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Abstract

Impulse response shaping is a technique for modifying the characteristics of a lin-

ear channel to achieve desirable characteristics. The technique is well-known in

the field of wireless communication. Acoustic impulse response shaping is used

to reduce the effects of reverberation on audio signals propagating inside a room

and is thus used for listening room compensation. This thesis addresses innovative

approaches for acoustic impulse response shaping.

Many techniques have been proposed in the literature for canceling or reducing

the effect of reverberation on the audio signal. Impulse response inversion attempts

to completely cancel the effect of reverberations whereas impulse response short-

ening (or shaping) only partly equalizes the room impulse responses. Shortening

has less stringent constraints than inversion and this can result in more robust

solutions and thus more practically realizable systems.

Acoustic impulse response shaping works on measured room impulse responses

and designs pre-filters to be placed before the loudspeakers so that the reverber-

ation is reduced at the listening positions. When sampled, the room responses

typically contain thousands or tens of thousands (N) of samples. Thus, the shap-

ing algorithm needs to be computationally fast and memory efficient in order to

implement the system in real time. The techniques presented in the literature

use interior point methods or steepest descent algorithms, which are computa-

tionally slow or require memory of the order of N2. This thesis presents shaping

approaches based on the Dual Augmented Lagrangian Method (DALM), known

in the literature on sparse reconstruction for its super-linear convergence. The

method presented here also makes use of the concept of a Forward Adjoint Oracle

(FAO) to make the shaping algorithm memory efficient. Thus, the thesis presents

computationally fast and memory efficient shaping algorithms that can be used

for practically realizable systems.

The thesis also presents robust shaping approaches. The measured room re-

sponses may contain measurement errors or noise and can vary from time to time.



These variations may be due to changes in atmospheric conditions (such as tem-

perature or humidity) or due to change in position of objects inside a room. While

design approaches over multiple microphone positions have been proposed for de-

sign of filters that are robust to change in microphone positions, a more rigorous

approach is statistical, involving the inclusion of some statistical constraints into

the optimization problem. The thesis presents both the approaches viz., a com-

putationally faster version (using DALM) of the already proposed design over

multiple positions and a statistically robust shaping formulation. The latter limits

the probability of large errors between expected and obtained response to be less

than a specified value. This ensures that the solution is robust to variations in the

room response.

The shaping algorithm works in the time domain, shaping the temporal char-

acteristics of the room response to a desired form. The frequency response of the

shaped response can contain potentially undesirable peaks and troughs. This the-

sis therefore presents an approach for an efficient projection to improve spectral

flatness of the resultant response. This algorithm can be combined with the fast

and memory efficient DALM based approach to achieve joint time and frequency

shaping.

Finally, the thesis also presents a computationally fast algorithm based on

DALM for pressure matching used in sound field reproduction. Impulse response

shaping is applied in sound field reproduction, showing that the levels of pre-

reverberation induced by a temperature change can be reduced. This application

is different from impulse response shaping approaches presented in the previous

chapters and highlights the flexibility of the algorithm developed in this thesis and

its wide range of applications.
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Chapter 1

Introduction

Sound is a manifestation of mechanical energy [1, ch. 1]. Travelling as pressure

waves, sound waves propagate through a medium as vibrations, transmitting the

mechanical motion from one particle to another. As a sound wave travels, it is

likely to undergo reflection from barriers resulting in phenomena such as echoes.

A reflection of a shout from a wall in a large hall (say, 17 m in length) will reach

the person who made the shout, in about 0.1 s time and such an echo will be dis-

tinctly heard [2, 3]. In contrast to a distinct echo, the term reverberation is often

applied to reflected sound that reaches the listener before 0.1 s of round trip delay.

Reverberation, in general, is defined as the persistence of sound after a sound dis-

turbance is produced [4]. Reverberation could build up because of the reflections

from multiple reflectors, and decay as the sound is absorbed by the surfaces of

the different objects in the space such as furniture, people and air. Reverberation

persists even after the sound source is switched off. In detection systems like radar

and sonar, special techniques are deployed to overcome the effects of reverbera-

tion [5] which otherwise mitigates the detection and interpretation of the received

echoes.

On the other hand, it is interesting to note that reverberation is a ubiquitous

component of the tool kit of a an expert music composer. Natural reverberation

often plays a vital role in classical musical concerts, where a carefully designed

concert hall utilizes the persistence of reverberation in the hall to enhance the

sound from the performing orchestra [6, 7]. It is understood that the reverberation

effects created by ancient monuments and heritage buildings or even within caves

were used by sages and monks to make their rituals more alluring and effective

[8]. What has made the reverberation so significant in keeping the listener spell

1



2 CHAPTER 1. INTRODUCTION

bound? It is widely accepted that the human brain can perceive the geometry

of the room (where the music is being played) from the reverberations. The au-

dio cues then play a major role in shaping the emotional response of the listener.

One can imagine by contrast how unappealing the same music is when played in

an anechoic room. While humans prefer different combinations of melodies and

rhythms, which are matters of personal choice which may change with region and

over generations, reverberation seems to be appreciated by all. A performance

by a non-expert singer can become professional with the magic hand of an expert

sound engineer. The sound engineer uses a variety of techniques such as fading,

compression, expansion, equalizing and filtering to simulate reverberation effects,

to be added carefully, while mixing the sound to be rendered to the audience [7].

Thus, reverberation is inextricably linked to the day-to-day functioning of music

recording studios and concert halls.

Reverberation is carefully assessed and allowed for in the design of rooms and

auditoriums due to the well known effects of reverberation on the sonority of the

sound received. Special care is taken in architectural designs to ensure that sound

waves are properly deflected during its propagation and optimally absorbed into

special roof and wall lining materials to enhance the listener experience [7].

In some specialist acoustic applications, however, reverberation does not nec-

essarily lend itself to a positive listening experience. In listening devices such as

speech amplifiers, reverberation components are unacceptable due to their poten-

tial negative effects on speech intelligibility. (Speech intelligibility is a measure of

the comprehensibility of speech in given conditions [9–11].) Reverberation blurs

the speech sounds over time; masking stops, glides and vowel transitions and

prosodic cues such as pitch and duration [12]. However, certain portions of the

reverberation, called the early reflections, are found to perceptually enhance the

speech intelligibility [13, 14]. Thus, reverberation is to be selectively suppressed in

such applications.

Techniques are available to design equalizers in such a way that the reverbera-

tions are selectively suppressed at the receiver, thereby making the reception more

enjoyable. The surround sound technology [1, 15] widely available now uses arrays

of microphones to selectively combine the sound received. The front channels in

surround systems are designed to pick up less reverberation, in contrast to the sur-

round microphones. Such systems normally deploy a variety of effective patterns
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for the microphone deployment. However, these systems do not directly attempt to

cancel the effects of room responses. Instead, they reduce the unwanted effects of

reverberation. Surround sound technology is an active research area with research

prospects in a wide range of topics ranging from the materials used for the walls

of the room to signal processing techniques used for listening room compensation

[16, 17].

Many techniques of listening room compensation have been proposed in the

literature for canceling or reducing the effects of reverberations on the signal [17].

Such techniques aim to find filters that are placed before the loudspeakers in an

end to end signal path from the source via the loudspeaker to the listener. These

filters are designed to compensate for the room impulse response. Every room is

characterized by a room impulse response that provides a simple representation of

linear distortions (reverberations) [4] encountered by a signal propagating inside

the room.

The pre-filters compensate for an estimate of the channel between the loud-

speakers and listener so that the original signal from the loudspeaker is received by

the listener with minimum distortion. Impulse response inversion aims to cancel

the effect of the room response [18]. This technique is very sensitive because the

room response is non-stationary and can vary with positions inside the room as well

as with changes in atmospheric conditions (such as temperature and humidity).

It is difficult to design an inverse filter that is robust to these conditions. Impulse

response shaping or shortening [19–22] finds application in such a scenario. The

technique aims to partly equalize the impulse response so as to achieve a desired

form. Impulse response shaping is well known in the field of wireless communi-

cation as being applied to discrete multi-tone receivers to control bit error rate

[23–26]. Using shaping, the impulse response can be made to fit within the dura-

tion of the cyclic prefix of a symbol. In acoustics, room impulse response shaping

aims to reduce the perceptible effects of reverberation on the signal, specifically by

reducing the late reverberations more whilst allowing some early reflections which

are perceptually useful [27]. Shaping is thus an approximation to inversion and

has less stringent constraints, which is helpful in the creation of more robust and

practically realizable systems.

When there are multiple signal paths as in the case of multiple loudspeakers

and multiple listening position systems, the pre-filters perform shaping to reduce
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reverberation as well as cancel the cross-talk between loudspeaker signals. Thus,

pre-filters that solve the joint problem of room response shaping and cross-talk can-

celation are estimated and implemented in multichannel room impulse response

shaping [21, 27, 28]. In this case, LM pre-filters are to be estimated where L is

the number of loudspeakers and M is the number of microphones in the cross-talk

canceler setup.

We also propose another application of multichannel shaping to pressure match-

ing, in which the sound pressure values at specific points inside a room are matched

to a desired response. This is a different arrangement and requires only L pre-

filters. This approach is based on the assumption that a virtual source produces

similar responses at certain synthesized positions. These positions are typically

chosen to be a sphere around the original microphone position. The pressure

matching technique uses shaping formulations that include characterization of

sound fields at those positions. Such a formulation is consistent with the wave

equation.

Acoustic impulse response shaping formulations rely on the room impulse re-

sponses, which include the linear effects of the room on a signal propagating inside

it [4]. In order to develop a meaningful optimization formulation for shaping, it is

essential that the properties of the room impulse responses are well understood.

The following section discusses in brief some of the properties of the room re-

sponse that are essential for appreciating the scope and relevance of the shaping

formulations.

1.1 Properties of the room response

The room impulse response is a representation of the linear effects of the room on

a signal propagating through it, such as floor and wall reflections. The temporal

structure of the room response includes an approximately exponential decay, with

most of the energy concentrated in the first few milliseconds. The room response

can be broadly classified into three parts: a direct path component, early reflec-

tions and late reverberation.

The signal arriving directly without undergoing any reflection is the direct path

component. The direct path is followed by the early reflections, the delay of which

depends on the size of the room. But early reflections are often considered to be



1.2. MOTIVATION 5

within 50 milliseconds [4]. The early reflections have been found to be very useful

in maintaining the perceptual quality of the audio signal and hence significant re-

search has been concentrated into studying their characteristics and importance in

perceptual quality [13, 14]. This is the main motivation for the performance metric

called D50, which is the ratio of energy in first 50 milliseconds to the total energy

of the room response, in analyzing the efficacy of impulse response shortening ap-

proaches [21, 28, 29]. The portion of the room response arriving late are called

late reverberations, which, though they are of less energy, can seriously degrade

the perceptual aspects of the signal. Late reverberation is the key component of

the room response which is to be reduced by room impulse response shortening

techniques.

Another important property of room reverberations is the reverberation time,

denoted as T60 [30], which is the time in milliseconds required for the room response

to reduce to 60 dB less than the direct component. The weighting function used in

impulse response shaping formulations is designed based on D50 and T60, so that

the estimated shaping filters reduce the early reflections only lightly if at all, while

significantly reducing the late reflections beyond a modified T60.

1.2 Motivation

Acoustic room impulse response shaping is a research problem that involves the

study of both room acoustics and signal processing. Room acoustics is an evolving

and active field of study that has scope for a wide range of applications, including

modeling of the room acoustic properties and signal processing applications to ma-

nipulate these properties. Promising research areas are 3D-audio and multi-zone

surround sound systems; acoustic room impulse response shaping is applicable to

both of these.

The existing techniques in impulse response shaping involve the use of an op-

timization formulation, that involves minimization of some norm of the weighted

error between the desired response and the response obtained using shortening

filters [27]. The choice of the norm is critical, as it affects both the nature of

the errors and the computational efficiency. The previous works in shaping use
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either an `∞ norm 1 [27, 31] or an `p norm 2 [21, 28, 29, 32] and use either interior

point methods [27] that are memory exhaustive or gradient descent approaches

[21, 28, 29, 32] that are computationally very slow.

This thesis uses a regularized [33] formulation of the shaping problem which

minimizes a combination of a norm of the weighted error and a regularizer of the

shaping filters. Both `1 and `2 norm regularizers are proposed to be used in this

work from the observation that the `1 norm results in sparse filters while the `2
norm reduces the energy of the filters. Regularization ensures that the filter taps

are not high in magnitude, providing an inherent robustness to the designed filters.

An important design criterion of a practically realizable shaping system is the

computational speed of the algorithm used to estimate the shaping filters. This

is because the room responses are typically long (of the order of 1000s or 10 000s

of samples) resulting in huge optimization problems. This thesis proposes a com-

putationally fast approach to solve the joint problem of shaping and cross-talk

cancelation. The algorithm used in this work for solving the minimization prob-

lem is the Dual Augmented Lagrangian Method (DALM) [34–36], known in the

field of sparse reconstruction [37] for its super-linear convergence [35]. The thesis

presents different variants of DALM formulations depending on the choice of the

norm of the weighted error and the regularizer. Thus, a formulation suited for

a situation can be chosen, for example, an `2 regularizer if low energy filters are

desired and implemented in a real scenario.

Another important consideration for a good shaping algorithm is robustness.

This is because the room responses used in the filter estimation are measured and

can contain measurement errors or noise. In addition, they vary with position

inside the room due to constructive and destructive interference of propagating

sound waves on the direct component at the sound location of interest. The varia-

tions can also result from movement of objects in the room, or opening or closing

of a door of the room, or with atmospheric conditions such as the temperature

and humidity inside the room. The filters that are to be estimated to reduce or

cancel the effect of room reverberations are thus distinctive to specific locations

and specific conditions. It is challenging to design filters that are robust to all

such changes. The filters designed according to recent works [21, 27–29, 31, 32] are

1‖x‖∞ = maxn x(n), where n = 1, 2, . . . N , N is the length of vector x
2‖x‖p = p

√
x(1)

p
+ x(2)

p
+ . . . x(N)

p
, N is the length of vector x
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not robust to changes in room responses. An important theoretical framework for

analyzing the effect of errors of inaccurate filtering due to changes in positions

has been established by Radlovic et.al. [38] which highlights the need for a ro-

bust filter that can be applied at various positions with less error. Some work

in this direction is discussed in [39], where the authors present a shaping filter

design approach over multiple microphone positions. This involves generation of

multiple perturbed channels corresponding to changes in position and estimating

a filter that performs well at all these positions. But it is computationally chal-

lenging, resulting in a difficult optimization problem. This thesis also implements

this approach, but in a computationally faster manner using the DALM algorithm.

A more rigorous approach is to design filters which are robust to many of these

variations according to a statistical criterion. The statistical formulation includes

probabilistic constraints into the optimization problem, for example, limiting the

probability of error above a threshold to an assured low probability [40]. This re-

quires the development of an error model of the result of filtering using perturbed

microphone signals. A statistically robust formulation for the shaping problem is

discussed in the thesis, in which the original non-convex probabilistic optimization

formulation has been reformulated as a standard Second Order Cone Program

(SOCP) [41].

Another important criterion for good shaping algorithm is frequency flatness.

A good equalization algorithm will seek to flatten the frequency response. The

shaping technique is generally applied in the time domain and can allow peaks

and troughs to appear in the frequency response curve of the shaped responses.

Frequency domain control can be included in the formulation to ensure a uni-

form behaviour in the frequency domain. Some work in this direction is discussed

in [28], but the solution algorithm is based on gradient descent and is compu-

tationally slow. The thesis discusses an approach for efficient projection onto a

low-dimensional norm ball which can be used to impose the frequency constraints.

This approach can be easily combined with the DALM formulation and can be

used as a computationally fast algorithm for joint time and frequency shaping.

As seen in the previous section, a pressure matching formulation is another

application of the algorithm mentioned above. While exploring pressure matching

formulations in literature, it is interesting to note that no shaping formulation

has been reported in the literature for the sound field reproduction problem. Ad-
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dressing this gap, this thesis presents a computationally fast pressure matching

algorithm using a modification of the `2 regularized `2 DALM formulation. The

computational performance of this algorithm is established by comparing it with

the conventional Tikhnov regularized formulation which is solved using a steep-

est descent algorithm. The application of the DALM formulation developed in the

thesis to this totally different formulation highlights the flexibility of the algorithm

and suggests that it could be used in a wide range of applications.

From the discussions so far, it follows that though there is an extensive body

of research on the control of room acoustics, there are some important gaps in the

developments so far. These were the main motivating factors in taking up this

dissertation. The thesis specifically focusses on the development of the algorithms

for impulse response shaping with real time implications. The main findings of the

present work are reported in nine chapters, summarized in the section to follow.

1.3 Chapterwise summary

CHAPTER 2: This chapter discusses the key literature in the field of acoustics

that is essential to appreciate the work presented in this thesis.

CHAPTER 3: Key literature relating to the optimization formulation of the shap-

ing problem are discussed in this chapter. The chapter also discusses literature

relating to some optimization algorithms used to solve the formulations.

CHAPTER 4: The shaping formulation used in this thesis is explained in de-

tail in this chapter. Details such as the formulation as a regularized minimization

problem, the various norms used and the weighting function are detailed. This

facilitates understanding of the derivations and the results presented in the follow-

ing chapters.

CHAPTER 5: This chapter explains the algorithms developed in this thesis for

estimating the shaping filters in a computationally fast manner. The algorithms

used are variants of the Dual Augmented Lagrangian Method, known in sparse

reconstruction. One of the key contributions from this thesis is the development

of a fast DALM algorithm for solving the `1 regularized `∞ norm minimization

problems, which is advantageous for the development of a shaping implementation
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in a real scenario. The efficacy of the DALM algorithm in shaping is verified us-

ing simulation and real time experimental studies. The chapter also presents fast

DALM algorithms for some other regularized formulations that can be useful for

the problem, specifically, `1 regularized `2 norm minimization, `2 regularized `2
norm minimization and `2 regularized `∞ norm minimization. The performance of

these algorithms are also experimentally validated. In addition, the chapter also

presents a modification of the formulations to a design over multiple positions to

achieve empirical robustness to microphone position errors. The empirical design

approach was introduced by Jungmann et al. in [39] but the algorithm for finding

the shaping filters based on steepest descent is computationally slow. A faster

version of this approach based on fast DALM is presented in this chapter along

with experimental validation.

CHAPTER 6: This chapter presents an approach for joint time and frequency

shaping. The algorithms presented in the previous chapters design shaping filters

based in the time domain and can therefore result in undesired peaks and troughs

in the frequency spectra of the filtered responses. An effective shaping algorithm

should achieve both time domain shaping and frequency domain flattening of the

resultant responses. An efficient approach for projection onto a low dimensional

norm ball is presented in this chapter, which can be used to achieve the frequency

flatness. The DALM algorithm is a proximal minimization algorithm [35] and this

projection step can be easily combined with DALM as an additional projection.

Such an algorithm is used in this thesis to achieve joint time and frequency shap-

ing. This is explained in this chapter along with experimental validation. The

extension of the algorithm to design over multiple microphone positions to achieve

spatial robustness is also presented.

CHAPTER 7: A statistically robust formulation for the shaping problem is pre-

sented in this chapter. The method uses a stochastic model of the channel varia-

tions to explicitly limit the probability of large deviations from the desired perfor-

mance. This results in the formulation of a complicated optimization formulation

which also requires knowledge of the error model. The derivation of the opti-

mization formulation and its conversion to a standard convex problem using some

approximations are described in this chapter. The performance of the method is

evaluated on realistic channel perturbations and the resulting shaped responses

are shown to comply with the robustness specification.
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CHAPTER 8: The pressure matching formulation of an Active Compensated

Sound Field Reproduction (AC-SFR), which is an entirely different concept, is

discussed in this chapter. The DALM formulations developed for shaping can be

used to obtain computationally fast solutions to solve the pressure matching prob-

lem, which are discussed in this chapter. This highlights the flexibility and wide

applicability of the algorithms developed in this thesis.

CHAPTER 9: This chapter summarizes the conclusions from this thesis and dis-

cusses the scope for future work.

1.4 Publications

The publications from this thesis are listed below:
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Table 1.1: Publications for this thesis.

Title Authors Conference/ Page Chapter Status

Journal count number

A sparsity based Krishnan, L., IEEE SSP 4 5 Published

approach to Acoustic Teal, P., 2014

Impulse Response Betlehem, T.

Shaping

A robust sparse Krishnan, L., IEEE ICASSP 5 5 Published

approach to Acoustic Teal, P., 2015

Impulse Response Betlehem, T.

Shaping

Fast algorithms Krishnan, L., IEEE Trans. 11 5 Under

for Acoustic Impulse Teal, P., Audio, Speech revision

Response Shaping Betlehem, T. & Language

Processing

Efficient projection Teal, P., J. Engineering 10 6 Under

onto a low dimensional Krishnan, L., Optimization revision

`2 norm ball Betlehem, T.

A statistically robust Krishnan, L., IEEE Signal 5 7 Published

approach to Acoustic Betlehem, T. Processing

Impulse Response Teal, P., Letters

Shaping

Temperature robust Betlehem, T. IEEE Signal 5 8 Under

Active-compensated Krishnan, L., Processing review

Sound field Reproduction Teal, P., Letters

using Impulse Response

Shaping
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Chapter 2

Literature review I
(Acoustics)

A comprehensive understanding of the principles of acoustics and important acous-

tic problems is essential for this research work. This chapter describes some rel-

evant research topics in acoustics, their formulations and significance. Some im-

portant acoustic research problems considered in this chapter include sound repro-

duction, acoustic contrast control, characterization of sound fields and modeling

of head related transfer functions (HRTF).

2.1 Helmholtz equation

The pivotal relation in acoustics, which is used in many formulations of applica-

tions, is the Helmholtz equation [4]. For a single frequency, this is given by

∇2p+ k2p = 0 (2.1)

where p is the acoustic pressure, k = ω/v is the wave number and v is the speed

of sound in the medium considered. The Helmholtz equation describes the sound

propagation and acoustic pressures at different points in the medium. In one

dimension, the Helmholtz equation is ∂2p
∂x2

+ k2p = 0, the general solution of which

is given by

p(x, t) = F (vt− x) +G(vt+ x) (2.2)

where F and G are arbitrary functions for which second derivatives exist. F (vt−x)

represents a pressure wave travelling in the positive x-direction with a velocity v

and G(vt−x) a pressure wave in the negative x-direction. The sound pressure p is

constant in any plane perpendicular to the x-axis. These planes of constant sound

13
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pressure are called wavefronts and any line perpendicular to them is a wave normal.

The particle velocity of a plane wave has only one non-vanishing component

which is parallel to the x-axis given by

v(x, t) =
1

ρ0v
(F (vt− x)−G(vt+ x)) (2.3)

It can be seen from (2.2) and (2.3) that the ratio of sound pressure and particle

velocity p/v = ρ0v in a plane wave propagating in the positive direction (G = 0)

is frequency independent. This ratio is called the characteristic impedance of the

medium. For example, for air at 20◦C, ρ0v = 416 kg m−2 s−1.

A progressive plane harmonic wave is a plane wave in which the time and space

dependence of the sound pressure follows a sinusoid function. If we set G = 0 and

F to be complex sinusoid, we obtain

p(x, t) = p̂ej(ωt−kx) (2.4)

where p̂ is the amplitude of the wave and k is the wave number.

The Helmholtz equation for the three dimensional case in spherical co-ordinates

is given by
∂2p

∂r2
+

2

r

∂p

∂r
=

1

v2
∂2p

∂t2
(2.5)

whose solution is

p(r, t) =
ρ0

4πr
Q(t− r/v) (2.6)

which represents a spherical wave produced by a point source at r = 0 with

volume velocity Q, which is the rate at which fluid is expelled by the source.

t− r/v indicates that the strength of any disturbance created by the sound source

propagating outward with velocity v decreases as 1/r. If the volume velocity of the

source varies according to Q(t) = Q̂ejωt with k = ω/v, (2.6) represents a harmonic

spherical wave.

p(r, t) =
jωρ0
4πr

Q̂ej(ωt−kr) (2.7)

The particle velocity is

vr =
p

ρ0v
(1 + 1/jkr) (2.8)

For distances which are large compared to the wavelength, kr � 1 the ratio p/vr
tends asymptotically to the characteristic impedance of the medium, ρ0v.
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2.2 Characterization of diffuse field

An acoustic field is considered to be perfectly diffuse in a volume V if the energy

density is same on all points in the volume V [4]. In other words, a diffuse field

has a uniform sound pressure throughout the room considered. Characterization of

diffuse fields in a reverberant room has been an active research problem for a long

time. A model to characterize the diffuse field in a rectangular cavity is discussed

in [42]. The authors use pressure correlation and spatial uniformity measures to

characterize the degree of diffuseness. The authors conclude from the studies that

a diffuse field can be established in rooms with strong modal behaviour above what

is known as the Schroeder frequency [43]. The general applicability of diffuse field

theory with respect to room shape, surface reflections and fittings is discussed in

[44]. Effect of each of the parameter is analyzed and the author provides approxi-

mate values of certain room acoustic parameters for which a diffuse field in a room

can be expected.

The assumption of a diffuse field in a non-diffuse case can affect the accuracy

of acoustic applications, especially due to erroneous steady state sound pressure

levels. Thus, a method applicable in a general case, such as the image source

method is applied to calculate the room acoustic properties if applicability of

diffuse field is not certain. The image source method is discussed in detail in the

next section.

2.3 Image Source Method

The image source method [45] is one of the most important methods to calculate

room acoustic properties like reverberation and critical distance. The method

helps in finding the point to point room transfer function (RTF) by using the

images contributing to the impulse response. The authors claim that the image

solution of a rectangular enclosure approaches an exact solution when the walls

become rigid. Pressure emitted from a point source at a single frequency ω in free

space is of the form

P (ω,X,X ′) =
ejω(D/v−t)

4πD
(2.9)

where X is the source, X ′ is the receiver, D = |X −X ′|, v is the velocity of sound

and t is time. In the case of the presence of a rigid wall, the boundary condition
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Figure 2.1: Image Expansion for a rectangular room with six walls. ’x’ denotes

the images considered and ’o’ the centre of the room. Source: [45].

(The vertically displaced images do not appear in this two dimensional represen-

tation.)

is satisfied by placing an image symmetrically on the far side of the wall. Thus,

P (ω,X,X ′) =

(
ejkD+

4πD+

+
ejkD−

4πD−

)
e−jωt (2.10)

where k is the wave number given by ω/v, D+ is the distance from the microphone

to the source and D− is the distance from the microphone to the image. These

distances are defined by

D2
− = (x− x′)2 + (y − y′)2 + (z − z′)2

D2
+ = (x+ x′)2 + (y − y′)2 + (z − z′)2 (2.11)

In the case of a rectangular enclosure with 6 walls, image expansion is as shown

in Figure. 2.1 which could be written as

P (ω,X,X ′) =
8∑
b=1

∞∑
a=−∞

ejk|Ra+Rb|

4π |Ra +Rb|
e−jωt (2.12)

where Rb = (x ± x′, y ± y′, z ± z′), a is the integer vector triplet (d, e, f) and

Ra = 2(dLx, eLy, fLz) with (Lx, Ly, Lz) as the room dimensions. Considering the

Fourier transform of (2.12), one can write

p(t,X,X ′) =
8∑
b=1

∞∑
a=−∞

δ(t− |Ra +Rb| /v)

4π |Ra +Rb|
(2.13)
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using the time domain Green’s function. In the case of non-rigid walls, the model

becomes more complicated with the pressure reflection coefficients of the six bound-

ary planes becoming complex. The authors use this model to calculate reverbera-

tion time and the critical distances, and conclude that the method is quite efficient.

Other methods of simulating room acoustics include the boundary element

method and the finite element method, though these are not pursued in this thesis.

2.4 Early reflections

The RTFs measured or evaluated using the image source method can be divided

into the direct path, early reflections and the late reverberations. Early reflections

in the RTF contributes to speech intelligibility, which is discussed in [13]. The

authors use a performance metric, known as Early Reflection Benefit (ERB) which

is the difference in decibels between the energies of the early reverberant speech and

the direct sound. The speech signal arriving up to 50 ms after the direct sound is

considered to be from the early reflections. Similarly, the direct sound is expected

to arrive within the first 10 ms. Therefore, ERB is calculated as the difference in

energies in decibels between the speech samples arriving in these two time frames.

When speech tests are performed with fixed speaker head positions in both direct

and reverberant fields, it is the Signal to Noise Ratio (SNR) that affects the test

score. (For example, SNR reduction reduces the test score). On the other hand,

in the case of varying speaker head positions, it is the early reflections that affect

the test score. The tests proved that increased energy in early reflections has a

similar effect on listener intelligibility to that of increased direct energy. Thus they

prove that early reflections are useful and conclude that in any design, for speech

intelligibility, the focus should first be to maximize the early reflections, and other

criteria such as reduction of reverberation time, reduction of late reflections etc

are less important.

2.5 Room response variations

The RTFs may vary due to atmospheric factors such as temperature and humidity,

and changes in position inside the room. An understanding of the fluctuations in

RTF due to some of the effects such as changes in microphone position is essential

for the design of a robust shaping filter, which is the problem dealt with in this
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thesis. One important paper related to this topic is by Radlovic et al. [38] which

describes a theoretical framework to analyze robustness of sound equalization to

change of microphone and source positions in a room. The authors derive a model

for the mean square error in estimation due to such a change in position. The

main assumptions behind this model are

• The linear dimensions of the room are large relative to wavelength,

• The average spacing of the resonance frequencies are smaller than one-third

of their bandwidth. (This criterion can be met for all frequencies higher than

the Schroeder frequency, f = 2000
√
T60/V Hz where T60 is the reverberation

time and V is the room volume.)

• Both source and microphone are in the interior of the room, at least half a

wavelength from the walls.

The mean square error due to the displacement of the receiving point at a frequency

f is of the form

W (f) = E{| ˜C(f)H(f)− 1|2} (2.14)

where ˜C(f) is the frequency response between the source and the receiver at a

distance from the equalization point and H(f) is the frequency response of an

inverse filter. The expectation is taken with respect to both the distribution of

source locations and distribution of microphones. The source locations are assumed

to be uniform throughout the room and at least half a wavelength away from the

walls. The microphones are assumed to be uniformly distributed over a sphere

centered at the reference location. Let D denote the distance from the source to

the reference location and d the displacement from the equalization point, k is the

wave number. Now (2.14) can be computed as

W (f) ∼=
γ D
2d

ln
∣∣D+d
D−d

∣∣+ 1

γ + 1
− 2

sin(kd)

kd
+ 1 (2.15)

where the first term is due to the direct component and the other two terms are

due to reverberations. Here, γ is approximately equal to the ratio of direct to

reverberant power given by

γ ' Pd(f)

Pr(f)
(2.16)
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If displacement from the equalization point is small compared to the source to

microphone distance, the first term in (2.15) approaches one, resulting in the

inference that the direct field component has a negligible effect on the error signal

in such a situation. Thus, the error in the case of only diffuse field is of the form

W (f) ∼= 2− 2
sin(kd)

kd
(2.17)

The authors in [38] also derive expressions for the mean square error due to inex-

act inversion of the room responses, which shows that an inexact inverse filtering

results in more errors at a distance from the equalization point especially at high

frequencies. This is due to the increased sensitivity of inverse filtering to position

changes at high frequencies.

The sections to follow gives an overview of some key research problems in

acoustics.

2.6 Sound field reproduction

Sound field reproduction is the acoustic problem of generating a desired sound

field over a wide area. An approach to the reproduction of plane wave sound fields

is discussed in [46]. The design approach is developed based on spherical harmonic

decomposition of the wave field to design loudspeaker array weights, positions and

order required for good performance.

Sound field reproduction is an indispensable process in a surround sound sys-

tem. Surround sound systems may be two dimensional (2D) or three dimensional

(3D). One example of a sound field reproduction system is the ambisonics system

[47, 48], the original form of which is 2D. Ambisonics systems, being based upon

a spatial decomposition of a sound field, make use of panning functions to deter-

mine the loudspeaker weights to achieve the desired sound field [48, 49]. Sound

field reproduction performance is affected by a number of parameters such as loud-

speaker matching and high frequency interference effects of the panning functions

above the spatial Nyquist frequency [46], especially for irregular loudspeaker array

layouts. A robust approach for a non-uniform loudspeaker layout is discussed in

[50] in which the author uses a least square pressure matching approach to design

robust panning functions. The method takes into account the reduction in size

of regions of accurate sound reproduction for a virtual sound source between the
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loudspeakers with a large inter-speaker angle. Robustness is achieved by imposing

a large penalty weight for loudspeakers far from the intended virtual source angle.

The method has advantages of producing a direct solution without any non-linear

optimization, applicability to arbitrary layouts and easy adjustment of the trade

off between robustness and reproduction accuracy by tuning a single parameter.

3D surround sound systems offer potential for more accurate reconstruction than

2D systems. There are several methods for 3D sound field reproduction, the most

common being wave field synthesis (WFS) [51], inverse method [52] and 3D am-

bisonics methods [53]. Wave Field Synthesis method is based on the knowledge of

pressure and normal velocity on the surface of the reproduction region. The inverse

method aims to create the desired sound pressure at a set of discrete points using

an inverse matrix created based on the geometry of loudspeakers and receiver posi-

tions. The 3D ambisonics method is based on a spherical harmonic decomposition.

A 3D ambisonics sound system based on 3D ambisonics method of sound repro-

duction is discussed in [54]. The spherical harmonic description is employed in this

work to achieve the desired sound field reproduction using either a mode matching

approach or a simple source approach. The mode matching approach develops a

solution for the loudspeaker weights in the form of a pseudoinverse. The simple

source approach assumes the reproduction system to be composed of a continuous

spherical distribution of monopole sources at a particular radius and develops a

solution for loudspeaker weights without the need to calculate the inverse matrix.

In [54], the unregularized mode matching approach gave better performance at

lower values of kr while the simple source field model performed better (than the

unregularized mode matching approach) at higher values of kr. The authors in

[54] also discuss in detail some recording methods such as free field sphere decom-

position, solid sphere decomposition and general array sampling along with their

sampling requirements.

A framework for sound field control using a limited number of loudspeakers is
proposed in [55]. The system relies on an optimal feed forward controller which

is a filter matrix designed based on an estimate of the impulse responses at the

measurement position and the target responses at these positions. The system also

has a post-processing step to achieve spectral flatness. Authors use both objective

and subjective evaluations to validate the system. This framework is based upon

a powerful robust linear-quadratic control method [56, 57].
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2.7 Creation of sound zones

A research problem related to sound field reproduction is the creation of sound

zones for multi-zone surround sound. Some optimization approaches focus on the

separation and isolation of adjacent bright sound zones [58–60]. In [58], the authors

describe a method to control sound in each region, and also to control the leakage

into the surrounding regions. They formulate an l2 problem with constraints on

the total energy and leakage into the quiet zones. The problem is of the form

minh ‖Hch− pd‖2

subject to ‖h‖2 ≤ K0

‖Hnh‖2 ≤ Kn n = 2...N

(2.18)

where Hn describes the acoustic transfer functions from each loudspeaker to Mn

points inside a zone Dn and Kn is defined as

Kn = α
Mc‖pd‖2

Mn

(2.19)

where α is the acceptable level of sound energy leakage into another listening zone.

The Wolfe dual for problem in (2.18) is derived and solved iteratively using an in-

terior point algorithm. The results obtained are compared with those from the

standard LS approach and the weighted LS approach using mean square energy,

LS weight energy and sound energy leakage as the evaluation criteria.

Closely related to multi-zone surround sound is acoustic contrast control [59,

60]. This problem involves the maximization of a cost function known as acoustic

contrast. An example measure [59, 60] is given by

Ac =
pHB pB
pHDpD

(2.20)

where pB and pD are the acoustic pressures in the bright and dark zones respec-

tively. The filter coefficients can be obtained from the generalized eigenvector

corresponding to the maximum eigenvalue. Acoustic contrast control can be used

for the generation of independent bright zones in a room [60]. One application of

this is the control of sound intensity from the adjacent seat, when two people in

adjacent seats of an aircraft are listening to different channels [59].
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A related problem is that of spatial pattern control for reproducing a particular

spatial directivity pattern with a typical loudspeaker array. Authors in [61] discuss

three methods for achieving spatial pattern control namely Least Squares (LS)

approach, maximum energy array and eigenfilter solution based on Total Least

Squares (TLS). All the three approaches formulate the problem as a quadratically

constrained quadratic programme (QCQP) though the objective is slightly differ-

ent in each case. The LS approach minimizes the least square error between the

generated and the desired spatial pattern. This technique introduces a regular-

ization parameter that controls the performance of the approach. The maximum

energy array approach maximizes a cost function based on acoustic contrast to

design the filters. A total least squares minimization of the total least squared

error between the obtained and desired patterns are used in the eigenfilter design

approach. This method has the advantage over other approaches that it does not

require calculation of the inversion of matrices. Each of the three approaches are

evaluated for their performance and the authors conclude that the maximum en-

ergy array approach gives best performance, especially at low frequencies. The

performance of the other two approaches depend on the proper choice of a regu-

larization parameter.

2.8 Evaluation of Direct to Reverberation Ratio

A measure known as direct to reverberant energy ratio (DRR) is very useful for

characterizing the acoustics of a room. An approach to estimate this quantity

is discussed in [62]. The authors estimate the DRR by splitting the acoustic

energy (specifically the transfer function from the source to the microphones in a

reverberant room) into two components which are the direct and the reverberant

components. The spatial correlation matrix of the signal received at all elements

of a microphone array can be approximately represented by the equation

1 1

φ12 ψ12

...
...

φ1M ψ12

φ21 ψ21

1 1
...

...

1 1


M2×2

[
PDC(ω)

PRC(ω)

]
2×1

=



Rcorr11(ω)

Rcorr12(ω)
...

Rcorr1M (ω)

Rcorr21(ω)
...
...

RcorrMM
(ω)


M2×1

(2.21)
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whereRcorrpq are the correlation coefficients between the microphones p and q, φpq is

a phase factor corresponding to the distance between microphones p and q and ψpq
is a sinc function varying according to the distance between microphones at p and

q. The spatial correlation of direct path is expressed by a simple phase difference

because of the time difference of arrival between the microphones. Assuming

the scattering to be isotropic, the correlation of the reverberation component can

be approximated by the spatial correlation of a diffuse field i.e., a sinc function.

PDC(ω) is the power spectrum of the direct component and PRC(ω) is the power

spectrum of the reverberation components.

Let P̂ (ω) = [PDC(ω) PRC(ω)]T and R̃corr(ω) = [Rcorr11(ω) . . . RcorrMM
(ω)]T. Now,

equation (2.21) can be written as

F (ω)P̂ (ω) = R̃corr(ω) (2.22)

the LS solution of which is of the form

P̂ (ω) = F †(ω)R̃corr(ω) (2.23)

where † represents a pseudoinverse. Here, F (ω) is known and Rcorr(ω) can be

calculated from observed signals. Therefore, each energy component of P̂ (ω) can

be found separately. The authors then use these estimates to find the ratio of

direct to reverberant power spectra as

DRRest = 10log10

∑
ω P̂DC(ω)∑
ω P̂RC(ω)

(2.24)

The authors also analyze the effect of reverberation time, early reflections, noise,

frame length and number of microphones on the accuracy of estimation.

2.9 Modelling of Head Related Transfer Func-

tions

Modeling of Head Related Transfer Functions (HRTFs) plays an important role in

the study of spatial hearing. The authors of [63] present an approach that use an

image method to compute the spherical harmonic coefficients and use these coeffi-

cients to describe the effect of a wall of a room on the HRTF based on this model.

The dependence of HRTFs on torso and pinnae are modeled in [64], using the KE-

MAR mannequin and a snowman model. The authors use a combination of differ-

ent methodologies, such as acoustic measurements for the KEMAR mannequin to
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validate the results from the numerical methods, a multi-pole re-expansion method

for spherical torso in the snowman model and a boundary element method for an

ellipsoid torso and conclude that their method is a good approximation to find the

effects of torso and pinnae on the HRTF.

2.10 Chapter Summary

The literature reviewed here gave an overview of some basic acoustic principles

and common research problems in acoustics. The following chapter discusses some

literature related to the impulse response shaping formulation, which has applica-

tions in acoustic problems as discussed in this chapter.



Chapter 3

Literature review II
(Shortening formulations and Optimization Algorithms)

In this thesis, acoustic room impulse response shaping is formulated as an op-

timization problem that minimizes a cost function formulated on the required

criteria to solve for the pre-filters. Some key literature related to this is detailed

in this chapter.

3.1 Impulse Response Inversion

An understanding of the basic theory of inverse filtering and its formulation is

essential for appreciating the concept of impulse response shaping. Channel inver-

sion is a well known technique that helps to retrieve a signal travelling through

a medium by compensating for the effects of the medium. This is achieved using

an inverse filter. In the case of acoustic signals propagating inside a room, there

can be various distortions such as reflection from the walls, floor and ceiling which

result in unwanted reverberations in the signal. In order to retrieve the signal at

the listening locations, these reverberations in the room impulse response (RIR)

can be removed or compensated for by using a pre-filter. One of the early papers

of acoustic channel inversion, Miyoshi et al. [18] assumes that the distortions of

acoustic signals radiated inside a room due to wall reflections are linear and discuss

an inverse filtering scheme to overcome the effects of the room impulse response.

They present two approaches, one of which is the conventional inverse filtering

scheme using a Moore Penrose pseudoinverse derived on a least square error crite-

rion and the other is based on a multi-channel realization that allow the use of a

matrix inverse instead of a pseudoinverse. The authors also derive the conditions

under which the multi-channel inverse filters yield a feasible solution.

25
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If a filter h(n) is an inverse of the system response c(n), then the combined

response given by r(n) = c(n)∗h(n) is a delta function that represents the resultant

desired response. This can be written in matrix format as

r = Ch (3.1)

where r ∈ RNc+Nh−1, h ∈ RNh and C is an Nc + Nh − 1 × Nh Toeplitz matrix

representing convolution. The Least Squares(LS) solution for the problem in (3.1)

can be found by

min
h
Jc = ‖r − Ch‖22 (3.2)

the solution of which is of the form

h = (CTC)−1CT r = C†r (3.3)

This scheme can be extended to multiple-input multiple-output linear Finite Im-

pulse Response (FIR) systems. The authors of [18] prove that their proposed

method for estimating inverse filters outperforms the conventional method through

simulations by using estimation error as a performance metric.

In order to reduce the effect of noise and measurement errors, a regularized

least square problem can be formulated as in [22, 65–68]. In spite of this, the

greatest challenge with using inversion for acoustic equalisation is that the room

impulse responses, which are compensated by inversion, vary with room geometry,

temperature and also with positions inside the room. Hence channel inversion may

not be effective unless the channel estimate is updated frequently.

3.2 Impulse Response Shaping (or Shortening)

Acoustic equalization can be accomplished more efficiently than channel inversion

by using impulse response shortening. In personal audio, for example, the aim is

to create independent sound zones within the same listening space. This problem

is challenging because of the sound leakage from one zone to another, otherwise

known as cross-talk. Loudspeakers with appropriate directivities can be located

near to the listeners and sound absorption can be introduced between sound zones

to improve sound isolation [69, 70]. However, performance can be improved fur-

ther by pre-processing the loudspeaker signals with cross-talk cancelation filters
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(CCFs). Using impulse response shaping, the resultant or global impulse response

(GIR), i.e., the combination of both a pre-filter and an acoustic impulse response,

can be shortened or made to possess more desirable properties than that of the orig-

inal impulse response. Thus, shortening (or shaping) techniques offer advantages

over inversion by imposing less stringent criteria and allowing some of the per-

ceptually useful features such as early reflections whilst reducing the undesirable

late reverberation. An algorithm for determining CCFs using a flexible impulse

response reshaping approach that outperforms traditional inverse-filter designs is

discussed in [27]. The algorithm uses an interior point method to find the shaping

filters.

Impulse response shortening was first applied to the problem of equalizing the

reverberant channel between a loudspeaker and a microphone by Kallinger et al.

[19]. The principal difference between the applications in communication and

acoustics is that in the latter the psychoacoustics of the human listener must be

taken into account. In [19], a least squares (LS) impulse shortening approach with

the generalized eigenvector solution of [23] was proposed. This method minimizes

the ratio of the energies of the undesired and desired parts of an RIR in accordance

with the D50 measure of speech intelligibility. D50 is defined as the ratio of the

energy within 50 ms after the first peak of the RIR to the total energy of the RIR.

Similarly Mei et al. [71] devised a reshaping approach based upon an LS objective

function with a linear constraint to guarantee energy in the desired part. This

approach was compared to the approach of [19] as well as an eigenvector approach

minimizing the undesired energy subject to a norm constraint on the desired filter.

In general, acoustic channel inversion is sensitive to additive noise and chan-

nel estimation error. In this context, channel shortening algorithms have been

shown to be less sensitive than the inversion techniques. Based on the multiple-

input/output inverse theorem (MINT) [18], a relaxed multi-channel least squares

(RMCLS) approach of channel shortening was proposed, which is applicable for de-

reverberating the signal of a source using multiple microphones [65, 72, 73]. Here,

the link was explored between RMCLS and the MINT approach, establishing the

MINT solution as a special case.

Thomas et al. [22] investigated impulse shortening with RMCLS to show that

shortening the channel to several milliseconds provides a more robust solution than

ideal channel equalization. The enhancement comes from a reduction in the en-
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ergy of designed filters (due to reduction in `2 norm). In a related approach called

partial multi-channel equalization using MINT or P-MINT [66], an exact solution

to the underdetermined shortening problem is obtained by setting several taps to

be same as those in one of the RIRs [68]. This P-MINT approach was shown

to be superior in performance to channel shortening and similar in performance

to RMCLS. These approaches do not require concentrating energy into the early

reflections of the GIRs, so that filters can be designed with less energy. Further

improvements to filter robustness have been obtained with Tikhonov regulariza-

tion [68] which can further reduce filter energy but at the expense of performance.

Here, the L-curve method of choosing the regularization parameter [74] was shown

to approximately optimize the perceptual speech quality. P-MINT is a specific

solution to the channel shortening problem, for the case that the problem is un-

derdetermined and hence can be solved exactly [68].

However, the `2 norm approaches were seen to produce late reverberant echoes

as well as undesirable frequency domain distortions in the GIRs. More desirable

time domain properties are obtained using an `∞ norm [20] which guarantees a

steady decay of the GIR free from any strong late-reverberant echoes. An `∞
approach was solved in [20] using steepest descent methods. The approach was

further extended to impulse response reshaping using a more flexible p-norm ob-

jective function [21] that allows more rapid convergence than [21]. This criteria,

like the minimax criteria, was shown to ensure better temporal qualities than the

`2 norm. Included also in the approach of [21] was an auditory mask, a temporal

decay curve below which the reverberation in an impulse response is considered to

be imperceptible [75]. The optimization problem solved in [21] is of the form

min
h
f(h) = log

(
fu(h)

fd(h)

)
(3.4)

where fd(h) = ‖gd‖pd and fu(h) = ‖gu‖pu . The vectors gd and gu are obtained

by stacking all the wanted and unwanted portions of the GIR, pd and pu are the

corresponding norm types. Here, gd = wd · g and gu = wu · g where wd and wu are

the weight vectors corresponding to the desired and undesired parts respectively

and · is the element-wise product. The weight vector specifies the desired shape

of the GIR.

A basic drawback of reshaping approaches is the large amount of computation

required to obtain the CCFs. This is mainly because these techniques need to deal
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with long room impulse responses. Hence, it takes a large amount of computation

time to converge to a solution when gradient descent or interior point methods are

used. The steepest descent approach is commonly used, where the convergence

rates are only linear. The minimax approach of [20] converges even more slowly as

each iteration only modifies a single tap of the shortening filter. A modification to

the steepest descent update rule was made that allowed the algorithm to converge

faster and be less likely trapped in a local minima [32]. This modification was

based upon a diagonal approximation of the Hessian matrix, used in the steepest

descent iteration.

Jungmann et al. [76] extended the minimax impulse response shortening ap-

proach of [20] to perform combined cross-talk cancelation and listening room com-

pensation. Impulse response reshaping was used to simultaneously cancel the

cross-talk and apply the auditory mask. The optimization formulation is similar

to (3.4), the weight vector applied is derived based on the auditory behaviour of

human ear [3].

The weight vector for the desired part of the direct responses is defined as

wd(n) =

{
1 t0m · Fs ≤ n ≤ (t0m + Td)Fs

0 otherwise
(3.5)

where Fs is the sampling frequency, t0m is the average time taken from the L

loudspeakers to the microphone m and Td is chosen to be 4 ms. The weight vector

for the undesired portion of the direct response is defined based on the acoustic

masking limit [77, 78] as

wu(n) =

{
10

3
log(N0/(N1+N2))

log
(

n
N1+N2

)
+0.5

for N1 +N2 + 1 ≤ n ≤ Nr

0 otherwise
(3.6)

where N1 = t0m · Fs, N2 = Td · Fs and N0 = 0.2Fs + N1. Nr is the length of the

GIR. The weight vector on the undesired cross-talk path can then be used to set

the desired cross-talk cancelation.

A minimax formulation (or minimization of infinity norms) of the shaping

problem using a relaxed multi-channel approach is discussed in [27, 31], which is

then solved using the epigraph form [41]. The minimax optimization formulation

to solve the shortening problem is

min
h
Jc(h) = ‖W (r − Ch)‖∞ (3.7)
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where W is a diagonal weighting matrix. (3.7) is converted to an `1 norm problem

using the epigraph form as

mina,h a

subject to [W (Ch− r)]n ≤ a

[W (Ch− r)]n ≥ −a

(3.8)

where C is the convolution matrix representing the loudspeaker to microphone

channel responses, h is the collection of impulse responses of the filters to be

designed, W is a weighting matrix and r is the vector that contains the GIRs rms
each of which represents the convolution of channel responses and inverse filters

i.e.,

rms =
L∑
l=1

Cmlhls (3.9)

The desired responses are

rms = 0Nr ,m 6= s

rss = [0TNmp
, 1, 0TNeq

]T
(3.10)

where Nmp includes the length of the response up to the peak and Neq exceeds the

length of the reverberation of the response.

The weighting function is defined as

wss = [1TNr1
, wTd , w

T
u ]T (3.11)

where Nr1 = Nmp + 1, wd penalizes early reverberation and wu defined as

[wu]n = eβ(n−Nr3)/Nr3 (3.12)

penalizes late reverberation. Nr3 is the length of the late reverberations and β de-

cides the rate at which late reverberations are penalized. wd is the weight assigned

to the desired part of the response.

The formulation developed in [31] based on HRTF is very similar to (3.7),

which is solved in its dual using conic programming. The performance metrics

used are minimum channel separation, maximum cross-talk and maximum devia-

tions of direct responses from 0 dB as the evaluation criteria.



3.3. PERCEPTUALLY ENHANCED SHAPING SOLUTIONS 31

The convex problem in (3.8) is solved iteratively using interior point meth-

ods in [27]. In contrast, the problems in [21, 23, 39] are non-convex and may lead

to suboptimal solutions due to local minima. When solved using interior point

methods, rapid quadratic convergence rates are guaranteed in a small number of

iterations. However, a Hessian matrix must be formed, the dimensions of which

are large, being proportional to the number of taps Nc in the RIRs. Hence, the

number of entries in the matrix varies with Nc. This highlights the importance of

not only fast converging algorithms to solve for the shaping filters but ones which

are also memory efficient.

The formulation of the shaping problem as a regularised minimization allows

the use of some fast iterative algorithms for solving the optimization problem to

find the shaping filters. One such fast algorithm is the Dual Augmented Lagrangian

Method (DALM) [34–36]. The DALM algorithm has been originally proposed to

provide a sparse solution for the `1 regularised `2 minimizations (D-2-1) as in the

Basis Pursuit DeNoising (BPDN) [37] problems that arise in sparse reconstruction.

The steepest descent approaches in [20, 21, 32] choose a suitably varying step size

parameter, which requires a line search algorithm [41, p. 464-466]. Even then an

unacceptable number of iterations may be required for convergence, especially for

very large problems which are usually poorly conditioned. The computationally

fast solution methods like DALM can overcome these issues. The DALM algorithm

converges fast even for large problems due to the addition of an augmentation term

in the dual Lagrangian.

3.3 Perceptually enhanced shaping solutions

Shaping approaches that are perceptually enhanced and less sensitive to noise are

discussed in [14, 79]. The authors of [79] use a regularized approach to design filters

that are less sensitive to RTF fluctuations and noise. They use a cost function of

the form

J = ‖Ch− r‖2 + δ‖h‖2 (3.13)

where the second term is an addition to the LS cost function to capture the effect

of disturbances. The solution is of the form

h = (CTC + δI)−1CT r (3.14)

where C is the mean RTF in case of fluctuations. In the presence of noise, I

is replaced by Rn, the noise correlation matrix and C is the RTF. The authors
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discuss the factors affecting filter design which are filter length, modeling delay

and the value of the regularization parameter, and analyze their effect on design

through analysis of simulation results using Signal to Distortion ratio as an evalua-

tion criterion. They infer from the studies that the proper choice of regularization

parameter is a more crucial design parameter than modeling delay and filter length.

Kodrasi et al. [14] discusses a perceptually constrained approach of impulse

response shortening method that preserves speech quality and also results in higher

reverberant tail suppression than channel shortening or the regularized partial

multi-channel equalization technique based on the Multiple-Input/Output Inverse

Theorem (P-MINT). This approach is computationally more expensive and time

consuming than the previous approaches. The optimization problem in [14] is a

maximization of the Rayleigh quotient.

JC =

∥∥∥WdĈh
∥∥∥2
2∥∥∥WuĈh
∥∥∥2
2

=
hT B̂h

hT Âh
(3.15)

where Ĉ represents the estimated channel response between the loudspeakers and

the microphones, h is the inverse filter to be designed, Wd = diag(wd), Wu =

diag(wu) and

B̂ , ĈTW T
d WdĈ

Â , ĈTW T
u WuĈ

(3.16)

The solution can be obtained by solving the generalized eigenvalue problem

B̂h = λmaxÂh (3.17)

and choosing the largest eigenvector solution. The perceptually enhanced formu-

lation is derived from the above formulation as the maximization of

JPeCCS(α) =
∥∥∥ĈHCSα− r̂dp

∥∥∥2
2

+ ‖HCSα‖22 (3.18)

where HCS is a matrix containing all the generalized eigenvectors of (3.17), α is a

vector of scalar coefficients that also maximizes the Rayleigh quotient in (3.15) and

r̂dp is the expected response. Their proposed Perceptually enhanced Constrained

Channel Shortening (PeCCS) is a two step equalization that involves computation

of αPeCCS as

αPeCCS = [(ĈHCS)T ĈHCS +HT
CSHCS]−1(ĈHCS)T r̂dp (3.19)
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and the computation of filter hPeCCS as

hPeCCS = HCSαPeCCS (3.20)

The authors show through simulations that their model preserves speech quality in

addition to equalizing the channel. This approach is dependant on the number of

taps in the ‘don’t care’ region. (The region that is unaffected by shaping is defined

as the ‘don’t care’ region. In the case of a room response, the early reflections that

are perceptually useful [14, 66], are not shaped and hence constitute the ‘don’t

care’ region.)

3.4 Robust implementation

Robustness of the shaping filters is an important design criterion because the

room responses vary with changes in microphone positions or atmospheric condi-

tions such as temperature and humidity. An approach to achieve robustness to

changes in microphone positions is presented in Jungmann et al. [76]. The de-

sign was performed over multiple realizations of the channel matrix. This robust

approach may add considerable computational overhead which can be reduced by

incorporating a statistical sound field model of the perturbations into deriving the

CCFs.

A very similar approach [39] generates perturbed channels corresponding to

changes in microphone positions and designs shaping filters that are effective for

all these channels. The perturbed room impulse response is expressed as a sum of

the original RIR and the perturbation caused by changes in microphone positions.

The perturbations are modeled as random signals with specific time and frequency

properties.

A frequency regularization approach to reduce sharp spectral peaks in the GIRs

was proposed in [28, 80]. This was done by introducing an additional frequency

domain penalty term to the objective function used in (3.4). The tall peaks are

shown to be penalized in the frequency response using this approach.

Alternatively, RMCLS can be modified slightly to add temporal constraints to

avoid spectral coloration [72]. A hybrid approach based on RMCLS and delay-and-

sum beamforming was devised in [73], to make the solution behave more robustly
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but also with reduced reverberation suppression performance.

A different approach to achieve spatial robustness by utilizing the time domain

structure of the room response is presented in [57, 81–83]. The authors discuss a

LS equalization scheme by probabilistically modelling RTF variability. The ap-

proach for a single channel is presented in [81]. An observation used in this work

is that the direct path is independent of receiver position and it is the reverbera-

tion that is affected by change in position. Accordingly, the authors assume the

filters to be composed of two parts: a fixed part corresponding to the direct path

and early reflections and a variable part (distributed as a Gaussian IID) corre-

sponding to the reverberation. The algorithm adaptively designs filters based on

a feed-forward control scheme using the mean square error (MSE) criterion. The

technique achieves good pre-echo cancellation, improved peak-to-tail ratio and

good time performance at low frequencies.

The single channel compensation problem in [81] is extended to a MIMO case

in [82]. The feed-forward control scheme used by the authors is similar to that in

[81] except that some scalars in [81] become vectors. The authors provide results of

testing the approach for a varying number of support loudspeakers. The structure

of the sound field reproduction set up in [82] has been simplified by considering

symmetry in [57]. Similarity points are chosen to simplify the structure and the

performance is evaluated by varying the number of similarity points and control

points. The performance was shown to increase with more similarity points; but at

a cost of lower MSE. The structure in [57] is analysed in terms of the reproducibility

of the sound field in [83]. The authors investigated on the choice of the penalty

matrix and found that a diagonal weighting matrix is sufficient for the structure in

[57] to reproduce the sound field. The authors have also found that Finite Impulse

Response filters can be used; but frequency controlled weights may be needed to

reduce the peaks and troughs. They also develop a scheme for online adaptation of

the reverberant part of the system. The importance of this approach is a powerful

framework which can be used to perform partially minimum phase designs.

3.5 Efficient sub-band implementation

Computational speed of shortening may be improved if the estimation and short-

ening are performed in sub-bands. Such an approach is discussed in [84] in which

the authors use a typical multi-channel transmission model and design the inverse
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filters in the sub-bands for equalization. The transform used in their transmission

model is a generalized DFT (GDFT), which is defined as

um,n = pne
j 2π
K

(m+m0)(n+n0) (3.21)

with m0 = 1/2 and n0 = 0, where pn is a prototype filter. The inverse filtering

operation is then carried out in the sub-band, which results in a significant reduc-

tion of computational complexity. They use the LS approach to design each of

the sub-band filters, but since the operation is carried out in the sub-band level,

it results in the computation of a lower order pseudo inverse due to the presence

of a smaller channel matrix.

3.6 Optimization algorithms

In the previous sections, some of the optimization formulations used for the shap-

ing problem have been discussed. This section describes the common solution

algorithms used for solving such formulations.

3.6.1 Steepest Descent Algorithm

Steepest Descent or gradient descent, introduced by Cauchy [85] is a first order

iterative optimization algorithm. It can be used to to find a local minimum of a

function by taking steps proportional to the negative of the gradient (or of the

approximate gradient) of the function at the current point. Choice of the step size

parameter is a crucial factor in deciding convergence. Generally, steepest descent

algorithm shows a linear convergence rate.

The gradient descent can be combined with a line search to find a locally op-

timal step size in every iteration. The line search approach finds the direction in

which the objective function will be reduced and then computes the step size that

decides the amount by which the iteration should move along that direction. The

simplest way of performing a line search is by using bisection method that first

identifies a range in which the minimum lies and then makes the range smaller and

closer to the minimum. This method is very simple since only one extra internal

point needs to be calculated in each subsequent step. The most simple and ef-

fective direct search method is the golden section search [86], which preserves the

interval proportions (golden ratio) regardless of how the search proceeds. A line

search method most commonly used with gradient descent is the backtracking line
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search [87] that starts with a relatively large estimate of the step size and itera-

tively reduce the step size until the objective function is reduced to the expected

value. The line search can be time consuming. Conversely, using a fixed small step

size can yield poor convergence. Therefore, the most ideal situation for a gradi-

ent descent to work well would be the right choice of a suitable step size parameter.

A suitable choice of this parameter is discussed in [88], which even works for

large dimensional problems. Many variations to the steepest descent approach have

been developed to increase the convergence rate [89–91]. Most of them concentrate

on methods to reduce the effect of choice of step size parameter on convergence,

such as adaptively changing the parameter to increase convergence rate. The

steepest descent algorithm is used for solving the shaping formulation in [21, 28,

32, 39].

3.6.2 Interior Point Methods

Interior point methods are efficient algorithms that can be used to find solution

to convex programming problems in polynomial time. The algorithms work by

traversing the interior of the feasible region to reach the best solution. The class

of primal-dual path-following interior point methods, such as Mehrotra’s predictor-

corrector algorithm [92], are the best suited for practical implementations. Impulse

response shaping approaches presented in Betlehem et al. [27], use interior point

method for finding the solution, but are memory exhaustive and computationally

slow for practical implementations.

3.6.3 Conjugate Gradient Descent Algorithm

The conjugate gradient method (CG) [93] is an algorithm for solving a particular

system of linear equations Ax = b with symmetric and positive definite matrices.

The algorithm is a type of iterative algorithm for solving large system of equations,

which arise while solving for partial differential equations or optimization problems.

The algorithm progresses by moving in a direction that minimises a metric that

decides the closeness to the solution x∗ that is the unique minimiser of the function

f(x) =
1

2
xTAx− xTb (3.22)

The algorithm starts by initialising an x0 and in each iteration, updating it based

on a residual rk = b − Axk. The step direction is also made to be orthogonal to
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the previous step directions so that the solution converges quickly. This is an ad-

vantage over the steepest descent approach. The problem with the use of steepest

descent for poorly conditioned problems (as can happen in the case of shaping

formulations) is that the iterations can get trapped in long valleys and thus result

in a slow convergence.

It can be seen that the residual rk used in the CG method is the negative gra-

dient of the function f(x) at xk; hence the algorithm is called conjugate gradient

descent. This algorithm is very fast and has been explored in this thesis work to

increase the computational speed of the impulse response shaping problem. Gener-

ally, the algorithm converges in n steps if the matrix A has n distinct eigenvalues.

In many cases, a pre-conditioner is required to ensure fast convergence of the con-

jugate gradient method. This algorithm is then called pre-conditioned conjugate

gradient (PCG) [94].

3.6.4 Sparse Reconstruction Algorithms

In earlier discussions, we mentioned that impulse response shaping approaches

based on steepest descent and/or interior point methods are computationally slow

and cannot be used for real time implementations. In this section, sparse recon-

struction algorithms are explored, which have been found to be computationally

very efficient in solving sparse reconstruction problems.

Sparse reconstruction algorithms were developed for solving problems of the

form of Basis Pursuit DeNoising (BPDN) [37]. The algorithms can be broadly

classified into greedy and non-greedy algorithms. The greedy algorithms include

matching pursuit algorithms such as Orthogonal Matching Pursuit (OMP) [95–97].

The algorithm works by finding the best matching projections of multidimensional

data onto an overcomplete dictionary. This is done by choosing the column of the

overcomplete dictionary that has the largest inner product with the signal, sub-

tracting the approximation of the signal using that column (as a base) from the

signal and repeating the process until the norm of the residual is small. The

coefficients extracted are updated after each step by computing the orthogonal

projection of the signal onto the bases selected so far. These algorithms are com-

putationally expensive pointing to the need of non-greedy algorithms.

The non-greedy algorithms belong to a class of either thresholding algorithms or
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Augmented Lagrangian Methods. One of the well known thresholding algorithms

is the Iterative Soft Thresholding Algorithm (ISTA) [98] and its faster versions

(FISTA) [34, 99–101]. This algorithm solves the BPDN problem using an iteration

that also involves a thresholding step which results in a fast convergence. FISTA

algorithms have been widely used in numerous applications for solving sparse re-

construction problems in a computationally efficient manner.

Some of the augmented Lagrangian methods are Primal Dual Augmented La-

grangian (PAL) [102], Dual Augmented Lagrangian Method (DALM) [34–36] and

Alternating Direction Method of Multipliers (ADMM) [41]. These methods con-

tain an augmented term in the Lagrangian that accelerates convergence of the al-

gorithm. PAL and ADMM uses an augmentation term in the primal Lagrangian,

while DALM uses it in the dual. Both DALM and ADMM work by alternately

updating primal and dual variables. This results in fast convergence to the so-

lution. A faster version of DALM called Fast DALM [34] uses some additional

steps to further improve the computational efficiency. It uses a combination of

DALM iterative steps and a Conjugate Gradient step to achieve this efficiency.

This algorithm has been widely used in this thesis to develop a computationally

fast shaping algorithm that can be implemented in real time.

3.7 Chapter Summary

The chapter examined some of the optimization formulations that are relevant to

understand the work presented in this thesis. The chapter started with a discussion

of the traditional inverse filtering scheme and its optimization formulation, followed

by a more relaxed approach of impulse response shaping. Various shaping formu-

lations available in the literature were presented along with their optimization

formulation. Various metrics like maximum cross-talk and direct to reverberant

energy ratio can be used for evaluating the performance of such approaches. The

chapter also discussed the common solution algorithms, viz., steepest descent and

interior point methods, used for solving such formulations. Their disadvantage of

low computational efficiency, when applied to the shaping problem, is clear. An

overview of the sparse reconstruction algorithms, used in this work, to improve

the computational efficiency is also presented. The details are explained in the

chapters to follow.

Having reviewed the relevant literature in acoustics and optimization related
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to this work, one can now appreciate the shaping formulation presented in this

thesis work and its relevance. The following chapter describes in detail the opti-

mization formulation of the impulse response shaping approach used in this work,

including all the parameters and performance metrics used for room compensation

and spatial audio problems.
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Chapter 4

Problem Formulation

4.1 Shaping problem

Impulse response shaping is a pre-filtering technique that can be used to reshape

or shorten the impulse responses of channels. This technique is well known in wire-

less communication as being deployed in discrete multi-tone receivers [23–26] to

reduce intersymbol interference. Shaping (or shortening) was first applied to room

acoustics to reduce the reverberance by Kallinger et al. [19]. In acoustics, shaping

has application in listening room compensation for reducing the perceptible effects

of reverberation that distorts the audio signals propagating inside a room. Such a

configuration consists of multiple loudspeakers which are mounted inside the room

and microphones measuring the responses at specific points. Hence, the problem

environment is considered as a multi-channel system, with each channel represent-

ing a signal path between a specific loudspeaker and microphone. Each channel

response is composed of the reverberations caused by wall and floor reflections as

well as reflection from other objects. Thus, the signal received at each microphone

is a mixture of distorted signals from multiple loudspeakers. In order to achieve

listening room compensation, pre-filters are applied before the loudspeakers to

cancel or reduce the effects of reverberation as well as cross-talk. This requires

pre-determination of the channels and computation of the pre-filters. The room

responses are non-stationary and can vary with time. Therefore, the channel might

have changed while the filters are being computed. This can result in poor per-

formance of the system when inverse filtering (equalization) is used. The shaping

approach, on the other hand, is more robust to such variations than equalization

since it aims to reduce the reverberations and not cancel them. The optimization

formulation presented in this chapter aims to achieve joint shaping and cross-talk

41
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Figure 4.1: A loudspeaker microphone setup showing acoustic channels cml and

cross-talk cancelation filters hls.

cancelation as required in multi-channel listening room compensation.

Consider a typical cross-talk canceler system shown in Figure 4.1. The signals

are delivered from S sources to M = S microphones through L loudspeakers. The

shaping pre-filters are designed to perform joint shaping and cross-talk cancela-

tion. Here, cml represents the channel impulse response from loudspeaker l to

microphone m and hls represents the cross-talk canceling pre-filter from source s

to loudspeaker l. For each path, the combined filter and channel response (called

the Global Impulse Response (GIR)) rms is found [27] as the sum of the convolu-

tions of cml with hls over the L loudspeakers. For the purpose of simplifying the

presentation, the example case for which M = S = 2 and L = 3 is used. For the

special case shown in Figure 4.1, a matrix equation for GIRs can be written as

R = CH or

[
r11 r21
r12 r22

]
= C

h11 h12
h21 h22
h31 h32

 (4.1)
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where C is the matrix defined as

C =

[
C11 C12 C13

C21 C22 C23

]
(4.2)

of dimension NrM × NhL where Nr is the length of each GIR rms and Nh is the

length of each shaping filter hls. The Toeplitz convolution matrices Cml in C, each

constructed from the channel impulse responses cml (of length Nc) are given by

Cml =


cml(0) 0 · · · 0

cml(1) cml(0) · · · 0
...

...
. . . cml(0)

0 0 · · · cml(Nc − 1)

 (4.3)

Using the notations r = vec(R), h = vec(H) and C = I2⊗C (where I2 is the 2× 2

identity matrix, ⊗ is the Kronecker product), (4.1) can be rewritten as r = Ch or


r11
r21
r12
r22


M2Nr×1

=

[
C 0

0 C

]


h11
h21
h31
h12
h22
h32


LMNh×1

(4.4)

The joint shaping and cross-talk cancelation formulation aims to minimize some

norm of a weighted error function, given by

min
h
‖W (Ch− r)‖ (4.5)

where W = diag(w) is a diagonal weighting matrix of weighting coefficients [27].

The weighting coefficients are chosen so as to heavily penalize the cross-talk (rms,

m 6= s) as well as late reverberations and pre-echo in the direct channels (rmm),

but only lightly penalize the early reverberations [27].

4.1.1 Definition of the weight vector

The joint shaping and cross-talk cancelation problem is formulated as a weighted

minimization in which a weight vector controls how each region of the response

must be shaped. The weighting vector is defined separately for the direct responses
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and the cross-talk responses. The weight vector wDR for the direct responses

[27, 28] can be defined as

wDR(n) =


1 for 1 ≤ n ≤ N1 + 1

0 for N1 + 2 ≤ n ≤ N1 +N2

10
3

log (N0/(N1+N2))
log
(

n
N1+N2

)
+0.5

for N1 +N2 + 1 ≤ n ≤ Nr

(4.6)

where the region with indices [1, N1] is the pre-echo, the sample with index at

N1 + 1 is the direct path, samples with indices [N1 + 2, N1 + N2] are the early

reflections (don’t care regions) and samples with indices [N1 +N2 + 1, Nr] are the

late reverberations. The weights for the late reverberations are chosen in accor-

dance with the temporal masking limit [3, 77, 78] as in [28]. The human audible

range is generally from 20 Hz to 20 kHz, with the threshold of sound pressure

level decaying exponentially with increase in frequency. Temporal masking occurs

when the perception of a sound is affected by another sound in time. There is

a masking threshold up to which the human ear cannot understand the effect of

masking. This effect is exploited to reduce some of the weaker sounds (late re-

verberation) and achieve the desired shaping without significantly affecting the

perception. The use of a weight vector based on temporal masking limit requires

a parameter N0 = 0.2Fs + 0.004Fs [28] where Fs is the sampling frequency. The

choice of this parameter is based on the fact that the masking curve starts with

-10 dB at 4 ms after the end of ‘don’t care’ region and then decays exponentially in

the logarithmic domain to -60 dB at 200 ms after the end of the ‘don’t care’ regions

[28]. For channels with late reverberations longer than 200 ms, this parameter has

to be changed as N0 = t0Fs + 0.004Fs, where t0 = T60 − N1/Fs − N2/Fs i.e.,the

length of the late reverberation up to the reverberation time.

In the case of the cross-talk paths, the weight vector wCT controls the cross-talk

and is defined as

wCT(n) = 1 for 1 ≤ n ≤ Nr (4.7)

which means that there is no desired part in the cross-talk and all of its samples

must be minimized. The weight vector w is constructed from wDR and wCT. For

example, for the case of L = 3, M = 2, w = [wT
DR wT

CT wT
CT wT

DR].

The weight vectors are plotted in Figure 4.2 for a channel sampling frequency

Fs of 44.1 kHz, channel length Nc = 11000 and GIR length Nr = 32768. It can

be seen that the weights are at one for the pre-echo and cross-talk implying that
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Figure 4.2: Weight vector for Nr = 32768 and Fs = 44.1 kHz.

they are to be minimized as much as possible. The weights are set at zero for the

early reflections, which are effectively a ‘don’t care’ region since early reflections

are perceptually useful. The weights increase rapidly after the early reflections

to minimize the late reverberations. It can be seen that the weights increase

with sample number for the late reverberations, implying that the late echoes are

minimized.

The desired vector Wr is set as zero at all samples except for the direct path

(N1 + 1). This makes the solution strive towards ensuring that the direct path

is always at 1, while the other regions of the response are shaped. The direct

path has been given a weight 1 which ensures that the GIR has a value of 1 at the

direct path when the weighted error is minimum. Thus, the shaped direct response

appears as shown in Figure 4.3, with a low pre-echo region, a peak corresponding

to the direct path, a ‘don’t care’ region and a rapidly decreasing late reverberation

region. The early reflection or ‘don’t care’ region and some of the early parts of

later reverberation are shown close up in Figure 4.4. In the case of the cross-talk

response, the maximum cross-talk level is maintained at the level of pre-echo.
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Figure 4.3: Shaped direct responses r11 and r22.

4.2 Regularized shaping formulation

The joint shaping and cross-talk cancelation problem can be formulated as a reg-

ularized minimization problem of the form

min
h
‖WCh−Wr‖u + λ‖h‖v (4.8)

where u is the norm of the fidelity factor and v is the norm of the regularizer. The

fidelity factor represents the constraint and the regularizer ensures that the filter

coefficients are not very large. Thus, the regularizer plays an important role in

ensuring the robustness and stability of the designed filters. λ is the regularization

parameter that decides the relative importance of these two terms. In this thesis,

u ∈ {2,∞} and v ∈ {1, 2} are used. The use of an `2 norm based regularizer

ensures that the energy of the shaping filters are minimized and can be used in

applications where low energy filters are desired. When u = v = 2, the minimiza-

tion problem is in the form of an `2 regularized `2 minimization or the standard

Tikhnov regularized [74] LS solution.

The use of an `1 norm based regularizer in the minimization problem encour-

ages sparsity in the computed filters. Strictly speaking, sparsity is maximized by
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Figure 4.4: Early reflection region of the direct responses.

minimizing the `0 norm, although with high probability, the `1 norm minimization

gives a similarly sparse solution [37] and obtaining a truly sparseness maximizing

solution is not central to this problem. When u = 2 and v = 1, the minimization

problem is in the form of an `1 regularized `2 minimization as in sparse channel

estimation [103]. The sparse approach was adopted for this problem for two main

reasons. Firstly, including a regularized `1 norm of h into the optimization problem

improves (like the `2 norm) the robustness of the solution and reduces the energy.

Secondly, this allows the use of the high computational efficiency and speed of

iterative sparse reconstruction algorithms such as fast DALM [34–36] to estimate

a feasible solution for h. This is particularly important because for the typical

room response sizes of 1000s to 10 000s of taps, the optimization problem defined

in (4.5) becomes computationally challenging and may potentially consume large

amounts of computer time to numerically obtain the shaping filters using conven-

tional techniques such as gradient projection and interior point methods.

We initially focus on the u = 2, v = 1 case:

min
h

1

2
‖WCh−Wr‖22 + λ‖h‖1 (4.9)
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This formulation tries to find a sparse estimate for h that solves the minimization

problem posed in (4.5) if the length of h (containing all the filters hls concatenated)

is chosen to be greater than that of r (containing all the GIRs rms) so that the

matrix C is analogous to an overcomplete dictionary [103]. The sparse estimation

problem finds a sparse solution to a linear system of equations with infinite solu-

tions i.e., a sparse estimate for h that satisfies the equation Ch = r [103]. Such

a formulation is well known in sparse reconstruction as the BPDN problem. This

optimization formulation can be solved easily and in a computationally efficient

manner by using iterative sparse reconstruction algorithms.

The other formulations considered in this thesis are `1 regularized `∞ minimiza-

tion and `2 regularized `∞ minimization. These formulations have been developed

specifically for the shaping problem since the minimization of the `∞ norm of

the fidelity factor ensures that the maximum value of the shaping error is mini-

mized, which in turn will result in each element of the GIR vector being likewise

constrained. This is of significance because the `2 minimization may allow some

elements to become large and result in late echoes. Either of the `1 norm or `2
norm regularizers are beneficial in shaping and can be used depending on the prob-

lem requirements. The `1 norm regularizer can be used if sparse shaping filters are

preferred and `2 norm regularizer if low energy filters are desired.

All these formulations are convex, which can be proved as given below. We

prove the convexity for `1 regularized `∞ minimization; others can be proved in a

similar fashion.

Let f(h) = ‖WCh−Wr‖∞+λ‖h‖1. For ease of notation, let A = WC, x = h

and b = Wr. Now, Ax− b = A(x−A†b) where A† is the generalized inverse of A.

Here, AA† = I only if A is wide i.e., length of h > length of r. A similar proof can

be constructed in the case of a tall A matrix.

Now, A†b is another constant vector b1. Let us define a new variable y = x−b1.
Therefore, Ax− b = Ay.

By definition of convexity, a function f(y) is convex if ∀y1, y2 ∈ R ,∀t ∈ [0, 1],

f(ty1 + (1− t)y2) ≤ tf(y1) + (1− t)f(y2) (4.10)

For the given f(y), f(ty1 + (1− t)y2) = ‖tAy1 +A(1− t)y2‖∞+λ‖ty1 + (1− t)y2‖1.
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Using the property of a norm that ‖tp‖ = t‖p‖ for scalar t and the triangle

inequality (‖p+ q‖ ≤ ‖p‖+ ‖q‖),

‖tAy1 + (1− t)Ay2‖∞ + λ‖ty1 + (1− t)y2‖1
≤ t‖Ay1‖∞ + (1− t)‖Ay2‖∞ + λt(‖y1‖1) + (1− t)‖y2‖1)
= tf(y1) + (1− t)f(y2)

(4.11)

The Dual Augmented Lagrangian Method(DALM) [34–36], used in this thesis,

is outlined in the following section and detailed in the next chapter.

4.3 Dual Augmented Lagrangian Method

The DALM [34–36] approach has been proposed to solve BPDN problems of the

form of an `1 regularized `2 minimization. A contribution of this thesis is to

extend it to other norms as well. For `1 regularized `2 minimization, the algorithm

computes the dual of the objective function of (4.9) using the Fenchel duality

theorem [104]. The detailed derivation is given in Section. 5.2 and Appendix A.

The dual problem of (4.9) is given by

max
y

(Wr)Ty subject to (WC)Ty ∈ B∞1 (4.12)

where B∞1 is the ball [34, 35] defined by

B∞1 , {x ∈ Rn

∣∣∣∣ ‖x‖∞ ≤ 1} (4.13)

and y is the dual variable. The augmented dual Lagrangian and the corresponding

iterative equations are presented here. The detailed derivation of this dual from

the primal and the iterative steps of the algorithm are explained in chapter 5. The

augmented Lagrangian [34] for the dual is given by

L(h, y, z)
zεB∞1 ,y

= − yT (Wr) + λ
yTy

2
+
β‖z − (WC)Ty‖22

2
− hT (z − (WC)Ty) (4.14)

where z is the dual variable corresponding to projection onto the B∞1 ball, β

is a regularization parameter and the third term containing an `2 norm is the

augmentation term. The augmentation term is added to enhance the convergence.

Addition of this term does not affect the final solution since the term reduces
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to 0 at the solution point. The update equations for h, y and z are found from

the derivative of the dual Lagrangian with respect to each of the corresponding

variables. The algorithm can finally be written as an iteration of three steps given

by

zk+1 = PB∞1 ((WC)Tyk + hk
β

)

yk+1 = ((WC)(WC)T + (λ/β)I)−1((WC)zk+1 − (WC)hk−(Wr)
β

)

hk+1 = hk − β(zk+1 − (WC)Tyk+1)

(4.15)

where PB∞1 is the projection onto the B∞1 ball to ensure that ‖z‖∞ ≤ 1, performed

by applying zi = sign(zi) min(1, |zi|) to each element of the vector z.

Fast Dual Augmented Lagrangian Method

Fast Dual Augmented Lagrangian Method (Fast DALM) [34] is a computationally

efficient and faster version of DALM, which involves a few additional optimization

steps in order to increase the computational speed. The matrix λI+β(WC)(WC)T

in the y-update of (4.15) can become large and hence the update equation of y can

be computationally expensive. The matrix inversion in (4.15) can be replaced by

one iteration of the conjugate gradient (CG) algorithm [105] which is advantageous

compared to other `2 norm based algorithms like ISTA, DALM, MINT and RMCLS

[22] that use matrix inversions. The fast DALM algorithm can be summarized [34]

as

Step 1: zk+1 = PB∞1 ((WC)Tyk + hk
β

)

Step 2: gk = λyk − b+ β(WC)(WC)Tyk − β(WC)zk+1 + (WC)hk

αk = gTk gk/
(
λgTk gk + βgTk (WC)(WC)Tgk

)
yk+1 = yk − αkgk

Step 3: hk+1 = hk − β(zk+1 − (WC)Tyk+1)

(4.16)

4.4 Performance Metrics

This section explains the performance metrics to evaluate the performance of var-

ious shaping formulations developed in this thesis. The metrics are
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• Cross-talk to Direct Response Ratio (CDR)

CDR is the ratio of the maximum value of the cross-talk to the maximum

value of the direct response expressed in dB. It is the inverse of DSCR (Di-

rect Signal to Cross-talk Ratio) used in [28]. CDR quantifies the cross-talk

cancelation performance of the formulation. It is given by

CDR = 20 log10

(
max (rms)

max (rmm)

)
such that m 6= s,m = 1 . . .M (4.17)

• CPU time

This metric is used to study the computational speed of the algorithm used

to solve for the shaping filters. It quantifies the time taken in seconds by the

algorithm to converge to a solution. It is also used to compare the execution

speed of various formulations developed in this work.

• Number of iterations

This metric is also used to study the computational speed of the algorithm.

The CPU time and number of iterations together give the average time taken

for each iteration step of the algorithm.

• Objective function value

This metric quantifies the final objective function value of (4.8) in dB achieved

by the algorithm. It can be used to analyze the convergence of the algorithm.

• Perceived Reverberation Quality measure (nPRQ) [28]

This metric is widely used in the literature to analyze the reverberation

performance of the shaped responses. It is expressed as the normalized sum of

all sample values of the late reverberation that exceed -60 dB. It is calculated

as

nPRQ(dB) =

∑MNr

n=1 gE(n)

‖gE‖0
(4.18)

where

gE(n) =

{
20 log10(rmm(n))− (−60 dB) for 20 log10(rmm(n)) > (−60 dB)

0 otherwise

(4.19)

• Spectral Flatness Measure (SFM) [106, 107]

This metric is used to analyze the flatness of the frequency spectrum of a

response. SFM values for any response lie in the range [0, 1] with SFM=1
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indicating perfect flatness. It is calculated mathematically as the ratio of

geometric mean of the power spectrum to its arithmetic mean. For a signal

x(n), the SFM is given by

SFM =

N

√∏N−1
n=0 x(n)∑N−1

n=0 x(n)/N
(4.20)

This metric is used in Chapter 6 to analyze the frequency shaping perfor-

mance of the algorithm developed.

• Direct to Reverberation Ratio (DRR) [62]

This metric is used in literature on reverberation control to study the rela-

tive energy content in the direct path and reverberation components. It is

calculated as the ratio of energy in direct path to energy in reverberation.

For a GIR rmm with direct path at N1 + 1 sample and late reverberation

from sample N1 +N2 + 1 to Nr, DRR is calculated as

DRR (dB) = 20 log
r2mm(N1 + 1)∑Nr

n=N1+N2+1 r
2
mm(n)

(4.21)

This metric is used in Chapter 8 to analyze the extend of pre-echo and post-

reverberation control achieved with the pressure matching formulation.

4.5 Chapter Summary

The present chapter has introduced the optimization formulation of the shaping

problem, including the design of the weight vector for different regions of the room

response. The chapter also discussed the regularized shaping formulation, which

helps to control the characteristics of the shaping filters. The various regularized

formulations considered in this thesis are outlined along with their advantages.

Two regularizers are considered in this thesis, viz.; `1 norm and `2 norm. The `1
norm regularizer can be used if sparse shaping filters are desired. Inclusion of `1
norm regularizer results in a new regularized impulse response shaping formulation

that encourages sparsity. The sparse reconstruction algorithm fast DALM is used

for solving for the shaping filters. The `2 norm regularizer can be used if low

energy shaping filters are desired. The fast DALM algorithm has been extended

to deal with the `2 regularized problems. The chapter also introduces the various

performance metrics used to analyze the work presented in this thesis. The next
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chapter discusses the DALM and the fast DALM algorithms in detail including

some formulations of fast DALM for the shaping problem.
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Chapter 5

Fast Algorithms for Shaping

5.1 Background

Impulse response shaping designs pre-filters to partly equalize the regions of im-

pulse response, as seen from the previous chapters. A basic drawback of previous

acoustic reshaping approaches is the large amount of computation time required to

obtain the shaping filters. This is mainly due to the necessity of dealing with long

room impulse responses. It takes a large amount of computation time to converge

to a solution with conventionally used techniques such as gradient descent. In

the case of the most commonly used steepest descent approach, the convergence

rates are only linear [20, 21, 23, 32]. In addition, the steepest descent approaches

in [20, 21, 32] requires choosing a suitably varying step size parameter or the use of

a line search algorithm [41, p. 464-466]. Even then an unacceptable number of it-

erations may be required for convergence, especially for very large problems which

are usually poorly conditioned. Use of interior point methods as in [27] guarantees

rapid quadratic convergence rates in a small number of iterations. However, a Hes-

sian matrix must be formed, the dimensions of which are large, being proportional

to the number of taps in the RIRs. Thus, the memory requirements are prohibitive

with the use of interior point methods for this problem. This highlights the im-

portance of using algorithms which are not only fast converging but also memory

efficient to solve for the shaping filters. Moreover, since the shaping formulation is

convex, there is no chance of the iteration getting stuck on a local minima. Hence,

non-greedy algorithms with faster convergence can be used for solving for shaping

filters.

In this work, the shaping problem is formulated as a regularized minimization

55
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and solved using the fast Dual Augmented Lagrangian Method (Fast DALM) [34].

The DALM [35, 36] algorithm is a non-greedy algorithm, which has been originally

proposed to provide a sparse solution for the `1 regularized `2 minimizations (D-

2-1) as in the BPDN [37] problems that arise in sparse reconstruction. (For the

sake of simplicity in notation, we define the algorithms as D−n− r where n is the

norm of the fidelity factor and r is the norm of the regularizer.) This algorithm is

known for its super-linear convergence [35] that enables the shaping filters to be

found in a computationally fast fashion. Fast DALM is a fast version of DALM

that further reduces the computational time. In addition, the iterative steps of

the fast DALM algorithm can be easily modified using a Forward Adjoint Oracle

(FAO) [108] approach to avoid the use of huge matrices and as a result can be

memory efficient.

This chapter formulates the shaping problem in the form of D-2-1, `2-regularized

`2-norm minimization (D-2-2), `1-regularized `∞-norm minimization (D-∞-1) and

`2-regularized `∞-norm minimization (D-∞-2) and derives the corresponding steps

of the DALM algorithm to numerically find the solution. The D-2-2 formulation

is the standard Tikhnov regularized minimization, whose solution can be easily

computed analytically. The DALM based method provides a faster solution pro-

cess that avoids the matrix inverse that appears in the analytical solution. The

D-∞-1 and D-∞-2 problems are considered specifically for the shaping problem.

The minimisation of the `∞ norm of the fidelity factor ensures that the maximum

value of the shaping error is minimized, which in turn will result in each element

of the GIR vector being likewise constrained. This is of significance because D-2-2

can allow some elements to become large and result in late echoes. In the case of

D-2-1 and D-∞-1, the regularizer is the `1 norm which results in sparse shaping

filters. When an `2 norm regularizer is used as in D-2-2 and D-∞-2, the energy

of the shaping filters is minimized. Either of these regularizers are beneficial in

shaping and can be used depending on the problem requirements.

The contents of this chapter are based on the papers [109–111].

5.2 Dual Augmented Lagrangian Method

The Dual Augmented Lagrangian Method (DALM) [34–36] approach was origi-

nally designed to solve BPDN problems [37] of the form Ax + n = b where n is
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Additive White Gaussian Noise (AWGN), such as the problem,

min
x

1

2
‖Ax− b‖22 + λ‖x‖1 (5.1)

The derivation of the DALM approach for D-2-1 problems is detailed here. The

DALM approach can also be extended to the use of other norms of the fidelity and

regularization metrics as explained in subsequent sections.

The DALM optimization method as presented in [35] aims at solving minimiza-

tion problems of the form

min
x

f(x) + λ‖x‖1 (5.2)

that include an `1 norm term in the objective function. This can be written

equivalently as

min
x

1

λ
f(x) + ‖x‖1 (5.3)

Using (1/λ)f(x) = fl(x), the problem can be restated as

min
x

fl(x) + ‖x‖1 (5.4)

The first step in finding the dual problem is to find the Fenchel conjugates of the

fidelity term and the regularizer. The conjugates are then combined according

to the Fenchel duality theorem to find the dual. This procedure is detailed in

Appendix. A. The dual of (5.4) is given by (A.6).

5.2.1 Special Cases

`2 norm

Let fl(x) = ‖Ax − b‖22/2λ. Using the Fenchel conjugate of ‖x − b‖22/2 given by

(A.15) into the general form of dual problem given by (A.9) in Appendix. A, the

dual problem can be written as

min
y,z

− yT b+
λyTy

2
+ I∞1 (z)

subject to z = ATy

(5.5)

where I∞1 (z) is the indicator function of the `∞ norm. The norm indicator function

is defined in (A.18).
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`∞ norm

If f(x) = ‖Ax− b‖∞, the primal objective is of the form

min
x
‖Ax− b‖∞ + λ‖x‖1 (5.6)

Substituting (A.17) into (A.10), the dual is

max
y,z

− (−yT b)− I∞λ (z)− I11 (y)

subject to z = ATy
(5.7)

where I11 (y) is the indicator function of the `1 norm.

5.2.2 Algorithm for D-2-1 objective function

The Dual Augmented Lagrangian uses an augmented `2 term in the dual in order

to obtain super linear convergence [35]. The dual augmented Lagrangian for a

dual problem of the form (5.5) as proposed in [34] is of the form

L(x, y, z)
zεB∞1 ,y

=− yT b+ λ
yTy

2
+
β‖z − ATy‖22

2
− xT (z − ATy) (5.8)

where the third term contains an `2 norm augmentation term and the fourth term

is the Lagrange multiplier term corresponding to the constraint z = ATy. It can

be seen that the augmentation term is convex. The addition of the augmentation

term and minimization of the new objective does not change the solution (since

the augmentation term is zero when z = ATy), but results in its faster convergence

[35]. The value of β is chosen between 0 and 1 [34]. At the solution to (5.1), the

Karush-Kuhn-Tucher(KKT) conditions include the conditions that the derivative

of (5.8) with respect to each of y and z are zero. Equating the derivatives to zero

gives the update equations for these variables.

Differentiating L(x, y, z) in (5.8) with respect to y gives

∂L

∂y
= λy − b+ Ax+ β(−Az + ATAy) (5.9)

and equating this derivative to zero gives the update equation for y in the DALM

algorithm which is of the form

y ← (βAAT + λI)−1(βAz − Ax+ b) (5.10)
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Similarly, differentiating (5.8) with respect to z gives

∂L

∂z
= −βATy − x (5.11)

and since z ∈ B∞1 , the update equation for z is of the form

z ← PB∞1 (ATy +
x

β
) (5.12)

where PB∞1 is the projection onto the B∞1 ball to ensure that ‖z‖∞ ≤ 1, performed

by applying zi = sign(zi) min(1, |zi|) to each element of the vector z. The update

equation for x is computed using gradient descent based on ∂L/∂x = z − ATy of

the form

x← x− β(z − ATy) (5.13)

At the optimal point, the constraint z − ATy is satisfied, resulting in xk+1 =

xk, which validates that convergence has occurred. It has been pointed earlier

that steepest descent result in slow convergence if the step size is not chosen

properly. In the x-update, the step size parameter is chosen as β, which is the

augmentation parameter introduced into the dual augmented objective to improve

the convergence. β is chosen, in general, based on the available data as β = ‖b‖1/N
[34] for a sample data vector b of length N to speed up the convergence. For the

shaping problem proposed in this thesis, β is chosen as β = ‖b‖1/(LMNr) where

L, M and Nr are defined as in Section. 4.1. The three update equations are run

successively until convergence. It was observed from our experiments that the

ordering of the update steps does not influence the performance of the algorithm.

5.2.3 Fast Dual Augmented Lagrangian Method

The matrix λI + βAAT can be large and (5.10) can be computationally expensive

to calculate. The inversion in (5.10) can be replaced by the conjugate gradient

(CG) algorithm [105]. It is usually appropriate to perform only one iteration of

CG before performing x and z updates. This step can be summarized as follows:

The linear equation in y to be solved using CG is given by(
βAAT + λI

)
y = βAz − Ax+ b (5.14)

The residual rk can be found as

rk = βAz − Ax+ b−
(
βAAT + λI

)
y = −gk (5.15)
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where gk is the partial derivative ∂L
∂y

. Now, according to CG, pk = rk = −gk and

αk =
gTk gk

gTk (βAAT + λI) gk
(5.16)

The update equation for y can then be written as

yk + 1 = yk + αkpk = yk − αkgk (5.17)

This change in y-update results in an algorithm called Fast DALM introduced in

[34]. For a dual augmented Lagrangian of the form of (5.8), the final algorithm

can be summarised as

Step 1: zk+1 = PB∞1 (ATyk + xk
β

)

Step 2: gk = λyk − b+ βA
(
ATyk − zk+1 + xk

β

)
αk = gTk gk/

(
λgTk gk + βgTkAA

Tgk
)

yk+1 = yk − αkgk

Step 3: xk+1 = xk − β(zk+1 − ATyk+1)

(5.18)

Step 2 is equivalent to one iteration of the CG algorithm.

5.3 Fast algorithm for D-∞-1 primal objective

The update equations for x, y and z for the proposed fast DALM implementation

of an `1 regularised `∞ primal objective are derived in this section.

The dual augmented Lagrangian for a dual problem of the form (5.7) can be

written as

L(x, y, z)
zεB∞1 ,y

=− yT b+
β‖z − ATy‖22

2
− xT (z − ATy) + I11 (y) (5.19)

The update equations for x, y and z are found from the derivative of the dual

Lagrangian with respect to each of the corresponding variables. The update equa-

tions for x and z are the same as for the `2 objective − (5.13) and (5.12).
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Update equation for y

The update for y is found by taking the partial derivative with respect to y of

L(x, y, z) in (5.19).

g =
∂L

∂y
= −b+ Ax+ β(−Az + ATAy) (5.20)

The update of y is performed as a two step iteration. The first step is a CG iteration

as in Section 5.2.3 which makes use of a step size αk = gTk gk/
(
βgTkAA

Tgk
)

and

residual −gk. The second step is a projection onto an `1 norm ball [112] using a

soft thresholding function[113]. The soft thresholding function can be written for

n = 1 . . . N as

yk+1(n) = soft (yk(n), λ1) =


0 if |yk(n)| < λ1
yk(n)− λ1 if yk(n) > λ1
yk(n) + λ1 if yk(n) < −λ1

(5.21)

where yk(n) is the nth element of yk. λ1 is defined as

λ1 =
|‖yk‖1 − 1|

N
(5.22)

which measures the deviation of the `1 norm from 1 in each iteration.

Thus, the two step update of y can be written as

yk+1 = soft
(
yk − αkgk, λ1

)
(5.23)

which uses a combination of two steps: a conjugate gradient descent for the update

of y in the form yk+1 = yk−αkgk followed by the application of a soft thresholding

function for ensuring that ‖yk+1‖1 ≤ 1.

So for the `∞ objective, Step 2 of the algorithm is replaced by

Step 2: gk = −b+ βAATyk − βAzk+1 + Axk

αk = gTk gk/
(
βgTkAA

Tgk
)

λ1 =
(
|‖yk‖1 − 1|

)
/N

yk+1 = soft(yk − αkgk, λ1/2)

(5.24)
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5.4 Fast algorithms for `2 regularised objective

functions

The proposed fast DALM algorithms for D-2-2 and D-∞-2 objective functions

are derived in this section. The procedure is similar to that of the `1 regularized

objective functions. The first step is to find the Fenchel conjugates of regularizer

and fidelity terms.

5.4.1 D-2-2 algorithm

The objective function to be solved for the `2 regularized `2 norm minimization is

given by

min
x

1

2
‖Ax− b‖22 +

λ

2
‖x‖22 (5.25)

For g(x) = 1
2
‖x‖22, the Fenchel conjugate is

g∗l (y) = sup
x

yTx− 1

2
‖x‖22 (5.26)

The supremum value occurs at x satisfying

∂(yTx− 1
2
xTx)

∂x
= 0 (5.27)

This yields y = x, which on substitution into (5.26) gives

g∗l (y) =
yTy

2
(5.28)

Since the primal problem involves a linear transformation of the argument of f(x),

the conjugate can be rewritten using (A.3) given by

min
x

f(x)− g(Ax) = max
y

g∗(y)− f ∗(ATy)

as

g∗l =
zT z

2

subject to z = ATy

(5.29)

Then using the conjugate of fl(x) = ‖x− b‖22/2λ from

f ∗l (y) = yT (λy + b)− λ2yTy

2λ
= yT b+

λyTy

2
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detailed in (A.15), the dual of (5.25) can be written as

min
y,z

− yT b+
λyTy

2
+
zT z

2

subject to z = ATy

(5.30)

The dual augmented Lagrangian can then be written as

L(x, y, z) =− yT b+ λ
yTy

2
+
zT z

2
+
β‖z − ATy‖22

2

− xT (z − ATy)

(5.31)

Differentiating this with respect to z and equating to 0 gives

∂L

∂z
= −βATy − x+ z(1 + β) = 0 (5.32)

which gives the update equation for z :

z ← (βATy + x)

(1 + β)
(5.33)

which replaces Step 1 of the Fast DALM algorithm for D-2-1 objective function.

5.4.2 D-∞-2 algorithm

When the primal problem is in the form of a D-∞-2 problem,

min
x
‖Ax− b‖∞ +

λ

2
‖x‖22 (5.34)

using the Fenchel conjugate of g(x) = (λ/2)‖x‖22 given by

g∗l (y) = sup
x

yTx− λ

2
‖x‖22

=
yTy

2λ

(5.35)

along with (A.3), we have

g∗l =
zT z

2λ

subject to z = ATy

(5.36)
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So using (A.17), the dual can be written as

min
y,z

− yT b+
zT z

2λ
+ I11 (y)

subject to z = ATy

(5.37)

The dual augmented Lagrangian then becomes

L(x, y, z) =− yT b+
zT z

2λ
+
β‖z − ATy‖22

2

− xT (z − ATy) + I11 (y)

(5.38)

Differentiating this with respect to x, y, z gives the z-update step as (5.33) and

y-update as (5.24).

5.5 Forward Adjoint Oracle Approach

As seen in sections 5.2.3 and 5.4, the DALM algorithm solves the optimization

problem through iteration of several steps. The largest memory and computa-

tional requirement involved is the creation and storage of matrix A and the matrix

multiplication ATA. This can be avoided by using a Fourier implementation to

further improve the computational performance. The Fourier implementation is

possible because A is a Toeplitz matrix representing convolution in the shaping

formulation. In optimisation parlance, this technique can be considered a Forward

Adjoint Oracle (FAO) approach [108].

5.5.1 Implementation of Ch using Fast Fourier Transforms

The channel matrix Cml from (4.3) is a Toeplitz convolution matrix and can be

represented as

Cml = F−1DmlF (5.39)

where F is the Nr point DFT matrix and the diagonal matrix Dml contains the

Fourier transform of čml. (čml is cml after it has been zero padded to length

Nr). Therefore, the convolution equation Cmlhls can be written as F−1DFȟls
where ȟls is hls zero padded to Nr. This is equivalent to performing the operation

F−1
{
F {čml} � F

{
ȟls
}}

where � represents Hadamard product. Therefore, the
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operation (4.4) can be written for the special case L = 3, M = 2 as


r11
r21
r12
r22

 =



∑3
l=1 F

−1D1lFhl1∑3
l=1 F

−1D2lFhl1∑3
l=1 F

−1D1lFhl2∑3
l=1 F

−1D2lFhl2


(5.40)

In general, this can be written as

rms = F−1
{∑

l

(
F {čml} � F

{
ȟls
})}

(5.41)

which consists of only forward and inverse fast Fourier transform operations, vec-

tor multiplications and summation along L loudspeakers. Thus, the complexity

O (N2
r ) of one matrix multiplication has been reduced to O (Nrlog (Nr)) using this

implementation.

5.5.2 Implementation of CTy using Fast Fourier Transforms

Using the same principle as in the previous section, CT
mlyms can be represented as

CT
mlyms = (F−1DmlF )

T
yms = FTDml

(
FT
)−1

yms. This is equivalent to performing

F {F {čml} � F−1 {yms}}. Therefore, CTy can be written (again for the case L =

3, M = 2) as



h111

h121

h131

h112

h122

h132


=



∑2
m=1 FDm1F

−1ym1∑2
m=1 FDm2F

−1ym1∑2
m=1 FDm3F

−1ym1∑2
m=1 FDm1F

−1ym2∑2
m=1 FDm2F

−1ym2∑2
m=1 FDm3F

−1ym2



(5.42)
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In general, this can be written as

ȟls = F

{∑
m

(
F {čml} � F−1 {yms}

)}
(5.43)

which results in a vector ȟls of length Nr. The desired result is obtained by

truncating ȟls to length Nh. This truncation does not cause any error in ȟls
provided cml has been zero padded to length Nr and the terms removed are the

results of terms of y multiplied by the added zeroes. This is equivalent to deleting

Nh rows from the matrix F . Here again, the complexity O (N2
r ) has been reduced

to O (Nrlog (Nr)) using this implementation.

5.6 Design over multiple microphone positions

The DALM algorithms derived in the previous sections were modified to find shap-

ing filters robust to change in microphone positions. Radlovic et al. [38] shows

that the channels are perturbed by changes in microphone position. They describe

a theoretical framework to analyze robustness of sound equalization to the change

of microphone and source positions in a room and derive a model for the mean

square error in estimation due to such a change in position. The mean square error

at a frequency f is given by (2.14)

ε(f) = E{|C̃(f)H(f)− 1|2}

where C̃(f) is the frequency response between the source and the receiver at a

distance from the equalization point and H(f) is the frequency response of the

inverse filter. Let d be the displacement from the equalization point and k the

wave number. If displacement from the equalization point is small compared to

the source to microphone distance, the error in the case of only diffuse field is of

the form in (2.17) given by

ε(f) ∼= 2− 2
sin(kd)

kd

Based on this idea, a robust design method is proposed in [39] which designs the

filters over multiple perturbed positions so that the shaping filters are effective at

all these positions. This is obtained by generating perturbations that follow the

characteristics described in [38]. First, white noise is generated and its frequency

response is multiplied with ε(f) in (2.14). This is converted back into the time
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domain and multiplied with a time domain shaping function that follows the char-

acteristics of the room response. This gives the perturbation which is added to the

room response to get the perturbed response. This process is repeated for all the

channels and all the perturbed positions and the shaping filters are designed to be

robust to all of the perturbed channels. In this thesis, the DALM algorithms have

been modified in order to find such a set of robust shaping filters. In the case of

D-2-1 and D-2-2, this can be achieved by modifying the objective function as

min
h

1

2

Np+1∑
n=1

‖WCnh−Wr‖22 +
1

p
λ‖h‖p (5.44)

where Np is the number of perturbations, Cn is a perturbed channel, p = 1 for

D-2-1 and p = 2 for D-2-2. The summation is performed over the original channel

C and N perturbed channels, i.e., a total of Np + 1 channels. The algorithms

are modified accordingly. In the case of D-∞-1 and D-∞-2, the robust solution is

found by solving

min
h
‖WC̆h−Wr‖∞ +

1

p
λ‖h‖p (5.45)

where

C̆ =
[
(C1)T . . . (Cn)T . . . (CNp+1)T

]T
(5.46)

where Np is the number of perturbations, Cn is a perturbed channel, p = 1 for

D-∞-1 and p = 2 for D-∞-2. The fidelity factor is chosen to be ‖WC̆h −Wr‖∞
in (5.45).

5.7 Simulation Results

Experimental simulation studies were performed using measured channels from

a room of dimension 3.5 × 2.5 × 4.5 m with L = 3, M = 2, Nc = 10000 and

Nr = 32768 and a sampling frequency of 44.1 kHz. The T60 of the room was

245 ms. The separation between two adjacent loudspeakers was 24 cm and that

between the two microphones was 12 cm. The average loudspeaker to microphone

distance was 37 cm. A layout of the setup used in the experiments is shown in

Figure 5.1. An nPRQ measure (Perceived Reverberation Quality) [21, 28, 80] de-

scribed in Section 4.4 is used in this work to analyze the efficacy of the algorithm

for reverberation reduction. The unreshaped channel had an nPRQ measure of

7.63. The pre-echo, early reflection and late reverberation regions were defined as
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Figure 5.1: Layout of the cross-talk canceller setup used in the simulations and

experiments.

10 ms, 40 ms and 200 ms respectively. The weighting vector w was set according

to (4.6) for the direct responses and (4.7) for the cross-talk paths. A useful perfor-

mance metric is the Cross-talk to Direct Response ratio (CDR) which is the ratio

of maximum cross-talk to maximum direct response (inverse of the DSCR used in

[28]) described in Section 4.4.

The first experimental study was conducted to check the efficacy of shaping

and cross-talk cancelation using the DALM formulations used in this work, viz.

D-2-1, D-2-2, D-∞-1 and D-∞-2. Figure 5.2 shows an example of the cross-talk

responses. All the four algorithms provided an average cross-talk cancelation of

about -58 dB. The direct responses shown in Figure 5.3 show that the peak (direct

path) is approximately 20 dB above the smaller values and the response decays

rapidly after the allowed early reflections, thus reducing the late reverberation and

providing good shaping. Thus, a CDR of around -58 dB was achieved using the

DALM approach. The average computation time for finding the shaping filters

was found to be 58 s (3600 iterations). This is faster than the 5000 iterations

of [21], around 60 times faster than [27] and around 3 times faster than [110].
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Figure 5.2: Cross-talk responses r12 and r21.

In order to check the efficacy of the algorithms, the reverberation reduction was

quantified using an nPRQ measure, which showed that the DALM approaches

provide reverberation reduction comparable to [28, 80] along with better crosstalk

cancelation. In particular, D-2-1 and D-2-2 were faster since they were solving

simpler problems than D-∞-1 and D-∞-2. In addition, the `2 weighted errors

‖WCh −Wr‖22 were naturally less for D-2-1 and D-2-2 than D-∞-1 and D-∞-2,

while the `∞ weighted errors ‖WCh−Wr‖∞ were less for D-∞-1 and D-∞-2 than

D-2-1 and D-2-2. These results are summarized in Table 5.1.

The algorithms were tested over a range of regularization parameters and

lengths of ‘don’t care’ region to study the feasible regions of operation. The cross-

talk cancelation performance was quantified by CDR. The variation in CDR for

different values of λ with D-∞-1 and D-∞-2 are shown in Figure 5.4. It can be

seen that CDR improves with reduction in λ. This is in agreement with the obser-

vation that as λ decreases, more significance is given to minimization of the fidelity

factor (which is the weighted error), thus providing better cross-talk reduction.

The variation in CDR for lengths of N2 shown in Figure 5.5 indicates that the
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Figure 5.3: Shaped direct responses r11 and r22.

Table 5.1: Performance of different DALM formulations in shaping. Performance

metrics CDR, CPU time and nPRQ are defined as in Section 4.4.

Algorithm ‖h‖1 ‖h‖2 ‖WCh−Wr‖22 ‖WCh−Wr‖∞ CDR CPU time nPRQ

(dB) (dB) (dB) (s) (dB)

D-2-1 31.8 2.32 -21 -57.2 -57 25 3.98

D-2-2 55.6 2.29 -21.2 -57.4 -57 28 6.26

D-∞-1 41.3 2.44 -20.3 -58.1 -58 85 4.21

D-∞-2 55.1 2.31 -20.42 -57.96 -58 88 4.3

CDR improves with increase in ‘don’t care’ region lengths. As the length of the

‘don’t care’ regions increase, the region of late reverberation to be shaped starts to

shrink thus resulting in a comparatively more simple minimisation problem. This

in turn results in a pronounced improvement in CDR, though the CDR saturates

after the ‘don’t care region’ is 30–40 ms.

The plots of the ‖h‖1 and ‖h‖2 values versus λ are shown in Figure 5.6 and
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Figure 5.4: Cross-talk cancelation performance with variation in regularization

parameter λ.

Figure 5.7 respectively. It can be seen that as λ increases, more significance is given

to minimization of the regularizers and h will be robust to variations. But in such

a scenario, the weighted error (fidelity factor) value will be higher, resulting in less

cross-talk cancelation. Therefore, in order to get a reasonable performance, the λ

value has to be chosen so that the solution provides good cross-talk cancelation as

well as being robust.

The robustness of the DALM algorithms is quantified by showing the Cumula-

tive Density Function (CDF) of the `2 and `∞ errors over an ensemble of different

microphone positions. To plot the CDF, the `2 and `∞ errors at the original and

500 position perturbations (at 1 cm from the original position) were computed.

These values are sorted in ascending order and plotted on the horizontal axis of

the CDF plot. The vertical axis shows the probability of occurrence P (X < n)

of a random variable X lower than the corresponding value n on the horizontal

axis. This is shown in Figure 5.8 and Figure 5.9. In addition, the algorithms were

modified to design shaping filters over 16 microphone positions (original position

and 15 positions at a distance of 1 cm from it) as described in Section 5.6 and again
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Figure 5.5: Cross-talk cancelation performance with variation in the duration of

‘don’t care’ region.

the errors were computed at the original and 500 perturbed positions. The resul-

tant CDF is shown in Figure 5.10 and Figure 5.11. It was found that the design

over multiple positions had a steeper slope than the original DALM approaches

(comparing Figure 5.8 with Figure 5.10 and Figure 5.9 with Figure 5.11). This

indicates that the variation of errors with a perturbation in the channel is greater

for the filter designed without the robust approach. In the non-robust approach,

the performance of the filter is good at the designed position, but degraded at

the perturbed positions. In the robust approach, the performance of the filters is

slightly compromised, but similar at all of the original and perturbed microphone

positions. This again highlights the robustness of the proposed approach, when

compared with non-robust shaping. These results are summarised in Table 5.2.

The nPRQ measures are comparable to [28, 39] while the CDR values are better

than [28], showing comparable shaping and better cross-talk cancelation.
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Figure 5.8: Empirical CDF of the `2 errors at the original and 500 perturbed

positions.

Table 5.2: Performance of robust DALM formulations in shaping. Performance

metrics CDR, CPU time and nPRQ are defined as in Section 4.4.

Algorithm ‖h‖1 ‖h‖2 ‖WCh−Wr‖2 ‖WCh−Wr‖∞ CDR CPU Time nPRQ

(dB) (dB) (dB) (s) (dB)

D-2-1 63.4 2.99 -19.2 -55.5 -56 58 3.93

D-2-2 121 2.72 -19.18 -55.1 -55 58 5.28

D-∞-1 69.9 2.91 -18.81 -55.8 -56 914 4.09

D-∞-2 79.9 2.74 -18.89 -55.76 -56 926 3.93

5.8 Experiments in the lab

Experimental studies were performed in a room of dimension 3.5 × 2.5 × 4.5 m

with acoustic buffer pads on all the four walls. The experimental validation of

the impulse response formulations were tested using the Validation of Acoustic

Channel Shortening (VACS) laboratory setup employed to carry out realtime ex-

periments. The setup was designed and installed in the summer of 2014 using

RME audio hardware that consisted of 1 RME MADI FX HDSPe card [114] with

3 RME Micstasy 8 channel pre-amplifiers [115] and a single M32 DAC. The soft-
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Figure 5.9: Empirical CDF of the `∞ errors at the original and 500 perturbed

positions.

ware inventory consisted of Matlab script files that uses Digital Signal Processing

toolbox and Audio Stream Input/Output (ASIO) drivers installed and selected

in the Matlab Digital Signal Processing System Toolbox preferences. The system

consists of 24 loudspeakers mounted on a circular shelf in the form of a ring and

numbered sequentially from 1 to 24 in anti-clockwise direction. Microphones were

mounted on a stand in the form of a ring to approximate the listening area around

a human head.

Matlab was used to run the full test from gathering the impulse responses us-

ing chirps through each loudspeaker and each microphone to tailoring of shaping

filters and measurement of the shaped channels. The impulse response gathering

function of the experimental setup allows for any specified matrix of loudspeaker-

microphone arrangement to be used. For the current setup, an L = 3, M = 2

arrangement was used to match the simulation conditions. Three adjacent loud-

speakers and two adjacent microphones in front of them were chosen. All the three

loudspeakers were sequentially sounded using chirp signals and the resulting sig-

nals received at the two microphones were measured. The room transfer function

is evaluated using

Y (f) = H(f)X(f) (5.47)

where X(f) and Y (f) are the loudspeaker output signal and the desired micro-
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Figure 5.10: Empirical CDF of the `2 errors at the original position and 500

perturbed positions at 1 cm from the original position using the robust approach

of design over the original position and 15 perturbed positions at 1 cm from the

original position.

phone output respectively. Since Y (f) and X(f) are known, the RTF H(f) can

be determined. The inverse Fourier transform of H(f) is windowed and truncated

(to say, a 500 ms time frame), in order to obtain the room impulse response. The

channels so measured have been used in this thesis work for the simulation studies.

The experimental set up was the same as in the simulation studies, with L = 3,

M = 2, Nc = 13871 andNr = 16643 and a sampling frequency of 44.1 kHz. The T60
of the room was 245 ms. The separation between two adjacent loudspeakers was

24 cm and that between the two microphones was 12 cm. The average loudspeaker

to microphone distance was 37 cm. The unreshaped channel had an nPRQ measure

of 8.41. The pre-echo, early reflection and late reverberation regions were set to

22 ms, 24 ms and 199 ms respectively. The performance metrics CDR and nPRQ

were used in the study.

In the shaping experiment, the shaping algorithm was applied to the channel

measured with the loudspeakers to design the shaping filters. The designed filters

were applied to the chirp signal before sounding the loudspeakers. The loudspeak-



5.8. EXPERIMENTS IN THE LAB 77

-60 -55 -50 -45 -40 -35

ew =||WCh-Wr||

0

0.2

0.4

0.6

0.8

1

P(
X

 <
 e

w
)

D- -1
D- -2
D-2-1
 D-2-2

Figure 5.11: Empirical CDF of the `∞ errors at the original position and 500

perturbed positions at 1 cm from the original position using the robust approach

of design over the original position and 15 perturbed positions at 1 cm from the

original position.

ers were again played and the signal received at the microphones were measured.

The results using D-2-1 and D-∞-1 are shown here. The results with D-2-2 and

D-∞-2 were also similar. From Figure 5.12 and Figure 5.13, it can be seen that

good shaping has been achieved with low late reverberation and pre-echo. The

nPRQ values were found to be 4.17 and 4.81 respectively with D-2-1 and D-∞-1.

A good cross-talk cancelation of around -35 dB was also achieved as can be seen

from Figure 5.12 and Figure 5.13. The algorithms were found to be computation-

ally fast, with a computation time of 8 s (D-2-1) and 25 s (D-∞-1). This validates

the applicability of the impulse response shaping algorithms developed in this work

provide to provide realtime implementations.

In order to assess the perceptual quality of the shaped responses, an informal

listening test was conducted. The loudspeakers were fed with a chirp signal sam-

pled at 44.1kHz and the signal received at the microphones were recorded. These

signals were used to compute the channels cml as explained in earlier paragraphs.

The shaping filters were then computed using D-∞-1 algorithm. Chirp signals

sampled at 44.1 kHz were then generated, convolved with the shaping pre-filters
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Figure 5.12: a) Cross-talk b) Shaped direct responses obtained with D-∞-1 using

the VACS system.

and fed to the loudspeakers. The signals received at the microphones were played

back for listening. It was observed that the effect of shaping was empirically very

clear. The selective suppression of reverberation in the various response segments

(pre-echo, early and late reverberations) was apparent. Normally in listening ex-

periments based on channel inversion, the suppression is so complete that the

response presents as though it were totally anechoic. By contrast, using shaping,

the reverberation was sustained for a short time, which sounded pleasing to the ear.

This experiment was repeated with the other shaping algorithms developed,

viz., D-∞-2, D-2-1 and D-2-2. It was observed that the results obtained with the

`∞ algorithms (D-∞-1, D-∞-2) were superior in suppression of the late reverber-

ation than the `2 algorithms (D-2-1, D-2-2).

Multi-channel inversion was also implemented to compare the shaping perfor-

mance with inversion. The result obtained in this case is shown in Figure 5.14. It
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Figure 5.13: a) Cross-talk b) Shaped direct responses obtained with D-2-1 using

the VACS system.

can be seen that inversion provides better performance than shaping with a CDR

of -40 dB. This matches with the theory that inversion provides better performance

than the relaxed problem of shaping for when the design and test conditions are

the same.

5.8.1 Robustness to atmospheric conditions

The robustness of the shaping filters to changes in atmospheric conditions such

as temperature and humidity was studied using the VACS experimental setup.

The channels were measured every hour during a 24-hour period and the filters

designed initially were applied before the loudspeakers and the microphone out-

puts were recorded. The design was performed at midnight and the set up was

left to run till 11 pm the next day. It was observed that the CDR values were

almost steady for the 24-hour measurement period with only a small observed

fluctuation as can be seen in Figure 5.15. The algorithms were also found to per-

form good shaping with a slightly increased amount of late reverberation at higher
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Figure 5.14: a) Cross-talk b) Shaped direct responses obtained with multichannel

inversion using the VACS system.

temperatures, especially close to noon. At noon, the nPRQ values were found to

be 5.43 and 5.69 with D-2-1 and D-∞-1. These results indicate that the shaping

algorithms developed show some inherent robustness to changes in atmospheric

conditions, though not explicitly designed for this robustness. The inverse filters,

on contrast, were found to be more sensitive and CDR was found to fluctuate

by large amounts compared to shaping as shown in Figure 5.15. The pre-echo

and reverberations were also found to be elevated at measurements other than the

designed conditions. This again highlights the advantage of shaping over inversion.

This experimental validation is not a complete study, but validates the scope for

developing a shaping system based on these algorithms. There is scope for various

experimental studies with this setup; for example, analysis of robustness to change

in microphone positions, effect of the presence and absence of a moving object in

the room, opening and closing of the door etc. We leave these experiments for

future work.
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Figure 5.15: CDR values measured over a 24-hour period.

5.9 Contributions from this chapter

One of the contributions of this chapter is the application of the DALM algorithm

for solving `1 regularized `2 minimization problems (D-2-1) to the impulse response

shaping problem. Good cross-talk cancelation performance has been achieved with

fast computational time, both in simulation and experimental studies, that indi-

cates its applicability to a real time room response shaping system. Other de-

velopments from this chapter are extension of the DALM algorithm to various

combinations of regularizers and fidelity factors, which can be advantageous for

the shaping problem. The new algorithms developed are D-2-2, D-∞-1 and D-∞-

2. The development of D-∞-1 and D-∞-2 are the major contributions from this

chapter since these algorithms constrain the maximum value of error between the

estimated and expected responses, which is the ideal choice for achieving optimal

shaping. The new algorithms were implemented in the form of an FAO for added

memory advantages.

The efficacy of the algorithms in shaping was verified using the simulation re-

sults that showed a consistent CDR of -58 dB and experimental results with a

CDR of around -35 dB for all the four combinations. D-∞-1 or D-∞-2 can be
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chosen if stringent constraints are to be imposed, while D-2-1 or D-2-2 can be

chosen if computational speed is more relevant than strictness of constraints.

Other contributions are the application of the DALM algorithms to the shaping

over multiple microphone positions in order to achieve spatial robustness to change

in microphone positions. It has been brought out from the simulation studies that

the formulation is very robust along with providing good cross-talk cancelation

with the desired shaping.



Chapter 6

Joint Time and Frequency

Shaping

6.1 Background

In the previous chapter, fast algorithms based on DALM for multi-channel acous-

tic impulse response shaping were presented. The goal was to design pre-filters

so that the combined response of the pre-filters and room impulse response has

low cross-talk, and reduced reverberation. In addition, the algorithms were modi-

fied to include a design over multiple position to ensure that the resulting shaped

responses were robust against measurement errors or movement of the sensors.

The limitations of these earlier approaches are that they are concerned only with

the time domain and did not accommodate explicit control of the combined fre-

quency domain. Accordingly, the frequency response sometimes exhibited peaks

or troughs, rather than a flat response across the frequency spectrum of operation,

and such fluctuations are clearly undesirable. A frequency domain equalisation

component is an obvious improvement. In this chapter, we use a proximal pro-

jection to achieve the frequency equalisation. This results in a modification to

our original fast DALM based shaping algorithm to incorporate the additional fre-

quency projection step.

An approach for combined frequency control is explained in [28] in which the

frequencies producing high peaks in the final responses are found and the peaks

are reduced by minimizing a norm of those frequency samples. This is computa-

tionally slow since it requires application of the solution algorithm twice; once to

83
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obtain time shaping, then finding the violated frequencies and a consecutive run

to attain frequency control as well.

In the approach presented in this chapter, the DALM iterations and frequency

control are performed together in an alternating fashion until convergence. Com-

putationally fast variants of this algorithm are also presented which effectively

work in the same fashion as in [28] but enable implementation of joint time and

frequency shaping approach in real time due to their computational efficiency.

This computational efficiency is achieved by running the time shaping algorithm

for only a few iterations and then alternating time and frequency projection. Since

the DALM iterations execute very fast and progress towards the solution quickly,

running few such iterations initially doesn’t affect the computational speed much

and moreover, helps in faster convergence in the later steps when the time and

frequency projection steps are run alternatively. The contents of this chapter are

extensions of the paper [116].

6.2 Problem Formulation

It has been shown in [35] that the DALM algorithm can be considered as a prox-

imal minimization iteration. Considered from this point of view, frequency do-

main equalization can be considered as an additional proximity operation in the

iteration: proximity being a generalization of the familiar concept of projection

[117, 118]. To (4.8), we can add a constraint on the magnitude of a given com-

ponent of the combined frequency response. An upper bound on this magnitude

is a convex constraint; we do not attempt a lower bound, which would be non-

convex. The GIR is found as Ch (as in Figure 4.1), which can also be written as

I⊗Ch, where I is the identity matrix, C contains the Toeplitz matrices (represent-

ing convolution) corresponding to each channels and ⊗ is the Kronecker product.

The frequency response can therefore be written as I ⊗ FCh where F is the DFT

matrix. The combined transfer function is given by I ⊗ F . The response for a

particular source-to-sensor transfer and for a particular frequency can be obtained

using g∗h where superscript ∗ represents the adjoint (complex transpose) and g∗

is a particular row of (I⊗F )C. The projection operation is performed for all posi-

tive frequencies found in this manner successively. This is because performing the

projection at all frequencies jointly is computationally prohibitive and spectral

flatness can be obtained by successively performing this projection for different

values of g, one for each frequency. In the case of a hard constraint, the proximity
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operation becomes a projection operation: the problem is thus to find the closest

(in Euclidean norm sense) value to a given impulse response h0 that does not ex-

ceed a certain magnitude in the frequency response when the impulse response is

combined with a second filter.

The required operation can thus be expressed as

min
h

‖h− h0‖22

subject to |g∗h| ≤ γ
(6.1)

This is the problem that we solve in the following subsection.

6.2.1 Projection algorithm

Since there are M direct responses for a shaping system with M microphones, we

define the M × 1 vectors

gr = <(g) (6.2)

gi = =(g) (6.3)

where <() denotes the real part and =() denotes the imaginary part. Now we can

define the rank 2 matrix

P = grg
∗
r + gig

∗
i = GG∗ (6.4)

where G is the M ×N matrix given by

G = [gr gi] (6.5)

In this case, N = 2. The following condition and derivations are also valid for N

greater than 2.

The constraint in the optimization problem (6.1) can now be rewritten as

h∗Ph ≤ γ2 (6.6)

The Lagrangian of the constrained minimization with Lagrange multiplier µ is

therefore

L = h∗h+ h∗0h0 − 2h∗0h− µ(γ2 − h∗Ph) (6.7)

Equating the partial derivative of L with respect to h to zero gives

∂L

∂h
= 2(IM + µP )h− 2h0 = 0 (6.8)
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where IM is the M ×M identity matrix. So we have

h = (IM + µP )−1h0 (6.9)

Combining (6.6) and (6.9) gives the equation to find the value of Lagrange multi-

plier µ as

h∗0(IM + µP )−1P (IM + µP )−1h0 = γ2 (6.10)

which does not seem particularly easy to solve for µ.

However, consider the Eigen decomposition of P :

P =
[
V U

] [D 0

0 0

] [
V ∗

U∗

]
= V DV ∗ (6.11)

where V are the eigenvectors corresponding to non-zero eigenvalues in the diagonal

matrix D, and U are the eigenvectors corresponding to zero eigenvalues. The

matrix P is Hermitian and so [V U ] is orthonormal. This means that

(IM + µP )−1 = V (IN + µD)−1 V ∗ (6.12)

and so
h∗0(IM + µP )−1P (IM + µP )−1h0

= h∗0V (IN + µD)−1D (IN + µD)−1 V ∗h0

= h∗0V D
′V ∗h0

= tr (D′V ∗h0h
∗
0V )

=
∑
i

d′ifi

(6.13)

where the ith element of diagonal matrix D′ is given from the ith element d′i of

diagonal matrix D by

d′i =
di

(1 + µdi)
2 (6.14)

and fi is the ith diagonal element of the matrix V ∗h0h
∗
0V .

This means that the eigenvectors U are irrelevant to the solution. The relevant

matrices V and D can be straightforwardly computed from the singular value

decomposition of G. Alternatively, and more efficiently, V and D can be computed
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from the very small eigen decomposition G∗G = FEF ∗:

We seek the matrix B such that V = GB, so that

V ∗V = B∗G∗GB = I (6.15)

If we define B = FE−
1
2 , then

B∗G∗GB = B∗FEF ∗B = E−
1
2F ∗FEF ∗FE−

1
2

= E−
1
2EE−

1
2 = I

(6.16)

as required. Using this definition of B, we find that

V DV ∗ = GBDB∗G∗ = GFE−
1
2DE−

1
2F ∗G∗

= GFF ∗G∗ = GG∗ = A
(6.17)

provided that D = E.

Thus the required value of µ is the solution to the equation

N∑
i=1

fidi

(1 + µdi)
2 = γ2 (6.18)

For the case that N = 2, this equation can be written as

f1d1 (1 + µd2)
2 + f2d2 (1 + µd1)

2 = γ22(1 + µd2)
2(1 + µd1)

2 (6.19)

and hence as the quartic

γ4d21d
2
2µ

4 + 2γ2d1d2 (d1 + d2)µ
3

+
(
γ2
(
d21 + d22 + 4d1d2

)
− f1d1d2 (d1 + d2)

)
µ2

+
(
2γ2 (d1 + d2)− 2d1d2 (f1 + f2)

)
µ

+
(
γ2 − f1d1 − f2d2

)
= 0

(6.20)

which can be simply solved analytically for its single real positive root [119].

After finding µ, the solution h can be found from (6.9) and (6.12) as

h = V (IN + µD)−1 V ∗h0 (6.21)
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6.2.2 Special Cases

If the vector g is purely real or purely imaginary, the equation to solve for µ be-

comes a quadratic. This gives two solutions for µ and the positive root can be

chosen. The derivation for the purely real case is detailed here.

If g is purely real, gi = 0. Therefore, G = [gr 0] for N = 2. Now,

G∗G =

[
g∗r gr 0

0 0

]
(6.22)

The eigen decomposition of G∗G gives the eigenvalues g∗r gr and 0. The eigenvector

corresponding to the non-zero eigenvalue is [1 0]T. Hence, in this case, we have

only one v1 = [1 0]T and d1 = g∗r gr. Therefore, (6.19) becomes

f1d1

(1 + µd1)
2 = γ2 (6.23)

which on simplification becomes a quadratic in µ given by

d21γ
2µ2 + 2d1γ

2µ+
(
γ2 − f1d1

)
= 0 (6.24)

The equation for finding the solution h reduces to

h =
v1v
∗
1

1 + µd1
h0 (6.25)

In the case that g is purely imaginary, we have v1 = [1 0]T and d1 = g∗i gi. The

rest of the derivation steps are similar to that of the g being purely real case.

6.2.3 Time and frequency shaping algorithm

The joint time and frequency shaping problem can be written as an optimization

problem of the form

min
h
‖W (Ch− r)‖u + λ‖h‖v

subject to |g∗kh| ≤ γ k ∈ {1...MNr}
(6.26)

where g∗kh is the response at each of the Nr frequencies for M desired responses.

Here, Nr and M are defined as in Section 4.1. The problem (6.26) is split into

two sub-problems : (4.8) and (6.1) which are solved one after the other to achieve
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a feasible solution. This is implemented as a frequency projection step after one

DALM iteration till convergence. However, the frequency response that is flattened

by a projection step may be disturbed by the following DALM iteration. In addi-

tion, the projection step is slower than the DALM iteration since it sequentially

works through all the constrained frequencies. Therefore, a computationally more

efficient approach is to perform a projection step after several DALM iterations.

This approach results in a reasonable time and frequency domain performance, in

addition to faster computational speed as can be seen in the experimental results

detailed in the following section.

6.3 Robust time and frequency shaping algorithm

Spatial robustness to errors in microphone positions can be achieved by a design

over multiple microphone positions as explained in Section 5.6. In the case of joint

time and frequency shaping, the DALM iterations for achieving time shaping are

performed similar to the approach explained in Section 5.6 but the projection step

for frequency shaping is performed over all frequencies of all perturbed copies of

the original channel response. This is achieved by performing the projection of

the sample values of all perturbed copies at a particular frequency and then se-

quentially moving onto the next frequency. This process ensures that the desired

frequency shaping is achieved at the original and at all the perturbed positions.

In the case of joint time and frequency shaping algorithm using D-2-1 or D-2-2

formulations of DALM, the optimization problem can be stated as

min
h

1

2

Np+1∑
n=1

‖WCnh−Wr‖22 +
1

v
λ‖h‖v

subject to |g∗kh| ≤ γ

(6.27)

for v ∈ {1, 2} and k ∈ [1, (Np + 1)MNr] where Np is the number of perturbations

and Cn are the channel matrices corresponding to each perturbation, as in Sec-

tion 5.6. When D-∞-1 or D-∞-2 are used, the optimization problem can be stated

as

min
h

‖WC̆h−Wr‖∞ +
1

v
λ‖h‖v

subject to |g∗kh| ≤ γ
(6.28)
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Figure 6.1: The two cross-talk responses r12 and r21 obtained with Algorithm A.

(Algorithm A works by alternating DALM iterations and frequency projection one

after the other till convergence.)

where

C̆ =
[
(C1)T . . . (Cn)T . . . (CNp+1)T

]T
(6.29)

It can be seen that the optimization problem becomes large for D-∞-1 or D-

∞-2 since both time and frequency shaping each take Np + 1 times the original

computational time. Thus some approximations are used in the original shaping

algorithm to achieve computational speed, which are explained in the following

section.

6.4 Simulation results

Experimental simulation studies were performed using the channels measured in

the same room as in Section 5.7 using the same set up as in Figure 5.1 with L = 3

loudspeakers, M = 2 microphones, channel length Nc = 10000 and Nr = 32768

and a sampling frequency of 44.1 kHz. The T60 of the room was 245 ms and the

Spectral Flatness Measure (SFM) [106, 107] was 0.57. The pre-echo, early reflection
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Figure 6.2: The two direct responses r11 and r22 obtained with Algorithm A (by

alternating DALM iterations and frequency projection steps till convergence).

and late reverberation regions were set as 10 ms, 40 ms and 200 ms respectively

as in Section 5.7. The performance metrics used in this chapter are CDR, nPRQ

and SFM which are defined in Section 4.4. Here, SFM quantifies the frequency

flattening performance and nPRQ quantifies the time shaping performance. The

parameter γ was set to be the 85th percentile value of the unconstrained solution.

Decreasing γ obviously improves spectral flatness, but at the cost of greater cross-

talk.

The joint time and frequency shaping algorithm, proposed in this chapter,

that uses a combination of the projection algorithm and the DALM algorithm

was tested using the above mentioned channels. This was done by performing one

frequency projection step after one DALM iteration (Algorithm A). The `1 regu-

larized `∞ DALM (D-∞-1) formulation is used in this set of results. Figure 6.1

shows the cross-talk response showing a cross-talk cancelation of about -56 dB.

The direct responses shown in Figure 6.2 show that the peak (direct path) is ap-

proximately 20 dB above the smaller values and the response decays rapidly after

the allowed early reflections, thus reducing the late reverberation. Thus, a CDR
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Figure 6.3: Frequency responses of the two channels obtained with Algorithm A

(by alternating DALM iterations and frequency projection steps till convergence).

of around -56 dB was achieved. The frequency response of the direct responses

shown in Figure 6.3 shows that all the frequencies have been modified to obey the

frequency constraint. The spectral flatness (SFM) was found to be 0.835. The

CDF of the frequency responses are shown in Figure 6.4. Thus, joint time and fre-

quency shaping was achieved using this algorithm. In addition, the final objective

function value was found to be 0.525 which is very close to the frequency uncon-

strained D-∞-1 solution of 0.51. These results are summarized in Table 6.1 and

demonstrate that additional frequency constraint has not significantly degraded

the time domain performance.

A direct comparison with single channel time-frequency shaping in [120] is not

possible without using the same channel, but the SFM results are quite similar.

(SFM in that work increased from 0.52 for raw channel to 0.74–0.8 after shaping.)

The computation time using Algorithm A was found to be prohibitive (5 days, 3982

combined iterations). This is because the projection step works on each frequency

constraint sequentially and is thus computationally very slow. Therefore, a faster

version of this algorithm is desired for practical applications.



6.4. SIMULATION RESULTS 93

-80 -60 -40 -20 0 20 40
n=|Gh| (dB)

0

0.2

0.4

0.6

0.8

1
P(

X
<

 n
)

DALM

Algorithm A

Figure 6.4: Cumulative density function of the frequency responses obtained with

frequency unconstrained DALM and Algorithm A (by alternating DALM iteration

and frequency projection steps till convergence).

Table 6.1: Performance of the frequency projection algorithms in shaping. Per-

formance metrics CDR, CPU time, SFM and nPRQ are defined as in Section 4.4.

Objective function value is the final value obtained for the objective in (6.26) with

u =∞, v = 1.

Algorithm CDR CPU Time Objective SFM nPRQ

(dB) (s) function (dB)

D-∞-1 -58 85 0.51 0.81 4.31

Algorithm A -56 438048 0.525 0.835 2.61

Algorithm B (Niter = 100) -49 3336 0.674 0.823 4.52

Algorithm B (Niter = 500) -44 1498 0.702 0.818 4.49

Algorithm C -39 368 0.758 0.854 3.72



94 CHAPTER 6. JOINT TIME AND FREQUENCY SHAPING

0 100 200 300 400 500 600 700
Combined response delay (ms)

-100

-80

-60

-40

-20

0

C
ro

ss
-t

al
k 

le
ve

l (
dB

)

r
21

r
12

Figure 6.5: The two cross-talk responses obtained with Algorithm C (Fast version

of joint time and frequency shaping algorithm).

A faster version of Algorithm A, which we name as Algorithm B, proceeds

as several iterations of the original D-∞-1 followed by alternating projection and

DALM steps until convergence. Proper choice of the number of DALM iterations

before the projection step, which obviously affects the computational speed, is

important. It was found that a reasonable choice of this parameter (Niter) for this

data is 100, given that the frequency unconstrained algorithm takes 1572 iterations

to converge to the solution. This algorithm was found to be about 60 times faster

than Algorithm A, in addition to providing a reasonable CDR of -49 dB. Given

that this algorithm works, the number of the DALM iterations before a projection

step was varied. It was found that Algorithm B converges faster as Niter increases.

These results are summarised in Table 6.1. Though Algorithm B is faster than

Algorithm A, it is still computationally slow.

For both algorithms A and B, the stopping criterion was simply that the change

between successive iterations was small. The original shaping problem and the fre-

quency domain constraints are all convex, so we expect that algorithms A and B

will eventually converge to the same solution. However, a computationally faster
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Figure 6.6: The two direct responses obtained with Algorithm C (Fast version of

joint time and frequency shaping algorithm).

method than Algorithms A and B (Algorithm C) works by solving the time shaping

algorithm using D-∞-1 till half convergence (say, Niter = 500) and then alternat-

ing projection and DALM for few iterations, say five, to ensure that the frequency

constraints are also satisfied. This algorithm makes use of the high computational

speed of the DALM at the same time ensuring that the frequency constraints are

satisfied. Since the projection onto each frequency constraint is done sequentially,

some of the earlier constraints may be altered by a following projection. There-

fore, we perform a few alternating steps of projection and DALM, say three, after

the 500 D-∞-1 steps to ensure that the frequency constraints are satisfied. It

was found that this algorithm is around ten times faster than Algorithm B with

Niter = 100 in addition to providing a CDR of -39 dB. The frequency constrain-

ing value γ is chosen to be 85th percentile value of the frequency response of the

D-∞− 1 solution. It was found that an SFM of 0.854 was achieved in this case.

The results obtained using this approach are shown in Figure 6.5, Figure 6.6 and

Figure 6.7.

Comparing the results obtained with algorithms A, B and C from Table 6.1, it
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Figure 6.7: Frequency responses of the two channels obtained with Algorithm C

(Fast version of joint time and frequency shaping algorithm).

can be seen that the best nPRQ value is obtained using algorithm C showing the

best time domain shaping. In addition, good frequency flattening is achieved with

algorithm C, as indicated by the SFM value. However, the cross-talk cancellation

achieved using the algorithm is reduced compared to other algorithms, which is a

trade off for the fast computational speed and good shaping.

The experimental studies were repeated with the other DALM formulations

namely D-2-1, D-2-2 and D-∞-2. Plots obtained were similar to those from D-∞-

1. The results obtained with Algorithm C using a combination of these DALM

formulations and projection are tabulated in Table 6.2. It can be seen that the

CDR is marginally better for D-2-1 and D-2-2 when compared to D-∞-1 and D-

∞-2, but better spectral flatness is obtained with D-∞-1 and D-∞-2.

Comparing the results of the DALM formulations with and without frequency

shaping in Table 6.2, it can be seen that frequency shaping not only improves the

frequency flatness, but also the time domain shaping performance. However, the

cross-talk cancelation performance is affected which is the expected trade off for

achieving good shaping performance.
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Figure 6.8: Cumulative density function of the frequency responses obtained with

frequency unconstrained DALM, Algorithm C and spatially robust version of Al-

gorithm C.

Algorithm C was thus found to provide reasonable performance in addition

to higher computational speed, in spite of the approximations made to increase

the computational speed. The next set of results were obtained when Algorithm C

was run to solve the design approach over multiple microphone positions to achieve

spatial robustness as explained in Section 6.3. 15 perturbed versions of the original

channel for a microphone displacement of 1 cm were generated according to [39]

using the same procedure as in Section 5.7 and Algorithm C was used to find

shaping filters robust at the original and the perturbed positions. The results

obtained are given in Table 6.3.

It can be seen that the nPRQ value improves with this robustness design com-

pared to the original joint time and frequency shaping approach, though the CDR

reduces. This is because there is a compromise between robustness and the per-

formance; performance reduces slightly when robustness is incorporated but is

similar at all the designed microphone positions. A comparison of the CDF of the

frequency responses obtained using this robust version of Algorithm C, Algorithm
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Figure 6.9: Cumulative density function of the CDR values obtained with Algo-

rithm C and its spatially robust version.

C and DALM without explicit design for robustness are shown in Figure 6.8. As

discussed earlier in Section 5.7, vertical axis of the CDF plot shows the probability

of occurrence of values less than any value on the horizontal axis. Therefore, the

steeper the slope, better the robustness. It can therefore be seen from Figure 6.8

that the robust version Algorithm C gives the best performance followed by Algo-

rithm C and then DALM.

In order to compare the robustness of Algorithm C and its spatially robust

version, 500 perturbed positions were generated at a distance of 1 cm from the

original position as in Section 5.7 and the CDR values at these locations were

calculated. The CDF of the CDR values obtained with Algorithm C and spatially

robust Algorithm C with D-∞-1 are shown in Figure 6.9. It can be seen that

the slope is higher for the robust approach when compared to the non-robust

approach. The CDF plots for other DALM formulations are also similar. This

indicates that the variation in CDR with perturbation in microphone position is

less for the robust approach which validates the spatial robustness of the design.
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Table 6.2: Performance comparison of DALM formulations in shaping with and

without frequency projection. Algorithm C is used for frequency projection. Per-

formance metrics CDR, CPU time, SFM and nPRQ are defined as in Section 4.4.

Objective function value is the final value obtained for the objective in (6.26) with

u and v corresponding to the respective DALM formulation used.

DALM form CDR CPU Time Objective SFM nPRQ

(dB) (s) function (dB)

D-2-1 with Niter = 300 -41 118 0.3939 0.81 2.84

D-2-1 -57 25 0.32 0.7459 3.94

D-2-2 with Niter = 300 -42 126 0.417 0.792 3.64

D-2-2 -57 28 0.309 0.723 4.73

D-∞-2 with Niter = 500 -38 372 0.781 0.847 3.86

D-∞-2 -58 88 0.536 0.79 4.39

Table 6.3: Performance comparison of Algorithm C in the design over multiple

microphone positions for various DALM formulations. Performance metrics CDR,

CPU time, SFM and nPRQ are defined as in Section 4.4. Objective function value

is the final value obtained for the objective in (6.26) with u and v corresponding

to the respective DALM formulation used.

DALM form CDR (dB) CPU Time (s) Objective SFM nPRQ (dB)

function

D-2-1 -34 247 0.587 0.829 2.17

D-2-2 -31 262 0.613 0.821 3.31

D-∞-1 -28 1412 0.818 0.832 3.72

D-∞-2 -28 1426 0.82 0.824 3.68

6.5 Contributions from this chapter

The main contribution of this chapter is the development of an efficient projection

method onto a low dimensional norm ball and its application to impulse response
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shaping to impose frequency domain constraints. The projection step is used as

a proximal mapping in conjunction with the fast DALM based impulse response

shaping algorithm discussed in earlier chapters. The projection step ensures that

frequency response flattening is obtained in addition to the desirable time domain

characteristics obtained using the DALM based shaping approach. The algorithm

works by alternating the DALM iterations and the projection step one after the

other. The experimental results demonstrate that the algorithm works well for the

shaping problem, providing frequency response flattening in addition to a good

cross-talk cancelation and the desired shaping in the time domain. A computa-

tionally faster variant of this algorithm performs a small number of alternating

projection and DALM steps after several DALM iterations. It has been found

from the experimental results that the new algorithm is around 1000 times faster

than the original algorithm.

This chapter also explains the extension of the projection approach to a de-

sign over multiple microphone positions to achieve spatial robustness. Thus, the

projection method offer advantages for the fast DALM based shaping approach to

achieve joint time and frequency domain shaping, without compromising on the

computational speed and performance. The projection approach has applicability

to a wide range of convex problems due to small memory requirement and high

computational speed, although we proposed it here for the specific application of

acoustic impulse response shaping.



Chapter 7

Statistically Robust Shaping

Formulation

7.1 Background

Joint shaping and cross-talk cancelation formulations that solve for the shaping

filters based on measured room responses were discussed in the earlier chapters.

Measurement errors or variations in room response (due to environmental con-

ditions and microphone positioning) can arise, resulting in a poor filter design.

Robustness of filters to at least some of these variations is an important design

consideration. A design approach over multiple microphone positions offering ro-

bustness to microphone position error is presented in [28, 39, 121], although its

implementation is computationally expensive. A computationally faster model of

this work is discussed in Chapter 5 based on the DALM formulations developed.

These models are based on generating synthetically-generated perturbed channels

using a detailed theoretical analysis of the errors caused by small changes in mi-

crophone positions in [38].

A more appropriate approach for achieving robustness is to statistically con-

strain the channel variations. One such approach [57, 81–83] aims to design shap-

ing filters adaptively by probabilistically modelling channel variability. This is

achieved using a feed-forward scheme of filter design that uses some initial as-

sumptions based on properties of room impulse response. The approach presented

in this chapter aims to probabilistically constrain the error between the desired

and resultant responses to be less than a threshold. The approach applied is some-

101
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what similar to [39], but rather than generate perturbed copies of the channel, the

perturbation model is included into the formulation of the design problem. This

is achieved by explicitly constraining (to a small number) the probability of large

error in the combined responses. This optimization problem involves a non-convex

probability constraint which has been slightly simplified using some properties of

the room response to approximate the problem by a convex one and make it math-

ematically tractable. These simplifications are similar to those employed in [81].

The evaluation of the results are performed on a more detailed model presented

in [39] that empirically justifies the modelling simplifications made. The details of

the model and evaluations are described in the sections to follow. The contents of

this chapter are based on the paper “A statistically robust approach to Acoustic

Impulse Response Shaping” [122].

7.2 Problem Definition

The joint shaping and cross-talk cancelation problem is solved by a regularized

weighted error minimization as in (4.8) in Chapter 4 given by

min
h
‖WCh−Wr‖u + λ‖h‖v

where u and v are the norms, C is the block channel Toeplitz matrix, W is the

diagonal weight matrix, r is the expected response and λ is the regularization

parameter. Vector r is set to be one at the position of the direct path in the

direct responses and zero at all other sample points. The formulation proposed in

this chapter uses the same notation, but a different approach involving the use of

probability constraints to achieve the desired response.

A change in microphone position causes the channel vector c to be perturbed

[39, 111] as

dml = cml + qml (7.1)

where q is a vector of perturbations. Now consider matrix D consisting of Toeplitz

convolution matrices from the perturbed impulse responses dml in a manner anal-

ogous to that of matrix C. A statistically robust formulation for shaping aims to

ensure that even if d 6= c due to channel perturbations, the probability of |Dh− r|
being large is constrained where r is a delta function with a peak at the location

of the direct path. This is the type of robustness approach used in [40]. Thus, the
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formulation proposed in this work constrains the probability of the error |dTk h−rk|
being greater than a threshold γ to be less than a pre-defined probability value

for each dTk h, where dTk is the kth row of matrix D. Therefore, the proposed opti-

mization problem to be solved for finding the vector of shaping filters (h) is given

by

min
γ,h

γ (7.2)

subject to Pr(|dTk h− rk| > γ) ≤ Pmax,k k ∈ [1, . . . ,M2Nr]

where Pr denotes the probability, Pmax is the maximum allowed probability that

the error |dTk h − rk| is greater than threshold γ. k ∈ [1, . . . ,M2Nr])because con-

straints are defined for all sample points in r. (Length of r is M2Nr as in Sec-

tion 4.1.) Pmax,k being defined separately for each value of k allows a ‘don’t care’

region in the GIR, but heavy penalisation of pre-echo, late reverberation and

cross-talk. Pmax,k is chosen to be very small for the cross-talk (m 6= s) and late

reverberation and pre-echo in the direct channels (m = s), but is higher for the

early reflections. This indirectly imposes a similar effect to the weighting used in

[21, 27] where the weighted error ‖W (Ch− r)‖ is minimized.

The formulation in (7.2) gives a statistically robust solution for shaping filters,

but the problem is non-convex. The main task is, therefore, to convert this problem

into a convex problem to find a solution using standard algorithms.

7.2.1 Conversion to a convex problem

In order to make the optimization problem more specific and convert the con-

straint in (7.2) to a convex constraint, the first step is to find the distribution

of the perturbation vector q. It can be shown using an approach based on [123]

that for small sensor position perturbation, or strong multipath, the sensor posi-

tion errors are Gaussian. Thus, qk is well represented by a Gaussian distribution

qk ∼ N (0, ι2). A justification for this assumption is detailed in Appendix B. The

variance of the perturbations ι2 for a particular shift in microphone position at a

particular temperature in a diffuse field can be found using (2.17) [38].

The problem is further simplified by modelling all the components of q as

independent and identically distributed (IID). An empirical justification of this

approximation using an IID Gaussian model is presented in Section 7.3.
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From this IID approximation, it follows that dTk h − rk also has a Gaussian

distribution with mean µk = cTk h− rk and variance given by

σ2
k =



ι2
∑L

l=1

∑k
i=1 h

(ls)(i)
2

k = 1 . . . Nc

ι2
∑L

l=1

∑k+Nc

i=k+1 h
(ls)(i)

2

k +Nc = Nc + 1 . . . Nh

ι2
∑L

l=1

∑Nh

i=k+1+Nh−Nc
h(ls)(i)

2

k +Nh = Nh −Nc + 2 . . . Nh

(7.3)

where Nc is the length of each channel cml and Nh is the length of each filter hls
same as in Section 4.1. This expression is computed based on the structure of

matrix C as an overcomplete dictionary (as in (4.4) for obtaining a sparse solution

for h. The sparse solution ensures robustness to measurement errors as can be

seen from the results in Chapter 5. Calculation of this variance for a small channel

length is shown in Appendix B.

Since the probability constraint is based on |Dh − r|, we have to find the

probability density function (PDF) and hence the cumulative density function

(CDF) of each element of |Dh − r| given that each element of the vector Dh − r
has a Gaussian distribution. In order to find the PDF, let x = dTk h − rk and

y = |x|. The solutions of the equation y = |x| are x = ±y. To derive the PDF

py(y) of a function of the random variable, we use the approach of Papoulis et al.

[124], using which py(y) can be written as

py(y) =px(y)/|1|+ px(−y)/| − 1|

=
1√

2πσ2
k

(e−(y−µk)
2/2σ2

k + e−(y+µk)
2/2σ2

k) (7.4)

and hence the CDF Fy(y) is given by

∫ y

0

py(y) dy =
1√

2πσ2
k

∫ y

0

e
−(y−µk)

2

2σ2
k + e

−(y+µk)
2

2σ2
k dy (7.5)

This is known as the folded normal distribution [125].

Let u = (y − µk)/
√

2σk in the first term and v = (y + µk)/
√

2σk in the second
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term. Hence, Fy(y) is given as

Fy(y) =

∫ (y−µk)/
√
2σk

0
e−u

2
du
√

2σk√
2πσ2

k

(7.6)

+

∫ (y+µk)/
√
2σk

0
e−v

2
dv
√

2σk√
2πσ2

k

=
1

2

(
erf

(
y − µk√

2σk

)
+ erf

(
y + µk√

2σk

))
(7.7)

where erf() is the error function. Using (7.6), the constraint in the proposed

optimization problem (7.2) for P(y > γ) = 1 − P(y ≤ γ) ≤ Pmax can now be

written as

1

2

(
erf

(
γ − µk√

2σk

)
+ erf

(
γ + µk√

2σk

))
≥ 1− Pmax (7.8)

This constraint is non-convex in parameter γ due to the presence of the pair of

error functions. We can approximate this constraint by a convex one, by defining

the constraint separately for different regions of the direct response and the cross-

talk. For the direct path and early reflections, µ usually deviates from zero by

significantly more than σk. Therefore, we approximate the constraint by

1

2
erf

(
γ − µk√

2σk

)
≥1− Pmaxearly (7.9)

although this approximation is conservative i.e., it overestimates the probability

that the constraint is violated, when µk is negative. Equivalently

γ + (cTk h− rk) ≥
√

2σk erfi (2 (1− P0,max/wearly)) (7.10)

where erfi() is the inverse error function, P0,max is a fixed probability value and

wearly is a weight vector penalising early reflections.

In the case of late reverberation, µk ≈ 0 results in both the error functions

being approximately the same. The constraint in this case can thus be written as

2× 1

2
erf

(
γ − µk√

2σk

)
≥1− Pmaxlate (7.11)

or

γ + (cTk h− rk) ≥
√

2σk erfi (1− P0,max/wlate) (7.12)
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Figure 7.1: Cross-talk responses r12 and r21.

The pre-echo in the direct response and cross-talk also have µk ≈ 0 resulting

in the constraint being similar to that of the late reverberation. Thus, the final

optimization problem can be written as

min
γ,h

γ (7.13)

subject to Bh =1

γ + (cT
kh− rk) ≥

√
2σk erfi

(
2− 2P0,max/wearly

)
, k ∈ A3

γ + (cT
kh− rk) ≥

√
2σk erfi

(
1− P0,max/wlate

)
, k ∈ A4

γ + (cT
kh− rk) ≥

√
2σk erfi

(
1− P0,max/wpreecho

)
, k ∈ A1

γ + (cT
kh− rk) ≥

√
2σk erfi

(
1− P0,max/wcrosstalk

)
, k ∈ A5

where 1 is a M × 1 vector of 1s, and the matrix B consists of the M rows of the

matrix C corresponding to the direct paths of the direct responses. This constraint

ensures that the value of the direct response just before the ‘don’t care’ region is

1 [27] to avoid the trivial solution of h = 0. Region A1 is the pre-echo, A3 are

the early reflections and A4 are the late reverberations respectively of the direct
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Figure 7.2: Shaped direct responses r11 and r22.

responses as in (4.6). The region A5 = [1, Nr] is the cross-talk. (There are no

desired portions in the cross-talk responses.) This optimization problem can be

expressed in the form of a second order conic program (SOCP), which is convex.

The expression of (7.13) in a standard SOCP form is detailed in Appendix B.

7.3 Simulation Results

The statistically robust problem in (7.13) was solved for channels measured at

8 kHz sampling rate in the same room and same setup as in Figure 5.1 in Section 5.7

having T60 = 245 ms, with L = 3, M = 2, Nc = 800, Nr = 1799 using the

convex solver CVX [126]. The lengths of the pre-echo, early reflection and late

reverberation regions in the direct response were set to be 10 ms, 40 ms and 175 ms

[27] as in Section 5.7. Pmax was set to be 0.8 for the ‘don’t-care’ regions and 0.2

for pre-echo and cross-talk. The variance of perturbations [38] (ι2 = 0.17 times

the power of the impulse responses c [39, eq.(9)]) was chosen to be equivalent to

1 cm shifts in microphone position at 4 kHz and at 20◦ C in a diffuse field.

The performance metric used in this work is CDR. In order to evaluate the

robustness of the filter designs, 500 perturbed versions of the original channel
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Figure 7.3: Distribution of typical points within the pre-echo, late reverberation,

cross-talk and early reflection regions over simulated perturbed channels using

the proposed approach. The vertical dotted line indicates the optimized value of

γ. The intersections of the dotted lines indicates the target: the probability of

deviation from the desired response |Dkhk − rk| being greater than γ is less than

Pmax as in (7.13).

were generated using the diffuse field perturbation model defined in [39] as in

Section 5.7. Note that this model of perturbations is more realistic than the IID

Gaussian assumption used in deriving (7.3), and does not involve the approxima-

tions involved in deriving the convex expressions (7.10) and (7.12), and hence tests

the validity of the formulation in a realistic scenario.

Typical cross-talk and shaped responses are shown in Figure 7.1 and Figure 7.2

respectively. The shaped responses in Figure 7.2 show the peak is around 19 dB

above the smaller values and the response decays rapidly after the allowed early

reflections. As intended, the design process maintains the peak in the shaped

response and some of the early reflections whilst reducing late reverberation. Fig-

ure 7.1 shows that cross-talk cancelation of around -20 dB has been achieved. The

computational time was found to be 958 s for this problem.

The distribution of the performance over the perturbed channels are shown in

Figure 7.3 to study the efficacy of the robust implementation. The solid curve
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Figure 7.4: Distribution of typical points within the pre-echo, late reverberation,

cross-talk and early reflection regions over simulated perturbed channels without

explicit consideration of robustness. Here the requirement that the probability of

deviation greater than γ being less than Pmax is not met.

corresponds to the behaviour at a representative sample point in the cross-talk.

Here, the probability of the deviation from the desired response being greater than

the threshold γ, P(|Dkhk− rk| > γ), obtained is ≤ 0.2, which is the designed Pmax

value. Therefore, the probability constraint in (7.8) is satisfied. Similarly, the dot-

dashed and dashed curves correspond to representative sample points of the late

reverberation and the pre-echo region of the direct response respectively. Again,

it can be seen that the constraint is satisfied demonstrating the robustness of the

formulation. Two points in the early reflection region of the direct responses are

shown, one with a positive µ and other with a negative µ before perturbation to

verify the approximation in (7.9) in which one erf() function is ignored. From

Figure 7.3, the probability P(|Dkhk − rk| > γ) in both cases is less than or equal

to 0.8, which is the designed Pmax value.

A similar analysis of the shaping performance is conducted for our previous

non-robust shaping approach [110] (using the solution algorithm DALM) in which

we do not explicitly design for robustness. It can be observed from the plot in

Figure 7.4 that the probability of large deviations from the desired response is

larger, and does not satisfy the constraint. This is especially true for points in the
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Figure 7.5: Cumulative density functions of the `2 error on a normal scale.

response close to the ‘don’t care’ regions.

The statistically robust approach is compared with the empirically robust ap-

proach [39] of design over multiple microphone positions. 14 perturbed positions

at a distance of 1 cm from the original position were chosen. The empirical CDF

of the `2 norm of the deviation from the desired response shape, e2 = ‖Dh − r‖22
is presented for the proposed approach, the DALM approach, and the empirical

robust approach in Figure 7.5. It can be seen that the CDF slope is highest for

the proposed approach, lower for the empirical approach and least for the DALM

approach. As discussed earlier in Section 5.7 and Section 6.4, a steeper slope indi-

cates better robustness demonstrating that the proposed approach is more robust

to channel perturbations than the design over multiple positions. Thus the prob-

ability of large deviations is reduced, but at the cost of larger probability of small

deviations. The plot for `∞ performance metric, e∞ = ‖Dh− r‖∞ (not shown) is

similar highlighting the robustness of the proposed approach over the non-robust

approach.

The CDF of the maximum cross-talk value for the three approaches is shown in

Figure 7.6. It can be seen that, as expected, the slope is lowest for the DALM ap-

proach, higher for the empirical approach, and highest for the proposed approach:

offering the highest probability that large errors are small, but again, at the cost
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Figure 7.6: Cumulative density functions of the `∞ weighted error, which gives the

maximum (worst) cross-talk level.

of larger probability of small errors.

7.4 Contributions from this chapter

A main contribution from this chapter is the development of a statistically robust

approach for joint shaping and cross-talk cancelation of the room. The non-convex

optimization formulation involving a probability constraint was approximated by

a convex SOCP problem, and the validity of the approximation was confirmed by

evaluation of the solution.

It has been demonstrated based on the results in Section 7.3 that the formu-

lation is robust; obeying the constraint that the probability of large errors must

be small. This formulation also provides robustness to channel variations caused

by other factors like temperature. At present, this analytical approach results

in slower computation than an equivalent empirical approach based on a design

over multiple microphone positions. But this may change shortly due to recent

developments in efficient algorithms for solving some SOCPs [127]. Once such an

algorithm is devised, this approach can be very useful for providing robustness in

real scenarios. This opens a scope for future work.
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A more accurate model would describe frequency dependence in the channel

variances, especially at low frequencies. This opens a scope for future work.



Chapter 8

Pressure Matching Robust to

Temperature Change

8.1 Background

Sound field reproduction is an active research area which was discussed briefly

in Chapter 2. The aim in the sound field reproduction problem is to create an

intended sound field around the listener. One approach is the active compen-

sated sound field reproduction (AC-SFR) [128, 129] in which the loudspeakers are

pre-calibrated to achieve the desired sound field reproduction. A typical sound

reproduction environment such as a room introduces reverberation, which may

be either exploited or compensated for. The AC-SFR approach presented in this

chapter uses the pre-calibration of a loudspeaker system. This approach has advan-

tages over adaptive filter approaches [16, 130–135] in that the loudspeakers must

be continually adapted and an in-situ microphone array needs to be constantly in

place.

The approach for performing AC-SFR using pre-calibration of a loudspeaker

system is presented in this chapter. A pre-calibrated solution has an advantage

of not requiring a microphone to be located in-situ. However, unlike an adaptive

solution, the pre-calibrated approach cannot update to compensate for changes in

environmental conditions and hence the filter design must be inherently robust.

Robustness is a problem to this approach, due to the perturbation of RIRs induced

by environmental factors such as temperature or humidity changes, or changes in

the room geometry. A robust filter design could be a good option to overcome this

113
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issue.

One promising way of achieving a robust design is by using impulse response

shaping (IRS), which reduces the stringency of requirements for active compensa-

tion. IRS solutions have already been applied for equalizing loudspeaker-microphone

channels and more efficient (MIMO) cross-talk cancelation systems [21, 121] to pro-

vide binaural listening for multiple listeners [58]. However, these IRS approaches

have not been applied to sound field reproduction.

In AC-SFR, early reflections may be used to help construct the reproduced

sound field. Solutions have been proposed using a ring of loudspeakers [128].

However, using a small number of higher order loudspeakers capable of directing

the sound around the room [136–139], the loudspeakers can be made to exploit

first and higher order reflections to create a virtual source [129, 140]. It is then

possible to produce a virtual source from a direction at which there is no loud-

speaker driver, by for example directing sound energy towards the walls. However,

such methods require pre-exciting the room. To actively compensate for the room

reverberation, it is required to pre-excite the room, the required filters may be

extremely lengthly and possess significant anti-causal components. Methods have

been designed to reduce or eliminate the anti-causal components [141] but the

perceptual effects on spatial image quality seem unclear.

The fine structure of RIRs is influenced not only by spatial position and changes

in the room geometry but also the speed of sound. A change in the speed of sound

affects the time taken for a wave front to propagate a certain distance. The change

in propagation times results in a dilation of the RIR. The speed of sound is, in

turn, influenced by changes in temperature and humidity. This RIR perturbation

causes errors in any room equalization system, including AC-SFR systems. This

ultimately results in pre-echo or pre-reverberation [142] in the resultant impulse

responses delivered to the listener. A change in the average room temperature

may be compensated by digitally dilating pre-measured RIRs using thermometer-

measured temperature changes [143, 144].

In this chapter, a long propagation distance is shown to be more heavily in-

fluenced by temperature than a short one. This fact is used to show that higher

order wall reflections are more prone to perturbation from temperature changes

than lower order reflections. A penalty is therefore imposed on the anti-causal
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components of designed loudspeaker filters, so as to reduce the error caused by a

change in temperature, and thereby obtain a more temperature-robust AC-SFR

design. The DALM method introduced in earlier chapters is then applied to nu-

merically solve the resulting optimization problem.

Our goal is to perform an AC-SFR design that reduces the temperature suscep-

tibility to anti-causal components. A simple approach is to perform a minimum

phase equalization. This approach however obliterates the phase response, which

may destroy the fidelity of the acoustic image. A more powerful approach is the

robust quadratic control approach of Brannmark et al. [56, 57, 81]. Simpler de-

signs can also be performed by optimizing the planarity [145], although planarity

control is not a topic of investigation of this paper.

8.2 Temperature robustness

A perturbation in room temperature causes a variation in the speed of sound.

Consider an RIR between a loudspeaker and a microphone in a room. This can

be well-modeled with the finite impulse response c(t) of Nx propagation paths

resulting from wall reflection given by

c(t) =
Nx∑
n=0

anδ(t− dn/v) (8.1)

where an is the amplitude of the wall reflection arriving at the microphone, dn is

the corresponding propagation distance and v = v(T ) is the speed of sound in air

which is a function of temperature T . Taking the Fourier transform of c(t) leads

to the room transfer function (RTF) given by

C(f) =
Nx∑
n=0

ane
j2πfdn/v (8.2)

for frequency f . When the speed of sound changes, the time τn = dn/v taken

to travel distance dn changes. Let the original and perturbed speeds of sound be

v0 and v corresponding to temperatures T0 and T , respectively. The change in

propagation time is given by

∆τn = dn

(
1

v
− 1

v0

)
(8.3)
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Figure 8.1: Variation in path length ∆dn for a path length dn = 1 m with temper-

ature changes.

For a temperature increase (decrease), the propagation time is thus shortened

(lengthened) and τn is negative (positive). Similarly, the change in path length

corresponding to the change in temperature is given by

∆dn = c∆τn = cdn

(
1

v
− 1

v0

)
(8.4)

and in terms of the number of wavelengths by

∆dn
λ

= fdn

(
1

v
− 1

v0

)
(8.5)

i.e., the change in the path length of each propagation path, in fraction of wave-

lengths is hence proportional to both frequency f and the original path length dn.

The variation in ∆dn with temperature is shown in Figure 8.1. It can be seen that

∆dn is inversely proportional to change in temperature.

When equalizing a room impulse response, performance can be degraded sig-

nificantly if the path length changes by only a tenth of a wavelength [38], which

corresponds to a 36◦ change in phase. Thus, even a small change in path length
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has significant effect on cancelation performance. One mechanism for cancelling

a reverberant reflection in a room is destructive interference. Here, a reflection is

canceled by anti-phasing the signal with a signal of equal amplitude generated by

a loudspeaker located within the path of the propagation.

Consider canceling a single tone sinωt of frequency ω = 2πf at a single point

by producing an anti-phase signal sin(ωt+ π). For a temperature-induced change

∆t in a propagation delay of an original signal, the resultant is

sin(ωt− ω∆t) + sin(ωt+ π) = −2sin

(
ω∆t

2

)
cos

(
ωt− ω∆t

2

)
(8.6)

which has amplitude 2sin(ω∆t/2) ≈ ω∆t. For a phase shift in the original tone

of 36◦ (or λ/10), the tone is only suppressed by 4.2 dB. A 20 dB tone suppression

requires the phase shift to be 6◦ or less (i.e. λ/60). Rearranging (8.5), for a 20 dB

suppression of an acoustic path,

f =
1

60dn|v−1 − v−10 |
(8.7)

For only a 1 m/s change in the speed of sound from v0 = 342 m/s to v = 343 m/s

and propagation distance of dn = 10 m, which in a typical living room includes all

first and some second order wall reflections, the 20 dB suppression of such a wall

reflection is only possible up to 195 Hz. Thus, the change in path length due to

a small change in the speed of sound is significant as far as the early reverberant

reflections of an impulse response are concerned.

The speed of sound changes according to the temperature and humidity, and is

this relevant for AC-SFR. An ideal gas law model of the speed of sound originating,

for dry air is

v = 20.03
√
K + T (8.8)

where T is temperature in degrees Celsius and K = 273.15 is the temperature in

degrees Kelvin at 0 degrees Celsius [4]. Substituting (8.8) into (8.5) gives

∆dn
λ

=
fdn

20.03

(
1√

K + T
− 1√

K + T0

)
(8.9)

where T = T0 +∆T and T0 is the original temperature. Taking a first order Taylor

approximation in ∆T , the change in the path length is

∆dn
λ
≈ κfdn∆T (8.10)
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where κ = (20.03)2/2v30. Thus, temperature induced perturbations to the path

length are more extreme at higher frequencies and for longer propagation dis-

tances. This poses a problem for room compensation algorithms and any algo-

rithm seeking to equalize the sound over a sizeable spatial sound zone. In the

particular application of AC-SFR with higher order loudspeakers, sound bounces

off walls so as to achieve spatial sound reproduction. Here certain sound propaga-

tions must be canceled over the zone of reproduction. These propagations could

either be a direct source propagation or a wall reflection. The cancelation of such a

propagation is achieved by destructive interference, i.e., by linearly combining and

anti-phasing one propagating sound with another one. In a room, it is the higher

order reflections that are more distant from the listener. These reflections are more

susceptible to phase changes induced by a change in temperature. When it comes

to performing AC-SFR then, it is possible to use a weak higher order reflection

to anti-phase a stronger lower order reflection. However, the above analysis would

suggest this approach is highly susceptible to temperature. Since a higher order

reflection is more heavily influenced by temperature, the robustness of the cance-

lation approach utilizing higher order reflections is significantly reduced compared

to lower order reflections. Therefore, it is less advisable to use higher order reflec-

tion to perform AC-SFR.

This chapter presents a method of optimizing the designed filters to reduce the

utilization of higher order reflections in performing AC-SFR. We propose control-

ling the reflections which are utilized by adding a penalty function with a weighting

on the different parts of the designed filters. Greater penalty shall be applied to

the earlier parts of the filters, which are more susceptible to temperature. This

will be shown to reduce the levels of pre-reverberation and penalty for the latter

parts of the filters shall be relaxed.

8.3 Sound Field Reproduction

The task of sound field reproduction is to create an intended sound field around

the listener using a number of surrounding loudspeakers. A common type of sound

field is that of a virtual source located near the listener. To compensate for room

reverberation, the RIRs from each loudspeaker to each point in the sound repro-

duction region must be completely characterized. The RIRs are captured using a

microphone array – a pair of concentric arrays of microphones suspended in free

space could be used, but more commonly, a single array is used with microphones
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Figure 8.2: An example sound field reproduction setup showing the acoustic chan-

nels cml and loudspeaker filters hl.

mounted onto a solid baffle. In 2-D, it is sufficient to measure the RIRs to a cir-

cular array of microphones.

To reproduce a sound field over a cylindrical region of space, one can either

match the sound pressure at a number of points, or match the spatial modes. The

pressure matching formulation is discussed in this chapter. In pressure matching

formulation, the sound pressure over a large set of points are set to be equal to

a predefined sound pressure function. To understand the formulation, consider a

simple setup with a microphone array of only M = 2 sensors lying within a circular

listening zone surrounded by L = 3 loudspeakers as in Figure 8.2.

The matrix equation for this system can be written as

[
r1
r2

]
= C

h1h2
h3

 (8.11)
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where C is the block Toeplitz matrix defined as

C =

[
C11 C12 C13

C21 C22 C23

]
(8.12)

of dimension NrM×NhL where Nh is the length of each loudspeaker filter hl and Nr

is the length of each desired response rm at microphone m. The Toeplitz convolu-

tion matrices Cml in C are each constructed from the channel impulse responses cml
from the lth loudspeaker to mth microphone. Typically, Nr and Nh are quite large.

In general, the pressure matching problem can be written in vector form in

time domain as

Ch = r (8.13)

where vector h is a concatenated vector of loudspeaker filters hl and vector r is

the concatenated vector of desired impulse responses to be obtained at each of the

microphones.

The desired sound pressure rm at each point of interest in the sound field is

derived as follows. The sound pressure for an acoustic monopole at frequency f is

given by

Pd(xm; f) =
e−j2πfdm/v

dm
(8.14)

where dm , ‖xm − yvs‖, or in the time domain, we get

pd(t;xm) =

∫ ∞
−∞

ej2πf(t−dm/v)df

dm
=

1

dm
δ (t− dm/v) (8.15)

When the signal for the desired sound field at each point is discretized or repre-

sented digitally using the inverse discrete Fourier transform,

pd(q;xm) =
1

2π

N−1∑
n=0

ej2π(qn/N−fndm/v)

dm
=

1

dm
v csincN (nτm) (8.16)

where csinc is a circular sinc function [146], τm = Fsdm/v is the propagation delay

of the virtual source to microphone m in number of samples and fn = nFs = Nr

is the analog frequency. (Here, Nr is the length of GIR same as in Section 4.1.)

Hence the desired response vector is

rm = [pd(0;xm), · · · , pd(Nr − 1;xm)]T (8.17)
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8.3.1 Inverse filter solution

The basic solution to the problem in (8.11) is the inverse filter solution, which

finds the filter that best cancels the effect of C at the desired points. However,

the designed filter coefficients may be large, making it difficult to implement the

filters practically. This can be avoided by formulating the problem as a Tikhonov-

regularized optimization that additionally constrains the energy content in the

filter coefficients [147, 148]. The regularizer is added as a penalty function (wT
tikhh)2

with penalty weighting vector wtikh. The penalty weighting decides the amount by

which the filter coefficients are to be reduced. The typical inverse problem, thus,

aims to minimize the objective function given by

(h) =
1

2
‖Ch− r‖22 +

1

2
‖Wtikhh‖22 (8.18)

where Wtikh = diag(wtikh). This time domain formulation makes the matrix C quite

large. Typically, one chooses the inverse filter in proportion to the length of the

acoustic channels Nc ∝ Nh. Matrix C then has LNh columns and M(Nc+Nh−1) =

M [(α+1)Nc−1] ≈ (α+1)MNc rows so that the number of elements in C is of order

MLN2
c . However, for inverse filter design, the DFT (or equivalently, a frequency

domain approach) is used to diagonalize the problem. For pressure matching over

a large number of points, the matrix C is not stored in memory for channels of

practical length; instead the DFT of each vector cml is stored.

8.3.2 Impulse response shaping solution

As seen in previous chapters, impulse response shaping (IRS) is a more versatile

approach than inverse filtering, allowing explicit control of pre-echo, early reflection

and late reverberation. The approach designs loudspeaker filters by minimizing

a weighted error function. This imposes less stringent constraints than inversion

and hence results in an inherent robustness. The objective function for the IRS

solution to the pressure matching problem of sound reproduction is given by

(h) =
1

2
‖W1(Ch− r)‖22 +

1

2
‖W2h‖22 (8.19)

where W1 = diag(wDR) is a diagonal weighting matrix on the desired microphone

responses and W2 = diag(wtikh) is the diagonal weighting matrix on the loud-

speaker filters. The weights wDR were defined in equation 4.6 of Chapter 4 in

accordance with the acoustic masking limit [3, 77, 78]. wDR is defined based on a
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pre-echo time N1 taps, a direct part and early reflections of N2 taps followed by

the late reverberation N3 = Nr−N1−N2 taps as described in Chapter 4. However

from (8.14), the propagation time from virtual source to each microphone location

xm is now a function of the location. The position of the direct part, and hence the

pre-echo time N1 is now a function of the the microphone location for an acoustic

monopole desired field in the pressure matching problem. A distinctive feature of

the pressure matching problem is that these parameters are now a function of the

pressure matching location.

The filter weight vector wtikh enables shaping of the loudspeaker filters to avoid

placing of high levels of energy in the early parts of the filters which generates the

pre-echo.

wtikh = (1 + αλpre)λtikh (8.20)

where α is the pre-reverberation penalty factor, λpre is a pre-reverberation penalty

weighting vector and λtikh is the Tikhonov regularization factor. λpre is defined as

an exponentially decaying function that strongly penalises the early part of the

loudspeaker filters but applies no weight past the time index n0:

λpre(n) =

{
e−(n−n0)/τ−1
en0/τ−1 n ≤ n0

0 n > n0

(8.21)

The choice of n0 and τ are based on the following considerations on the pre-echo:

• Assuming that the loudspeakers are approximately equidistant from the

sound reproduction region, let Nmdl(x) be the minimum propagation time

from a loudspeaker to a point of interest x in the sound reproduction region.

The components of the loudspeaker filters contributing to pre-reverberation

occur till N1 + 1 taps minus the propagation time of Nmdl taps. The loud-

speaker penalty weight is thus applied on this region. The time of n0 taps

indicates the duration of time used to exploit room reflections. For exam-

ple, an n0 of 30 ms implies a propagation distance of 10.2 m which typically

includes first order and some second order reflections in small rooms.

• Decay rate parameter τ determines how aggressively the early energy in

loudspeaker filters is penalised in relation to late energy. To penalise all of

these components equally, one would set τ large.

The loudspeaker weighting function is used in conjunction with Tikhonov regular-

ization to ensure that the designed filters maintain causality.



8.4. RELEVANT SOLUTIONS 123

8.4 Relevant Solutions

The impulse response shaping formulation is solved using three different algorithms

specifically, steepest descent method, conjugate gradient descent method (CG)

and a variant of the Fast DALM algorithm D-2-2 derived in Chapter 5. The

performance of the algorithms in the pressure matching problem are compared in

Section 8.6.

8.4.1 Steepest Descent Method

The steepest descent method [85] solves the problem iteratively using the update

step

hi+1 = hi − µ
∂

∂hi
(8.22)

where the gradient vector of the objective function ∂/∂hi is given by differentiating

(8.19):

∂

∂h
=
(
CTWT

1 W1C +WT
2 W2

)
h−

(
CTWT

1 W1r
)

= CTW 2
1 (Ch− r) +W 2

2 h (8.23)

The convergence of this algorithm depends on the proper choice of the step size

parameter [88]. The convergence rate of steepest descent method is generally

linear. In this work, the steepest descent is implemented using conjugate gradients

and approximate line searches based on polynomial interpolation with Wolfe-Powel

conditions [149].

8.4.2 Conjugate Gradient Descent Algorithm

The conjugate gradient (CG) method [93] is also applied to solve the pressure

matching problem. The advantage of CG method over steepest descent is that it

converges quickly since the step direction is made to be orthogonal to the previous

step directions. The objective function in (8.19) can be rewritten as

(h) =
1

2

∥∥∥∥[W1C
wT

tikh

]
h−

[
W1r

0

]∥∥∥∥2
2

(8.24)

It can be seen that the new matrix A , [CTWT
1 wtikh]T is rectangular. The

problem can be formulated as minh ‖ATAx − ATb‖22/2 where x = h and b =
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[rTWT
1 0]T. Now, the CG method can be easily applied to minimize the error

ATAx− ATb. The algorithm can be summarized as follows:

Step 1: Initialize x0
Step 2: r0 = ATb− ATAx0

= CTW 2
1 r −

(
CTW 2

1 Ch0 + wtikhw
T
tikhh0

)
p0 = r0
k = 0

Step 3: Repeat

αk =
rTk rk

pTkA
TApk

=
rTk rk

pTk (CTW 2
1 Cpk+wtikhw

T
tikhpk)

xk+1 = xk + αkpk
rk+1 = rk − αkpk
If rk+1 is small, exit loop

βk =
rTk+1rk+1

rTk rk

pk+1 = rk+1 + βkpk
k = k + 1

End repeat

(8.25)

The algorithm generally converges in n steps, where n is the number of distinct

eigenvalues of the matrix C.

8.4.3 Variant of Fast D-2-2 algorithm

The pressure matching problem requires the DALM algorithm to solve an `2 regu-

larized `2 minimization problem of the form of (8.19). The derivation is similar to

the approaches presented in Chapter 5 and Appendix A, by finding the Fenchel con-

jugates and using the Fenchel duality theorem. The dual augmented Lagrangian

corresponding to the primal problem (8.19) is

min
y,z

1

2
yTy −WrTy +

1

2
zTW3z

− hT
(
z − CTWT

1 y
)

+
β

2
‖z − CTWT

1 y‖22
(8.26)

where y, z are the dual variables and 0 < β ≤ 1 decides the amount of augmenta-

tion applied. W3 is a diagonal matrix with elements 1/w2
tikh. The update equations

for h, y and z are found from the derivative of the dual Lagrangian with respect
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to each of the corresponding variables. As seen in previous chapters, Fast DALM

[34] for this problem is found by replacing the y-update by one step of the CG

algorithm and can be summarised as

Step 1: zk+1 = (W3 + βI)−1
(
βCTWT

1 y + h
)

Step 2: gk = yk −Wr + βW1C(W1C)Tyk − βW1Czk+1 +W1Chk

αk = gTk gk/
(
λgTk gk + βgTk (W1C)(W1C)Tgk

)
yk+1 = yk − αkgk

Step 3: hk+1 = hk − β(zk+1 − (W1C)Tyk+1)

(8.27)

The convergence of DALM algorithm is generally super-linear; the Fast DALM

algorithm further improves the convergence due to the CG step replacing the

matrix inversion.

8.5 Forward Adjoint Oracle Approach

Forward Adjoint Oracle Approach (FAO) [108] implementations are similar to

those presented in previous chapters using FFT operations. This is possible be-

cause the W1C matrix is a Toeplitz matrix representing convolution.

8.5.1 Implementation of Ch using Fast Fourier Transforms

The implementation of Ch using FAO is same as the procedure mentioned in 5.5

in Chapter 5. It is implemented as

rm = F−1
{∑

l

(
F {čml} � F

{
ȟl
})}

(8.28)

where F is the Nr point DFT operator, čml is cml zero padded to length Nr and �
represents Hadamard product. This operation consists of only forward and inverse

fast Fourier transform operations, vector multiplications and summation along L

loudspeakers. Thus, the complexity O (N2
r ) of one matrix multiplication has been

reduced to O (Nrlog (Nr)) using this implementation.
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Figure 8.3: Loudspeaker filter weights for a 30 ms modeling delay and a 2 m

loudspeaker-to-microphone distance. Here, λtikh = 0.01 and α = 4.

8.5.2 Implementation of CTy using Fast Fourier Transforms

Using the same principle as the previous section, CTmlym can be represented as

CTmlym = (F−1DmlF )
T
ym = FTDml

(
FT
)−1

ym where Dml is a diagonal matrix of

the FFT values of Cml. This is equivalent to performing F {F {čml} � F−1 {ym}}.
Therefore, CTy can be written as

ȟl = F

{∑
m

(
F {čml} � F−1 {ym}

)}
(8.29)

which results in a vector ȟl of length Nr. The desired result is obtained by trun-

cating ȟl to length Nh. This truncation does not cause any error in ȟl since cml
has been zero padded to length Nr and the terms removed are the results of terms

of y multiplied by the added zeroes. This is equivalent to deleting Nh rows from

the end of matrix F . Here again, the complexity O (N2
r ) has been reduced to

O (Nrlog (Nr)) using this implementation.

8.6 Simulation results

Simulation studies were performed for a room of dimension 6.4 × 5 × 4 m with

a wall reflection coefficient 0.7 and a sampling frequency of 16 kHz. The T60 of
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Figure 8.4: Layout of the pressure matching setup used in the simulations.

the room was 186 ms. To compute the loudspeaker filters, the channels used were

truncated to a length Nc = 1200 and shaping filters of length Nh = 4800 and a

delay Nd = 1102. The loudspeakers were arranged as 5 circular arrays each with

8 loudspeaker drivers. The arrays were of radius 0.15 m each circular array being

located 2 m from the centre of the listening region, at angles 0◦,±72◦,±144◦. Such

an arrangement was used to represent a monopole source. The microphones were

arranged as 2 concentric spherical arrays with radii 0.2 m and 0.3 m respectively,

each with 100 microphones arranged in a 100 point Fliege geometry. The spherical

reproduction region has a centre located at (-40,20,-50) cm relative to the centre

of the room. A layout of the setup used is shown in Figure 8.4. The modelling

delay to direct path, ‘don’t care’ regions and post-reverberation regions were set as

30 ms, 10 ms and 146 ms respectively. The weighting vector w1 was set according to

[39] to match the temporal masking limit. The weight vector w2 was set according

to (8.20) with α = 4, β = 12 and λtikh = 0.01. The filter weight vector w2 applied

to the loudspeaker filters in this experiment is shown in Figure. 8.3.

The performance metric used is the direct to reverberation energy ratio (DRR)

which quantifies the reverberation reduction performance. The DRRs are com-

puted separately for pre-reverberation (γpre) and post-reverberation (γpost) using

a 3 ms raised cosine window to clip the direct part, and windows with 1.5 ms co-
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Figure 8.5: One of the Global Impulse Responses (GIR) obtained using the shaping

algorithm based on DALM in a 6.4× 4× 3 m room with wall reflection coefficient

of 0.7 at 20◦ C.

sine roll off to clip the pre-reverberation and post-reverberation in the vicinity the

direct component for all the three shaping algorithms and inversion to compare

the performance.

All the three shaping algorithms namely steepest descent, CG and Fast DALM

as well as the inversion method were tested for their performance in the pressure

matching problem. A simulation comparing inversion and shaping algorithms was

performed at two different temperatures. In order to quantify the temperature

robustness, a design was performed at 20◦ C and tested at 24◦ C. One of the Global

Impulse Responses (GIR) obtained with the shaping algorithms at a designed

temperature of 20◦C and the same test temperature are shown in Figure. 8.5.

At the designed temperature, it can be seen that the responses show low pre-

reverberation and post-reverberation, with a peak at the direct path. The GIR

obtained at the perturbed temperature of 24◦C is shown in Figure. 8.6.

The response obtained with inverse filtering is shown in Figure. 8.7 and Fig-

ure. 8.8. It can be seen that there is significant pre- and post-reverberation. This
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Figure 8.6: One of the Global Impulse Responses (GIR) obtained using the shaping

algorithm based on DALM at 24◦ C.

could be reduced using a longer inverse filter and smaller regularization parameter

(currently 10−2). At the test temperature, the performance is poor with significant

pre and post reverberations as in Figure. 8.8. Thus, inversion performs better than

shaping when the designed and test conditions are the same.

The frequency responses of the shaping approaches and inverse filter are shown

in Figure. 8.9 and Figure. 8.10. By comparing these figures, it can be seen that

the frequency response of the shaping approaches do not vary much with tem-

perature change, but the frequency response with inversion becomes increasingly

noisy at higher frequencies for a temperature change. In addition, among shaping

algorithms, the responses with CG and DALM are similar.

The performance of the shaping algorithms in this problem is tabulated in

Table 8.1. It can be seen from Table 8.1 that CG converges to a lower objective

value; but at the cost of higher computation time. Both SD and DALM algorithms

were run with a fixed number of iterations for this problem (240 for SD, 2000 for

DALM). It was observed that DALM iterations produce a solution close to CG

in less computation time. Since the problem is convex, all the algorithms should
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Figure 8.7: One of the Nett Impulse Responses (NIR) for loudspeaker driver 1 to

microphone 1 obtained with inversion at 20◦ C.

Table 8.1: Performance of the shaping algorithms at the designed temperature.

Performance metrics CPU time and γ are defined as in Section 4.4. Objective

function value is the final value of the objective in (8.19) obtained using the dif-

ferent algorithms.

Temperature Algorithm CPU Time Objective γpre γpost
◦ C (s) value (dB) (dB)

20 SD 3205 45.23 14.3 -2.1

20 CG 7778 0.0546 18.4 -8.7

20 DALM 652 0.0755 15.6 -6.2

24 SD 3207 44.16 14.4 -2.1

24 CG 7780 0.052 18.2 -8.6

24 DALM 652 0.0641 15.6 -6.2

converge to the same solution; but SD may take a long time to achieve this. Allow-

ing DALM iterations to run until convergence may take slightly more time than

652 s, close to 900 s. The iterations were stopped at this stage because a solution
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Figure 8.8: One of the Nett Impulse Responses (NIR) for loudspeaker driver 1 to

microphone 1 obtained with inversion at 24◦ C.

close to the minimum was obtained with a good DRR performance. Evaluating

the optimization performance using a combination of objective and computation

time shows that DALM performs the best for this problem, then CG and finally SD.

Another interesting observation from the results in Table 8.1 is that the DRR

values γpre and γpost for the IRS methods do not vary much with change in temper-

ature. Among these, the values are highest for CG method, indicating its better

optimization performance. But it can be seen that the computation time taken

is higher to converge to an objective close to the solution provided by DALM.

DALM gives a slightly lower DRR but in a computationally much faster man-

ner. The DRR values obtained for inversion was found to be γpre = 16.4 dB and

γpost = 12.6 dB at 20◦ C. Thus, the DRR values are higher for inversion than

DALM and SD solutions at the designed temperature. This is as expected, since

inversion gives best performance at the designed conditions.

In order to check the temperature robustness, the designed filters were tested

at a different test temperature. The DRR values for this test are tabulated in

Table 8.2.

Results in Table 8.2 show that the DRR values drop drastically for the inverse
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Figure 8.9: Frequency responses of the GIRs obtained with shaping methods and

inversion at 20◦ C.

Table 8.2: DRR performance when the test temperature is varied. Design tem-

perature is 20◦ C.

Algorithm γpre(dB) γpost (dB) γpre(dB) γpost (dB) γpre(dB) γpost (dB)

at 18◦ C at 18◦ C at 22◦ C at 22◦ C at 24◦ C at 24◦ C

SD 14.1 -2.5 14.3 -2.3 14.4 -2.4

CG 18.3 -9.3 18.4 -8.75 18.4 -8.9

DALM 15.3 -6.7 15.8 -6.25 15.8 -6.4

Inversion 7.8 4.2 8.1 3.4 5.9 0.4

filtering solution when tested at a different temperature. This matches with the

theoretical observation that inverse filter solution finds an exact inverse but is not

robust to changes in channel. Coming to the shaping solutions, the DRR values

vary only marginally for all the three algorithms, highlighting their temperature

robustness. The post-reverberation levels of these algorithms are low, because the

GIR weight function chosen concentrates on the cancellation of pre-reverberation.
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Figure 8.10: Frequency responses of the GIRs obtained with shaping methods and

inversion at 24◦C.

From the analysis of the results, it can be seen that IRS method presented

provides a better temperature robustness than inversion. Among the IRS solu-

tions, the DALM solution provides the best performance with good reverberation

cancelation in a low computation time.

8.7 Contributions from this chapter

To conclude, this chapter presented an application of the impulse response shap-

ing formulation developed in this thesis. The shaping algorithm was applied to

pressure matching of an active compensated sound field reproduction system to

achieve an inherent robustness to change in temperature. The shaping solution was

compared to the standard Tikhonov regularized inverse filtering scheme to analyse

the robustness performance. The shaping algorithm was solved using three solu-

tion algorithms viz., steepest descent, conjugate gradient descent and fast DALM

algorithm. The fast DALM algorithm developed in previous chapters was slightly

modified to solve the pressure matching formulation. It has been observed from the

simulation results that the fast DALM algorithm is computationally more efficient
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than CG and SD, providing similar results in low computation time. The com-

putation time presented in Section 8.6 is the time taken to execute the shaping

algorithm with no prior knowledge of the solution. In the case of a tempera-

ture change, the optimum solution will vary by only a small amount. Since the

optimization problem is convex (i.e., there are no local minima in which the so-

lution could be trapped), re-running the algorithm with the previous solution as

the initialization should converge rapidly to this revised minimum. In this way,

an AC-SFR implementation that can adapt to temperature changes in real time

should be feasible. Validation of this idea is an obvious direction for future re-

search. Thus the major contribution of this chapter is the application of impulse

response shaping to AC-SFR problem and the development of the fast DALM al-

gorithm to obtain a computationally fast solution to the problem.



Chapter 9

Conclusion

The thesis presents a new approach for Acoustic Impulse Response Shaping suit-

able for joint shaping and cross-talk cancelation in multi-channel systems. The

shaping approach utilizes a set of pre-filters, which are positioned before the loud-

speakers (in a typical signal path in a room from source to loudspeakers, and then

to the listeners) to regulate the reverberations at the listening positions. Address-

ing the fact that the room impulse responses (which form the basis for designing

the pre-filters) are typically long, resulting in a large amount of data, the thesis

has specifically concentrated on the development, realization and demonstration

of computationally fast and memory efficient algorithms to design optimal filters.

This improvement has been achieved using a regularized optimization formula-

tion, which was solved using an algorithm known as Dual Augmented Lagrangian

Method (DALM), known in the sparse reconstruction literature for its super-linear

convergence. A computationally faster version of DALM, called Fast DALM was

utilized in the thesis for computational efficiency. Memory efficiency was achieved

using implementations based on a Forward Adjoint Oracle (FAO).

Though impulse response shaping is performed in time domain, additional fre-

quency response control is required in practice to avoid large frequency response

fluctuations. The thesis presents an approach to achieve joint frequency control

by implementing this as a projection step which can be easily incorporated into

the fast time shaping algorithm developed. Computationally fast versions of the

projection algorithm were developed to reduce the impact of this additional step

on the computational speed of the original algorithm. Thus, a fast approach for

joint time and frequency shaping as well as cross-talk cancelation has been devel-

oped in this thesis.

135
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As discussed earlier, the shaping approach depends on the room response mea-

surements which can vary due to measurement errors, atmospheric changes and

changes in position inside the room. Therefore, robustness to channel variations is

essential for a practical implementation of s shaping system. This thesis presents

two approaches for achieving spatial robustness, one being an empirical design ap-

proach in which shaping filters robust to a number of perturbed positions around

the original position are designed. This approach is based on a method available

in literature, but we have improved the computational efficiency by making use

of convex formulations and the DALM algorithm. Another spatially robust ap-

proach developed in this thesis provides statistical robustness, by probabilistically

constraining large deviations from desired responses. This approach was seen to

provide better robustness than the empirical approach, but this algorithm could

not be developed into a practically realizable shaping system due to the difficulty

in finding suitable computationally fast solution algorithms. The statistically ro-

bust problem turned out to be a second order cone program, and the difficulty in

finding a fast and memory efficient algorithm for solving prevented us from devel-

oping it further as a part of this thesis.

A final contribution from this work is the application of shaping algorithms to

an active compensated sound field reproduction problem. The shaping approach

was specifically applied to achieve temperature robustness which is an issue with

an AC-SFR. The approach was found to work well, providing better temperature

robustness compared to a traditional inverse filtering scheme. This application

highlights the versatility of the algorithm developed as a part of this thesis and its

applicability to a wide range of problems.

A summary of specific contributions from each chapter are listed in the follow-

ing section.

9.1 Original contributions

CHAPTER 5: The major contributions from this chapter were the development of

fast algorithms for impulse response shaping. The algorithms developed were vari-

ants of the Dual Augmented Lagrangian Method, known in sparse reconstruction.

The fast DALM algorithm (a computationally fast version of DALM) for solving an

`1 regularized `2 norm minimization was applied to the shaping problem and good
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performance results were obtained in a computationally fast manner. Therefore,

DALM algorithms to solve some other regularized formulations that can be useful

for the problem specifically, `2 regularized `2 norm minimization, `1 regularized

`∞ norm minimization and `2 regularized `∞ norm minimization were developed.

One of the key contributions was the development of a fast DALM algorithm for

solving the `1 regularized `∞ norm minimization problems, which is most advan-

tageous for the development of a shaping implementation in a real scenario. The

efficacy of the fast DALM algorithms in shaping was verified using simulation and

real time experimental studies. It was found from the experimental studies that

each DALM iteration took only a few milliseconds and most of the computation

time was spent in calculating the FFT of the vectors. This posed a limitation on

improving the speed of the algorithms further, since there was really no way to

improve the speed of FFT in Matlab. However, a possible improvement would

have been to make the filter design adaptive.

Adaptive design can be achieved by performing the DALM iterations from the

initial point only for the first design in a room and continuing the iterations from

the previous optimum in the iteration for the subsequent channel perturbations.

This could be a good solution because we assume that the minimum point only

shifts to a nearby location due to perturbations and the iterations can still con-

verge to the new minimum even if we start from an intermediate iteration of the

first design. Such an improvement is possible primarily due to the convexity of our

formulation, which avoids any chance of the solution getting trapped on a local

minima before converging to the global minimum.

In addition to the original DALM based shaping formulation, the chapter also

presented a modification of the fast DALM formulations to an empirical design

over multiple positions to achieve spatial robustness to microphone position er-

rors. The empirical design approach was introduced by Jungmann et al. in [39]

but their algorithm for finding the shaping filters based on steepest descent is

computationally slow. A faster version of this approach based on fast DALM is

presented in this chapter.

CHAPTER 6: An approach for joint time and frequency shaping was presented

in this chapter. The algorithms presented in Chapter 5 designed shaping filters

based in the time domain which can result in undesired peaks and troughs in the

frequency spectra of the filtered responses. For effective shaping, both time domain
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shaping and frequency domain flattening of the resultant responses were essential,

an approach for which was detailed in Chapter 6. The frequency spectrum control

was implemented as a projection step along with the original DALM iterations.

This was possible because the DALM algorithm is a proximal minimization al-

gorithm [35] and this projection step can be easily combined with DALM as an

additional projection. An efficient approach for projection onto a low dimensional

norm ball was presented in this chapter, which was used to achieve the frequency

flatness. The extension of the algorithm to design over multiple microphone posi-

tions to achieve spatial robustness was also presented.

The joint time and frequency shaping algorithm presented in this chapter is in

the form of a constrained minimization. The frequency projection works by per-

forming the projection for all the positive frequencies one after the other. There-

fore, the time shaping would have distorted significantly by the time projection

onto all frequencies has completed. This was the reason for a slightly slow con-

vergence of this joint shaping approach; though it was faster than the approaches

previously presented in literature [28, 39]. A better formulation would have been to

include a norm of the frequency responses also into the objective function, rather

than as a constraint. This was an initial formulation that was tried as a part of

this work, but the dual problem in such a case turned out to involve an infimal

[150] convolution operator, which was hard to solve. Therefore, the current and

simpler projection approach was developed. More details of the earlier formulation

involving infimal convolution operators are provided in Section 9.2 for future work.

CHAPTER 7: A statistically robust formulation for achieving spatial robust-

ness in the shaping approach was presented in this chapter. The desired shaping

along with spatial robustness was achieved by explicitly limiting the probability

of large deviations from the desired performance. This resulted in the formulation

of a complicated optimization problem which also required knowledge of the error

model of channel variations. Using some assumptions based on the properties of

the room response and channel variations, the optimization problem was simpli-

fied into a convex SOCP. It was brought out from the simulation studies that this

approach was very robust, but had a limitation due to large memory consumption.

This may be solvable by using an efficient solver for solving the SOCP; this is left

for future work.

CHAPTER 8: An application of the shaping formulation to a real world prob-
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lem of active compensated sound field reproduction was presented in this chapter.

A variant of the fast DALM formulation for solving the `2 regularized `2 norm

minimization was used to solve the impulse response shaping formulation of a

pressure matching problem. Application of shaping to AC-SFR provided temper-

ature robustness, which was an issue when using traditional inversion. The added

benefit of computational efficiency of DALM suggests that this approach could

be very useful for AC-SFR. This application highlights the flexibility and wide

applicability of the algorithms developed in this thesis.

9.2 Future Work

There is a lot of scope for taking up future work based on this project.

First,the fast DALM algorithms developed in Chapter 5 use a conjugate gradi-

ent step in the update equation of dual variable. The computational performance

may be further improved if a Preconditioned Conjugate Gradient (PCG) [151] with

a proper choice of pre-conditioner is used.

Another option would be to develop an adaptive form of the DALM based

shaping algorithm developed in this thesis as outlined in Section 9.1 and detailed

here. First, the DALM iterations are performed starting from the initial value till

the algorithm converges to the solution. When a channel perturbation occurs, the

DALM iterations are resumed from the previous optimum which can then con-

verge to the new minima quicker than performing all DALM iterations from the

beginning. Such an adaptive design could be possible because of the convexity of

the formulation and the assumption that a channel perturbation just shifts the

minimum point; which can be easily reached starting from an intermediate itera-

tion step of the first design.

The experimental validation using the VACS system offer scope for further ex-

perimentation. For example, analysis of robustness of the algorithms to change in

microphone positions, effect of the presence and absence of a moving object in the

room, opening and closing of the door etc. The results can be used to improve the

shaping formulations to provide robustness to different kinds of variations.

The frequency flattening step in the joint time and frequency shaping algo-

rithm presented in Chapter 5 was achieved in this thesis using a projection step.
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An alternative would be to include a norm of the frequency response into the orig-

inal regularized minimization as outlined in Section 9.1. Such a formulation, for

example, using D-∞-1, is given by

min
h
‖WCh−Wr‖∞ + λ‖h‖1 + µ‖Gh‖∞ (9.1)

where λ, µ are the regularization parameters. Let f1(x) = ‖WCh−Wr‖∞, f2(x) =

λ‖h‖1 and f3(x) = µ‖Gh‖∞. The dual of this problem is of the form

max
y

f ∗1 (y)�f ∗2 (y)�f ∗3 (y) (9.2)

where � represents the infimal convolution [150] defined as

(f1�f2)(y) = inf{f1(y − z) + f2(z)
∣∣z ∈ Rn} (9.3)

for functions f1(y) and f2(y) defined for y ∈ Rn.

We had an initial attempt at deriving the dual (9.2) for developing a fast DALM

algorithm to solve such a problem. However, it turned out to be complicated due

to the presence of the infimal convolution operator, which we could not solve. The

development of fast DALM to solve such a joint time and frequency shaping prob-

lem provides scope for future work.

The statistically robust formulation presented in Chapter 7 used some assump-

tions of Gaussian IID models for error variations due to microphone positions. This

was, however, an approximation; especially the IID assumptions. In an actual sce-

nario, there can be dependencies in the frequency domain. A more accurate model

would describe frequency dependence in the channel variances, especially at low

frequencies. This opens scope for future work. At present, the statistical model

results in slower computation than an equivalent empirical approach based on a

design over multiple microphone positions due to the difficulty in finding a fast

algorithm for solving an SOCP, since the final optimization problem reduces to

an SOCP. But this may change once efficient algorithms for solving SOCPs are

developed.

The application of fast DALM algorithms to AC-SFR in Chapter 8 led to

achieving temperature robust sound field reproduction in a computationally fast

manner. More research into this problem may result in real time implementations

of temperature robust AC-SFR systems based on impulse response shaping. This

also highlights the flexibility and the applicability of the algorithms developed in

this thesis to a wide range of problems, which clearly indicates lot of scope for

future work.



Appendix A

Preliminaries for Deriving Dual

Augmented Lagrangian Method

This section explains some duality results that simplify the derivation of the Dual

Augmented Lagrangian Method (DALM) algorithm.

A.1 Fenchel Duality Theorem

The Fenchel duality theorem [150] states that if f is a proper convex function on

RN and g is a proper concave function on RM , then

min
x

f(x)− g(x) = max
y

g∗(y)− f ∗(y) (A.1)

where f ∗ is the convex conjugate of f and g∗ is the concave conjugate of g, defined

as
f ∗(u) = sup

x
{〈x, u〉 − f(x)}

g∗(u) = inf
x

{〈x, u〉 − g(x)}
(A.2)

where 〈x, u〉 = xTu.

A corollary of the Fenchel duality theorem (corollary 291.2 of theorem 31.2

[150]) is that if f is a proper convex function on RN and g is a proper concave

function on RM and A is a linear transformation from RN to RM , then

min
x

f(x)− g(Ax) = max
y

g∗(y)− f ∗(ATy) (A.3)
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A.1.1 Dual problem of an `1 regularised objective function

We can apply the Fenchel duality theorem to a convex minimisation problem of

the form

min
x

fl(x) + ‖x‖1 (A.4)

This is in the form of (A.1) where g(x) = −fl(x) and f(x) = ‖x‖1. The relationship

between convex and concave conjugates of a function g(x) is given by g∗(u) =

g∗(−u) (from equation 3.27 of [152]) and so g∗(y) = −fl∗(−y). For f(x) = ‖x‖1
and x ∈ RN , we have

f ∗(y) = sup
x
〈x, y〉 − ‖x‖1

= sup
x

N∑
i=1

xiyi − sgn(xi)xi

= sup
x

N∑
i=1

xi(yi − sgn(xi))

=

{
+∞ if any yi > 1

0 otherwise

=

{
0 if ‖y‖∞ ≤ 1

+∞ otherwise
= I∞1 (y)

(A.5)

which is the indicator function [41] of the set for which `∞ norm ≤ 1. (The indi-

cator function of a set is zero when the argument is in the set and +∞ otherwise).

Using the Fenchel duality theorem, the dual problem for (A.4) can now be written

as

max
y

− f ∗l (−y) subject to y ∈ B∞1 (A.6)

where B∞1 is the B1 ball [34] in which ‖y‖∞ ≤ 1 i.e., B∞1 is defined as

B∞1 , {y ∈ Rn

∣∣∣∣ ‖y‖∞ ≤ 1} (A.7)

When the objective function is in the form of fl(Ax) + ‖x‖1, using (A.3) with

g(x) = −fl(Ax) and f(x) = ‖x‖1, the dual becomes

max
y

− f ∗l (−y)−
{

0

∣∣∣∣ ‖ATy‖∞ ≤ 1

}
(A.8)
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which is equivalent to

max
y,z

− f ∗l (−y)− I∞1 (z)

subject to z = ATy
(A.9)

Similarly, when the objective is in the form of fl(Ax) + λ‖x‖1, the dual is

max
y,z

− f ∗l (−y)− I∞λ (z)

subject to z = ATy
(A.10)

where

I∞λ (z) =

{
0 if ‖z‖∞ ≤ λ

+∞ otherwise
(A.11)

A.1.2 The Fenchel Conjugate of ‖x− b‖22/2λ
For a function f1(x) = ‖x− b‖22/2λ, the Fenchel conjugate is

f ∗l (y) = sup
x

yTx− 1

2λ
‖x− b‖22 (A.12)

The supremum value occurs at any x satisfying

∂(yTx− 1
2λ
‖x− b‖22)

∂x
= 0 (A.13)

This gives

λy − x+ b = 0

or x = λy + b
(A.14)

Substituting (A.14) into (A.12), we obtain

f ∗l (y) = yT (λy + b)− λ2yTy

2λ
= yT b+

λyTy

2
(A.15)

A.1.3 The Fenchel Conjugate of ‖x− b‖∞
For a function of the form fl(x) = ‖x− b‖∞, the conjugate function can be written

as
f ∗l (y) = sup

x
yTx− ‖x− b‖∞ (A.16)
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Using the transformation u = x− b,

f ∗l (y) = yT b+ sup
u

yTu− ‖u‖∞

= yT b+ I11 (y)
(A.17)

where I11 (y) is the indicator function of `1 norm. This follows from the basic

principle that the Fenchel conjugate of a norm is the indicator function of its dual

norm [150]. In general, the norm indicator function Ipλ(y) is defined as

Ipλ(y) =

{
0 if ‖y‖p ≤ λ

+∞ otherwise
(A.18)

A.2 Soft Thresholding function

A soft thresholding function is defined as

soft(a, γ) =


0 if |a| < γ

a− γ if a > γ

a+ γ if a < −γ
(A.19)

and this can be used to approximate projection onto an `1 norm ball. Any mini-

mization problem of the form

min
y

1

2
‖y − a‖22

subject to ‖y‖1 ≤ 1

(A.20)

can be solved iteratively by applying

yn = soft(an, γ) for n = 1 . . . N (A.21)

to each element yn of y [112] where, γ is chosen for each iteration to be

γ =
‖a‖1 − 1

N
(A.22)

It can be seen that γ quantifies the deviation of the `1 norm from one in each

iteration.



Appendix B

Preliminaries for the Statistical

Model

The statistically robust formulation developed in Chapter 7 has been approxi-

mated into a convex form using some assumptions based on the properties of

room response and some simplifications. Justification for these approximations

and simplifications are detailed here.

B.1 Error variance for Independent Identically

Distributed Gaussian perturbations

An important simplification used in the statistically robust formulation is the

assumption that the perturbations in the measured channel coefficients (caused

by measurement error or sensor movement) are distributed according to an in-

dependent and identically distributed Gaussian model. The justification for this

assumption is detailed along with the implications in the section.

Consider a single sensor in a pure diffuse reverberant field, perturbed in posi-

tion by vector ∆x. The sound pressure at a perturbed location P (x + ∆x;ω) is

statistically related to the sound pressure at the original location P (x;ω) (where

ω is the angular velocity). The correlation in the sound pressure between the two

locations can be written:

E{P ∗(x+ ∆x;ω)P (x;ω)}√
E{|P (x+ ∆x;ω)|2}

√
E{|P (x;ω)|2}

=sinc(kR)

145
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where R is the amplitude of the perturbation and k is the wave number. It has

been shown [38] that the average error in perturbing sound pressure due to the

perturbation is given by

E{|P (x + ∆x)− P (x)|2} = 2E{|P (x)|2}[1− sinc(kR)] (B.1)

Any diffuse sound field can be written [153] as the sum of a number Nw of

plane waves ξn(ω)e−ikx·
~φn :

P (x;ω) =
Nw∑
n=1

ξn(ω)e−ikx·
~φn (B.2)

where ~φn is a vector of the phase factors. For a small Gaussian perturbation

kR � 1, the complex exponential function can be replaced with its first order

expansion. (The first order expansion of an exponential function is specifically

ea ≈ (1 + a).)

P (x+ ∆x;ω) ≈
Nw∑
n=1

ξn(ω)[1− ik∆x · ~φn]e−ikx·
~φn (B.3)

The perturbation in sound pressure can thus be written as

P (x+ ∆x;ω)− P (x;ω) = −ikR
Nw∑
n=1

ξn(ω)e−ikx·
~φn(∆x̃ · ~φn) (B.4)

where ∆x̃ = x̃/R. Gaussian sensor perturbations produce (for small perturbations

kR) Gaussian errors in sound pressure.

In the case of sensor positions distributed in some non-Gaussian manner, a

Central Limit theorem [124] would dictate that as N becomes large, the distribu-

tion approaches a complex Gaussian distribution. Thence the Gaussian property

of the sound field is likely to hold more accurately in sound fields with more multi-

path.

Typically in 3-D the implicit dimensionality or number of multi-paths required

to compose a diffuse sound field [154] is N ∼ (kR+ 1)2. In 2-D, number of multi-

1paths is Nw ∼ 2kR + 1. Because of these fundamental dimensionalities of sound

fields, the Gaussian property in general will hold at higher frequencies and for

larger perturbations.
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Generally, the elements in a microphone array are typically not positioned per-

fectly accurately. Therefore, small Gaussian sensor perturbations in microphone

positions produce Gaussian perturbations in the output signal of each microphone.

Conversion of these Gaussian perturbations in frequency to the time domain, and

then the subsequent combination of these random variables ensures that dTk h− rk
is also Gaussian.

This has been mentioned in the chapter as the conditions under which this

assumption will hold i.e., in the cases of either small sensor position perturbation,

or strong multi-path.

The frequency variation has been ignored in the above argument, but it is

shown in pages 66–69 of [123] that the variance is proportional to frequency. It

is valid, to obtain a conservative result, to choose an error variance corresponding

to the upper frequency of interest. This will naturally overestimate the errors at

low frequencies and we leave it as a future exercise to devise an improved formu-

lation which correctly accounts for this frequency dependence of the error variance.

Given this assumption, equation (7.3) of the chapter can be derived. An il-

lustration of this derivation for a small matrix size is detailed here. Consider a

system with number of loudspeakers L = 3 and number of microphones M = 2.

Let cml = [cml(1)cml(2)cml(3)] and hls = [hls(1)hls(2)hls(3)hls(4)]. Here, the chan-

nel length Nc = 3 and the shaping filter length Nh = 4, therefore the length of the

GIR, Nr = Nc +Nh − 1 = 6. Using (4.4),

r11 =
[
C11 C12 C13

] h11h21
h31

 (B.5)

C11h11 =



c11(1) 0 0 0

c11(2) c11(1) 0 0

c11(3) c11(2) c11(1) 0

0 c11(3) c11(2) c11(1)

0 0 c11(3) c11(2)

0 0 0 c11(3)




h11(1)

h11(2)

h11(3)

h11(4)

 (B.6)

Assuming all the channel samples to have the same variance ι2 and using Var(aX) =
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a2Var(X) where a is a scalar, we have the variance σ2
1 of C11h11



σ2
1(1)

σ2
1(2)

σ2
1(3)

σ2
1(4)

σ2
1(5)

σ2
1(6)


=



ι2h211(1)

ι2 (h211(1) + h211(2))

ι2 (h211(1) + h211(2) + h211(3))

ι2 (h211(2) + h211(3) + h211(4))

ι2 (h211(3) + h211(4))

ι2h211(4)


(B.7)

Similarly, variances σ2
2 of C12h21 and σ2

3 of C13h31 can be computed. Now the

variance σ2 of r11 can be computed as σ2 = σ2
1 + σ2

2 + σ2
3 given by



σ2(1)

σ2(2)

σ2(3)

σ2(4)

σ2(5)

σ2(6)


=



ι2
∑3

l=1 h
2
l1(1)

ι2
∑3

l=1 (h2l1(1) + h2l1(2))

ι2
∑3

l=1 (h2l1(1) + h2l1(2) + h2l1(3))

ι2
∑3

l=1 (h2l1(2) + h2l1(3) + h2l1(4))

ι2
∑3

l=1 (h2l1(3) + h2l1(4))

ι2
∑3

l=1 h
2
l1(4)


(B.8)

which is given by the general equation (7.3) in Chapter 7.

B.2 Statistically robust model as a Second Order

Cone Program

It has been mentioned in Chapter 7 that the final form of the statistically robust

formulation is an SOCP, though it is not in the general form. The expression of

this problem (7.13) in the general form is detailed here.

The general form of an SOCP is

min
x

fTx (B.9)

subject to Fx =g

‖Aix + bi‖2 ≤ cT
i x + dii = 1, ...m
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Our final problem is

min
γ,h

γ

subject to Bh =1

γ + (cT
kh− rk) ≥

√
2σk erfi

(
2− 2P0,max/wearly

)
, k ∈ A3

γ + (cT
kh− rk) ≥

√
2σk erfi

(
1− P0,max/wlate

)
, k ∈ A4

γ + (cT
kh− rk) ≥

√
2σk erfi

(
1− P0,max/wpre-echo

)
, k ∈ A1

γ + (cT
kh− rk) ≥

√
2σk erfi

(
1− P0,max/wcrosstalk

)
, k ∈ A5

In the final problem (7.13), let x = [γ hT]T and f =
[
1 0T

L×M×Nh

]T
.

The objective function can be written as

γ = fTx (B.10)

Let the matrix E = [0 B]. Then the equality constraint in the final problem

(7.13) can be written as

Ex = 1 (B.11)

In the RHS of the inequality constraints,
√

2ι2 erfi(1− P/w) is a constant vector

K.∑
j h2

j can be represented in the form hTGih where matrix Gi selects the cor-

responding elements of h needed for the summation
∑

j h2
j . Therefore,

∑
j h2

j

can be expressed as xTFix where Fi = [0 Gi]. Also, let ui = [1 ck
T]T,

vi = [0 − rk
T]T.

The inequality equations can now be written in the form

xTFix−
1

Ki

uT
i x +

1

Ki

vi ≤ 0

By completion of squares and taking square root on both sides, the inequality

equations can be expressed as

‖F1/2
i x + F

−1/2
i

ui
2Ki

‖2 ≤
(

ui
2Ki

F−1i
ui

2Ki

− 1

Ki

vi

)1/2

(B.12)

It can be seen that the RHS of the above inequality equation (B.12) is just a

constant vector di. Similarly the second term in LHS is also a constant vector bi.
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Therefore, (B.12) can be written as

‖F1/2
i x + bi‖2 ≤ di (B.13)

. Now the final statistically robust problem (7.13) can be written using (B.10),

(B.11) and (B.13) as

min
x

fTx (B.14)

subject to Ex =1

‖F1/2
i x + bi‖2 ≤ dii = 1, ...L ∗M ∗Nr

which is clearly an SOCP in the form of (B.9).



List of Abbreviations

Acronym Expansion

AC-SFR Active Compensated Sound Field Reproduction

BPDN Basis Pursuit DeNoising

CCF Cross-talk Cancelation Filters

CDF Cumulative Density Function

CDR Cross-talk to Direct response Ratio

CG Conjugate Gradient

CVX Solver Convex Solver

DALM Dual Augmented Lagrangian Method

DFT Discrete Fourier Transform

DRR Direct to Reverberation energy Ratio

FAO Forward Adjoint Oracle

FFT Fast Fourier Transform

GIR Global Impulse Response

HRTF Head Related Transfer Function

IID Independent Identically Distributed

IRS Impulse Response Shaping

LS Least Squares

MSE Mean Square Error

MINT Multiple input/output INverse Theorem

nPRQ Perceived Reverberation Quality

NIR Nett Impulse Response

PDF Probability Density Function

P-MINT Partial-Multiple input/output INverse Theorem

PeCCS Perceptually enhanced Constrained Channel Shortening

QCQP Quadratically Constrained Quadratic Programming

RMCLS Relaxed Multi-channel Least Squares

RTF Room Transfer Function
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152 LIST OF ABBREVIATIONS

RIR Room Impulse Response

SD Steepest Descent

SFM Spectral Flatness Measure

SOCP Second Order Conic Program

VACS Validation of Acoustic Channel Shortening
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simultanées,” pp. 536—-538, 1847.

[86] M. J. Box, D. Davies, and W. H. Swann, Non-Linear optimisation Tech-

niques. Oliver and Boyd, 1969.

[87] L. Armijo, “Minimization of functions having Lipschitz continuous first par-

tial derivatives,” Pacific J. Math., vol. 16, no. 1, pp. 1–3, 1966.



BIBLIOGRAPHY 161

[88] J. Barzilai and J. M. Borwein, “Two point step size gradient methods,” IMA

J. Numerical Analysis, vol. 8, pp. 141–148, 1988.

[89] Y. H. Dai and R. Fletcher, “On the asymptotic behaviour of some new gra-

dient methods,” tech. rep., Dept. of Math. University of Dundee, Scotland,

2003.

[90] Y. H. Dai, J. Y. Yuan, and Y. Yuan, “Modified two-point step-size gradient

methods for unconstrained optimization,” Computational Optimization &

Applcns., vol. 22, pp. 103–109, 2002.

[91] Y. H. Dai and Y. Yuan, “Alternate minimization gradient method,” IMA J.

Numerical Analysis, vol. 23, pp. 377–393, 2003.

[92] S. Mehrotra, “On the implementation of a primal–dual interior point

method,” SIAM J. Optimization, vol. 2, no. 4, pp. 575––601, 1992.

[93] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving

linear systems,” J. Res. National Bureau of Stds., vol. 49, Dec 1952.

[94] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2 ed., 2004.

[95] J. A. Tropp, A. C. Gilbert, and M. Strauss, “Algorithms for simultaneous

sparse approximations ; part i : greedy pursuit,” J. Signal Proc. - Sparse

approximations in signal and image processing, vol. 86, pp. 572–588, 2006.

[96] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements

via orthogonal matching pursuit,” IEEE Trans. Information Theory, vol. 53,

Dec 2007.

[97] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of un-

derdetermined systems of linear equations by stagewise orthogonal matching

pursuit,” J. Computational Optimization & Applcns., vol. 58, Feb 2012.

[98] I. W. Selesnik, “Sparse signal restoration,” Apr 2010.

[99] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm

for linear inverse problems,” SIAM J. Imaging Sciences, vol. 2, no. 1,

pp. 183–202, 2009.



162 BIBLIOGRAPHY

[100] I. Daubachies, M. Defriese, and C. D. Mol, “An iterative thresholding algo-

rithm for linear inverse problems with sparsity constraints,” J.Fourier Anal-

ysis & Applcns., vol. 14, pp. 183–202, Dec 2008.

[101] M. A. T. Figueiredo, J. M. BioucasDias, and R. D. Nowak, “Majorization

minimization algorithms for wavelet-based image restoration,” IEEE Trans.

Image Processing, vol. 16, pp. 2980–2991, Dec 2007.

[102] P. E. Gill and D. P. Robinson, “A primal-dual augmented lagrangian,” J.

Computational Optimization & Applcns., vol. 51, pp. 1–25, Jan 2012.

[103] S. F. Cotter and B. D. Rao, “Sparse channel estimation via matching pursuit

with application to equalization,” IEEE Trans. Communications, vol. 50,

pp. 374–377, Mar 2002.

[104] H. H. Bauschke and Y. Lucet, “What is a Fenchel conjugate?,” in Notices

of the AMS, 2012.

[105] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving

linear systems,” J. Res. National Bureau of Stds., vol. 49, no. 6, 1952.

[106] J. Makhoul and J. Wolf, “Linear prediction and the spectral analysis of

speech,” Bolt, Beranek and Newman 2304, Advanced Research Projects

Agency, Arlington,Virginia, Aug 1972.

[107] J. Johnston, “Transform coding of audio signals using perceptual noise cri-

teria,” IEEE J. Selected Areas in Comm., vol. 6, pp. 314—-323, Feb 1988.

[108] S. Diamond and S. Boyd, “Matrix-free convex optimization modeling,” arXiv

preprint arXiv:1506.00760 (2015), Nov 2015.

[109] L. Krishnan, P. D. Teal, and T. Betlehem, “Fast algorithms for acoustic im-

pulse response shaping,” IEEE Trans. Audio, Speech & Language Processing

(submitted for publication), 2017.

[110] L. Krishnan, P. D. Teal, and T. Betlehem, “A sparsity based approach for

acoustic room impulse response shortening,” in Proc. IEEE Statistical Signal

Processing Wrkshp., pp. 284–287, Jun 2014.

[111] L. Krishnan, P. D. Teal, and T. Betlehem, “A robust sparse approach to

acoustic impulse response shaping,” in Proc. IEEE Int. Conf. Acoust., Speech

& Signal Processing, pp. 738–742, Apr 2015.



BIBLIOGRAPHY 163

[112] J. Songsiri, “Projection onto an `1 norm ball with application to identifi-

cation of sparse autoregressive models,” in Proc. Asean Symp. Automatic

Control, 2011.

[113] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via

wavelet shrinkage,” J. Am. Statistical Assoc., vol. 90, no. 432, pp. 1200–1224,

1995.

[114] “Datasheet of HDSPe MADI FX.”

[115] “Datasheet of Micstasy pre-amplifiers.”

[116] P. D. Teal, L. Krishnan, and T. Betlehem, “An efficient projection onto a

low-dimensional `2 norm ball,” J. Engg. Opt. (submitted for publication),

2017.

[117] D. C. Youla and H. Webb, “Image restoration by the method of convex

projections: part 1 theory,” IEEE Trans. Medical Imaging, vol. 1, pp. 81–94,

Oct 1982.

[118] P. L. Combettes, “The foundations of set theoretic estimation,” IEEE Proc.,

vol. 81, Feb 1993.

[119] E. L. Rees, “Graphical discussion of the roots of a quartic equation,” The

Am. Math. Monthly, vol. 29, no. 2, pp. 51—-55, 1922.

[120] J. O. Jungmann, R. Mazur, and A. Mertins, “Joint time-domain reshap-

ing and frequency-domain equalization of room impulse responses,” in Proc.

IEEE Int. Conf. Acoust., Speech & Signal Processing, pp. 6642–6646, May

2014.

[121] J. O. Jungmann, R. Mazur, and A. Mertins, “Joint time- and frequency-

domain reshaping of room impulse responses,” in Proc. IEEE Int. Conf.

Acoust., Speech & Signal Processing, pp. 733–737, Apr 2015.

[122] L. Krishnan, T. Betlehem, and P. D. Teal, “A statistically robust approach to

acoustic impulse response shaping,” IEEE Signal Processing Letters, vol. 24,

pp. 1138–1142, Aug 2017.

[123] H. L. Van Trees, Optimum Array Processing (Part 1V: Detection, Estimation

and Modulation Theory. Wiley- Interscience, 2002.



164 BIBLIOGRAPHY

[124] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic

Processes. McGraw-Hill Higher Education, 4 ed., 2002.

[125] F. C. Leone, L. S. Nelson, and R. B. Nottingham, “The folded normal dis-

tribution,” Technometrics, vol. 3, no. 4, pp. 543–550, 1961.

[126] “CVX: Matlab software for disciplined convex programming,” June 2015.

[127] K. Zhong, P. Jain, and A. Kapoor, “Fast second-order cone programming

for safe mission planning,” CoRR, vol. abs/1609.05243, 2016.

[128] W. Zhang and T. D. Abhayapala, “Three dimensional sound field re-

production using multiple circular loudspeaker arrays: functional analysis

guided approach,” IEEE/ACM Trans. Audio, Speech & Language Process-

ing, vol. 22, pp. 1184–1194, Jul 2014.

[129] M. A. Poletti, T. Betlehem, and T. D. Abhayapala, “Higher-order loud-

speakers and active compensation for improved 2D sound field reproduction

in rooms,” J. Audio Eng. Soc, vol. 63, no. 1/2, pp. 31–45, 2015.

[130] S. Petrausch, S. Spors, and R. Rabenstein, “Simulation and visualization of

room compensation for wave field synthesis with the functional transforma-

tion method,” in Proc. 119th Conv. Audio Eng. Soc., 2005.

[131] P.-A. Gauthier and A. Berry, “Adaptive wave field synthesis with inde-

pendent radiation mode control for active sound reproduction: theory,” J.

Acoust. Soc. Am., vol. 119, no. 5, pp. 2721–2737, 2006.

[132] P.-A. Gauthier and A. Berry, “Adaptive wave field synthesis for sound field

reproduction: theory, experiments, and future perspectives,” J. Audio Eng.

Soc., vol. 55, no. 12, pp. 1107–1124, 2007.

[133] P.-A. Gauthier and A. Berry, “Adaptive wave field synthesis for active sound

field reproduction: experimental results,” J. Acoust. Soc. Am., vol. 123,

no. 4, pp. 1991–2002, 2008.

[134] M. Schneider and W. Kellermann, “A wave-domain model for acoustic

MIMO systems with reduced complexity,” in Proc. IEEE HSCMA, (Ed-

inburgh, UK), pp. 133–138, May 2011.



BIBLIOGRAPHY 165

[135] D. Talagala, W. Zhang, and T. Abhayapala, “Efficient multi-channel adap-

tive room compensation for spatial sound field reproduction using a modal

decomposition,” IEEE/ACM Trans. Audio, Speech & Language Processing,

vol. 22, pp. 1522—-1532, Oct 2014.

[136] M. A. Poletti and T. D. Abhayapala, “Spatial sound reproduction systems

using higher order loudspeakers,” in Proc. IEEE Int. Conf. Acoust., Speech

& Signal Processing, pp. 57–60, May 2011.

[137] M. A. Poletti, F. M. Fazi, and P. A. Nelson, “Sound reproduction sys-

tems using variable-directivity loudspeakers,” J. Acoust. Soc. Am., vol. 129,

pp. 1429–1438, Mar 2011.

[138] M. A. Poletti, T. D. Abhayapala, and P. Samarasinghe, “Interior and exte-

rior sound field control using general two dimensional higher-order variable-

directivity sources,” J. Acoust. Soc. Am., vol. 129, no. 5, pp. 3814–3823,

2012.

[139] M. A. Poletti and T. Betlehem, “Design of a prototype variable directivity

loudspeaker for improved surround sound reproduction in rooms,” in Proc.

52nd Int. Conf. Sound Field Control - Eng. & Perception, Sep 2013.

[140] T. Betlehem, C. Anderson, and M. A. Poletti, “A directional loudspeaker

array for surround sound in reverberant rooms,” in Proc. Int. Conf. Acoust.,

(Sydney), 2010.

[141] A. Carini, S. Cecchi, and L. Romoli, “Multipoint room response equalization

with group delay compensation,” in Proc. Int. Wrkshp. Acoust. Echo & Noise

Control, Aug 2010.

[142] L. Bianch, F. Antonacci, A. Canclini, A. Sarti, and S. Tubaro, “A

psychoacoustic-based analysis of the impact of pre-echoes and post-echoes

in soundfield rendering applications,” in Proc. Int. Wrkshp Acoustic Echo &

Noise Control (IWAENC), (Aachen), Sep 2012.

[143] T. Hikichi and F. Itakura, “Time variation of room acoustic transfer func-

tions and its effects on a multi-microphone dereverberation approach,” in

Proc. Wrkshp. Microphone Arrays: Theory, Design and Applcn., Oct 1994.

[144] Y. Yai, S. Miyabe, H. Saruwatari, K. Shikano, and Y. Tatekura, “Rapid

compensation of temperature fluctuation effect for multichannel sound field



166 BIBLIOGRAPHY

reproduction system,” IEICE Trans. Fundamentals, vol. E91-A, no. 6,

pp. 1329–1336, 2008.

[145] P. Coleman, P. Jackson, M. Olik, and J. A. Pederson, “Optimizing the pla-

narity of sound zones,” in Proc. 52nd Audio Eng. Soc. Int. Conf., (Guild-

ford), pp. 1–10, Sep 2013.

[146] S.-R. Lee and K.-M. Sung, “Generalized encoding and decoding functions

for a cylindrical ambisonic sound system,” IEEE Signal Processing Letters,

vol. 10, Jan 2003.

[147] A. N. Tikhonov, “Solution of incorrectly formulated problems and the regu-

lation method,” Sov. Math., vol. 4, pp. 1035–1038, 1964.

[148] G. A. Deschamps and H. S. Cabayas, “Antenna synthesis and solution of in-

verse problems by regularization methods,” IEEE Trans. Antennas & Prop-

agation, vol. AP-20, no. 3, pp. 268–274, 1972.

[149] C. E. Rasmussen, “Minimize,” 2006.

[150] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.

[151] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2 ed., 12003.

[152] R. T. Rockafellar, Conjugate Duality and Optimization. Soc. Industrial &

Applied Mathematics, 1974.

[153] B. Rafaely, “Spatial-temporal correlation of a diffuse sound field,” J. Acoust.

Soc. Am., vol. 107, Feb 2000.

[154] H. M. Jones, R. A. Kennedy, and T. D. Abhayapala, “On dimensionality of

multipath fields: Spatial extent and richness,” in Proc. IEEE Conf. Acoust.,

Speech & Signal Processing, vol. 3, pp. 2837–2840, 2002.


