similar, but more justified, since there
are more obvious differences between the clocks involved.

Headphones

pairing score
HEADPHONE] : HEADPHONE3 0.84

HHEADPHONE] : HEADPHONE2 0.77

HEADPHONE?2 : HEADPHONE3 0.74

best other pairing 0.63

Cacti

pairing score
CACTUS2 : CACTUS3 0.92

CACTUSI1 : CACTUS2 0.75

CACTUSI : CACTUS3 0.75

best other pairing 0.58

Lamps

pairing score
LAMP1 : LAMP2 0.70

best other pairing 0.61

Clamps

pairing score
CLAMPI1 : CLAMP2 0.90

best other pairing 0.63

Handdrills

pairing score
HANDDRILL1 : HANDDRILL?2 0.64

best other pairing 0.63

Sewing Machines

pairing score
SEWMACHINE2 : SEWMACHINE3 | 0.80
SEWMACHINE!I : SEWMACHINE3 | 0.69

SEWMACHINEI : SEWMACHINE2 | 0.66

best other pairing 0.61

7.1. EFFECTIVENESS OF THE MATCHER

Distributor Caps

pairing score
DISTCAP1 : DISTCAP4 0.75
DISTCAP3 : DISTCAP4 0.71
DISTCAP2 : DISTCAP4 0.67
DISTCAP1 : DISTCAP3 0.66
DISTCAP2 : DISTCAP3 0.66
DISTCAP1 : DISTCAP2 0.64
best other pairing 0.61
TVs

pairing score
TV1:TV2 0.65
**TV1: CLOCK4 0.63
**TV1: CLOCK2 0.60
**TV1: CLOCKI 0.59
TV1:TV3 0.56
** 19 pairs! 0.6..0.5
TV2:TV3 0.50
Clocks

pairing score
CLOCKI1 : CLOCK2 0.90
CLOCK2 : CLOCK3 0.81
CLOCKI1 : CLOCK3 0.81
CLOCK3 : CLOCK4 0.72
CLOCK4 : CLOCK5 0.70
** yarious pairs 0.63..0.5
CLOCKI : CLOCK4 0.50
CLOCK2 : CLOCK4 0.49
CLOCK3 : CLOCK5 0.49
CLOCKI1 : CLOCKS5 0.44
CLOCK2 : CLOCKS5 0.42

293

Although the results presented in this section indicate that there are some problems in the
matcher, the results support the claim that complex objects can be matched effectively without
having functional knowledge, and without maintaining global consistency during the search
and when evaluating similarity. Of course, functional knowledge and global consistency could
undoubtedly improve the matcher, but at a cost. The results above demonstrate that they are
not necessary to obtain a reasonably good performance when finding part correspondences.

The main criticism of the GRAM matcher based on the above results is that although it
tends to correctly find the best correspondences, the scores for incorrect correspondences seem

294

HEADPHONE1

;ht

HEADPHONE2

CHAPTER 7. EVALUATION

ﬁde
con

HANDDRILLI

CacTus3

HANDDRILL2

DISTCAP4

CLOCK4

Figure 7.7: 27 objects in nine categories.

7.1. EFFECTIVENESS OF THE MATCHER 295

unreasonably high due to the strategy of not enforcing bindings. It is clear that enforcing
bindings could help resolve this problem. For example, the strangely high score of 0.63 for
TV1 matched with CLOCK2 would never occur, since no consistent set of correspondences
can be found for which the interrelationships match well.

However, enforcing consistency does cost more. Even if some kind of effective greedy
algorithm could be developed (of the kind developed earlier in this project [Andreae, 1993])
it would require a sophisticated backtracking mechanism to be able to find the kinds of
correspondences that the current system finds in such a robust manner. More importantly, it
requires a representation which enables global consistency to be meaningful. GRAM’s approach
of representing concepts in terms of other concepts, rather than in terms of a hierarchy of locally
defined and distinguished parts, is not particularly amenable to enforcing global consistency,
since it does not make sense to require a concept to be matched with only one instance. If
global consistency were enforced (somehow), only one chair in an office could be classified
as a chair. Therefore, consistency could only be enforced in the reverse direction to prevent
each instance being matched with more than one concept, unless the concepts are on the same
branch of the concept hierarchy.

Future work on GRAM could involve exploring a compromise between the two approaches:
each object or concept could be described not only in terms of its relationships and relatees, but
also in terms of relationships between its relatees. Each concept would, therefore, be a richer
and more constrained description, such as depicted in figure 7.8, requiring local consistency
when matching it against another concept or instance. Labyrinth employed this idea in its basic
form, although only for substructure. This scheme would reduce the potential for parallelism,
and would require a more complex algorithm, but would also enable more accurate similarity
scores to be produced. Although each cnote would require more effort to evaluate, more cnotes
could be rejected quickly. The algorithm would require special purpose mechanisms to detect
and deal with parts that play multiple roles.

y §]
|

‘ |

aerial

ﬂ -
[aerl Iw abase |

Figure 7.8: Description of an ‘aerial’ concept in an extended representation.

A more thorough analysis of the current system may reveal other ways to improve GRAM’s
performance, such as taking into account the relative ‘winningness’ of cnotes when evaluating

296 CHAPTER 7. EVALUATION

their scores, thus enforcing a kind of ‘soft’ consistency while still allowing objects to play
multiple roles.

The results of GRAM could perhaps be improved by refining the mechanisms for attribute nor-
malisation and comparison. For the current system there has been minimal analysis of whether
the similarity scores produced for different kinds of attributes are meaningfully comparable.
They need to be more rigorously normalised so that a measure of, say, 0.7 for a size comparison
has the same meaning as a score of 0.7 for a position or shape comparison.

7.2. EFFICIENCY OF THE MATCHER 297

7.2 Efficiency of the Matcher

This section evaluates the efficiency of the matcher by measuring the time taken to perform
the match. Limitations in memory, time-sharing, and a very poor garbage collector in the Lisp
used, meant that elapsed times did not give a correct indication of the cost. Therefore, the
times presented are the actual CPU time used, excluding garbage-collection time.

The first graph in figure 7.9 shows the times taken to match various components of the
bicycles, ranging from the small BHUBSTUEFF part to the bike as a whole. The results shown
are for different amounts of spread effort, ranging from spread-3 for BHUBSTUFF to spread-6
for the bikes as a whole, as indicated on the graph. The amount of effort chosen is the effort level
above which the correctness did not increase significantly. The results for each comparison
all have a correctness of around 93% or above, and further effort did not raise the percentage
more than 1 or 2 percent. The number of parts, the correctness, and the average number of
relationships for each part (‘avrl’) are all shown on the graph for each of the four objects.

Object-size versus Time cost
when matching
Components of BIKE1 and BIKE2
BIKE ‘
100 parts ‘
avri=10.9
?:‘CK] effort=6 |
20 4+ avrf:gSS 93% correct
| BHUBSTUFF BWHEEL effon=.5
= 9 parts 24 parts 91% correct
£ avrl=4.6 avrl=7.8 (93% if effort 6)
E effort 3 effort 4
g2 10T 100% correct 94% correct =
) l
‘ () 1 i 1 |
1 T T - ol 1
10 20 30 40 50 60 70 80 90

Number of components |

Figure 7.9: Object size versus Time

It should be noted that the efficiency of the implementation could be improved significantly
by many basic coding improvements, and by compiling the code with the option of maximum-
speed/minimum-safety, instead of the inverse. Coding the system in C rather than Lisp could
also help significantly. Therefore the actual times shown in the graph are not particularly
important in this discussion. The use of parallelism would also make a huge improvement, as
is discussed later in this section.

The significant aspect of this graph is that it indicates that the GRAM matcher is linear in object
size. This result is confirmed by the graph in Figure 7.10 which shows the number of spread-1
cnotes that were created for each of the different matches. The creation of spread-1 cnotes is the
elementary operation for cost analysis because, firstly, the most expensive aspect of matching is
comparing all pairs of relationships of two parts when performing an spread-1 comparison, and
secondly, because the average number of relationships of a part within an object is relatively
constant for large objects, rather than being dependent on object complexity. The latter is due

298 CHAPTER 7. EVALUATION

BIKE
100 parts
. . avrl=10.9
Object—size versus 1-spread cnotes effort=6
when matching 93% correct

Components of BIKE1 and BIKE2

500 4 BACK
‘ 59 parts
‘ § avrl=9.8
2 effort=5
| & 400 4 91% correct
: E (93% if effort 6) |
K
|9 300 L
k= 2y
[art
, g BHUBSTUFF avrr-—-7.38 |
| Z 200 4 9parts effort 4 |
1 avrl=4.6 94% correct '
| effort 3 I
100% correct |
100 4 i

Figure 7.10: Object size versus 1-spread cnotes

to GRAM’s instance constructor which constrains how many relationships are created for each
part, and is confirmed by the graph in Figure 7.11. This graph shows the average number of
relationships for the parts of several components of BIKE2, treating each one as a separate
object, ignoring contextual relationships to the rest of the bicycle. It can be seen that the
average number is converging to approximately 13, although this would have to be verified
for other objects. For any objects more complex than about 100 parts, each cnote requires
about 200-300 relationship correspondences to be evaluated, since all combinations of parent,
neighbour and subpart relationships must be considered, for each of four axis correspondences.

The reason for the linearity of the size-versus-time graph is that the algorithm only spreads
from plausible correspondences, and each part of an object usually only has a few plausible
correspondences (when constrained by both substructure and context), even in acomplex object
such as a bedroom. Since the major cost of evaluating each additional cnote is the spread-1
evaluation, which is basically independent of object size for objects larger than about 100 parts,
the algorithm is roughly linear.

7.2.1 Comparison with an exhaustive and ‘all-pairs’ strategies

The efficiency of the GRAM matcher can be contrasted with the efficiency of two alternative
approaches. Firstly, an exhaustive comparison of two objects that requires global consistency
would require roughly n! sets of correspondences to be evaluated, where n is the number of
parts in each of the objects. Since each set requires the evaluation of n * 4 cnotes, where 4 is
the number of axis correspondences that need to be considered, the algorithm be of the order
of 4 x n % n!. Even an object with 7 parts would require 141,000 cnotes to be evaluated. In

7.2. EFFICIENCY OF THE MATCHER 299

Average relationships per part

Complexity of object descriptions
(Average number of relationships per part)

T M=
z 05 ©
- A E
w ==}
m ot L
> WS &
o Sl <
2 |2 g
I m
~ | L ! 1 ! 1 L
1 1 1 T L 1 T 1
10 20 30 40 50 80 90
Number of parts parent relationships

neighbour relationships

Figure 7.11: Object Description Complexity

300 CHAPTER 7. EVALUATION

contrast, the spread-6 comparison if BIKEI and BIKE2 only requires 525 cnotes. If we let n
be 90 (the average of the size of BIKE1 and BIKE2, 80 and 100 respectively), then the number
of cnotes is only 6 * n.

Secondly, a comparison could be done by matching all pairs of parts, without requiring global
consistency. If such an approach was as efficient as GRAM’s approach then it would indicate
that the search algorithm does not provide much advantage. However, the all-pairs match
requires the creation of n * n * 4 cnotes, or approximately 36,000 cnotes, which is 64 times
as many as for the GRAM match, and grows quadratically with the size of the objects involved.
As an experiment, a simple program for performing an all-pairs comparison was implemented.
First a O-spread match was applied to all pairs of parts, and this achieved 62% correct winning
correspondences. This required about twice as many 0-spread cnotes to be produced as the
GRAM algorithm did when applying a 6-spread effort, the latter of which found almost all
of the correct correspondences anyway. However, it should be noted from this result that a
0-spread match is still quite effective, with very low time cost since 1-spread cnotes are much
more expensive. Thus if GRAM’s property attributes were enriched further, then it might be
worth doing an all-pairs O-spread match (potentially in parallel) before applying the spreading
activation algorithm, since the GRAM algorithm could then make use of these results from the
beginning of the search to help prune relationship correspondences more quickly.

When a 1-spread match was applied to all pairs of parts, requiring the creation of 36,000
cnotes, each with an average of 220 relationship comparison notes, the system ran out of
memory and aborted. This confirmed that it is an advantage to employ a search algorithm such
as used in GRAM, which results in a large reduction in 1-spread cnotes and, more importantly,
seems to have linear growth with the size of the objects.

These results confirm the claims of this thesis that efficiency of matching can be improved
by exploiting the structure of objects to guide the search, and by relaxing the requirement for
global consistency. This claim was not made and demonstrated for complex objects (or even
simple objects) by the other matching systems discussed in section 1.2.

7.2.2 Efficiency of matching identical objects

The final efficiency test to be discussed is the cost of matching two identical descriptions of the
same object, BIKEI. The time required to match the descriptions with effort 7 was 90 seconds,
and further effort would have added almost no more time, since 100% correct correspondences
were already found. The more useful and impressive statistics are the number of cnotes created,
as shown below:

Object size 80 parts
Time 1.5 minutes
0-spread cnotes | 115
1-spread cnotes | 88

These costs are significantly less than the costs of matching BIKE]1 with BIKE2 because the
search could directly find correct correspondences from each new cnote created, without having
to bypass unmatchable components or discover the correct correspondences via level-hopping.

7.2. EFFICIENCY OF THE MATCHER 301

Since BIKEI has 80 parts, these results suggests that the number of 1-spread cnotes is O(n)
when matching identical objects, which is a very positive result. Further experiments with
other large everyday objects would be necessary to determine whether this is typical.

7.2.3 A summary of the bicycle matching results

To summarise the above results of bicycle matching, the following table specifies the effort
applied, the correctness, and the number of 1-spread cnotes created for each of the three
experiments: (a) BIKEI matched against an identical description of itself, (b) BIKEI matched
against a significantly different description of itself, and (c) BIKEI matched against BIKE2

BIKE1 matched against:

BIKE1 | BIKEI(diff) | BIKE2
Object sizes 80:80 | 80:80 80:100
Effort 7 8 6
Correctness 100% | 98.5% 94%

(74174) | (73/74) (65/69)
1-spread cnotes | 88 588 525

7.2.4 The matcher is conducive to a parallel implementation

A significant feature of the matching algorithm is that it is conducive to parallelism. All
of the 250 or so relationship correspondences for a cnote could potentially be evaluated
simultaneously, at least to a 1-spread, if not further, since they can be evaluated independently.
This is a major advantage of not enforcing global consistency. Also, the attributes within
each attribute vector characterising the properties and each relationship of an object could be
evaluated in parallel.

302 CHAPTER 7. EVALUATION

7.3 Effectiveness of the Generaliser

The effectiveness of GRAM’s generaliser is evaluated in this section by presenting the results
of generalising BIKE] and BIKE2 whose part hierarchies were shown in figures 7.2 and
7.5. Generalisation involves spreading through the cnote graph produced by the matcher,
producing new generalised parts (or modifying an existing part) on the basis of each cnote with
a sufficiently high score, as explained in section 5.3 on page 207. The results of the generaliser
can be partially evaluated by counting how many of the correct winning correspondences found
by the matcher led to generalisations, and by qualitatively judging whether the generalisations
seem reasonable from a human point of view.

Section 7.1 stated that 65 out of the 69 required correspondences were found by the matcher.
57 of these were successfully generalised by the generaliser, and the remaining ungeneralisable
parts of each bike were represented as optional parts in the new generalised description.® A few
disjuncts were formed, such as a context disjunct for the two DERBAR2Zs, due to the differing
orientation, position, and direction relationships of the neighbours relative to DERBAR2’s
primary axis, and perhaps also due to the additional relationship with the bike-stand in bike2.

An interesting feature of the GRAM system is that even when a parent part is not generalisable,
some of its subparts may be. For example, although the two DERs (the derailleurs) were
considered not quite generalisable, all of their subparts were still generalised as a result of
the generalisation of neighbouring parts, most probably the BSPROCKET. In other words,
level-hopping and ‘mismatch-bypassing” also occurs during the generalisation process due to
GRAM exploiting neighbour relationships. This feature is not present in the other system’s
reviewed in chapter 2.

However, there were a few problems in the resulting generalised description that need to be
pointed out. Firstly, the two FWHEEL parts were not generalised even though their context
similarity score was high (0.84), because the structure similarity score was just below the
generalisability threshold of 0.7, and the context score of 0.84 was just below the 0.85 threshold
needed to produce a disjunctive description. This indicated that the generaliser should perhaps
use ‘winningness’ to justify generalisation: although the context similarity score for the front
wheels was just below the threshold, the front wheels scored much higher than any alternative
correspondence. Furthermore, a number of the subparts of the front wheels were generalised,
indicating that the front wheels should not merely be added to the new description as distinct
optional parts. This issue needs to be explored further, after analysing the results of GRAM on
a larger number of test cases.

A few other minor problems occurred due to bugs and minor oversights in the program, and
further evaluation of the generaliser on other large and small objects needs to be done before
its strengths and weaknesses can be more clearly identified.

3The part-graph of the generalisation has not been shown as it requires 6 pages.

7.3. EFFECTIVENESS OF THE GENERALISER 303

7.3.1 Matching and generalising the generalised bicycle.

To test the generalised bicycle description, it was matched and then further generalised with
another description of BIKE]I, although only to spread-4 so it could only reach partially down
the part hierarchy. The matcher successfully found the correct correspondences and generalised
the larger parts which had been matched to at least effort 2.

Memory constraints meant that a full 7 or 8-spread match was not possible, and so this
evaluation is somewhat limited. Furthermore, the lack of a third bicycle description meant that
the generalised description was not tested by matching it against a different bike.

A small problem in the generalisation strategy was highlighted by this experiment. Relatee
correspondences that scored high, but with insufficient effort to justify generalisation, led to
both relatees being added to the new generalisation as optional parts. For example, although
the SEATs were generalised, the subparts could not be, and so the resulting SEAT had a
duplicate set of subparts, some from the original generalised seat, and the others from the new
instance. Instead, the generaliser should just ignore these instance parts, perhaps generalising
the relationship, but not the relatee. The instance count of the part should however, be
incremented, otherwise the subparts might become optional when they shouldn’t be, as in the
example of the SEAT's subparts.

7.3.2 Disjunction

To demonstrate the formation of disjunctive descriptions, GRAM was given descriptions of
the doors in figure 7.12. An initial concept was produced from DOORI and DOOR?2, and
then each of the remaining doors was matched and generalised, one by one, with the concept
description, resulting in the part-graph shown in Figure 7.13. Although the main doors were
straightforwardly generalised, and the handles were all matched, the internal structures of the
handles were quite different. Consequently, the structure of the HANDLE part is represented
disjunctively by referring to four subconcepts, as indicated by the heavy dotted lines. One of
these subconcepts is a generalisation of two of the handles which were considered sufficiently
similar to generalise. The second name in some of the boxes is the name of the first instance
from which the generalisation was formed, and the number alongside each of these names is
the instance count. For example, the concept C28, which has a subpart/parent relationship with
the generalised handle, C25, is an optional subpart of C25, with an instance count of 1, formed
from the LOCK of DOORA4.

304

CHAPTER 7. EVALUATION

DOORI1

DOOR2

DOOR4

Figure 7.12: Five doors.

305

7.3. EFFECTIVENESS OF THE GENERALISER

qsvd

MIIOSTL

MIEDSTE| | MIIOSYL| [MEIIOSHE

‘Spounisip 24nyonas s
‘CID Jo sidasuoogns

Figure 7.13: Generalisation of five doors.

306 CHAPTER 7. EVALUATION
7.4 Effectiveness of Grouping

One of the ways that GRAM exploits the structure of objects is to pre-process an instance
description by forming groupings of similar objects. To partially demonstrate how this can
improve match efficiency, this section presents the results of forming groups for the bookshelf
in figure 7.14. A list of group members was given to the system, rather than being automatically
found, so the results described here only present the performance of the group construction
mechanism rather than the group finder*. The group constructor must match and generalise
the members of each group to form the typical-member description, and then, under certain
conditions, remove the individual members.

The bookshelf has been slightly simplified from the bookshelf given on page 23. Firstly, the
potplant has been removed because it had a vast number of leaves which required manual input
of all the groupings. Secondly, only half of the petals on the flowers have been included. This
was because the current group constructor requires members of the group to all share the same
axis correspondences, and this is not the case for all of the petals of the full flower due to the
way GRAM selects the primary axis of a part. Completing the code to cope with this would be
a relatively minor matter.

The top graph in figure 7.15 shows the description of the bookshelf before grouping, and the
bottom graph shows the description after groups have been formed, and individual members
removed. A readable version of the bottom graph is given in figures 7.16 and 7.17. Clearly
there is a dramatic reduction in the size of the description, with the number of parts reduced
from 157 to 41, and the number of relationships reduced from 1600 to 399. When the grouped
bookshelf description was matched against an identical description the correct correspondences
were found by GRAM, but unfortunately memory problems prevented results for the ungrouped
bookshelf to be obtained, and so a comparison between the match performance is not available
at present. However, it is obvious that the reduction in description size must significantly
reduce the match time, as well as memory usage.

The details of the part-graph for the grouped bookshelf can be seen in figures 7.16 and
7.17 each of which shows one half of the part-graph. Notice that the instance-count for C21,
the generalised bottle label at the bottom of figure 7.16, is 4 rather than 5, giving a further
illustration of how GRAM acquires probabilistic descriptions.

“the implementation of the group-finder is incomplete, and currently only finds some of the groupings in the
bookshelf.

7.4. EFFECTIVENESS OF GROUPING 307

Figure 7.14: A bookshelf

CHAPTER 7. EVALUATION

308

3 »
DRt -n- »

A iy

|
* Surdnoad 1yJe Jjaysyoog
|

s
- - ll

s _i_.._.,._EEHEEEH._"::
%

rl
ER
I-H
=
=R
l' I

............ ALy
f::m#.....__._...w._._....,

Figure 7.15: The effect of constructing groups

309

7.4. EFFECTIVENESS OF GROUPING

7 GYITL09| 6 NIYWTLOG| E YOANTLOG| (S dOLTLOE
) |)| O) | R 1

.=
L L ELE

.- we -]
nnnnn Sieeann=”

£ SOTAMMNG THTLIOF G THILOE) |7 TMIE] |L ITWd| |8 1164 _S Emmi
Jddf| MONDIEMEL| LOGL 4 1LL0E 4L gl LARSAP ddaL

A8 tlntunﬁﬁ\l.!lt

I hanggj :n“.:... — -
..... sq00my| |yt ... R A i SHO0EH

Figure 7.16: A grouped bookshelf

CHAPTER 7. EVALUATION

THOATT

GT T4dT
gL

G Tddd
adl

gdl

SAOTHAT

|+

310

13
epn®
--l-ln u'

RALIEES] - e

*

T
.n.ﬂ‘;-.-ll wede
.
.

ﬁ wﬂammmi
LAddL

6 (Lad]
E@

Ko | | et ke Relogt | eetlogt

ez T SINOOSTMGE

continued

Figure 7.17: ...

7.5. LIMITATIONS AND FUTURE WORK 311

7.5 Limitations and Future Work

Although the main ideas in this thesis have been implemented, there are a number of aspects
of the system described in the thesis that have not been completed or could be improved and
extended.

The representation scheme could be enriched to allow a two-dimensional equivalent of the
“generalised cylinder” representation’. The main requirement for this extension is a low-level
vision system that produces generalised cylinder descriptions. The representation scheme needs
to be changed only minimally, by adding a few attributes, perhaps also including additional
properties such as colour, texture, efc. The matching and generalisation mechanisms can be
left essentially unchanged. However, it does introduce problems for coercion when comparing
similar objects with different primary axes.

Extending GRAM to deal with three-dimensional object descriptions is another area to be
considered. This will involve modifying and adding additional attributes that take into account
the third dimensional axis. It also requires 24, rather than 4, alternative axis correspondences
to be considered for each cnote, suggesting the importance of parallel computation. Enriching
the set of object properties could enable these correspondences to be pruned more effectively
prior to evaluating relationship similarities. As with the generalised cylinder extension, the
main requirement for extending to three-dimensions is that GRAM will need input from a three-
dimensional vision system or graphics package, rather than working with input from a simple
two-dimensional drawing package.

A more elaborate extension that could be made to GRAM is to include explicit descriptive
entities representing the edges of a object (and surfaces of a three-dimensional object). This
would mean that an instance graph would contain two or more kinds of nodes (rather than
just object nodes), and additional kinds of relationships, such as edge-of relationships. The
design of the GRAM system is such that this extension may not require significant changes
to the matcher and generaliser, since the “spreading” match process, guided and constrained
by relationships, could still be applied. However, ‘edge’ entities would probably be best
represented as local to each concept, rather than having additional ‘edge concepts’, so that an
edge cannot be matched or generalised independently from the concept it belongs to.

Another possible extension to the GRAM system is to allow a single relationship to be described
disjunctively. Currently it is possible for a concept description to include multiple relationships
to the same concept, but it is not possible to explicitly describe a relationship disjunctively,
except within a complete structure or context disjunction.

The matcher could be improved by performing a more thorough analysis of attribute similarity
so that attributes values can be normalised and compared in a more consistent and effective
way. The heuristics for pruning the search could probably also be improved after analysing
the behaviour of the matcher more thoroughly. Estimates for upper and lower bounds could be
made more accurate. It may also be worth making discontinued cnotes able to be recovered

5The Generalised Cylinder scheme represents objects in terms of a central spine and a cross-section that sweeps
along the spine according to some function.[Brooks, 1981]

312 CHAPTER 7. EVALUATION

(by reevaluation) since the discontinuation and removal of a cnote is based on lower and upper
bounds which are only estimates. The various expressions used to compute scores and weights
also need to be investigated more thoroughly.

A limitation of the matcher is that it only coerces object descriptions based on rotations
of 90, 180, or 270 degrees. Two triangles that require a 120 degree rotation to correspond
correctly, cannot be matched accurately by GRAM. The coercion mechanism would need to be
extended somehow to cope with such situations, perhaps taking into account the shape of the
objects. Currently GRAM treats all parts, whether circles or polygons, as each being bounded
by a rectangular box, and so is limited to 90 degree rotations.

Currently the fault-finder produces a rather detailed report only meaningful to the author.
Future work could be done to produce a more summary report which identifies mismatches
at whatever level of detail is required, in a more readable form with statements such as
“BWLEVER is missing from the BWHEEL of BIKE2”.

The mechanism for computing ‘contents-similarity’ scores has not be implemented. This
mechanism needs to match all pairs of relatees, ignoring relationship comparisons, and to do
this for every cnote would undermine the strategy of pruning correspondences on the basis
of relationship similarity scores prior to comparing relatees. Therefore, contents-similarity
scores would need to be only computed if there is justification, and this has not been explored
sufficiently in this thesis. One possible justification is high context similarity and a strong
winning margin relative to competing cnotes, but a poor structure match. Another justification is
when a teacher, the environment, or reasoning mechanisms indicate that two objects correspond,
but where the structure similarity is low.

Another difficulty with implementing contents-similarity is that it requires the subparts of the
objects to be matched in isolation, ignoring context, as discussed in section 4.3.7. Although
GRAM is able to perform nested scoping, by temporarily marking parts with a timestamp, an
additional mechanism needs to be developed to enable the scores to be nested, so that the nested
match will use the scores obtained from structure-only scoping, while the enclosing match will
use the full scores. This may somewhat complicate the spreading-activation algorithm.

However, although contents-similarity has not been implemented, one of the main reasons
for using it was to enable objects such as rooms to be matched and generalised. When GRAM
was applied to the bedrooms in Figure 7.18, it found all of the correct correspondences anyway,
and produced a correct generalisation, with an optional computer on the desk, a generalised
grouping of desk drawers, and a disjunctively-described clock context.

There are a few aspects of the generalisation process described in the thesis which have
not been fully implemented. One is that the generaliser does not invoke the grouper to
resolve ‘similar-similarity’ ambiguity, or at least create multi-relationships. This depends to
some degree on the group-finder, since it must evaluate the groupability of the ambiguous
relatees. Only the basic mechanism of the group-finder has been roughly implemented so far,
and so this form of ambiguity resolution has not been completed. The generaliser could be
further extended to create new composite objects as a way of resolving ambiguity or apparent
mismatches. Currently it is only able to create new relationships.

7.5. LIMITATIONS AND FUTURE WORK 313

BEDROOM1

BEDROOM?2

Figure 7.18: Two bedrooms

314 CHAPTER 7. EVALUATION

Also, the generaliser currently only uses proximity scores to determine generalisability, rather
than fit scores. This is because only a simplified fit-scoring mechanism has been implemented
which only considers the fit-scores of the properties and relationships of two parts, rather
than spreading further outwards through the cnote graph. It also only computes fit-scores for
numerical attributes and not for nominal attributes. This simplified mechanism has been tested
by generalising eight very simple four-subpart chairs, and then matching them with a number
of ‘bad chairs’ with faults such as a back tilted forwards. The simplified fit-scoring successfully
noticed the incorrect tilt, due to the low variance of the generalised tilt, while proximity scoring
considered the tilt acceptable.

The distinction between fit-scoring and proximity-scoring for the generaliser is only signifi-
cant for concepts that have been formed from at least four or so instances, since the variance of
numerical attributes formed from fewer instances is not considered reliable enough to be used
in fit-scoring to determine faults. So the use of fit-scoring by the generaliser would not affect
results such as those discussed for the bicycles.

Other minor extensions to the implementation are to enable it to merge disjuncts, correctly
match and generalise multi-relationships with several normal relationships, and generalise
grouped and ungrouped objects. The instance constructor cannot currently produce the ‘cov-
erage’ profile attribute described on page 82. The disjunct-formation system also needs to be
modified slightly so that the disjuncts of a concept have the same axis correspondence, or that
the axis correspondence of the disjunct is recorded explicitly relative to its super-concept so
that the matcher can coerce attributes appropriately.

Not all combinations of structure and context interpretations (section 3.4.3) are matchable or
generalisable. Specifically, ‘any’ and ‘partial+typical’ interpretations are not dealt with, and
it is not possible to match or generalise two generalised concepts that both have ‘disjunctive’
or ‘imported’ interpretations. Although GRAM can construct and match a description with an
‘imported’ interpretation, it is not currently able to decide itself when the structure or context
of an object should be replaced by an import reference.

GRAM'’s instance constructor needs to be extended to implement some of the composite-object
creation mechanisms that have been suggested in the thesis, such as those based on symmetry
and topology. The group-finding mechanism could also be extended to find sequences of
alternating objects (called cycles).

The issue of two-way interaction between the matcher, the instance-constructor, and the low-
level vision system has only been minimally addressed in the thesis. In a three-dimensional
domain, where objects are always partially obscured, this issue is especially relevant. Ideas
developed by [Brooks, 1981] could be applicable here, and the recent ideas discussed by
[Winston, 1992] which show how recognition is possible from just a few two-dimensional
models, could also be relevant.

Since GRAM’s representation scheme and its matching and generalisation algorithms are
amenable to a parallel architecture, future versions of GRAM could be implemented in this way.
The GRAM scheme may also be conducive to some kind of connectionist implementation, since
one of the difficulties of implementing a structured object learning system in a connectionist

7.5. LIMITATIONS AND FUTURE WORK 315

architecture is the problem of maintaining consistent bindings between components, which is
not an issue in the GRAM system.

The most difficult and long-term extension of GRAM is to enable it to learn multiple concepts
organised and indexed in a concept memory, perhaps drawing on and extending the ideas used
in the Labyrinth system described in section 2.8. Although the matcher and generaliser do
perform classification and generalisation of multiple concepts by ‘spreading’ along parent,
neighbour, and subpart relationships, the thesis has not dealt with how to create, use, and
maintain AKO hierarchies.

Clearly there is a great deal of scope for future work on the GRAM system.

316 CHAPTER 7. EVALUATION

Chapter 8

Conclusion

This chapter summarises the main ideas and conclusions presented in this thesis. The GRAM
system has extended and integrated various ideas from other systems, and has also presented
a number of new ideas for representing, matching, and generalising descriptions of complex
physical objects.

A central contribution of this thesis has been to demonstrate that complex physical objects
can be matched without functional or domain-specific knowledge. The thesis has also shown
that the structural relationships of objects can be exploited to improve the effectiveness and
efficiency of objects. Other systems (such as Labyrinth [Thompson and Langley, 1991] and
MERGE [Wasserman, 1985]) exploited the decompositional nature of physical objects to enable
top-down matching, but GRAM has extended this to make use of neighbour relationships, thus
allowing the matcher to search in any direction through the object graph, guided and constrained
by the object structure.

Another important contribution of the thesis is the idea that complex structured objects
can be effectively matched and generalised without having to enforce consistency between
correspondences. This allows the mechanisms and representation scheme to be simpler, more
efficient, more robust, and more conducive to a parallel implementation.

A methodology that has been used throughout the thesis is that the choice of representation
scheme, and matching and generalisation mechanisms, must be based on first identifying the
kinds of situation that must be representable, matchable, and generalisable, rather than creating
a mechanism and then identifying what it can and cannot do.

The following sections of this chapter summarise the specific contributions of the thesis for
each component of the GRAM system: representation, matching, generalisation, and instance-
construction.

317

318 CHAPTER 8. CONCLUSION
8.1 Representation

8.1.1 Multiple levels of approximation and abstraction are important for match-
ing and generalising.

The technique of ‘chunking’ an object into abstract or approximate components at multiple
levels of detail, represented as a decomposition hierarchy, enables the matcher to be guided by
the structure of the objects. This idea has also been applied in other systems such as Labyrinth,
MERGE, and ACRONYM [Brooks, 1981]. It also enables two descriptions, that perhaps would
be otherwise unmatchable and generalisable, to be matched and generalised at a coarse level
of detail, as has been discussed by [Marr, 1982]. Approximation and abstraction also allows
more information to be made explicit, since properties and relationships of the whole ‘chunk’
can be specified.

Multiple levels of detail are especially important in the GRAM system, since to match and
generalise objects as complex as the bicycles shown in Figure 1.8 in chapter 1 without the
guidance of a decomposition hierarchy is computationally very expensive. Systems such as
CLUSTERY/S [Stepp and Michalski, 1986a] and MARVIN [Sammut and Banerji, 1986] do not
use decomposition hierarchies to guide the matcher, and this means that they are not able to
efficiently deal with complex structured objects.

The PARVO system [Bergevin and Levine, 1993] demonstrates that classification of common
physical objects can often be performed from coarse descriptions alone, without requiring finer
details to be considered at all. The fact that humans can classify objects drawn as stick figures
or simple cartoon images is further evidence. This is an important domain characteristic since
it makes rapid classification possible.

Nevertheless, finer details are necessary for generalisation and fault-finding, and to enable
the matcher to distinguish between specialised varieties of a class of objects.

8.1.2 The distinction between parent, neighbour, and subpart relationships helps
guide and constrain the matcher.

Unlike representation schemes that allow arbitrary atomic relations between objects, (such as
[Sammut and Banerji, 1986], [Winston, 1975], and [Connell and Brady, 1985]), GRAM instead
distinguishes between just three types of relationship: (a) parent-relationships with enclos-
ing parent objects, (b) neighbour-relationships with other objects that are connected, close,
or otherwise interestingly related, and (c) subpart-relationships with subcomponent objects.
These are not atomic relations, but are richly expressive descriptive entities consisting of both
qualitative and quantitative information.

The main advantage of having just these three types of relationship is that each relationship
acts as arichly labelled link in the object graph, where the pattern of links captures the structure
of the physical object, and allows the matcher to exploit the structure of the object to guide the
search for correspondences.

8.1. REPRESENTATION 319

Other systems, (such as Labyrinth and MERGE) have made use of this principle to some
degree by the use of subpart relationships to guide a top-down search, but GRAM’s use of parent
and neighbour relationships extends this principle further. In particular, neighbour relationships
provide more “access paths” to an object, and these can cross levels of the decomposition
hierarchy. This helps resolve the level-hopping problem in which correspondences between
the components of two similar objects cannot otherwise be found because the components are
on different hierarchical levels.

The richness of relationship descriptions enables the matcher to compute a rough similarity
score for two descriptions merely by computing similarity scores of properties and relationships,
without even comparing the descriptions of the parents, neighbours, and subparts. This means
that an instance can be matched with a concept very cheaply, while still giving a reasonably
good estimate of their similarity. A high similarity score would justify a more complete
comparison.

Furthermore, an advantage of combining all the information about the spatial relationship
between two objects into a single descriptive entity (represented as an attribute vector) is that the
matcher can compute a single similarity score for two relationships, and hence more efficiently
determine the best correspondences between the parent, neighbour, and subpart relationships
of two objects, without even comparing the relatee objects.

8.1.3 Generalisation is simplified by giving each concept and instance its own set
of relationships.

In GRAM, a relationship between two objects or concepts is duplicated, and one copy is stored
with each object description. This enables concepts to be generalised independently. For
example, if an observed instance matches a concept sufficiently well to justify generalisation,
then each of its matched relationships can be generalised, even if it refers to a concept that is not
itself matched well enough to be generalised. This characteristic of the representation supports
GRAM’s overall approach of the avoiding the need to deal with consistent correspondence
bindings.

8.1.4 Physical objects are represented in terms of context as well as structure.

Many classes of physical object are defined not only by their structure (or ‘form”), but also
(or even primarily) by their context (or ‘role’). For example, the chair-leg concept is defined
largely by relationships with the concept chair and other chair components. Even if a concept
is primarily defined by its structure, as for the concept mug, it is useful to include context
information in its description since that can help to make predictions. For example, to find a
mug in a kitchen it is useful to know that mugs are often on shelves in cupboards, or by the
sink. GRAM’s use of neighbour and parent relationships, in addition to subpart relationships,
enables such knowledge to be represented.

320 CHAPTER 8. CONCLUSION

8.1.5 Concepts can be conveniently defined by relationships to other concepts,
rather than by a local part graph.

An earlier version of GRAM [Andreae, 1993] represented a concept as a complete part-graph,
where all parts of the graph were local to that concept description. If the generaliser determined
that it was necessary or desirable to represent a subgraph as a concept in its own right, then
it had to be extracted out, with references from the original graph to the new concept. This
process was somewhat complex, and many of the issues of deciding when and how to do
the extraction were not resolved. The matcher was also complex, because it had to find a
consistent set of one-to-one bindings between two potentially large part-graphs, which could
contain embedded disjunctions and references to other concepts.

In the current version of GRAM, each concept description is much smaller, simpler, and more
homogeneous, since it is defined only by a set of properties and a set of relationships to other
concepts, with no local part graph. There is no distinction between concepts and parts of
concepts. Consequently, the matcher does not have to deal with bindings, and the generaliser
does not have to determine whether a subgraph should be extracted out as a global concept.

8.1.6 The explicit distinction between structure and context supports partial
matching and a simple form of disjunction.

An important aspect of GRAM’s representation is that it not only allows concepts and instances
to be defined in terms of both structure and context, but it also explicitly distinguishes between
these two types of information. One reason for this is to enable partial matching: The matcher
can produce separate similarity scores for structure and context, and therefore is able to notice
that two objects are similar in structure but not context, or vice versa. If the similarity
is sufficiently strong, and is higher than scores for other competing correspondences, then
this is considered sufficient justification for generalisation, even though the overall combined
similarity score is poor. Without this distinction, a poor overall similarity score could mean
that both structure and context similarities are poor, in which case generalisation would not be
justified.

Another reason why the distinction is useful is that it enables a simple form of disjunction to
be included in the representation scheme, without having to deal with arbitrary disjunctions of
properties and relationships. More specifically, GRAM allows the structure and/or context of a
concept to be defined disjunctively.

8.1.7 Explicit groups reduce memory usage, support efficient matching, and
enable different-sized collections of similar objects to be generalised.

It is essential to be able to explicitly represent groups of similar objects (within a larger object
or scene) as a single entity, characterised by its typical member, since groups are so pervasive
in the physical world. An explicit group description not only reduces memory usage by
summarising multiple descriptions into a single description, but also supports more efficient

8.1. REPRESENTATION 321

matching (since fewer items need to be compared) and enables a generalisation to be produced
even if the groups of two descriptions have different cardinalities.

Therefore, an important contribution of the GRAM representation is that it allows groups to be
explicitly represented, matched, and generalised. This was not supported by the other structure-
learning systems reviewed in this thesis, except for Winston s ARCH learner [Winston, 1975]
and (in a limited way) Brooks’s ACRONYM.

The idea of representing a group in terms of a generalised typical member was initially
proposed and implemented by Winston. GRAM extends his representation to cope with more
complex structures, a more unified representation scheme, and probabilistic generalisations.
Most significantly, the description of the typical-member of a group is a concept that can
have relationships to itself, which specify the typical inter-member relationships between the
members of the group. This idea seemed to be partially included in Winston’s system, but only
by the typical member referring to a “another member” node, rather than by referring to itself,
which is more compact and homogeneous.

This thesis has identified a number of different types of groups (such as chain, loop, array, and
cluster) and GRAM’s method of representing typical inter-member relationships allows these
different types to be reflected implicitly in the set of typical-intermember relationships, and
explicitly in the group-type property.

Items in a group sometimes contain groups themselves, and so it is necessary to allow the
typical-member description to be a grouped concept. This is supported by GRAM, since a
typical-member concept is just an ordinary concept.

8.1.8 Multi-relationships allow relationships to be grouped.

In addition to representing similar and similarly related objects as a single group object, GRAM
also allows several similar relationships of a concept or instance to be represented as a single
generalised multi-relationship, with a howmany property specifying how many relationships
are being summarised.

This is important because for every group object, there are usually several other objects that
are structurally related (as neighbours) to some or all of the members of the group. Although
these relationships could be replaced with a single ordinary relationship to the group as a whole,
this would lose information about how the object is typically related to the members of the
group. Thus the multi-relationship is necessary. It is especially necessary if the related objects
have not been explicitly represented as a group.

Brooks’s ACRONYM supported this in a more restricted manner by having a ‘quantity’
parameter associated with an ‘affixment’ relation to a component. None of the other systems
reviewed in this thesis supported multi-relationships.

As with groups, multi-relationships reduce memory usage, support more efficient matching,
and enable a generalisation to be produced even if the multi-relationships of two descriptions
summarise different numbers of relationships. One conclusion of this thesis is, therefore,
that a representation for a complex structured domain should allow repeated features to be
summarisable in a single descriptive entity.

322 CHAPTER 8. CONCLUSION

8.1.9 Instance-counts are necessary to specify the degree of optionality of a
component.

Many classes of physical object must be described in terms of optional parts, such as the aerial
of a television set, the arms of a chair, or the keyhole in a door. If the optionality of a part cannot
be represented, then either the part must be dropped from the object description altogether,
or two subconcepts must be specified, one of which includes the part, and the other which
does not. A more convenient method is to allow each part to be labelled as being optional or
non-optional.

However, it is useful to also know the degree of optionality. For example, if only a small
proportion of cars have a light on the top, then this should be explicitly specified to enable more
precise prediction and similarity evaluation. Therefore, GRAM, like COBWEB [Fisher, 1987a]
and Labyrinth, allows each concept feature to have an instance-count that indicates how
many instances of the concept included that feature. Instance counts are associated with each
property, each parent, neighbour, and subpart relationship, each import-from specification, and
each concept as a whole.

8.1.10 The distinction between contents and arrangement is necessary in some
domains.

Some concepts, such as types of rooms or places, may be defined primarily by their contents,
with less importance placed on the arrangement of their contents than for objects such as
chairs and handdrills. Originally it was thought that the representation scheme should explicitly
distinguish between arrangement-dependent and arrangement-independent concepts. However,
it was realised that the distinction is a matter of degree, rather than one or the other, and it
has been found that the arrangement-independence of a concept is adequately specified by
the variance of properties of objects and relationships: a generalised subpart relationship that
has a high variance will usually match many of the relationships of an observed instance, and
therefore the structure of the subpart itself will be the primary means for identifying the correct
correspondence.

8.1.11 The import-from relationship provides a flexible way of reducing repeated
information, and increasing information transfer.

Some structured concept learning systems allow a subconcept to inherit information from
its parent concept, rather than repeating it redundantly. MERGE is one example of such a
system. However, GRAM provides an import-from relationship which allows structure and
context descriptions to be ‘imported’ from any other concept, not just from superconcepts.
This not only reduces memory usage, but also means that if the concept from which the
information is imported from is generalised, this is implicitly transferred to the concepts that
import from it. Of course, this has the danger of over-generalisation, and the overall learning
and memory organisation system must handle this, primarily by taking a cautious approach

8.1. REPRESENTATION 323

which only generalises an existing concept (rather than creating anew concept) if a new instance
is sufficiently similar to it.

8.1.12 It is useful to explicitly distinguish between several different ‘interpreta-
tions’ of structure and context descriptions.

The thesis has discussed the distinction between partial and complete descriptions, which
correspond to Stepp’s distinction between contains and is semantics [Stepp, 1987b]. Rather
than force all descriptions to have either one or the other interpretation, or leave it ambiguous,
GRAM requires the interpretation of each structure and context description to be explicitly
specified, and this means that the ‘drop-feature’ generalisation operation can be used without
requiring that all descriptions have a partial interpretation.

GRAM also distinguishes between several specific varieties of partial interpretation, to indicate
explicitly to the matcher that the description is disjunctive, grouped, or imports from another
concept.

8.1.13 Structure and context disjunction can be conveniently specified by sub-
concepts in the AKO hierarchy.

A feature of GRAM that has not been employed by other systems, is the ability to represent
the structure and/or context of a concept disjunctively, by referring to the subconcepts of the
concept. Some subconcepts may implicitly characterise ‘structure’ disjuncts (such as types of
chair structure), others implicitly characterise ‘context’ disjuncts (such as types of surroundings
where chairs are located), while others may specify disjuncts that are specify a co-dependent
combination of both structure and context (such as a dentists chair and its relationships with a
dentists office).

In this scheme there is no need for additional descriptive entities for disjuncts, and the
mechanism for forming disjuncts can be combined with the mechanisms for building AKO
hierarchies.

8.1.14 Enriched representation of properties and relationships support partial
matching.

It has been found during the development of GRAM that if the representation of properties
characterising the structure and the context of an object is sufficiently rich, then an inexpensive
partial comparison between a concept and an instance provides a good indication of whether
further more expensive comparison should be performed.

One type of property that is especially useful in this respect is the profile property which gives
a summary description of the arrangement of neighbours or subparts of an object. For example
a density profile indicates the density within each of several grid regions within the bounding
box of an object, and this enables the substructure of two objects to be roughly compared,
without actually comparing the subparts.

324 CHAPTER 8. CONCLUSION

Likewise, if the representation of relationships is rich, then a confident partial similarity
evaluation can be obtained without matching the relatees of the two objects.

8.1.15 Important information should be made explicit, to prevent loss of infor-
mation during generalisation.

One theme that has run throughout this thesis is that important information should be made
explicit, rather than implicit. This is because implicit constraints can be lost during generali-
sation. For example, a description of a chair may include ratios of the lengths of each leg to
the height of the chair as a whole, all of which are 0.47, but without any explicit specification
that the lengths are all the same. When generalising with another chair whose legs are 0.54 of
the chair height, then each leg length will be generalised, and the previously implicit constraint
of equal leg lengths is lost. This illustrates why important information should be explicit in
concept and instance descriptions. Many of the features of GRAM’s representation scheme, such
as groups, disjunction, instance-counts, neighbour relationships, import-from specifications,
and the distinction between structure and context, help support this requirement.

8.2. MATCHING 325

8.2 Matching

8.2.1 A matcher can and should exploit the structural organisation of objects.

The most significant characteristic of the GRAM matcher is that it exploits the structural or-
ganisation of physical objects to a greater extent than the other structure-matching systems
reviewed in the thesis. GRAM achieves this primarily by its “spreading activation™ algorithm
which traverses parent, neighbour, and subpart relationships to find and evaluate correspon-
dences between concepts and instances.

By distinguishing between just three kinds of relationships (i.e. parent, neighbour, and subpart
relationships) each of which is a richly expressive descriptive entity, each relationship acts as a
direct link to another concept or instance. When comparing a concept with an instance, the most
similar pairs of concept and instance relationships indicate correspondences between parent,
neighbour, and subpart concepts and instances. Thus, these three kinds of relationships allow
the matcher to efficiently search through the space of concept-to-instance correspondences.

This process is also made possible because descriptions can first be matched just using their
properties and relationships, ignoring relatees. The similarity score from this partial match
is a reasonable estimate, due to the richness of the property and relationship descriptions.
Therefore, the matcher only needs to traverse relationships to perform comparisons of relatees
if the partial match is sufficiently good. Thus, by enriching the representation of properties and
relationships, the search is reduced.

8.2.2 Relationships enable direct indexing for classifying an instance.

Even though indexing has not been explicitly addressed in this thesis, in GRAM’s “spreading
activation” matcher, each relationship acts as a kind of indexing mechanism which leads
directly to a hypothesised classification of an instance. Each hypothesised classification that
has a reasonably good score on the basis of property and relationship similarity, can be used to
directly hypothesise classifications of the instance’s parents, neighbours, and subparts. In fact,
this form of indexing is just as important as a mechanism that indexes directly from features to
a concept. The latter kind of indexing may be necessary to initiate the process, but once one
component of an observed scene has been given a hypothesised classification, the evaluation
of this classification will often lead to classifications of other components of the scene, via the
parent, neighbour, and subpart relationships. In future work on GRAM, both forms of indexing
may be combined.

A limitation of the Labyrinth system (see section 2.8) is that it does not make use of its subpart
relationships to support indexing, but instead classifies every observed instance independently.
Wasserman’s MERGE (in section 2.5) does not require indexing at all, because instances were
already named. The PARVOS system [Bergevin and Levine, 1993] (see section 2.9) used direct
indexing from features to concepts, but since it only matched concepts at a single coarse level
of detail, it did not perform further classification of related objects in the manner employed by
GRAM.

326 CHAPTER 8. CONCLUSION

8.2.3 Efficient and effective matching of structural descriptions is possible with-
out maintaining bindings between correspondences.

An interesting and surprising result of this thesis is that complex structured objects can be
effectively matched without having to maintain a consistent set of correspondence bindings
between concepts and instances.

In an earlier version of GRAM, it was originally thought that a consistent set of bindings
was essential, and so each concept was represented as an entire local substructure part-graph.
However, the new system has shown that the richness of object descriptions and the distinctness
of classes of physical objects tend to enforce consistency.

Thus, the matcher does not prevent an instance from being classified as belonging to several
concepts, which may or may not be on the same branch of the AKO hierarchy. This allows
instances to play multiple roles. If there are several ambiguous classifications of an instance,
then all should be reported by the matcher, and other concept-instance comparisons can select
whichever classification of the parent, neighbour, and subpart instances suits it best.

A consequence of this approach is that each concept—instance comparison can be considered
to be an independent process. Each comparison simply requires that the properties are similar,
the parent, neighbour, and subpart relationships are similar, and the relatees are similar (as
evaluated by a recursive application of the matcher, in a kind of backward-chaining manner).
If some other classification assumes that the same instance is classified differently, that is not
considered a problem. The matcher makes use of the similarity scores computed for other
previously computed concept—instance comparisons, but it does not enforce consistency.

The independence of each comparison, and the non-necessity for ensuring consistency and
correspondence bindings, means that the GRAM matcher is amenable to a parallel implemen-
tation. This is an important quality of a matcher that is to be employed in a real physical
environment, since classification often must be very rapid.

8.2.4 Robust matching is made possible by searching in any direction through
the object graph, starting from any hypothesised seed classification.

Several of the systems reviewed in this thesis have used a top-down search to compare two
structured descriptions. GRAM is not restricted to this form of search, but can instead search in
any direction via parent, neighbour, and subpart relationships. This means that the classification
does not need to begin from the root node of an object description. Rather, a seed classification
of a subcomponent (such as the classification of a bicycle seat) can lead to the classification of
the bicycle as a whole. This is important in a real physical environment where an object to be
classified may be partially obscured, preventing a direct indexing mechanism from accessing
the required concept.

Various methods to allow the user or the larger system to control the match spread are provided
by the matcher, such as by using a spread-distance parameter, or by explicitly marking (or
scoping) the instance objects that are to be classified.

8.2. MATCHING 327

8.2.5 Efficient ‘any-time’ matching is possible by using a breadth-first ‘iterative
deepening’ search.

It has been found that the most effective search strategy is a breadth-first search with ‘itera-
tive deepening’. A depth first search is not effective because the system should not spread
outwards from a correspondence, trying to evaluate correspondences of relatees, unless the
correspondence has already been found to be reasonably promising. Otherwise large numbers
of spurious correspondences could be evaluated unnecessarily. Therefore, GRAM only spreads
from correspondences for which the properties and relationships match sufficiently well. It
then performs successively more thorough comparisons on the best parent, neighbour, and
subpart correspondences.

This strategy ensures that the similarity score for each concept—instance comparison is
always based on a particular spread-distance, which is increased incrementally until either the
classification is considered acceptable or non-acceptable. Thus the algorithm is an ‘any-time’
algorithm which can be interrupted at any time, and still provide a usable similarity score that
has a known level of accuracy. This is important for an autonomous robot, which should be
able to classify to any required level of confidence, and be interrupted at any time while still
having usable match results.

This approach is justified by the results of the PARVO system [Bergevin and Levine, 1993]
which showed that common physical objects can often be classified on the basis of a coarse
description alone.

8.2.6 The level-hopping problem is resolved by exploiting neighbour relation-
ships.

A limitation in systems that employ a strictly top-down search is that two objects can only
be matched if their corresponding components are on the same level of their decomposition
hierarchies. If one object has been described with an additional composite object in the
hierarchy, then the matcher may fail. This is called the level-hopping problem. Wasserman’s
MERGE employed a special mechanism to cope with this, by inserting “null nodes” into the
part hierarchy, in all possible ways that could account for level misalignment of a certain
distance.

GRAM does not need to employ explicit level-hopping techniques, since the use of neighbour
relationships, which can cross levels of the hierarchy, enable correspondences to be found
directly.

8.2.7 Instance-counts are important for syntactic recognition.

In a system such as GRAM which does not make use of functional knowledge to learn the
relative importance of concept features, recognition of real-world objects can instead make
use of instance-counts associated with generalised features, in order to make better predictions
about the expected presence of a feature in a new instance.

328 CHAPTER 8. CONCLUSION

GRAM uses instance-counts to weight the similarity scores of relationship comparisons, such
that a concept relationship with a low instance-count, that has no similar relationship in the
instance, does not reduce the overall similarity score, since it is optional. However, if there is
a similar relationship in the instance, then the similarity score contributes fully to the overall
score. This similarity-dependent and frequency-dependent weighting has not been employed
in the other systems reviewed in this thesis.

8.2.8 A concept is a “probabilistic predictor” of parents, neighbours, and sub-
parts

Since each concept has instance-counts indicating the expectedness of each parent, neighbour,
and subpart relationship in an instance, a concept can be interpreted as a kind of ‘probabilistic
predictor’. More specifically, if the system is told, or hypothesises, that an observed instance
is an instance of a particular concept, then the parent, neighbour, and subpart relationships are
predictors of the presence of similar parent, neighbour, and subpart relationships and relatees
in the instance.

This interpretation is useful because it enables concepts to be used for fault-finding or
description completion. For example, if an object is only partially visible, but classifiable,
then its missing features can be ‘completed’ via prediction. Similarly, if a feature is absent
from a classified instance, then the significance of the absence can be measured on the basis
of the instance-count. In general, a high instance-count (with respect to the instance-count of
the concept) indicates a functionally significant feature that is expected to be present in most
instances. Thus GRAM’s instance-counts are a form of quantitative MUST-HAVE conditions.
A similar approach was taken in Fisher’'s COBWEB system.

8.2.9 Mismatches can sometimes be confirmed or resolved by augmenting an
instance description.

Mismatches between two descriptions can sometimes be resolved or confirmed by augmenting
the instance description by generating missing relationship descriptions, or even by adding
new composite objects (although the latter is not supported by the current system). This idea
has not been included in other structure-matching systems. It is most similar to the techniques
used in the SPARC/E system [Dietterich and Michalski, 1985] which augmented descriptions
of a sequence of cards in order to support regularity finding.

Relationship augmentation can be done when two concepts are explicitly related, but where
two instances that have been found to match those concepts (at least partially) are not explicitly
related. A relationship between the instances can therefore be created, and compared with the
concept relationship. This may either strengthen or weaken the classifications, but in either
case it results in more accurate similarity scores. This shows how the process of matching can
influence the vision system in an expectation-driven manner.

8.2. MATCHING 329

8.2.10 Fit-scores versus proximity-scores.

The distinction between fit-scores and proximity-scores has not been proposed by other systems.
It was found necessary to make the distinction in GRAM because different components of the
system require similarity to be measured in different ways.

A proximity-score measures the absolute similarity of two objects, and is based on the
‘proximity” of two objects in object-space. A fit-score measures the typicality of an instance
with respect to a concept, and is computed from the ratio of the absolute difference, to
the variance of the concept. A fit-score for two descriptions might be much lower than
the proximity-score. For example, an observed swivel-chair would have a reasonably high
proximity-score with respect to the concept four-legged-chair, but a very low fit-score.

The generaliser uses proximity-scores to determine whether two objects are similar enough
to justify producing a generalisation, and it uses fit-scores to determine whether an instance that
has been matched with a concept is typical enough to justify modifying the original concept,
rather than creating a new concept.

The matcher uses proximity-scores to determine the best correspondences between objects,
and a fault-finder would need to use fit-scores to identify the faulty or unusual features of an
object.

330 CHAPTER 8. CONCLUSION
8.3 Generalisation

8.3.1 Generalisation is simplified by representing concepts as small independent
descriptive entities.

Although concepts in GRAM are defined in terms of other concepts, they are independent in
the sense that the correspondences between their parent, neighbour, and subpart relationships,
and those of a matched instance, are selected independently from correspondences selected for
other concept—instance matches. They are also independent in the sense that their relationship
descriptions are not shared by the concepts that the relationships refer to. Every concept has
its own distinct set of relationship descriptions. This means that the task of the generaliser is
simplified, since each concept—instance pairing can be generalised independently from other
pairings, even though results of other generalisations may be referred to.

The simplicity of concept descriptions in GRAM (as opposed to the complexity of concept
descriptions that specify a complete part-graph) also simplifies generalisation, since there is
no need to merge two potentially large graphs, which may require generalising or creating
embedded disjunctions within the resulting generalised graph, and perhaps extracting out
subgraphs as distinct concepts.

8.3.2 Various forms of ambiguity have been distinguished.

One of the difficulties in generalising two descriptions is when there is ambiguity in the corre-
spondences between their parent, neighbour, and subpart relationships and relatees. Following
the methodology of identifying the kinds of situation to be dealt with before designing mech-
anisms, the issue of ambiguity has been addressed by distinguishing between several kinds of
ambiguity, each of which requires a different method of resolution.

These include similar-similarity ambiguity and different-similarity ambiguity (as discussed
below); vertical ambiguity, in which the objects involved are along the same vertical branch
of the decomposition hierarchy; local ambiguity, which refers to ambiguity between the cor-
respondences of parent, neighbour, and subpart relationships and relatees for a particular
object comparison; and global ambiguity, which refers to the ambiguity amongst all object
correspondences produced by the matcher.

Similar-similarity ambiguity is resolved by forming a multi-relationship or a
group.

Similar-similarity ambiguity refers to the situation where all of the pairs of competing cor-
respondences are similar in the same way. This situation can be resolved by producing a
multi-relationship or a group.

Different-similarity ambiguity is resolved by performing multiple generalisations.

Different-similarity ambiguity, on the other hand, is where the competing pairs are similar in

8.3. GENERALISATION 331

different ways. For example, one pair may match well with respect to structure, while the
other pair matches well with respect to context, even though both overall similarity scores
are roughly the same. The concept or instance that is involved in both pairs is playing two
roles, one contextual and one structural. This situation can be resolved by performing multiple
generalisations, one for each pair.

8.3.3 The representation supports a simple form of disjunction creation.

When a concept is to be generalised to cover an instance whose structure (or context) differs
significantly from the structure (or context) of the concept, the generaliser must create a dis-
junction of structures (or contexts). In a representation scheme that represents a concept as
a complete part hierarchy, disjunction formation can be complex, since it requires embedded
disjunctive subgraphs. In GRAM’s representation, disjunction formation simply involves cre-
ating subconcepts. There is no need to deal with multiple levels of a hierarchy, since each
concept is only one level deep, consisting solely of relationships with other concepts, which
are generalised independently.

In an extended GRAM system, disjunction formation would be integrated into a larger mech-
anism that constructs and maintains the AKO hierarchy.

8.3.4 Over-generalisation is reduced by requiring a minimum match effort, a
minimum fit-score, and a winning classification

The danger of over-generalisation is especially significant in a structured domain with a rep-
resentation scheme such as GRAM’s, since each concept may be referred to by many other
concepts, and the generalisation of one concept will therefore implicitly generalise all of the
concepts that refer to it.

GRAM reduces the chance of incorrectly generalising a concept by requiring that the fit-score
is sufficiently high. This ensures that the concept is only generalised by small amounts, and
a new concept is created if an instance is atypical. Also, GRAM requires that the matcher
has applied some minimum amount of effort to the comparison. A rough partial comparison
may be sufficient for classification in some tasks, but is not sufficient to justify generalisation.
Therefore, the generaliser may either request the matcher to continue performing a more
thorough comparison, or not perform generalisation.

The issue of over-generalisation has only been minimally addressed in this thesis, by the
methods above. A more thorough consideration will be performed when developing a full
learning system that deals with memory organisation.

8.3.5 Fault-finding is possible without using negative examples.

GRAM does not use negative examples to learn a concept. This is in contrast to Winston’s
system [Winston, 1975] and the CLUSTER/S system [Stepp and Michalski, 1986a]. Negative

332 CHAPTER 8. CONCLUSION

examples (especially near-miss examples) could certainly be useful for instructing GRAM in
three alternative ways: (a) that a particular feature is important for the function of an object,
although not essential for membership; (b) that a particular feature can be used to distinguish
between similar categories (such as the ‘back’ distinguishes between chairs and stools), or (c)
that a particular feature is essential for concept membership (such as the ‘hole’ in an ‘arch’)
regardless of how similar the rest of the object is.

Near-miss negative examples are not readily available in a real physical domain such as a
house or a workshop, unless specifically constructed by a teacher. It also necessary for the
interpretation of the example to be made clear, since (a) and (c) above are very different: a
near-miss example of a chair without a leg should not mean that future chairs without legs
are not classified as being chairs, but rather that the absence of the leg is a severe fault. On
the other hand, a near-miss example of an arch with a missing hole should perhaps be used to
prevent future objects without holes from being classified as arches.

Although GRAM cannot use negative examples, its use of instance-counts does enable it to
learn the same kind of information that can be acquired from type-(a) negative examples, since
a high instance-count on a feature within an object that has been observed many times indicates
that the feature is very important to that concept, while a low instance-count indicates lower
importance. If 100 chairs with 4 legs have been observed, then a chair with a missing leg will
be identified as faulty, although still correctly identified as a chair. Likewise, if 100 *arches’
have been observed, all of which have supports that are separated (and have a ‘hole’, if GRAM
could represent such ‘empty parts’), then an object with a lintel and two touching supports
would perhaps still be weakly classified as an arch, but the fault would be identified. This has
been confirmed by giving the implemented GRAM system a series of simple arches, followed by
anon-arch. It correctly noticed that the position and connectivity of the supports were outside
the expected range.

Thus, near-miss examples are not necessary for enabling a system to identify faults, although
they would enable the importance of a feature to be learned from a single example, rather
than many examples, and they would also enable the stronger interpretation-(c) to be made if
instructed to do so.

Currently GRAM is not able to represent the necessity of the absence of a part. It is not clear
how useful this would be, apart from distinguishing between concepts such a chair and a stool
as for interpretation-(b) above. Perhaps it is useful to be able to state that if there is a pencil
case on a desk, it is not part of the desk, but the description of the desk concept could become
cluttered with all sorts of non-components.

The issue of how negative examples could be incorporated into GRAM has not been considered
in any depth in this thesis, and so is a possible subject for future research.

8.4. INSTANCE CONSTRUCTION 333
8.4 Instance Construction

8.4.1 GRAM’s instance constructor augments primitive descriptions to support
more efficient and effective matching and generalisation.

This thesis makes an explicit distinction between instance construction and low-level vision, and
emphasises the importance of augmenting a description (produced by the vision system) in ways
that explicitly support matching and generalisation. This is a kind of constructive induction, as
discussed by [Michalski, 1983], although he did not address the issues of constructive induction
to support exploitation of structure in a structured domain.

Two main aspects of this process have been discussed in the thesis: Firstly, abstract composite
objects are created (from block descriptions produced by a vision system) to enable several
objects to be processed by the matcher and generaliser as a single collective entity, and to enable
properties that characterise the set of objects as a whole, to be representable. Secondly, explicit
parent, neighbour, and subpart relationships are created to support the matcher by providing
links between instances, and by enriching the description of each instance to ensure that a
more confident classification can be obtained, and to ensure that generalisations produced will
contain sufficient information to capture the important features of the concept.

The thesis has described sets of criteria for justifying the formation of composite objects and
relationships. In particular, it has presented a set of criteria and a mechanism for finding and
creating group objects.

8.4.2 Group construction during instance construction pre-empts group forma-
tion during generalisation.

Group creation is an interesting form of description augmentation since it involves matching
and generalising within an instance. Although it is also possible to form groups when an
instance is matched with a concept, as a way of resolving ambiguity, this can be preempted by
the formation of groups during the instance construction process.

8.4.3 Groups are found using the Seed Expansion algorithm.

The thesis has presented an algorithm called Seed Expansion that finds groups of similar and
similarly related objects. It proposes seed group by finding pairs of similar and interestingly
related objects, and then expands the best seed by incrementally adding new members until a
clear boundary between members and non-members is found, or until the group is found to be
unacceptable.

None of the structure-learning systems reviewed in the thesis provide group-finding mecha-
nisms, except for Winston’s ARCH learner [Winston, 1975] from which may of the ideas of
group representation were based. His paper described an algorithm that takes a “propose and
prune” approach, which involves proposing a generous grouping, and then removing members
until a stable group is found, thus working in the opposite direction from GRAM’s expansion

334 CHAPTER 8. CONCLUSION

process. His paper also suggested that some kind of algorithm similar to seed-expansion was
used to find sequences of objects, but the details were not given, and it was only used to find a
restricted kind of sequence, and no other kinds of group.

Bibliography

[Andreae, 1993] Andreae, D. B. (1993). Representing and matching physical objects. New
Zealand Journal of Computer Science, 4(2):3-13.

[Andreae, 1985] Andreae, P. (1985). Justified Generalisation: Acquiring Procedures From
Examples. PhD thesis, M.LT.

[Bareiss and Porter, 1987] Bareiss, E. and Porter, B. (1987). Protos: An exemplar-based
learning apprentice. In Proceedings of the Fourth International Workshop on Machine
Learning, pages 12-23.

[Bareiss et al., 1990] Bareiss, E., Porter, B., and Wier, C. (1990). Protos: An exemplar-based
learning apprentice. In Kodratoff, Y. and Michalski, R., editors, Machine Learning: An
Artificial Intelligence Approach, volume 3, chapter 4. Morgan Kaufmann.

[Bergevin and Levine, 1993] Bergevin, R. and Levine, M. (1993). Generic object recognition:
Building and matching coarse descriptions from line drawings. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 3(1):19-36.

[Biederman, 1985] Biederman, I. (1985). Human image understanding: Recent research and
a theory. Computer Vision, Graphics, and Image Processing, 32:29-73.

[Brady, 1983] Brady, M. (1983). Criteria for representations of shape. In Rosenfeld, editor,
Human and Machine Vision.

[Brady, 1987] Brady, M. (1987). Intelligent vision. In Grimson and Patil, editors, A/ in the
1980’s and Beyond, pages 201-242. MLL.T Press.

[Brady et al., 1984] Brady, M., Agre, P., Braunegg, D., and Connell, J. (1984). The mechanic’s
mate. In O’Shea, editor, ECAI-84: Advances in Artificial Intelligence, pages 681-97.
Elsevier Science Publishers.

[Brooks, 1981] Brooks, R. (1981). Symbolic reasoning among 3-d models and 2-d images.
Artificial Intelligence, 17:285-349.

[Chin, 1988] Chin, R. (1988). Automated visual inspection: 1981 to 1987. Computer Vision,
Graphics, and Image Processing, 41:346-81.

335

336 BIBLIOGRAPHY

[Cohen, 1984] Cohen, B. Murphy, G. (1984). Models of concepts. Cognitive Science, 8(1):27—
58.

[Connell, 1985] Connell, J. (1985). Learning shape descriptions: Generating and generalising
models of visual objects. Master’s thesis, Department of Electrical Engineering, MIT.

[Connell and Brady, 1985] Connell, J. and Brady, M. (1985). Learning shape descriptions. In
IJCAI-85, pages 922-5.

[Connell and Brady, 1987] Connell, J. and Brady, M. (1987). Generating and generalising
models of visual objects. Artificial Intelligence, 31:159-83.

[Cook and Holder, 1994] Cook, D. J. and Holder, L. B. (1994). Substructure discovery using
minimum description length and background knowledge. Journal of Artificial Intelligence
Research, 1:231-255.

[Dietterich, 1980] Dietterich, T. (1980). Applying general induction methods to the card game
eleusis. In Proceedings of AAAI-80, pages 218-20.

[Dietterich and Michalski, 1981] Dietterich, T. and Michalski, R. (1981). Inductive learning
of structural descriptions: Evaluation criteria and comparative review of selected methods.
Artificial Intelligence, 16(3):257-94.

[Dietterich and Michalski, 1983] Dietterich, T. and Michalski, R. (1983). A comparative re-
view of selected methods for learning from examples. In Michalski, R., Carbonell, J., and
Mitchell, T., editors, Machine Learning: An Al Approach, volume 1. Tioga, Palo Alto, Calif.

[Dietterich and Michalski, 1985] Dietterich, T. and Michalski, R. (1985). Discovering patterns
in sequences of events. Artificial Intelligence, 25:187-233.

[Dietterich and R., 1986] Dietterich, T. and R., M. (1986). Learning to predict sequences. In
Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine Learning: An Artificial
Intelligence Approach., volume 2. Morgan Kaufmann, Los Altos,Calif.

[Ellis, 1939] Ellis, W., editor (1939). A Source Book of Gestalt Psychology. Kegan Paul,
Trench, Trubner & Co.

[Falkenhainer et al., 1989] Falkenhainer, B., Forbus, K. D., and Gentner, D. (1989). The
structure-mapping engine: Algorithm and examples. Artificial Intelligence, 41(1).

[Fisher, 1987a] Fisher, D. (1987a). Improving inference through conceptual clustering. In
Proceedings of AAAI-87, pages 461-5.

[Fisher, 1987b] Fisher, D. (1987b). Model invocation for three dimensional scene understand-
ing. In IJCAI-87, pages 805-7.

[Fisher, 1988] Fisher, D. (1988). A computational account of basic level and typicality effects.
In AAAI-88, pages 233-8.

BIBLIOGRAPHY 337

[Gennari et al., 1989] Gennari, J. H., Langley, P., and Fisher, D. (1989). Models of incremental
concept formation. Artificial Intelligence, 40(1-3):11-61.

[Haussler, 1987] Haussler, D. (1987). Learning conjunctive concepts in structural domains.
In AAAI-87, pages 466-70.

[Hoffman and Richards, 1987] Hoffman, D. and Richards, W. (1987). Parts of recognition. In
Fischler and Finschein, editors, Readings in Computer Vision, pages 227-239.

[Iba, 1979] Iba, G. (1979). Learning disjunctive concepts from examples. Technical report,
M.IT.

[Kubovy and Pomerantz, 1981] Kubovy, M. and Pomerantz, J. R., editors (1981). Perceptual
Organisation. Lawrence Erlbaum Associates.

[Lebowitz, 1985] Lebowitz, M. (1985). Researcher: An experimental intelligent information
system. In IJCAI-85, pages 858-862.

[Lebowitz, 1986] Lebowitz, M. (1986). Not the path to perdition: The utility of similarity-
based learning. In Proceedings of AAAI-86, pages 533—7.

[MacGregor, 1988] MacGregor, R. (1988). A deductive pattern matcher. In Proceedings of
AAAI-88, pages 403-8.

[Markman, 1979] Markman, E. (1979). Classes and collections: Conceptual organisation and
numerical abilities. Cognitive Psychology, 11:395-411.

[Markman et al., 1980] Markman, E., Horton, M., and McLanahan, A. (1980). Classes and
collections: Principles of organisation in the learning of hierachical relations. Journal
unknown.

[Marr, 1982] Marr, D. (1982). Vision. W.H. Freeman, San Francisco, CA.

[Michalski, 1980] Michalski, R. (1980). Knowledge acquisition through conceptual clustering:
A theoretical framework and an algorithm for partitioning data into conjunctive concepts.
Policy Analysis and Info. Systems, 4(3):219-44.

[Michalski, 1983] Michalski, R. (1983). A theory and methodology of inductive learning. In
Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine Learning: An Al Approach,
volume 1. Tioga, Palo Alto, Calif.

[Pomerantz, 1985] Pomerantz, J. (1985). Perceptual organisation in information processing.
In Aitkenhead, A. and Slack, J., editors, Issues in Cognitive Modelling, chapter 6. Lawrence
Erlbaum, London.

[Provan, 1987] Provan, G. (1987). Efficiency analysis of multiple-context truth-maintenance
systems in scene representation. In Proceedings of AAAI-87, pages 173-7.

338 BIBLIOGRAPHY

[Provan, 1988] Provan, G. M. (1988). Model-based object recognition: A truth maintenance
approach. In CAIA-88, pages 230-5.

[Requiche, 1980] Requiche (1980). Representation of solid objects. ACM Computing Surveys,
12(4):437.

[Sammut, 1981] Sammut, C. (1981). Concept learning by experiment. In Proc. of the Seventh
IJCAI, pages 104-5.

[Sammut and Banerji, 1986] Sammut, C. and Banerji, R. (1986). Learning concepts by asking
questions. In Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine Learning: An
Artificial Intelligence Approach., volume 2. Morgan Kaufmann, Los Altos,Calif.

[Stepp, 1987a] Stepp, R. (1987a). Concepts in conceptual clustering. In IJCAI-87, pages
211-3.

[Stepp, 1987b] Stepp, R. (1987b). Machine learning of structured objects. In Proceedings of
Fourth Int. Workshop on M.L., pages 353-63.

[Stepp and Michalski, 1986a] Stepp, R. and Michalski, R. (1986a). Conceptual clustering:
Inventing goal-oriented classifications of structured objects. In Michalski, R., Carbonell, J.,
and Mitchell, T., editors, Machine Learning: An Artificial Intelligence Approach., volume 2.
Morgan Kaufmann, Los Altos,Calif.

[Stepp and Michalski, 1986b] Stepp, R. and Michalski, R. (1986b). Conceptual clustering of
structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43-69.

[Thompson and Langley, 1991] Thompson, K. and Langley, P. (1991). Concept formation
in structured domains. In Fisher, D. H. and Pazzani, M., editors, Concept Formation:
Knowledge and experience in unsupervised learning, chapter 5, pages 127-161. Morgan
Kaufmann, San Mateo, CA.

[Tversky, 1977] Tversky, A. (1977). Features of similarity. Psychological Review, 84(4):327—
52,

[Tversky and Hemenway, 1984] Tversky, B. and Hemenway, K. (1984). Objects, parts, and
categories. Journal of Experimental Psychology: General, 113(2):169-97.

[Ullman, 1989] Ullman, S. (1989). Aligning pictorial descriptions: An approach to object
recognition. Cognition, 32:191-254.

[Wasserman, 1985] Wasserman, K. (1985). Unifying Representation and Generalisation: Un-
derstanding Hierarchically Structured Objects. PhD thesis, Columbia University.

[Wasserman and Lebowitz, 1983] Wasserman, K. and Lebowitz, M. (1983). Representing
complex physical objects. Cognition and Brain Theory, 6(3):333-52.

[Whitehall and Reinke, 1987] Whitehall, B. and Reinke, R. (1987). Learning structural de-
scriptions incrementally: The disjointness problem. Technical report, University of Illinois.

BIBLIOGRAPHY 339

[Winston, 1975] Winston, P. (1975). Learning structural descriptions from examples. In
Winston, P., editor, The Psychology of Computer Vision, chapter 5, pages 157-209. McGraw-
Hill, New York.

[Winston, 1983] Winston, P. (1983). Learning physical descriptions from functional defini-
tions, examples, and precedents. In Proceedings of AAAI-83, pages 433-39.

[Winston, 1984] Winston, P. (1984). Artificial Intelligence. Addison-Wesley, second edition.

[Winston, 1992] Winston, P. (1992). Artificial Intelligence. Addison-Wesley, third edition.

	10001.pdf
	10002.pdf
	10003.pdf
	10004.pdf
	10005.pdf
	10006.pdf
	10007.pdf
	10008.pdf
	10009.pdf
	10010.pdf
	10011.pdf
	10012.pdf
	10013.pdf
	10014.pdf
	10015.pdf
	10016.pdf
	10017.pdf
	10018.pdf
	10019.pdf
	10020.pdf
	10021.pdf
	10022.pdf
	10023.pdf
	10024.pdf
	10025.pdf
	10026.pdf
	10027.pdf
	10028.pdf
	10029.pdf
	10030.pdf
	10031.pdf
	10032.pdf
	10033.pdf
	10034.pdf
	10035.pdf
	10036.pdf
	10037.pdf
	10038.pdf
	10039.pdf
	10040.pdf
	10041.pdf
	10042.pdf
	10043.pdf
	10044.pdf
	10045.pdf
	10046.pdf
	10047.pdf
	10048.pdf
	10049.pdf
	10050.pdf
	10051.pdf
	10052.pdf
	10053.pdf
	10054.pdf
	10055.pdf
	10056.pdf
	10057.pdf
	10058.pdf
	10059.pdf
	10060.pdf
	10061.pdf
	10062.pdf
	10063.pdf
	10064.pdf
	10065.pdf
	10066.pdf
	10067.pdf
	10068.pdf
	10069.pdf
	10070.pdf
	10071.pdf
	10072.pdf
	10073.pdf
	10074.pdf
	10075.pdf
	10076.pdf
	10077.pdf
	10078.pdf
	10079.pdf
	10080.pdf
	10081.pdf
	10082.pdf
	10083.pdf
	10084.pdf
	10085.pdf
	10086.pdf
	10087.pdf
	10088.pdf
	10089.pdf
	10090.pdf
	10091.pdf
	10092.pdf
	10093.pdf
	10094.pdf
	10095.pdf
	10096.pdf
	10097.pdf
	10098.pdf
	10099.pdf
	10100.pdf
	10101.pdf
	10102.pdf
	10103.pdf
	10104.pdf
	10105.pdf
	10106.pdf
	10107.pdf
	10108.pdf
	10109.pdf
	10110.pdf
	10111.pdf
	10112.pdf
	10113.pdf
	10114.pdf
	10115.pdf
	10116.pdf
	10117.pdf
	10118.pdf
	10119.pdf
	10120.pdf
	10121.pdf
	10122.pdf
	10123.pdf
	10124.pdf
	10125.pdf
	10126.pdf
	10127.pdf
	10128.pdf
	10129.pdf
	10130.pdf
	10131.pdf
	10132.pdf
	10133.pdf
	10134.pdf
	10135.pdf
	10136.pdf
	10137.pdf
	10138.pdf
	10139.pdf
	10140.pdf
	10141.pdf
	10142.pdf
	10143.pdf
	10144.pdf
	10145.pdf
	10146.pdf
	10147.pdf
	10148.pdf
	10149.pdf
	10150.pdf
	10151.pdf
	10152.pdf
	10153.pdf
	10154.pdf
	10155.pdf
	10156.pdf
	10157.pdf
	10158.pdf
	10159.pdf
	10160.pdf
	10161.pdf
	10162.pdf
	10163.pdf
	10164.pdf
	10165.pdf
	10166.pdf
	10167.pdf
	10168.pdf
	10169.pdf
	10170.pdf
	10171.pdf
	10172.pdf
	10173.pdf
	10174.pdf
	10175.pdf
	10176.pdf
	10177.pdf
	10178.pdf
	10179.pdf
	10180.pdf
	10181.pdf
	10182.pdf
	10183.pdf
	10184.pdf
	10185.pdf
	10186.pdf
	10187.pdf
	10188.pdf
	10189.pdf
	10190.pdf
	10191.pdf
	10192.pdf
	10193.pdf
	10194.pdf
	10195.pdf
	10196.pdf
	10197.pdf
	10198.pdf
	10199.pdf
	10200.pdf
	10201.pdf
	10202.pdf
	10203.pdf
	10204.pdf
	10205.pdf
	10206.pdf
	10207.pdf
	10208.pdf
	10209.pdf
	10210.pdf
	10211.pdf
	10212.pdf
	10213.pdf
	10214.pdf
	10215.pdf
	10216.pdf
	10217.pdf
	10218.pdf
	10219.pdf
	10220.pdf
	10221.pdf
	10222.pdf
	10223.pdf
	10224.pdf
	10225.pdf
	10226.pdf
	10227.pdf
	10228.pdf
	10229.pdf
	10230.pdf
	10231.pdf
	10232.pdf
	10233.pdf
	10234.pdf
	10235.pdf
	10236.pdf
	10237.pdf
	10238.pdf
	10239.pdf
	10240.pdf
	10241.pdf
	10242.pdf
	10243.pdf
	10244.pdf
	10245.pdf
	10246.pdf
	10247.pdf
	10248.pdf
	10249.pdf
	10250.pdf
	10251.pdf
	10252.pdf
	10253.pdf
	10254.pdf
	10255.pdf
	10256.pdf
	10257.pdf
	10258.pdf
	10259.pdf
	10260.pdf
	10261.pdf
	10262.pdf
	10263.pdf
	10264.pdf
	10265.pdf
	10266.pdf
	10267.pdf
	10268.pdf
	10269.pdf
	10270.pdf
	10271.pdf
	10272.pdf
	10273.pdf
	10274.pdf
	10275.pdf
	10276.pdf
	10277.pdf
	10278.pdf
	10279.pdf
	10280.pdf
	10281.pdf
	10282.pdf
	10283.pdf
	10284.pdf
	10285.pdf
	10286.pdf
	10287.pdf
	10288.pdf
	10289.pdf
	10290.pdf
	10291.pdf
	10292.pdf
	10293.pdf
	10294.pdf
	10295.pdf
	10296.pdf
	10297.pdf
	10298.pdf
	10299.pdf
	10300.pdf
	10301.pdf
	10302.pdf
	10303.pdf
	10304.pdf
	10305.pdf
	10306.pdf
	10307.pdf
	10308.pdf
	10309.pdf
	10310.pdf
	10311.pdf
	10312.pdf
	10313.pdf
	10314.pdf
	10315.pdf
	10316.pdf
	10317.pdf
	10318.pdf
	10319.pdf
	10320.pdf
	10321.pdf
	10322.pdf
	10323.pdf
	10324.pdf
	10325.pdf
	10326.pdf
	10327.pdf
	10328.pdf
	10329.pdf
	10330.pdf
	10331.pdf
	10332.pdf
	10333.pdf
	10334.pdf
	10335.pdf
	10336.pdf
	10337.pdf
	10338.pdf
	10339.pdf
	10340.pdf
	10341.pdf
	10342.pdf
	10343.pdf
	10344.pdf
	10345.pdf
	10346.pdf
	10347.pdf
	10348.pdf
	10349.pdf
	10350.pdf
	10351.pdf
	10352.pdf
	10353.pdf
	10354.pdf

