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Abstract

This thesis investigates the stochastic properties of high frequency for-
eign exchange data. We study the exchange rate as a process driven by
Brownian motion, paying particular attention to its sampled total varia-
tion, along with the variance and distribution of its increments. The nor-
mality of its increments is tested using the Khmaladze transformation-2,
which we show is straightforward to implement for the case of testing cen-
tred normality. We found that while the process exhibits properties char-
acteristic of Brownian motion, increments are non-Gaussian and instead
come from mixture distributions. We also introduce a technical analysis
trading strategy for predicting price movements, and employ it using the
exchange rate dataset. This strategy is shown to offer a statistically sig-
nificant advantage, and provides evidence that exchanges rates are pre-
dictable to a greater extent than current mathematical models suggest.
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Chapter 1

Introduction

In this thesis, we investigate the properties of high frequency foreign ex-
change data. We begin in Chapter 2 by reviewing some real analysis, as
it plays a fundamental role in probability theory and the study of fractal
sets, both of which are topics covered in this thesis. Then, after introduc-
ing the dataset and discretising the exchange rate process, we take three
different approaches in our investigation.

Firstly, we study the exchange rate as a stochastic process, with the
objective of understanding the underlying properties and structure of the
exchange rate process. Areas of particular interest to us concern the sta-
tionarity, correlation, and distribution of the process. The first question
we ask is whether the exchange rate behaves as a process that is driven
by Brownian motion. To this end, we review some well known results
for Brownian motion, and then compare these results with what we ob-
serve empirically. We test the normality of increments using the Khmal-
adze transformation-2 introduced in [11], deriving the relevant formulae
so that this transformation can be employed easily. We also consider the
Ornstein-Uhlenbeck process, a mean-reverting process that is driven by
Brownian motion. We do so as one could reasonably expect some degree
of mean-reversion in exchange rates, given that the relative value of two
currencies changes very slowly over time.

1



2 CHAPTER 1. INTRODUCTION

The second approach we take is to view the exchange rate data as a
fractal set, and ask what we can infer from its fractal properties. Many
phenomena observed in financial data are characteristic of fractal sets, in
particular statistical self-similarity which manifests in the form of scaling
laws. We demonstrate this by reviewing the fractal properties of Brown-
ian motion trajectories, and also deriving their dimension. We introduce
a new estimator for the Hurst exponent of a fractal Brownian motion, and
compare it empirically to an existing strongly consistent estimator pre-
sented in [18]. We also review two separate methods for the estimation of
a graph’s box-counting dimension, and apply these two methods to the
exchange rate process. These estimates then also serve as evidence for
whether or not the exchange rate process is driven by Brownian motion.

The final part of this thesis introduces a technical analysis method for
predicting future price movements. We first present the underlying ideas
of the method before formalising it in the form of an algorithm, and then
test it empirically using the exchange rate dataset. We test both the accu-
racy of our predictions, and also the profitability after taking into account
the primary fee associated with foreign exchange trading. Research into
the development and efficacy of technical analysis methods goes beyond
their immediate use to traders. It also contributes to the growing amount
of empirical evidence surrounding the efficient market hypothesis.

The overall objective of this thesis is to better understand exchange rate
dynamics within the context of the theory of stochastic processes. Both
the fractal and technical analysis components of this thesis also contribute
to this objective, as they are fundamentally related to ideas concerning
correlation and mean-reversion. We hope to present a complete view of
how the evolution of exchange rates relate to familiar Brownian motion-
driven processes.



Chapter 2

Real Analysis: An Introduction

In this chapter, we review some real analysis, primarily following Introduc-
tory Real Analysis by Kolmogorov and Fomin. We review some important
results concerning topological linear spaces and linear functionals.

2.1 Topological Spaces

2.1.1 Introduction

When studying limits, we generally think of metric spaces with some fa-
miliar function ρ(x, y) providing the distance between two points x and
y. Metric spaces are a special case of a topological space, in which the fa-
miliar notions of open sets, limits, and continuity are defined without the
need for any metric. In this section, we introduce the idea of a topologi-
cal space, and review some basic results concerning open sets, limits, and
continuity.

Definition 2.1. Given any set X , we define a topology on X as a system τ

of subsets G ⊂ X with the following properties:

• The set X itself, along with the empty set ∅, belong to τ .

3



4 CHAPTER 2. REAL ANALYSIS: AN INTRODUCTION

• The system of sets τ is closed under countably many unions and
finitely many intersections.

Sets belonging to the system τ are called open sets.

A topological space T consists of a set X along with a topology τ de-
fined on X .

The definition of a topological space allows us to define systems of
open sets without the need of a metric. Just as in a metric space, we say a
set is closed in the topological space if and only if its compliment is open.
This results in an important duality principal. While by definition open
sets are closed under countably many unions and finitely many intersec-
tions, closed sets are closed under finitely many unions and countably
many intersections.

Theorem 2.1. Let T = (X, τ) be a topological space. Then any system of
closed sets in the topological space T is closed under finitely many unions
and countably many intersections.

Proof. The result follows by the Duality Principle for Sets

T − ∪iXi = ∩i(T −Xi)

T − ∩iXi = ∪i(T −Xi)

along with the fact that the compliment of any closed set is open.

With the topology τ of a topological space, we have naturals ways of
defining terms often used in the context of a metric space, without the
need of a metric ρ(x, y).

• A set G is a neighbourhood of the point x if G is an open set containing
x.

• A point x is a contact point of the set M if every neighbourhood of the
point x contains at least one point belonging to M .
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• A point x is called a limit point of the set M if every neighbourhood
of x contains infinitely many points belonging to M .

• The closure of a set M , denoted by [M ], is the union of all contact
points of the set M .

With these terms well defined in a topological space, we can then gen-
eralise many of the important ideas of a metric space. Perhaps the most
fundamental being the idea of a convergent sequence {xn} that gets closer
and closer to some limit point x as n → ∞. This presents a difficulty in
defining how we determine whether a sequence converges to some point.
In a metric space, we say it converges if the distance from that point gets
smaller and smaller, but clearly another approach must be taken in a topo-
logical space.

Definition 2.2. Let {xn} be a sequence of points in a topological space T .
Then the sequence is said to converge to a point x if every neighbourhood
of x contains all points xn starting from a certain index.

Hence, a sequence {xn} is said to converge to a point x if for any neigh-
bourhood G(x), we can find some index n such that xm ∈ G(x) for all
m ≥ n. While we can generalise convergence to a topological space fairly
easily, the role it plays is slightly different. For example, in a metric space
R, a point x is said to be a contact point of a setM if and only ifM contains
a sequence converging to x. In general, this is not true for a topological
space. So while the general idea of convergence remains the same, not all
of the properties of convergence in a metric space hold true in the more
general topological spaces.

Similarly, the concept of continuity also generalises to topological spaces
fairly easily.

Definition 2.3. Let f : X → Y be a mapping from one topological space
to another. Then we say f is continuous at a point x0 ∈ X if for any
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neighbourhood Vy0 of the point y0 = f(x0), there exists a neighbourhood
Ux0 of the point x0 such that

f(Ux0) ⊂ Vy0 .

We say f is a continuous mapping if it is continuous at every point belong-
ing to X .

Since in a topological space a neighbourhood Ux0 is simply any open
set containing x0, continuity can be defined in terms of open sets.

Theorem 2.2. Let f : X → Y be a mapping from one topological space to
another. Then f is continuous if and only if the preimage f−1(G) of any
open set G ⊂ Y is open.

Proof. Firstly, suppose f is continuous. Then for any open set G ⊂ Y , take
some point x belonging to its preimage f−1(G), and let y = f(x). Since
G is an open set, it is by definition a neighbourhood of y. Hence by the
definition of a continuous function we can find some neighbourhood Ux

of x such that f(Ux) ⊂ G. Hence every point x ∈ f−1(G) has an open set
wholly contained in f−1(G), making f−1(G) an open set.

For the other direction, suppose that the preimage of every open set
is open. For any point x ∈ X , we can find some neighbourhood Vy of
the point y = f(x). By assumption, since Vy is open, its preimage f−1(Vy)

must be open. Moreover, by construction we have that Ux = f−1(Vy) is
a neighbourhood of x such that f(Ux) ⊂ Vy, making f continuous at the
point x, and hence a continuous mapping.

A consequence of Theorem 2.2 is that the composition of two continu-
ous functions must also be continuous.

If f : X → Y is a bijective mapping such that both f and f−1 are contin-
uous, then we say f is a homeomorphism from X to Y . We say two topolog-
ical spaces are homeomorphic if there exists a homeomorphism between
them. Homeomorphisms serve as a kind of equivelence in topology since
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two homeomorphic spaces have identical topological properties. In this
way, two homeomorphic spaces are simply two different representations
of the same space. This is demonstrated by the fact that homeomorphism
is clearly an equivalence relation, and hence divides all topologies into a
set of equivalence classes.

2.1.2 Compact Spaces

An important concept in general topology is the idea of a compact space.
Compactness serves as a generalisation of the properties of closed and
bounded subsets of Rn.

Definition 2.4. We say a topological space T is compact if every open cover
of T has a finite subcover.

By an open cover of a set, we mean any collection of open sets {Ui} such
that T ⊂ ∪iUi. An alternative definition of compactness can be obtained
by considering centred systems of sets.

Definition 2.5. We say that a system of subsets {Ui} is centred if every
finite intersection ∩ni=1Ui is non-empty.

Theorem 2.3. Let T be a topological space. Then T is compact if and only if
every centred system of closed subsets of T has a non-empty intersection.

Proof. First, suppose that T is compact, so that every open cover of T has
a finite subcover. Take any centred system of closed subsets {Ui}. By defi-
nition this implies the compliments Fi = T − Ui are open. If the system of
sets {Ui} has an empty intersection, then this implies that {Fi} is an open
cover of T , and hence has a finite subcover. This is a contradiction as it
implies that {Ui} is not a centred system of sets.

Conversely, suppose that any system of closed subsets of T has a non-
empty intersection, and take any open cover {Fi} of T , and let Ui = T −Fi.
Then the system of sets {Ui}must have an empty intersection, since {Fi} is
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an open cover, and hence {Ui} cannot be centred. This implies there exists
a finite collection of Fi with an empty intersection, and so by taking their
compliment we obtain a finite subcover, proving T is compact.

The equivalence given to us by Theorem 2.3 tells us that any closed
subset F of a compact topological space T , must itself be compact. This
follows from the fact that any centred system of closed subsets in F is also
a centred system of closed subsets in T , and so it must have a non-empty
intersection. A similar results holds for continuous mappings.

Theorem 2.4. For any compact space X and continuous function f : X →
Y , the topological space Y = f(X) is compact.

Proof. Take any open cover {Vi} of the topological space Y , and let Ui =

f−1(Vi). Since f is continuous, the preimage of any open set is open, and
thus {Ui} is a collection of open sets. Furthermore, they cover the spaceX ,
making them an open cover. By the compactness of X we can then find a
finite open subcover of {Ui} and hence a finite subcover of {Vi}.

A weaker form of compactness is that of a countably compact space. The
definition of a countably compact space is motivated by the following im-
portant result for any compact topological space T .

Theorem 2.5. Let T be a compact topological space. Then any infinite
subset of T has at least one limit point.

Proof. Let X be an infinite subset of a topological compact space T . As-
sume towards contradiction that X contains no limit points. This implies
that X contains a countable set {x1, x2, . . . } without a limit point. Letting
Xn = {xn, xn+1, . . . }, it follows that {Xn} is a centred system of sets. Fur-
thermore, they are closed since the set X has no limit points. This contra-
dicts the compactness of T , as Xn forms a centred system of closed subsets
with an empty intersection.

Definition 2.6. We say a topological space T is countably compact if every
infinite subset of T has at least one limit point in T .
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Theorem 2.5 tells us that every compact space is countably compact,
however the reverse is not generally true. Hence countable compactness
is a weaker form of compactness. This can be seen by noting that in a
countably compact space, it can be proven that any countable open cover
of T has a fintie subcover, while in a compact space this property holds
true for any open cover of T .

2.1.3 Compact Metric Spaces

As mentioned, metric spaces are simply a special kind of a topological
space. Hence all of the results thus far hold true in metric spaces. How-
ever, since the topology of a metric space is entirely determined by its
metric ρ(x, y), we can frame the concept of compactness in terms of this
metric. We start by introducing the concept of total boundedness.

Definition 2.7. Let R be a metric space and ε > 0 any positive number.
Than an ε-net of a set M ⊂ R is any set A such that for every x ∈ M there
exists an a ∈ A such that ρ(x, a) < ε.

So that an ε-net of a set M is simply another set A with the property
that every element of M is within ε distance of some element of A. We
then define a set as being totally bounded if for any ε > 0 we can find at
least one finite ε-net.

Definition 2.8. Let R be a metric space with some subset M ⊂ R. Then we
say M is totally bounded if, given any ε > 0, we can find a finite ε-net of
M .

It is tempting to assume that any totally bounded set is necessarily fi-
nite dimensional. However a novel example of a totally bounded and
infinite dimensional set is the Hilbert cube. The Hilbert cube consists of
all points (x1, x2, . . . , xn, . . . ) that satisfy

|xn| ≤
1

2n−1
(2.1)
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for all n. It is clear that the Hilbert cube is infinite dimensional, the fact it
is also totally bounded is more subtle. Suppose that given some ε > 0, we
wish to construct a finite ε-net of the Hilbert cube. We start by choosing n
as the smallest integer satisfying

1

2n−1
<
ε

2
. (2.2)

Then, for each point
x = (x1, x2, . . . , xn, . . . )

belonging to the Hilbert cube, we associate with it a new point

x∗ = (x1, x2, . . . , xn, 0, 0, . . . ).

It then follows that

ρ(x, x∗) =

√√√√ ∞∑
i=1

|xi − x∗i |2

=

√√√√ ∞∑
i=n+1

x2
i

≤

√√√√ ∞∑
i=n

4−k

<
1

2n−1

<
ε

2
.

The set of all points x∗ is totally bounded as it is a bounded set in R
n,

where total boundedness is equivalent to boundedness. Hence we can
find an ε/2-net of the set of points x∗, which by the above inequality is an
ε-net of the Hilbert cube.

We now conclude this section by showing how the concepts of total
boundedness and compactness are related.
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Theorem 2.6. A metric spaceR is compact if and only if it’s totally bounded
and complete.

Proof. For brevity we prove only one direction. Let R be a compact metric
space, and let {xn} be any Cauchy sequence belonging to R. If the se-
quence {xn} does not converge to any element of R, then this implies the
sequence has no limit point belonging to R. But this contradicts Theorem
2.5, and hence the space is complete.

To prove that R is totally bounded, assume towards contradiction that
it is not. Hence there is some ε > 0 such that no ε-net for R exists. Hence
for any point x1 ∈ R, we can find some x2 ∈ R such that

ρ(x1, x2) > ε.

Furthermore, we can continue this procedure sequentially to obtain a count-
able set

{x1, x2, . . . , xn, . . . }

such that ρ(xi, xj) > ε for all i 6= j. By construction this set clearly has
no limit points in R, again contradicting Theorem 2.5. Hence R is totally
bounded.

2.2 Linear Spaces

2.2.1 Introduction

Linear spaces play an important role in many areas of mathematics. They
are very general yet powerful spaces which include, among others, all
Hilbert and Banach spaces. As many important spaces in mathematics are
simply specialisations of linear spaces, the structure inherent to all linear
spaces is of great interest.

Definition 2.9. A non-empty set L of elements is called a linear space if
the following three axioms hold:
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1. Any two elements x, y ∈ L uniquely determine a third element x +

y ∈ L referred to as the sum of x and y. Furthermore, summation has
the following properties:

• Associative: (x+ y) + z = x+ (y + z).

• Commutative: x+ y = y + x

• There exists a unique zero element 0 ∈ L such that x+ 0 = x for
all x ∈ L.

• For every x ∈ L there exists an inverse element −x ∈ L such
that x+ (−x) = 0.

2. Any number α and any element x ∈ L uniquely determine an ele-
ment αx, called the product of α and x, such that

• For all numbers α, β and elements x ∈ L, we have α(βx) =

(αβ)x.

• 1x = x.

3. The above operations obey two distributive laws:

• (α + β)x = αx+ βx.

• α(x+ y) = αx+ αy.

The elements of a linear space L are often referred to as ”points” or
”vectors”, while the numbers as ”scalars.” We call L a real linear space if
α, β ∈ R. One example of a linear space is the set l2 of all sequences

x = (x1, x2, . . . , xn, . . . )

that satisfy the condition
∞∑
i=1

|xi|2 <∞, (2.3)

with addition and scalar multiplication defined in the obvious way,

α(x1, x2, . . . ) + β(y1, y2, . . . ) = (αx1 + βy1, αx2 + βy2, . . . ).



2.2. LINEAR SPACES 13

The fact that x+ y necessarily belongs to l2 follows from the inequality

(xk + yk)
2 ≤ 2x2

k + 2y2
k.

We say that a set of elements x1, x2, . . . , xn ∈ L are linearly dependent if
there exists a set of scalars λ1, λ2, . . . , λn, not all zero, such that

λ1x1 + λ2x2 + · · ·+ λnxn = 0.

If no such scalars exist, then we say the set of elements is linearly indepen-
dent. The concept of linear independence is used to define the dimension
of a linear space. We say a linear space L is n-dimensional if there exists n
linearly independent elements in L, but all collections of n+1 elements are
linearly dependent. This can be extended to include infinite dimensional
linear spaces, in which we can find n linearly independent elements for all
finite n. Any n-dimensional linear space can be completely described by a
basis of n linearly independent elements.

Definition 2.10. A basis of an n-dimensional linear space is any collection
of n linearly independent elements x1, x2, . . . , xn.

A basis completely describes a linear space L in that any vector belong-
ing to L can be represented as a linear combination of the elements in the
basis. The coefficients in this linear combination serve as coordinates, so
that every basis serves as a coordinate system for the linear space.

Theorem 2.7. LetL be an n-dimensional linear space with basis x1, x2, . . . , xn.
Then any element y ∈ L can be expressed as a linear combination of
x1, x2, . . . , xn.

Proof. If y cannot be expressed as a linear combination of x1, x2, . . . , xn,
then this implies that x1, x2, . . . , xn, y is linearly independent. This is a con-
tradiction as L is n-dimensional, and hence any collection of n+1 elements
is linearly dependent.
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2.2.2 Subspaces

Suppose a subset M of a linear space L is a linear space itself. Then we say
that M is a subspace of L with respect to the same operations of addition
and scalar multiplication. A proper subspace is a subspace that is neither
the empty set nor L itself.

As an example, given any linear space L and fixed scalar λ, the set

M = {λx : x ∈ L}

is a subspace of L. This follows from the fact that if x, y ∈ M , then for
some x′, y′ ∈ L we have

αx+ βy = αλx′ + βλy′

= λ(αx′ + βy′),

where αx′ + βy′ ∈ L.
It is straightforward to see that the intersection of any number of linear

spaces must itself be a linear space. As a result, given any collection of
elements {xi} belonging to a linear space L, we can find a minimal sub-
space containing {xi}. This is because there exists at least one subspace
containing {xi}, namely L itself, and the intersection of all such subspaces
gives us a minimal subspace.

2.2.3 Linear Functionals

A functional on a linear space L is any numerical function defined on L.
We say that a functional is linear if for all x, y ∈ L and scalars α and β,

f(αx+ βy) = αf(x) + βf(y). (2.4)

For example, consider the space C[a,b] of all continuous functions on the
interval [a, b]. On this space, the functional

I(x) =

∫ b

a

x(t)dt
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is linear due to the linearity of integration
For any linear functional f on a linear space L, we define the corre-

sponding null space as the set

Lf = {x ∈ L : f(x) = 0}. (2.5)

The null space of a linear functional is necessarily a subspace since, for any
x, y ∈ Lf , we have

f(αx+ βy) = αf(x) + βf(y)

= 0

so that αx+ βy ∈ Lf .

Theorem 2.8. Given a fixed element x0 ∈ L−Lf , every x ∈ L has a unique
representation of the form

x = αx0 + y (2.6)

for some y ∈ L.

Proof. By definition f(x0) 6= 0 and hence x0 6= 0 by linearity of f . We can
assume f(x0) = 1 without loss of generality, since otherwise we need only
rescale accordingly using α.

For any x ∈ L, we set
y = x− f(x)x0,

so that y ∈ Lf , since

f(y) = f(x− f(x)x0)

= f(x)− f(x)f(x0)

= 0.

Hence we have the representation (2.6). The representation not being
unique leads to the contradiction that x0 ∈ Lf , hence the result follows.
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Corollary 2.8.1. If two non-trivial linear functionals have the same null
space, then they are proportional.

Proof. We again take f(x0) = 1 without loss of generality. Then, since f
and g share the same null space, it follows that g(x0) 6= 0. By Theorem 2.8
every x ∈ L can be expressed in the form

x = f(x)x0 + y

for some y ∈ Lf . Hence,
g(x) = f(x)g(x0)

proving the result.

2.2.4 Convex Sets and Functionals

An important concept in the study of linear spaces is that of convexity.
Loosely speaking, we think of a space as being convex if it contains the
line joining any two of its points. To express the notion of convexity more
formally, we say that the line segment joining two points x, y ∈ L is the set
of all points z that can be expressed in the form

z = αx+ βy (2.7)

such that α + β = 1, and α, β ≥ 0.

Definition 2.11. Let L be a real line space, and M ⊂ L a subset. Then M is
said to be convex if whenever M contains two points x and y, it contains
the line segment joining x and y.

As with subspaces, it follows from the properties of intersection that
the intersection of an arbitary number of convex sets is also convex. The
notion of convexity is by no means restricted to sets however, and is easily
extended to functionals.

Definition 2.12. A functional p defined on a real linear space L is said to
be a convex functional if the following hold:
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1. p(x) ≥ 0 for all x ∈ L.

2. p(αx) = αp(x) for all x ∈ L and α ≥ 0.

3. p(x+ y) ≤ p(x) + p(y).

An important result in linear analysis involving convex functionals is
the Hahn-Banach theorem. For any linear space L with subspace M , we
say that a functional f defined on L is an extension of f0 defined on M if

f(x) = f0(x) for all x ∈M.

The Hahn-Banach theorem then says that if a functional f is bounded by
some convex functional p on some subspace, then it has an extension that
is bounded on the entire linear space. We omit the rather lengthy proof.

Theorem 2.9 (Hahn-Banach). Let L be a real linear space with subspace
M , and p a finite convex functional defined on L. Then if f0 is a functional
defined on M such that

f0(x) ≤ p(x) for all x ∈M,

then f0 has an extension on L that is also bounded by p.

2.2.5 Normed Linear Spaces

Often times a linear space studied in mathematics has some notion of
length inherent to its structure. This leads to the idea of a normed linear
space, a linear space L along with some norm ρ(x) that gives the length of
any vector x ∈ L.

Definition 2.13. A normed linear space is a linear space L equipped with
a functional ρ such that for all x ∈ L the following properties hold:

• ρ is a finite and convex functional.

• ρ(x) = 0 if and only if x = 0.



18 CHAPTER 2. REAL ANALYSIS: AN INTRODUCTION

• ρ(αx) = |α|ρ(x) for all scalars α.

The norm of an element x is ‖ x ‖= ρ(x).

Every normed linear space is a metric space when equipped with the
metric ρ(x, y) =‖ x− y ‖. As a result, properties of metric spaces immedi-
ately carry over to normed linear spaces.

An example of a normed linear space is C[a,b] equipped with the norm

‖ f ‖= max
a≤t≤b

|f(t)|.

A particularly important consequence of the Hahn-Banach theorem given
in the previous section concerns functionals in normed linear spaces.

Theorem 2.10 (Hahn-Banach). If a bounded linear functional f is defined
on some subspace L of a normed linear space E, then f can be extended
to the entire space E without increasing its norm.

Proof. An immediate consequence of applying the Hahn-Banach theorem
with the convex functional

p(x) =‖ f ‖ on L‖ x ‖ .

Any normed linear space that is also complete is called a Banach space.
With the introduction of length to a linear space, it is natural to ask whether
or not we can also generalise the idea of an angle between two vectors. As
it turns out we can, in what is called a Euclidean space.

2.2.6 Euclidean Spaces

It is easy to see how one might generalise the angle between two vectors
to R

n, it is less clear how to define it in, for example, l2 or C[a,b]. To do so,
we introduce what is called the scalar product.
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Definition 2.14. A Euclidean space is any real linear space R equipped
with a scalar product, denoted by (x, y), defined for all x, y ∈ R such that
the following conditions hold:

1. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0.

2. (x, y) = (y, x).

3. (λx, y) = λ(x, y).

4. (x, y + z) = (x, y) + (x, z).

for all x, y, z ∈ R and λ ∈ R.

Some examples of Euclidean spaces include:

• The space Rn equipped with (x, y) =
∑n

i=1 xiyi.

• The space l2 equipped with (x, y) =
∑∞

i=1 xiyi.

• The space C[a,b] equipped with (x, y) =
∫ b
a
x(t)y(t)dt.

Hence Euclidean spaces are far more general than the familiar Euclidean
n-space Rn.

Every Euclidean space is a normed linear space when equipped with
the norm

‖ x ‖=
√

(x, x),

where the properties of norm can be proven using the Schwarz inequality,

|(x, y)| ≤‖ x ‖‖ y ‖ .

The notion of a scalar product is fundamental as it allows us to define the
angle between two vectors.

Definition 2.15. For any two vectors x and y belonging to a Euclidean
space R, the angle θ between x and y is defined by the equation

cos θ =
(x, y)

‖ x ‖‖ y ‖
. (2.8)
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A consequence of equation (2.8) is that

(x, y) = 0 =⇒ θ =
π

2
.

Hence, we say that two vectors x and y are orthogonal if (x, y) = 0. Fur-
thermore, we say a set of vectors x1, x2, . . . , xn is an orthogonal system if
(xi, xj) = 0 whenever i 6= j. An orthogonal system is said to be orthonormal
if (xi, xi) = 1 for all i.

Theorem 2.11. Any orthogonal system of vectors x1, x2, . . . , xn is linearly
independent.

Proof. Suppose that for some scalars αi, we have

α1x1 + α2x2 + · · ·+ αnxn = 0.

Then for any xi, consider the scalar product

(xi, α1x1 + α2x2 + · · ·+ αnxn) = (xi, 0) = 0.

But then the orthogonality of the vectors implies that

(xi, αixi) = 0

so that αi = 0. Since this holds for all i, all the scalars αi must be 0. Hence
the vectors are linearly independent.

Orthonormal systems serve as a basis of the Euclidean space comprised
of vectors of unit length. For example, if e1, e2, . . . en is an orthonormal
system in R

n, then any vector x ∈ Rn can be expressed as

x =
n∑
i=1

(x, ei)ei. (2.9)

A similar result also holds for infinite dimensional Euclidean spaces, which
we now prove.
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Theorem 2.12. Let R be an infinite dimensional Euclidean space with or-
thonormal system

e1, e2, . . . , en, . . . .

Then for any element x ∈ R, the expression

‖ x−
n∑
i=1

αiei ‖

achieves its minimum with αi = (x, ei). Furthermore, Bessel’s inequality
says that

∞∑
i=1

(x, ei)
2 ≤‖ x ‖2 . (2.10)

Proof. Let Sn be the partial sum process

Sn =
n∑
i=1

αiei. (2.11)

Then it follows that

‖ x− Sn ‖2 =

(
x−

n∑
i=1

αiei, x−
n∑
i=1

αiei

)

= (x, x)− 2

(
x,

n∑
i=1

αiei

)
+

(
n∑
i=1

αiei,
n∑
i=1

αiei

)

=‖ x ‖2 −2
n∑
i=1

αi(x, ei) +
n∑
i=1

α2
i

which can then easily be rewritten as

‖ x− Sn ‖2=‖ x ‖2 −
n∑
i=1

(x, ei)
2 +

n∑
i=1

(αi − (x, ei))
2. (2.12)

So that the difference ‖ x − Sn ‖2 achieves its minimum when the last
term of the right hand side vanishes, when αi = (x, ei) for i = 1, 2, . . . , n.
Furthermore, since ‖ x− Sn ‖2≥ 0, Bessel’s inequality follows from (2.12).
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We have seen that any Euclidean space can be made into a normed
linear space. An interesting question is then under what condition is a
normed linear space Euclidean.

Theorem 2.13. A normed liner space R is Euclidean if and only if

‖ x+ y ‖2 + ‖ x− y ‖2= 2(‖ x ‖2 + ‖ y ‖2) (2.13)

for all x, y ∈ R.

Proof. We prove only one direction, as the other requires a very lengthy
proof. Suppose that R is Euclidean. Then it follows that

‖ x+ y ‖2 + ‖ x− y ‖2 = (x+ y, x+ y) + (x− y, x− y)

= (x, x) + 2(x, y) + (y, y) + (x, x)− 2(x, y) + (y, y)

= 2(x, x) + 2(y, y)

= 2(‖ x ‖2 + ‖ y ‖2).

2.3 Linear Functionals

2.3.1 Introduction

With a linear functional f defined as in the previous section, we now study
the properties of real linear functionals defined on some topological linear
space E.

Theorem 2.14. Let f be a linear functional defined on a topological linear
space E. If f is continuous at any point x0 ∈ E, then f is continuous at
every point x ∈ E.

Proof. Suppose that f is continuous at some point x0 ∈ E, and we wish to
show this implies it’s continuous at any point y ∈ E. For any ε > 0, let U
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be a neighbourhood of x0 such that |f(x) − f(x0)| < ε for all x ∈ U . We
then define the neighbourhood V of y as

V = {x+ y − x0 : x ∈ U}. (2.14)

It follows that if x ∈ V , then x+ x0 − y ∈ U , and hence by the definition of
U we have

|f(x)− f(y)| = |f(x+ x0 − y)− f(y + x0 − y)|

= |f(x+ x0 − y)− f(x0)|

≤ ε.

Hence for any ε > 0 we can find some neighbourhood V of y such that
|f(x)− f(y)| for all x ∈ V . That is, f is continuous at y.

Hence to prove that a real linear functional is continuous on some topo-
logical linear space E, we need only verify it at a single point. An impor-
tant consequence of Theorem 2.14 is that the continuity of a linear func-
tional f is related to boundedness.

Theorem 2.15. Let f be a linear functional on a topological linear space E.
Then f is continuous if and only if f is bounded on some neighbourhood
of 0.

Proof. If f is continuous on E, then it is continuous at 0. Hence by defini-
tion, given any ε > 0 we can find some neighbourhood U of 0 such that
|f(x)| ≤ ε for all x ∈ U . Hence f is clearly bounded on U .

Conversely, suppose f is bounded on some neighbourhood U of 0, so
that for some finite constant c, we have |f(x)| < c for all x ∈ U . Then for
any ε > 0 we can construct a new neighbourhood around 0 defined as

Vε =
{ε
c
x : x ∈ U

}
.

By construction it follows that for all x ∈ Vε, we have |f(x) − f(0)| < ε

so that f is continuous at 0. By Theorem 2.14 f is therefore continuous on
E.
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2.3.2 Norms of Linear Functionals

As the set of all functionals on a linear space forms a space itself, it is
natural to ask whether we should introduce some sort of norm. In the case
of functionals, we define the norm as the supremum on the unit sphere.

Definition 2.16. Let f be a bounded linear functional f on a normed linear
space E. Then the norm of f is defined as

‖ f ‖= sup
‖x‖≤1

|f(x)|. (2.15)

Since by definition a linear functional f is linear, it follows that the
norm of a functional f does not depend on the entire unit sphere ‖ x ‖≤ 1,
but only the outer shell ‖ x ‖= 1. Hence,

‖ f ‖= sup
‖x‖=1

|f(x)|. (2.16)

Additionally, we can also express the norm of a functional in terms of all
x ∈ E with an appropriate rescaling by ‖ x ‖,

‖ f ‖= sup
x 6=0

|f(x)|
‖ x ‖

. (2.17)

With an appropriate norm introduced, we next ask what can be said about
the structure of this set of functionals, and whether or not it is also linear.

2.3.3 The Conjugate Space

Given any two functions f and g, along some scalar α, we can define ad-
dition of functions and multiplication by scalars in the obvious way. So
that

(f + g)(x) = f(x) + g(x) (2.18)

and

(αf)(x) = af(x). (2.19)
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The properties of linearity and boundedness clearly carry over to f+g and
αf . We can then study the space made up of these functionals as opposed
to the original topological linear space they’re defined on.

Definition 2.17. Let E be a topological linear space. Then the conjugate
space E∗ is the set of all continuous linear functionals f defined on E.

Clearly the conjugate space itself is a linear space when equipped with
the operations defined above. A point of interest is therefore how to in-
troduce a topology to the conjugate space. We first consider this question
when the original space E is a normed linear space.

If E is a normed linear space, then we have already defined the norm
of a functional f . Hence E∗ can be made into a normed linear space by
taking the norm of each functional f ∈ E∗ as

‖ f ‖= sup
‖x‖≤1

|f(x)|. (2.20)

We call the resulting topology the strong topology of the conjugate space.

Theorem 2.16. The conjugate space E∗ equipped with the norm (2.20) is
complete.

Proof. Let {fn} be a Cauchy sequence of functionals in E∗. Then for any
ε > 0, there exists some integer N such that for all n,m > N we have

‖ fn − fm ‖< ε.

Hence by (2.17) it follows that for all x ∈ E,

|fn(x)− fm(x)| ≤‖ fn − fm ‖‖ x ‖< ε ‖ x ‖ .

Hence for any x ∈ E the sequence {f(x)} is Cauchy and hence convergent.
We let the functional f be defined as

f(x) = lim
n→∞

fn(x).



26 CHAPTER 2. REAL ANALYSIS: AN INTRODUCTION

Properties of limits ensure that f(x) is a linear functional, so that we need
only show f is continuous. Taking n large enough such that ‖ fn−fn+p ‖<
1 for all p ≥ 0, then it follows that

|fn+p(x)| ≤ (‖ fn ‖ +1) ‖ x ‖,

and hence
lim
p→∞
|fn+p(x)| = |f(x)| ≤ (‖ fn ‖ +1) ‖ x ‖ .

So that f is bounded and hence continuous, and thus f ∈ E∗. We omit the
proof that fn → f .

2.3.4 The Weak Topology

If E is a topological linear space with conjugate space E∗, then we define
the weak topology as the topology generated by all open sets of the form

U = {x : |f1(x)| < ε, . . . , |fr(x)| < ε} (2.21)

for any ε > 0 and any finite collection of functionals f1, f2, . . . , fr ∈ E∗. If
a subset is open in the weak topology, then it is also open in the original
topology of E. The weak topology defines what is called weak convergence,
in contrast to strong convergence defined by the original topology of E.

Theorem 2.17. Let E be a topological linear space, and {xn} a sequence
of elements belonging to E. Then the sequence {xn} is weakly convergent
to x0 ∈ E if and only if the sequence {f(xn)} converges to f(x0) for every
continuous linear functional f defined on E.

Proof. By the linearity of the functionals f we can assume that x0 = 0

without loss of generality. Suppose first that {xn} is weakly convergent to
x0. Then for every open neighbourhood U of x0 of the form (2.21), we can
find some integer N such that xn ∈ U for all n > N . This itself implies
f(xn) → 0 for all f ∈ E∗ as we can take any f in the definition of an open
set (2.21).
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Conversely, suppose f(xn) → 0 for all f ∈ E∗. Then for any open
neighbourhood of the form (2.21), let Ni be the smallest integer such that
|fi(xn)| < ε for all n > Ni. We then take N = max(N1, N2, . . . , Nr). Then
xn ∈ U for all n > N by construction, so that {xn} is weakly convergent to
x0.

The conjugate space E∗, being a topological linear space itself, also has
a weak topology defined in a similar way. The weak topology of the con-
jugate space is the topology generated by all open sets of the form

UA,ε = {f : |f(x)| < ε for all x ∈ A} (2.22)

for some ε > 0 and A ⊂ E. As with the weak topology of E, this topology
determines a kind of weak convergence for functionals f ∈ E∗. We can
view the conjugate space not just as a space conjugate to E, but also as a
linear space in its own right. In this way, one can also study the second
conjugate space E∗∗.

2.4 Linear Operators

2.4.1 Introduction

An operator A between two topological linear spaces E1 and E2 is a map-
ping of the form

y = Ax

for x ∈ E1 and y ∈ E2. As with functionals, we say that an operator A is
linear if

A(αx1 + βx2) = αAx1 + βAx2.

The domain of A, denoted DA, is the set of elements x ∈ E1 for which A is
defined. We generally assume that the domain of A is E1 itself, however
this need not be the case. The range of A, denoted RA, is the set of all
elements that are the image under A of at least one element of DA.
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We say that the operator A is continuous at the point x0 if, given any
neighbourhood V of the point y0 = Ax0, we can find a neighbourhood U

of the point x0 such that Ax ∈ V for all x ∈ U ∩DA. Similarly, we say the
operator A is continuous if it is continuous at all points x0 ∈ DA.

In the previous section we showed that the continuity of linear func-
tionals is related to whether they are bounded on certain sets. A similar
result holds for linear operators. We say a linear operator is bounded if
every bounded subset of E1 is mapped into a bounded subset of E2. This
definition then gives us a useful necessary condition for establishing con-
tinuity.

Theorem 2.18. Let E1 be a topological linear space and A : E1 → E2 an
operator. Then a necessary condition for A to be continuous on E1 is that
A is bounded.

Proof. Suppose A is continuous, and let M be a bounded subset of E1. If
the image of M under A is unbounded, then we can find a neighbourhood
V of 0 such that, for n = 1, 2, . . . , none of the sets

1

n
AM

is a subset of V . Hence there exists a sequence of elements {xn} belonging
to M such that

1

n
Axn /∈ V

for all n. But then this contradicts the continuity of A since { 1
n
xn} clearly

converges to 0 while A 1
n
xn does not.

As with linear functionals, it is often useful to associate a norm with
the set of linear mappings. We therefore define the norm of an operator
similar to that of linear functionals.

Definition 2.18. Let A be a bounded linear operator mapping a normed
linear space E1 into another normed linear space E2. Then the norm of the
operator A is defined as

‖ A ‖= sup
‖x‖≤1

‖ Ax ‖ . (2.23)
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As with the norm of a linear functional, the linearity of A implies that

‖ A ‖= sup
x 6=0

‖ Ax ‖
‖ x ‖

.

The set of linear operators is also a linear space when we define addi-
tion and scalar multiplication in the obvious way, as we did with linear
functionals. Some linear operators are of greater interest than others, par-
ticularly those that are invertible.

Definition 2.19. Let A be a linear mapping. Then the inverse of A, if it
exists, is the linear mapping A−1 such that

A−1Ax = x for all x ∈ E1. (2.24)

A linear mapping A only has an inverse if there is a unique solution to
the equation

Ax = y for all y ∈ RA.

We now prove that the inverse of any linear operator is itself a linear op-
erator. This is particularly useful as it means any result proven for a linear
operator A must also hold for its inverse.

Theorem 2.19. The inverse A−1 of a linear operator A is linear.

Proof. Suppose that for x1, x2 ∈ DA and y1, y2 ∈ RA we have

Ax1 = y1,

Ax2 = y2.

Then an immediate consequence is that

α1A
−1y1 + α2A

−1y2 = α1x1 + α2x2. (2.25)

For the other direction, we see that since

A(α1x1 + α2x2) = α1y1 + α2y2,

it follows that
A−1(α1y1 + α2y2) = α1x1 + α2x2. (2.26)

Combining (2.25) and (2.26) proves the linearity of A−1.
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2.4.2 The Adjoint Operator

Given a linear operator A : E1 → E2, we now consider how A interacts
with the conjugate spaces E∗1 and E∗2 . While A is defined on the original
topological space E1, it can also be used to establish a mapping A∗ : E∗2 →
E∗1 . This mapping is called the adjoint operator. Given any g ∈ E∗2 , we
define an f ∈ E∗1 as

f(x) = g(Ax) for all x ∈ E1, (2.27)

so that f is the functional resulting by first mapping x→ Ax and then ap-
plying the functional g. So, using the example above, the adjoint operator
A∗ : E∗2 → E∗1 is defined by

A∗g = f.

We illustrate this with an example. Suppose A : R
n → R

m is a linear
mapping with matrix ‖ aij ‖, then we ask what can be said about the
matrix of the adjoint operator. By definition of matrix multiplication, the
linear mapping is defined by a system of linear equations

yi =
n∑
j=1

aijxj for i = 1, 2, . . . ,m. (2.28)

We know that given a basis e1, e2, . . . , en, any vector x ∈ R
n has a unique

representation of the form

x =
n∑
j=1

xjej,

so that any functional f defined on R
n can be expressed as

f(x) =
n∑
j=1

f(ej)xj. (2.29)

Similarly, if f = A∗g and u1, u2, . . . , um is a basis in R
m, we have

f(x) = g(Ax) =
m∑
i=1

g(ui)yi =
n∑
j=1

xj

m∑
i=1

gi(ui)aij. (2.30)
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By combining (2.29) and (2.30) we then see that

f(ei) =
m∑
j=1

ajig(ui)

which clearly takes the form of (2.28). Hence the matrix of the adjoint
operator A∗ is ‖ aji ‖, the transpose of the matrix of the operator A.

It is easy to see that, like A, the adjoint operator is linear. We conclude
this chapter with a more subtle property concerning bounded operators.

Theorem 2.20. Let A : E1 → E2 be a bounded linear operator from one
Banach space to another. Then A∗ is also bounded, with ‖ A∗ ‖=‖ A ‖.

Proof. By the definition of the norm of a functional f , it follows that

‖ f ‖≥ |f(x)|
‖ x ‖

,

with a similar result holding for linear operators. It therefore follows that
for all x ∈ E1, we have

|A∗g(x)| = |g(Ax)|

≤‖ Ax ‖‖ g ‖

≤‖ g ‖‖ A ‖‖ x ‖ .

This implies that
‖ A∗g ‖≤‖ A ‖‖ g ‖

and hence
‖ A∗ ‖≤‖ A ‖ .

To complete the proof we need only show the reverse inequality also holds.
To this end, take any x ∈ E1 such that Ax 6= 0, and set

y0 =
Ax

‖ Ax ‖
.

Let g be the functional such that

g(λy0) = λ
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on the set
L = {λy0 : λ ∈ R}.

It immediately follows that

‖ g ‖ on L= sup
λ 6=0

|g(λy0)|
‖ λy0 ‖

= 1.

The Hahn-Banach theorem for a normed linear space then says we can ex-
tend the functional g onto the entire space E2 without increasing its norm.
Furthermore, since g(y0) = 1, it follows that ‖ Ax ‖= g(Ax). Consequently,
we see that

‖ Ax ‖ = g(Ax)

= |A∗g(x)|

≤‖ A∗g ‖‖ x ‖

≤‖ A∗ ‖‖ g ‖‖ x ‖

=‖ A∗ ‖‖ x ‖ .

Which, by the definition of the norm of an operator, proves the reverse
inequality.



Chapter 3

The Exchange Rate Data

In this section, we introduce the dataset that is studied in this thesis. We
give a brief overview of the dataset and the foreign exchange market in
general. We then discretise the data in order to accommodate statistical
analysis of the exchange rate as a stochastic process.

3.1 Introduction

In this thesis, historical EUR/USD exchange rate data is used to investi-
gate the behaviour of the exchange rate as a stochastic process. The dataset
was provided by Olsen Data (formally Olsen & Associates), an organisa-
tion based in Switzerland that maintains high quality tick data for a wide
range of financial assets. Our dataset starts at the beginning of 2004 and
ends mid 2011.

The decentralised nature of the foreign exchange market makes it dif-
ficult to obtain comprehensive data on transactions, which presents great
difficulties to researchers. Thus, exchange rate quotes published by mar-
ket makers are generally used instead. Market makers are financial insti-
tutions that take on the risk of holding foreign currencies in order to profit.
They buy and sell foreign currency from other market participants, prof-
iting from the difference in price they buy and sell at. In order to ensure

33
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a fair price is given, an individual will not tell the market maker whether
he intends to buy or sell. Thus, the market maker provides the individual
with simultaneous buy and sell prices for the currency involved. The price
a market maker is willing to sell a currency at is referred to as the ask quote,
while the price they are willing to buy currency at is referred to as the bid
quote. The spread is the price difference between the bid and ask quotes,
and is the primary fee associated with trading currencies.

The dataset used in this thesis consists of EUR/USD synchronous bid
and ask quotes, provided alongside time stamps of one second resolu-
tion. The EUR/USD exchange rate is the price of one euro in terms of US
dollars. Since Olsen Data compiles quotes from various different sources,
and published quotes are non-binding, some may be of poor quality and
therefore do not accurately represent the market’s true exchange rate. For-
tunately, data filtering was used prior to delivery so that low quality or
abnormal quotes have been removed. Although regular spikes in price are
still present, this is a common characteristic of financial data, and can be
interpreted as the market rapidly processing new information. We there-
fore assume that the quotes provided are accurate and further filtering is
unnecessary.

Since trading is closed during weekends, no quotes are published and
recorded during these times. This is illustrated in Figure 3.1, which shows
the bid quote price during early 2009, where weekends are clearly visible
as prolonged periods of no change. Leaving in these periods would lead
to underestimating the variance of the process, and so we remove them.
As a result, we proceed as if trading resumes immediately after market
closure.

3.2 Quote Volume by Year

The dataset used in this thesis consists of bid and ask quotes that are irreg-
ularly spaced in time. The number of recorded quotes varies considerably
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Figure 3.1: Bid quotes recorded early 2009.

by year. Figure 3.2 shows the number of quotes recorded in each year,
with under 5 million during 2006, compared to over 17 million during
2009. In order to examine the exchange rate at very small intervals of time,
we will generally restrict ourselves to later years, as the average time be-
tween quotes is much smaller. For this reason, unless otherwise stated, for
the remainder of this thesis it is implied that we use data from 2010 alone.
An exception to this is Chapter 7, when we use data from 2009 up to and
including 2011.

3.3 Minimum Time Discretisation

Let X(t) and Y (t) denote the bid and ask prices at time t respectively. As
the two prices behave in an almost identical manner, we will generally
restrict ourselves to the bid price X(t). An exception to this is Chapter 7
when we also make use of the ask quote process Y (t). Let us denote the
time of the ith quote as Ti, so that our dataset consists of the collection of
quotes
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Figure 3.2: Total recorded quotes by year.

X(T0), X(T1), X(T2), . . . , X(Tm)

where T0 = 0. The fact that this process is irregularly spaced in time
presents difficulties. For example, when studying the distribution of the
increments X(Ti+1)−X(Ti), it may be that the mean or variance depends
on the time increment Ti+1−Ti. Hence it would be preferable to transform
our data to the form

X(0), X(∆), X(2∆), . . . , X(n∆)

for various ∆, where n = bTm/∆c. Unfortunately we are unlikely to know
the exchange rate at each of these exact times. Instead, we must use a
discretisation method to approximate them.

In order to approximate the bid price at time i∆, for i = 0, 1, 2, ..., n, we
use the approximation

X(i∆) ≈ X

(
min

0≤i≤m
{Ti : Ti ≥ i∆}

)
. (3.1)
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Figure 3.3: Minimum time discretisation of the process X(t).

So that the price at time i∆ is approximated by the next known price. For
∆ not smaller than 1 minute, there are sufficiently many quotes in later
years so that this method is reasonably accurate. However, when we ex-
amine smaller ∆, this approximation becomes increasingly inaccurate for
two reasons. Firstly, there may be no known quotes on consecutive inter-
vals, resulting in the same approximation being used several times. This
is demonstrated in Figure 3.3. Secondly, as ∆ decreases in size, differences
between i∆ and our approximated times become larger, relatively speak-
ing, and hence less accurate.

Following the discretisation method outlined above, we obtain a se-
ries of regularly spaced discrete time processes for varying ∆. To simplify
notation, we denote these discretised processes by

X∆
0 , X

∆
1 , X

∆
2 , . . . , X

∆
n

so that
X∆
i = X(i∆). (3.2)

We denote the increments of X∆
i as

∆Xi = X∆
i −X∆

i−1. (3.3)

For the remainder of this thesis, unless otherwise stated, we take X∆
i as

denoting the exchange rate process sampled at times i∆ for the year 2010.
We repeat this discretisation method for the ask quote process Y (t), which
we will make use of in Chapter 7.
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Chapter 4

Brownian Motion

In this chapter, we introduce Brownian motion and the total variation of
a stochastic process. We then compare the properties of Brownian motion
to the behaviour exhibited by the exchange rate process. Additionally, we
use the Khmaladze transformation-2 to test whether the increments ∆Xi

come from centred normal distributions.

4.1 Introduction

Brownian motion, also called the Wiener process in honour of Norbert
Wiener, is a fundemental stochastic process and occurs frequently in many
areas of applied mathematics.

Definition 4.1. Suppose the stochastic process B(t), for 0 ≤ t ≤ T , is such
that

1. B(0) = 0,

2. for any collection of points 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk with finite k,
the random variables B(t1), B(t2)−B(t1), . . . , B(tk)−B(tk−1) are in-
dependent Gaussian random variables with expected values 0 and
variances

Var(B(tj)−B(tj−1)) = tj − tj−1 (4.1)
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for j = 1, 2, . . . , k.

Then the process B(t) is called Standard Brownian Motion.

The Brownian bridge process is then defined as a Brownian motion B(t)

under the condition that B(T ) = 0.

Definition 4.2. LetB(t) be standard Brownian motion on the interval [0, T ].
Then the process

Z(t) = B(t)− t

T
B(T ), (4.2)

for 0 ≤ t ≤ T , is called standard Brownian bridge.

Thus Brownian motion is a process where future increments are unpre-
dictable Gaussian random variables, with variance that is linear in time.
The importance of Brownian motion in financial mathematics is due in
part to the observation that financial prices behave as random walks. There
is a clear connection between Brownian motion and random walks that
can be seen through the following construction (Moral & Penev, 2016,
pp.393-395).

Suppose we start by placing a point at 0 on the real line, and let B(t)

denote the location of this point at time t. Then, after each interval of time
∆, suppose this point moves in either direction by a step of size

√
∆ with

equal probability. We assume the steps taken are all independent. Under
this construction, we can express B(t) as

B(t) =
√

∆(Y1 + Y2 + · · ·+ Yk) (4.3)

where k = bt/∆c and Yi are random variables that take values 1 and −1

with equal probability. It then follows from linearity of expectation and
properties of variance that

E[B(t)] = 0

and
Var(B(t)) = ∆bt/∆c.
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The central limit theorem then says that if t� ∆, thenB(t) is almost Gaus-
sian with expected value 0 and variance t. One can then see that Brownian
motion is the limit of this random walk as ∆ → 0. This very general con-
struction as the limit of a random walk is why Brownian motion arises
often in the physical sciences. Indeed, seminal work on Brownian motion
was motivated by a desire to explain the irregular paths that tiny parti-
cles make when suspended on liquid, these paths being the result of tiny
”steps” on the molecular level.

4.2 Total Variation of Brownian Motion

When modelling a stochastic processX(t), there are several quantities that
can be used to discern whether the process is driven by a Brownian mo-
tion. Here, we say a process X(t) is driven by a Brownian motion if it
obeys a stochastic differential equation of the form

dX(t) = a(X(t), t)dt+ b(t)dB(t), (4.4)

where B(t) is a standard Brownian motion. The form (4.4) is a specific
type of Brownian motion-driven process, called a Markov diffusion process.
We start with the total variation of a stochastic process. In what follows, we
limit ourselves to equidistant partitions of the interval [0, T ], though these
ideas also hold for more general partitions of the form 0 = t0 < t1 < · · · <
tn = T .

Definition 4.3. Let X(t) be a stochastic process with 0 ≤ t ≤ T . Then the
total variation of X(t) is defined by the limit

V (X(t)) = lim
∆→0

n∑
i=1

|X(i∆)−X((i− 1)∆)|, (4.5)

where n = T/∆.

If a process is driven by a Brownian motion, then we would expect its
total variation to behave similar to that of a standard Brownian motion.
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This is because the non-Brownian term in (4.4) is of order dt, while the
Brownian term is of order

√
dt, being a Gaussian random variable with

variance dt.
The total variation of a Brownian motion path is particularly interest-

ing since it seems to contradict our natural instincts. It can be shown
that Brownian motion paths are almost surely continuous (Klebaner, 2005,
p.57; Moral & Penev, 2016, p.395), and so it would be natural to expect
they almost surely have finite total variation. Instead, the total variation
of a Brownian motion trajectory is almost surely infinite.

Theorem 4.1. Let B(t) be a Brownian motion on the interval [0, T ]. Then
the total variation of B(t) is almost surely infinite.

Proof. Let

Vn(B(t)) =
n∑
i=1

|B(i∆)−B((i− 1)∆)| (4.6)

where ∆ = T/n. Since each ∆-increment of B(t) is Gaussian with mean
0 and variance ∆, it follows that the absolute values of these increments
have a half-normal distribution, and thus

E[Vn(B(t))] = c1

√
n (4.7)

and
Var(Vn(B(t))) = c2 (4.8)

for some constants c1, c2 > 0. Hence,

P

(
Vn(B(t)) ≥ 1

2
c1

√
n

)
= P

(
Vn(B(t))− c1

√
n ≥ −1

2
c1

√
n

)
= P

(
−Vn(B(t)) + c1

√
n ≤ 1

2
c1

√
n

)
≥ P

(
| − Vn(B(t)) + c1

√
n| ≤ 1

2
c1

√
n

)
≥ 1− c2

(1
2
c1

√
n)2
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where the last inequality follows by applying Chebyshev’s inequality. Hence,

lim
n→∞

P

(
Vn(B) ≥ 1

2
c1

√
∆

)
= 1, (4.9)

which proves convergence in probability. Now, let us choose a subse-
quence {nk} of n = 1, 2, 3, . . . such that

∞∑
k=1

P

(
Vnk(B(t)) ≥ 1

2
c1

√
nk

)
<∞. (4.10)

The result then follows by applying the Borel-Cantelli lemma.

It is then worth considering the rate at which the total variation goes to
infinity, as this gives us a way of comparing the irregularity of an observed
stochastic process to that of Brownian motion.

Proposition 4.1. Let B(t) be a standard Brownian motion on [0, T ], with
Vn(B(t)) defined as in (4.6). Then ∆

1
2Vn(B(t)) converges in probability to

some constant c > 0,

∆
1
2Vn(B(t))

P−→ c. (4.11)

Proof. Using the same notation as before, we have

E[∆
1
2Vn(B(t))] =

√
Tc1

and

Var(∆
1
2Vn(B(t))) = ∆c2.

Hence, by applying Chevyshev’s inequality we get

lim
n→∞

P

(
|∆

1
2Vn(B(t)))−

√
Tc1| > ε

)
≤ lim

n→∞

∆c2

ε2

= 0

so that ∆
1
2Vn(B(t))

P−→
√
Tc1.
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A consequence of this is that Vn(B(t)) should obey, at least approxi-
mately, a power law of the form

Vn(B(t)) ≈ c∆−
1
2 , (4.12)

with the approximation becoming increasingly accurate as n → ∞. This
provides us with a means of checking whether a process, say some Z(t),
behaves as a Brownian motion. If Vn(Z(t)) does not obey the power law
(4.12), then this suggests that Z(t) is not a Brownian motion-driven pro-
cess.

4.3 The Exchange Rate Process

In this section, we investigate whether the exchange rateX(t) behaves as a
Brownian motion-driven process. We start by examining the sampled total
variation of our discretised exchange rate processX∆

i , and then investigate
the distribution and stationarity of the increments ∆Xi.

4.3.1 Total Variation

We have seen that the total variation of a Brownian motion, sampled at
equidistant times, obeys a power law of the form

n∑
i=1

|B(i∆)−B((i− 1)∆)| ≈ c∆−
1
2 . (4.13)

So if the exchange rate process X(t) is driven by a Brownian motion, we
would expect it to also. Let us denote the total variation of X(t) sampled
at intervals of length ∆ as

V∆(X(t)) =
n∑
i=1

|X∆
i −X∆

i−1|, (4.14)

where we again take n = T/∆. We wish to estimate the parameter α such
that

V∆(X(t)) ≈ c∆−α, (4.15)
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Estimates of α for varying ∆1,∆2

∆1 Vn1(X(t)) ∆2 Vn2(X(t)) α̂

1 Day 2.17 12 Hours 2.84 0.388

12 Hours 2.84 1 Hour 8.78 0.450

1 Hour 8.78 10 minutes 21.09 0.489

10 minutes 21.09 1 minute 64.03 0.482

1 minutes 64.03 10 seconds 130.17 0.396

Table 4.1: The total variation ofX(t) sampled at intervals of length ∆ along
with estimates of α.

hoping to verify that indeed α = 1/2. Clearly, given any two V∆1(X(t)) and
V∆2(X(t)), we can simultaneously solve (4.15) to obtain the estimator

α̂ =
log(V∆1(X(t)))− log(V∆2(X(t)))

log(∆2)− log(∆1)
. (4.16)

We hope that since ∆
1
2Vn(B(t))

P−→ c, this estimate becomes increasingly
accurate as ∆1,∆2 → 0. In Table 4.1, we give estimates α̂ using a wide
range of values for ∆1 and ∆2. However, instead of seeing our estimates α̂
converge to 1/2 as ∆1,∆2 → 0, we instead see that they begin to approach
1/2, before diverging downwards. While this seems to contradict X(t) be-
ing driven by a Brownian motion, this behaviour can also be explained by
the lack of exchange rate quotes for very small ∆. Referring back to the
minimum time discretisation used in Chapter 3, for ∆ not smaller than 1

minute, we have a price on at least 99% of intervals to take asX∆
i . Once we

go below 1 minute, the number of intervals of time without a known price
increases substantially. As a result, we end up underestimating V∆(X(t)),
as the change in price on these unknown intervals cannot be measured.

With this in mind, suppose we restrict ourselves to ∆ no less than 1

minute, so that the number of such intervals is insignificant. The estimates
given in Table 4.1 are few, and so we wish to present a more complete
picture of whether or not α̂→ 1/2. To this end, let us measure ∆ in minutes,
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and suppose we estimate α using ∆ and ∆ + 1, so that we take

α̂ =
log(V∆(X(t)))− log(V∆+1(X(t)))

log(∆)− log(∆ + 1)
.

Our estimator then depends on a single ∆, and we can examine the be-
haviour of α̂ as ∆ decreases. In Figure 4.1 we give the complete plot of
all our estimates, along with a zoomed in plot showing how ∆ indeed
appears to approach 1/2.

Since these estimates appear to converge to 1/2 so long as ∆ is kept large
enough that we have sufficient data, we conclude that the total variation
of the exchange rate process reflects that of a stochastic process driven by
Brownian motion.

4.3.2 Are Increments Gaussian?

The widespread use of Brownian motion in financial mathematics relies on
assumptions that returns, or at least some function of returns, are normally
distributed. We now test this assumption in order to better understand the
distribution of price changes for the exchange rate process. More specifi-
cally, we wish to test whether ∆-increments have distributions of the form

∆Xi ∼ N(0, σ2
∆). (4.17)

We give the empirical distribution functions of ∆-increments in Figure 4.2,
for various ∆. These clearly resemble normal distributions of the form
(4.17), however we wish to test this formally, as many distributions appear
normal at face value.

When testing whether a random sample comes from some distribution
Fθ(x), one usually considers the empirical process

vn(x; θ) =
√
n [Fn(x)− Fθ(x)] (4.18)

where Fn(x) is the empirical distribution function

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x}. (4.19)
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Figure 4.1: Estimates α̂ plotted against ∆, with f(∆) = 1
2

shown in red.
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The empirical process has been extensively studied, and its asymptotic
behaviour is used as the basis of many statistical tests, most notably the
Kolmogorov-Smirnov test. However, in practice one does not know the
parameter θ, and thus an estimate θ̂ must be used in its place. Hence, we
instead need a statistical test based on the parametric empirical process

vn(x; θ̂) =
√
n [Fn(x)− Fθ̂(x)] . (4.20)

This presents a problem in that the asymptotic behaviour of the paramet-
ric empirical process differs from that of the empirical process. Namely,
its asymptotic behaviour depends on the score function of Fθ(x), which
differs between families of distributions and, in some cases, within fam-
ilies as well. This problem motivates the development of tests which are
asymptotically distribution-free. To this end, Khmaladze (1981, 1988, and
1993) proposed a transformation of the parametric empirical process, called
the Khmaladze transformation, to make testing asymptotically distribution-
free. In this thesis, we apply the more recent Khmaladze transformation-2,
introduced by Khmaladze in [11].

The Khmaladze Transformation-2

Under the hypothesis that increments come from a centred normal distri-
bution, there exists some σ ∈ R>0 such that

∆Xi ∼ N(0, σ2)

for all i = 1, 2, . . . , n. The exact value of σ is unknown, and so we in-
stead use the maximum likelihood estimate σ̂ to construct the parametric
empirical process

vn(x; θ̂) =
√
n [Fn(x)− Fθ̂(x)] .

The idea behind the Khmaladze transformation-2 is to apply a unitary
transformation to the parametric empirical process such that its asymp-
totic behaviour depends on neither the distribution Fθ(x), nor on the esti-
mated distribution Fθ̂(x). Before introducing this transformation, we first
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Figure 4.2: Empirical distribution functions of ∆Xi for different ∆.



50 CHAPTER 4. BROWNIAN MOTION

Figure 4.3: Density histograms of ∆Xi compared to the maximum likeli-
hood normal density functions.
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need to introduce some important concepts concerning Brownian motions
and Brownian bridges on the space L2(F ), the set of functions that are
square-integrable with respect to F .

Definition 4.4. Let wF (φ) be a linear functional in φ, where φ ∈ L2(F ).
Then wF (φ) is called F -Brownian motion if wF (φ) is a Gaussian random
variable with mean 0 and variance∫

y∈R
φ2(y)dF (y) (4.21)

for every φ ∈ L2(F ).

This then leads to a natural generalisation of Brownian bridge.

Definition 4.5. Let wF (φ) be F -Brownian motion, and define vF (φ) as

vF (φ) = wF (φ)− 〈φ, q0〉FwF (q0), (4.22)

where q0 is the function identically equal to 1. Then vF (φ) is called F -
Brownian bridge.

It is straightforward to see that equation (4.22) represents vF (φ) as an
orthogonal projection ofwF (φ) parallel to the function q0. For the purposes
of statistical testing it is easier to consider the point parametric versions of
wF and vF , which are obtained by setting φ(y) = 1{y ≤ x}, yielding

wF (1x(y)) =

∫
y∈R

1x(y)wF (dy) = wF (x)

and
vF (1x(y)) =

∫
y∈R

1x(y)vF (dy) = vF (x).

Now, let G(x) be a distribution that shares the same support as the distri-
bution Fθ(x). In our example, Fθ(x) is some centred normal distribution,
and thus we can take G(x) as being any distribution that has positive den-
sity on the real line. In what follows, we take G(x) as the standard normal
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distribution, though any suitable distribution may be used. Consider then
the normalised score function βF (x; θ) of the distribution Fθ(x), defined as

βF (x; θ) =
ḟθ(x)

fθ(x)

(∫
y∈R

ḟθ(y)2

fθ(y)
dy

)− 1
2

, (4.23)

where ḟθ(x) is the derivative of the density function fθ(x) with respect to
the parameter θ. Khmaladze (2016) shows that the parametric empirical
process has asymptotic expansion

vn(x; θ̂) = vn(x; θ)−
∫
y≤x

βF (y; θ)dFθ(y)

∫
y∈R

βF (y; θ)vn(dy, θ)+op(1), (4.24)

so that the main part of this expansion represents the parametric empirical
process as an orthogonal projection of vn(x; θ) parallel to the normalised
score function βF (x; θ). Thus, the limit in distribution of vn(x, θ̂) can be
written, in function parametric form, as

vF (φ)− 〈βF , φ〉vF (βF ). (4.25)

By then substituting in the definition of vF (φ) given by (4.22), and not-
ing that βF is necessarily orthogonal to q0, we see that (4.25) can then be
written as

wF (φ)− 〈q0, φ〉wF (q0)− 〈βF , φ〉wF (βF ). (4.26)

This is clearly not F -Brownian bridge, however the form is very similar,
and can be regarded as a ”different kind” of Brownian bridge. Let us now
define the vector q as

q = [q0, q1]T = [1, βF ]T (4.27)

and say that (4.26) is q-projected F-Brownian motion. Similarly, let us define
the vector r as

r = [r0, r1]T = [1, βG]T , (4.28)

where βG(x) ∈ L2(G) is any function that is orthonormal to r0 in L2(G).
This βG(x) can be regarded as a kind of score function for the family of
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distributions to which G(x) belongs. In this thesis, we take

βF (x; θ) =
σ−2x2 − 1√

2
and βG(x) =

x2 − 1√
2
.

We then define the function l(x; θ) as

l(x; θ) =

√
dG(x)

dFθ(x)
. (4.29)

From the definition of l(x; θ) it follows that

φ ∈ L2(G) =⇒ lφ ∈ L2(F ) (4.30)

and
‖ φ ‖G=‖ lφ ‖F . (4.31)

Hence the vector [lr0, lr1]T is orthonormal in L2(F ), since∫
l(x; θ)ri(x)l(x; θ)rj(x)dFθ(x) =

∫
ri(x)rj(x)dG(x).

Now, consider the unitary operator

Kl,q0 = I − 2

‖ l − q0 ‖2
F

(l − q0)〈l − q0, ·〉F (4.32)

on L2(F ). We define ˜lr1 as the image of lr1 under this operator,

˜lr1 = Kl,q0(lr1), (4.33)

and then define a second operator, identical in form to (4.32), as

K ˜lr1,q1
= I − 2

‖ ˜lr1 − q1 ‖2
F

( ˜lr1 − q1)〈 ˜lr1 − q1, ·〉F . (4.34)

We then take the product of these operators, K̂, as the transformation that
we will apply to the parametric empirical process,

K̂ = K ˜lr1,q1
Kl,q0 . (4.35)
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Finally, the transformed process ṽn is defined by

ṽn(φ; θ̂) = vn(K̂lφ; θ̂). (4.36)

Khmaladze proves that, provided G is absolutely continuous with respect
to F , if vqF (φ) is q-projected F -Brownian motion, then the process vrG(φ) =

vF (K̂lφ) is r-projectedG-Brownian motion. Thus, since the parametric em-
pirical process is asymptotically q-projected F -Brownian motion, the pro-
cess ṽn defined by (4.36) is asymptotically r-projectedG-Brownian motion.
We can then investigate the distribution of statistics based on r-projected
G-Brownian motion using computational methods, for use in distribution-
free statistical testing. In this thesis we take the supremum as our test
statistic,

D(ṽn) = sup
x
|ṽn(x; θ̂)|, (4.37)

where the point parametric version of (4.36) is defined by

ṽn(x; θ̂) = vn(K̂l1x; θ̂)

=

∫
y∈R

K̂(l1x)(y; θ̂)vn(dy; θ̂)

=
√
n

(∫
y∈R

K̂(l1x)(y; θ̂)dFn(y)−
∫
y∈R

K̂(l1x)(y; θ̂)dFθ̂(y)

)
=

1√
n

n∑
i=1

K̂(l1x)(Xi; θ̂)−
√
n

∫
y∈R

K̂(l1x)(y; θ̂)dFθ̂(y) (4.38)

whereX1, X2, . . . , Xn is the random sample being tested. For multi-dimensional
distributions, this integral can be computed straightforwardly using com-
putational methods. However, since our situation is rather simple, we
derive the closed form expression of ṽn solely in terms of G(x), making
computation of the process trivial.

Deriving the Transformed Process

We begin by deriving the function K̂l1x. Once this is derived, it is straight-
forward to obtain a closed form expression of ṽn. First, we define the fol-
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lowing constants to ease notation:

c1 =

∫
y∈R

l(y; θ)dFθ(y) =

√
2σ

σ2 + 1
, (4.39)

c2 =

√
2σ2

σ2 + 1
, (4.40)

c3 =

∫
y∈R

l(y)r1(y)dF (y) =

√
σ

σ2 + 1

(
σ2 − 1

σ2 + 1

)
, (4.41)

c4 =

∫
y∈R

l(y)q1(y)r1(y)dF (y) (4.42)

=

√
σ

2(σ2 + 1)

(
10σ2 − σ4 − 1

(σ2 + 1)2

)
, (4.43)

c5 =
2

‖ l − q0 ‖2
F

=
1

1− c1

, (4.44)

c6 =
2

‖ ˜lr1 − q1 ‖2
F

=
1

1− c4 + c2
5c

2
3(1− c1)

. (4.45)

For our chosen r1, the function ˜lr1 can then be written as

˜lr1(x) = l(x)r1(x) + c3c5(l(x)− 1), (4.46)

while the operator K̂ is

K̂φ = φ− c5(l − q0)〈l − q0, φ〉F
− c6( ˜lr1 − q1)〈 ˜lr1 − q1, φ− c5(l − q0)〈l − q0, φ〉F 〉F .

Setting φ = l1x, it is straightforward to derive the scalar products in this
expression. We omit the working as it is long and would offer little benefit.
We find that

〈l − q0, l1x〉F = G(x)− c1G (x/c2) , (4.47)

again noting that G(x) = Φ(x) is the standard normal distribution func-
tion. The second scalar product is longer, but none of the integrals in-
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volved are particularly difficult,

〈 ˜lr1 − q1, l1x − c5(l − q0)〈l − q0, l1x〉F 〉F

=
−x

2
√
π

exp

(
−x

2

2

)
− c3c5 (G(x)− c1G(x/c2)) (2c5(1− c1)− 1)

− c2√
2σ

((
c2

2

σ2
− 1

)
G(x/c2)−

c2x

σ2
√

2π
exp

(
− x2

2c2
2

))
. (4.48)

Again in the interest of easing notation, let us define the functions α1(x; θ)

and α2(x; θ) as
α1(x; θ) = c5〈l − q0, l1x〉F (4.49)

and
α2(x; θ) = c6〈 ˜lr1 − q1, l1x − c5(l − q0)〈l − q0, l1x〉F 〉F (4.50)

so that we can write the function K̂l1x more simply as

K̂(l1x)(y; θ) = l(y; θ)1x(y)−α1(x; θ)(l(y; θ)−1)−α2(x; θ)( ˜lr1(y; θ)−q1(y; θ)).

(4.51)
Since we will be integrating over y, the functions α1(x; θ) and α2(x; θ) are
of little concern to us, and so there is no point writing them out in full.
Finally, we need only to derive the integral part of (4.38),∫

y∈R
K̂(l1x)(y; θ)dFθ(y), (4.52)

which is now straightforward to derive, and is equal to

c1G(x/c2)− α1(x; θ)(c1 − 1)− α2(x; θ)c3(1 + c5(c1 − 1)). (4.53)

Thus, the closed form expression of ṽn, in point parametric form, is

ṽn(x; θ̂) =
1√
n

n∑
i=1

(
l(Xi; θ̂)1x(Xi)

− α1(x; θ̂)(l(Xi; θ̂)− 1)− α2(x; θ̂)( ˜lr1(Xi; θ̂)− q1(Xi; θ̂))

)
−
√
n

(
c1G(x/c2)− α1(x; θ̂)(c1 − 1)− α2(x; θ̂)c3(1 + c5(c1 − 1))

)
.

(4.54)
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Noting that since the functions and constants depend on θ, we must use
the maximum likelihood estimate θ̂ in its place. Nevertheless, Khmal-
adze (2016) notes that provided simple continuity assumptions hold for
l(x; θ) and βF (x; θ) in θ, the difference resulting from using θ̂ in place
of θ is asymptotically small, and therefore convergence to r-projected G-
Brownian motion is still true.

The Limiting Distribution of Test Statistic D(ṽn)

While similar in form, r-Projected G-Brownian motion is not G-Brownian
bridge. Hence, the limiting distribution of D(ṽn) is not the usual Kol-
mogorov distribution used in the Kolmogorov-Smirnov test. The exact
limiting distribution of D(ṽn), the supremum of ṽn, is not known, but we
can investigate it using computational methods. Namely, we generate a se-
ries ofG-Brownian motions and, for each suchwG, construct an r-projected
G-Brownian motion using the formula

vrG(φ) = wG(φ)− 〈φ, r0〉GwG(r0)− 〈φ, r1〉GwG(r1), (4.55)

or in point parametric form,

vrG(x) = wG(x)−G(x)wG(1)−
∫
y≤x

r1(y)dG(y)wG(r1). (4.56)

We generate 10, 000 such processes and give the empirical distribution
function of test statistics D(vrG), the supremums of these r-projected G-
Brownian motions, in Figure 4.4. For comparison, we also give the Kol-
mogorov distribution function alongside it. We also give quantiles for use
in statistical testing in Table 4.2. Finally, an example trajectory of ṽn(x; θ̂)

is given in Figure 4.5, based off a random sample generated from a N(0, 4)

distribution.

Testing Normality of Increments

We test the normality of ∆-increments ∆Xi for the same ∆ considered in
Figures 4.2 and 4.3. The processes ṽn(x; θ̂) for each ∆ are given in Figure
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Figure 4.4: The empirical distribution function of test statistics D(vrG) (red)
compared with Kolmogorov distribution function (green).

Figure 4.5: An example trajectory of ṽn(x; θ̂) using generated N(0, 4) data.

Quantiles of Test Statistic D(vrG)

Quantile D(vrG)

80% 0.986

85% 1.053

90% 1.153

95% 1.291

99% 1.573

Table 4.2: Quantiles of test statistic D(vrG).
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Test statistics D(ṽn) for increments ∆Xi

Increment Length D(ṽn)

1 Day 0.1462

1 Hour 1323

10 Minutes 2.994× 109

1 Minute 6.470× 1068

Table 4.3: Test Statistics D(ṽn) for increments ∆Xi.

4.6, and the corresponding statistics D(ṽn) are given in Table 4.3.

Using the quantiles for D(vrG) given in Table 4.2, we find that normal-
ity is strongly rejected for 1 minute, 10 minute, and 1 hour increments at
the 5% level, but not rejected for daily increments. In fact, it is imme-
diately clear by the trajectories of ṽn for ∆ = 1 minute, 10 minutes, and
1 hour that they are not r-projected G-Brownian motions. The smooth
shape of these trajectories, with no apparent randomness, being caused
by the increments’ lack of normality. This leaves us with the question of
daily increments. Although we failed to reject normality, we see in Figure
4.3 there is still a large discrepancy between the normal density function
and the density histogram. Nevertheless, if we suppose that daily incre-
ments are indeed normally distributed, then we should hope to explain
why intra-daily increments are not, as these statements seem to contradict
one another. We address this question later in the chapter by considering
mixture distributions. Next, we examine whether the variance of incre-
ments is linear in time.

4.3.3 Variance of Increments

We know that for any Brownian motion, the variance of its increments
is proportional to increment length. Hence, if our exchange rate process
X(t) behaves as a Brownian motion, the variance of its increments should
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Figure 4.6: Trajectories ṽn(x; θ̂) of ∆Xi for various ∆.
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be linear in time. We verify this using the empirical variance

1

n

n∑
i=1

∆X2
i −

(
1

n

n∑
i=1

∆Xi

)2

.

In Figure 4.7 we plot the empirical variance of the increments ∆Xi

against increment length ∆. We do so for two different time scales. The
first looks at the increment length measured in minutes, while the second
looks at a larger scale with increment length measured in days. On the
scale of minutes, there is a clear linear relationship between variance and
increment length. We also see a linear relationship on the scale of days,
though it is unclear whether this linearity holds for larger ∆. It appears
as though the slope begins to decrease, though this might be due to the
decreasing sample size giving inaccurate estimates.

If this linearity is indeed beginning to break down as ∆ increases, this
suggests that X(t) might behave as Brownian motion on small scales, but
is asymptotically stationary. We consider this in the next chapter with
respect to the asymptotically stationary Ornstein-Uhelnbeck process.

While the variance of increments ∆Xi appears to be linear in time, we
did not take time of day into consideration. This assumes that the variance
of an increment is independent of the time of day it occurs. Since volatility
of financial prices is known to be correlated with market activity (Gelati,
2000), and market activity varies significantly by geographic region (BIS,
2016), it would be reasonable to expect variance displays some degree of
periodic behaviour.

To investigate whether periodicity exists, we consider the variance of
10 minute price increments. We wish to see whether the variance of these
increments displays daily or weekly periodic behaviour. To this end, we
sort these increments depending on the hour of day and hour of week they
occur. This allows us to see how the variance of 10 minute increments
changes throughout the day and week. The results are shown in Figures
4.8 and 4.9.
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Figure 4.7: Variance of increments vs increment length.
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Variance of 10 Minute Increments by Hour of the Week
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Figure 4.8: Empirical variance of 10 minute increments in each hour of the
week in 2010.

Variance of 10 Minute Increments by Hour of the Day
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Figure 4.9: Empirical variance of 10 minute increments in each hour of the
day in 2010.
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A daily cycle is immediately clear, with several peaks in variance oc-
curring at regular times throughout the day. Shiryaev explains this peri-
odic behavior in terms of time zones and active regional markets (1999,
p. 318-320). We are not concerned with the cause of this periodicity, but
instead use it to explain why daily increments might be Gaussian, while
intra-daily increments are clearly not. In the next section, we discuss the
Gaussianity of increments in the context of mixture distributions.

4.4 Mixtures of Normal Distributions

Let fi(x), for i = 1, 2, . . . ,m, be a finite collection of density functions, and
wi, for i = 1, 2, . . . ,m, a collection of weights such that

∑
iwi = 1 and

wi ≥ 0 for all i. Then the function f(x) defined by

f(x) =
∑
i

wifi(x) (4.57)

is the density function of a mixture distribution. Mixture distributions
arise when you collect data from a population that is not homogeneously
distributed, and offer one explanation for why daily increments might be
normally distributed, while intra-daily increments are not. To see why
this is, suppose we have a finite collection of independent and normally
distributed random variables Zi, each with a specific variance σ2

i ,

Zi ∼ N(0, σ2
i ).

We then define a new random variable ε by randomly choosing one of
these Zi such that

P (ε = Zi) = pi,

and ∑
i pi = 1.
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The distribution of ε is then a mixture of the distributions of Zi, weighted
according to the probabilities pi. Although each Zi is normally distributed,
the random variable ε is not,

fε(x) =
∑
i

pi
1√

2πσi
e

−x2

2σ2
i .

On the other hand, it is well known that the random variable

X =
∑
i

Zi

is normally distributed, as it is simply the summation of finitely many
independent normal random variables.

With this in mind, consider both the hour and daily increments dis-
cussed in the previous section. Suppose, hypothetically, that each hour
increment is normally distributed with a specific variance according to the
time of day it occurs, so that hour increments come from 24 normal dis-
tributions. Under this assumption, the distribution of all hour increments
is a mixture of normal distributions, making it non-normal and consis-
tent with what we observe. On the other hand, daily increments will be
normally distributed as they are the sum of 24 independent and normally
distributed hourly increments. In this way, periodic behaviour of variance
can result in the normality of increments depending on increment length.

More generally, this leads to a natural model for the exchange rate pro-
cess. Namely, suppose X(t) is of the form

X(t) = X(0) +

∫ t

0

σ(s)dB(s), (4.58)

where σ(s) is a periodic function with period 1 day and B(t) is standard
Brownian motion. This model seems consistent with what we have seen of
the total variation, distribution, and variance of the processX(t). Thus, we
conclude this chapter by noting that while it is unlikely the exchange rate
process is a Brownian motion of the form σB(t), the more general form
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(4.58) seems consistent with what we observe. In the next chapter, we
consider periodic variance in the context of the mean-reverting Ornstein-
Uhlenbeck process.



Chapter 5

The Ornstein-Uhlenbeck Process

In this chapter, we introduce the mean-reverting Ornstein-Uhlenbeck pro-
cess. We review some basic results, and also give maximum likelihood
estimators. We finish by considering how periodic variance, as seen in
the previous chapter, might be incorporated into the Ornstein-Uhlenbeck
model of mean-reversion.

5.1 Introduction

Mean-reverting processes play an important role in modelling financial
prices. This is particularly true when considering the exchange rate of
two currencies. Since, under normal circumstances, the economies of two
countries changes very slowly over time, it is reasonable to expect the
”true” relative worth of their currencies to change slowly over time as
well. One such process is the Ornstein-Uhlenbeck process, which is char-
acterised by a constant rate of mean-reversion.

Definition 5.1. The Ornstein-Uhlenbeck process Xt is the process satisfy-
ing the stochastic differential equation

dXt = a(µ−Xt)dt+ σdWt, (5.1)

where a, σ > 0.

67
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The behaviour of the Ornstein-Uhlenbeck process can be seen through
the stochastic differential equation (5.1). In every interval of time dt, the
process Xt reverts back to the mean µ at a rate of a, while a random (pos-
sibly negative) amount dWt is added. Depending on the rate of reversion
a, the Ornstein-Uhlenbeck process behaves as Brownian motion at suffi-
ciently small scales, but has an asymptotically stationary distribution with
mean µ. The solution to (5.1) can be found using suitable substitutions and
applying Ito’s lemma (Moral & Penev, 2016, p. 421).

Theorem 5.1. The solution to the differential equation (5.1) is

Xt = e−atX0 + µ(1− e−at) + σe−at
∫ t

0

easdWs. (5.2)

Proof. Using the change of variables Yt = Xt−µ and applying Ito’s lemma
to the function f(X, t) = Xt − µ we obtain the stochastic differential equa-
tion

dYt = −aYtdt+ σdWt. (5.3)

A second change of variables Zt = eatYt and applying Ito’s lemma to the
function f(Y, t) = eatYt gives us a third stochastic differential equation

dZt = aeatYtdt+ eatdYt. (5.4)

Substituting (5.3) into (5.4) then gives

dZt = aeatYtdt+ eat(−aYtdt+ σdWt)

= σeatdWt. (5.5)

Integrating (5.5) from 0 to t we obtain

Zt − Z0 =

∫ t

0

σeasdWs. (5.6)

Substituting Yt back in place of Zt, keeping in mind that Y0 = Z0, gives

Yt = e−atY0 + σe−at
∫ t

0

easdWs. (5.7)
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Finally, by substituting back Yt = Xt − µ we obtain the solution to (5.1)

Xt = e−atX0 + µ(1− e−at) + σe−at
∫ t

0

easdWs.

Using the solution to (5.2) it is straightforward to derive the expected value
and covariance of the Ornstein-Uhlenbeck process defined by (5.1).

Theorem 5.2. Let Xt be the Ornstein-Uhlenbeck process defined by equa-
tion (5.1). Then, assuming X0 is non-random, it has expected value

E[Xt] = X0e
−at + µ(1− e−at) (5.8)

and covariance

cov(Xs, Xt) =
σ2

2a
(e−a|t−s| − e−a(t+s)). (5.9)

Proof. The expected value of Xt follows trivially since, using the solution
obtained in Theorem (5.1),

E[Xt] = E[e−atX0 + µ(1− e−at) + σe−at
∫ t

0

easdWs]

= e−atX0 + µ(1− e−at) + σe−atE[

∫ t

0

easdWs]

= e−atX0 + µ(1− e−at) (5.10)

where we use the fact that for a continuous and bounded function g(t), the
integral

∫ t
0
g(s)dWs has expected value 0. The covariance is obtained in a
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similar manner.

cov(Xs, Xt) = E[(Xs − E[Xs])(Xt − E[Xt])]

= E[(σe−as
∫ s

0

eaudWu)(σe
−at
∫ t

0

eavdWv)]

= σ2e−a(t+s)E[

∫ s

0

eaudWu

∫ t

0

eavdWv]

= σ2e−a(t+s)E[(

∫ min(s,t)

0

eaudWu)
2] (5.11)

= σ2e−a(t+s)

∫ min(s,t)

0

e2audu

= σ2e−a(t+s)

(
1

2a
e2a min(s,t) − 1

2a

)
=
σ2

2a
(e−a|t−s| − e−a(t+s)) (5.12)

where (5.11) follows by the independence of disjoint intervals of Wt.

Corollary 5.2.1. The variance of the Ornstein Uhlenbeck process defined
by (5.1) is

Var(Xt) =
σ2

2a
(1− e−2at). (5.13)

The asymptotic stationarity of the Ornstein-Uhlenbeck process can then
be seen by taking the limit of (5.8) and (5.13) as t→∞, giving

lim
t→∞

E[Xt] = µ and lim
t→∞

Var(Xt) =
σ2

2a
.

5.2 Maximum likelihood estimation

Estimating the parameters of an Ornstein-Uhlenbeck process is straight-
forward. In general, we can derive maximum likelihood estimates for
diffusion processes using likelihood ratios (Klebaner, 2005, pp.282-285).
Alternatively, we can also use conditional distributions to construct a like-
lihood function. If X(t) is the Ornstein-Uhlenbeck process defined by the
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stochastic differential equation (5.1), and is observed at times

X(0), X(∆), X(2∆), . . . , X(n∆)

which we again denote as

X∆
0 , X

∆
1 , X

∆
2 , . . . , X

∆
n

to simplify notation. Then we can construct a likelihood function using
the conditional distribution of each X∆

i given X∆
i−1, which is

X∆
i |X∆

i−1 ∼ N

(
X∆
i−1e

−a∆ + µ(1− e−a∆),
σ2

2a
(1− e−2a∆)

)
(5.14)

for i = 1, 2, . . . , n. Additionally, suppose the initial condition has distribu-
tion

X∆
0 ∼ N

(
µ,
σ2

2a

)
. (5.15)

Thus, using the fact that

f(x0, x1, x2, . . . , xn) = f0(x0)
n∏
i=1

fi(xi|xi−1)

we obtain the likelihood function

L(a, µ, σ;X) = f0(X0)
n∏
i=1

fi(Xi|Xi−1). (5.16)

The resulting maximum likelihood estimates are given in [2]. They are

â = −∆−1 log(β̂1), µ̂ = β̂2, σ̂ = 2âβ̂3(1− β̂2
1)−1 (5.17)

where we define

β̂1 =

∑n
i=1X

∆
i X

∆
i−1 − n−1

∑n
i=1X

∆
i

∑n
i=1 X

∆
i−1∑n

i=1(X∆
i−1)2 − n−1(

∑n
i=1X

∆
i−1)2

,

β̂2 =

∑n
i=1(X∆

i − β̂1X
∆
i−1)

n(1− β̂1)
,

β̂3 = n−1

n∑
i=1

(X∆
i − β̂1X

∆
i−1 − β̂2(1− β̂1))2.
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5.3 Ornstein-Uhlenbeck with Periodic Variance

So far we have considered the Ornstein-Uhlenbeck process driven by a
Brownian motion with constant σ. However, as we have seen in Chapter
4, the variance of the exchange rate process displays periodic behaviour,
correlated in some way with market activity. Therefore, if it behaves as
a mean-reverting process, it would be better described by the stochastic
differential equation

dXt = a(µ−Xt)dt+ σtdWt (5.18)

where σt is a positive continuous and periodic function with period 1 day.
To account for this, it is straightforward to generalise the results intro-
duced thus far. We omit the proofs of the following results as the working
is nearly identical. Firstly, the solution (5.2) generalises to

Xt = e−atX0 + µ(1− e−at) + e−at
∫ t

0

σse
asdWs. (5.19)

From this, once again assuming X0 is non-random, it immediately follows
that

E[Xt] = X0e
−at + µ(1− e−at) (5.20)

and

Var(Xt) = e−2at

∫ t

0

σ2
se

2asds. (5.21)

This then leads to the conditional distribution

Xt|Xs ∼ N

(
Xse

−a(t−s) + µ(1− e−a(t−s)), e−2a(t−s)
∫ t

s

σ2
ve

2a(v−s)dv

)
.

(5.22)

5.3.1 Maximum Likelihood Estimation

Generalising the maximum likelihood estimators introduced earlier is less
straightforward. In particular, the presence of the unknown function σt
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makes estimation difficult. At the same time however, periodic variance
does not seem so strange, and one can imagine it arising in many natu-
ral processes. Therefore the question of how to estimate parameters of an
Ornstein-Uhlenbeck process with periodic variance has some practical im-
portance. Suppose we observe Xt at times i∆, for i = 1, 2, . . . , n, such that
∆ is the period of σt, so that here we take ∆ = 1 day. This then gives us

Var(X∆
i |X∆

i−1) = e−2a∆

∫ ∆

0

σ2
se

2asds (5.23)

for all i = 1, 2, . . . , n. Thus, provided we observe the process so that incre-
ment length is equal to the period of σt, the variance of increments are once
again equal. The exact form of σt over the interval [0,∆] is of little interest
to us, instead we simply wish to estimate the mean, rate of reversion, and
variance of increments. To this end, we hope to reduce the problem by
replacing the integral in (5.23) with a single parameter. That is, we define
the parameter κ as

κ =

√∫ ∆

0

σ2
se

2asds, (5.24)

so that the variance (5.23) becomes

Var(X∆
i |X∆

i−1) = e−2a∆κ2. (5.25)

This then yields the likelihood function

L(a, µ, κ|X) =
n∏
i=1

ea∆

√
2πκ

exp

(
−

(X∆
i − e−a∆X∆

i−1 − µ(1− e−a∆))2

2e−2a∆κ2

)
,

(5.26)
with which estimates â, µ̂, κ̂ can be derived. We conclude this section by
making one approximation in order to significantly simplify the maximum
likelihood estimates obtained from (5.26). It is straightforward to see that
this likelihood function leads to

µ̂ =
ea∆n−1

∑
i=1 X

∆
i − n−1

∑
i=1 X

∆
i−1

ea∆ − 1

= X̄n +
X∆
n −X∆

0

n(ea∆ − 1)
,
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so that µ̂ → X̄n as n → ∞, noting again that ∆ = 1 day is fixed as the
period of σt. Let us therefore take the sample mean as our estimate of µ,

µ̂ = X̄n, (5.27)

as this simplifies estimates â and κ̂ substantially. Using this approximation
we then obtain

â =
1

∆
log

( ∑n
i=1(X∆

i−1 − X̄n)2∑n
i=1(X∆

i − X̄n)(X∆
i−1 − X̄n)

)
(5.28)

and

κ̂ =

√√√√ 1

n

n∑
i=1

(
eâ∆(X∆

i − X̄n)− (X∆
i−1 − X̄n)

)2
. (5.29)

Thus, by observing the process (5.18) at the period of σt, we can estimate its
mean, rate of reversion, and variance fairly easily, without having to know
or estimate the function σt. However, these estimators have a significant
draw back in that they make use of only a fraction of the data at hand, as
data between the period of σt is not incorporated into estimates â, µ̂, and
κ̂. Hence, these estimators work better for processes with a shorter period
of σt, or when data is scarce, as the proportion of unused data is smaller.

5.4 The Exchange Rate Process

We now examine the exchange rate processX(t) as a mean-reverting Ornstein-
Uhlenbeck process with periodic σt. It is worth noting that the rate of re-
version might be very weak, so that mean-reversion is only evident on
very large time scales. This is demonstrated in Figure 5.1, where we show
the exchange rate process over two different time scales. The first shows
X(t) over a single month, where there is no indication of mean-reversion.
The second showsX(t) over two years, where we see behaviour that could
indeed be described as mean-reversion.

We mention this in order to justify modelling X(t) as an Ornstein-
Uhlenbeck process with periodic σt despite the linearity of variance seen
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Figure 5.1: The exchange rate process X(t) over two different time scales.
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in Chapter 4. Namely, in Figure 4.7 on page 62 we saw that increment vari-
ance was linear in time, while the Ornstein-Uhlenbeck process is asymp-
totically stationary. To see why this is, let us simplify the problem by
considering the Ornstein-Uhlenbeck process with constant σ. Suppose
that a∆ is very small, and then consider the variance of the Ornstein-
Uhlenbeck process given by (5.13). We see that

Var(∆Xi|X∆
i−1) =

σ2

2a
(1− e−2a∆)

≈ σ2

2a
2a∆

= σ2∆.

Hence, depending on the size of a, the variance of increments will be ap-
proximately linear for sufficiently small ∆.

Since the variance of the exchange rate process displays daily periodic
behaviour, we use the estimators introduced in Section 5.3.1, where we
take ∆ = 1 day as the period of σt, and measure time in days. This yields
estimates

µ̂ = 1.33, â = 0.017, κ̂ = 0.0092 (5.30)

which implies that for ∆ = 1 day, we have

E(X∆
i |X∆

i−1) = X∆
i−1e

−0.017 + 1.33(1− e−0.017) (5.31)

and

Var(X∆
i |X∆

i−1) = 8.18× 10−5. (5.32)

It is then worth considering what can be said about the increment variance
for an Ornstein-Uhlenbeck process with periodic variance, so that we can
compare this with what we observe empirically in the exchange rate pro-
cess. Without loss of generality, assume that µ = 0, since otherwise we
can simply centre the process. Again assuming X(0) is non-random, the
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variance of an increment ∆X(t) is then

Var(X(t+ ∆)−X(t)) = Var
(
e−a(t+∆)

∫ t+∆

0

σse
asdWs − e−at

∫ t

0

σse
asdWs

)
= Var

(
(e−a∆ − 1)e−at

∫ t

0

σse
asdWs + e−a(t+∆)

∫ t+∆

t

σse
asdWs

)
= (e−a∆ − 1)2Var(Xt) + e−2a(t+∆)

∫ t+∆

t

σ2
se

2asds

= (e−a∆ − 1)2Var(Xt) + e−2a∆

∫ ∆

0

e2azσ2
z+tdz

= (e−a∆ − 1)2Var(Xt) +
1

a

∫ a∆

0

e−2yσ2
∆− y

a
+tdy

(5.33)

where we have used the substitutions

z = s− t and y = a(∆− z).

Since σt is a periodic and bounded function, the integral in (5.33) con-
verges to some constant c as ∆ → ∞. Hence the variance of increments
∆X(t) is such that

lim
∆→∞

Var(∆X(t)) = Var(X(t)) + c (5.34)

where
c =

1

a

∫ ∞
0

e−2yσ2
∆− y

a
+tdy.

Thus if the exchange rate process indeed behaves as an Ornstein-Uhlenbeck
process with periodic variance, then it should be asymptotically station-
ary. To see whether this is the case, we again estimate the variance of
increments as in Chapter 4, but now use the expected value

E[∆Xi|X∆
i−1] = X∆

i−1(e−a∆ − 1) + µ(1− e−a∆) (5.35)

to estimate the variance as

1

n

n∑
i=1

(∆Xi −X∆
i−1(e−â∆ − 1)− µ̂(1− e−â∆))2. (5.36)
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Note that we no longer need restrict ourselves to ∆ = 1 day, having al-
ready obtained estimates â and µ̂ using daily prices. We again give two
different time scales for comparison in Figure 5.2. The plots look very sim-
ilar to those given in Chapter 4, with a strong linear relationship for small
∆ that gets weaker as ∆ increases. While the plot looks as though linearity
begins to break down for larger ∆, it is difficult to draw conclusions as the
change is small.

We therefore conclude this chapter by noting that if the exchange rate
does behave as an Ornstein-Uhlenbeck process with periodic variance, the
rate of reversion a is simply too small to see increment variance converge
on the time scale of days. This suggests that even if the exchange rate
is a mean-reverting process, the rate of reversion is small enough that it
behaves as Brownian motion unless considering much longer increments,
perhaps on the scale of months or years.
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Figure 5.2: Estimated variance of Ornstein-Uhlenbeck increments vs incre-
ment length.
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Chapter 6

Fractal Sets

In this chapter, fractal geometry is introduced along with the box-counting
and Hausdorff dimensions, following Kenneth Falconer’s Fractal Geome-
try: Mathematical Foundations and Applications. We give some methods of
deriving or estimating the dimension of a fractal, and also introduce a
new estimator for the Hurst exponent of a fractal Brownian motion. We
conclude the chapter by estimating the box-counting dimension of the ex-
change rate process X(t).

6.1 What are Fractals?

Fractal geometry is the study of sets which are highly irregular and com-
plex at all scales, and has been applied in many fields where complex
structures arise, including of course financial markets. Historically, the
term fractal has generally referred to sets with a fractional dimension. This
definition is problematic in that dimension describes only the complexity
of a set, and not the structure or means by which it is constructed. We
will see later that many fractals share a common set of properties which
dimension alone does not describe. However this is the most widely used
definition, and does give an impression of what to expect.

81



82 CHAPTER 6. FRACTAL SETS

6.2 Dimension

Dimension is a central concept in fractal geometry. In traditional geometry,
we think of a set F as having dimension n if Rn is the smallest Euclidean
space containing F . Clearly this intuitive definition does not generalise
to the case of fractional dimensions. It is instead more useful to think of
dimension as a measure of how much space a set takes up close to any of
its points. In this sense, dimension is usually defined by measuring a set
at some scale δ, and then observing how these measurements change as
δ → 0. In this thesis, we look at the box-counting dimension and the Haus-
dorff dimension. The former is more practical to use and allows us to easily
estimate the dimension of a set, while the latter is a more mathematically
sound definition and possesses properties we would expect of dimension.

6.2.1 Box-counting Dimension

The box-counting dimension is one of the most widely used dimensions in
fractal geometry. Its formulation gives us a practical method of estimating
a set’s dimension, which we will use later in this chapter. As the name
implies, the box-counting dimension is based on counting the minimum
number of ”boxes” needed to cover a set, and then examining how this
number changes as we reduce their size. The notion of box-counting was
studied by Kolmogorov in [13], where he calls the box-count the cover-
ing number, and refers to the logarithm of the covering number as metric
entropy.

Suppose we have a set F ⊂ R
2, and we wish use this idea of box-

counting to define dimension. We start by dividing R
2 into a mesh of

squares of side δ, and define Nδ(F ) as the number of δ-mesh squares that
intersect the set F . The dimension of the set F should then reflect the
manner in which Nδ(F ) grows as δ → 0. For example, suppose that Nδ(F )
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approximately obeys a power law of the form

Nδ(F ) ≈ cδ−s, (6.1)

where c and s are both positive constants. Then it would be natural to say
F has dimension s, as it reflects the rate at which Nδ(F ) grows as δ → 0.
Following this line of thinking, we can then solve for s to obtain

s ≈ logNδ(F )

− log δ
+

log c

log δ
. (6.2)

Based off (6.2), we might hope that as δ decreases in size this approxima-
tion becomes increasingly accurate, so that s is given by

s = lim
δ→0

(
logNδ(F )

− log δ
+

log c

log δ

)
(6.3)

= lim
δ→0

logNδ(F )

− log δ
(6.4)

provided the limit exists. In this way, we now give the formal definition
for the box-counting dimension of a set F ⊂ R

n.

Definition 6.1. Let F be a subset of Rn, and suppose R
n is divided into

a mesh of n-dimensional cubes, each with side δ. Then the box-counting
dimension of the set F is defined as

dimBF = lim
δ→0

logNδ(F )

− log δ
(6.5)

provided that the limit exists, where Nδ(F ) is the number of δ-mesh cubes
that intersect the set F .

In Chapter 2 we introduced the concept of an open or closed cover. An
important concept in fractal geometry is that of a δ-cover.

Definition 6.2. Let F be a set in some metric space R with metric ρ, and
{Ui} a collection of sets such that F ⊂ ∪iUi. We define the diameter of
each set Ui, denoted |Ui|, as the greatest distance between any two points
belonging to Ui. Furthermore, we say that {Ui} is a δ-covering of F if

|Ui| ≤ δ for all i.
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Often when deriving the dimension of a set, it is easier to talk in terms
of open and closed δ-covers rather than δ-meshes. This motivates the for-
mulation of alternative but equivalent definitions of the box-count dimen-
sion.

Theorem 6.1. Equivalent definitions of the box-counting dimension can
be obtained by defining Nδ(F ) as any of the following:

1. The smallest number of sets of diameter at most δ needed to cover F .

2. The smallest number of closed balls of radius δ needed to cover F .

3. The smallest number of cubes of side δ needed to cover F .

4. The number of δ-mesh cubes that intersect F .

5. The largest number of disjoint balls of radius δ with centres in F .

Proof. We prove the equivalence of (1) and (4) since these are the defini-
tions we will use most. Let N1

δ (F ) be the smallest number of sets of di-
ameter at most δ needed to cover F , and N2

δ (F ) be the number of δ-mesh
cubes that intersect F . We will show that N1

δ (F ) and N2
δ (F ) give equiva-

lent definitions of the box-counting dimension. This allows us to use the
most suitable definition for the task at hand.

Every δ-cube has a diameter of
√
nδ, which means that a δ-mesh of

cubes that covers F is a
√
nδ-cover. Hence it follows that

N1√
nδ(F ) ≤ N2

δ (F ).

Conversely, any set with a diameter at most δ can be covered with 3n δ-
mesh cubes, by placing it an n-dimension cube with side 3δ, comprised of
3n cubes of side δ. Hence, we also obtain the inequality

N2
δ (F ) ≤ 3nN1

δ (F ).

We then combine these two inequalities to obtain

N1√
nδ(F ) ≤ N2

δ (F ) ≤ 3nN1
δ (F ).
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It is then trivial to see that

logN1√
nδ

(F )

− log(
√
nδ) + log

√
n
≤ logN2

δ (F )

− log δ
≤ log 3n + logN1

δ (F )

− log δ
.

Taking the limits as δ → 0, provided they exist, gives the desired result

lim
δ→0

logN1
δ (F )

− log δ
≤ lim

δ→0

logN2
δ (F )

− log δ
≤ lim

δ→0

logN1
δ (F )

− log δ
.

6.2.2 Properties of Box-Counting Dimension

The practical nature of the box-counting dimension makes it an attractive
definition; however, it should also obey some basic intuitive properties. It
follows from the definition that:

• If E ⊂ F , then dimBE ≤ dimBF .

• If F ⊂ R
n, then 0 ≤ dimBF ≤ n.

• If F ⊂ R
n is open, then dimBF = n.

• If F has finitely many elements, then dimBF = 0.

• IfF is a smooth boundedm-dimensional surface of Rn, then dimBF = m.

These are all properties we would expect an appropriate definition of di-
mension to possess. However, one problem with the box-counting dimen-
sion arises when you consider a set’s closure. We mentioned earlier that an
equivalent definition can be obtained by takingNδ(F ) as the smallest num-
ber of closed balls of radius δ that cover F . As a result, the box-counting
dimension of a set F must be equal to that of its closure.

Proposition 6.1. For any set F ⊂ R
n, dimBF = dimBF̄ .

Proof. Using the equivalent definition that Nδ(F ) is the smallest number
of closed balls of radius δ that cover F , it follows thatNδ(F ) = Nδ(F̄ ) since
any cover of F is necessarily a cover of F̄ . Hence the result follows.
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This is undesirable as it means that any dense subset of an open region
in R

n must have box-counting dimension n. For example, the set of ratio-
nal numbers is dense in R and hence must have box-counting dimension
1, even though it’s a countable collection of points. Since a countable set
is significantly smaller and less complex than an uncountable set, a good
definition of dimension should distinguish between the two.

This also tells us that the box-counting dimension is not countably sta-
ble. Any single point P has box-counting dimension 0 since Nδ(P ) = 1 for
all δ > 0, and so the dimension of any single point in the set of rational
numbers must be 0. Hence it is not always true that

dimB ∪∞i Fi = sup
i
{dimBFi}.

This contradicts our traditional notions about how dimension should be-
have. For example. in Euclidean geometry, we see that dim(Rn ∪ Rm) =

max(n,m). Box-counting dimension fails further in this regard, in that it is
not even finitely stable.

In practice, it is often difficult to derive the exact dimension of a set. In
such instances it’s easier to find lower and upper bounds. To this end, we
now give an important result concerning Lipschitz transformations which
give a practical method of obtaining bounds for the box-counting dimen-
sion of a set.

Theorem 6.2. Let F ⊂ R
n and f : F → R

m a Lipschitz transformation
satisfying the Lipschitz condition

|f(x)− f(y)| ≤ c|x− y| (6.6)

for all x, y ∈ F , then dimBf(F ) ≤ dimBF .

Proof. Taking Nδ(F ) as the smallest number of sets of diameter at most
δ that cover F , let {Ui} be a δ-cover of the set F . Clearly the collection
of intersections {Ui ∩ F} is also a δ-cover, and so by (6.6) it follows that
{f(Ui ∩F )} is a cδ-cover of f(F ). This tells us that given any δ-covering of
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the set F , we can find a cδ-covering of f(F ), and so Ncδ(f(F )) ≤ Nδ(F ) for
all δ > 0. Hence

logNcδ(f(F ))

− log(cδ) + log c
≤ logNδ(F )

− log δ

and so the result follows by taking the limit as δ → 0.

Corollary 6.2.1. Let F ⊂ R
n be a set and f : F → R

m a bi-Lipschitz trans-
formation satisfying the bi-Lipschitz condition

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y| (6.7)

for all x, y ∈ F , then dimBF = dimBf(F ).

By Corollary 6.2.1, it follows that for any affine, congruence, or similar-
ity transformation f : F → R

m, we have dimBF = dimBf(F ) since all such
transformations are bi-Lipschitz. Furthermore, since projection mappings
do not increase distances, they are Lipschitz, and hence for any projection
we have

dimB proj F ≤ dimBF. (6.8)

These results can be used to quickly find lower and upper bounds. Con-
sider for example any continuous curve in R

2. Any such curve can be
projected onto R to obtain a union of open and closed intervals, each with
dimension 1. Hence it follows by (6.8) that any continuous curve in R

2 has
a box-counting dimension greater than or equal to 1.

6.2.3 Hausdorff Dimension

The Hausdorff dimension has the advantage of being defined for any set,
while the box-counting dimension might not be. It is similar to the box-
counting dimension in that it is based on δ-coverings of a set F , but instead
of defining dimension by a limit, it is defined using Hausdorff measures.
Hausdorff measures are generalisations of the familiar Lebesgue measure,
and play a fundamental role in the study of fractal sets. Therefore, before
defining the Hausdorff dimension, we first introduce Hausdorff measures.
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Suppose we have a set F ⊂ R
n and some s ≥ 0. Then for each δ > 0 we

define

Hs
δ(F ) = inf

{∑
i

|Ui|s : {Ui} is a δ-cover of F

}
(6.9)

so that Hs
δ(F ) looks at all δ-coverings of F , and then minimises the sum

of the diameters taken to the power of s. As we decrease δ, fewer cover-
ings are available over which to minimise this sum, and soHs

δ(F ) must be
non-decreasing as δ → 0. The s-dimensional Hausdorff measure is then
defined by the limit

Hs(F ) = lim
δ→0
Hs
δ(F ). (6.10)

We now give some useful results for Hausdorff measures in general.

Proposition 6.2. If E ⊂ F , thenHs(E) ≤ Hs(F ).

Proof. If E ⊂ F , then any δ-covering of F must also be a δ-covering of
E. Hence for any δ > 0 it must be that Hs

δ(E) ≤ Hs
δ(F ), since the set of

permissible δ-coverings for F is contained within that of E. By taking the
limit as δ → 0 the result follows.

Proposition 6.3. If F1, F2, ... is a countable collection of sets, then

Hs (∪iFi) ≤
∑
i

Hs(Fi). (6.11)

Proof. Let {U i
j} be any δ-covering of Fi, then clearly∪i,jU i

j is a δ-covering of
∪iFi. From this it follows that for all δ > 0, we haveHs

δ(∪iFi) ≤
∑

iHs
δ(Fi).

Taking the limit as δ → 0 gives the result.

Proposition 6.4. Let F ⊂ R
n and f : F → R

m be an α-Lipschitz transfor-
mation. That is, a transformation satisfying

|f(x)− f(y)| ≤ c|x− y|α (6.12)

for all x, y ∈ F and positive constants α and c. Then for all s ≥ 0 it follows
that

Hs/α(f(F )) ≤ cs/αHs(F ). (6.13)
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Proof. For any δ-covering {Ui} of F , it follows by (6.12) that |f(F ∩ Ui)| ≤
c|F ∩ Ui|α ≤ c|Ui|α. This implies that {f(F ∩ Ui)} is a cδα-covering of f(F )

and, since
∑

i |f(F ∩ Ui)|s/α ≤ cs/α
∑

i |Ui|s, it must be that Hs/α
cδα (f(F )) ≤

cs/αHs
δ (F ). Taking the limit as δ → 0 gives the result.

As a generalisation of Lebesgue measure, Hausdorff measures also pos-
sess scaling properties much like that of length, area, and volume. In gen-
eral, if you double the size of an n-dimensional cube, it’s n-dimensional
volume is multiplied by 2n. Hausdorff measures possess the same scaling
property.

Proposition 6.5. Let f : Rn → R
m be a similarity transformation of scale

λ > 0 so that for all x, y ∈ F , we have

|f(x)− f(y)| = λ|x− y|. (6.14)

Then for any F ⊂ R
n,

Hs(f(F )) = λsHs(F ). (6.15)

Proof. By applying Proposition 6.4 to f with c = λ and α = 1, we get
Hs(f(F )) ≤ λsHs(F ). Applying Proposition 6.4 to its inverse f−1 with
c = λ−1 and α = 1 gives usHs(F ) ≤ λ−sHs(f(F )). The result follows from
combining these inequalities.

SinceHs
δ(F ) is non-increasing for all δ < 1, it follows thatHs(F ) is also

non-decreasing. Furthermore, we obtain a useful inequality by noting for
any δ-covering {Ui} of a set F ,∑

i

|Ui|t =
∑
i

|Ui|t−s|Ui|s ≤ δt−s
∑
i

|Ui|s, (6.16)

which implies that
Ht
δ(F ) ≤ δt−sHs

δ(F ). (6.17)

The inequality given by (6.17) is very important because it means that if
Hs(F ) is finite, thenHt(F ) = 0 for all t > s. Hence as a function of s,Hs(F )
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is infinite and then, at some critical value, jumps down to 0. The critical
value at which Hs(F ) jumps from∞ to 0 is how we define the Hausdorff
dimension.

Definition 6.3. Let F ⊂ R
n be a set. Then the Hausdorff dimension of the

set F is defined as

dimHF = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) =∞}. (6.18)

Unlike with the box-counting dimension, estimating a set’s Hausdorff
dimension is not straightforward. Furthermore, it is often difficult to de-
rive the Hausdorff dimension of even simple sets.

6.2.4 Properties of Hausdorff Dimension

As with the box-counting dimension, it is trivial to see that:

• If E ⊂ F , then dimHE ≤ dimHF .

• If F ⊂ R
n, then 0 ≤ dimHF ≤ n.

• If F ⊂ R
n is open, then dimHF = n.

• If F has finitely many elements, then dimHF = 0.

• IfF is a smooth boundedm-dimensional surface of Rn, then dimHF = m.

However, the Hausdorff dimension goes further by correcting the two un-
desirable properties of the box-counting dimension. Firstly, the Hausdorff
dimension is countably stable.

Proposition 6.6. If F1, F2, . . . is a countable collection of sets, then

dimH ∪i Fi = sup
i
{dimHFi}. (6.19)



6.2. DIMENSION 91

Proof. Clearly dimH ∪i Fi ≥ supi{dimHFi} since Fi ⊂ ∪iFi for all i. On
the other hand, if s > dimHFi for all i, then by definition Hs(Fi) = 0 for
all i. This implies that Hs(∪iFi) ≤

∑
iHs(Fi) = 0 so that dimH ∪i Fi ≤

supi{dimHFi}. The result then follows by combining the inequalities.

Secondly, the Hausdorff dimension of any countable set must be 0. This
means that the Hausdorff dimension can distinguish between countable
dense subsets and the uncountable sets they’re contained in.

Proposition 6.7. If F is a countable set, then dimHF = 0.

Proof. For any single point P , dimHP = 0. Thus by applying Proposition
6.6 to a countable set, the result follows.

Although Hausdorff dimension has properties more resembling what
we would expect of dimension, it comes at the cost of practicality. Deriv-
ing or estimating a set’s Hausdorff dimension is generally much more dif-
ficult than the box-counting dimension. Results for quickly finding lower
and upper bounds are therefore of great interest.

Theorem 6.3. Let F ⊂ R
n and f : F → R

m a transformation satisfying the
Hölder condition

|f(x)− f(y)| ≤ c|x− y|α (6.20)

for all x, y ∈ F . Then it follows that

dimHf(F ) ≤ α−1dimHF. (6.21)

Proof. Suppose that for some s ≥ 0, we have s > dimHF . Then by ap-
plying Proposition 6.4 it follows that Hs/α(f(F )) ≤ cs/αHs(F ) = 0. This
means that the Hausdorff dimension of f(F ) must be no greater than s/α
for all s > dimHF by definition of Hausdorff dimension. Hence the result
follows.

Corollary 6.3.1. Let F ⊂ R
n and f : F → R

m a bi-Lipschitz transformation
satisfying

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y| (6.22)
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for all x, y ∈ F . Then it follows that

dimHf(F ) = dimHF. (6.23)

As with the box-counting dimension, Theorem 6.3 implies that Haus-
dorff dimension is invariant under congruence, similarity, or affine trans-
formations. Further, we also see that for any projection transformation,

dimH proj F ≤ dimHF.

Given how similar the properties of box-counting and Hausdorff dimen-
sions are, it is natural to ask how they themselves are related.

Proposition 6.8. For any non-empty and bounded set F ⊂ R
n,

dimHF ≤ dimBF. (6.24)

Proof. Take Nδ(F ) as the smallest number of sets of diameter at most δ
needed to cover F , and suppose that for some s ≥ 0 we have Hs(F ) > 1,
which is true for all s < dimHF . Then this implies that for all sufficiently
small δ, Hs

δ(F ) > 1. Since Hs
δ (F ) is defined by minimising the sum of

diameters taken to the power of s, it follows that

1 < Hδ(F ) ≤ Nδ(F )δs,

for sufficiently small δ. By taking taking logarithms we obtain

0 < logNδ(F ) + s log δ

and hence
s <

logNδ(F )

− log δ
.

By taking the limit as δ → 0 we see that s ≤ dimBF . Since this holds for all
s < dimHF , it follows that dimHF ≤ dimBF .

Thus the box-counting dimension itself provides us with an upper bound
for a set’s Hausdorff dimension. We now give two final results for obtain-
ing upper and lower bounds of dimension.
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Proposition 6.9. Let F be a set which can be covered by nk sets of diameter
not greater than δk such that δk → 0 as k → ∞. Then an upper bound for
the Hausdorff and box-counting dimensions of F is

lim
k→∞

log nk
− log δk

,

provided the limit exists.

Proof. If Nδ(F ) is taken as the smallest number of sets of diameter at most
δ that cover F , then by definition it follows that Nδ(F ) ≤ nk. By taking the
limit as δk → 0 it immediately follows that

dimBF = lim
δk→0

Nδk(F )

− log δk
≤ lim

k→∞

log nk
− log δ

.

It then follows by Proposition 6.8 that it is also an upper bound for the
Hausdorff dimension of F .

The next result relies on the idea of a mass distribution, a measure de-
fined on a bounded set that represents the ”mass” concentrated at each
point. In probabilistic terminology, a mass distribution is simply a finite
measure.

Definition 6.4. A mass distribution µ on a bounded set F is a σ additive
measure on F such that 0 < µ(F ) <∞.

Proposition 6.10. Let µ be a mass distribution, F ⊂ R a Borel set, and
0 < c <∞ a constant. If

lim
r→0

µ(Br(x))/rs < c for all x ∈ F, (6.25)

thenHs(F ) ≥ µ(F )/c.

Proof. For all δ > 0 we define a set Fδ as

Fδ = {x ∈ F : µ(Br(x)) < crs for all 0 < r ≤ δ}.
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Take any δ-cover of F , which is also a δ-cover of Fδ. Then for each Ui that
contains some point x belonging to Fδ, the ball B centred at x with radius
|Ui| contains Ui. Then using the inequality in the definition of Fδ it follows
that

µ(Ui) ≤ µ(B) < c|Ui|s

since {Ui} is a δ-cover and hence |Ui| ≤ δ. Hence

µ(Fi) ≤
∑
i

µ(Ui) ≤ c
∑
i

|Ui|s. (6.26)

Since this holds for any δ-cover of F , this implies µ(Fδ) ≤ cHs
δ(F ). Taking

the limit as δ → 0 then gives the final result.

6.3 Calculating and Estimating Dimension

6.3.1 Box-counting

The definition of box-counting dimension allows us to estimate any set’s
dimension quite easily. Since it is defined by the limit

dimBF = lim
δ→0

logNδ(F )

− log δ
,

we can estimate a set’s box-counting dimension by the slope of the graph
of logNδ(F ) plotted against − log δ. Hence, if we take Nδ(F ) as the small-
est number of δ-mesh squares that intersect F , then we estimate the box-
counting dimension of a set F in the following way:

1. Construct a δ-mesh for some δ > 0.

2. Count the number Nδ(F ) of δ-mesh squares that intersect F .

3. Repeat steps 1 and 2 for a range of values of δ.

4. Plot logNδ(F ) against − log δ.

5. Estimate the box-counting dimension by the slope of the graph ob-
tained in step 4.
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6.3.2 Potential Theoretic Methods

Later in this chapter we will derive the dimension of a Brownian motion
trajectory. To do this, we need to introduce s-potential and s-energy, ideas
from physics which have found very practical use in fractal geometry.

Definition 6.5. Let µ be a mass distribution in R
n. Then the s-potential at

a point x ∈ Rn resulting from the mass distribution µ is defined as

φs(x) =

∫
dµ(y)

|x− y|s
. (6.27)

Definition 6.6. Let µ be a mass distribution in R
n. Then the s-energy of µ

is defined as
Is(µ) =

∫
φs(x)dµ(x). (6.28)

It is generally easy to find upper bounds for the Hausdorff dimension
of a set by using Proposition 6.9. Finding lower bounds is much more
difficult. Fortunately the ideas of potential and energy provide a method
of doing so.

Theorem 6.4. Let F be any set in R
n. If there exists a mass distribution µ

on F such that Is(µ) <∞, thenHs(F ) =∞ and dimHF ≥ s.

Proof. Suppose there exists some mass distribution µ with support con-
tained in F such that Is(µ) < ∞. Under this assumption, we note that for
any x ∈ F it must be that µ({x}) = 0, since otherwise would imply infinite
s-energy. Then define the set F1 as

F1 = {x ∈ F : lim
r→0

µ(Br(x))/rs > 0}. (6.29)

This definition implies that for any x ∈ F1, we can find some ε > 0 along
with a strictly decreasing sequence of positive numbers r1, r2, . . . such that
µ(Bri(x)) ≥ εrsi for all i. Then, for qi ∈ (0, ri), we consider the annulusAi =

Bri(x)\Bqi(x). The continuity of µ, along with the fact µ({x}) = 0, implies
we can take qi small enough such that µ(Ai) ≥ 1

4
εrsi for all i. Without loss
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of generality we assume that qi > ri+1 so that each Ai is disjoint from one
another. Then for all x, it follows that

φs(x) =

∫
dµ(y)

|x− y|s

≥
∑
i

∫
Ai

dµ(y)

|x− y|s
(6.30)

≥
∑
i

1

4
εrsi r

−s
i (6.31)

=∞ (6.32)

where (6.31) follows from the fact that |x − y|s ≥ rsi on Ai, since Ai is con-
tained within a ball of radius ri. Since Is(µ) is assumed finite, this implies
that µ(F1) = 0. Since for all x ∈ F\F1 we have limr→0 µ(Br(x))/rs = 0, then
Proposition 6.10 gives us

Hs(F ) ≥ Hs(F\F1) ≥ µ(F\F1)/c ≥ (µ(F )− µ(F1))/c = µ(F )/c

for all c > 0. Since c can be made arbitrarily small, this impliesHs(F ) =∞
and so dimHF ≥ s.

6.3.3 Rescaling of Self-similar Fractals

Self-similarity is a common property of many fractals, though it may man-
ifest in varying forms. Many of the most famous fractal sets, such as
the Middle Third Cantor set considered next, are comprised of disjoint
rescaled versions of themselves. By this we mean that a fractal F can be
expressed as a union of disjoint sets Fi,

F = ∪ni Fi,

where each Fi is F rescaled by some common scale factor λ. Calculating
the set’s Hausdorff dimension then becomes straightforward under the
assumption that

0 < Hs(F ) <∞
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for some s. We can use Proposition 6.5 to obtain

Hs(F ) =
n∑
i=1

Hs(Fi)

=
n∑
i=1

λsHs(F ).

(6.33)

Which, after dividing both sides byHs(F ), can be solved to obtain

s =
log n

− log λ
. (6.34)

Since the s-dimensional Hausdorff measure of a set can only be both non-
zero and finite if it has Hausdorff dimension s, this implies its Hausdorff
dimension is given by (6.34).

6.4 Example: The Middle Third Cantor Set

The middle third Cantor set is a fractal that arises from a very simple re-
cursive construction. We start with the interval [0, 1] which we denote by
F0. We then obtain F1 by removing the middle third of F0, giving us

F1 =

[
0,

1

3

]
∪
[

2

3
, 3

]
.

Similarly, F2 is obtained by removing the middle third of the remaining
segments,

F2 =

[
0,

1

9

]
∪
[

2

9
,
1

3

]
∪
[

2

3
,
7

9

]
∪
[

8

9
, 1

]
.

In general, Fk is obtained by removing the middle third of all remaining
segments of Fk−1, as demonstrated in Figure 6.12. The middle third Cantor
set is then defined by the limit

F = lim
k→∞

Fk. (6.35)
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Intuitively, it is tempting to think such a set would be empty. However
not only is the set non-empty, it is in fact uncountably infinite. This can be
seen by noting that at any stage Fk, the end points of any of the 2k intervals
of Fk can never be removed, since they will always remain end points at
every subsequent iteration.

F0

F1

F2

F3

F4

Figure 6.1: Construction of the middle third Cantor set.

We would expect the dimension of the middle third Cantor set to be greater
than 0 since it uncountable, however it must also be less than or equal to
1 since it a subset of the real line. As it turns out, the box-counting and
Hausdorff dimensions of the middle third Cantor set are equal, and can
be derived quite easily.

To calculate its box-counting dimension, first consider the kth stage in
its construction Fk. It contains a total of 2k intervals each of length 3−k.
Hence for any δ such that 3−k < δ ≤ 3−k+1, the intervals of Fk can be used
as a δ-cover of the middle third Cantor set, and hence Nδ(F ) ≤ 2k, where
we are taking Nδ(F ) as the smallest number of sets of diameter at most δ
needed to cover F . Hence it follows that

dimBF = lim
δ→0

logNδ(F )

− log δ
≤ lim

k→∞

log 2k

− log 3−k+1
=

log 2

log 3
.

Conversely, if we take δ such that 3−k−1 ≤ δ < 3−k then any interval of
length δ cannot intersect more than 1 interval of Fk, since the gaps between
them are at least of length 3−k. Since all of the 2k intervals of Fk contain
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points in F , this means that Nδ(F ) ≥ 2k and hence

dimBF = lim
δ→0

logNδ(F )

− log δ
≥ lim

k→∞

log 2k

− log 3−k−1
=

log 2

log 3
.

By combining these inequalities, we see that the middle third Cantor set
must have box-counting dimension log 2/ log 3.

To derive its Hausdorff dimension, we note that that the middle Cantor
set can be decomposed into two disjoint parts F ∩ [0, 1

3
] and F ∩ [2

3
∩ 1] ,

each of which is simply F rescaled by a factor of 1
3
. Using equation (6.34)

then gives dimHF = log 2/ log 3.

6.5 Fractal Graphs

As the subject of this thesis is the exchange rate process X(t), it is worth-
while reviewing results specific to fractal graphs. Such fractals often arise
when recording data such as financial prices, temperature, population lev-
els, and so on. A graph f : [a, b]→ R is a subset of R2 which takes the form

{(x, f(x)) : a ≤ x ≤ b}.

We begin by defining the maximum range of a function f over the interval
[t1, t2] as

Rf [t1, t2] = sup
t1≤t,u≤t2

|f(t)− f(u)|. (6.36)

We can then derive a useful inequality for any continuous function f in
terms of its maximum range Rf .

Proposition 6.11. Let f : [a, b] → R be a continuous function and choose
any δ ∈ (a, b). Letm be the smallest integer greater than or equal to (b−a)/δ

and Nδ(f) the smallest number of δ-mesh squares that intersect the graph
f . Then the following inequality holds

δ−1

m−1∑
i=0

Rf [iδ, (i+ 1)δ] ≤ Nδ(f) ≤ 2m+ δ−1

m−1∑
i=0

Rf [iδ, (i+ 1)δ]. (6.37)
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Proof. On any interval [iδ, (i+ 1)δ], no more than 2 +Rf [iδ, (i+ 1)δ]/δ mesh
squares can intersect the graph f , since Rf is its maximum vertical change
over that interval. Since this is true for all m intervals, summing them up
gives us the upper bound. Conversely, f must intersect at least Rf [iδ, (i +

1)δ]/δ mesh squares on this interval, as doing otherwise implies having a
smaller maximum range. By again summing this up across all intervals
we obtain the lower bound, and so the result follows.

This inequality allows us to prove a useful result that provides an up-
per bound for the box-counting dimension of any continuous function f

satisfying a certain Hölder condition. Furthermore, by Proposition 6.8 it
then also provides an upper bound for the Hausdorff dimension of f .

Theorem 6.5. Let f : [a, b]→ R be a continuous function such that

|f(x)− f(y)| ≤ c|x− y|2−s (6.38)

for all x, y ∈ [a, b], where c is a positive constant and s ∈ [1, 2]. Then it
follows that dimBf ≤ s.

Proof. On any interval [t1, t2] ⊂ [a, b], the Hölder condition (6.38) tells us
that Rf [t1, t2] ≤ c|t1 − t2|2−s. It follows from Proposition 6.11 that

Nδ(f) ≤ 2m+ δ−1

m−1∑
i=0

Rf [iδ, (i+ 1)δ]

≤ 2m+ δ−1mcδ2−s

≤ 2(1 + δ−1) + δ−1(1 + δ−1)cδ2−s

≤ c1δ
−s

where c1 is some constant independent of δ, and we have used the fact that
m ≤ (1 + δ−1). The result follows by then applying Proposition 6.9 since
this gives

dimBf ≤ lim
δ→0

log(c1δ
−s)

− log δ
= s.
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The usefulness of this will become clear later when we derive the box-
counting dimension of a Brownian motion path. A similarly useful result
provides a lower bound for the box-counting dimension of a graph f , al-
though not for its Hausdorff dimension.

Theorem 6.6. Let f : [a, b] → R be a continuous function such that there
exists positive constants c and δ0 with the property that for all t ∈ [a, b] and
δ ∈ (0, δ0], there exists some u such that |t− u| ≤ δ and

|f(t)− f(u)| ≥ cδ2−s. (6.39)

Then it follows that dimBf ≥ s.

Proof. On any interval [t1, t2] ⊂ [a, b], the condition (6.39) impliesRf [t1, t2] ≥
c|t1 − t2|2−s. Proposition 6.11 then gives us

Nδ(f) ≥ δ−1

m−1∑
i=0

Rf [iδ, (i+ 1)δ]

≥ δ−1mcδ2−s

≥ δ−1δ−1cδ2−s

= cδ−s

where we use the fact that m ≥ δ−s. Hence

dimBf = lim
δ→0

logNδ(f)

− log δ
≥ lim

δ→0

log(cδ−s)

− log δ
= s.

The final property of fractal graphs we discuss is that of autocorrela-
tion. The autocorrelation function is often used to investigate the proper-
ties of a stochastic process, and so it would be beneficial if it could also
be used in the study of fractal graphs. As it turns out, the autocorrelation
functions of fractal graphs often display power law behaviour of some
form.
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To see why this is, suppose we have a continuous and bounded func-
tion f : R → R, and we examine this function on the interval [−T, T ]. We
then define the average of the function f by

f̄ = lim
T→∞

1

2T

∫ T

−T
f(t)dt. (6.40)

The autocorrelation function of f is then defined as

C(h) = lim
T→∞

1

2T

∫ T

−T
(f(t+ h)− f̄)(f(t)− f̄)dt (6.41)

= lim
T→∞

1

2T

∫ T

−T
f(t+ h)f(t)dt− (f̄)2. (6.42)

Then, by substituting

f(t+ h)f(t) =
1

2

(
f(t+ h)2 + f(t)2 − (f(t+ h)− f(t))2

)
into (6.42), we can rewrite the autocorrelation function of f as

C(h) = lim
T→∞

1

2T

∫ T

−T

1

2

(
f(t+ h)2 + f(t)2 − (f(t+ h)− f(t))2

)
dt− (f̄)2

= f̄ 2 − (f̄)2 − 1

2
lim
T→∞

1

2T

∫ T

−T
(f(t+ h)− f(t))2dt

= C(0)− 1

2
lim
T→∞

1

2T

∫ T

−T
(f(t+ h)− f(t))2dt, (6.43)

where we have used the fact that

f̄ 2 = lim
T→∞

1

2T

∫ T

−T
f(t)2dt = lim

T→∞

1

2T

∫ T

−T
f(t+ h)2dt.

The autocorrelation function’s significance is then made clear in the form
(6.43) by considering Theorems 6.5 and 6.6. We know that if a function f

satisfies both conditions (6.38) and (6.39), then it must have box-counting
dimension s. Additionally, if both conditions are satisfied, then we can
find constants c1 and c2 such that

c1h
2−s ≤ |f(t+ h)− f(t)| ≤ c2h

2−s,
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which, when squared and integrated from −T to T , gives us

c3h
4−2s ≤ 1

2T

∫ T

−T
(f(t+ h)− f(t))2dt ≤ c4h

4−2s, (6.44)

provided conditions (6.38) and (6.39) are satisfied in a reasonable way. By
combining (6.44) and (6.43) we then see that if the autocorrelation function
satisfies a powerlaw of the form

C(0)− C(h) ≈ ch4−2s (6.45)

then it is likely to have box-counting dimension s. Based off this result, we
have an alternative method for estimating the box-counting dimension of
a graph f based on its autocorrelation function. If the power law (6.45)
holds, then this implies

s ≈ 2− log(C(0)− C(h))− log c

2 log h
,

which, if not for the unknown constant c, could be used to estimate s. To
overcome this, we might hope that as h→ 0 we see that s→ dimBf so that
we can then estimate the box-counting dimension by

dimBf = lim
h→0

(
2− log(C(0)− C(h))− log c

2 log h

)
(6.46)

= lim
h→0

(
2− log(C(0)− C(h))

2 log h

)
(6.47)

which then frees us of needing to estimate the constant c.

6.6 Brownian Motion as a Fractal

The importance of fractal geometry in financial mathematics is due to the
fundamental role of Brownian motion. The fractal nature of Brownian mo-
tion can be seen by considering the length of its paths. Given a Brownian
motion on [0, 1], the length of its trajectory is almost surely infinite. At the
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same time, the area of its trajectory is certainly 0. This is similar to the
construction of Hausdorff dimension in Section 6.2.3, where

Hs(F ) =

∞, if s < dimHF

0, if s > dimHF
(6.48)

suggesting the Hausdorff dimension of a Brownian motion trajectory is
somewhere between 0 and 1. In order to derive the Hausdorff and box-
counting dimensions of a Brownian motion trajectory, we use the follow-
ing result.

Proposition 6.12. Let B(t) be a Brownian motion on some interval of time
[0, 1]. Then for any λ ∈ (0, 1

2
), there is a random constant B such that

|B(t+ h)−B(t)| ≤ B|h|λ, (6.49)

with probability 1.

Proof. By symmetry of the normal distribution we have that for any h > 0,

P (|B(t+ h)−B(t)| > hλ) =
2√
2πh

∫ ∞
hλ

e
−x2
2h dx

= c1

∫ ∞
hλ−1/2

e
−y2
2 dy

≤ c2

∫ ∞
hλ−1/2

e−ydy

≤ c3h
2 (6.50)

where we use the substitution y = xh−1/2, and the constants c1, c2, c3 do not
depend on h or y. With this inequality in mind, we then consider intervals
of the form [(m − 1)2−j,m2−j]. The inequality (6.50) tells us that for any
positive integer k we have

P (|B(m2−j)−B((m− 1)2−j)| > 2−jλ for some j ≥ k) ≤ c3

∞∑
j=k

2j2−2j

= c32−k+1 (6.51)
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so that there is, with probability 1, some integer K such that for all j > K

we have
|B(m2−j)−B((m− 1)2−j)| ≤ 2−jλ. (6.52)

If h < 2−k then the interval [t, t+ h] can be expressed as a countable union
of intervals of the form [(m − 1)2−j,m2−j] such that no more than two
intervals share the same length. Taking k as the least integer satisfying
2−k ≤ h,

|B(t+ h)−B(t)| ≤ 2
∞∑
j=k

2−jλ =
2−kλ+1

1− 2−λ
≤ 2hλ

1− 2−λ
. (6.53)

Since Brownian motion paths are almost surely continuous, and hence
bounded, inequality (6.52) holds for some value b 6= 2−k when 2−k ≤ h ≤ 1,
and hence the result follows.

We can now derive the box-counting and Hausdorff dimensions of a
Brownian motion trajectory.

Theorem 6.7. Let B(t) be a Brownian motion trajectory on the interval
[0, 1]. Then, with probability 1,

dimBB(t) = dimHB(t) =
3

2
. (6.54)

Proof. By Proposition 6.12, any Brownian motion path satisfies a Hölder
condition of the form

|B(t+ h)−B(t)| ≤ B|h|λ, (6.55)

and so by applying Theorem 6.5 we see that the Hausdorff and box-counting
dimension of any Brownian motion path cannot exceed 3

2
.

Finding a lower bound is more difficult, and requires the use of Thereom
6.4. For any two points on the Brownian motion path, say (t, B(t)) and
(t+ h,B(t+ h)), we consider the following probability

p(x) = P (|B(t+ h)−B(t)| ≤ x) =
1√
2πh

∫ x

0

e
−y2
2h dy.
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For any s ∈ (1, 2),

E((|B(t+ h)−B(t)|2 + h2)−s/2) =
1√
2πh

∫ ∞
0

(x2 + h2)−s/2e
−x2
2h dx

≤ ch−1/2

∫ ∞
0

(x2 + h2)−s/2dx

≤ ch−1/2

(∫ h

0

h−sdx+

∫ ∞
h

x−sdx

)
(6.56)

where we use the fact that if a < b, then

(a2 + b2)−s/2 ≤ (2b2)−s/2 ≤ b−s. (6.57)

We then define a mass distribution on the Brownian motion path B(t) as

µ(A) = L{t : (t, B(t)) ∈ A} (6.58)

where L is the usual Lebesgue measure. Using Pythagoras’ Theorem for
the distance between two points x and y on a graph, we then obtain

E

[∫ ∫
dµ(x)dµ(y)

|x− y|s

]
=

∫ 1

0

∫ 1

0

E
[
(|B(t)−B(u)|s + |t− u|s)−s/2

]
dtdu

≤
∫ 1

0

∫ 1

0

c1|t− u|1/2−sdtdu

<∞

provided that s < 11
2
. Hence the mass distribution µ has finite s-energy

with probability 1, and hence by Theorem 6.4 we see that dimHB(t) ≥ 11
2
.

Combining the upper and lower bounds gives the result.

Thus if a stochastic process is driven by a Brownian motion, then it
should have dimension close to 3

2
.

6.6.1 Fractal Brownian motion

Fractal Brownian motion is a generalisation of standard Brownian motion,
where the assumption of independent increments is dropped.
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Definition 6.7. A stochastic process B(t), with 0 ≤ t ≤ T , is an α-fractal
Brownian motion with 0 < α < 1 if the following conditions hold:

1. With probability 1, the process is continuous with B(0) = 0.

2. B(t) is a Gaussian process with mean 0 and covariance function

cov(B(s), B(t)) =
1

2
(|t|2α + |s|2α + |t− s|2α). (6.59)

From this it can immediately be seen that the correlation between dis-
joint increments is positive when α > 1

2
and negative when α < 1

2
. When

α = 1
2

the correlation is 0 and we get standard Brownian motion. Hence
the process is smoother for larger α, and more irregular for smaller α. This
is reflected in the box-counting and Hausdorff dimensions of an α-fractal
Brownian motion path, which is almost surely 2− α.

6.6.2 Estimation of a Fractal Brownian Motion

If B(t) is an α-fractal Brownian motion, then there are a number of meth-
ods for estimating the parameter α. For example, it is straightforward to
derive the maximum likelihood estimator of α. With that said, we now in-
troduce a new method of estimation and examine its efficacy on generated
fractal Brownian motions. It is well known that for any a > 0, an α-fractal
Brownian motion obeys a scaling law of the form

B(t) ∼ a−αB(at), (6.60)

where ∼ denotes similarity in distribution. We hope to use this property
alone in order to estimate α. If we assume that

E[B(t)2] <∞ (6.61)

for all t, then a straightforward method of estimation exists. Let us fix
some a > 0, noting the exact value we choose doesn’t concern us. Then,
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given an α-fractal Brownian motion B(t), we consider a new process of
the form

Bβ(t) = a−βB(at) (6.62)

for some β ∈ (0, 1). From this, we construct the differences of the squared
increments

γβ(t) = (B(t+ ∆)−B(t))2 − (Bβ(t+ ∆)−Bβ(t))2. (6.63)

We can then estimate α using the following result concerning the expected
value of γβ(t).

Proposition 6.13. Let γβ(t) be defined by (6.63) for some stochastic process
B(t) obeying (6.61) and (6.60). Then it follows that

E[γβ(t)] =


< 0, if β < α

0, if β = α

> 0 if β > α

(6.64)

for all β ∈ (0, 1).

Proof. By definition of γβ(t), it follows that

E[γβ(t)] = E[∆B(t)2 −∆Bβ(t)2]

= E[∆B(t)2]− a−2βE[(B(a(t+ ∆))−B(at))2]

= E[∆B(t)2]− a−2β

a−2α
E[a−2α(B(a(t+ ∆))−B(at))2]

= E[∆B(t)2]− (a2)α−βE[∆Bα(t)2]

= E[∆B(t)2]− (a2)α−βE[∆B(t)2]

= E[∆B(t)2](1− (a2)α−β)

proving the result, since E[∆B(t)2] > 0.

Thus, the parameter α is the turning point at which the expected value
of γβ(t) goes from being negative to positive. To use this as a basis of
estimation, we consider partitions of the form

0 < α1 < α2 < · · · < αm < 1



6.6. BROWNIAN MOTION AS A FRACTAL 109

for some fixed m > 0. For each αi, we then calculate the average of γαi(t),

γ̄αi =
1

n

n∑
j=1

γαi(j∆),

where ∆ = T/n. Proposition 6.13 tells us that for αi < α these will, on
average, be negative. While for αi > α they will, on average, be positive.
Our estimate of α then need only be a statistic which reflects this turning
point. To this end, we consider the partial sum process

Sn(αi) =
∑
αj≤αi

γ̄αj . (6.65)

For αi < α, these summands will generally be negative and hence the
process will be decreasing. Once αi > α however, these summands will
generally be positive, resulting in a now increasing process. Hence our
estimate α is the point at which this partial sum process achieves a mini-
mum:

α̂ = arg min Sn(αi). (6.66)

6.6.3 A Preliminary Analysis of the Estimator

We now briefly examine the efficacy of our estimator using generated frac-
tal Brownian motions. The following is not meant to be an in depth anal-
ysis, but rather a short demonstration that the underlying idea is correct.

We start by studying the distributions of our estimator α̂ for various
α. We do this by generating a number of fractal Brownian motions using
the somebm package in R. We obtain an estimate for each generated fractal
Brownian motion, providing us with an empirical distribution to examine.
For each value of α, we generate 1, 000 discrete time fractal Brownian mo-
tions of length 1, 000. When applying our method of estimation, we take
a = 2 and use the partition

α1 = 0.001 < 0.002 < · · · < 0.999 = αm.
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The resulting density histograms of our estimates α̂ are given in Figure
6.2. We see that for all considered values, the resulting distributions are
centred around the true value. This suggests our estimator has small or
negligible bias, which is obviously a desirable property. We also see the
shape of the distributions appear to change with α. This is to be expected
since α is bounded above and below, and so we would certainly not expect
a bell curve shape to hold near the upper and lower bounds. The other
point of interest is whether the estimator is consistent. That is, does it
converge in probability,

α̂
P−→ α.

We can investigate this empirically as follows. Let n, the sample size, be
the length of each generated fractal Brownian motion. If α̂ is consistent, we
would expect it to become increasingly accurate as n increases. Hence, for
varying n, we generate 1, 000 fractal Brownian motions of length n in order
to obtain a collection of estimates α̂i,n. We then calculate the empirical
variance

1

1000

1000∑
i=1

(α̂i,n − α)2

and verify it approaches 0 as n increases. In this example we fix α = 1/2.
The plot of the empirical variance against sample size n is given in Figure
6.3. It is immediately clear that the variance appears to approach 0 as n
increases.

Finally, we briefly compare our estimator to an existing alternative. A
strongly consistent estimator for the Hurst exponent of a fractal Brownian
motion is

α̂ =
1

n−2

∑n
i=2(B(i∆)−B((i− 2)∆))2 − 1

n−1

∑n
i=1(B(i∆)−B((i− 2)∆))2

2 log 2
,

(6.67)
where B(t) is an α-fractal Brownian motion. The derivation and proof of
strong consistency can be found in [18]. For clarity, let us refer to (6.66) and
(6.67) as the minimal point and Shevchenko estimators respectively. For



6.6. BROWNIAN MOTION AS A FRACTAL 111

Density Histogram of Estimates α̂ for α= 0.2
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Density Histogram of Estimates α̂ for α= 0.4
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Density Histogram of Estimates α̂ for α= 0.6
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Density Histogram of Estimates α̂ for α= 0.8
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Figure 6.2: Density histograms of the estimates α̂ for various α.
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Figure 6.3: Variance of the estimator α̂ vs sample size.

two different sample sizes n, we generate 1, 000 fractal Brownian motions
of length n in order to obtain an empirical distribution of our estimators α̂.
The resulting density histograms are given in Figure 6.4. From these we
can clearly see that Shevchenko’s estimator (6.67) is superior to our min-
imal point estimator for both small and large sample sizes. Hence, while
the idea underlying our estimator has shown to be correct, it is clearly
inferior to an existing alternative.

6.7 Estimating the Dimension of X(t)

We now return our attention to the discretised EUR/USD exchange rate
process X∆

i . In previous chapters, for reasons already discussed, we have
generally restricted ourselves to increments not smaller than 1 minute.
However, if we wish to study the fractal properties of the exchange rate
process, we will need to examine it on as fine a scale as possible. For this
reason, we now consider 10 second data taken from over the year 2010, as
shown in Figure 6.5.

It is trivial to see that, since we only have the process at a finite collec-
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Empirical Distribution of Minimal Point Estimator with n = 100
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Empirical Distribution of Shevchenko's Estimator with n = 100
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Figure 6.4: Density histograms of the minimal point and Shevchenko esti-
mators for two sample sizes.

tion of times, its box-counting and Hausdorff dimensions are both 0. How-
ever, when we examine the discrete time process at scales much larger than
∆, we hope that it will appear similar to its continuous time version. That
is, provided we do not look ”too closely” at the discrete time process, it
might well appear fractal.

In Section 6.3.1 we outlined a simple method for estimating the box-
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Figure 6.5: The 10 second bid quotes recorded in 2010.

counting dimension of any set F . To use this approach, we consider X∆
i

on the interval of time [0, 1], so that time is measured in years. We then
take the maximum and minimum of the process on this interval,

U = max
0≤i≤n

X∆
i and L = min

0≤i≤n
X∆
i , (6.68)

and construct a grid between the points (0, L), (1, U) ∈ R
2, consisting of

squares of side δ. The quantity Nδ(X) is then taken as the number of such
squares which contain at least one point belonging to the discretised pro-
cess X∆

i . This is demonstrated in Figure 6.6. Repeating this process for
varying δ, we can then employ the estimation method introduced in Sec-
tion 6.3.1. We outline the procedure below for clarity:

1. Choose some δ > 0, such that δ � ∆.

2. Construct a δ-mesh of squares that covers the process X∆
i .

3. Count the number Nδ(X) of δ-mesh squares that intersect X∆
i .

4. Repeat steps 1− 4 for a range of values of δ.
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5. Plot logNδ(X) against − log δ.

6. Estimate the box-counting dimension by the slope of the resulting
graph.

The resulting graph is given in Figure 6.7, where the line of best fit is
shown in red. The slope of the graph, obtained using least squares, is
β̂ = 1.271. Hence our estimate for the box-counting dimension of the pro-
cess is

ˆdimBX
∆
i = 1.271 (6.69)

which is much lower than what we would expect of a process driven by
a Brownian motion. This estimate suggests that while our exchange rate
process is highly irregular, it is not as irregular as a Brownian motion path.
This is somewhat unexpected since, for example, if X(t) is an Ornstein-
Uhlenbeck process then it is driven by a Brownian motion, and it is known
behave as Brownian motion at sufficiently small scales.

We now use an alternative approach hoping to verify this result. In Sec-
tion 6.5 we proved some important results concerning the autocorrelation
functions of fractal graphs which can applied to the discretised process
X∆
i . Namely, we can estimate the box-counting dimension of a graph f

using its autocorrelation function C(h) as

dimBf ≈ 2− lim
h→0

log(C(0)− C(h))

2 log h
, (6.70)

where we approximate the limit by taking the smallest h available to us.
Using this approach we obtain a new estimate

ˆdimBX
∆
i = 1.554 (6.71)

which is much closer to the dimension of a Brownian motion. There is
clearly a large discrepancy between the two estimates which warrants dis-
cussion.

One possible explanation is that using the discretised processX∆
i , even

while restricting ourselves to δ � ∆, results in an underestimation of the



116 CHAPTER 6. FRACTAL SETS

Figure 6.6: Counting the squares for which X∆
i intersects, but not those

that intersect the interpolated lines.

Figure 6.7: Plot for estimating the box-counting dimension of X(t).
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dimension using the first graphical method. Since we have only sampled
the process X(t) at finitely many points in time, the count Nδ(X) is under-
estimated. This is demonstrated in Figure 6.6 where we count the squares
intersecting the points X∆

i , but not all squares which intersect the interpo-
lated lines between them. This would explain the discrepancy, since

Nδ(X
∆
i ) < Nδ(X(t)) =⇒ logNδ(X

∆
i )

− log(δ)
<

logNδ(X(t))

− log(δ)
. (6.72)

Regardless of the cause of this discrepancy, it is clear that at least one es-
timate is unreliable. Therefore we cannot make any reliable conclusions,
except that the process X∆

i is sufficiently irregular to have a box-counting
dimension greater than 1.
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Chapter 7

Predicting Future Price
Movements

In this chapter, we introduce a technical analysis method for predicting
future price movements of foreign exchange rates. The method is first
introduced, and then formalised in the form of an algorithm. Its efficacy
and profitability is then tested using the EUR/USD exchange rate dataset.

7.1 Introduction

Technical analysis generally refers to methods which make use of recent
financial data in order to predict price reversals or continuations. There is
a great deal of variation in the techniques employed, and the efficacy of
technical analysis is still debated. Some technical traders employ simple
rules involving moving averages where objective decisions can be made;
others make subjective trading decisions based on patterns they believe
exist in the process.

In this chapter, we take the approach that X(t) is a process with be-
haviour that changes slowly over time. If the rate of change is slow, we
hope that recent historical data can be used to detect anomalous behaviour
while it still persists, in order to exploit it for profit. To take this approach,

119
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we simply need to develop statistical methods for identifying types of
anomalous behaviour. The method we introduce is designed to identify
periods of the day when the process tends towards past values.

7.2 Trend Reversion

The method we introduce attempts to exploit what we call trend reversion.
Loosely speaking, we say a process is trend reverting if future price move-
ments tend toward recent historical prices. We formalise this in the fol-
lowing definition.

Definition 7.1. Let {X(t) : t > 0} be a stochastic process. The process X(t)

is said to be trend reverting on the interval [t1, t2] with reference time t0 if
the following holds:

X(t1)−X(t0) > 0 ⇐⇒ E[X(t2)−X(t1)|X(t1)−X(t0)] < 0. (7.1)

Note that the property of trend reversion is specific to times t0, t1, t2.
We do not say that for a stochastic process X(t), property (7.1) holds for
any collection of times. This implies that the process, on average, tends
towards X(t0) on the interval of time [t1, t2]. It is then trivial to use this
information in order to predict whether the process will rise or fall, as
demonstrated in Figure 7.1. As such, in a financial context the interval
[t1, t2] is the time period over which we will trade.

Formally, if X(t) is trend reverting on the interval [t1, t2] with reference
time t0, then we make predictions as follows:

1. If X(t0) < X(t1), then we predict that X(t1) > X(t2).

2. If X(t0) > X(t1), then we predict that X(t1) < X(t2).

3. If X(t0) = X(t1), then we make no prediction.

Thus, the indicator we use for our predictions is the sign of the quantity
X(t1) − X(t0). Consequently, if there has been no change on the interval
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[t0, t1], then we cannot make a prediction based on the notion of trend
reversion.

t t

X(t) X(t)

t0 t1 t0 t1

Figure 7.1: Predicting price movements using trend reversion.

7.3 Method

7.3.1 Introduction

Suppose we assume that the process X(t) takes the form

X(t) = X(0) +

∫ t

0

σ(s)dW (s). (7.2)

In this form, little can be done to accurately estimate the function σ(s),
however if we assume it is a periodic function this becomes straightfor-
ward. Such an assumption is certainly justified as we have seen in Chapter
4 the process’s empirical variance exhibits strong daily periodic behaviour.
Hence, assuming that σ(s) is a periodic function, with period 1 day, we can
use the expectation

E[(X(t)−X(0))2] =

∫ t

0

σ2(s)ds (7.3)

to estimate
∫ t

0
σ(s)2ds for 0 < t < 1, where time t is measured as a fraction

of a day.



122 CHAPTER 7. PREDICTING FUTURE PRICE MOVEMENTS

V(t) Based Off Data From March and April 2009 
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Figure 7.2: The process V(t) constructed using data from March and April
of 2009.

Let Xi(t) denote the price at time t on day i, for i = 1, 2, ..., n. We can
then estimate the right hand side of equation (7.3) by

V (t) =
1

n

n∑
i=1

(Xi(t)−Xi(0))2. (7.4)

If equation (7.2) holds, then the process V (t) should be monotonically
non-decreasing, since σ(s)2 is clearly non-negative. However, when we
construct the process V (t) using data from March and April of 2009, as
shown in Figure 7.2, we see several prolonged periods where V (t) de-
creases. Some of these decreases are small and are likely the result of error
in our estimation; however, for large decreases which persist over a long
period of time, it seems unlikely that this is the sole cause. This suggests
that X(t) does not obey (7.2) with periodic σ(s).

To interpret the decreasing periods of V (t), suppose that V (t) starts
decreasing at time t1 until time t2, when it then resumes increasing. Then
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by (7.4), this implies

1

n

n∑
i=1

(Xi(t1)−Xi(0))2 >
1

n

n∑
i=1

(Xi(t2)−Xi(0))2, (7.5)

meaning that X(t2) is closer, on average, to X(0) than X(t1) is. In fact, this
behaviour is exactly what we would expect to observe if X(t) was trend
reverting on the interval [t1, t2] with reference time t0 = 0. Hence, we can
develop a technical analysis method based on the idea that if V (t) signif-
icantly decreases over some interval of time [t1, t2], then this is evidence
that the process undergoes trend reversion over this period with reference
time t0 = 0. The process V (t) can therefore be used to identify periods of
trend reversion, allowing us to make predictions in the immediate future.

This leads to an interesting trade off with regards to how far back we
should go to construct the process V (t). On the one hand, it is clear that
only the most recent data will have all or most of the present reversion
periods in common, and as we go further back in time, we increase our
risk of identifying reversion periods which no longer exist. On the other
hand, we need a sufficient amount of data in order to construct V (t) with a
reasonable degree of accuracy. In this thesis, we choose to use two months
worth of data, so that when we refer to V (t) for a particular month, it
is implied the process was constructed using data from the previous two
months.

7.3.2 Identifying Periods of Trend Reversion

We now present an algorithm for identifying periods of time over which
V (t) decreases. Due to the highly irregular plots of V (t), as shown in Fig-
ure 7.2, we do not find intervals [t1, t2] over which V (t) is strictly decreas-
ing. Instead, we seek intervals when V (t) has a general downward trend,
taking t1 and t2 as local maxima and minima respectively.

The algorithm given below works by going along the process V (t) and,
at each time t1, checking whether the process next rises or falls. If it rises,
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the algorithm does nothing and goes forward a minute in time. If it falls
however, it then attempts to find the time t2 when V (t) achieves a mini-
mum on the interval [t1, t3], where t3 is the smallest time at which V (t) is
greater than or equal to its current value V (t1). This is demonstrated in
Figure 7.3 with times t1, t2, t3 labelled, with the algorithm described for-
mally as Algorithm 1.

After applying this algorithm to V (t), we identify a collection of time
periods {[ti,1, ti,2]}. From these, we need to determine which are signifi-
cant. After all, many intervals are very short and unlikely to be caused
by trend reversion. In order for our trading strategy to be successful, we
should only take intervals which provide the best evidence of trend rever-
sion, based on some predetermined criteria. In the next section, we intro-
duce two different criteria based on the length of time and the amount that
V (t) decreases.

Data: The process V (t).
Result: A collection of time periods {[ti,1, ti,2]}.
Initialise t1 = 1;
while t1 < 1440 do

if V (t1) > V (t1 + 1) then
Set t3 = min {min{s : V (s) ≥ V (t1)}, 1440} ;
Set t2 = argmin{V (s) : t1 < s < t3} ;
Record [t1, t2] as interval where V (t) decreases;
Set t1 = t2 + 1;

else
Set t1 = t1 + 1;

end

end
Algorithm 1: Finding periods of time where V (t) decreases.
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t

V (t)

t1 t2 t3

Figure 7.3: Times t1, t2, t3 as identified by Algorithm 1.

7.3.3 Testing significance

Consider the time intervals {[ti,1, ti,2]} identified using Algorithm 1. Among
these, some may be the result of trend reversion, but many will not be.
Therefore we need some predetermined criteria for determining which of
these time intervals should be considered significant enough to include in
our trading strategy. The first criteria we consider is based on the length
of the interval.

In finance it is generally understood that, all else being equal, longer
trades are more likely to be profitable. This is because the fee associated
with each trade becomes less significant as time goes on. The length of
time we trade is therefore one basis by which we can determine whether
an identified interval is worth trading over.

Definition 7.2. Let [ti,1, ti,2] be a period of time identified by Algorithm 1.
Then the trading time of this interval is defined as the difference

∆ti = ti,2 − ti,1. (7.6)
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We call them trading times since, if these time periods are determined
to be significant, then we will ”buy in” at time t1 and ”cash out” at time t2.
The first criteria we consider is then of the form

∆ti ≥ tmin, (7.7)

so that if the trading time is above some threshold tmin, then we determine
it to be significant and include it in our trading strategy. It is unclear what
an appropriate threshold is, and so we will use a range of values when
testing the efficacy of our strategy.

The second criteria we consider is based on how much V (t) changes
on the interval [ti,1, ti,2]. We consider such a threshold since, intuitively,
the change in V (t) should reflect the strength of trend reversion over this
interval. On the one hand, it seems unlikely that the difference

V (ti,1)− V (ti,2) (7.8)

will be useful in determining which are significant, since Figure 7.2 shows
V (t) tends to vary more as t increases. So a criteria of the form

V (ti,1)− V (ti,2) ≥ vmin (7.9)

is likely to favour trades later in the day, while neglecting earlier ones.
Instead, suppose we consider the difference in price at these times

|X(ti,2)−X(ti,1)|. (7.10)

Obviously the larger this difference is, the more we will profit from suc-
cessfully predicting whether X(t) will rise or fall on the interval [ti,1, ti,2].
So a criteria related to this difference seems more relevant in determining
which trading times are significant. Since we can’t know the size of this
difference prior to time ti,2, we might instead hope to estimate it in some
way using V (t). To this end, consider the definition of V (t) given by (7.4),
which shows that V (t) is an estimate of

(X(t)−X(0))2
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for days in the immediate future. Hence, by using the estimate√
V (t) ≈ |X(t)−X(0)|, (7.11)

we can estimate a lower bound of (7.10) by√
V (ti,1)−

√
V (ti,2) =

∣∣√V (ti,1)−
√
V (ti,2)

∣∣
≈
∣∣|X(ti,1)−X(0)| − |X(ti,2)−X(0)|

∣∣
≤ |X(ti,2)−X(ti,1)|. (7.12)

So if
√
V (ti,1)−

√
V (ti,2) is greater than some threshold vmin, then inequal-

ity (7.12) suggests an estimate of |X(ti,2)−X(ti,1)| is also likely to be above
that threshold. Hence, the difference

√
V (ti,1)−

√
V (ti,2) might serve as a

good criteria.

Definition 7.3. Let [ti,1, ti,2] be a period of time identified by Algorithm 1.
Then the trading depth of this interval is defined as

∆Vi =
√
V (ti,1)−

√
V (ti,2). (7.13)

The trading depth is, in some sense, a measure of how significant the
decrease in V (t) is over the interval [ti,1, ti,2]. The second criteria we use to
test whether a time period is significant is then of the form

∆Vi ≥ vmin, (7.14)

so that if an interval’s trading depth is above some minimal threshold, we
determine it to be significant enough to trade over. Once again, it’s unclear
what an appropriate threshold might be. Hence we will also use a range
of values for vmin when testing our trading strategy.

7.4 Trading Strategy

The trading strategy we employ combines the ideas presented in the pre-
vious sections. Given two months worth of data, we attempt to make pre-
dictions on whether the exchange rate will rise or fall at particular times
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of the day throughout the next month. We first construct the process V (t)

using the previous two months worth of data, and then use Algorithm 1

to identify periods of time during which V (t) decreases. For each of these
time periods, we use a predetermined criteria of the form (7.7) or (7.14) to
identify which are significant. Each significant time period is then traded
over the next month using the trend reversion strategy outlined in Section
7.2.

For example, suppose the time period [ti,1, ti,2] is one of those identified
and determined to be significant. Then on each day throughout the next
month, we look at the price at time t1 and compare it with the price at
midnight earlier that day. Based on this comparison, we predict whether
the price at time t2 will be higher or lower than at time t1. If we predict
the exchange rate will rise over this period, then we buy euros at time t1
and then exchange them back for US dollars at time t2. Conversely, if we
predict the exchange rate will fall over this period, then we buy US dollars
at time t1 and then exchange them back for euros at time t2.

7.5 Testing the Strategy

In this thesis, we test the efficacy of our technical analysis trading strategy
using the EUR/USD exchange rate dataset. We examine both the accu-
racy of our predictions and also the profitability of our trades. Quotes are
recorded too infrequently to use data prior to 2008, and the financial crisis
of that year may cause abnormal behaviour in the process well into 2009.
For these reasons, we start making predictions in June of 2009, and con-
tinue up until the end of our dataset, with the last set of predictions taking
place in June of 2011. That is, we begin by using data from April and May
of 2009 to make predictions throughout June of 2009, and end by using
data from April and May of 2011 to make predictions throughout June of
2011.
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7.5.1 Accuracy of Predictions

To test the accuracy of our predictions, we record the total number of cor-
rect and incorrect predictions across all identified time periods. If this
method is baseless, then we would expect to see roughly 50% of our pre-
dictions being correct, as the process X(t) appears to rise and fall with
equal probability. Hence, under the usual binomial assumptions, it is
straightforward to test the significance of our method.

We denote the proportion of correct predictions by p̂ so that our test
statistic will be

Z =
p̂− 0.5√

0.52n
, (7.15)

where n is the total number of predictions made. If the method offers
no advantage (or disadvantage), then Z should have a standard normal
distribution. Therefore, the test statistic Z can be used to test

H0 : The strategy offers no advantage

H1 : The strategy offers an advantage

where we reject the null hypothesis at the 2.5% level of significance if Z >

1.96.

7.5.2 Profitability of Trades

Even if our strategy offers an advantage, there is no guarantee that it will
be profitable. There are a number of fees associated with trading, the most
significant of which being the spread between the bid and ask quotes. In
order to test whether our trading strategy is profitable, we simply simu-
late trading by buying and selling at the quoted prices, as dictated by our
strategy.

We imagine starting on June 2009, before making any predictions, with
$100 and AC100. For each prediction made over the 25 month period, we
trade according to the quoted prices in our dataset. If we predict the ex-
change rate will rise between times t1 and t2, then we exchange our dollars
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for euros at time t1, and then back into euros at time t2. And conversely if
we predict the exchange rate will fall. At the end of the 25 month period,
we then look at whether our dollars and euros have grown or shrunk as
a result of these trades. Due to the fee associated with every trade, we
would expect a baseless strategy to lose money.

We then repeat this procedure using a ”baseless strategy” that offers
no advantage in order to compare the amount our strategy profits to some
baseline value. That is, we trade over the same intervals as before, except
we now make predictions randomly instead of using our trend reversion
criteria. On each of the identified and significant intervals [ti,1, ti,2], we pre-
dict a rise or fall in the exchange with probability 1/2. We would certainly
expect such a strategy to lose money, but the exact amount we would lose
is less clear, but nonetheless important as a point of comparison.

7.6 Results

7.6.1 Accuracy of Predictions

We give the correct and total number of predictions made in Tables 7.1
and 7.2, broken down by both criteria and threshold used. We see that
for both criteria, along with all considered thresholds tmin and vmin, the
majority of our predictions were correct. Additionally, the test statistics
Z are all statistically significant, well above the critical value. Since the
test statistics are significant for all criteria and thresholds considered, we
conclude that our trading strategy offers some advantage.

Our attention then turns to how the proportion of correct predictions
p̂ changes depending on the criteria and threshold used. This question is
an important one since, if this strategy is to be employed, we should hope
to optimise the criteria used in order to maximise profit. If the criteria we
have chosen do indeed measure significance well, we would expect that
increasing the thresholds tmin and vmin should improve the accuracy of our
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Results using trading time criteria
tmin Correct Predictions Total Predictions p̂ Z

30 minutes 1020 1846 0.553 4.52

45 minutes 543 944 0.575 4.62

60 minutes 300 491 0.611 4.92

75 minutes 186 304 0.612 3.90

90 minutes 126 198 0.636 3.84

Table 7.1: Number of correct predictions from June 2009 to June 2011 using
trading time as the criteria for significance.

Results using trading depth criteria
vmin Correct Predictions Total Predictions p̂ Z

0.0004 1668 3114 0.536 3.98

0.0005 998 1805 0.553 4.50

0.0006 644 1127 0.571 4.80

0.0007 446 748 0.596 5.27

0.0008 311 492 0.632 5.86

0.0009 205 328 0.625 4.53

Table 7.2: Number of correct predictions from June 2009 to June 2011 using
trading depth as the criteria for significance.

predictions. This is shown in Figures 7.4 and 7.5, where we see a positive
linear relationship between p̂ and the threshold used for each criteria. That
is, as we increase tmin and vmin, the proportion of correct predictions p̂ tends
to increase.

Intuitively, it makes sense why p̂ would increase with vmin, since trad-
ing depth measures how significantly V (t) decreases over some interval.
A significant decrease in V (t) suggests a strong rate of trend reversion, and
hence our strategy is likely to perform better. It is less clear why p̂ would
increase with tmin. The reason we introduced a trading time criteria was
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Figure 7.4: Proportion of correct predictions plotted against trading time
threshold tmin.

Figure 7.5: Proportion of correct predictions plotted against trading depth
threshold vmin.
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based on profitability, not because we thought it would improve the ac-
curacy of our predictions. One possible explanation for this is that longer
trading times, on average, have a larger trading depth. However, regard-
less of the cause, it is worth noting how beneficial this is from a trading
stand point. This allows us to exclude short trades without reducing the
accuracy of our predictions. Since we take only long trades, where fees
become less significant, we are more likely to profit in the long term.

7.6.2 Profitability of Trades

The final amounts in dollars and euros after the 25 month trading period
are given in Tables 7.3 and 7.4. These results show that the thresholds
with the highest proportion of successful predictions are not necessarily
the most profitable. For example, we saw in the previous section that
when using trading time as the criteria, we had the highest p̂ when using
tmin = 90 minutes. However, Table 7.3 shows the most profitable threshold
was tmin = 45 minutes, with about a 2.25% and 2.57% profit on our dollars
and euros respectively. This discrepancy is likely caused by missed oppor-
tunities when using a threshold that is too high. Although using a higher
threshold increases the accuracy of our predictions, it also results in ignor-
ing trades which might, on average, still be profitable.

Secondly, we see that a high success rate p̂ is not necessarily enough to
ensure profitability. For example, despite correctly predicting price move-
ments over 60% of the time, we end up losing US dollars when using
the trading time criteria with a threshold tmin of 60 or 75 minutes. It is
worth noting that overall we still profit, as in both cases our euro profits
are more than enough to offset these losses; however the results are sur-
prising nonetheless. It also suggests there is some degree of asymmetry in
our method where, depending on the criteria, we more accurately predict
price movements in one direction. The reverse can be seen with tmin = 30

minutes, where we profit in US dollars, but lose euros.
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Profitability of trading using trading time criteria
tmin Final US dollars Final Euros

30 minutes 102.46 97.97

45 minutes 102.25 102.57

60 minutes 99.97 103.99

75 minutes 99.13 102.04

90 minutes 100.50 100.11

Table 7.3: Profitability of trades from June 2009 to June 2011 using trading
time as the criteria for significance.

Profitability of trading using trading depth criteria
vmin Final US dollars Final Euros

0.0004 94.60 96.52

0.0005 100.14 101.24

0.0006 102.17 100.55

0.0007 102.23 102.44

0.0008 101.76 100.32

0.0009 100.35 100.13

Table 7.4: Profitability of trades from June 2009 to June 2011 using trading
depth as the criteria for significance.

Profits using a baseless strategy with trading time criteria
tmin Final US dollars Final Euros

30 minutes 93.65 89.97

45 minutes 101.72 101.82

60 minutes 98.12 101.91

75 minutes 98.26 101.03

90 minutes 99.8 99.42

Table 7.5: Final capital when trading with a baseless strategy using trading
time criteria.
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Profits using a baseless strategy with trading depth criteria
vmin Final US dollars Final Euros

0.0004 84.72 85.68

0.0005 89.30 90.82

0.0006 95.06 93.32

0.0007 96.63 96.78

0.0008 99.50 98.25

0.0009 99.34 99.33

Table 7.6: Final capital when trading with a baseless strategy using trading
depth criteria.

On this note, we now investigate the amount we would lose trading
with no advantage. On each of the intervals traded according to our strat-
egy, we now trade randomly, predicting rises and falls with equal proba-
bility. We again consider the same criteria and threshold values. The final
amounts for each criteria and threshold using our baseless strategy are
given in Tables 7.5 and 7.6.

These results serve as a better baseline for us to gauge how significant
our profit is, as opposed to simply noting whether we profit or not. This
is particularly apparent with the results for trading depth criteria, using
vmin = 0.0004, where our results showed a loss of 5.4% in US dollars. Such
a significant loss at first appears to show our strategy fails to offer any ad-
vantage; however when we compare it to the results of a baseless strategy,
it is clear some advantage still exists. Trading with a baseless strategy on
the same intervals, we end up with $84.72, corresponding to a loss of over
15%. Hence even when our strategy loses money, it still significantly out
performed a baseless strategy. This is also reflected in the trading time
criteria results. Using a threshold of 30 minutes, we incurred a loss of
around 2% in euros. However we lost over 10% when trading over those
same intervals using a baseless strategy.
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In summary, our strategy appears to be profitable for most criteria and
thresholds considered. In all instances when our strategy lost money, it
still out performed a baseless strategy in terms of the amount lost. The
profit made is small considering trades take place over a 25 month period,
however could be magnified in several ways. For example, by keeping
our capital in US dollars, we could simultaneously apply our strategy to
several currencies priced against the US dollar. Combined with the large
amount of leverage available to foreign exchange traders, these seemingly
small profits might result in significantly larger gains. Regardless, the im-
portant note is that our strategy offers enough of an advantage to consis-
tently ”beat the market” despite incurring regular transaction fees. The
results of this section provide strong evidence that the exchange rate is
more predictable than current mathematical models suggest.



Chapter 8

Conclusions

The objective of this thesis was to investigate the properties of the ex-
change rate process from several different stand points. In this chapter,
we discuss the results of our investigation and acknowledge some limita-
tions. We then conclude by suggesting several areas for further research.

8.1 Summary

In this thesis, we have studied the stochastic and fractal properties of real
exchange rate data. By discretising the data, we were able to study it as a
stochastic process observed at equidistant points in time.

We first investigated whether the exchange rate behaves as a process
driven by Brownian motion. The process’s sampled total variation V∆(X(t))

increased at a rate close to that of Brownian motion, which would be ex-
pected for a Brownian motion-driven process. Additionally, we saw that
the variance of increments is linear in time, though might be asymptot-
ically stationary. This is consistent with the Ornstein-Uhlenbeck process,
which behaves very much like Brownian motion on sufficiently small time
scales. However, despite possessing properties that are characteristic of a
Brownian motion-driven process, we found that increments are unlikely
to be normally distributed. Instead, we saw that increments are likely to
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come from mixture distributions, these mixtures being caused by periodic
behaviour in the variance of the process. Thus, if we wish to model the
exchange rate as a Brownian motion-driven process, we must account for
the non-constant behaviour of variance. To this end, we derived estima-
tors for the parameters of an Ornstein-Uhlenbeck process with periodic
variance, but note the significant draw back in that they make use of only
a fraction of the data available to us.

As part of our investigation of the exchange rate as a Brownian motion-
driven process, we used the Khmaladze transformation-2 to test whether
the increments ∆Xi come from a centred normal distribution. To this end,
we derived a closed form expression, in terms of the standard normal dis-
tribution Φ(x), for the transformed process ṽn. This formula can be applied
to any random sample in order to test whether it comes from a centred nor-
mal distribution, and is trivial to implement using the given expression.
This work therefore provides an easy to implement and distribution-free
formula for testing centred normality.

In Chapter 6, we introduced some fractal geometry, and reviewed some
results concerning trajectories of Brownian motion as fractal sets. Follow-
ing this, we derived a new estimator for the Hurst exponent of a fractal
Brownian motion, and compared it to an existing alternative. We found
that while our estimator performs as expected, the existing alternative
given in [18] is far superior, and easier to implement. We also estimated
the box-counting dimension of the exchange rate process using two differ-
ent methods. These estimates significantly differed from one another, sug-
gesting at least one of our methodologies was flawed, and so no definitive
conclusions can be drawn. However, both estimates were well above 1,
suggesting the exchange rate process is, to some extent, fractal.

In the final part of this thesis, we introduced a technical analysis method
for predicting future price movements. We tested both the accuracy and
profitability of this method using the EUR/USD exchange rate dataset.
There is significant reason to believe this method provides an advantage
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when predicting price movements, as all of our test statistics were signifi-
cant at the 1% level. The method also provided a small profit after taking
the exchange rate spread into account, and significantly out performed
the baseless strategy used as a point of comparison. These results show
that exchange rates are predictable to a greater extant than current mathe-
matical models suggest, and provides strong evidence against the efficient
market hypothesis.

8.2 Limitations

One caveat of this research concerns the dataset used. As already stated,
the foreign exchange market is decentralised, and so comprehensive trans-
action data is unavailable to researchers. Instead, over-the-counter quotes
are used in lieu of actual trades. We should therefore note that the results
of this thesis concern the behaviour of these published quotes specifically,
and not necessarily the true price that participants are trading currency at.

Further limitations concern the testing of our technical analysis method
introduced in Chapter 7. Firstly, as just mentioned, our dataset consists of
non-binding quotes. However, when we simulated trading, we purchased
and sold currency according to any quote in our dataset. This necessar-
ily assumes that these quotes are binding, meaning we can purchase any
amount of currency at these prices regardless of current market conditions,
which is not true in general. Realistically, we would experience some de-
gree of slippage, where the price we expect to trade currency at differs
from the actual price at which the trade is executed.

Furthermore, when testing profitability we only took the spread into
consideration, neglecting other fees such as trading commissions. The
spread is by far the largest fee associated with foreign exchange trading, so
that our simulation did account for the bulk of transactions fees we would
incur, however we should note that the profitability would likely be lower
if other fees were taken into consideration.
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8.3 Further Research

Firstly, when testing normality we found that it was straightforward to
derive a closed form expression of ṽn. One area of further research is
the more general, and far more practical, question of testing whether a
sample comes from a N(µ, σ2) distribution, so that we are no longer re-
stricted to centred normal distributions. A closed form expression of ṽn
for this more general problem would provide quick and computationally
easy distribution-free testing of normality.

There are several areas of further research with regards to the technical
analysis method discussed in Chapter 7. The fundamental idea underly-
ing the method is the process V (t), however the criteria we used to test
significance of intervals were by no means optimal. Alternative statistics
for testing how significantly V (t) decreases over some interval might im-
prove the accuracy and profitability of the method substantially. Hence
further research could focus on developing alternative tests of significance,
or perhaps optimising the thresholds considered in this thesis.

An additional way that the methodology might be improved involves
the time at which we exit trades. Due to the nature of the method, there
is no obvious way to improve the time we enter trades. However, having
entered a trade, we might hope to increase the profitability of our method
by introducing conditions for exiting the trade earlier or later than as dic-
tated by the process V (t). This is motivated by an idea commonly held by
traders that one should ”cut their losses early” and ”let their profits run.”
A significant body of work exists on optimal exit strategies, and any num-
ber of these strategies can combined with the methodology presented in
Chapter 7.

Lastly, the logic underlying the method is by no means restricted to
the EUR/USD currency pair. An interesting question is therefore whether
the technical analysis method is successful in predicting not just other cur-
rency pairs, but also other financial prices such as stocks or commodities.
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The accurate predictions made for the EUR/USD dataset certainly sug-
gests it might work for other currency pairs, since the EUR/USD currency
pair is among the most liquid, and liquid markets are generally more ef-
ficient. Comprehensive datasets exist for exchange traded assets such as
stocks, so research in this direction would also address the concern of us-
ing published quotes in lieu of traded prices.
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Appendix A

Notation

X(t) Bid quote process

Y (t) Ask quote process

X∆
i Discretised bid quote process

W (t) Standard Brownian motion

Vn(X(t)) Sampled total variation

V∆(X(t)) Sampled total variation of X∆
i

vn(x; θ) Empirical process

vn(x; θ̂) Parametric empirical process

ṽn(x; θ̂) Transformed parametric empirical process

dimB Box-counting dimension
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dimH Hausdorff dimension

Nδ(X) Number of δ-mesh squares intersecting X

C(h) Autocorrelation function

V (t) Estimated variance of X(t)−X(0)

∆ti Trading time

tmin Trading time threshold

∆Vi Trading depth

vmin Trading depth threshold

p̂ Proportion of correct predictions
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