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Abstract

In this thesis we look at the intersection of quantum field theory and general

relativity. We focus on Hawking radiation from black holes and its impli-

cations. This is done on two fronts. In the first we consider the greybody

factors arising from a Schwarzschild black hole. We develop a new way to

numerically calculate these greybody factors using the transfer matrix for-

malism and the product calculus. We use this technique to calculate some

of the relevant physical quantities and consider their effect on the radiation

process.

The second front considers a generalisation of Wick rotation. This is moti-

vated by the success of Wick rotation and Euclidean quantum field theory

techniques to calculate the Hawking temperature. We find that, while an

analytic continuation of the coordinates is not well defined and highly coor-

dinate dependent, a direct continuation of the Lorentzian signature metric to

Euclidean signature has promising results. It reproduces the Hawking tem-

perature and is coordinate independent. However for consistency, we propose

a new action for the Euclidean theory which cannot be simply the Euclidean

Einstein-Hilbert action.
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Chapter 1

Introduction

One of the great unresolved problems in physics is how to merge the fields

of general relativity and quantum field theory. These theories are individu-

ally incredibly accurate, and have made many new predictions within their

respective regimes of applicability, but have proved difficult to unify into one

theory which describes both regimes. Quantum field theory (QFT) explains

the microscopic world of fundamental particles moving at both high and low

speeds, while general relativity encompasses, in the Einstein field equations

(EFEs), the macroscopic world of the curvature of space-time due to the

presence of massive objects.

The contrast of scales between the macroscopic and microscopic, and the

relative weakness of gravity as compared to the other fundamental forces,

makes experimental testing of quantum gravity theories extremely difficult.

This means there is a variety of competing theories which as yet coexist.

One starting point to uniting the two models is to consider quantum fields in

a fixed curved spacetime background. This leads to interesting and sugges-

tive effects such as the non-uniqueness of vacuum states and the creation of

particles due to the background spacetimes. An example of this is Hawking

radiation from black holes. This has a thermal spectrum modified by grey-

body factors resulting from particles scattering off the gravitational poten-

tial. These greybody factors are of importance when it comes to calculating

detailed physical effects from the radiation process.

The calculation of many problems in (flat-space) QFT is made possible by a

Wick rotation, in which time is analytically continued to an imaginary vari-
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2 CHAPTER 1. INTRODUCTION

able t → τ = −it. This effectively changes the signature of the background

Minkowski spacetime metric from Lorentzian to Euclidean and allows the

development of a formalism for quantization via the path integral approach

which is deeply related to quantum statistical mechanics. This leads to one

route to the Hawking temperature for black holes, and completes the analogy

between the laws of black hole mechanics and thermodynamics.

It is for this reason that Euclidean quantum gravity (EQG), in which the

Lorentzian signature of spacetime is transformed into a standard Euclidean

one, is suggested as a possible route to uniting general relativity and QFT.

There is however, at this stage, no standard procedure by which to effect

this signature change for an arbitrary spacetime. This stems from the non-

existence of a unique time-like direction. Further, in flat spacetime, Wick

rotation can be physically interpreted in terms of causality and time-ordering,

whereas there is no equivalent interpretation for curved spacetime. Both of

these are needed in order to effectively formulate an EQG.

1.1 Arrangement of the Thesis

In this thesis there are two themes of study. We present a new analysis of

the greybody factors for Schwarzschild black holes and review and clarify the

possible approaches to a generalised Wick rotation. The work is divided into

five main chapters. The first three are devoted to presenting the necessary

physical concepts to understanding these problems. Chapters 2 and 3 re-

view general relativity and the fundamentals of quantum field theory in flat

spacetime. Chapter 4 presents the extension of QFT to curved spacetime

and builds up to the derivation of Hawking radiation. We present two routes

to this; the first is based on Hawking’s original work, the second is based

on Wick rotation. In the fifth chapter we develop a new formalism based

on the product calculus to calculate the greybody factors and apply it to

Schwarzschild black holes. It has the scope to be applied to a wide range of

scattering problems not limited to general relativity. The material from this

chapter has been incorporated into two papers. The first of which, in col-

laboration with Sebastian Schuster, Matt Visser, and Alexander Van–Brunt,

has been published in Classical and Quantum Gravity [1]. The second, in
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collaboration with Matt Visser, is in the submission process and available on-

line on the arXiv [2]. Finally, in Chapter 6 we review the extension of Wick

rotation, present the alternatives to a continuation t→ −it, and suggest new

directions for future work.
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Chapter 2

Aspects of General Relativity

In this chapter we introduce concepts from Einstein’s general theory of rel-

ativity necessary for the latter material in this thesis. The first section in-

troduces the basic manifold structure required and develops some results for

hypersurfaces. The second section builds up to the Einstein equations then

presents some properties of black holes. Finally the third section develops the

Lagrangian formalism and shows how to derive the Einstein equations from

the Einstein–Hilbert action. For fuller treatments of the aspects of general

relativity presented here see the text books by Wald [3], and Misner, Thorne,

and Wheeler [4]. In particular we follow Poisson’s book [5].

2.1 Preliminaries

At its heart Einstein’s general relativity represents the gravitational field as

a metric (Christoffel) connection on a pseudo-Riemaninan manifold known

as the spacetime and demands that free-fall correspond to geodesic motion in

the manifold. This incorporates the equivalence of inertial and gravitational

mass as a geometrical property at a fundamental level (See [3, 4] for more

details). In this setting space and time are treated on an equal footing as the

dimensions of the manifold and in particular can interchange dynamically.

Standard general relativity takes place in (3+1) dimensions; explicitly x0 = ct

is usually reserved for the time-like coordinate, while xi, for i ∈ {1, 2, 3},
denote the three ordinary spatial coordinates. Hereafter we work in natural

units such that the physical constants c = ~ = G = kB = 1. A point in

5



6 CHAPTER 2. ASPECTS OF GR

spacetime is sometimes referred to as an event.

2.1.1 Distances and Differentiation

The most important feature of a manifold in standard general relativity is

the symmetric metric tensor, gab, which defines a canonical isomorphism

between the tangent and co-tangent spaces. It is used to define the inner

product between two vectors and hence measure distances. For example the

infinitesimal distance between two points is given by,

ds2 = gab dxa dxb . (2.1)

We use Einstein summation convention throughout, wherein, a repeated in-

dex indicates a sum over that index. The metric is also used to define the

volume element in the manifold,

dV =
√
|g| d4x , (2.2)

where g is the determinant of the metric. The inverse metric gab is defined

as the inverse matrix of gab treated as a T 2
0 tensor. Thus

gam gmb = δab . (2.3)

Here δab is the Kronecker delta.

A crucial feature of the metric is that it is not positive definite and has

Lorentzian signature, with eigenvalues (−,+,+,+). For example, the flat

(Minkowski) spacetime metric can be written,

ds2 = −dt2 + |dx|2 . (2.4)

This implies that distances can be any real number and encodes the causal

structure of the spacetime. We say two events in Minkowski space X1, X2,

are time-like separated, iff

∆X = gab (Xa
1 −Xa

2 ) (Xb
1 −Xb

2) < 0 . (2.5)

From eq. (2.4) and eq. (2.5) we have that the speed required to travel between
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X1 and X2 is less than 1 (i.e. the speed of light), and hence massive objects

can travel a path between the two events. The separation is called light-like

(or null) iff ∆X = 0, and the two events can be connected by a light ray. Iff

∆X > 0 the separation is space-like and the two events can never interact.

These definitions also apply to any vector V in the spacetime. Now, the set

of all points

I(X) ≡ {Y : g([X − Y ], [X − Y ]) ≤ 0} , (2.6)

defines all the events that can be causally related to X. Depending on the

sign of ∆t they are future events affected by X or past events which affect

X.

These notions can be extended to a generic spacetime by defining two points

on the manifold to be time-like separated iff there exists a curve between

the two points whose tangent vector is everywhere time-like. The case of

null and space-like separations follows immediately. A spacetime is called

time orientable if non-space-like vectors can smoothly be assigned as future

or past directed over the entire manifold. That is, there exists an everywhere

time-like vector field V defined on the entire manifold. We return to this in

Chapter 6.

The metric also provides a natural way to differentiate on the manifold.

Without going into details, a simple calculation shows that partial derivatives

of anything other than scalars no longer behave as tensors. A covariant

derivative of a tensor, which is a linear map from a T rs tensor to a T rs+1

tensor, can be defined by,

∇aX
a1,...,ar

b1,...,bs
=∂aX

a1,...,ar
b1,..,bs

+
r∑

α=1

ΓaαmaX
a1,...,m,...,ar

b1,...,bs

−
s∑

σ=1

ΓmbσaX
a1,...,ar

b1,...,m,...,bs
, (2.7)

where,

Γabc =
1

2
gam (∂c gmb + ∂b gmc − ∂m gbc) , (2.8)

is the Christoffel connection. It is not a tensor itself. However, the combi-

nation with the partial derivative is. Other connections may be defined, but
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eq. (2.8) is the unique connection compatible with the metric, i.e. ∇agbc = 0.

We will frequently use the notation X,a to indicate a partial derivative and

the notation X;a to indicate the covariant derivative. Further we use the

notation of square brackets X[a|b|c] to denote antisymmetrisation on the in-

dices within the brackets. The index b within | | is ignored in this process.

Symmetrisation is denoted with ordinary brackets.

We can also define the Lie derivative without reference to the metric. It is a

generalisation of a directional derivative and defined along a vector V by,

LV f = V a∂af : for a scalar f , (2.9)

{LV T}a = [V, T ]a = V m∂mT
a − Tm∂mV a : for a vector T , (2.10)

{LVU}a = V m∂mUa + Um∂aV
ma : for a covector U . (2.11)

It also obeys the Leibniz rule, LV (XY ) = LV (X)Y + XLV (Y ). Lie deriva-

tives are important for representing symmetries of the manifold.

With this formalism the relevant physical equations from special relativity

can be usually translated into a general relativistic context by the prescription

∂ → ∇.

It was noted that free-fall is determined by geodesic motion in the spacetime.

Now we explicitly define and present the geodesic equation. Most generally

geodesics represent the straightest possible lines on a given manifold. These

are determined by the choice of connection, since, the above statement is

equivalent to demanding that the tangent vector to a curve xa(λ) in the

manifold be parallel to itself when transported along the curve. That is,

dxa

dλ
∇a

(
dxb

dλ

)
= κ(λ)

dxb

dλ
, (2.12)

for some scalar κ(λ). With the change of parameter,

dλ̄

dλ
= exp

(∫ λ

λ0

κ(λ′)dλ′
)
, (2.13)

the geodesic equation can be simplified to,

dxa

dλ
∇a

(
dxb

dλ

)
= 0 . (2.14)
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The parameter λ̄ is known as an affine parameter. Proper time is an example

of an affine parameter.

Finally, we briefly mention Killing vectors before moving on. A Killing vector

Ka satisfies the equation,

{LKg}ab = ∇aKb +∇bKa = 0 . (2.15)

They are important because they represent symmetries in the metric. For

example if the metric is independent of a particular coordinate, xi, then

vector δai is a Killing vector. Further each Killing vector represents a quantity

which is conserved along geodesics. That is, suppose λ is now an affine

parameter, then,
d

dλ

(
Ka

dxa

dλ

)
= 0 . (2.16)

We now turn to hypersurfaces in a given spacetime and present some key

features and a version of Stokes’ theorem.

2.1.2 Hypersurfaces and Stokes’ Theorem

In a four dimensional manifold we define a hypersurface, Σ, to be a three

dimensional sub-manifold which is described by either a level-surface,

Φ(xa) = 0 , (2.17)

or by parametric equations

xa = xa(yα) . (2.18)

Here yα are the coordinates on the hypersurface, α ∈ {1, 2, 3}. The hypersur-

face is called time-like, null, or space-like depending on whether the normal

vector to it n̄a is time-like, null, or space-like. If Σ is time(space)-like the

unit normal na is given by

na = ε
Φ,a

|gabΦ,aΦ,b|
, (2.19)
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where, nan
a = ε = ∓1, refers to a time(space)-like hypersurface. This unit

normal is not defined for a null surface as, gabΦ,aΦ,b = 0. In this case let

ka = −Φ,a be the normal where the sign ensures it is future directed. It

should be noted that ka is also tangent to the hypersurface as kak
a = 0 on

Σ. From this, the gradient (kaka);b must be tangential to ka. Thus one can

show that ka automatically satisfies the general form of the geodesic equation

ka∇ak
b = κkb for some scalar κ. The null surfaces are hence generated

by null geodesics parametrised by some (not necessarily affine) λ. Thus a

change along a generator is described by dxa = λdka. Therefore we can

describe these surfaces by the coordinates yα = (λ, zA), A ∈ {2, 3}. Null

hypersurfaces will be important in the study of black hole horizons.

On the hypersurfaces we can define an induced metric using the tangent

vectors to Σ,

eaα =
∂xa

∂yα
. (2.20)

Since these vectors are tangent to the hypersurface eaαna = 0 = eaαka. For

line-elements on Σ,

ds2
Σ = hαβ dyα dyβ , (2.21)

where,

hαβ = gab e
a
α e

b
β . (2.22)

This simplifies in the null case. Using the coordinates yα = (λ, zA), as then

ea1 = (∂xa/∂λ)θA ≡ ka. Thus h11 = gabk
akb = 0 = gabk

aebA = h1A, and

therefore

ds2
Σ = σAB dzA dzB , (2.23)

where

σAB = gab e
a
A e

a
B : eaA =

(
∂xa

∂zA

)
λ

. (2.24)

Now in the case of time(space)-like hypersurfaces the inverse metric can be

written

gab = εnanb + hαβeaαe
b
β (2.25)

where hαβ is the inverse of the induced metric. The right hand term defines

a 4D version of the induced metric, hab ≡ hαβeaαe
b
β, which can be used to

project quantities onto the hypersurface. In the null case it is necessary to

introduce an auxiliary null vector, Na, satisfying Nak
a = −1, Nae

a
α = 0 on
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the surface. Then the inverse metric can be written

gab = −kaN b − kbNa + σABeaAe
b
B , (2.26)

where σAB is the inverse of σAB. Now for time(space)-like surfaces the surface

element may be written

dΣ =
√
|h|d3y , (2.27)

with h ≡ det[hαβ]. This can be extended to the outward directed surface

element nadΣ, that is, in the direction of increasing Φ. For the null case this

can be written,

dΣa = −ka
√
σ dλ d2z , (2.28)

where σ ≡ det[σAB]. We are now in a position to present a version of Stokes’

theorem without an excursion into differential forms.

Theorem 2.1. Consider a finite volume V of spacetime with closed boundary

∂V then for any vector Aa,∫
V
∇aA

a
√
|g| d4x =

∮
∂V
Aa dΣa . (2.29)

Eq. (2.29) will be necessary for the Lagrangian Formulation of general rela-

tivity. (No proof will be given for this standard result).

It will be also necessary to introduce the notion of extrinsic curvature for the

consistency of the action. For this, we now consider only time(space)-like

hypersurfaces. The vectors eaα can be used to project quantities on to Σ.

Consider the projection of the covariant derivative of a tangent vector to the

surface, eaα∇aA
b. That is a vector such that,

Aa = Aαeaα , Aana = 0 , Aα = Aae
a
α . (2.30)

The question remains whether the projected derivative has a normal compo-
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nent to the surface as well as a tangential component. Now

eaα∇aA
b = gbcA

c
;ae

a
α

= (εnbnc + hµβebβeµc)A
c

;ae
a
α

= ε(ncA
c

;ae
a
α)nb + hµβ(Ac;ae

c
µe
a
α)ebβ

= −εAγ(nc;aeaαecγ)nb + hµβ(Ac;ae
c
µe
a
α)ebβ . (2.31)

In the last line we have used the orthogonality of naA
a = 0. The right hand

term can be seen to be tangential to the surface, however the left hand term

is normal to it. Defining the extrinsic curvature

Kαβ = na;be
a
αe

b
β , (2.32)

the orthogonal component vanishes when the extrinsic curvature vanishes.

Thus the extrinsic curvature contains the information on how the surface is

embedded in the spacetime and how its normal vector varies.

2.2 Curvature and Field Equations

Up to this point we have assumed that the spacetime metric was known and

it was used to describe the physics in a particular geometry. We now turn to

the equations describing the formation and evolution of these spacetimes in

vacua and the presence of matter.

The information of the curvature of a spacetime is contained in the Riemann

tensor, which represents how much covariant derivatives fail to commute.

That is,

[∇a,∇b]X
c = Rc

dabX
d , (2.33)

for a symmetric connection. Here the Riemann tensor is given by

Ra
bcd = −2Γab[c,d] + 2Γam[cΓ

m
|b|d] . (2.34)

The Ricci tensor is given by contracting on the first and third index

Rab = Rm
amb . (2.35)
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This has, in general, only ten independent components in four dimensions

due to the symmetries of the metric and Riemann tensor.

Now the Einstein equations in vacuum, state that the Ricci curvature is

identically zero

Rab = 0 . (2.36)

Note that generically this is a set of non-linear coupled second order differ-

ential equations in the components of the metric. Further, the vanishing of

the Ricci tensor does not imply that the geometry is Riemann flat. Some of

the most important spacetimes are derived from the vacuum equations.

If there is matter present with an associated stress-energy tensor, Tab then

the field equations become

Gab = 8πTab , (2.37)

where the Einstein tensor is defined,

Gab ≡ Rab −
1

2
R gab , (2.38)

with the Ricci scalar R ≡ gabRab. Succinctly these equations state, as

Wheeler put it [6], “spacetime tells matter how to move; matter tells space-

time how to curve”. The Einstein tensor is chosen rather than, for example,

the Ricci tensor as it satisfies the Bianchi identity ∇aG
bc = 0, thus the

stress-energy tensor is automatically covariantly conserved,

∇aT
bc = 0 . (2.39)

2.2.1 Black Holes and Horizons

One of the simplest solutions to the vacuum field equations was found by

Karl Schwarzschild, in 1916, for the case of a static spherically symmetric

body. The metric in standard coordinates is given by,

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) . (2.40)

This has a coordinate singularity at r = 2M , and a curvature singularity at

r = 0. Now the Birkhoff theorem [5] shows that it is the unique solution for



14 CHAPTER 2. ASPECTS OF GR

spacetime outside a spherically symmetric massive body of mass M . By the

coordinate transform,

U = −4M e−u/4M , (2.41)

V = 4M ev/4M , (2.42)

where, u = t− r∗, v = t+ r∗, and r∗ = r+ 2M ln(r/2M − 1), the metric can

be put into Kruskal-Szekeres form,

ds2 = −2M

r
e−r/2MdUdV + r2(dθ2 + sin2 θ dϕ2) , (2.43)

which is manifestly finite at r = 2M . In these coordinates, ingoing and outgo-

ing light rays correspond to curves, V = const, and, U = const, respectively.

The spacetime can be visually represented in a conformal Penrose–Carter

diagram shown below in Fig. 2.1.

Figure 2.1: The conformal Penrose–Carter diagram for a Schwarzschild black
hole.

Light rays are represented straight lines at 45o on the diagram with outgoing

rays having positive gradient. It can be seen that no outgoing ray with

r < 2M (i.e. U < 0) can escape the singularity at r = 0. This means

that nothing can escape a body whose surface is less than the Schwarzschild

radius rs = 2M once it crosses this boundary. This is what defines a black

hole. The points I +(−) are called future (past) null infinity and represent all

possible future (past) end points of outgoing (ingoing) null geodesics. i+(−)

are the future and past times (t→ ±∞ for finite r) and i0 is spatial infinity

(r →∞ for finite t).
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The surface at r = 2M is called the event horizon. It is the point where

the time-like killing ta = ∂xa/∂t vector becomes null and hence it is a

null-surface. On this surface the null generator, as before, must satisfy the

geodesic equation,

ta∇at
b = κta . (2.44)

κ is called the surface gravity and represents the force at spatial infinity

required to hold a test particle stationary on the horizon. It can be shown

to be given by

κ2 = −1

2
∇atb∇atb . (2.45)

There are other solutions describing different kinds of black holes e.g. the

Kerr solution for rotating black holes. These all present similar features and

have an event horizon described by a null surface from inside which light rays

cannot escape. Further they have a surface gravity given by eq. (2.45).

2.3 Lagrangian Formulation

One of the most beautiful aspects of general relativity is that it can be put

into the language of least action principle with a strikingly simple Lagrangian.

We shall see later that this is suggestive of a possible quantisation of the

gravitational field via the Feynman path integral method. We now briefly

review the least action principle and Euler-Lagrange equations.

2.3.1 Euler-Lagrange Review

A classical field theory can be described by a given Lagrangian, L (q, q,a)

which is a scalar function of the field, q(xa) (later we will generalise this

to tensor fields), and its spatial derivatives defined on a volume of space-

time V with closed boundary ∂V . One writes the action functional which

integrates the Lagrangian over the volume of spacetime for a particular field

configuration,

S[q] =

∫
V

L (q, q,a)
√−g d4x . (2.46)

The equations of motion are then found by finding the extrema of the ac-

tion, where δS = 0, under variation of the field, q + δq. This is subject to
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appropriate boundary conditions such that the variation δq vanish on the

boundary

δq
∣∣
∂V = 0 . (2.47)

Now

δS[q] =

∫
V
δ
[
L (q, q,a)

√−g
]

d4x

=

∫
V

(
∂L

∂q
δq +

∂L

∂q,a
(δq),a

) √−g d4x

=

∫
V

(
∂L

∂q
δq +

[
∂L

∂q,a
δq

]
;a

−
[
∂L

∂q,a

]
;a

δq

)
√−g d4x

=

∫
V

(
∂L

∂q
−
[
∂L

∂q,a

]
;a

)
δq
√−g d4x+

∮
∂V

∂L

∂q,a
δq dΣa . (2.48)

In the last line we have used Stokes’ theorem eq. (2.29). But by the boundary

condition eq. (2.47) the right most term vanishes and hence the equations of

motion are,
∂L

∂q
−
[
∂L

∂q,a

]
;a

= 0 . (2.49)

With this background in mind, we now show how to translate general rela-

tivity into this language.

2.3.2 Einstein-Hilbert Action

The action for general relativity is a functional of the metric tensor gab. It

contains a curvature term we denote SH [g], a boundary term, SB[g], and

a constant, S0. The full action, for a volume V of spacetime with closed

non-null boundary ∂V and outward pointing normal vector na, is written,

SG[g] = SH [g] + SB[g]− S0 , (2.50)
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where

SH [g, φ] =
1

16π

∫
V
R
√−g d4x , (2.51)

SB[g] =
1

8π

∮
∂V
εK

√
|h| d3y , (2.52)

S0 =
1

8π

∮
∂V
εK0

√
|h| d3y . (2.53)

Here R is the Ricci scalar, K = ∇an
a is the trace of the extrinsic curvature

of the boundary ∂V , and ε = ±1 in the regions where ∂V is time(space)-like.

S0 will be explained latter.

The Hilbert term is the simplest action which is invariant under diffeomor-

phisms (i.e. a scalar) and contains derivatives of the metric. However since

these derivatives are second order and we do not fix the variation of deriva-

tives of the metric on the boundary, the boundary terms are necessary for the

consistency of the action when the volume is non-compact. We will now show

that under variation of the metric δgab subject to the boundary conditions,

δgab
∣∣
∂V = 0 , (2.54)

the extrema of the action leads to the Einstein field equations. Note this

condition also implies the variation of the induced metric hab is zero on the

boundary. To aid us in the computation we note the following results,

δgab = −gamgbnδgmn , (2.55)

δ
√−g = −1

2

√−g gabδgab , (2.56)

δRab = ∇mδΓ
m
ba −∇bδΓ

m
ma , (2.57)

δΓabc
∣∣
∂V =

1

2
gam (δgmb,c + δgmc,c − δgbc,m) . (2.58)

In the last identity the fact that the variation of the metric is zero on the

boundary is used to convert the usual covariant derivatives of δgab into partial

derivatives.
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Varying the Hilbert term and using the above results leads to,

16πδSH =

∫
V

(
Rabδg

ab − 1

2
Rgabδg

ab +∇m[gabδΓmab − gmnδΓaan]

)√−g d4x

=

∫
V
Gabδg

ab
√−g d4x+ ε

∮
∂V

[gabδΓcab − gcdδΓaad] nc
√
|h| d3y ,

(2.59)

where in the second line we have used Stokes’ theorem eq. (2.29) and nc is

the unit normal to the surface. Now using the last of the identities we have

gabδΓcab−gcdδΓaad = gcmgab(δgmb,a−δgab,m), and the right most term becomes,

ε

∮
∂V

[gab(δgcb,a − δgab,c)] nc
√
|h| d3y

= ε

∮
∂V

(εnanb + hab)(δgcb,a − δgab,c) nc
√
|h| d3y

= ε

∮
∂V
hab(δgcb,a − δgab,c) nc

√
|h| d3y . (2.60)

In the third line we have used the antisymmetry to get rid of the term

multiplied by nanc. Further, since the variation of the metric is zero on the

boundary, its tangential derivative must also vanish. This implies δgab,ch
cd =

0 and we are left with,

− ε
∮
∂V
habδgab,cn

c
√
|h| d3y . (2.61)

This term is exactly equal in magnitude and opposite in sign to the variation

of the boundary term δSB. That is, using the identity

K = habna;b = hab(na,b − Γcabnc) , (2.62)

we have

16πδSB[g] = 2ε

∮
∂V
δK

√
|h| d3y

= −2ε

∮
∂V
habδΓcab nc

√
|h| d3y

= ε

∮
∂V
habδgab,cn

c
√
|h| d3y , (2.63)



2.3. LAGRANGIAN FORMULATION 19

In the third line we have used the fact that the tangential derivatives of the

variation of the metric must vanish on the boundary.

Since S0 depends only on the induced metric, through
√
h, its variation

vanishes on the boundary. Thus now including a matter action of the form,

Sm =
∫
V Lm

√−g d4x, we are left with

δ [SG + Sm] =
1

16π

∫
V

(
Gab +

δSm
δgab

)
δgab
√−g d4x . (2.64)

Hence defining the stress energy tensor, Tab ≡ −1/2 δSm/δgab, the extrema

of the action δS = 0 implies the Einstein equations,

Gab = 8πTab .

Finally the purpose of the non-dynamical S0 term is to ensure the action

remains finite. The value of the action for a solution to the vacuum equations

(where R = 0) is,

SG = SB − S0 =
1

8π

∮
∂V
ε(K −K0)

√
|h| d3y . (2.65)

In the limit of spatial infinity this term can be shown to be finite when K0

is interpreted as being the value of the trace of the extrinsic curvature of the

boundary ∂V when embedded in flat space.
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Chapter 3

Aspects of Quantum Field

Theory in Flat Spacetime

In this chapter we introduce the basics of quantum field theory (QFT) in

flat spacetime necessary for understanding the Hawking Effect in curved

spacetime. We also highlight the usefulness of Wick rotation and Euclidean

methods, and the correspondence with statistical mechanics. The are many

text books on quantum field theory, in particular, we refer the reader to the

books by Birrell and Davies [7] and Peskin and Schroeder [8] for the material

presented here.

3.1 Preliminaries and Canonical Quantisation

There are two standard ways to quantising a field theory. In this section

we review the basic concepts and present the canonical method in terms of

creation and annihilation operators. We show results here for a scalar field

and eschew the complications of higher spin.

3.1.1 Free Scalar

A free scalar field, φ(xa), has the Lagrangian density,

L = −1

2

(
∂aφ∂aφ+m2φ2

)
, (3.1)

21
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in flat space with metric ηab = diag(−1,+1,+1,+1). The canonical conju-

gate momentum of the field is defined by

π(xa) =
∂L

∂(∂tφ)
= ∂tφ(xa) . (3.2)

This allows the Hamiltonian density to be constructed via the Legendre trans-

form,

H = π(t,x)∂tφ(t,x)−L

=
1

2

[
(∂tφ)2 + (∇φ)2 +m2φ2

]
. (3.3)

Variation of the action, c.f. Chapter 2, leads to the Klein-Gordon equation,

(
−�+m2

)
φ(xa) = (∂2

t −∇2 +m2)φ(xa) = 0 . (3.4)

This has plane wave solutions,

uk =
1√
2ω

eik·x−iωt , (3.5)

where, ω = (|k|2 + m2)1/2. These are called positive frequency modes with

respect to t,
∂

∂t
uk(t,x) = −iω uk(t,x) , (3.6)

for ω > 0.

One can define the inner product,

(φ1, φ2) = −i
∫

d3x
(
φ1(x)∂tφ

∗
2(x)− ∂t[φ1(x)]φ∗2(x)

)
. (3.7)

It can be seen that the positive frequency modes eq. (3.5) form a complete

orthogonal basis and so the field can be expanded,

φ(t,x) =
∑
k

(
ak uk(t,x) + a†k u

∗
k(t,x)

)
. (3.8)

We shall often ignore the subtleties in switching between discrete and contin-

uous expansions, in general the prescription
∑

k →
∫

dnk
(2π)n

can be employed.
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3.1.2 Quantisation

The canonical way to quantise a system is to promote the field to an operator

in a Hilbert space, φ→ φ̂, and impose the equal time commutation relations,[
φ̂(t,x), φ̂(t,x′)

]
= 0 , (3.9)[

π̂(t,x), π̂(t,x′)
]

= 0 , (3.10)[
φ̂(t,x), π̂(t,x′)

]
= i δ(3)(x− x′) , (3.11)

where π̂ is the canonical momentum operator, c.f eq. (3.2) and δ(3)(x) is the

three dimensional Dirac-delta function. Working in the Heisenberg picture,

where the time evolution of an operator is given by φ̂(t,x) = eiĤt ˆφ(x)e−iĤt,

one can show that the operator φ̂ obeys the classical equation of motion

eq. (3.4). Using the expansion of the field, eq. (3.8), the commutation rela-

tions are equivalent to imposing,

[
âk, âk′

]
= 0 , (3.12)[

â†k, â
†
k′

]
= 0 , (3.13)[

âk, â
†
k′

]
= δkk′ . (3.14)

The operators â
(†)
k are called annihilation (creation) operators reminiscent

of the quantum harmonic oscillator. In the Fock-Space representation of the

Hilbert space the basis ket vectors, | 〉, are built from the state, | 0〉, called the

quantum vacuum state. This vacuum state is Lorentz invariant and contains

no particles; for all âk,

âk | 0〉 = 0 . (3.15)

Furthermore the operator â†k creates a particle in the state k,

| 1k〉 = â†k | 0〉 . (3.16)

Many particle states are then built by repeated application of creation oper-

ators to the vacuum state,

∣∣ 1nk1 ,
2 nk2 , ...

inki

〉
=

(
1

1n! 2n...in!

)1/2

(â†k1
)
1n(â†k2

)
2n...(â†ki

)
in | 0〉 . (3.17)
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This state contains jn particles in the mode kj and the pre-factor normalises

the state. Application the of creation (annihilation) operator to a state nk

creates (destroys) a particle in this state, that is,

â†k |nk〉 =
√
n+ 1 | (n+ 1)k〉 , (3.18)

âk |nk〉 =
√
n | (n− 1)k〉 . (3.19)

We can define the number operator,

N̂k = â†kâk (3.20)

which measures the number of particles in state k, that is,

〈0 | N̂k | 0〉 = 0 , (3.21)〈
1nk1 ,

2 nk2 , ...
inki

∣∣ N̂kj

∣∣ 1nk1 ,
2 nk2 , ...

inki

〉
= jn . (3.22)

Using this the Hamiltonian operator c.f. eq. (3.3) can be written,

Ĥ =
∑
k

(
â†kâk +

1

2

)
ω (3.23)

=
∑
k

(
N̂k +

1

2

)
ω . (3.24)

The sum
∑

k
1
2
ω represents the vacuum energy.

So far we have presented the formalism of a many particle free scalar field

theory. We now turn to the question of the probability for a particle to

propagate from one point to another.

3.1.3 Green Functions and Propagators

The Feynman propagator is of great importance as it represents the am-

plitude (or probability) of propagation from xa to yb. It is given as the

expectation value of time ordered product of the fields, φ̂, at xa and yb.
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That is,

DF(x− y) = 〈0 |T{φ̂(xa) ˆφ(ya)} | 0〉
= Θ(x0 − y0) 〈0 | φ̂(xa)φ̂(yb) | 0〉+ Θ(y0 − x0) 〈0 | φ̂(yb)φ̂(xa) | 0〉 ,

(3.25)

where T is the time ordering operation, and Θ(x) is the Heaviside step func-

tion. Using the commutation relations and the properties of Θ it can be

shown that the propagator is a Green function of the Klein-Gordon equa-

tion. That is,

(
−�+m2

)
DF (xa − yb) = −iδ(4)(xa − ya) . (3.26)

Here δ(4)(x) is the Dirac-delta function in 4D. An explicit expression for the

propagator is given by,

DF(x− y) =

∫
d4p

(2π)4

−i
p2 +m2 − iεe

ip·(x−y) , (3.27)

where we have used the notation pa = (ω,k), d4p = dωd3k, so that p2 =

−ω2 + k2. The iε is introduced to aid convergence; it is understood that the

final result is obtained in the limit ε→ 0. Often the Fourier transform of the

propagator is a more useful representation, that is,

DF(p) =
−i

p2 +m2 − iε . (3.28)

At this point we have laid the background for a free scalar field. However

the real complications of a quantum field theory come from the interactions

between the particles of the field. Writing the interacting Hamiltonian as

the sum, H = H0 + VI , where H0 is the free Hamiltonian and VI represents

the interactions, one seeks to express the evolution of the interacting fields

in terms of expressions of free field. That is, one seeks to find the propagator

〈Ω |T{φ̂(x)φ̂(y)} |Ω〉 , (3.29)

where |Ω〉 represents the ground state of the interacting theory and φ̂ is

governed by the full Hamiltonian. It turns out that there is a perturbative
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expansion for this in the free propagator eq. (3.27) whose terms can be for-

mulated by Feynman diagrams. Using this one can then find the scattering

amplitudes of various experimental configurations. Working with this pertur-

bative expansion will not concern us in this thesis. Moreover, the formalism

in this section can be generalised to other fields of higher spin accompanied

by varying levels of complication, again that exercise is not the focus of this

work.

3.2 Path Integral Formulation

The quantisation of a field can also be approached from the path integral

representation of quantum mechanics. One advantage of this approach is

that it is a priori Lorentz invariant for a Lorentz invariant Lagrangian and

hence can be translated to a fully general relativistic setting more easily. In

this formalism the quantum mechanical amplitude to propagate from xa to

yb is the sum over all paths from xa to yb with a phase factor given by the

value of the classical action along that path. Each path is equi-probable

but carries a different phase. This becomes, for a field φ with source J , the

functional integral representing the transition between initial and final vacua

| 0, in〉, | 0, out〉,

Z[J ] = 〈out, 0| 0, in〉 =

∫
D[φ] exp

(
iS[φ] + i

∫
d4x J(x)φ(x)

)
, (3.30)

where D[φ] is the appropriate measure of the space of functions φ and S[φ] is

the classical action. See [9] for a detailed approach to this construction. The

connected Feynman diagrams for the perturbation theory of an interacting

field, as described above, are given by functional differentiation,

〈0 |T{φ(x1)...φ(xj)} | 0〉 = (−i)j δj lnZ

δJ(x1)..δJ(xj)

∣∣∣∣
J=0

. (3.31)

These are effectively terms in a Taylor series type approximation to eq. (3.30).

In special cases, for example, a free field this can be solved exactly. Defining

the operator

Kxy = (−�x +m2 − iε)δ4(x− y) , (3.32)
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which has inverse K−1
xy = iDF(x− y) and using techniques of Gaussian inte-

grals for matrices eq. (3.30) becomes

Z[J ] ∝ det[K1/2]−1 exp

(
−1

2

∫
d4x d4y J(x)DF(x− y)J(y)

)
. (3.33)

Thus it follows from eq. (3.31) that

〈0 |T{φ(x)φ(y)} | 0〉 = − δ2 lnZ

δJ(x)δJ(y)

∣∣∣∣
J=0

= DF(x− y) , (3.34)

which agrees with the previous expression.

3.3 Wick Rotation and Euclidean Methods

In many cases the calculations of QFT in Minkowski space can be made easier

by employing a Wick rotation sending time to imaginary time, t→ τ = −it.
In this section we present some examples of such calculations as motivation

for Chapter 6 of this thesis, in which, we consider how to generalise this to

a procedure in curved spacetime.

3.3.1 Euclidean Propagators

The Feynman propagator, e.q (3.27), has poles at ω2 = k2 + m2 − iε = 0.

That is, using the infinitesimal property of ε, for ω = ±(ωk − iε). One can

perform the integral over p0 by an excursion into the field of complex contour

integrals and the residue theorem. When x0 > y0 the contour can be closed

by a semi-circle in the lower half plane picking up the pole at ωk− iε. When

y0 > x0 one can close the contour with a semicircle in the upper half plane,

which picks up the pole −ωk + iε and gives the same propagator but with

x and y reversed, that is, DF(y − x). Thus the iε prescription, which aids

convergence, also encodes the information on the time ordering.

It can be seen that the original Feynman prescription for evaluating the

contour is equivalent to Wick rotating t → τ = −it and p0 → κ = −ip0

which rotates the contour 90o anticlockwise and picks up the same pole.

This is shown below in Fig. 3.1.
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x

xx

x

Wick Rotate

Figure 3.1: The contour integral of the time coordinate in the Feynman
propagator is equivalent the Wick rotated contour along the imaginary time
axis.

Doing this leads the relation between the propagators,

DF(t,x; t′,x′) = −iDE(iτ,x; iτ ′,x′) , (3.35)

where DE(x) is the Wick rotated (Euclidean) propagator. Further it can be

seen in Fig 3.1 that the infinitesimal iε is not needed to shift the poles, thus

the Wick rotated propagator automatically incorporates the time ordered

property.

Euclidean propagators first become especially useful when doing loop level

calculations in the Feynman diagram perturbation scheme. Not only do they

have the time-ordered property built in, but by going to Euclidean space the

underlying symmetry group changes from SO(3, 1) to SO(4). This facilitates

many of the integrations encountered in the loop diagram expressions and

can be made rigorous via the Osterwalder–Schrader conditions [10].

3.3.2 Finite Temperature

Euclidean propagators also become particularly useful for finite temperature

quantum field theories. At a finite temperature T = 1/β the expectation

value of an operator 〈Â〉 becomes 〈ρ̂Â〉, where the density operator at thermal

equilibrium is

ρ̂ =
1

ZG

exp
(
− β(Ĥ − µN̂)

)
. (3.36)
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Here ZG is the grand-canonical partition function,

ZG = Tr
[
exp

(
− β(Ĥ − µN̂)

)]
, (3.37)

Ĥ is the Hamiltonian operator, c.f. eq. (3.3) and eq. (3.23), µ the chemical

potential, and N̂ the number operator, eq. (3.20). Using this thermal average

one can show that the Euclidean propagators must be periodic in imaginary

time with period β, that is,

DE(τ,x; τ ′,x′) = DE(τ + β,x; τ ′,x′) . (3.38)

Therefore a finite temperature quantum field theory in flat space corresponds

to a statistical quantum mechanical system with periodic boundary condi-

tions, that is, on the circle cross Euclidean three space, S×R3. This is made

rigorous with the Kubo, Martin, Schwinger (KMS) condition [11, 12].

3.3.3 Euclidean Path Integral and the Partition Func-

tion

The Wick rotated Euclidean path integral, ignoring the source term, is given

by,

Z =

∫
D[φ] exp (−SE[φ]) , (3.39)

where, SE[φ], is the Wick rotated action, obtained from eq. (3.30) in the

limit t → −it. This rotation picks up a factor of −i from the change in

determinant of the Minkowski metric. That is, 1 =
√−gL →

√−gE = −i.
This Euclidean path integral eq. (3.39) has the advantage of being mathe-

matically well defined as a Wiener integral. The techniques presented in the

previous section for the Lorentzian path integral are best understood in a

formal sense.

One further consequence of the correspondence of finite temperature quan-

tum field theory and statistical mechanics is that the path integral eq. (3.30)

when Wick rotated and subject to periodic boundary conditions becomes

the partition function of the statistical system, that is, ignoring the chemical
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potential µ,

ZG = Tr
[
exp

(
− βĤ

)]
=

∫
D[φ] exp

(
−
∫ β

0

dτ

∫
d3x LE

)
. (3.40)

This is apparent since the Euclidean Lagrangian density,

LE
√
gE = −i lim

t→−it

[
L
√−gL

]
=

(
1

2

[
(∂tφ)2 + (∇φ)2 +m2φ2

]
+ VI(φ)

)√
gE , (3.41)

corresponds exactly to the interacting Hamiltonian. Thus, a system which is

periodic in imaginary time τ with period β corresponds to a thermal system

with temperature β−1. In the zero temperature limit, β →∞, the standard

Wick rotated QFT can be recovered.

In the next chapter we look at the generalisation QFT to a generic curved

spacetime. It will be seen that without a unique time direction and time-like

Killing vector many of the methods presented here break down.



Chapter 4

Applications of Quantum Field

Theory in Curved Spacetime

In this chapter we generalise the concepts presented in Chapter 3 to a fixed

curved spacetime background. In this process we build up to the derivation

of Hawking radiation from black holes. We present two routes to this result;

the first is the original derivation by Hawking [13] based on fields propagating

near a collapsing body which forms a horizon, while the second employs a

Wick rotation and the methods of Euclidean quantum field theory. Once

more we consider a scalar field for simplicity. We refer the reader again to

Birrell and Davies [7] for more details.

4.1 Extension to Curved Space

The Lagrangian of the free scalar field, φ, eq. (3.1), is modified as the flat

space metric, ηab, becomes an arbitrary metric, gab, which is a solution to

the Einstein field equations (2.37). Further the field is able to couple to the

Ricci scalar of the spacetime, that is,

L = −1

2

(
∂aφ∂aφ+m2φ2 + ξR

)
, (4.1)

31
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where, ξ, is a numerical coupling constant. Variation of the Lagrangian leads

to the equations of motion

−∇a∇aφ+ (m2 + ξR)φ = 0 . (4.2)

Here ∇a is the covariant derivative with Christoffel connection. Now the

inner product eq. (3.7) can be generalised to,

(φ1, φ2) = −i
∫

Σ

(
φ1(x)Lnφ∗2(x)− Ln[φ1(x)]φ∗2(x)

)
dΣ , (4.3)

where Ln is the Lie derivative along na, a future directed time-like vector

orthogonal to the space-like hypersurface Σ. It can be shown that this inner

product is independent of the choice of hypersurface [14].

For eq. (4.2) it is still possible to find an orthonormal basis, ui, u
∗
i , such that,

(ui, uj) = δij , (u∗i , u
∗
j) = −δij , (ui, u

∗
j) = 0 . (4.4)

And using this the field maybe expanded,

φ(x) =
∑
i

[
ai ui(x) + a†i u

∗
i (x)

]
. (4.5)

One then can quantise the field by again promoting to operators in a Hilbert

space a
(†)
i → â

(†)
i and introducing the commutation relations c.f. eq. (3.12),

[
âi, âj

]
= 0 ,

[
â†i , â

†
j

]
= 0 ,

[
âi, â

†
j

]
= δij . (4.6)

This process however is not unique and can have physical implications as we

shall see. Propagators for eq. (4.2) as Green functions can be obtained via

the relation,

[
−∇a∇aφ+ (m2 + ξR)

]
D(x, x′) =

√−g δ4(x− x′) . (4.7)

However, in order to specify the time ordered nature of the causal Feyn-

man propagator one needs to impose boundary conditions. These are not so

simple in the curved space setting as choosing a contour of integration. We

shall return to this when we consider the generalisation of Wick rotation in

Chapter 6.
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4.1.1 Quantum Vacuum States and Particles

Now the expansion of φ(x) in terms of ui(x) defines a quantum vacuum state

for the operators â
(†)
i by,

âi | 0〉 = 0, for all i. (4.8)

However, a generic metric gab does not have the same symmetries as the flat

Minkowski space. In particular there is not necessarily a time-like Killing

vector, ∂t, which was used in Chapter 3 to define positive eigen-frequency

modes, uω, and a quantum vacuum state, | 0〉, which was invariant under

Lorentz transformations.

This means that, in the curved space setting, a second observer can define a

different mode expansion based on new orthonormal modes ūi, ū
∗
i ,

φ̂(x) =
∑
i

[
b̂i ūi(x) + b̂†i ū

∗
i (x)

]
, (4.9)

which defines a new vacuum state | 0̄〉,

b̂i | 0̄〉 = 0 , for all i. (4.10)

Since each mode expansion forms a basis they can be written as a linear

combination of each other,

ūi =
∑
j

[
αij uj + βij u

∗
j

]
, (4.11)

ui =
∑
j

[
α∗ijūj − βijū∗j

]
, (4.12)

where, αij = (ūi, uj), and, βij = −(ūi, u
∗
j), are known as Bogoliubov coeffi-

cients. These Bogoliubov coefficients satisfy the following properties,∑
k

[
αikα

∗
jk − βikβ∗jk

]
= δij , (4.13)∑

k

[αikβjk − βikαjk] = 0 . (4.14)

Equating the field expansions eq. (4.5) and eq. (4.9) and using the orthonor-
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mality of the modes, the operators can be related to each other via,

âi =
∑
j

[
αij b̂j + β∗ij b̂

†
j

]
, (4.15)

b̂i =
∑
j

[
α∗ij âj − β∗ij â†j

]
. (4.16)

Thus it is clear that number of particles the second observer measures in the

original vacuum | 0〉 is non-zero. That is,

〈0 | ˆ̄N | 0〉 = 〈0 | b̂†i b̂i | 0〉 =
∑
j

|βij|2 . (4.17)

If, however, there is a time-like Killing vector, ∂t, used to define both positive

frequency modes, uω, and, ūω, then βωω′ = 0 and they share a common

vacuum. We shall see the consequences of eq. (4.17) in the next two sections.

4.2 The Unruh Effect

Strictly speaking the Unruh effect [15, 16, 17] occurs in Minkowski space-

time. However, it serves as a useful example of the influence of non-inertial

observers on the detection of particles and as a way to understand the Hawk-

ing radiation process.

Consider an accelerating observer with a constant acceleration, a, in flat

Minkowski spacetime. We shall call them a Rindler observer who uses proper

time along their world line as a time coordinate. We will compute the number

of particles the Rindler observer measures. To simplify the calculation we

shall work in (1+1) spacetime.

An inertial observer in Minkowski space has metric c.f. eq (2.4),

ds2 = −dt2 + dx2 = −dū dv̄ , (4.18)

where, ū = t − x, and v̄ = t + x are ingoing and outgoing null coordinates.

The Rindler observer has metric,

ds2 = −ea(v−u)du dv = e2aX(−dT 2 + dX2) , (4.19)
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where 2X = u − v and 2T = u + v. The two observers’ coordinates are

related by the transformation,

v =
1

a
ln v̄ , u =

1

a
ln(−ū) . (4.20)

It can be seen that the Rindler coordinates only represent a wedge of Minkowski

spacetime, since the accelerating observer never exceeds the speed of light.

That is, the observer is bounded by the x = ±t surfaces which in analogy

with black holes we denote as the horizons H−, H+. On these the time-like

Killing vector ∂T becomes null.

Consider now a free massless scalar field. In the global inertial coordinates,

one can define the basis of positive frequency ingoing and outgoing modes,

fω, jω respectively by,

fω =
1√
2πω

e−iωv̄ , jω =
1√
2πω

e−iωū . (4.21)

The scalar field is then given by,

φ̂ =

∫
dω
(
âωfω + â†ωf

∗
ω + d̂ωjω + d̂†ωj

∗
ω

)
, (4.22)

where the mode operators â, d̂ annihilate the global inertial vacuum as in

Chapter 3,

â | 0, in〉 = 0 = d̂ | 0, in〉 , for all ω > 0 . (4.23)

We now assume the field is in this vacuum state.

Due to the conformal invariance of the (1+1)D wave equation for a massless

scalar field, the Rindler observer also has a basis of plane wave modes in their

coordinates,

qω =
1√
2πω

e−iωv , pω =
1√
2πω

e−iωu . (4.24)

Thus on the Rindler wedge the field can also be expanded as,

φ̂ =

∫
dω
(
b̂ωpω + b̂†ωp

∗
ω + ĉωqω + ĉ†ωq

∗
ω

)
, (4.25)

where the operator, b̂†ω (ĉ†ω), creates ingoing (outgoing) Rindler particles.

The calculation begins by assuming we have an outward propagating Rindler
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wave packet on future null infinity, I +, i.e. φ → pω. We want to find the

form of the field in the far past, which consists of H− and I −. However as

spacetime is flat there is no scattering of the scalar field and thus only travels

from I + to H−. Thus we need to find the Bogoliubov coefficients on H−,

αωω′ = (pω, jω′)H− , βωω′ = −(pω, j
∗
ω′)H− = −iαω−ω′ . (4.26)

Now we have,

αωω′ = −i
∫ 0

−∞
dū (pω∂ūj

∗
ω′ − ∂ūpωj∗ω)

=
1

2π
√
ωω′

∫ 0

−∞
dū
(
ω′ − ω

aū

)
eiω
′ūei

ω
a

ln(−ū)

=
i

π
√
ωω′

(iω)−i
ω
a Γ
(

1 + i
ω

a

)
. (4.27)

In the last line we have used the Gamma function, Γ(s) =
∫∞

0
e−zzs−1, in a

distributional/generalised function sense, and the property Γ(s+ 1) = sΓ(s).

Using eq. (4.26), the βωω′ coefficients can be obtained from eq. (4.27), by

ω′ → −ω′. Due to the prefactor (iω)−i
ω
a there is a logarithmic singularity at

ω′ = 0. So one needs to analytically continue this expression anticlockwise

around this singularity [13]. This yields the relation,

|αωω′ | = exp
(πω
a

)
|βωω′| . (4.28)

Eq. (4.28) can be used to find the number of particles the Rindler observer

detects. Using the properties in eq. (4.13), we have,∫
dω′

(
|αωω′|2 − |βωω′|2

)
= δ(0) . (4.29)

Therefore combining eq. (4.28) and eq. (4.29),

〈0 | ˆ̄Nω | 0〉 =

∫
dω′|βωω′ |2 =

[
exp

(
2πω

a

)
− 1

]−1

δ(0) . (4.30)

The δ(0) term is the consequence of considering plane waves which extend
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over infinite volume. Hence the number of particles per unit volume is,

n̂ω =

[
exp

(
2πω

a

)
− 1

]−1

, (4.31)

which represents a thermal spectrum with temperature,

T =
a

2π
. (4.32)

In the case of the Rindler observer it can be shown that the thermal spectrum

they measure uses the energy of the accelerating detector to create particles

in the vacuum. This is a toy model which requires a constant acceleration

over an infinite time. Naturally, the response to a realistic acceleration would

be much messier in the details.

4.3 Hawking Radiation

We now turn to the previously anticipated Hawking effect. The details of

the calculation will turn out to be very similar to the Unruh effect of the

previous section.

Early work by Bardeen, Cater, and Hawking in the 1970s suggested that

black holes obey a set of rules heuristically very similar to the laws of ther-

modynamics [18]. With surface gravity, κ, playing the role of temperature

and surface area of the horizon, A, playing the role of entropy. Beckenstein

had also earlier proposed black holes have entropy proportional to their sur-

face area [19]. This turned out to be more than just a correspondence when in

1974 Hawking showed that quantum field theoretical effects in curved space-

time indeed lead to a black holes having a temperature proportional to their

surface gravity, TH = κ/2π [13, 20].

4.3.1 Original Derivation

We present here the original derivation based on a collapsing spherically

symmetric body which forms a black hole. We refer the reader to Hawk-

ing [13] and Birrell and Davies [7] for more details. This process is shown by

a Penrose–Carter diagram in Fig. 4.1.
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Figure 4.1: The conformal Penrose–Carter diagram for a collapsing spheri-
cally symmetric body. The massive body is shown in shaded grey. Once its
radius drops below r = 2M a horizon, H+, forms.

In the quasi-static situation after the collapse the metric is given by the

Schwarzschild solution eq. (2.40). It is useful to consider the Kruskal-Szekeres

form of the metric eq. (2.43),

ds2 = −2M

r
e−r/2MdUdV + r2(dθ2 + sin2 θ dϕ2) .

For a spherically symmetric wave equation we can always decompose the

solution into angular momentum modes φm,`,ω, which is what we consider

henceforth. Here m labels the azimuthal angular momentum number and `

the principle angular momentum number. We assume further a minimally

coupled field, that is ξ = 0 in eq. (4.1).

In the distance null past, that is, on I −, the spacetime is approximately flat

Minkowski space as the strong gravitational effects are near the spherical

body. This means modes can be expanded in positive frequency solutions,

fω, to the flat space wave equation with respect to Minkowski time,

fω → e−iωv , on I −, (4.33)

where v is the ingoing null coordinate for flat space.
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Further we can assume a vacuum state | 0, in〉, defined by,

âω | 0, in〉 = 0 , for all ω > 0 . (4.34)

As before the field can be expanded in terms of the creation (annihilation)

operators, â
(†)
ω ,

φ =

∫
dω (âωfω + â†ωf

∗
ω) . (4.35)

At late times modes must defined on both I + and the horizon H+, call these

pω and qω respectively. We require the out-states to be solutions to the wave

equation with the asymptotic form such that,

pω → e−iωu , on I +. (4.36)

We note, the choice of modes qω on the horizon H+ does not affect the result

of the calculation [13]. Thus the field can also be expanded,

φ =

∫
dω

(
b̂ωpω + b̂†ωp

∗
ω + ĉωqω + ĉ†ωq

∗
ω

)
. (4.37)

Considering a mode of frequency ω propagating from I − towards the hori-

zon. The wave essentially scatters in two parts. A portion 1− Tm,l(ω) scat-

ters off the gravitational field and propagates out to I +. The other fraction

Tm,l(ω) travels parallel to the horizon H− and is absorbed. This fraction

leads to particle production and so we separate the modes in to these two

parts; fω = f
(1)
ω + f

(2)
ω and likewise for pω, qω. The Bogoliubov coefficients

can be expressed with this decomposition as,

αωω′ = α
(1)
ωω′δωω′ + α

(2)
ωω′ , βωω′ = β

(2)
ωω′ ,

Tm,`(ω) =

∫
dω′

(
|α(2)
ωω′|2 − |β

(2)
ωω′|2

)
. (4.38)

To obtain finite expressions for Tm,`(ω) in the above equation one can consider

wave packets peaked about the frequency, ω, which are square integrable; this

does not change the key points of the calculation.

To evaluate the Bogoliubov coefficients, consider the boundary conditions

such that the field φ → pω as before. We then need to find expressions

for this field on I − and decompose it into positive and negative frequency
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components. Now trace the mode backwards in time along a path, γ, from

I + along the null-geodesic u = u1 which passes near to the horizonH+ which

lies on u = u0. It then passes out through the collapsing mass to I − along

the geodesic v1; these are shown in Fig. 4.1. Inward travelling modes with

v > v0 fall into the horizon which forms. The ray γ is connected to u0 and v0

be a small geodesic deviation vector εna. By considering the null geodesics

on the horizon and the geodesic equation in local inertial coordinates near

the horizon, one can show that ε ∝ λ, where λ is an affine parameter of

the null generators of the horizon. Using eq. (2.13) and eq. (2.44), for the

Schwarzschild metric, the affine parameter is given by,

λ ∝ e−κu = U , (4.39)

where κ = 1/4M is the surface gravity of the horizon. Near I − in the

distant past, since spacetime is nearly flat v1 is connected to v0 by,

v0 − v = ε = Ce−κu . (4.40)

Thus using the boundary condition φ ∼−iωu on I + on I − we have for

v1 < v0,

φ ∼ ei
ω
κ

ln( v0−v1C ) . (4.41)

Those modes with v1 > v0 are zero on I − as they can not come from behind

the horizon. Eq. (4.41) is comparable to the case of the Rindler observer

in the previous section and thus leads the same relation for the Bogoliubov

coefficients,

|αωω′ | = e
πω
κ |βωω′| , (4.42)

with a → κ. Thus the number of particles detected is a thermal spectrum

with Hawking temperature,

TH =
κ

2π
, (4.43)

similar to the previous situation but modified by the fraction of particles

which scatter off the gravitational field. This fraction is called the greybody

factor, T`,m(ω). So the number of particles measured in a given mode is,

n̂ω = T`,m(ω)

[
exp

(
2πω

κ

)
− 1

]−1

, (4.44)
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This can be extended to a generic black hole and massless particle with spin,

s, where the Hawking temperature is given by the surface gravity on the

horizon of the generic black hole [13]. The study of greybody factors for a

Schwarschild black hole forms the basis of the next chapter.

4.3.2 Hawking Radiation via Wick Rotation

There is another way to arrive at the thermal spectrum result of the last

section via a Wick rotation [21]. The Schwarzschild geometry is very special

in that it has a time-like Killing vector, ∂t and no rotation, i.e. is static.

This allows one to analytically continue the time coordinate t → τ = −it
and obtain a real valued Euclidean signature metric,

ds2 =

(
1− 2M

r

)
dτ 2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) . (4.45)

This is valid outside the horizon r = 2M where t is a time-like coordinate.

Near r = 2M the pre-factor can be approximated,

1− 2M

r
' 2κ(r − 2M) +O([r − 2M ]2) , (4.46)

where κ = 1/4M is again the surface gravity. Now by the coordinate trans-

formation κ2R2 = 2κ(r − 2M), we have dr ' κR dR. So defining the solid

angle dΩ2 = dθ2 + sin2 θ dϕ2, the Euclidean metric takes the form,

ds2 ' R2κ2dτ 2 + dR2 + (2M)2dΩ2 . (4.47)

We can, for simplicity, drop the angular part and consider only the 2D line

element,

ds2 ' R2κ2dτ 2 + dR2 . (4.48)

These two terms represent the line element of a cone with τ the angular co-

ordinate. If we require the analytically continued metric to be non singular

at the horizon, R = 0, then τ must be periodic with β = 2π/κ to avoid

a conical singularity [21]. Thus using the Euclidean methods in the previ-

ous section the periodic metric tensor field implies a thermal system with

Hawking temperature TH = β−1 = κ/2π for a Schwarzschild black hole.
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This is a very quick and simple way to obtain the Hawking temperature

and is highly suggests that Euclidean techniques could have applications

in a quantum theory of gravity. However the Wick rotation used requires

the metric to be static and it is not clear if it can be generalised to arbitrary

geometries or if indeed it makes any sense to do so. The process of generalised

Wick rotation will be the focus of Chapter 6.

We now continue with a study of the greybody factors that arise in the

Hawking emission process.



Chapter 5

Greybody Factors

The greybody factors which arise in the Hawking radiation process and in-

fluence the emission of particles from black holes are intimately related to

the scattering of particles by the gravitational potential of the black hole.

In the first section of this chapter we present some of the important physical

quantities from the emission process in terms of the greybody factors. In

the second section we show that the problem of the greybody factors can

be reduced to finding the transmission probabilities for a one dimensional

(1D) Schrödinger type equation with Regge–Wheeler potential. We present

the conventional methods of analysis via asymptotically plane wave solu-

tions with some analytic results for low frequencies. The third and fourth

sections develop a new method for their calculation based on a transfer ma-

trix approach and path ordered exponentials and present the results of the

numerical implementation of this method. Finally the last section outlines

some of the physical implications of the greybody factors and the possible

extensions to this work.

5.1 Emission Rates from Schwarzschild Black

Holes

For simplicity we consider massless fields of spin, s ∈ 0, 1, 2, (i.e. scalars, pho-

tons, and gravitons), in the Schwarzschild black hole spacetime with metric

43
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as in eq. (2.40)

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2)

We now derive some of the important physical quantities from the Hawking

process that require explicit knowledge of the greybody factors. The emission

rate, d2Ns(ω)/dtdω, represents the total probability for an emission per unit

time, per unit frequency of a particle of spin s, and frequency, ω. It is

given by the sum over the greybody factor (transmission probability), T`,s(ω)

(see eq. (4.44)), for each principal and azimuthal angular momentum mode,

(which in the case of spherical symmetry are equi-probable), multiplied by

the probability for a particle to be in a given mode P`,s(ω). See references [13,

20, 22, 23]. That is,

d2Ns(ω)

dt dω
=
∞∑
`=s

(2`+ 1)T`,s(ω)P`,s(ω) . (5.1)

For integer spin particles the probability for a the particle to be in a particular

mode is given by the Bose–Einstein distribution,

P`,s(ω) =
g

2π

1

exp (ω/TH)− 1
, (5.2)

and g is the number of polarizations for a given spin s. Recall from eq. (4.43),

TH = κ/2π is the Hawking temperature which for a Schwarzschild black hole

is 1/8πM . Eq. (5.1) represents the rate of the emission of particles. Each

particle carries a quantum of energy, ω, and so the energy emission is given

by
d2Es(ω)

dt dω
= ω

d2Ns(ω)

dt dω
. (5.3)

Another physically important quantity is the cross-section, σ(ω), which rep-

resents an effective area that embodies the likelihood of a particle to be

scattered, i.e. deflected, by the black hole. This is intimately related to the

probability of transmission through the potential barrier [23],

σs(ω) = πω−2

∞∑
`=s

(2`+ 1)T`,s(ω) (5.4)
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In the high frequency limit, Mω � 1, this approaches the classical geometric

optics cross-section σ∞ = 27πM2 [4, 23]. This can be used to define the

dimensionless measure, S(x), of the cross-section,

S(x) =
σ(x)

σ∞
=

1

27x2

∞∑
`=s

(2`+ 1)T`,s(x) , (5.5)

where x = Mω. Eq. (5.5) can then be used to rewrite eq. (5.1) and eq. (5.3)

in dimensionless form,

M
d2Es(x)

dt dω
= x

d2Ns(x)

dt dω
=

g

2π

27x3S(x)

exp (8πx)− 1
. (5.6)

With these physical quantities the radiation process can be well characterised.

In the next section we present the development of the Regge–Wheeler poten-

tial which governs the scattering process.

5.2 Regge–Wheeler Equation

In the early 1970s Price [24, 25] showed that scalar, photon and graviton

fields are governed by a complete set of dynamical gauge-invariant functions

Φ(s) which satisfy the wave equation in curved space. These can be shown to

reduce to a 1D Schrödinger type equation with the Regge–Wheeler potential.

The greybody factors are then related to the probability of transmission

found by analysing these wave equations. We present in detail the derivation

for a scalar field and show the results for the photon and graviton, see the

references [26, 27, 28, 29, 30] for more details on these.

5.2.1 Scalar

As in the previous chapter we consider a minimally coupled massless scalar

field Φ(0)(xa) in the Schwarzschild spacetime which satisfies,

∇a∇aΦ(0) = 0 , (5.7)

where ∇a is the covariant derivative with the Christoffel connection associ-

ated with the Schwarzschild metric gab given by eq. (2.40). Eq. (5.7) can be
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written purely in terms of partial derivatives as,

1√−g ∂a
[√−g gab ∂bΦ(0)(xa)

]
= 0 . (5.8)

Here, g = −r4 sin2 θ, is the determinant of the metric gab. Defining, f(r) ≡
1− 2M/r, this becomes,

−f−1∂2
t Φ

(0) +
1

r2
∂r[r

2f ∂rΦ
(0)]+

1

r2 sin θ
∂θ
[
sin θ ∂Φ(0)

]
+

1

r2 sin2 θ
∂2
ϕΦ(0) = 0 .

(5.9)

As a result of the spherical symmetry of the Schwarzschild solution the last

two terms in eq. (5.9) can be recognised as part of the 3D flat-space Laplacian

in spherical coordinates. Thus expanding in terms of spherical harmonics

Y`,m(θ, ϕ) we take as an ansatz,

Φ(0)(t, r, θ, φ) =
∞∑
`=0

∑̀
m=−`

Ψ`(t, r)

r
Y`,m(θ, ϕ) , (5.10)

where, ` is the principal angular momentum number. There are 2` + 1 az-

imuthal modes for each principle angular momentum mode. The remaining

function Ψ`(r, t) satisfies the equation,

− ∂2
t Ψ`(t, r) + f ∂r [f ∂rΨ`] =

f

r

(
`(`+ 1)

r
+ ∂rf

)
Ψ` . (5.11)

Changing variables to the tortoise coordinate, r∗, which is related to the

radial coordinate r implicitly by,

dr∗
dr

= f−1 =
1

1− 2M
r

, (5.12)

and assuming harmonic time dependence,

Ψ`(r, t) =
(
A(ω)e+iωt +B(ω)e−iωt

)
ψ`(r) (5.13)

eq. (5.11) becomes,

− d2ψ`
dr2
∗

+ V (r∗)ψ(r∗) = ω2ψ`(r∗) , (5.14)
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with potential,

V (r∗) =

[
1− 2M

r(r∗)

] [
`(`+ 1)

r(r∗)2
+

2M

r(r∗)3

]
. (5.15)

r and r∗ are related by r∗ = r + 2M ln(r/2M − 1) as in chapter 2. This can

be inverted explicitly

r(r∗) = 2M
[
1 + W

(
exp

( r∗
2M
− 1
))]

, (5.16)

where W(x) is the Lambert W function defined by [31]

WeW = x . (5.17)

This potential is shown below in Fig. (5.1). Note the increasing potential

height with increasing angular momentum number.
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Figure 5.1: The potential barrier (in units of (2M)2) for a scalar scattered
by a Schwarzschild black hole, for increasing angular momentum `.

Since the potential vanishes in the limit r∗ → ±∞ the solutions to eq. (5.14)

must asymptote to freely propagating plane waves in these regions. There-

fore, in a similar method to the derivation of Hawking radiation, we can
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choose to analyse incoming modes from the distant past, I −, which are nor-

malised to unity, which are then scattered by black hole and make it out to

the distant future I +. Due to scattering by the gravitational potential a

fraction of these become outgoing A
(`,0)
out and a fraction remain ingoing A

(`,0)
in .

That is we consider solutions obeying the asymptotic behaviour

ψ
(0)
` (r∗) ∼

e−iωr∗ r∗ → −∞
A

(`,0)
out e

iωr∗ + A
(`,0)
in e−iωr∗ r∗ → +∞

. (5.18)

From this the transmission probabilities can be obtained

T = 1−
∣∣∣∣∣A(`,0)

out

A
(`,0)
in

∣∣∣∣∣
2

. (5.19)

Next we present results for the photon and graviton cases and highlight the

similarities.

5.2.2 Photon

The scattering of the electromagnetic field, i.e. photons, can be analysed by

solving the source free Maxwell equations in the Schwarzschild spacetime,

∇aFbc = 0 , (5.20a)

εabcd∇bFcd = 0 , (5.20b)

where Fab = ∇aAb−∇bAa is the electromagnetic field tensor and εabcd is the

totally antisymmetric Levi–Civita tensor. Using the conformal invariance of

eq. (5.20a) and eq. (5.20b), and following reference [28, 29], the electromag-

netic four-potential can be constructed as1

Aa = (ubva − vbua)∂bΦ(1)
I + εbcda ucvd∂bΦ

(1)
II , (5.21)

1An alternative derivation may be found in [30].
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where va = (0, 1, 0, 0), ua = (1, 0, 0, 0). The scalar fields Φ
(1)
I , Φ

(1)
II are two

independent solutions which are expanded in terms of spherical harmonics

Φ
(1)
I(II) =

∞∑
`=1

∑̀
m=−`

Ψ
I(II)
` (t, r)Y`,m(θ, ϕ) , (5.22)

where ΨI
`(r, t), ΨII

` (r, t), are independent solutions to a 1D type Schrödinger

equation (i.e. eq. (5.14)) now with the potential

V (r∗) =

[
1− 2M

r(r∗)

] [
`(`+ 1)

r(r∗)2

]
. (5.23)

As before, ` is the angular momentum number, but now only ` ≥ 1 modes are

radiative. The transmission probabilities can found as before by considering

solutions with the asymptotic behaviour given by eq. (5.18).

Fig. (5.2) below is a plot of this potential. Note the increase in barrier height

as compared to the scalar but the overall similarity in shape. Once again the

barrier increases with angular momentum `.
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Figure 5.2: The potential barrier (in units of (2M)2) for a photon scattered
by a Schwarzschild black hole, for increasing angular momentum `.
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5.2.3 Graviton

The analysis of graviton scattering begins by considering linear perturbations

to the background Schwarzschild metric eq. (2.40) [32],

g̃ab = gab + hab . (5.24)

Here hab is a small perturbation representing the free graviton. A somewhat

involved calculation for odd parity perturbations, neglecting all terms O(h2)

and higher, leads to a 1D Schrödinger type equation (e.g. see [26, 27]). This

is similar to the scalar, that is, eq. (5.14), but with the potential,

V (r∗) =

[
1− 2M

r(r∗)

] [
`(`+ 1)

r(r∗)2
− 6M

r(r∗)3

]
. (5.25)
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Figure 5.3: The potential barrier (in units of (2M)2) for a graviton scattered
by a Schwarzschild black hole, for increasing angular momentum `.

As before, the solution has been decomposed into spherical harmonics where

` is the principle angular momentum number. Only those solutions with

` ≥ 2 are radiative. Fig. (5.3) shows this potential for different ` ≥ 2 values.

Once again this is very similar to the shape of the scalar but the potential
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has a much higher peak which increases with increasing angular momentum

number.

Even parity perturbations leads to a considerably more complicated Zerilli

potential [33], however the transmission probabilities from it are the same

as those for the Regge–Wheeler potential eq. (5.25) [26]. Thus we need only

consider solutions to eq. (5.25) which have the same asymptotic behaviour

as for the scalar, that is, eq. (5.18).

5.2.4 All species

Summarising these results; the greybody factors associated with scalar, pho-

ton, and graviton (s = 0, 1, 2 respectively) emission from black holes are

found by expanding the solution in spherical harmonics characterised by the

angular momentum number ` ≥ s. The problem then reduces to the trans-

mission probability, T`,s(ω), for a solution, ψ
(s)
` (r∗), to a 1D Schrödinger type

equation

− d2ψ
(s)
`

dr2
∗

+ V`,s(r∗)ψ(x) = ω2ψ
(s)
` (r∗) , (5.26)

with potential,

V`,s(r∗) =

[
1− 2M

r(r∗)

] [
`(`+ 1)

r(r∗)2
+

(1− s2)2M

r(r∗)3

]
. (5.27)

where ψ
(s)
` (r∗) satisfies the plane wave asymptotic behaviour

ψ
(s)
` (r∗) ∼

e−iωr∗ r∗ → −∞
A

(`,s)
out e

iωr∗ + A
(`,s)
in e−iωr∗ r∗ → +∞

. (5.28)

The greybody factors for each `, s, are then

T`,s(ω) = 1−
∣∣∣∣∣A(`,s)

out

A
(`,s)
in

∣∣∣∣∣
2

. (5.29)
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5.2.5 Conventional Analysis

So far, we have developed the formalism for the scattering problem for

Schwarzschild black holes, but have yet to solve for the transmission proba-

bilities. To do this for an ordinary scattering problem one first checks to see

if there is an analytic solution and then analyse the asymptotic forms to find

Ain and Aout. It turns out that there is an analytic solution to the Regge–

Wheeler equation eq. (5.27) in terms of Heun functions [34, 29]. However,

this is not particularly useful as not enough is known about the asymptotic

forms of the Heun functions.

Where there is no (useful) analytic solution one turns to numerics. In the

1970s Teukolsky and Page [23, 35, 36, 37] numerically solved a slightly dif-

ferent differential equation underlying the scattering/emission process. They

used the Teukolsky equation [37] which is equivalent to the Regge–Wheeler

potential for a Schwarzschild black hole [26], and thus obtained the transmis-

sion coefficients. More recently Phillipp and Perlick [29] use series represen-

tations of the Heun functions to numerically calculate the greybody factors.

In the next section we shall develop a scheme for numerical approximation

based on a transfer matrix approach which is applicable to a wide variety of

scattering processes.

In the low frequency limitMω → 0 more is known. Page and Starobinsky [23,

38] have derived the approximate expression,

T`,s(ω) ≈
[

22`+1(`− s)!`!(`+ s)!

(2`)!(2`+ 1)!

]2

(Mω)2`+2 . (5.30)

This is obtained by noting that in the small frequency limit the solutions to

the Teukolsky equation [37] become hypergeometric functions. Unfortunately

eq. (5.30) is of no use in the intermediate regime 0� Mω . 1, which turns

out to be the region of most physical interest; here numerics are required.

5.3 Transfer Matrix Approach

We now present the development of analysis a new method based on the

transfer matrix. We first present the formalism, then relate the resulting
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path ordered exponential to the product calculus formalism and use this to

form the basis for a numerical approximation scheme.

5.3.1 Transfer Matrix Formalism

We are looking at calculating the transmission and reflection coefficients for

1D Schrödinger type equations

− d2ψ

dx2
+ V (x)ψ(x) = Eψ(x) , (5.31)

where the potential asymptotes to a constant,

lim
x→±∞

V (x) = V±∞ . (5.32)

Later on we will assume that V+∞ = V−∞ but in principle this is not required.

In the two asymptotic regions there are two independent solutions [39]

ψ±i±∞(x) ≈ exp(±iω±∞)√
ω±∞

. (5.33)

The ±i refers to right (left) moving modes, eiω±∞x (e−iω±∞x), and ω±∞ =√
(E − V±∞). The two ± symbols are otherwise unrelated. To analyse the

transmission and reflection coefficients we consider Jost solutions, J±(x),

which are exact solutions to eq. (5.31) satisfying

J±(x→ ±∞)→ exp(±iω±∞x)√
ω±∞

, (5.34)

and

J+(x→ −∞) → α
exp(+iω−∞x)√

ω−∞
+ β

exp(−iω−∞x)√
ω−∞

(5.35)

J−(x→ +∞) → α∗
exp(−iω+∞x)√

ω+∞
+ β∗

exp(+iω+∞x)√
ω+∞

. (5.36)

Here α and β are the Bogoliubov coefficients which are related to the reflec-

tion and transmission coefficients by,

r =
β

α
, t =

1

α
. (5.37)
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This idea is very similar to the asymptotic behaviour presented before how-

ever we avoid the use of Ain and Aout to denote the coefficients of the asymp-

totic forms as this is a more general context than scattering and radiation

by black holes. These solutions are for incoming/right moving waves which

are partially scattered and transmitted by the potential V (x). The reflection

and transmission probabilities are then given by

R = |r|2 , T = |t|2 . (5.38)

That is the probability for an incident particle to be reflected off or trans-

mitted through the potential V (x) is given by R or T respectively. N.b.

by definition, the sum of the probabilities for a particle to be reflected and

transmitted must be unity,

R + T = 1 ⇐⇒ |α|2 − |β|2 = 1 . (5.39)

Now the second order Schrödinger equation (5.31) can be written as a Shabat-

Zakharov system of coupled first order differential equations [40]. To do this

write the wave function as

ψ(x) = a(x)
exp(+iϕ)√

ϕ′
+ b(x)

exp(−iϕ)√
ϕ′

, (5.40)

where a(x) and b(x) are arbitrary functions, and the auxiliary function, ϕ(x),

is chosen such that it has a non zero derivative, ϕ′(x), and

ϕ′(x)→ ω±∞ as x→ ±∞ . (5.41)

To remove the number of degrees of freedom we can impose the gauge con-

dition,
d

dx

(
a√
ϕ′

)
e+iϕ +

d

dx

(
b√
ϕ′

)
e−iϕ = 0 . (5.42)

We now define ω(x)2 ≡ E−V (x) and ρ ≡ ϕ′′+i[ω2(x)−(ϕ′)2], and substitute

eq. (5.40) into eq. (5.31) and then use the gauge condition, eq. (5.42), to

obtain the following system of equations,

d

dx

[
a(x)

b(x)

]
=

1

2ϕ′

[
iIm[ρ] ρ exp(−2iϕ)

ρ∗ exp(2iϕ) −iIm[ρ]

][
a(x)

b(x)

]
. (5.43)
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This has the formal solution [39],[
a(xf )

b(xf )

]
= E(x0, xf )

[
a(x0)

b(x0)

]
, (5.44)

in terms of a generalised position-dependent transfer matrix,

E(x0, xf ) = P exp

(∫ xf

x0

1

2ϕ′

[
iIm[ρ] ρ exp(−2iϕ)

ρ∗ exp(2iϕ) −iIm[ρ]

]
dx

)
, (5.45)

where P exp denotes a path ordered exponential operation. Now in the limit

x0 → −∞, xf → +∞ this becomes an exact expression for the Bogoliubov

coefficients[
α β∗

β α∗

]
= E(∞,−∞)

= P exp

(∫ +∞

−∞

1

2ϕ′

[
iIm[ρ] ρ exp(−2iϕ)

ρ∗ exp(2iϕ) −iIm[ρ]

]
dx

)
. (5.46)

In the case that V−∞ = V+∞ there is a natural choice for the auxiliary

function, ϕ(x) ≡ ωx (for simplicity we have written ω ≡ ω±∞). With this

choice eq. (5.45) can be seen to reduce to

E(x0, xf ) = P exp

(
− i

2ω

∫ xf

x0

(V (x)− V∞)

[
1 e−2iωx

−e2iωx −1

]
dx

)
. (5.47)

These formal expressions (5.46, 5.47) are very useful for placing bounds on

transmission and reflection probabilities in general [39] and for greybody

factors for black holes [41, 42]. However we employ them now as a method

for direct numerical computation.
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5.3.2 Path Ordered Exponentials and the Product Cal-

culus

Recall the definition of the path ordered exponential for A(x) a real valued

m×m matrix function:

P exp

(∫ xf

x0

A(x) dx

)
≡ lim

N→∞

N−1∏
k=0

exp
(
A(x∗k)∆xk

)
, (5.48)

where x∗k ∈ [xk, xk+1] is a tag of some partition {xk}Nk=1 of [x0, xf ], ∆xk =

(xk+1 − xk) , and the mesh, D = max {∆xk}, goes to zero in the limit

N →∞. This definition is very much like that of the Riemann integral, and

in fact, the path ordered exponential is equivalent to the definition of the

product integral [43, 44, 45, 46, 47]. The product calculus is exactly the idea

of defining a different notion of calculus based on infinitesimal products and

divisions (recall that ordinary calculus is based on infinitesimal sums and

subtractions). In the language of product calculus eq. (5.48) becomes

P exp

(∫ xf

x0

A(x) dx

)
=

xf∏
x0

(I + A(x) dx) , (5.49)

where the product integral is defined as [45, 46, 47]

xf∏
x0

(I + A(x) dx) ≡ lim
N→∞

N−1∏
k=0

(I + A(x∗k)∆xk) , (5.50)

with the partition {xk}Nk=1 of [x0, xf ], the tag x∗k, ∆xk, and the mesh, D,

defined as before. The equivalence of definitions (5.48, 5.50) can be deduced

by noting that all the second order or higher times in exp(A(x∗k)∆xk) go to

zero in the limit N → ∞ [43]. (Further if the matrix A(x) happens to be

nilpotent, i.e. A(x)2 = 0, then the result exp(A(x∗k)∆xk) = I + (A(x∗k)) is

exact even be for the limitD → 0 is taken.) See for instance references [43, 45]

for an overview of the product calculus. The following results for the product

integral [43, 45, 47] should be noted especially :

• If
∏b

a(I + A dx) exists then A is bounded on [a, b].

• if
∏b

a(I + A dx) exists and a ≤ u < v ≤ b, then
∏v

u(I + A dx) exists .
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• if a < b < c, and
∏b

a(I + A dx) and
∏c

b(I + A dx) exist then,

c∏
a

(I + A dx) =
b∏
a

(I + A dx) ·
c∏
b

(I + A dx) . (5.51)

• ∏b
a(I + A dx) exists, if and only if,

∫ b
a
A dx exists

• if
∏b

a(I + A dx) exists then,

b∏
a

(I + A dx) =I +

∫ b

a

A(x1) dx1 +

∫ b

a

∫ x1

a

A(x1)A(x2) dx2 dx1

+

∫ b

a

∫ x1

a

∫ x2

a

A(x1)A(x2)A(x3) dx3 dx2 dx1 + ...

(5.52)

Eq. (5.52) is commonly known in the mathematics community as the Peano

series and as the Dyson series in the physics community. It is the physics

community’s standard method for approximating path ordered exponentials

and can offer some more analytic insight as it yields a successively better

analytic approximation to the Bogoliubov coefficients. Using an ordering

operator P , as in chapter 3, eq. (5.52) can be written,

b∏
a

(I + A dx) =
∞∑
n=0

1

n!

∫ b

a

dx1

∫ b

a

dx2...

∫ b

a

dxn P {A(x1)A(x2)...A(xn)} ,

(5.53)

where,

P {A(x1)A(x2)...A(xn)} = A(xσ(1))A(xσ(2))..A(xσ(n)). (5.54)

with σ(i) any permutation such that xσ(1) ≥ xσ(2) ≥ ... ≥ xσ(n). For example,

P {A(x1)A(x2)} = Θ(x1 − x2)A(x1)A(x2) + Θ(x2 − x1)A(x2)A(x1) , (5.55)

where Θ(x) is again the Heaviside step function.
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5.3.3 Example: a Delta Function Potential

As a first example we apply this formalism to a Dirac–Delta function, δ(x),

potential of the form

VDelta = V0 δ(x) . (5.56)

This is a situation in which the transmission and reflection probabilities can

be calculated explicitly by analysing the incoming and outgoing plane wave

solutions to eq. (5.31) with potential eq. (5.56). The analytic expression for

transmission probability, with our notation, is, in this example,

T =
1

1 +
V 2
0

4ω2

. (5.57)

Now in the transfer matrix formalism the Bogoliubov coefficients becomes[
α β∗

β α∗

]
=

+∞∏
−∞

(I + δ(x)AD(x) dx) , (5.58)

where

AD(x) = −iV0

2ω

[
1 e−2iωx

−e2iωx −1

]
. (5.59)

Now using eq. (5.54) this can be written,[
α β∗

β α∗

]
=
∞∑
n=0

1

n!

∫ +∞

−∞
dx1

∫ +∞

−∞
dx2...

∫ +∞

−∞
dxn δ(x1)δ(x2)...δ(xn)

× P {AD(x1)AD(x2)...AD(xn)}

=
∞∑
n=0

(AD(0))n

n!
= exp (AD(0)) , (5.60)

Finally noting AD(x)2 = 0, this becomes[
α β∗

β α∗

]
=

[
1− iV0

2ω
− iV0

2ω

+ iV0
2ω

1 + iV0
2ω

]
, (5.61)

which using eq. (5.37) and eq. (5.38) can be seen to agree with the result

eq. (5.57).

Having shown the success of the method in the next section we show how
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to turn this method into an accurate numerical approximation scheme for

situations in which there is no known analytic expression for the transmission

probabilities. In particular we present the calculation of the greybody factors

for the Schwarzschild black hole and evaluate some of the important physical

quantities.

5.4 Numerical Results

We use the Product Calculus formalism as a basis for numerical calculation

of the greybody factors. In the form of eq. (5.49) the transfer matrix is

particularly simply to evaluate numerically. Defining

A(xk) ≡ −
i

2ω
V (xk)

[
1 e−2iωxk

−e2iωxk −1

]
, (5.62)

the transfer matrix can be compactly written,

E(x0, xf ) = lim
N→∞

N∏
k=1

(
I + A(xk)h

)
= lim

N→∞

{(
I + A(xN−1)h

)
...
(
I + A(x2)h

)(
I + A(x1)h

)}
.

(5.63)

Where h = (xf−x0)/N , and xk = x0 +kh. This expression is extremely easy

to compute numerically, however, much like a simple Riemann sum, con-

vergence is rather slow. In order to improve convergence, Helton and Stuck-

wisch [47] introduce a polynomial approximation which has error bounded by

H(x0, xf )h
p. Here, H(x0, xf ) is a bounded interval function determined by

the matrix A, and p is the order of the polynomial approximation. This is es-

sentially the equivalent of a higher order Simpson type approximation for the

product integral. There is a small technicality that Helton and Stuckwisch

use a definition of the product integral based on right hand multiplication,

i.e. the order of the products in eq. (5.50) is reversed. This can be related



60 CHAPTER 5. GREYBODY FACTORS

to the form in eq. (5.50) by noting in the limit N →∞,[
xf∏
x0

(I + A(x) dx)

]−1

=
[

lim
N→∞

{(
I + A(xN−1)h

)
...
(
I + A(x2)h

)(
I + A(x1)h

)}]−1

= lim
N→∞

{[(
I + A(xN−1)h

)
...
(
I + A(x2)h

)(
I + A(x1)h

)]−1
}

= lim
N→∞

{(
I − A(x1)h

)(
I − A(x2)h

)
...
(
I − A(xN−1)h

)}
,

(5.64)

Thus by sending A(xi) → −A(xi) and using the approximation in [47] we

obtain the inverse of the product integral we set out to calculate. Since the

Bogoliubov matrix satisfies[
α β∗

β α∗

]−1

=

[
α∗ −β
−β∗ α

]
, (5.65)

we see that there is no loss of information; this method lends itself very well

to finding the transmission probabilities.

The 5th order approximation Helton and Stuckwisch introduce is described

in [47],

N∏
k=1

[I + (h/90) (7A0 + 32A1 + 12A2 + 32A3 + 7A4)

+ (h2/90)
(

8A0A1 − 12A0A2 + 18A0A3 − 7A0A4 + 18A1A2 − 12A1A3

+ 18A1A4 + 18A2A3 − 12A2A4 + 8A3A4

)
+ (h3/60)

(
3A0A1A2 − 2A0A1A3 + 3A0A1A4 − 2A0A2A3 − 2A0A2A4

+ 3A0A3A4 + 8A1A2A3 − 2A1A2A4 − 2A1A3A4 + 3A2A3A4

)
+ (h4/120)

(
4A0A1A2A3 − A0A1A2A4 − A0A1A3A4

− A0A2A3A4 + 4a1A2A3a4

)
+(h5/120)A0A1A2A3A4A5

]
, (5.66)
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where Aj = A[xk−1 + jh/4] for j = 0, 1, 2, 3, 4 and k = 1, 2, .., N . This rather

unwieldy expression they show can compactly be written as,

N∏
k=1

[I + (28K1 + 32K2 + 6K3 + 4K4 +K5)/360] , (5.67)

where

K1 = hA4

K2 = hA3(4I +K1)

K3 = hA2[8(I −K1) + 3K2]

K4 = hA1[32I + 18K1 + 3hA2(6I −K1 +K2)− 3K2]

K5 = hA0[28(I −K1)− 3hA2(16I + 4K1 +K2) +K4 + 18K2] . (5.68)

This scheme is our primary tool for actually calculating the Transmission

probabilities.

5.4.1 Example: a Square Barrier Potential

As a first example of numerically evaluating transmission and reflection prob-

abilities via the product calculus we present the simplest situation of a square

barrier. That is, the potential is of the form,

V (x) = V0 Θ (a− |x|) . (5.69)

Thus, the Bogoliubov coefficients can be written,[
α β∗

β α∗

]
=P exp

(
−iV0

2ω

∫ +∞

−∞
Θ(a− |x|)

[
1 e−2iωx

−e2iωx −1

]
dx

)

=P exp

(
−iV0

2ω

∫ +a

−a

[
1 e−2iωx

−e2iωx −1

]
dx

)
. (5.70)

Defining,

ASB(x) = −iV0

2ω

[
1 e−2iωx

−e2iωx −1

]
, (5.71)
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eq. (5.70) becomes, in the language of product calculus,[
α β∗

β α∗

]
=

a∏
−a

(I + ASB(x) dx) . (5.72)

Now the square barrier case is another of the few situations in which the

transmission and reflection probabilities can be calculated explicitly by analysing

the incoming and outgoing plane wave solutions to eq. (5.31) with the po-

tential eq. (5.69). In our notation and units the transmission probability is

given by,

T =


1

1+
V 2
0
4

sinh2
(
2a

√
V0−ω2

)
ω2(V0−ω2)

ω2 < V0

1

1+
V 2
0
4

sin2
(
2a

√
ω2−V0

)
ω2(ω2−V0)

ω2 ≥ V0

(5.73)

and c.f. eq. (5.39) R = 1 − T . These are shown in Fig. 5.4 for the values

(2a)2V0 = 1, 10. The numerical calculation of eq. (5.72) was implemented in

Python and then compared to the exact expression eq. (5.73). The relative

difference between the two is shown in Fig. 5.5
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Figure 5.4: The exact expression for the transmission and reflection prob-
abilities of a square barrier (5.73) shown for two different values of V : a)
shows (2a)2V0 = 1, and, b), (2a)2V0 = 10.

It can be seen in Fig. 5.5 that the product integral calculation very quickly

approaches the exact value. With only 4 terms the error is already less than

∼ O(10−5) for (2a)2V0 = 1, and, in each case by the time 512 terms are

used, the approximation is approaching the working tolerance of the double

precision used. This is consistent with the error bounds introduced by Helton
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and Stuckwisch [47].
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Figure 5.5: The relative difference, δT ≡ |TExact(ω) − TN(ω)|/TExact, of
the N–th approximation to the product integral calculation of the transmis-
sion probability to the exact expression, a), shows for (2a)2V0 = 1, b), for
(2a)2V0 = 10.

5.4.2 Greybody Factors from a Schwarzschild Black

Hole

Here we present the numerical results for the analysis of the Regge–Wheeler

potential eq. (5.27) from which we obtain the Schwarzschild greybody factors.

Now recall this potential vanishes in the asymptotic regions (i.e V (r∗) →
0, as r∗ → ±∞), and so using eq. (5.37) and eq. (5.38) the transmission

probabilities can be calculated from the Bogoliubov coefficients, eq. (5.46).

In this case the transfer matrix becomes[
α β∗

β α∗

]
= P exp

(
− i

4x

∫ +∞

−∞
V (u∗)

[
1 exp(−4ixu∗)

− exp(4ixu∗) −1

]
du∗

)
.

(5.74)

Here the potential eq. (5.27)

V (u∗) =

[
1− 1

u(u∗))

] [
`(`+ 1)

u(u∗)2
+

(1− s2)

u(u∗)3

]
, (5.75)
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is written in terms of the dimensionless variables u∗ = r∗/2M and u(u∗) =

r(u∗)/2M . In the product calculus formalism this is[
α β∗

β α∗

]
=

+∞∏
−∞

(I + A(u∗) du∗) , (5.76)

where

A(u∗) ≡ −
i

4x
V (u∗)

[
1 e−4ixu∗

−e4ixu∗ −1

]
. (5.77)
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Figure 5.6: Convergence rates of transmission probabilities, Ts,s(x), for,

(a) scalars, (b) photons, (c) gravitons, where δTs,s ≡
∣∣T (N)
s,s (x) −

T
(N+1)
s,s (x)

∣∣/T (N)
s,s (x) is the relative error of the N -th approximation, (i.e. N

terms).

The calculation for the transmission probabilities was numerically imple-

mented in Python using the polynomial approximation, eq. (5.67). The inte-

gration region [−∞,+∞] was approximated by [−50, 350], which was found

to introduce an error ∼ O(10−9). The asymmetry of this region stems from

the asymmetry in the decay of the potential, see Figs. 5.1, 5.2, and 5.3. The

convergence of product integrals themselves is shown in Fig. 5.6.
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Figure 5.7: Plots of the transmission probabilities, T`,s(x), as a function of
x = Mω for, a) scalars, b) photons, and c) gravitons. The left most function
on each plot corresponds to the ` = s transmission probability, increasing `
values occur to the right.
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Fig. 5.7 shows the transmission probability for each of the scalar, photon,

and graviton cases. It can be seen that: the scalar s = 0 case has transmis-

sion at the lowest frequencies, for each species larger ` values require higher

frequencies before there is any transmission through the barrier. Also each

species shows that, for every ` mode, eventually there is complete transmis-

sion through the barrier, at high enough frequencies. These remarks can

be interpreted physically by observing the potential V (r∗) is lowest for the

` = 0 = s case and, as such, less energy (i.e. lower frequency) is required

to pass through the barrier. For larger ` and s values the potential is higher

and so more energy is required. Eventually any particle species in any mode

will have enough energy to completely pass through the barrier. That is

T`,s(x)→ 1 as x→∞
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Figure 5.8: Plots of the number (Energy) emission spectrum, left (right), for
a Schwarzschild black hole, c.f. eq. (5.1) and eq. (5.3). Note the logarithmic
scale. The emission spectrum is dominated by scalar particles, and emission
rates decrease with increasing spin. The total emission rates (i.e. summing
over all particle species) are bounded by the sums over the geometric op-
tics limit, σ = 27πM2, for each species (shown in red), and this limit is
approached as x = Mω →∞.

Fig. 5.8 shows plots of the number and energy emission rates (eq. (5.1) and

eq. (5.3)). It can be seen that for x > 0.6 the emission rate becomes rapidly

negligible, exponentially decaying to zero. These figures can be compared to



5.4. NUMERICAL RESULTS 67

the results obtained by Page [23] and are found to be in very precise agree-

ment. The emission of particles is dominated by scalars, and the rate reduces

with increasing spin. This can be understood from Fig. 5.7, in which, it can

be seen that the transmission probabilities of lower spin become significant

more quickly (for smaller x) which coincides with the peak in the probability

spectrum P`,s(x). The emission rates cannot be accurately obtained from a

black body approximation but this does provide a useful semi-analytic es-

timate for the process (see work conducted in conjunction with Sebastian

Schuster, Matt Visser, and Alexander Van–Brunt [1]). Furthermore approxi-

mation schemes to the greybody factors based on low or high energy require-

ments do not adequately capture the region of most emission 0 < x < 0.2

(for details see the results in collaboration with Matt Visser [2]).

Fig. 5.9 shows a plot of the dimensionless cross-section for each species of

particle. As x increases the cross-section approaches the geometric optics

limit, that is, S(x) → 1. This happens more quickly for lower spins. Each

species also shows oscillations about the classical limit which are due to

the transmission probabilities becoming appreciable for increasing ` values,

weighted by the 2`+ 1 factor.
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Figure 5.9: The dimensionless cross-section, S(x) (eq. (5.5)) as a function x =
Mω. Here it is shown for scalars, photons, and gravitons for a Schwarzschild
black hole.



68 CHAPTER 5. GREYBODY FACTORS

5.5 Implications and Extensions

In this chapter we have developed a new method for numerical calculation

of the greybody factors which has wide application to other one dimensional

scattering problems. Although we have only applied it to spherically sym-

metric black holes there is certainly scope to apply the scheme to the more

general cases. We now talk briefly about some of the implications the grey-

body factors have on the emission process and how our method might be

extended.

5.5.1 Implications

One of the strongest effects of the greybody factors on the Hawking process

is that they significantly reduce the emission rate, especially for higher spins,

see Fig. 5.8. Fig. 5.8 also shows that a semi-analytic treatment using the

geometric optics limit of the cross-section provides an upper bound on the

total emission rate. Now the Hawking emission process is already sparse

when treated as a semi-analytic black body [1] and the greybody factors

only serve to worsen the situation. It may therefore be productive to view

the Hawking evaporation in terms of a two-body decay process. Further any

symmetry assumptions about the process are only valid when interpreted as

statements about long time statistical averages. These comments provide

tantalising hints about how to reinterpret the process.

These statements are certainly true for uncharged non-rotating, that is,

Schwarzschild black holes. However difficulties arise when looking at Reissner–

Nordström, Kerr, and Kerr-Newman black holes. When considering these

situations one must consider super-radiance wherein the Bose occupation

number diverges and changes sign simultaneously with the greybody factors.

Page [23, 35, 36] has shown that this can lead to greatly enhanced emission

rates, i.e. super-radiance. However there is good reason to separate the

super-radiant emission from the Hawking emission [1] which allows us to say

generically that the Hawking radiation process is characterised by the long

gaps between successive emissions.
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5.5.2 Extensions

It turns out that the scattering of particles by rotating and charged black

hole can be described by the appropriate Teukolsky equation [23, 35, 36, 37].

This is a second order differential equation which can be put into the form of

eq. (5.26) with appropriate potential. This means that the transfer matrix

method developed in sections three and four of this chapter could be used to

find the greybody factors in more general situations. Difficulties would arise

from the fact that without spherical symmetry each azimuthal mode must

be treated separately and there is no longer an analytic expression for the

eigenvalue of the generalised spheroidal harmonics arising from the angular

equation from a separation of variables. (C.f. `(`+ 1) for the Schwarzschild

black hole).

Further work may also be done making use of the Dyson/Peano series eq. (5.52)

to develop semi-analytic approximation schemes for greybody factors. The

difficulty in this approach is evident from the problem of solving iterated

integrals both analytically and numerically.

The work in this chapter has been included in two papers; the first (in col-

laboration with Sebastian Schuster, Matt Visser, and Alexander Van–Brunt)

has been recently published in Classical and Quantum Gravity [1] and the

second (in collaboration with Matt Visser) is in the submission process and

available online [2].

In the next chapter we look at the possible extensions of Wick rotation to

curved spacetime motivated by the results in QFT in Minkowski spacetime

and the Euclidean derivation of Hawking radiation.
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Chapter 6

Wick Rotation in Curved

Spacetime

We have seen in Chapter 4 that analytically continuing the time coordinate of

the Schwarzschild metric, eq. (2.40), leads to the Hawking temperature [21].

This suggests a possible route to a quantisation of gravity via the Feynman

path integral route and the Euclidean techniques presented in Chapter 3.

Known as Euclidean Quantum Gravity [48, 49, 50] this viewpoint provides

further motivation for a generic way to Wick rotate. Another question to

ask is: given a spacetime can we unambiguously define a Wick rotation for

the propagators of a quantum field on that spacetime? We will address these

issues in this chapter. The first section is devoted to how one might write

down a Euclidean quantisation of gravity. In the second we present examples

of where a traditional Wick rotation can and cannot be employed. We then

review the methods to find a general procedure. Finally we highlight the

problems with Wick rotation and present possible future directions.

6.1 Euclidean Quantum Gravity

The Feynman path integral approach offers an intuitive way to conceptual

a route to a quantised theory of gravity, and its history goes back to the

1950s [51]. Proceeding in a similar manner to Chapter 3, one can consider

the probability of going from one metric and field configuration g1, φ1 on a

surface Σ1, to another g2 φ2, Σ2, to be the sum over all the field configurations

71
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satisfying the surface values [48, 49, 50],

〈g2, φ2,Σ2|g1, φ1,Σ1〉 =

∫
D[g, φ] exp(iS[g, φ]) . (6.1)

Here D[g, φ] is the measure on the configuration space, and S[g, φ] is the

action of the gravitational and matter fields. The two surfaces, Σi are con-

nected by a time-like tube and have an induced metric hi on them. We note

that only the induced components hi of the full metric gi are independent on

the surface Σi [48].

The boundary term of the gravitational action eq. (2.50) in Chapter 2 en-

sures that the transition amplitude from Σ1 through a surface Σ2 to a third

surface Σ3 is obtained by summing over the fields defined on the intermediate

boundary surfaces,

〈h3,Σ3|h1,Σ1〉 =
∑
h2

〈h2,Σ2|h1,Σ1〉〈h3,Σ3|h2,Σ2〉 . (6.2)

Given the success of Wick rotation to obtain a thermal spectrum in the

Schwarzschild geometry it seems not unreasonable to consider a Wick rotated

gravitational path integral where, one hopes, the dominant contributions to

the path integral will come from metrics and fields close to classical back-

ground fields (which extremise the action). For finite temperature these back-

ground fields (with appropriate periodicity) will have a contribution to the

thermodynamic potential W . This has been shown to be in agreement with

the thermodynamic properties of black holes, as derived by other means [21].

The Wick rotation considered in [48] is given by sending t → −it for the

coordinate along the time-like tube on the asymptotically flat boundary.

This converts the Lorentzian action to the Euclidean action SL → iSE and

the path integral is now over positive definite metrics with periodic fields,

〈g2, φ2,Σ2|g1, φ1,Σ1〉 =

∫
D[gE, φ] exp(−SE[gE, φ]) . (6.3)

It is now worth pointing out that the path integral approach is fraught with

as many serious difficulties as any other approach to a quantisation of gravity.

First of all, it is not even clear how to define such a path integral beyond a
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heuristic level, notwithstanding the problem of actually calculating anything

from a well defined gravitational path integral. This is particularly so when

it comes to the meaning of the measure D[g] (See for instance [52, 53, 54] for

discussions of this point). Secondly, it is not clear that such a Wick rotation is

possible, and if it is possible, whether summing over all Euclidean signature

metrics is physically equivalent to the Lorentzian problem. Furthermore,

even supposing that it is possibly to Wick rotate to a physically equivalent

Euclidean problem the path integral does not necessarily converge as the

gravitational action is not bounded from below [48, 52]. This can be seen

by considering a conformally transformed Euclidean signature metric g̃ab =

Ω2gab, where Ω is a positive function fixed on the boundary. Using the

transformation of the Ricci scalar, the action becomes (ignoring the boundary

term), ∫
R̃
√
g̃ d4x =

∫ [
Ω2R− 6Ω−3||∇Ω||2

]√
g d4x , (6.4)

which can be made arbitrarily negative for rapidly changing Ω.

However, for all that, it can certainly be argued that the Euclidean path

integral approach has had enough success in the realm of black hole ther-

modynamics to merit the work and attention it has received [21, 48, 49, 50].

See also the work of Wald using an algebraic approach to Euclidean Quan-

tum field theory in curved spacetime [55, 56]. It also provides a motivation

for finding a method to Wick rotate generic Lorentzian signature metrics to

Euclidean signature metrics; certainly if this method is to proceed a way to

Wick rotate is needed.

6.2 Examples of Wick Rotation

6.2.1 Static Metrics

We have already seen a Wick rotation in action for the Schwarzschild metric.

This can be straightforwardly generalised to arbitrary static metrics. That

is, any static metric can be put into the manifestly static form [3],

ds2 = −gtt(xi) dt2 + hij(x
i)dxidxj , (6.5)
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where the indices i, j = 1, 2, 3 label the spatial coordinates. This form of the

metric clearly admits a Wick rotation, t→ τ = −it,

ds2 = gtt(x
i) dτ 2 + hij(x

i)dxidxj . (6.6)

Solutions to the vacuum equations, Rab = 0, are unchanged as the analytic

continuation of zero is zero. Thus for static metrics the procedure of t→ −it
is mathematically well-defined and can be employed exactly as in Minkowski

space for fields defined on the curved spacetime, see for example [57]. How-

ever, even in this manifestly static case, there is a caveat that a “third law”

of black hole mechanics is needed for a consistent picture. That is the sur-

face gravity κ must be constant over the horizon in order to complete the

thermodynamic analogy.

There is another issue at play here. A static metric need not be in a man-

ifestly static coordinate system. For example, consider the Schwarzschild

solution in Painlévé-Gullstrand coordinates

ds2 = −dT 2 +

(√
2M

r
dT + dr

)2

+ r2(dθ2 + sin2 θ dϕ2) . (6.7)

Here dT = dt− (1− 2M/r)−1
√

2M/r dr. Now sending T → −iT results in

a complex valued metric. A real valued Euclidean signature metric can be

found but one must also send M → −M . The resultant geometry contains

now a naked singularity at r = 0 and so is somewhat pathological. It is

unclear how to interpret such a result physically.

The näıve Wick rotation can be also applied to solutions of the full field

equations with non-zero stress-energy tensor in manifestly static coordinates.

For example the Reissner-Nordström spacetime. However the matter fields

must now couple to the Euclidean signature metric.

6.2.2 Stationary Metrics

Turning now to the case of stationary metrics which are still independent of

time but no longer irrotational, it is not entirely clear how to proceed. For
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example, such a metric can be generally put in the form [3],

ds2 = −λ(dt− ωjdxj)2 + λ−1hijdx
idxj . (6.8)

Sending t→ τ = −it here results in a complex valued metric,

ds2 = +λdt2 − 2iλωjdx
jdt+ λ(ωjdx

j)2 + λ−1hijdx
idxj . (6.9)

This is clearly not a Euclidean metric and it is unclear how to immediately

interpret such a result. Interestingly, the Kerr-metric, which is the unique

stationary and axi-symmetric solution to the vacuum equations eq. (2.36),

and represents a rotating black hole, can be manipulated to give a real val-

ued Euclidean metric. One starts with the Kerr metric in Boyer–Lindquist

coordinates [5],

ds2 = −ρ
2∆

Σ
dt2 +

Σ

ρ2
sin2 θ(dϕ− ΩKerrdt)

2 +
ρ2

∆
dr2 + ρ2dθ2 , (6.10)

where

ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 , (6.11)

Σ = (r2 + a2)2 − a2∆ sin2 θ , ΩKerr ≡ −
gtϕ
gϕϕ

=
2Mar

Σ
. (6.12)

Then sending t → −it, and a → −ia, results in a real valued Euclidean

signature metric which satisfies the vacuum Einstein equations. This is often

used to obtain the Hawking temperature by requiring the Euclidean signature

solution to be periodic in the frame co-moving with the horizon. This is

done to obtain a regular solution on the horizon. That is, to require the

identification [21, 48]

(τ, r, θ, ϕ) = (τ + β, r, θ, ϕ+ iΩKerrβ) , (6.13)

where again the inverse temperature is β = 2π/κ and κ is the surface gravity.

It has however been argued by Brown et al. [58] that this geometry is non

physical, for example it has no ergo-region, wherein, near the Kerr horizon

an observer cannot remain still. They propose that a complex metric simply

given by t → −it gives a real spatial Hamiltonian and the correct ther-
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modynamic properties (They equivalently interpret the procedure as acting

directly on the metric not the coordinates).

6.2.3 Time Dependent Metrics

The situation is even worse when considering time dependent metrics. For

example following [59], the spatially flat k = 0, de Sitter spacetime has the

metric,

ds2 = −dt2 +H−2eHt
(
dr2 + r2

(
dθ2 + sin2 θ dϕ2

))
. (6.14)

Sending t→ −it yields

ds2 = +dt2 +H−2e−iHt
(
dr2 + r2

(
dθ2 + sin2 θ dϕ2

))
. (6.15)

This is a complex metric and has no clear physical interpretation. If instead

we write de Sitter space in the co-moving coordinate with a positive spatial

curvature, k = +1, then

ds2 = −dt2 +H−2 cosh(Ht)

(
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dϕ2

))
. (6.16)

Now the Wick rotation t → −it gives a Euclidean signature real valued

metric,

ds2 = dt2 +H−2 cos(Ht)

(
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dϕ2

))
. (6.17)

This is often called the Euclidean version of de Sitter space and has nice

interpretation as the metric on the hypersphere, S4, with radius H−1.

Hawking and Page [60] have used a näıve Wick rotation to calculate thermo-

dynamic properties in anti-de Sitter spacetime.

This is not an exhaustive review of the situations where a näıve Wick rotation

of the form t→ −it can be performed but it is an illustrative list. It is clear

from the examples presented here that this form of Wick rotation specified

by t→ −it is a highly coordinate dependent process and only defined in one

chart. Thus for manifolds with more than one coordinate chart it cannot

be applied directly. In order to preserve the structure on the manifold a

generalisation of this is required.



6.3. ANALYTIC CONTINUATION OF THE MANIFOLD 77

6.3 Analytic Continuation of the Manifold

The traditional method to generalise the procedure of Wick rotation when

the metric is no longer independent of time, or has rotation, is to analytically

continue the coordinates xa → za and write the geometry in terms of a 4-

dimensional (4-D) complex manifold, MC [3, 48, 49]. For example extend

the metric,

gab(x) dxa ⊗ dxb → gab(z) dza ⊗ dzb , (6.18)

which will satisfy the (complex) Einstein Field Equations (EFEs),

c.f. eq. (2.37),

Gab(z) = 8πTab(z) . (6.19)

Then look for real slices of the manifold which correspond to Lorentzian and

Euclidean signatures.

A manifold with complex coordinates has a natural complex structure J

where J2(X) = −X for any vector X [61]. This means that an N com-

plex dimensional complex manifold can always be interpreted as an 2N real

dimensional manifold. Furthermore, a necessary and sufficient condition for

the manifold to be a complex manifold is that the Nijenhuis tensor built from

J must vanish [61]. See Flaherty [62] for an overview of complex manifolds

and their intersection with relativity.

Now the above route of complexification has complications on two fronts.

Firstly, there is still no generic way to identify a real slice of the coordinates

which corresponds to a Euclidean signature metric for arbitrary spacetimes,

and where it can be done it is coordinate dependent. Secondly, when näıvely

interpreted in terms of a real 8D manifold this procedure gives a generically

singular metric. This has been understood since the fifties, see for example

Shutrick [63], but maybe it is currently overlooked.

This can be seen since the rank of gab as a real metric on an N dimensional

manifold is N , and so continuing to D = 2N leaves it singular with rank(g) =

N < dimMC. Explicitly, let za = xaR + ixaI and rewrite the arc length
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ds2 = dzagab(z)dzb in terms of real variables xaR and xaI . Then we have,

ds2 = (dxaR + idxaI )gab(xR, xI)(dx
b
R + idxbI)

= gab(xR, xI)
(
dxaR dxaI

)(+1 i

i −1

)(
dxbR
dxbI

)
.

(6.20)

Thus ordering the coordinates xa = (x0
R..x

3
R, x

0
I ..x

3
I ) the metric becomes,

g̃ = g ⊗
(

+1 i

i −1

)
, (6.21)

which is clearly singular and therefore not invertible. Thus while it may pro-

vide a canonical isomorphism between the complexified tangent and cotan-

gent spaces it fails when treating elements of these (i.e. vectors and covectors)

as being real vectors and endowed with a real valued complex structure J .

The question is then: how does this process have any physical meaning? It

is a subtly different question to ask: if given a complex metric solution to

the complex field equations eq. (6.19) can one find different real slices which

correspond to Lorentzian and Euclidean signatures? However this leads to

similar issues when interpreted as a real manifold endowed with complex

structure.

The metric could be perhaps written non singularly if the analytic continu-

ation transformed it into a Hermitian metric [62] in the sense,

g → gab̄(z, z̄)dza ⊗ dz̄b , (6.22)

with now za = 1
2
(xaR + ixaI ) and z̄a its conjugate. However, there does not

seem to be an obvious way to generically implement this, and the Lorentzian

signature of the metric poses a barrier to introducing a Hermitian metric

in the mathematicians’ sense [62, 64]. Further, the additional structure of

a Hermitian manifold puts strong restrictions on the Christoffel connection

and hence the curvature which, while simplifying the equations nicely, seem

too strong a requirement on purely physical grounds.

A compromise could potentially be reached be simply requiring the analyti-
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cally continued metric to yield real valued distances, for example,

ds2 =
1

2

[
gab(z, z̄)dzadzb + gāb̄(z, z̄)dz̄adz̄b

]
, (6.23)

where gab = gāb̄. Doing this and requiring no more than analyticity of the

coordinate charts and transfer functions would not impose too strong condi-

tions on the curvature of the spacetimes. In general these extension proce-

dures will only work for non-horizon penetrating coordinate systems. Thus

even the real valued metric extension does nothing to address the coordi-

nate dependent nature of finding a Euclidean signature slice nor does it

help in the situations for which a Euclidean signature manifold admits no

Lorentzian signature metric. It should, however, be noted that there have

been some successes with the traditional complex extension method, see for

example [48, 49, 65, 66, 67], and the references therein.

We have seen that it is not at all clear that by going to a complex mani-

fold there is a well defined, let alone unique, way of finding Euclidean slice

corresponding to a Lorentzian metric. It is the author’s opinion that a dif-

ferent route is needed if a generalised Wick rotation compatible with general

relativity is to be found.

6.4 Analytic Continuation of the Metric

The previous two sections have demonstrated that in a curved spacetime

analytic continuation of the coordinates to a complex manifold does not

directly lead to a Euclidean section. To consider an alternative approach we

first return to the Feynman propagator in Minkowski space eq. (3.28),

DF(p) =
−i

p2 +m2 − iε =
i

ω2 − k2 −m2 + iε
.

Following [59] and using the infinitesimal property of ε, the propagator can

be rewritten as

DF(p) =
i

ω2(1 + iε)− p2 −m2
. (6.24)
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Here the poles are still found at

ω = ±
√

(m2 + k2)/(1 + iε) = ±
√
ωk − iε = ±(ωk − iε) . (6.25)

Eq. (6.24) can now be reinterpreted in terms of a deformed Minkowski metric,

ηε = diag(−1− iε,+1,+1,+1) . (6.26)

With this, the Feynman propagator can be rewritten,

DF(p) =
−i

ηε(p, p) +m2
. (6.27)

From here, there is an obvious alternative prescription to Wick rotate to a

Euclidean signature metric. That is, to analytically continue from ε = 0 to

ε = 2i with Re(ε) > 0 and avoiding the singular metric at ε = +i. For

example let ε = i(1 − eiθ), θ ∈ [0, π]. Thus for ηε=0 = ηL we have the

ordinary Minkowski metric and for ηε=2i = ηE = diag(+1,+1,+1,+1) we

have the Euclidean metric on R4, and the rotated propagator becomes,

DE(x) =

∫
d4p

(2π)4

−1

ηE(p, p) +m2
exp(ipaηEabx

a)

=

∫
d4p

(2π)4

−1

ω2 + k2 +m2
ei(ωt+k·x) . (6.28)

We further note that in this procedure the determinant is
√
− det(ηε) =√

1 + iε, and so
√−ηE = −i = −i

√
det(ηE). Hence continuing the metric

is entirely equivalent to continuing the coordinates in Minkowski space. An

equivalent formulation to this continuation of the metric has found success

in continuing the Dirac spinors of fermions in Minkowski space [68]. Further

this alternative Wick rotation has received attention as a possible “dynamical

angle” which becomes an additional degree of freedom in a Quantum Field

Theory [69].

6.4.1 Extension to Curved Spacetime

To answer how to extend this method to curved spacetime consider now the

constant time-like vector V = (1, 0, 0, 0). Using this the deformed metric
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may be written,

ηε = ηL + iε
V ⊗ V
ηL(V, V )

. (6.29)

This is a coordinate independent expression and thus has a natural extension

to a curved spacetime. However it requires an additional structure, namely

the existence of a time-like vector, V , which is defined everywhere on the

manifold.

At this point it is worth taking a detour to discuss the justification for,

and consequences of assuming additional structure. For reference we re-

fer the reader to Hawking and Ellis [14], a nice exposition by Geroch and

Horowitz [70] and, more recently, for a physically motived view [64]. Firstly,

every manifold (we assume that a paracompactness or equivalent condition

is in the definition) admits a positive definite (Euclidean signature) metric.

This is not true of physical Lorentzian signature metrics which require the

additional structure of a direction field. This is equivalent to being able to

assign a time-like direction at each point p on the manifold. These time-like

vectors at p can be either future- or past-directed; the distinction corresponds

to a choice of direction of the arrow of time.

One can ask if the designation of future-directed vectors can be made smoothly

over the manifold. If this can be done the manifold is said to be time ori-

entable (as mentioned in Chapter 2). This is a different condition to ori-

entability which need not make explicit reference to a metric (of any signa-

ture). Similar statements can be made about the spatial directions being

space orientable. Time orientability further implies the existence of an ev-

erywhere non zero time-like vector field, which is the requirement for the

generalising of the Wick rotation of the metric presented above,

gε = gL + iε
V ⊗ V
gL(V, V )

. (6.30)

where gL = gLab dxa ⊗ dxb is a generic solution to the Einstein equations. In

components this is,

gεab = gLab + iε
VaVb
gabL VaVb

, (6.31)

gabε = gabL −
iε

1 + iε

V aV b

gabL VaVb
, (6.32)
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where V a = gabL Vb . It should be pointed out that this generalisation is highly

non unique and depends on the specific choice of the time-like vector field. It

certainly seems natural to require that there is a least one way to consistently

label time over the manifold and without any experimental evidence to the

contrary we adopt this as a pragmatic approach.

Given the success of the Hamiltonian formalism in other fields of physics it

makes sense to try and construct this for the gravitational Lagrangian. This

is called the Arnowitt, Deser and Misner (ADM) formalism [71]. For this, it

is required that spacetime be foliated by space-like hypersurfaces at least in a

local patch. This foliation implies the existence of a scalar function, τ , whose

gradient is time-like and proportional to the unit normal of the hypersurfaces

∂aτ ∝ na. The function τ is monotonically increasing and labels the foliating

hypersurfaces Στ . It also provides a natural way to define a time ordering as

in Minkowski space,

T{φ̂(x1)φ̂(x2)} = Θ(τ1 − τ2)φ̂(x1)φ̂(x2)−Θ(τ2 − τ1)φ̂(x2)φ̂(x1) . (6.33)

Again there is no experimental evidence to prevent this being a global assign-

ment. This assignment leads to a time orientable manifold that is globally

causally stable and effectively gives rise to the topological decomposition of

the manifold into time×space, M = R × Σ. This is known as the (3 + 1)

split.

The success of parity and time reversal operators in quantum mechanics

suggests that spacetime be at the very least quasi-locally time and space

orientable and there is no experimental reason not to extend this to a global

property. This leads to further decomposition into a globally defined or-

thonormal tetrad eaA, where a labels the spacetime coordinates and A labels

the individual vectors. This tetrad leads to the decomposition of the metric,

gLab = eAa e
B
b ηAB , (6.34)

where ηAB = diag(−1,+1,+1,+1) is the Minkowski metric and is used to

raise/lower the labels A. We also point out that the tetrad formalism is

needed to even define the spinors of fermions and write down the Dirac
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equation in curved spacetime,

(iγa∇a −m)Ψ = 0 , (6.35)

where the gamma matrices are defined locally by,

γa = eaAγ
A , {γA, γB} = 2ηAB . (6.36)

In the orthonormal tetrad the analytic continuation of the metric takes the

form,

e0
ae

0
b → (1 + iε)e0

ae
0
b (6.37)

which in the limit ε→ 2i can be reinterpreted as rotating in the (co-)tangent

space e0
a → −ie0

a. Wick rotations equivalent to this have received attention

in the area of causal dynamical triangulations as a route to quantising space-

time [72, 73]. They have also been used in a proof relating to Hadamard

coefficients [74].

If instead one uses a null tetrad nAa constructed from the orthonormal tetrad,

where

n0
a =

1√
2

(e0
a + e1

a) , n1
a =

1√
2

(e0
a − e1

a) , (6.38)

and n2
a = e2

a, n
3
a = e3

a. The metric can be written

gab = nAa n
B
b η̃AB . (6.39)

Here the Minkowski metric is in null form,

η̃AB =

(
0 −1

−1 0

)⊕(
1 0

0 1

)
. (6.40)

In this case the analytic continuation of the metric takes the form

η̃εAB =

(
−1

2
iε −1− 1

2
iε

−1− 1
2
iε −1

2
iε

)⊕(
1 0

0 1

)
. (6.41)

In this limit ε→ 2i this becomes

ηEAB = diag(+1,+1,+1,+1) , (6.42)
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which is the Euclidean metric on R4.

Henceforth, we consider spacetime to be globally of the form M = R × Σ,

with time-like vector field ∂aτ and at least one orthonormal tetrad eAa , where

e0
a ∝ ∂aτ .

6.4.2 Propagators

The initial success of analytically continuing the metric can be seen in the

work of Candelas and Raine [75, 76]. In the first paper they consider a static

manifold with a Klein–Gordon scalar field and an equivalent prescription to

eq. (6.30),

gλ = gL + λ
V ⊗ V
gL(V, V )

, (6.43)

where V = ∂t is the time-like Killing vector field. The operator Lλ =

−�λ + m2 is elliptic for λ > 1 and has a unique Green function Gλ for

the appropriate boundary conditions; Gλ → 0 as t → ±∞. This Gλ is

analytic as a function of λ and by continuing to λ = 0 through the upper

half-plane the Feynman propagator for the physical metric is obtained.

The second paper considers a generic manifold in the causally stable form

M = R×Σ. They consider the same prescription as above eq. (6.43), but now

V is any non vanishing time-like vector field. Where applicable, the Feynman

propagator is found to be obtained in the limit λ→ 0+ in the complex plane.

However the uniqueness of this limit for two time-like vectors V and W ,

lim
λ→0+

[Gλ(x, x
′;V )−Gλ(x, x

′;W )] = 0 , (6.44)

is only established with the restrictions that either V and W differ only on

a compact set or that the manifold is analytic and rays passing through x′

can be extended avoiding caustics (see [76] for details).

Even with the restrictions these are suggestive results. However, much of the

success of Wick Rotation in curved spacetimes is in an alternative derivation

of the Hawking temperature. In the next section we show that continuation

of the metric can be used to obtain the Hawking temperature.
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6.4.3 Hawking Radiation via Metric Continuation

Certainly for the Schwarzschild spacetime in usual coordinates, eq. (2.40),

analytic continuation of the metric leads to the same Euclidean metric outside

the horizon. To see this, one can take the time-like Killing vector, V = ∂t,

in which case the Euclidean metric becomes,

gE = gSchwarz + 2
∂t ⊗ ∂t
|gtt| . (6.45)

In components this is exactly eq. (4.45)

ds2 =

(
1− 2M

r

)
dτ 2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) ,

and so requiring again that the continued metric be non-singular leads to the

Hawking temperature exactly as before in Chapter 4. Further it is a simple

exercise using eq. (6.5) to show that the continuation of a static metric using

the time-like Killing vector in these coordinates is equivalent to the rotation

t→ −it.
We now turn to the case of non static metrics. Recently it has been proposed

by Samuel [77] that a “Wick rotation in the tangent space” will yield the

correct Hawking temperature for spacetimes with horizons, provided that

the Wick rotated holonomy of the null generators is trivial. We now explain

what this is saying.

Samuel considers a Wick rotation in the (orthonormal) tetrad description,

e0
a → ie0

a, where again the index a labels the manifold coordinates and A

labels the vectors of the tetrad. Using Cartan’s formalism [4], the Christoffel

connection/covariant derivative ∇ can be treated as a matrix valued 1-form

ΩA
B = eAa (∇c e

a
B)dxc, which is defined by Cartan’s structure equation,

deA + ΩA
B ∧ eB = 0 , (6.46)

where eA = eAa dxa and d is the exterior derivative. The holonomy around a

closed curve γ, defined by,

HN = P exp

(∫
γ

ΩA
Bcn

c

)
, (6.47)
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where nc is a tangent vector to the curve γ, represents the failure of parallel

transportation along γ to return a vector to its original orientation.

Samuel demands that the Wick rotated holonomy be trivial for the null

generators of the horizon, that is HN = exp(2πJ) = 1, where J is a generator

of SO(4). This is equivalent requiring the continued metric to be non-singular

on the horizon. In Chapter 4, this forced the metric to be periodic and thus

lead to a thermal spectrum with Hawking temperature.

Requiring the holonomy of the continued metric to be trivial provides a nice

calculational tool for obtaining the periodicity requirements for the contin-

uation of the metric. The “Wick rotation in the tangent space” procedure

is shown to work for the Schwarzschild spacetime in the horizon penetrat-

ing Painlévé-Gullstrand coordinates [77] for which ordinary coordinate Wick

rotation fails. Furthermore it is demonstrated that analytic continuation of

the metric yields the Hawking temperature for the Kerr spacetime.

This is suggestive that the following is equivalent to the demand of a trivial

Wick rotated holonomy on the horizon. Consider spacetimes which have a

time-like vector, ξ, outside the horizon that becomes a null generator of the

horizon. For the Euclidean metric obtained using ξ (by eq. (6.30)) to be non

singular on the horizon, it must be periodic with period β = 2π/κ, where

again κ is the surface gravity on the horizon. That is,

gab(x
a + βξa) = gab(x

a) . (6.48)

Or equivalently, identify the points (xa + βξa) = (xa) exactly as required

to obtain the Hawking temperature via Euclidean methods. We have not

proven this equivalence.

It is clear then, given its coordinate independent nature, that continuation

of the metric is not only applicable in the same situations as a continuation

of the coordinates but also to a much wider class of geometries. Further,

the Euclidean signature metrics produced, while non unique, are obtained

directly from a corresponding Lorentzian signature metric.

There is however a major draw back from this method. The resulting met-

rics are not necessarily solutions to the Euclidean Einstein equations, e.g.

Rab(gE) = 0. This is shown below. For notational simplicity, consider the
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time-like vectors to satisfy the normalization condition, gabL VbVa = −1. The

resulting identity

V a∇L
b Va = 0 , (6.49)

is used extensively in the following. To evaluate the rotated Ricci tensor in

terms of the original metric we need to relate the two affine connexions.

[Γε]
a
bc ≡

1

2
gamε

(
gεmb,c + gεmc,b − gεcb,m

)
=

1

2

(
gamL +

iε

1 + iε
V aV m

)(
∂c
[
gLmb − iεVmVb

]
+ ∂b

[
gLmc − iεVmVc

]
+ ∂m

[
gLbc − iεVbVc

])
. (6.50)

This can be written,

[Γε]
a
bc = [ΓL]abc − Za

bc , (6.51)

where we introduce the tensor,

Za
bc = iε

(
V(b∇L

c)V
a − V(b∇a

LVc)
)

+
iε

1 + iε
V a∇L

(cVb) +
ε2

1 + iε
V aV(bAc) ,

= iε V(bF
a
c) +

iε

2(1 + iε)
V aQbc +

ε2

1 + iε
V aV(bAc) , (6.52)

where ∇L denotes the covariant derivative with respect to the Lorentzian sig-

nature metric, Fab = 2V[a;b], Qab = 2V(a;b), and Aa = V m∇L
mV

a. It should be

noted that Za
bc can be written equivalently in terms of gε and the Christof-

fel connection defined by gε. A small computation shows Za
ba = 0 and by

definition Za
[bc] = 0.

Now invoking the (3 + 1) decomposition, Va = −µ ∂aτ for a normalisation

factor µ, and is hypersurface orthogonal. Using Frobenius’ theorem this

implies V[a;bVc] = 0 [5]. From this one can show that,

Fab = AbVa − AbVa . (6.53)

Substitution of eq. 6.53 into eq. (6.52) leads to

Za
bc =

iε

1 + iε
V a

(
V(bAc) +

1

2
Qbc

)
. (6.54)

In the case that V a = −µ ∂aτ satisfies the affinely parametrised geodesic



88 CHAPTER 6. WICK ROTATION IN CURVED SPACETIME

equation Aa = 0 then eq. (6.54) simplifies further

Za
bc =

iε

1 + iε
V a∇bVc . (6.55)

Now using eq. (6.51) the rotated Riemann and Ricci tensors can be explicitly

related to the original tensors. That is,

[Rε]
a
bcd = [RL]abcd + 2

(
Za
b[c;d] + Za

n[dZ
n
|b|c]
)
, (6.56a)

Rε
ab = RL

ab + 2
(
Zc
a[c;b] + Zc

n[bZ
n
|a|c]
)
, (6.56b)

where ;≡ ∇L. Eq. 6.56b can be simplified using the symmetries of Za
bc above,

Rε
ab = RL

ab −∇L
c Z

c
ab + Zc

nbZ
n
ac (6.57)

This shows that an analytic continuation of the metric result in spacetimes

which are solutions to the traditional vacuum Euclidean Einstein equations

R(gE)ab = 0 iff

∇L
c Z

c
ab = Zc

nbZ
n
ac . (6.58)

This can be simplified using eq. (6.54) to

∇m

(
V m

[
V(aAb) +

1

2
Qab

])
=

iε

1 + iε
AaAb . (6.59)

6.4.4 A Modified Action?

We have seen that there are suggestive results, for both propagators and the

Hawking temperature from, an analytic continuation of the metric but that

the continued metric is no longer a solution to the same vacuum equations.

This suggests that in order to write down a Wick rotated path integral which

incorporates the metrics obtained by continuation as the stationary points

one cannot simply take
√−gε R(gε) as the Wick rotated Lagrangian density.

Barbero [78] has previously introduced a modified action for essentially the

Wick rotation of the metric we use. Following [78, 79] and working again

with the spacetime decomposition M = R × Σ, equipped with time-like

vector field Va = ∂aτ , where τ labels the foliation of space-like hypersurfaces

Στ , we consider the Lorentzian signature metric as a function of a Euclidean
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signature one,

gLab = gεab + iε
VaVb

|gmnε VmVn|
, (6.60)

gabL = gabε −
iε

1 + iε

V aV b

|gabε VaVb|
, (6.61)

where now V a = gabε Vb and we have used |gmnL VmVn| = |gmnε VmVn|, for |1 +

iε| = 1 where ε is complex. This is just the inverse of the Wick rotation

eq. (6.30).

Further considering the Wick rotated Lagrangian density to be
√−gεR [gL(gε)],

a long computation using eq. (6.57) and discarding surface terms shows that

the action can be written

S[gε] =

∫ (
R(gε)−

iε

1 + iε
Rab(gε)

VaVb
|gmnε VmVn|

)√−gε d4x ,

=

∫ (
R(gε)−

iε

1 + iε
Rab(gε)U

aU b

) √−gε d4x , (6.62)

where Ua = |(gε)mnVmVn|−1/2Va. The vector Ua ∝ ∂aτ is again hypersurface

orthogonal by virtue of the manifold decomposition and so once more satisfies

Frobenius’ theorem [5].

For ε = 0 this is clearly the ordinary Lorentzian action eq. (2.50), for ε = 2i

we obtain a Euclidean action,

S[gE] = −i lim
ε→2i

S[gε] =

∫ (
R(gE)− 2Rab(gE)

VaVb
|gmnE VmVn|

)√
gE d4x ,

(6.63)

taking
√−gE = i

√
gE.

Now using the techniques of disformal transformations [80] it can be shown

that, for all values of ε, the new action eq. (6.62) has the same extrema as the

action for Lorentzian signature gravity eq. (2.50). Moreover demanding the

action to be extremal with respect to the field τ produces no new constraints

on the field equations. Therefore one can consider this action as a functional

of only the continued metric gε for the path integral approach, safe in the

knowledge that one can consistently use the Wick rotation of the metric to

switch between Euclidean and Lorentzian signature.

Thus we can consider the thermal partition function for the Euclidean theory
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to be defined by

ZG =

∫
D[gL, τ, φ] exp(−SE[gE, φ]) , (6.64)

where SE[gE] is determined by eq. (6.63) and taken to be over fields periodic

in the vector V with period β. The measure, D[gL, τ, φ], now only runs over

the physically relevant Lorentzian signature metrics, and does not include

those Euclidean signature geometries which admit no Lorentzian one. How-

ever, one has to take into account the vector field Va = ∂aτ . Since the extrema

of the action are independent of V it seems plausible that this introduces no

more than a phase factor. Moreover, the stationary phase approximations to

thermodynamic properties around background Euclidean continued metrics

can be consistently be found via the new action.

6.5 Open Problems and Further Work

In this chapter we have summarised the many open problems for generalising

Wick rotation to curved spacetime, and presented some alternative lines for

future work. It has been shown that the traditional t→ −it fails in general.

Further we have presented the difficulties for extending the real manifold

to a complex manifold MC with complex metric. Namely that the näıvely

defined metric is singular and there is no generic way to find real slices

which correspond to different signatures. However, we have proposed a route

via a complex extension to a real-valued non singular metric, eq. (6.23),

that could potentially lead to a more well-defined method of looking for real

slices of MC. Nevertheless, this does not address the coordinate and chart

dependency of the technique.

We also gave an exposition of analytic continuation of the metric, eq. (6.30),

as an alternative to continuing the coordinates. Using the (3 + 1) decom-

position the continued metric was shown to have success in both defining

Feynman propagators and leading to the Hawking temperature. However in

order to consistently switch between the Euclidean and Lorentzian picture

via this method it was necessary to introduce a new action, eq. (6.62). This

action allows for the Euclidean path integral to be written down consistently

and hence the corresponding thermal properties to be found using the Eu-
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clidean techniques of Chapter 3. Further this path integral is now over only

the physically relevant Lorentzian signature geometries.

There are also a number of suggestive lines of further work to be pursued

involving continuation of the metric. It is certainly desirable to try to show

that the resulting geometries produce the same physical properties indepen-

dent of the vector used to continue the metric. There is also scope develop

the work of Candelas and Raine [75, 76] for propagators in curved spacetime.

Further, in some ways the tetrad formalism is as fundamental as the met-

ric and is certainly required to deal with fermions in curved spacetime. It

would therefore be interesting to try and extend the work of Samuel [77] by

looking at the Wick rotated action in the tetrad formalism and relate this to

eq. (6.62). It would also be of interest to rigorously convert the statements

made about Holonomy into statements about the periodicity of the continued

Euclidean metric.

On the path integral side, understanding the new measure D[g, τ ] is of crucial

importance to try to continue down the Euclidean quantum gravity route. It

would also be very worthwhile to calculate the new action under a conformal

transformation g̃Eab = Ω2gEab and see whether it is still unbounded from below

and whether this can be accounted for in the measure. Finally, invoking

a (3 + 1) split is reminiscent of the Wheeler–DeWitt equation and canoni-

cal quantum gravity [81]. It would be interesting to write the new action

eq. (6.62) in terms of the spatial Ricci scalar and extrinsic curvature along

the lines of Barbero [78] and find the resulting Wheeler–DeWitt equation

following [82].

It is the author’s opinion that the most promising outlook for a generalised

Wick rotation will be along these directions for a continued metric and not

for the continuation of the coordinates.
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Chapter 7

Conclusions

In this thesis we have explored the interaction between general relativity and

quantum field theory, focussing on the Hawking radiation effect for black

holes. The study consisted of two main themes. The first looked at the grey-

body factors arising in the Hawking effect from the gravitational potential.

The second investigated the extension of Wick rotation to curved spacetime,

motivated by the Euclidean derivation of the Hawking effect and Euclidean

quantum gravity.

We have developed a new method for numerical calculation of the greybody

factors which has wider application to other one dimensional scattering prob-

lems. Although we have only applied it to spherically symmetric black holes

there is certainly scope to apply the scheme to the more general cases. The

effect of the greybody factors on the Hawking process is that they signif-

icantly reduce the emission rate for Schwarzschild black holes and conse-

quently Hawking radiation is extremely sparse. This provides hints about

how to re-interpret the process as a chain of two-body decays [1].

Difficulties arise when looking at Reissner–Nordström, Kerr, and Kerr-Newman

black holes. In these situations one must account for super-radiance due

to the interplay between the greybody factors and the change of sign of

the Bose occupation number. This can lead to greatly enhanced emission

rates [23, 35, 36]. The product calculus method could be extended to these

situations taking into account the Teukolsky equation [37]. Further there is

room to gain a better understanding of all greybody situations using semi-

analytic approximations via the Dyson/Peano series eq. (5.52).
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On the Wick rotation front we have seen that t → −it does not naturally

extend, as is, to non static spacetimes. There are certain situations where

a Wick rotation, t → −it, can be applied, and used to find thermodynamic

properties, however it is highly coordinate dependent. Further, when consid-

ering complex valued metrics the extension to complex manifolds is not well

defined. We have introduced a way to extend to a complex manifold using a

real valued metric although this is still a coordinate dependent process which

is not cleanly generalisable.

On the other hand it seems that an analytic continuation of the metric works

in all the situations where a continuation of the coordinates works. Further

it is coordinate independent and can be applied to any Lorentzian metric in a

time orientable manifold. In spite of its successes, the analytic continuation

of the metric requires a new action, SE in eq. (6.63). This is necessary in

order to have the extrema δSE = 0 occur at the Euclidean signature metrics

obtained via continuation from the physically relevant Lorentzian signature

ones.

There is plenty of further work to be done to develop the ideas associated

with analytic continuation of the metric. This should focus on examining the

dependence of the process on the time-like vector employed along the lines

of Candelas and Raine [76], and understanding the relation between the new

proposed action and the tetrad formalism employed by Samuel [77]. Finally

special attention needs to be paid to understanding the measure, D[g, τ ], of

the Wick rotated action and relating it to the Lorentzian measure.

Ultimately the success of any extension of Wick rotation will depend on a

deeper understanding of the nature of time in general relativity and the path

integral approach to a quantum gravity.
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