
Asymptotic methods of
testing statistical hypotheses

by

Thuong T. M. Nguyen

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Statistics.

Victoria University of Wellington
2017





Abstract

For a long time, the goodness of fit (GOF) tests have been one of the main
objects of the theory of testing of statistical hypotheses. These tests pos-
sess two essential properties. Firstly, the asymptotic distribution of GOF
test statistics under the null hypothesis is free from the underlying dis-
tribution within the hypothetical family. Secondly, they are of omnibus
nature, which means that they are sensitive to every alternative to the null
hypothesis.

GOF tests are typically based on non-linear functionals from the em-
pirical process. The first idea to change the focus from particular func-
tionals to the transformation of the empirical process itself into another
process, which will be asymptotically distribution free, was first formu-
lated and accomplished by Khmaladze [40]. Recently, the same author in
consecutive papers [42] and [44] introduced another method, called here
the Khmaladze-2 transformation, which is distinct from the first Khmal-
adze transformation and can be used for an even wider class of hypothesis
testing problems and is simpler in implementation.

This thesis shows how the approach could be used to create the asymp-
totically distribution free empirical process in two well-known testing prob-
lems.

The first problem is the problem of testing independence of two dis-
crete random variables/vectors in a contingency table context. Although
this problem has a long history, the use of GOF tests for it has been re-
stricted to only one possible choice – the chi-square test and its several
modifications. We start our approach by viewing the problem as one of



parametric hypothesis testing and suggest looking at the marginal distri-
butions as parameters. The crucial difficulty is that when the dimension of
the table is large, the dimension of the vector of parameters is large as well.
Nevertheless, we demonstrate the efficiency of our approach and confirm
by simulations the distribution free property of the new empirical process
and the GOF tests based on it. The number of parameters is as big as 30. As
an additional benefit, we point out some cases when the GOF tests based
on the new process are more powerful than the traditional chi-square one.

The second problem is testing whether a distribution has a regularly
varying tail. This problem is inspired mainly by the fact that regularly
varying tail distributions play an essential role in characterization of the
domain of attraction of extreme value distributions. While there are nu-
merous studies on estimating the exponent of regular variation of the tail,
using GOF tests for testing relevant distributions has appeared in few pa-
pers. We contribute to this latter aspect a construction of a class of GOF
tests for testing regularly varying tail distributions.
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Chapter 1

Introduction

1.1 Introduction

Statistical inference, a process of deducing properties of the underlying
distribution F of a population by analysis of data, includes two main pro-
cedures: deriving estimates and testing hypotheses.

There are two types of hypothesis testing problems: simple hypothesis
testing and composite hypothesis testing. For simple hypothesis testing,
the null hypothesis is of the form F = F0 for some specified distribution
F0. In addition, the alternative can be either F = Fa for some particular
Fa different from F0 or just F 6= F0. The simple hypothesis testing does
not involve any parameter which labels the underlying distributions. The
composite parametric hypothesis testing problem involves the parametric
family

F = {Fθ,θ ∈ Θ} ,

where Θ is some set, called the parameter space. Then the statement

H0 : F ∈ F

is taken as the null hypothesis. In this case, the parameter θ which identi-
fies the null distribution also needs to be estimated from the given obser-
vations.

1



2 Chapter 1. Introduction

To carry out a statistical hypothesis testing problem, the decision on
either to accept or reject a null hypothesis in favour of the alternative must
be made based on some test statistic. Consider the empirical distribution
function, which is constructed from the sample X1, . . . , Xn, as follows:

Fn(x) =
1

n

n∑
i=1

I{Xi≤x},

where I{Xi≤x} are indicator functions, equal to 1 if Xi ≤ x and 0 other-
wise. Note that if Xi are vectors in Rk, Xi = (X

(1)
i , . . . , X

(k)
i ) then Xi ≤ x

means X(j)
i ≤ x(j) for every j = 1, . . . , k. Naturally, a test statistic has to

involve the empirical distribution and, probably, the underlying unknown
distribution F . The following:

√
n

∫
x[dFn(x)− dF (x)], sup

x∈Rk
[Fn(x)− F (x)],∫ ∞

−∞
[Fn(x)− F (x)]2dx, max

√
n[Fn(x)− F (x)]√
F (x)[1− F (x)]

,

are examples of test statistics.

In 1993, Khmaladze [40] formulated what he called the goodness of fit
(GOF) problem of testing hypotheses. In this formulation, two properties
of GOF tests were considered together - its omnibus nature and its distri-
bution free property. Obviously, not every test statistic posses these two
characteristics at the same time. Those examples listed above are either
not asymptotically distribution free or not of an omnibus nature.

In testing simple hypotheses for 1-dimensional continuous distribu-
tions, we have a class of distribution free GOF tests based on the empirical
process

vnF (x) =
√
n[Fn(x)− F (x)].

This class originated from the idea of the time transformation t = F (x),
which was first suggested by Kolmogorov [46] in 1933. However, this
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time transformation is invalid for discrete distributions as well as multidi-
mensional distributions. For testing parametric problems, the procedure
involves the parametric empirical process

v̂nF (x) =
√
n[Fn(x)− Fθ̂n

(x)]

where θ̂n is an estimate of the hypothetical unknown parameter θ. The
time transformation t = Fθ̂n

(x) does not lead to the distribution free prop-
erty of the transformed process. Thus, a transformation which plays the
same role as the time transformation but works for a wider class of hy-
pothesis testing problems might have been set as a goal.

The first such transformation was considered in Khmaladze [38], [39],
[40]. The method that the author invented works for both simple and para-
metric testing problems for finite-dimensional continuous distributions.
The proposed method was subsequently known as the Khmaladze trans-
formation. To briefly review this transformation, without losing any sta-
tistical information, it turns the empirical process vnF or v̂nF into another
process which converges in distribution to the standard Brownian motion.
As a result, we are able to construct a whole class of asymptotically distri-
bution free GOF tests on the transformed process.

Later, in a 2013 paper [42] and 2016 [44], another transformation was
introduced by the same author, so let us call this later transformation
Khmaladze-2. This transformation enables us to create a class of GOF
tests for any statistical hypothesis testing problem, including problems
with discrete distributions. We apply the transformation Khmaladze-2 to
two problems, and that is the main content of this thesis.

1.2 Aim of the thesis

The main aim of this thesis is to show a construction of a class of GOF
tests for two different hypothesis testing problems. The first problem is
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testing independence of two discrete random vectors/variables in the con-
tingency table context. The other is testing regularly varying tail distribu-
tions. Ostensibly, these two problems are not connected in any statistical
or mathematical sense. The former is on the class of discrete distributions
and the latter is on the tails of continuous distributions. However, as men-
tioned, for each problem, we can build up a class of GOF tests by the same
method, which is adopted from Khmaladze [42], [44]. Namely, the new
class of GOF tests is created based on the Khmaladze-2 transformation of
the empirical process. The main idea of this transformation, similar to the
previous Khmaladze transformation, is not to transform test by test, from
one form to another, but to transform the underlying empirical process, as
a base of the test, into another version of the empirical process, which is
asymptotically distribution free. Hence, any statistic based on this trans-
formed process will be asymptotically distribution free.

In each problem, our approach is not a mere application of the Khmaladze-
2 method but has its own merits and resolves its own difficulties.

For testing the independence of two random vectors in contingency ta-
bles, we view this problem as a parametric/composite hypothesis testing
problem. The dimension of the parameters depends on the dimension of
the table, so it can be relatively large. It was not clear in Khmaladze [42]
whether his method would work for such large number of parameters. We
will show that the method works not only reliably but also quickly. More-
over, we point out the cases where the statistical power of the new tests is
better than the conventional chi-square test, which has long been the only
GOF test used for this problem.

The problem of testing regularly varying tail distributions also belongs
to the class of parametric hypothesis testing. However, we are not for-
mulating any hypothesis on the underlying distribution F but only on its
right tail behaviour. Consequently, not all observations are considered but
only the observed values which are greater than some chosen threshold.
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We construct the tail empirical process with a minor change in variable
and then transform it.

We expect that this thesis can be used as a note for students studying
statistics at a 400 level who are interested in empirical processes and hy-
pothesis testing. Therefore, the structure of the thesis is organised in the
way outlined below. We sometimes add some examples and material re-
lating to the main content of the thesis in some way.

1.3 Outline of the thesis

The main content of this thesis lies in the last two chapters: Chapters 5 and
6.

In Chapter 2, we collect some basic mathematical and statistical back-
ground which helps in understanding the content of the thesis. This fun-
damental material includes projections, orthonormal systems, unitary op-
erators, contiguity, regular families of distributions, maximum likelihood
estimators, etc.

We present in Chapter 3 a construction of the empirical process, the
tail empirical process in the case of examining the right tail of distribu-
tions and the parametric empirical process. The very rich literature of the
empirical process will not be discussed; we mainly sketch the idea behind
its construction and mention its limit in distribution. This presentation
aims at explaining how to look at the empirical process as some kind of
projection of a Brownian motion.

We devote Chapter 4 to GOF tests. To begin with, we will discuss the
optimal test for the simple hypothesis testing problem where the alterna-
tive is contiguous to the null hypothesis and this contiguity is identified
by a certain direction. The role of the GOF tests arises in the case when
the alternative approaches the null from infinitely many possible direc-
tions. We will give some well-known GOF tests as examples and restate
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the formulation of the GOF testing problem.

Chapter 5 presents the method of constructing a class of GOF tests for
testing independence in a contingency table, or in other words, testing in-
dependence of two random variables/vectors. Some simulation results
will be given. We show in detail the limiting distribution free property of
the new GOF test statistics with a large sample size. The fact that the dis-
tributions of the new tests do not depend on the parameters will also be
demonstrated. Moreover, we compare the statistical power of the new
tests with the conventional chi-square test for several different alterna-
tives. We point out the case when the new tests are more powerful than
the chi-square test.

Another construction of a class of GOF tests for testing distributions
whose tails are regularly varying will be given in Chapter 6. In this chap-
ter, we will also briefly review some research interests regarding regularly
varying tail distributions due to its great importance in both probabilistic
theory and real-life applications. Once the method of creating a class of
GOF tests is established, we show some simulation results to demonstrate
the distribution free property of the new tests in this specific problem.



Chapter 2

Preliminaries

In this chapter we collect most of the definitions and notations used in the
rest of this thesis. The material is very basic in functional analysis and
probability theory.

2.1 Limit of a sequence

2.1.1 Definitions

Definition 2.1. (Convergence in probability to 0)

A sequence of random variables {Zn, n ≥ 1} converges in probability
to 0 if as n→∞,

P(|Zn| ≥ ε)→ 0 for all ε > 0,

and we denote this by Zn
P→ 0.

Definition 2.2. (Convergence in probability)

A sequence of random variables {Xn, n ≥ 1} converges in probability
to a random variable X if

Xn −X
P→ 0,

and we denote this by Xn
P→ X.

7



8 Chapter 2. Preliminaries

Denote by
F (x) = P[X ≤ x]

the distribution function of random variable X and denote by

CF = {x : F (x) is continous at x}

the set of continuity points of F .

Definition 2.3. (Convergence in distribution)
A sequence of random variables {Xn, n ≥ 1} converges in distribution

to a random variable X if

P(Xn ≤ x)→ P(X ≤ x) for all x ∈ CF .

and we denote this by Xn
d→ X.

In this sense, if we denote by Fn the distribution function of the random
variable Xn, then we say that the sequence of distributions {Fn, n ≥ 1}
converges weakly to the distribution F and denote this by

Fn
w→ F.

Random variablesXn themselves do not necessarily converge to anything;
only their distributions do.

2.1.2 o,O, oP , OP notations

Definition 2.4. Let {an} and {bn} be two sequences of numbers in R.

(i) an = O(1) if |an| ≤ C for some constant C;

(ii) an = o(1) if |an| → 0 as n→∞;

(iii) an = O(bn) if
∣∣∣anbn ∣∣∣ ≤ C for some constant C or an

bn
= O(1);

(iv) an = o(bn) if
∣∣∣anbn ∣∣∣→ 0 as n→ 0 or an

bn
= o(1).
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Definition 2.5. Let {Xn} be a sequence of random variables and {an} be a
sequence of non-negative real numbers.

(i) Xn = OP (1) if for any ε > 0, there exists some M > 0 such that

P {|Xn| ≥M} ≤ ε;

(ii) Xn = oP (1) if Xn
P→ 0;

(iii) Xn = OP (an) if Xn
an

= OP (1).

(iv) Xn = oP (an) if Xn
an

P→ 0;

2.2 Hilbert spaces, projections and unitary oper-

ators

We briefly sketch in this section the basic theory of Hilbert spaces, their or-
thogonal projections and unitary operators, which are essential for under-
standing the method presented in this thesis. Specifically, we are mainly
concerned with L2(F ), a specific construction of a Hilbert space, since this
space is of great importance to the discussion in Chapter 6.

A thorough discussion on Hilbert spaces can be seen for example in
Debnath and Mikusinski [12].

2.2.1 Space L2(F ) as a Hilbert space

Let F be a distribution function.

Definition 2.6. The spaceL2(F ) consists of all real-valued functions g such
that ∫

g2(x)dF (x) <∞.
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Because of the above inequality, if we define

‖g‖F =

√∫
g2(x)dF (x),

then ‖·‖F is a function: L2(F ) → [0,∞). This function satisfies the follow-
ing properties:

(i) ‖g‖F ≥ 0, ∀g ∈ L2(F ) and ‖g‖F = 0 if and only if g = 01;

(ii) ‖g + h‖F ≤ ‖g‖F + ‖h‖F for every g, h ∈ L2(F );

(iii) ‖cg‖F = |c| ‖g‖F for every c ∈ R, g ∈ L2(F ).

Conditions (i) and (iii) are easy to verify and condition (ii) follows from
the well known Cauchy-Schwarz-Bunyakovsky inequality.

A function with the above properties is called a norm and a linear space
with a norm is called a normed space.

The normed space (L2(F ), ‖·‖F ) is moreover complete in the sense that
every Cauchy sequence of functions (gn)n≥1 in L2(F ) converges to a func-
tion g in L2(F ). Recall that a Cauchy sequence (gn)n≥1 is a sequence sat-
isfying the condition that for every ε > 0 there exists a number M such
that

‖gn − gm‖ < ε for all m,n > M.

In addition, if we define an inner product 〈·, ·〉F as

〈g, h〉F =

∫
g(x)h(x)dF (x) for every g, h ∈ L2(F ),

then we have the following formula

‖g‖F =
√
〈g, g〉F .

That is, ‖·‖F is the norm associated with the inner product 〈·, ·〉F .
Recall that 〈·, ·〉F as an inner product must satisfy the following conditions:

1To be precise, ‖g‖F = 0 if and only if g(x) = 0 for almost every x with respect to
the distribution function F . But we will not pay too much attention to this, as we will
consider such a function as 0.
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(i) 〈g, h〉F = 〈h, g〉F ;

(ii) 〈g + h, `〉F = 〈g, `〉F + 〈h, `〉F ;

(iii) 〈cg, h〉F = c〈g, h〉F ;

(iv) 〈g, g〉F ≥ 0 and 〈g, g〉F = 0 implies g = 0 for every x.

These conditions can be checked easily. Note that condition (iv) here is the
same as condition (i) for the norm.

Thus, L2(F ) is an inner product space, whose norm is complete and so
by definition, it is a Hilbert space. We will also need some other specific
Hilbert spaces, which are not of as much use for us as L2(F ). They will be
introduced in due course.

Note that from now on, in a general inner product space H , the inner
product will be written as 〈·, ·〉. Otherwise, we will always use the sub-
index F for inner products in L2(F ) whenever F is a distribution function.

In L2(F ) or more generally, in any Hilbert space H , the following con-
cepts may be defined.

2.2.2 Orthogonality and Projections

Two vectors x and y in H are called orthogonal, denoted by x ⊥ y, if

〈x, y〉 = 0.

Let S be a non-empty subset of H . An element x ∈ H is said to be orthog-
onal to S, denoted by x ⊥ S, if x ⊥ y for every y ∈ S.

The set of all elements of H orthogonal to S, denoted by S⊥, is called
the orthogonal complement of S, i.e.,

S⊥ = {x ∈ H : x ⊥ S} .
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S⊥ is always a closed subspace ofH . Furthermore, if S is a closed subspace
of H , we have (S⊥)⊥ = S and more importantly,

H = S + S⊥ =
{
y + z, y ∈ S, z ∈ S⊥

}
.

Moreover, each x ∈ H can be expressed uniquely as

x = y + z, y ∈ S, z ∈ S⊥.

This shows that the following definition is well-defined.

Definition 2.7. (Orthogonal projection)
Let S be a closed subspace of a Hilbert space H . The operator P on H

defined by

Px = y if x = y + z, y ∈ S, z ∈ S⊥, (2.1)

is called the orthogonal projection onto S. The vector y is called the pro-
jection of x onto S.

Any orthogonal projection P is a bounded linear operator, where a
linear mapping L : H → H is called bounded if there exists a number α
such that

‖Lx‖ ≤ α ‖x‖ for all x ∈ H.

The smallest such number α is called the norm of L and we write ‖L‖ = α.
In the case of the orthogonal projection P , either ‖P‖ = 1 or P = 0. Indeed,
for any x = y + z as in (2.1), we have

‖Px‖ = ‖y‖

and
‖x‖2 = ‖y‖2 + ‖z‖2

because y ⊥ z.

Note that every projection is an idempotent in the sense that P 2 = P .
This is easy to check by the definition of the orthogonal projection: if P
is a projection, then Px ∈ S for every x ∈ H and so Px = Px + 0 is the
expression for Px as in (2.1). Therefore,

P 2(x) = P (Px) = P (x).
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2.2.3 Orthonormal systems

A family S of non-zero vectors in a Hilbert spaceH is called an orthogonal
system if x ⊥ y for any two distinct elements of S. If, in addition, ‖x‖ = 1

for all x ∈ S, then S is called an orthonormal system.

A sequence of vectors which constitutes an orthonormal system is called
an orthonormal sequence.

An orthonormal sequence S becomes an orthonormal basis if x ⊥ S im-
plies x = 0.

If {e1, e2, . . . } is an orthonormal basis forH , then any x ∈ H can be written
as

x =
∑
n

αnen

where

αn = 〈x, en〉.

Below are some examples of orthonormal sequences.

Example 2.1. (Haar system)

Consider the Hilbert space L2[0, 1], the space of all square integrable
functions on the interval [0, 1] with respect to the Lebesgue measure. In
fact, this space is nothing but L2(F ) where F is the uniform distribution
function on [0, 1].

First, take ψ0(t) = 1; then trivially ‖ψ0‖ = 1. Take ψ1(t) to be a simple
function that has two values 1 and−1 alternatively on the intervals [0, 1/2)

and [1/2, 1); there are two choices of ψ1.

More generally, for each n ∈ N, take ψn(t) to be a simple function that
has two values 1 and −1 alternately on each pair of intervals [2k/2n, (2k +

1)/2n) and [(2k + 1)/2n, 2(k + 1)/2n) with k = 0, . . . , 2n−1 − 1; there are 2n

choices of ψn.

If in each stage n of division, we choose only one ψn(t) then the se-
quence (ψn)n≥1 forms an orthonormal sequence on L2([0, 1]).
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Example 2.2. There is a general process to construct an orthonormal se-
quence in any Hilbert space H , called Gram-Schmidt orthonormalization
process.

Assume that (yn)n≥1 is a sequence of linearly independent vectors on
H . Define two sequences (wn)n≥1 and (xn)n≥1 inductively by

w1 = y1, x1 =
w1

‖w1‖
,

wk = yk −
k−1∑
i=1

〈yk, xi〉xi, xk =
wk
‖wk‖

, for k = 2, 3, . . .

Intuitively, x1 is obtained by normalizing y1. To obtain x2, we normal-
ize the orthogonal component of y2 when projecting it onto the subspace
generated by x1. Generally, xk is obtained by normalizing the orthog-
onal component of yk when projecting it onto the subspace Hk gener-
ated by {x1, . . . , xk−1}, which is the same as the subspace generated by
{y1, . . . , yk−1}. Thus, in fact the iteration allows a quick computation of the
auxiliary vector wk.

2.2.4 Unitary operators

Definition 2.8. (Unitary operator)
A linear operator U : H → H is called a unitary operator on H if the

following holds:

(i) U is a surjective/ onto mapping, i.e., ∀y ∈ H : ∃x ∈ H : Ux = y;

(ii) U preserves inner products of the Hilbert space, i.e., for every x, y ∈
H , we have

〈Ux, Uy〉 = 〈x, y〉.

It follows from (ii) that a unitary operator U is isometric, i.e.,

‖Ux‖ = ‖x‖ , ∀x ∈ H.
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In fact, these two conditions are equivalent. In particular, U is bounded
with ‖U‖ = 1.

Trivial examples of unitary operators include identity operators, orthogo-
nal matrices (i.e., such that ATA = AAT = I where I is the identity matrix)
on finite-dimensional Hilbert space.

For any unitary operator U : H → H , if {e1, e2, . . . } is an orthonormal
sequence/ basis in H , then so too is the sequence {Ue1, Ue2, . . . }. Con-
versely, given two orthonormal bases {e1, e2, . . . } and {f1, f2, . . . } in H ,
the following mapping

en 7→ fn (n ∈ N)

extends to a unique unitary operator U : H → H .
It is easy to prove the following proposition.

Proposition 2.1. The product of a sequence of unitary operators is again a uni-
tary operator.

2.3 Contiguity

For the content of this section, we refer to Oosterhoof and van Zwet [60]
and van der Vaart [77], Chapter 6.

Let P andQ be two probability measures on a probability space (Ω,A ).
The distance in total variation between P and Q is defined by

d(P,Q) = sup
A∈A
|P (A)−Q(A)| .

We say that measure Q is absolutely continuous with respect to P if
P (A) = 0 implies Q(A) = 0 for every measurable set A in A . This is
denoted by Q� P .

If Q � P and P � Q, then we say that P and Q are mutually abso-
lutely continuous.
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If Q is absolutely continuous with respect to P then Q has a density
with respect to P , denoted by f = dQ/dP . This density f is usually called
the Radon-Nikodym derivative. For any measurable set A we have

Q(A) =

∫
A

fdP.

That means we are able to reconstruct the measure Q from the measure P
and the density f .

We say that measures P and Q are mutually singular or orthogonal,
denoted P ⊥ Q, if the space Ω can be partitioned as Ω = ΩP ∪ ΩQ with
ΩP ∩ ΩQ = ∅ and P (ΩQ) = Q(ΩP ) = 0.

Lemma 2.2. (Lebesgue decomposition)
Given a measure P , each measure Q has a unique decomposition of the form

Q = Qc + Q⊥ where Qc � P and Q⊥ ⊥ P . This is called the Lebesgue
decomposition of Q with respect to P .

The concept of contiguity is a natural extension of absolutely continuity
of two measures in the case of a sequence of pairs of measures.

Let (Ωn,An)n≥1 be a sequence of measurable spaces and each space,
corresponding to n, equipped with two probability measures Pn and Qn.

The sequence (Qn)n≥1 is contiguous with respect to the sequence (Pn)n≥1

if Pn(An) → 0 implies Qn(An) → 0 as n → ∞ for every sequence of mea-
surable sets An ∈ An. This is denoted by Qn C Pn.

The sequences Pn and Qn are said to be mutually contiguous if Qn C

Pn and Pn C Qn and we denote Pn CB Qn.

Assume that only Qn depends on n and P is fixed, i.e., Pn = P for
every n. For the sake of clarity, let us assume that all Qn and P are given
on the same sample space (Ω,A ): for example, they are given on the real
line, Ω = R. Let Qn

n and P n be direct products of measures Qn and P
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respectively, i.e., on rectangular sets A1 × A2 × · · · × An,

Qn
n(A1 × A2 × · · · × An) = Qn(A1)×Qn(A2)× · · · ×Qn(An),

P n(A1 × A2 × · · · × An) = P (A1)× P (A2)× · · · × P (An),

for every Ai ∈ A , i = 1, . . . , n.

We would like to consider the condition when the direct product Qn
n

is contiguous with respect to P n, Qn
n C P n. Suppose also that there is a

measure µ on the space (Ω,A ) such that all Qn and P have densities with
respect to µ. Denote these densities by qn = dQn/dµ, p = dP/dµ.

Note that such a µ is said to be a σ-finite measure dominating the sam-
ple space and that µ always exists. In specific cases, say, if P andQn are ab-
solutely continuous distributions, then we can choose µ to be the Lebesgue
measure; or if P and Qn are discrete distributions, then we can choose µ to
be the counting measure. But in general, we could always construct µ as
follows

µ(A) =
P (A)

2
+
Q1(A)

4
+
Q2(A)

8
+ . . . , for all A ∈ A .

It is intuitively clear that as n→∞, a necessary condition for Qn
n C P n

is that Qn converges to P weakly. To quantify this convergence, we intro-
duce the Hellinger distance between two probability measures Qn and P ,
which is

Hn(Qn, P ) =
(∫

(
√
qn −

√
p)2dµ

)1/2

.

From Oosterhoof and van Zwet [60], we know that in order to have Qn
n C

P n, the following condition must be satisfied

lim sup
n→∞

nH2
n(Qn, P ) = lim sup

n→∞
n

∫
(
√
qn −

√
p)2dµ <∞.

Let us represent qn as √
qn(x) =

√
p(x)[1 + εnhn(x)],
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for some small εn and some function hn(·). Then

lim sup
n→∞

nH2
n(Qn, P ) = lim sup

n→∞
nε2n

∫
h2
n(x)dP (x) <∞.

For this to be true, hn(·) should be bounded in the sense that

lim sup
n

∫
h2
n(x)dP (x) <∞.

The class of sequences of hn(·), n = 1, 2, . . . , which satisfies that condition
is evidently large, so most of the time the following restriction is used in
asymptotic statistics:∫

[hn(x)− h(x)]2dP (x)→ 0 as n→∞,

for some h satisfying ∫
h2(x)dP (x) = c <∞.

The function h can be viewed as the “direction” in which measures Qn

converge to P . At the same time, nε2n must be bounded, which implies
εn = O(1/

√
n).

The contiguity of two probability measures will be discussed further in
Section 4.1.1 where contiguous alternatives are defined in Definition 4.1.

2.4 Regular parametric family of distributions

Consider a parametric family of distributions

F =
{
Fθ : θ ∈ Θ ⊂ Rd

}
.

Denote by fθ(x) the density function corresponding to distribution func-
tion Fθ(x). Even though fθ(x) or Fθ(x) is a function of both x and the
parameter θ, to distinguish between variables and parameters, we will
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write throughout the thesis θ as a sub-index of F (or f ) to indicate that
the distribution (or density) function belongs to a parametric family. We
also always denote by θ0 the true unknown parameter. Suppose that the
density function fθ(x) is differentiable with respect to θ and the derivative
denoted by ḟθ(x). The differentiability of the density function is one of the
usual conditions for the family of distributions F to be regular. A list of
such conditions can be seen in Lehmann [51].

The log-likelihood function lθ(x) is defined as

lθ(x) = log fθ(x).

The score function l̇θ(x) is defined as

l̇θ(x) =
∂lθ(x)

∂θ
=
ḟθ(x)

fθ(x)
.

The Fisher information matrix Γ is defined as

Γθ = Var(l̇θ) = E(l̇θ l̇
T
θ ) =

∫
l̇θ(y)l̇Tθ (y)Fθ(dy). (2.2)

From the definitions of the score function and the Fisher information
matrix, we have the normalized score function, denoted by β(x) as fol-
lows:

β(x) = Γ
−1/2
θ l̇θ(x) = Γ

−1/2
θ

ḟθ(x)

fθ(x)
. (2.3)

This function is of unit norm in L2(F ). Moreover, if we denote by 1 the
function that identically equals 1, it is easy to see that β ⊥ 1 since

〈β, 1〉F = Γ
−1/2
θ

∫
ḟθ(y)

fθ(y)
Fθ(dy) = 0.

Note that this equation holds with some usual additional conditions
on the density function fθ(x).
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2.5 Maximum likelihood estimator

Suppose that we have a random sample X1, . . . , Xn. The log-likelihood
function defined on sample X1, . . . , Xn is

Lθ(X1, . . . , Xn) =
n∑
i=1

lθ(Xi) =
n∑
i=1

log fθ(Xi).

The most well-known estimator of θ is the maximum likelihood esti-
mator (MLE), defined as the estimator θ̂n that maximizes the log-likelihood
function Lθ(X). In other words, it is a proper solution to the equation

1√
n

n∑
i=1

l̇θ(Xi) =
1√
n

n∑
i=1

ḟθ(Xi)

fθ(Xi)
= 0.

The following theorem gives us the most important properties of the
MLE.

Theorem 2.3. Under usual regularity conditions, the MLE θ̂n is consistent in
the sense that it converges in probability to the true unknown parameter θ0 and
we write θ̂n

P→ θ0. In addition, the following asymptotically linear representation
of
√
n(θ̂n − θ0) is true:

√
n(θ̂n − θ0) =

1√
n

Γ−1
θ0

n∑
i=1

ḟθ0(Xi)

fθ0(Xi)
+ oP (1). (2.4)

Moreover,

√
n(θ̂n − θ0)

d−→ N (0,Γ−1
θ0

),

where the Fisher information Γθ0 is defined as in (2.2).

The term “asymptotically linear” will be explained below, in Section
3.2, where we consider the function-parametric empirical process. For the
regularity conditions required in the theorem and its proof, we refer to
Lehmann [51].
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2.6 Central limit theorem and law of large num-

bers

Theorem 2.4. (Strong law of large numbers (SLLN)) Suppose thatX1, . . . , Xn

is a sequence of independent, identically distributed random variables with ex-
pected value EXi = µ. The strong law of large numbers states that

X̄n =
1

n

n∑
i=1

Xi → µ a.s., as n→∞.

The finiteness of the variance of Xi is not required in this theorem.
However, it is usually assumed to make the proof easier. The proof can
be found in Feller [23], VII.8.

Theorem 2.5. (Central limit theorem (CLT)) Suppose that X1 . . . , Xn is a
sequence of independent, identically distributed random variables with expected
value EXi = µ and finite variance VarXi = σ2 <∞. Then

√
n(X̄n − µ)

d→ N
(

0, σ2
)
, as n→∞,

where X̄n is the sample average, X̄n = 1
n

∑n
i=1Xi.

This theorem says that the limit in distribution of the normalized sam-
ple average X̄n is a normal distribution. The proof can be found, for ex-
ample in Feller [23], VIII.4.

We will mention the normal distribution and normal random variables
many times in the remaining part of the thesis, so let us agree on the fol-
lowing notation:

N (µ, σ2) : normal random variable,

Φµ,σ2 : normal distribution function

with expected value µ and variance σ2. Without sub-indices, Φ denotes
the standard normal distribution.
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Chapter 3

Empirical processes

The empirical process is a key object of probability and statistics which
has a very rich literature. This chapter focuses only on the construction
of the empirical process and the tail empirical process. For studies of the
empirical process, we refer to Shorack and Wellner [70], van de Vaart
and Wellner [76] or Pollard [64]. For the limit in distribution of the tail
empirical process, Einmahl [20], [21] gives a thorough investigation.

The limit in distribution of the empirical process is strictly connected
with Brownian motions and Brownian bridges, so we first recall those ba-
sic concepts.

3.1 Preliminaries

The basic material in this section can be found in various books, for exam-
ple in Khmaladze [43], Chapter 5.

3.1.1 Brownian motions

Let t1, t2, · · · , tk be an arbitrary collection of k points on [0, 1] such that
0 = t0 < t1 < · · · < tk < tk+1 = 1. The standard Brownian motion on [0, 1],

23
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denoted by w(t), is a zero-mean Gaussian process with increments

∆w(tj) = w(tj+1)− w(tj), j = 0, · · · , k, for any k, (3.1)

which are independent Gaussian random variables and each ∆w(tj) has
expected value 0 and variance

∆tj = tj+1 − tj.

Hence, w(0) is identically 0 and w(t), which can be looked at as the incre-
ment w(t) = w(t) − w(0), has expected value 0 and variance Ew2(t) = t.
The covariance function of w is

Ew(t)w(t′) = min(t, t′) for t, t′ ∈ [0, 1]. (3.2)

Let F (x) be a continuous distribution function on R. Define

WF (x) = w ◦ F (x) = w(F (x)), (3.3)

thenWF (x) is called a Brownian motion in time F (x). This means, for any
given k and any given collection of points −∞ = x0 < x1 < · · · < xk+1 =

∞, increments

∆WF (xj) = WF (xj+1)−WF (xj), j = 0, · · · , k,

are independent Gaussian random variables. Each increment ∆WF (xj)

has expected value 0 and variance

E[∆WF (xj)]
2 = F (xj+1)− F (xj) = ∆F (xj).

This also implies that WF (x) has expected value 0 and variance

EW 2
F (x) = F (x).

As a consequence of (3.2), the covariance function of WF is

EWF (x)WF (x′) = min(F (x), F (x′)) = F (min(x, x′)), for x, x′ ∈ R. (3.4)
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In summary, Brownian motion is a Gaussian process which is completely
defined by its expected value 0 and covariance (3.2) or (3.4).

There is an extended definition of the Brownian motion in terms of
functions. Let φ(x) be a square integrable function with respect to F , i.e.,
φ ∈ L2(F ). When it is not necessary, we omit x in the notation relating to
φ.

The function-parametric F−Brownian motion is a family WF (φ), φ ∈
L2(F ), of random variables, where for each φ ∈ L2(F ), WF (φ) is defined
as

WF (φ) =

∫
φ(x)dWF (x).

This WF (φ) for each φ is a Gaussian random variable with expected value
EWF (φ) = 0 and the covariance between WF (φ) and WF (φ′) for functions
φ and φ′ in L2(F ) is

EWF (φ)WF (φ′) = 〈φ, φ′〉F =

∫
φ(x)φ′(x)F (dx). (3.5)

This implies that the variance of WF (φ) is

EW 2
F (φ) = ‖φ‖2

F =

∫
φ2(x)F (dx).

If φ is an indicator function of the form φy(x) = I{x≤y} then we get back the
Brownian motion in time F (y), i.e.,

WF (y) = WF (φy).

3.1.2 Brownian bridges

The standard Brownian bridge, denoted by u(t), is the following linear
transformation of the standard Brownian motion

u(t) = w(t)− tw(1), 0 ≤ t ≤ 1. (3.6)



26 Chapter 3. Empirical processes

As a linear transformation of a Gaussian process, u(t) itself is a Gaussian
process. It is easy to check that the expected value is Eu(t) = 0 and the
covariance is

E[u(t)u(t′)] = E
(
[w(t)− tw(1)][w(t′)− t′w(1)]

)
= E

(
w(t)w(t′)

)
− tE

(
w(1)w(t′)

)
− t′E

(
w(t)w(1)

)
+ tt′Ew2(1)

= min(t, t′)− tt′. (3.7)

Obviously, the variance of u(t) is

Eu2(t) = t− t2.

The Brownian bridge in time F (x), denoted by VF (x), is also a linear
transformation of the Brownian motion in time F (x), that is,

VF (x) = W (x)− F (x)W (∞). (3.8)

We can also write VF (x) as

VF (x) = u ◦ F (x) = u(F (x)). (3.9)

As a result of a linear transformation, VF (x) is again a Gaussian process.
The expected value of VF (x) is EVF (x) = 0 and the covariance is

E
(
VF (x)VF (x′)

)
=E
(
[W (x)− F (x)W (∞)][W (x′)− F (x′)W (∞)]

)
=E
(
W (x)W (x′)

)
− F (x)E

(
W (∞)W (x′)

)
− F (x′)E

(
W (x)W (∞)

)
+ F (x)F (x′)EW 2(∞)

=F (min(x, x′))− F (x)F (x′). (3.10)

This also yields the variance of the process VF (x), which is

VarVF (x) = EV 2
F (x) = F (x)− F 2(x) = F (x)(1− F (x)). (3.11)

The transformations (3.6) and (3.8) are linear and, moreover, they are pro-
jections. To check that they are idempotent, let us denote by Π the trans-
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formation which maps WF (x) to VF (x), i.e., VF (x) = Π(WF (x)). Then

Π2WF (x) = Π(Π(WF (x))) = Π(WF (x)− F (x)WF (∞))

= Π(WF (x))− F (x)Π(WF (∞))

= Π(WF (x))− F (x)(WF (∞)− F (∞)WF (∞))

= Π(WF (x)).

Similarly to the extension of the Brownian motion, we also have an
extension of the Brownian bridge in terms of functions. That is, VF (φ), a
function-parametric F−Brownian bridge. This is a projection of WF (φ)

orthogonal to the function 1, i.e.,

VF (φ) = WF (φ)− 〈φ, 1〉FWF (1). (3.12)

Again, if we set φy(x) = I{x≤y}, we will get back the Brownian bridge in
time F (y).

3.2 Empirical processes

This section shows only the construction of empirical processes.

3.2.1 The empirical distribution

Let X1, · · · , Xn be independent identically distributed random variables
with distribution F in R.
• A binomial process

For each x, denote

zn(x) =
n∑
i=1

I{Xi≤x}. (3.13)

Each indicator function I{Xi≤x} at a fixed x is a Bernoulli random variable
with probability

P[I{Xi≤x} = 1] = P[Xi ≤ x] = F (x).
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As a sum of independent identically distributed Bernoulli random vari-
ables, zn(x) is a binomial random variable. That is, for each fixed x, zn(x)

follows a binomial distribution bin(n, F (x)), i.e., we have

Ezn(x) = nF (x), Varzn(x) = nF (x)(1− F (x)). (3.14)

We call zn(x), as a function in x, a binomial process.

• An empirical distribution

An empirical distribution Fn(x) is defined as

Fn(x) =
1

n
zn(x) =

1

n

n∑
i=1

I{Xi≤x}. (3.15)

As a consequence of (3.14), we have

EFn(x) = F (x), VarFn(x) =
1

n
F (x)(1− F (x)). (3.16)

The main property of the empirical distribution Fn(x) is given by the fol-
lowing theorem.

Theorem 3.1. (Glivenko-Cantelli theorem)
If X1, · · · , Xn are independent and identically distributed with distribution

function F (x), then

sup
x
|Fn(x)− F (x)| → 0, as n→∞. (3.17)

This states that Fn(x) converges uniformly in x to F (x).

The proof of this Theorem can be found, for example in Khmaladze
[43].

3.2.2 The empirical process

Definition 3.1. The random process

vnF (x) =
√
n[Fn(x)− F (x)] =

zn(x)− nF (x)√
n

(3.18)

is called the empirical process.
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It was proved that the limit in distribution of the empirical process
vnF (x) is the Brownian bridge in time F (x), that is, VF (x) in (3.8). The
proof can be found in Khmaladze [43], Chapter 5.

The main idea for constructing the empirical process is that, centering
zn(x) by its expected value nF (x) and then normalizing it by

√
n, we will

get the process vnF (x) having

EvnF (x) = 0, Var vnF (x) = F (x)(1− F (x)). (3.19)

The covariance of the process vnF (x) is “stable” in the sense that it does not
depend on n. Moreover, this process possesses exactly the same expected
value and variance as those of the Brownian bridge VF (x) (see (3.11)).

Let us also consider the function-parametric empirical process de-
fined as follows:

vnF (φ) =

∫
R

φ(x)vnF (dx) =
1√
n

n∑
i=1

[φ(Xi)− Eφ(Xi)], (3.20)

where φ(x) is a function in L2(F ).

For example, if we choose

φ(x) = Γ−1
θ

ḟθ(x)

fθ(x)
,

then vnF (φ) will be the main part in the asymptotic representation of
√
n(θ̂−

θ) in (2.4).

The limit in distribution of the empirical process vnF (φ) with proper
restrictions (see, for example in van der Vaart and Wellner [76] or Pollard
[64]) on the class of functions φ is the function-parametric F -Brownian
bridge VF (φ) defined in (3.12).
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3.3 Tail empirical processes

The tail empirical process is built up based on the right tail of the distribu-
tion F (x), starting from some large value x0. Denote by

zn,x0(x) =
n∑
i=1

I{x0≤Xi≤x0+x} (3.21)

the tail binomial process in x. Let

zn,x0(∞) =
n∑
i=1

I{x0≤Xi} (3.22)

denote the total number of observations which exceeds x0. Put

Fn,x0(x) =
zn,x0(x)

zn,x0(∞)
=

1

zn,x0(∞)

n∑
i=1

I{x0≤Xi≤x0+x}. (3.23)

3.3.1 The unconditional tail empirical process

For some fixed x0, we have the following properties:

Ezn,x0(x) = n[F (x+ x0)− F (x0)],

Ezn,x0(∞) = n(1− F (x0)),

and

Var zn,x0(x) = n[F (x+ x0)− F (x0)][1− (F (x+ x0)− F (x0))]. (3.24)

As in the way of constructing the usual empirical process, we center
zn,x0(x) by its expected value and then normalize it by

√
Ezn,x0(∞). The

result is the tail unconditional empirical process

vnF,x0(x) =
zn,x0(x)− n[F (x+ x0)− F (x0)]√

n[1− F (x0)]
. (3.25)

Obviously,

EvnF,x0(x) = 0,
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and the variance of vnF,x0(x) is

Var vnF,x0(x) =
n[F (x+ x0)− F (x0)][1− (F (x+ x0)− F (x0))]

n[1− F (x0)]
. (3.26)

Assume that as n→∞, x0 can also change and

n(1− F (x0))→∞,

then we have

lim
n→∞

n(1− F (x0))

zn,x0(∞)
= lim

n→∞

Ezn,x0(∞)

zn,x0(∞)
= 1.

Denote
Gx0(x) =

F (x+ x0)− F (x0)

1− F (x0)
,

and assume that

lim
x0→∞

Gx0(x) = G(x), (3.27)

for some distribution function G(x). Then we can rewrite vnF,x0(x) as

vnF,x0(x) =
√
n(1− F (x0))[Fn,x0(x)−G(x)]. (3.28)

As x0 →∞, we have

1− (F (x+ x0)− F (x0))→ 1,

thus from (3.26) we have

lim
x0→∞

Var vnF,x0(x) = G(x).

The unconditional tail empirical process vnF,x0(x) has the same expected
value and variance as the Brownian motion in time G(x), which is WG(x).
The proof that the limit in distribution of the unconditional tail empiri-
cal process is in fact the Brownian motion in time G(x) can be found in
Einmahl [20],[21].
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Consider a slightly different form of the unconditional tail empirical
process

ṽnF,x0(x) =
zn,x0(x)− n[F (x+ x0)− F (x0)]√

zn,x0(∞)

=
√
zn,x0(∞)

[
Fn,x0(x)− n[F (x+ x0)− F (x0)]

zn,x0(∞)

]
≈
√
zn,x0(∞)[Fn,x0(x)−Gx0(x)]. (3.29)

It can be seen easily that

lim
n→∞

ṽnF,x0(x)

vnF,x0(x)
= 1.

Therefore, the normalization by
√
zn,x0(∞) does not change the asymp-

totic behaviour of the unconditional tail empirical process.

3.3.2 The conditional tail empirical process

The conditional tail empirical process is defined slightly differently from
the unconditional tail empirical process. That is, instead of centering the
binomial tail process zn,x0(x) by its expected value taken under the distri-
bution F (x) of the observations, we center it by the expected value taken
under the conditional distribution and as the sample size we now use
zn,x0(∞).

Suppose that zn,x0(∞) = m where m behaves in such a way that

m→∞ as x0 →∞ and m = oP (n) as n→∞.

We have

E[zn,x0(x)|zn,x0(∞) = m] = m
F (x+ x0)− F (x0)

1− F (x0)
. (3.30)

The conditional tail empirical process is defined by

vnF,x0(x) =
zn,x0(x)−mF (x+x0)−F (x0)

1−F (x0)√
m

. (3.31)
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Suppose that assumption (3.27) also holds then

vnF,x0(x) =
zn,x0(x)−mG(x)√

m
=
√
m[Fn,x0(x)−G(x)]. (3.32)

This process is of the same type as the usual empirical process, having a
stable variance G(x)(1 − G(x)). The proof that the limit in distribution of
the conditional tail empirical process is a Brownian bridge in time G(x),
again, can be found in Einmahl [20],[21].

3.4 The parametric empirical process

If we suppose that the distribution F is not specified, we only know that
it belongs to a parametric family of distributions; that is, F ∈ F where

F =
{
Fθ : θ ∈ Θ ⊂ Rd

}
.

Consider the parametric empirical process defined as

v̂nF,θ̂n(x) =
√
n[Fn(x)− Fθ̂n

(x)], (3.33)

where θ̂n = (θ̂1, · · · , θ̂d)T = θ̂n(X1, · · · , Xn) is an estimate of the unknown
hypothetical parameter θ0.

Suppose that θ̂n is the MLE. Using the representation (2.4) we can
rewrite the asymptotically linear expansion of θ̂n as

√
n(θ̂n − θ0) = Γ−1

θ0

∫
ḟθ0(y)

fθ0(y)
vnF,θ0(dy) + oP (1), n→∞, (3.34)

where fθ0 denotes the hypothetical density and ḟθ0 the vector of its deriva-
tives in θ.

As a consequence, the parametric empirical process has an asymptotic
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expansion

v̂nF,θ̂n(x) = vnF,θ0(x)−
√
n[Fθ̂n

(x)− Fθ0(x)]

= vnF,θ0(x)−
∫ x

−∞

ḟθ0(y)

fθ0(y)
Fθ0(dy)Γ−1

θ0

∫ ∞
−∞

ḟθ0(y)

fθ0(y)
vnF,θ0(dy) + oP (1)

= vnF,θ0(x)−
∫ x

−∞
βTF (y)Fθ0(dy)

∫ ∞
−∞

βF (y)vnF,θ0(dy) + oP (1),

(3.35)

where βF (x) is the normalized score function, defined in (2.3).

To study the limit in distribution of the parametric empirical process,
it will be more convenient to use the function-parametric version of the
empirical process

v̂nF,θ̂n(φ) =

∫
φ(y)v̂nF,θ̂n(dy) =

1√
n

n∑
i=1

[φ(Xi)− Eθ̂n
φ(Xi)].

The representation in (3.35) induces the following asymptotic representa-
tion

v̂nF,θ̂n(φ) = vnF,θ0(φ)− 〈βF , φ〉FvnF,θ0(βF ).

This, together with the facts that functions βF and 1 are orthogonal and
that the limit in distribution of vnF (φ) is the function parametricF -Brownian
bridge VF (φ) in (3.12), yields the limit in distribution of v̂nF,θ̂n(φ), which we
denote by V̂F (φ). That is, V̂F (φ) is the projection of the function parametric
F -Brownian motion WF (φ) as follows

V̂F (φ) = VF (φ)− 〈βF , φ〉FVF (βF )

= WF (φ)− 〈1, φ〉FWF (1)− 〈βF , φ〉FWF (βF ). (3.36)

This was first systematically studied by Khmaladze [37]. In the most re-
cent publication, the author called the process V̂F (φ) a βF -projected F -
Brownian motion, see Khmaladze [44].



3.5. Analogue of the empirical process for discrete distributions 35

3.5 Analogue of the empirical process for discrete

distributions

LetF be a discrete distribution defined by the probability P = {p1, . . . , pm}.
Without loss of generality, we can assume that a random variable X fol-
lowing the distribution F can have m values x1, . . . , xm inR. Suppose that
we have n observations classified into m groups of values with respective
frequencies ν1, . . . , νm. Consider a vector of normalized differences

Yin = ∆vnF (xi) =
∆zn(xi)− n∆F (xi)√

n
=
νi − npi√

n
, i = 1, . . . ,m,

and denote Yn = (Yin)mi=1. This vector Yn can be looked at as an analogue
of the increments of the empirical process. The limit in distribution of Yn
has a remarkable structure, see for instance Khmaladze [43], page 38. To
see that structure, consider the matrix

C =


p1 0

. . .

0 pm

−

p1

...
pm

 (p1, . . . , pm). (3.37)

We have the following theorem for the limit in distribution of vector Yn.

Theorem 3.2. Recall that Φ0,C is the multidimensional normal distribution with
mean vector 0 and covariance matrix C in (3.37). We have

P {Y1n ≤ λ1, . . . , Ymn ≤ λm} → Φ0,C(λ), as n→∞,

where λ = (λ1, . . . , λm)T .

This is an application of the Central Limit Theorem for multivariate
random variables. It follows that Yn converges in distribution to a normal
random vector. Usually, we consider vector Ỹn of the following compo-
nents, as a normalized version of Yn,

Ỹin =
∆zn(xi)− n∆F (xi)√

npi
=
νi − npi√

npi
.
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Then, as a consequence of Theorem 3.2, the limit of the distribution of
vector Ỹn is given by

P
{
Ỹ1n ≤ λ1, . . . , Ỹmn ≤ λm

}
→ Φ0,C̃(λ)

where

C̃ =


1 0

. . .

0 1

−

√
p1

...
√
pm

 (
√
p1, . . . ,

√
pm).

The limit in distribution of vector Ỹn, denoted by Ỹ , can be represented
as the projection of a standard Gaussian random vector X orthogonal to
vector

√
p = (

√
p1, . . . ,

√
pm)T . That means,

Ỹn
d→ Ỹ = X − 〈X,√p〉√p,

where X = (X1, . . . , Xm)T is a vector of independent standard Gaussian
random variables.

3.6 Empirical processes in Rk

Suppose that we have n independent identically distributed random vec-
tors X1, . . . , Xn in the space Rk having the same distribution F . Denote by
B a Borel subset of Rk, and consider the empirical process indexed by sets

vnF (B) =
√
n[Fn(B)− F (B)],

where

Fn(B) =
1

n

n∑
i=1

I{Xi∈B}

is the empirical distribution indexed by sets. Let the Borel set be of the
form B = (0, x1]× (0, x2]× · · · × (0, xk]; then putting

x = (x1, x2, . . . , xk),
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we can write the empirical process in terms of points as follows:

vnF (x) =
√
n[Fn(x)− F (x)].

The function-parametric empirical process version in Rk is defined in
a similar way as when k = 1. That is,

vnF (φ) =

∫
Rk
φ(x)vnF (dx) =

1

n

n∑
i=1

[φ(Xi)− Eφ(Xi)],

for some function φ(x) = φ(x1, . . . , xk) in L2(F ).
Also, the limit in distribution of vnF (φ) is the function-parametric F -

Brownian bridge VF (φ), defined as a linear transformation of the function-
parametric F -Brownian motion WF (φ), i.e.,

VF (φ) = WF (φ)− 〈φ, 1〉FWF (1).

3.7 Concluding remarks

As long ago as in 1933, Kolmogorov [46] realised that if F (x) is a continu-
ous distribution function on the real line, and if X follows the distribution
function F (x) then U = F (X) is uniformly distributed on [0, 1]. This im-
plies that the empirical process vnF (x) can be transformed into the uniform
empirical process

un(t) =
√
n[Fu,n(t)− t] = vnF (F−1(t))

by the time transformation t = F (x). At the same time, we have seen in
this chapter that the limit in distribution of un(t) is the standard Brownian
bridge u(t). Consequently, any statistic from vnF (x) that is invariant under
the time transformation t = F (x) will be asymptotically distribution free.

However, that fact is no longer true if F is a discrete distribution. For
nearly a century, there existed only one distribution free GOF test, the chi-
square test for testing statistical hypotheses on discrete distributions.
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In the case of a parametric hypothesis F ∈ F , the time transformation
t = F (x) on the parametric empirical process v̂nF,θ̂n(x) will also not be of
much immediate use. The limit in distribution of this process, as can be
seen from (3.36), depends not only on the hypothetical distribution Fθ0 but
also on the true parameter θ0.

However, in the case of continuous distribution in multi-dimensional
space and parametric hypotheses, a new methodology was introduced in
Khmaladze [38],[39] and [40]. There, the parametric empirical process
v̂nF,θ̂n was transformed into the process wn which under the null paramet-
ric hypothesis would converge to a Brownian motion in multidimensional
space.

In this thesis, we use another new transformation to construct a new
class of GOF tests for two different hypothesis testing problems. The
meaning of the term GOF tests will be clarified in the next chapter.



Chapter 4

Goodness of fit tests

Among the class of all test statistics for hypothesis testing problems, good-
ness of fit (GOF) tests are very different in nature compared to others. Gen-
erally speaking, GOF tests are of omnibus nature, which means that they
are able to detect deviations in all “directions” of local alternatives from
the null hypothesis. For testing simple hypotheses, if the alternative is
specified, the likelihood ratio test appears as the optimal test. This will
be discussed in Section 4.1. However, most of the time, the alternative is
not specified, so we are in need of a test statistic which is not only asymp-
totically distribution free but also equally sensitive to all local deviations.
Classical GOF tests will be presented in Section 4.2. We then present the
formulation of the GOF testing problem in Section 4.3.

4.1 The optimal test for a particular alternative

Given a set of independent and identically distributed random variables
X1, . . . , Xn, assume that they come from some unknown distribution F .
Consider a simple hypothesis testing problem with the null distribution
F0, i.e.,

H0 : F = F0.

39
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Under the alternative, assume that for each n = 1, 2, . . . , the random vari-
ables X1, . . . , Xn follow some particular distribution Fa,n. We sometimes
simply write Fa when unambiguous to do so. The statement for the alter-
native hypothesis is

Ha : F = Fa.

4.1.1 Contiguous alternatives and distributions of a ran-

dom sample

The following definition originated from contiguity theory, see Section 2.3.

Definition 4.1. The sequence of distributions Fa,n are called contiguous
alternatives to distribution F0 if there exists a sequence of functions hn(·)
such that for each n, the Lebesgue decomposition of Fa,n with respect to
F0, that is Fa,n = F c

a,n + F⊥a,n, satisfies:

nVar(F⊥a,n)→ 0, n→∞, (4.1)[dF c
a,n

dF0

]1/2

= 1 +
1

2
√
n
hn(·), (4.2)

and ∫
[hn(x)− h(x)]2F0(dx)→ 0 (4.3)

for some function h(·) where∫
h2(x)F0(dx) <∞, (4.4)∫
h(x)F0(dx) = 0. (4.5)

As stated in Khmaladze [40], the function h(·) involved in this defini-
tion can be viewed as a function which determines the “direction” from
which the alternative distributions (Fa,n) converge to the null distribution
F0.
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It is quite obvious that a function h, which satisfies conditions (4.3) and
(4.4) must satisfy condition (4.5).

Since X1, . . . , Xn are independent, the distributions of this sample un-
der the null and alternative hypothesis are respectively the following n-
fold direct products

Fn0 = F0 × F0 × · · · × F0

and
Fna = Fa,n × Fa,n × · · · × Fa,n.

As presented in Section 2.3, as a result from Oosterhoof and van Zwet
[60], for contiguous alternatives Fa,n, the sequence Fna is contiguous with
respect to Fn0 ; which we write Fa,n C F0,n.

From definition 4.1 of contiguous alternatives, we see that conditions
(4.3) and (4.4) require that the sequence hn(·) converges in L2(F0) as an ad-
ditional restriction. The choice of testing a null hypothesis against such
converging contiguous alternatives is considered in a large number of
studies regarding hypothesis testing problems. In some others, for exam-
ple in Khmaladze [41], the author introduced and studied GOF tests for
“chimeric alternatives”. For chimeric alternatives, the convergence of the
sequence hn(·) was removed, and instead the sequence is required to be
bounded in norm but there is no limiting point.

In the remainder of this section, suppose that Fa,n � F0 for all n and the
contiguous alternatives Fa,n converge to F0 from the direction h(·). Denote
by fa and f0 the corresponding density functions of Fa and F0 where we
omit the index n. From (4.2) and (4.3) we have[fa(·)

f0(·)

]1/2

= 1 +
1

2
√
n
h(·) + o(1/

√
n).

This implies

f 1/2
a (x) =

[
1 +

1

2
√
n
h(x) + o(1/

√
n)
]
f

1/2
0 (x). (4.6)
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4.1.2 The likelihood ratio test is the optimal test

Let us denote by Tn(X;F0) a test statistic, as a function of X1, . . . , Xn and
probably of F0 as well. Denote by CT the critical region of the test statistic
Tn.

Here and below, PFa and PF0 respectively denote the probabilities of
events under the alternative distribution Fa and the null distribution F0.
Then we have PF0 {Tn ∈ CT} is the probability of making a type I error,
i.e., the probability of rejecting the null hypothesis H0 while H0 is true.
And PFa {Tn ∈ CT} is the power of the test, i.e., the probability of correctly
rejecting the null hypothesis when the alternative Fa is true. If we are
not considering the possibility of controlling the type I error being smaller
than some level α, then the test Tn which maximizes

KT = PFa {Tn ∈ CT} − PF0 {Tn ∈ CT} ,

will be the optimal test for testing the null distribution F0 against the par-
ticular contiguous alternative distributions Fa.

Assume that g0(t), ga(t) are densities of Tn under the hypotheses H0

and Ha respectively. Then we have

KT =

∫
CT

[ga(t)− g0(t)]dt.

It is easy to see that the optimal critical region CT should be of the form

CT,max =
{
t :

ga(t)

g0(t)
> 1
}
.

Also, denote the maximum value of KT for each given Tn by

K∗T =

∫
CT,max

[ga(t)− g0(t)]dt.
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We can rewrite K∗T in terms of the distributions of the sample, that is

K∗T = PFa [Tn ∈ CT,max]− PF0 [Tn ∈ CT,max]

= PFa [(X1, . . . , Xn) ∈ T−1
n (CT,max)]− PF0 [(X1, . . . , Xn) ∈ T−1

n (CT,max)]

=

∫
· · ·
∫
T−1
n (CT,max)

[
dFna(x)− dFn0 (x)

]
=

∫
· · ·
∫
T−1
n (CT,max)

[ n∏
i=1

fa(xi)−
n∏
i=1

f0(xi)
] n∏
i=1

dxi. (4.7)

Put

Kh = max
Tn

K∗T . (4.8)

This is the optimal value ofKT for all test statistics Tn, which depends only
on h(·). Obviously, if the statistic T̃n satisfies the condition

T̃−1
n (CT̃ ,max) =

{
(x1, . . . , xn) :

∏n
i=1 fa(xi)∏n
i=1 f0(xi)

> 1

}
, (4.9)

and assigning the condition on the right hand side as a critical region L,
then T̃n is the optimal test. On the other hand, the likelihood ratio test
(LRT ) statistic of the form

LRT (X1, . . . , Xn) =

∏n
i=1 fa(Xi)∏n
i=1 f0(Xi)

has the critical region L described above, which gives it the property of
being the most powerful test for testing F0 against Fa.

4.1.3 The limit in distribution of the log-likelihood ratio

test under H0

Since the log function is increasing, instead of considering the likelihood
ratio, we equivalently consider the log-likelihood ratio test statistic, that
is,

Λh(X1, . . . , Xn) = logLRT (X1, . . . , Xn) =
n∑
i=1

log
fa(Xi)

f0(Xi)
.
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We can rewrite Λh(X1, . . . , Xn) as a function of h(·). That is, from (4.6) and
as a consequence of the Taylor expansion, Λh(X1, . . . , Xn) can be repre-
sented as

Λh(X1, . . . , Xn) = 2
n∑
i=1

log
(

1 +
1

2
√
n
h(Xi) + oP (1/

√
n)
)

=
n∑
i=1

[ 1√
n
h(Xi)−

1

2n
h2(Xi)

]
+ oP (1).

Since h(·) ∈ L2(F0), it follows from the SLLN that

1

2n

n∑
i=1

h2(Xi)→
1

2
‖h‖2

F0
, asn→∞.

On the other hand, by the CLT we have

1√
n

n∑
i=1

h(Xi)
d→ N (0, ‖h‖2

F0
).

Consequently, the limit in distribution of Λh under the null hypothesis is

Λh =
n∑
i=1

1√
n
h(Xi)−

1

2
‖h‖2

F0
+ oP (1) (4.10)

d−→F0 N (−1

2
‖h‖2

F0
, ‖h‖2

F0
). (4.11)

The rigorous proof of asymptotic normality of the log-likelihood ratio
test in terms of Hellinger distance can be found in Oosterhoof and van
Zwet [60].

4.1.4 An evaluation of the optimal test

We are going to evaluate Kh (or KΛh), the maximum value of KT for par-
ticular contiguous alternatives from direction h(·). By its definition in (4.7)
and (4.8), we see that Kh itself is the distance in total variation between
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two probability measures Fn0 and Fna (see definition of the distance in total
variation in Section 2.3). We have,

Kh =

∫
· · ·
∫
L

dFna(x)− dFn0 (x) (4.12)

=

∫
· · ·
∫
L

[∏n
i=1 fa(xi)∏n
i=1 f0(xi)

− 1
] n∏
i=1

f0(xi)dxi

= Ka
L −K0

L.

Since we can rewrite L as

L = {(x1, . . . , xn) : Λh(x1, . . . , xn) > 0} ,

we have

K0
L = Fn0 (L) =

∫
· · ·
∫
L

n∏
i=1

f0(xi)dxi

= PF0 {Λh > 0} .

Moreover, from (4.11), which shows the limit in distribution of Λh under
the null distribution F0, we deduce

K0
L → 1− Φ− 1

2
‖h‖2F0 ,‖h‖

2
F0

(0).

In addition,

Ka
L =

∫
· · ·
∫
L

∏n
i=1 fa(xi)∏n
i=1 f0(xi)

dFn0 (x)

=

∫
· · ·
∫

Λh>0

exp(Λh)dF
n
0 (x)

=

∫
t>0

exp(t)dΥ(t)

where Υ denotes the distribution of Λh under the measure Fn0 , or in other
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words, under the hypothesis F0. Hence, it follows from (4.11) that

Ka
L →

1√
2π ‖h‖2

F0

∫ ∞
0

exp(t) exp

{
−

(t+ 1
2
‖h‖2

F0
)2

2 ‖h‖2
F0

}
dt

=
1√

2π ‖h‖2
F0

∫ ∞
0

exp

{
−

(t− 1
2
‖h‖2

F0
)2

2 ‖h‖2
F0

}
dt

= 1− Φ 1
2
‖h‖2F0 ,‖h‖

2
F0

(0).

Eventually, we have

Kh → 1− Φ 1
2
‖h‖2F0 ,‖h‖

2
F0

(0)− (1− Φ− 1
2
‖h‖2F0 ,‖h‖

2
F0

(0))

= 2Φ− 1
2
‖h‖2F0 ,‖h‖

2
F0

(0)− 1

= 2Φ(−1

2
‖h‖F0

)− 1, (4.13)

where we recall that Φ, with the sub-indices omitted, denotes the standard
normal distribution.

4.2 Goodness of fit tests

Frequently in testing simple hypotheses on a random variableX following
a distribution F , the alternative is not specified. The null and alternative
hypotheses are

H0 : F = F0

versus

Ha : F 6= F0.

In a composite parametric testing problem, the null hypothesis is

H0 : F ∈ F0 = {Fθ : θ ∈ Θ0} ,
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while the alternative hypothesis is usually stated as

Ha : F /∈ F0.

In both problems, the optimality of the log-likelihood ratio test is lost
since the alternative distributions can approach the hypothetical distribu-
tion in infinitely many different directions. We want to have a statistic
which is able to detect all possible deviations of any class of local alterna-
tives.

In the following, we are going to give examples of some GOF tests as
well as non-GOF tests for testing simple hypotheses.

4.2.1 Examples of non-GOF tests

Example 4.1. (For testing continuous distributions)

We first see that any linear transformation of the empirical process does
not form a GOF test. In fact, consider a statistic T of the form

T = vnF0(w) =

∫
w(x)dvnF0(x) =

1√
n

n∑
i=1

[w(Xi)− EF0(w(Xi))].

Function w(x) is considered as the weight function. It is clear that Λh̃ (for
some certain direction h̃) belongs to this class of tests. In fact, from (4.10)
we have

Λh̃ = vnF0(h̃)− 1

2

∥∥∥h̃∥∥∥2

F0

+ oP (1).

Having said that T is not a GOF test, it is of interest to see what the
limit in distribution of T is under particular alternatives. Throughout the
examples below, we again use h(·) for the direction in which a sequence of
local contiguous alternative distributions Fa (with densities fa) approach
the null distribution F0 (with density f0). Recall that,

f 1/2
a (x) = f

1/2
0 (x)

[
1 +

1

2
√
n
h(x) + o(1/

√
n)
]
.
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Recall from Chapter 3 that the limit in distribution of T , as a function para-
metric empirical process, is VF0(w), a function-parametric F0−Brownian
bridge. Let us consider the limit in distribution of T under the alternative
Fa. We can rewrite vnF0(w) as

vnF0(w) =
1√
n

n∑
i=1

[w(Xi)− EF0(w(Xi))]

=
1√
n

n∑
i=1

{[w(Xi)− EFa(w(Xi))] + [EFaw(Xi)− EF0(w(Xi))]}

= vnFa(w) +
√
n
[ ∫

w(y)(1 +
1√
n
h(y))F0(dy)−

∫
w(y)F0(dy)

]
+ o(1)

= vnFa(w) +

∫
w(y)h(y)F0(dy) + o(1).

It was proved, see for example in van de Vaart and Wellner [76], that
the limit in distribution of the process vnFa(w) under the alternative Fa is
again VF0(w). In the remainder, let us denote by H(w) a functional of w,
which is

H(w) = 〈w, h〉F0 =

∫
w(y)h(y)F0(dy). (4.14)

This H(w) is the asymptotic form of the shift of the limiting Brownian
bridge since

1√
n

n∑
i=1

[EFaw(Xi)− EF0w(Xi)] = H(w) + o(1).

Therefore, the limit in distribution of vnF0(w) under the alternative Fa is

VF0(w) +H(w). (4.15)

Consequently, for H(w) = 〈w, h〉F0 = 0, or in other words, for the alter-
natives which approach the null distribution in a direction h(·) orthogonal
to w(·), the limit in distribution of the test statistics T under the null distri-
bution and under the alternative distribution are the same.
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Example 4.2. (For testing discrete distributions)
Consider the case when the random variable X of interest is discrete.

Denote by m the number of events and by {ν1n, · · · , νmn} the observed
frequencies (n is the total number of observations). The null distribution
is

P = (p1, . . . , pm).

For each n, denote by P̃ the contiguous alternative distribution,

P̃ = (p̃1, · · · , p̃m).

By the definition of contiguous alternatives, when n is sufficiently large,
we can represent p̃i as a local deviation of pi approximately as follows:

p̃i = pi

(
1 +

1√
n
hi

)
, (4.16)

where

(i)
∑m

i=1 hipi = 0,

(ii)
∑m

i=1 h
2
i pi <∞.

Note that equation (4.16) is obtained by taking the square of (4.2), approx-
imating hn(·) by its limit h(·) and omitting the negligible terms.

An analogous version of the statistic Tn in Example 4.1 above is the
following test statistic, a linear functional of the vector of components of
chi-square statistic

Tn =
m∑
i=1

wi
νin − npi√

npi
,

wherewi are weights put on each component. Consider the expected value
of Tn under the null distribution P and under the alternative distribution
P̃ . It is obvious that EPTn = 0. Besides,

EP̃Tn = EP̃

m∑
i=1

wi
νin − npi√

npi
=

m∑
i=1

wi
np̃i − npi√

npi

=
m∑
i=1

wi

√
npihi√
npi

=
m∑
i=1

wi
√
pihi.
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Therefore, if we choose h = (h1, . . . , hm)T such that it is orthogonal to
w
√
p = (w1

√
p1, . . . , wm

√
pm)T then the asymptotic behaviours of the test

statistic Tn under the null and alternative hypotheses are identical.

From the above examples, we see that GOF test statistics are essentially
non-linear functionals of the empirical process. We will mention some
widely used examples of GOF test statistics for testing continuous and
discrete distributions below.

4.2.2 Examples of GOF tests for continuous distributions

The given examples below are for testing simple hypotheses of continuous
distributions on the real line R.

Example 4.3. The Kolmogorov-Smirnov (KS) statistic has the following
form:

KSn = sup
x
|vnF0(x)| = sup

x

√
n |Fn(x)− F0(x)| . (4.17)

In the function-parametric version, we may consider

KSn = sup
φ∈Φ
|vnF0(φ)|

for Φ a suitably chosen class of functions φ.
The test statistic (4.17) was introduced by Kolmogorov [46] in 1933.

Recall that this KS statistic is invariant under the change of time t = F (x),
so that

KSn = sup
x
|vnF0(x)| = sup

t
|un(t))| .

Denote by Kn(z) the distribution of KSn, Kolmogorov proved that

lim
n→∞

P {KSn < z} = lim
n→∞

Kn(z) = K(z)

= 1− 2
∞∑

j=−∞

(−1)je−2j2z2 , 0 < z <∞, (4.18)
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and thusK is called the Kolmogorov’s distribution function. Then, Smirnov
[73] in 1939 considered the one-sided statistic

sup
x
vnF0(x) = sup

x

√
n[Fn(x)− F0(x)]

and derived its limit in distribution, which turned out to be simpler than
Kolmogorov’s distribution. In fact,

P

{
sup
x

√
n[Fn(x)− F0(x)] ≤ z

}
→ 1− e−

1√
2
z as n→∞.

Let us consider the distribution of the KS test statistic under particular
contiguous alternatives. We have

KSn =
√
n sup

x
|Fn(x)− F0(x)|

=
√
n sup

x
|Fn(x)− Fa(x) + Fa(x)− F0(x)|

=
√
n sup

x

∣∣∣∣Fn(x)− Fa(x) +
1√
n

∫ x

−∞
h(y)f(y)dy

∣∣∣∣
= sup

x

∣∣∣∣vnFa(x) +

∫ x

−∞
h(y)f(y)dy

∣∣∣∣
= sup

x
|vnFa(x) + S(x)| ,

where
S(x) =

∫ x

−∞
h(y)f(y)dy.

As mentioned above, the limit in distribution of vnFa(x) under alternatives
Fa is the same as that of vnF0(x) under the null hypothesis. Hence the
contribution of the “shift” S(x) will distinguish the limit in distribution of
the KS test under the null and alternative hypotheses.

Example 4.4. The Cramér-von Mises statistic is of the following form

Ω2[Ψ(F0(x))] =

∫
v2
nF0

(x)Ψ(F0(x))dF0(x)

= n

∫
[Fn(x)− F0(x)]2Ψ(F0(x))dF0(x).
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Here Ψ(t) is a certain non-negative function defined on the interval [0, 1]

such that Ψ(t), tΨ(t), t2Ψ(t) are integrable on [0, 1]. The original test statis-
tic was first considered by Cramér [9], in 1928. He suggested the following
test statistic

n

∫
[Fn(x)− F0(x)]2d(x).

In 1931, von Mises [78] independently made an equivalent suggestion and
developed a few properties of the test.

This current version was in fact a modification suggested by Smirnov
[72] in 1937. He also considered the case with Ψ(F0(x)) ≡ 1, and showed
that in this case, the statistic

Ω2
n =

∫
v2
nF0

(x)dF0(x) = n

∫
[Fn(x)− F0(x)]2dF0(x),

under the null hypothesis, has in the limit the ”omega-squared” distribu-
tion, independent of the hypothetical distribution function.

To consider the limit in distribution of Ω2
n under contiguous alterna-

tives, we will rewrite Ω2
n as follows:

Ω2
n = n

∫
[Fn(x)− F0(x)]2dF0(x)

= n

∫
[Fn(x)− Fa(x) + Fa(x)− F0(x)]2dF0(x)

=

∫
[vnFa(x) + S(x)]2dF0(x).

That yields the limit in distribution of Ω2
n under the alternative is of the

quadratic form
∫

[VF0(x) + S(x)]2dF0(x). This is different from the limit
under the null hypothesis, which is

∫
V 2
F0

(x)dF0(x).

Example 4.5. The Anderson-Darling test statistic is of the following form:

A2
n =

∫
v2
nF0

(x)

F0(x)(1− F0(x))
dF0(x) = n

∫
[Fn(x)− F0(x)]2

F0(x)(1− F0(x))
dF0(x).
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This A2
n test is a modification of the Cramér-von Mises test, giving more

weight to observations in the tail of the distribution. This was introduced
in 1952 by Anderson and Darling [3]. The asymptotically distribution free
property of this test is quite clear since

A2
n =

∫ 1

0

un(t)2

t(1− t)
dt.

To see the limit in distribution of A2
n under contiguous alternatives, we

can proceed in the same way as we did for Ω2
n.

Example 4.6. Consider a weighted version of the empirical process

ṽnF0(x) =
vnF0(x)

λ(x)

where λ(x) is a Chibisov-O’Reilly weight function. The class of Chibisov-
O’Reilly functions Λ includes all positive functions λ(t) on (0, 1), where a
positive function λ(t) is such that

inf
δ≤t≤1−δ

λ(t) > 0, for all δ ∈ (0, 1/2),

and where

I(λ, c) =

∫ 1

0

[t(1− t)]−1 exp

{
−cλ2(t)

t(1− t)

}
dt <∞, for all c > 0.

Members in this class can be, for example,

λ(t) = (t(1− t))b, 0 < b < 1/2.

The class of Chibisov-O’Reilly functions leads to a class of GOF tests, for
example, supx |ṽnF0(x)| . The reason to choose the weight functions is that,
under the null hypothesis F0, we have

ṽnF0(x)
d−→ VF (x)

λ(F (x))
,
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which was known as the Chibisov-O’Reilly theorem. This theorem was
originally proved by Chibisov [7] in 1964 and then was re-examined by
O’Reilly [61] in 1974.

Under contiguous alternatives, we have

ṽnF0(x)
d−→ VF (x) + S(x)

λ(F (x))
.

Another proof for this convergence can be seen also in Szyszkowicz [74].

4.2.3 Examples of GOF tests for discrete distributions

We are giving here two examples of test statistics which are sensitive to all
deviations of local contiguous alternatives from the null distribution. As
these examples are for discrete distributions, all assumptions are the same
as in Example 4.2.

Example 4.7. Consider the chi-square statistic

χ2
n =

m∑
i=1

(νin − npi)2

npi
.

This is the most well-known test statistic, introduced by Pearson [62] as
long ago as 1900. It is the most widely used test statistic for testing statis-
tical hypotheses for discrete distributions or testing independence of two
discrete random vectors in a contingency table context.

It is well known that χ2
n under the null hypothesis follows a chi-square

distribution with m − 1 degrees of freedom. Let us see what the expected
values of this test are under the null and the alternative hypotheses. We
have,

EPχ
2
n = EP

m∑
i=1

(νin − npi)2

npi
=

m∑
i=1

npi(1− pi)
npi

=
m∑
i=1

(1− pi) = m− 1.
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Under contiguous alternatives P̃ , we have

EP̃

m∑
i=1

(νin − npi)2

npi
=

m∑
i=1

EP̃
(νin − np̃i + np̃i − npi)2

npi

=
m∑
i=1

EP̃
(νin − np̃i)2 + n2(p̃i − pi)2 + 2n(νin − np̃i)(p̃i − pi)

npi

=
m∑
i=1

p̃i(1− p̃i)
pi

+ n
m∑
i=1

(p̃i − pi)2

pi

=
m∑
i=1

(
1 +

1√
n
hi

)
(1− p̃i) +

m∑
i=1

pih
2
i

= m− 1 +
1√
n

m∑
i=1

hi(1− p̃i) +
m∑
i=1

pih
2
i

→ m− 1 +
m∑
i=1

pih
2
i ,

since 1√
n

∑m
i=1 hi(1− p̃i)→ 0 as n→∞.

It is always true that
∑m

i=1 pih
2
i > 0. The distribution of

∑m
i=1

(νin−npi)2
npi

under alternatives is the non-central chi-squared distribution and the “shift”∑m
i=1 pih

2
i is the non-centrality parameter.

Example 4.8. Consider a vector of components
k∑
i=1

νin − npi√
npi

, k = 1, . . . ,m.

This can be looked at as the vector of the discrete version of the Kolmogorov-
Smirnov test statistic. As we have seen in Section 3.5, this vector under the
null hypothesis converges in distribution to a Gaussian vector, denoted by
{Wk}mk=1. Thus,

max
k

∣∣∣∣∣
k∑
i=1

νin − npi√
npi

∣∣∣∣∣ d→P max
k
|Wk| .

Since

EP̃

k∑
i=1

νin − npi√
npi

=
k∑
i=1

np̃i − npi√
npi

=
k∑
i=1

√
npihi√
npi

=
k∑
i=1

√
pihi = 0
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if and only if hi = 0 for every i, under contiguous alternatives we have{
k∑
i=1

νin − npi√
npi

}m

k=1

d−→P̃

{
Wk +

k∑
i=1

√
pihi

}m

i=1

.

Therefore,

max
k

∣∣∣∣∣
k∑
i=1

νin − npi√
npi

∣∣∣∣∣ d−→P̃ max
k

∣∣∣∣∣Wk +
k∑
i=1

√
pihi

∣∣∣∣∣ ,
which is different from max

k
|Wk|. However, note that the statistic

max
k

∣∣∣∣∣
k∑
i=1

νin − npi√
npi

∣∣∣∣∣
is not asymptotically distribution free as the distribution of {Wk}mk=1 de-
pends on {pi, i = 1, . . . , n}, see Section 3.5.

4.3 Formulation of the GOF problems

As stated in Section 3.7, the time transformation t = F (x) is not of any
direct use in the construction of asymptotically distribution free GOF tests
for testing hypotheses on a distribution F where F is not continuous in R.
For that reason, the idea of using other transformations came up. Which
properties a transformation proposed on the empirical process should pos-
sess was first formulated by Khmaladze [40], Section 3. The material of
this section is extracted from that paper.

To begin, let us introduce in general the notation P ν for the distribution
of a random process ν or a random variable ν. Let us also use the notation
L2(F ), ignoring the fact that parameters θ0 or θ̂ may be involved in F .
Denote by J some subset of L2(F ) and by L(J ) the closed linear span
of J .
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For two Gaussian processes ν = {ν(f), f ∈J } and η = {η(f), f ∈J },
the distance in total variation of P ν and P η is defined as

d(P ν , P η) = max
{
d(P ν(f), P η(f)), f ∈ L(J )

}
.

Note that P ν(f) and P η(f) for each f are Gaussian distributions of random
variables ν(f) and η(f) respectively.

The distance in total variation of P VF0 and P VF0+H (see VF0 +H again in
(4.15)) is known to be

d(P VF0 , P VF0+H) = Kh,

see for example, Kuo [49].
It is essential to recall a note in Section 3.7 that the transformation

un(t) = vnF0(F
−1
0 (t)) (4.19)

for a continuous distribution F in R possesses two properties: firstly, the
transformed empirical process is asymptotically distribution free; secondly,
the limit in distribution of the transformed process under the null and the
alternative hypotheses are different. In particular, the limit in distribution
of un(t) under contiguous alternatives is

u(t) +H(F−1
0 (t)),

where H is defined in (4.14). As the transformation (4.19) is a one-to-one
mapping, we also have

d(P u, P u+H◦F−1
0 ) = Kh.

Recall once again that the transformation (4.19) can not be extended
to multidimensional cases. Thus, one may set a goal of finding another
transformation K which has the same properties as (4.19). The precise
formulation for such K is stated as follows:

(i) K [vnF0 , F0]
d−→Fn0

ξ and the distribution P ξ does not depend on F0;
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(ii) For any sequence of contiguous alternatives Fa,n, we have

K [vnF0 , F0]
d−→Fna

ξ′

such that d(P ξ, P ξ′) = Kh.

A similar formulation is needed for the problem of testing composite
parametric hypotheses.

For testing parametric hypotheses of continuous distributions, recall
that if the family of distributions F under the null hypothesis is regular
then the limit in distribution, under the null hypothesis, of the function-
parametric empirical process v̂nF0,θ̂n

is v̂F0 defined in (3.36). Define a func-
tion Ĥ as a projection of H , that is

Ĥ(w) = H(w)− 〈w, βF 〉F0H(βF ).

Then, the limit in distribution of v̂nF,θ̂n under the contiguous alternatives
Fa,n is v̂F0 + Ĥ . Moreover, if H(βF ) = 0 then

d(P v̂F0 , P v̂F0+Ĥ) = Kh.

Again, the transformation (4.19) can not be extended to the parametric
testing problem or the multidimensional case. The properties of the trans-
formation K̂ , which we are looking for, of the parametric empirical pro-
cess and of the hypothetical family of distribution F are formulated as
follows:

(i) For each θ ∈ Θ0, we have K̂ [v̂nF0,θ̂n
,F ]

d−→Fn0
ξ and P ξ does not

depend on F if F is regular;

(ii) For any sequence of contiguous alternatives Fa,n, we have

K̂ [vnF0,θ̂n
,F ]

d−→Fna
ξ′

such that d(P ξ, P ξ′) = Kh.
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There are only two transformations known satisfying the two prop-
erties. The first one was known as the Khmaladze transformation (see
Khmaladze [38], [39] [40]), which works for testing both simple and para-
metric hypotheses for continuous distributions in multidimensional space.
The second transformation was also invented by Khmaladze [42],[44] re-
cently. This new transformation is distinct from the first one and can be
applied for both discrete and continuous distributions and for simple as
well as parametric testing problems.

Applications of the Khmaladze-2 transformation will be presented in
the two following chapters 5 and 6. The two problems are parametric
hypothesis testing, for discrete distributions in one case and for the tail of
continuous distributions on the other.
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Chapter 5

Testing independence of two
discrete random variables

The content of this chapter is extracted from Nguyen [58].

5.1 Introduction

The main aim of this chapter is to give a construction of a class of asymp-
totically distribution free GOF tests for testing independence in 2-way con-
tingency tables. This problem is equivalent to testing the independence of
two discrete random variables as the entries of the contingency tables can
be either categorical frequencies or just simply numerical random vari-
ables. The problem of testing the independence of two discrete random
vectors will also be treated in the same way as well. For consistency, we
will use the term “contingency table” throughout this chapter.

The classical problem of testing independence in contingency tables
has long been under consideration. However, there has existed essentially
only one distribution free GOF test as a tool, the chi-square test. Various
modifications of the chi-square tests have been employed to adapt to dif-
ferent circumstances. This could be found in Haberman [31], Gilula [26],
Bedrick [4], Holt [35], Koch et al. [45], Rao and Scott [69] with references

61
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therein.
Suppose that we need to test the independence of two discrete ran-

dom variables X and Y . Let (X1, Y1), . . . , (Xn, Yn) be independent copies
of (X, Y ) which are the input of a table with I + 1 classifications of values
for X and J + 1 classifications for Y . For each cell (i, j) of the table where
i = 1, . . . , I + 1; j = 1, . . . , J + 1, denote by νij the cell counts or frequen-
cies, so that we have

∑
i,j νij = n. Let us denote by pij the probability that

an observed value of (X, Y ) is in the cell (i, j). Denote by {ai} and {bj} the
marginal distributions of X and Y . Put

a = (a1, . . . , aI)
T ∈ RI ,

b = (b1, . . . , bJ)T ∈ RJ .

In some cases when the number of observations n is considered as ran-
dom - most of the time a Poisson random variable - then the frequencies
will also become independent Poisson random variables with some inten-
sities γij . We only consider n known and fixed, so the distribution of {νij}
is not Poisson but multinomial. The null hypothesisH0 and the alternative
Ha are stated as

H0 : X and Y are independent,

Ha : X and Y are dependent.

The hypothesis H0 is true when

pij = aibj for all i, j.

In other words, the conditional distributions under H0 are

pi|j = ai, pj|i = bj for all i, j.

For this reason, the independence of X and Y is often referred to as homo-
geneity of the conditional distributions.

TestingH0 becomes a parametric testing problem if we view the marginal
distributions a and b as parameters. However, the dimension of the pa-
rameters, I + J , will typically be large.
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5.2 Literature review

The form of the empirical process is not exactly the same as presented in
chapter 3 since it involves two marginal distributions. We will see the
detail below.

5.2.1 MLEs of marginal distributions

Denote by θ = (aT ,bT )T ∈ Rd where d = I + J the vector of parameters.
Denote by θ0 the true unknown parameter. It is well-known that the MLEs
for θ with given frequencies {νij} are the sample marginal proportions or
relative frequencies:

âi =
νi+
n

=

∑(J+1)
j=1 νij

n
, b̂j =

ν+j

n
=

∑(I+1)
i=1 νij
n

, for all i, j. (5.1)

Denote by θ̂ = (â1, . . . , âI , b̂1, . . . , b̂J)T the vector of the estimated parame-
ters. Clearly, under the null hypothesis H0, the estimated joint probabili-
ties are

p̂ij = pij(θ̂) = âib̂j.

5.2.2 The empirical process for testing independence

In general, for testing independence of two random variables X and Y

with respective marginal distributionsG(x) andH(y), we consider the em-
pirical process

vn(x, y) =
√
n[Fn(x, y)−Gn(x)Hn(y)].

Here,

Fn(x, y) =
1

n

n∑
i=1

I{Xi≤x,Yi≤y}
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is the empirical distribution function and

Gn(x) =
1

n

n∑
i=1

I{Xi≤x},

Hn(y) =
1

n

n∑
i=1

I{Yi≤y},

are marginal empirical distribution functions. If X and Y are continuous
random variables, then the limit in distribution of the empirical process
vn(x, y) is known to be a Brownian sheet (see for example van de Vaart
and Wellner [76], section 3.8). And it is known that any statistic from
vn(x, y) which is invariant under the time transformation t = G(x) and
s = H(y) will be distribution free, i.e., the distribution of such a statistic
will be the same for all continuous distributions G and H . This fact is no
longer true when X or Y or both X and Y are discrete. It is also not valid
when either X or Y is a multidimensional random variable.

5.2.3 Components of the chi-square statistic

Without loss of generality, assume that the input of the contingency tables,
i.e., values ofX and Y , are correspondingly enumerated by 1, . . . , I+1 and
1, . . . , J + 1. Denote by

T̂n,ij =
∆2vn(i, j)√

∆Gn(i)∆Hn(j)
(5.2)

the normalized second increments of the empirical process, where

∆2vn(i, j) = vn(i, j)− vn(i− 1, j)− vn(i, j − 1) + vn(i− 1, j − 1),

∆Gn(i) = Gn(i)−Gn(i− 1), ∆Hn(j) = Hn(j)−Hn(j − 1).

Put T̂n = (T̂n,ij). We can rewrite T̂n in a more conventional way. Specifi-
cally, denote by

Tn,ij =
νij − npij(θ0)√

npij(θ0)
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the components of Tn, then T̂n,ij is in fact the estimator of Tn,ij , i.e.,

T̂n,ij =
νij − npij(θ̂)√

npij(θ̂)
=
νij − nâib̂j√

nâib̂j

. (5.3)

Following Khmaladze [40] we shall call T̂n a vector of components of the
chi-square statistic. As we know, the conventional chi-square test is of the
form

χ2
n =

∑
i,j

T̂ 2
n,ij =

∑
i,j

(νij − nâib̂j)2

nâib̂j
=
∑
i,j

(∆2vn(i, j))2

∆Gn(i)∆Hn(j)
.

Here and below, the notation
∑

i,j means
∑I+1

i=1

∑J+1
j=1 .

5.2.4 The space and limit theorem

In this section, in order to avoid any possible confusion with the operator
presented later on, we will clarify the space to which Tn, T̂n belong. The
limit in distribution of T̂n is essential for our method but may not be seen
clearly from sections 3.4 and 3.5. Hence, we recall it here.

We consider Tn and T̂n not as matrices but as functions of two variables
i and j where i ∈ I = {1, . . . , I + 1} , j ∈ J = {1, . . . , J + 1}. The space
C2
I×J of such functions is equipped with the inner product and the norm

defined as usual, i.e.,

〈V,W 〉 =
∑
i,j

VijWij, ‖V ‖ =

√∑
i,j

V 2
ij for V,W ∈ C2

I×J .

The limit in distribution of T̂n can be deduced from Theorem 3.2. To
begin, we recall that the asymptotically linear representation of the MLE θ̂

holds as usual, that is,

√
n(θ̂ − θ0) = Γ−1

∑
i,j

Tij
ṗij(θ0)√
pij(θ0)

+ oP (1), (5.4)



66 Chapter 5. Testing independence of two discrete random variables

where ṗij(θ) is the vector of partial derivatives of pij with respect to θ and
Γ is the Fisher information matrix. Consequently we have the following
representation of T̂n:

T̂n,ij = Tn,ij −
ṗij(θ0)T√
pij(θ0)

√
n(θ̂ − θ0) + oP (1)

= Tn,ij −
ṗij(θ0)T√
pij(θ0)

Γ−1
∑
i′,j′

Tn,i′j′
ṗi′j′(θ0)√
pi′j′(θ0)

+ oP (1). (5.5)

Denote β(0) =
√
p = (

√
pij). Denote by β the vectors of normalized score

functions. Components of β are

βij = Γ−1/2 ṗij(θ0)√
pij(θ0)

, for all i, j, (5.6)

Since the dimension of the parameter is d, we have that β is a collection
of d functions β(1), . . . , β(I), β(I+1), . . . , β(d) in C2

I×J . The first β(1) consists
of components which are based on derivatives with respect to the first
element a1 of θ, β(I+1) is the one based on derivatives with respect to b1

and so on. From their definition in (5.6), it follows that β(1), . . . , β(d) are
orthonormal and each of them is orthogonal to β(0) =

√
p.

Denote by V = (Vij) an element of C2
I×J such that all Vij are indepen-

dent and standard normal random variables, then as stated in Khmaladze
[42], T̂n converges in distribution to T̂ , which is the projection of V orthog-
onal to the subspace generated by

{
β(0), β(1), . . . , β(d)

}
, i.e., we have

T̂ = V −
d∑

α=0

〈V, β(α)〉β(α). (5.7)

The explicit forms of β(α) will be seen below.

5.3 The transformation of T̂n

The limit in distribution of T̂n varies from case to case and depends on
the hypothetical parameter θ0. However, if we apply the transformation
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Khmaladze-2, which is a one-to-one mapping, T̂n will be turned into Ẑn

(see (5.12) below) with the specified limit in distribution to be the follow-
ing:

Ẑ = V ′ −
d∑

α=0

〈V ′, r(α)〉r(α). (5.8)

Here V ′ = (V ′ij), like V in (5.7), is an element of C2
I×J in which V ′ij are

all independent and standard normal random variables. Specifically, the
collection

{
r(0), . . . , r(d)

}
is an orthonormal collection of functions in C2

I×J ,
which can be freely chosen by the users but is fixed. As demonstrated in
Khmaladze [42], the transformation has both explicit and recursive forms,
but because of its computational convenience, the latter will be used. Gen-
erally, consider a unitary operator Uβ,r of the form

Uβ,r = I − 1

1− 〈β, r〉
(r − β)(r − β)T . (5.9)

If β and r are two functions of unit norm then it is easy to check that
Uβ,rβ = r, Uβ,rr = β and Uβ,rv = v for every v ⊥ β, r.

Consider the operator Uβ(0),r(0) . Obviously,

Uβ(0),r(0)β
(0) = r(0), Uβ(0),r(0)r

(0) = β(0).

Denote by β̃(1) the image of β(1) via Uβ(0),r(0) . Since Uβ(0),r(0) preserves the
inner product, the images of β(0) and β(1) are orthogonal, which means
r(0) ⊥ β̃(1). Hence

Uβ̃(1),r(1)r
(0) = r(0), Uβ̃(1),r(1) β̃

(1) = r(1).

In summary, by applying the composition Uβ̃(1),r(1)Uβ(0),r(0) to β(0), β(1), β(2),
we get their images r(0), r(1), β̃(2) respectively, where β̃(2) ⊥ r(0), r(1).

Continuing this process, generally, we can define β̃(τ), τ ≥ 2 recursively
as

β̃(τ) =

( ∏
1≤κ<τ

Uβ̃(κ),r(κ)Uβ(0),r(0)

)
β(τ). (5.10)



68 Chapter 5. Testing independence of two discrete random variables

Then define an operator U based on β̃(τ) in (5.10) by

U =
d∏

τ=1

Uβ̃(τ),r(τ)Uβ(0),r(0) . (5.11)

As a product of unitary operators, U is a unitary operator. The role of this
operator is expressed in the following theorem.

Theorem 5.1. The unitary operatorU satisfiesUβ(α) = r(α) for all α = 0, . . . , d.

If the operator U transforms T̂n into Ẑn, i.e.,

Ẑn = UT̂n =

(
d∏

τ=1

Uβ̃(τ),r(τ)Uβ(0),r(0)

)
T̂n, (5.12)

then Ẑn converges in distribution to Ẑ of the form given in (5.8).

This theorem is extracted from the last Remark in Khmaladze [42]. We
will give a short proof here.

Proof. It is easy to see the first statement that U actually maps β(α) into
r(α) for all α. We shall now show that Ẑn obtained by the equation (5.12)
converges in distribution to Ẑ.

Since T̂n
d−→ T̂ , as an image of T̂n via a linear transformation, Ẑn = UT̂n

will have the limit in distribution Ẑ = UT̂ whose form was given in (5.8).
Indeed,

Ẑ = UT̂ = U[V −
d∑

α=0

〈V, β(α)〉β(α)] = UV −
d∑

α=0

〈V, β(α)〉Uβ(α)

= V ′ −
d∑

α=0

〈V, β(α)〉r(α) = V ′ −
d∑

α=0

〈V ′, r(α)〉r(α).

Here V ′ is the image of V via the unitary operator U, which guarantees
that V ′ij are independent and standard normal random variables, like Vij .
The reason why we have 〈V, β(α)〉 = 〈V ′, r(α)〉 for all α is again because U

is unitary, and hence preserves inner products.
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5.4 Explicit forms of matrices Γ,Γ−1,Γ−1/2

We present the explicit form of the Fisher information matrix, its inverse
matrix and the square root of the inverse matrix. These explicit presen-
tations help to derive the explicit form of the normalized score functions
β(i), i = 1, . . . , d.

5.4.1 The Fisher information matrix Γ

Recall that the Fisher information matrix Γ of dimension d × d is defined
as

Γ =
∑
i,j

ṗij(θ0)ṗij(θ0)T

pij(θ0)
=
∑
i,j

ṗij(θ0)√
pij(θ0)

(
ṗij(θ0)√
pij(θ0)

)T

.

We shall see that under the null hypothesis, the following block matrix
form is valid for Γ:

Γ =

(
Γa 0

0 Γb

)
. (5.13)

In fact, when pij = aibj for every i, j, note that aI+1 = 1−
∑I

i=1 ai, bJ+1 =

1−
∑J

j=1 bj , we simply have

∂pz1z2/∂ai√
pz1z2

=

√
bz2
az1

[
I{z1=i} − I{z1=I+1}

]
, i = 1, . . . , I, (5.14)

and

∂pz1z2/∂bj√
pz1z2

=

√
az1
bz2

[
I{z2=j} − I{z2=J+1}

]
, j = 1, . . . , J. (5.15)

Here and below, z1, z2 are sub-indices, z1 ∈ I, z2 ∈ J and I{z=i} is the
indicator function, I{z=i} = 1 if z = i and I{z=i} = 0 otherwise. Then, if
i 6= i′ we have∑

z1,z2

∂pz1z2/∂ai√
pz1z2

∂pz1z2/∂ai′√
pz1z2

=
∑
z1,z2

bz2
az1

I{z1=I+1} =
1

aI+1

.
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If i = i′ then∑
z1,z2

∂pz1z2/∂ai√
pz1z2

∂pz1z2/∂ai′√
pz1z2

=
∑
z1,z2

bz2
az1

[I{z1=I+1} + I{z1=i}] =
1

ai
+

1

aI+1

.

For all i, j, it is easy to see that

∑
z1,z2

∂pz1z2/∂ai√
pz1z2

∂pz1z2/∂bj√
pz1z2

= 0,

which explains why we have two zero blocks in the expression of Γ. Using
the notation 1I = (1, . . . , 1)T ∈ RI and D(a) = diag(a1, . . . , aI), and a
similar notation for D(1/a), D(

√
a), . . . , we have

Γa = D

(
1

a

)
+

1

aI+1

1I1
T
I , Γb = D

(
1

b

)
+

1

bJ+1

1J1
T
J .

5.4.2 Matrix Γ−1

It is well-known that a block matrix as Γ of the form in (5.13) will have its
inverse and square root of the same form. It is quite easy to verify that the

inverse matrix of the Fisher information matrix is Γ−1 =

(
Γ−1
a 0

0 Γ−1
b

)
where

Γ−1
a = D(a)− aaT , Γ−1

b = D(b)− bbT . (5.16)

Indeed,

ΓaΓ−1
a =

[
D

(
1

a

)
+

1

aI+1

1I1
T
I

] [
D(a)− aaT

]
= D

(
1

a

)
D(a) +

1

aI+1

1I1
T
I D(a)−D

(
1

a

)
aaT − 1

aI+1

1I1
T
I aa

T

= II +
1

aI+1

1Ia
T − 1Ia

T − 1

aI+1

(1− aI+1)1Ia
T = II ,

where II is the notation for the identity matrix of size I × I . A similar
argument is true for Γ−1

b which proves (5.16).
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5.4.3 Matrix Γ−1/2

We have the following forms for matrix Γ−1/2:

Γ−1/2
a = [II − ca

√
a
√
a
T

]D(
√
a), Γ

−1/2
b = [IJ − cb

√
b
√
b
T

]D(
√
b) (5.17)

where ca, cb are constants to be determined. This is also easy to check
because(

Γ−1/2
a

)T
Γ−1/2
a = D(

√
a)[II − ca

√
a
√
a
T

][II − ca
√
a
√
a
T

]D(
√
a)

= D(
√
a)
[
II − 2ca

√
a
√
a
T

+ c2
a(1− aI+1)

√
a
√
a
T
]
D(
√
a)

= D(a)−
[
2ca − c2

a(1− aI+1)
]
D(
√
a)
√
a
√
a
T
D(
√
a)

= D(a)−
[
2ca − c2

a(1− aI+1)
]
aaT = D(a)− aaT = Γ−1

a

if and only if 2ca − c2
a(1 − aI+1) = 1 which implies that ca = 1

1±√aI+1
.

Similarly, cb = 1

1±
√
bJ+1

.

5.4.4 Normalized score functions

Substituting ṗij(θ0)
/√

pij(θ0) as in (5.14) and (5.15) and the explicit for-
mula for Γ−1/2 as in (5.17)) into (5.6) we get the explicit form of β(α). Since
matrix Γ−1/2 involves ca and cb, each of which has two possible values,
there are 4 possible collections of β(α) depending on the sign of ca and cb.
Specifically,
• for 1 ≤ α ≤ I , we have

β(α)
z1z2

=

√
bz2
az1

[
√
aαI{z1=α} −

1

1 +
√
aI+1

√
aαaz1I{z1 6=I+1} − I{z1=I+1}

√
aI+1

√
aα

]
,

(5.18a)

or

β(α)
z1z2

=

√
bz2
az1

[
√
aαI{z1=α} −

1

1−√aI+1

√
aαaz1I{z1 6=I+1} + I{z1=I+1}

√
aI+1

√
aα

]
.

(5.18b)
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• for I < α ≤ I + J we have

β(α)
z1z2

=

√
az1
bz2

[√
bα−II{z2=α−I}−

1

1 +
√
bJ+1

√
bα−Ibz2I{z2 6=J+1}

− I{z2=J+1}
√
bJ+1

√
bα−I

]
, (5.19a)

or

β(α)
z1z2

=

√
az1
bz2

[√
bα−II{z2=α−I}−

1

1−
√
bJ+1

√
bα−Ibz2I{z2 6=J+1}

+ I{z2=J+1}
√
bJ+1

√
bα−I

]
. (5.19b)

5.5 Simulation results for distribution free prop-

erty

We shall demonstrate in this section that a new GOF test based on Ẑn con-
verges quickly to its limit in distribution and that, even for a relatively
small sample size n, the asymptotic distribution of the new test statistics
does not depend on the unknown hypothetical parameters θ0.

5.5.1 Forms of GOF tests

For i = 1, . . . , I + 1 and j = 1, . . . , J + 1, let

V T
n,ij =

∑
(t1,t2)≤(i,j)

T̂t1t2 , V Z
n,ij =

∑
(z1,z2)≤(i,j)

Ẑz1z2 , (5.20)

be cumulative sums of coordinates of T̂n and Ẑn respectively, where, (t1, t2) ≤
(i, j) means t1 ≤ i and t2 ≤ j. Put

V T
n = (V T

n,ij), V Z
n = (V Z

n,ij);



5.5. Simulation results for distribution free property 73

and let W = (Wij) where

Wij =
∑

(t,s)≤(i,j)

Vts, i = 1, . . . , I + 1, j = 1, . . . , J + 1,

in which again V = (Vij) ∈ C2
I×J , where Vij are independent and standard

normal random variables. From the forms of T̂ and Ẑ as in (5.7) and (5.8),
we see that W is an analog of the trajectory of a Brownian motion in 2-
dimensional time. Therefore, the asymptotic behaviours of V T

n and V Z
n are

somewhat similar to Brownian bridges. More precisely, they are projected
Brownian motions (see 3.36). The main difference between V T

n and V Z
n is

that the limiting projected Brownian motion of V Z
n has a fully prescribed

distribution, while that of V T
n depends on parameters {ai} and {bj}.

Recall that the limit in distribution of Ẑn could be chosen by the users,
which means that one can freely choose any collection

{
r(0), r(1), . . . , r(d)

}
provided that they are mutually orthonormal. For that reason, we chose
this collection to be the specific

{
β(α), α = 0, . . . , d

}
, given by (5.18a) and

(5.19a) computed in the discrete uniform case with respect to ai = 1
I+1

,
bj = 1

J+1
for all i, j. This choice seems natural to us since it can play the

role of the one particular testing problem in the class of various parametric
testing problems for given (I+1)×(J+1) tables. Let us see explicitly what
r(α) are. Simply choose

ca0 =

√
I + 1

1 +
√
I + 1

, cb0 =

√
J + 1

1 +
√
J + 1

,

i.e., the “ + ” sign is chosen (to be consistent with choosing βα from (5.18a)
and (5.19a)). Then

r(0) =

(
1√

(I + 1)(J + 1)

)
. (5.21)

Other r(α), α = 1, . . . , d, have components as follows: for α ≤ I,

r(α)
z1z2

=
1√
J + 1

[
I{z1=α} −

I{z1 6=I+1}√
I + 1(1 +

√
I + 1)

− 1√
I + 1

I{z1=I+1}

]
,

(5.22)



74 Chapter 5. Testing independence of two discrete random variables

and for α ≥ I + 1,

r(α)
z1z2

=
1√
I + 1

[
I{z2=α−I} −

I{z2 6=J+1}√
J + 1(1 +

√
J + 1)

− 1√
J + 1

I{z2=J+1}

]
.

(5.23)

We are choosing for demonstration two common GOF test statistics,
which are the discrete versions of the Kolmogorov-Smirnov (KS) statistic
and the omega-square (Ω2) statistic, as follows:

KS = max
(1,1)≤(i,j)≤(I+1,J+1)

∣∣V Z
n,ij

∣∣ , (5.24)

Ω2 =
∑

(1,1)≤(i,j)≤(I+1,J+1)

(V Z
n,ij)

2. (5.25)

5.5.2 Distribution free property of the new GOF tests

These two test statistics, KS and Ω2, will be shown to be asymptotically
distribution free. To demonstrate this, we produced the cumulative distri-
bution functions for various arbitrarily selected parameters θ0 and plotted
them in the same figure for each type of statistic.

Firstly, we choose the sample size to be n = 500. We would expect
that for tables of small dimension, this sample size is big enough for the
distributions of the test statistics to reach their limits. As shown from our
simulation, this suspicion is true for tables of dimension 7×7 or even more.

To create Figure 5.1, we chose the sample size n = 500 and table di-
mension 7 × 7, running the simulation for 5000 iterations to build up the
cumulative distribution functions of KS and Ω2 given by (5.24) and (5.25).
As examples, we chose the hypothetical parameters to be

θ(1) = (0.03, 0.05, 0.04, 0.17, 0.1, 0.29, 0.32, 0.04, 0.05, 0.05, 0.1, 0.32, 0.23, 0.21)T

and

θ(2) = (0.135, 0.25, 0.1, 0.12, 0.065, 0.23, 0.1, 0.15, 0.15, 0.1, 0.1, 0.23, 0.17, 0.1)T .
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(a) Distribution functions of the KS statistics, sample size
n = 500, with two different sets of parameters
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(b) Distribution functions of the Ω2 statistics, sample size
n = 500, with two different sets of parameters

Figure 5.1: Distributions of new test statistics based on Ẑn in the limit for 7× 7 tables

Note that here and below we write θ(1) instead of θ(1)
0 for the hypothetical

parameter as we are writing the full hypothetical marginal probabilities,
which have 2 more elements than θ

(1)
0 . Notice that with the first choice

θ(1), we have more than 20 cells with expected value less than 5, and the
biggest cell count has expected value 75.

As we can see, the two curves in each plot in Figure 5.1 are not dis-
tinguishable. In fact, any chosen parameter will give us the same result.
Moreover, when we gradually reduce the sample size, the curve in each
plot remains the same until n is as low as 100.

Figure 5.2 provides the same result as Figure 5.1 but for tables of di-
mension 5× 3. Given that the result is not dependent on the choice of the
parameters, we do not write them down here1.

Secondly, we choose the sample size to be a relatively small value com-
pares to n = 500. Obviously, with n = 40 in tables of dimension 5 × 8,

1Since the parameters are not given, there will be no legends in the plot.
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(a) Distributions of the KS statistics, sample size n = 500,
with two different sets of parameters
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(b) Distributions of the Ω2 statistics, sample size n = 500,
with two different sets of parameters

Figure 5.2: Distributions of new test statistics based on Ẑn in the limit for 5× 3 tables
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(a) Distributions of the KS statistics, sample size n = 40,
with two different sets of parameters
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(b) Distributions of the Ω2 statistics, sample size n = 40,
with two different sets of parameters

Figure 5.3: Distributions of new test statistics based on Ẑn with a small sample size for
5× 8 tables
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(a) Distributions of the KS statistics, sample size n = 60,
with two different sets of parameters
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(b) Distributions of the Ω2 statistics, sample size n = 60,
with two different sets of parameters

Figure 5.4: Distributions of new test statistics based on Ẑn with a small sample size for
6× 6 tables

the distributions of test statistics have not reached their limits yet. But as
can be seen in Figure 5.3, the distribution free property still holds since the
two curves in each plot coincides. To create these figures, we chose the
following hypothetical parameters as an example2:

θ(1) = (0.3, 0.1, 0.21, 0.15, 0.24, 0.18, 0.05, 0.1, 0.07, 0.23, 0.1, 0.2, 0.07)T

and

θ(2) = (0.06, 0.35, 0.12, 0.14, 0.33, 0.1, 0.12, 0.16, 0.21, 0.08, 0.15, 0.1, 0.08)T .

One more example to support the argument is given in Figure 5.4, this
time for tables of dimension 6× 6 with a sample size n = 60.

2It is quite redundant to write down the chosen parameters; but we hope that with
these omitted, the reader can see that with whatever parameters have been chosen, the
result stays the same. For this reason, we chose two sets of values which are really “far”
from each other in the sense that θ(1)

i −θ
(2)
i is not always small but quite significantly big

at some i.
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Finally, in order to see how close the distribution of the test statistics
is to its limit in distribution, we plot the cumulative distribution functions
of the test statistics with two different sample sizes. This time we choose
tables of size 4× 6 for demonstration, with parameters

θ(1) = (0.5, 0.1, 0.33, 0.07, 0.05, 0.2, 0.1, 0.15, 0.42, 0.08)T

and

θ(2) = (0.1, 0.2, 0.4, 0.3, 0.3, 0.1, 0.21, 0.09, 0.1, 0.2)T .

The sample sizes are chosen to be a large number n = 500 and two rela-
tively small numbers n = 60 and n = 20. In fact, the curve with n = 60

roughly coincides with the curve with n = 500, so we remove it from Fig-
ure 5.5. Meanwhile that for n = 20 (the lower line) is not far away from
them. That somewhat demonstrates how fast the distribution of the test
statistics converge to their limits. Further support for this argument is
provided in Figure 5.6.

Regarding the time of computational work, it usually takes 1-2 minutes
to generate the cumulative distribution function of KS or Ω2 statistic with
5000 iterations of sample size 500. Therefore, we need at most approxi-
mately 0.02 seconds to calculate the test statistics for each particular sam-
ple. This convinces us that the transformation works numerically quickly
and reliably.

A further remark is that the distribution of GOF tests for tables of di-
mension (I + 1) × (J + 1) is the same as that for (J + 1) × (I + 1) tables.
This fact is easy to see as the considered KS and Ω2 tests are invariant with
the transposition of indices i and j.

5.6 Comparison of statistical powers

We will also take the KS and Ω2 tests of the forms in (5.24) and (5.25) as
examples for comparing the statistical powers of the new tests based on Ẑn
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(a) Distributions of the KS statistics in 4 × 6 contingency
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Figure 5.5: Distributions of the new test statistics in limit and those with small sample
size of 20 for 4× 6 tables
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(a) Distributions of the KS statistics in 7 × 5 contingency
tables: solid line (n = 500), dashed line (n=20)
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Figure 5.6: Distributions of the new test statistics in limit and those with small sample
size of 20 for 7× 5 tables
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with the conventional chi-square test. Assume that under an alternative
distribution pa the random variables X and Y are not independent, i.e.,
we have paij 6= aibj for some i, j. Denote by F0 and Fa the distribution
functions of test statistics under the null and the alternative respectively.
The quantities

D = max
x:F0(x)≥0.85

|F0(x)− Fa(x)|

will be used as numerical descriptions of statistical powers of tests. We
aim to compare D(χ2

n) to D(KS) and D(Ω2).

Alternative distributions will be classified in two groups: one is the
popular dependent models, the generalized RC association and correla-
tion models; the other we created from copulas theory.

5.6.1 The alternatives are RC association and RC correla-

tion models

Following Goodman [29], consider two well-known models of depen-
dence in contingency tables, which are the generalized RC association
model Ha1 and the RC correlation model Ha2. These models are

Ha1 : paij = αiβje
φµiνj

where
I+1∑
i=1

µiαi =
J+1∑
j=1

νjβj = 0,
I+1∑
i=1

µ2
iαi =

J+1∑
j=1

ν2
j βj = 1,

and
Ha2 : paij = aibj(1 + λξiηj),

where
I+1∑
i=1

ξiai =
J+1∑
j=1

ηjbj = 0,
I+1∑
i=1

ξ2
i ai =

J+1∑
j=1

η2
j bj = 1.
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The sets {µi} , {ξi} and {νj} , {ηj} denote additional parameters pertaining
to the i-th rows of X and j-th columns of Y . They are called row and
column scores, respectively, in Goodman [29]. The quantities λ and φ are
respectively called a measure of the correlation and a measure of associ-
ation in the tables. Some further interpretations of λ and φ can be found
in Gilula et al. [27]. It is obvious that if λ = 0 or φ = 0 then X and Y

are independent. The closer λ or φ is to 1, the bigger the deviation of the
alternative is from the null distribution.

As we can see, the alternative given in model Ha2 is a contiguous al-
ternative (see Definition 4.1, the function h(·) now indicating that the de-
viation of the alternative from the null distribution should be a function
of two variables i and j). On the other hand, model Ha1 is mathematically
very similar to model Ha2, as can be easily seen by taking a Taylor’s ex-
pansion. However, model Ha1 is the commonly used parametrization of
the log-linear model (see, for example Agresti [1], Chapter 9).

In our simulations, we chose the sets {µi} (or {ξi}) and {νj} (or {ηj})
to be monotonic, i.e., the values of each are increasing or decreasing in
the order of the indices. The reason is that we want to make this choice
to be meaningful since the conditional distributions

{
pi|j
}

and
{
pj|i
}

will
become stochastically ordered as discussed by Goodman [28]. We simply
chose λ = 0.2 and φ = 0.2 as representatives. For each model, simula-
tions were run for at least 100 different sets of scores, then we compared
D(χ2

n) to D(KS) and D(Ω2). The result obtained was that D(KS) > D(χ2
n)

and D(Ω2) > D(χ2
n) in one third of the cases. In the other third, this is re-

versed and in the remaining, the statistical powers are approximately the
same. That means, the tests based on Ẑn have neither uniformly greater
nor uniformly smaller statistical power than the conventional chi-square
test.
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5.6.2 Alternatives from copula theory

In the following, we make some more comparisons of the powers of test
statistics for several other alternatives created from copulas theory. A
full introduction and deep study regarding copula theory can be found
in Nelsen [57] among many others.

Assume that there exists a copula C(u, v) which allocates the depen-
dence of the two random variables X and Y . Precisely, the product copula

�(u, v) = uv

yields the independence of X and Y . Hence, assume that

C(u, v) 6= �(u, v).

The marginal distributions are still supposed to be known as {ai} and {bj}.
Then with the convention that a0 = b0 = 0, the joint distribution paij can be
defined via copula C as follows:

paij = C(
i∑
t=0

at,

j∑
s=0

bs)− C(
i−1∑
t=0

at,

j∑
s=0

bs)− C(
i∑
t=0

at,

j−1∑
s=0

bs) + C(
i−1∑
t=0

at,

j−1∑
s=0

bs),

i = 1, . . . , I + 1, j = 1, . . . , J + 1. (5.26)

This formula is naturally deduced from the definition of a copula and its
connection with the joint distribution of the two random variables.

We simply consider three families of copulas, which appear to be good
local alternatives to independence (more can also be found in Nelsen [57].)
Those families are Cuadras-AugéC(1)

θ , Gumbel’s bivariate exponential dis-
tribution C(2)

θ and Ali-Mikhail-Haq C(3)
θ , which are given by

C
(1)
θ (u, v) = [min(u, v)]θ[uv]1−θ, (5.27)

C
(2)
θ (u, v) = u+ v − 1 + (1− u)(1− v)e−θ ln(1−u) ln(1−v), (5.28)
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and

C
(3)
θ (u, v) =

uv

1− θ(1− u)(1− v)
(5.29)

with 0 ≤ θ ≤ 1. The parameter θ involved in these copulas indicates how
strong the dependence of X and Y is.

Denote by c(u, v) the density of copula C, i.e.,

c(u, v) =
∂2

∂u∂v
C(u, v).

From (5.26), it can be seen that the density of copula c(u, v) reflects the pat-
tern of the alternative. We sketch these densities along with the densities
of the product copula, which is

π(u, v) =
∂2

∂u∂v
�(u, v) = 1.

Figure 5.7 shows the patterns of the three considered alternatives. In these
plots, the density of the product copula, which is every where equal to 1,
is marked in a salmon colour. The graphs of the other density functions are
coloured in two different shades. The parts where the value of the density
function is greater than 1 are made dark blue in the figure and the remain-
der is light blue. Note that Figure 5.7a depicts only the density function
of the absolutely continuous part and the weight put on the diagonal line
(which is bigger than 1) can not be displayed visibly. These figures also
demonstrate how close the alternative distribution is to the null distribu-
tion. As we can see, the shift of the alternative from the null distribution
is not too high at any point.

At the same time, for each family of copulas, we usually chose θ ∈
[0.3, 0.5] to define the joint distribution paij of the alternative. We then com-
pare D(χ2

n) with D(KS) and D(Ω2). Since the marginal distributions {ai}
and {bj} can vary widely, we consider one representative which is the dis-
crete uniform. What we observed from multiple simulations is that, with
the alternative from the Cuadras-Augé family, the chi-square test performs
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in comparison with the density of the product copula

0.0

0.2

0.4

0.6

0.8

1.0 0.0

0.2

0.4

0.6

0.8

1.00.0

0.5

1.0

1.5

2.0

Gumbel family

x

y
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Figure 5.7: The densities of copulas yield the patterns of the alternatives
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better than the other tests based on Ẑn. For example, with tables of dimen-
sion 4× 4, θ = 0.2 and sample size n = 200, we have

D(χ2
n) = 0.63, D(KS) = 0.49 and D(Ω2) = 0.5.

With the other two, the tests based on Ẑn are more powerful. For example,
with the alternative from the Ali-Mikhail-Haq family where θ = 0.5, the
sample size n = 200, table of dimension 8× 7, we have

D(χ2
n) = 0.23, D(KS) = 0.38 and D(Ω2) = 0.43.

5.7 Testing independence of two discrete random

vectors

Consider now the problem of testing independence between X and Y

where either or both are multidimensional random variables. Without
loss of generality, assume that X is a 2-dimensional random variable of
dimension (I + 1)× (J + 1). The random variable Y has K + 1 values. The
contingency table now should be of size (I + 1)× (J + 1)× (K + 1).

One may imagine that the scenario now is similar to having a three-
way contingency table showing the association of 3 discrete random vari-
ables X1, X2 and Y . Note that in three-way contingency tables, we have
several different sorts of testing independence. The so-called testing com-
plete independence is formulated by

P(X1 = i,X2 = j, Y = k) = P(X1 = i)P(X2 = j)P(Y = k) for all i, j, k.

Note that the problem of testing independence between a 2-dimensional
random variableX and a random variable Y , however, is not of this scheme.
The problem in fact is equivalent to the so-called testing joint indepen-
dence, which is formulated by

P(X1 = i,X2 = j, Y = k) = P(X1 = i,X2 = j)P(Y = k) for all i, j, k.
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Therefore, we can always treat this testing problem as testing indepen-
dence in a two-way contingency table of size ((I + 1)× (J + 1))× (K + 1)

by a simple rearrangement. Then clearly the method could work with no
modification.

Again, we use the KS and Ω2 statistics and simulate scenarios with
different dimensions of the table. Following the process in Section 5.5.2,
we illustrate the distribution free property of the new test statistics, now
for testing independence of two discrete random vectors. Even though
the dimension of the table is increasing significantly, Figure 5.8 shows no
noticeable difference between the two curves in each plot.
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Figure 5.8: Distribution free property of the new test statistics for testing independence
of two discrete random vectors
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Chapter 6

Testing regularly varying tail
distributions

In this chapter, we will give a construction of a class of asymptotically dis-
tribution free GOF tests for testing regularly varying tail distributions. The
main content of this chapter lies in Section 6.3 which contains the method
and Section 6.4 which presents the simulation results.

The study of testing regularly varying tail distributions is motivated
by the fact that applications of these distributions can be found in various
practical areas as well as in some theories of probabilities and statistics.

The practical areas in which regularly varying distributions arise as a
common phenomenon include finance, insurance, physics, geology, hy-
drology and engineering. For instance, applications in finance can be seen
in Embrechts et al. [22], Jansen and de Vries [36], McCulloch [55]. Ex-
amples in physics can be found in Kotulski [48], Metzler and Klafter [56],
etc. For applications in hydrology, Anderson and Meerschaert [2], Lu and
Molz [52], among others, give us some examples. In engineering, we refer
to Resnick [66], Nikias and Shao [59], and various others.

Regular variation of the tail of a distribution also often appears as a
natural condition in various probabilistic theories. The most typical ex-

89
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ample is that it is the condition for the distribution of the partial maxima
to belong to the domain of attraction of extreme value distributions. This
could be found in various references, the books of de Haan and Ferreira
[15] and Resnick [65] among others. Another important role of regularly
varying distributions is that they are involved in the characterization of
the domain of attraction of an α−stable distribution for some α ∈ (0, 2):
see for example Embrechts et al. [22], Geluk and de Haan[25].

6.1 Regularly varying tail distributions and ap-

plications

We will present in this section the definitions of regular variation as well
as regularly varying tail distributions.

6.1.1 Regular variation

The term regular variation was introduced in order to describe the de-
viation from pure power laws, which behaviour has been observed quite
frequently in many fields of applied mathematics.

The material in this section can be found in various references, for ex-
ample, Resnick [65].

Definition 6.1. A measurable function f : R+ → R+ is called regularly
varying at∞with index θ if

lim
t→∞

f(tx)

f(t)
= xθ for all x > 0. (6.1)

This we denote as f ∈ RVθ.

We call θ the exponent of regular variation. If θ = 0, i.e., f ∈ RV0, then
f is said to be slowly varying at∞. If f(x) ∈ RVθ then

L(x) =
f(x)

xθ
∈ RV0.
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If f(x) is regularly varying at∞ then f(x−1) is regularly varying at 0.
A typical example of a regularly varying function at ∞ is f(x) = xθ.

Any polynomial function or its equivalent functions are also regularly
varying at∞. Examples of slowly varying functions at∞ include log(1 +

x), log log(e + x). Also, any function of x with a finite limit as x → ∞ is
slowly varying.

6.1.2 Regularly varying tail distributions

The class of regularly varying tail distributions is classified as a sub-class
of heavy tail distributions. The term heavy-tail distributions does not
possess any universal notion or formal definition. However, regularly
varying tail distributions do.

Definition 6.2. A non-negative random variable X and its distribution
function F (x) are said to be regularly varying if 1− F (x), the tail, is regu-
larly varying with index −θ with θ > 0. That means,

lim
t→∞

1− F (tx)

1− F (t)
= x−θ, for all x > 0.

To indicate that the distribution F has regularly varying tail with ex-
ponent−θ, we will simply for abbreviation write 1−F ∈ RVθ and say that
the exponent of regular variation is θ. This should not cause any contra-
diction or confusion since we are not talking about any regularly varying
function but only about the distribution functions whose tails are regu-
larly varying. This abbreviation will be used consistently throughout the
remaining parts of the thesis.

The class of heavy tail distributions includes, for example, the log-
normal distribution, log-gamma distribution, Weibull distribution, Burr,
Pareto distributions, etc. Among the class of heavy tail distributions, the
following distributions have been known to be regularly varying tail dis-
tributions.
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• Pareto distribution
There is a hierarchy of the Pareto distributions, with types ranging from I
to V. Type I is defined as

F (x) = 1−
( x
x0

)−θ
, x ≥ x0 > 0.

Obviously, the Pareto distribution is regularly varying with exponent θ.
Note that Pareto-type distributions includes distributions whose right tail
is of the form

1− F (x) ∼ Kx−θ, x→∞.

Hence, by their definitions, regularly varying tail distributions are often
referred as Pareto-type distributions.

• Cauchy distribution
The Cauchy distribution function is

F (x) =
1

π
arctan

(x− x0

γ

)
+

1

2
, γ > 0.

The Cauchy distribution is known to be regularly varying with expo-
nent θ = 1. This can be checked easily.

• Burr distribution
The distribution function of the Burr distribution is

F (x) = 1−
( x0

x0 + xτ

)γ
, x0, γ, τ > 0.

This distribution is one of the generalizations of the Pareto distribution.
When τ = 1 we obtain the Pareto distribution.

• Log-gamma distribution
The density function of the log-gamma distribution is

f(x) =
αβ

Γ(β)
(log x)β−1x−α−1, α, β > 0.
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It is easy to see that the tail of the log-gamma distribution is

1− F (x) =

∫ ∞
x

αβ

Γ(β)
(log y)β−1y−α−1dy ∼ αβ−1

Γ(β)
(log x)β−1x−α.

Hence, the log-gamma distribution is regularly varying with exponent α.

• Stable distributions with exponent α < 2

Consider a sequence of independent identically distributed random
variables X1, · · · , Xn having the same distribution F as a random variable
X . Consider the random walk

S0 = 0, Sn = X1 + · · ·+Xn, n ≥ 1. (6.2)

A random variable X is said to be stable or its distribution F is stable if
for each n ≥ 1, there exist constants an > 0 and bn such that,

Sn
d
= anX + bn. (6.3)

In other words,

X
d
=
Sn − bn
an

.

The normal distribution and the Cauchy distribution are the only known
examples of stable distributions with explicit functional form for density
functions.

It is known that the only possible form of the constant an is an = n1/α

with α ∈ (0, 2] (see for example Feller[23], VI.1), and two well-known
values of α are α = 2 and α = 1 for normal and Cauchy distributions
respectively. Stable distributions with α < 2 are known to be regularly
varying.

6.2 Research directions on regularly varying dis-

tributions

Regarding research on regularly varying tail distributions, estimating the
exponent θ and using GOF tests for testing hypotheses are two main di-
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rections of interest. A brief literature review will be given in section 6.2.1
for the former and in section 6.2.2 for the latter.

6.2.1 Estimation of the exponent θ

The problem of estimating the exponent θ is the most popular research di-
rection regarding regularly varying tail distributions. In fact, so far most
studies have been focusing on finding the exponent of the regular varia-
tion in the tail and it has a very rich literature. Among various studies, the
Hill estimator is the most common, see Hill [34].

Suppose that the random sample X1, . . . , Xn is re-arranged in an in-
creasing order

X1,n ≤ · · · ≤ Xn,n,

which are called the order statistics of the sample. Then, the Hill estima-
tor of the exponent θ has the following form

θ̂H =
( 1

m

m∑
i=1

lnXn−m+i,n − lnXn−m,n

)−1

(6.4)

where 1 ≤ m ≤ n and m/n is called the sample fraction. This estimator
θ̂H is in fact the value which maximizes the likelihood of the conditional
distribution (see (6.10)).

Denote by x0 the smallest value of the sub-sampleXn−m,n, . . . , Xn,n, i.e.,
x0 = Xn−m,n. Most of the time, the size m of the sub-sample, as a function
of x0 and n, is considered to satisfy the following conditions:

m→∞ and
m

n
→ 0 as n→∞, x0 →∞. (6.5)

Under these conditions, the Hill estimator was proved to be consistent
in the sense that

θ̂H
P→ θ0, (6.6)

where θ0 denotes the true unknown exponent under the assumption that
the tail distribution 1 − F of the original sample X1, . . . , Xn is regularly
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varying. The proof of this convergence can be found in Mason [54]. The
author also proved that if m is the integer part of nα, with 0 < α < 1, then
θ̂H → θ0 almost surely as n→∞.

There have been also many studies regarding asymptotic normality of
the Hill estimator, for example, Davis and Resnick [11], Haeusler and
Teugels [32] , Geluk et al. [24], de Haan and Resnick [14], Resnick and
Stărică [67], etc. Those studies indicated that together with condition (6.5)
and assumption that the tail is regularly varying, the following conver-
gence holds

√
m
( 1

θ̂H
− 1

θ0

)
∼ N (0,

1

θ2
0

).

Besides the well-known Hill estimator, many other modifications have
been proposed. Most of them are also based on the upper order statistics
and are not too difficult to compute. These include the estimators intro-
duced by de Haan and Resnick [13], Hall [33], Pickands [63], Teugels [75]
among others.

Apart from estimating θ, several methods for choosing the sample frac-
tionm/n based on survey data can be found in Drees and Kaufmann [18],
Danielsson et al. [10] and Guillou and Hall [30].

6.2.2 GOF tests for testing regularly varying tail distribu-

tions

In contrast to the numerous approaches for estimating the exponent θ, the
use of GOF tests for testing regular variation has been addressed in only a
few studies.

Not long ago, in 2006, Beirlant et al. [5] modified the Jackson statistic
- which was originally proposed as a GOF test for testing exponential-
ity - for testing Pareto-type data. Koning and Peng [47] examined the
Kolmogorov-Smirnov, Berk-Jones and the score tests and their quadratic
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variants and compared them in terms of Bahadur efficiency. In that paper,
the score test and its integrated version were shown to be the best tests.

Consider the family of the generalized Pareto distribution (GPD), which
is of the form

F (x; k, σ) =

1− (1− kx
σ

)1/k, k 6= 0, σ > 0

1− e−x/σ, k = 0, σ > 0
(6.7)

where k and σ are shape and scale parameters and x > 0. Members of this
family with k < 0 belong to class of distributions whose tails are regularly
varying. To test the fit of data to a GDP, there have been several studies
including Marohn [53], Choulakian and Stephens [8]. In these papers,
the critical values for Cramér-von Mises statistic and Anderson-Darling
statistic were given.

Recently, Can et al. [6] studied GOF tests for testing whether multi-
dimensional distributions belong to the domain of attraction of a multi-
dimensional extreme value distribution. They did not focus on any par-
ticular GOF test but on the construction of a class of asymptotically dis-
tribution free GOF tests for the hypothesis testing problem, which is the
same aim as ours. In that paper, the authors used the Khmaladze innova-
tive martingale method, or in other words, the Khmaladze transformation
[40].

6.3 A construction of a class of GOF tests

We present in this section a construction of a class of GOF tests for testing
regularly varying tail distributions. Again, we use the Khmaladze-2 trans-
formation, see Khmaladze [44], for a parametric family of distributions.

Since the process is carried out on the tail of distributions F , we con-
sider only the observations beyond a threshold x0. For convenience, we
use a simple change of variable and therefore change the working space
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into L2(H) where H is the conditional distribution on the tail. In Section
6.3.1, we recall the form of the function-parametric tail empirical process
v̂mH(φ) (see (6.12) and (6.14)) and its limit in distribution. The method
of transforming the process v̂mH into another process v̂mG, which lies in
another chosen space and has a specified limit in distribution, will be con-
ducted in Section 6.3.3.

6.3.1 The tail empirical process

In this section, we will rewrite the tail empirical process and its limit in
distribution in terms of tail random variables Ti, i = 1, . . . ,m.

From the set of observations X1, . . . , Xn, we consider only observed
values on the tail, which exceed a threshold x0. Let us denote by X̃1, · · · , X̃m

the sub-sample to be considered with m satisfying (6.5). Under the hy-
pothesis that F has regularly varying tail, the distribution of X̃1, · · · , X̃m

is the conditional distribution

P
{
X̃ ≥ x0t

}
P
{
X̃ ≥ x0

} =
1− F (x0t)

1− F (x0)
= t−θ + o(1), t ≥ 1, θ ≥ 0. (6.8)

Let T̃ = X̃
x0

and T = T̃ − 1. Then, the asymptotic distribution of the
positive continuous random variable T under the null hypothesis is

Hθ(t) = 1− (1 + t)−θ, t ≥ 0. (6.9)

Clearly, the density function is

h(t) = θ(1 + t)−(θ+1).

Let θ̂m be the MLE, or in other words, the Hill’s estimator of the true un-
known exponent θ, then we can rewrite θ̂m in terms of the observed values
T1, . . . , Tm as follows:

θ̂m =
m∑m

i=1 log(Ti + 1)
. (6.10)
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The tail empirical distribution function can also be rewritten in terms
of T1, . . . , Tm as

Hm(t) =
1

m

m∑
i=1

I{Ti≤t}. (6.11)

Then, recall from the equation (3.32) in Section 3.3 that the tail parametric
empirical process v̂mH is

v̂mH(t) =
√
m[Hm(t)−Hθ̂m

(t)] (6.12)

and the tail empirical process is

vmH(t) =
√
m[Hm(t)−Hθ0(t)]. (6.13)

Similarly to what was written in Chapter 3, consider the function-parametric
version of the tail empirical process

vmH(φ) =

∫ ∞
0

φ(t)vmH(dt) =
1√
m

m∑
i=1

[φ(Ti)− Eφ(Ti)], (6.14)

where φ is a function in L2(H). With the change of variable, everything is
now considered in another space, L2(H).

Let us recall from (3.36) the limit in distribution of the process v̂mH(φ),
which is

V̂H(φ) = VH(φ)− 〈βH , φ〉HVH(βH)

= WH(φ)− 〈1, φ〉HWH(1)− 〈βH , φ〉HWH(βH), (6.15)

where βH is the normalized score function,

βH(t) = Γ
−1/2
H

ḣθ0(t)

hθ0(t)
. (6.16)

Recall that Γ
−1/2
H is the Fisher information, defined in (2.2). Recall also that

VH(φ), a function-parametric H-Brownian bridge, is the limit in distribu-
tion of vmH(φ). Furthermore V̂H(φ), as a projection of the function para-
metric H-Brownian motion WH(φ) orthogonal to the subspace generated
by two functions 1 and βH , is called the βH-projected H-Brownian motion
(see Section 3.4).
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6.3.2 The target distribution

One may choose any distribution G as a destination distribution, but we
chose G to be the standard exponential distribution, that is,

G(t) = 1− e−t, t ≥ 0.

Our reason for this choice is that G is a familiar distribution and both G

and H are members of the GPD family (see (6.7)). The distribution G is the
limiting distribution of the GPD(k, σ) as k → 0 and is scaled by σ = 1.

It is obvious that the distributions G and H are mutually absolutely
continuous. It is also easy to calculate the Fisher information of G and H ,

ΓH =
1

θ2
0

,

ΓG = 1.

Put

`(t) =

√
dG

dH
(t) = θ−

1
2 (1 + t)

θ+1
2 e−

t
2 .

Then this function belongs to L2(H). In addition, if φ ∈ L2(G) then `φ ∈
L2(H) and

‖φ‖G = ‖`φ‖H .

Note that when H and G are mutually absolutely continuous, it is known
that there is a straightforward transformation from a H-Brownian motion
into a G-Brownian motion. Namely, WH(`φ) = WG(φ) is a G-Brownian
motion in L2(G). However, mapping a Brownian bridge such as VH or V̂H
into another Brownian bridge is not so straightforward any more. The fact
is that the distribution of VH(`φ) still depends on both H and G and so
does V̂H(`φ).

6.3.3 The transformation of the tail empirical process

Consider a subspace L̂ ofL2(H) generated by four functions {1, βH , `, `βG}.
These functions are of unit norm in L2(H). More explicitly, the score func-
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tions βH and βG are

βH(t) = 1− θ log(1 + t), (6.17)

βG(t) = 1− t. (6.18)

For any function f and g in L2(H), define the unitary operator Uf,g on
L2(H) as

Uf,g = I − 1

1− 〈f, g〉H
(g − f)〈g − f, ·〉H

where I is the identity operator. This operator interchanges f and g, i.e.,

Uf,gf = g,

Uf,gg = f.

Moreover, it keeps any function orthogonal to f and g unchanged, i.e.,

Uf,gv = v for all v ⊥ f, g.

Now, as the first step, we consider the unitary operator

U1,` = I − 1

1− 〈1, `〉H
(`− 1)〈`− 1, ·〉H . (6.19)

This operator will map ` to 1 and 1 to `. Next, consider the image of the
function `βG via U1,`, which is

˜̀βG = `βG −
1

1− 〈1, `〉H
(`− 1)〈`− 1, `βG〉H

= `βG −
1

1−
∫∞

0
`(s)h(s)ds

(`− 1)

∫ ∞
0

(`(s)− 1)`(s)βG(s)h(s)ds.

Then consider the operator UβH ,˜̀βG defined as

UβH ,˜̀βG = I − 1

1− 〈βH , ˜̀βG〉H (˜̀βG − βH)〈˜̀βG − βH , ·〉H .
Now, set

Û = UβH ,˜̀βGU1,`.
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Then this unitary operator will map ` to 1 and `βG to βH . In summary,

Û` = 1,

Û(`βG) = βH .

The non-uniqueness of a unitary operator like Û was discussed thor-
oughly in Khmaladze [44], Section 3.4. Nevertheless, we believe that this
operator Û is simple enough for practical purposes, especially with only
one parameter.

It now follows from the main result for testing parametric hypotheses,
Theorem 7 in Khmaladze [44], that:

Theorem 6.1. If V̂H is a βH-projected H-Brownian motion and G is absolutely
continuous with respect to H , then

V̂G(φ) = V̂H(Û(`φ)) = Û(V̂H(`φ)) (6.20)

is a βG-projected G-Brownian motion.

As a consequence, transforming the function-parametric tail empirical pro-
cess v̂mH(φ) by Û, we obtain another process

v̂mG(φ) = v̂mH(Û(`φ)) = Û(v̂mH(`φ)), (6.21)

which has V̂G(φ) as a limit in distribution.
Let

φx(t) = I{t≤x},

where x runs from 0 to∞, be a family of indicator functions depending on
x defined on L2(H).

Recall from (6.15) that the βH-projected H-Brownian motion V̂H(`φ) is
the limit in distribution of v̂mH(`φ); and therefore by Theorem 6.1, the im-
age of v̂mH(`φ) via Û, which is v̂mH(Û(`φx)) in (6.21) (or v̂mH(φ̃x) below),
has limit in distribution V̂H(Û(`φx)), a βG-projected G-Brownian motion in
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φx. Hence, any statistic as an appropriate functional based on v̂mH(Û(`φx))

will be asymptotically distribution free. More precisely, the limit in distri-
butions of the test statistics does not depend either on the distribution H

or on the parameters θ0, θ̂m.

Denote by φ̃x the image of `φx via the operator Û, that is,

φ̃x = Û(`φx) = UβH ,˜̀βGU1,`(`φx).

For programming purposes, we need to write the explicit form of φ̃x, that
is

φ̃x = `φx −
1

1− 〈1, `〉H
(`− 1)〈`− 1, `φx〉H −

1

1− 〈βH , ˜̀βG〉H (˜̀βG − βH)

(6.22)

×
[
〈˜̀βG − βH , `φx〉H − 〈`− 1, `φx〉H

1− 〈1, `〉H
〈˜̀βG − βH , `− 1〉H

]
.

Applying the unitary operator Û on the process v̂mH(`φx) we have

v̂mG(φx) = Û(v̂mH(`φx)) = v̂mH(φ̃x) =

∫ ∞
0

φ̃x(t)v̂mH(dt)

=
1√
m

m∑
i=1

[
φ̃x(T̃i)− Eθ̂mφ̃x(T̃i)

]
. (6.23)

Here Eθ̂m denotes the expected value with respect to the distribution Hθ̂m
.

That means,

Eθ̂mf(T̃ ) =

∫ ∞
0

f(s)hθ̂m(s)ds

for any integrable function f . We demonstrate in the next section that any
functional from v̂mH(φ̃x) is asymptotically distribution free.

6.4 Simulation results

6.4.1 Forms of GOF tests

The main purpose of this section is to show the asymptotically distribution
free property of the new test statistics based on the transformed empirical
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process v̂mH(φ̃x). Since the limit in distribution of v̂mH(φ̃x) is a projected
G-Brownian motion, which is completely specified and does not involve
the asymptotic distribution H or any hypothetical parameter, we can take
any proper functional from v̂mH(φ̃x) to have an asymptotically distribution
free GOF test. For example,∫ ∞

0

v̂2
mH(φ̃x)dx,

∫ ∞
0

v̂2
mH(φ̃x)dK(x),

whereK is some specified measure on (0,∞), can be taken as test statistics.

For demonstration, we choose some widely used GOF tests, namely
the Kolmogorov-Smirnov (KS), the Cramér-von Mises and the Anderson-
Darling tests (see Chapter 4, Section 4.2.2) to illustrate their asymptotically
distribution free property. These test statistics are now written as some
specific functionals of the transformed process v̂mH(φ̃x).

Namely, the form of the Kolmogorov-Smirnov test statistic is

KS = max
x

∣∣∣v̂mH(φ̃x)
∣∣∣ . (6.24)

The Cramer-von Mises statistics is of the form

Ω2 =

∫ ∞
0

v̂2
mH(φ̃x)dG(x), (6.25)

and its weighted version of Anderson-Darling statistic is

A2 =

∫ ∞
0

v̂2
mH(φ̃x)

G(x)(1−G(x))
dG(x). (6.26)

In principle, we need to calculate the Ω2 andA2 statistics by integration
from 0 to∞. However, because

G(8) = 0.9997 ≈ 1,

we can reduce the calculation time of the test value by choosing xmax = 8

as a maximum value for x, and the range of values of x can be taken as

x ∈ {0.1, 0.2, · · · , 7.9, 8} . (6.27)
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The Ω2 and A2 tests can be approximated as follows:

Ω2 ≈ 0.1×
∑
x

v̂mH(φ̃x)e
−x,

A2 ≈ 0.1×
∑
x

v̂mH(φ̃x)

1− e−x
,

in which
∑

x denotes the summation over the set in (6.27).

6.4.2 Distribution free property of test statistics

To create the curves of the cumulative distribution functions of the new
tests, we choose two distributions whose tails are known to be regularly
varying, the Pareto and Cauchy distributions, as underlying distributions.

For the Pareto distributions, the exponent is arbitrarily selected and
positive. We chose some θ0 ranging from 0.5 to 10. Note that the big-
ger the exponent θ0 is, the thinner the tail of the Pareto distribution be-
comes. Sample size n for simulation needs to be large to guarantee that
the tail is sufficiently big, namely, the number of observations m on the
tail above some threshold x0 is not less than 40. Hence, we chose a dif-
ferent threshold x0, namely x0 = 3, 5, 8, 10 and the sample size chosen to
be increased correspondingly, namely 1000, 5000, 7000, 8000. These choices
guarantee a proper tail in the sense that the tail is thick enough. For ex-
ample, for Pareto distribution with θ0 = 2, the sub-sample size is expected
to be around 120, 190, 100, 80 respectively. The Cauchy distribution ap-
pears to be thicker than the Pareto distribution where the sub-sample size
is around 120, 310, 300, 250 respectively. Usually, each curve is produced
by 5000 iterations of simulation.

Figures 6.1, 6.2 and 6.3 show the plots of the cumulative distribution
functions of theKS,Ω2, A2 test statistics respectively with different choices
of the threshold x0, different sample sizes and different parameters of the
underlying Pareto distributions. As can be seen in these figures, the two
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curves of the cumulative distribution functions in each plot are not distin-
guishable, which illustrates very clearly that our approach involving the
asymptotically distribution free property of the new test statistics is emi-
nently practicable. Moreover, we notice that for different values of x0, the
difference between these curves is also very minor.

Regarding the computation time of the procedure, it took approximately
1 hour to create the cumulative distribution functions with x0 = 5 and
sample size n = 5000 by 5000 iterations for two different original distri-
butions F . Therefore, we believe that the method is easy and efficient to
implement.
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(a) Threshold x0 = 3, sample size n = 1000
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(c) Threshold x0 = 8, sample size n = 7000
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(d) Threshold x0 = 10, sample size n = 8000

Figure 6.1: Distributions of the KS test statistics. Solid line: Pareto distribution with
θ0 = 3; Dashed line: Cauchy distribution
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(c) Threshold x0 = 8, sample size n = 7000
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(d) Threshold x0 = 10, sample size n = 8000

Figure 6.2: Distributions of the Ω2 test statistics. Solid line: Pareto distribution with
θ0 = 2; Dashed line: Cauchy distribution
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Figure 6.3: Distributions of the A2 test statistics. Solid line: Pareto distribution with
θ0 = 0.5; Dashed line: Cauchy distribution



Chapter 7

Conclusions

In this closing part of the thesis, we will briefly review what has been
done in the main content of the thesis and discuss possible extensions of
the result.

Overall, this thesis did not propose any particular GOF test but gave a
construction of a whole class of asymptotically distribution free GOF tests
for each of two different parametric hypothesis testing problems.

Recall that the main idea of each construction is that, from the function-
parametric empirical process which has a limiting distribution depending
on the estimated parameter as well as the underlying distribution, one
can map it to another process which has the limiting distribution speci-
fied. The specified limit is the projected Brownian motion in the time of a
specified distribution. One can choose any suitable specified distribution,
and we gave our choice for each problem in Chapters 5 and 6.

In Chapter 5, the chosen specified distribution for the problem of test-
ing independence of two discrete random variables/vectors in the contin-
gency table context is in fact a certain member of the parametric family.
We created tables of critical values for the new KS and Ω2 test given in
Appendices A and B, for tables of dimension from 2× 2 to 8× 8. This does
not mean that the maximum dimension of the table where we can apply
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the method presented is 8 × 8. We have shown that if the number of pa-
rameters d = I + J (the dimension of tables is (I + 1)× (J + 1)) is as big as
30 (see simulations in Section 5.7), the method still works well. We have
not yet been able to confirm the maximum number of parameters for the
method to be efficient; but it seems that the method can still work well for
a larger number of parameters rather than just 30. This material has been
published in [58].

The content of Chapter 6 is a part of our on-going research where
the work has been done for testing regular variation in the tails of one-
dimensional distributions. Noting that the choice of the specified distri-
bution is not necessarily a member of the parametric family, we chose the
specified distribution G to be another distribution which does not belong
to the family of regularly varying tail distributions. In our opinion, the
choice of G being a standard exponential distribution is simple enough to
implement the method.

We are considering a possible extension to testing multivariate distri-
butions whose tails are regularly varying. The motivation of this extension
is that multivariate regular variation in the tail of distributions again plays
an essential role in characterization of domain of attraction of multivari-
ate extreme value distributions; see for example Resnick [65]. In a recent
study by Can et al. [6], the authors showed a method of mapping the
tail empirical process of extreme value distributions, which is constructed
from tail copulas, to another process which converges to a standard Brow-
nian motion. That mapping leads to a new class of GOF tests for testing
multivariate extreme value distributions. We believe that we can extend
the construction in Chapter 6 into testing multidimensional continuous
distributions whose tails are regularly varying without changing the main
spirit of the Khmaladze-2 transformation. The remaining key is to charac-
terize the multivariate regular variation condition in a sufficiently simple
way that we can find an asymptotic distribution H (see below) of the con-
ditional distribution on the tail. In particular, let us recall the definition of
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multi-dimensional regularly varying distributions.

Definition 7.1. (see, for examples Resnick [65]) F is a distribution in Rd.
F is regularly varying tail if F satisfies the regular variation condition

lim
t→∞

1− F (tx)

1− F (t1)
= H(x) > 0, x > 0,

where H(cx) = c−θH(x), c > 0,x > 0, θ > 0. In this case, F belongs to the
domain of attraction of a multivariate extreme value distribution G where

G(x) = exp(−H(x)), x > 0.

Here x,1,0 denote vectors in Rd.

From the definition, the properties ofH(x) are represented only through
the relation H(cx) = c−θH(x). We need to specify the asymptotic form of
H in terms of x, and that is a part of what remains to be studied.
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Appendix A

Tables of critical values for KS test

This appendix will provide the table of critical values for the KS test statis-
tic presented in Chapter 5. Recall that

KS = max
(1,1)≤(i,j)≤(I+1,J+1)

∣∣V Z
n,ij

∣∣
where V Z

n is defined in (5.20).

To get this final form of the test statistic, we map T̂n into Ẑn by the
method presented in Section 5.3 and calculate V Z

n,ij as in (5.20). This given
table is created with the choice of the collection of r(α) given in (5.21), (5.22)
and (5.23).
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Appendix B

Tables of critical values for Ω2 test

This appendix will provide the table of critical values for the Ω2 test pre-
sented in Chapter 5. Recall that

Ω2 =
∑

(1,1)≤(i,j)≤(I+1,J+1)

(V Z
n,ij)

2,

where V Z
n is defined in (5.20).

To get this final form of the test statistic, we map T̂n into Ẑn by the
method presented in Section 5.3 and calculate V Z

n,ij as in (5.20). This given
table is created with the choice of the collection of r(α) given in (5.21), (5.22)
and (5.23).

115



116 Appendix B. Tables of critical values for Ω2 test
0.

9
0.

95
0.

99
0.

9
0.

95
0.

99
0.

9
0.

95
0.

99
0.

9
0.

95
0.

99
0.

9
0.

95
0.

99
0.

9
0.

95
0.

99
0.

9
0.

95
0.

99

2x
2

(6
0)

2x
3

(6
0)

2x
4

(6
0)

2x
5

(6
0)

2x
6

(8
0)

2x
7

(8
0)

2x
8

(8
0)

0.
69

0.
97

1.
69

1.
62

2.
19

3.
52

2.
86

3.
9

6.
92

4.
47

5.
89

9.
46

6.
46

8.
69

13
.9

7
8.

87
11

.9
3

19
.7

5
11

.3
3

14
.8

6
24

.5
8

3x
3

(6
0)

3x
4

(6
0)

3x
5

(6
0)

3x
6

(6
0)

3x
7

(8
0)

3x
8

(8
0)

3.
85

5.
12

7.
76

6.
75

8.
73

13
.7

4
10

.7
7

13
.6

5
22

.4
15

.3
2

19
.6

30
.4

6
21

.3
5

27
.0

3
42

.1
8

27
.6

36
.1

2
54

.3
8

4x
4

(6
0)

4x
5

(6
0)

4x
6

(6
0)

4x
7

(8
0)

4x
8

(8
0)

11
.9

3
15

.3
5

24
.3

2
19

.2
24

.3
37

.5
27

.5
4

34
.5

7
53

.1
8

37
.3

9
47

.1
4

70
.2

7
48

.6
6

61
.7

6
95

.8
4

5x
5

(8
0)

5x
6

(8
0)

5x
7

(8
0)

5x
8

(8
0)

29
.3

37
.2

6
57

.8
3

42
.4

2
54

.0
3

83
.4

7
57

.9
4

72
.2

4
11

0
77

.8
95

.8
14

4.
4

6x
6

(8
0)

6x
7

(8
0)

6x
8

(8
0)

62
.4

78
11

9.
6

82
.7

10
5.

5
16

3
10

9.
4

13
6.

3
20

7.
3

7x
7

(1
00

)
7x

8
(1

00
)

11
6.

2
14

5.
5

21
9.

7
15

0.
1

18
7.

5
28

6.
5

8x
8

(1
00

)

19
6.

2
24

8.
7

36
7.

7

Ta
bl

e
B

.1
:T

ab
le

of
cr

it
ic

al
va

lu
es

fo
r

om
eg

a-
sq

ua
re

st
at

is
ti

cs
fr

om
th

e
pr

es
en

te
d

m
et

ho
d



Bibliography

[1] Agresti, A., Categorical Data Analysis. John Wiley & Sons, New York,
(2003)

[2] Anderson, P. and Meerschaert, M. M., Periodic moving averages of
random variables with regularly varying tails, Annals of Statistics, 25,
pp. 771–785, (1997)

[3] Anderson, T. W. and Darlings, D. A., Asymptotic theory of certain
”Goodness of fit” criteria based on stochastic processes, Annals of
Mathematical Statistics, 23, pp. 193–212, (1952)

[4] Bedrick, E. J., Adjusted chi-squared tests for cross-classified tables of
survey data, Biometrika, 70, pp. 591–595, (1983)

[5] Beirlant, J., de Wet, T. and Goegebeur, Y., A goodness of fit statistic
for Pareto-type behaviour, Journal of Computational and Applied Math-
ematics, 186, pp. 99-116, (2006)

[6] Can, S. M, Einmahl, J. H. J, Khmaladze, E. V and Laeven, R. J. A.,
Asymptotically distribution-free goodness-of-fit testing for tail copu-
las, Annals of Statistics, 43 (2), pp. 878–902, (2015)

[7] Chibisov, D., Some theorems on the limiting behaviour of empirical
distribution functions. Selected Translation of Mathematical Statististics
and Probabilities, 6, pp. 147–156, (1964)

117



118 Bibliography

[8] Choulakian, V. and Stephens, M. A., Goodness of fit tests for the
generalized Pareto distribution, Technometrics, 43, No. 4, pp. 478-484,
(2001)

[9] Cramér, H., On the composition of elementary errors, Skandinavisk
Aktuarietidskrift, 11, pp. 13–74 and 141–180, (1928)

[10] Danielsson, J., de Haan, L., Peng, L. and de Vries, C. G., Using a boot-
strap method to choose the sample fraction in tail index estimation,
Journal of Multivariate Analysis, 76, No. 2, pp. 226–248, (2001)

[11] Davis, R. and Resnick, S., Tail estimates motivated by extreme value
theory, Annals of Statistics, 12, pp. 1467–1487, (1984)

[12] Debnath, L. and Mikusinski, P., Hilbert spaces with applications. Else-
vier, 2005.

[13] De Haan, L. and Resnick, S. I., A simple asymptotic estimate for the
index of a stable distribution, Journal of Royal Statistical Society, Series
B: Methodological, 42, pp. 83–88, (1980)

[14] De Haan, L. and Resnick, S. I., On asymptotic normality of the Hill es-
timator, Communications in Statistics. Stochastic Models, 14(4), pp. 849–
866, (1998)

[15] De Haan, L. and Ferreira, A., Extreme value theory. Springer, (2006)

[16] Dekkers, A. L. M., Einmahl, J. H. J. and de Haan, L., A moment esti-
mator for the index of an extreme value distribution, Annals of Statis-
tics, 17, pp. 1833–1855, (1989)

[17] Dietrich, D., de Haan, L. and Husler, J., Testing extreme value condi-
tions, Extremes, 5, pp. 71–85, (2002)

[18] Drees, H. and Kaulfmann, E., Selecting the optimal sample fraction
in univariate extreme value estimation, Stochastic Processes and their
Applications, 75, No. 2, pp. 149–172, (1998)



Bibliography 119

[19] Drees, H., de Haan, L., Li, D., Approximations to the tail empirical
distribution function with application to testing extreme value con-
ditions, Journal of Statistical Planning and Inference, 136, pp. 3498–3538,
(2006)

[20] Einmahl, J. H. J, The empirical distribution functions as a tail estima-
tor, Statistica Neerlandica, 44, pp.79–82, (1990)

[21] Einmahl, J. H. J, Limit theorems for tail processes and application to
intermediate quantile estimation, Journal of Statistical Planning and In-
ference, 32, pp. 137–145, (1992)

[22] Embrechts, P., Kluppelberg, C. and Mikosch, T., Modelling extremal
events for Insurance and Finance. Springer-Verlag, Berlin, (1997)

[23] Feller, W., An introduction to Probability theory and its applications, Vol.
2. John Wiley & Sons, (1971)

[24] Geluk, J., de Haan, L., Resnick, S. and Starica, C., Second-order reg-
ular variation, convolution and the central limit theorem, Stochastic
Processes and their applications, 69(2), pp. 139–159, (1997)

[25] Geluk, J. and de Haan, L., Stable probability distributions and their
domains of attraction: a direct approach, Probability and Mathematical
Statistics, 20, pp. 169–188, (2000)

[26] Gilula, Z. and Haberman, S. J., Canonical analysis of contingency ta-
bles by maximum likelihood, Journal of the American Statistical Associ-
ation, 81, pp. 780–788, (1986)

[27] Gilula, Z., Krieger, A. M. and Ritov, Y., Ordinal Association in contin-
gency tables: some interpretive aspects, Journal of the American Statis-
tical Association, 83, pp. 540–545, (1988)



120 Bibliography

[28] Goodman, L. A., Association models and canonical correlation in the
analysis of cross-classifications having ordered categories, Journal of
the American Statistical Association, 76, pp. 320–334, (1981)

[29] Goodman, L. A., The analysis of cross-classified data having ordered
and/or unordered categories: Association models, correlation mod-
els, and asymmetry models for contingency tables with or without
missing entries, Annals of Statistics, 13, pp. 10–69, (1985)

[30] Guillou, A. and Hall, P., A diagnostic for selecting the threshold in
extreme value analysis. Journal of Royal Statistical Society, Series B:
Methodology, 63, No. 2, pp. 293–305, (2001)

[31] Haberman, S. J., Tests for independence in two-way contingency ta-
bles based on canonical correlation and on linear-by-linear interac-
tion, Annals of Statistics, 9, pp. 1178–86, (1981)

[32] Haeusler, E. and Teugels, J. L., On asymptotic normality of Hill’s esti-
mator for the exponent of regular variation. Annals of Statistics, 13(2),
pp. 743–756, (1985)

[33] Hall, P., On some simple estimates of an exponent of regular varia-
tion, Journal of Royal Statistical Society, Series B: Methodology, Vol. 44,
No. 1, pp. 37–42, (1984)

[34] Hill, B. M., A simple general approach to inference about the tail of a
distribution. Annals of Mathematical Statistics, 3, pp. 1163–1174, (1975)

[35] Holt, D., Scott, A. J., Ewings, P. D., Chi-squared tests with survey
data, Journal of Royal Statistical Society, Series B: Methodology, 143, pp.
302–320, (1980)

[36] Jansen, D., and de Vries, C., On the frequency of large stock market re-
turns: putting booms and busts into perspective, Review of Economics
and Statistics, 73, pp. 18–24, (1991)



Bibliography 121

[37] Khmaladze, E., The use of ω2 tests for testing parametric hypotheses,
Theory of Probability & Its Applications, 24, pp. 283–301, (1979)

[38] Khmaladze, E., Martingale approach to the theory of goodness of fit
tests, Theory of Probability & Its Applications, 26, pp. 240–257, (1982)

[39] Khmaladze, E., An innovation approach in goodness of fit tests inRm,
Annals of Statistics, 16, pp. 1503–1516, (1988)

[40] Khmaladze, E., Goodness of fit problem and scanning innovation
martingales, Annals of Statistics, 21, pp. 798–829, (1993)

[41] Khamaladze, E., Goodness of fit tests for “chimeric” alternatives, Sta-
tistica Neerlandica, 52, pp. 90–111, (1998)

[42] Khmaladze, E., Note on distribution free testing for discrete distribu-
tion, Annals of Statistics, 41, pp. 2979–2993, (2013)

[43] Khmaladze, E., Statistical methods with applications to demography and
life insurance. Chapman and Hall, (2013)

[44] Khmaladze, E., Unitary transformations, empirical processes and dis-
tribution free testing, Bernoulli, 22, pp. 563–588, (2016)

[45] Koch, G. C., Freeman, D. H., Freeman, J. L, Strategies in the multi-
variate analysis of data from complex surveys, International Statistical
Review/Revue Internationale de Statistique, 43, pp. 59–78, (1975)

[46] Kolmogorov A., Sulla determinazione empirica di una legge di dis-
tribuzione, Giornale dell’Istituto Italiano degli Attuari, 4, pp. 83–91,
(1933)

[47] Koning, A. J. and Peng, L., Goodness of fit tests for heavy tailed distri-
bution, Journal of Statistical Planning and Inference, 138, pp. 3960–3981,
(2008)



122 Bibliography

[48] Kotulski, M., Asymptotic distributions of the continuous time ran-
dom walks: a probabilistic approach, Journal of Statistic Physics, 81,
pp. 777–792, (1995)

[49] Kuo, H.-H., Gaussian measures Banach spaces. Lecture notes in Math.,
463, Springer, Berlin, (1975)

[50] Lehmann, E. L., Testing statistical hypotheses. Springer, (2005)

[51] Lehmann, E. L., Theory of point estimation. John Wiley & Sons, (1983)

[52] Lu, S. L., and Molz, F. J., How well are hydraulic conductivity vari-
ations approximated by additive stable processes?, Advances in Envi-
ronmental Research, 5, pp. 39-45, (2001)

[53] Marohn, F., A characterization of generalized Pareto distributions by
progressive censoring schemes and goodness of fit tests, Communica-
tions in Statistics-Theory and Methods, 31(7), pp. 1055–1065, (2002)

[54] Mason, D., Law of large numbers for sums of extreme values, Annals
of Probability, 10, pp. 754–764, (1982)

[55] McCulloch, J., Financial applications of stable distributions, In: Maddala,
G. S., Rao, C. R. (Eds), Statistical Methods in Finance, Handbook of
Statistics, 14, North-Holland, New York, (1996)

[56] Metzler, R. and Klafter, J., The random walk’s guide to anomalous
diffusion: A fractional dynamics approach, Physics report, 339, pp. 1–
77, (2000)

[57] Nelsen, R.B., An introduction to Copulas. Springer, (2006)

[58] Nguyen, T. M. Thuong, A new approach to distribution free tests in
contingency tables, Metrika, 80(2), pp. 153–170, (2017)

[59] Nikias, C. and Shao, M., Signal processing with alpha-stable distributions
and applications. Wiley, New York, (1995)



Bibliography 123

[60] Oosterhoof, J. and van Zwet, W., A note on contiguity and Hellinger
distance. In Contributions to Statistics: Jaroslav Hájek Memorial Volume,
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