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Abstract

Bodlaender et al. [7] proved a converse to Courcelle’s Theorem for graphs

[15] for the class of chordal graphs of bounded treewidth. Hliněný [25] gener-

alised Courcelle’s Theorem for graphs to classes of matroids represented over

finite fields and of bounded branchwidth. This thesis has investigated the

possibility of obtaining a generalisation of chordality to matroids that would

enable us to prove a converse of Hliněný’s Theorem [25].

There is a variety of equivalent characterisations for chordality in graphs.

We have investigated the relationship between their generalisations to ma-

troids. We prove that they are equivalent for binary matroids but typically

inequivalent for more general classes of matroids.

Supersolvability is a well studied property of matroids and, indeed, a graphic

matroid is supersolvable if and only if its underlying graph is chordal. This

is among the stronger ways of generalising chordality to matroids. However,

to obtain the structural results that we need we require a stronger property

that we call supersolvably saturated.

Chordal graphs are well known to induce canonical tree decompositions. We

show that supersolvably saturated matroids have the same property. These

tree decompositions of supersolvably saturated matroids can be processed by

a finite state automaton. However, they can not be completely described in

monadic second-order logic.

In order to express the matroids and their tree decompositions in monadic

second-order logic we need to extend the logic over an extension field for



each matroid represented over a finite field. We then use the fact that each

maximal round modular flat of the tree decomposition for every matroid

represented over a finite field, and in the specified class, spans a point in

the vector space over the extension field. This enables us to derive a partial

converse to Hliněný’s Theorem.
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Chapter 1

Introduction

In this thesis we will investigate matroid structure. In particular, we will

focus on chordality and related structure for general matroids. We are moti-

vated by a long-standing problem in computability and logic.

In 1991 Courcelle [15] proved a theorem showing that for general graphs of

bounded treewidth if a property of a graph is definable in monadic second-

order logic then it is recognisable by an automaton. In the same paper Cour-

celle conjectured that the converse was true. In the 26 years since, there have

been a number of attempts to partially prove this conjecture including an

important result by Bodlaender, Heggenes and Telle [7]. In 2016 Bojanczyk

and Pilipczuk [8] provided a full proof for the conjecture. We are interested

in proving a partial analogue of Courcelle’s conjecture for matroids repre-

sented over a finite field.

Hliněný [25] has proved a theorem generalizing the result of Courcelle [15].

We have been motivated in this thesis by this problem of finding a partial

converse to Hliněný’s theorem. This will involve identifying structure in

some class of matroids that we can leverage to allow an automaton to run

over the matroids. To paraphrase Courcelle [16] it is not at all clear how an

automaton should traverse a matroid since a general matroid has no obvious

structure. A word or a tree is essentially its own algebraic structure [16].

3



4 CHAPTER 1. INTRODUCTION

The usual technique for graphs is to find a way to generate a tree decompo-

sition from the graph. We shall try to follow the same process for matroids.

The question is when do matroids give us a nice tree decomposition?

The main part of this thesis is an investigation of structure in matroids that

might allow us to construct a tree decomposition for any such structured ma-

troid. We start looking at matroid structure from modular flats to roundness

to saturation (where every round flat is modular). We observe that chordal

graphs have a nice tree of cliques. This leads us into an investigation of

chordality in matroids.

We look at a number of alternative definitions of chordality for matroids. We

carefully choose five definitions of chordality in matroids ranging from the

very weak to the very strong. We observe that for binary and for graphic

matroids these definitions are equivalent but for general matroids they differ

- sometimes to a significant degree.

There is a result originally given by Dirac [18] and Stanley [47] that shows

that supersolvability in the cycle matroids of graphs is equivalent to graph

chordality. As a result we will turn our attention to supersolvability. This is

more promising because it involves a matroid having a chain of modular flats.

Unfortunately, this is not enough. In any tree decomposition we construct we

want the intersection of the bags to be round and modular. Supersolvability

does not guarantee that every round flat is modular. As a result, we must

explicitly require that our matroids be supersolvable and saturated.

We see that supersolvable saturation is exactly the sort of structure we need.

The only issues left include the important requirement that our separations

be well behaved. However, as we have shown, in supersolvable saturated ma-

troids any minimal vertical separation is what we call a modular separation

and is well-behaved. We can capture the concept of the guts as a round
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modular flat whose rank will be exactly the connectivity of the separation.

This then allows us to construct a well-behaved tree decomposition for any

supersolvably saturated matroid. As we will see every supersolvably satu-

rated matroid has a graph of round modular flats which we call rotundas.

We can apply an algorithm to find a maximum weighted spanning tree of the

graph. Any such tree is an optimal tree decomposition for the matroid. It is

a matroidal tree decomposition in the language of Hliněný and Whittle [27]

such that its treewidth is exactly the rank of the largest rotunda in the tree.

Furthermore, this maximum rank is bounded from above and below by the

branchwidth of the matroid.

Given this we will turn to the original problem that motivated this thesis.

First, we are interested in a partial converse to Hliněný’s Theorem. This

means we are required to only consider supersolvably saturated matroids of

bounded branchwidth that are represented over a finite field. We look at

how to take the tree decomposition we have shown exists for such matroids

and show that we can describe the process of an automaton running over it

in counting monadic second-order logic. As we will see there are a number

of issues we must overcome. We describe each issue and our approach to

addressing it. We hope we may have paved the way for future investigations

of this problem.

1.1 The Structure of this Thesis

A quick guide to this thesis is as follows. Here I will indicate where a chapter

includes mostly previously known results or includes original material.

� Chapter 2

We begin by introducing some preliminary concepts
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� Chapter 3

We give the historical background to the problem that will occupy this

thesis.

� Chapter 4

In this chapter we give, as background, some well-known material about

modularity and roundness in matroids that will be used in later chap-

ters.

� Chapter 5

This chapter gives a background to chordal graphs and consists entirely

of known results.

� Chapter 6

We discuss in detail when and how chordality as a concept can be ex-

tended to matroids. Most of this material is original.

� Chapter 7

We introduce supersolvability in matroids and in particular supersolv-

ably saturated matroids as well as discussing when separations are

nicely behaved. Apart from the first few subsections most of this chap-

ter includes original material.

� Chapter 8

We establish a new result that supersolvably saturated matroids have

canonical tree decompositions.

� Chapter 9

Finally, we discuss to what extent we can use the tools and concepts ac-

quired in the previous chapters to prove a partial converse to Hliněný’s

Theorem.



Chapter 2

Preliminaries

In this preliminary chapter we give some introductory definitions for key con-

cepts used elsewhere in the thesis. We introduce graphs and matroids at least

in the terms we will need later. We also define representation of matroids,

extension fields and tree and branch decompositions.

2.1 Graphs

Let V be a finite non-empty set of vertices and let E be a multiset of 2-

element multisubsets of vertices called edges then G = (V,E) is a graph. If

every edge has exactly two vertices and there is never more than one edge

with the same pair of vertices (i.e. no parallel edges) then G is a simple

graph. We shall assume for the purpose of this thesis that all graphs are

simple unless otherwise stated.

Let G = (V,E). Let H = (V ′, E ′) be a subgraph of G if the vertices of H form

a subset of V (that is V ′ ⊆ V ) and the edges E ′ of H form a subset of those

edges in E whose vertices are in V ′. A path is a sequence of distinct vertices,

such that for each vertex in the sequence, except for the final vertex, there is

an edge containing it and the next vertex in the sequence. Two vertices are

7



8 CHAPTER 2. PRELIMINARIES

adjacent if there exists an edge between them. The neighbours of a vertex v

are all those vertices which are adjacent to v. We denote the neighbours of

vertex v in the graph G as NG(v).

A connected graph is a graph for which for any two vertices there exists a

path between them. A cycle is a sequence of vertices where the length of the

sequence is at least two and the start and end vertices are adjacent to each

other. An acyclic graph is a graph for which there exist no cycles.

A tree is a connected acyclic graph. A subtree is a subgraph of a tree. A

rooted tree (G, z) is a tree comprised of graph G = (V,E) with a root z

chosen from the set of vertices V . A free tree or an unrooted tree is a tree

which has no root vertex. A vertex v is the parent of u, if u is a child of v.

The complete graph on n vertices is a graph in which there is an edge be-

tween every pair of the n vertices. We denote this graph by Kn. A planar

graph is a graph which can be embedded in the plane so that no edges cross.

An isomorphism of two graphs G and H is generally described as a bijection

f : V (G)→ V (H) (that is between the vertex sets of G and H) such that any

two vertices in G, u and v, are only adjacent if and only if f(u) is adjacent

to f(v) in H.

A contraction of the edges of a graph G is an operation whereby an edge is

removed while simultaneously the two vertices previously joined are merged

into one. For two graphs G and H, the graph H is a minor of the graph G if

a graph isomorphic to H can be obtained from G by taking a subgraph and

then deleting and/or contracting (possibly zero) edges.
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2.2 Matroids

Refer to Oxley [41] and Hliněný [25] for the following. A matroid can be

defined in a number of different ways. We will give two such definitions.

First, a matroid is a pair M = (E,B) where E(M) is the ground set of M

and B ⊆ 2E(M) is a collection of bases of M . These satisfy the following rules:

B1. B is nonempty.

B2. If B1 and B2 are members of B and x ∈ B1 − B2, then there is an

element y ∈ B2 −B1 such that (B1 − x) ∪ y ∈ B.

Alternatively, a matroid is defined if it has a rank function, rM : 2E(M) →
N ∪ {0}, that satisfies the following rules:

R1. If X ⊆ E(M), then 0 ≤ rM(X) ≤ |X|.

R2. If X ⊆ Y , then rM(X) ≤ rM(Y ).

R3. (submodularity) If X and Y are subsets of E(M), then rM(X ∪ Y ) +

rM(X ∩ Y ) ≤ rM(X) + rM(Y ).

The rank rM(F ) for F ⊆ E(M) is the cardinality of a basis of M |F . For

rM(M) we write r(M).

The cycle matroid of a graph G is a matroid on the groundset E(G) and

is denoted M(G). The bases of M(G) are the spanning forests of G and

the circuits , minimal dependent sets, are the cycles of G. Then rM(G)(F ) =

|V (G[F ])| − ω(G[F ]) where F ⊆ E(G) and G[F ] is the subgraph induced by

F and ω(G[F ]) is the number of components of G[F ]. Another example of a

type of matroid is the column matroid where E(M) is a finite set of column

vectors. Such matroids have the usual linear dependency, bases, rank etc.
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The connectivity function λM : 2E(M) → N ∪ {0} is defined for all subsets

A ⊆ E(M) by λM(A) = rM(A) + rM(E(M)−A)− r(M). We can also write

λM(A,E(M) − A). A subset A ⊆ E(M) is k-separating if λM(A) ≤ k − 1.

A partition (A,E(M) − A) is called a k-separation if A is k-separating and

both |A|, |E(M) − A| ≥ k. A k-separation is vertical if λM(A) ≤ k − 1 and

min{rM(A), rM(E(M) − A)} ≥ k − 1. An alternative definition is that a

k-separation is vertical if clM(A) + E(M) − A and clM(E(M) − A) + A.

Finally, for n > 1, a matroid is called n-connected if it has no k-separation

for k = 1, 2, . . . , n−1. We say that a matroid is connected if it is 2-connected.

2.3 Represented Matroids

A field F is a structure satisfying axioms with respect to operations called

addition and multiplication. The real numbers R for example form a field.

Fields can also be finite provided that their cardinality is a prime power.

These are referred to as Galois Fields, and are denoted GF (q), where q = pk

for some prime number p and some positive integer k. See Oxley [41]. We

can represent matroids over fields including finite fields (see below). In doing

so we closely follow the definitions given in Hliněný [25].

Let A be a matrix and let M [A] be the matroid whose elements E(M) are

the column vectors of A. Let the independent subsets of E(M) be the lin-

early independent sets of column vectors of A. Then M [A] is the matroid

represented by A.

Let PG(n,F) be the projective geometry over Fn+1. Let X ⊆ PG(n,F).

Then 〈X〉 is the span of X.

A basis of a projective space is a maximal sized independent subset of the

vector space. Again let X ⊆ PG(n,F). Then the rank of X, r(X), is the

cardinality of the basis contained by X. A projective transformation between
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two projective spaces is a linear transformation between the underlying vec-

tor spaces.

A representation M [A] is loopless if it contains no zero elements. A loopless

representation M [A] is a multiset of points in the projective space PG(n,F)

where n = r(E(M [A])).

A point configuration is a finite multiset of points in a projective space of F.

Two point configurations in projective spaces over F are projectively equiva-

lent if there is a single projective transformation that maps between them.

An F-represented matroid is a projective equivalence class of point configu-

rations over F.

To obtain an actual instance of an F-represented matroid we just choose an

arbitrary point configuration from the equivalence class. Note that several

inequivalent representations over a field may exist for the same matroid.

2.4 Extension Fields

An extension field is a field which contains another defined field [37]. We

can sometimes describe the extension field as an algebraic statement over

elements of the contained field. Given the above section any F-represented

matroid being essentially a particular point configuration over some projec-

tive space can be “contained” in a larger projective space over an extension

field W such that F ⊆W. That is PG(n,F) ⊆ PG(n,W) where n = [W : F].

In fact, the degree of the extension can be any number.

If F is the finite field GF (q) and W is finite with dimension n over F then W
has qn elements. We denote W in this case as GF (qn).
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2.5 Tree and Branch Decompositions

Robertson and Seymour [42] introduced the concept of bounded width de-

compositions of graphs in the early 1980s in their proof of the Graph Minors

Theorem. Their focus was primarily on the use of such structures in finding

obstruction sets with respect to graphs of minor quasi-order. However, these

path/tree decomposition structures have proved useful leading to efficient

algorithms for bounded parameter values for many natural input restrictions

of NP -complete problems. In general many graph problems can be solved in

linear time when the input also includes a bounded width decomposition of

the graph.

The origins of branchwidth and treewidth are closely connected to the proof

of the Graph Minors Theorem. This theorem states that in an infinite list of

graphs there exist two graphs H and G such that H is a minor of G. Tree

and branch decompositions have since proved important because they allow

graphs to decomposed into more manageable pieces in such a way that we

know how to reconstruct the graph.

Branchwidth has some advantages over treewidth as a fixed parameter. While

finding optimal branchwidth is NP -hard for general graphs as is finding the

optimal treewidth [5] it has been proven that one can find the branchwidth

and indeed a branch decomposition for a planar graph in polynomial time

[45]. No such equivalent algorithm exists for treewidth. Moreover, when

rooted, branch decompositions always form binary trees giving a much sim-

pler structure.

Formally we have the following [42].

A tree decomposition of a graph G is a pair (T, β) where T is a tree and

β : V (T ) → 2V (G) is a function mapping nodes of T to subsets of vertices

of G, which we call bags . A tree decomposition must satisfy the following
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Figure 2.1: An example graph of treewidth 2.

X2 X1

X3

X4

X0

Figure 2.2: A possible tree decomposition of width 2.

X0

X1

X2

X3

X4

Figure 2.3: The bags hierarchy or tree decomposition for above tree decom-
position
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properties.

1. The union of all the β(t) for t in V (T ) is V (G)

2. For every edge e of G there exists t in V (T ) such that e has both ends

in β(t)

3. For every t, t′, t′′ in V (T ) if t′ is on the path of T between t and t′′ then

β(t) ∩ β(t′′) ⊆ β(t′). This is known as interpolation.

The treewidth of the tree decomposition is the maximum, across all t, of

|β(t)| − 1. We subtract 1 to ensure that actual trees have treewidth 1. The

graph G has treewidth w if w is the minimum such that G has a tree decom-

position of width w.

Given a graph G = (V,E) a branch decomposition is a pair (T, µ) where T

is a tree with every internal node ternary and µ is a bijection µ : E → l(T )

from E to the leaves of T (denoted by l(T )).

If we remove any edge of T we partition E into two sets A and E−A. Then

the width of this edge is exactly the number of vertices in common between

A and E −A or connectivity of (A,E(M)−A). In turn the maximum such

width for a given decomposition tells us how interconnected the decomposi-

tion is. We call this measure the width of the decomposition.

We can then ask what decomposition out of all the possible decompositions of

a graph has the smallest width. We call this smallest width the branchwidth

and any decomposition whose width is equal to this branchwidth is called

optimal . Thus branchwidth can be seen as a measure of the best way of

decomposing a given graph G — it tells us what is the smallest width for

any decomposition.
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0

1

2

3

Figure 2.4: An example graph of branchwidth 2.

Treewidth and branchwidth for graphs are closely related as are tree de-

compositions and branch decompositions. Robertson and Seymour [43] have

shown that the branchwidth bw(G) and treewidth tw(G) of a graph G are

related by

bw(G) ≤ tw(G) + 1 ≤ 3
2
bw(G).

2.5.1 Branch Decompositions of Matroids

Unlike graphs, as we have seen, matroids do not have vertices but only el-

ements of the groundset. These are similar to the edges in graphs. As a

result we can not talk about a set of vertices in common to two parts of the

matroid. However, we can talk about separations and the size of the connec-

tivity of these separations. We define a branch decomposition for a matroid

M as follows.

Given M let T be a tree where every internal node is ternary. Let l(T ) denote

the leaves of T . Then a branch decomposition of M is a pair (T, µ) where µ
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{0,
2}

{0, 3}

{2
, 3
}

{0, 1}

{1
, 2
}

03

12

23

01

Figure 2.5: A possible branch decomposition of width 2. The edge labels
represent the “guts” of the k-separation created by removing an edge from
the tree.
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is a bijection µ : E(M)→ l(T ) from E(M) to the leaves of T . If we remove

any edge of T we partition E(M) into two sets A and E(M)−A. Then the

width of this edge is exactly the connectivity of (A,E(M)− A) or λ(A).

In turn the maximum such width for a given decomposition tells us how

interconnected the decomposition is. We call this measure the width of the

decomposition. We can then ask what decomposition out of all the possi-

ble decompositions of a graph has the smallest width. We call this smallest

width the branchwidth and any decomposition whose width is equal to this

branchwidth is called optimal.
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Chapter 3

Logic, Graphs, Trees and

Matroids

We now introduce the core problem that motivates this thesis. As we will

see this problem is a fairly long-standing one. In short, suppose there is a

collection of mathematical objects. Now assume there is a logic or “theory”

that describes the space occupied by these objects. Then we ask two ques-

tions.

First, suppose there is a sentence that describes some subset of these ob-

jects. Then we ask given such a theorem is it possible to use a computer

to determine if any object belongs to this subset. Second, suppose we can

computably “recognise” that an object belongs to some subset. Then we ask

given such computable recognition of the subset must there be a theorem

which describes membership of the subset.

We discuss this problem from the point of view of words, graphs, trees and

matroids. The first question has been positively answered for all four classes

of object when we have bounded branchwidth (or treewidth). For each we

discuss the nature of the object involved, how to formulate logical statements

over the domain of such objects, and how to computably recognise classes

of such objects. In each case we state a theorem which ties these concepts

19
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together.

Our main interest is in the second question. In the process we discuss Cour-

celle’s Conjecture [16] the analogue of which we are trying to prove. Observe

that the formulation of recognisability and of the logic varies across classes

of objects since we are following the language of the key authors in each case.

3.1 Words

In 1960 Büchi [13] published a seminal paper in which among other results

he showed that a language is recognisable if and only if it can be described

by a sentence in Monadic Second Order Logic. We shall begin by discussing

Büchi’s result.

A domain is the set of possible values a variable in a logic can take. We begin

with the domain of words. A letter is a symbol and an alphabet Σ is a set of

letters. A word or string wn of length n ∈ N is an ordered sequence of letters

in some alphabet Σ. Moreover, Σ∗ is the set of all possible words given the

alphabet Σ. There is a map from the sequence [1, . . . , n] to Σ. We call each

element of 1, . . . , n a position in wn and each position has an associated letter.

For an alphabet Σ and a class of words over Σ we define the Monadic Second-

Order Logic for Words which we abbreviate as MS in the language of May-

hew, Newman and Whittle [39]. The syntax of MS is as follows [39]. Given

a word wn the domain of MS is defined to be the set of positions in wn

namely {1, 2, . . . , n}. We include the following symbols. We include vari-

ables x1, . . . , xn for individual positions in the word. We further include

X1, . . . , Xm for sets of positions. We also include the constants ∅, 0, 1, 2, . . ..

We include the function symbols {·}, ·−,∪ and ∩. We have the relation
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symbols =,∈,⊆ as well as the logic symbols ¬,∨,∧,∃,∀. Observe that < is

interpreted as is usual in number theory. The quantifiers ∀ , ∃ are applicable

to both positions and sets of positions and the relation = represents equality

for both positions and their sets. We include the following predicates:

1. Qa(x), which is true if the letter at position x is a.

2. Succ(x, y), which is true if y is the position which follows x.

3. first(x), which is true if x is the first position in w.

4. last(x), which is true if x is the last position in w.

Following Mayhew, Newman and Whittle [39] we recursively define formulas

in MS and at the same time define their sets of variables. The predicates

we listed above as well as the relations x = y, x ∈ X, X ⊆ Y and x < y

are called atomic formulas. A non-atomic formula, or formula for short, is

an expression generated by a finite application of the following rules. Every

formula ψ has an associated set of variables V ar(ψ) = varx(ψ) ∪ varX(ψ)

and free variables Free(ψ) = frx(ψ) ∪ frX(ψ) where varx(ψ) and frx(ψ)

relate to individual variables and varX(ψ) and frX(ψ) relate to set variables:

1) Every atomic formula, ψ, is a formula, and Free(ψ) = V ar(ψ).

2) If ψ is a formula, then ¬ψ is a formula, and V ar(¬ψ) = V ar(ψ) while

Free(¬ψ) = Free(ψ).

3) If ψ1 and ψ2 are formulas, and Free(ψi) ∩ (V ar(ψj) − Free(ψj)) = ∅
for {i, j} = {1, 2}, then ψ1 ∧ ψ2 is a formula, and V ar(ψ1 ∧ ψ2) =

V ar(ψ1) ∪ V ar(ψ2), while Free(ψ1 ∧ ψ2) = Free(ψ1) ∪ Free(ψ2).
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4) If ψ is a formula and Xi ∈ Free(ψ), then ∃Xi ψ is a formula, and

V ar(∃Xi ψ) = V ar(ψ), while Free(∃Xi ψ) = Free(ψ)− {Xi}.

A variable in V ar(ψ) is free if it is in Free(ψ), and bound otherwise [39]. A

formula is quantifier-free if all of its variables are free, and is a sentence if all

of its variables are bound. If ψ is a quantifier-free formula, then we define

the depth of ψ to be the number of applications of Rules 2), 3) and 4) above

required to construct ψ. Rule 3) insists that no variable can be free in one

of ψ1 and ψ2 and bound in the other, if ψ1 ∧ ψ2 is to be a formula. We can

overcome this constraint if necessary by renaming the bound variables in a

formula.

Note that if ψ is a formula and Xi ∈ Free(ψ), then we use ∀Xi ψ as a

shorthand for ¬(∃Xi ¬ψ). We also use the shorthand ψ1 ∨ ψ2 to mean

¬((¬ψ1) ∧ (¬ψ2)) and we use ψ1 → ψ2 to mean (¬ψ1) ∨ ψ2. Likewise, we

use ψ1 ←→ ψ2 to mean (ψ1 → ψ2) ∧ (ψ2 → ψ1). We use X * Y to stand for

¬(X ⊆ Y ).

Now let Σ be some alphabet and let W ⊆ Σ∗ be some class of words. Let paw,

for w ∈ W and a ∈ Σ, be the set of positions of letter a in w. Then let Pw be

the set of positions in w ∈ W . That is Pw is defined for some particular word

w ∈ W . Then let ψ be a formula in MS. We define an interpretation of ψ

to be a triple (Pw, τx, τX) where τx is a function from frx(ψ) into Pw and τX

is a function from frX(ψ) into the power set of Pw. We recursively define

what it means for (Pw, τx, τX) to satisfy ψ. We begin by assuming that ψ is

atomic. Then we have these rules:

� If ψ is Xi ⊆ Xj for Xi, Xj ∈ varX(ψ), then (Pw, τx, τX) satisfies ψ if

and only if τX(Xi) ⊆ τX(Xj).

� If ψ is xi = xj for xi, xj ∈ varx(ψ), then (Pw, τx, τX) satisfies ψ if and
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only if τx(xi) = τx(xj).

� If ψ is xi < xj for xi, xj ∈ varx(ψ), then (Pw, τx, τX) satisfies ψ if and

only if τx(xi) < τx(xj).

� If ψ is xi ∈ Xi for xi ∈ varx(ψ) and Xi ∈ varX(ψ), then (Pw, τx, τX)

satisfies ψ if and only if τx(xi) ∈ τX(Xi).

� If ψ is Qa(xi) for xi ∈ varx(ψ) and a ∈ w for some w ∈ W , then

(Pw, τx, τX) satisfies ψ if and only if τx(xi) ∈ paw.

� If ψ is Succ(xi, xj) for xi, xj ∈ Pw, then (Pw, τx, τX) satisfies ψ if and

only if τx(xj)− τx(xi) = 1.

� If ψ is first(xi) for xi ∈ Pw, then (Pw, τx, τX) satisfies ψ if and only if

τx(xi) = 1.

� Finally, if ψ is last(xi) for xi ∈ Pw, then (Pw, τx, τX) satisfies ψ if and

only if for some w ∈ W it follows that τx(xi) = |w|.

Next suppose that ψ is not atomic. Then we have the rules:

� If ψ is ¬φ for some formula φ, then (Pw, τx, τX) satisfies ψ if and only

if (Pw, τx, τX) does not satisfy φ.

� If ψ is φ1 ∧φ2, then (Pw, τx, τX) satisfies ψ if and only if (Pw, τx �frx(φ1)
, τX �frX(φ1)) satisfies φ1 and (Pw, τx �frx(φ2), τX �frX(φ2)) satisfies φ2.
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� If ψ is ∃xi φ for xi ∈ frx(φ), then (Pw, τx, τX) satisfies ψ if and only

if there is an element y ∈ Pw such that the interpretation (Pw, τx ∪
{(xi, y)}, τX) satisfies φ.

� If ψ is ∃Xi φ for Xi ∈ frX(φ), then (Pw, τx, τX) satisfies ψ if and only

if there is a subset Y ⊆ Pw, such that the interpretation (Pw, τx, τX ∪
{(Xi, Y )}) satisfies φ.

Note that if ψ is an MS sentence, then we can say that W satisfies ψ (or ψ

is satisfied by W ) if the interpretation (Pw, τx, τX) satisfies ψ. Alternatively

we can say that Pw and so W is MS-definable.

Example 3.1.1. In MS we can express ideas such as “the word contains the

sequence of letters ”aba”” with the statement ∃x, y, z Qa(x) ∧ (Succ(x, y) ∧
Qb(y)) ∧ (Succ(y, z) ∧ Qa(z)).

We extend MS to include a counting predicate. Counting monadic second-

order logic for words, abbreviated to CMS, is defined by Courcelle [15] as

the extension of MS by the unary predicate symbols modp,q where p < q

are non-negative integers. This has the intended meaning: modp,q(V) =

True iff |X| = p mod q, where X is a set of positions and V is the variable

for the set X. Sometimes we use the predicate symbol cardp,q(X) to mean

|X| mod q = p. Observe that in this case we must also add the symbols |.|,+
and <.

Example 3.1.2. Consider a word w over Σ = {a, b}. Then suppose we

assert that there is some sequence of letters in w such that this sequence

has an even number of letters e.g. xaby or xaaaay or xbbaabby where x

and y are other parts of the word. We can define this with the statement

∃X [∀x ∈ X ∃y ∈ X (Succ(x, y) ∨ Succ(y, x) ) ∧ card0,2(X) ] )
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3.1.1 Recognisability for Words

We want to test that a given word belongs to the class of words we are in-

terested in. To achieve this we use a mechanism called a Finite Automaton.

A deterministic finite automaton is a quintuple M = (Q,Σ, q0, F, δ) where

� Q is a finite set called the set of states,

� Σ is a finite set of symbols, termed the alphabet, and

� q0 ∈ Q is called the initial state,

� F ⊆ Q are the accepting states,

� δ : Q× Σ→ Q is a function called the transition function.

As seen in Downey [20] we will usually denote states by {qi : i ∈ G} for some

set G. We can think of automata as machines that act to accept or reject

strings from Σ∗ and we consider the machine M as starting on the leftmost

symbol of a string σ ∈ Σ∗, in state q0 then moving from state to state as it

processes each symbol.

A non-deterministic finite automaton (orNFA) is a quintupleM = (Q,Σ, S, F, δ)

where

� Q is a finite set called the set of states,

� Σ is a finite set of symbols, termed the alphabet, and
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� S ⊆ Q are the initial states,

� F ⊆ Q are the accepting states,

� δ : Q× Σ→ P(Q) is the non-deterministic transition function.

We can see that a NFA is structurally similar to a DFA except that it can

transition to multiple states at once and can have multiple starting states. It

has been shown (see Sipser [46]) that DFAs and NFAs are equivalent that

is they accept exactly the same languages.

A language over words over some alphabet Σ is recognisable if it is possible to

construct a deterministic finite automaton which accepts or rejects a given

word as belonging to the language. By the Myhill-Nerode theorem, given

next, this in turn implies that it is possible to “process” the language, using

a finite automaton, in finite time.

3.1.2 Regularity and Myhill-Nerode

We call a relation R on a set Σ∗ a right congruence (with respect to concate-

nation) if and only if

(a) R is an equivalence relation on Σ∗;

(b) for all x, y ∈ Σ∗, xRy iff for all z ∈ Σ∗, xzRyz.
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For a language L, the canonical right congruence (induced by L) is the rela-

tion ∼L defined by

x ∼L y iff for all z ∈ Σ∗, xz ∈ L iff yz ∈ L.

Note that “an equivalence relation on Σ∗ is said to have finite index if it has

only a finite number of equivalence classes over Σ∗” [20]. L is finite state if

it can be recognised by a finite state automaton.

Theorem 3.1.3 (The Myhill-Nerode theorem [20]).

1. The following are equivalent over Σ∗:

(a) L is finite state;

(b) L is the union of a collection of equivalence classes of a right con-

gruence of finite index over Σ∗;

(c) ∼L has finite index.

2. Furthermore, any right congruence satisfying (b) is a refinement of ∼L.

This can be restated to say that a language L is regular (recognisable by

some automaton) if and only if it is finite index.

3.1.3 Büchi’s Theorem

We now turn to a significant result which ties together the Monadic Second-

Order Logic of Words (MS) and recognisability by a finite automaton. This
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is the well-known Büchi’s Theorem which is the historical inspiration for the

work in this thesis.

Given an alphabet Σ and some set of words W over Σ (e.g. all words contain-

ing the sequence “aba”) how does the logical power of describing the class

in MS compare with the power of recognizing the set of words using a finite

automaton? Büchi proved that the power of logically defining such a class is

equal to that of recognizing the class.

Theorem 3.1.4 (Büchi (1960) [13]). A language is definable in second-order

monadic logic if and only if it is recognisable.

In the standard proof usually given for this theorem one first shows that

recognisability of words implies definability in MS. It is shown that one

can construct a logical statement that describes the transition function of

an automaton such that if the automaton accepts a word then the logical

statement is true. This operates over the logic for words.

Next it is shown that definability in MS implies recognisability by a finite

state automaton. To achieve this it is usually shown that one can construct an

automaton with a transition function that models a special logical statement

that accepts a word if, as the transition function traverses the statement, it

is ever true (and rejects if the statement is ever false).

3.2 Graphs

We now investigate how this problem might relate to more complex objects

such as graphs. We follow Courcelle [15] in doing this. We will see that we

can not do what we did for words for graphs in general. We need further

structure and the usual approach is to require a tree decomposition.
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A finite alphabet Σ is ranked if there is a function α : Σ→ N. If a ∈ Σ then

α(a) is called the arity of a. Let A be a ranked alphabet with a mapping

τ : A 7→ N so that for a ∈ A we see that τ(a) is the type of a.

Consider general graphs as defined earlier. Now extend a graph to include a

boundary on which graphs can be glued together. Then let FG(A)k be the

family of graphs labeled by elements of A with a boundary size of k. Then

FG(A) is all graphs for any k.

3.2.1 The Logic of Graphs

A graph G ∈ FG(A) is a logical structure with two domains consisting

of vertices and edges. Let A be a ranked alphabet. The symbols in this

logic include v for vertices, e for edges, si, called a source, for a constant

vertex for every 1 ≤ i ≤ k and edga which is a predicate symbol for every

a ∈ A. That is the graph is edge-labeled. With G ∈ FG(A)k for some k we

associate the logical structure < VG, EG, (siG)i∈[k], (edgaG)a∈A > where VG is

the domain of vertices, EG is the domain of edges, siG is the ith source of G

and edgaG(e, v1, v2) is true if and only if e has label a and the vertices of e

are v1, v2. (In fact Courcelle [15] does this for hypergraphs).

We build formulas in this logic by using variables u, x, y, . . . and set variables

X, Y, . . . of vertex or edge kind. These are always finite since FG(A) is finite.

Let W be a sorted set of variables {u, u′, . . . , U, U ′, . . .} each of them being

vertices or edges. Then we can let the set Ws = W ∪ {s1, . . . , sk}. Then we

can define the atomic formulas AA,k,q(W ) as

� u = u′ for u, u′ ∈ Ws where u and u′ are of the same kind.

� u ∈ U for u, U ∈ Ws where U is a set of elements of the same kind as

u.
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� edga(u, u
′
1, u
′
2) where u, u′1, u

′
2 ∈ Ws and u is an edge variable and u′1, u

′
2

are vertex variables.

� cardn,p(U) where U ∈ Ws, 0 ≤ n < p, 2 ≤ p < q.

Remark 3.2.1. cardn,p(X) = true if and only if |X| = n mod p.

We now define CL(h)
A,k,q(W ) to be the set of formulas defined inductively as

i) φ ∈ CL(h)
A,k,q(W ) if φ ∈ AA,k,q(W )

ii) φ1 ∧ φ2, φ1 ∨ φ2,¬φ1 ∈ CL(h)
A,k,q(W ) if φ1, φ2 ∈ CL(h)

A,k,q(W )

iii) ∃uφ,∀uφ ∈ CL(h)
A,k,q(W ) if φ ∈ CL(h)

A,k,q(W ∪ {u}), u /∈ W

iv) ∃Uφ, ∀Uφ ∈ CL(h)
A,k,q(W ) if φ ∈ CL(h)

A,k,q(W ∪ {U}), U /∈ W

The parameter h denotes the depth of nested quantifications for the formula

φ. Then the least h such that φ ∈ CL(h)
A,k,q(W ) is called the height of φ.

Notation 3.2.2. We let CLA,k,q(W ) :=
⋃{CL(h)

A,k,q(W )|h ≥ 0} and CLA,k(W ) :=⋃{CLA,k,q(W )|q ≥ 2}. Often we drop the subscripts A, k and q.

Finally, a property of graphs in FG(A)k for some type k is CL-definable if

there exists a closed formula φ ∈ CLA,k such that G satisfies this property if

and only if φ holds in G. A set L ⊆ FG(A)k is CL-definable if the member-

ship in L is such. For shorthand we can refer to a property as definable and

mean that it is CL-definable.
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3.2.2 Treewidth

As mentioned a natural question arises as to whether we can prove a result

like Büchi’s Theorem for graphs in general. There is however the obvious

problem that while one can clearly run an automaton over a path or word

it is not so clear how one can run an automaton over a general form graph.

The usual solution to this problem is to require some extra structure in the

graph in particular a tree-like structure. We shall first describe two ways such

tree-like structure is defined and show their equivalence. We shall then give

a theorem of Courcelle [15] that shows that, as long as a class of graphs has

bounded treewidth, if it is definable in a Counting Monadic Second-Order

Logic such as that defined earlier, then it must be recognisable by an au-

tomaton.

We saw in Chapter 2 the definition of tree decomposition given by Robertson

and Seymour [42]. For the following we shall be talking about simple graphs.

Let G be such a graph. A k-clique in a graph G is a subset K ⊆ V (G) of

size k such that there is an edge between every two vertices in K. A graph

G is a k-tree if either

� G is the complete graph on k vertices; or

� G is obtained recursively from a k-tree G′ by attaching a new vertex v

to a k-clique K in G′ such that v is a neighbour of k vertices in K.

A partial k-tree is any subgraph of a k-tree.

Theorem 3.2.3 (Robertson and Seymour [42]). The set of partial k-trees is

equivalent to the set of graphs with treewidth at most k.

The preceeding theorem is useful as inspiration for our later work with tree

decompositions of certain classes of matroid.
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3.2.3 Recognising the Tree Decomposition of a Graph

Courcelle [15] defines a generic concept of automaton to be a triple (h,A,C)

whereA is an algebraic structure, C is a set of final states and h is a homomor-

phism that maps a recognisable set to A. Where an automatic structure is

needed Courcelle further defines transition functions based upon this generic

automaton.

We can model this automaton using a standard leaf to root tree automaton

(Q,A, δ = δv ∪ δe, q0, F ). Q is the finite set of states. δ is the transition

function made up of a transition mapping for vertices, δv, and a transition

mapping for edges δe, which both map states to states. q0 is the initial state

at the leaves and F is the set of possible accepting states. If r is the root

vertex we accept if δv(r) ∈ F .

3.2.4 Courcelle’s Theorem [15]

Remember that FG(A)k is the set of all graphs over a ranked alphabet A

with k distinguished vertices forming its boundary. Even if we can not decide

that a set X is finite, if it is given as a finite list of elements, then we say it

is effectively given [15].

Theorem 3.2.4 (Courcelle [15]). Every definable subset of FG(A)k is an

effectively given recognisable set of graphs.

Essentially, in proving this theorem, Courcelle [15] shows that for any class

of graphs with bounded treewidth k it is possible to recognise members of

that class if it is possible to describe the class using the logic CL. This the-

orem has also been stated so that the requirement for bounded treewidth is

explicit as follows.
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Theorem 3.2.5 (Courcelle’s Theorem as given by Downey and Fellows [20]).

If F is a family of graphs described by a sentence φ in second-order monadic

logic with a counting predicate, then the relation ∼F has finite index in the

large universe of t-boundaried graphs.

In proving these theorems it is shown that for each input statement φ and set

of bounded t-treewidth graphs we can test whether the input graph can sup-

port the statement (that is “partially equipped” in the language of Downey

and Fellows [20]). Courcelle shows this inductively on the length of φ by

examining all the possible different forms the statement φ can take.

The theorem has been extended by Arnborg et al [2]. The corollary [2] that

one can recognise a graph of bounded treewidth in polynomial time if it can

be represented in MSO logic has proved quite important.

3.3 Trees

Now we consider logic and recognisability for trees and in particular for lan-

guages involving labeling of trees. Courcelle has shown that for unordered

unranked edge-labeled trees recognisability by a finite automaton is equiva-

lent to definability by a sentence in a counting monadic second-order logic.

Again we follow the language of Courcelle [15]. Let A be a finite ranked

alphabet consisting of symbols of type 1 or 2 where the type indicates the

number of vertices in the associated edge. Then we can let Ai, i ∈ {1, 2}, be

the subsets of A for each type. Given this a tree is a graph G in FG(A)1

satisfying the following. Observe that the trees have a bound of size k = 1.

We call the singular source for each tree the root.

1. For every vertex v ∈ VG there is a path from the root of the tree to v.
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2. Every vertex different from the root is the target of one and only one

edge of type 2.

3. Every edge is labeled with an element from A.

4. The root is the target of no edge.

If an edge is of type 2 then we call it binary . We have the tree operations |.|
and .̂. |.| joins two existing trees together and .̂ joins a vertex to a tree. In

brief with both of these operations we first take the disjoint sum then “fuse”

the roots of each together and finally redefine so that the resulting tree has

only one root node. || is both associating and commutative and we treat it

as an infix operation. Observe that if G and G′ are trees then so are G||G′
and b̂(G) (where b̂(G) means the operation of joining a vertex b to the tree

G - Courcelle [15] uses this notation). We let T (A) be our class of trees just

as FG(A) is our class of graphs. In fact T (A) is algebraic over FG(A) since

|| and .̂ are defined over operations of FG(A).

The logic for trees is exactly the logic for graphs given earlier but applied

only to the objects in T (A) and using its operations. Observe that a subset

L ⊆ T (A) is CL-definable if and only if it is definable as a set of trees since

T (A) is CL-definable as a subset of FG(A)1.

Furthermore, as with graphs Courcelle [15] defines a generic concept of au-

tomaton which we can model using a standard leaf to root tree automaton

(Q,A, δ = δv ∪ δe, q0, F ). Q is the finite set of states. δ is the transition

function made up of a transition mapping for vertices, δv, and a transition

mapping for edges, δe. q0 is the initial state at the leaves and F is the set of

possible accepting states. If r is the root vertex we accept if δv(r) ∈ F .
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3.3.1 Courcelle’s Theorem for Trees [15]

The actual theorem is as follows. Observe that the sets Rec(FG(A)) ⊆
FG(A) and Rec(T (A)) ⊆ T (A) are those sets recognisable by an automaton.

Theorem 3.3.1 (Courcelle [15]). Let L ⊆ T (A). Then the following are

equivalent:

i) L ∈ Rec(FG(A)).

ii) L ∈ Rec(T (A)).

iii) L is CL-definable.

Our prime interest in this thesis is in statement ii) implying iii). Courcelle

himself states that he proves the result that statement iii) implies i) in his

theorem for graphs given earlier. He proves that ii) implies iii) by showing

that he can construct transition functions mapping movement through a la-

beled unbounded and unordered tree and describe them using a sentence in

CL.

Courcelle describes separate transition functions for the automaton for the

vertices of the input tree as opposed to the edges of the tree. These functions

test against the edge labels at the current position the automaton is with re-

spect to the tree. This is in essence similar to the standard proof given for

Büchi’s Theorem for the same direction.
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3.4 Matroids

Next, we consider how the problem under discussion can be extended to ma-

troids.

Hliněný [25] established the analogue for Courcelle’s Theorem for matroids

that are represented over a finite field. This is a very special subclass of

matroids that includes all graphs as well as vector subspaces. Hliněný has

generalized Courcelle’s theorem showing that for any class of represented ma-

troids over a fixed field with bounded branchwidth it is possible to recognise

members of that class if it is possible to describe the class using a counting

monadic second-order logic.

3.4.1 Branch Decompositions

First a note about branch decompositions. See Chapter 2 for definitions of

branchwidth and branch decomposition for graphs and matroids. We adopt

the notation bw(M) and bw(G) for the branchwidth of matroid M and graph

G. As we saw for graphs the branchwidth and treewidth of a graph bound

each other so can be treated as equivalent for these purposes.

3.4.2 A Monadic Second-Order Logic for Matroids

Next we must define a monadic second order logic for matroids. The syn-

tax for the counting monadic second-order logic for matroids represented

over a finite field, abbreviated to CMSM by Hliněný [25], which is defined

over the class of matroids, represented over a finite field, includes the fol-

lowing symbols. We include variables x1, . . . , xn for individual elements in

the represented space that is vectors in the vector space. We further include

X1, . . . , Xm for element sets. We also include the constants ∅, 0, 1, 2, . . . as

well as E.
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We further include the function symbols | · |, {·}, ·−,+,∪ and ∩. In addition

we have the relation symbols =,∈,⊆ as well as the logic symbols ¬,∨,∧, ∃, ∀.
The quantifiers ∀ , ∃ are applicable to both element and set variables and the

relation = represents equality for both elements and their sets. In addition

we include the following predicates (or formulas):

1. indep(F ), where F is a set variable, and the predicate is true iff F is an

independent set in the matroid.

2. cardp,q(X) means |X| mod q = p.

3. we write φ→ ψ to stand for ¬φ ∨ ψ.

4. in addition we add the following specific predicates for matroids derived

from those above

i. X ⊇ Y ≡ ∀x(x ∈ X ∨ x /∈ Y )

ii. X ⊆ Y ≡ ∀x(x ∈ Y ∨ x /∈ X)

iii. X ⊂ Y ≡ X ⊆ Y ∧X 6= Y

iv. ¬X ≡ ∀x ( x ∈ E −X )

3.4.3 Tree Automata

We now give an alternative formulation of a tree automaton to that used

earlier by Courcelle [15]. A rooted ordered sub-binary tree is such that each

of its vertices has at most 2 children ordered left to right. Let Σ be a finite
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alphabet of symbols. Then Σ∗∗ is the class of rooted ordered sub-binary trees

with vertices labeled from Σ.

A leaf to root tree automaton (K,Σ, ∂t, q0, F ) has a set of states K, an al-

phabet Σ, a transition function ∂t : K × K × Σ → K, a starting state q0

and a set of accepting states F . Let A be a leaf to root tree automaton.

Let T ∈ Σ∗∗ be a rooted ordered sub-binary tree. Let TL and TR be the left

and right subtrees of T or ∅ if they do not exist. Let a be the symbol from

Σ assigned to the root node of T . Then we can in turn define a function

t-evalA : Σ∗∗ → K recursively as follows:

� t-evalA(∅) = q0

� t-evalA(T ) = ∂t(t-evalA(TL), t-evalA(TR), a)

Then T is accepted by A if t-evalA(T ) ∈ F . A tree language L ⊆ Σ∗∗ is

called finite state if it is accepted by some tree automaton.

3.4.4 A Myhill-Nerode Analogue

Hliněný [25] defines the concept a of fixed size t-boundaried matroid which is

similar to Courcelle’s concept of a boundaried graph and of parse tree which

is similar to a labeled tree decomposition and over which a tree automaton

would run. Parse trees have fixed width boundaries as well. He gives the

following result.

Lemma 3.4.1. An F-represented matroid M has branchwidth at most t+ 1

if and only if M is parsed by a spanning t-boundaried parse tree.
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Next he gives an analogue to the Myhill-Nerode theorem for graphs. Let Bt
be the set of all F-represented matroids that have branchwidth at most t.

Let Tt ⊂ Π∗∗t−1 be the language of all (t − 1)-boundaried parse trees over F
with the (ranked) alphabet Πt−1. Let B̄t be the set of all (t− 1)-boundaried

matroids parsed by trees from Tt.

Then suppose that M is a set of represented matroids. We say M is finite

state if the collection of all parse trees parsing the members ofM is Myhill-

Nerode finite state. We say that M is t-width finite state for t ≥ 1 if the

restriction M∩Bt is finite state.

Theorem 3.4.2 (Myhill-Nerode Analogue for Represented Matroids). Let

t ≥ 1 and let F be a finite field. A set of F-represented matroidsM is t-width

finite state if and only if the equivalence ≈M,t has finite index over B̄t.

3.4.5 Hliněný’s Theorem [25]

Before stating his theorem, Hliněný [25] gives an updated formulation of

Courcelle’s theorem [15] similar to that restated by Downey and Fellows [20]

given earlier. MS2 is a counting monadic second-order logic for graphs sim-

ilar to the logic CL of Courcelle [15].

Theorem 3.4.3 (Courcelle’s Theorem). If G is a family of graphs described

by a sentence in MS2 for graphs then G is t-width finite state for every t ≥ 1.

He then gives the following theorem.

Theorem 3.4.4. Let F be a finite field. If M is a set of F-represented ma-

troids described by a sentence in the logic CMSM over matroids then M is

t-width finite state for every t ≥ 1.
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Hliněný [25] proves this result by induction on the length of the statement

φ. Essentially he proves the inductive statement given below.

Lemma 3.4.5. Let φ be a formula in the CMSM logic of matroids and let

σ be a partial equipment signature for φ. Then ≈φ has finite index on the

universe of σ-partially equipped u-boundaried matroids.

Observe that a logical formula, or statement, is partially equipped if the free

variables of the formula, given the domain of the logic, support the formula

(see [20]). A partial equipment signature σ is a collection of free variables

that one uses to support a formula [20]. A formula is σ-partially equipped if

there is a partial equipment signature σ that supports the formula [20].

Hliněný proves the induction by first showing that the relation ≈φ is finite

index for each of the atomic formulas for CMSM . He then shows that for

each of the operations based on the connectors ∧,¬,∃ the relation ≈φ based

on the statement φ must also be finite index. As he points out we can obtain

∨ and ∀ from these connectors.

3.5 Courcelle’s Conjecture

As we have seen Büchi’s Theorem (Theorem 3.1.4) and Courcelle’s Theo-

rem for Trees (Theorem 3.3.1) are proofs in both directions. That is recog-

nisability is shown to equal definability for words and for unbounded un-

ordered trees. However, Courcelle’s Theorem for graphs (Theorem 3.2.4)

and Hliněný’s Theorem (Theorem 3.4.4) are in one direction only whereby

definability implies recognisability but not the converse. Soon after giving

his famous theorem for graphs (Theorem 3.2.4) Courcelle conjectured [16]

that the converse is true but again only for graphs of bounded treewidth.
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3.5.1 Trying to Prove the Conjecture

Since this conjecture was made a number of graph theorists have been work-

ing to prove the result though for restricted cases. Courcelle himself proved

the conjecture for graphs of bounded treewidth k where k ≤ 2 (ie for series-

parallel graphs) [16]. Kaller [31] and Bodlaender and Jaffke [28] have showed

that the conjecture in fact holds for graphs of treewidth 3 (e.g. Halin graphs)

and also for k-connected graphs. Bodlaender et al [7] have shown that the

conjecture holds if we also require our graphs to be chordal or of bounded

chordality.

As of late 2016 Bojanczyk and Pilipczuk [8] have proven the conjecture in

the general case for graphs of bounded treewidth. We will not be discussing

this result in any detail in this thesis. While the result is important it is

not directly relevant to the approach taken here. Instead we will examine in

more detail the result of Bodlaender et al [7] which showed that the conjec-

ture holds if we also require our graphs to be chordal or of bounded chordality.

3.5.2 Bodlaender, Heggernes and Telle

In this thesis we will be proving an analogue to a result of Bodlaender,

Heggernes and Telle [7]. These authors showed that recognisability equals

definability for graphs of bounded treewidth and bounded chordality. We

shall briefly examine this result. Actually they prove two results.

First they show that any recognisable family of connected edge-labeled chordal

graphs of bounded treewidth is definable in a counting monadic second-order

logic for graphs. This is the result we shall be following. Let G be a graph.

Paraphrasing from Bodlaender et al. [7] a perfect elimination ordering of G

is a linear ordering of the vertices of the graph so that the higher-numbered

neighbours of any vertex form a clique. An orientation of the edges of a

graph has the adjacent out-neighbours property if for every pair of edges
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{u, v}, {u,w} (for u, v, w ∈ V (G) if {u, v} is directed from u to v and {u,w}
is directed from u to w then v and w are adjacent in G.

Bodlaender et al. rely on the equivalency of the following statements for

graphs.

i) G is chordal.

ii) G has a perfect elimination ordering.

iii) G has a tree decomposition of optimal width where each bag induces a

clique in G.

iv) There is an acyclic orientation of the edges of G with the adjacent

out-neighbours property.

This is a well-known result. They then show that given an acyclic orienta-

tion of the edges of G with the adjacent out-neighbours property they can

find a spanning tree T for G which can then be used to construct a tree

decomposition of G. Essentially Bodlaender et al. show that constructing

T is definable in a counting monadic second-order logic essentially the same

as the logic CL of Courcelle [15]. They then label the vertices of T with the

bounded elements of each bag of the associated tree decomposition. This

results in a labeled tree TL.

They are then able to apply, or as they say “mimic”, Courcelle’s Theorem

for Trees (Theorem 3.3.1) to show that TL is recognisable if and only if it

is definable by a statement φ. Finally they show the quantifications over

elements of TL directly translate to quantifications over the vertex and edge

sets in G. This means that φ can be translated to sentence φ’ such that φ

holds for the TL if and only if φ’ holds for G.

Bodlaender et al. [7] also prove a more general result for graphs of bounded
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chordality and bounded treewidth. This is not relevant to this thesis.

3.5.3 A Converse for Matroids

This leads to a question. Can one find and prove a converse to Hliněný’s The-

orem (Theorem 3.4.4) for matroids represented over a finite field of bounded

branchwidth in a similar way to the various partial converses to Courcelle’s

Theorem for graphs? Answering this question will consume the rest of this

thesis. We will show that one can establish a result for matroids represented

over a finite field of bounded branchwidth that is an analogue to Bodlaender

et al. [7] and thus a partial converse to Hliněný’s Theorem [25]. For this we

need to find a class of represented matroids that has the structure that we

need.
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Chapter 4

Modularity and Roundness

In this chapter, we give some known results that will be background for what

follows, in our search for the structure in matroids that we will need to prove

a partial converse to Hliněný’s Theorem [25]. Initially we are interested in

the concept of modularity. This is both important in its own right and be-

cause it underlies supersolvability. Many of the results relating to modularity

are due to Brylawski [12]. We are also interested in the roundness of matroids.

4.1 Modularity

Lemma 4.1.1 (Oxley [41]). Let M be a matroid and let F be a flat of M .

Let x ∈ E(M) and x /∈ F . Then clM/x(F ) = clM(F ∪ x)− x.

Let M be a matroid. Two flats F1 and F2 form a modular pair if rM(F1) +

rM(F2) = rM(F1 ∪F2) + rM(F1 ∩F2). Furthermore a flat F of M is modular

if F and X form a modular pair for every other flat X of M .

Consider the following theorem of Brylawski [12]. The original was written

in terms of lattice theory and has here been expressed in terms of matroids.

45



46 CHAPTER 4. MODULARITY AND ROUNDNESS

Theorem 4.1.2 (Brylawski [12]). Let M be a loopless matroid and let F be

a flat of M then the following are equivalent

(i) F is modular.

(ii) For all flats Z of M such that F ∩ Z = ∅ we have rM(F ) + rM(Z) =

rM(F ∪ Z).

(iii) For all flats Z of M with F ∩Z = ∅ and clM(F ∪Z) = E(M) we have

rM(F ) + rM(Z) = rM(F ∪ Z).

Proof. We first prove that (i) holds if and only if (ii) holds. Assume that F

is not modular. We show that in this case (ii) does not hold. Then there

exists a flat Z such that rM(F ∪ Z) + rM(F ∩ Z) < rM(F ) + rM(Z). This

means that rM(F ∩Z) < rM(F ) + rM(Z)− rM(F ∪Z). We can assume that

rM(F ∩ Z) 6= 0 since otherwise (ii) clearly does not hold.

Now let I be a maximal independent set of M contained in F ∩ Z. Extend

I to a basis B of M |Z. Let Z ′ = clM(B − I). Then we make the following

claims.

4.1.2.1. rM(Z ′) = rM(Z)− |I|.

Proof. Observe that rM(Z ′) = rM(clM(B − I)) = rM(B − I). Since B − I
is independent we see that rM(B − I) = |B − I| = |B| − |I|. Furthermore

rM(B) = rM(Z) since B is a basis of M |Z. Hence rM(Z ′) = rM(Z)−|I|.

4.1.2.2. rM(F ∪ Z ′) = rM(F ∪ Z).

Proof. Observe that rM(F ∪Z ′) = rM(F ∪ clM(B− I)) = rM(F ∪ (B− I)) =

rM(F ∪ B). However rM(F ∪ B) = rM(F ∪ Z) since B is a basis of M |Z
hence the result follows.
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4.1.2.3. F ∩ Z ′ = ∅.

Proof. Consider x ∈ F . We can see that there is no y ∈ B − I such that

y is in F ∩ Z. We note that F ∩ Z ⊆ F . Suppose x is in F ∩ Z ′. Thus

x ∈ clM(B − I). Now F ∩ Z ′ ⊆ F ∩ Z, so x ∈ cl(I). Since B is a basis of

M |Z, we have x /∈ B. Since x ∈ cl(B − I) and x ∈ cl(I), there are circuits

C and C∗ with x ∈ C ⊆ (B − I)∪ x and x ∈ C∗ ⊆ I ∪ x. However, applying

circuit elimination to C and C∗ gives a circuit C∗∗ contained in B, which is

a contradiction. Thus F ∩ Z ′ must be empty.

Observe that since F ∩ Z ′ = ∅ and I is a maximal independent subset of M

contained in F ∩ Z then rM(F ∩ Z ′) = 0 = rM(F ∩ Z)− |I|.

4.1.2.4. rM(F ∩ Z ′) < rM(F ) + rM(Z ′)− rM(F ∪ Z ′).

Proof. Applying these previous claims we see that

rM(F ) + rM(Z ′)

= rM(F ) + rM(Z)− |I|
> rM(F ∪ Z) + rM(F ∩ Z)− |I|
= rM(F ∪ Z ′) + rM(F ∩ Z ′)

This means that rM(F ∩ Z ′) < rM(F ) + rM(Z ′)− rM(F ∪ Z ′).

By the above claim it follows that F must be modular if for all flats Z of M

such that F ∩ Z = ∅ we have rM(F ) + rM(Z) = rM(F ∪ Z).

We now prove that (ii) is equivalent to (iii). If (ii) holds then certainly the

statement (iii) holds. So assume that (ii) does not hold. The goal is to show

that (iii) does not hold. Let F and Z be flats with F ∩ Z = ∅ such that
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rM(F ) + rM(Z) > rM(F ∪ Z). Let I be a maximal independent set of M

contained in F ∪Z. Then we can extend I to a basis B of M . Let J = B− I
and let Z ′ = clM(Z ∪ J). Then we make the following claims.

4.1.2.5. rM(Z ′) = rM(Z) + |J |.

Proof. Observe that rM(Z ′) = rM(clM(Z∪J)) = rM(Z∪J). By construction,

rM((F ∪ Z) ∪ J) = rM(F ∪ Z) + rM(J). Since Z ⊆ F ∪ Z, we also have

rM(Z ∪ J) = rM(Z) + rM(J), that is rM(Z ∪ J) = rM(Z) + |J |.

4.1.2.6. rM(F ∪ Z ′) = r(M).

Proof. We can see that B ⊆ F ∪ Z ′. Thus the result follows.

4.1.2.7. F ∩ Z ′ = ∅.

Proof. Observe that j /∈ clM(F ∪ Z ∪ (J − {j})) for all j ∈ J . Otherwise we

would have j ∈ clM(B − {j}) which contradicts the fact that B is indepen-

dent.

Assume there is an f ∈ F and that f ∈ Z ′. Then f ∈ clM(Z ∪ J). This

means that there is a circuit C such that f ∈ C ⊆ Z ∪ J ∪ {f}. It follows

that C − {f} * Z since otherwise f ∈ clM(Z). Thus C − {f} ⊆ Z ∪ J .

Now for some j ∈ J it must be that j ∈ C. Hence j ∈ clM(C − {j}). But

C − {j} ⊆ Z ∪ (J − {j}) ∪ {f} ⊆ F ∪ Z ∪ (J − {j}). This means that

j ∈ clM(C −{j}) ⊆ clM(F ∪Z ∪ (J −{j}). This contradicts the observation

at the beginning of this proof. This means that there can be no such f ∈ F
that is also in Z ′ and hence F ∩ Z ′ = ∅.

Given these claims we see that rM(F ∩Z ′) = 0 and rM(clM(F ∪Z ′)) = r(M)

yet rM(F ) + rM(Z ′) = rM(F ) + rM(Z) + |J | > rM(F ∪ Z ′) = r(M).
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There is an alternative way of viewing modularity. The following is originally

a result from Brylawski [12] also given in Oxley [41]. Let L be a flat of a

matroid M . Observe that L is a line if L is of rank 2.

Lemma 4.1.3 (Brylawski [12]). Let M be a loopless matroid. A hyperplane

H of M is modular if and only if it intersects every line of M .

Proof. Let H be a hyperplane of M . Assume that H is modular. Let L be

a line of M . By definition rM(H) = r(M) − 1 and rM(L) = 2. Evidently

rM(H∪L) ≤ r(M). We now have rM(H∩L) = rM(H)+rM(L)−rM(H∪L) ≥
r(M)− 1 + 2− r(M) = 1. As rM(H ∩ L) > 0 it follows that H ∩ L 6= ∅.

Now suppose H is not modular. Our goal is to show that H ∩ L = ∅ for

some line L. Consider Theorem 4.1.2 part (iii). There exists a flat Z of

M such that H ∩ Z = ∅ and rM(H ∪ Z) = rM(M) and yet rM(H ∪ Z) <

rM(H) + rM(Z). Note that rM(Z) ≥ 2. Assume rM(Z) = k ≥ 2. If

rM(Z) = 2 the result follows. Choose a maximal independent set I of M

contained in Z so that |I| = rM(Z) > 2. Let {z, z∗} be a pair of elements in

I. Then Z∗ = cl({z, z∗}) ⊆ Z and rM(Z∗) = 2. But we see that H ∩Z∗ = ∅.

We call a matroid M modular if for every two flats, F1 and F2 of M , then F1

and F2 form a modular pair. For example, consider the Fano plane. Every

three point line of this matroid is a modular flat. Each three point line is a

hyperplane of the matroid and intersects every other line of the matroid. We

now give some useful well-known results.

Lemma 4.1.4. Let M be a matroid. If X,A,B ⊆ E(M) and A ⊆ B then

r(X ∪B)− r(B) ≤ r(X ∪ A)− r(A).

Proof. By submodularity r(X∪A)+r(B) ≥ r((X∪A)∪B)+r((X∪A)∩B).

But observe that A ⊆ (X ∪ A) ∩ B. The result follows by rearranging the

given inequality.
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Now consider the following well-known result.

Lemma 4.1.5. If M is a matroid and X ⊆ E(M) then the flats of M |X are

the set {F ∩X|F a flat of M}.

We see that modularity extends to flats contained in other flats, as earlier

shown by Brylawski [12].

Lemma 4.1.6 (Brylawski [12]). Let M be a matroid. If F1 is a modular flat

in M and F2 is a modular flat in M |F1, then F2 is a modular flat in M .

Proof. We know that by submodularity rM(F2) + rM(Z) ≥ rM(F2 ∩ Z) +

rM(F2∪Z) for every Z ⊆ E(M). Moreover by the modularity of F1 it follows

that rM(F1) + rM(Z) = rM(F1∩Z) + rM(F1∪Z) for every flat Z in M . Now

F1∩Z is a flat of M |F1. Also F2 is modular in M |F1 and F2 ⊆ F1. Therefore

it follows that rM(F1∩Z)+rM(F2) = rM((F1∩Z)∩F2)+rM((F1∩Z)∪F2) =

rM(F2 ∩ Z) + rM((F1 ∩ Z) ∪ F2).

Observe that (F1 ∩ Z) ∪ F2 ⊆ F1. Then by Lemma 4.1.4 we see that

rM(((F1 ∩ Z) ∪ F2) ∪ Z) − rM((F1 ∩ Z) ∪ F2) ≥ rM(F1 ∪ Z) − r(F1). Thus

rM(F2 ∪Z) ≥ rM(F1 ∪Z)− rM(F1) + r((F1 ∩Z)∪ F2) = rM(F1) + rM(Z)−
rM(F1 ∩ Z)− rM(F1) + rM(F2) + rM(F1 ∩ Z)− rM(F2 ∩ Z).

Hence we see that rM(F2 ∪ Z) ≥ r(F2) + rM(Z) − rM(F2 ∩ Z). The result

follows by application of this result and the fact about submodularity in the

first paragraph of this proof.

Now we characterize modularity under the operations of intersection and

union of flats.

Lemma 4.1.7 (Brylawski [12]). Let M be a matroid. If F and G are modular

flats in M then so is F ∩G.
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Proof. By the Lemma 4.1.6 it suffices to prove that F ∩G is modular in M |F .

Say X is a flat of M |F . Observe also that X ∩ G = X ∩ (F ∩ G). As G is

modular in M , we see that r(X) + r(G) = r(X ∪G) + r(X ∩G). Because of

the result earlier in this paragraph r(X)+r(G) = r(X∪G)+r(X∩(F ∩G)).

Hence r(X ∪G)− r(G) = r(X)− r(X ∩ (F ∩G)).

Now by Lemma 4.1.4, r(X∪G)−r(G) ≤ r(X∪(F∩G))−r(F∩G). Therefore

r(X ∪ (F ∩G))− r(F ∩G) ≥ r(X)− r(X ∩ (F ∩G)).

Rearranging this inequality we obtain r(X) + r(F ∩G) ≤ r(X ∪ (F ∩G)) +

r(X ∩ (F ∩ G)). But by submodularity of the rank function we know also

that r(X) + r(F ∩ G) ≥ r(X ∪ (F ∩ G)) + r(X ∩ (F ∩ G)). It follows that

r(X) + r(F ∩G) = r(X ∪ (F ∩G)) + r(X ∩ (F ∩G)).

In other words we see that F ∩ G is modular in M |F and hence in M by

Lemma 4.1.6.

Let M be a matroid. Let T ⊆ E be a set. Then T is a modular set if

rM(T ) + rM(Z) = rM(T ∪ Z) + rM(T ∩ Z) for every flat Z in M .

Lemma 4.1.8. Given a matroid M and F,X ⊆ E(M) then

i) rM(clM(F ) ∪X) = rM(F ∪X).

ii) If F is a modular set and X is a flat then rM(clM(F )∩X) = rM(F∩X).

Proof. We shall prove each statement in turn.

i) This result is well-known.
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ii) Observe that clM(F )∩X ⊇ F ∩X. Then rM(clM(F )∩X) ≥ rM(F ∩X).

Because F is a modular set we also know that rM(F ∩X) = rM(F ) +

rM(X)− rM(F ∪X). But by the properties of the rank function rM we

see that

rM(clM(F ) ∩X)

≤ rM(clM(F )) + r(X)− rM(clM(F ) ∪X)

= rM(F ) + rM(X)− rM(clM(F ∪X))

= rM(F ) + rM(X)− rM(F ∪X)

= rM(F ∩X)

We recall from earlier that rM(clM(F ) ∩ X) ≥ rM(F ∩ X). Thus if F

is a modular set rM(clM(F ) ∩X) = rM(F ∩X)

Lemma 4.1.9. Let T be a modular set for some matroid M . Then clM(T )

is a modular flat in M .

Proof. This follows from the definition of modular set.

We can describe modularity under contraction of elements.

Theorem 4.1.10. Let F be a modular flat of a matroid M. Then

i) if x ∈ F then F − x is modular in M/x.

ii) if x /∈ F then clM/x(F ) is modular in M/x.

Proof. Suppose x ∈ F . We know from Oxley [41] (pp.100 - 106) that S − x
is a flat in M/x for any flat S in M with x ∈ S. The rank in M/x of S − x
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is rM((S − x) ∪ x) − rM({x}) = rM(S) − rM({x}). If x is not a loop then

rM({x}) = 1 otherwise rM({x}) = 0.

i) By Oxley [41] F − x is a flat of M/x. Observe that for every flat S in

M the set F − x satisfies rM/x(F − x) + rM/x(S − x) = rM/x((F − x) ∪
(S − x)) + rM/x((F − x) ∩ (S − x)).

ii) Suppose x /∈ clM(F ). Then x /∈ F . We first prove that F is a modular

set of M/x. Given F and any flat S of M observe that if x is not a loop

then the following hold:

� rM/x(F ) = rM(F ∪ x)− 1 = rM(F ) + 1− 1 = rM(F )

� rM/x(S − x) = rM((S − x) ∪ x)− 1 = rM(S)− 1 provided x ∈ S

� rM/x(F ∪ (S − x)) = rM((F ∪ (S − x)) ∪ x)− 1 = rM(F ∪ S)− 1

� rM/x(F∩(S−x)) = rM((F∩(S−x))∪x)−1 = rM((F∪x)∩S)−1 =

rM((F ∩ S) ∪ x)− 1 = rM(F ∩ S)

We then see by modularity of F in M that rM/x(F ) + rM/x(S − x) =

rM(F ) + rM(S)− 1 = rM(F ∪ S) + rM(F ∩ S)− 1 = rM(F ∪ S)− 1 +

rM(F ∩S) = rM/x(F ∪(S−x))+rM/x(F ∩(S−x)). We obtain a similar

result if we let x be a loop. (see above in part i) ). Given the above

proof and Lemma 4.1.9 we see that clM/x(F ) must be a modular flat of

M/x.



54 CHAPTER 4. MODULARITY AND ROUNDNESS

Let M be a matroid and let F be a flat in M . Then an F -strand is a

set Z ⊆ E(M) − F such that u(F,Z) = 1. Remember that u(F,Z) =

rM(F ) + rM(Z)− rM(F ∪ Z).

Lemma 4.1.11. Let M be a loopless matroid and F be a flat of M . Then

F is modular if and only if for every F -strand Z we have F ∩ clM(Z) 6= ∅.

Proof. First suppose that F is modular. Then rM(F∩X) = rM(F )+rM(X)−
rM(F ∪X) for every flat X in M . For every F -strand Z we know that clM(Z)

is a flat and so rM(F ∩ clM(Z)) = rM(F ) + rM(Z) − rM(F ∪ Z). For each

strand Z we know by definition that u(F,Z) = 1 hence rM(F ∩ clM(Z)) = 1.

Thus F ∩ clM(Z) 6= ∅.

Suppose that F is not a modular flat. By Theorem 4.1.2 (ii) there exists

a flat Z such that F ∩ Z = ∅ and rM(F ) + rM(Z) > rM(F ∪ Z). Say

t = rM(F )+rM(Z)−rM(F∪Z). Then t ≥ 1. We complete the proof by induc-

tion on t. For any set X ⊆ E(M), set u(X,F ) = rM(F )+rM(X)−rM(F∪X).

The flat F is not modular, so there is a flat Z, disjoint from F , with

u(Z, F ) = t > 0. For any z ∈ Z, we have 0 ≤ rM(Z) − rM(Z − z) ≤ 1

and 0 ≤ rM(F ∪ Z)− rM(F ∪ (Z − z)) ≤ 1.

This observation and modularity give

0 ≤ rM(Z) + rM(F ∪ (Z − z))− rM(F ∪ Z)− rM(Z − z) ≤ 1,

from which we get u(Z, F )− 1 ≤ u(Z − z, F ) ≤ u(Z, F ). Since u(∅, F ) = 0,

it follows that there is a subset Z ′ of Z with u(Z ′, F ) = 1, as needed.

Next we show that we can describe modularity in another way that does not

require mention of rank. This will be useful later when we need to define the
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modularity of flats in monadic second order logic.

Lemma 4.1.12. Let M be a matroid and let F, F ∗ be flats of M . Then the

following hold.

i) If F, F ∗ are a modular pair then, for every basis, Bu, of F ∪ F ∗, it

follows that Bu ∩ F is a basis of F and Bu ∩ F ∗ is a basis of F ∗.

ii) If there exist bases, Bu, of F ∪ F ∗ and Bn, of F ∩ F ∗, such that

Bn ⊆ Bu, where Bu ∩ F is a basis of F and Bu ∩ F ∗ is a basis of

F ∗ then F, F ∗ are a modular pair.

Proof. First we show that if F and F ∗ are a modular pair then, for every

basis Bu of F ∪ F ∗, it follows that Bu ∩ F is a basis of F and Bu ∩ F ∗ is a

basis of F ∗. Suppose not. Then suppose Bu is a basis of F ∪ F ∗ such that

Bu ∩ F is not a basis of F . Let B be a basis of F . Then |Bu ∩ F | < |B|.

Now we can see that |Bu| = |(Bu∩F )∪ (Bu∩F ∗)| = |Bu∩F |+ |Bu∩F ∗|−
|(Bu ∩ F ) ∩ (Bu ∩ F ∗)| < |B|+ |B∗| − |(Bu ∩ F ) ∩ (Bu ∩ F ∗)|. If Bn ⊆ Bu

then |Bn| = |(Bn ∩ F ) ∩ (Bn ∩ F ∗)| ≤ |(Bu ∩ F ) ∩ (Bu ∩ F ∗)|. But then

|Bu| < |B|+ |B∗|−|Bn|. Rearranging and remembering that these are bases

we have rM(F ) + rM(F ∗) > rM(F ∪ F ∗) + rM(F ∩ F ∗). Thus F and F ∗ are

not a modular pair.

Next we show that if there exist bases Bu, of F ∪ F ∗, and Bn, of F ∩ F ∗,
such that Bn ⊆ Bu, where Bu ∩ F is a basis of F and Bu ∩ F ∗ is a basis of

F ∗ then F and F ∗ are a modular pair. If Bn is a basis of F ∩ F∗ and if Bu

is a basis of F ∪ F∗, for which Bn ⊆ Bu, and F ∩ Bu is a basis of F , and

likewise for F∗, then

|F ∩Bu|+ |F ∗ ∩Bu| = |Bu|+ |Bn|.
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Writing these terms as ranks gives exactly the equality that defines (F, F∗)
as being a modular pair.

Let M be a matroid and F be a modular flat of M . Let p ∈ F be an el-

ement of F . Then p is necessary if there exists an F -strand Z such that

clM(Z) ∩ F = {p}. Otherwise p is unnecessary . Next, let F be a modular

flat of M . Then we call F a minimal modular flat if for all x ∈ F , the set

F − x is not modular in M\x. Consider the following result.

Lemma 4.1.13. Let M be a matroid. F is a minimal modular flat of M if

and only if every point p ∈ F is necessary.

Proof. Assume that every point in F is necessary and let p be such a point.

Then we know there is a strand Z such that F ∩ clM(Z) = {p}. If we remove

p then we see that (F − p) ∩ clM\p(Z) = ∅. That is there is a strand Z that

does not meet F − p hence F − p is not modular in M\p. This is true for all

points p in F .

Assume then that there is some point x in F that is unnecessary. Then there

does not exist an F -strand Z such that F ∩ clM(Z) = {x}. If we remove x

from F and remember F is modular then by Lemma 4.1.10 F − x remains

modular in M\x. Hence F can not be minimally modular.

We give a counter-example showing that the closure of the union of modular

flats is not necessarily modular. This also shows that the union of modular

flats is not necessarily modular.

Example 4.1.14. Consider the question whether if M is a simple matroid

and F and G are two flats of M then if F and G are modular is clM(F ∪G)

modular? This is false. Observe M(K4) in Figure 4.1 and let F and G be

single points of rank 1 each on different lines. All rank-1 flats in matroids

are modular, but not all lines are.
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Figure 4.1: M(K4) - An example where clM(F ∪G) is not modular

4.2 Roundness

The notion of roundness for matroids was introduced under the name of non-

splitting by Kung [35]. In this section we give some standard well-known

properties of round matroids. Roundness can be defined in several equiva-

lent ways, as the next theorem shows.

Theorem 4.2.1. Let M be a matroid. Then the following are equivalent:

i) Every cocircuit of M is spanning.

ii) M has no vertical k-separations.

iii) E(M) is not the union of two proper flats.

iv) M is not the union of two hyperplanes.

v) E(M) has no partition into two non-spanning sets.

Proof. First we show that Property i) implies Property ii). If there exists

a k-separation which is vertical then there exists a cocircuit which is not

spanning. Let (A,B) be a k-separation which is vertical. Then both A and

B are not spanning. But if A is not spanning it is contained in a maximal

non spanning set, that is, in a hyperplane. Hence B must contain a cocircuit.

This cocircuit can not be spanning else B would be.

Next we show that Property ii) implies iii). By definition M has no vertical

k-separations if and only if for every k-separation (A,B) of M either A or B
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is spanning. But then by definition there are no partitions (A,B) of E(M)

such that both A and B are non-spanning. Given this suppose there exist

two proper flats F1 and F2 such that E(M) = F1 ∪ F2. But F1 and F2 are

both non-spanning since they are proper flats.

Any subset of F1 and F2 must also be non-spanning. So consider F1\F2 and

F2\F1. These sets are non-spanning but by definition F1\F2∪F2\F1 = E(M)

since F1 ∪ F2 = E(M). Also by definition F1\F2 ∩ F2\F1 is empty. Thus

there exists a partition of E(M) into two non-spanning sets. So we see that

if M has no vertical k-separations then E(M) has no partition into two non-

spanning sets and so E(M) can not be written as the union of two proper

flats.

Next we show that Property iii) implies Property iv). By definition a hyper-

plane is a proper flat. If E(M) can not be written as the union of two proper

flats M certainly can not be the union of two hyperplanes.

Now, we assert that Property iv) implies Property v). Suppose there exists

a partition of E(M) into non-spanning sets. Consider one of these partitions

(A,B). Then A is contained by a hyperplane as is B. Call these HA and

HB. HA ∪ HB contains A ∪ B = E(M). Hence HA ∪ HB = E(M) and so

clearly M is the union of two hyperplanes.

Finally we see that Property v) implies Property i). Suppose there is a non-

spanning cocircuit C∗. Then C∗ and E(M) − C∗ (which is a hyperplane)

give a partition into two non-spanning sets.

We define a matroid to be round if it has no vertical k-separations. A flat F

is a round flat if M |F is a round matroid. We now give some properties of

roundness in matroids.

Lemma 4.2.2. Let M be a round matroid and let x be any element in E(M).

Then M/x is round.
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Proof. By Theorem 4.2.1 every cocircuit of M is spanning. But by Oxley

[41] the cocircuits of M/x are exactly the cocircuits of M that do not contain

x. These cocircuits are spanning with respect to M hence the closure of each

is equal to E(M). These cocircuits clearly remain spanning with respect to

M/x. As a result every cocircuit of M/x is spanning hence, by Theorem

4.2.1, M/x must be round.

Lemma 4.2.3. Let M be a matroid and let F be a subset of E(M). If

x /∈ clM(F ) then (M/x)|F = M |F .

Proof. If x /∈ clM(F ) then clearly F ⊆ clM(F ) ⊆ E(M) − {x}. Thus

(M/x)|F = M |F since by Oxley [41][Proposition 3.1.11] clM/x(F ) = clM(F ∪
x)− {x} and so rM/x(F ) = rM(F ∪ x)− 1 = rM(F ) + 1− 1 = rM(F ).

We now show that complete graphs have round cycle matroids. This is a

well-known result.

Lemma 4.2.4. M(Kn) is round for any n.

Proof. Let (A,B) be a k-separation of M(Kn) for some n. Assume it is ver-

tical. If there exists a vertex, v, not incident with any edge in A, then all

edges incident with v are in B. This means that every edge is in B or is in

a triangle with 2 edges in B. This in turn implies that B spans A which is,

of course, a contradiction.

Now, by symmetry, A and B are incident with all vertices. Let G be the

graph Kn. If G[A] is not connected then G[B] is, and in this case, B con-

tains a spanning tree, so A ⊆ cl(B). This is again a contradiction. Similarly,

if G[B] is not connected. This means that no k-separation of M(Kn) for any

n can be vertical and thus M(Kn) is round for any n.
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The next lemma is proved in Whittle [48].

Lemma 4.2.5. Let H be a modular hyperplane of the matroid M , and

let {c1, c2, . . . , cn} be a basis for the cocircuit complementary to M . Let

B′ = {clM({ci, cj}) ∩H : 1 ≤ i < j ≤ n}. Then M |B′ ∼= M(Kn).

Lemma 4.2.6. Let F be a rank t modular flat of the round matroid M . Then

there is a spanning set Z ⊆ F such that M |Z ∼= M(Kt+1).

Proof. Let k = r(M) − rM(F ). We shall prove this result by induction on

k. Observe that if k = 1 then F is a hyperplane. In this case Lemma 4.2.5

applies [48]) and the result holds. So suppose that k > 1. Now hypothesize

that the result holds for k − 1 provided the matroid is round.

Consider some element x ∈ E(M) − clM(F ). Note that, of course, F =

clM(F ). From Lemma 4.2.2 we know that if M is round then M/x is round.

By Lemma 4.1.9 and Theorem 4.1.10 if x /∈ clM(F ), and so x /∈ F , then F is

a modular set of M/x which means that clM/x(F ) is a modular flat of M/x.

Furthermore, we see that F ⊆ clM/x(F ) because x /∈ F . Moreover, we know

from Oxley [41] that r(M/x) = r(M)− 1. Given that x /∈ F this means that

r(M/x)−rM/x(clM/x(F )) = r(M)−1−rM(F ) = (r(M)−rM(F ))−1 = k−1.

Thus by the inductive hypothesis there is a subset Z of clM/x(F ) such that

(M/x)|Z is isomorphic to M(Kt+1). Suppose that Z * F which means

that rM/x(Z − F ) > 0. Because F is a modular set of M/x, we see that

rM/x(Z − F ) = rM/x((Z − F ) ∪ F ) + rM/x((Z − F ) ∩ F ) − rM/x(F ). But

rM/x((Z − F ) ∪ F ) = rM/x((Z − F ) ∪ clM/x(F )) = rM/x(F ) by Lemma 4.1.8

and because Z − F ⊆ clM/x(F ). Also rM/x((Z − F ) ∩ F ) = 0. As a result,

we see that rM/x(Z −F ) = rM/x(F ) + 0− rM/x(F ) = 0. This contradicts our

earlier supposition that Z * F . Thus, it must be that Z ⊆ F .
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By Lemma 4.2.3 we know that if x is not a member of clM(F ) then (M/x)|F =

M |F . Which means that (M/x)|Z = M |Z because Z ⊆ F . Therefore, there

is a subset Z of F such that (M/x)|Z = M |Z ∼= M(Kt+1).

Next consider the following lemma which shows when sets containing round

sets are themselves round. We say that a flat S of M is round if M |S is a

round matroid.

Lemma 4.2.7. Let M be a matroid and S and T be sets in M . If S is round

in M then

(i) clM(S) is round in M .

(ii) if T ⊇ S and rM(T ) = rM(S) then T is round in M .

Proof. (i) Suppose clM(S) is not round in M . Then M |clM(S) has a

vertical separation (A,B). But rM(clM(S)) = rM(S) and because

(A,B) is vertical we know without loss of generality that rM(A) <

rM(clM(S)) = rM(S). This clearly remains true for M |S.

(ii) Suppose T contains S and has the same rank as S but is not round.

Then M |T contains a separation (A,B) such that without loss of gen-

erality clM |T (A) = clM(A) ( clM(T ) = clM |T (T ). But then rM(A) <

r(T ) = r(S) hence (A,B) is vertical in M |S.

The following is a corollary of Lemma 4.2.6.

Corollary 4.2.8. Let M be a matroid. If M is round then all modular flats

of M are round flats.
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Proof. This result follows directly from Lemma 4.2.6. Each modular flat F

has a spanning subset Z ⊆ F which is by this lemma isomorphic to the

matroid of a complete graph. Observe that the cycle matroid of a complete

graph is round. By Lemma 4.2.7 the flat F , which contains Z, must be

round.



Chapter 5

Chordality in Graphs

In this chapter we review some well-known results about chordality in graphs.

Much of this is available in Bondy and Murty [9].

5.1 Chordal Graphs

Let G = (V,E) be a graph. Let C be a cycle of G. Then a chord of C is an

edge e ∈ E(G)−C of G, not parallel to any edge of C, such that the vertices

incident with e are in V (C).

Lemma 5.1.1. Let G = (V,E) be a simple graph and C be a cycle of G

such that |C| > 3. Then e is a chord of C if and only if there is a partition

(C1, C2) of C such that C1 ∪ {e} and C2 ∪ {e} are cycles.

A subgraph H of G is induced by a set X ⊆ V (G) if H = (X,E(X)). We

say in this case that X induces H. Let G[X] denote the subgraph induced

by X. E(X) is the set of edges of G[X]. Remember that we denote by ω(H)

the number of connected components of a graph H. Let v be a vertex of G.

Then v is a cut vertex if ω(G − v) > ω(G). Next S ⊆ V (G) is a vertex cut

if the ω(G[V (G)− S]) > ω(G). A vertex cut S is minimal if S − {v} is not

63
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a vertex cut for any vertex v in S

A clique is a subgraph of G that is isomorphic to Kt for some t. Thus a

clique is not just a set of vertices, although we often simplify and say that

V is a clique meaning that G[V ] is a clique. A clique X of G is a maximal

clique if there is no vertex v we can add to X such that X ∪ {v} is a clique

of G. A clique cut is a vertex cut of G that induces a clique. A vertex v in

G is a simplicial vertex if NG(v) induces a clique.

Lemma 5.1.2. Let G be a connected graph. Let v be a simplicial vertex of

G. Then G− v is connected.

Proof. Suppose that G − v is not connected. Then there are at least two

components C1, C2 in G − v. Because G is connected there must be a path

from the vertices in C1 to v and from C2 to v. Thus there is an edge from v

to a vertex u in C1 and from v to a vertex w in C2. Because v is a simplicial

vertex there is an edge {u,w}. But this contradicts that C1 and C2 are

disconnected. Thus G− v is connected.

Next we state two results from Bondy and Murty [9]. A graph G is chordal

if, for every cycle C, such that |C| ≥ 3, C has a chord.

Theorem 5.1.3 (Bondy and Murty [9]). Let G be a connected chordal graph.

Let S be a minimal vertex cut of G. Then S is a clique cut.

Let G be a graph and let S be a vertex cut of G. If Gi (1 ≤ i ≤ p) are the

components of G−S then the S-components of G are the induced subgraphs

Gi ∪ S (1 ≤ i ≤ p).

Theorem 5.1.4 (Bondy and Murty [9]). Let G be a connected chordal graph.

Let V1 be a maximal clique of G. The maximal cliques of G can be arranged

in a sequence (V1, V2, . . . , Vk), starting with V1, such that Vj ∩ (
⋃j−1
i=1 Vi) is a

clique of G, for 2 ≤ j ≤ k.
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Let G be a graph. We can therefore define a simplicial decomposition of G

to be a sequence (V1, V2, . . . , Vk) of maximal cliques such that Vj ∩ (
⋃j−1
i=1 Vi)

is a clique of G (2 ≤ j ≤ k).

Lemma 5.1.5. Let G be a chordal graph. Then any induced subgraph H of

G is also chordal.

Proof. Let C be a cycle of H with at least 4 edges. If C has a chord e in G

then e is in H since H is induced.

Corollary 5.1.6. Let G be a connected chordal graph. Let S be a minimal

vertex cut of G. Then the S-components of G are also chordal.

Proof. By definition earlier the S-components of G are induced subgraphs of

G. Hence by Lemma 5.1.5 the S-components of G must be chordal.

If u, v are vertices of G then the notation uv means the edge from u to v.

Next we state a well-known graph-theoretic result.

Lemma 5.1.7. Let e = uv be an edge of the graph G. Then the cycles of

G/e are sets of the form:

i) C, where C ∪ {e} is a cycle of G; or

ii) C where C is a cycle of G such that V (C) contains at most one of u

and v.

Given this we see the following.

Lemma 5.1.8. Let e be an edge of the chordal graph G. Then G/e is chordal.
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Proof. Let e = uv. Let C be a cycle of G/e with |C| ≥ 4. If C is of type i) of

Lemma 5.1.7 then C ∪{e} is a cycle of G. Now |C ∪{e}| ≥ 5 so by definition

C∪{e} has a chord f = xy in G. Then, by Lemma 5.1.1, we have a partition

C1, C2 of C∪{e}, where |C1|, |C2| ≥ 2, such that C1∪{f}, C2∪{f} are cycles

of G.

We may assume that e ∈ C1. By Lemma 5.1.7 (C1 ∪ {f}) − {e} is a cy-

cle of G/e. Also the set of vertices of C2 ∪ {f} contains at most one of u

and v. Then C2 ∪ {f} is cycle of G/e. Now f is chord of C in G/e unless

|(C1 ∪ {f})− {e}| = 2.

Assume that |(C1 ∪ {f})− {e}| = 2. Then |C2 ∪ {f}| ≥ 4. As G is chordal,

C2 ∪ {f} has a chord g in G. Observe then that g is a chord of C2 ∪ {e}.
Say by Lemma 5.1.1 that C∗1 , C

∗
2 are the partitions of C2 ∪ {e} such that

C∗1 ∪ {g}, C∗2 ∪ {g} are both cycles in G and e ∈ C∗1 . Then C∗1 ) C1. This

means that |C∗1 ∪ {g}| ≥ 4. It follows that g is a chord of C in G/e.

Now assume that C is a cycle of type ii) of Lemma 5.1.7. Then at most u

or v is in V (C). Since |C| ≥ 4 we know that C contains a chord f . Then by

Lemma 5.1.1 there is a partition C1, C2 of C such that C1∪{f} and C2∪{f}
are cycles of G. Then V (C1 ∪ {f}) and V (C2 ∪ {f}) contain at most one

element of u and v. By Lemma 5.1.7 C1 ∪ {f} and C2 ∪ {f} are cycles of

G/e. Thus f is a chord of G/e.

Next we introduce the concept of a tree of cliques. A clique tree of G is a tree

T whose vertices are the maximal cliques of G and for each vertex x ∈ V (G),

the set of maximal cliques containing x induces a subtree of T . The reduced

clique graph of G (see [23, 21]), denoted Cr(G), has as its vertices the set

of maximal cliques of G. An edge joins the cliques U and V if U ∩ V is

a minimal separator of G with the property that U − V and V − U are in

different components of G\(U ∩ V ). Each edge of Cr(G) is labeled with the

order of the separation formed by its minimal separator.
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We can use an algorithm such as that of Kruskal [34] to find a maximum

weighted spanning tree of Cr(G) [23, 21]. Interestingly, Habib et al. [23, 21]

have shown that for graphs with the very particular structure of Cr(G) there

is a more efficient linear-time algorithm to compute a maximum weighted

spanning tree of Cr(G).

Lemma 5.1.9 (Habib et al. [23, 21]). Let G = (V,E) be a chordal graph.

Let Cr(G) be its reduced clique graph. Let T = (C,F ) be a spanning tree of

Cr(G). Then T is a clique tree of G if and only if T is a maximum weighted

spanning tree of Cr(G).

Lemma 5.1.10. Let G be a connected chordal graph. Let TC(G) be a clique

tree of G. Let Xi, Xj, Xk be maximal cliques of TC(G). If Xj lies on a path

of TC(G) between Xi and Xk then Xi ∩Xk ⊆ Xj.

Proof. Let x be a vertex of G. Suppose x ∈ Xi and x ∈ Xk. By definition

of a clique tree the set of maximal cliques containing x induces a subtree of

TC(G). But this must include every maximal clique on a path between Xi

and Xk and hence Xj since trees are connected. Thus if x ∈ Xi ∩ Xk then

x ∈ Xj.

Theorem 5.1.11. Let G be a connected chordal graph. Let T (G) be a maxi-

mum weighted spanning tree of Cr(G). Then T (G) is a minimum width tree

decomposition of G.

Proof. Recall the properties of a tree decomposition from the preliminaries

in Chapter 2 Section 2.5. By Lemma 5.1.9 T (G) is a clique tree of G. Then

consider the properties of a tree decomposition. Every vertex x of G is in a

maximal clique of G. Since T (G) is a spanning tree every maximal clique is

included and every vertex x in G is in some maximal clique of T (G). Thus

Property (1) of a tree decomposition holds.

Next by definition every edge e of G is in a maximal clique of G. Again since

T (G) is spanning every edge must be included in some maximal clique of
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T (G) and so Property (2) holds. Now let Xi, Xj, Xk be maximal cliques of

T (G). Then by Lemma 5.1.10 if Xj lies on the path of T (G) between Xi and

Xk then Xi∩Xk ⊆ Xj. Thus interpolation holds and Property (3) is satisfied.

Finally, let t be the cardinality of the largest maximal clique of G. By

definition every tree decomposition of G must have width at least t. However,

by definition T (G) must have width exactly t. Thus T (G) has minimum

width.

Thus chordal graphs have an associated tree decomposition where the bags

are cliques.

Theorem 5.1.12 (Dirac [18]). Let G be a connected chordal graph. If G is

not complete then it contains two non-adjacent simplicial vertices.

Proof. Assume that |C| ≥ 2 for each maximal clique C of G. Let Cr(G)

be the reduced clique tree for G. By Theorem 5.1.9 we know we can find a

maximum weighted spanning tree T (G) for Cr(G). Then by Theorem 5.1.11

we know that this is a minimum width tree decomposition of G. Any tree

with more than 1 vertex has two leaves.

In this case each leaf of T (G) is a clique. At least one of the vertices of this

clique will be simplicial. Since there are two separate cliques, each clique has

at least two vertices and we can choose any of these as our simplicial vertex

such that it is not adjacent to any of those in the other clique.

So chordality may be the sort of structure we want. But what does it mean

in terms of matroids?
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5.2 Cycle Matroids of Chordal Graphs

First consider matroids for chordal graphs. Recall Lemma 5.1.2. This can

be restated as if v is a vertex of a graph G then, if v is simplicial, v can not

be a cut vertex.

Lemma 5.2.1. Let G be a connected simple graph and let M(G) be the cycle

matroid of G. Let v be a vertex which is not a cut vertex. Then E(G − v)

spans a hyperplane in M(G).

Proof. The subgraphG−v is connected so rM(G)(E(G−v)) = |V (G−v)|−1 =

|V (G)| − 2. Moreover, G is connected so that r(M(G)) = |V (G)| − 1. This

means that rM(G)(E(G − v)) = r(M(G)) − 1. This means that E(G − v) is

contained in a hyperplane.

Now say that e ∈ E(G)− E(G− v). Then e is incident with v. This means

that rM(G)(E(G − v) ∪ {e}) = |V (E(G − v) ∪ {e})| − 1 = |V (G)| − 1 >

rM(G)(E(G−v)). Thus E(G−v) spans the hyperplane it is contained in.

Lemma 5.2.2. Let G be a graph, let M(G) be the cycle matroid of G, and

let v a vertex of G. If v is simplicial then E(G− v) is a modular hyperplane

in M(G).

Proof. By Lemmas 5.1.2 and 5.2.1 we see that E(G−v) is a hyperplane. Let

C∗ be the set of edges incident with v so that C∗ = E(G)−E(G−v). Let a1 =

vw1, a2 = vw2 be edges in C∗. Because v is a simplicial vertex there is an edge

b = w1w2. Note that {a1, a2, b} is a triangle in G hence b ∈ clM(G)({a1, a2}).
Thus we have shown that for every pair of elements a1, a2 ∈ C∗ there is an

element b ∈ E(G − v) such that b belongs to cl({a1, a2}). This means that

E(G− v) must be modular by Lemma 4.1.3.

Now consider the following well-known result.
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Lemma 5.2.3. Let G be a 2-connected graph and B be a bond of G. Then

E(G) − B induces a connected graph if and only if B is the set of edges

incident with a vertex of G.

Given this we prove the following lemma.

Lemma 5.2.4. Let M be a 2-connected matroid and H be a modular hyper-

plane of M . Then M |H is 2-connected.

Proof. Assume that M |H is not connected. We may assume that M is sim-

ple. Let C∗ = E(M) − H. By Lemma 4.1.3 for all x, y ∈ C∗, there is an

element exy such that exy ∈ cl({x, y}) ∩ H. If r(C∗) = 1, then M is not

connected. So suppose that r(C∗) > 1. Say {c1, . . . , cn} is a basis for C∗.

Let H1 be the component of M |H containing ec1c2 and let H2 = H−H1. We

have r(H) = r(H1) + r(H2).

5.2.4.1. ec1ci ∈ H1 for all i ∈ {2, . . . , n}.

Proof. If not there exists a j such that ec1cj ∈ H2. Then there is a line

through ec1c2 and ec1cj . Again by Lemma 4.1.3 we know there must be an

element ec2cj ∈ cl({ec1c2 , ec1cj}) ∩ H. Thus we know that ec1c2 , ec1cj , ec2cj is

a circuit. But this contradicts the fact that circuits must be contained in a

single component. From this the result follows.

Now consider cl(H1 ∪ {c1}). Since {c1, ci, ec1ci} is a triangle then ci ∈
cl(H1 ∪ {ci}) for all i ∈ {2, . . . , n}. But {c1, . . . , cn} is a basis for M |C∗ as

we have seen hence cl(H1 ∪ {c1}) ⊇ C∗. Therefore r(H1 ∪ {c1}) = r(H1) + 1

which means that r(H1 ∪ C∗) = r(H1) + 1. Now r(M) = r(H) + 1 =

r(H1) + r(H2) + 1 = r(H1 ∪ C∗) + r(H2).

This means that H1 ∪ C∗ and H2 must be separators of M . Therefore M is

not connected. The result follows by the contrapositive.
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Lemma 5.2.5. Let G be a 2-connected graph and let M(G) be a cycle matroid

of G. Let H be a modular hyperplane of M(G) then E(G − H) is incident

with a simplicial vertex in G.

Proof. By Lemma 5.2.4 M(G)|H is 2-connected. Now E(G)−H is a bond.

By Lemma 5.2.3 there is a vertex v ∈ G such that E(G) − H is the set of

edges of G incident with v.

To show that v is simplicial we need to show that every pair of neighbours of

v is connected by an edge. Let w1, w2 be neighbours of v in G. Let e1 = vw1

and e2 = vw2. Then because H is a modular hyperplane there is an element

h ∈ H such that h ∈ clM(G)({e1, e2}). Hence {e1, e2, h} is a triangle in G

which means that h = {w1, w2}.

Theorem 5.2.6. Let G be a 2-connected graph. Then v is a simplicial vertex

if and only if E(G− v) is a modular hyperplane of M(G).

Proof. By Lemmas 5.2.2 and 5.2.5.
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Chapter 6

Chordality in Matroids

In this chapter we engage in a discussion of when and how the concept of

chordality can be applied to matroids. We examine binary matroids, graphic

matroids and matroids in general. Apart from the definitions for the differ-

ent types of chordality in matroids most of the work in this chapter is original.

6.1 Some Background

6.1.1 Alternative Definitions of Chordality

First, we present some alternative definitions of chordality for matroids.

These are not necessarily new but are derived from existing concepts of

chordality for graphs. As it turns out these definitions are all equivalent

for graphic matroids and are equivalent to chordality in the usual sense.

Weak Chordality

Let M be a simple matroid. M is weakly chordal if for every circuit C,

|C| > 3, there exist subsets C1, C2 of C with C1, C2 ⊆ C = C1 ∪ C2 and

e ∈ E(M)− C such that C1 ∪ e and C2 ∪ e are also circuits of M .

73
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Bonin Chordality

M is Bonin chordal [10] if for every circuit C, |C| > 3, there exist subsets

C1, C2 of C with C1, C2 ⊆ C = C1 ∪ C2 and e ∈ E(M)− C such that C1 ∪ e
and C2 ∪ e are also circuits of M and |C1 ∪ e|, |C2 ∪ e| < |C|.

T-Chordality

A circuit of M is a triangle if it has cardinality of exactly 3. M is T-chordal

if for every circuit C, |C| > 3, there is a pair of elements c, c′ ∈ C and an

element e ∈ E(M)− C such that {c, c′, e} is a triangle.

C-Chordality

M is C-chordal [14] if for every circuit C, |C| > 3, there are circuits C1, C2

and an e /∈ C such that C1 ∩ C2 = e and C = C14C2. We call e a C-chord

of C.

We can rephrase this as follows. M is C-chordal if for every circuit C, |C| > 3,

there is a partition C1, C2 of C, and an element e /∈ C, such that C1 ∪ e and

C2 ∪ e are circuits.

Strong Chordality

M is strongly chordal if for every circuit C, |C| > 3, there exist c, c′ ∈ C and

e ∈ E(M)−C such that {c, c′, e} and (C−{c, c′})∪ e are also circuits of M .
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6.1.2 The History of These Definitions

Weak chordality was introduced for binary matroids by Barahona and Groetschel

[3] where they referred to weakly chordal for matroids as “chordal”. Here we

do not restrict our meaning to the class of binary matroids.

Bonin and de Mier [10] define a circuit C to be “chordal” if there are circuits

C1 and C2 of M and an element x ∈ C1 ∩ C2 such that |C1|, |C2| < |C| and

C = (C1 ∪ C2) − x. For us a matroid is Bonin chordal if and only if each

circuit of size at least 4 is chordal in their sense.

Cordovil et al [14] analyze matroids and graphs with a view to understanding

how a chordal graph is like a supersolvable matroid. We shall be using some

of their results later in Chapter 7. In particular they show that a binary

supersolvable matroid is chordal in their sense but the converse does not

hold. In the process of establishing this result they give another definition

of chordality in matroids from Barahona and Groetschel [3].

Let M be an arbitrary matroid. Cordovil et al [14] say that a circuit C of

M has a “chord” e if there are two circuits C1 and C2 such that C1 ∩C2 = e

and C = C14C2. In this case, we say that the chord e “splits” the circuit

C into the circuits C1 and C2. We say that a matroid is i-chordal if every

circuit with at least i elements has a chord. The matroids we call C-chordal

are matroids which are 4-chordal in the sense of [14].

Finally, we are left with an extension of our definition of T-chordality in

matroids which we call strong chordality. As seen earlier a matroid M is

strongly chordal if for every circuit C of M such that |C| > 3 there exist

elements c1, c2 of C and an element e /∈ C such that both {c1, c2, e} and

(C − {c1, c2}) ∪ e are circuits. If a matroid is strongly chordal we call it

“chordal” for short.
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Observe that our use of the terms strongly chordal and weakly chordal are

not at all similar to the use of these terms with graphs. Our usage is a direct

definition of a type of chordal not an addition of features to chordal. A graph

is weakly chordal if it is chordal and is (anti-hole, hole)-free [24]. A graph

is strongly chordal if it is chordal and every cycle of even length has an odd

chord [11].

All this results in the following theorem.

Theorem 6.1.1. Let G be a graph. Then the following are equivalent

i) M(G) is weakly chordal

ii) M(G) is Bonin chordal

iii) M(G) is T-chordal

iv) M(G) is C-chordal

v) M(G) is strongly chordal

Proof. By definition M(G) is a graphic matroid. The result follows from

Corollary 6.3.6 and Theorems 6.2.1 and 6.2.2. See the next sections of this

chapter.

6.2 Chordality for Matroids in General

We now consider how these definitions of chordality for matroids interrelate.

The equivalence of these definitions of chordality does not hold for matroids
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in general. However, observe that strong chordality for matroids does imply

all the other types and weak chordality for matroids is implied by all the

other types.

Theorem 6.2.1. Let M be a matroid. Let M be strongly chordal. Then the

following is true.

i) M is weakly chordal; and

ii) M is Bonin chordal; and

iii) M is T-chordal; and

iv) M is C-chordal.

Proof. We shall deal with each in turn. First let C be a circuit of M . Assume

|C| > 3. We know there exist c, c′ ∈ C and e ∈ E(M) − C so that {c, c′, e}
and (C − {c, c′}) ∪ e are circuits. Let C1 = {c, c′} then C2 = C − {c, c′}.
Then we see easily that C1 ∪ e and C2 ∪ e are both circuits of M . Since this

is true for every circuit C of M we see that M is also weakly chordal.

Moreover |C1∪e| = |{c, c′, e}| = 3 < |C|. Also because {c, c′} ⊆ C and e /∈ C
we see that |C2 ∪ e| = |(C − {c, c′}) ∪ e| = (|C| − 2) + 1 = |C| − 1 < |C|.
Thus |C1 ∪ e|, |C2 ∪ e| < |C|. Since this is true for every circuit C (|C| > 3)

it follows that if M is strongly chordal it must also be Bonin chordal.

It is trivial to see that M must be T-chordal. Finally, {c, c′, e}∩(C−{c, c′})∪
e = e. Also {c, c′, e}−(C−{c, c′})∪e = {c, c′} and (C−{c, c′})∪e−{c, c′, e} =

C−{c, c′} and {c, c′}∪(C−{c, c′}) = C. Thus {c, c′, e}4(C−{c, c′})∪e = C.

So M is C-chordal.

Theorem 6.2.2. Let M be a matroid. Then the following are true.
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i) if M is strongly chordal then M is weakly chordal.

ii) If M is Bonin chordal then M is weakly chordal.

iii) If M is T-chordal then M is weakly chordal

iv) If M is C-chordal then M is weakly chordal

Proof. We shall deal with each in turn. We have seen already that if M

is strongly chordal then M is weakly chordal. If M is Bonin chordal then

for every circuit C of M , |C| > 3, there are two subsets of C, C1 and

C2, and an element e /∈ C, such that C1 ∪ e and C2 ∪ e are circuits and

|C1 ∪ e|, |C2 ∪ e| < |C|. But then it is clear that M must be weakly chordal.

Next, consider a circuit C of M such that |C| > 3. Then if M is T-chordal

there are elements c1, c2 ∈ C and an element e ∈ E(M) − C such that

{c1, c2, e} is a triangle. Observe that rM(C) = |C| − 1 since C is a circuit

so a minimal dependent set. Also we see that rM(C ∪ {e}) = |C| − 1. Thus

C −{c1} is independent which means that |C −{c1}| = |C| − 1. This means

that C − {c1} must span C ∪ {e} and so e ∈ clM(C − {c1}).

6.2.2.1 (Oxley [41]). If x ∈ clM(S)−S then there exists a circuit D ⊆ S ∪x
such that x ∈ D.

This means that there is a circuit C2 ∪ {e} such that C2 ⊆ C − {c1}. Thus

M is weakly chordal.

Finally, let C be any circuit of M . Then M is C-chordal we know that

there exist circuits C1, C2 and an element e /∈ C such that C1 ∩ C2 = e and

C14C2 = C. So let C∗1 = C1−C2 = C1−{e} and C∗2 = C2−C1 = C2−{e}.



6.3. CHORDALITY IN BINARY MATROIDS 79

C = C ∗1 ∪C∗2 by definition. Finally we know that C ∗1 ∪{e} = C1 and

C ∗2 ∪{e} = C2 are circuits. Thus M is weakly chordal.

6.3 Chordality in Binary Matroids

In this section we see that for binary matroids, and so graphic matroids, our

definitions for chordality in matroids become equivalent.

First, let C be a circuit of the matroid M . We say that C is T-chordal if

there exists e ∈ E(M) and c1, c2 ∈ C such that {c1, c2, e} is a triangle. Ob-

serve that a simple matroid M is T-chordal if and only if every circuit of M

is T-chordal in this sense.

Lemma 6.3.1. Let M be a simple matroid. If C is a circuit of M with

distinct subsets C1, C2 and an element e ∈ E(M) such that C1 ∪ {e} and

C2 ∪ {e} are circuits then C = C1 ∪ C2.

Proof. By circuit elimination there is a circuit C3 ⊆ (C1 ∪ C2) − {e}. But

C1∪C2 ⊆ C and C3 ⊆ (C1∪C2). Since circuits can not contain other circuits

it follows that C1 ∪ C2 = C.

Lemma 6.3.2. Let M be a simple binary matroid which is weakly chordal.

Let C be a circuit of M with |C| > 3. Then there is an element e and a

partition C1, C2 of C such that C1 ∪ e and C2 ∪ e are circuits.

Proof. By the definition of weak chordality, we know there exist subsets C1

and C2 and an element e ∈ E(M)−C such that C1∪e and C2∪e are circuits.

We further know that because M is binary then for any two distinct circuits

X, Y the symmetric difference (X − Y ) ∪ (Y − X) contains a circuit. But

then ((C1 ∪ e) − (C2 ∪ e)) ∪ ((C2 ∪ e) − (C1 ∪ e)) = (C1 − C2) ∪ (C2 − C1)

contains a circuit C ′. But because C1, C2 are subsets of C we see that C ′ ⊆
(C1 − C2) ∪ (C2 − C1) ⊆ C. Since circuits are minimally dependent we see

that (C1 − C2) ∪ (C2 − C1) = C. This implies that C1, C2 is a partition of

C.
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Lemma 6.3.3. Let M be a simple binary matroid and let M be weakly

chordal. Then M is T-chordal.

Proof. We shall prove this by induction on the size of C. Let C be a circuit of

M such that |C| > 3. As a base case assume that |C| = 4. Since M is weakly

chordal we know that there exist C1, C2 ⊆ C = C1∪C2 and some e /∈ C such

that C1 ∪ e and C2 ∪ e are circuits. Since M is binary we know from Lemma

6.3.2 that C1, C2 is a partition of C. But then |C1|, |C2| < |C|. Since M is

simple |C1|, |C2| 6= 1. Hence both C1 and C2 must be of cardinality 2. Then

the result follows.

Assume for induction that C is a circuit of size n > 4 and that all circuits of

size less than n are T-chordal. By Lemma 6.3.2 there is an e and a partition

of (C1, C2) of C such that C1 ∪ e and C2 ∪ e are circuits.

Observe that |C1 ∪ e| ≥ 4. Since C1 ∪ e is T -chordal by hypothesis, there is

some element y ∈ C1 ∪ e, pair c, c′ in (C1 ∪ e)−{y} and element f such that

{c, c′, f} is a circuit. We know that {c, c′} ⊆ C1 ∪ e. We further know that

{e} * {c, c′} because e ∈ E(M)− C. Also M is simple so there are no par-

allel elements. Hence {c, c′} ⊆ C1 ⊆ C and {c, c′} ⊆ (C1∪e)−{y} ⊆ C−{y}.

We have been given f already so we see that there is an element e, pair

{c, c′} ⊆ C − {e} and element f such that {c, c′, f} is a circuit. Hence C is

T-chordal if C1 ∪ e has this property. Since this is true for all C, |C| > 3, we

see that M must be T-chordal.

Lemma 6.3.4. Let M be a simple matroid. If M is binary, then M is

strongly chordal if and only if M is weakly chordal.

Proof. By Lemma 6.2.1 if M is strongly chordal then it is weakly chordal.

So consider the converse.

Let M be binary and weakly chordal. Then by Lemma 6.3.2 we know that
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for every circuit of M call this C there is a partition C1, D1 and some element

e ∈ E(M) such that C1 ∪ e and D1 ∪ e are also circuits of M .

By Lemma 6.3.3 C is T-chordal. Thus C contains a pair {c, c′} and there

exists an element f /∈ C such that {c, c′, f} is a circuit. Now consider the set

(C − {c, c′}) ∪ f .

By Oxley [41, Theorem 9.1.2] since C and {c, c′, f} are circuits of M then

C4{c, c′, f} is a disjoint union of circuits. But C4{c, c′, f} = (C−{c, c′})∪f .

This symmetric difference can be partitioned into circuits. Assume there is

more than one circuit. Consider a circuit that does not contain f . Observe

that this circuit is a subset of C yet it can not be C since it does not contain

c or c′. This is a contradiction. Thus (C − {c, c′}) ∪ f must contain a single

circuit and thus itself be a circuit of M .

Thus we see that if M is simple, binary and weakly chordal for every circuit

C with cardinality greater than 3 there must exist a pair c, c′ and element

e /∈ C such that both {c, c′, f} and (C − {c, c′}) ∪ f are circuits and hence

M is strongly chordal.

Theorem 6.3.5. Let M be a binary matroid. Then the following are equiv-

alent:

i) M is weakly chordal.

ii) M is Bonin chordal.

iii) M is T-chordal.

iv) M is C-chordal.
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v) M is strongly chordal.

Proof. This follows from Lemma 6.2.2, Lemma 6.2.1 and Lemma 6.3.4.

Corollary 6.3.6. Let M be a graphic matroid. Then the following are equiv-

alent:

i) M is weakly chordal.

ii) M is Bonin chordal.

iii) M is T-chordal.

iv) M is C-chordal.

v) M is strongly chordal.

Proof. This is a corollary of Theorem 6.3.5 since every graphic matroid is

binary.

6.4 Further Discussion

We now look at how chordality applies to matroids in general. In turn we

consider the known implications, the known non-implications and the open

questions.
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Bonin

6.2.1 6.2.1 6.2.1

strong

T-chordal

weak

6.2.2
6.2.2

6.2.2

C-chordal
6.4.26.4.1

Figure 6.1: How the different implications of chordality in matroids relate.
The arrows indicate the direction of implication. The edge labels refer to the
Lemmas that establish the implications.

6.4.1 Known Implications

We saw earlier that strong chordality implies Bonin chordality, T-chordality,

C-chordality and weak chordality in general matroids. In addition weak

chordality is implied by all the other types. We also know that the following

results about C-chordality hold. See the accompanying digraph in Figure 6.1.

Lemma 6.4.1. Let M be a simple matroid. If M is C-chordal then it is

Bonin chordal.

Proof. Let C be any circuit of M . Since M is C-chordal we know that there

exist circuits C1, C2 and e /∈ C such that C1 ∩ C2 = e and C14C2 = C.

Let C∗1 = C1 − C2 and C∗2 = C2 − C1. Then clearly C ∗1 ∪e = C1 and

C ∗2 ∪e = C2 are circuits. Moreover |C ∗1 | < |C| − 1 and |C ∗2 | < |C| − 1

so |C ∗1 ∪e|, |C ∗2 ∪e| < |C|. Thus M must be Bonin chordal.

Lemma 6.4.2. Let M be a simple matroid. If M is C-chordal then it is

T-chordal.

Proof. Let C be a circuit of M such that |C| > 3. Amongst all the elements

x /∈ C of M , such that there exists a subset C1 ⊆ C and C1∪{x} is a circuit,
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choose e such that |C1 ∪ {e}| is minimal. If |C1 ∪ {e}| = 3 the lemma holds.

So assume |C1 ∪ {e}| > 3.

By the definition of C-chordality there is a partition C ′1, C
′
2 of C1 and an

element f of M such that C ′1∪f and C ′2∪f are circuits. Observe that f /∈ C
otherwise C ′1 ∪ f ⊂ C1 ∪ e which can not be. We may assume that e /∈ C ′1.
Then C ′1 ⊆ C and |C ′1 ∪{f}| < |C1 ∪{f}|. This contradicts our requirement

that e be selected so that |C1| is minimal.

These results show that C-chordality is a fairly strong type of chordality for

matroids. The question might then be are C-chordality and strong chordality

equivalent? We discuss this later.

6.4.2 Known Non-implications

We know quite a lot about what does not hold in the relationships between

the different types of chordality for general matroids. Working our way up

consider how weak chordality relates to the stronger varieties of chordality.

As one can see weak chordality does not imply strong chordality nor Bonin

chordality nor T-chordality nor C-chordality. See the accompanying digraph

in Figure 6.2.

We will use the matroid U3,5 in the following four examples. A key feature

of this matroid is that it does not allow triangles. Given low rank, almost all

our definitions of chordality in matroids, except weak chordality, force the

existence of triangles, as we will see.

Example 6.4.3. Weak chordality does not imply strong chordality for gen-

eral matroids. There exists at least one matroid that is weakly chordal but

not strongly chordal. Consider U3,5 as in Figure 6.3.
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Bonin

6.4.7

strong

X

C-chordal

weak

X X X

6.4.4 6.4.5 6.4.6

T-chordalX X
6.4.8 6.4.9 X

6.4.10

Figure 6.2: How the different non-implications of chordality in matroids re-
late. A –X B means “A does not imply B”. The edge labels indicate counter-
examples for each case.

e

C1 ∪ {e}

C2 ∪ {e}

C

Figure 6.3: U3,5 - the uniform matroid of 5 points on the plane
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Observe that U3,5 is weakly chordal. For U3,5 any 4 points form a circuit C.

We can let C1 be any 3 points of C and let C2 be another 3 points so that

C1∪C2 = C. Let e be the fifth point not in C. C1∪e and C2∪e are circuits.

But if we take any two points c, c′ from C then {c, c′, e} is not a circuit since

it is an independent set. Hence U3,5 is not strongly chordal.

Example 6.4.4. Weak chordality does not imply Bonin chordality in general

matroids. Consider the matroid U3,5 in Figure 6.3. Take any circuit C of this

matroid (which will have exactly 4 elements). We can choose two subsets

C1, C2 of C with |C1| = 3 = |C2|. Then we can choose some other element

e ∈ E−C. Then |C1∪e| = 4 = |C2∪e| and hence C1∪e and C2∪e are both also

circuits. Thus U3,5 is weakly chordal. However |C1 ∪ e| = |C2 ∪ e| = 4 = |C|.
Thus this matroid is not Bonin chordal.

Example 6.4.5. Weak chordality does not imply T-chordality for general

matroids. Consider the example matroid U3,5 in Figure 6.3. Sets of size 3

can never be circuits in U3,5. This will in fact be true for any choice of C.

Thus while U3,5 is weakly chordal it can not be T-chordal.

Example 6.4.6. Weak chordality does not imply C-chordality for general

matroids. Observe U3,5 in Figure 6.3. Clearly C1 ∪ e and C2 ∪ e are circuits

so this example is weakly chordal. Now if C∗1 = C1 ∪ {e} and C∗2 = C2 ∪ {e}
then clearly from observation |C∗1 ∩ C∗2 | > 1. Hence C∗1 ∩ C∗2 6= {e}. (Also

from observation we can see that C 6= C∗14C∗2). This will be true for all

choices of C1, C2. Thus this example is not C-chordal.

Then consider T-chordality. As one can see T-chordality does not imply

strong chordality nor Bonin chordality nor C-chordality for general matroids.

Example 6.4.7. T-chordality does not imply strong chordality for general

matroids. Let M be a T-chordal matroid. Then for every C, where |C| > 3,
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there exist c, c′ ∈ C and e /∈ C such that {c, c′, e} is a circuit. But for M to

be strongly chordal it must be that (C − {c, c′}) ∪ e is also a circuit.

Consider L2,3 as in Figure 6.4. Label the points on the 3-point line c, d, e

and the two other points a, b. Then {a, b, c, d} is a circuit of size 4 (call this

circuit C). Thus we know there exist two elements in C and one outside

whose union is a triangle.

Well clearly that is true since we can choose {c, d} from C and the remaining

outside element e which gives us {c, d, e} which is the 3-element and so a

circuit.

However, observe that (C − {c, d}) ∪ {e} = {a, b, e} which is a basis not a

circuit. This is true no matter how we select the two elements from C since

we are also constrained to choose two points on the 3 point line. Thus we

can see that this matroid can not be strongly chordal.

Example 6.4.8. T-chordality does not imply Bonin chordality in general

matroids. Consider again the rank 3 matroid L2,3 in Figure 6.4. Label the

elements on the 3 element line c, d, e and the elements on the two element

line a, b. Observe, as before, that C = {a, b, c, d} is a circuit. This matroid

is T-chordal because of the set {c, d, e}. However this matroid is not Bonin

chordal because all circuits other than {c, d, e} have cardinality 4.

b

a

c

d

e

C

Figure 6.4: L2,3 - the rank 3 matroid with two lines one with 3 points and
one with 2 points
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Example 6.4.9. T-chordality does not imply C-chordality for general ma-

troids. Consider again the example L2,3 from Figure 6.4. Observe that

C = {a, b, c, d}. We can choose {c, d} from C and add {e} to obtain {c, d, e}
which is clearly a circuit hence this example is T-chordal. Now if we let

C1 = {a, b, c, e} and C2 = {a, b, d, e} which are both circuits then we see that

C14C2 = {c, d} 6= C. This is true for all choices of C and C1, C2. Thus this

example is not C-chordal.

Finally, Bonin chordality does not imply C-chordality for general matroids

as the following counter-example shows.

Example 6.4.10. Consider the rank-4 whirl (see Figure 6.5). This rank

4 matroid with 8 elements has 16 circuits - 12 of which are larger than 3.

For every circuit C of B4,8, |C| > 3, there exist two subsets, C1, C2 and an

element e outside of C such C1 ∪ {e}, C2 ∪ {e} are circuits and are smaller

than C. However there is at least one circuit {b1, b2, b4, d1, d2} which can not

be partitioned so that if we join the partitions with an element e /∈ C both

sets are circuits of B4,8.

a
d

b

e
c

f

h

g

Figure 6.5: The rank 4 matroid with 8 elements. This is of course the rank-4
whirl.
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Bonin

?

6.4.14 6.4.15

strong

C-chordal

?

weak

T-chordal?
6.4.13

Figure 6.6: How the different open problems relate. A -? B means that we
do not know if A implies B. The edge labels refer to the open problems that
describe each case.

6.4.3 Open Problems

As we have seen, we know quite a lot about how our five types of chordality

for matroids interrelate for general matroids. First, strong chordality implies

Bonin chordality, T-chordality and C-chordality which in turn imply weak

chordality for general matroids. We have further seen that C-chordality im-

plies Bonin chordality and T-chordality for general matroids. T-chordality

does not imply Bonin chordality nor C-chordality and Bonin chordality does

not imply C-chordality. This leaves us with questions about Bonin chordal-

ity, T-chordality and C-chordality. See the accompanying digraph in Figure

6.6. First, we ask how do Bonin chordality and T-chordality relate for gen-

eral matroids? Well we do know two things.

Lemma 6.4.11. Let M be a simple matroid such that every circuit has size

at most 5. Then M is T -chordal.

Proof. Let C be a circuit of M . If |C| ≤ 4 we are done. So assume |C| = 5.

Because M is Bonin chordal we know that there are subsets C1, C2 ⊆ C

and an element f /∈ C such that C1 ∪ {f} and C2 ∪ {f} are circuits and

|C1 ∪ {f}|, |C2 ∪ {f}| < |C|. Now if either |C1 ∪ {f}| = 3 or |C2 ∪ {f}| = 3
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then we are done. So assume that both |C1 ∪ {f}| = 4 and |C2 ∪ {f}| = 4.

Let C ′ = C1 ∪ {f}.

Now by Bonin chordality the circuit C ′ has two subsets C ′1, C
′
2 with an ele-

ment g such that C ′1 ∪ {g} and C ′2 ∪ {g} are triangles. Because two distinct

triangles, whose union has rank three, can only intersect in one element, we

know that C ′1 ∩ C ′2 = ∅ and so C ′1, C
′
2 forms a partition of C ′. This means

that one of C ′1 or C ′2 consists of two elements {c1, c2} of C and {c1, c2, g} is

a triangle.

This is true for every circuit of size 5 or less. Thus M is T-chordal.

Corollary 6.4.12. Let M be a simple matroid. Let r(M) ≤ 4. If M is

Bonin chordal then M is T-chordal.

Proof. If r(M) ≤ 4 then for no circuit C of M can it be that |C| > 5. Thus

Lemma 6.4.11 applies.

This leads to the following open question.

Open Problem 6.4.13. Let M be a matroid. If M is Bonin chordal and

r(M) ≥ 5 is M then T-chordal?

We have investigated this. If there is a counter-example it is certainly a ma-

troid of rank higher than 4. We have considered possible counter-examples

which have ranks of 5 and higher one of which has a circuit of size 6. Un-

fortunately, these did not work out when analyzed. Usually in order for the

matroid to have a circuit which is not T-chordal while the matroid is Bonin

chordal we had to add extra elements which would counteract the properties

we were after. Proving the proposition was just as hard. We needed to es-

tablish an inductive step which is not clearly obvious to us at this point.
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Open Problem 6.4.14. Let M be a matroid. If M is Bonin chordal then

is M strongly chordal?

If we can answer the previous question then this question should be an-

swered. For a Bonin chordal matroid M , if M is T-chordal then it may well

be strongly chordal. If there is however a counterexample to Open Problem

6.4.13 then being Bonin chordal can not possibly imply strong chordality.

Finally, we have the following question.

Open Problem 6.4.15. Let M be a matroid. If M is C-chordal then is M

strongly chordal?

We do not know the answer to this question at this time. As we saw earlier if

M is C-chordal then M is T-chordal. If M is C-chordal then for any circuit

C of size greater than 3 then we can partition C and add an element not in

C to achieve two further circuits. The fact of this partition might mean that

because there is always at least one triangle formed by a subset {c1, c2} of

C and an element e then (C − {c1, c2}) ∪ e is also a circuit. But this is not

clear. There may be a clear and higher rank counter-example.
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Chapter 7

Supersolvability

We have seen that there are multiple distinct concepts of chordality for gen-

eral matroids though for binary matroids and graphs these become equiva-

lent. So for matroids in general it is unclear which definition of chordality we

would want to use. Moreover, it does not seem that even strong chordality

gives us the tree-like matroid structure we desire.

However, there is a related concept to chordality in matroids called super-

solvability. In this chapter we consider supersolvability in matroids. First,

we examine some previous known results. Sections 7.2, 7.3 and 7.4 are new

work though some of the results in section 7.3 rest on previous results. First,

we consider how chordality in graphs relates to supersolvability in their cycle

matroids.

7.1 Supersolvablity in Matroids

Let M be a matroid. A chain of flats of M is a sequence F0, F1, . . . , Fr of

flats such that F0 ( F1 ( . . . ( Fr where rM(Fi) = i for 0 ≤ i ≤ r. A

chain is a maximal chain if r = r(M). The matroid M is supersolvable if M

contains a maximal chain of modular flats.

93
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Stanley [47, 1972] introduced the concept of supersolvability for lattices but

he does discuss supersolvability in the context of graphs and their cycle ma-

troids. He shows how supersolvable cycle matroids are equivalent to chordal

graphs as we will see below.

First, Ziegler [49] provides an alternate recursive expression of what it is for

a matroid M to be supersolvable.

Definition 7.1.1. A matroid M is recursively supersolvable if either

i. it has r(M) ≤ 2; or

ii. it has r(M) > 2 and a modular hyperplane H ⊆ E(M) such that M |H
is supersolvable.

Lemma 7.1.2. Let M be a matroid. M is supersolvable if and only if it is

recursively supersolvable.

Proof. Suppose M is recursively supersolvable. We can show that a maximal

chain of modular flats must exist by construction using this recursive rela-

tionship. If the matroid is of rank less than or equal to 2 then by default it

has a maximal chain of modular flats.

So assume that the matroid has rank greater than 2. Then we know it has

a modular hyperplane H such that M |H is supersolvable. By following the

recursion, and by applying Lemma 4.1.6, we see that M must have a maxi-

mal chain of modular flats.

On the other hand suppose that M has a maximal chain of modular flats.

We proceed by induction on r = r(M). We can see that if r ≤ 2, the chain
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consists of a line that is a flat with elements as its hyperplanes. Let H be

one of the modular hyperplanes that we have assumed exist. But M must

have a modular hyperplane H because it is supersolvable and the matroid

M |H by definition will have rank r − 1. Thus if M is supersolvable it must

be recursively supersolvable.

7.1.1 Supersolvability in the Cycle Matroids of Graphs

The following theorem paraphrases results of Dirac [18] and Stanley [47] for

which we provide a proof. The theorem shows the equivalency of supersolv-

able cycle matroids and their chordal graphs. First, we give a definition. A

simplicial ordering of the vertices of a graph V (G) is an ordering v0, . . . , vn

of the vertices of V (G) so that NG(vi) is a clique in each induced subgraph

G[v0, . . . , vi].

Theorem 7.1.3. Given a graph G with cycle matroid M(G) the following

are equivalent:

i. G is chordal.

ii. V(G) has a simplicial ordering.

iii. M(G) is supersolvable.

Proof. It is a well known result that G is chordal if and only if it has a simpli-

cial ordering. This follows directly from Theorem 5.1.12. Also see Corollary

9.22 of Bondy and Murty (2008) [9].

Now assume that G has a simplicial ordering (v0, . . . , vn). We will prove that

M(G) is recursively supersolvable. We do this by proving thatM(G[v0, . . . , vi−1])

is a modular hyperplane of M(G[v0, . . . , vi]) for all i ∈ [1, . . . , n].
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Because (v0, . . . , vn) is a simplicial ordering, vi is a simplicial vertex ofG[v0, . . . , vi].

Let C∗ be the set of edges incident with vi. Then considerH = E(G[v0, . . . , vi])−
C∗. By Lemma 5.1.2 ifG[v0, . . . , vi] has exactly one component thenG[v0, . . . , vi−1]

has exactly one component. Therefore the rank ofH is r(M(G[v0, . . . , vi−1])) =

r(M(G[v0, . . . , vi] − {vi})) = r(M(G[v0, . . . , vi])) − 1. So H is a hyperplane

of G[v0, . . . , vi]. This means C∗ is a cocircuit of G[v0, . . . , vi].

Now say e and f are elements of C∗. Then e and f are incident with vi. Let

e = {u, vi} and f = {v, vi}. As vi is a simplicial vertex of G[v0, . . . , vi], there

is an edge g = {u, v}. So {e, f, g} is a triangle in G[v0, . . . , vi]. Therefore

g ∈ clM(G[v0,...,vi])({e, f}). But g ∈ H. By Lemma 4.1.3 H is modular in

M(G[v0, . . . , vi]). This is true for any i ∈ [1, . . . , n]. Thus M(G) is recursively

supersolvable. In turn by Lemma 7.1.2 we see that M(G) is supersolvable.

Next, by Lemma 7.1.2, if M(G) is supersolvable then it is recursively super-

solvable. Assume r(M(G)) > 2 otherwise the result is trivial. Then M(G)

has a modular hyperplane H ⊆ E(M(G)) such that M(G)|H is supersolvable

of rank r(M(G))− 1. Now by Lemma 5.2.5 it follows that E(M(G))−H in

G is incident with a simplicial vertex in G. If we apply this recursively until

r(M) ≤ 2 then we obtain a simplicial ordering of V (G).

We now discuss how supersolvability and chordality in matroids relate both

when the matroids are binary and in general. We see that there are still prob-

lems that are addressed by including the further requirement of saturation

introduced later.

7.1.2 Supersolvability for Binary Matroids

First we observe a result of Ziegler [49].

Theorem 7.1.4 (Ziegler 1991 [49]). Let M be the class of binary matroids

that do not contain the Fano plane as a submatroid. Let M be a supersolvable

binary matroid. If M ∈M then it is graphic.
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Next Cordovil et al [14] explicitly address the question as to whether binary

supersolvable matroids are chordal. Recall the definition of C-chordal for

matroids given earlier in Chapter 6.

Theorem 7.1.5 (Cordovil et al. (2004) [14]). Let M be a simple matroid.

If M is binary and supersolvable then M is C-chordal.

Next, we show the corollary that, for binary matroids, supersolvability im-

plies chordality in the multiple forms introduced earlier.

Corollary 7.1.6. Let M be a binary matroid. If M is supersolvable then the

following are true:

i) M is weakly chordal.

ii) M is Bonin chordal.

iii) M is T-chordal.

iv) M is C-chordal.

v) M is strongly chordal.

Proof. By the theorem of Cordovil et al. [14] (Theorem 7.1.5) if M is binary

and supersolvable it is C-chordal. By Theorem 6.3.5 if M is binary and C-

chordal then it is also weakly chordal, T-chordal, Bonin chordal and strongly

chordal.
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7.1.3 Supersolvability and Chordality for General Ma-

troids

We now consider a few results comparing supersolvability with chordality for

general matroids.

Lemma 7.1.7. Let M be a simple matroid. If M is supersolvable it is T-

chordal.

Proof. Let ∅ ( F1 ( . . . ( Fr−1 ( E(M) be a maximal chain of modular

flats of M . Let C be a circuit of E(M). If C ⊆ Fr−1, then we win by

induction by considering the supersolvable matroid M |Fr−1. Now assume

that C − Fr−1 6= ∅. If there are at least two elements in C − Fr−1, let these

be {a, b}. Because Fr−1 is modular there is an element c ∈ Fr−1 such that

clM({a, b}) ⊇ c and so {a, b, c} is a triangle, so we have nothing left to prove.

If there is only one element in C − Fr−1 then Fr−1 can not be a flat which is

a contradiction.

Corollary 7.1.8. Let M be a simple matroid. If M is supersolvable it is

weakly chordal.

Proof. We can see this result by first applying Lemma 7.1.7 then applying

Lemma 6.2.2.

Now consider the following counter-example which shows that a supersolv-

able matroid is not necessarily strongly chordal.

Example 7.1.9. Consider the example rank 3, 10 element, matroid B3,10

in Figure 7.1. This has at least one maximal chain of modular flats so is

supersolvable. For example ∅ ( {p1} ( {p1, p2, p3, p4, p5, p6} ( E(B3,10) is a

maximal chain of modular flats of B3,10.
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p1 p2 p3 p4 p5 p6

b

a

d

c

Figure 7.1: B3,10: A counter-example to supersolvable matroids being
strongly chordal

However, now consider the circuit C = {a, b, c, d}. Then consider any two

element subset of C such as {a, d}. There is an element p5 not in C such

that there is a triangle {a, d, p5}. But (C − {a, d}) ∪ {p5} = {b, c, p5} is not

a circuit. This is clearly true for all other two element subsets of C. As a

result, B3,10 is not strongly chordal.

This means that we will need to explicitly require that our matroids be su-

persolvable instead of just stating that they are strongly chordal.

7.2 Supersolvable Saturation

As we saw earlier, if a graph is chordal then every minimal vertex separation

is a clique cut. Let M be a matroid. As we shall see, the matroidal analogue

of a clique cut is to have a separation (A,B) in M such that cl(A) ∩ cl(B)

is a modular flat of M . Now recall that, for a flat F in M , if M |F has no

vertical separations then F is round. In turn M is saturated if every round

flat of M is modular. Note that saturate in this context is different from

the meaning of saturated in the context of “saturated chain”. We can ask

the question as to whether a supersolvable matroid is necessarily saturated.

This turns out to be false. Consider the following counter-example.
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Figure 7.2: A rank 4 matroid that shows that supersolvability does not imply
saturation

Example 7.2.1. Observe that the rank 4 matroid M in Figure 7.2 is cer-

tainly supersolvable. One maximal chain of modular flats would be ∅ (
{d} ( {d, e, f, a} ( {d, e, f, a, b, c} ⊆ E(M). However, consider the flat

F = {a, b, c}. Now F is round since no separation of F is vertical. However,

the flat is not modular. Consider the flat Z = {f, g}. Then r(F ) = 2 and

r(Z) = 2 but r(F ∪Z) = r({a, b, c, f, g}) = 3 while r(F ∩Z) = r(∅) = 0 and

so r(F ) + r(Z) > r(F ∪ Z) + r(F ∩ Z).

Furthermore, consider a minimal vertical k-separation (A,B) of a supersolv-

able matroid M . We are particularly interested in the flat that forms the

intersection cl(A) ∩ cl(B). For example, in the counter-example in Figure

7.2, we can let A = {a, b, c, d, e, f, g}, B = {a, b, c, h, i, j} and cl(A)∩cl(B) =

{a, b, c}. We saw above that {a, b, c} is not modular.

Thus the example in Figure 7.2 shows us that supersolvability is not enough

to guarantee that cl(A) ∩ cl(B) is modular. This leads us to the following

definition. Let M be a matroid. Recall that M is saturated if every round

flat F of M is modular. Remember that a flat F is round if M |F is round.

Now we define M to be supersolvably saturated if M is both supersolvable

and saturated.

We now give some useful results concerning supersolvably saturated ma-
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troids. First, we can restrict to modular flats and retain the property of

being supersolvably saturated. We can denote the maximal chain of flats

F0 ( F1 ( F2 ( . . . ( Fr by (F0, F1, F2, . . . , Fr).

Lemma 7.2.2. Let G be a modular flat of the rank r matroid M . Let

(F0, F1, F2, . . . , Fr) be a maximal chain of flats. Then (F0 ∩ G,F1 ∩ G,F2 ∩
G, . . . , Fr ∩G) contains a maximal chain of flats of M |G.

Proof. Let d = r − r(G) so that r(G) = r − d for d ∈ {1, . . . , r}. Also,

remember that because (F0, F1, . . . , Fr) is a maximal chain of flats, we know

that r(Fi+1)− r(Fi) = 1. We first establish a claim.

7.2.2.1. r(Fi+1 ∩G)− r(Fi ∩G) ≤ 1 for i ∈ {0, 1, . . . , r}.

Proof. Let i ∈ {0, . . . , r}. Consider Fi. If Fi ⊆ G, then Fi ∩ G = Fi so

r(Fi ∩ G) = r(Fi). Say Fi * G. Then we can see that r − d ≤ r(Fi ∪ G) ≤
2r−d. This means we have r(Fi)+(r−d)−(2r−d) ≤ r(Fi)+r(G)−r(Fi∪G) ≤
r(Fi) + (r − d) − (r − d). In turn, because G is modular, we have that

r(Fi)− r ≤ r(Fi ∩G) ≤ r(Fi).

Now let i ∈ {0, . . . r−1} and consider Fi and Fi+1. If Fi+1 ⊆ G, then Fi ⊆ G,

so r(Fi+1 ∩G)− r(Fi ∩G) = r(Fi+1)− r(Fi) = 1. If Fi+1 * G, then we have

two subcases.

i) If Fi * G then we have

1

= (r(Fi+1)− r)− (r(Fi)− r)
≤ r(Fi+1 ∩G)− r(Fi ∩G)

≤ r(Fi+1)− r(Fi)
= 1



102 CHAPTER 7. SUPERSOLVABILITY

Thus, r(Fi+1 ∩G)− r(Fi ∩G) = 1.

ii) Now consider the case where Fi ⊆ G. Let B be a basis of M |Fi (ob-

serving that now Fi = Fi ∩ G). Let B′ be a basis of M |(Fi+1 ∩ G)

such that B ⊆ B′. Now assume that there are at least two distinct

elements {x, y} in B′ − B. Then B′ is independent and B′ ⊆ Fi+1 so

r(Fi+1) ≥ |B′| ≥ |B|+ 2 = r(Fi) + 2. But this contradicts the fact that

r(Fi+1)− r(Fi) = 1. Thus, it must be that r(Fi+1 ∩G)− r(Fi ∩G) ≤ 1.

In both cases r(Fi+1 ∩G)− r(Fi ∩G) ≤ 1.

Next observe that r(Fr ∩ G) = r − d and r(F0 ∩ G) = 0 for d ∈ {1, . . . , r}.
Let J ⊆ {1, . . . , r} be maximal such that, for all j ∈ J , r(Fj+1)− r(Fj) = 1.

If 1 ≤ j ≤ r − d then (F0 ∩ G,F1 ∩ G, . . . , Fr−d ∩ G) is a maximal chain of

flats of M |G. That is, there is a greatest i with Fi ⊆ G, so one term in the

sequence of intersections is repeated. When this repetition is eliminated, we

have a maximal chain of flats in M |G.

Next, we consider when a restriction M |F of a supersolvably saturated ma-

troid M is supersolvable and indeed saturated.

Corollary 7.2.3. Let G be a modular flat of the supersolvable matroid M .

Then M |G is supersolvable.

Proof. Let (F0, . . . , Fr) be a maximal chain of modular flats of M . By Lemma

7.2.2 (F0∩G, . . . , Fr∩G) contains a maximal chain of flats. Then by Lemma

4.1.7, for each i ∈ {0, . . . , r}, Fi ∩G is modular. Thus M |G is supersolvable.

Lemma 7.2.4. Let F be a flat of the saturated matroid M . Then M |F is

saturated.



7.2. SUPERSOLVABLE SATURATION 103

Proof. Let G be a round flat of M |F . Then, as F is a flat of M , the set G is

round in M . Hence G is a modular flat in M . By Lemma 4.1.5 we see that

G is modular in M |F .

Corollary 7.2.5. If M is a supersolvably saturated matroid and G is a mod-

ular flat of M then M |G is supersolvably saturated.

Proof. By Corollary 7.2.3 since M is supersolvable then M |G is supersolv-

able. G is a flat of M and M is saturated so by Lemma 7.2.4 we see that

M |G is saturated.

Note that for this corollary, if G is a hyperplane, we do not need that G

be modular although the argument presented here used that fact. We could

instead have taken account of the fact that there is a maximal chain of mod-

ular flats.

Now consider a modular hyperplane H of a simple matroid M with E−H =

{p1, . . . , pn}. For distinct i, j ∈ {1, . . . , n} we denote by pij the element

cl({pi, pj}) ∩H. Then we have the following result.

Lemma 7.2.6. Let M be a simple matroid and H be a modular hyperplane

in M . Let pi, pj, pk for (1 ≤ i < j < k < |E(M) − H|) be independent in

E(M)−H. Then rM({pij, pjk, pik}) = 2.

Proof. Observe that rM(clM({pi, pj, pk}) ∩H) ≤ rM({pi, pj, pk}) + rM(H)−
r(M) = 3+(r−1)−r = 2. But by definition {pij, pjk, pik} ⊆ clM({pi, pj, pk})∩
H. Hence rM({pij, pjk, pik}) ≤ 2.

Assume that pij = pik. Then {pij, pi, pj} is a triangle as is {pij, pi, pk}. This

means that pj and pk are both in the closure of {pij, p1}. This means that

r({pij, pi, pj, pk}) = 2. But this contradicts the fact that r({pi, pj, pk}) = 3.

Thus pij, pjk, pik must all be distinct.

As M is simple rM({pij, pjk, pik}) ≥ 2. Therefore rM({pij, pjk, pik}) = 2.
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If we let C = E(M) − H then we denote L(C) =
⋃
{a,b}⊆C clM({a, b}) ∩ H.

Note that for later reference we use the language of separations but we only

need (X, Y ) to be a partition of H.

Lemma 7.2.7. Let H be a modular hyperplane in a matroid M . Let C =

E(M) − H and let (X, Y ) be a partition of H with λM |H(X, Y ) = k. Then

the following properties hold.

(i) Either L(C) ⊆ clM(X) or L(C) ⊆ clM(Y ).

(ii) If L(C) ⊆ clM(X) then rM(X ∪ C) = rM(X) + 1.

(iii) If L(C) ⊆ clM(X) then λM(X ∪ C, Y ) = λM |H(X, Y ) = k.

Proof. First we prove that assertion (i) is satisfied. Let P = {p1, p2, . . . , pn}
be a basis of C. L(C) is defined as denoted above. Observe that clM(P ) =

clM(C). Assume for a contradiction that there exist i, j, k, l such that pij ∈
X − clM(Y ) and pkl ∈ Y − clM(X). We first observe the following.

7.2.7.1. For indices r, s, t either {prs, pst, prt} ⊆ clM(X) or {prs, pst, prt} ⊆
clM(Y ).

Proof. By Lemma 7.2.6 the points {prs, pst, prt} form a circuit of size 3. Every

element of this circuit is in the closure of the other two. Thus, without loss

of generality, if prs ∈ clM(X) and pst ∈ clM(X) then prt ∈ clM({prs, pst}) ⊆
clM(X).

The claim clearly holds where each pij is in clM(X) ∩ clM(Y ). So now as-

sume that there is some i, j with pij ∈ Y − clM(X). Consider indices s, t

with {i, j}∩{s, t} = ∅. Applying step 7.2.7.1 to {pi, pj, ps} gives {pis, pjs} ⊆
clM(Y ). Likewise, {pit, pjt} ⊆ clM(Y ). Also pst ∈ clM(Y ) since {pis, pit} ⊆
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clM(Y ). Assertion (i) now follows.

Now consider assertion (ii). Since X is contained in the hyperplane whose

complement is C, we have rM(X ∪ C) > rM(X). In order to prove that

rM(X ∪ C) = rM(X) + 1, it suffices to show that for any pi in the basis P

of C, we have P ⊆ clM(X ∪ pi). This holds since each pj ∈ P − pi is in the

3-circuit with pi and the element pij ∈ clM(X).

Finally consider assertion (iii). By the definition of the connectivity function

we know that

λM(X ∪ C, Y )

= rM(X ∪ C) + rM(Y )− r(M)

= rM(X) + 1 + rM(Y )− r(M)

= rM(X) + rM(Y )− (r(M)− 1)

= rM |H(X) + rM |H(Y )− rM |H(H)

= λM |H(X, Y ) = k.

Corollary 7.2.8. Let H be a modular hyperplane of the matroid M and let

C∗ = E(M) − H. Let (X, Y ) be a vertical k-separation of M |H. Then the

following hold.

(i) Either clM(C∗) ∩H ⊆ cl(X) or clM(C∗) ∩H ⊆ clM(Y ).

(ii) If clM(C∗) ∩H ⊆ clM(X), then (X ∪ C∗, Y ) is a vertical k-separation

of M .

Next we introduce the concept of modular separation (see below for the

definition). First, we must discuss separations in general.
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7.3 Bridges and Minimal Separations

As we have seen earlier, a minimal vertex cut of a graph is a minimal

set of vertices whose deletion increases the number of components of

the graph. We have seen that minimal vertex cuts of chordal graphs

are clique cuts and this is the primary reason why the reduced clique

graph Cr(G) of a chordal graph G is highly structured. Our goal is to

prove that an analogous property holds for supersolvably saturated matroids.

In matroids we cannot focus on cuts, but cuts in graphs induce k-separations

and we can focus on these. Let (X, Y ) be a vertical k-separation in the ma-

troid M . Then a bridge of (X, Y ) is a component of M/clM(X) or M/clM(Y ).

A partition (X, Y ) is a k-separation if and only if λM(X) ≤ k − 1.

Lemma 7.3.1. Let Y and Z be disjoint sets in a matroid M . Then

λM(Z) ≤ λM/Y (Z) + λM(Y ).

Proof. Let W = E(M) − (Z ∪ Y ). Recall from basic matroid theory that

rM/Y (A) = rM(A ∪ Y )− rM(Y ) for all A ⊆ E. Using this fact, the submod-

ularity of the rank function and the definition of λ, we obtain the following.

λM/Y (Z) + λM(Y )

=rM/Y (Z) + rM/Y (W )− r(M/Y ) + rM(Y ) + rM(Z ∪W )− r(M)

=rM(Z ∪ Y )− rM(Y ) + rM(W ∪ Y )− rM(Y )− r(M) + rM(Y )+

rM(Y ) + rM(Z ∪W )− r(M)

=rM(Z ∪ Y ) + rM(Z ∪W ) + rM(W ∪ Y )− 2r(M)

≥rM(Z) + r(M) + rM(W ∪ Y )− 2r(M)

=rM(Z) + rM(W ∪ Y )− r(M)

=λM(Z).



7.3. BRIDGES AND MINIMAL SEPARATIONS 107

Lemma 7.3.2. Let Z be a bridge of the k-separation (X, Y ). Then λM(Z) ≤
k − 1.

Proof. Note that either Z ⊆ X or Z ⊆ Y . Assume the former holds. Note

that λM(clM(Y )) ≤ λM(Y ). By the definition of bridge λM/clM (Y )(Z) = 0.

Then by Lemma 7.3.1,

λM(Z) ≤ λM/clM (Y )(Z) + λM(cl(Y )) ≤ 0 + λM(Y ) ≤ k − 1.

Let (X, Y ) be a vertical k-separation of the matroid M . Then (X, Y ) is

minimal if λM(Z) = k − 1 for every bridge Z of (X, Y ).

Lemma 7.3.3. Let (X, Y ) be a minimal vertical k-separation of the matroid

M . Then rM(Y − clM(X)) = rM(Y ).

Proof. Assume otherwise. Then λM(Y − clM(X), clM(X)) < k − 1. Let

Z ⊆ Y − clM(X) be a bridge of (X, Y ). Then Z is also a bridge of (Y −
clM(X), clM(X)). By Lemma 7.3.2,

λM(Z) ≤ λM(Y − clM(X), clM(X)) < k − 1.

This contradicts the assumption that (X, Y ) is a minimal separation.

Lemma 7.3.4. Let (X, Y ) be a vertical k-separation of the matroid M . Then

the following hold.

(i) If (X, Y ) is minimal then λM(X, Y ) = λM(clM(X), Y − clM(X)).

(ii) If (X, Y ) is minimal then the bridges of (X, Y ) are equal to the bridges

of (clM(X), Y − clM(X)).

(iii) The separation (X, Y ) is minimal if and only if (clM(X), Y − clM(X))

is minimal.
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Proof. Consider property (i). By Lemma 7.3.3 rM(Y − clM(X)) = rM(Y ).

This means that λM(X, Y ) = rM(X) + rM(Y ) − r(M) = rM(clM(X)) +

rM(Y − clM(X))− r(M) = λM(clM(X), Y − clM(X)).

Now consider property (ii). The bridges of (X, Y ) are the components of

M/clM(Y ) and the bridges of (clM(X), Y − clM(X)) are the components

of M/clM(Y − clM(X)). By Lemma 7.3.3 rM(Y ) = rM(Y − clM(X)).

This means by Oxley [41] that clM(Y ) = clM(Y − clM(X)). But then

M/clM(Y ) = M/clM(Y − clM(X)).

Finally consider property (iii). If (clM(X), Y − clM(X)) is a minimal vertical

separation then for every bridge Z of (clM(X), Y − clM(X)) it follows that

λM(Z) = k−1. But by property (ii) all the bridges of (clM(X), Y − clM(X))

are equal to the bridges of (X, Y ). Hence (X, Y ) must also be a minimal

vertical k-separation. The same follows in the other direction because of

property (ii).

Lemma 7.3.5. Let H be a modular hyperplane of the matroid M , let C∗ =

E(M)−H, and let (X, Y ) be a vertical k-separation of M |H such that (X ∪
C∗, Y ) is a minimal vertical k-separation of M . Then (X, Y ) is a minimal

vertical k-separation of M |H.

Proof. Consider the bridges of (X ∪ C∗, Y ) contained in X ∪ C∗. These are

the components of the matroid M/clM(Y ). By Lemma 4.1.10, H − clM(Y )

is a modular hyperplane of M/clM(Y ) and C∗ is, of course the cocircuit

complementary to this hyperplane. It follows from this that, in M/clM(Y ),

if c, c′ ∈ C∗, and {c, c′} is independent, then there is a triangle containing

{c, c′} so that c and c′ are in the same component of M/clM(Y ).

One possibility is that C∗ is a component of M/clM(Y ).

7.3.5.1. C∗ is a component of M/clM(Y ) if and only if rM/clM (Y )(C
∗) = 1,

that is, if and only if rM(C∗ ∪ Y ) = rM(Y ) + 1.
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Proof. Certainly rM/clM (Y )(C
∗) > 0. Say rM/clM (Y )(C

∗) = 1. Then in this

case, as H − clM(Y ) is a hyperplane of M/clM(Y ) we see that C∗ is a

component of M/clM(Y ) as required.

Assume that rM/clM (Y )(C
∗) > 1. Let {c, c′} be elements of C∗ that are inde-

pendent in M/clM(Y ). As H−clM(Y ) is a modular hyperplane of M/clM(Y ),

there is an element z ∈ H − clM(Y ) such that {z, c, c′} is a triangle in

M/clM(Y ). Thus z is in the same connected component of M/clM(Y ) as C∗.

Hence C∗ is not a component of M/clM(Y ) and the lemma follows.

Let {Z1, Z2, . . . , Zn} be the components of (M |H)/clM(Y ).

7.3.5.2. If rM/clM (Y )(C
∗) > 1, then, for some i ∈ {1, 2, . . . , n}, the compo-

nents of M/clM(Y ) are {Z1, Z2, . . . , Zi−1, Zi ∪ C∗, Zi+1, . . . , Zn}.

Proof. Say B = {b1, b2, . . . , bs} is a basis of (M/clM(Y ))|C∗. Let

B′ =
⋃

1≤i<j≤n clM/clM (Y )({bi, bj}) ∩ (H − clM(Y )). By Lemma 4.2.5,

(M/clM(Y ))|B′ is isomorphic to the cycle matroid of a complete graph and

is therefore a connected matroid. Thus B′ ⊆ Zi for some i ∈ {1, 2, . . . , n}.
But the members of B are in triangles with the members of B′ and hence

are in the same component. Moreover C∗ ⊆ clM/clM (Y )(B
′). We de-

duce that Zi ∪ C∗ belong to the same component of M/clM(Y ). But

rM/clM (Y )(Zi ∪ C∗) = rM/clM (Y )(Zi) + 1. We therefore have

rM/clM (Y )(Z1) + · · ·+ rM/clM (Y )(Zi−1) + rM/clM (Y )(Zi ∪ C∗)
+ rM/clM (Y )(Zi+1) + · · ·+ rM/clM (Y )(Zn)

=rM/clM (Y )(Z1) + rM/clM (Y )(Z2) + · · ·+ rM/clM (Y )(Zn) + 1

=r(M/clM(Y ).

Hence Zi ∪ C∗ is a component of M/clM(Y ).
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We now prove that (X, Y ) is a minimal k-separation of M |H. It is easily

seen that the bridges of (X, Y ) contained in Y are the same as the bridges

of (X ∪ C∗, Y ) contained in Y . By Corollary 7.2.8, these bridges have the

same connectivity in M and M |H. Thus, if W is such a bridge

λM |H(W ) = λM(X ∪ C∗, Y ) = λM |H(X, Y ) = k − 1.

Consider the bridges {Z1, Z2, . . . , Zn} of M |H contained in X. Say Z is

such a bridge. By Claim 7.3.5.2, one possibility is that Z ∪ C∗ is a bridge

of (X ∪ C∗, Y ). Then, by Corollary 7.2.8, λM(Z ∪ C∗) = λM |H(Z) so that

λM |H(Z) = λM |H(X, Y ). Otherwise, by Claims 7.3.5.1 and 7.3.5.2, Z is

a bridge of (X∪C∗, Y ). Again, by Corollary 7.2.8, λM |H(Z) = λM(Z) = k−1.

We deduce that the connectivity of all of the bridges of (X, Y ) in M |H is

equal to the connectivity of (X, Y ). This proves that (X, Y ) is indeed a

minimal separation in M |H.

We finally provide a useful lemma showing that if M has a vertical

k-separation then it must have a minimal vertical k-separation.

Lemma 7.3.6. Let M be a matroid. Let k be a positive integer. Let (X, Y )

be a vertical k-separation of M . Then M has a minimal vertical k′-separation

where k′ ≤ k.

Proof. We proceed by induction on the size of X. Suppose we have chosen

the k-separation (X, Y ) so that X is as small as possible and (X, Y ) is

vertical. If (X, Y ) is minimal we are done. Otherwise by hypothesis any

smaller k′-separation is minimal for k′ ≤ k.

If (X, Y ) is not minimal then for one of the bridges, Z, of (X, Y ) we have

that λ(Z) ≤ k′′ < k. If (Z,E − Z) is a vertical k′′-separation then by
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hypothesis (Z,E − Z) is minimal. If so we are done and we just use the

minimal vertical k′′-separation (Z,EZ).

If (Z,EZ) is not a vertical k′′-separation then consider the k-separation (X−
Z, Y ∪ Z). This is vertical because Z ⊆ cl(Y ). Because |X − Z| ≤ |X| we

know by the inductive hypothesis that (X − Z, Y ∪ Z) is minimal.

7.4 Modular Separations

A k-separation (X, Y ) in the matroid M is modular if r(clM(X)∩ clM(Y )) =

λM(X, Y ) and clM(X)∩clM(Y ) is a round modular flat of M . We refer to the

modular k-separation as a modular separation. Given a k-separation (A,B)

of M , we call the guts of this k-separation to be clM(A) ∩ clM(B).

For chordal graphs we know that every minimal vertex cut X is a clique

cut in that G[X] is a clique. The analogous result that we shall prove for

supersolvably saturated matroids is that every minimal vertical k-separation

is a modular separation. We work towards this goal now. The following

corollary restates an important result in slightly different terms.

Corollary 7.4.1. Let H be a modular hyperplane of the matroid M and let

C∗ = E(M) − H. If rM(C∗) = s, then M |(cl(C∗) ∩ H) has a restriction

isomorphic to M(Ks).

Proof. This follows immediately from Lemma 4.2.5.

Lemma 7.4.2. Let H be a modular hyperplane of the supersolvably saturated

matroid M and let C∗ = E(M)−H. Then (C∗, H) is a modular separation.

Proof. Say rM(C∗) = s. By Lemma 7.4.1, clM(C∗)∩H contains a restriction

isomorphic to M(Ks). Now

rM(H ∩ clM(C∗)) = rM(H) + s− (rM(H) + 1) = s− 1 = r(M(Ks)).
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Thus our copy of M(Ks) spans H ∩ clM(C∗). Also M(Ks) is round. As

H ∩ clM(C∗) contains a round spanning subset we deduce that H ∩ clM(C∗)

is also round. By the definition of supersolvably saturated matroid we see

that H ∩ clM(C∗) is modular. Hence (C∗, H) is a modular separation.

Lemma 7.4.3. Let (X, Y ) be a minimal k-separation of the matroid M . If

either (X−clM(Y ), clM(Y )) or (clM(X), Y−clM(X)) is a modular separation,

then so too is (X, Y ).

Proof. Assume (clM(X), Y − clM(X)) is a modular separation. First,

by Lemma 7.3.3 λM(clM(X), Y − clM(X)) = rM(X) + rM(Y −
clM(X)) − r(M) = rM(X) + rM(Y ) − r(M) = λM(X, Y ). Thus

r(clM(X)∩ clM(Y − clM(X))) = λM(X, Y ). But clM(Y − clM(X)) ⊆ clM(Y )

thus rM(clM(X) ∩ clM(Y )) ≥ λM(X, Y ).

However, by submodularity we know that rM(clM(X)∩ clM(Y )) ≤ rM(X) +

rM(Y )− r(M) = λM(X, Y ). Thus rM(clM(X) ∩ clM(Y )) = λM(X, Y ).

Second, by hypothesis, clM(X) ∩ clM(Y − clM(X)) is modular and round

whose rank is λM(X, Y −clM(X)). By Lemma 7.3.3 rM(Y ) = rM(Y −clM(X).

Therefore by Oxley [41] clM(Y ) = clM(Y − clM(X)). Which in turn means

that clM(X)∩ clM(Y − clM(X)) = clM(X)∩ clM(Y ). Thus clM(X)∩ clM(Y )

is a round modular flat whose rank is λM(X, Y ). Thus (X, Y ) is a modular

separation.

The next theorem is the main theorem of this section.

Theorem 7.4.4. If (X, Y ) is a minimal vertical k-separation of the super-

solvably saturated matroid M , then (X, Y ) is a modular separation.

Proof. The proof is by induction on the rank of M . If M has rank 1, then

the result holds vacuously. Say M has rank 2. Then a vertical k-separation

(X, Y ) of M must have rM(X) = rM(Y ) = 1, and λM(X, Y ) = 0. In this
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case M is disconnected and (X, Y ) is clearly a modular separation.

Assume that M has rank t ≥ 3, and, for induction, that the theorem holds

for all supersolvably saturated matroids whose rank is less than t. Since M

is supersolvable, M has a maximal chain of modular flats. Hence M has

a modular hyperplane H. Consider the minimal vertical k-separation (X, Y ).

7.4.4.1. Either X ⊆ H or Y ⊆ H.

Proof. Assume otherwise. Then rM(X ∪H) = rM(Y ∪H) = r(M).

If the k-separation (X∩H,Y ∩H) of M |H is not vertical, then we may assume

that clM |H(X ∩H) = H. Hence clM(X) ⊇ H. Since X * H, it follows that

clM(X) = E(M). But by Lemma 7.3.2, rM(Y − clM(X)) = rM(Y ). Thus,

rM(Y ) = 0. But this is impossible which means we have a contradiction.

Thus X ⊆ H and the claim holds.

It follows that we may assume that the k-separation (X ∩H,Y ∩H) of M |H
is vertical. Let C∗ = E(M) − H. By Lemma 7.2.8 we may assume that

clM(C∗) ∩ H ⊆ clM(X) ∩ H. By the same lemma rM(C∗ ∪ (X ∩ H)) =

rM(X ∩ H) + 1. But C∗ ∩ X 6= ∅. Therefore rM(C∗ ∪ (X ∩ H)) = rM(X),

so C∗ ⊆ clM(X). Hence Y − clM(X) ⊆ H. But, by Lemma 7.3.3, rM(Y −
clM(X)) = rM(Y ). Therefore clM(Y −clM(X)) ⊇ Y . But clM(Y −clM(X)) ⊆
H. Therefore Y ⊆ H and the claim follows.

By Claim 7.4.4.1, we may assume that Y ⊆ H. One possibility is that

clM(Y ) = H so that (X − clM(Y ), clM(Y )) = (C∗, H). By Lemma 7.3.4,

(C∗, H) is a minimal vertical k-separation of M , so, by Lemma 7.4.2,

(C∗, H) is a modular separation in M . By Lemma 7.4.3 (X, Y ) is a modular

separation of M .

The remaining case is that clM(Y ) is a proper subset of H.
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7.4.4.2. If clM(Y ) is a proper subset of H, then (X ∩H, Y ∩H) is a vertical

k-separation in M |H.

Proof. Assume otherwise. We know that clM(Y ) is properly contained in H,

so that clM |H(Y ) is properly contained in H. Moreover, if clM |H(X) ⊇ H,

then clM(X) ⊇ Y , contradicting the fact that (X, Y ) is a vertical k-separation

of M . This proves the claim.

Now (X, Y ∩H) is a vertical k-separation of M |H, and (X, Y ) = (X, (Y ∩H)∪
C∗) is a minimal vertical k-separation of M . It now follows from Lemma 7.3.5

that (X, Y ∩H) is a minimal vertical k-separation of M |H. By the induction

assumption, (X, Y ∩H) is a modular separation of M |H. It follows from this,

and the fact that λM(X, Y ) = λM |H(X, Y ∩ H), that (X, Y ) is a modular

separation of M .

Consider the rank 6 matroid in Figure 7.3. This is the parallel connection

of three copies of F7 along different lines of a copy of M(K4). This matroid

is supersolvably saturated. Observe the central flat F which is isomorphic

to M(K4). The separation of F and any of the copies of F7 is a minimal

vertical separation and is also a modular separation. The guts of these

separations is a 3-point line which is round and modular.

7.4.1 Some Consequences of Modular Separations

Now we show how a modular separation (A,B) of a matroid M and the

flats clM(A) and clM(B) interrelate. We denote by G(A,B) the intersection

clM(A) ∩ clM(B).

Lemma 7.4.5. Let M be a matroid with a separation (A,B). If (A,B) is a

modular separation then clM(A) and clM(B) are modular flats.

Proof. We claim the following.
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2

Figure 7.3: A rank 6, 18 element, supersolvably saturated matroid M6,18

7.4.5.1. r(M)− rM(clM(B)) = rM(clM(A))− rM(G(A,B)).

Proof. We know because (A,B) is a modular separation that λ(A,B) =

rM(G(A,B)). Therefore we see that rM(clM(A)) + rM(clM(B)) − r(M) =

rM(G(A,B)). If we rearrange this we obtain r(M) − rM(clM(B)) =

rM(clM(A))− rM(G(A,B)).

Now observe that G(A,B) is modular in M |clM(B) since it is modular in M .

Suppose Z ⊆ B − clM(A) is a flat of M . Then the following holds. We let

t = r(M)− rM(clM(B)) for t ≥ 0.

7.4.5.2. rM(clM(A) ∪ Z)− rM(G(A,B) ∪ Z) = t

Proof. Observe from 7.4.5.1 that rM(clM(A)) − rM(G(A,B)) = r(M) −
rM(clM(B)) = t. It follows that rM(clM(A) ∪ B) − rM(G(A,B) ∪ B) =

r(M) − rM(clM(B)) = t. Now ∅ ⊆ Z ⊆ B − clM(A) hence it must be that

t = rM(clM(A)) − rM(G(A,B)) ≤ rM(clM(A) ∪ Z) − rM(G(A,B) ∪ Z) ≤
rM(clM(A) ∪B)− rM(G(A,B) ∪B) = t.

We want to show that rM(clM(A)) + rM(Z) = rM(clM(A) ∪ Z). Clearly

clM(A) ∩ Z = ∅. Furthermore we know that because G(A,B) is modular
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then rM(G(A,B)) + rM(Z) = rM(G(A,B) ∪ Z).

By the previous claim rM(clM(A) ∪ Z) − r(G(A,B) ∪ Z) = t. So then

rM(clM(A) ∪ Z) = t + rM(G(A,B) ∪ Z) = t + rM(G(A,B)) + rM(Z) =

rM(A) + rM(Z). Hence clM(A) is modular in M . For the same reasons, as

we have just seen that clM(A) is modular, it is obvious that clM(B) is also

modular.

Lemma 7.4.6. Let M be a matroid with a minimal vertical separation

(A,B). If clM(A) and clM(B) are modular flats then clM(A) ∩ clM(B) is

a modular flat of M and λM(A,B) = rM(clM(A) ∩ clM(B)).

Proof. We know by Lemma 4.1.7 that if clM(A) and clM(B) are modular flats

then so is their intersection. Thus we know that clM(A)∩clM(B) is modular.

Furthermore, λM(A,B) = rM(clM(A))+rM(clM(B))−r(M) and rM(clM(A)∪
clM(B)) = rM(M). By the modularity of clM(A) and clM(B) it follows

that rM(clM(A)) + rM(clM(B)) = rM(clM(A) ∩ clM(B)) + r(M). Hence,

λM(A,B) = rM(clM(A) ∩ clM(B)).

Finally, we see that we can calculate rank across a modular separation as

follows. First we give a technical result.

Lemma 7.4.7. Let M be a matroid and let (A,B) be a modular separation of

M . Let F1, F2 be flats of M such that F1 ⊂ A and F2 ⊂ B. If F1∩G(A,B) =

∅ = F2 ∩G(A,B) then F1 ∪ F2 is a flat.

Proof. Assume that x ∈ clM(F1 ∪ F2). Since (A,B) partitions E(M),

we may assume that x ∈ A. Since clM(A) is modular, and we as-

sumed F2 ∩ clM(A) = ∅, we have rM(A) + r(F2) = r(A ∪ F2). Thus

M |(A ∪ F2) = M |A ⊕ M |F2. This means that any circuit in A ∪ F2

that contains x is contained in A, so from x ∈ clM(F1 ∪ F2) we get that
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x ∈ clM(F1). That is, x ∈ F1. Thus, clM(F1 ∪ F2) = F1 ∪ F2, as needed.

Lemma 7.4.8. Let M be a supersolvably saturated matroid. Let (A,B) be a

modular separation of M . Then rM(F ) = rM(F∩clM(A))+rM(F∩clM(B))−
rM(F ∩G(A,B)) for any flat F of M .

Proof. Assume that (F ∩ clM(A)) ∩ (F ∩ clM(B)) is non-empty.

Let p be an element in (F ∩ clM(A)) ∩ (F ∩ clM(B)). We pro-

ceed by induction on the rank of G(A,B). If rM(G(A,B)) = 0

then M is not connected. In this case, rM(F ∩ G) = 0 so

rM(F ) = rM(F ∩ clM(A)) + rM(F ∩ clM(B)) which means that M |F
has a direct sum decomposition M |F = M |(F ∩clM(A)) ⊕ M |(F ∩clM(B)).

Next assume that rM(G(A,B)) > 0. Let GM/p(A,B) = clM/p(A)∩ clM/p(B).

By Lemma 4.1.10 if clM(A) is modular then clM/p(A) remains modular in

M/p. This is also true for clM/p(B) and for clM/p(G(A,B)). Now suppose

that rM/p(F − p) = rM/p((F − p) ∩ clM/p(A)) + rM/p((F − p) ∩ clM/p(B)) −
rM/p((F − p) ∩GM/p(A,B)) holds.

Observe the following.

� rM/p(F − p) = rM(F )− 1, and

� rM/p((F − p) ∩ clM/p(A)) = rM(F ∩ clM(A))− 1, and

� rM/p((F − p) ∩ clM/p(B)) = rM(F ∩ clM(B))− 1, and

� rM/p((F − p) ∩GM/p(A,B)) = rM(F ∩G(A,B))− 1.

This shows that (rM(F ) − 1) = (rM(F ∩ clM(A)) − 1) + (rM(F ∩
clM(B)) − 1) − (rM(F ∩ G(A,B)) − 1). But this implies that
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rM(F ) = rM(F ∩ clM(A)) + rM(F ∩ clM(B))− rM(F ∩G(A,B)).

Thus we conclude that for any flat of M the equality must hold.

This means we can define the rank function for flats of supersolvably

saturated matroids such as M and therefore define rank across separations.

Thus supersolvable saturation looks like a promising characterisation in our

search for tree-like structure in matroids. Next we show that we can in

fact obtain a canonical tree decomposition from a supersolvably saturated

matroid.



Chapter 8

Tree Decompositions and

Matroids

In this chapter we establish some new results. Following a discussion of

matroidal tree decompositions first introduced by Hliněný and Whittle [27],

we show that for supersolvably saturated matroids we can establish a tree

decomposition where the vertices are maximal round modular flats and the

edges represent modular separations. Indeed, as we see, these tree decompo-

sitions can be treated as canonical.

8.1 Matroidal Tree Decompositions

Tree decompositions of graphs, being vertex-based, are not a natural fit with

matroid theory but it is natural to ask if there is a type of treewidth that

can be extended to matroids.

Hliněný and Whittle [27] have proposed such a type of treewidth. A VF-

tree-decomposition (where VF stands for Vertex Free) of a graph G is a pair

(T, τ) where T is a tree and τ : E(G) 7→ V (T ) is an arbitrary mapping of

edges to the tree nodes. For a node x ∈ T , denote the connected components

119
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of T − x by T1, . . . , Td and the set Fi = τ−1(V (Ti)). Then the node-width of

x is defined by

|V (G)|+ (d− 1) · k(G)− Σd
i=1k(G− Fi),

where k(H) denotes the number of components of a graph H. The width of

the decomposition (T, τ) is the maximum width over all the nodes of T . The

smallest width over all such tree decompositions of G is the VF-tree-width of

G. Observe that the width of an empty tree is 0.

Now τ is not an analogue of the bag mapping β : V (T ) 7→ 2V (G) for standard

tree decompositions of graphs. Instead τ replaces the condition of a tree

decomposition that both ends of each edge are contained in some bag. The

interpolation condition is embedded inside the node-width formula.

Theorem 8.1.1 (Hliněný and Whittle [27]). The tree-width of a graph G

equals the VF-tree-width of G.

We now show how to define vertex-free tree width for matroids [27]. Let

M be a matroid on the ground set E = E(M). A pair (T, τ), where T is

a tree and τ : E 7→ V (T ) is an arbitrary mapping, is called a matroidal

tree decomposition of M . For a node x of T we again denote the connected

components of T − x by T1, . . . , Td and the set Fi = τ−1(V (Ti)) ⊆ E. We

then define the node-width of x by

d∑
i=1

rM(E − Fi)− (d− 1) · r(M).

The width of the decomposition (T, τ) is the maximal width over all the

nodes of T . The smallest width over all the matroidal tree decompositions

of M is the matroidal treewidth of M .
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The following theorem relates treewidth with matroidal treewidth.

Theorem 8.1.2 (Hliněný and Whittle [27]). Let G be a graph with at least

one edge. Let M = M(G) be the cycle matroid of G. Then the treewidth of

G equals the matroidal treewidth of M .

We now compare treewidth to branchwidth for matroids. We saw in the

preliminaries that for a graph G treewidth is bounded by the branchwidth

of that graph. There is a similar result for matroidal treewidth.

Theorem 8.1.3 (Hliněný and Whittle [27]). Let M be a matroid of matroidal

treewidth k. Let M have branchwidth b. Then

b− 1 ≤ k ≤ max{2b− 2, 1}.

8.2 Tree Decompositions of Supersolvably Sat-

urated Matroids

Recall from earlier [23] that a clique tree of a chordal graph G is a tree T

such that its vertices are the set of maximal cliques of G and for each vertex

x ∈ V (G), the set of maximal cliques containing x induces a subtree of T .

Then the reduced clique graph of G [23], denoted Cr(G), has as its vertices

the set of maximal cliques of G. An edge joins the cliques U and V if U ∩ V
is a minimal separator of G with the property that U − V and V − U are in

different components of G\(U ∩ V ). Each edge of Cr(G) is labeled with the

order of the separation formed by its minimal separator.

Let M be a supersolvably saturated matroid. We call a round modular flat

of M a rotunda. Then consider the analogue of the graphic structures in the

previous paragraph for matroids. Let T be a tree whose vertices are the set of

maximal rotundas of M . Then T is a rotunda tree for M if for every element
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x ∈ E(M) the set of maximal rotundas containing x induces a subtree in T .

The rotunda graph of M has as its vertices the set of maximal rotundas of

M . An edge joins the maximal rotundas U and V if there is a modular sepa-

ration (X, Y ) in M with the properties that U ⊆ clM(X), and V ⊆ clM(Y ),

and clM(X)∩ clM(Y ) = U ∩ V . Moreover, each edge of this graph is labeled

with the value λM(X, Y ). We denote the rotunda graph of M as R(M).

Let F be a flat of M . Then the bridges of F are the components of M/F .

Lemma 8.2.1. Let (X, Y ) be a modular separation in M . Then the bridges

of (X, Y ) are the bridges of clM(X) ∩ clM(Y ).

Proof. First, observe that the bridges of (X, Y ) are the components ofM/clM(X)

or of M/clM(Y ) which are exactly the components of M(Y − clM(X)) or of

M |(X − clM(Y )).

Let G = clM(X) ∩ clM(Y ). The bridges of G are the components of M/G.

8.2.1.1. In M/G the partition (X −G, Y −G) is a 1-separation.

Proof. Consider λM/G(X −G). Then

λM/G(X −G)

= rM/G(X −G) + rM/G(Y −G)− r(M/G)

= rM(X ∪G) + rM(Y ∪G)− (r(M)− rM(G))− 2rM(G)

= rM(X ∪G) + rM(Y ∪G)− r(M)− rM(G)

But we know because (X, Y ) is a modular separation that rM(G) = λ(X, Y ) =
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rM(X) + rM(Y )− r(M). Also remember that G ⊆ clM(X) and G ⊆ clM(Y ).

Given this we see that

λM/G(X −G)

= rM(X ∪G) + rM(Y ∪G)− r(M)− rM(X)− rM(Y ) + r(M)

= (rM(X ∪G)− rM(X)) + (rM(Y ∪G)− rM(Y ))

= 0

Given Claim 8.2.1.1, the components of M/G are the components of M |(X−
G) = M |(X − clM(Y )) or M |(Y − G) = M |(Y − clM(X)). Observe that if

we contract X − clM(Y ) or Y − clM(X) the components of the other of side

of (X−G, Y −G) remain untouched. Thus the bridges of (X, Y ) are exactly

the bridges of G = clM(X) ∩ clM(Y ).

Lemma 8.2.2. Let M be a supersolvably saturated matroid with rotunda

graph R(M). Let (U, V ) be an edge of R(M). Let (X, Y ) be a modular

separation such that U ⊆ clM(X) and V ⊆ clM(Y ) and clM(X) ∩ clM(Y ) =

U∩V . Then U−V and V −U are in different bridges of M/clM(X)∩clM(Y ).

Proof. First observe that U −V ⊆ X − clM(Y ). Thus U −V is a component

of M/clM(Y ). Second, V − U ⊆ Y − clM(X). So V − U is a component

of M/clM(X). Therefore, U − V and V − U are in different bridges of

M/clM(X) ∩ clM(Y ).

Next we show that in supersolvably saturated matroids rotunda trees are

equivalent to maximum weighted spanning trees of the rotunda graph. To

achieve this we need a lemma that shows that if two maximal rotundas in the

tree share a common element then every maximal rotunda along the unique



124 CHAPTER 8. TREE DECOMPOSITIONS

path in between share this element.

Lemma 8.2.3. Let M be a supersolvably saturated matroid. Let T be a

spanning tree of R(M). Let Ri and Rj be maximal rotundas of T . Let Pij be

the unique path of maximal rotundas between Ri and Rj in T . Let x be an

element of E(M) that is in both clM(Ri) and clM(Rj). Then x is in every

maximal rotunda of Pij.

Proof. Let Rk0 denote Ri. Then Pij = Rk0 , . . . , Rks , Rj is the sequence of

maximal rotundas from Ri to Rj. By induction on s consider the following.

As a base case we have that x ∈ Rk0 = Ri.

Now, for 0 ≤ q ≤ s, since Rkq+1 is next on the sequence Pij from Rkq to Rj,

then there is an edge in T , and so in R(M), between Rkq and Rkq+1 . By the

definition of R(M) this means there is a modular separation (A,B) such that

clM(A)∩ clM(B) = Rkq ∩Rkq+1 . Observe that because T is a tree then there

can be no edge between Rk0 and Rj. This means that Rk0 , . . . , Rkq ⊆ clM(A)

and Rkq+1 , . . . , Rj ⊆ clM(B).

Now x ∈ Rkq so x ∈ clM(A) and x ∈ Rj so x ∈ clM(B). Thus x ∈ clM(A) ∩
clM(B) = Rkq ∩Rkq+1 And so if x ∈ Rkq then x ∈ Rkq+1 .

Theorem 8.2.4. Let M be a supersolvably saturated matroid. Let R(M) be

its rotunda graph. Let T be a spanning tree of R(M). Then T is a rotunda

tree of M if and only if T is a maximum weighted spanning tree of R(M).

Proof. First, we show that if T is a rotunda tree then it is a maximum

weighted spanning tree of R(M). Suppose that T is not a maximum weighted

spanning tree. If T is not a tree at all the result is trivial. If T is not a span-

ning tree then it does not contain all the maximal rotundas in M and so can

not be a rotunda tree. So suppose that T is a spanning tree of R(M) but is

not maximum weighted.



8.2. SUPERSOLVABLY SATURATED MATROIDS 125

Let Ri and Rj be two maximal rotundas that are adjacent in R(M) but are

not adjacent in T . Then there is a unique path Ri, Rk, . . . , Rl, Rj of maxi-

mal rotundas in T from Ri to Rj. Let (X, Y ) be a modular separation such

that Ri ⊆ clM(X) and Rj ⊆ clM(Y ) and clM(X) ∩ clM(Y ) = Ri ∩ Rj. Let

(A,B) be a modular separation such that Ri ⊆ clM(A) and Rk ⊆ clM(B)

and clM(A) ∩ clM(B) = Ri ∩Rk.

Suppose the weight of the edge (Ri, Rj) in R(M) is higher than that of any

of the edges (Ri, Rk), . . . , (Rl, Rj) in R(M). This can happen because T is

not maximum weighted. Then we see that λM(X, Y ) > λM(A,B).

This means by the definition of modular separations that rM(clM(X) ∩
clM(Y )) > rM(clM(A) ∩ clM(B)). But we can see that this in turn means

that rM(Ri ∩ Rj) > rM(Ri ∩ Rk). As a result there must be an element

x ∈ E(M) such that x ∈ (Ri ∩ Rj)− (Ri ∩ Rk). But then x is in Ri and Rj

but not in Rk. As a result x does not induce the path Ri, Rk, . . . , Rj in T .

Therefore T is not a rotunda tree.

Second, we show that if T is a maximum weighted spanning tree of R(M)

then T is a rotunda tree. Assume that T is a maximum weighted spanning

tree of R(M). Let Ri and Rj be two non-adjacent maximal rotundas of

T containing the element x ∈ E(M). Consider the unique path Pij in T

between Ri and Rj including both Ri and Rj. Then, by Lemma 8.2.3, x

must belong to every maximal rotunda in Pij. Thus x induces a subtree of

T and so T is a rotunda tree.

This theorem has algorithmic implications for how we can efficiently find the

treewidth of a supersolvably saturated matroid. However, for this to work

we would need efficient ways to determine that a subset of the groundset is

a rotunda and to construct the rotunda graph.

Next let us consider the tree decompositions of supersolvably saturated ma-

troids. By the previous Theorem 8.2.4 we know that if M is a supersolvably
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saturated matroid then M has a tree decomposition T which is a maximum

weighted spanning tree of R(M). Observe that the width of T will simply

be the rank of the largest maximal rotunda in M .

We now show that a maximum weighted spanning tree of the rotunda graph

of a supersolvably saturated matroid has the properties of a matroidal tree

decomposition as per Hliněný and Whittle [27].

First we need further notation. Let Rx be any maximal rotunda of a max-

imum weighted spanning tree of R(M) for a matroid M . Let T1, . . . , Td be

the subtrees formed by deleting Rx from T . Let F1, . . . , Fd be the bridges of

M/Rx and let Ry1 , . . . , Ryd be rotundas in T1, . . . , Td that are adjacent to Rx.

Lemma 8.2.5. Let M be a supersolvably saturated matroid. Let T be a

maximum weighted spanning tree of R(M). Then for every maximal rotunda

Rx ∈ T

(
d∑
i=1

rM(E − Fi))− (d− 1) r(M) = rM(Rx)

Proof. Let FU
i = (

⋃d
k=1 Fk)− Fi and let FU

i,...,i+j = (
⋃d
k=1 Fk)− (

⋃i+j
m=i Fm).

Now observe that by definition E − Fi = FU
i ∪Rx. By expansion of terms

(

d∑
i=1

rM(E − Fi))− (d− 1) r(M)

= (rM(FU
1 ∪Rx) + rM(FU

2 ∪Rx) + . . .+ rM(FU
d ∪Rx))− (d− 1) r(M)

8.2.5.1. clM(FU
i ∪Rx) is a modular flat for all i, 1 ≤ i ≤ d.
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Proof. Because M is supersolvably saturated and, by definition of T as a

spanning tree of R(M), the edge {Rx, Ryi} displays the modular separation

(Fi, F1 ∪ . . . ∪ Fi−1 ∪ Fi+1 ∪ . . . ∪ Fd ∪ Rx) = (Fi, F
U
i ∪ Rx). By Lemma

7.4.5 if M is supersolvably saturated and (A,B) is a modular separation of

M then clM(A) and clM(B) are both modular flats. Hence clM(FU
i ∪ Rx) is

modular.

8.2.5.2. If for any Rx ∈ T and for all i, 1 < i ≤ d,

rM(FU
1,...,i−1 ∪Rx) + rM(FU

i ∪Rx)− r(M) = rM(FU
1,...,i ∪Rx)

Then

rM(FU
1 ∪Rx) + rM(FU

2 ∪Rx) + . . .+ rM(FU
d ∪Rx)− (d− 1)r(M) = rM(Rx)

Proof. Observe that rearranging the assumptive statement we obtain the

following for 1 < i ≤ d.

rM(FU
i ∪Rx) = rM(FU

1,...,i ∪Rx)− rM(FU
1,...,i−1 ∪Rx) + r(M)

We see that most of these terms cancel out when we take the sum from 1 to

d of i over rM(FU
i ∪Rx) and we see that

rM(FU
1 ∪Rx) + rM(FU

2 ∪Rx) + . . .+ rM(FU
d−1 ∪Rx) + rM(FU

d ∪Rx)

= rM(FU
1,...,d ∪Rx) + (d− 1)r(M)

which means that



128 CHAPTER 8. TREE DECOMPOSITIONS

rM(FU
1 ∪Rx) + rM(FU

2 ∪Rx) + . . .+ rM(FU
d ∪Rx)− (d− 1)r(M)

= rM(FU
1,...,d ∪Rx) + (d− 1)r(M)− (d− 1)r(M)

= rM(FU
1,...,d ∪Rx)

But FU
1,...,d = ∅ so the result follows.

8.2.5.3. Given any node x ∈ T then for all i, 1 < i ≤ d,

rM(FU
1,...,i−1 ∪Rx) + rM(FU

i ∪Rx)− r(M) = rM(FU
1,...,i ∪Rx).

Proof. For 1 ≤ k ≤ d then we know that FU
k ∪ Rx is modular from step

8.2.5.1 so

rM(FU
1,...,k−1 ∪Rx) + rM(FU

k ∪Rx)

= r(M) + rM(FU
1,...,k ∪Rx)

Given these claims the result follows.

Now we present a central theorem for the thesis so far.

Theorem 8.2.6. Let M be a supersolvably saturated matroid. Then M has a

minimum-width matroidal tree decomposition where each node is a maximal

rotunda of M .

Proof. By Theorem 8.2.4 we know that M has a tree decomposition TR where

each node of TR is a maximal rotunda. By Lemma 8.2.5 we know that for
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each node of TR the node-width is exactly equal to the rank of the maximal

rotunda that is that node. Thus the matroidal treewidth for TR is exactly

the width of TR. Thus TR is a matroidal tree decomposition.

Moreover, the width of TR is the minimum width because the width of TR

has to be greater or equal to the maximum node-width of any node of TR

by definition. Here the maximum node-width is exactly equal to the largest

rank of any maximal rotunda of M so is exactly equal to the maximum

node-width of any node of TR.

Because this tree decomposition for a supersolvably saturated matroid M is

optimal we can treat it as a canonical tree decomposition of M . Consider

the supersolvably saturated matroid given in Figure 8.1. This will have the

rotunda tree given in Figure 8.2. Observe that the guts of the separations

given for one separation by the dashed circle is a 3-point line. Each bag of

the tree is a maximal round modular flat - either the Fano plane or M(K4).

Corollary 8.2.7. Let M be a supersolvably saturated matroid. Let t be the

matroidal treewidth of M . Then for every maximal rotunda, R, of M it

follows that rM(R) ≤ t.

Proof. We know from Theorem 8.2.6 that M has a matroidal tree decompo-

sition T of minimal width t. From Lemma 8.2.5 we can see that rM(R) is

equal to the nodewidth at that point in T . Since the rM(R) must be at most

the rank of the largest maximal rotunda of M it follows that rM(R) ≤ t.

Further observe the following. Let ω(M) be the rank of the largest maxi-

mal rotunda of M and let bw(M) denote the branchwidth of M . Then by

Theorem 8.1.3 (Hliněný and Whittle [27]) we see that

bw(M)− 1 ≤ ω(M) ≤ max{2bw(M)− 2, 1}.
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2

Figure 8.1: A rank 6, 18 element, supersolvably saturated matroid M6,18

We see therefore that given a supersolvably saturated matroid M of branch-

width k there must be a rotunda tree of M where the rank of the largest

maximal rotunda is bounded by a function of k.

As a result, we can conclude that supersolvably saturated matroids have

canonical tree decompositions of optimal treewidth in much the same way as

chordal graphs have canonical tree decompositions where each bag is a clique

of the graph.
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1

Figure 8.2: A rotunda tree for M6,18
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Chapter 9

A Partial Converse to Hliněný

In this final chapter, we tie together the results and discoveries of the previ-

ous chapters and show that we can establish a partial converse to Hliněný’s

Theorem [25].

9.1 Establishing a Theorem

We have been motivated by the problem described in Chapter 3, and in the

course of this thesis, to prove the following conjecture.

Conjecture 9.1.1. Let k be a positive integer and let q be a prime power.

Let M be a family of GF (q)-represented, supersolvably saturated, matroids

all of whose members have branchwidth at most k. If membership of M can

be decided by a finite state automaton then membership ofM can be described

in the logic CMSq over GF (q)-represented matroids.

This is a direct analogue of Theorem 1.1 of Bodlaender et al. [7] and is a

partial converse to Hliněný’s Theorem (Theorem 3.4.4) [25].

133
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In the language of Hliněný [25], let Bk be the set of all GF (q)-represented

matroids (for a given prime power q) that have branchwidth at most k and

so matroidal treewidth at most k. We can say thatM is k-width finite state

for k ≥ 1 if M∩Bk is finite state. M∩Bk is finite state if the collection of

all tree decompositions for the members of M, bounded by branchwidth k,

is accepted by some tree automaton.

We have seen that by Theorems 8.2.6 and 8.1.3 if a supersolvably saturated

matroid M has branchwidth at most k then there is a rotunda tree whose

largest maximal rotunda has rank bounded from above and below by k and

is thus optimal. Thus we can apply Lemma 3.4.2 to supersolvably saturated

matroids which means that we can apply the definition of k-width finite state.

That is, M∩ Bk is finite state if the collection of all optimal rotunda trees

of width at most k for the members ofM is accepted by some tree automaton.

Next, we need to describe the counting monadic second-order logic forGF (q)-

represented matroids that we call CMSs for some prime power s. This di-

rectly derives from Hliněný [25] and is as follows.

CMSs is defined over the class of GF (s)-represented matroids and includes

the following symbols. We include variables x1, . . . , xn for individual points

in the represented space that is vectors in the vector space. We further in-

clude X1, . . . , Xm for point sets. We also include the constants ∅, 0, 1, 2, . . .
as well as E.

CMSs is defined over a vector space and includes the usual vector space

operators such as the span operator, 〈.〉, and the dimension operator, dim(.).

We further include the function symbols | · |, {·}, ·−,∪ and ∩. In addition we

have the relation symbols =,∈,⊆ as well as the logic symbols ¬,∨,∧,∃,∀.
The quantifiers ∀ , ∃ are applicable to both point and set variables and the

relation = represents equality for both points and their sets. In addition we

include the following predicates (or formulas):
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1. indep(F ), where F is a set variable, and the predicate is true iff F is an

independent set in the matroid.

2. cardp,q(X) means |X| mod q = p.

3. we write φ→ ψ to stand for ¬φ ∨ ψ.

4. in addition we add the following specific predicates for matroids derived

from those above

i. X ⊇ Y ≡ ∀x(x ∈ X ∨ x /∈ Y )

ii. X ⊂ Y ≡ X ⊆ Y ∧X 6= Y

iii. ¬X ≡ ∀x ( x /∈ X )

iv. basis(B) ≡ indep(B) ∧ ∀D (¬(B ⊆ D) ∨ (B = D) ∨ ¬indep(D))

v. basis(B,F ) ≡ (B ⊆ F ) ∧ indep(B) ∧ ∀D ∧ (D ⊆ F ) ∧ (¬(B ⊆
D) ∨ (B = D) ∨ ¬indep(D))

Observe that this includes counting predicates as well as predicates for test-

ing whether a set is a basis of the matroid or of a flat F which we will need

later.

Now we can begin establishing the following. Let q be a prime power and let

k be a positive integer. LetM be a family of simple supersolvably saturated

matroids represented over the finite field GF (q) and of bounded matroidal

treewidth k. We will show that for each M ∈ M we can obtain a tree de-

composition that can be processed by a tree automaton.
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However, we have a problem. While the rank of every maximal rotunda is

bounded by k the cardinality of M is not. This is a problem because any

finite state automaton can only transition between a bounded number of

states. To deal with this problem we need to colour the elements in each

maximal rotunda with a bounded number of colours. This bound needs to

be a function of k.

Consider M ∈M. The maximum number of elements in a maximal rotunda

F occurs when M |F is isomorphic to a projective geometry. Given that k is

the rank of the largest maximal rotunda this number is bounded by qk−1
q−1 < qk.

We will now show that we can colour the rotundas of M in at most qk colours.

9.2 Colouring Supersolvable Matroids

A colouring of a matroid is a function f : E(M) 7→ C where C is a set of

“colours”. We say that f is a proper l-colouring if |C| = l and, for each

rotunda R of M , the function f |R is injective. In other words, the colours

are distinct for each rotunda.

Lemma 9.2.1. Let q be a prime power and k be a positive integer. Let M be

a supersolvably saturated GF (q)-represented matroid of matroidal treewidth

at most k. Then M has a proper qk-colouring.

Proof. We proceed by induction on r = r(M). As a base case, if r(M) ≤ k

then the result is trivial. Suppose that r(M) > k. Then because M has

treewidth at most k we know that M has a vertical k-separation which, in

turn, means, by Lemma 7.3.6, that there is a minimal vertical k′-separation

(X, Y ) of M such that k′ ≤ k.

Now by Lemma 7.4.4 we know that (X, Y ) is a modular separation. This

means that, by Lemma 7.4.5, clM(X), clM(Y ) are modular flats and G =

clM(X) ∩ clM(Y ) is a rotunda. By Corollary 7.2.5 we know that M |clM(X)
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and M |clM(Y ) are supersolvably saturated matroids. We also know that

M |clM(X) and M |clM(Y ) are represented over GF (q) and of bounded ma-

troidal treewidth k because so is M .

Since (X, Y ) is vertical, we see that rM(X) < r(M), and rM(Y ) < r(M),

so we can apply induction. Now hypothesize that M |clM(X) and M |clM(Y )

both have proper qk-colourings. In particular, observe that G is a rotunda

of both M |clM(X) and of M |clM(Y ) and so has an injective qk-colouring in

each. The problem is that the two qk-colourings may not be the same. So we

permute the colours of M |clM(X) so that the qk-colouring of G in M |clM(X)

matches the qk-colouring of G in M |clM(Y ). Thus the qk-colourings of

M |clM(X) and M |clM(Y ) induce a qk-colouring of M . Now we look at M as

a whole.

9.2.1.1. If F is a flat of M such that (X−clM(Y ))∩F 6= ∅ 6= (Y−clM(X))∩F
then F can not be round.

Proof. Let (X ∩ F, Y ∩ F ) be a vertical k′-separation of M |F . Assume that

X ∩F spans F . Then, as X ∩F ⊆ X ⊆ clM(X), we see that X spans Y ∩F ,

which means that (Y − clM(X))∩F = ∅ which is contrary to the hypothesis.

Thus (X∩F, Y ∩F ) must be vertical which means thatM |F can not be round.

By Claim 9.2.1.1 we see that there can be no round flats of M that cross

(X, Y ). That is all rotundas of M are either in clM(X) or in clM(Y ).

However, by the inductive hypothesis all the rotundas of M |clM(X) and

of M |clM(Y ) have injective qk-colourings. As a result, we see that M has a

proper qk-colouring.

Next we show that we can determine the rank function of M given the rank

function of each rotunda of M .
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Lemma 9.2.2. Let q be a prime power and k be a positive integer. Let M be

a supersolvably saturated GF (q)-represented matroid of branchwidth at most

k. Then to determine the rank function of M it suffices to know the rank

function of each maximal rotunda of M .

Proof. We prove this lemma by induction on the rank r of M . As a base case

consider a matroid N consisting of a single element x which will have rank 1.

Then ∅ is a hyperplane of this matroid with the modular separation ({x}, ∅).
Then the guts of this separation D = clN({x}) ∩ ∅ = ∅. Thus for every

F ⊆ {x} we see that rN(F ) = rN(F ∩ ∅) + rN(F ∩ clN({x}))− rN(F ∩ ∅) =

r(F ∩ clN({x})).

Let H be a modular hyperplane of M (which we know exists because M

is supersolvably saturated ) and C∗ be the complement of H in M . Then

M |H is represented over GF (q) and is supersolvably saturated by Corollary

7.2.5. Furthermore, by Lemma 7.4.2 (C∗, H) is a modular separation of M .

Then because (C∗, H) is a modular separation we know that by definition

D = clM(C∗) ∩H is a rotunda.

By induction we may assume we know the rank function of M |H. Let rH be

the rank function of M |H. Because (C∗, H) is a modular separation we know

from Lemma 7.4.5 that clM(C∗) is a modular flat. Now either clM(C∗) is a

maximal rotunda or is contained in one. Let its rank function be rC∗ . Then

we know from Lemma 7.4.8 that rM(F ) = rM(F ∩ H) + rM(F ∩ cl(C∗)) −
rM(F ∩D) for every F ⊆ E.

But we can see that rM(F ∩ clM(C∗)) = rC∗(F ∩ clM(C∗)) and rM(F ∩D) =

rH(F ∩D) (since also D ⊆ H). We can calculate these hence we can calculate

the rank of M for all subsets of E(M).

Finally, a matroid M together with a proper qk-colouring is a qk-coloured
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matroid. We can qk-colour M if M has a proper qk-colouring.

Theorem 8.2.6 and Lemma 9.2.1 show us that we have a tree decomposition

for M where the bags are coloured rotundas and the leaves are coloured

maximal rotundas. Observe that by Lemma 9.2.2 we can calculate the rank

of any flat of M given the ranks of the rotundas that constitute our tree

decomposition. Thus the tree decomposition completely describes M .

Observe that this “coloured” tree decomposition is in fact a tree where the

nodes are labeled from an alphabet of coloured matroids. This tree will act

as our parse tree in the language of Hliněný [25] and of Mayhew [38]. We

will run a leaf to root tree automaton (see Chapter 3) over this tree. We will

talk more about this later. First, we need to show we can define this tree

decomposition, and so our parse tree, in our logic CMSq.

9.3 Definability of Tree Decompositions

We first show that the different components of our rotunda based tree de-

composition are definable in this logic CMSq.

Lemma 9.3.1. Let q be a prime power and let k be a positive integer. Let

M be a GF (q)-represented, supersolvably saturated, matroid with bounded

branchwidth k. Then we can express in CMSq that a flat F is modular.

Proof. By Lemma 4.1.12 a flat F is modular if for every flat Z and for every

basis, Bu, of F ∪Z and for every basis, Bn, of F ∩Z, Bn ⊆ Bu, then Bu∩F
is a basis of F and Bu ∩ Z is a basis of Z.

This can be expressed in the CMSq predicate “modular(F ) ≡ ∀Z [∀Bu ∀Bn basis(Bu, F∪
Z) ∧ basis(Bn, F ∩Z) ∧ Bn ⊆ Bu ∧ basis(Bu∩F, F ) ∧ basis(Bu∩Z,Z)]”.

Lemma 9.3.2. Let q be a prime power and let k be a positive integer. Let

M be a GF (q)-represented, supersolvably saturated, matroid with bounded
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branchwidth k. Then we can express in CMSq that a flat F is a maximal

rotunda.

Proof. A flat F is a maximal rotunda if F is round and modular and ev-

ery set Z that properly contains F is not round. F is round if, for every

set A, if A is a subset of F , then the separation (A,F − A) is not vertical.

This can be expressed in the CMSq predicate “round(F ) ≡ ∀A (A ⊆ F →
(( ∃AC ∧ 〈A〉 = AC ∧ F−A ⊆ AC ) ∨ ( ∃FC

A ∧ 〈F−A〉 = FC
A ∧ A ⊆ FC

A ))”.

We can then apply Lemma 9.3.1 and define with a predicatemaximal rotunda

that F is both round and modular in the above sense and Z is not round

for every Z containing F . That is “maximal rotunda(F ) ≡ round(F ) ∧
modular(F ) ∧ ∀Z ( Z ⊃ F → ¬round(Z) )”.

Lemma 9.3.3. Let q be a prime power and let k be a positive integer. Let

M be a GF (q)-represented, supersolvably saturated, matroid with bounded

branchwidth k. Let X be a flat of M . Then we can express in CMSq that X

is the guts of a modular separation.

Proof. X is the guts of a modular separation if there exist Y, Z such that

(Y, Z) is a partition and Y, Z contain cocircuits and e ∈ cl(Y ) ∩ cl(Z) for

every e ∈ E iff e ∈ X and finally if X is modular. We can define this in

CMSq using the predicate “modular guts(X) ≡ ∃Y, Z ( Y ⊆ X ∧ Z =

X−Y ∧ ∃CY ∧ cocircuit(CY ) ∧CY ⊆ Y ∧ ∃CZ ∧ cocircuit(CZ) ∧CZ ⊆
Z ∧ ∀e ( ∃Y C ∧ 〈Y 〉 = Y C ∧ ∃ZC ∧ 〈Z〉 = ZC ∧ e ∈ Y C ∩ ZC ↔ e ∈
X )) ∧modular(X)”.

A cocircuit is the complement of a hyperplane and a hyperplane H exists

if there is no basis contained by H and for every x in E − H there is a

basis contained by H ∪ x. This gives us the predicates “hyperplane(H) ≡
@B ( basis(B) ∧ B * H ) ∧ ∀x /∈ H ( ∃B′ ∧ basis(B′) ∧ B′ ⊆ H ∪ x ))”

and “cocircuit(C∗) ≡ hyperplane(E − C∗)”.
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Lemma 9.3.4. Let q be a prime power and let k be a positive integer. Let

M be a GF (q)-represented, supersolvably saturated, matroid with bounded

branchwidth k. Let X and Y be maximal rotundas of M . Then we can

express in CMSq that X is adjacent to Y .

Proof. X and Y are adjacent if X and Y are maximal rotundas, G is the

guts of a modular separation and G is contained by both X and Y .

Consider the following CMSq predicate. “adj(X, Y ) ≡ maximal rotunda(X) ∧
maximal rotunda(Y ) ∧ modular guts(G) ∧ G ⊆ X ∧ G ⊆ Y ”. This is

equivalent to showing that X and Y are adjacent.

Next we would want to prove the following.

Conjecture 9.3.5. Let q be a prime power and let k be a positive integer.

Let M be a supersolvably saturated matroid represented over the finite field

GF (q) and of bounded branchwidth k. Let M have a proper qk-colouring. Let

T be a minimal width tree decomposition of M . Then T can be described by

a sentence in the logic CMSq for matroids represented over GF (q).

From the previous section we might think that we can construct a sentence

in the logic CMSq describing a rotunda tree. We want to say that for all

maximal round flats X and Y then X and Y are adjacent if there is a mod-

ular separation such that clM(X) ∩ clM(Y ) is the guts of this separation.

We could try to do this by first guessing a set Z. We would then test that

every element of Z is a maximal rotunda. Finally, we test that all pairs of

maximal rotundas as to whether they satisfy adjacency. They do not all have

to be adjacent of course.
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We might do this with the following sentence using the above defined predi-

cates “maximal rotunda” and “adj”.

Consider the sentence “∀X ∈ Z maximal rotunda(X) ∧∀X, Y ∈ Z[adj(X, Y ) →
maximal rotunda(X) ∧maximal rotunda(Y )]”.

However, this approach fails for the following reason. Rotundas are sets of

points of M . With monadic second-order logic we can list a bounded number,

but we are not allowed to quantify over a general set of sets. To describe the

whole rotunda tree or tree decomposition as in this lemma we need to quan-

tify over all the maximal rotundas of which there is an unbounded though

finite number. Addressing this problem will occupy the remainder of this

chapter.

9.4 Using an Extension Field

We now introduce an approach to solving the problem described in the previ-

ous section. Let GF (qn) be a finite field extension of GF (q). Since as we have

seen we can qk-colour M we can bound the degree of our extension field by k.

As we have seen in the preceding section, we can not prove our original Con-

jecture 9.1.1. Instead we need the following theorem.

Theorem 9.4.1. Let k be a positive integer and let q be a prime power. Let

M be a family of GF (q)-represented, supersolvably saturated, matroids all

of whose members have branchwidth at most k. If membership of M can be

decided by a finite state automaton then membership of M can be described

in the logic CMSqk .

In the rest of this section we prove this theorem. First we show the equiv-

alency between rotundas of the matroid over the original field GF (q) and
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vector points over the extension field GF (qk). We need to understand how

an extension field of GF (q) means that every rotunda of M has a represen-

tative point in GF (qk). Observe the following two lemmas.

Lemma 9.4.2. Let q be a prime power and let k be a positive integer. Let

PG(r−1, q) ⊆ PG(r−1, qk) be projective geometries defined over finite fields

GF (q) and GF (qk). For every vector v ∈ PG(r − 1, qk) there is a unique

minimal subspace Z ⊆ PG(r − 1, q) such that v ∈ 〈Z〉PG(r−1,qk).

Proof. First, v must be in the span of some subspace of PG(r−1, q) because

it is defined over a vector space. Every subspace of PG(r−1, q) is well-known

to be modular. Next, consider any two such subspaces A,B. We show that

if v is in the span of both of these subspaces over the larger field then v must

be in the span of their intersection. By the rank of a subspace Z, that is

r(Z), in this context we mean the dimension of the span of that subspace,

that is dim(〈Z〉).

9.4.2.1. Let A,B be subspaces of PG(r − 1, q). If z ∈ 〈A〉PG(r−1,qk) and

z ∈ 〈B〉PG(r−1,qk) then z ∈ 〈A ∩B〉PG(r−1,qk).

Proof. Because A,B are modular we know that r(A ∩ B) = r(A) + r(B) −
r(A ∪ B). In particular by submodularity we know that r(A ∩ B) ≤ r(A) +

r(B) − r(A ∪ B). If we add z we obtain r((A ∩ B) ∪ z) ≤ r(A ∪ z) +

r(B ∪ z) − r((A ∪ B) ∪ z). But r(A ∪ z) = r(A), r(B ∪ z) = r(B) and

r((A∪B)∪ z) = r(A∪B) because of our assumption that z ∈ 〈A〉PG(r−1,qk)

and z ∈ 〈B〉PG(r−1,qk). Thus we see that r((A ∩ B) ∪ z) ≤ r(A ∩ B). But

clearly r((A ∩B) ∪ z) ≥ r(A ∩B). Thus z ∈ 〈A ∩B〉PG(r−1,qk).

Since the intersection A∩B spans A and B over the larger field we see that

for each pair of subspaces A and B there is a single subspace which spans v

over PG(r − 1, qk). Since this is true for any two such subspaces there must

be a unique subspace Z ⊆ PG(r−1, q) which spans v over PG(r−1, qk) and

Z will be minimal by definition.
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Lemma 9.4.3. Let q be a prime power and let k be a positive integer. Let

PG(r−1, q) ⊆ PG(r−1, qk) be projective geometries defined over finite fields

GF (q) and GF (qk). For every subspace Z ⊆ PG(r−1, q) such that r(Z) ≤ k

there is a vector v ∈ PG(r− 1, qk) such that the unique minimal subspace of

PG(r − 1, q) that spans v is Z.

Proof. Let b1, . . . , bk be a basis of Z. Because of our choice of extension field

GF (qk), that is if k is large enough, there is an element α ∈ GF (qk)−GF (q)

which is the root of a degree k polynomial with coefficients in GF (q) and is

not the root of any such lower degree polynomial. We can then construct a

vector v as follows. Let v = b1 + αb2 + α2b3 + . . . + αk−1bk. We see that v

is in PG(r − 1, qk) and is spanned by b1, . . . , bk. Moreover, v is the minimal

such vector since if we reduce the basis by any vector bi, 1 ≤ i ≤ k, and so

reduce the rank then the basis will not span this vector over the larger field.

Let q be a prime power and let k be a positive integer. Let M be a fam-

ily of GF (q)-represented, supersolvably saturated, matroids with bounded

branchwidth k. Consider M ∈ M. We know that M is represented over

GF (q) and there is an extension field GF (qk) that contains GF (q). Cer-

tainly M ⊆ PG(r−1, q). Thus every maximal rotunda R of M is a subspace

of PG(r − 1, q). Moreover the rank of R is at most k as we have shown in

Corollary 8.2.7. Thus we can apply Lemma 9.4.3 to see that there must be a

point v over GF (qk), and so in PG(r− 1, qk), for which R is the unique and

minimal subspace which spans v.

a

d

b

e

c

f

g

x y

Figure 9.1: Fano plane F7 or PG(2, 2) with extension line
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To illustrate the above consider Figure 9.1. Here we have the Fano plane or

the matroid PG(2, 2) but this lives in an extension field where every line has

5 points. For example, we can see that the point x is spanned by the unique

round modular flat {a, c, f}. Similarly, {a, c, f} spans both x and y. From

now on when we use the term “flat” this is intended to be synonymous with

subspace.

We need a further lemma that shows we can describe in the logic CMSqk

that a point over GF (qk) is a representative of a flat of M .

Lemma 9.4.4. Let q be a prime power and let k be a positive integer. Let

M be a GF (q)-represented, supersolvably saturated, matroid with bounded

branchwidth k. Let p be a point over GF (qk) and let X be a subset of E(M).

Then we can express in CMSqk that p is minimally in the span of X.

Proof. We express this as follows. For every X ⊆ E there exists p ∈ PG(r−
1, qk) such that p ∈ 〈X〉PG(r−1,qk) and for every Z such that Z ⊆ PG(r−1, q)

and 〈Z〉PG(r−1,qk) ( 〈X〉PG(r−1,qk) we have that p /∈ 〈Z〉PG(r−1,qk).

We now begin the proof of Theorem 9.4.1.

Proof. First, we want to use Courcelle’s Theorem for Trees [15] to show that

if a labeled tree is recognisable by a standard tree automaton then it is de-

scribable by a sentence in the counting monadic second-order logic of such

trees. Thus we need to construct a labeled tree given M .

By Theorem 8.2.6 M has a minimum-width tree decomposition T that is

a rotunda tree. Moreover, by Lemma 9.2.1, M has a proper qk-colouring

so every rotunda of T can be coloured with at most qk colours. Let TL be

a tree with a vertex for every maximal rotunda of T . Let X, Y be maxi-

mal rotundas of M and let x, y be the corresponding vertices in TL. Then
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{x, y} is an edge if there is a modular separation (A,B) of M such that

G(A,B) = clM(X) ∩ clM(Y ). Finally, we designate one vertex, r, of TL as

the root vertex.

We label TL as follows. Consider a ranked alphabet A consisting of all the

possible qk-coloured matroids we can construct from the rotundas of M in-

dividually and by joining them together. Let n be the upper bound on the

number of such coloured matroids. n ≈ (2q
k
)(qk)q

k
because for each rotunda

there are 2q
k

possible subsets and qk
qk

possible combinations of rotundas.

Then we can list the elements of A as {α1, . . . , αn}. Each αi, 1 ≤ i ≤ n, cor-

responds to a qk-coloured matroid. In particular, each qk-coloured rotunda

Rj of T corresponds to a letter αj of A.

Thus we label each vertex vi of TL with the label αi that matches the qk-

coloured maximal rotunda Ri that corresponds to vi. We add to each label

of TL for each vertex an indicator as to whether this vertex is the root vertex.

There will be an associated counting monadic second-order logic for labeled

trees that has as its domain the labels of A. This operates in exactly the

same way as one would expect for the logic for trees and as used by Courcelle

in his theorem for trees [15]. We will call this CMST .

Given this we can apply Courcelle’s Theorem for Trees [15]. Suppose we have

a labeled tree TL of the sort we just showed we can construct from M . By

the theorem if a tree automaton can recognise this tree then it is describable

by a sentence in CMST .

We follow Hliněný [25] closely here to see that such a tree should be recog-

nisable. Essentially we have a k-boundaried parse tree in Hliněný’s language

[25]. The automaton starts at the leaves and traverses up the tree joining

together the qk-coloured matroids represented by each label using Hliněný’s

composition operators. When the tree automaton reaches the root vertex, if
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the resulting matroid is a member of M, that is of supersolvably saturated

matroids bounded by branchwidth k and represented over GF (q) with an

extension field GF (qk), then the automaton accepts.

Now, we need to show that any sentence φ over a language of qk-coloured

matroids, CMST , has a corresponding sentence φ∗ in the logic CMSqk over

GF(q)-represented, supersolvably saturated, matroids of bounded branch-

width k over GF (qk).

However, any statement about a matroid M can be expressed in terms of its

rank function [41]. By Lemma 9.2.2 we know that given the rank function

of each qk-coloured rotunda of M we can determine the rank function of M .

Thus we can express any sentence describing a relationship between the ver-

tices and edges of TL as a sentence about M .

We then use the lemmas we introduced earlier in section 9.3. These still ap-

ply over CMSqk since every point that belongs to a vector space over GF (q)

also belongs to a vector space over GF (qk) though in some cases we might

need to restrict to the groundset E. In particular, we use Lemma 9.3.2 to

identify a flat as a maximal rotunda and Lemma 9.3.4 to identify two rotun-

das as adjacent in T of M .

We discover, in doing this, that we seem to be allowing for sentences which

quantify over sets of rotundas. Our logic appears too strong. This is in fact

not the case when we take account of our use of an extension field. By Lemma

9.4.3 for every rotunda of M there is a point v over GF (qk) that is in the

span of that rotunda. This means that any sentence in CMSqk expressing

something about a rotunda R of M can be rewritten as a sentence about a

single point over GF (qk). We use Lemma 9.4.4 to express in CMSqk that a

rotunda of M is represented by a single point over GF (qk).

With the above we see that given M we can construct a labeled tree TL over
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the logic CMST . We can apply Courcelle’s Theorem for Trees [15] to see

that if any such tree TL is recognisable it can be described by a sentence

in CMST . Then we see that any sentence in CMST has a corresponding

sentence in CMSqk which quantifies over points over GF (qk) rather than

over sets of rotundas.

To paraphrase Bodlaender et al. [7] quantification over elements of TL di-

rectly translates to quantification over points of M . That is we see that a

sentence φ in CMST that expresses whether an automaton accepts on TL can

be translated to a sentence φ∗ in CMSqk such that φ holds for the labeled

tree TL if and only if φ∗ holds for M .

However, there is a weakness with this approach. We have narrowed the

class of matroids we are proving our result for and have overly strengthened

the logic we are using by broadening the domain from points over GF (q)

to points over an extension field of GF (q). This means that our result is

a much weaker partial converse to Hliněný’s Theorem [25] than we would

desire. However, the result is still an analogue to Theorem 1.1 of Bodlaender

et al. [7].



Chapter 10

Conclusions

Our original aim was to prove a partial converse to Hliněný’s Theorem [25]

for matroids represented over a finite field. This theorem shows that for

matroids of this class it is possible to recognise members of the class if it is

possible to describe the class using a counting monadic second-order logic

provided the matroids have bounded branchwidth.

However, most of this thesis has been devoted to determining the appropri-

ate structure to require of our matroids. We investigated modularity and

roundness. We observed that for graphs if they are chordal one can obtain

a special highly structured tree of cliques. We realized that such a tree de-

composition was exactly the sort of structure we needed.

Given this we decided to examine chordality for matroids. We carefully chose

five definitions of chordality in matroids ranging from the very weak to the

very strong. We observed that for binary and for graphic matroids these def-

initions are equivalent but for general matroids they differ - sometimes to a

significant degree. While interesting we realized that even strong chordality

for matroids does not give us the structure we need.

However, there is a result originally given by Dirac [18] and Stanley [47]

149
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that shows that supersolvability in the cycle matroids of graphs is equivalent

to graph chordality. As a result we turned our attention to supersolvability.

This looked more promising given that it involves a matroid having a chain of

modular flats. Unfortunately, this is not enough. In any tree decomposition

we construct we want the intersection of the bags to be round and modular.

Supersolvability does not guarantee that every round flat is modular. As a

result, we have to require that our matroids be supersolvably saturated.

We saw that supersolvable saturation is exactly the sort of structure we need.

The only issues left included the important requirement that our separations

be well behaved. However, as we have shown, in supersolvably saturated

matroids, any minimal vertical k-separation is what we call a modular sep-

aration and is well-behaved. We can capture the concept of the guts as a

round modular flat whose rank will be exactly the connectivity of the sepa-

ration.

This then allows us to construct a well-behaved tree decomposition for any

supersolvably saturated matroid. As we see every supersolvably saturated

matroid has a graph of round modular flats which we call rotundas. We

can apply an algorithm to find a maximum weighted spanning tree of the

graph. Any such tree is an optimal tree decomposition for the matroid. It is

a matroidal tree decomposition in the language of Hliněný and Whittle [27]

such that its treewidth is exactly the rank of the largest rotunda in the tree.

Furthermore, this maximum rank is bounded from above and below by the

branchwidth of the matroid.

We were now able to turn our attention back to the original problem of this

thesis. We start with a finite state matroid which is supersolvably saturated,

represented over GF (q) for some prime power q, and of bounded branch-

width k. This allows us to construct a canonical tree decomposition for the

matroid. Then we need to show that we can run a tree automaton over our

tree and describe it in a sentence of our particular counting monadic second-

order logic for matroids represented over GF (q) which we call CMSq. Here
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we encountered a first problem. While we are given a bounded rank for each

rotunda the actual cardinality of the matroid is not bounded. We need this

to be bounded so we can use a finite state tree automaton. We solve this

problem by colouring the points in each rotunda so that each uses at most

qk colours. We call this a proper qk-colouring of M .

Next we proceeded to define the separate elements of the rotunda tree. We

can define flats that are round, modular and maximal. We can define that

a separation is modular. We can define that bags in the tree are adjacent

to each other. However, we then encounter a major problem. To completely

describe the rotunda tree in CMSq we need to be able to quantify over

the rotundas. Because the number of rotundas is unbounded this means

quantifying over a set of sets. This unfortunately is not allowed in monadic

second-order logic.

We realized we could overcome this problem by using extension fields. For

this we changed our matroid class requirements so that our matroids are

defined over a finite field which is contained inside a larger extension field of

the finite field. We could then take advantage of the fact that given a flat,

F , of points for M there will be a point, z, in the extension field in the span

of F . That is z is not in F itself so can be considered free. We can use

this structure to give us a representative for each maximal rotunda of our

matroid M .

We then construct a labeled tree where the labels correspond to qk-coloured

matroids derived from M . This tree operates over a counting monadic

second-order logic for trees we call CMST . Essentially this tree is a k-

boundaried parse tree in the language of Hliněný [25].

As a result, we are able to apply Courcelle’s Theorem for Trees [15] over this

tree showing that if the tree is recognisable it is definable in the logic CMST .

We then show that given the rank function for the qk-coloured rotundas of

M that correspond to the labels of our labeled tree we can calculate the rank
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function of M .

Thus any sentence in CMST corresponds to a sentence over the CMSqk

of GF (q)-represented, supersolvably saturated, matroids of branchwidth at

most k with an extension field GF (qk). We avoid the problem of having

to quantify over sets of rotundas by using the fact that each rotunda has a

representative point over GF (qk).

There are some problems with this approach. First we have had to narrow

our class of matroids further to require an extension field. Second, our logic

is too strong. We have had to generalize the domain over which the logic

is defined. Because of this our result is not as good a partial converse to

Hliněný’s Theorem as we could desire. It is however a direct analogue to a

Theorem (Theorem 1.1) of Bodlaender et al. [7].

To conclude, we examined structure in matroids which is parallel to chordal-

ity in graphs. We saw that a number of related concepts of chordality are

fragmented for general matroids while equivalent for binary and graphic ma-

troids. We showed that given a supersolvably saturated matroid one can

construct a very nicely behaved canonical tree of round modular flats. Given

this we can show that for such matroids recognisability implies definability

in monadic second-order logic.

But for this we require two things. First, we require that the class of super-

solvably saturated matroids be represented over a finite field and that there

be an extension field of this. Second, we must extend our counting monadic

second-order logic to be defined over the extension field.
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10.1 Open Questions

This leaves some open questions. These are as follows.

1. We would like to know exactly how C-chordality, and indeed Bonin

chordality, relate to strong chordality.

2. We would like to know if modular spanned flats of a matroid are always

round flats.

3. We need to find a better strategy for assigning representatives to each

maximal rotunda. We need this to not require use of any special struc-

ture such as extension fields.

We have investigated an alternate strategy using a concept called a guid-

ance system borrowed from Bojanczyk and Pilipczuk [8]. Our idea was

to assign to every 3-point line in a supersolvably saturated matroid M

a “root” element. We would then show that for every round modular

flat F of M there is an element u such that if we take the union of all

the “root” elements for every line on which u lies the closure of this will

contain F . This would then give us a way to represent F by a single

element in E(M).

Unfortunately, this strategy doesn’t work if u is in the intersection of

maximal round modular flats. It is possible for any rotunda tree for M

to be such that some of its maximal rotundas are completely covered by

intersections with other rotundas. One approach to address this prob-

lem would be to further require that our rotunda tree decompositions

be what Bojanczyk and Pilipczuk [8] call “sane” tree decompositions.

This would mean, among other things, that every maximal rotunda of a

rotunda tree would be required to contain at least one element that is

not in the intersection with other maximal rotundas.
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4. Given an answer to 3, we would like to know if we can generalise the

result to more general classes of matroid. This would involve finding a

way to construct nicely behaving tree decompositions for the matroids.

That is prove the general converse to Hliněný’s Theorem [25].

5. Finally, we can ask how similar the concept of the modular separation is

to the Generalised Parallel Connection for matroids?
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