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Abstract

Consider an electricity market populated by competitive agents using thermal
generating units. Such generation involves the emission of pollutants, on which a
regulator might impose constraints. Transmission capacities for sending energy may
naturally be restricted by the grid facilities. Both pollution standards and trans-
mission capacities can impose several constraints upon the joint strategy space of
the agents. We propose a coupled constraints equilibrium as a solution to the reg-
ulator’s problem of avoiding both congestion and excessive pollution. Using the
coupled constraints Lagrange multipliers as taxation coefficients the regulator can
compel the agents to obey the multiple constraints. However, for this modifica-
tion of the players’ payoffs to induce the required behaviour a coupled constraints
equilibrium needs to exist and be unique. A three-node bilateral market example
with a DC model of the transmission line constraints described in [2] possesses
these properties and will be used in this paper to discuss and explain the behaviour
agents subjected to coupled constraints.

1 Introduction

The aim of this paper is to examine the impact of pollution standards on electricity
generators already subjected to grid facility restrictions.

We consider an electricity market populated by competitive agents using ther-
mal generating units. Such generation produces the emission of pollutants, on
which a regulator might impose constraints. Transmission capacities for sending
energy may naturally be restricted by the grid facilities. Both pollution standards
and transmission capacities can be defined as constraints upon the joint strategy
space of the agents. We propose a coupled constraints equilibrium as a solution
concept for this problem, see [11], [7], [2], [5].
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Under this solution concept the regulator can compute (for sufficiently concave
games) the generators’ outputs that are both unilaterally non-improvable (Nash)
and satisfying the constraints imposed on the joint strategy space. If the regulator
can impose penalties on the generators for the joint constraints’ violation then the
game becomes “decoupled” and the players implement the coupled constraints equi-
librium to avoid fines and produce outputs avoiding both congestion and excessive
pollution.

The penalties that prevent the generators from excessive production are com-
puted using the coupled constraints Lagrange multipliers. However, for this modifi-
cation of the players’ payoffs to induce the required behaviour a coupled constraints
equilibrium needs to exist and be unique. A three-node bilateral market example
with a DC model of the transmission line constraints described in [2] possesses these
properties and will be used in this paper to discuss and explain the behaviour of
agents subjected to coupled constraints.

For the results, we use NIRA, which is a piece of software dedicated to min-
maximize the Nikaido-Isoda function and thus compute a coupled constraints equi-
librium, see [8]. We also notice that a coupled constraints equilibrium could be
obtained as a solution to quasi-variational inequality (see [4], [10]).

Following is a brief outline of what this paper contains. In section 2 a bilat-
eral electricity market game is presented, including the transmission and pollution
constraints modelling. Section 3 briefly canvasses the idea of a coupled constraints
equilibrium and the algorithm that will be used to find them. Section 4 presents
the parameters of the case study and the results of our analysis. In section 5 an
economic interpretation is given to the results. The concluding remarks summarise
our findings.

2 A bilateral electricity market game

2.1 A game with constraints

An electricity market is a system for effecting the purchase and sale of electricity,
where the interaction between supply and demand sets the market price. It can be
either pool-based or bilateral, or a combination of both. A pool-based market can be
understood as an auction where competing generators offer their electricity output
at increasing prices and consumer loads bid for it at decreasing prices. Transactions
are typically cleared and settled by the market operator or by a special-purpose
independent entity charged exclusively with that function. If the offers by the
generators and the demand bids are matched bilaterally then the market is known
as bilateral. We focus on this type of electricity market in this paper.
Transmission systems connect generators and consumer loads in an electricity
network and they are operated to allow for continuity of supply. Transmission
networks can experience bottlenecks, where generation that may be expensive needs
to be dispatched to isolated demands. In addition, the authorities usually establish
pollution limits to the generators’ emissions. These constraints limit the production
of the generators and, consequently, their profits. In the following subsections we
explain how the generators optimize their production and how the network and



environmental constraints affect their profits in a coupled constraints game.

2.2 Generator’s problem

We assume no arbitrage (existence of marketers that can buy and sell power from
producers and consumers) and a linear DC representation of the network®. Indices
1,7 =1,..., N indicate nodes and each company f = 1,..., F owns several generat-
ing units g = 1,..., G distributed throughout the network. C(Py,;) is the cost per
MWh of generating unit g that belongs to company f and is placed at node 7; its
production is given by P,; in MW. The maximum capacity of a generator is P ;.
Consumer loads at node 7 consume ¢; MW of power. At each node, linear demand
functions are assumed to be of the form p;(¢;) = a; — (a;/b;)q; where price is ex-
pressed in $§/MWh and a; and b; are the price and quantity intercepts, respectively.
It is also assumed that the market is bilateral, and s;; MW are sold by company
f to consumers at node j. Market clearing is such that Zf sfj = qj. Also, an
energy balance is imposed on each company: ZZ g Proi = > iS55 Given that, each
company f chooses generation Pjy; and sales sy; to maximize profit ($/h), which is
equal to revenue minus generation costs:

maXZ [aj — Z—j <Sfj + Zskj)] Sf5 — ZO(Pfgi)Pfgi (1)

k#f i,9
subject to:
0 < Pryi < Py, V nodes i, generators g (2)
Z Spj = Z Py, for each firm f (3)
J 1,9
Z st = qj, for each node j (4)
!

We are interested in a non cooperative solution to the game at hand. This means
that we are looking for a distribution of generation and the corresponding payoffs
such that no player can improve his own payoff by a unilateral action. Bearing in
mind that the solution is required to satisfy constrains, it will need to be understood
as a “generalised” Nash-Cournot equilibrium. We explain this concept in section 3.

2.3 Energy transmission constraints

The generating units and the nodes are connected by transmission lines, forming a
network. The lines provide a path to transmit the power produced by the generators
to the nodes for consumption. The power flowing through the lines is subject to
thermal line limits. These limits are set in both directions of the flow in a line, that
is why the absolute value is used in equation (5). To find a unique solution of the
power produced by the generators, it is necessary to select a node as the reference

1See [3] for technical details



node. This is called the “slack” node or “swing” node (see [3] for details). The
following equation expresses the flow going through the lines as a linear function of
the power injected in the nodes; this is called the DC approximation of the power
flow:

P,.;=[Bs-A"-B7']-P, with [P <Pi, (5)
where the variables and parameters are as follows:

P;_.; is a column vector whose dimension is equal to the number of lines of the
network. Each element represents the flow through the line ¢ — j, measured
with respect to a predefined base power of the system. The flow measured
w.r.t. to the base power is a per-unit (p.u.) flow?.

By is the diagonal branch susceptance matrix, whose number of rows and
columns is equal to the number of lines in the network. The diagonal terms
of By are the inverses of reactances (a.k.a. susceptances) of the lines, where
the reactances are in p.u. with respect to a predefined base impedance of the
system.

A is the node-branch incidence matrix; its dimensions are the number of nodes
minus one (slack node) times the number of lines. The values of A are equal
to +1 if the line ¢ — j starts at node 7, and —1 if it ends at node j.

B is the diagonal node-to-node susceptance matrix; its dimensions are equal
to the number of nodes minus one (slack node). The diagonal terms b; are
equal to the sum of the susceptances of the lines that are connected to node
i, and the terms b;; are equal to the negative of the susceptances of the lines
that connect node 7 and node j.

P is a column vector whose dimension is equal to the number of nodes minus
one (the slack node). Its terms are of the form (Pjg — ¢;), representing the
p.u. power injected (generation minus demand) in each of the nodes, except
the slack node.

?i—d is a column vector whose dimension is equal to the number of lines of
the network. Each of its elements represents the thermal limit (maximum
active power that can flow through a line) of a line in p.u.

2.4 Pollution constraints

The generation of electricity releases several contaminants into the atmosphere.
The overall goal of reducing the emission of pollutants has to be expressed as a
constraint for the overall production of all generating units. There are three main
types of emissions: COs, SO, and NO,. The general expression of the emission
constraints per type of emission is such that:

2See [12] for details of the p.u. calculation.



n
Z(cw + Bie - Prgi + ie - Pfgi) < Ey, (6)

i=1
where Py, is the output of generating unit g that belongs to company f and is
placed at node 7. Coefficients «a;y, B;¢, and 7;, correspond to generator ¢ for emission

type ¢ and Ej is the maximum allowed emission of type ¢, usually measured in 1b/h
or Ton/h.

3 Generalised Nash equilibria

A generalised Nash equilibrium problem (GNEP) is an extension of a standard
Nash equilibrium problem in which players’ strategy sets are allowed to depend
upon other players’ strategies. The competition between electricity generating firms
subject to constraints described above in section 2 is an example of such a problem.
Analytical solutions to GNEPs are not normally possible so section 3.2 describes a
numerical method for solving some such problems.

3.1 Coupled constraints equilibria

The problem described in section 2 involves an action space that is jointly restricted
for all players in the game. This is termed a coupled constraints game and the
solution of such a game is known as a coupled constraints equilibrium (CCE). A
CCE is a refinement of a Nash equilibrium and is particularly useful in a class of
problems where competing agents are subjected to regulation. Many electricity
market and environmental problems belong to this class. CCE allows modelling
of a situation in which the actions of one player condition how ‘big’ the actions of
other players can be. Constraints in which the actions of one player do not affect
the action space of another (as in Nash equilibrium problems) are called uncoupled.

In our problem there are two such sets of coupled constraints: the line con-
straints and the environmental constraints. In both cases a limit is placed on a
measurable variable — the flow of electricity through a particular line or the am-
bient pollution levels — and the actions of the players are constrained to jointly
satisfy these limits.

In these games the constraints are assumed to be such that the resulting col-
lective action set X is a closed convex subset of IR,,. If X; is player-i’s action set,
X C Xy x---x X, is the collective action set where X = X; x --- x X, represents
the special case in which the constraints are uncoupled.

Consider the solution to this game represented by the collective action x* where
players’ payoff functions, ¢;, are continuous in all players’ actions and concave in
their own action. The Nash equilibrium can be written as

¢i(x") = max o, (yi|x) (7)
where y;|x denotes a collection of actions where the ith agent “tries” y; while the

remaining agents continue to play z;, j = 1,2,...,¢—1,i+1,...,n. At x* no player
can improve his own payoff through a unilateral change in his strategy so x* is a



Nash equilibrium point. If X is a closed and strictly convex set defined through
coupled constraints (like (6)) then x* is a CCE.

3.2 NIRA

As said above, games with coupled constraints rarely allow for an analytical solution
and so numerical methods must be employed. Here we use a method based on the
Nikaido-Isoda function and a relaxation algorithm (hence the name: NIRA).

3.2.1 The Nikaido-Isoda function

This function is a cornerstone or the NIRA technique for solving games for their
CCE. It transforms the complex process of solving a (constrained) game into a far
simpler (constrained) optimisation problem.

Definition 3.1. Let ¢; be the payoff function for playeri and X a collective strategy
set as before. The Nikaido-Isoda function ¥ : X x X — IR is defined as

n

U(x,y)= Z[¢i(yi|x) — ¢i(x)] (8)

i=1
Result 3.1. See [13].
U(x,x) =0 x € X. 9)

Each summand from the Nikaido-Isoda function can be thought of as the im-
provement in payoff a player will receive by changing his action from x; to y; while
all other players continue to play according to x. Therefore, the function repre-
sents the sum of these improvements in payoff. Note that the maximum value this
function can take, for a given x, is always nonnegative, owing to Result 3.1 above.
The function is everywhere non-positive when either x or y is a Nash equilibrium
point, since in an equilibrium situation no player can make any more improvements
to their payoff. Consequently, each summand in this case can be at most zero at
the Nash equilibrium point [7].

When the Nikaido-Isoda function cannot be made (significantly) positive for a
given y, we have (approximately) reached the Nash equilibrium point. This obser-
vation is used to construct a termination condition for the relaxation algorithm.
An ¢ is chosen such that, when

max V(x°y) < ¢, (10)
yelR™

(where x* is the s-th iteration approximation of z*) the Nash equilibrium would be
achieved to a sufficient degree of precision [7].

The Nikaido-Isoda function is used to construct the optimum response function.
This function is similar to the best response function in standard non-cooperative
game theory. It defines each player’s optimal action to maximise his payoff given
what the other players have chosen. The vector Z(x) gives the ‘best move’ of each
player when faced with the collective action x. It is at this point that the coupled

6



constraints are introduced into the optimisation problem. The maximisation of the
Nikaido-Isoda function in equation (11) is performed subject to the constraints on
the players’ actions.

Definition 3.2. The optimum response function at point X is

Z(x) € argmax ¥(x,y). (11)
yeX

3.2.2 The relaxation algorithm

The relaxation algorithm iterates to find the Nash equilibrium of a game. It starts
with an initial estimate of the Nash equilibrium and iterates from that point towards
Z(x) until no more improvement is possible. At such a point every player is playing
their optimum response to every other player’s action and the Nash equilibrium is
reached. The relaxation algorithm, when Z(x) is single-valued, is

X = (1 — a,)x* + a, Z(x%) 0<as;<1 (12)
s=0,1,2,. ..

JFrom the initial estimate, an iterate step s+1 is constructed by a weighted average
of the players’ improvement point Z(x*) and the current action point x°. Given
concavity assumptions explained in section 3.3, this averaging ensures convergence
(see [13], [7]) to the Nash equilibrium by the algorithm. By taking a sufficient
number of iterations of the algorithm, the Nash equilibrium x* can be determined
with a specified precision.

3.3 Existence and uniqueness of equilibrium points

It is one thing to know that one has a method to solve games with constraints
but, before proceeding, one needs to establish that the game has an equilibrium
at all. Furthermore, since the NIRA algorithm converges to a single equilibrium
point it would be nice if that equilibrium could be shown to be unique. The
conditions for existence and uniqueness for games with coupled constraints are
more intricate than those for games with uncoupled constraints. It is known that
every concave n-person game with uncoupled constraints has an equilibrium point
[11]. The equivalent definition for a game with coupled constraints relies upon the
notion of a weakly convex-concave function.

A weakly convex-concave function is a bivariate function that exhibits weak con-
vexity in its first argument and weak concavity in its second argument. The next
three definitions (see [9] or [13]) formalise this notion.> As Theorem 3.1 (the con-
vergence theorem) will document, weak convex-concavity of a function is a crucial
assumption needed for convergence of a relaxation algorithm to a coupled con-
straints equilibrium.

3Recall the following elementary definition: a function is “just” conver <=

af(x)+ (1= a)f(y) > f(ax+(1-a)y), acfo1]



Let X be a convex closed subset of the Euclidean space IR™ and f a continuous
function f: X — IR.

Definition 3.3. A function of one argument f(x) is weakly convex on X if there
exists a function r(x,y) such that Vx,y € X

af(x)+ (1 —a)f(y) = flax+ (1 —a)y) +a(l —a)r(x,y) (13)

0<a<l, and T(xyH—>O as ||lx —y| — 0 Vx € X.

Definition 3.4. A function of one argument f(x) is weakly concave on X if there
exists a function u(x,y) such that, Vx,y € X

af(x)+ (1 —a)f(y) < flax+ (1 —a)y) +a(l —a)ux,y) (14)

0<a<l1, and “(xy|)|—>0 as  |lx-y[[—0 Vx € X.

Example: The convex function f(z) = x* is weakly concave (see [7])

Now take a bivariate function ¥ : X x X — IR defined on a product X x X,
where X is a convex closed subset of the Euclidean space IR™.

Definition 3.5. A function of two wvector arguments, V(x,y) is referred to as
weakly convex-concave if it satisfies weak convexity with respect to its first argument
and weak concavity with respect to its second argument.

The functions r(x,y; z) and u(x,y; z) were introduced with the concept of weak
convex-concavity and are called the residual terms. Notice that smoothness of
U(z,y) is not required. However, if W(x,y) is twice continuously differentiable
with respect to both arguments on X x X, the residual terms satisfy (see [7])

r(x,y;y) = 3{(Axx)(x - y),x —y) +o(lx - y[*) (15)
and

(B(x,x)(x —y),x =) +oa(llx — ¥[*) (16)

[N

p(y, x;x) =

where A(xX,X) = Uxx(X,y)|y=x is the Hessian of the Nikaido-Isoda function with
respect to the first argument and B(x,x) = Uy (X,¥)|y=x is the Hessian of the
Nikaido-Isoda function with respect to the second argument, both evaluated at
y = X.

To prove the inequality of condition (5) of Theorem 3.1 (the convergence theo-
rem, below) under the assumption that W(x,y) is twice continuously differentiable,
it suffices to show that

Q(Xv X) = A(X7 X) - B(X7 X) (17)
is strictly positive definite.

Theorem 3.1 (Convergence theorem). There exists a unique normalised Nash equi-
librium point to which the algorithm (12) converges if:

1. X is a convex, compact subset of IR™,

8



2. the Nikaido-Isoda function ¥ : X x X — IR is a weakly convex-concave
function and ¥(x,x) =0 for x€ X,

3. the optimum response function Z(x) is single valued and continuous on X,

4. the residual term r(x,y;z) is uniformly continuous on X w.r.t. z for all
x,y € X,

5. the residual terms satisfy

rx,yiy) —ply,xx) > B(x—yl), xyeX (18)

where $(0) = 0 and (B is a strictly increasing function (i.e., B(t2) > B(t1) if
ity > tl),

6. the relaxation parameters oy satisfy

e cither (non-optimised step)
(a) as >0,
(b) > s =00,

(¢c) as— 0 as s — 0.

e or (optimised step)

oy = arg min {max q/(x(5+1>(a),y)} : (19)

a€0,1) | yeX

Proof. See [7] for a proof. O

3.4 Enforcement through taxation

Once a CCE, z*, has been computed it is possible to create an unconstrained
game which has x* as its solution by a simple modification to the players’ payoff
functions. For example, a regulator may compute that z* is the CCE of a game
involving the desired constraints on agents’ behaviour. He may then wish to induce
the players to arrive at this point through a scheme of taxation to modify their
payoff functions. This can be achieved by the use of penalty functions that punish
players for breaching the coupled constraints.

Penalty functions are weighted by the Lagrange multipliers obtained from the
constrained game. For each constraint, player f is taxed according to the function

ng()\, X) = )\g HlaX(O, Eg(X) - Kg) (20)

where ), is the Lagrange multiplier associated with the ¢th constraint, Fy(x) < K,
and x is the vector of players’ actions.
The players’ payoft functions, so modified, will be

$7(x) = Ry(x) = Cs(x) = > Tp(A,x) (21)
V4



where Ry and Cf are firm f’s revenue and cost functions respectively. Notice that
under this taxation scheme the players pay no penalty fee if all constraints are
satisfied.

The Nash equilibrium of the new unconstrained game with payoff functions ¢
is implicitly defined by the equation

o(x™) = max @(yp|x™) vV f, (22)
yfe]];{+

(compare with equation (7)). For the setup of the problem considered in this paper

x* = x**. That is, the CCE is equal to the unconstrained equilibrium with penalty

functions for breaches of the ‘constraints’ weighted by the Lagrange multipliers (see

[7], [5] and [6] for a more detailed discussion).

4 Results

A suite of MATLAB routines called NIRA has been designed to compute coupled
constraints equilibria ([8], [1]). The results reported here were obtained using NIRA.

4.1 The model
4.1.1 Without coupled constraints

The example is taken from [2]. Numerical data for the general formulation of prob-
lem is as follows. There are three nodes, 1 = 1, 2, 3, each of which has customers.
Generation only occurs at nodes 1 and 2 and each pair of nodes is connected by a
single transmission line. The demand functions are p;(¢;) = 40 — 0.08¢;, for nodes
i =1, 2, and p3(g3) = 32 — 0.0516¢g3 $/MWh. Thus, the demand is more elastic at
the demand-only node 3. Firm’s 1 generator is placed at « = 1 and firm’s 2 at ¢ = 2.
Since each firm has only one generator we drop the g subscript for brevity (e.g.,
Pyg; becomes Py;). Both generators have unlimited capacity and constant marginal
costs such that C(P;;) = 15 for firm 1 and C'(P»;) = 20 for firm 2. Marginal costs
are measured in $/MWh. The three lines have equal impedances of 0.2 p.u. and
the base power is 100 MVA. The slack node is node 3.

As a result, both firms solve the following optimization problems, based upon
equation (1), subject to constraints and coupled constraints (2)—(5):

Firm 1:
max{[40 — 0.08¢1]s11 + [40 — 0.08¢o]s12 + [32 — 0.0516¢s]s13 — 15P1 1} (23)
Firm 2:

max{[40 — 0.08¢1]s21 + [40 — 0.08¢o]s22 + [32 — 0.0516¢s]s23 — 20Pa2}  (24)

10



subject to:

Py = 511+ 512 + 813, (25a)
P55 = 591 + S22 + Sa3, (25b)

G = S11 + S21, (25¢)

g2 = S12 + S22, (25d)

g3 = S13 + S23, (25e)

all s11, S12, S13, S21, S22, S23, P12, P13, Po_3 nonnegative, (25f)

where the decision variables of the generators (firms) are: sy, s12 and sy3 for the first
generator and Soq, S99 and so3 for the second generator. The remaining variables
are dependent on the decision variables. Part of the solution will constitute the
Lagrange multipliers that a regional regulator will be able to use to enforce the
equilibrium (see section 3.4).

4.1.2 Transmission line constraints

A constraint on transmission line capacity is imposed as described in equation (5)?.
The equation of the constraint in this example is

ﬁlﬂ2
By AT (T ) < [P, . (26)
Py —qo -
’ Py_5

The values of the transmission line constraints are as follows:

50
1 10 10 -5
Bi=10 5 0], A:(_l 0 1), B:<_5 10). (27)
005

Note that the first row of matrix A (whose dimension is: 2 nodes times 3 lines)
expresses that node 1 is the starting node of lines 1-2 and 1-3, and the second row
means that node 2 is the ending node of line 1-2 and the starting node of line 2-3.
Node 3 is the slack node for which there are no calculations, since it is the reference
node.

The diagonal terms of B are computed as follows: by is the sum of the two line
susceptances connected to node 1, likewise for the other diagonal term correspond-
ing to node 2. The off-diagonal terms are the susceptances of the lines 1-2 and 2-1
(which is the same line), respectively.

We get this numerical expression for the line constraints:

S

0.33 —0.33
[Bs- A" -B7'] =066 033 |. (28)
0.33  0.66

4For example, the first row of Pi_.jis P2 = 0.66 512 + 0.33 513 — 0.66 501 — 0.33 s23. This
indicates that the flow along the line from node 1 to node 2 depends not only upon the quantity
that is sold to nodes 1 and 2 but also upon the quantity of electricity that is sold to node 3.

11



4.1.3 Environmental constraints

In this case study, a CO, emission constraint is added to the problem formula-
tion. As a result, the problem is set as in (23)—(25), where both firms solve their
optimization problems as in (23) and (24), respectively, but, in this case, a new
environmental constraint is added to the constraint set (25), so that:

(20 — 0.4 - Pry +0.004 - P2)) + (22 — 0.3 Pyy +0.005 - P2,) <250,  (29)

where the maximum allowed CO5 emission is 250 1b/h.

4.2 Base case

Here the firms’ problem described by equations (23)—(25) is solved using NIRA. The
results of the relaxation algorithm are shown in Table I. The quantities demanded
are: q; = 187.50 MW, ¢, = 187.5 MW, and ¢3 = 187.3 MW. Prices at the nodes,
according to the linear demand functions, are: 25, 25, and 22.3 §/MWh. The flows
through the lines are: 73.95 MW, 130.65 MW, and 56.7 MW for lines 1-2, 1-3 and
2-3, respectively. Profits for firms 1 and 2 are 3542.1 and 730.6 $/h, respectively.
The following Lagrange multipliers are computed: A\p; =0, Aps =0, Ap3 = 0.

The three Lagrange multipliers correspond to the three constraints of the flow
limits matrix inequality. Since no line constraint is binding, the value of the La-
grange multipliers is equal to zero, as expected.

Table I: Generation and sales in the base case

Sales by Firm 1 | Sales by Firm 2 | Generation by
(MWh) (MWh) Firms (MWh)
S11 S12 513 521 522 523 P1,1 P2,2
125 125 142.1 | 62.5 62.5 45.2 392.1 | 170.2

4.3 Generation under transmission constraints

For this example, a limit of 25 MW in the transmission capacity of the line that
connects nodes 1 and 2 is imposed. As a result, the problem is set as in section 4.2
above with the addition of the constraint described in equation (26). In this case,
the thermal limit of line 1-2 is set to 25 MW (i.e. P;_ = 0.25 p.u.) since the base
power is 100 MVA.

This is a game with coupled constraints with two non identical players. We
notice that player 1, located at node 1, produces electricity more cheaply than
player 2 at node 2. This game satisfies the hypotheses of the convergence theorem,
see [2]. The game’s solution is obtained using the NIRA software. This will be
a combination of the decision variables’ values such that the constraints will be
satisfied and no player will be able to improve his payoff by an unilateral move.

The results of the relaxation algorithm with a constant step size of 0.5 are shown
in Tables II. The quantities demanded are: ¢; = 199.1 MW, ¢o = 175.9 MW, and
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gz = 187.3 MW. Prices at the nodes, according to the linear demand functions, are:
24.1, 25.9, and 22.3 §/MWh. The flows through the lines are: 25 MW (line flow
limit), 106.15 MW, and 81.15 MW for lines 1-2, 1-3 and 2-3, respectively. Profits
for firms 1 and 2 are 2985 and 956.9 $/h, respectively. The following Lagrange
multipliers are computed: A\j; = 4.18, A\jo =0, A\p3 =0.

The three Lagrange multipliers correspond to the three constraints of the flow
limits matrix inequality. Only the first value is non-zero, since the 25 MW line
limit is binding.

Table II: Generation and sales with a line flow limit of 25 MW in line 1-2

Sales by Firm 1 | Sales by Firm 2 | Generation by
(MWh) (MWh) Firms (MWh)

S11 512 513 521 522 523 P1,1 P2,2
113.4 | 101.8 | 115.1 | 85.7 74.1 72.2 330.3 | 232

4.4 Generation under environmental constraints

Here the environmental constraint of equation (29) is included in the problem but
the transmission constraint of equation (26) is not. The results obtained are shown
in Table III. The quantities demanded are: ¢; = 139.05 MW, ¢o = 139.05 MW, and
qs = 112.22 MW. Prices at nodes, according to the linear demand functions, are:
28.9, 28.9, and 26.2 $/MWh, respectively. The flows through the lines are: 38.66
MW, 75.44 MW and 36.78 MW for lines 1-2, 1-3 and 2-3, respectively. Profits
for firms 1 and 2 are 3295.6 and 1135.4 $/h, respectively. The following Lagrange
multipliers are computed: A1 =0, Ao =0, A3 =0, Agp = 4.31.

Table III: Generation and sales with a CO4 emission constraint

Sales by Firm 1 | Sales by Firm 2 | Generation by
(MWh) (MWh) Firms (MWh)

S11 512 513 521 522 523 P1,1 P2,2
85.9 85.9 81.4 53.2 53.2 30.8 253.2 | 137.2

4.5 Generation under transmission and environmental con-
straints

In this last case study, both the 25 MW thermal limit of line 1-2 (equation (26)) and
the CO4 emission constraints (equation (29)) are added to the problem formulation.

The results obtained are shown in Table IV. The quantities demanded are:
q1 = 147.4 MW, ¢, = 133.1 MW, and ¢3 = 114.1 MW. Prices at nodes, according
to the linear demand functions, are: 28.2, 29.4, and 26.1 $/MWh, respectively.
The flows through the lines are: 25 MW (line flow limit), 69.53 MW, and 44.53
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MW for lines 1-2, 1-3 and 2-3, respectively. Profits for firms 1 and 2 are 3125.8
and 1235.9 $/h, respectively. The following Lagrange multipliers are computed:
/\Ll = 258, /\LQ = 0, /\L3 = 0, /\El =4.11.

Table IV: Generation and sales with a line flow limit of 25 MW in line 1-2 and a
CO4 emission constraint

Sales by Firm 1 |Sales by Firm 2 | Generation by
(MWh) (MWh) Firms (MWh)
S11 S12 513 521 522 523 P1,1 P2,2
86.3 79.1 76.5 61.1 54.0 37.5 241.9 | 152.6

5 Economics of constraints

5.1 Line constraint

The line constraint enforced in this model only restricts flow along the line between
the nodes at which the two generators reside. The substantive difference between
these two generators is their marginal cost: firm 1’s generator has a marginal cost
of $15/MWh while firm 2’s generator has a marginal cost of $20/MWh. Given their
respective payoff functions the two firms play a Cournot game at each node.

Since firm 1 has a lower marginal cost it is to be expected that it supplies more
of the market at each node than firm 2, and this is borne out by the numerical
results presented above. However, the line flow constraint effectively restricts the
quantity of electricity that firm 1 can supply to node 2. This shelters firm 2 from
competition® at node 2 and allows it to “dominate” the market at that node i.e.,
increase its sales there see Table II) and, consequently, increase its profits.

As firm 2 increases its sales at node 2 it also increases its total generation.
Concurrently, firm 1’s sales at node 2 decrease and with the decrease in sales comes
a decrease in generation. Since firm 2 is now providing a greater proportion of the
generation capacity on the grid, firm 2’s share of the market at nodes 1 and 3 also
increases. This effect can be clearly seen in figure 1 where firm 2’s sales increase at
all nodes as the transmission constraint tightens. The converse is true for firm 1’s
sale at all nodes.

Observe from the data that, with no constraints, the generation ratio between
firm 2 and firm 1 is 170.2/392.1 = 0.43. Introducing the transmission constraint
increases this ratio to 0.70 which favours firm 2 as described above. Similarly, firm
2’s share of total profits increases from 0.20 to 0.32 with the introduction of the
line constraint. It is apparent that the transmission constraint distorts the market
outcome in favour of the less efficient firm by sheltering it from competition.

5We could perform a sensitivity analysis to establish what marginal cost firm 1 would have to
have to not allow firm 2 to dominate the market at node 2.
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5.2 Emissions constraint

In general, firm 2 is less efficient with a higher level of CO5 emitted for each unit
of electricity generated. However, as this firm produces less electricity than firm
1 (for “economic” reasons) it ends up to be a lesser polluter than its competitor.
This means that firm 2 might have a comparative advantage as against firm 1 when
the emissions constraint is implemented, as long as its output does not increase
“too much”. Hence, as the emissions constraint tightens, firm 2 might gain market
share and increases its share of total profits.

The results presented support this conjecture. Enforcement of the CO, con-
straint reduces firm 1’s total generation by 35% while only reducing firm 2’s gener-
ation by 19%, see Table IV. Firm 2’s share of the profits also increases to 0.34 (from
0.20) when the emissions constraint is introduced. This same thing can be seen in
figure 1: the gradient of the plot in the x-z plane is greater for firm 1 than for firm
2. This indicates that, as the CO5 constraint is tightened (COz limit decreases),
firm 1 is forced to reduce sales at a greater rate than firm 2.

5.3 Both constraints simultaneously

When both effects described above apply the net result is that firm 2 gains market
share over the case in which there is only an environmental constraint (63% of
total generation as compared to 60%). Note that firm 2’s market share is still less
than when there is only a transmission constraint (70%). This is because the gains
are dampened by the lower total generation levels permitted by the environmental
constraint. The sales plots of figure 1 show this dampening effect clearly. The
tighter the COy limit is, the less effect the transmission constraint has upon the
firms’ sales (gradient in the y-z plane decreases in the direction of decreasing ‘COq
limit’).

Figure 1 also indicates that the brunt of the sales reduction induced by the
tightening of the COs constraint is borne by the firm which is favoured by the
current state of the transmission constraint. Firm 1’s sales decrease faster as the
environmental constraint tightens when the transmission constraint is relaxed (and
firm 1 can compete freely at node 2). Conversely, firm 2’s sales decrease faster as
the environmental constraint tightens when the line flow limit is very small (and
firm 2 is sheltered from competition at node 2).

These results show that, even in the presence of a transmission constraint, the
introduction of an environmental constraint may benefit the less environmentally
friendly firm. Reducing the total generation through environmental constraints also
appears to mitigate some of the market distortion introduced by the transmission
constraint.

5.4 Welfare implications

The results presented here do not include calculations of consumer surplus and so
cannot fully describe welfare. However, some conclusions can still be drawn from
the manner in which the sum of payoffs changes as the constraints’ limits are varied.
Figure 2 shows plots of each firm’s profits and total profits as the constraints vary.
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The shape of the individual firm’s plots is explained by the previous discussion of
the effect of the individual constraints. Here an explanation is offered for the shape
of the plot of total profits.

As the line limit is tightened total profit drops. This is because firm 2 contributes
a greater share of total generation as the line 1-2 limit is decreased and firm 2 has
a higher marginal cost of generation than firm 1. However, tightening the CO,
constraint has more interesting results.

Unlike the introduction of a transmission constraint, the introduction of an en-
vironmental constraint reduces the total generation level. Because total generation
is reduced, the price rises at all nodes and total profit initially increases. As the
COq limit is tightened the total level of generation moves from a Cournot duopoly
level towards the monopoly level and profits rise accordingly. Firm 2’s share of
generation expands and the overall average cost of generation rises also (since firm
2’s marginal cost is greater than firm 1’s). There comes a point at which the rising
average cost of production and the decreasing sales of the firms overcome the effect
of rising prices and total profits begin to drop. It is at this point that the CO,
constraint is forcing the firms to jointly produce at below the monopoly level.

While total profits might increase when an environmental constraint is first
applied the same cannot be assumed of welfare. Numbers are not presently available
but it is likely that the increasing prices will cause consumer surplus to decrease.
Some of the profits are likely to be returned to consumers in the form of higher
wages but our partial equilibrium analysis excludes such considerations.

Presumably the environmental constraint will be set “optimally”, such that it
maximises some welfare function that includes the cost of pollution. Our study
shows that it is possible that this optimal constraint will increase the profit of the
polluting firms and shift surplus away from consumers. The total change in welfare
is unknown but the possibility of this result seems inequitable at least.

6 Concluding remarks

We have proposed a methodology for the analysis of the impact of various con-
straints on electricity generation. In particular, this analysis should be useful for a
regional government that is interested in an assessment of electricity supply changes
due to an introduction of environmental constraints. For the case study considered
in the paper, we notice the possibility of some market distortion when transmission
constraints exist.

Introduction of an environmental constraint, which many businesses fear, may
actually increase the business profits and make the consumers worse off economi-
cally.

We believe that thanks to our analysis, the regional government’s choices will
be informed by the tradeoffs between constraint satisfaction, economic activity and
electricity supply.

In the next paper we will fully address the issue of regional welfare changes
due to constraints by analysing the consumers’ surplus. We might also explore the
possibility of extending the analysis to include the optimal choice of environmental
constraints.
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