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Forecasting the Term Structure of Implied Volatilities

Neumann and Skiadopoulos (2013) document that although the implied volatilities are

predictable, their economic profits become insignificant once the cost is accounted for. We

show that the trading strategies based on the predictability of implied volatilities could gen-

erate significant risk-adjusted returns after controlling for the transaction cost. The implied

volatility curve information is useful for the out-of-sample forecast of implied volatilities

up to one week. Short-maturity implied volatilities tend to be more predictable than long-

maturity implied volatilities. Although the long-maturity options are much less traded than

the short-maturity options, their implied volatilities provide much more information on the

price discovery.



I. Introduction

There is a large body of literature studying the predictability of implied volatility that

serves as a key measure of option price. Most studies focus on two research questions:

First, are the implied volatilities predictable? Second, is there significant economic profit

from such predictability? For the first question, the literature generally documents that

the implied volatilities are predictable, such as Harvey and Whaley (1992), Gonclaves and

Guidolin (2006), Konstantinidi, Skiadopoulos and Tzagkaraki (2008), Chalamandaris and

Tsekrekos (2010, 2011) and Neumann and Skiadopoulos (2013). On the other hand, the

results of economic significance are quite mixed. Harvey and Whaley (1992), Gonclaves

and Guidolin (2006), Konstantinidi, Skiadopoulos and Tzagkaraki (2008), Chalamandaris

and Tsekrekos (2010, 2011) and Neumann and Skiadopoulos (2013) show that although

the implied volatilities are predictable, their economic profits become insignificant once the

cost is accounted for. However, Galai (1977), Chiras and Manaster (1978), Poon and Pope

(2000) and Hogan et al. (2004) find significant excess returns of trading strategies even if

the transaction cost is considered.1

Several interesting questions arise from these studies and are still open for discussion.

For example, what kind of information is useful for the prediction? How long does the

predictability last? Is the predictability robust over time and over different option series?

In this paper, we conduct a comprehensive study on the predictability of implied volatilities

by focusing on six major questions.

The first is whether or not the historical information of implied volatility curve is useful

for the forecast of implied volatilities. We address this issue by conducting a horse race of

16 models and compare their out-of-sample performance with the random walk model as a

1Other relevant studies include Klemkosky and Resnick (1979), Philips and Smith (1980) and Bodurtha

and Courtadon (1986). They carry out put-call parity boundary tests and find that the put-call parity holds

in general.
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benchmark. These models include two adapted Nelson and Siegel models used by Diebold

and Li (2006) for Treasury securities and by Chalamandaris and Tsekrekos (2011) for cur-

rency options, eight time series models similar to Diebold and Li (2006), five combination

models as in Rapach, Strauss and Zhou (2010) and Mallows Model Averaging (MMA) com-

bination as in Hansen (2007, 2008). We find that historical information plays a role in the

prediction of implied volatilities during a short period of time. For example, when we use the

daily data to forecast the one-month implied volatility one day ahead and five days ahead,

the best out-of-sample R2 is 5.34% and 8.42%, respectively. Both of them are statistically

significant.

The second question is how persistent the predictability of implied volatility is. We find

that when the daily data are used, implied volatilities are highly predictable up to five days

ahead. In general, these models lost their predictive power beyond a week, suggesting that

only the historical information within one week is important for the forecast of the index

option market.

The third question is what historical information is useful in the forecast. The historical

information not only includes the time series information of one particular maturity, but

also the cross-sectional information of other maturities. Bakshi, Cao and Chen (2000) show

that long-dated options have information not readily available from short-dated options.

This raises the question of whether incorporating the whole or part of the term structure

of implied volatilities can help the prediction. Our results reveal that the models that use

the information of the whole implied volatility curve perform much better than the models

that only use the historical time series information of a single maturity. The average out-of-

sample R2 of one-day forecasts and five-day forecasts across maturities for the at-the-money

(ATM) call option could reach as high as 4.96% and 6.39%, respectively, for the models

using the whole curve information, compared with the 0.24% and 1.15%, respectively, for

the models that do not use it. This suggests that when we forecast the implied volatility of

a particular maturity, it is helpful to consider the historical information of other maturities.
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Consistent with Rapach, Strauss and Zhou (2010), the combination of individual forecasts

also provides stable and significant results.

The fourth question is whether the predictability has economic value. We construct

a trading strategy based on the forecast by each of these different models, and compare

the trading portfolio performance with the benchmark model. Using the Sharpe ratio and

Leland’s Alpha as the performance measure, we find that these models generate significant

economic profits up to five days even after moderate transaction costs are considered. For

example, when the daily data are used, the trading strategy based on the mean combination

forecast of one day ahead generates a Sharpe ratio of 0.31 and a Leland’s Alpha of 12.38%.

Both are significant at the 1% level. Similarly, the trading strategy based on the mean

combination forecast of five days ahead generates a Sharpe ratio of 0.10 and a Leland’s Alpha

of 5.07%. This finding is different from most other literature that found no predictability of

the option market after considering the transaction cost.

The fifth question is whether the predictability is robust over time and over different

option series. To address the first part, we conduct a sub-sample analysis using the data

during the recent 2007-2009 financial crisis period. We find that the predictability becomes

slightly weaker. However, implied volatilities can still be predicted one day ahead. Moreover,

their economic significance becomes stronger. We then use the ATM put option data and

the call option data with different moneyness to test the robustness of our findings across

different option series, and the main results still hold.

The sixth question is, since the implied volatilities can be better predicted by using

the whole implied volatility curve, which maturities contain more information for the price

discovery of term structure of implied volatilities? We use the Hasbrouck (1995) and Gonzalo-

Granger (1995) price discovery measures to assess the information share of each maturity

option, and link them with the trading statistics. We find that although the long-maturity

options are much less traded, their implied volatilities contain more information of price
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discovery than those of short-maturity options.

Our study contributes to the literature in several ways. First, our findings shed light

on volatility modelling, portfolio management and policy implementation. We evaluate an

extensive set of 16 models in the option market, including the models that use the time series

information only and the models that use both times series and cross-sectional information.

Such tests are important to answer the question of which information is useful in the forecast

and what models should be used to capture the dynamics of implied volatility. Our finding

that the whole implied volatility term structure plays roles in forecasting, in particular

that long-maturity implied volatilities provide more useful information than short-maturity

implied volatilities, implies that a one factor model is not enough for volatility modelling.

In this regard, we provide empirical evidence to the emerging component volatility models

(see, for example, Christoffersen et al., 2008; Christoffersen, Heston and Jacobs, 2009). Our

work also extends Rapach, Strauss and Zhou (2010)’s out-of-sample tests of predictability

on stock market to option market.

Second, this paper documents that more trading (and possibly better liquidity) does not

necessarily mean faster speed of information adjustment, and contributes to the debate of the

relationship between liquidity and price discovery. The relationship between price discovery

and liquidity is still a controversy in the literature. The common hypothesis is that price

discovery is positively related with liquidity. For example, Kwan (1996) finds that stock

returns predict future bond yield changes because the stock market is more liquid. Similarly,

Chakravarty, Gulen and Mayhew (2004) show that on option market although the illiquid

out-of-money (OTM) options have higher price discovery measures than liquid in-the-money

(ITM) options, the price discovery is still positively related to liquidity measures such as

trading volume and price spread once the leverage is controlled. However, there are other

findings that do not support this hypothesis. Hotchkiss and Ronen (2002) find that although

corporate bond market is much less liquid, corporate bond returns cannot be predicted by

past stock returns based on a sample of 20 high-yield bonds from the National Association of
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Securities Dealers (NASD). Barclay and Hendershott (2003) study the effect of trading after

hours on the price discovery over the 24-hour day and find that it is possible to generate

significant price discovery with very little, but very informative, trading. Zhu (2014) shows

that price discovery can improve along with reduced liquidity. What is crucial to price

discovery is informed traders, not necessarily liquidity. If the trading has much noise and

is subject to behavior bias, more trading might result in the deviation from its equilibrium

level, and provide a noisy information signal. On the other hand, if the trading is mainly from

informed trading, it will only take few transactions to fully reflect the impact of information

shock. Therefore, thinly traded long-maturity options may contain more information than

heavily traded short-maturity options and they are critical for price discovery.

This paper is most closely related to Gonclaves and Guidolin (2006) and Neumann and

Skiadopoulos (2013) in that we all test the out-of-sample predictability of S&P 500 index im-

plied volatilities both statistically and economically. Gonclaves and Guidolin (2006) propose

a two-stage method to predict the dynamics of the S&P 500 index implied volatility surface

(IVS) and find that the IVS is predictable one day ahead. However, the trading strate-

gies based on this predictability generate no significant profits once the transaction cost is

included. Neumann and Skiadopoulos (2013) model the evolution of IVS from the perspec-

tive of higher-order moments and conclude that they are highly predictable over different

forecasting horizons, even on a weekly and monthly basis, but the economic significance

disappears after considering the transaction costs.

Our finding that the cross-sectional information of other maturities is useful for prediction

supports their modelling on the IVS. However, we find a significant economic profit even if

the transaction costs are considered, which is different from theirs. Several other differences

also separate our paper from theirs. First, we test a larger set of models. Both Gonclaves

and Guidolin (2006) and Neumann and Skiadopoulos (2013) use five or fewer models, and

hence their results may be less convincing. Second, analogous to Diebold and Li (2006),

we choose all forecasting models as either AR(1) or VAR(1) or their combinations, com-
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pared with the sophisticated models in Gonclaves and Guidolin (2006) and Neumann and

Skiadopoulos (2013). Rather than predicting the implied volatility directly, they predict the

IVS model parameters using a time series model, and then put the predicted parameters into

the IVS model and obtain the forecasted IVS. These two-stage predictions are subject to high

prediction errors. Error-in-variable (EIV) problems may arise when a model is first fitted

to the IVS and then used in the forecast.2 Third, we examine the impacts of the financial

crisis on the predictability of implied volatilities. Gonclaves and Guidolin (2006) use data

only from 1992 to 1996; the sample period from 1996 to 2010 in Neumann and Skiadopoulos

(2013) covers the crisis, but the authors do not conduct a sub-sample analysis. Our finding

that the predictability has even stronger economic values during the crisis corroborates our

conclusion that implied volatilities can be predicted, and be profitable even after transaction

costs are accounted for.

The rest of the paper is structured as follows. Section 2 introduces our empirical method-

ologies, including the 16 models to be tested, the out-of-sample performance evaluation cri-

terion and the price discovery measures. Section 3 discusses the data and presents major

empirical results. Section 4 provides the robustness checks, including the sub-sample analysis

using the data covering the recent crisis period and the out-of-sample performance of other

option series. Section 5 reports the results of price discovery analysis. Section 6 concludes

the paper.

II. Empirical Methodology

This section outlines the models to be evaluated, the statistical and economic significance

measures for evaluating the prediction performances and the price discovery measures. Our

2As shown later, the models that use the Nelson-Siegel (NS) model to fit the term structure of implied

volatility and then forecast them by forecasting the NS model parameters perform worse than the other

models that predict the implied volatility directly.
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study focuses on the out-of-sample test. Suppose we have the implied volatility data from

time 1 to time T , and the out-of-sample forecast starts from time m. At any time t between

m and T , we use the information up to time t to estimate the coefficients, and then use

the estimated coefficients and information at time t to forecast the implied volatility h days

ahead. At time t+h, we could compare the forecasted implied volatility and realized implied

volatility to calculate the out-of-sample forecast errors. Different prediction models will have

different forecast errors. This procedure is repeated from time m to T − h.

A. Prediction model

The Nelson and Siegel (1987) model and its extension (Diebold and Li, 2006) are widely

accepted by industry for forecasting the yield curve due to their simplicity and efficiency.

The interest rate and implied volatility term structures are quite similar in many aspects

(see Derman, Kani and Zou, 1996; Christoffersen, Heston and Jacobs, 2009). Just as each

Treasury security has a corresponding yield to maturity, each traded index option has a

corresponding implied volatility. Both the yield curve and volatility term structures exhibit

a high degree of time variation and cross-sectional variation. Since the Nelson-Siegel model

is an empirical model, it can be borrowed directly to model the term structure of implied

volatility. We fit the implied volatility curve σt(τ) using the Nelson-Siegel model,

σt(τ) = β1t + β2t
1− exp (−λtτ)

λtτ
+ β3t(

1− exp (−λtτ)

λtτ
− exp (−λtτ)), (1)

where τ is time to maturity and the parameters β1t, β2t, β3t are estimated by ordinary least

squares (OLS) with λt fixed at a pre-specified value of 0.0147.3 The loading on β1t is 1, a

3The parameter λt governs the exponential decay rate; small values of λt produce slow decay and can

better fit the curve at long maturities, while large values of λt produce fast decay and can better fit the

curve at short maturities. λt also governs where the loading on β3t achieves its maximum. As a result, we

choose λt value that maximizes the loading on the medium-term (122-day) factor, which gives 0.0147.
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constant that does not decay to zero in the limit; hence β1t may be viewed as a long-term

factor. The loading on β2t is 1−exp (−λtτ)
λtτ

, a function that starts at 1 but decays monotonically

and quickly to 0; and hence may be viewed as a short-term factor. The loading on β3t is

1−exp (−λtτ)
λtτ

− exp (−λtτ), which starts at 0 and increases, and then decays to zero, hence it

may be viewed as a medium-term factor.

Besides the Nelson-Siegel model, we consider eight time series models following Diebold

and Li (2006), five combination models as in Rapach, Strauss and Zhou (2010) and the

Mallows Model Averaging (MMA) combination as in Hansen (2007, 2008). Table 1 lists all

the 16 models to be evaluated in this paper and the benchmark model used for comparison.

We forecast the implied volatility curve h days ahead with the following models:

(1) Nelson-Siegel factors as univariate AR(1) processes:

σ̂t+h(τ) = β̂1,t+h + β̂2,t+h
1− exp (−λtτ)

λtτ
+ β̂3,t+h(

1− exp (−λtτ)

λtτ
− exp (−λtτ)), (2)

where β̂i,t+h = c0,i + c1,iβ̂i,t, i = 1, 2, 3.

(2) Nelson-Siegel factors as multivariate VAR(1) processes:

σ̂t+h(τ) = β̂1,t+h + β̂2,t+h
1− exp (−λtτ)

λtτ
+ β̂3,t+h(

1− exp (−λtτ)

λtτ
− exp (−λtτ)), (3)

where β̂t+h = c0 + c1β̂t; β̂t =

[
β̂1,t β̂2,t β̂3,t

]T
.

(3) Slope regression: σ̂t+h(τ)− σt(τ) = c0(τ) + c1(τ)(σt(τ)− σt(30)).

(4) AR(1) on volatility levels: σ̂t+h(τ) = c0(τ) + c1(τ)σt(τ).
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(5) VAR(1) on volatility levels: σ̂t+h = c0 + c1σt, where σt =



σt(30)

σt(91)

σt(152)

σt(365)

σt(730)


.

(6) VAR(1) on volatility changes: ẑt+h = c0 + c1zt, where zt =



σt(30)− σt−h(30)

σt(91)− σt−h(91)

σt(152)− σt−h(152)

σt(365)− σt−h(365)

σt(730)− σt−h(730)


.

(7) ECM(1) with one common trend: ẑt+h = c0 + c1zt, where zt =



σt(30)− σt−h(30)

σt(91)− σt(30)

σt(152)− σt(30)

σt(365)− σt(30)

σt(730)− σt(30)


.

(8) ECM(1) with two common trends: ẑt+h = c0 +c1zt, where zt =



σt(30)− σt−h(30)

σt(91)− σt−h(91)

σt(152)− σt(30)

σt(365)− σt(30)

σt(730)− σt(30)


.

(9) AR(1) regression on three principal components. We first conduct a principal com-

ponent analysis on the 10 volatilities time series data. Denote the largest three eigenvalues

by λ1, λ2 and λ3, with associated eigenvectors q1, q2 and q3, and the first three princi-

pal components xt =

[
x1t x2t x3t

]T
. We first forecast xt+1 with a univariate AR(1)

model, x̂i,t+h = c0,i + c1,ixi,t, i = 1, 2, 3, and then generate forecasts for volatilities as

σ̂t+h(τ) = q1(τ)x̂1,t+h + q2(τ)x̂2,t+h + q3(τ)x̂3,t+h.
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(10) VAR(1) on empirical level, slope and curvature: σ̂t+h = c0 + c1Ft, where Ft =
σt(365)

σt(365)− σt(30)

2σt(122)− (σt(365) + σt(30))

. We compute the empirical level, slope and curvature of

the volatility term structure. The empirical level is defined as the 365-day implied volatility.

The slope is the 365-day implied volatility minus the 30-day implied volatility. Finally the

curvature is two times of 122-day implied volatility minus the sum of the 365-day and 30-day

implied volatilities.

Researchers have shown that combination forecasts typically outperform individual fore-

casts both statistically and economically. For example, Rapach, Strauss and Zhou (2010)

find that combination delivers consistent forecast gains for equity premium predictions.

So besides the above forecasts in (1) ∼ (10), we further combine them as σ̂c,t+h(τ) =
10∑
k=1

wk,t(h, τ)σ̂k,t+h(τ), which yields five forecasts depending on the combination weight wk,t(h, τ):

(11) The mean combination forecast: wk,t(h, τ) = 1/10.

(12) The median combination forecast: the median of σ̂k,t+h(τ), k = 1 ∼ 10.

(13) The trimmed mean combination forecast: wk,t(h, τ) = 0 for the smallest and largest

forecasts and wk,t(h, τ) = 1/8 for the remaining forecasts.

(14) DMSPE (discount mean square prediction error) combination forecast one: wk,t(h, τ) =

φ−1
k,t(h,τ)∑10

i=1 φ
−1
i,t (h,τ)

, where φk,t(h, τ) =
∑t−h

j=m θ
t−h−j(σj+h(τ)− σ̂k,j+h(τ))2, θ is a discounting factor

deciding the size of weights given to the recent forecasts, m is the starting time of out-of-

sample forecast. We take θ = 1 for no discounting to remote forecast.

(15) DMSPE (discount mean square prediction error) combination forecast two: Same

as (14) except that we take θ = 0.9 to give greater weight to recent forecast.

Hansen (2007, 2008) proposes a forecast combination based on the MMA method. This

method selects the forecast weight by minimizing a Mallow criterion that is a penalized sum

of the square residuals. Hansen shows that MMA forecasts have better performance than
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other feasible forecasts. We also consider it in our forecast.

(16) MMA combination. Let wt(h,τ ) = [w1,t(h, τ)...w10,t(h, τ)]T be the weight vector of

the individual forecast, σ̂j+h(τ ) = [σ̂1,j+h(τ)...σ̂10,j+h(τ)]Tbe the vector of individual h-day

forecast of τ -day implied volatility at time j, and G = [g(1)...g(10)]T be the vector of predic-

tor number used in the individual forecast. MMA combination forecast set wt(h,τ ) to mini-

mize Ct(h, τ) with the conditions that all wk,t(h, τ) are non-negative and
∑10

k=1wk,t(h, τ) = 1.

Ct(h, τ) is calculated by Ct(h, τ) =
∑t−h

j=m(σj+h(τ) − σ̂j+h(τ )Twt(h,τ ))2 + 2wt(h,τ )TGs2,

where s2 is an estimate of the variance of residuals from the largest fitted model.

The benchmark model is a random walk model, which assumes that the historical in-

formation is not useful and uses the current value to predict the implied volatility, i.e.,

σ̂t+h(τ) = σt(τ).

[Insert Table 1 here]

B. Out-of-sample forecast evaluation

In order to check the efficiency of the prediction models, we calculate the out-of-sample

R2 statistics of each model for each maturity, given by

R2
OS(τ) = 1−

∑T−h
j=m(σj+h(τ)− σ̂j+h(τ))2∑T−h
j=m(σj+h(τ)− σ̄j+h(τ))2

. (4)

For model (14) and model (15) that require the hold-out period (p) in calculating the

optimal weight, the forecasting errors used to calculate the R2
OS(τ) start since m + p until

T − h. σ̂(τ) and σ̄(τ) is the forecast of implied volatility by model (1) to model (16)

and the forecast by the benchmark random walk model, respectively. A positive R2
OS(τ)

indicates that the prediction model outperforms the benchmark model. We calculate the
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MSPE-adjusted statistic to test the significance of R2
OS(τ). Define

ft+h(τ) = [(σt+h(τ)− σ̄t+h(τ))]2 − [(σt+h(τ)− σ̂t+h(τ))2 − (σ̂t+h(τ)− σ̄t+h(τ))2], (5)

the MSPE-adjusted statistic is obtained by regressing ft+h(τ) on a constant. The p-value

corresponding to the constant from a one-sided test determines the significance of R2
OS(τ).

We use Hodrick (1992) to calculate the standard errors that are robust for the data overlap-

ping. In order to test the overall efficiency of prediction models, we also calculate the overall

out-of-sample R2 statistics of each model by

R2
OS = 1−

∑
τ

∑T−h
j=m(σj+h(τ)− σ̂j+h(τ))2∑

τ

∑T−h
j=m(σj+h(τ)− σ̄j+h(τ))2

, (6)

and test its significance by

ft+h =
∑

τ
[(σt+h(τ)−σ̄t+h(τ))]2−

∑
τ
[(σt+h(τ)−σ̂t+h(τ))2−

∑
τ
[(σ̂t+h(τ)−σ̄t+h(τ))]2. (7)

C. Economic significance

We follow Goncalves and Guidolin (2006) and Neumann and Skiadopoulos (2013) to

evaluate the trading performance of out-of-sample forecasts and test whether the models

can generate abnormal profits. The trading strategies are simply based on the forecasted

volatility. Specifically, at date t we long (short) an option if the forecasted volatility for

that maturity at date t + h is larger (smaller) than the current volatility. Consistent with

previous sections, we consider options with maturity 30, 91, 152, 365 and 730 days; thus, on

each date our portfolio includes five option contracts with trading status either long, short

or no trading. We hold the portfolio the same time as our forecasting horizon and repeat the

trading in the out-of-sample period. Analogous to Goncalves and Guidolin (2006), we delta-

hedge our option position by buying (selling) ∆ shares of the S&P 500 index if we short
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(long) the options. The hedge ratio is calculated using the Black-Scholes option pricing

formula with the forecasted volatility. We invest $1000 on each trading date in our portfolio.

Let Pt be the value of a unit portfolio at date t,

Pt =
∑
i∈long

(Cit − St∆it)−
∑

i∈short

(Cit − St∆it), (8)

where C is the call option price, S is the S&P 500 index price and long and short represents

the option we either buy or sell.4 Since we invest $1000 in the portfolio, the total units are

Qt = |1000
Pt
|. The change of portfolio value at date t+ h becomes

∆Vt+h = Qt

∑
i∈long

(Ci,t+h − Cit) +Qt

∑
i∈short

(Cit − Ci,t+h)

−Qt(St+h − St)
∑
i∈long

∆it +Qt(St+h − St)
∑

i∈short

∆it

(9)

Finally, we calculate the return of our portfolio as ∆Vt+h/1000. We calculate the Sharpe

ratio and Leland’s (1999) Alpha to gauge the economic performance of these trading strate-

gies, together with the Politis and Romano (1994) stationary bootstrap method to test the

significance of these measures. The Sharpe ratio is calculated as
E(ra−rf )√
var(ra−rf )

, where ra is the

portfolio return, rf is the risk-free rate approximated by the U.S. LIBOR rate. Leland’s

Alpha takes into account the deviation of portfolio returns from normal distribution and

equals to αp = E[ra] − βp(E[rm − rf ]) − rf , where rm denotes the market return approx-

imated by the S&P 500 index return, βp = cov(ra,−(1+rm)−γ)
cov(rm,−(1+rm)−γ)

measures systematic risk and

γ =
ln (E[1+rm])−ln (1+rf )

var(ln (1+rm))
measures the relative risk aversion. Since our benchmark model is a

random walk model and the forecasted volatility at t + h will always equal to the current

volatility, no trading signal is generated for the whole sample. The economic measures of

portfolio return using the random walk model in the forecast will always be zero. There-

fore, these measures also indicate the difference of portfolio performance between the tested

4The option prices are calculated using Black-Scholes option pricing formula.
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model and the benchmark model. A larger-than-zero Leland’s Alpha thus indicates the trad-

ing strategy generates an excess return over the benchmark model. Both the Sharpe ratio

and Leland’s Alpha are finally annualized.

D. Price discovery

Even if there is an equilibrium relationship between the implied volatilities of different

maturities, they may deviate from each other in the short run due to different speeds of

information adjustment. Questions arise as to which maturity options respond more quickly

to the information shocks, and therefore their implied volatilities reveal more information for

the future implied volatility. We employ two price discovery measures suggested by Gonzalo

and Granger (1995) and Hasbrouck (1995) to assess the information contents of different

maturity options. In brief, the Gonzalo-Granger method decomposes the implied volatility

into permanent and transitory components, and links the permanent component with the

long-term level. It depends on the adjustment speed of the error-correction term or how

the implied volatilities in each maturity change in response to the disequilibrium in the

previous period. On the other hand, the Hasbrouck measure not only considers the speed of

adjustment, but also incorporates the innovations of two implied volatilities through their

covariance structure.

We first estimate the vector error-correction model (VECM) of implied volatilities with

two different maturities. Denote Yt = [σt(τ1) σt(τ2)]
T , the VECM model can be written as

∆Yt = c0 + δωTYt−1 +
∑j=q

j=1
Ψi∆Yt−1 + εt, (10)

where c0 is the constant term, ω = [1 η]T is the cointegration vector with the first element

normalized to one and δ = [δ1 δ2]
T is the response vector for the error-correction term. εt

are serially uncorrelated innovations with mean zero and a covariance matrix V ar(εt) with
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diagonal elements σ2
1 and σ2

2 and off-diagonal elements ρσ1σ2. We first test the cointegration

relationship between the two pairs. If they are cointegrated, we then use the parameters

from the VECM model to construct the price discovery measures.

The Gonzalo-Granger (G) measures for σt(τ1) and σt(τ2) are calculated as

G1 =
−δ2

δ1 − δ2
, G2 =

δ1
δ1 − δ2

. (11)

The Hasbrouck measure (H) is defined as

H1(u) =
(−δ2σ1 + δ1ρσ2)

2

(−δ2σ1 + δ1ρσ2)2 + (δ1ρ2
√

1− ρ2)2
, (12)

H2(l) =
(δ1ρ2

√
1− ρ2)2

(−δ2σ1 + δ1ρσ2)2 + (δ1ρ2
√

1− ρ2)2
(13)

where u indicates the upper bond and l indicates the lower bond. Reversing the order in the

vector of volatility series gives the upper bound H2(u) and the lower bound H1(l). We use

the average of these two bounds as the Hasbrouck measure of price discovery.

Using the individual price discovery measures calculated from the VECM models run

against other maturity implied volatilities, we also calculate the mean price discovery mea-

sure. For example, we run the VECM models for the 30-day implied volatility with 90-day,

152-day, 365-day and 730-day implied volatilities, respectively, and obtain four individual

price discovery measures of 30-day implied volatility. The mean of those four individual

measures is used to assess the overall price discovery function of the 30-day option for the

term structure of implied volatilities.
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III. Data and empirical results

Our sample includes the daily data of implied volatilities of S&P 500 index options

from 1996 to 2011. We use the volatility surfaces taken from the Ivy DB OptionMetrics

database, with 10 different time-to-maturities (30, 60, 91, 122, 152, 182, 273, 365, 547 and

730 days) on each observation date. Since not all time-to-maturities are traded on each date,

OptionMetrics interpolates the surface to obtain the missing data. We select the ATM call

options, as they are the most liquidly traded in the market.5

Table 2 reports the mean, maximum, minimum, standard deviation and autocorrelation

of implied volatilities with different maturities. The volatility curve is upward sloping, and

long-maturity implied volatility has a smaller standard deviation than short-maturity implied

volatility. For example, the 730-day implied volatility has a mean of 20.45% and a standard

deviation of 4.78%, while the 30-day implied volatility has a mean of 20.07% and a standard

deviation of 7.81%. The different persistence across maturities indicates the necessity of

modelling the long- and short-maturity implied volatilities separately.

Figure 1 plots the time series of the implied volatilities. It is clear that the volatilities

are time varying, with three spikes occurring between 1998 and 1999, between 2002 and

2003 and between 2008 and 2009 respectively. They reflect the impact of the Asian crisis,

the accounting scandal and the credit crisis, respectively. In the empirical studies, we focus

on the implied volatilities with five different maturities (30, 91, 152, 365, and 730 days) to

reduce the dimensionality in the panel data models.

[Insert Table 2 here]

[Insert Figure 1 here]

We fit the implied volatility curve using the Nelson-Siegel model by OLS on each obser-

5We also extend our studies to the ATM put options and the call options with other moneyness in the

robustness check.
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vation date. The unreported results show that β1t, as a long-term factor, displays a more

persistent pattern than the other two factors. On the contrary, β2t and β3t are volatile

since they represent the short and medium terms, which are especially pronounced when the

market is turbulent. β1t moves smoothly and captures the trend of the volatility very well,

verifying that it reflects a long-term volatility. β2t and VIX mimic each other, together with

the close movement between β2t and the empirical slope lines, indicating that β2t reflects

the short-term volatility component and can be interpreted as a slope factor. Our findings

so far provide strong empirical support for the decomposition of volatility into long- and

short-term volatility with a Nelson-Siegel model. 6

A. Out-of-sample forecast results

We start the out-of-sample forecast in 2002. We estimate parameters using a recursive

(expanding) window. We forecast the implied volatility one day, five days and 20 days ahead.

The holdout out-of-sample period for model (14) and model (15) is set as 60 days.

Table 3 reports the out-of-sample R2
OS statistics for all the models. The up, middle

and down panels report the results of the forecast one day, five days and 20 days ahead,

respectively. A positive R2
OS suggests the model outperforms the benchmark random walk

model. The statistical significance is assessed with MSPE-adjusted statistics and Hodrick’s

(1992) standard errors for all positive values.

The results in the up panel show that most of our models are able to beat the benchmark

on a one day forecast. For example, 13 out of 16 models generate positive R2
OS at the 5%

significance level or above for the 30-day implied volatility, and all combination forecasts

have a greater than zero R2
OS and are significant at the 1% level. The advantages of models

over the benchmark deteriorate for long-maturity implied volatilities. Still, there are eight

models that outperform the random walk model at the 5% level or above for the 730-day

6The estimation results of Nelson-Siegel model are available upon request.
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implied volatility.

Among all the models, model (6), which runs VAR(1) on the volatility changes, has

the greatest R2
OS and performs the best. This implies that the historical information of

other maturities is helpful when we forecast the implied volatility of one particular maturity.

Model (7) and model (8), which use ECM models with common trends, also perform well.

It is interesting to observe that most of the R2
OS using Nelson-Siegel factors (model 1 and

model 2) have negative values, suggesting that they are not as good as the benchmark model

out-of-sample. This shows the difference of in-sample fitting and out-of-sample forecasts. In

general, short-maturity implied volatilities tend to be more predictable than long-maturity

implied volatilities. For example, when the VAR(1) on volatility change is used for the

forecast, the R2
OS of the 30-day implied volatility is 5.20%, while it is only 3.11% for the

730-day implied volatility.

It is also interesting to observe that overall the use of whole implied volatility curve

information helps improve the forecasting performance, different models generate different

results. For example, most of the R2
OS of model (5), which runs VAR(1) on the volatility

levels, are not significant. This is quite different from the results of model (6) that are highly

significant. The results using the principal components of implied volatility curve (model

(9) and model (10)) are not significant either. This finding is consistent with Kelly and

Pruitt (2013, 2014) who find that the principal component will unfortunately contain the

common error component that is not relevant to the forecasting, and has poor forecasting

performance. Model (5), (9) and (10) use the level information, while model (6) to (8) use

the information of volatility change and thus remove the trend. This performance difference

implies both the information set and the way of modeling information set are important

when when we run the out-of-sample forecast on the option market.

Turning now to the performance of the five-day forecast (the middle panel of Table 3),

it is clear that most models perform worse than they do for the one-day forecast: they
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generally become less significant. Only model (15) has a positive R2
OS that is significant at

the 5% level for all maturities. In contrast, there are eight models meeting this criterion for

the one-day forecast. In addition, the performance becomes much worse for long-maturity

implied volatilities. There is only one model that is significant at the 5% level for the 730-day

implied volatility. Model (6), model (7) and model (8) continue to perform quite well for

the five-day forecast. The combination forecast (model 11 to model 16) seems to give stable

and significant results. This means that the implied volatility is still predictable five days

ahead when we use the daily data.

The bottom panel of Table 3 reports the results of the R2
OS of the 20-day forecast. Most

of the R2
OS are insignificant. The forecasting abilities almost disappear when we forecast 20

days ahead, and none is able to generate a positive R2
OS consistently across maturities that

are significant at the 5% level. Models (6), (7) and (8) that perform well in the one-day and

five-day forecast fail to beat the benchmark model in the 20-day forecast.

[Insert Table 3 here]

In order to visually observe the performance of models over time, we also calculate their

monthly aggregate out-of-sample forecast errors and compare them with those of the random

walk model. Figure 2 plots the difference of monthly aggregate out-of-sample forecast errors

between model (6) (VAR (1) model on volatility change, the best-performing model reported

in Table 3), and the random walk model. A negative value means the VAR (1) model on

volatility change performs better in that month. We standardize the series to make the

pattern clear. Figure 2 shows that for the one-day forecast of all maturity implied volatilities

and the five-day forecast of short-maturity implied volatilities, most of the differences are

negative, suggesting that model (6) consistently outperforms the random walk model during

the sample period.

[Insert Figure 2 here]
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B. Economic significance

The statistical significance results in Table 3 suggest that these models can forecast

the implied volatilities, especially short-maturity implied volatilities, rather well up to five

days. To explore the economic significance of this predictability, we further develop the

option trading strategies as described in Section 2.2. We delta-hedge our option portfolio

and include a transaction cost of $0.125 for each traded contract following Goncalves and

Guidolin (2006). The stationary bootstrap with an average block size of 10 is applied to test

the significance level of the Sharpe ratio and Leland’s Alpha following Politis and Romano

(1994) and Neumann and Skiadopoulos (2013). Since the benchmark model has a zero

Sharpe ratio by design, any model with economically significant predictability would return

a positive Sharpe ratio and Leland’s Alpha.

Table 4 reports the results of the economic significance analysis. Model (6), (7) and

(8) continue to perform well. The combination forecasts also provide better economic per-

formance than the benchmark model. This suggests that they are both statistically and

economically significant. The economic significance of the one-day forecast is much stronger

than that of the five-day forecast. For model (6), which works the best, the Sharpe ratio and

the Leland’s Alpha for the one-day forecast is 1.75 and 34.92%, respectively. They decline to

0.38 and 11.52%, respectively, for the five-day forecast. None of these models is economically

significant for the 20-day forecast. This is consistent with our finding that the historical im-

plied volatility curve information is important to predict the implied volatilities up to one

week. In summary, we find that the predictability of implied volatilities using the historical

implied volatility curve information is both statistically and economically significant up to

one week, and their predictability power lessens beyond a week.

[Insert Table 4 here]

Figure 3 plots the standardized aggregate monthly returns of the portfolios that are
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based on the forecast of implied volatility curve one day ahead. For those models that have

a positive Sharpe ratio and Leland’s Alpha (model 6, 7, 8, 11, 13, 14, 15 and 16), their returns

are relatively stable during the normal time. The returns during the financial crisis become

much more volatile. Most of them have a large downward spike in the crisis period, which

suggests that these trading strategies could be subject to downside risk. The exception is

model (6), which runs VAR(1) on volatility changes. It has a sudden return increase during

the financial crisis period. Using model (6) provides a better hedge against the downside risk

compared with other models. Figure 4 plots the standardized aggregate monthly returns of

the portfolios that are based on the forecast of implied volatility curve five days ahead and

the findings are similar.

[Insert Figure 3 here]

[Insert Figure 4 here]

IV. Robustness checks

A. Out-of-sample forecast during the recent financial crisis

Our data cover the recent financial crisis period. One interesting question is whether

the predictability changes over that period. We examine the performance of out-of-sample

forecasts between December 2007 and June 2009, the recession periods indicated by the

National Bureau of Economic Research (NBER). Table 5 reports the results of statistical

and economic significance. Panel A reports the results of R2
OS, while Panel B reports the

results of economic significance. Consistent with the results for the whole sample, the out-

of-sample one-day forecast during the financial crisis is statistically significant for several

models, although it becomes weaker. For example, when the daily data are used, only four

models (model 6, 7, 8 and 16) can beat the benchmark model in forecasting the 30-day
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implied volatility one day ahead, which is less significant than the results using the whole

sample. None of the five-day forecasts is significant. This finding is different from other

research that finds stronger predictability during the recession period. One possible reason

is that during the crisis period, the investors are more sensitive to the information on the

financial markets. As a result, it takes less time for the option market to adjust for the

information.

Panel B of Table 5 reports the results of economic significance. Different from the results

of statistical significance, the economic significance of predictability, on the contrary, becomes

stronger. For example, the option trading strategy using one-day forecasts based on model

(6) could generate a Sharpe ratio as high as 2.80 and a 95.86% Leland’s Alpha. There

are seven models that have Sharpe ratios greater than one even after transaction costs are

considered. These results are much stronger than those in Table 4. This implies that the

historical information is more economically important during the crisis period. Our finding

is consistent with Loh and Stulz (2014), who find that analysts tend to make poor forecasts

during crisis, but the forecasts become more influential once they are adjusted.

[Insert Table 5 here]

B. Out-of-sample forecast using weekly data

To support our findings from another perspective, we re-arrange data to weekly frequency

by using observations on Wednesday because the number of holidays on Wednesdays is the

least among the five weekdays (Li and Zhang, 2010). Table 6 reports the results of out-

of-sample forecasts. For simplicity, we only report the R2
OS of all maturities.7 The results

continue to show the predictability of implied volatilities one week ahead. There are 10

models that have significant R2
OS, with the highest being 5.01% by model (6). Four models

7The R2
OS of other maturities are available upon request.
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(model 6, 7, 8 and 16) generate a significant Sharpe ratio and Leland’s Alpha. However,

they can barely outperform the random walk model beyond a one-week forecasting horizon.

The highest R2
OS are only 0.28% and 0.72% for two-week forecasts and four-week forecasts

respectively. None of the economic profit is significant beyond one week.

[Insert Table 6 here]

C. Out-of-sample forecast of other option series

Another question of interest is whether the findings using the ATM call options could

be extended to other option series. In order to answer this question, we try three different

option series, including the ATM put options, the call options with delta equal to 0.60 and

the call options with delta equal to 0.40. Table 7 reports the results of these option series.

The left column of Table 7 reports the out-of-sample forecast of ATM put options. The

up panel reports the results of R2
OS and the bottom panel reports the results of Leland’s

Alpha. For simplicity, we only report the best results of the 16 models. The numbers in the

bracket represent the number of models that outperform the benchmark model at least at

the 10% significance level. The historical implied volatility curve information is important

up to 20 days during the whole sample period. Short-maturity implied volatilities tend to

be more predictable. For example, for the one-day forecast, the highest R2
OS of a 30-day

ATM put option is 2.03% with 10 models outperforming the benchmark model, while it is

only 0.87% with only one model outperforming the benchmark model for the 730-day ATM

put option. The results in the financial crisis period show weaker predictability for the ATM

put options. Now they are only predictable one day ahead.8 The results of Leland’s Alpha

also show that the predictability of the implied volatilities of ATM put options is also of

economic significance. The trading strategy using the five-day forecast could generate a

8We also tried the weekly data and found that the predictability disappears when the weekly data are

used.
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Leland’s Alpha of 13.04% during the whole period, and 34.55% during the financial crisis

period. Although the predictability becomes weaker during the financial crisis period, its

economic value is much higher.

The middle column and the right column of Table 7 report the results of call options

with delta equal to 0.60 and 0.40, respectively. The results are quite similar to the ATM put

options. The implied volatilities could be predicted up to 20 days in the whole period. The

predictability is also economically significant. The predictability becomes weaker during the

financial crisis, but the economic value is much higher. The importance of historical infor-

mation lasts longer for the ATM put options and for the call options with other moneyness

than for the ATM call options. One possible reason is that the trading of other options is

not as liquid as the ATM call options and therefore it takes a longer time for them to reflect

the historical information.

[Insert Table 7 here]

V. Price Discovery Analysis

The above empirical analysis shows that the whole implied volatility curve provides useful

information on the forecasting of term structure of implied volatilities. It is therefore inter-

esting to investigate which maturity’s implied volatility contain more information than the

others. We use the Hasbrouck (1995) and Gonzalo-Granger (1995) price discovery measures

to assess the information share of implied volatilities. In order to control for the leverage,

we run the price discovery analysis among implied volatilities with the same moneyness.

Table 8 reports the results of price discovery analysis. The VECM models are used to

calculate the price discovery measures. The left panel reports the results of the cointegration

relationship. There exists a significant cointegration relationship for all pairs. The middle

panel reports the results of the Hasbrouck measure, while the right panel reports the results
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of the Gonzalo-Granger measure. In the middle and right panel, the number in maturity

row i and maturity column j is the price discovery measure of the i-day implied volatility

when the VECM model is run between the i-day implied volatility and the j-day implied

volatility. For example, the number with maturity row 30 and column 91 in the middle panel

is 0.44. It is the Hasbrouck measure of the 30-day implied volatility when the VECM model

is run using the 30-day and 91-day implied volatilities. In order to measure the aggregate

level of information share of each maturity implied volatility, we calculate the mean price

discovery measure of one maturity option using the mean of its four individual price discovery

measures.

The results in Table 8 strongly indicate that long-maturity implied volatilities have larger

price discovery measures compared with short-maturity implied volatilities. The price dis-

covery measures of the 365-day implied volatility are the largest among all maturities in most

cases. They are also much larger than those of the 30-day implied volatility. For example,

for the ATM call options, the mean Hasbrouck measure and the Gonzalo-Granger measure

of the 365-day implied volatility are 0.56 and 0.93, respectively, while those of the 30-day

implied volatility are only 0.41 and 0.06, respectively. The implied volatility of the 365-day

option contains more useful information for the price discovery of the term structure of im-

plied volatilities. The results for the ATM put option and call options with other moneyness

are quite similar. Figure 5 plots the mean price discovery measure of the implied volatilities.

The findings are also consistent with Table 8.

[Insert Table 8 here]

[Insert Figure 5 here]

Next we examine whether the larger price discovery measures of long-maturity implied

volatilities are due to the larger trading volume of long-maturity options. Table 9 reports the

trading summary of options with different maturities. We report both the trading volume

and the open interest. The option data with negative bid-ask spread, negative trading volume
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and open interest or negative implied volatility are excluded. The trading volume and open

interest of ATM (call and put) options, call options with delta equal to 0.60 and call options

with delta equal to 0.40 are calculated from the options with moneyness between 45% and

55%, between 55% and 65% and between 35% and 45%, respectively.

The trading of the option market is dominated by short-maturity options. For example,

for the ATM call options, the options with maturity less than three months contribute about

78.35% to the total trading volume and about 53.96% to the total open interest. On the

other hand, the options with maturity longer than one year only account for 3.16% of the

total trading volume and 9.88% of the total open interest. The trading of long-maturity

options is much less than that of short-maturity options.

The results in Table 8 and Table 9 together suggest that although long-maturity options

are not much traded, their prices contain much more information. One possible reason is

that much trading of short-maturity options is noise trading and tends to be more affected by

behaviour bias. On the other hand, the trading of long-maturity options is more information

driven, which helps price discovery in a more efficient way. Our findings are not consistent

with Chakravarty, Gulen and Mayhew (2004) about the positive relationship between price

discovery and liquidity on the option market once the leverage is controlled, but consistent

with Barclay and Hendershott (2003) and Zhu (2014) who find that high level of price

discovery could happen on a less liquid market.

[Insert Table 9 here]

VI. Conclusion

In this paper, we test the out-of-sample predictability of the term structure of S&P500

index implied volatilities. In particular, we evaluate 16 different models that are based on

historical implied volatility information. We investigate both their statistical and economic
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significance. We run several robustness tests using the sub-period data and the data of differ-

ent option series. In order to examine how long this predictability lasts, we also compare the

results at different horizons. Finally, we assess the information share of implied volatilities.

We obtain several interesting results.

Using out-of-sample R2
OS as the statistical measure, we find that several models that use

the historical implied volatility curve information could predict the term structure of implied

volatilities significantly out-of-sample. When the daily data are used, these models could

forecast the implied volatilities up to five days ahead. Short-maturity implied volatilities

tend to be more predictable than long-maturity implied volatilities.

Using the Sharpe ratio and Leland’s Alpha as the economic significance measures, we

find that the predictability is of economic significance. The models that use the information

of implied volatility curve generate a positive Sharpe ratio and Leland’s Alpha, even if the

transaction cost is accounted for. The portfolio returns that are based on these models

are relatively stable during normal times but much more volatile during the financial crisis

period. The VAR(1) model on volatility change performs quite well in hedging against the

downside risk of the crisis. Using the data during the financial crisis, we find that overall,

the predictability becomes weaker during the financial crisis, but the economic value is much

higher. The robustness tests that use other option series also support our main findings.

Using the Hasbrouck and Gonzalo-Granger price discovery measures, we find that al-

though long-maturity options are much less traded than short-maturity options, their im-

plied volatilities contain more useful information for the price discovery of the term structure

of implied volatilities.

These findings are relevant to the question of how long it takes for option prices to reflect

the historical price information. Our results show the importance of historical information

up to one week for the ATM call options. For the ATM put options and the call options with

other moneyness, the historical information could be helpful up to 20 days. This question is
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important for the understanding of the Efficient Market Hypothesis (EMH) in practice and

for the policy implementation to reduce the time interval.

Our analysis of price discovery also contributes to understanding the relationship between

liquidity and price discovery. The findings about the information share of long-maturity op-

tions also have implications about the future studies of option pricing models. Our empirical

results are consistent with the emerging component volatility models. In other words, both

short-term and long-term volatilities should be considered in the option pricing models to

fully utilize the information from the term structure of implied volatilities.
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Table 1. Prediction models
This table lists the 16 different prediction models to be tested in this paper. The last row also
explains the benchmark model (random walk), which assumes that the historical information
is not useful in the predictions and uses the current value as the best forecast.

Model Model description

1 Nelson-Siegel factors as univariate AR(1) processes
2 Nelson-Siegel factors as multivariate VAR(1) processes
3 Slope regression
4 AR(1) on volatility levels
5 VAR(1) on volatility levels
6 VAR(1) on volatility changes
7 ECM(1) with one common trend
8 ECM(1) with two common trends
9 AR(1) regression on three principal components
10 VAR(1) on empirical level, slope and curvature
11 mean combination forecast
12 median combination forecast
13 trimmed mean combination forecast
14 DMSPE combination forecast with θ = 1
15 DMSPE combination forecast with θ = 0.9
16 MMA combination forecast

Benchmark Random walk
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Table 2. Summary statistics
This table reports the summary statistics of implied volatilities used in the empirical analysis.
The sample period is from 1996 to 2011. The maturities include 30 days, 60 days, 91 days,
122 days, 152 days, 182 days, 273 days, 365 days, 547 days and 730 days. This table reports
the mean, standard deviation, minimum, maximum, autocorrelation with lag 10, 30, 60 and
180 days of these implied volatilities.

Maturity (days) Mean Std. Dev. Min. Max. ρ (10) ρ (30) ρ (60) ρ (180)
(%) (%) (%) (%)

30 20.07 7.81 8.32 74.98 0.89 0.74 0.58 0.28
60 20.20 7.13 9.07 67.27 0.92 0.80 0.64 0.32
91 20.26 6.72 9.68 60.66 0.93 0.82 0.67 0.35
122 20.29 6.34 10.22 57.50 0.94 0.84 0.70 0.38
152 20.32 6.05 10.44 53.99 0.95 0.85 0.72 0.41
182 20.33 5.84 10.59 50.44 0.95 0.86 0.74 0.43
273 20.34 5.48 10.96 46.49 0.96 0.88 0.78 0.47
365 20.36 5.28 11.25 44.49 0.96 0.89 0.79 0.49
547 20.40 4.93 11.61 40.19 0.97 0.91 0.82 0.52
730 20.45 4.78 11.74 38.39 0.97 0.91 0.82 0.53

34



T
ab

le
3.
R

2 O
S

of
im

p
li
ed

vo
la

ti
li
ty

fo
re

ca
st

T
h
is

ta
b
le

re
p

or
ts

th
e
R

2 O
S

of
im

p
li
ed

vo
la

ti
li
ty

fo
re

ca
st

b
y

th
e

16
p
re

d
ic

ti
on

m
o
d
el

s.
T

h
e

ou
t-

of
-s

am
p
le

fo
re

ca
st

st
ar

ts
in

20
02

.
W

h
en

ca
lc

u
la

ti
n
g

th
e
R

2 O
S
,

th
e

ra
n
d
om

w
al

k
m

o
d
el

is
u
se

d
as

th
e

b
en

ch
m

ar
k
.

A
p

os
it

iv
e
R

2 O
S

in
d
ic

at
es

th
e

p
re

d
ic

ti
on

m
o
d
el

ou
tp

er
fo

rm
s

th
e

b
en

ch
m

ar
k

m
o
d
el

.
T

h
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

fo
r

th
e
R

2 O
S

st
at

is
ti

cs
is

b
as

ed
on

th
e
p-

va
lu

e
of

th
e

M
S
P

E
-a

d
ju

st
ed

st
at

is
ti

cs
.

H
o
d
ri

ck
(1

99
2)

st
an

d
ar

d
er

ro
r

is
u
se

d
fo

r
p-

va
lu

e
ca

lc
u
la

ti
on

to
ac

co
u
n
t

fo
r

th
e

im
p
ac

t
of

ov
er

la
p
p
in

g
re

si
d
u
al

s.
a
,
b
,
c

d
en

ot
e

si
gn

ifi
ca

n
ce

at
th

e
1%

,
5%

an
d

10
%

le
ve

l,
re

sp
ec

ti
ve

ly
.

M
o
d

el
M

at
u

ri
ty

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

O
n

e
d

ay
ah

ea
d

(%
)

30
-0

.2
0

0.
74

b
-0

.0
3

-0
.2

1
0.

44
b

5.
20

a
5.

10
a

5.
34

a
1.

69
b

0.
78

b
4.

18
a

3.
07

a
4.

03
a

4.
24

a
4.

18
a

5.
10

a

91
-8

.9
1

-3
.0

5
0.

81
c

0.
02

c
0.

13
c

4.
97

a
3.

73
a

4.
16

a
-2

.6
6

-3
.9

7
2.

22
a

1.
82

a
2.

14
a

2.
41

a
2.

37
a

4.
33

a

15
2

-5
.9

0
-1

.7
0

0.
62

c
0.

02
c

-0
.2

5
4.

55
a

3.
82

a
4.

24
a

-2
.6

7
-4

.4
2

1.
94

a
1.

54
a

1.
89

a
2.

03
a

1.
96

a
3.

77
a

36
5

-1
7.

17
-5

.5
1

0.
08

-0
.0

3
0.

23
c

4.
56

a
4.

02
a

4.
21

a
-2

.9
0

0.
16

c
2.

43
a

2.
14

a
2.

56
a

2.
58

a
2.

56
a

3.
95

a

73
0

-1
6.

08
-1

2.
30

-0
.2

6
-0

.1
8

-0
.5

4
3.

11
a

2.
37

a
2.

50
a

-1
4.

47
-5

0.
35

-0
.7

8
0.

87
a

0.
07

b
0.

14
a

0.
19

b
2.

51
a

A
ll

-4
.4

0
-1

.2
1

0.
24

b
-0

.1
2

0.
24

a
4.

96
a

4.
47

a
4.

78
a

-0
.6

3
-2

.6
0

3.
19

a
2.

47
a

3.
12

a
3.

31
a

3.
26

a
4.

60
a

F
iv

e
d

ay
s

ah
ea

d
(%

)
30

1.
49

b
1.

41
c

-0
.1

2
0.

14
b

0.
65

b
8.

14
a

6.
80

a
7.

36
a

3.
33

b
0.

40
c

5.
51

a
4.

19
b

5.
13

a
5.

64
a

6.
44

a
8.

42
a

91
-6

.6
6

-3
.9

4
0.

37
0.

08
3b

-1
.8

1
4.

81
b

3.
97

a
4.

80
b

-1
.7

5
-2

.8
6

2.
01

b
0.

75
c

1.
75

b
2.

17
b

3.
01

b
4.

82
a

15
2

-3
.2

5
-0

.8
4

-0
.6

1
-0

.0
4

-1
.9

7
4.

35
b

3.
52

b
4.

33
b

0.
83

b
-1

.6
4

2.
32

b
1.

09
c

2.
01

b
2.

40
b

3.
08

a
4.

64
a

36
5

-9
.7

9
-2

.2
9

-1
.0

9
-0

.1
9

-2
.4

0
3.

22
b

1.
86

c
2.

70
c

-0
.2

6
-1

.7
8

1.
64

c
0.

57
1.

29
1.

68
c

2.
62

b
3.

04
a

73
0

-7
.7

3
-6

.6
4

-1
.2

5
-0

.5
0

-3
.1

3
1.

23
c

-0
.4

8
0.

46
-7

.0
5

-1
6.

78
-0

.4
1

-0
.8

2
-0

.4
5

-0
.2

4
1.

21
b

0.
87

A
ll

-2
.1

9
-0

.7
2

-0
.1

9
0.

05
a

-0
.6

4
6.

23
a

5.
06

a
5.

75
a

1.
15

a
-1

.4
8

3.
75

a
2.

51
a

3.
43

a
3.

88
a

4.
71

a
6.

39
a

20
d

ay
s

ah
ea

d
(%

)
30

1.
86

a
-0

.0
1

-0
.5

8
2.

10
a

-2
.1

3
-4

.2
0

-1
.0

0
-0

.6
7

3.
65

a
-1

.3
0

3.
27

b
1.

07
b

2.
65

b
3.

44
b

6.
85

b
5.

57
91

-5
.1

8
-4

.2
2

-3
.3

0
0.

11
a

-5
.0

0
-4

.3
4

-4
.1

6
-4

.2
3

0.
26

a
-3

.6
8

-0
.3

3
-2

.5
0

-0
.9

7
-0

.1
1

2.
87

a
0.

35
15

2
-5

.7
9

-3
.8

9
-5

.3
3

-0
.7

8
-6

.1
6

-6
.1

3
-5

.1
9

-5
.0

5
0.

82
a

-4
.7

2
-1

.5
2

-3
.2

0
-2

.1
8

-1
.3

2
1.

28
b

-0
.1

6
36

5
-1

0.
07

-4
.3

6
-5

.2
5

-1
.1

5
-6

.7
4

-7
.3

2
-6

.8
7

-7
.0

7
0.

78
a

-5
.4

8
-2

.1
5

-3
.8

9
-2

.7
4

-2
.0

1
1.

06
-0

.2
3

73
0

-7
.7

0
-4

.6
6

-3
.5

3
-1

.4
8

-5
.1

1
-8

.2
2

-7
.8

9
-7

.4
6

-1
.0

7
-6

.8
2

-1
.5

5
-2

.8
2

-1
.9

0
-1

.4
2

2.
61

a
-0

.1
4

A
ll

-2
.4

1
-2

.1
8

-2
.4

7
0.

75
a

-3
.9

4
-4

.9
8

-3
.2

1
-3

.0
4

1.
94

a
-3

.0
0

1.
01

a
-1

.0
2

0.
39

a
1.

19
a

4.
38

a
2.

71

353535



T
ab

le
4.

E
co

n
om

ic
si

gn
ifi

ca
n
ce

of
im

p
li
ed

vo
la

ti
li
ty

fo
re

ca
st

T
h
is

ta
b
le

re
p

or
ts

th
e

S
h
ar

p
e

ra
ti

o
an

d
L

el
an

d
’s

(1
99

9)
A

lp
h
a

of
ea

ch
m

o
d
el

.
O

n
d
at

e
t,

w
e

lo
n
g

(s
h
or

t)
an

op
ti

on
if

th
e

fo
re

ca
st

ed
vo

la
ti

li
ty

fo
r

th
at

m
at

u
ri

ty
at

d
at

e
t

+
h

is
la

rg
er

(s
m

al
le

r)
th

an
th

e
cu

rr
en

t
vo

la
ti

li
ty

.
W

e
co

n
si

d
er

op
ti

on
s

w
it

h
m

at
u
ri

ty
at

30
,

91
,

15
2,

36
5

an
d

73
0

d
ay

s;
th

u
s

on
ea

ch
d
at

e
ou

r
p

or
tf

ol
io

in
cl

u
d
es

fi
ve

op
ti

on
co

n
tr

ac
ts

w
it

h
tr

ad
in

g
st

at
u
s

ei
th

er
lo

n
g,

sh
or

t
or

n
o

tr
ad

in
g.

W
e

h
ol

d
th

e
p

or
tf

ol
io

th
e

sa
m

e
ti

m
e

as
ou

r
fo

re
ca

st
in

g
h
or

iz
on

an
d

re
p

ea
t

th
e

tr
ad

in
g

in
th

e
ou

t-
of

-s
am

p
le

p
er

io
d
.

W
e

d
el

ta
-h

ed
ge

ou
r

op
ti

on
p

or
tf

ol
io

an
d

in
cl

u
d
e

a
tr

an
sa

ct
io

n
co

st
of

$0
.1

25
fo

r
ea

ch
tr

ad
ed

co
n
tr

ac
t.

T
h
e

st
at

io
n
ar

y
b

o
ot

st
ra

p
w

it
h

an
av

er
ag

e
b
lo

ck
si

ze
of

10
is

ap
p
li
ed

to
te

st
th

e
si

gn
ifi

ca
n
ce

le
ve

l.
a
,
b
,
c

d
en

ot
e

si
gn

ifi
ca

n
ce

at
th

e
1%

,
5%

an
d

10
%

,
le

ve
l

re
sp

ec
ti

ve
ly

.

M
o
d
el

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

O
n
e

d
ay

ah
ea

d
S
h
ar

p
e

ra
ti

o
-0

.4
9

-0
.3

0
-0

.2
5

-0
.3

5
-0

.1
7

1.
75

a
0.

82
a

0.
81

a
-0

.7
3

-0
.5

5
0.

31
a

-0
.3

4
0.

44
a

0.
32

a
0.

23
a

1.
35

a

L
el

an
d
’s

A
lp

h
a

(%
)

–1
0.

99
-4

.9
5

-3
.3

9
-6

.7
1

-1
.0

9
34

.9
2a

24
.6

9a
24

.4
8a

-1
9.

5
-1

3.
13

12
.3

8a
-1

.3
2

15
.6

0a
12

.9
9a

10
.5

0a
35

.1
7a

F
iv

e
d
ay

s
ah

ea
d

S
h
ar

p
e

ra
ti

o
-0

.1
8

-0
.1

1
-0

.3
9

-0
.2

8
-0

.2
2

0.
38

a
0.

33
a

0.
33

a
-0

.0
6

-0
.2

9
0.

10
a

0.
06

a
0.

07
a

0.
10

a
0.

13
a

0.
36

a

L
el

an
d
’s

A
lp

h
a

(%
)

-1
.8

2
-0

.1
2

-7
.2

4
-4

.2
5

-2
.9

8
11

.5
2a

10
.4

6a
10

.3
7a

1.
12

-4
.5

2
5.

07
a

4.
52

a
4.

31
a

5.
24

a
5.

79
a

11
.5

3a

20
d
ay

s
ah

ea
d

S
h
ar

p
e

ra
ti

o
-0

.2
0

-0
.0

4
-0

.5
1

-0
.2

0
-0

.1
1

-0
.6

1
-0

.2
6

-0
.2

2
-0

.0
7

-0
.0

3
-0

.1
3

-0
.1

2
-0

.1
2

-0
.1

1
-0

.0
5

-0
.0

1
L

el
an

d
’s

A
lp

h
a

(%
)

-2
.4

1
1.

39
-9

.3
0

-2
.3

0
-0

.1
4

-1
1.

63
-3

.7
2

-2
.6

5
0.

60
1.

58
-0

.6
6

-0
.3

7
-0

.5
7

-0
.2

6
1.

09
2.

27

363636



T
ab

le
5.

P
re

d
ic

ta
b
il
it

y
of

im
p
li
ed

vo
la

ti
li
ty

d
u
ri

n
g

th
e

fi
n
an

ci
al

cr
is

is
T

h
is

ta
b
le

re
p

or
ts

th
e

p
re

d
ic

ta
b
il
it

y
of

im
p
li
ed

vo
la

ti
li
ty

d
u
ri

n
g

th
e

fi
n
an

ci
al

cr
is

is
p

er
io

d
.

P
an

el
A

re
p

or
ts

th
e

re
su

lt
s

of
R

2 O
S
,

w
h
il
e

P
an

el
B

re
p

or
ts

th
e

re
su

lt
s

of
ec

on
om

ic
si

gn
ifi

ca
n
ce

.
W

h
en

ca
lc

u
la

ti
n
g

th
e
R

2 O
S
,

th
e

ra
n
d
om

w
al

k
m

o
d
el

is
u
se

d
as

th
e

b
en

ch
m

ar
k
.

16
m

o
d
el

s
ar

e
u
se

d
in

th
e

ev
al

u
at

io
n
.

A
p

os
it

iv
e
R

2 O
S

in
d
ic

at
es

th
e

p
re

d
ic

ti
on

m
o
d
el

ou
tp

er
fo

rm
s

th
e

b
en

ch
m

ar
k

m
o
d
el

.
T

h
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

fo
r

th
e
R

2 O
S

st
at

is
ti

cs
is

b
as

ed
on

th
e
p-

va
lu

e
of

th
e

M
S
P

E
-a

d
ju

st
ed

st
at

is
ti

cs
.

H
o
d
ri

ck
(1

99
2)

st
an

d
ar

d
er

ro
r

is
u
se

d
fo

r
p-

va
lu

e
ca

lc
u
la

ti
on

to
ac

co
u
n
t

fo
r

th
e

im
p
ac

t
of

ov
er

la
p
p
in

g
re

si
d
u
al

s.
P

an
el

B
re

p
or

ts
th

e
S
h
ar

p
e

ra
ti

o
an

d
L

el
an

d
’s

(1
99

9)
A

lp
h
a

of
ea

ch
m

o
d
el

d
u
ri

n
g

th
e

re
ce

n
t

fi
n
an

ci
al

cr
is

is
.

O
n

d
at

e
t,

w
e

lo
n
g

(s
h
or

t)
an

op
ti

on
of

th
e

m
at

u
ri

ty
if

th
e

fo
re

ca
st

ed
vo

la
ti

li
ty

fo
r

th
at

m
at

u
ri

ty
at

d
at

e
t

+
h

is
la

rg
er

(s
m

al
le

r)
th

an
th

e
cu

rr
en

t
vo

la
ti

li
ty

.
W

e
co

n
si

d
er

op
ti

on
s

w
it

h
m

at
u
ri

ty
at

30
,

91
,

15
2,

36
5

an
d

73
0

d
ay

s;
th

u
s

on
ea

ch
d
at

e
ou

r
p

or
tf

ol
io

in
cl

u
d
es

fi
ve

op
ti

on
co

n
tr

ac
ts

w
it

h
tr

ad
in

g
st

at
u
s

ei
th

er
lo

n
g,

sh
or

t
or

n
o

tr
ad

in
g.

W
e

h
ol

d
th

e
p

or
tf

ol
io

th
e

sa
m

e
ti

m
e

as
ou

r
fo

re
ca

st
in

g
h
or

iz
on

an
d

re
p

ea
t

th
e

tr
ad

in
g

in
th

e
ou

t-
of

-s
am

p
le

p
er

io
d
.

W
e

d
el

ta
-h

ed
ge

ou
r

op
ti

on
p

or
tf

ol
io

an
d

in
cl

u
d
e

a
tr

an
sa

ct
io

n
co

st
of

$0
.1

25
fo

r
ea

ch
tr

ad
ed

co
n
tr

ac
t.

T
h
e

st
at

io
n
ar

y
b

o
ot

st
ra

p
w

it
h

an
av

er
ag

e
b
lo

ck
si

ze
of

10
is

ap
p
li
ed

to
te

st
th

e
si

gn
ifi

ca
n
ce

le
ve

l.
a
,
b
,
c

d
en

ot
e

si
gn

ifi
ca

n
ce

at
th

e
1%

,
5%

an
d

10
%

le
ve

l,
re

sp
ec

ti
ve

ly
.

P
an

el
A

.
R

2 O
S

M
o
d
el

M
at

u
ri

ty
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
O

n
e

d
ay

ah
ea

d
(%

)
30

-0
.9

8
-0

.5
7

-0
.0

3
-0

.0
4

-1
.4

8
5.

37
b

3.
65

c
4.

58
b

0.
90

-0
.4

5
3.

41
2.

27
3.

31
3.

48
3.

34
4.

23
a

91
-2

.6
3

0.
88

-0
.3

9
-0

.0
2

0.
16

6.
39

a
4.

51
b

4.
65

b
0.

66
-0

.7
2

3.
34

c
2.

60
c

3.
08

c
3.

44
c

3.
25

c
5.

42
a

15
2

-8
.4

8
-5

.0
1

-0
.1

1
-0

.1
4

-1
.3

6
6.

39
a

4.
41

b
5.

59
a

-4
.9

5
-7

.4
1

1.
19

0.
83

1.
16

1.
36

1.
27

5.
21

a

36
5

-2
3.

06
-1

0.
68

-0
.5

7
-0

.1
7

-1
.1

4
7.

37
a

5.
11

b
5.

46
b

-1
.5

8
-1

.5
1

2.
14

1.
94

2.
40

c
2.

39
c

2.
25

5.
42

a

73
0

-1
0.

86
-7

.9
2

-1
.1

4
-0

.3
1

-1
.8

9
5.

43
b

2.
89

b
2.

98
b

-1
2.

68
-5

2.
04

0.
87

2.
12

c
1.

31
1.

66
1.

32
3.

81
a

A
ll

-3
.7

5
-1

.5
2

-0
.1

8
-0

.0
6

-1
.0

8
5.

85
a

4.
01

a
4.

73
a

-0
.3

6
-2

.7
4

2.
99

b
2.

15
c

2.
89

b
3.

10
b

2.
95

b
4.

68
a

F
iv

e
d
ay

s
ah

ea
d

(%
)

30
0.

31
-1

.1
0

-0
.1

1
-0

.1
3

-3
.5

5
7.

40
1.

75
4.

91
2.

03
-3

.0
2

3.
45

1.
99

2.
99

3.
56

4.
35

6.
79

91
-5

.7
7

-5
.7

3
-2

.8
2

-0
.4

1
-4

.4
0

3.
55

1.
26

3.
13

-1
.9

0
-5

.8
8

0.
25

-1
.4

2
-0

.2
1

0.
36

0.
94

3.
33

15
2

-5
.8

6
-4

.8
5

-3
.6

7
-0

.9
1

-5
.7

4
3.

31
0.

40
3.

31
0.

21
-6

.7
1

0.
26

-1
.3

8
-0

.2
5

0.
33

1.
10

3.
38

36
5

-1
8.

60
-9

.3
4

-3
.8

9
-1

.1
2

-7
.3

0
2.

47
-2

.3
1

-0
.2

8
0.

96
-7

.4
5

-0
.9

2
-2

.4
4

-1
.5

4
-0

.8
7

0.
15

1.
70

73
0

-6
.3

8
-9

.9
6

-3
.8

3
-1

.5
7

-7
.4

5
-0

.9
9

-4
.2

6
-2

.7
6

-7
.8

8
-2

4.
24

-1
.3

9
-2

.7
4

-1
.8

8
-1

.2
6

1.
03

-0
.8

9
A

ll
-3

.1
3

-3
.3

5
-1

.5
0

-0
.3

9
-4

.3
5

5.
48

c
1.

07
3.

79
0.

56
-5

.0
0

1.
92

0.
39

1.
45

2.
03

2.
82

5.
06

c

20
d
ay

s
ah

ea
d

(%
)

30
0.

48
-3

.2
3

-0
.6

0
1.

99
-6

.5
3

-1
1.

87
-5

.8
6

-5
.4

6
0.

82
-5

.6
2

-0
.4

6
-2

.5
5

-1
.3

4
-0

.3
4

2.
09

2.
91

91
-5

.3
9

-6
.7

9
-9

.8
4

-0
.0

6
-7

.4
9

-8
.3

0
-7

.8
5

-8
.1

3
-0

.9
9

-7
.6

0
-3

.7
8

-5
.8

3
-4

.8
4

-3
.7

2
-2

.2
1-

5.
57

15
2

-8
.4

5
-7

.8
6

-1
2.

82
-2

.2
9

-1
0.

56
-1

0.
93

-1
0.

88
-1

0.
55

0.
31

-1
0.

18
-5

.9
0

-7
.3

1
-7

.0
5

-5
.8

1
-4

.2
1

-6
.0

8
36

5
-1

7.
36

-1
0.

34
-1

0.
84

-3
.3

2
-1

2.
28

-9
.3

8
-1

5.
59

-1
5.

32
2.

68
-1

1.
87

-7
.0

8
-8

.8
9

-7
.9

2
-6

.9
6

-5
.0

0
-3

.1
1

73
0

-9
.1

1
-5

.4
5

-6
.0

3
-4

.3
5

-7
.3

2
-1

0.
37

-1
5.

92
-1

3.
72

6.
05

b
-6

.2
9

-3
.1

2
-5

.7
2

-4
.2

0
-3

.0
3

0.
44

2.
24

A
ll

-3
.8

2
-5

.3
2

-5
.4

8
0.

27
-7

.7
7

-1
0.

66
-8

.1
3

-7
.8

4
0.

65
-7

.2
1

-2
.6

0
-4

.5
8

-3
.5

6
-2

.5
0

-0
.4

0
-0

.8
4

373737



P
an

el
B

.
E

co
n
om

ic
si

gn
ifi

ca
n
ce

M
o
d
el

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

O
n
e

d
ay

ah
ea

d
S
h
ar

p
e

ra
ti

o
-0

.5
3

-0
.2

2
-0

.1
3

-0
.6

1
-0

.3
2

2.
80

a
1.

04
a

0.
84

a
-1

.1
0

-0
.9

1
1.

36
a

-0
.1

4
1.

48
a

1.
24

a
1.

09
a

2.
64

a

L
el

an
d
’s

A
lp

h
a

(%
)

-2
3.

38
-6

.9
8

-2
.2

0
-3

2.
90

-1
3.

08
95

.8
6a

47
.9

1a
41

.0
2a

-7
0.

73
-5

3.
13

58
.7

9a
-2

.8
4

61
.4

5a
54

.5
5a

50
.0

6a
91

.6
5a

F
iv

e
d
ay

s
ah

ea
d

S
h
ar

p
e

ra
ti

o
-0

.3
3

-0
.1

1
-0

.4
4

-0
.7

1
-0

.3
9

0.
37

a
0.

26
a

0.
58

a
-0

.3
6

-0
.5

3
0.

25
a

0.
07

a
0.

17
a

0.
28

a
0.

26
a

0.
52

a

L
el

an
d
’s

A
lp

h
a

(%
)

-8
.4

7
0.

56
-1

3.
86

-2
7.

31
-1

1.
32

21
.3

9a
17

.4
8a

27
.4

5a
-1

0.
61

-1
6.

35
14

.6
6a

8.
87

a
12

.7
2a

15
.8

3a
15

.1
5a

26
.8

3a

20
d
ay

s
ah

ea
d

S
h
ar

p
e

ra
ti

o
-0

.4
1

-0
.3

5
-0

.6
5

-0
.7

9
-0

.2
9

-0
.8

2
-0

.2
9

-0
.2

2
-0

.7
0

-0
.4

4
-0

.3
2

-0
.3

2
-0

.3
2

-0
.3

1
-0

.2
9

-0
.5

6
L

el
an

d
’s

A
lp

h
a

(%
)

-1
0.

07
-7

.5
7

-1
9.

49
-2

7.
43

-4
.7

1
-2

7.
23

-4
.7

3
-2

.1
5

-2
3.

87
-1

1.
41

-6
.2

5
-6

.3
8

-6
.1

9
-6

.1
7

-5
.1

0
-1

5.
96

383838



T
ab

le
6.

O
u
t-

of
-s

am
p
le

fo
re

ca
st

of
im

p
li
ed

vo
la

ti
li
ti

es
of

A
T

M
ca

ll
op

ti
on

s:
W

ee
k
ly

d
at

a.
T

h
is

ta
b
le

re
p

or
ts

th
e

ou
t-

of
-s

am
p
le

fo
re

ca
st

of
im

p
li
ed

vo
la

ti
li
ti

es
of

A
T

M
ca

ll
op

ti
on

s
b
y

th
e

16
m

o
d
el

s
u
si

n
g

w
ee

k
ly

d
at

a.
T

h
e

u
p
,

m
id

d
le

an
d

b
ot

to
m

p
an

el
s

re
p

or
t

th
e

re
su

lt
s

of
fo

re
ca

st
on

e
w

ee
k

ah
ea

d
,

tw
o

w
ee

k
s

ah
ea

d
an

d
fo

u
r

w
ee

k
s

ah
ea

d
,

re
sp

ec
ti

ve
ly

.
F

or
si

m
p
li
ci

ty
,

w
e

on
ly

re
p

or
t

th
e
R

2 O
S

of
al

l
m

at
u
ri

ti
es

.
T

h
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

fo
r

th
e
R

2 O
S

st
at

is
ti

cs
is

b
as

ed
on

th
e
p-

va
lu

e
of

th
e

M
S
P

E
-a

d
ju

st
ed

st
at

is
ti

cs
.

H
o
d
ri

ck
(1

99
2)

st
an

d
ar

d
er

ro
r

is
u
se

d
fo

r
p-

va
lu

e
ca

lc
u
la

ti
on

to
ac

co
u
n
t

fo
r

th
e

im
p
ac

t
of

ov
er

la
p
p
in

g
re

si
d
u
al

s.
W

h
en

ca
lc

u
la

ti
n
g

th
e

S
h
ar

p
e

ra
ti

o
an

d
L

el
an

d
’s

A
lp

h
a,

w
e

d
el

ta
-h

ed
ge

ou
r

op
ti

on
p

or
tf

ol
io

an
d

in
cl

u
d
e

a
tr

an
sa

ct
io

n
co

st
of

$0
.1

25
fo

r
ea

ch
tr

ad
ed

co
n
tr

ac
t.

T
h
e

st
at

io
n
ar

y
b

o
ot

st
ra

p
w

it
h

an
av

er
ag

e
b
lo

ck
si

ze
of

10
is

ap
p
li
ed

to
te

st
th

e
si

gn
ifi

ca
n
ce

le
ve

l.
a
,
b
,
c

d
en

ot
e

si
gn

ifi
ca

n
ce

at
th

e
1%

,
5%

an
d

10
%

le
ve

l,
re

sp
ec

ti
ve

ly
.

A
ll

M
o
d
el

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

O
n
e

w
ee

k
ah

ea
d

R
2 O
S

(%
)

-3
.2

2
-1

.3
8

-0
.4

3
-0

.5
5

-1
.3

4
5.

01
a

2.
77

a
3.

82
a

0.
34

b
-2

.3
7

2.
50

a
1.

48
b

2.
03

a
2.

54
a

2.
49

a
2.

30
a

S
h
ar

p
e

ra
ti

o
-0

.2
6

-0
.2

1
-0

.6
4

-0
.2

1
-0

.4
5

0.
37

a
0.

16
a

0.
25

a
-0

.1
2

-0
.4

9
-0

.1
9

-0
.1

1
-0

.1
5

-0
.1

1
-0

.1
2

0.
09

a

L
el

an
d
’s

A
lp

h
a

(%
)

-3
.5

1
-2

.3
8

-1
3.

02
-2

.3
8

-8
.1

4
10

.3
2a

5.
83

a
7.

81
a

-0
.3

4
-9

.0
3

-1
.8

9
-0

.1
5

-1
.0

0
-0

.2
0

-0
.4

6
4.

47
a

T
w

o
w

ee
k
s

ah
ea

d
R

2 O
S

(%
)

-3
.3

5
-3

.0
7

-1
.4

9
-0

.9
8

-4
.2

8
-3

.7
9

-3
.3

8
-2

.7
2

0.
28

a
-3

.4
8

-0
.1

4
-1

.3
2

-0
.5

3
-0

.0
9

0.
23

-2
.1

9
S
h
ar

p
e

ra
ti

o
-0

.3
5

-0
.2

1
-0

.6
3

-0
.2

8
-0

.3
9

-0
.4

5
-0

.5
1

-0
.2

8
-0

.2
7

-0
.2

9
-0

.3
6

-0
.3

7
-0

.3
3

-0
.4

-0
.3

9
-0

.2
6

L
el

an
d
’s

A
lp

h
a

(%
)

-5
.6

3
-2

.5
1

-1
1.

34
-3

.9
5

-6
.3

5
-7

.6
4

-9
.1

8
-3

.9
6

-3
.6

9
-4

.0
4

-5
.8

5
-6

.1
3

-5
.2

7
-7

.2
7

-6
.8

8
-3

.8
1

F
ou

r
w

ee
k
s

ah
ea

d
R

2 O
S

(%
)

-3
.9

1
-3

.7
1

-3
.0

8
-0

.5
6

-5
.8

4
-6

.7
2

-5
.0

7
-5

.2
4

0.
72

a
-4

.6
4

-0
.4

6
-2

.2
2

-0
.9

8
-0

.3
3

0.
71

b
-0

.7
0

S
h
ar

p
e

ra
ti

o
-0

.2
5

-0
.1

1
-0

.6
3

-0
.1

6
-0

.2
3

-0
.7

0
-0

.5
0

-0
.2

8
-0

.0
8

-0
.0

4
-0

.1
8

-0
.1

6
-0

.1
9

-0
.2

4
-0

.2
2

-0
.1

6
L

el
an

d
’s

A
lp

h
a

(%
)

-3
.3

2
-0

.3
5

-1
0.

92
-1

.4
5

-2
.7

5
-1

2.
87

-8
.3

5
-3

.7
6

0.
15

1.
23

-1
.8

6
-1

.4
1

-2
.2

9
-3

.4
7

-3
.0

8
-1

.0
3

393939



T
ab

le
7.

O
u
t-

of
-s

am
p
le

fo
re

ca
st

of
im

p
li
ed

vo
la

ti
li
ti

es
of

ot
h
er

op
ti

on
se

ri
es

:
A

ro
b
u
st

n
es

s
ch

ec
k
.

T
h
is

ta
b
le

re
p

or
ts

th
e

ou
t-

of
-s

am
p
le

fo
re

ca
st

of
im

p
li
ed

vo
la

ti
li
ti

es
of

ot
h
er

op
ti

on
se

ri
es

b
y

th
e

16
m

o
d
el

s.
T

h
e

le
ft

,
m

id
d
le

an
d

ri
gh

t
co

lu
m

n
s

re
p

or
t

th
e

re
su

lt
s

of
A

T
M

p
u
t

op
ti

on
s,

ca
ll

op
ti

on
s

w
it

h
d
el

ta
eq

u
al

to
0.

60
an

d
ca

ll
op

ti
on

s
w

it
h

d
el

ta
eq

u
al

to
0.

40
,

re
sp

ec
ti

ve
ly

.
F

or
si

m
p
li
ci

ty
,

w
e

on
ly

re
p

or
t

th
e

b
es

t
re

su
lt

s
b
y

th
e

16
p
re

d
ic

ti
on

m
o
d
el

s.
T

h
e

n
u
m

b
er

in
th

e
b
ra

ck
et

d
en

ot
es

th
e

n
u
m

b
er

of
m

o
d
el

s
th

at
ou

tp
er

fo
rm

th
e

b
en

ch
m

ar
k

m
o
d
el

w
it

h
at

le
as

t
10

%
si

gn
ifi

ca
n
ce

le
ve

l.
a
,
b
,
c

d
en

ot
e

si
gn

ifi
ca

n
ce

at
th

e
1%

,
5%

an
d

10
%

le
ve

l,
re

sp
ec

ti
ve

ly
.

M
at

u
ri

ty
A

T
M

p
u
t

op
ti

on
s

C
al

l
op

ti
on

s
w

it
h

d
el

ta
=

0.
60

C
al

l
op

ti
on

s
w

it
h

d
el

ta
=

0.
40

(d
ay

s)
O

n
e

d
ay

ah
ea

d
F

iv
e

d
ay

s
ah

ea
d

20
d
ay

s
ah

ea
d

O
n
e

d
ay

ah
ea

d
F

iv
e

d
ay

s
ah

ea
d

20
d
ay

s
ah

ea
d

O
n
e

d
ay

ah
ea

d
F

iv
e

d
ay

s
ah

ea
d

20
d
ay

s
ah

ea
d

R
2 O
S

R
2 O
S

R
2 O
S

W
h
ol

e
p

er
io

d

30
2.

03
a
(1

0)
6.

92
a
(1

1)
6.

48
a
(9

)
6.

20
a
(1

4)
8.

96
b
(1

5)
6.

89
b
(5

)
4.

93
a
(1

4)
8.

66
a
(1

5)
6.

78
a
(8

)
91

1.
54

a
(4

)
4.

20
a
(5

)
3.

42
a
(2

)
5.

04
a
(9

)
5.

17
b
(7

)
3.

72
b
(3

)
4.

22
a
(1

0)
5.

40
a
(8

)
4.

03
a
(5

)
15

2
1.

23
a
(4

)
3.

27
a
(9

)
0.

32
a
(1

)
5.

14
a
(1

1)
5.

06
c
(1

0)
1.

35
a
(1

)
3.

70
a
(9

)
5.

66
a
(1

1)
1.

90
a
(2

)
36

5
1.

50
a
(9

)
2.

09
a
(7

)
0.

39
a
(2

)
5.

03
a
(9

)
3.

38
c
(3

)
1.

30
a
(1

)
3.

71
a
(1

0)
3.

46
a
(6

)
1.

17
c
(2

)
73

0
0.

87
a
(1

)
1.

14
a
(2

)
-0

.2
8(

0)
3.

91
a
(9

)
1.

09
c
(1

)
2.

69
a
(1

)
2.

03
a
(5

)
1.

90
a
(7

)
3.

10
a
(1

)
A

ll
1.

35
a
(9

)
5.

10
a
(1

0)
3.

77
a
(5

)
7.

41
a
(9

)
6.

87
a
(1

1)
4.

77
a
(6

)
4.

19
a
(1

0)
6.

80
a
(1

0)
4.

74
a
(7

)

F
in

an
ci

al
cr

is
is

p
er

io
d

30
0.

80
(0

)
3.

30
b
(2

)
0.

61
b
(1

)
6.

01
b
(4

)
7.

47
(0

)
2.

19
(0

)
4.

94
b
(4

)
7.

11
c
(1

)
0.

59
c
(1

)
91

2.
18

b
(1

)
1.

59
(0

)
0.

17
(0

)
6.

01
a
(3

)
3.

27
(0

)
0.

20
(0

)
5.

85
a
(3

)
3.

88
(0

)
-0

.3
8(

0)
15

2
1.

78
c
(1

)
0.

39
(0

)
-2

.3
2(

0)
6.

40
a
(4

)
3.

75
(0

)
0.

68
(0

)
5.

61
a
(4

)
4.

20
c
(1

)
1.

09
(0

)
36

5
2.

43
b
(1

)
2.

76
(0

)
3.

08
b
(1

)
8.

11
a
(5

)
2.

36
(0

)
3.

09
(0

)
6.

21
a
(4

)
2.

69
(0

)
3.

01
(0

)
73

0
2.

29
c
(1

)
-0

.2
6(

0)
0.

31
c
(1

)
5.

67
a
(4

)
-0

.1
1(

0)
5.

10
(0

)
3.

82
c
(4

)
1.

72
(0

)
3.

80
c
(1

)
A

ll
1.

42
b
(2

)
2.

12
a
(2

)
-0

.7
8(

0)
6.

16
a
(8

)
5.

48
(0

)
1.

13
(0

)
5.

27
a
(8

)
5.

56
b
(2

)
0.

22
c
(1

)
L

el
an

d
’s

A
lp

h
a

(%
)

L
el

an
d
’s

A
lp

h
a

(%
)

L
el

an
d
’s

A
lp

h
a

(%
)

W
h
ol

e
p

er
io

d
7.

68
a
(5

)
13

.0
4a

(8
)

5.
78

a
(2

)
42

.9
1a

(1
1)

13
.8

6a
(9

)
5.

41
a
(4

)
26

.5
9a

(7
)

12
.7

0a
(8

)
3.

07
(0

)
F

in
an

ci
al

cr
is

is
p

er
io

d
34

.4
7a

(3
)

34
.5

5a
(1

)
-1

.5
5(

0)
10

3.
24

a
(1

2)
37

.0
3a

(9
)

-1
.5

4(
0)

81
.2

0a
(8

)
33

.2
1a

(8
)

-4
.5

4(
0)

404040



T
ab

le
8.

P
ri

ce
d
is

co
ve

ry
of

im
p
li
ed

vo
la

ti
li
ti

es
T

h
is

ta
b
le

re
p

or
ts

th
e

p
ri

ce
d
is

co
ve

ry
m

ea
su

re
s

of
im

p
li
ed

vo
la

ti
li
ti

es
.

T
h
e

V
E

C
M

m
o
d
el

s
ar

e
u
se

d
to

ca
lc

u
la

te
th

e
p
ri

ce
d
is

co
ve

ry
m

ea
su

re
s,

in
cl

u
d
in

g
th

e
H

as
b
ro

u
ck

m
ea

su
re

an
d

G
on

za
lo

-G
ra

n
ge

r
m

ea
su

re
.

T
h
e

le
ft

p
an

el
re

p
or

ts
th

e
re

su
lt

s
of

th
e

co
in

te
gr

at
io

n
re

la
ti

on
sh

ip
.

T
h
e

m
id

d
le

p
an

el
re

p
or

ts
th

e
re

su
lt

s
of

th
e

H
as

b
ro

u
ck

m
ea

su
re

,
w

h
il
e

th
e

ri
gh

t
p
an

el
re

p
or

ts
th

e
re

su
lt

s
of

th
e

G
on

za
lo

-G
ra

n
ge

r
m

ea
su

re
.

In
th

e
m

id
d
le

an
d

ri
gh

t
p
an

el
,

th
e

n
u
m

b
er

in
m

at
u
ri

ty
ro

w
i

an
d

m
at

u
ri

ty
co

lu
m

n
j

is
th

e
p
ri

ce
d
is

co
ve

ry
m

ea
su

re
of
i-

d
ay

im
p
li
ed

vo
la

ti
li
ty

w
h
en

th
e

V
E

C
M

m
o
d
el

is
ru

n
b

et
w

ee
n

th
e
i-

d
ay

im
p
li
ed

vo
la

ti
li
ty

an
d

th
e
j-

d
ay

im
p
li
ed

vo
la

ti
li
ty

.
T

h
e

m
ea

n
p
ri

ce
d
is

co
ve

ry
m

ea
su

re
of

on
e

m
at

u
ri

ty
is

th
e

m
ea

n
of

it
s

fo
u
r

in
d
iv

id
u
al

p
ri

ce
d
is

co
ve

ry
m

ea
su

re
s

ca
lc

u
la

te
d

fr
om

th
e

V
E

C
M

m
o
d
el

s
ru

n
ag

ai
n
st

th
e

ot
h
er

m
at

u
ri

ti
es

.

M
at

u
ri

ty
C

oi
n
te

gr
at

io
n

re
la

ti
on

sh
ip

H
as

b
ro

u
ck

m
ea

su
re

G
on

za
lo

-G
ra

n
ge

r
m

ea
su

re
(d

ay
s)

30
91

15
2

36
5

73
0

30
91

15
2

36
5

73
0

M
ea

n
30

91
15

2
36

5
73

0
M

ea
n

A
T

M
ca

ll

30
Y

es
Y

es
Y

es
Y

es
0.

44
0.

42
0.

40
0.

40
0.

41
0.

10
0.

07
0.

01
0.

07
0.

06
91

Y
es

Y
es

Y
es

Y
es

0.
56

0.
46

0.
44

0.
46

0.
48

0.
90

0.
25

0.
07

0.
17

0.
35

15
2

Y
es

Y
es

Y
es

Y
es

0.
59

0.
54

0.
48

0.
50

0.
53

0.
93

0.
75

0.
08

0.
35

0.
53

36
5

Y
es

Y
es

Y
es

Y
es

0.
60

0.
57

0.
53

0.
54

0.
56

0.
99

0.
93

0.
92

0.
85

0.
93

73
0

Y
es

Y
es

Y
es

Y
es

0.
60

0.
54

0.
50

0.
46

0.
53

0.
93

0.
83

0.
65

0.
15

0.
64

A
T

M
p
u
t

30
Y

es
Y

es
Y

es
Y

es
0.

44
0.

40
0.

36
0.

43
0.

41
0.

16
0.

14
0.

07
0.

10
0.

12
91

Y
es

Y
es

Y
es

Y
es

0.
56

0.
44

0.
45

0.
47

0.
48

0.
84

0.
29

0.
03

0.
21

0.
34

15
2

Y
es

Y
es

Y
es

Y
es

0.
60

0.
56

0.
48

0.
50

0.
53

0.
86

0.
71

0.
14

0.
37

0.
52

36
5

Y
es

Y
es

Y
es

Y
es

0.
64

0.
55

0.
52

0.
55

0.
56

0.
93

0.
97

0.
86

0.
91

0.
92

73
0

Y
es

Y
es

Y
es

Y
es

0.
57

0.
53

0.
50

0.
45

0.
51

0.
90

0.
79

0.
63

0.
09

0.
61

C
al

l
w

it
h

d
el

ta
=

0.
60

30
Y

es
Y

es
Y

es
Y

es
0.

43
0.

41
0.

40
0.

36
0.

40
0.

16
0.

13
0.

03
0.

02
0.

08
91

Y
es

Y
es

Y
es

Y
es

0.
57

0.
46

0.
45

0.
44

0.
48

0.
84

0.
26

0.
03

0.
14

0.
32

15
2

Y
es

Y
es

Y
es

Y
es

0.
59

0.
54

0.
47

0.
48

0.
52

0.
87

0.
74

0.
04

0.
27

0.
48

36
5

Y
es

Y
es

Y
es

Y
es

0.
60

0.
55

0.
53

0.
50

0.
55

0.
97

0.
97

0.
96

0.
44

0.
84

73
0

Y
es

Y
es

Y
es

Y
es

0.
64

0.
56

0.
52

0.
50

0.
56

0.
98

0.
86

0.
73

0.
56

0.
79

C
al

l
w

it
h

d
el

ta
=

0.
40

30
Y

es
Y

es
Y

es
Y

es
0.

42
0.

43
0.

42
0.

40
0.

41
0.

15
0.

02
0.

01
0.

07
0.

06
91

Y
es

Y
es

Y
es

Y
es

0.
58

0.
47

0.
45

0.
49

0.
50

0.
85

0.
14

0.
01

0.
27

0.
32

15
2

Y
es

Y
es

Y
es

Y
es

0.
57

0.
53

0.
46

0.
50

0.
52

0.
98

0.
86

0.
04

0.
37

0.
56

36
5

Y
es

Y
es

Y
es

Y
es

0.
60

0.
55

0.
54

0.
56

0.
56

0.
99

0.
99

0.
96

0.
98

0.
98

73
0

Y
es

Y
es

Y
es

Y
es

0.
60

0.
51

0.
50

0.
44

0.
51

0.
93

0.
73

0.
63

0.
02

0.
58

414141



Table 9. Trading summary of options
This table reports the trading volume and open interest of options from 1996 to 2011. The
option data with negative bid-ask spread, negative trading volume and open interest or
negative implied volatility are excluded. The trading volume and open interest of ATM (call
and put) options, call options with delta equal to 0.60, and call options with delta equal to
0.40 are calculated from the options with moneyness between 45% and 55%, between 55%
and 65% and between 35% and 45%, respectively.

Maturity Volume Percentage Open Interest Percentage Volume Percentage Open Interest Percentage
(days) ATM call ATM put
<30 24,405,910 27.44% 125,145,667 19.20% 26,889,473 30.24% 127,842,317 19.62%

30∼91 45,275,355 50.91% 226,551,859 34.76% 47,203,201 53.08% 234,450,773 35.98%
91∼152 9,792,743 11.01% 86,922,954 13.34% 10,043,556 11.29% 94,378,002 14.48%
152∼365 6,645,172 7.47% 148,688,840 22.82% 5,375,383 6.04% 125,186,029 19.21%
365∼730 2,188,425 2.46% 53,928,946 8.28% 1,212,805 1.36% 37,068,563 5.69%
>730 619,937 0.70% 10,445,306 1.60% 171,767 0.19% 4,000,570 0.61%
All 88,927,542 100.00% 651,683,572 100.00% 90,896,185 100.00% 622,926,254 100.00%

(days) Call with delta = 0.60 Call with delta = 0.40
<30 14,458,604 33.60% 127,079,207 22.87% 20,857,077 40.82% 124,749,489 21.96%

30∼91 18,944,357 44.03% 209,945,899 37.79% 20,219,537 39.57% 196,710,189 34.63%
91∼152 3,627,656 8.43% 70,285,359 12.65% 3,973,515 7.78% 79,691,417 14.03%
152∼365 3,900,412 9.06% 107,205,115 19.30% 4,444,071 8.70% 125,287,852 22.06%
365∼730 1,670,757 3.88% 35,012,580 6.30% 1,387,214 2.72% 36,641,243 6.45%
>730 426,631 0.99% 6,029,213 1.09% 210,379 0.41% 4,976,429 0.88%
All 43,028,417 100.00% 555,557,373 100.00% 51,091,793 100.00% 568,056,619 100.00%
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Figure 1. Implied volatility of selected maturities
This graph plots the time series of implied volatilities of selected maturities, including 30
days, 91 days, 152 days, 365 days and 730 days.
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Figure 2. Difference of out-of-sample forecast error between VAR(1) model on volatility
change and random walk model
This graph plots the standardized difference of monthly aggregate out-of-sample forecast
errors between the best-performing model, VAR(1) on volatility change, and the random
walk model. A negative value means smaller out-of-sample forecast errors for the VAR(1)
model on volatility change.
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Figure 3. Time series of monthly portfolio return: One-day forecast
This graph plots the monthly return of portfolios that are based on the one-day forecast of
implied volatility by 16 different models.
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Figure 4. Time series of monthly portfolio return: Five-day forecast
This graph plots the monthly return of portfolios that are based on the five-day forecast of
implied volatility by 16 different models.
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Figure 5. Mean price discovery measure
This graph plots the mean price discovery measure of implied volatilities with different
maturities. The mean price discovery measure of one maturity’s implied volatility is the
mean of its four individual price discovery measures calculated from the VECM models run
against the implied volatilities of the other maturities. The up panel plots the results of
the Hasbrouck measure, while the bottom panel plots the results of the Gonzalo-Granger
measure.
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