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Abstract

In this thesis we aim to estimate the unknown phenotype network structure

existing among multiple interacting quantitative traits, assuming the genetic ar-

chitecture is known.

We begin by taking a frequentist approach and implement a score-based greedy

hill-climbing search strategy using AICc to estimate an unknown phenotype net-

work structure. This approach was inconsistent and overfitting was common, so

we then propose a Bayesian approach that extends on the reversible jump Markov

chain Monte Carlo algorithm. Our approach makes use of maximum likelihood

estimates in the chain, so we have an efficient sampler using well-tuned proposal

distributions. The common approach is to assume uniform priors over all network

structures; however, we introduce a prior on the number of edges in the phenotype

network structure, which prefers simple models with fewer directed edges. We

determine that the relationship between the prior penalty and the joint posterior

probability of the true model is not monotonic, there is some interplay between

the two.

Simulation studies were carried out and our approach is also applied to a pub-

lished data set. It is determined that larger trait-to-trait effects are required to

recover the phenotype network structure; however, mixing is generally slow, a

common occurrence with reversible jump Markov chain Monte Carlo methods.

We propose the use of a double step to combine two steps that alter the phenotype

network structure. This proposes larger steps than the traditional birth and death



move types, possibly changing the dimension of the model by more than one.

This double step helped the sampler move between different phenotype network

structures in simulated data sets.
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Chapter 1

Introduction

A quantitative trait (or phenotype) is a trait that can be measured on a continuous

scale, e.g. grain yield (measured in kg). Quantitative traits are controlled by genes,

inherited from parents, therefore the section of the genome containing (or linked

to) the genes controlling the trait(s) are called quantitative trait loci (QTL). QTL

mapping is the identification of QTL affecting single (or multiple) quantitative

trait(s); involving, among other things, the estimation of the QTL location within

the genome, the QTL genotype and the effect the QTL has on the quantitative

trait(s) of interest. These properties of a QTL are explained in Section 1.1.

As QTL mapping approaches were developed to incorporate multiple traits it

became necessary to account for the causal relationships that exist within a given

set of traits. The estimation of these causal network structures are the focus of

more recent QTL mapping approaches and are introduced in Section 1.2. The

objectives of QTL mapping over the years are discussed in Section 1.3, where

we outline the contribution of this thesis to the field of causal network structure

estimation.

Accompanying this introductory chapter is Appendix A, which details Mendelian

1
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inheritance and the basic biological principles underlying QTL mapping, as well

as a brief description of the breeding designs and the resulting populations com-

monly used in the QTL mapping literature.

1.1 Properties of a QTL

A QTL is defined by its location within the genome, the genotype, and the effect

on the quantitative trait(s) of interest.

1.1.1 QTL location

The genome is the genetic material of an organism, encoded in DNA (deoxyri-

bonucleic acid) and formed into chromosomes. A genetic marker is a gene (or

sequence of DNA) with a known location within the genome (i.e. a specific lo-

cation on a given chromosome), for all individuals of a given species. A set of

genetic markers, spread over the chromosome(s) of interest, form the base of the

genetic map on which we may estimate the location of putative QTL.

A locus (plural loci) is a particular location within the genome, here this could

refer to a genetic marker or putative QTL. Appendix A.1 defines how the distance

between two loci is recorded within the genome using Haldane’s mapping func-

tion. The locations of the genetic markers may be defined using recombination

fractions (or recombination frequencies), with the distance between marker 1 and

marker 2 on the chromosome labelled k (markers labelled k1 and k2, respectively)

being denoted by rk1k2. The matrix r denotes the pairwise distances and thus the

locations of all genetic markers in the study. Using the known location of genetic

markers within the genome we may specify the location of a QTL. A QTL will

be located within a marker interval, i.e. between two markers which are referred
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to as flanking markers. The `th QTL has its location denoted by λ` = (ξ`,γ`,θ`);

defined by

• the chromosome label (ξ`),

• the left flanking marker (γ`), i.e. the genetic marker located to the left of the

QTL on the genetic map

• the recombination fraction between the `th QTL and the left flanking marker

(θ`).

Figure 1.1 illustrates how the QTL location is defined.

Ql

Markers on 
chromosome 

ξl = k k1 γl = k2 k3 k4 k5

θl

Figure 1.1: The location of the `th QTL is defined by the chromosome it is located
on (ξ` = k), the left flanking marker (γ` = k2) and the recombination fraction (θ`).

1.1.2 QTL genotype

An allele is the form of a gene existing at a locus within the genome. Diploid

species, such as humans, are individuals with two copies of each chromosome,

and therefore two alleles at each locus.
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Alleles can be either dominant or recessive and are denoted, for example, A

and a respectively. If the two alleles are the same, e.g. AA or aa, the QTL genotype

is said to be homozygous; homozygous dominant for AA, and homozygous reces-

sive for aa. A heterozygous QTL genotype refers to the presence of one dominant

and one recessive allele, e.g. Aa. A recessive allele is only fully expressed in the

phenotype when the genotype is homozygous recessive. However, the dominant

allele is expressed in the phenotype with a homozygous dominant genotype, or

with a heterozygous genotype where it may mask the effect of the recessive allele,

according to Mendel’s law of dominance (see Appendix A.1).

The QTL genotypes present in a population are dependent upon the type of

breeding design (or “cross”) and the parent genotypes. For example, a dou-

bled haploid population can only yield individuals with a homozygous genotype.

Populations commonly referred to in QTL mapping literature are outlined in Ap-

pendix A.2.

1.1.3 QTL effect

For the analysis of a single trait, each identified QTL is assumed to have an effect

(possibly zero) on the trait of interest and there are multiple ways to model this

effect, depending on the population used and the resulting genotypes present. The

`th QTL is said to have effect φ`t on the tth trait, and we refer to this as the QTL-

to-trait effect or simply the QTL effect as QTL can affect traits, but traits cannot

affect QTL. For populations with both homozygous and heterozygous genotypes

(e.g. an F2 population) we must be able to account for the dominance effect which

occurs with only one copy of the dominant allele (a heterozygous genotype). The

widely used Cockerham genetic model is used for this (see Cockerham 1954);
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however, the simulated data in this thesis uses a more simple breeding design so

that we only model additive effects.

The analysis of multiple traits allows for more complicated genetic models,

whereby each trait is able to be affected by its own unique set of QTL, i.e. not all

QTL affect all traits.

1.2 Causal network structures

For QTL mapping with multiple quantitative traits, it is necessary to incorporate

the entire causal network structure. We separate the causal network structure into

two components: the genetic component and the phenotype network structure.

The genetic component includes the QTL effects, and what we refer to as the

genetic architecture. We separate the QTL effects from the genetic architecture

as in our approach, in Chapters 4 and 5, we assume that the genetic architecture

is known, but we still wish to estimate the QTL effects. The genetic architecture

includes:

• the number of QTL

• the QTL locations

• the QTL genotypes

• knowledge of which subset of QTL affect each trait.

Knowing which QTL have an effect on each trait means that we know which QTL

effect parameters we need to estimate, which is important as in a multiple trait

analysis not all QTL affect all traits. QTL mapping focuses on the estimation

of the genetic architecture and the QTL effects, see the QTL mapping objectives
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listed in Section 1.3. The analysis of multiple traits, however, also requires esti-

mation of the phenotype network structure, i.e. the estimation of the causal rela-

tionships between traits.

Casual network structures (or causal networks) may be represented by a di-

rected acyclic graph (DAG) which is a directed graph without any directed cycles,

or by a system of linear equations as a structural equation model (SEM) (see for

example Wright 1921, Haavelmo 1943, Koopmans et al. 1950, Koopmans 1953,

Pearl 2000, Mi et al. 2010). Each DAG is comprised of a set of nodes to represent

both the QTL and quantitative traits, connected by a set of directed edges which

correspond to the causal relationships existing between QTL and traits (the QTL

effects) and the traits themselves (trait-to-trait effects). An example causal net-

work structure is given in Figure 1.2, with three quantitative traits, denoted Y1, Y2

and Y3, and three QTL, denoted Q1, Q2 and Q3.

φ22

φ11

Y1

Y2 Y3
β23

β12

Q1

Q2

Q3

φ31

φ33

Figure 1.2: An example causal network structure with three quantitative traits
(Y1, Y2, Y3), three QTL (Q1, Q2, Q3), two trait-to trait effects (β12, β23) and four
QTL effects (φ11, φ22, φ31, φ33). The genetic architecture is assumed known and
is highlighted in blue, the phenotype network structure and QTL effects are black
and require estimation.
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With the analysis of multiple traits and the incorporation of trait-to-trait effects

into the model, a causal relationship can occur either directly or indirectly. If there

is a directed edge between two nodes, say Q1 and Y1, such that

Q1→ Y1

then Q1 is said to have a direct effect on Y1. An indirect effect is mediated by one

(or more) other variables, e.g. Q1 is said to have an indirect effect on Y2 when

Q1→ Y1→ Y2.

It is possible that, when added together to obtain the total effect, the direct and

indirect effects can cancel each other out (i.e. one positive effect, one negative

effect), resulting in the total effect being close to zero. The motivation to analyse

both the direct and indirect effects is that by only considering the total effect of a

QTL, methods can fail to detect QTL with significant direct and indirect effects

(Mi et al. 2010).

There are two causal relationships existing between traits in the example causal

network structure given in Figure 1.2:

Y1→ Y2 and Y2→ Y3

with the parameters β12 and β23, respectively. The following relationships be-

tween QTL and traits also exist in Figure 1.2:

Q1→ Y1, Q2→ Y2, Q3→ Y1 and Q3→ Y3
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corresponding to the QTL effect parameters φ11, φ22, φ31 and φ33, respectively.

The DAG in Figure 1.2 has much in common with a structural equation model

(SEM), as a SEM is a generalization of simultaneous equation procedures used

in path analysis, developed by Wright (1921), Haavelmo (1943), Koopmans et al.

(1950), and Koopmans (1953). Here, we use SEM within a specific genetic set-

ting, and incorporate further information regarding the genetic markers and ge-

netic map, see for example Mi et al. (2010).

It follows that the graphical model in Figure 1.2 (p. 6) can also be written as a

structural equation model:

yi1 = β01 +φ11qi1 +φ31qi3 + εi1

yi2 = β02 +φ22qi2 +β12yi1 + εi2

yi3 = β03 +φ33qi3 +β23yi2 + εi3

where for individual i, the QTL genotypes are denoted qi` for the `th QTL (` =

1,2,3) and for trait t (t = 1,2,3); the quantitative trait values are denoted yit . The

intercept is denoted β0t and the residuals are denoted εit :

εit
i.i.d∼ N(0,σ2

t ).

1.3 QTL mapping objectives

The goals of QTL mapping have evolved over the years and with this the mapping

methods have as well. Over time, QTL mapping has extended from mapping QTL

for only one quantitative trait, to the inclusion of multiple traits, and is currently

focused on the estimation of the phenotype network structure existing between
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multiple interacting traits. Although the focus is to map the causal relationships

between multiple traits, this is still a QTL mapping problem as the estimated trait-

to-trait effects are used to determine the indirect effect of a QTL on a given trait.

QTL mapping approaches have focused on any or all of the following six objec-

tives:

1. identify the locations of any QTL affecting each trait of interest

2. identify the QTL genotype for each individual

3. identify the size of the QTL effects on the trait(s) of interest

4. identify the number of QTL affecting the trait(s) of interest

5. identify the size of the trait-to-trait effects within a given causal network

structure

6. identify the phenotype network structure between correlated traits, i.e. iden-

tify which traits have an effect on other traits, corresponding to indirect QTL

effects.

This thesis focuses on the estimation of the (unknown) phenotype network

structure. The estimation of an unknown causal network structure is important as

they can be used to model the biological pathways influencing complex diseases

such as diabetes (Neto et al. 2010), and knowledge of a causal network struc-

ture can allow for predictions to be made about the effect of certain interventions

(Heckerman et al. 1995). For example, a causal network structure could signal that

certain genes imply a susceptibility to a disease, and interventions could focus on

selective breeding programs to diminish this. There are challenges with estimat-

ing an unknown causal network or phenotype network structure, however. Most
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importantly, an efficient search algorithm is required to move between candidate

models, as the number of possible causal network structures increases rapidly as

the number of traits increases.

Chapter 2 reviews existing QTL mapping methods which meet the sixth QTL

mapping objective, which is to say that they are able to identify the phenotype

network structure existing between a set of quantitative traits. The estimation of an

unknown causal or phenotype network structure makes this a model determination

problem (Neto et al. 2008, 2010). The necessary graphical model terminology are

also outlined to help describe the comparison of causal network structures.

In Chapter 3 we use a score-based greedy hill-climbing search strategy to carry

out a simulation study to determine how the model space can be searched, assum-

ing that the genetic architecture has already been determined using established

methods. We fit a system of linear equations and assess the goodness-of-fit of a

model by obtaining the maximum likelihood estimates and calculating the cor-

rected Akaike Information Criterion (the AICc) which is used for model compar-

ison.

Building on the existing QTL mapping and causal network structure estima-

tion methods we form a trans-dimensional Bayesian approach to estimate an un-

known phenotype network structure using reversible jump Markov chain Monte

Carlo in Chapters 4 and 5. We address the third, fifth and sixth QTL mapping ob-

jectives with our approach, recommending the use of existing methods to estimate

the genetic architecture. We incorporate a prior for the phenotype network struc-

ture which discourages the chain from moving to overly complicated models with

too many causal relationships, and make use of maximum likelihood estimates in

the chain to create an efficient sampler using well-tuned proposal distributions. In

Chapter 5 we also propose a ‘double’ step which combines two of the phenotype
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structure altering steps used here, creating six possible types of double step: add

two edges, add an edge and remove an existing edge, add an edge and reverse an

existing edge, remove two existing edges, remove one edge and reverse another,

and reverse two existing edges. This new move type allows the sampler to propose

larger steps to move between models, increasing mixing.

The final chapter, Chapter 6, summarizes our findings and discusses the con-

tribution of this thesis to the field of causal network structure estimation, which is

to extend the traditional trans-dimensional reversible jump algorithm to develop a

Bayesian approach to estimate an unknown phenotype network structure between

multiple interacting traits.
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Chapter 2

Review of methods estimating a

causal network

This thesis focuses on the estimation of a phenotype network structure, therefore

we will not provide details for earlier QTL mapping approaches which do not in-

corporate the phenotype network structure into the analysis. Zeng (1994) provides

a good summary of established QTL mapping methods for a single quantitative

trait, including the use of simple linear regression (see also Soller et al. 1976),

interval mapping (see also Lander & Botstein 1989), and composite interval map-

ping. Many of these methods rely on strong simplifying assumptions, in particular

often assuming that the number of QTL is known. The reversible jump Markov

chain Monte Carlo algorithm proposed by Green (1995) is the exception, treating

the number of QTL as an unknown parameter of interest.

In QTL mapping experiments one may obtain observations on multiple quan-

titative traits. When jointly analysing multiple quantitative traits, the correlation

structure existing between them should be incorporated in order to improve the

power and precision of mapping QTL, compared to methods which analyse traits

13
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separately (Jiang & Zeng 1995, Banerjee et al. 2008). Notable methods for multi-

ple trait QTL mapping include composite interval mapping (Jiang & Zeng 1995),

multivariate regression (Hackett et al. 2001), the seemingly unrelated regression

model (Banerjee et al. 2008), and the structural equation model (Mi et al. 2010).

Many biological studies focus on correlated phenotypes, but traditional QTL

mapping methods fail to incorporate the causal network structure of the pheno-

types into the analysis, also referred to as the phenotype network. As a result, the

genetic architecture inferred from the analysis is often misleading because such

methods can identify QTL as having a direct effect on the phenotype of interest,

when in fact, they may have an indirect effect. A QTL with an indirect effect

is one which is conditionally independent of the phenotype of interest, given an

intervening trait; it affects other phenotypes which in turn affect the phenotype of

interest. These causal networks, consisting of QTL, phenotypes, and the causal

relationships between them, can become very intertwined. Therefore, in order to

correctly infer the genetic architecture, the phenotype network structure must be

included in the analysis.

This chapter briefly summarises existing methods for estimating the direc-

tion of causality and the causal effect parameters when the causal direction is

unknown. Existing methods include the use of structural equation modeling com-

bined with model assessments such as the goodness-of-fit statistic or the AIC

to refine the causal network structure, as well as the use of the Markov chain

Monte Carlo algorithm to jointly infer the genetic architecture and the pheno-

type network; see Sections 2.2 and 2.3, respectively. We incorporate some of the

key components from these analyses into our extension of the traditional trans-

dimensional reversible jump algorithm, which estimates an unknown phenotype

network structure between multiple interacting traits.
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As the causal network structure is unknown, QTL mapping approaches require

ways to move between candidate causal network structures which may differ in

dimension. There must be a clearly defined way in which they distinguish be-

tween different causal relationships between traits. Causal networks can be rep-

resented as a directed graph without any cycles; as a directed acyclic graph, or

DAG. These networks are comprised of nodes connected by directed edges which

imply causality. The directed edges help to distinguish between networks which,

if undirected, would be considered likelihood equivalent (having the same joint

density). Causal networks incorporate the causal relationships existing between

both the QTL and phenotypes, and between the phenotypes themselves. In order

to infer an unknown phenotype network structure we must define the terminology

we use to describe graphical models; see Section 2.1.

2.1 Graphical model terminology

A graphical model, G, is defined by a set of nodes (V ) and a set of directed edges

(E) such that G = (V,E). There are a number of terms which may be used to

describe a graphical model. This section aims to give a brief introduction to some

of the graphical model terminology used when estimating the phenotype network

structure.

Definition 1: direct effect. A direct effect is represented by a directed edge.

E.g. Y1→ Y2 denotes the direct effect that the trait Y1 has on Y2.

Definition 2: directed path. A directed path is a sequence of edges follow-

ing the direction of causality between two specified nodes. Figure 2.1 gives

an example of a directed path from node Y1 to node Y4.
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Y1 

Y3 Y4 

Y2 

β13 

β34 

β21 

Figure 2.1: The directed path from Y1 to Y4 is highlighted in red (Y1→ Y3→ Y4),
and is comprised of the edges denoted by β13 and β34.

Definition 3: indirect effect. When there is a directed path from node A to

node B, mediated by at least one other variable, node A is said to have an

indirect effect on node B. Note that node A can be either a QTL or a trait;

however, node B must be a trait as QTL can affect traits, but traits cannot

affect QTL. The size of an indirect effect is calculated by evaluating the

product of path coefficients for each path from the associated variable to the

dependent variable. For example:

yi1 = β01 +φ11qi1 + εi1

yi2 = β02 +β12yi1 + εi2

where β0t is the intercept for the tth trait, and for individual i, the observed

trait value for the tth trait is denoted yit , and the `th QTL genotype is denoted

qi` with the QTL effect φ`t on the tth trait. The residuals are denoted εit .

QTL Q1 has a direct effect on trait Y1 (φ11). As Y1 has a direct effect on

trait Y2 (β12), QTL Q1 is said to have a indirect effect on Y2 as for any ith

individual:

yi2 = β02 +β12 (β01 +φ11qi1 + εi1)+ εi2

= (β02 +β01β12)+β12φ11qi1 +(β12εi1 + εi2).
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The indirect effect of of QTL Q1 on trait Y2 is therefore equal to the product

of the path coefficients, β12φ11.

Definition 4: total effect. The total effect a QTL or trait has on a given trait

is the sum of both the direct and indirect effects (Mi et al. 2010).

Definition 5: fork. A fork is formed by two directed edges originating from

the same node, to two different nodes. An example is given in Figure 2.2.

Y1

Y3 Y4

model M

fork in 
model M

Y2 Y1

Y3 Y4

Figure 2.2: A fork exists within the phenotype network structure created by the
nodes Y1, Y2 and Y3.

Definition 6: v-structure. A v-structure is formed by two converging di-

rected edges, where the tails are not connected by an edge. An example is

given in Figure 2.3.

model M

v-structure 
in model M

Y1

Y3 Y4

Y2 Y1

Y4

Y2

Figure 2.3: A v-structure exists within the phenotype network structure created by
the nodes Y1, Y2 and Y3.
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Definition 7: d-separated. A set of nodes, Z, is said to d-separate set X

from Y if and only if the nodes in Z block all paths from a node in X to

a node in Y. If sets X and Y are not d-separated, then they are said to be

d-connected (Pearl 1988, 2000). Example phenotype networks Ms and Mc

are given in Figure 2.4 to display a d-separated and a d-connected structure,

respectively. For both Ms and Mc, let Z = {Y1,Y4}, X = {Y2} and Y = {Y6}.

Y2

Y1 Y4

Y3

Y5

Y6

model MS

Y2

Y1 Y4

Y3

Y5

Y6

model MC

Figure 2.4: The phenotype network Ms is d-separated as the node Y4 (in Z) blocks
all paths from Y2 (X) to Y6 (Y). The phenotype network Mc is d-connected as the
node Y4 (in Z) does not block the path from Y2 (X) to Y6 (Y).

Definition 8: skeleton. The skeleton of a graph is obtained by removing the

direction of the edges — creating an undirected graph, or UDG. An example

is given in Figure 2.5.

Y1 

Y2 Y3 

Y1 

Y2 Y3 

model M 

skeleton of 
model M 

Figure 2.5: The causal network structure M is a directed acyclic graph, the skele-
ton of M is an undirected graph.
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Definition 9: directed cycle. A directed cycle is a directed path that begins

and ends at the same node (Lauritzen 1996). In this thesis we work with

directed edges only, and so a directed cycle is simply referred to as a cycle

and any causal network structure containing a cycle is said to be cyclic. An

example is given in Figure 2.6.

Y1

Y3 Y4

model M

cycle in 
model M

Y2 Y1

Y3 Y4

Figure 2.6: The phenotype network structure M is cyclic as it contains a cycle.

Definition 10: likelihood equivalent. Two causal networks with the same

joint densities are said to be likelihood equivalent. An example of likelihood

equivalence is given below.

Causal networks can often be likelihood equivalent, and in such instances model

selection methods are unable to distinguish between the joint densities and the

direction of a causal relationship cannot be determined. Therefore, causal re-

lationships between phenotypes require the use of conditional probability in or-

der to distinguish between different causal networks (Neto et al. 2010). This is

demonstrated in the following example, adapted from Neto et al. (2008). For two

quantitative traits, there exist two possible causal network structures containing

a single directed edge, given in Figure 2.7. Models M1 and M2 are likelihood

equivalent as the joint densities, denoted f (y1,y2), are the same:



20 CHAPTER 2. CAUSAL NETWORK ESTIMATION; A REVIEW

Y1 Y2Y1 Y2

Model M1 Model M2

Figure 2.7: Two possible phenotype network structures for traits Y1 and Y2.

f (y1) f (y2|y1) = f (y1,y2) = f (y2) f (y1|y2)

(Neto et al. 2008). Now suppose that there exist three quantitative traits; Y1, Y2 and

Y3. Two phenotype network structures, models MA and MB, are given in Figure

2.8. Phenotype networks MA (consisting of a v-structure) and MB (consisting of a

fork) are not likelihood equivalent as the joint densities are not equal. For MA we

have:

f (Y1,Y2,Y3) = f (Y2|Y1,Y3) f (Y1) f (Y3)

and for MB:

f (Y1,Y2,Y3) = f (Y1|Y2) f (Y3|Y2) f (Y2)

Y2

Y1 Y3

MA

Y2

Y1 Y3

MB

Figure 2.8: Example phenotype networks MA and MB .
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such that

f (Y1,Y2,Y3) = f (Y1|Y2) f (Y3|Y2) f (Y2)

= f (Y1|Y2)
f (Y2|Y3) f (Y3)

f (Y2)
f (Y2)

= f (Y1|Y2) f (Y2|Y3) f (Y3)

=
f (Y2|Y1) f (Y1)

f (Y2)
f (Y2|Y3) f (Y3)

=
f (Y2|Y1) f (Y2|Y3)

f (Y2)
f (Y1) f (Y3)

6= f (Y2|Y1,Y3) f (Y1) f (Y3).

Model selection methods which incorporate the joint density function are able to

distinguish between models.

2.2 SEM estimation of an unknown causal network

structure

A generalization of simultaneous equation procedures used in path analysis, de-

veloped by Wright (1921), Haavelmo (1943), Koopmans et al. (1950), Koopmans

(1953), the structural equation model (SEM) incorporates the causal relationships

existing between traits and estimates the direct and indirect effect each QTL has

on each trait (Mi et al. 2010). The drawback of the structural equation model is

that the causal network structure has to be known a priori.

For the ith individual, there are observations on NT causally related quan-

titative traits, denoted by the matrix Y, where Y = [y1, · · · ,yi, · · · ,yn] and yi =

[y1i, · · · ,yiNT ]
>. These traits are affected (additively) by Nqtl QTL, located at posi-

tions λ1,λ2, · · · ,λNqtl in Nqtl different marker intervals. For a RIL cross, genotypes
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are homozygous (‘AA’ and ‘aa’, for example) (see Appendix A.2.4). The struc-

tural equation model is as follows:

yi = Byi +α`qi +ζi (2.1)


yi1

yi2
...

yiNT

=


0 β12 · · · β1NT

0 0 · · · β2NT
...

... . . . ...

0 0 · · · 0




yi1

yi2
...

yiNT

+


α11 · · · αNqtl1

α12 · · · αNqtl2
... . . . ...

α1NT · · · αNqtlNT




qi1

qi2
...

qiNqtl

+


ei1

ei2
...

eiNT


(2.2)

y = By+aQ+E (2.3)

where βhk is the effect of trait h on trait k (B is an NT ×NT matrix comprised of

βhk for h = 1, · · · ,NT and k = 1, · · · ,NT ), and βhk = 0 for k ≤ h. Note that the

constraint βhk = 0 for k ≤ h means that a DAG structure is required for identi-

fiability. The direct effect of the `th QTL on trait k is denoted α`k (a = {α`k}

for ` = 1, · · · ,Nqtl and k = 1, · · · ,NT ), and qi` is the genotype of the `th QTL

for the ith individual such that Q is a matrix, Q = [q1, · · · ,qi, · · · ,qn] and qi =

[qi1, · · · ,qiNqtl ]
>. The residual effect on trait k for individual i, is denoted eik

(E = {eik} for i = 1, · · · ,n and k = 1, · · · ,NT ) and is assumed to have a multi-

variate normal distribution with mean zero and covariance matrix Ψ:

Ψ =


σ2

1 0 · · · 0

0 σ2
2 · · · 0

...
... . . . ...

0 0 · · · σ2
NT

 . (2.4)

The structural equation model given in Equations 2.1 – 2.3 incorporates the
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QTL effects; however, the structural equation model can also model genotype-

by-environment interactions (see Dhungana et al. 2007). The parameters can be

estimated via a Markov chain Monte Carlo (MCMC) approach (see Mi et al. 2010,

for example) or by maximum likelihood estimation (see Dhungana et al. 2007, for

example).

In order to estimate an unknown causal network structure, Li et al. (2006) use

SEM to assess the goodness-of-fit of a given model, and propose small adjust-

ments to the causal structure by adding, removing or reversing a single causal

relationship in order to explore the model space and identify the causal network

structure which best fits the data. The approach is summarized into five steps,

given in Section 2.2.1 as published in Li et al. (2006). The approach begins with

the detection of QTL with effects on the given quantitative traits and the identifica-

tion of any pleiotropic QTL (affecting multiple traits) using existing methods. An

initial causal network structure is proposed using the QTL information obtained,

and is then iteratively refined using model assessments such as the goodness-of-fit

statistic or the AIC.

2.2.1 Development of an unknown causal network structure

1. Identify QTL for individual phenotypes: use existing QTL mapping meth-

ods to carry out a single locus genome scan in search of a QTL affecting

each of the quantitative traits, see e.g. Sen & Churchill (2001). The pres-

ence of any QTL can be determined via likelihood ratios using the following

linear model:

Y = β0 +β1Q+ ε (2.5)
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which incorporates only additive QTL effects (Li et al. 2006). The quantita-

tive trait value is denoted by the n×1 vector Y , and the QTL genotypes are

denoted by the n× 1 vector Q. The intercept is denoted β0; β1 is the QTL

effect, and the n×1 residual vector is denoted ε .

2. Identify pleiotropic QTL: conditional genome scans are carried out using

the following model:

Y = β0 +β1Q+β2X + ε (2.6)

which is the same as the linear model used in step 1, but now another trait,

denoted X , is used as a covariate such that β2 is the effect of trait X on trait

Y , adjusted for the QTL effect. Note that many (even all possible) covariates

could be (individually) fitted. A large change in the likelihood ratios from

steps 1 and 2 indicates that trait X is causally connected to trait Y and QTL

Q (Li et al. 2006).

3. Define an initial path model: each QTL and trait of interest is represented

by a node in the causal network, and edges should be added from each QTL

to the appropriate traits (according to the results from step 1). A significant

change in the likelihood ratios in step 2 indicates that directed edges should

be placed from QTL Q to both traits X and Y , with an additional edge from

the conditioning trait, X , to the response, Y . Step 5, the refinement step,

will assess both the significance and the causal direction of this edge.

4. Assessment of the model: construct t-tests to test the significance of each

of the individual path coefficients, and use the goodness-of-fit test statistic

to determine whether or not the model provides a good fit to the data (Li
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et al. 2006, Bentler & Bonett 1980, Joreskog 1970). If the model does

not provide a good fit to the data (the goodness-of-fit test statistic will be

significant, p < 0.05), the model should be refined (Li et al. 2006).

5. Refine the model: in order to refine the model, new candidate causal network

structures are proposed by either adding a new edge, removing an existing

edge or reversing the causal direction of an edge (between the phenotypes),

providing the graph remains acyclic. These models form the neighbour-

hood, and the goodness-of-fit of each causal network structure within the

neighbourhood is assessed and the best model selected (Li et al. 2006). Dif-

ferent model selection methods may be used: the goodness-of-fit test statis-

tic (for nested models) or the AIC (for non-nested models), for example.

Steps 4 and 5 are repeated until a final model has been selected and can’t be

improved. Note that the proposed alterations to the causal network structure are

commonly used, and not unique to Li et al. (2006); see for example Heckerman

et al. (1995). The final model should have the following properties specified by

Li et al. (2006):

1. The final model must have at least one degree of freedom, i.e. there exist

more data points than parameters.

2. The p-value for the goodness-of-fit test should be greater than 0.05, indicat-

ing that the final model provides a good fit to the data.

3. The absolute value of each standardized residual should be less than 2.

4. The individual t-tests on each path coefficient should indicate significant

(non-zero) effects.
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5. The standardized path coefficients should have absolute values exceeding

0.05 (i.e. effects should not be trivial).

6. A large proportion of the phenotypic variance of the dependent variables

should be explained by the model.

Li et al. (2006) use the structural equation model to assess the goodness-of-

fit of the current model, and then propose small changes to the causal network

structure in order to iteratively search the model space. This approach is able

to meet all six of the QTL mapping objectives given in Section 1.3, as it begins

by scanning the genome for QTL, and also provides the framework to alter the

phenotype network structure.

As with all approaches to estimating an unknown causal network structure,

missing or misspecified model components can result in incorrect causal rela-

tionships being inferred. Li et al. (2006) use likelihood ratios to create a likely

initial model, which starts the iterative search in a better position than a randomly

selected initial model would. However, with greedy approaches it is normally ad-

vantageous to repeat the search from a variety of different positions, with different

initial models in order to avoid local maxima. Li et al.’s initial model starts the

search in a good position from where it is likely to find the global maxima; how-

ever, this is not guaranteed. It is recommended to repeat the search from a variety

of different positions.

2.3 The QTLnet algorithm

Neto et al. (2010) created the QTLnet algorithm as a method to jointly infer the
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phenotype network and the genetic architecture. The QTLnet algorithm infers the

genetic architecture for each phenotype, conditional on the phenotype network,

and is therefore ideal when trying to estimate an unknown causal network struc-

ture. The model used is similar to the seemingly unrelated regression model given

in Banerjee et al. (2008) as both QTLs and covariates enter the genetic model

through the mean:

yit = µ
∗
it + ∑

v∈υY (t)
βvtyiv + εit (2.7)

for individual i (i = 1, · · · ,n) and phenotype t (t = 1, · · · ,NT ) (Neto et al. 2010).

The phenotypic trait value is denoted by yit , with y = (y1, · · · ,yi, · · · ,yn) and yi =

(y1i, · · · ,yti, · · · ,yNT i)
>. The ‘parents’ of the tth trait, υY (t), refer to all traits with

a direct effect on trait t. The mean of the tth trait for the ith individual is given by

µ∗it , µ∗it = µt +Xitθt , such that µt is the overall mean for a given trait t, the column

vector θt represents the genetic effect of QTL on trait t, and the row vector Xit

denotes the genetic predictors derived from QTL genotypes. βvt is the trait-to-

trait effect of trait v on trait t, and the errors are assumed to follow a Normal

distribution, such that εit ∼ N(0,σ2
t ).

Assuming that the causal network structure, denoted M, with NT quantitative

traits is a DAG, the likelihood function for individual i factors as follows:

p(yi|qi,Γ,M) =
NT

∏
t=1

p(yit |qit ,υY (t)) (2.8)

where the unobserved QTL genotypes for individual i are denoted by qi, and for

the tth trait of the ith individual, qit (Neto et al. 2010). All other model parameters
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are denoted by Γ. Following from the model given in Equation 2.7:

p(yit |qit ,υY (t)) = N

(
µ
∗
it + ∑

v∈υY (t)
βvtyiv,σ

2
t

)
. (2.9)

There are many advantages to using this model, most notably, it allows each

phenotype to have its own unique genetic architecture.

Neto et al. (2010) utilise a Metropolis-Hastings algorithm and propose modi-

fications to the DAG representing the current model. Such modifications include

the addition, deletion or reversal of a single causal relationship, existing within the

current model, provided this does not result in a cyclic network. These are stan-

dard moves used to alter a causal network structure; see for example Heckerman

et al. (1995) and Li et al. (2006). The DAGs resulting from these modifications

make up the neighbourhood of model M, denoted Ne(M) (Neto et al. 2010). The

number of candidate causal network structures in the neighbourhood of model M

is denoted |Ne(M)|. The algorithm is as follows:

1. Given a current model or phenotype network structure, Mcurrent , the neigh-

bourhood is determined and a candidate model selected from this with pro-

posal probability

q(Mcandidate|Mcurrent) =
1

|Ne(Mcurrent)|
.

The candidate model, Mcandidate, is the result of a single modification (the

addition, deletion or reversal of a causal relationship), and because the

neighbourhood excludes cyclic networks it can be assumed that the can-

didate model is a DAG.
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2. Factor the likelihood according to the candidate model and for each of the

t = 1, · · · ,NT phenotypes, perform a QTL mapping analysis conditional on

its parents, υY (t).

3. Obtain p̂(y|q,Mcandidate) by individually estimating the components of the

marginal likelihood p(yit |qit ,υY (t)), see Equation 2.9.

4. The candidate model is accepted with probability

α = min
{

1,
p(y|q,Mcandidate)p(Mcandidate)

p(y|q,Mcurrent)p(Mcurrent)

q(Mcurrent |Mcandidate)

q(Mcandidate|Mcurrent)

}

(Neto et al. 2010).

5. Repeat steps 1 – 4 until the chain has converged to a stationary state and a

large number of samples from the posterior have been drawn.

The Metropolis–Hastings algorithm proposed by Neto et al. (2010) only makes

small modifications at each step and is therefore slow. In order for the Markov

chain to mix well, long chains and large thinning windows are necessary. Neto

et al. (2010) suggest a few ways to improve computation efficiency when using

the QTLnet algorithm. Firstly, step 2 is identified as the most computationally

demanding step. The current and candidate models will only differ slightly, so it

is best to carry out mapping analysis only on the two nodes affected by an edge

reversal, or on the single node affected by the addition or deletion of an edge. For

an edge reversal, it is necessary to redo the mapping analysis for both nodes, say

reversing the edge from y1→ y2 to y1← y2, because the conditional relationships

change: y1 is now conditional on y2.
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The second recommendation given by Neto et al. (2010) is to conduct a multiple-

trait multiple-QTL analysis prior to implementing the QTLnet algorithm. The

seemingly unrelated regression model (Banerjee et al. 2008) is recommended.

This prior analysis will identify all QTL linked to each of the phenotypes, indi-

vidually. Incorporating the resulting relationships into the QTLnet algorithm then

limits the possible QTL locations to those already identified. As the QTL lo-

cations are already known, only estimates for their effects on each phenotype are

required; reducing the number of computations required by the QTLnet algorithm.

Figure 2.9, adapted from Husmeier (2003) and Neto et al. (2010), gives an

example of a single step in the Metropolis-Hastings algorithm outlined above.

Suppose there is a current model with three quantitative traits (Y1, Y2, Y3) and

causal relationships between Y1 and Y3 (Y1 → Y3) and Y3 and Y2 (Y3 → Y2). The

neighbourhood for the current phenotype network structure is given on the left

of Figure 2.9, displaying the set of candidate models to choose from. There are

just five DAGs comprising the neighbourhood for the current model as the sixth

phenotype network is actually cyclic so it must be excluded, see Figure 2.10. A

candidate model is therefore selected with probability q(Mcandidate|Mcurrent) =
1
5 ;

this is the proposal probability of moving from the current to the candidate model.

Suppose the deletion of the causal relationship between items Y3 and Y2 is se-

lected. The neighbourhood of the candidate model includes six DAGs, making

the proposal probability to move from the candidate model back to the current

model q(Mcurrent |Mcandidate) =
1
6 . In this instance, the Metropolis-Hastings pro-

posal ratio is
q(Mcurrent |Mcandidate)

q(Mcandidate|Mcurrent)
=

5
6
.

The QTLnet algorithm proposed by Neto et al. (2010) is able to meet all six of
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Figure 2.9: The neighbourhoods for the current and candidate phenotype net-
works; here |Ne(Mcurrent)|= 5 and |Ne(Mcandidate)|= 6.

Y1 

Y2 Y3 

Add 

cyclic 

Figure 2.10: This phenotype network was removed from the neighbourhood of the
current phenotype network as it is cyclic.

the QTL mapping objectives given in Section 1.3, as it alters the phenotype net-

work structure and then infers the genetic architecture for each phenotype, condi-

tional on the current phenotype network.
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Both the approach proposed by Li et al. (2006) and the QTLnet algorithm

proposed by Neto et al. (2010) move between candidate models in the same way

(via the widely used steps which add an edge, remove an edge, or reverse an edge).

Li et al. (2006) take a score-based approach, and Neto et al. (2010) take an MCMC

approach. A score-based approach is generally faster than an MCMC approach;

however, the number of candidate models in the neighbourhood increases rapidly

as the number of quantitative traits increases (Robinson 1977). So as the causal

network structures become more complex, the search strategy becomes slower,

due to the increase in the number of models it must fit. In Chapter 3 we investigate

the use of a score-based approach to determine the unknown phenotype network

structure. We consider two approaches: the first compares all possible causal

network structures and selects the model with the best fit as determined by the

AICc, and the second approach sequentially builds up the model using the greedy

hill-climbing search strategy. Following Li et al. (2006) and Neto et al. (2010)

we consider steps which add an edge, remove an edge, or reverse an edge within

the current causal network structure. In Chapters 4 and 5 we propose a reversible

jump Markov chain Monte Carlo algorithm to estimate an unknown phenotype

network structure.



Chapter 3

Estimating an unknown phenotype

network structure using AICc

Chapter 2 introduced the QTLnet algorithm proposed by Neto et al. (2010), ca-

pable of jointly inferring the phenotype network structure and the genetic archi-

tecture. As numerous efficient methods for estimating the genetic architecture of

a trait have already been established (see for example, Stephens & Fisch 1998;

Sibanda 2002; Satagopan et al. 1996; Heath 1997), in this thesis we focus on the

proposal of an approach to estimate the unknown phenotype network structure

of a given set of quantitative traits, assuming that the genetic architecture under-

lying these traits is known. In other words, both the location of the Nqtl QTL

affecting NT traits and the genotype of each QTL for all n individuals are known

a priori, and we also know which QTL affect which traits (i.e. the parent QTL

nodes, υQ(t), are known for all t traits), but the QTL effects are unknown.

We use a score-based approach, see for example Heckerman et al. (1995) and

Friedman et al. (1999), over a constraint based approach like that of Tsamardinos

et al. (2006) and Spirtes et al. (2000), as constraint based approaches are unable to

33
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reliably identify the conditional independence properties (Margaritis 2003). Fur-

thermore, constraint-based approaches require two separate steps in order to ob-

tain an estimate of a causal network structure with directed edges. The first step

uses conditional independence tests to identify a set of conditional independence

properties, forming the skeleton of a graph (a UDG), see Section 2.1 (Zhou 2011).

Given the UDG, the second step of a constraint based approach determines the

DAG.

Score-based approaches assign a score to each model (with a specific causal

network structure) given the data. Here we use the Akaike Information Criterion

with a correction for the sample size (the AICc). The Akaike Information Crite-

rion (AIC) is based upon Fisher’s maximized log-likelihood and is an estimator

of divergence between the true model of the data and the approximating model

as given by the Kullback-Leibler distance (Akaike 1973, Burnham & Anderson

2002). Both the AIC and AICc penalize models with many parameters (see, for

example, Akaike 1973 and Hurvich & Tsai 1989). The AICc is the AIC with

a correction for the sample size, such that as the sample size increases the AICc

converges to the AIC. Therefore, regardless of the sample size, the use of the AICc

is recommended (Burnham & Anderson 2002). Here we use an approximation to

the multivariate AICc as defined by Fujikoshi & Satoh (1997), which includes a

recommended correction for over- and under-defined models:

AICc = AIC+2
p(p+ v)

(nNT − p− v)

= −2`+2p+2
p(p+ v)

(nNT − p− v)
. (3.1)

The maximized log-likelihood is given by `, p is the number of parameters esti-

mated (including the intercepts and residual trait variances), and v is the num-
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ber of distinct parameters estimated in the covariance matrix, where 1 ≤ v ≤

NT (NT +1)/2 (Fujikoshi & Satoh 1997, Burnham & Anderson 2002). We have n

independent individuals, with NT non-independent observations per individual.

Within a set of candidate models, the model which best fits the data is associ-

ated with the best score, here this is the lowest AICc value (Zhou 2011). However,

when using the AIC there is a rule of thumb whereby two models with AIC val-

ues with a difference less than 2 can be considered indistinguishable. The AICc

converges to the AIC with large n, and so we apply this rule here — considering

models of a similar fit instead of simply selecting the model with the lowest AICc

value.

This chapter considers two score-based approaches to estimate the unknown

phenotype network structure. The first approach fits and compares all possible

causal network structures and selects the model with the best fit as determined by

the AICc. The second approach sequentially builds up the model using a stan-

dard heuristic search strategy — the greedy hill-climbing search strategy (see, for

example, Heckerman et al. 1995 and Tsamardinos et al. 2002). With this search

strategy, at each step we have a current model structure which we compare to a

set of candidate models, each one formed by either the addition of a directed edge

(i.e. one trait-to-trait effect) not included in the current model, or the removal or

reversal of a directed edge within the current model. The model with the greatest

improvement in the score is then selected to become the current model (Friedman

et al. 1999). The search continues until the AICc of the current model can no

longer be improved.

This second approach is necessary for larger datasets comprised of many quan-

titative traits. Robinson (1977) introduced the following recursive function to de-
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termine the number of existing (acyclic) models for NT traits:

f (NT ) =
NT

∑
i=1

(−1)i+1
(

NT

i

)
2i(NT−i) f (NT − i) (3.2)

where f (0) = 1. As the number of traits increases the number of possible models

increases rapidly and so the first approach, where we assign a score to each possi-

ble model, becomes computationally infeasible. For example, this function states

that there exist 25 possible acyclic models for three quantitative traits, and 29,281

for five quantitative traits.

The two score-based approaches to estimating an unknown phenotype network

structure are described in Sections 3.2 and 3.3, along with simulated examples to

illustrate each approach. Both use the approximation to the multivariate AICc as

given in Equation 3.1 (p. 34), where the least squares estimates maximise the log

likelihood as detailed in Section 3.1.

3.1 The maximised log likelihood

The notation used in this chapter is continued throughout the remainder of this

thesis, and is summarized in Table 3.1 for convenience. Let the causal network

structure be denoted S, comprised of a set of nodes connected by a set of directed

edges. Let the quantitative trait measurements be denoted by the n×NT matrix

Y. The QTL genotypes (Q), QTL locations (Λ), marker genotypes (G) and re-

combination fractions between markers (r) are assumed to be known, and are as

described in Table 3.1. Let Ψ denote the parameters assumed to be known, such

that Ψ = {Q,Λ,G,r}. The unknown parameters are denoted by Ω:

Ω = {β01, · · · ,β0NT ,βυY (1)1, · · · ,βυY (NT )NT ,φυQ(1)1, · · · ,φυQ(NT )NT ,σ
2
1 , · · · ,σ2

NT
}.



Table 3.1: A summary of the notation used, as well as an indication of whether or not each is included in Ψ or Ω.

Notation Used Description
n number of individuals

NT number of quantitative traits
Nqtl number of QTL
Nφ number of QTL effects
Y Y = [y1, · · · ,yt , · · · ,yNT ] quantitative trait measurements

where yt = [yi1, · · · ,yit , · · · ,yit ]
>

υY (t) the set of quantitative traits with a direct effect on trait t
|υY (t)| the number of quantitative traits with a direct effect on trait t
yiυY (t) the set of trait values for the ith individual, for those traits with a direct effect on trait t

G G = {gi}n
i=1 marker genotypes (Ψ)

where gi = {g(i)km : (k = 1, · · · ,K),(m = 1, · · · ,N(k)
M )} gkm ∈ {0,1} for a doubled haploid population, for example

for K chromosomes and N(k)
M markers on chromosome k

r r = {rkm : (k = 1, · · · ,K),(m = 1, · · · ,NM−1)} recombination fractions between markers (Ψ)
rkm is the recombination fraction between markers

m and m+1 on chromosome k
Q Q = {q1, · · · ,q`, · · · ,qNqtl} QTL genotypes (Ψ)

where q` = {qi`}n
i=1 qi` ∈ {0,1} for a doubled haploid population, for example

for `= 1, · · · ,Nqtl for the Nqtl QTL
υQ(t) the set of QTL with a direct effect on trait t
|υQ(t)| the number of QTL with direct effects on trait t
qiυY (t) the set of QTL genotypes for the ith individual, for those QTL with a direct effect on trait t

Λ Λ = {λ1, · · · ,λ`, · · · ,λNqtl} where λ` = (ξ`,γ`,θ`) genomic location of the `th QTL (Ψ)
ξ` chromosome on which the `th QTL is located
γ` left flanking marker of the `th QTL
θ` recombination fraction between γ` and the `th QTL

Φ Φ = {ΦυQ(1)1, · · · ,ΦυQ(t)t , · · · ,ΦυQ(NT )NT } QTL effects (Ω)
φυQ(t)t the set of |υQ(t)| QTL effects the parent QTL have on trait t

β0t {β01, · · · ,β0NT } trait intercepts for trait t = 1, · · · ,NT (Ω)
βυY (t)t for t = 1, · · · ,NT the set of |υY (t)| trait-to-trait effects the parent traits have on trait t (Ω)

βt(t+1) the trait-to-trait effect of trait t on trait (t +1)
σt

2 for t = 1, · · · ,NT residual variance for trait t (Ω)
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For traits t = 1, · · · ,NT , β0t is the intercept for trait t, and υY (t) and υQ(t) denote

those traits and QTL directly upstream of trait yt , respectively. The terms βυY (t)t

and φυQ(t)t then denote the direct effect of the traits υY (t) and QTL υQ(t) on trait

t, respectively. Together the graph structure and the parameters define the model

M; M = {Ω,S}. Given data Y and Ψ, the posterior distribution for model M is:

p(M|Y,Ψ) =
p(Y|M,Ψ)p(M|Ψ)

p(Y|Ψ)

∝ p(Y|Ω,S,Ψ)p(Ω,S|Ψ)

∝ p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S). (3.3)

QTL can have both direct and indirect effects on quantitative traits. The genetic

model is:

yit = β0t + ∑
k∈υY (t)

βktyik + ∑
`∈υQ(t)

φ`tqi`+ εit (3.4)

For the tth quantitative trait of the ith individual, denoted yit :

yit = µit + εit

where εit
i.i.d.∼ N(0,σ2

t )

µit = β0t + ∑
k∈υY (t)

βktyik + ∑
`∈υQ(t)

φ`tqi`.

The log likelihood is:

`(Y|Ω,S,Q,Λ,G,r)

=
n

∑
i=1

log

(
Nqtl

∏
`=1

[
p(qi`|λ`,G,r)p(λ`|G,r)

]
NT

∏
t=1

p(yit |yiυY (t),qiυQ(t),Ω)

)

= c+
n

∑
i=1

log

(
NT

∏
t=1

p(yit |yiυY (t),qiυQ(t),Ω)

)
(3.5)
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where yiυY (t) denotes the set of observed trait values for the parent traits of the tth

trait, and qiυQ(t) denotes the set of observed QTL genotypes for the parent QTL of

the tth trait.

The probability of the `th QTL genotype for individual i having the value qi`

is denoted by p(qi`|λ`,G,r) and is conditional on the location of the QTL (defined

by λ`; the chromosome it is located on, the left flanking marker and the recom-

bination fraction), the marker genotypes (G) and marker locations (r). Similarly,

p(λ`|G,r) is the probability of the `th QTL being located at the genomic position

indicated by λ`. Therefore,
Nqtl

∏
`=1

[p(qi`|λ`,G,r)p(λ`|G,r)] denotes the probability

of observing the given set of Nqtl QTL for individual i. Here, we assume the QTL

locations and genotypes are known, giving
Nqtl

∏
`=1

[p(qi`|λ`,G,r)p(λ`|G,r)] a single

fixed value, denoted by the constant c.

Section 3.1.1 outlines the calculation of the least squares estimates (LSE),

and demonstrates that in this scenario they are equal to the maximum likelihood

estimates (MLE).

3.1.1 Least squares estimates

All traits are modeled using additive linear models, and we have NT separate linear

regressions, one for each trait. The quantitative trait measurements for the tth trait

are recorded in the n×1 column vector, yt = [y1t , · · · ,ynt ]
>. Let the n× (NυY (t)+

NυQ(t)+1) design matrix be denoted X(t) where there are NυY (t) traits and NυQ(t)

QTL affecting trait t. It follows that the (NυY (t)+NυQ(t)+1)×1 parameter vector

β
(t) is comprised of the intercept, β0t , the NυY (t) trait-to-trait effects ({βkt}k∈υY (t))

and the NυQ(t) QTL effects ({φ`t}`∈υQ(t)). We assume that the genetic architecture

is known a priori and so the number of QTL with a direct effect on trait t, NυQ(t),
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is known. It follows that:

yt = X(t)
β
(t)+ εt , εt ∼ N(0,σ2

t )In. (3.6)

Given that the quantitative trait values are normally distributed with variance σ2
t ,

the probability density function is:

p(yt |Xβ
(t),σ2

t ) =

(
1

(2πσ2
t )

) n
2

exp
(
− 1

2σ2
t
(yt −X(t)

β
(t))>(yt −X(t)

β
(t))

)
(3.7)

and the log-likelihood:

`(yt |Xβ
(t),σ2

t ) =−
n
2

log(2πσ
2
t )−

1
2σ2

t
(yt −X(t)

β
(t))>(yt −X(t)

β
(t)). (3.8)

In order to find the least squares parameter estimates we need to minimise the

SSE (sum of squared errors):

(yt−X(t)
β
(t))>(yt−X(t)

β
(t)).

It follows that by minimising the SSE we maximise the log likelihood, and we

conclude that the least squares estimates are equal to the maximum likelihood

estimates. These terms are therefore used interchangeably in this thesis.

The least squares estimates (LSE) are obtained by partially differentiating the

SSE with respect to the parameter vector β
(t), and setting equal to zero to get:

β̂
(t)

=
(

X(t)>X(t)
)−1

X(t)>yt . (3.9)

We have not assumed equal variances across traits, so the variance of trait t is:

σ̂t
2 =

1
n− p(t)

(
yt −X(t)

β̂
(t)
)>(

yt −X(t)
β̂
(t)
)
, (3.10)
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where p(t) is the number of parameters estimated including the intercept, p(t) =

NυY (t) +NυQ(t) + 1. Given these individual trait variances, the variances of the

parameter estimates relating to trait t, β̂
(t)

, is:

V̂ar(β̂
(t)
) = σ̂t

2
(

X(t)>X(t)
)−1

. (3.11)

3.2 Approach 1: consider all possible causal models

Assuming an unknown phenotype network structure, one approach would be to

compare all possible models (each representing a different phenotype network

structure) and select the best model given the data, i.e. the model with the lowest

AICc value. Furthermore, we may obtain model weights so as to compare the fit

of each model relative to the model of best fit — normalizing the model likeli-

hoods so that we can consider them as probabilities (Burnham & Anderson 2002,

Anderson 2008). This approach is straightforward when only a small number of

quantitative traits are included in the study; however, as this number increases

the number of possible models increases rapidly (see Equation 3.2 from Robin-

son 1977 on p. 36) and it is no longer computationally feasible to fit all possible

phenotype networks existing between NT traits.

3.2.1 Summary of Approach 1

1. Determine the set of M candidate models for a given number of traits, NT .

2. Calculate the LSE for each candidate model using Equations 3.9 and 3.10.

3. Calculate the AICc as given in Equation 3.1 (p. 34) for each model in the

candidate set; denoted AICcm for the mth candidate model (m = 1, · · · ,M).
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4. Identify the model with the lowest AICc, AICcmin, and calculate the differ-

ence between the AICc of each mth model and AICcmin;

4m = AICcm−AICcmin. (3.12)

5. Calculate the Akaike weight for all candidate models:

p(m) =
exp(−1

24m)
M

∑
i=1

exp(−1
2
4i)

(3.13)

for m = 1, · · · ,M (Burnham & Anderson 2002).

The model with the lowest AICc provides the best fit to the data, but by using

the Akaike weights we also have a measure of how different the fit of each model

is compared to the best model. In other words, the Akaike weights are used to

determine the relative standing of the candidate models regardless of the AICc

scale (Burnham & Anderson 2002).

3.2.2 Example with three quantitative traits

Consider an example where there exist three quantitative traits and three QTL,

simulated according to Appendix B and the causal network structure given in

Figure 3.1. The true causal network structure corresponds to Model 6 in Figure

3.2, which displays all possible phenotype networks for NT = 3 quantitative traits.

For each trait t (t = 1, · · · ,NT ), υQ(t) is assumed known, but the size of the QTL

effects are to be estimated, along with the phenotype network structure.

Each of these candidate models were individually fitted to the simulated data

to obtain the LSE of each parameter, and the respective multivariate AICc values
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(determined using Equation 3.1, p. 34) are given in Table 3.2 and plotted in Figure

3.3 (p. 45).

Y1 

Y2 Y3 

Q1 

Q2 Q3 

φ11 = 0.75 

φ33 = 1.5 φ22 = 1.25 

β13 = 0.25 β12 = 0.5 

β23 = 1.2 

Figure 3.1: The true causal network structure and genetic architecture.
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Figure 3.2: There exist 25 candidate phenotype network structures between NT =
3 quantitative traits. Model 6 is the phenotype network structure of the true model.
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Table 3.2: The multivariate AICc values, change in AICc (4m = AICcm −
AICcmin), and the Akaike weights for all 25 models in the candidate set, indexed
as in Figure 3.2.

model number Akaike weight
m AICc 4m p(m)
1 2280.77 347.00 0.00
2 2212.86 279.09 0.00
3 1939.47 5.71 0.05
4 2247.00 313.23 0.00
5 2134.78 201.01 0.00
6 1933.77 0.00 0.95
7 2066.87 133.10 0.00
8 2101.02 167.25 0.00
9 2277.50 343.73 0.00

10 2245.79 312.03 0.00
11 1998.41 64.64 0.00
12 2073.76 139.99 0.00
13 1966.71 32.94 0.00
14 2313.71 379.94 0.00
15 1972.41 38.64 0.00
16 2311.12 377.35 0.00
17 2109.97 176.20 0.00
18 1969.83 36.06 0.00
19 2107.38 173.61 0.00
20 2004.12 70.35 0.00
21 1970.35 36.58 0.00
22 2311.65 377.88 0.00
23 2107.91 174.14 0.00
24 2141.68 207.91 0.00
25 2367.60 433.83 0.00
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Figure 3.3: The multivariate AICc values for all 25 candidate models incorpo-
rating three quantitative traits. Each model number corresponds to the models
illustrated in Figure 3.2.
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Figure 3.4: The Akaike weights for all 25 candidate models incorporating three
quantitative traits. Each model number corresponds to the models illustrated in
Figure 3.2.
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Both Table 3.2 and Figure 3.3 show that Model 6 (the true model) has the

lowest AICc value, indicating that this is the model of best fit. The Akaike

weights/model probabilities are given in Table 3.2 and displayed in Figure 3.4.

Model 6 has an Akaike weight of 0.95, significantly higher than the other possible

models. Model 3 has a phenotype network structure similar to Model 6, although

it is missing the (weakest) trait-to-trait effect β13. Model 3 is the model with the

only other Akaike weight where p(m) > 0.005. The addition of the trait-to-trait

effect β13 reduced the AICc by more than 2, so we conclude that Model 6 is

the correct phenotype network structure, given the data. Parameter estimates for

Model 6 are given in Table 3.3. The least squares parameter estimates are close to

the true values, with narrow confidence intervals each containing the true param-

eter value. This approach of fitting and comparing all possible models is able to

both identify the correct phenotype network structure and correctly estimate the

Table 3.3: Parameter estimates for the true causal network structure of Model 6,
as given in Figure 3.2 (p. 43). Intervals including the true value are indicated by
an asterisk (∗).

parameter true value estimate 95% confidence interval
β01 0.50 0.41 (0.21,0.61)∗

β02 0.50 0.34 (0.08,0.60)∗

β03 0.50 0.55 (0.28,0.83)∗

β12 0.50 0.61 (0.47,0.74)∗

β13 0.25 0.21 (0.06,0.36)∗

β23 1.20 1.24 (1.13,1.36)∗

φ11 0.75 0.87 (0.60,1.14)∗

φ22 1.25 1.30 (1.00,1.59)∗

φ33 1.50 1.27 (0.99,1.56)∗

σ1 1.00 0.97 (0.80,1.19)∗

σ2 1.00 1.06 (0.88,1.30)∗

σ3 1.00 1.03 (0.85,1.26)∗
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true parameter values. However, once the number of quantitative traits included

in the study increases, the number of models increases rapidly, creating the need

for a search algorithm to efficiently search the model space.

3.3 Approach 2: greedy hill-climbing

search strategy

As the number of quantitative traits increases, the number of possible causal net-

work structures increases rapidly (Robinson 1977) and so it is not always fea-

sible to fit all possible models. One way to approach this problem is to build

the candidate phenotype network structure one causal relationship at a time via a

greedy hill-climbing search strategy (see, for example, Heckerman et al. 1995 and

Tsamardinos et al. 2002). In order to create a flexible search strategy, we assume

we can add any directed edge to the current model, provided it does not create a

cyclic model. This allows for the estimation of causal network structures that are

disconnected — that is, models where if the UDG is considered, there exist two

nodes such that there is no path connecting the two, see the example in Figure 3.5.

If many quantitative traits are included in a study, it is possible that a small subset

are not causally related to the other traits. If we conditioned the search method to

only add directed edges (or causal relationships) connecting to the current model,

we would not be able to identify models like that given in Figure 3.5. Furthermore,

as this is a hill-climbing algorithm, we randomly select multiple initial models to

repeat the search from different areas of the model space in an effort to avoid local

maxima. The approach is summarized in Section 3.3.1 and we provide simulated

examples for two different causal network structures in Sections 3.3.2 and 3.3.3.
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Y1 

Y4 Y5 

Y2 

Y6 

Y3 

Figure 3.5: An example of a disconnected phenotype network structure. There is
no undirected path from Y1 to Y2, for example.

3.3.1 Summary of Approach 2

1. Set five initial models, each denoted M0; one with no trait-to-trait effects, one

with the maximum number of trait-to-trait effects, and 3 randomly selected

initial models. For each initial model complete steps 2 – 6.

2. Fit the initial model, M0, by estimating the LSE as outlined in Section 3.1.1.

Calculate the multivariate AICc given in Equation 3.1 (p. 34), this is now

the current model.

3. Determine the set of M acyclic candidate models resulting from:

[ a.] the addition of a single directed edge not in the current model,

[ b.] the removal of a single directed edge in the current model,

[ c.] the reversal of a single directed edge in the current model.

4. Obtain the LSE for all m candidate models (m = 1, · · · ,M) following Section

3.1.1 and calculate the multivariate AICc for each, AICcm, given in Equation

3.1 (p. 34).
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5. Select the model with the lowest AICc, AICcmin. This model is now the current

model.

6. Continue steps 3 through 5 until the current model is the model with the lowest

AICc value.

7. Compare the models estimated from each of the five searches. If the models

differ, the one with the lowest AICc is the final model, unless the AICc

values differ by less than 2 and then the models are comparable.

3.3.2 Approach 2, example 1: five connected nodes

Following from Equation 3.2 (p. 36), for five traits there exist 29,281 possible

models, making the first approach of fitting all possible models computationally

infeasible. Data for n = 500 individuals was simulated for five traits and five QTL

as described in Appendix B, according to the true causal network structure given

in Figure 3.6.

Y1 

Y2 Y3 

Q1 

Q2 Q3 

φ11  

φ33 φ22 

β13 β 12  

Y4 Y5 β45 

β24 β35 

Q4 

φ44 
Q5 

φ55 

Figure 3.6: The general form of the causal network structure; the true values of
β12, β13, β24, β35, β45, φ11, φ22, φ33 φ44 and φ55 are all varied according to the
parameter sets given in Table 3.4.
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The true parameter values were varied in order to determine how the greedy

hill-climbing search approach is influenced by different combinations of QTL and

trait-to-trait effects. Both small and large QTL effects and trait-to-trait effects are

selected with values between 0.1 and 1.2. This range was based upon those values

in published data sets; for example, Dhungana et al. (2007) and Mi et al. (2010).

We note that it is possible for the effects to be positive or negative. The true

parameter values for sets 3.1 – 3.4 are listed in Table 3.4 (p. 51).

Parameter set 3.1: small QTL effects and small trait-to-trait effects,

Parameter set 3.2: small QTL effects and large trait-to-trait effects,

Parameter set 3.3: large QTL effects and small trait-to-trait effects,

Parameter set 3.3: large QTL effects and large trait-to-trait effects.

For each parameter set we simulate one initial data set and present the marginal

posterior probabilities for each directed edge, as well as the model joint posterior

probabilities and model averaged parameter estimates. We then simulate a further

29 data sets for each parameter set in order to determine the consistency of this

approach. The parameter sets are labelled 3.1 – 3.4 to indicate that they relate to

this chapter, Chapter 3, and the jth data set for parameter set i is referred to as

3.i. j. The simulation results from these four different parameter sets will give an

indication of how this approach would perform in real QTL mapping scenarios.

The resulting LSE for the simulated data sets 3.1.1 – 3.4.1 are given in Tables

3.6 – 3.9 at the end of this section (pp. 54 – 57). We note that the true causal

network structure has been identified for all combinations of effect sizes. All least

squares estimates are close to the true values with narrow confidence intervals, so

it appears as though this score-based hill-climbing approach works well for the
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Table 3.4: True parameter values for the parameter sets, 3.1 – 3.4, each with a
causal network structure corresponding to that given in Figure 3.6 (p. 49).

parameter set
parameter 3.1 3.2 3.3 3.4

β01 0.5 0.5 0.5 0.5
β02 0.5 0.5 0.5 0.5
β03 0.5 0.5 0.5 0.5
β04 0.5 0.5 0.5 0.5
β05 0.5 0.5 0.5 0.5
β12 0.2 1.1 0.2 1.1
β13 0.2 1.1 0.2 1.1
β24 0.2 1.1 0.2 1.1
β35 0.2 1.1 0.2 1.1
β45 0.2 1.1 0.2 1.1
φ11 0.1 0.1 1.2 1.2
φ22 0.1 0.1 1.2 1.2
φ33 0.1 0.1 1.2 1.2
φ44 0.1 0.1 1.2 1.2
φ55 0.1 0.1 1.2 1.2
σ2

1 1.0 1.0 1.0 1.0
σ2

2 1.0 1.0 1.0 1.0
σ2

3 1.0 1.0 1.0 1.0
σ2

4 1.0 1.0 1.0 1.0
σ2

5 1.0 1.0 1.0 1.0
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range of values simulated. Some of the confidence intervals for the QTL effects

in data sets 3.1.1 and 3.2.1 do contain 0, although this is due to the true value of

the QTL effects being so close to zero.

To comment on the consistency of this approach, for each parameter set in

Table 3.4 we simulate a further 29 data sets according to Appendix B and note the

number of times the approach correctly identifies the true causal network struc-

ture. Table 3.5 gives the number of different models found across the 30 differ-

ent data sets for each parameter set. We see that all combinations of QTL and

trait-to-trait effects identify numerous phenotype network structures, with those

parameter sets comprised of small trait-to-trait effects (parameter sets 3.1 and 3.3

in Table 3.4) estimating a wider range of causal network structures. With small

QTL effects and small trait-to-trait effects (parameter set 3.1) the approach had

trouble identifying the direction of causality, especially between traits Y1 and Y2,

and Y1 and Y3, where the reversed edges β21 and β31 were estimated about in about

40% of the estimated phenotype networks. On the other hand, parameter sets 3.3

and 3.4, with large QTL effects, resulted in the identification of a smaller range

of models. Parameter set 3.4, with large QTL effects and large trait-to-trait ef-

fects, produced the most consistent results, with 53% of the estimated phenotype

network structures corresponding to the true model.

The edges comprising the true model (β12, β13, β24, β35, β45) are found in

at least 60% of the estimated models (regardless of the true parameter values),

although additional edges were also present. If we look at the extra edges that

are included we see that many of these are simply indirect effects, e.g. β14, β15

and β25. This overfitting suggests that a penalty is required in order to estimate

the correct causal network structure, and the penalty applied by the AICc is not

always large enough.
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Table 3.5: For each of the parameter sets 3.1 – 3.4 (given in Table 3.4), we simu-
lated 30 data sets, recording the number of different models estimated, the number
of times the true model was estimated, and the number (n) and proportion (p) of
times each directed edge was included in the estimated causal network structure.

parameter set 3.1 3.2 3.3 3.4
number of different models 23 13 20 9

number of true models 3 12 6 16
(0.10) (0.40) (0.20) (0.53)

trait-to-trait effect n (p) n (p) n (p) n (p)
β12 18 (0.60) 30 (1.00) 27 (0.90) 30 (1.00)
β13 18 (0.60) 30 (1.00) 29 (0.97) 30 (1.00)
β14 0 (0.00) 6 (0.20) 10 (0.33) 2 (0.07)
β15 0 (0.00) 4 (0.13) 6 (0.20) 5 (0.17)
β21 12 (0.40) 0 (0.00) 3 (0.10) 0 (0.00)
β23 0 (0.00) 3 (0.10) 3 (0.10) 2 (0.07)
β24 19 (0.63) 30 (1.00) 29 (0.97) 30 (1.00)
β25 3 (0.10) 4 (0.13) 7 (0.23) 3 (0.10)
β31 12 (0.40) 0 (0.00) 1 (0.03) 0 (0.00)
β32 3 (0.10) 2 (0.07) 2 (0.07) 3 (0.10)
β34 2 (0.07) 2 (0.07) 5 (0.17) 0 (0.00)
β35 22 (0.73) 30 (1.00) 28 (0.93) 30 (1.00)
β41 3 (0.10) 0 (0.00) 1 (0.03) 0 (0.00)
β42 11 (0.37) 0 (0.00) 1 (0.03) 0 (0.00)
β43 2 (0.07) 6 (0.20) 5 (0.17) 3 (0.10)
β45 19 (0.63) 30 (1.00) 29 (0.97) 30 (1.00)
β51 3 (0.10) 0 (0.00) 0 (0.00) 0 (0.00)
β52 3 (0.10) 0 (0.00) 0 (0.00) 0 (0.00)
β53 8 (0.27) 0 (0.00) 2 (0.07) 0 (0.00)
β54 11 (0.37) 0 (0.00) 1 (0.03) 0 (0.00)
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Table 3.6: The least squares estimates for data set 3.1.1. Intervals including the
true parameter value are indicated by an asterisk (∗).

parameter true value estimate 95% confidence interval
β01 0.5 0.53 (0.41,0.66)∗

β02 0.5 0.53 (0.40,0.66)∗

β03 0.5 0.36 (0.21,0.51)∗

β04 0.5 0.55 (0.41,0.69)∗

β05 0.5 0.41 (0.26,0.56)∗

β12 0.2 0.15 (0.06,0.23)∗

β13 0.2 0.21 (0.12,0.31)∗

β24 0.2 0.16 (0.07,0.26)∗

β35 0.2 0.19 (0.11,0.27)∗

β45 0.2 0.20 (0.12,0.29)∗

φ11 0.1 0.23 (0.06,0.41)∗

φ22 0.1 0.21 (0.05,0.38)∗

φ33 0.1 0.37 (0.18, 0.56)
φ44 0.1 0.00 (-0.17, 0.18)∗

φ55 0.1 0.30 (0.12, 0.47)
σ2

1 1.0 0.99 (0.88,1.12)∗

σ2
2 1.0 0.94 (0.83,1.07)∗

σ2
3 1.0 1.06 (0.94,1.21)∗

σ2
4 1.0 1.01 (0.90,1.15)∗

σ2
5 1.0 0.98 (0.87,1.12)∗
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Table 3.7: The least squares estimates for data set 3.2.1. Intervals including the
true parameter value are indicated by an asterisk (∗).

parameter true value estimate 95% confidence interval
β01 0.5 0.61 (0.49,0.74)∗

β02 0.5 0.50 (0.36,0.65)∗

β03 0.5 0.49 (0.35,0.64)∗

β04 0.5 0.53 (0.39,0.67)∗

β05 0.5 0.59 (0.43,0.74)∗

β12 1.1 1.10 (1.01,1.19)∗

β13 1.1 1.08 (0.99,1.17)∗

β24 1.1 1.12 (1.06,1.17)∗

β35 1.1 1.11 (1.05,1.18)∗

β45 1.1 1.08 (1.03,1.13)∗

φ11 0.1 0.15 (-0.03, 0.32)∗

φ22 0.1 0.20 (0.02,0.39)∗

φ33 0.1 0.21 (0.03,0.40)∗

φ44 0.1 0.12 (-0.06, 0.29)∗

φ55 0.1 0.08 (-0.10, 0.25)∗

σ2
1 1.0 0.99 (0.88,1.13)∗

σ2
2 1.0 1.03 (0.91,1.17)∗

σ2
3 1.0 1.03 (0.92,1.18)∗

σ2
4 1.0 1.00 (0.88,1.13)∗

σ2
5 1.0 0.98 (0.87,1.12)∗
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Table 3.8: The least squares estimates for data set 3.3.1. Intervals including the
true parameter value are indicated by an asterisk (∗).

parameter true value estimate 95% confidence interval
β01 0.5 0.43 (0.31,0.55)∗

β02 0.5 0.45 (0.30,0.60)∗

β03 0.5 0.43 (0.28,0.58)∗

β04 0.5 0.68 (0.52,0.84)∗

β05 0.5 0.54 (0.36,0.73)∗

β12 0.2 0.20 (0.12,0.27)∗

β13 0.2 0.26 (0.18,0.33)∗

β24 0.2 0.14 (0.07,0.21)∗

β35 0.2 0.18 (0.11,0.25)∗

β45 0.2 0.15 (0.07,0.22)∗

φ11 1.2 1.31 (1.14,1.48)∗

φ22 1.2 1.20 (1.02,1.38)∗

φ33 1.2 1.21 (1.03,1.39)∗

φ44 1.2 1.02 (0.84, 1.19)
φ55 1.2 1.36 (1.19,1.54)∗

σ2
1 1.0 0.97 (0.86,1.10)∗

σ2
2 1.0 1.00 (0.89,1.14)∗

σ2
3 1.0 1.00 (0.89,1.15)∗

σ2
4 1.0 0.98 (0.87,1.11)∗

σ2
5 1.0 0.98 (0.87,1.11)∗
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Table 3.9: The least squares estimates for data set 3.4.1. Intervals including the
true parameter value are indicated by an asterisk (∗).

parameter true value estimate 95% confidence interval
β01 0.5 0.46 (0.34,0.59)∗

β02 0.5 0.51 (0.36,0.66)∗

β03 0.5 0.56 (0.41,0.70)∗

β04 0.5 0.57 (0.41,0.73)∗

β05 0.5 0.56 (0.36,0.76)∗

β12 1.1 1.05 (0.98,1.13)∗

β13 1.1 1.08 (1.01,1.15)∗

β24 1.1 1.04 (0.99, 1.09)
β35 1.1 1.08 (1.02,1.14)∗

β45 1.1 1.10 (1.05,1.14)∗

φ11 1.2 1.24 (1.06,1.42)∗

φ22 1.2 1.26 (1.08,1.44)∗

φ33 1.2 1.19 (1.02,1.36)∗

φ44 1.2 1.27 (1.11,1.44)∗

φ55 1.2 1.18 (1.01,1.35)∗

σ2
1 1.0 1.03 (0.92,1.17)∗

σ2
2 1.0 1.03 (0.91,1.17)∗

σ2
3 1.0 0.96 (0.85,1.09)∗

σ2
4 1.0 0.95 (0.84,1.08)∗

σ2
5 1.0 0.99 (0.88,1.13)∗
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3.3.3 Approach 2, example 2: a disconnected graph structure

This section includes a small simulated example to illustrate how the greedy hill-

climbing search strategy (summarized in Section 3.3.1) is able to identify a dis-

connected phenotype network structure. Data was simulated for five traits and five

QTL as described in Appendix B, according to the true causal network structure

given in Figure 3.7 (with a disconnected UDG).

The least squares estimates from the first simulated data set are given in Table

3.10. All least squares estimates are close to the true values with narrow con-

fidence intervals, so this score-based hill-climbing approach works well for our

simulated disconnected phenotype network structure.

β45 = 0.75 

Y1 

Y2 Y3 

Q1 

Q2 Q3 

φ11 = 0.75  

φ33 = 1.40 φ22 = 1.25 

β13 = 0.25 β 12 = 0.5 

Y4 Y5 

β23 = 1.20 

Q4 

φ44 = 1.50 
Q5 

φ55 = 1.50 

Figure 3.7: The true causal network structure for five quantitative traits and five
QTL; a disconnected graph structure used for an example of Approach 2.
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Table 3.10: The least squares estimates for the first data set simulated according
to Figure 3.7. Intervals including the true parameter value are indicated by an
asterisk (∗).

parameter true value estimate 95% confidence interval
β01 0.50 0.49 (0.46,0.71)∗

β02 0.50 0.55 (0.36,0.63)∗

β03 0.50 0.48 (0.37,0.73)∗

β04 0.50 0.55 (0.35,0.61)∗

β05 0.50 0.62 (0.41,0.69)∗

β12 0.50 0.52 (0.44,0.60)∗

β13 0.25 0.22 (0.13,0.31)∗

β23 1.20 1.18 (1.10,1.25)∗

β45 0.75 0.72 (0.65,0.78)∗

φ11 0.75 0.62 (0.44,0.80)∗

φ22 1.25 1.26 (1.10,1.42)∗

φ33 1.40 1.46 (1.29,1.64)∗

φ44 1.50 1.52 (1.34,1.70)∗

φ55 1.50 1.52 (1.35,1.69)∗

σ2
1 1.00 1.02 (0.90,1.16)∗

σ2
2 1.00 0.92 (0.82,1.05)∗

σ2
3 1.00 1.01 (0.89,1.14)∗

σ2
4 1.00 1.02 (0.90,1.16)∗

σ2
5 1.00 0.96 (0.85,1.09)∗

A further 29 data sets were simulated from the true causal network structure

given in Figure 3.7 (30 data sets in total). Table 3.11 shows the consistency of this

approach and we note that the true phenotype network structure was estimated

fewer times than with a connected causal network structure. Here only 33% of

the estimated models identified corresponded to the true model. Overfitting ap-

pears common in a disconnected structure — in fact, all of the additional edges, if

individually added to the true causal network structure, would create a connected

graph structure.
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Table 3.11: A total of 30 data sets were simulated according to the true parameter
values given in Figure 3.7. We record the number of different models estimated,
the number of times the true model was estimated, and the number (n) and propor-
tion (p) of times each directed edge was included in the estimated causal network
structure.

number of different models 18
number of true models 10

(0.33)
trait-to-trait effect n (p)

β12 30 (1.00)
β13 30 (1.00)
β14 2 (0.07)
β15 3 (0.10)
β21 0 (0.00)
β23 30 (1.00)
β24 1 (0.03)
β25 4 (0.13)
β31 0 (0.00)
β32 0 (0.00)
β34 3 (0.10)
β35 3 (0.10)
β41 3 (0.10)
β42 1 (0.03)
β43 5 (0.17)
β45 30 (1.00)
β51 2 (0.07)
β52 4 (0.13)
β53 4 (0.13)
β54 0 (0.00)
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In summary, given the genetic architecture, the (AICc) score-based greedy

hill-climbing search algorithm was able to estimate the true causal network struc-

ture up to 53% of the time in a simulated example, provided the true causal net-

work structure was connected. The presence of both large QTL effects and large

trait-to-trait effects resulted in a higher number of overfitted models. With a dis-

connected causal network structure the method was not very consistent, estimating

the true causal network structure in just 33% of the simulated data sets, often re-

sulting in the estimation of many overfitted models. Overfitting would imply that

the model has been influenced by the random error, rather than the effects (both

trait-to-trait and QTL) comprising the causal network structure. This has resulted

due to the complexity of the model fitted, with a large number of parameters (com-

pared to n) and indicates that a Bayesian approach is preferred in which we will be

able to construct priors which penalize models with complicated graph structures.
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Chapter 4

Bayesian estimation of a phenotype

network structure I

In Chapter 2 we described how the causal network structure can be represented

by a graphical model, and in Chapter 3 we determined that an optimisation search

strategy could be used to find an approximation to the optimum, because the op-

timum cannot be computed in an acceptable amount of time. Following Neto

et al. (2010), we propose a Bayesian approach to identifying an unknown pheno-

type network structure using reversible jump Markov chain Monte Carlo. Here,

in Chapter 4, we estimate the phenotype network structure with a fixed number

of directed edges. This is not advisable in practise as it will result in poor mix-

ing, as shown by a simulation study later in this chapter; however, restricting the

number of edges does allow us to gradually introduce the move types used in our

approach. We detail the update, reverse and relocate move types which keep the

number of edges fixed, and in Chapter 5 we use these move types in addition to

the add, remove and double steps which allow the number of edges in the model to

vary. Together Chapters 4 and 5 form a Bayesian approach capable of estimating

63
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an unknown phenotype network structure. It is important to note that this chapter

still uses a reversible jump Markov chain Monte Carlo algorithm as even though

the number of edges is the same in each model, the reverse and relocate move

types are adding and removing parameters.

The differences between this approach and the QTLnet algorithm proposed by

Neto et al. (2010) are summarized below.

• Neto et al. (2010) propose the joint inference of the phenotype network

structure and the genetic components, whereas we assume that the genetic

architecture is known and focus on the subproblem of estimating the un-

known phenotype network structure and the QTL effects.

• Our approach makes use of LSE (equivalent to the maximum likelihood es-

timates) in the chain, obtained from separate regressions of each trait on the

traits and QTL directly affecting it. This makes for a fast and efficient chain

so we have an efficient sampler using well-tuned proposal distributions.

• Neto et al. (2010) experienced slow mixing of the Markov chain. This ap-

proach incorporates additional move types; here in Chapter 4 we detail the

relocate step which relocates a directed edge, then in Chapter 5 we pro-

pose a double step to combine two steps that alter the phenotype network

structure.

• We define the neighbourhood of a phenotype network structure as being

conditional on a selected move type x; instead of including all possible can-

didate phenotype network structures given all move types, as in Neto et al.

(2010). This makes it faster to obtain the neighbourhood for a given model

when the number of traits is large.
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• Neto et al. (2010) assume uniform priors over all network structures, whereas

in Chapter 5 we introduce a prior on the number of directed edges in a model

which causes simpler models, i.e. models with fewer directed edges, to be

preferred.

The genetic components estimated by Neto et al. (2010) include the QTL loca-

tions, QTL genotypes and QTL-to-trait effects (also referred to as QTL effects).

We, however, assume that the number of QTL, QTL locations and QTL genotypes

are known, and that we have knowledge of which subset of QTL affect each trait

(so we know which QTL effect parameters require estimation). We refer to this

as the genetic architecture (see Section 1.2), and focus on estimating the unknown

phenotype network structure and the QTL effects. We may assume that the ge-

netic architecture is known as many methods have been established to map the

genetic architecture of a trait (or multiple traits). Neto et al. (2010), for example,

recommend the use of the seemingly unrelated regression model to estimate the

genetic components; see Banerjee et al. (2008). It follows that our approach is a

subproblem of Neto et al. (2010).

As described earlier, a causal network structure is defined by a set of nodes

(the quantitative traits and QTL) connected by a set of directed edges, forming a

directed acyclic graph (or DAG). We assume the genetic architecture is known, so

that the objective of mapping the causal network structure is to estimate the phe-

notype network by selecting the set of directed edges which best describe the true

causal network structure. So while we may refer to the estimation of the causal

network structure, we are only estimating the phenotype network structure. Figure

1.2, included here for convenience, illustrates an example causal network struc-

ture with the genetic architecture highlighted in blue, and the phenotype network



66 CHAPTER 4. ESTIMATION OF A PHENOTYPE NETWORK I

φ22

φ11

Y1

Y2 Y3
β23

β12

Q1

Q2

Q3

φ31

φ33

An example causal network structure with three quantitative traits (Y1, Y2, Y3),
three QTL (Q1, Q2, Q3), two trait-to trait effects (β12, β23) and four QTL effects
(φ11, φ22, φ31, φ33). The genetic architecture is assumed known and is highlighted
in blue, the phenotype network structure and QTL effects are black and require
estimation.

structure and QTL effects given in black. As we are keeping the number of edges

fixed, at each step we propose one of the following three move types (or steps):

• update (xU ): update all parameters in the current model

• reverse (xS): reverse the direction of one of the directed edges in the current

phenotype network

• relocate (xC): relocate one of the directed edges in the current phenotype

network, i.e. delete one edge and propose a new, distinct directed edge.

A reverse step is a special case of a relocate step; however, we define the relocate

step to exclude the reversal of a directed edge.

Each time a new model is proposed, new parameter estimates are generated

from corresponding proposal distributions as necessary, such that those parame-

ters unaffected by the reversal or relocation of an edge remain unchanged. This

ensures that the current and candidate models differ as little as possible, to keep
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steps small and increase the likelihood that proposed move will be accepted. This

is possible because of conditional independence, whereby a trait t is independent

of all other traits, given those traits and QTL directly affecting it: denoted υY (t)

and υQ(t), respectively. The model used is that given in Equation 3.4 (p. 38),

restated here for convenience:

yit = β0t + ∑
`∈υQ(t)

φ`tqi`+ ∑
k∈υY (t)

βktyik + εit

where the model terms are as defined in Table 3.1 (p. 37). For the tth quantitative

trait of the ith individual,

yit = µ
∗
it + εit ,

where µ
∗
it = β0t + ∑

`∈υQ(t)
φ`tqi`+ ∑

k∈υY (t)
βktyik

εit
i.i.d.∼ N(0,σ2

t ).

As the genetic architecture is known, the sets of QTL parents for each trait are

fixed for any causal network structure with NT quantitative traits:

υQ = (υQ(1), · · · ,υQ(NT )) .

The phenotype network is estimated using a model selection procedure, and propos-

ing changes to the components of the phenotype network structure means that we

are proposing changes to the sets of trait parents of each trait

υY = (υY (1), · · · ,υY (NT )) .
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In this chapter, the proposed change to the phenotype network structure is either

the reversal or relocation of a directed edge. A reversible jump MCMC algorithm

is used to propose candidate models, and this is introduced for the general case in

Section 4.1. Each of the update, reverse and relocate move types are detailed in

Sections 4.2, 4.3 and 4.4, respectively. A brief summary of the approach is given

in Section 4.5, and a simulation study to show the limitations of this approach

while keeping the number of directed edges fixed is included in Section 4.6.

4.1 Reversible jump algorithm for model updates,

keeping the number of edges fixed

We have a model space M with countable elements M ∈M. Model M is defined

by its causal network structure S (comprised of a set of nodes connected by a set

of directed edges), and the parameters Ω. We partition the model space into the

structure space S, and the parameter space O, such that S ∈ S and Ω ∈O. Let us

propose a move from the current model, M, to a candidate model, M′, by selecting

a move type x from the move space X, such that a unique move type x changes

model M into M′. Here, x is one of the update (xU ), reverse (xS) or relocate (xC)

steps mentioned earlier. The phenotype network structures of models M and M′

usually differ by a single directed edge, unless an update step is selected and

then the phenotype network structure remains unchanged but all parameters are

updated.

Let the quantitative trait measurements be denoted by the n×NT matrix Y,

where Y = [y1, · · · ,yt , · · · ,yNT ] and yt = [y1t , · · · ,ynt ]
>, for n individuals. The

QTL genotypes (Q), QTL locations (Λ), marker genotypes (G) and recombination
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fractions (r) are as described in Table 3.1 (p. 37), and are assumed to be known.

Let Ψ denote the known parameters, such that Ψ = {Q,Λ,G,r}. Given the data

Y and Ψ, the posterior distribution for model M is:

p(M|Y,Ψ) ∝ p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)

as detailed in Section 4.1.2 and given in Equation 4.4 (p. 72).

Whenever a Markov chain Monte Carlo step is carried out, conditional on the

current state of the chain (i.e. model M = {Ω,S}), the following occur:

• select a move type x with probability q(x|Ω,S) where

∑
x∈X

q(x|Ω,S) = 1 for all (Ω,S)

• given move type x, propose a candidate phenotype network structure S′ with

probability q(S′|x,Ω,S) where

∑
S′∈S

q(S′|x,Ω,S) = 1 for all (x,Ω,S)

• generate a set of random variables uM′ within their support space UM′ , with

probability density

q(uM′|x,S′,Ω,S)

• the parameters of the new state of the chain, Ω′, are generated by the deter-

ministic function gMM′ , where

Ω
′ = gMM′(Ω,uM′).
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The general form of the acceptance probability for the update, reverse and relocate

steps, is defined as α = min(1,r), where

r =
p(M′|Y,Ψ)

p(M|Y,Ψ)
× q(u′M,S,x′|Ω′,S′)

q(uM′,S′,x|Ω,S)
×
∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣ (4.1)

(Green 1995). The move type transforming model M into M′ is denoted x, and x′

is the reverse of move type x — transforming model M′ into M. The posterior dis-

tributions are denoted by p() for models M and M′, and q() denotes the proposal

distributions. It follows that:

α = min(1,r) where

r =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

×

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

q(x′|Ω′,S′)
q(x|Ω,S)

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣ . (4.2)

4.1.1 Selecting the move type

At each step in the chain a move type is chosen at random from the update, reverse

and relocate steps. The probabilities associated with the selection of each move

type are chosen to allow equal probability of model parameter updates and explo-

ration of the various phenotype network structures. The probability of selecting

each move type is given in Table 4.1.

We define the operators U , Sg and Cg, f such that:

• U [M] is the existing model M with updated parameters Ω, but S unchanged

• Sg[M] ∈M is a new model which reverses edge g (in S) with an associated

generation of new parameter values
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Table 4.1: The probability of each move type, as well as the number of candidate
models given model M and move type x, denoted |Ne(M,x)|. There exist NT traits,
such that there are NT (NT − 1) unique directed edges possible; subsets of these
edges form the current and candidate phenotype network structures. Model M has
EM directed edges.

size of the neighbourhood of model M
move type (x) probability |Ne(M,x)|
Update (xU ) 0.50 1
Reverse (xS) 0.25 ∑

EM
g=1 Ia(Sg[M])

Relocate (xC) 0.25
EM

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M])IR(g, f |S)I∈( f |S)

• Cg, f [M] ∈M is a new model which relocates edge g to new location f (in

S) with an associated generation of new parameter values.

Those parameters associated with the reversal or relocation of an edge include the

new trait-to-trait effect, as well as select trait intercepts and residual variances.

The exact parameters updated are stated in Sections 4.3 and 4.4 for the reverse

and relocate steps, respectively.

Suppose we select move type x. Let the neighbourhood of the current model,

Ne(M,x), denote the set of all acyclic phenotype network structures given move

type x. The size of Ne(M,x), i.e. the number of distinct acyclic phenotype net-

works given model M and move type x, is denoted |Ne(M,x)| and is given in Table

4.1 for all move types. The following indicator functions are used to identify and

count the number of acyclic models:

Ia(M) =

 1, if model M is acyclic

0, otherwise
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IR(g, f |S) = I(g 6= rev( f )|S) =

 1, if edge g is not the reverse of edge f in S

0, otherwise

I∈( f |S) = I( f /∈ S) =

 1, if edge f is not an edge in S

0, otherwise.
(4.3)

Therefore, according to the size of the neighbourhood given in Table 4.1, the

neighbourhood for a relocate step includes only models where edge g is relocated

to a new, distinct location f , forming an acyclic model where edge f is not the

reverse of edge g.

4.1.2 Posterior distribution

The causal network structure for model M is denoted S, comprised of a set of

nodes connected by a set of directed edges. Again, let Ψ denote the known pa-

rameters, such that Ψ = {Q,Λ,G,r}. Given the data Y and Ψ, the posterior dis-

tribution for model M, M = {Ω,S}, is:

p(M|Y,Ψ) =
p(Y|M,Ψ)p(M|Ψ)

p(Y|Ψ)

∝ p(Y|Ω,S,Ψ)p(Ω,S|Ψ)

∝ p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S). (4.4)

The general expression of the likelihood is:

p(Y|Ω,S,Ψ) ∝

(
NT

∏
t=1

σt

)−n n

∏
i=1

exp

−
1
2

NT

∑
t=1

(
yit −β0t − ∑

`∈υQ(t)
φ`tqi`− ∑

k∈υY (t)
βktyik

)2

σ2
t

 .
(4.5)
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where n is the number of individuals, and there are NT quantitative traits and

Nqtl QTL. The observed value of trait t for individual i is denoted by yit , and

the variance of trait t is denoted σ2
t . The observed QTL genotype for the ith

individual is denoted qi`. The effect of the `th QTL, `∈ υQ(t), on trait t is denoted

φ`t . The intercept for trait t is β0t , and the effect of trait k, k ∈ υY (t), on trait t is

denoted βkt .

The prior for model M is:

p(M) = p(Ω,S)

= p(Ω|S)p(S)

where the joint parameter prior is:

p(Ω|S) = p(β0,β ,Φ,σ2|S)

= p(β0|S)p(β |S)p(Φ|S)p(σ2|S) (4.6)

for β0 =(β01, · · · ,β0NT ), β =
(
βυY (1)1, · · · ,βυY (NT )NT

)
, Φ=

(
φυQ(1)1, · · ·φυQ(NT )NT

)
,

σ2 =
(
σ2

1 , · · · ,σ2
NT

)
. For convenience, we assume independence of parameters in

the prior distribution.

β0t |S ∼ N(0,σ2
β0t
) for t = 1, · · · ,NT

βst |S ∼ N(0,σ2
βt
) for s = 1, · · · ,NT and t = 1, · · · ,NT , for s 6= t

φ`t |S ∼ N(0,σ2
φ`
) for `= 1, · · · ,Nqtl and t = 1, · · · ,NT

σ
−2
t |S ∼ Γ(a0,b0) for t = 1, · · · ,NT . (4.7)

We use σ2
β0t

= σ2
β0

and σ2
βt
= σ2

β
for all t = 1, · · · ,NT .

To obtain a prior for the phenotype network of model M, a prior probability
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Y1
Y2Y1

Y2

Possible states of a connection between traits Y1 and Y2

Reversed Absent Forwards

Y1
Y2

β21 β12

Figure 4.1: A connection may have one of three possible states between two traits,
where the directed edge is said to be reversed, absent, or forwards.

distribution is set separately for the state of a connection between each pair of

trait nodes; these are then normalised over all combinations of possible connec-

tions (i.e. all possible models). There are three possible states for the connection

between any two trait nodes: absent, plus two possible directed edges. Each of the

NT traits are arbitrarily assigned a numeric label (1, · · · , t, · · · ,NT ) and by conven-

tion a directed edge is said to be forwards when the trait with the lower numeric

label is affecting the trait with the higher numeric label, and reversed when the

trait with the higher numeric label has an effect on the trait with the lower nu-

meric label. Possible states for any connection between two nodes are therefore

denoted reversed, absent, and forwards, as shown in Figure 4.1. Note that there is

no particular meaning associated with the nomenclature forwards versus reversed.

This type of distinction between the states of a connection between two nodes is

also taken in Scutari (2013), where a multivariate trinomial random variable is

used to model the directed graph.

The prior on the state of the gth connection between two trait nodes in the

phenotype network structure S (for model M), denoted pg j, is dependent on the

directed edge present between these two nodes, as specified in Equation 4.8.
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pg j =


pg1, if edge g is reversed (e.g. Y1← Y2)

pg2, if edge g is absent

pg3, if edge g is forwards (e.g. Y1→ Y2).

(4.8)

where
3

∑
j=1

pg j = 1 ∀g. We may assign any values to pg j, perhaps using prior

knowledge of the phenotype network structure. For example, for edge g we could

set the prior probability of the edge being absent as pabsent = pg2, then the prior

probability of the edge being present is ppresent = 1− pabsent and the prior proba-

bility of the edge being forwards or reversed is then pg1 = pg3 = ppresent/2.

Assuming a priori independence among connections, the joint probability for

a given phenotype network S, is given by;

p∗(S) =
max(E)

∏
g=1

pg j, for j ∈ {1,2,3} (4.9)

where there exist max(E) = 1
2NT (NT −1) possible connections (or directed edges)

in any model M ∈M with NT traits, each with state j in model M, for j ∈ {1,2,3}

(see Equation 4.8). The prior probability distribution of all possible acyclic phe-

notype network structures is then obtained by normalising these joint probabilities

over all K acyclic phenotype network structures:

p(S) =
p∗(S)Ia(S)

K

∑
k=1

p∗(Sk)Ia(Sk)

(4.10)

where

Ia(S) =

 1, if graph structure S is acyclic

0, otherwise.
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We note that a uniform prior on the state of a connection between any two trait

nodes, such that pg1 = pg2 = pg3 = 1
3 , will result in the prior on the phenotype

network structure cancelling out of the acceptance probability (in this chapter).

However, a uniform prior does imply that an edge is more likely to be included in

the phenotype network structure (in one of two directions) than not.

4.1.3 Proposal distributions

The proposal of model M′ given model M can be split into three parts:

• the selection of the move type,

• the selection of the candidate phenotype network structure (given the move

type),

• the generation of new candidate parameters (given the move type, and the

candidate phenotype network structure).

It follows that the proposal ratio for a move from model M to M′, is:

q(u′M,S,x′|Ω′,S′)
q(uM′,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

q(x′|Ω′,S′)
q(x|Ω,S)

.

The probability of selecting move type x given M, and x′ given M′, are de-

noted q(x|Ω,S) and q(x′|Ω′,S′), respectively, and are given in Table 4.1 (p. 71).

Given move type x to move from M to M′, the phenotype network structure S′ is

randomly selected with probability

q(S′|x,Ω,S) =
1

|Ne(M,x)|
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and conversely, given move type x′ to move from M′ to M, the phenotype network

structure S is randomly selected with probability

q(S|x′,Ω′,S′) = 1
|Ne(M′,x′)|

.

The proposal distributions for the parameters of the current and candidate

models are denoted q(u′M|S,x′,Ω′,S′) and q(uM′|S′,x,Ω,S), respectively. The

proposal distributions used depend on whether or not the move types x and x′

alter the phenotype network structure. An update step updates parameters using

a random walk sampler, conditional on the current parameter estimates. These

proposal distributions are given in Section 4.2. For the reverse and relocate steps,

however, the phenotype network structure is altered so we use an independence

sampler to propose candidate parameter values. The proposal distributions are

based on the least squares estimates (LSE) of the parameters conditional on the

proposed phenotype network structure. The LSE are effectively obtained from

separate regressions of each trait on the traits and QTL directly affecting it (υY (t)

and υQ(t), respectively). We note that the use of the multivariate normal distri-

bution would be more efficient; however, we still have an efficient sampler using

well-tuned proposal distributions.

Let us consider a move from model M to M′. As minimising the SSE max-

imises the log likelihood (see Section 3.1.1), we calculate the LSE and therefore

require the design matrix in order to form the proposal distribution for each param-

eter. In model M′, let trait t be affected by |υQ(t)| QTL and |υY (t)′| quantitative

traits. Each of the t quantitative traits within model M′ has a design matrix, de-

noted Xt
′, with n rows (for n individuals) and nc = |υQ(t)|+ |υY (t)′|+1 columns.
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Note that here we use a prime to refer to the candidate model, and a ‘>’ denotes

the transpose of a matrix. Let

o′t =
(

X′t
>Xt

′
)−1

,

and dp be an indicator vector of length nc such that:

dp = (d1
p, · · · ,dnc

p)>

where

de
p =

 1, if parameter p being estimated corresponds to column e in Xt
′

0, otherwise

for e = 1, · · · ,nc. The term

Vp = dp>o′td
p (4.11)

is therefore used to define the element in the matrix
(

X′t
>Xt

′
)−1

that corresponds

to the variance of parameter p. This notation also applies to a move from model

M′ to M, using the design matrix for the current model (Xt) instead.

Consider the following example to illustrate the use of the design matrix. Sup-

pose we propose a move from model M′ to M, where trait t is affected by one QTL

(Q1) and one trait (Y1). The design matrix for the tth trait in model M with n indi-

viduals is

Xt =



1 y11 q11
...

...
...

1 yi1 qi1
...

...
...

1 yn1 qn1


n×3
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with columns corresponding to the subset of parameters {β0t ,β1t ,φ1t}. We have

ot =
(

Xt
>Xt

)−1

and the following indicator vectors:

dβ0t = [1,0,0]>

dβ1t = [0,1,0]>

dφ1t = [0,0,1]>

such that:
Vβ0t = [1,0,0]ot [1,0,0]

>

Vβ1t = [0,1,0]ot [0,1,0]
>

Vφ1t = [0,0,1]ot [0,0,1]
>.

Given the above description of the design matrix for a move altering the phe-

notype network structure (a reverse or relocate step), let the intercept for the tth

trait in model M′ be denoted β ′0t , the effect of trait s on trait t be denoted β ′st , and

the residual variance for trait t be denoted σ ′t
2, with the LSE β̂ ′0t , β̂ ′st and σ̂ ′t

2,

respectively. Let τ be a constant used to scale the variance of the least squares es-

timates in all proposal distributions for the trait intercept and trait-to-trait effects

(for all move types). As τ is constant, we will omit it from the conditional state-

ments for simplicity of notation. We have the following proposal distributions for

a move from model M to M′:

• for the intercept for the tth trait:

β
′
0t |β̂ ′0t , σ̂

′
t
2,Vβ ′0t

∼ N
(

β̂
′
0t ,

1
τ

σ̂ ′t
2Vβ ′0t

)
(4.12)
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• for the trait-to-trait effect of trait s on trait t, resulting from either a reversal

or relocation of an edge:

β
′
st |β̂ ′st , σ̂ ′t

2,Vβ ′st
∼ N

(
β̂
′
st ,

1
τ

σ̂ ′t
2Vβ ′st

)
(4.13)

• for the residual variance for trait t:

σ
′
t
2|σ̂ ′t

2 ∼ Unif
(

0.5σ̂ ′t
2,1.5σ̂ ′t

2
)
, (4.14)

such that the expected values of the proposal distributions are conditional means:

E(β ′0t |β̂ ′0t , σ̂
′
t
2,Vβ ′0t

) = β̂ ′0t , E(β ′st |β̂ ′st , σ̂ ′t
2,Vβ ′st

) = β̂ ′st , and E(σ ′t
2|σ̂ ′t

2) = σ̂ ′t
2.

The proposal distributions to move from model M′ to M are the same but with

the following conditional means: E(β0t |β̂0t , σ̂
2
t ,Vβ0t ) = β̂0t , E(βst |β̂st , σ̂

2
t ,Vβst ) =

β̂st , and E(σ2
t |σ̂2

t ) = σ̂2
t :

β0t |β̂0t , σ̂
2
t ,Vβ0t ∼ N

(
β̂0t ,

1
τ

σ̂ ′t
2Vβ0t

)
(4.15)

βst |β̂st , σ̂
2
t ,Vβst ∼ N

(
β̂st ,

1
τ

σ̂ ′t
2Vβst

)
(4.16)

σ
2
t |σ̂2

t ∼ Unif
(
0.5σ̂

2
t ,1.5σ̂

2
t
)
. (4.17)

Note that the QTL effect parameters are only updated in an update step (using a

random walk sampler), as we have assumed that the genetic architecture is known,

i.e. υQ is fixed, and therefore only the size of the QTL effect changes.

To summarize, the proposal ratio for the update, reverse and relocate steps can

now be written as:

q(u′M,S,x′|Ω′,S′)
q(uM′,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

q(x′|Ω′,S′)
q(x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

|Ne(M,x)|
|Ne(M′,x′)|

(4.18)
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since q(x′|Ω′,S′) = q(x|Ω,S) as the same move type is required (and selected with

the same probability) for M→M′ and M′→M, i.e. x = x′.

For an update step the proposal ratio further simplifies to

q(u′M,S,x′|Ω′,S′)
q(uM′,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

(4.19)

as S = S′ and therefore |Ne(M,x = xU)|= |Ne(M′,x′ = xU)|= 1.

4.1.4 The Jacobian

The determinant of the Jacobian matrix, referred to as simply the Jacobian, arises

as a result of the transition from the current model to the candidate model. The

current model parameters, Ω, and the candidate model parameters, Ω′, may share

a set of parameters, such that

Ω = (ΩMM′,ΩM\M′)

Ω
′ = (Ω′M′M,Ω′M′\M)

where ΩMM′ and ΩM′M denote those parameters in both models M and M′, ΩM\M′

denotes those parameters in model M but not in model M′, and Ω′M′\M denotes

those parameters in model M′ but not in model M.

The move from M → M′ via move type x has the reverse move x′ to move

from M′→M. When making the move x between models M and M′ we generate

the random variable uM′ from the distribution q(uM′|S′,x,Ω,S). Similarly, when

making the move x′ between models M′ and M we generate the random variable

u′M from the distribution q(u′M|S,x′,Ω′,S′).
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The dimension of each is then:

|ΩMM′|= dMM′ |Ω′M′M|= dM′M

|ΩM\M′|= dM\M′ |Ω′M′\M|= dM′\M

|uM′|= cM′ |u′M|= cM

with the dimension matching constraint met, as specified by Green (1995):

|Ω|+ |uM′| = |Ω′|+ |u′M|

|ΩMM′|+ |ΩM\M′|+ |uM′| = |Ω′M′M|+ |Ω
′
M′\M|+ |u

′
M|

|ΩM\M′|+ |uM′ | = |Ω′M′\M|+ |u
′
M|

dM\M′+ cM′ = dM′\M + cM

where |ΩMM′|= |Ω′M′M|.

Parameters for the new state of the chain (the candidate model) are generated

using the deterministic function gMM′ , such that

Ω
′ = gMM′(Ω,uM′)

= gMM′(ΩMM′,ΩM\M′,uM′).

Similarly, we have the function hM′M to reverse this:

u′M = hMM′(Ω,uM′)

= hMM′(ΩMM′,ΩM\M′,uM′),

and the calculation of the Jacobian is given in Equation 4.20.
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∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣ =

∣∣∣∣∣ ∂ (Ω′M′M,Ω′M′\M,u′M)

∂ (ΩMM′,ΩM\M′,uM′)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∂Ω′M′M
∂ΩMM′

∂Ω′M′M
∂ΩM\M′

∂Ω′M′M
∂uM′

∂Ω′M′\M
∂ΩMM′

∂Ω′M′\M
∂ΩM\M′

∂Ω′M′\M
∂uM′

∂u′M
∂ΩMM′

∂u′M
∂ΩM\M′

∂u′M
∂uM′

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
I 0 0

0 0 I

0 I 0

∣∣∣∣∣∣∣∣∣
= 1. (4.20)

The update step, outlined in Section 4.2, only updates parameters, such that Ω

and Ω′ are in the same space. Therefore, Ω′ = uM′ and u′M = Ω and the Jacobian

is 1. The reverse and relocate move types are outlined in Sections 4.3 and 4.4,

and as these move types delete one element of Ω and create a new element, such

that Ω and Ω′ are not in the same space, the Jacobian is a little more complex.

However, for these two move types, the Jacobian is also 1, see Appendix C.

4.2 The update step

For model M, M = {Ω,S}, an update step updates all of the parameters within

the current model, without altering the causal network structure, S. A random

walk sampler is used as the model structure is not changed, with the Metropolis–

Hastings acceptance probability given in Equation 4.31 (p. 86). An example up-

date step and the calculation of the corresponding acceptance probability is given
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in Section 4.2.1.

Suppose that there exist NT traits, and we are proposing a move from model

M to M′. Given in Equation 4.19 (p. 81), the proposal ratio for an update step is:

q(u′M,S,x′|Ω′,S′)
q(uM′,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

=
q(Ω|S,x′,Ω′,S′)
q(Ω′|S′,x,Ω,S)

as all parameters are updated u′M = Ω and uM′ = Ω′, and it follows that:

q(Ω|S,x′,Ω′,S′)
q(Ω′|S′,x,Ω,S)

=
∏

NT
t=1

{
q(β0t |β ′0t ,σ

′
t
2,Vβ ′0t

)q(σt
2|σ ′t

2)
}

∏
NT
t=1

{
q(β ′0t |β0t ,σ

2
t ,Vβ0t )q(σ

′
t
2|σ2

t )
} ×

[
∏

NT
t=1 ∏s∈υY (t) q(βst |β ′st ,σ ′t

2,Vβ ′st
)

∏
NT
t=1 ∏s∈υY (t) q(β ′st |βst ,σ2

t ,Vβst )

]
×[

∏
NT
t=1 ∏`∈υQ(t) q(φ`t |φ ′`t ,σ ′t

2,Vφ ′`t
)

∏
NT
t=1 ∏`∈υQ(t) q(φ ′`t |φ`t ,σ2

t ,Vφ`t )

]
. (4.21)

The trait intercepts are denoted β0t for t = 1, · · · ,NT , βst is the effect of trait s on

trait t, the effect of the `th QTL on the tth trait is denoted by φ`t , and σ2
t is the

residual variance of trait t; where parameters relating to the candidate model are

indicated by a prime (′). Each parameter is updated via its corresponding proposal

distribution, given below for q(Ω′|S′,x,Ω,S):

β
′
0t |β0t ,σ

2
t ,Vβ0t ∼ N

(
β0t ,

1
τ

σt
2Vβ0t

)
for t = 1, · · · ,NT (4.22)

β
′
st |βst ,σ

2
t ,Vβst ∼ N

(
βst ,

1
τ

σt
2Vβst

)
for s = 1, · · · ,NT and t = 1, · · · ,NT for s 6= t

(4.23)
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φ
′
`t |φ`t ,σ2

t ,Vφ`t ∼ N
(

φ`t ,
1
τ

σt
2Vφ`t

)
for `= 1, · · · ,Nqtl and for t = 1, · · · ,NT

(4.24)

σ
′
t
2|σ2

t ∼ Unif
(
0.5σt

2,1.5σt
2) for t = 1, · · · ,NT (4.25)

such that we have the conditional means: E(β ′0t |β0t ,σ
2
t ,Vβ0t )= β0t , E(β ′st |βst ,σ

2
t ,Vβst )=

βst , E(φ ′`t |φ`t ,σ2
t ,Vφ`t ) = φ`t and E(σ ′t

2|σ2
t ) = σt

2. Let parameter p be any of

β0t ,βst ,φ`t for (` = 1, · · · ,Nqtl), (t = 1, · · · ,NT ) and (s = 1, · · · ,NT ) where s 6= t;

for parameter p the term Vp is defined in Equation 4.11 (p. 78).

Conversely, the proposal distributions for the parameters in model M given

model M′, corresponding to q(u′M,S,x′|Ω′,S′), are:

β0t |β ′0t ,σ
′
t
2
,Vβ ′0t

∼ N
(

β
′
0t ,

1
τ

σ
′
t
2Vβ ′0t

)
for t = 1, · · · ,NT (4.26)

βst |β ′st ,σ ′t
2
,Vβ ′st

∼ N
(

β
′
st ,

1
τ

σ
′
t
2Vβ ′st

)
for s = 1, · · · ,NT and t = 1, · · · ,NT for s 6= t

(4.27)

φ`t |φ ′`t ,σ ′t
2
,Vφ ′`t

∼ N
(

φ
′
`t ,

1
τ

σ
′
t
2Vφ ′`t

)
for `= 1, · · · ,Nqtl and for t = 1, · · · ,NT

(4.28)

σt
2|σ ′t

2 ∼ Unif(0.5σ
′
t
2
,1.5σ

′
t
2
) for t = 1, · · · ,NT (4.29)

such that we have the conditional means E(β0t |β ′0t ,σ
′
t
2,Vβ ′0t

)= β ′0t , E(βst |β ′0t ,σ
′
t
2,Vβ ′0t

)=

β ′st , E(φ`t |φ ′`t ,σ ′t
2,Vφ ′`t

) = φ ′`t and E(σt
2|σ ′t

2) = σ ′t
2.

The prior ratio for an update step is:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=

∏
NT
t=1

{
p(β ′0t |S′)p(σ ′t

2|S′)
}

∏
NT
t=1

{
p(β0t |S)p(σ2

t |S)
}
[∏

NT
t=1 ∏s∈υY (t) p(β ′st |S′)

∏
NT
t=1 ∏s∈υY (t) p(βst |S)

]
×

[
∏

NT
t=1 ∏`∈υQ(t) p(φ ′`t |S′)

∏
NT
t=1 ∏`∈υQ(t) p(φ`t |S)

]
(4.30)
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where the individual prior distributions are given in Equation 4.7 (p. 73) and the

prior on the graph structure cancels out as S = S′.

Following the general form of the acceptance probability given in Equation

4.2 (p. 70), and substituting in the proposal and prior ratios in Equations 4.21 and

4.30 (p. 84), the acceptance probability for an update step is:

αupdate = min(1,rupdate), where

rupdate =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
× q(u′M|S,x′,Ω′,S′)

q(uM′ |S′,x,Ω,S)
×
∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
=

p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

∏
NT
t=1

{
p(β ′0t |S′)p(σ ′t

2|S′)
}

∏
NT
t=1

{
p(β0t |S)p(σ2

t |S)
}
[∏

NT
t=1 ∏s∈υY (t) p(β ′st |S′)

∏
NT
t=1 ∏s∈υY (t) p(βst |S)

]
×

[
∏

NT
t=1 ∏`∈υQ(t) p(φ ′`t |S′)

∏
NT
t=1 ∏`∈υQ(t) p(φ`t |S)

]∏
NT
t=1

{
q(β0t |σ ′t

2,β ′0t ,Vβ ′0t
)q(σ2

t |σ ′t
2)
}

∏
NT
t=1

{
q(β ′0t |σ2

t ,β0t ,Vβ0t )q(σ
′
t

2|σ2
t )
}
×

[
∏

NT
t=1 ∏s∈υY (t) q(βst |σ ′t

2,β ′st ,Vβ ′st )

∏
NT
t=1 ∏s∈υY (t) q(β ′st |σ2

t ,βst ,Vβst )

][
∏

NT
t=1 ∏`∈υQ(t) q(φ`t |φ ′`t ,σ ′t

2,Vφ ′`t
)

∏
NT
t=1 ∏`∈υQ(t) q(φ ′`t |φ`t ,σ

2
t ,Vφ`t )

]
(4.31)

The general expression of the likelihood is given in Equation 4.5 (p. 72). The

parameter priors are defined in Equation 4.7 (p. 73), and as the phenotype network

structure is not altered, the prior on the phenotype network for both models M and

M′ are equal, so these terms cancel out of the acceptance probability. As Ω and

Ω′ are in the same space, the Jacobian is 1.

4.2.1 Example of an update step

Suppose that we want to carry out an update step to move from model M to M′;

the example causal network structures are given in Figure 4.2. In this example we

have a set of current parameters, Ω, and a set of candidate parameters, Ω′:

Ω = {β01,β02,β03,β12,β13,β23,φ11,φ22,φ33,σ
2
1 ,σ

2
2 ,σ

2
3}

Ω
′ = {β ′01,β

′
02,β

′
03,β

′
12,β

′
13,β

′
23,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2
,σ ′2

2
,σ ′3

2}.
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Q2
Q3

Y1

Y2
Y3

Model M’

Q1

Q2
Q3

β23 β23

β12β12 β13β13

φ22 φ33 φ22 φ33

'

'

'

'

' '

Figure 4.2: Example causal network structures for both the current (M) and can-
didate (M′) models, given an update step. Here, the causal structure remains the
same and we propose new parameter estimates.

To move from model M to M′, new parameters are generated from the follow-

ing proposal distributions:

β
′
0t |β0t ,σ

2
t ,Vβ0t ∼ N

(
β0t ,

1
τ

σ
2
t Vβ0t

)
for t = 1,2,3 (see Eqn. 4.22)

β
′
st |βst ,σ

2
t ,Vβst ∼ N

(
βst ,

1
τ

σ
2
t Vβst

)
for {st}= {12,13,23} (see Eqn. 4.23)

φ
′
`t |φ`t ,σ2

t ,Vφ`t ∼ N
(

φ`t ,
1
τ

σ
2
t Vφ`t

)
for {`t}= {11,22,33} (see Eqn. 4.24)

σ
′
t
2|σt

2 ∼ Unif
(
0.5σt

2,1.5σt
2) for t = 1,2,3 (see Eqn. 4.25).

To move from model M′ to M, the parameter proposal distributions are:

β0t |β ′0t ,σ
′
t
2
,Vβ ′0t

∼ N
(

β
′
0t ,

1
τ

σ
′
t
2Vβ ′0t

)
for t = 1,2,3 (see Eqn. 4.26)

βst |β ′st ,σ ′t
2
,Vβ ′st

∼ N
(

β
′
st ,

1
τ

σ
′
t
2Vβ ′st

)
for {st}= {12,13,23} (see Eqn. 4.27)

φ`t |φ ′`t ,σ ′t
2
,Vφ ′`t

∼ N
(

φ
′
`t ,

1
τ

σ
′
t
2Vφ ′`t

)
for {`t}= {11,22,33} (see Eqn. 4.28)

σ
2
t |σ ′t

2 ∼ Unif
(

0.5σ
′
t
2
,1.5σ

′
t
2
)

for t = 1,2,3 (see Eqn. 4.29).
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For this example the proposal ratio is therefore:

q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

=

∏
3
t=1

{
q(β0t |β ′0t ,σ

′
t

2,Vβ ′0t
)q(σ2

t |σ ′t
2)
}

∏
3
t=1

{
q(β ′0t |β0t ,σ2

t ,Vβ0t )q(σ
′
t

2|σ2
t )
}
 q(β12|β ′12,σ

′
2

2,Vβ ′12
)

q(β ′12|β12,σ2
2 ,Vβ12)

×

q(β13|β ′13,σ
′
3

2,Vβ ′13
)q(β23|β ′23,σ

′
3

2,Vβ ′23
)

q(β ′13|β13,σ2
3 ,Vβ13)q(β

′
23|β23,σ2

3 ,Vβ23)
×

q(φ11|φ ′11,σ
′
1

2,Vφ ′11
)q(φ22|φ ′22,σ

′
2

2,Vφ ′22
)q(φ33|φ ′33,σ

′
3

2,Vφ ′33
)

q(φ ′11|φ11,σ2
1 ,Vφ11)q(φ

′
22|φ22,σ2

2 ,Vφ22)q(φ
′
33|φ33,σ2

3 ,Vφ33)

and the prior ratio:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′01|S′)p(β ′02|S′)p(β ′03|S′)
p(β01|S)p(β02|S)p(β03|S)

p(β ′12|S′)p(β ′13|S′)p(β ′23|S′)
p(β12|S)p(β13|S)p(β23|S)

×

p(φ ′11|S′)p(φ ′22|S′)p(φ ′33|S′)
p(φ11|S)p(φ22|S)p(φ33|S)

p(σ ′1
2|S′)p(σ ′2

2|S′)p(σ ′3
2|S′)

p(σ2
1 |S)p(σ2

2 |S)p(σ2
3 |S)

,

where the prior distributions for each parameter are given in Equation 4.7 (p. 73)

and the prior on the phenotype network structure cancels out as S = S′.

The acceptance probability for this example update step is therefore:

αupdate = min(1,rupdate), where

rupdate =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

[
∏

3
t=1 p(β ′0t |S′)p(σ ′t

2|S′)
∏

3
t=1 p(β0t |S)p(σ2

t |S)

]
×

p(β ′12|S′)p(β ′13|S′)p(β ′23|S′)
p(β12|S)p(β13|S)p(β23|S)

p(φ ′11|S′)p(φ ′22|S′)p(φ ′33|S′)
p(φ11|S)p(φ22|S)p(φ33|S)

×[
∏

3
t=1 q(β0t |β ′0t ,σ

′
t

2,Vβ ′0t
)q(σ2

t |σ ′t
2)

∏
3
t=1 q(β ′0t |β0t ,σ

t
1,Vβ0t )q(σ

′
t

2|σ2
t )

]
×

q(β12|β ′12,σ
′
2

2,Vβ ′12
)q(β13|β ′13,σ

′
3

2,Vβ ′13
)q(β23|β ′23,σ

′
3

2,Vβ ′23
)

q(β ′12|β12,σ2
2 ,Vβ12)q(β

′
13|β13,σ2

3 ,Vβ13)q(β
′
23|β23,σ2

3 ,Vβ23)
×

q(φ11|φ ′11,σ
′
1

2,Vφ ′11
)q(φ22|φ ′22,σ

′
2

2,Vφ ′22
)q(φ33|φ ′33,σ

′
3

2,Vφ ′33
)

q(φ ′11|φ11,σ2
1 ,Vφ11)q(φ

′
22|φ22,σ2

2 ,Vφ22)q(φ
′
33|φ33,σ2

3 ,Vφ33)
.

The general expression of the likelihood is given in Equation 4.5 (p. 72).



4.3. THE REVERSE STEP 89

4.3 The reverse step

A reverse step proposes the reversal of an existing directed edge, or trait-to-trait

effect, within model M to form model M′. The reversal of an existing directed

edge in model M means that both M and M′ have phenotype network structures

with the same number of directed edges; model M has EM edges and model M′

has EM′ edges, and EM = EM′ .

Given in Equation 4.18 (p. 80), the proposal ratio for the reversal of any trait-

to-trait effect βst to β ′ts is:

q(u′M,S,x′|Ω′,S′)
q(uM′ ,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

× |Ne(M,x = xS)|
|Ne(M′,x′ = xS)|

=
q(β0t |β̂0t , σ̂

2
t ,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t

2
,Vβ ′0t

)

q(β0s|β̂0s, σ̂
2
s ,Vβ0s)

q(β ′0s|β̂ ′0s, σ̂
′
s
2
,Vβ ′0s

)

q(βst |β̂st , σ̂
2
t ,Vβst )

q(β ′ts|β̂ ′ts, σ̂ ′s
2
,Vβ ′ts)

×

q(σ2
s |σ̂2

s )

q(σ ′s
2|σ̂ ′s

2
)

∑
EM
g=1 Ia(Sg[M])

∑
EM′
g=1 Ia(Sg[M′])

. (4.32)

Using the indicator function Ia(M) as defined in Equation 4.3 (p. 72), with Sg[M] denoting

the model with edge g reversed (in S) as stated in Section 4.1.1, we define the size of the

neighbourhoods as:

|Ne(M,x = xS)|=
EM

∑
g=1

Ia(Sg[M])

and

|Ne(M′,x′ = xS)|=
EM′

∑
g=1

Ia(Sg[M′]).

The parameters which get updated differ depending on the proposed edge to

reverse. This is due to conditional independence, whereby a trait t is indepen-

dent of all other traits given the traits and QTL with direct effects on trait t (υY (t)

and υQ(t), respectively). Therefore, if we propose the reversal of the edge corre-
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sponding to the trait-to-trait effect βst , we generate β ′ts, in addition to β ′0t , β ′0s, σ ′t
2,

and σ ′s
2 for model M′. These proposal distributions are given in Equations 4.12

– 4.14 (p. 79), and the proposal distributions for M′→M are given in Equations

4.15 – 4.17 (p. 80). For the reversal of the edge corresponding to βst , we have the

following ratio of priors:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′0t |S′)
p(β0t |S)

p(β ′0s|S′)
p(β0s|S)

p(β ′ts|S′)
p(βst |S)

p(σ ′t
2|S′)

p(σ2
t |S)

p(σ ′s
2|S′)

p(σ2
s |S)

× p(S′)
p(S)

, (4.33)

where the parameter prior distributions are defined in Equation 4.7 (p. 73), and if

we assume a uniform prior on all possible states for the connection between any

two trait nodes, p(S) = p(S′).

Following the general form of the acceptance probability given in Equation

4.2 (p. 70), and substituting in the proposal and prior ratios in Equations 4.32 and

4.33, the acceptance probability for a reverse step is:

αreverse = min(1,rreverse), where

rreverse =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(Ω′|S′)
p(Ω|S)

p(S′)
p(S)

q(u′M|S,x′ = xS,Ω′,S′)
q(uM′ |S′,x = xS,Ω,S)

×

q(S|x′ = xS,Ω′,S′)
q(S′|x = xS,Ω,S)

q(x′ = xS|Ω′,S′)
q(x = xS|Ω,S)

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
=

p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(β ′0t |S′)
p(β0t |S)

p(β ′0s|S′)
p(β0s|S)

p(β ′ts|S′)
p(βst |S)

p(σ ′t
2|S′)

p(σ2
t |S)

p(σ ′s
2|S′)

p(σ2
s |S)

×

p(S′)
p(S)

q(β0t |β̂0t , σ̂
′
t

2
,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t

2
,Vβ ′0t

)

q(β0s|β̂0s, σ̂
2
s ,Vβ0s)

q(β ′0s|β̂ ′0s, σ̂
′
s
2
,Vβ ′0s

)

q(βst |β̂st , σ̂
′
t

2
,Vβst )

q(β ′ts|β̂ ′ts, σ̂ ′s
2
,Vβ ′ts)

×

q(σ2
t |σ̂2

t )

q(σ ′t
2|σ̂ ′t

2
)

q(σ2
s |σ̂2

s )

q(σ ′s
2|σ̂ ′s

2
)

∑
EM
g=1 Ia(Sg[M])

∑
EM′
g=1 Ia(Sg[M′])

. (4.34)

The general expression of the likelihood is given in Equation 4.5 (p. 72). As-

suming a uniform prior on the state of a connection between any two trait nodes

means that p(S′) = p(S); however, it does imply that an edge is more likely to be
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included in the phenotype network structure (in one of two directions) than not.

The Jacobian is 1 (see Appendix C.1). Reversing an edge within a phenotype

network structure can create cyclic graphs, therefore the terms |Ne(M,x = xS)|

and |Ne(M′,x′ = xS)| may differ.

4.3.1 Example of a reverse step

Suppose that we want to carry out a reverse step to move from model M to M′; the

example causal network structures are given in Figure 4.3. We propose to reverse

the trait-to-trait effect of trait 2 on trait 3 (where this directed edge was selected

randomly with probability 1
3 ). We note that we cannot propose the reversal of β13

as this would create a cyclic model. However, we could have proposed to reverse

β12.

In this example we have a set of current parameters, Ω, and a set of candidate

φ11 φ11

Model M

Y1

Y2
Y3

Q1

Q2
Q3

Y1

Y2
Y3

Model M’

Q1

Q2
Q3

β23 β32

β12β12 β13β13

φ22 φ33 φ22 φ33

'

'

'

'

''

Figure 4.3: Example causal network structures for both the current (M) and can-
didate (M′) models, given a reverse step. Here, we propose to reverse the trait-to-
trait effect of trait 2 on trait 3, i.e. delete the parameter β23 and add the parameter
β ′32.
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parameters, Ω′:

Ω = {β01,β02,β03,β12,β13,β23,φ11,φ22,φ33,σ
2
1 ,σ

2
2 ,σ

2
3}

Ω
′ = {β ′01,β

′
02,β

′
03,β

′
12,β

′
13,β

′
32,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2
,σ ′2

2
,σ ′3

2}.

Here we update the following parameters which are affected by the reversal of the

edge corresponding to β23: β ′02, β ′03 β ′32, σ ′2
2, and σ ′3

2. It follows that

{β ′01,β
′
12,β

′
13,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2}= {β01,β12,β13,φ11,φ22,φ33,σ
2
1}.

To move from M to M′, new parameters are generated from the following

proposal distributions:

β
′
0t |β̂ ′0t , σ̂

′
t
2,Vβ ′0t

∼ N
(

β̂
′
0t ,

1
τ

σ̂ ′t
2Vβ ′0t

)
for t = 2,3 (see Eqn. 4.12)

β
′
32|β̂ ′32, σ̂

′
2

2,Vβ ′32
∼ N

(
β̂
′
32,

1
τ

σ̂ ′2
2Vβ ′32

)
(see Eqn. 4.13)

σ
′
t
2|σ̂ ′t

2 ∼ Unif
(

0.5σ̂ ′t
2,1.5σ̂ ′t

2
)

for t = 2,3 (see Eqn. 4.14).

where for parameter p, Vp is as defined in Equation 4.11 (p. 78).

To move from model M′ to M, the parameter proposal distributions are:

β0t |β̂0t , σ̂t
2,Vβ0t ∼ N

(
β̂0t ,

1
τ

σ̂t
2Vβ0t

)
for t = 2,3 (see Eqn. 4.15)

β23|β̂23, σ̂
2
3 ,Vβ23 ∼ N

(
β̂23,

1
τ

σ̂
2
3Vβ23

)
(see Eqn. 4.16)

σ
2
t |σ̂2

t ∼ Unif
(
0.5σ̂

2
t ,1.5σ̂

2
t
)

for t = 2,3 (see Eqn. 4.17).

The neighbourhoods for both models M and M′, given a reverse step, are dis-
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played in Figure 4.4, where

|Ne(M,x = xS)|= |Ne(M′,x′ = xS)|= 2.

As mentioned earlier, we cannot reverse the trait-to-trait effect β13 in model M,

as it would create a cyclic model, so it is not included in the neighbourhood

Ne(M,x = xS). Similarly, we cannot reverse the trait-to-trait effect β12 in model

M′.

It follows that the proposal ratio for this example is:

q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

× |Ne(M,x = xS)|
|Ne(M′,x′ = xS)|

=
q(β02|β̂02, σ̂

2
2 ,Vβ02)

q(β ′02|β̂ ′02, σ̂
′
2

2
,Vβ ′02

)

q(β03|β̂03, σ̂
2
3 ,Vβ03)

q(β ′03|β̂ ′03, σ̂
′
3

2
,Vβ ′03

)
×

q(β23|β̂23, σ̂
2
3 ,Vβ23)q(σ

2
2 |σ̂2

2 )q(σ
2
3 |σ̂2

3 )

q(β ′32|β̂ ′32, σ̂
′
2

2
,Vβ ′32

)q(σ ′2
2|σ̂ ′2

2
)q(σ ′3

2|σ̂ ′3
2
)
.

Ne(M ,x = xS)

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Ne(M’ ,x’ = xS)

Y1

Y2 Y3

M’M

Figure 4.4: The neighbourhoods for the current and candidate models, given a
reverse step; denoted Ne(M,x = xS) and Ne(M′,x′ = xS), respectively.
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The prior ratio is:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′02|S′)p(β ′03|S′)p(β ′32|S′)p(σ ′2

2|S′)p(σ ′3
2|S′)

p(β02|S)p(β03|S)p(β23|S)p(σ2
2 |S)p(σ2

3 |S)
,

where the parameter prior distributions are defined in Equation 4.7 (p. 73), and we

assume a uniform prior on all possible states for the connection between any two

trait nodes, such that pg1 = pg2 = pg3 =
1
3 and p(S) = p(S′).

It follows that the acceptance probability for this example reverse step is:

αreverse = min(1,rreverse), where

rreverse =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(β ′02|S′)p(β ′03|S′)p(β ′32|S′)p(σ ′2
2|S′)p(σ ′3

2|S′)
p(β02|S)p(β03|S)p(β23|S)p(σ2

2 |S)p(σ2
3 |S)

×

q(β02|β̂02, σ̂
2
2 ,Vβ02)

q(β ′02|β̂ ′02, σ̂
′
2

2
,Vβ ′02

)

q(β03|β̂03, σ̂
2
3 ,Vβ03)

q(β ′03|β̂ ′03, σ̂
′
3

2
,Vβ ′03

)
×

q(β23|β̂23, σ̂
2
3 ,Vβ23)q(σ

2
2 |σ̂2

2 )q(σ
2
3 |σ̂2

3 )

q(β ′32|β̂ ′32, σ̂
′
2

2
,Vβ ′32

)q(σ ′2
2|σ̂ ′2

2
)q(σ ′3

2|σ̂ ′3
2
)
.

The general expression of the likelihood is given in Equation 4.5 (p. 72), and the

Jacobian is 1 (see Appendix C.1).

4.4 The relocate step

A relocate step proposes the relocation of an existing directed edge, or trait-to-

trait effect, within model M to form the model M′. The relocation of a directed

edge involves the deletion of one of the existing edges within model M, and the

addition of an edge in a new, distinct location such that both M and M′ have

phenotype network structures with the same number of directed edges; model M

has EM edges and model M′ has EM′ edges, and EM = EM′ .
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Given in Equation 4.18 (p. 80), the proposal ratio for the relocation of any

trait-to-trait effect βst to β ′vw is:

q(u′M,S,x′|Ω′,S′)
q(uM′ ,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

× |Ne(M,x = xC)|
|Ne(M′,x′ = xC)|

=
q(β0t |β̂0t , σ̂

2
t ,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t

2
,Vβ ′0t

)

q(β0w|β̂0w, σ̂
2
w,Vβ0w)

q(β ′0w|β̂ ′0w, σ̂
′
w

2
,Vβ ′0w

)

q(βst |β̂st , σ̂
2
t ,Vβst )

q(β ′vw|β̂ ′vw, σ̂
′
w

2
,Vβ ′vw

)
×

q(σ2
t |σ̂ ′t

2
)

q(σ ′t
2|σ̂ ′t

2
)

q(σ2
w|σ̂2

w)

q(σ ′w
2|σ̂ ′w

2
)

EM

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M])IR(g, f |S)I∈( f |S)

EM′

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M′])IR(g, f |S′)I∈( f |S′)

(4.35)

Using the indicator functions are given in Equation 4.3 (p. 72), with Cg, f [M]

denotes the new model with edge g relocated to location f (in S), as stated in

Section 4.1.1, we define the size of the neighbourhoods as:

|Ne(M,x = xC)| =
EM

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M])IR(g, f |S)I∈( f |S)

and |Ne(M′,x′ = xC)| =
EM′

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M′])IR(g, f |S′)I∈( f |S′).

It follows that the neighbourhood of a model, given a relocate step, includes

only acyclic models where the relocated edge is not reversed, but relocated to a

new, distinct position within the phenotype network.

The parameters which get updated differ depending on the relocated edge —

both its position within model M and model M′. This is due to conditional in-

dependence, whereby trait t is independent of all other traits given the traits and

QTL with direct effects on trait t (υY (t) and υQ(t), respectively). Therefore, if we

propose the relocation of βst to β ′vw, we generate β ′vw in addition to β ′0t , β ′0w, σ ′t
2,
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and σ ′w
2 for model M′, provided t 6= w. We note that the edge βst can be relocated

to the location βvw such that t = w, in which case we would only need to generate

the parameter β ′wt in addition to β ′0t and σ ′t
2, for model M′. These proposal distri-

butions are given in Equations 4.12 – 4.14 (p. 80), and the proposal distributions

for M′ → M are given in Equations 4.15 – 4.17 (p. 80). It follows that for the

relocation of βst to β ′vw, where t 6= w, we have the following ratio of priors:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′0t |S′)
p(β0t |S)

p(β ′0w|S′)
p(β0w|S

p(β ′vw|S′)
p(βst |S)

p(σ ′t
2|S′)

p(σ2
t |S)

p(σ ′w
2|S′)

p(σ2
w|S)

p(S′)
p(S)

(4.36)

where the parameter prior distributions are defined in Equation 4.7 (p. 73) and if

we assume a uniform prior on all possible states for the connection between any

two trait nodes, p(S) = p(S′).

Following the general form of the acceptance probability in Equation 4.2 (p.

70), and substituting the proposal and prior ratios in equations 4.35 and 4.36, the

acceptance probability for a relocate step is:

αrelocate = min(1,rrelocate), where

rrelocate =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(Ω′|S′)
p(Ω|S)

p(S′)
p(S)

q(u′M|S,x′ = xC,Ω′,S′)
q(uM′ |S′,x = xC,Ω,S)

×

q(S|x′ = xC,Ω′,S′)
q(S′|x = xC,Ω,S)

q(x′ = xC|Ω′,S′)
q(x = xC|Ω,S)

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
=

p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(β ′0t |S′)
p(β0t |S)

p(β ′0w|S′)
p(β0w|S)

p(β ′vw|S′)
p(βst |S)

p(σ ′t
2|S′)

p(σ2
t |S)

p(σ ′w
2|S′)

p(σ2
w|S)

×

p(S′)
p(S)

q(β0t |β̂0t , σ̂
2
t ,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t

2
,Vβ ′0t

)

q(β0w|β̂0w, σ̂
2
w,Vβ0w)

q(β ′0w|β̂ ′0w, σ̂
′
w

2
,Vβ ′0w

)

q(βst |β̂st , σ̂
2
t ,Vβst )

q(β ′vw|β̂ ′vw, σ̂
′
w

2
,Vβ ′vw

)
×

q(σ2
t |σ̂ ′t

2
)

q(σ ′t
2|σ̂ ′t

2
)

q(σ2
w|σ̂2

w)

q(σ ′w
2|σ̂ ′w

2
)

EM

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M])IR(g, f |S)I∈( f |S)

EM′

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M′])IR(g, f |S′)I∈( f |S′)
. (4.37)
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The general expression of the likelihood is given in Equation 4.5 (p. 72). As-

suming a uniform prior on the state of a connection between any two trait nodes

means that p(S) = p(S′); however, it does imply that an edge is more likely to

be included in the phenotype network structure (in one of two directions) than

not. The phenotype network prior is as defined in Equation 4.10 (p. 75), and the

Jacobian is 1 (see Appendix C.2).

4.4.1 Example of a relocate step

Suppose that we want to carry out a relocation step to move from model M to M′;

the example causal network structures are given in Figure 4.5. The edge β12 was

randomly selected to be relocated with probability 1
2 . We could have also proposed

the relocation of β13. In this example we have a set of current parameters, Ω, and

a set of candidate parameters, Ω′:

Ω = {β01,β02,β03,β12,β13,φ11,φ22,φ33,σ
2
1 ,σ

2
2 ,σ

2
3}

Ω
′ = {β ′01,β

′
02,β

′
03,β

′
13,β

′
23,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2
,σ ′2

2
,σ ′3

2}.

φ11 φ11

Model M

Y1

Y2
Y3

Q1

Q2
Q3

Y1

Y2
Y3

Model M’

Q1

Q2
Q3

β23

β12 β13β13

φ22 φ33 φ22 φ33''

'

'

'

Figure 4.5: Example causal network structures for both the current (M) and can-
didate (M′) models, given a relocate step. Here, we propose to remove the trait-to-
trait effect β12 and “relocate” the directed edge such that we add the trait-to-trait
effect β ′23.
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Both β12 and β ′23 specify which parameters need to be updated in the candidate

model. Here we propose new values for the following parameters; β ′02, β ′03, β ′23,

σ ′2
2, σ ′3

2. It follows that

{β ′01,β
′
13,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2}= {β01,β13,φ11,φ22,φ33,σ
2
1}.

To move from model M to M′, new parameters are generated from the follow-

ing proposal distributions:

β
′
0t |β̂ ′0t ,σ

′
t
2
,Vβ ′0t

∼ N
(

β̂
′
0t ,

1
τ

σ
′
t
2Vβ ′0t

)
for t = 2,3 (see Eqn. 4.12)

β
′
23|β̂ ′23,σ

′
3

2
,Vβ ′23

∼ N
(

β̂
′
23,

1
τ

σ
′
3

2Vβ ′23

)
(see Eqn. 4.13)

σ
′
t
2|σ̂ ′t

2 ∼ Unif
(

0.5σ̂ ′t
2,1.5σ̂ ′t

2
)

for t = 2,3 (see Eqn. 4.14),

where for parameter p, Vp is as defined in Equation 4.11 (p. 78).

To move from model M′ to model M, the parameter proposal distributions are:

β0t |β̂0t ,σ
2
t ,Vβ0t ∼ N

(
β̂0t ,

1
τ

σ
2
t Vβ0t

)
for t = 2,3 (see Eqn. 4.15)

β12|β̂12,σ
2
2 ,Vβ12 ∼ N

(
β̂12,

1
τ

σ
2
2Vβ12

)
(see Eqn. 4.16)

σ
2
t |σ̂2

t ∼ Unif
(
0.5σ̂

2
t ,1.5σ̂

2
t
)

for t = 2,3 (see Eqn. 4.17).

The neighbourhoods for both models M and M′, given a relocation step, are

displayed in Figure 4.6, where

|Ne(M,x = xC)|= |Ne(M′,x′ = xC)|= 4.
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Ne(M , x = xC)

Y1

Y2 Y3

Ne(M’ , x’ = xC)

M’M

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Figure 4.6: The neighbourhoods for both the current and candidate models, given
a relocation step; denoted Ne(M,x = xC) and Ne(M′,x′ = xC), respectively.

It follows that the proposal ratio for this example is:

q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

× |Ne(M,x = xC)|
|Ne(M′,x′ = xC)|

=
q(β02|β̂02,σ

2
2 ,Vβ02)

q(β ′02|β̂ ′02,σ
′
2

2,Vβ ′02
)

q(β03|β̂03,σ
2
3 ,Vβ03)

q(β ′03|β̂ ′03,σ
′
3

2,Vβ ′03
)
×

q(β12|β̂12,σ
2
2 ,Vβ12)

q(β ′23|β̂ ′23,σ
′
3

2,Vβ ′23
)

q(σ2
2 |σ̂2

2 )

q(σ ′2
2|σ̂ ′2

2)

q(σ2
3 |σ̂2

3 )

q(σ ′3
2|σ̂ ′3

2)
.

The prior ratio is:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′02|S′)p(β ′03|S′)p(β ′23|S′)p(σ ′2

2|S′)p(σ ′3
2|S′)

p(β02|S)p(β03|S)p(β12|S)p(σ2
2 |S)p(σ2

3 |S)
,

where the parameter prior distributions are defined in Equation 4.7 (p. 73), and

we assume a uniform prior on all possible states for the connection between any

two trait nodes, such that pg1 = pg2 = pg3 =
1
3 and p(S) = p(S′). It follows that
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the acceptance probability for this example relocate step is:

αrelocate = min(1,rrelocate), where

rrelocate =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(β ′02|S′)p(β ′03|S′)p(β ′23|S′)p(σ ′2
2|S′)p(σ ′3

2|S′)
p(β02|S)p(β03|S)p(β12|S)p(σ2

2 |S)p(σ2
3 |S)

×

q(β02|β̂02,σ
2
2 ,Vβ02)

q(β ′02|β̂ ′02,σ
′
2

2,Vβ ′02
)

q(β03|β̂03,σ
2
3 ,Vβ03)

q(β ′03|β̂ ′03,σ
′
3

2,Vβ ′03
)
×

q(β12|β̂12,σ
2
2 ,Vβ12)

q(β ′23|β̂ ′23,σ
′
3

2,Vβ ′23
)

q(σ2
2 |σ̂2

2 )

q(σ ′2
2|σ̂ ′2

2
)

q(σ2
3 |σ̂2

3 )

q(σ ′3
2|σ̂ ′3

2
)

The likelihood is given in Equation 4.5 (p. 72), and the Jacobian is 1 (see Ap-

pendix C.2).

4.5 Summary of the Bayesian approach to estimat-

ing an unknown causal structure within a fixed

dimension

1. Initialise the chain by specifying an initial phenotype network structure by

sampling from the edge priors and confirming acyclicity. Generate new

parameter values using the proposal distributions in Equations 4.22 – 4.25

(pp. 84 – 85), using the LSE for the initial model as the current parameter

estimates. The initial model is now referred to as the current model, M =

{Ω,S}.

2. Select a move type x with probability q(x|Ω,S), given in Table 4.1 (p. 71),

where

∑
x∈X

q(x|Ω,S) = 1 for all (Ω,S)
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and x is one of:

• update (xU ): update all parameters in the current model

• reverse (xS): reverse the direction of one of the directed edges in the

current phenotype network

• relocate (xC): relocate one of the directed edges in the current pheno-

type network, i.e. delete one edge and propose a new, distinct directed

edge

3. Given move type x, propose a candidate phenotype network structure S′ with

probability

q(S′|x,Ω,S) =

 1
|Ne(M,x)| , if S′ ∈ Ne(M,x)

0, otherwise

where

∑
S′∈S

q(S′|x,Ω,S) = 1 for all (x,Ω,S).

4. Generate a set of random variables uM′ ∈ UM′ , with probability density

q(uM′|x,S′,Ω,S)

and the parameters of the new state of the chain, Ω′, are generated by the

deterministic function gMM′:

Ω
′ = gMM′(Ω,uM′).

• If x = xU then the proposal distributions are given in Equations 4.22 –

4.25 (p. 85), dependent on the current parameter estimates (Ω).
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• If x ∈ {xS,xC} then the phenotype network structure is altered and the

parameter proposal distributions are given in Equations 4.12 – 4.14

(pp. 79 – 80).

5. Calculate the acceptance probability:

α = min(1,r)

where

r =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

×

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

q(x′|Ω′,S′)
q(x|Ω,S)

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣ .
and

rupdate is given in Equation 4.31 (p. 86)

rreverse is given in Equation 4.34 (p. 90)

rrelocate is given in Equation 4.37 (p. 96).

6. Determine whether to accept or reject the candidate model by drawing a ran-

dom number from a uniform distribution (between 0 and 1).

• If the random number is less than α , accept the candidate model. The

candidate model is now the current model: M = {Ω′,S′}.

• If the random number is greater than α , reject the candidate model.

The current model remains unchanged: M = {Ω,S}.

7. Repeat steps 2 – 6 until the chain has converged to a stationary state and a large

number of samples from the posterior have been drawn.
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4.6 Simulation study I

Following Appendix B, data was simulated for five traits and five QTL with the

true causal network structure given in Figure 4.7. The true parameter values were

varied in order to determine how this approach is influenced by different combi-

nations of QTL and trait-to-trait effects. Both small and large QTL effects and

trait-to-trait effects are selected with values between 0.1 and 1.2. This range was

based upon those values in published data sets; for example, Dhungana et al.

(2007) and Mi et al. (2010). We note that it is possible for the effects to be posi-

tive or negative. The true parameter values for data sets 4.1 – 4.4 are the same as

those listed in Table 3.4, but are restated here in Table 4.2 for convenience. We

simulate n = 500 individuals for each data set.

Following the recommendation from (Neto et al. 2010) we ran long chains,

with N = 1,000,000 iterations. Each had a burn-in period of 100,000 iterations

Y1

Y2 Y3

Y4 Y5

Q1

Q2 Q3

Q4 Q5

φ11

φ22 φ33

φ55φ44

β13β12

β24 β35

β45

Figure 4.7: The true causal network structure for the simulated data sets 4.1 –
4.4. The true parameter values for each data set are listed in Table 4.2.
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Table 4.2: True parameter values for data sets 4.1 – 4.4.

data set
parameter 4.1 4.2 4.3 4.4

β01 0.5 0.5 0.5 0.5
β02 0.5 0.5 0.5 0.5
β03 0.5 0.5 0.5 0.5
β04 0.5 0.5 0.5 0.5
β05 0.5 0.5 0.5 0.5
β12 0.2 1.1 0.2 1.1
β13 0.2 1.1 0.2 1.1
β24 0.2 1.1 0.2 1.1
β35 0.2 1.1 0.2 1.1
β45 0.2 1.1 0.2 1.1
φ11 0.1 0.1 1.2 1.2
φ22 0.1 0.1 1.2 1.2
φ33 0.1 0.1 1.2 1.2
φ44 0.1 0.1 1.2 1.2
φ55 0.1 0.1 1.2 1.2
σ2

1 1.0 1.0 1.0 1.0
σ2

2 1.0 1.0 1.0 1.0
σ2

3 1.0 1.0 1.0 1.0
σ2

4 1.0 1.0 1.0 1.0
σ2

5 1.0 1.0 1.0 1.0

removed and every 10th iteration was retained, so 90,000 states are stored. The

results for each data set are given in Sections 4.6.1 – 4.6.4, and the overall results

are summarized in Section 4.6.5. We run five Markov chains for each data set,

initially presenting the marginal posterior probabilities for each directed edge,

as well as the model joint posterior probabilities and model averaged parameter

estimates for the first Markov chain run. The results from all five chains are then

summarized in Figures 4.12, 4.17, 4.22 and 4.26 for data sets 4.1, 4.2, 4.3 and 4.4,

respectively.

The marginal posterior probability of each of the directed edges is calculated
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using the following steps, as used by Broom et al. (2012), for example.

1. Identify the K∗ different models visited by the Markov chain.

2. For k = 1, · · · ,K∗, determine the posterior probability of model Mk given the

data (D); denoted p(Mk|D). In other words, determine the proportion of

times model Mk appears in the chain.

3. Calculate the posterior probability of each directed edge, eg, given the data,

denoted p(eg|D):

p(eg|D) =
K∗

∑
k=1

p(eg|Mk,D)p(Mk|D),

where

p(eg|Mk,D) =

 1, if eg is an edge in model Mk

0, otherwise

identifies the estimated models which include the directed edge eg.

The model averaged estimates for each parameter, say ω , are also presented

with their corresponding 95% credible intervals. The model averaged estimates

are obtained using Bayesian model averaging, see Hoeting et al. (1999), for ex-

ample.

1. Identify the K∗ different models visited by the Markov chain.

2. For k = 1, · · · ,K∗, determine the posterior probability of model Mk given the

data, denoted p(Mk|D). That is, determine the proportion of times model

Mk appears in the chain.
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3. Let the model averaged estimate for parameter ω be denoted E[ω|D] such that

E[ω|D] =
K∗

∑
k=1

E[ω|Mk,D]p(Mk|D).

where E[ω|Mk,D] is simply the mean of ω given model Mk, i.e.

E[ω|Mk,D] =
1
nk

nk

∑
j=1

ω
(k)
j .

The number of times model Mk was visited by the chain is denoted nk, and

ω
(k)
j is the estimate of ω for the jth time model Mk was visited by the chain.

The joint posterior probabilities of the models are used to determine the es-

timated phenotype network structure as we wish to make inference based on the

entire phenotype network structure, not just the individual directed edges.

We ran a total of five chains for each data set so that we may comment on

numerical convergence. As is standard in MCMC literature, we will refer to this

simply as ‘convergence’. Trace plots have been plotted for each chain, and for the

model with the highest joint posterior probability within each chain. However,

as our models contain a large number of parameters, and we are running many

chains, we include only a small number of trace plots in Appendix D — selected to

best illustrate those trends seen within all the trace plots. We also use Gelman and

Rubin’s convergence diagnostic, see Gelman & Rubin (1992), on the parameters

that are independent of a changing phenotype network structure, as well as on the

log likelihood, in order to comment on convergence. Gelman & Rubin (1992)

utilize analysis of variance (ANOVA) methods by running many Markov chains

and using these as the factor in a one-way analysis. This enables estimates of both



4.6. SIMULATION STUDY I 107

pooled variance and within-chain variance to be calculated, and by comparing the

two it can be determined whether or not the chains are from the same (target)

distribution.

4.6.1 Data set 4.1:

small QTL effects and small trait-to-trait effects

Data set 4.1 is comprised of small QTL effects and small trait-to-trait effects. As

all the effects are small, the true model has a weak signal making it difficult to infer

the true phenotype network structure. The marginal posterior probabilities of the

directed edges are given in Figures 4.8 and 4.9 for chain 1. We note that with the

dimension fixed to include five trait-to-trait effects, if we were to select the edges

with the highest marginal posterior probability the estimated phenotype network

would be comprised of: β21, β24, β31, β35 and β54, with the phenotype network

structure given in Figure 4.10 (p. 110). The marginal posterior probabilities for

all directed edges in both Figures 4.8 and 4.9 illustrate that with small parameter

values for both the QTL and trait-to-trait effects, the true model has a weak signal

and we have trouble identifying the direction of causality between traits. However,

higher marginal posterior probabilities are associated with edges where a causal

relationship does exist, i.e. between traits (Y1 and Y2), (Y1 and Y3), (Y2 and Y4), (Y3

and Y5), and (Y4 and Y5).

The model averaged parameter estimates, conditional on their existence within

the model, are given in Table 4.3 (p. 109). We note that most of the 95% credible

intervals contain the true parameter value; those trait-to-trait effects that are in the

true model (β12, β13, β24, β35, and β45) all contain the true value of 0.2 within their

95% credible intervals. Conversely, many of the trait-to-trait effect parameters
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B.12* B.13* B.14 B.15 B.21 B.23 B.24* B.25 B.31 B.32 B.34 B.35* B.41 B.42 B.43 B.45* B.51 B.52 B.53 B.54

edges

p(
e g

|D
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.8: The marginal posterior probability of each directed edge eg, denoted
p(eg|D) for data set 4.1 (chain 1). The terms “B.ij” denote the trait-to-trait effect
βi j corresponding to the directed edge, i.e. the effect of trait i on trait j. The edges
comprising the true model are indicated by solid black bars and an ‘∗’ next to the
label of the directed edge.

Y1

Y2 Y3

Y4 Y5

(a)

Y1

Y2 Y3

Y4 Y5

0.0 < p(eg|D) < 0.2
0.2 < p(eg|D) < 0.4
0.4 < p(eg|D) < 0.6
0.6 < p(eg|D) < 0.8
0.8 < p(eg|D) < 1.0

(b)

Figure 4.9: For data set 4.1 (chain 1): (a) the true phenotype network structure,
and (b) the marginal posterior probability of each directed edge, denoted p(eg|D),
displayed in the context of a phenotype network structure. The thicker the directed
edge, the larger the marginal posterior probability.
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Table 4.3: The model averaged parameter estimates for data set 4.1 (chain 1).
n(parameter) denotes the number of times the parameter was included in the es-
timated causal network structure. Intervals including the true value are indicated
by an asterisk (∗).

parameter true value estimated value 95% CI n(parameter)
β01 0.5 0.223 (0.037,0.451) 90000
β02 0.5 0.536 (0.347,0.713)∗ 90000
β03 0.5 0.551 (0.350,0.729)∗ 90000
β04 0.5 0.609 (0.413,0.814)∗ 90000
β05 0.5 0.592 (0.385,0.812)∗ 90000
β12 0.2 0.133 (0.051,0.222)∗ 21652
β13 0.2 0.202 (0.122,0.283)∗ 23258
β14 0.0 0.081 (0.001,0.169) 1746
β15 0.0 0.073 (-0.003, 0.143)∗ 363
β21 0.0 0.144 (0.060, 0.227) 64727
β23 0.0 0.004 (-0.039, 0.059)∗ 401
β24 0.2 0.127 (0.045,0.206)∗ 45447
β25 0.0 0.002 (-0.067, 0.058)∗ 334
β31 0.0 0.232 (0.139, 0.325) 66742
β32 0.0 0.047 (-0.026, 0.127)∗ 368
β34 0.0 0.059 (-0.023, 0.162)∗ 921
β35 0.2 0.233 (0.139,0.329)∗ 54926
β41 0.0 0.078 (-0.015, 0.182)∗ 1359
β42 0.0 0.152 (0.062,0.242) 39890
β43 0.0 0.018 (-0.037, 0.073)∗ 174
β45 0.2 0.195 (0.094,0.292)∗ 27478
β51 0.0 0.072 (-0.048, 0.180)∗ 1976
β52 0.0 0.007 (-0.096, 0.130)∗ 1129
β53 0.0 0.185 (0.111,0.263) 35074
β54 0.0 0.162 (0.082,0.246) 62035
φ11 0.1 0.260 (0.087,0.425)∗ 90000
φ22 0.1 0.087 (-0.095,0.271)∗ 90000
φ33 0.1 0.049 (-0.109,0.214)∗ 90000
φ44 0.1 -0.040 (-0.201,0.121)∗ 90000
φ55 0.1 0.258 (0.084,0.440)∗ 90000
σ2

1 1.0 0.986 (0.864,1.125)∗ 90000
σ2

2 1.0 1.004 (0.885,1.138)∗ 90000
σ2

3 1.0 0.881 (0.773,1.004)∗ 90000
σ2

4 1.0 0.858 (0.755,0.978) 90000
σ2

5 1.0 1.055 (0.925,1.205)∗ 90000
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β54

Y1

Y2 Y3

Y4 Y5

β13β12

β24 β35

β45

True model

Y1

Y2 Y3

Y4 Y5

β31β21

β24 β35

The five edges with 
the greatest marginal 
posterior probability 

Figure 4.10: The five edges with the greatest marginal posterior probability for
data set 4.1 (chain 1). The edges highlighted in red differ from the true phenotype
network structure.

that are not included in the true model have credible intervals which include 0.

However, parameters corresponding to edges which reverse the causal relationship

observed in the true model, e.g. β21 and β42, have 95% credible intervals that do

not include 0.

121 different phenotype network structures were visited and the 10 models

with the greatest joint posterior probabilities are given in Figure 4.11. Due to the

small size of the effect used the true model has a weak signal, so many models

were searched and the joint posterior probabilities are generally quite small (all

less than 0.15). We note that the true phenotype network structure is not among

the 10 models with the greatest joint posterior probabilities, having a posterior

probability of just 0.0073. However, all of the top 10 models have edges where a

causal relationship exists, so we may conclude that the direction of causality has

not been clearly identified. Interestingly, the model estimated using the marginal

posterior probabilities of each edge, given in Figure 4.8 (p. 108), is not the model

with the greatest joint posterior probability. Meaning that while the parameter β24

was included in more models than β42, we want to estimate the phenotype network

as being the combination of edges that have the greatest probability of occurring



4.6. SIMULATION STUDY I 111

Y1

Y2 Y3

Y4 Y5

Model 1: p = 0.1352
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Y4 Y5
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Y4 Y5

Model 6: p = 0.0547
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Model 7: p = 0.0474
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Y4 Y5

Model 8: p = 0.0437
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Y4 Y5

Model 9: p = 0.0381

Y1
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Y4 Y5

Model 10: p = 0.0345

Figure 4.11: The 10 phenotype networks with the greatest joint posterior proba-
bility, p, for data set 4.1 (chain 1). The true model is not included here.
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together, and so we select the model with the greatest joint posterior probability.

The estimated phenotype network structure is given as Model 1 in Figure 4.11.

To assess convergence we ran multiple chains, summarized in Figure 4.12 by

recording the initial model used by each chain, the number of models visited, the

model with the greatest joint posterior probability and the joint posterior probabil-

ity of the true model. We also include a graphical display of the marginal posterior

probability of each directed edge to get an overview of the models visited by the

chain, allowing us to get an impression of how the chains are moving.

Each chain has visited many models, incorporating all possible directed edges

at some point, as shown by the graphical display of the marginal posterior prob-

abilities of the directed edges, p(eg|D). The small QTL and trait-to-trait effects

mean that the chains have moved between models easily. The true model has been

visited in each chain; however, it is never the model with the greatest joint poste-

rior probability, which is not surprising as with small effects the true model has

a weak signal. In addition to Figure 4.12, Table 4.4 (p. 114) gives Gelman and

Rubin’s convergence diagnostic for the dimension independent parameters. The

Gelman–Rubin diagnostic is close to 1 for all parameters tested, indicating the

dimension independent parameters have converged. However, with such a weak

signal there is very little to detect and the chain is just moving around.

The values of the log posterior density are plotted in Figure 4.13 (p. 114) for

the five chains. It appears as though all the chains have converged to a station-

ary state; however, the size of the effects comprising the true model prevent the

approach from identifying the correct directions of causality as a change in the

phenotype network only results in a minor change in the log posterior density.
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DATA SET 4.1

Initial 
model:

p(eg|D)

p(Mk|D) = p*

p(MTRUE|D)

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

0.0073 0.0113 0.0093 0.0206 0.0178

p* = 0.1352 p* = 0.1618 p* = 0.1415 p* = 0.0955 p* = 0.1198 

n(models) 119143119107121

Y1

Y2 Y3

Y4 Y5

Chain: 1 2 3 4 5

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

Figure 4.12: A summary of the performance of each chain for data set 4.1. The number of models visited is denoted
n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest joint
posterior probability is denoted p∗, such that model Mk has the greatest joint posterior probability when p(Mk|D)= p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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Table 4.4: The Gelman–Rubin convergence diagnostic for data set 4.1, for all five
chains summarized in Figure 4.12.

Gelman–Rubin diagnostic
log likelihood 1.01

β01 1.05
β02 1.03
β03 1.02
β04 1.03
β05 1.04
φ11 1.01
φ22 1.01
φ33 1.00
φ44 1.00
φ55 1.01
σ2

1 1.01
σ2

2 1.00
σ2

3 1.01
σ2

4 1.00
σ2

5 1.01

Figure 4.13: For data set 4.1; the log posterior values for all five chains.
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4.6.2 Data set 4.2:

small QTL effects and large trait-to-trait effects

Data set 4.2 is comprised of small QTL effects and large trait-to-trait effects. In-

creasing the size of the trait-to-trait effects from data set 4.1 should increase the

signal of the true model and make it easier to detect the true phenotype network

structure. The marginal posterior probabilities of the directed edges are given in

Figures 4.14 and 4.15 for chain 1. We note that with the dimension fixed to include

five trait-to-trait effects, we would include the following directed edges: β12, β13,

β24, β35, β45. This is the true phenotype network structure, given in Figure 4.15

(a).

The marginal posterior probabilities for all directed edges in both Figures 4.14

and 4.15 illustrate that with small QTL effects and large trait-to-trait effects, we

easily identify the direction of causality between traits; however, the chain has

not visited many models — only 4 different phenotype network structures. As a

result, many directed edges have a marginal posterior probability of 0.

The model averaged parameter estimates, conditional on their existence within

the model, are given in Table 4.5 (p. 118). All parameters in the true model have

95% credible intervals containing the true parameter value. Once again, we note

that edges which reverse the true direction of causality, e.g. β21, β31 and β42, have

95% credible intervals that do not include 0.

Just 4 different phenotype network structures were visited, with the joint pos-

terior probability of each given in Figure 4.16 (p. 117). All of the visited models

have edges where a causal relationship exists, but the direction of causality varies

between models. The true phenotype network structure is the model with the

greatest joint posterior probability, p(MT RUE) = 0.5149, and this is the same phe-
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B.12* B.13* B.14 B.15 B.21 B.23 B.24* B.25 B.31 B.32 B.34 B.35* B.41 B.42 B.43 B.45* B.51 B.52 B.53 B.54

edges

p(
e g

|D
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.14: The marginal posterior probability of each directed edge eg, denoted
p(eg|D), for data set 4.2 (chain 1). The terms “B.ij” denote the trait-to-trait effect
βi j corresponding to the directed edge, i.e. the effect of trait i on trait j. The edges
comprising the true model are indicated by solid black bars and an ‘∗’ next to the
label of the directed edge.

Y1

Y2 Y3

Y4 Y5

(a)

Y1

Y2 Y3

Y4 Y5

0.0 < p(eg|D) < 0.2
0.2 < p(eg|D) < 0.4
0.4 < p(eg|D) < 0.6
0.6 < p(eg|D) < 0.8
0.8 < p(eg|D) < 1.0

(b)

Figure 4.15: For data set 4.2 (chain 1): (a) the true phenotype network structure,
and (b) the marginal posterior probability of each directed edge, denoted p(eg|D),
displayed in the context of a causal network structure. The thicker the directed
edge, the larger the marginal posterior probability.
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notype network structure as indicated by the marginal posterior probabilities for

the individual directed edges in Figures 4.14 and 4.15. Due to the increase in the

size of the trait-to-trait effects from data set 4.1, the chain does not move between

models as easily as it did with small QTL effects — just four causal network

structures were searched (down from 121 with small trait-to-trait effects). The

parameter estimates for the true model only are given in Table 4.6 (p. 119). These

parameter estimates are much closer to the true parameter values than the model

averaged parameter estimates in Table 4.5. The credible intervals are narrower,

and they all contain the true parameter values. However, due to the small size of

the QTL effects, the 95% credible intervals for the QTL effects also include 0.

Y1

Y2 Y3

Y4 Y5

Model 1: p = 0.5149

Y1

Y2 Y3

Y4 Y5

Model 2: p = 0.2849

Y1

Y2 Y3

Y4 Y5

Model 3: p = 0.1209

Y1

Y2 Y3

Y4 Y5

Model 4: p = 0.0793

Figure 4.16: The joint posterior probabilities, p, of the four models visited by
chain 1 for data set 4.2. The true model is the model with the greatest joint poste-
rior probability, Model 1.
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Table 4.5: The model averaged parameter estimates for data set 4.2 (chain 1).
n(parameter) denotes the number of times the parameter was included in the es-
timated causal network structure. Intervals including the true value are indicated
by an asterisk (∗).

parameter true value estimated value 95% CI n(parameter)
β01 0.50 0.246 (-0.117, 0.631)∗ 90000
β02 0.50 0.588 (-0.142, 1.116)∗ 90000
β03 0.50 0.532 (0.334,1.135)∗ 90000
β04 0.50 0.647 (0.417,1.737)∗ 90000
β05 0.50 0.447 (0.298,0.595)∗ 90000
β12 1.10 1.131 (1.045,1.218)∗ 57222
β13 1.10 1.133 (1.047,1.219)∗ 79116
β14 0.00 NA (NA, NA) 0
β15 0.00 NA (NA, NA) 0
β21 0.00 0.509 (0.473,0.545) 32778
β23 0.00 NA (NA, NA) 0
β24 1.10 1.071 (1.014,1.130)∗ 82860
β25 0.00 NA (NA, NA) 0
β31 0.00 0.509 (0.473,0.546) 10884
β32 0.00 NA (NA, NA) 0
β34 0.00 NA (NA, NA) 0
β35 1.10 1.094 (1.023,1.164)∗ 90000
β41 0.00 NA (NA, NA) 0
β42 0.00 0.693 (0.660,0.726) 7140
β43 0.00 NA (NA, NA) 0
β45 1.10 1.13 (1.074,1.187)∗ 90000
β51 0.00 NA (NA, NA) 0
β52 0.00 NA (NA, NA) 0
β53 0.00 NA (NA, NA) 0
β54 0.00 NA (NA, NA) 0
φ11 0.10 -0.015 (-0.182, 0.129)∗ 90000
φ22 0.10 0.047 (-0.164, 0.334)∗ 90000
φ33 0.10 0.113 (-0.076, 0.295)∗ 90000
φ44 0.10 0.049 (-0.134, 0.237)∗ 90000
φ55 0.10 0.053 (-0.124, 0.226)∗ 90000
σ2

1 1.00 0.753 (0.400,1.160)∗ 90000
σ2

2 1.00 1.334 (0.588,2.513)∗ 90000
σ2

3 1.00 1.139 (0.865,2.438)∗ 90000
σ2

4 1.00 1.155 (0.835,3.698)∗ 90000
σ2

5 1.00 1.02 (0.900,1.154)∗ 90000
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Table 4.6: The parameter estimates for the true causal structure for data set 4.2
(chain 1). Intervals including the true value are indicated by an asterisk (∗).

parameter true value estimated value 95% CI
β01 0.50 0.517 (0.387,0.651)∗

β02 0.50 0.493 (0.357,0.632)∗

β03 0.50 0.461 (0.331,0.589)∗

β04 0.50 0.556 (0.411,0.698)∗

β05 0.50 0.448 (0.296,0.597)∗

β12 1.10 1.132 (1.047,1.220)∗

β13 1.10 1.132 (1.041,1.219)∗

β24 1.10 1.072 (1.015,1.132)∗

β35 1.10 1.092 (1.020,1.159)∗

β45 1.10 1.131 (1.077,1.190)∗

φ11 0.10 -0.027 (-0.206, 0.142)∗

φ22 0.10 0.012 (-0.169, 0.199)∗

φ33 0.10 0.120 (-0.042, 0.284)∗

φ44 0.10 0.050 (-0.120, 0.229)∗

φ55 0.10 0.053 (-0.126, 0.223)∗

σ2
1 1.00 1.044 (0.922,1.184)∗

σ2
2 1.00 0.987 (0.871,1.120)∗

σ2
3 1.00 0.976 (0.862,1.106)∗

σ2
4 1.00 0.944 (0.834,1.070)∗

σ2
5 1.00 1.021 (0.900,1.155)∗

To assess convergence we ran multiple chains; summarized in Figure 4.17 by

recording the initial model used by each chain, the number of models visited, the

model with the greatest joint posterior probability and the joint posterior probabil-

ity of the true model. We also include a graphical display of the marginal posterior

probability of each directed edge to get an overview of the models visited by the

chain, allowing us to get an impression of how the chains are moving. Each chain

has visited very few models, appearing to get stuck at local maxima in chains 2,

3, and 5, where models with the greatest joint posterior probability were those

which reversed some of the true causal relationships, or even added edges to im-

ply a direct effect was present instead of the indirect effect of one trait on another
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in the true model. For example, inferring that Y1 → Y5, when in the true model

Y1→ Y2→ Y5 and Y1→ Y3→ Y5.

The inclusion of large trait-to-trait effects in our simulated data set has resulted

in chains that do not move between models easily, the true model was never vis-

ited by three of the five chains; however, the true model has the greatest joint

posterior probability in two of the chains, both with p(MT RUE |D)≈ 0.5. In addi-

tion to Figure 4.17, Table 4.7 gives Gelman and Rubin’s convergence diagnostic

for dimension independent parameters. The Gelman–Rubin Diagnostic is close to

1 for the QTL effect parameters; however, most dimension independent parame-

ters have not converged. When the trait-to-trait effects are large it is difficult to

propose a favourable move, fixing the number of edges is too restrictive. The log

likelihood has a particularly large potential scale reduction factor of 51.1, indicat-

ing that the chains have not converged. The values of the log posterior density are

plotted in Figure 4.18 for all five chains, and we observe what the Gelman–Rubin

diagnostic indicated — these chains have not converged. We note that chains 1

and 4 have similar log posterior densities and they are the smallest values within

the five chains, so chains 1 and 4 have the best estimate for the phenotype net-

work structure — the true model. Unfortunately, if there are small QTL effects

and large trait-to-trait effects the chain may get stuck in local maxima depending

on the initial model used. This illustrates why it is important to repeat the search

from a variety of different positions.

The trace plots for each chain do occasionally appear to get stuck in partic-

ular parts of the parameter space, this is the chain visiting different models with

different parameters. Appendix D contains the trace plots for all stored iterations

for chain 1; included to illustrate how the parameter values appear to be stuck in

areas of the parameter space as the chain visits different phenotype networks.
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Initial 
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p(eg|D)
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p* = 0.5149 p* = 0.7779 p* = 0.5422 p* = 0.5295 p* = 0.6192
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Figure 4.17: A summary of the performance of each chain for data set 4.2. The number of models visited is denoted
n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest joint
posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D) = p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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Table 4.7: The Gelman–Rubin convergence diagnostic for data set 4.2, for all five
chains summarized in Figure 4.17.

Gelman–Rubin diagnostic
log likelihood 51.1

β01 1.89
β02 2.39
β03 3.24
β04 1.57
β05 5.14
φ11 1.03
φ22 1.30
φ33 1.00
φ44 1.02
φ55 1.21
σ2

1 2.09
σ2

2 1.92
σ2

3 1.24
σ2

4 1.08
σ2

5 5.65

Figure 4.18: For data set 4.2; the log posterior values for all five chains.
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4.6.3 Data set 4.3:

large QTL effects and small trait-to-trait effects

Data set 4.3 is comprised of large QTL effects and small trait-to-trait effects. The

marginal posterior probabilities of the directed edges are given in Figures 4.19

and 4.20 for chain 1, illustrating that with large QTL effects and small trait-to-

trait effects, we can identify the direction of causality between traits. However, as

seen with data set 4.2, the chain has not visited many different phenotype network

structures so is not mixing well. As a result, many directed edges have a marginal

posterior probability of 0. With the dimension fixed to include five trait-to-trait

effects, we would include the following edges: β12, β13, β24, β35, β45. This is the

true causal structure, given in Figure 4.20 (a).

The model averaged parameter estimates, conditional on their existence within

the model, are given in Table 4.8 (p. 126). Those trait-to-trait effects that are in

the true model all have the true value of 0.2 within their respective 95% credible

interval. However, as seen in data sets 4.1 and 4.2, those edges which reverse the

true direction of causality have 95% credible intervals that do not include 0 (here,

β21, β53 and β54). 7 different phenotype network structures were visited, given

in Figure 4.21 (p. 125). All of the models searched have edges where a causal

relationship exists, but the direction of causality varies between the models. The

true model has the greatest joint posterior probability, with p(MT RUE) = 0.8338.

The parameter estimates for the true model only are given in Table 4.9. These

parameter estimates are much closer to the true parameter values than the model

averaged parameter estimates in Table 4.8. The credible intervals are narrower, all

contain the true parameter values, and with larger QTL effects (than in data sets

4.1 and 4.2) the 95% credible intervals (for the QTL effects) no longer include 0.
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B.12* B.13* B.14 B.15 B.21 B.23 B.24* B.25 B.31 B.32 B.34 B.35* B.41 B.42 B.43 B.45* B.51 B.52 B.53 B.54
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Figure 4.19: The posterior probability of each directed edge eg, denoted p(eg|D),
for data set 4.3 (chain 1). The terms “B.ij” denote the trait-to-trait effect βi j
corresponding to the directed edge, i.e. the effect of trait i on trait j. The edges
comprising the true model are indicated by solid black bars and an ‘∗’ next to the
label of the directed edge.
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(a)
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Y4 Y5

0.0 < p(eg|D) < 0.2
0.2 < p(eg|D) < 0.4
0.4 < p(eg|D) < 0.6
0.6 < p(eg|D) < 0.8
0.8 < p(eg|D) < 1.0

(b)

Figure 4.20: For data set 4.3 (chain 1): (a) the true phenotype network structure,
and (b) the marginal posterior probability of each directed edge, denoted p(eg|D),
displayed in the context of a causal network structure. The thicker the directed
edge, the larger the marginal posterior probability.
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Model 2: p = 0.1267
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Model 3: p = 0.0273
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Model 4: p = 0.0059
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Model 7: p = 1e−04

Figure 4.21: The joint posterior probabilities, p, of the 7 models visited by chain
1 for data set 4.3. The true model is the model with the greatest joint posterior
probability, Model 1.
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Table 4.8: The model averaged parameter estimates for data set 4.3 (chain 1).
n(parameter) denotes the number of times the parameter was included in the es-
timated causal network structure. Intervals including the true value are indicated
by an asterisk (∗)..

parameter true value estimated value 95% CI n(parameter)
β01 0.50 0.499 (0.214,0.662)∗ 90000
β02 0.50 0.534 (0.361,0.794)∗ 90000
β03 0.50 0.448 (0.215,0.600)∗ 90000
β04 0.50 0.583 (0.418,0.739)∗ 90000
β05 0.50 0.495 (0.295,0.744)∗ 90000
β12 0.20 0.218 (0.140,0.296)∗ 77663
β13 0.20 0.232 (0.153,0.307)∗ 90000
β14 0.00 NA (NA, NA) 0
β15 0.00 NA (NA, NA) 0
β21 0.00 0.199 (0.130,0.275) 12337
β23 0.00 NA (NA, NA) 0
β24 0.20 0.172 (0.096,0.249)∗ 90000
β25 0.00 NA (NA, NA) 0
β31 0.00 NA (NA, NA) 0
β32 0.00 NA (NA, NA) 0
β34 0.00 NA (NA, NA) 0
β35 0.20 0.191 (0.114,0.268)∗ 86624
β41 0.00 NA (NA, NA) 0
β42 0.00 NA (NA, NA) 0
β43 0.00 NA (NA, NA) 0
β45 0.20 0.226 (0.149,0.306)∗ 89436
β51 0.00 NA (NA, NA) 0
β52 0.00 NA (NA, NA) 0
β53 0.00 0.168 (0.108,0.236) 3376
β54 0.00 0.122 (0.059,0.193) 564
φ11 1.20 1.038 (0.867,1.214)∗ 90000
φ22 1.20 1.085 (0.907,1.258)∗ 90000
φ33 1.20 1.187 (1.020,1.354)∗ 90000
φ44 1.20 1.110 (0.944,1.280)∗ 90000
φ55 1.20 1.124 (0.944,1.298)∗ 90000
σ2

1 1.00 1.036 (0.908,1.176)∗ 90000
σ2

2 1.00 0.996 (0.874,1.136)∗ 90000
σ2

3 1.00 0.976 (0.861,1.107)∗ 90000
σ2

4 1.00 0.946 (0.835,1.071)∗ 90000
σ2

5 1.00 1.025 (0.903,1.164)∗ 90000
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Table 4.9: The parameter estimates for the true causal structure for data set 4.3
(chain 1). Intervals including the true value are indicated by an asterisk (∗).

parameter true value estimated value 95% CI
β01 0.50 0.534 (0.405,0.666)∗

β02 0.50 0.502 (0.359,0.662)∗

β03 0.50 0.459 (0.306,0.599)∗

β04 0.50 0.585 (0.425,0.740)∗

β05 0.50 0.486 (0.290,0.681)∗

β12 0.20 0.218 (0.140,0.295)∗

β13 0.20 0.232 (0.155,0.307)∗

β24 0.20 0.172 (0.097,0.249)∗

β35 0.20 0.191 (0.114,0.269)∗

β45 0.20 0.226 (0.148,0.307)∗

φ11 1.20 1.038 (0.865,1.215)∗

φ22 1.20 1.084 (0.909,1.257)∗

φ33 1.20 1.186 (1.019,1.355)∗

φ44 1.20 1.108 (0.942,1.281)∗

φ55 1.20 1.121 (0.941,1.295)∗

σ2
1 1.00 1.044 (0.920,1.180)∗

σ2
2 1.00 0.987 (0.871,1.119)∗

σ2
3 1.00 0.977 (0.863,1.108)∗

σ2
4 1.00 0.946 (0.835,1.071)∗

σ2
5 1.00 1.023 (0.902,1.159)∗

To assess convergence we ran multiple chains, which we summarize in Figure

4.22 by recording the initial model used by each chain, the number of models

visited, the model with the greatest joint posterior probability and the posterior

probability of the true model. We also include a graphical display of the marginal

posterior probability of each directed edge to get an overview of the models visited

by the chain, allowing us to get an impression of how the chains are moving.

With large QTL effects and small trait-to-trait effects, the true phenotype net-

work structure was consistently estimated with p(MT RUE |D) ≥ 0.8000 for all

chains. Each chain visited between 9 and 13 models, slightly more than with

data set 4.2, but much less than data set 4.1. The chains are not mixing well.
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Initial 
model:

p(eg|D)

p(Mk|D) = p*

p(MTRUE|D)

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

0.8338 0.7917 0.7995 0.8693 0.8161

p* = 0.8338 p* = 0.7919 p* = 0.7995 p* = 0.8693 p* = 0.8161

n(models) 45657

Y1

Y2 Y3

Y4 Y5

Chain: 1 2 3 4 5

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5
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Y4 Y5
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Y4 Y5
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Y4 Y5Y4

Figure 4.22: A summary of the performance of each chain for data set 4.3. The number of models visited is denoted
n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest joint
posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D) = p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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In addition to Figure 4.22, Table 4.10 gives Gelman and Rubin’s convergence

diagnostic for dimension independent parameters. The Gelman–Rubin Diagnos-

tic is close to 1 for all parameters tested, indicating the dimension independent

parameters have converged. With large QTL effects the true model has a strong

signal; however, this makes it difficult for the chain to propose favourable moves.

The values of the log posterior density are plotted in Figure 4.23 for all five

chains, and we observe what the Gelman–Rubin diagnostic indicated — these

chains overlap and appear to have converged. Unfortunately the chain has visited

few models so it is not mixing well.

Table 4.10: The Gelman–Rubin convergence diagnostic for data set 4.3, for all
five chains summarized in Figure 4.22.

Gelman–Rubin diagnostic
log likelihood 1.00

β01 1.03
β02 1.01
β03 1.01
β04 1.01
β05 1.01
φ11 1.01
φ22 1.01
φ33 1.00
φ44 1.01
φ55 1.01
σ2

1 1.00
σ2

2 1.00
σ2

3 1.00
σ2

4 1.00
σ2

5 1.00
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Figure 4.23: For data set 4.3: the log posterior values for all five chains.

4.6.4 Data set 4.4:

large QTL effects and large trait-to-trait effects

Data set 4.4 is comprised of large QTL effects and large trait-to-trait effects. The

marginal posterior probabilities for the directed edges are given in Figures 4.24

and 4.25 for chain 1. We note that with large effects (both QTL and trait-to-

trait) only the true phenotype network structure, given in Figure 4.25 (a), has been

visited and therefore all directed edges comprising it have a posterior probability

of 1, see Figure 4.25 (b).

The model averaged parameter estimates, here corresponding to the estimates

for the true model, are given in Table 4.11 (p. 132). All of the 95% credible

intervals contain the true parameter values. Due to the increase in the size of

the QTL effects from data set 4.3, we have reduced the search from just four
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B.12* B.13* B.14 B.15 B.21 B.23 B.24* B.25 B.31 B.32 B.34 B.35* B.41 B.42 B.43 B.45* B.51 B.52 B.53 B.54

edges

p(
e g

|D
)

0.
0

0.
2

0.
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0.
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0.
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1.
0

Figure 4.24: The posterior probability of each directed edge eg, denoted p(eg|D)
for data set 4.4 (chain 1). The terms “B.ij” denote the trait-to-trait effect βi j
corresponding to the directed edge, i.e. the effect of trait i on trait j. The edges
comprising the true model are indicated by solid black bars and an ‘∗’ next to the
label of the directed edge.

Y1

Y2 Y3

Y4 Y5

(a)

Y1

Y2 Y3

Y4 Y5

0.0 < p(eg|D) < 0.2
0.2 < p(eg|D) < 0.4
0.4 < p(eg|D) < 0.6
0.6 < p(eg|D) < 0.8
0.8 < p(eg|D) < 1.0

(b)

Figure 4.25: For data set 4.4 (chain 1): (a) the true phenotype network structure,
and (b) the marginal posterior probability of each directed edge, denoted p(eg|D),
displayed in the context of a causal network structure. The thicker the directed
edge, the larger the marginal posterior probability.
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Table 4.11: The model averaged parameter estimates for data set 4.4 (chain 1).
n(parameter) denotes the number of times the parameter was included in the es-
timated causal network structure. Intervals including the true value are indicated
by an asterisk (∗).

parameter true value estimated value 95% CI n(parameter)
β01 0.50 0.532 (0.405,0.659)∗ 90000
β02 0.50 0.507 (0.357,0.670)∗ 90000
β03 0.50 0.463 (0.308,0.611)∗ 90000
β04 0.50 0.564 (0.404,0.733)∗ 90000
β05 0.50 0.465 (0.267,0.658)∗ 90000
β12 1.10 1.116 (1.038,1.193)∗ 90000
β13 1.10 1.128 (1.053,1.202)∗ 90000
β14 0.00 NA (NA, NA) 0
β15 0.00 NA (NA, NA) 0
β21 0.00 NA (NA, NA) 0
β23 0.00 NA (NA, NA) 0
β24 1.10 1.092 (1.042,1.142)∗ 90000
β25 0.00 NA (NA, NA) 0
β31 0.00 NA (NA, NA) 0
β32 0.00 NA (NA, NA) 0
β34 0.00 NA (NA, NA) 0
β35 1.10 1.079 (1.018,1.140)∗ 90000
β41 0.00 NA (NA, NA) 0
β42 0.00 NA (NA, NA) 0
β43 0.00 NA (NA, NA) 0
β45 1.10 1.126 (1.077,1.173)∗ 90000
β51 0.00 NA (NA, NA) 0
β52 0.00 NA (NA, NA) 0
β53 0.00 NA (NA, NA) 0
β54 0.00 NA (NA, NA) 0
φ11 1.20 1.043 (0.870,1.211)∗ 90000
φ22 1.20 1.081 (0.899,1.253)∗ 90000
φ33 1.20 1.185 (1.015,1.355)∗ 90000
φ44 1.20 1.114 (0.944,1.284)∗ 90000
φ55 1.20 1.120 (0.946,1.300)∗ 90000
σ2

1 1.00 1.044 (0.922,1.181)∗ 90000
σ2

2 1.00 0.988 (0.872,1.120)∗ 90000
σ2

3 1.00 0.978 (0.864,1.107)∗ 90000
σ2

4 1.00 0.946 (0.836,1.071)∗ 90000
σ2

5 1.00 1.021 (0.901,1.156)∗ 90000
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phenotype network structures to only one phenotype network structure. This chain

is not mixing well at all. To assess convergence we ran multiple chains, which we

summarize in Figure 4.26 by recording the initial model used by each chain, the

number of models visited, the model with the greatest joint posterior probability

and the posterior probability of the true model. We also include a graphical display

of the marginal posterior probability of each directed edge to get an overview of

the models visited by the chain, allowing us to get an impression of how the chains

are moving.

With large QTL effects and large trait-to-trait effects, the true phenotype net-

work structure can be difficult to identify, depending on where in the model space

the chain begins. These chains visited very few models, just 1 or 2, and just two

chains found the true causal network structure, both with p(MT RUE |D) = 1. Other

chains failed to visit the true model at all (p(MT RUE |D) = 0), instead finding mod-

els which reversed the true direction of causality (i.e. some edges were reversed)

or even added edges between traits which have no causal relationship.

In addition to Figure 4.26, Table 4.12 gives Gelman and Rubin’s convergence

diagnostic for dimension independent parameters. The potential scale reduction

factors from the Gelman–Rubin diagnostic are far from 1 for almost all parame-

ters tested, indicating the dimension independent parameters have not converged.

This is supported by the log posterior values plotted in Figure 4.27. We note that

chains 1 and 3 have similar log posterior densities, the smallest seen within the

five chains, indicating the best model is that estimated by these chains — the true

model. Unfortunately, with large QTL effects and large trait-to-trait effects it is

very difficult to propose favourable moves for the chain while keeping the number

of directed edges fixed.
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p* = 1 p* = 1 p* = 1 p* = 0.4911 p* = 1

n(models) 12111
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Chain: 1 2 3 4 5

Figure 4.26: A summary of the performance of each chain for data set 4.4. The number of models visited is denoted
n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest joint
posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D) = p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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Table 4.12: The Gelman–Rubin convergence diagnostic for data set 4.4, for all
five chains summarized in Figure 4.26.

Gelman–Rubin diagnostic
log likelihood 125.00

β01 15.60
β02 20.90
β03 16.00
β04 1.04
β05 14.90
φ11 7.52
φ22 5.09
φ33 5.33
φ44 1.01
φ55 1.25
σ2

1 11.80
σ2

2 25.20
σ2

3 1.01
σ2

4 1.00
σ2

5 25.00

Figure 4.27: For data set 4.4: the log posterior values for all five chains.
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4.6.5 Summary of results

Restricting the search for the true phenotype network structure to a fixed number

of directed edges while allowing the phenotype network structure to change is in

some sense artificial as we are working within a large dimension space, but se-

lecting only models with a fixed number of parameters. Those simulated data sets

with small effects (both QTL-to-trait and trait-to-trait) moved between phenotype

networks easier than with large effects, as a change in the phenotype network

structure had only a minor effect on the posterior density. Therefore more mod-

els with varying phenotype network structures were visited. In data set 4.1, the

true model was visited by all five chains, but was not identified as the model with

the greatest joint posterior probability due to it having a weak signal. The causal

relationships were identified, but the direction of causality varied.

Large effects (both QTL and trait-to-trait) had more of an effect on the pos-

terior density, with Figure 4.27 displaying a larger difference between the log

posterior values for the five chains. With large effects the phenotype network was

not altered very often, and few models were visited. However, in data set 4.4, the

two chains that identified the true phenotype network structure had the smallest

log posterior density among all the chains, indicating that they had estimated the

best model (the true model). The models used to initialise the chain are therefore

important, and multiple chains are recommended, starting at various phenotype

network structures. The data set with large trait-to-trait effects and small QTL ef-

fects (data set 4.3), yielded similar results but the chain was able to visit different

phenotype networks more easily than with large QTL effects.

The best results were seen in data set 4.2 with large QTL effects and small

trait-to-trait effects; all chains estimated the true model with a joint posterior prob-
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ability of at least 0.8, regardless of the initial model used.

Keeping this approach within a fixed dimension has restricted the way in

which the sampler was able to propose new phenotype network structures, mean-

ing that if a model had two or more badly placed edges it couldn’t easily fix itself.

This problem seems to be acute when the QTL effects and trait-to-trait effects are

large, so the solution is to allow the number of edges to vary. With the inclusion

of more move types in Chapter 5 we expect mixing to improve.
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Chapter 5

Bayesian estimation of a phenotype

network structure II

Chapter 4 introduced our Bayesian approach to estimating an unknown phenotype

network structure. The update, reverse and relocation moves were used, and it

was determined that this approach was able to estimate the phenotype network

structure with the number of directed edges fixed; however, mixing was poor.

There is a large dimension space, and if a model has two or more badly placed

edges it can’t easily fix itself if it is restricted to only reversing or relocating a

single edge. The solution is to allow the dimension of the model to vary. Here, we

extend the reversible jump sampler used in Chapter 4, utilizing the update, reverse

and relocation steps, and introduce new ‘add’, ‘remove’ and ‘double’ steps which

allow the number of directed edges in the phenotype network structure to vary.

This approach is based upon the QTLnet algorithm proposed by Neto et al.

(2010), and the differences between this approach and the QTLnet algorithm are

summarized below.

139



140 CHAPTER 5. ESTIMATION OF A PHENOTYPE NETWORK II

• Neto et al. (2010) propose the joint inference of the phenotype network

structure and the genetic components; however, we assume that the genetic

architecture is known and focus on the subproblem of estimating the un-

known phenotype network structure and the QTL effects.

• Our approach makes use of LSE (equivalent to the maximum likelihood es-

timates) in the chain, obtained from separate regressions of each trait on the

traits and QTL directly affecting it. This makes for a fast and efficient chain

so we have an efficient sampler using well-tuned proposal distributions.

• Neto et al. (2010) experienced slow mixing of the Markov chain. This ap-

proach incorporates extra move types; in Chapter 4 we used the relocate step

which relocates a directed edge, now we propose a double step to combine

two steps that alter the phenotype network structure.

• We define the neighbourhood of a phenotype network structure as being

conditional on the selected move type x; instead of containing all possible

candidate phenotype network structures given all move types, as in Neto

et al. (2010). This makes it faster to obtain the neighbourhood for a given

model when the number of traits is large.

• Neto et al. (2010) assume uniform priors over all network structures; how-

ever, we introduce a prior on the number of directed edges in a model which

causes simpler models, i.e. models with fewer directed edges, to be pre-

ferred.

The genetic components estimated by Neto et al. (2010) include the QTL loca-

tions, QTL genotypes and QTL-to-trait effects. We, however, assume that the

number of QTL, QTL locations and QTL genotypes are known, and that we have
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knowledge of which subset of QTL affect each trait (i.e. we know which QTL

effect parameters require estimation). We refer to this as the genetic architecture

(see Section 1.2), and focus on estimating the unknown phenotype network struc-

ture and the QTL effects. We may assume that the genetic architecture is known

as many methods have been established to map the genetic architecture of a trait

(or multiple traits). Neto et al. (2010), for example, recommend the use of the

seemingly unrelated regression model to estimate the genetic components; see

Banerjee et al. (2008). It follows that our approach is a subproblem of Neto et al.

(2010). The model used is the same as given in Equation 3.4 (p. 38), restated here

for convenience:

yit = β0t + ∑
`∈υQ(t)

φ`tqi`+ ∑
k∈υY (t)

βktyik + εit

where the model terms are as defined in Table 3.1. For the tth quantitative trait of

the ith individual,
yit = µit

∗+ εit

where µit
∗ = β0t + ∑

`∈υQ(t)
φ`tqi`+ ∑

k∈υY (t)
βktyik

εit
i.i.d.∼ N(0,σ2

t ).

As explained in Chapters 3 and 4, we have a set of QTL parents

υQ = (υQ(1), · · · ,υQ(NT )) ,

and a set of trait parents

υY = (υY (1), · · · ,υY (NT )) ,

where υQ is fixed as the genetic architecture is known, and the phenotype network
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structure is estimated using RJMCMC, proposing changes to the components of

υY . In this chapter, the proposed change is the reversal or relocation of a directed

edge, as detailed in Chapter 4, or the addition or removal of a directed edge as

detailed in Sections 5.2 and 5.3. An additional step, the double step, is introduced

later in Section 5.9.

An outline of the reversible jump algorithm for model updates is given in Sec-

tion 5.1, detailing the selection of the move types (Section 5.1.1), the posterior

distribution (Section 5.1.2), the proposal distributions for generating candidate

parameters (Section 5.1.3), and the Jacobian for the transformation between mod-

els of different dimensions (Section 5.1.4). The add and remove steps used in this

approach are explained in Sections 5.2 and 5.3, with small examples to demon-

strate the calculation of the individual acceptance probabilities. The approach is

summarized in Section 5.4, and a simulation study is included in Section 5.5 to

demonstrate how the prior on the number of edges can be used to penalize models

with too many edges. As this approach requires prior knowledge of the genetic

architecture, we include simulated examples in Section 5.7 to demonstrate how

the approach performs when the genetic architecture is incorrect. Section 5.8 uses

a published data set, the winter wheat data set from Dhungana et al. (2007), to

illustrate this reversible jump approach. Lastly, a new ‘double’ step is proposed in

Section 5.9 complete with an illustrative example.

5.1 Reversible jump algorithm for model updates,

for a varying number of edges

Following Section 4.1, we have a model space M with countable elements M ∈M,

where model M is defined by its causal network structure S (comprised of a set
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of nodes connected by a set of directed edges), and the parameters Ω. The model

space is partitioned into the structure space S and the parameter space O, such

that S ∈ S and Ω ∈ O. Let us propose a move from the current model, M, to a

candidate model, M′, by selecting a move type x from the move space X, such

that a unique move type x changes model M into M′. Here, x is one of

• update (xU ): update all parameters in the current model

• reverse (xS): reverse the direction of one of the directed edges in the current

phenotype network

• relocate (xC): relocate one of the directed edges in the current phenotype

network, i.e. delete one edge and propose a new, distinct directed edge

• add (xA): add a directed edge to the current phenotype network

• remove (xR): remove a directed edge from the current phenotype network.

A double step will also be introduced later as a way to propose larger changes in

the phenotype network structure. It is excluded here so that we may include the

simpler, and more conservative, relocate step, which is a possible type of double

step.

Now that we are searching models of varying dimensions, the causal network

structure for models M and M′ has an extra parameter to denote the number of

edges in the phenotype network structure: EM and EM′ , respectively. For any

current model M we have the parameter set Ω:

Ω= {EM,β01, · · · ,β0NT ,βυY (1)1, · · · ,βυY (NT )NT ,φυQ(1)1, · · · ,φυQ(NT )NT ,σ
2
1 , · · · ,σ2

NT
},
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and the phenotype network structure S, such that M = {Ω,S}. The dimension of

the model M is denoted m,

m = EM +1+Nφ +2NT ,

and is equivalent to the number of parameters in the current model, with EM trait-

to-trait effects (with EM as a parameter as well), Nφ QTL effects, NT intercepts

and NT residual variances. For any candidate model, M′, we have the parameter

set Ω′:

Ω
′= {EM′,β

′
01, · · · ,β ′0NT

,β ′
υY (1)1, · · · ,β

′
υY (NT )NT

,φ ′
υQ(1)1, · · · ,φ

′
υQ(NT )NT

,σ ′1
2
, · · · ,σ ′NT

2},

and the phenotype network structure S′, such that M′ = {Ω′,S′}. The dimension

of the model M′ is denoted m′,

m′ = EM′+1+Nφ +2NT

and is equivalent to the number of parameters in the candidate model, with EM′

trait-to-trait effects (with EM as a parameter as well), Nφ QTL effects, NT inter-

cepts and NT residual variances. As we now propose the addition or removal of

directed edges, m and m′ may differ.

As in Chapter 4, whenever a Markov chain Monte Carlo step is carried out,

conditional on the current state of the chain (i.e. model M = {Ω,S}), the following

occur:

• select a move type x with probability q(x|Ω,S) where

∑
x∈X

q(x|Ω,S) = 1 for all (Ω,S)

• given move type x, propose a candidate phenotype network structure S′ with
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probability q(S′|x,Ω,S) where

∑
S′∈S

q(S′|x,Ω,S) = 1 for all (x,Ω,S)

• generate a set of random variables uM′ ∈ UM′ , with probability density

q(uM′|x,S′,Ω,S)

• the parameters of the new state of the chain, Ω′ are generated by the deter-

ministic function gMM′ , such that

Ω
′ = gMM′(Ω,uM′).

The general form of the acceptance probability for the update, reverse, relo-

cate, add and remove steps, is defined as min(1,r), where

r =
p(M′|Y,Ψ)

p(M|Y,Ψ)
× q(u′M,S,x′|Ω′,S′)

q(uM′,S′,x|Ω,S)
×
∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣ (5.1)

(Green 1995). The move type transforming model M into M′ is denoted x, and x′

is the reverse of move type x — transforming model M′ into M. The posterior dis-

tributions are denoted by p() for models M and M′, and q() denotes the proposal

distributions. It follows that:

r =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
× q(u′M|S,x′,Ω′,S′)

q(uM′|S′,x,Ω,S)
×

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

× q(x′|Ω′,S′)
q(x|Ω,S)

×
∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣ (5.2)

using the same notation as in Chapter 4.
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5.1.1 Selecting the move type

At each step in the chain a move type is chosen at random from the update, re-

verse, relocate, add and remove steps, conditional on the current model, M. The

probabilities associated with the selection of each move type are chosen to al-

low equal probability of model parameter updates and exploration of the various

phenotype network structures.

The probability of each type of move is given in Table 5.1, where the indicator

functions in Equation 4.3 (p. 72) are used in addition to the operators U , Sg and

Cg, f defined in Section 4.1.1. We define the operators Ag and Rg such that:

• Ag[M] ∈M is a new model which adds edge g (to S) with an associated

generation of new parameter values

• Rg[M] ∈M is a new model which removes edge g (from S) with an associ-

ated generation of new parameter values.

The size of the resulting neighbourhoods, |Ne(M,x)|, are given in Table 5.1 using

these operators and indicator functions.

The parameters associated with the addition or removal of an edge include

the new trait-to-trait effect (for an add step), as well as select trait intercepts and

residual variances. The exact parameters to be updated are stated in Sections 5.2

and 5.3 for the add and remove steps, respectively.

5.1.2 Posterior distribution

The formation of the posterior distribution is as described in Section 4.1.2. The

QTL genotypes (Q), QTL locations (Λ), marker genotypes (G) and recombination

fractions (r) are assumed to be known. Let Ψ denote the known parameters, such
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Table 5.1: The probability of each move type, as well as the number of candi-
date models for move type x, |Ne(M,x)|. There exist NT traits, such that there are
NT (NT − 1) unique directed edges possible; subsets of these edges form the cur-
rent and candidate phenotype network structures. Model M has EM edges, with
the maximum number of directed edges denoted max(E) = 1

2NT (NT −1).

Number of edges in model M (EM)
Move Type (x) 0 1≤ EM ≤ (max(E)−1) max(E)
Update (xU ) 0.5 0.500 0.50
Add (xA) 0.5 0.125 0
Remove (xR) 0 0.125 0.25
Reverse (xS) 0 0.125 0.25
Relocate (xC) 0 0.125 0

Size of the neighbourhood of model M
Move Type (x) |Ne(M,x)|
Update (xU ) 1
Add (xA) ∑

NT (NT−1)
g=1 Ia(Ag[M])I∈(g|S)

Remove (xR) EM

Reverse (xS) ∑
EM
g=1 Ia(Sg[M])

Relocate (xC)
EM

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M])IR(g, f |S)I∈( f |S)

that Ψ= {Q,Λ,G,r}. Given the data Y and Ψ, the posterior distribution for model

M, M = {Ω,S}, is:

p(M|Y,Ψ) ∝ p(Y|Ω,S,Ψ)p(Ω|S)p(S)

as given in Equation 4.4. The expression of the likelihood is as given in Equation

4.5 (p. 72), restated here for convenience:

p(Y|Ω,S,Ψ) ∝

(
NT

∏
t=1

σt

)−n

×

n

∏
i=1

exp

−1
2

NT

∑
t=1

(
yit −β0t −∑`∈υQ(t) φ`tqi`−∑k∈υY (t) βktyik

)2

σ2
t

 .
(5.3)



148 CHAPTER 5. ESTIMATION OF A PHENOTYPE NETWORK II

The priors, however, must be expanded to accompany the fact that we now allow

the number of directed edges in a model to vary, i.e. we have introduced a new

parameter for the number of edges in model M, denoted EM. The joint parameter

prior is as defined as in Equations 4.6 and 4.7 (p. 73), for Ω \EM (Ω excluding

EM), and the prior for the number of edges is incorporated into the prior for the

phenotype network structure of model M, p(S). The graph structure is now de-

fined by a set of nodes, which are known, the number of directed edges between

traits (denoted EM for model M) and the set of directed edges connecting nodes.

In absence of prior knowledge regarding the phenotype network structure, we

assume independence among connections in the prior graph structure. That is, the

state of the connection between nodes A and B is independent of the state of the

connection between nodes A and C, for example. A connection has three possible

states, illustrated in Figure 4.1 (p. 74). The prior on the state of the gth connection

between two trait nodes in the phenotype network structure S, denoted pg j, is

dependent on the directed edge present between these two nodes with assigned

probabilities for j ∈ {1,2,3}, as given in Equation 4.8 (p. 75):

pg j =


pg1, if edge eg is reversed (e.g. Y1← Y2)

pg2, if edge eg is absent

pg3, if edge eg is forwards (e.g. Y1→ Y2),

where
3

∑
j=1

pg j = 1 ∀g. We may assign any values to pg j, perhaps using prior

knowledge of the phenotype network structure. For example, for edge g we could

set the prior probability of the edge being absent as pabsent = pg2, then the prior

probability of the edge being present is ppresent = 1− pabsent and the prior proba-

bility of the edge being forwards or reversed is then pg1 = pg3 = ppresent/2.
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The prior for the number of directed edges in the phenotype network structure

of model M is a discretised exponential distribution, denoted p(EM):

p(EM) = ξ e−λEM

where
1
2 NT (NT−1)

∑
EM=0

e−λEM =
1
ξ

implying that

p(EM) ∝ e−λEM . (5.4)

Assuming a priori independence among connections, the joint probability for the

phenotype network structure of model M is:

p∗(S) =

[
max(E)

∏
g=1

pg j

]
e−λEM , for j ∈ {1,2,3} (5.5)

where there are max(E) = 1
2NT (NT −1) possible edge locations (or connections)

in any model M ∈M with NT traits. Each connection can be reversed, absent or

forwards, denoted pg j for j ∈ {1,2,3} (see above). It follows that there are K =

3max(E) possible directed phenotype network structures; however, this includes

cyclic graphs. To exclude cyclic graphs we use the following indicator function:

Ia(S) =

 1, if graph structure S is acyclic

0, otherwise.

The prior probability distribution of all possible acyclic graph structures is then

obtained by normalising these joint probabilities over all K acyclic graph struc-
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tures to give:

p(S) =
p∗(S)Ia(S)

K

∑
k=1

p∗(Sk)Ia(Sk)

. (5.6)

In Chapter 3 we noted that overfitting was a concern when estimating an un-

known phenotype network structure. Now that the chain is able to vary in dimen-

sion we have introduced a prior on the number of edges in a model that will help

reduce overfitting. The hyperparameter λ is fixed; when equal to zero the prior

does not differ between models of different dimensions, whereas a large value of

λ causes simpler models, i.e. models with fewer directed edges, to be preferred.

5.1.3 Proposal distributions

The proposal distributions to move from model M to M′, and from model M′ to M

remain the same as described in Section 4.1.3. The proposal ratio is:

q(u′M,S,x′|Ω′,S′)
q(uM′,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

q(x′|Ω′,S′)
q(x|Ω,S)

(5.7)

where the probability of selecting move types x given M, and x′ given M′, are

denoted q(x|Ω,S) and q(x′|Ω′,S′), respectively, and are given in Table 5.1 (p.

147). The size of the neighbourhoods Ne(M,x) and Ne(M′,x′) are also given in

Table 5.1, and the probabilities of selecting the phenotype network structures S′

and S, denoted q(S|x′,Ω′,S′) and q(S′|x,Ω,S), are as described in Section 4.1.3.

The proposal distributions for the parameters of the current and candidate

models are denoted q(u′M|S,x′,Ω′,S′) and q(uM′ |S′,x,Ω,S), respectively. For the

add and remove steps, the phenotype network is altered so we use an indepen-

dence sampler to propose candidate parameter values. The proposal distributions
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are based on the least squares estimates (LSE) of the parameters conditional on

the proposed phenotype network structure. The LSE are effectively obtained from

separate regressions of each trait on the traits QTL directly affecting it. This is

both fast and efficient so we have an efficient sampler using well-tuned proposal

distributions; however, once again, these could be improved by using multivariate

normal proposal distributions.

Let us consider a move model M to M′, the proposal distributions are:

β
′
0t |β̂ ′0t , σ̂

′
t
2,Vβ ′0t

∼ N
(

β̂
′
0t ,

1
τ

σ̂ ′t
2Vβ ′0t

)
β
′
st |β̂ ′st , σ̂ ′t

2,Vβ ′st
∼ N

(
β̂
′
st ,

1
τ

σ̂ ′t
2Vβ ′st

)
σ
′
t
2|σ̂ ′t

2 ∼ Unif
(

0.5σ̂ ′t
2,1.5σ̂ ′t

2
)
,

as given in Equations 4.12 – 4.14 (p. 79). The expected values of the proposal dis-

tributions are conditional means: E(β ′0t |β̂ ′0t , σ̂
′
t
2,Vβ ′0t

) = β̂ ′0t , E(β ′st |β̂ ′st , σ̂ ′t
2,Vβ ′st

) =

β̂ ′st , and E(σ ′t
2|σ̂ ′t

2)= σ̂ ′t
2. Let parameter p be any of β ′0t ,β

′
st ,φ

′
`t for `∈{1, · · · ,Nqtl},

t ∈ {1, · · · ,NT} and s ∈ {1, · · · ,NT} where s 6= t; for parameter p the term Vp is

defined in Equation 4.11 (p. 78).

The number of edges in the candidate phenotype network structure, EM′ , is

updated according to the move type, x, as follows:

EM′ = EM +η (5.8)

where
η =


0, if x = xU ,xS,xC

1, if x = xA

−1, if x = xR,

and xU , xS, xC, xA and xR denote the move types as defined in Table 5.1 (p. 147).
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The proposal distributions to move from model M′ back to model M are the

same as Equations 4.15 – 4.17 (p. 80):

β0t |β̂0t , σ̂
′
t
2,Vβ0t ∼ N

(
β̂0t ,

1
τ

σ̂ ′t
2Vβ0t

)
βst |β̂st , σ̂

′
t
2,Vβst ∼ N

(
β̂st ,

1
τ

σ̂ ′t
2Vβst

)
σt

2|σ̂t
2 ∼ Unif

(
0.5σ̂t

2,1.5σ̂t
2
)
.

Let parameter p be any of β0t ,βst ,φ`t for ` ∈ {1, · · · ,Nqtl}, t ∈ {1, · · · ,NT} and

s ∈ {1, · · · ,NT} where s 6= t; for parameter p the term Vp is defined in Equation

4.11 (p. 78), and

EM = EM′+η
′ (5.9)

where the move type x′ is the reverse of move type x:

x′ =


x, if x = xU ,xS,xC

xR, if x = xA

xA, if x = xR,

and η ′ is conditional on the move type x′:

η
′ =


0, if x′ = xU ,xS,xC

1, if x′ = xA

−1, if x′ = xR.

To summarize, the proposal ratio for the add and remove steps can be written as:

q(u′M,S,x′|Ω′,S′)
q(uM′,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

q(x′|Ω′,S′)
q(x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

|Ne(M,x)|
|Ne(M′,x′)|

q(x′|Ω′,S′)
q(x|Ω,S)

. (5.10)
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5.1.4 The Jacobian

The general expression of the Jacobian for a transition from model M to M′ re-

mains unchanged from Section 4.1.4, and the Jacobians for the add, remove and

double steps are 1; see Appendix C.

5.2 The add step

An add step, also commonly referred to as a birth step in other RJMCMC lit-

erature, proposes the addition of a new directed edge (or trait-to-trait effect) to

model M to form model M′. The proposed addition of a directed edge to model M

means that the candidate model is of a higher dimension than the current model,

i.e. EM′ = EM +1 and m′ = m+1. Given in Equation 5.10, the proposal ratio for

the addition of any edge Ys→ Yt (βst) is:

q(u′M,S,x′ = xR|Ω′,S′)
q(uM′ ,S′,x = xA|Ω,S)

=
q(u′M|S,x′ = xR,Ω′,S′)
q(uM′ |S′,x = xA,Ω,S)

|Ne(M,x = xA)|
|Ne(M′,x′ = xR)|

q(x′ = xR|Ω′,S′)
q(x = xA|Ω,S)

=
q(β0t |β̂0t , σ̂

′
t

2
,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t

2
,Vβ ′0t

)

1

q(β ′st |β̂ ′st , σ̂ ′t
2
,Vβ ′st )

q(σ2
t |σ̂2

t )

q(σ ′t
2|σ̂ ′t

2
)
×

∑
NT (NT−1)
g=1 Ia(Ag[M])I∈(g|S)

EM′
× q(x′ = xR|Ω′,S′)

q(x = xA|Ω,S)
, (5.11)

as
|Ne(M,x = xA)|=

NT (NT−1)

∑
g=1

Ia(Ag[M])I∈(g|S)

and
|Ne(M′,x′ = xR)|= EM′

with the operator Ag as described in Section 5.1.1 and the indicator functions

Ia(M) and I∈(g|S) as defined in Equation 4.3 (p. 72). The probability of selecting

an add step, given M, is denoted q(x = xA|Ω,S), and q(x′ = xA|Ω′,S′) denotes the
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probability of selecting a remove step, given M′. Both are given in Table 5.1 (p.

147).

The add step uses an independence sampler to generate new candidate param-

eter values. As the phenotype network structure is changed, the proposal distri-

butions are based on the corresponding MLE. The parameters which get updated

differ depending on the edge added to S. This is due to conditional independence,

whereby a trait is independent of all other traits given its parents. Therefore, if we

add the edge corresponding to βst , we generate β ′st , in addition to β ′0t and σ ′t
2 for

model M′. These proposal distributions are given in Equations 4.12 – 4.14 (pp.

79 – 80), and the proposal distributions for M′→M are given in Equations 4.15 –

4.17 (p. 80). It follows that for the addition of any edge Ys→ Yt (β ′st) we have the

following ratio of parameter proposal distributions:

q(u′M|S,x′ = xR,Ω′,S′)
q(uM′ |S′,x = xA,Ω,S)

=
q(β0t |β̂0t , σ̂

′
t

2
,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t

2
,Vβ ′0t

)

1

q(β ′st |β̂ ′st , σ̂ ′t
2
,Vβ ′st )

q(σ2
t |σ̂2

t )

q(σ ′t
2|σ̂ ′t

2
)
, (5.12)

and the ratio of priors:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′0t |S′)
p(β0t |S)

p(β ′st |S′)
p(σ ′t

2|S′)
p(σ2

t |S)
× p(S′)

p(S)
, (5.13)

where the parameter prior distributions are defined in Equation 4.7 (p. 73), and

the phenotype network prior is as defined in Equation 5.6 (p. 150).

Following the general form of the acceptance probability given in Equation

5.2 (p. 145), and substituting in the proposal and prior ratios in Equations 5.11

and 5.13, the acceptance probability for adding β ′st is:

αadd = min(1,radd), where

radd =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
q(u′M|S,x′ = xR,Ω′,S′)
q(uM′|S′,x = xA,Ω,S)

×

q(S|x′ = xR,Ω′,S′)
q(S′|x = xA,Ω,S)

q(x′ = xR|Ω′,S′)
q(x = xA|Ω,S)

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
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radd =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(β ′0t |S′)
p(β0t |S)

p(β ′st |S′)
p(σ ′t

2|S′)
p(σ2

t |S)
p(S′)
p(S)

×

q(β0t |β̂0t , σ̂
′
t
2,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t
2,Vβ ′0t

)

1

q(β ′st |β̂ ′st , σ̂ ′t
2,Vβ ′st

)

q(σ2
t |σ̂2

t )

q(σ ′t
2|σ̂ ′t

2)
×

∑
NT (NT−1)
g=1 Ia(Ag[M])I∈(g|S)

EM′

q(x′ = xR|Ω′,S′)
q(x = xA|Ω,S)

. (5.14)

The general expression of the likelihood is given in Equation 5.3 (p. 147). If we

assume a uniform prior on the state of a connection between any two trait nodes,

the ratio of phenotype network priors simplifies to p(S′)
p(S) = exp(−λ ). However, this

then implies that an edge is more likely to be included in the phenotype network

structure (in one of two directions) than not. The Jacobian is 1 (see Appendix

C.3).

5.2.1 Example of an add step

Suppose that we want to carry out an add step to move from model M to model

M′; the example causal network structures are given in Figure 5.1. Let us propose

the addition of the trait-to-trait effect of trait 2 on trait 3 (β ′23) selected randomly

from Ne(M,x = xA) with q(S′|x = xA,Ω,S) = 1
2 . We could have also proposed the

addition of β ′32 as this would also create an acyclic model.

In this example we have a set of current parameters, Ω, and a set of candidate

parameters, Ω′:

Ω = {EM,β01,β02,β03,β12,β13,φ11,φ22,φ33,σ
2
1 ,σ

2
2 ,σ

2
3}

Ω
′ = {EM′ ,β

′
01,β

′
02,β

′
03,β

′
12,β

′
13,β

′
23,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2
,σ ′2

2
,σ ′3

2}.

The new directed edge (β ′23) specifies which parameters need to be updated in
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φ11

Model M

Y1

Y2
Y3

Q1

Q2
Q3

Y1

Y2
Y3

Model M’

Q1

Q2
Q3

β23

β12β12 β13β13

φ11

φ22 φ33 φ22 φ33

’

’

’

’

’ ’

Figure 5.1: Example causal network structures for both the current (M) and can-
didate (M′) models, given an add step proposing the addition of the trait-to-trait
effect of trait 2 on trait 3 (β ′23).

the candidate model. Here we generate the following parameters for model M′:

β ′23, β ′03 and σ ′3
2. Furthermore, the number of directed edges in the candidate

phenotype network structure increases by one, i.e. EM′ = EM +1. It follows that:

{β ′01,β
′
02,β

′
12,β

′
13,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2
,σ ′2

2}= {β01,β02,β12,β13,φ11,φ22,φ33,σ
2
1 ,σ

2
2 }.

To move from model M to M′, new parameters are generated from the follow-

ing proposal distributions:

EM′ = EM +1 (see Eqn. 5.8)

β
′
03|β̂ ′03, σ̂

′
3

2,Vβ ′03
∼ N

(
β̂
′
03,

1
τ

σ̂ ′3
2Vβ ′03

)
(see Eqn. 4.12)

β
′
23|β̂ ′23, σ̂

′
3

2,Vβ ′23
∼ N

(
β̂
′
23,

1
τ

σ̂ ′3
2Vβ ′23

)
(see Eqn. 4.13)

σ
′
3

2|σ̂ ′3
2 ∼ Unif

(
0.5σ̂ ′3

2,1.5σ̂ ′3
2
)

(see Eqn. 4.14).
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To move from model M′ to M, the parameter proposal distributions are:

EM = EM′−1 (see Eqn. 5.9)

β03|β̂03, σ̂
2
3 ,Vβ03 ∼ N

(
β̂03,

1
τ

σ̂
2
3Vβ03

)
(see Eqn. 4.15)

σ
2
3 |σ̂2

3 ∼ Unif
(
0.5σ̂

2
3 ,1.5σ̂

2
3
)

(see Eqn. 4.17)

where for parameter p, Vp is as defined in Equation 4.11 (p. 78).

The neighbourhood for model M given an add step, |Ne(M,x = xA)|, and for

model M′ given a remove step, |Ne(M′,x′ = xR)|, are given in Figure 5.2, such

that:
|Ne(M,x = xA)|
|Ne(M′,x′ = xR)|

=
2
3
.

Ne(M , x = xA)

Y1

Y2 Y3

Ne(M’ , x’ = xR)

Mk’M

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Figure 5.2: The neighbourhood for the current model, given an add step, and for
the candidate model, given a remove step; denoted Ne(M,x= xA) and Ne(M′,x′=
xR), respectively.
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Here, q(x′= xR|Ω′,S′) is the probability of a remove step given EM′ =max(E)=

3 edges, given in Table 5.1 (p. 147) as 0.25. Similarly, q(x = xA|Ω,S) = 0.125

such that:
q(x′ = xR|Ω′,S′)
q(x = xA|Ω,S)

=
0.25

0.125
= 2.

It follows that the proposal ratio for this example is:

q(u′M|S,x′ = xR,Ω′,S′)
q(uM′|S′,x = xA,Ω,S)

q(S|x′ = xR,Ω′,S′)
q(S′|x = xA,Ω,S)

q(x′ = xR|Ω′,S′)
q(x = xA|Ω,S)

=
q(β03|β̂03, σ̂

2
3 ,Vβ03)q(σ

2
3 |σ̂2

3 )

q(β ′03|β̂ ′03, σ̂
′
3

2,Vβ ′03
)q(β ′23|β̂ ′23, σ̂

′
3

2,Vβ ′23
)q(σ ′3

2|σ̂ ′3
2)
× 4

3
.

Similarly, the prior ratio is:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′03|S′)p(β ′23|S′)p(σ ′3

2|S′)
p(β03|S)p(σ2

3 |S)
× exp(−λ ),

assuming the prior on the state of a connection between nodes is uniform, i.e.

p1g = p2g = p3g = 1/3. It follows that the acceptance probability for this example

add step is:

αadd = min(1,radd), where

radd =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(β ′03|S′)p(β ′23|S′)p(σ ′3
2|S′)

p(β03|S)p(σ2
3 |S)

exp(−λ )×

q(β03|β̂03, σ̂
2
3 ,Vβ03)q(σ

2
3 |σ̂2

3 )

q(β03
′|β̂ ′03, σ̂

′
3

2,Vβ ′03
)q(β23

′|β̂ ′23, σ̂
′
3

2,Vβ ′23
)q(σ ′3

2|σ̂ ′3
2)
× 4

3
.

The general expression of the likelihood is given in Equation 5.3 (p. 147), and the

Jacobian is 1 (see Appendix C.3).
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5.3 The remove step

A remove step, also commonly referred to as a death step in other RJMCMC

literature, proposes the removal of an existing directed edge (or trait-to-trait effect)

from model M to form model M′. The proposed removal of a directed edge from

model M means that the candidate model is of a lower dimension than the current

model, i.e. EM′ = EM−1 and m′ = m−1.

Given in Equation 5.10 (p. 152), the proposal ratio for the removal of any edge

Ys→ Yt (βst) is:

q(u′M,S,x′ = xA|Ω′,S′)
q(uM′ ,S′,x = xR|Ω,S)

=
q(u′M|S,x′ = xA,Ω′,S′)
q(uM′ |S′,x = xR,Ω,S)

|Ne(M,x = xR)|
|Ne(M′,x′ = xA)|

q(x′ = xA|Ω′,S′)
q(x = xR|Ω,S)

=
q(β0t |β̂0t , σ̂t

2
,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t

2
,Vβ ′0t

)
q(βst |β̂st , σ̂t

2
,Vβst )

q(σ2
t |σ̂2

t )

q(σ ′t
2|σ̂ ′t

2
)
×

EM

∑
NT (NT−1)
g=1 Ia(Ag[M′])I∈(g|S′)

q(x′ = xA|Ω′,S′)
q(x = xR|Ω,S)

, (5.15)

as

|Ne(M,x = xR)|= EM

and

|Ne(M′,x′ = xA)|=
NT (NT−1)

∑
g=1

Ia(Ag[M′])I∈(g|S′)

with the operator Ag as described in Section 5.1.1 and the indicator functions

Ia(M) and I∈(g|S) as defined in Equation 4.3 (p. 72). The probability of selecting

a remove step, given M, is denoted q(x = xR|Ω,S), and q(x′ = xA|Ω′,S′) denotes

the probability of selecting an add step, given M′. Both are given in Table 5.1 (p.

147).

Just like the add step, the remove step uses an independence sampler to gen-

erate new candidate parameter values. As the phenotype network structure is
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changed, the proposal distributions are based on the corresponding LSE. The pa-

rameters which get updated differ depending on the edge removed from S. This

is due to conditional independence, whereby a trait is independent of all other

traits given its parents. Therefore, if we remove the directed edge corresponding

to βst , we would only need to generate β ′0t and σ ′t
2 for M′. These proposal distri-

butions are given in Equations 4.12 – 4.14 (p. 79), and the proposal distributions

for M′ → M are given in Equations 4.15 – 4.17 (p. 80). It follows that for the

removal of βst we have the following ratio of parameter proposal distributions:

q(u′M|S,x′ = xA,Ω′,S′)
q(uM′|S′,x = xR,Ω,S)

=
q(β0t |β̂0t , σ̂t

2,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t
2,Vβ ′0t

)
q(βst |β̂st , σ̂

′
t
2,Vβst )

q(σ2
t |σ̂2

t )

q(σ ′t
2|σ̂ ′t

2)
,

and the ratio of priors:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′0t |S′)
p(β0t |S)

1
p(βst |S)

p(σ ′t
2|S′)

p(σ2
t |S)

p(S′)
p(S)

, (5.16)

where the parameter prior distributions are defined in Equation 4.7 (p. 73), and

the phenotype network prior is as defined in Equation 5.6 (p. 150).

Following the general form of the acceptance probability given in Equation

5.2 (p. 145), and substituting in the proposal and prior ratios in Equations 5.15

and 5.16, the acceptance probability for removing βst is:

αremove = min(1,rremove), where

rremove =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
q(u′M|S,x′ = xA,Ω′,S′)
q(uM′|S′,x = xR,Ω,S)

×

q(S|x′ = xA,Ω′,S′)
q(S′|x = xR,Ω,S)

q(x′ = xA|Ω′,S′)
q(x = xR|Ω,S)

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
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rremove =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(β ′0t |S′)
p(β0t |S)

1
p(βst |S)

p(σ ′t
2|S′)

p(σ2
t |S)

p(S′)
p(S)

×

q(β0t |β̂0t , σ̂t
2,Vβ0t )

q(β ′0t |β̂ ′0t , σ̂
′
t
2,Vβ ′0t

)
q(βst |β̂st , σ̂

′
t
2,Vβst )

q(σ2
t |σ̂2

t )

q(σ ′t
2|σ̂ ′t

2)
×

EM

∑
NT (NT−1)
g=1 Ia(Ag[M′])I∈(g|S′)

q(x′ = xA|Ω′,S′)
q(x = xR|Ω,S)

. (5.17)

The general expression of the likelihood is given in Equation 5.3 (p. 147). If we

assume a uniform prior on the state of a connection between any two trait nodes,

then the ratio of phenotype network priors simplifies to p(S′)
p(S) = exp(λ ). How-

ever, this then implies that an edge is more likely to be included in the phenotype

network structure (in one of two directions) than not. The Jacobian is 1 (see Ap-

pendix C.4).

5.3.1 Example of a remove step

Suppose that we want to carry out a removal step to move from model M to model

M′; the example causal network structures are given in Figure 5.3. We can propose

the removal of any of the three directed edges comprising S. Let us propose the

removal of the trait-to-trait effect of trait 2 on trait 3 (β23) selected randomly from

Ne(M,x = xR) with q(S′|x = xR,Ω,S) = 1
3 . In this example we have a set of

current parameters, Ω, and a set of candidate parameters, Ω′:

Ω = {EM,β01,β02,β03,β12,β13,β23,φ11,φ22,φ33,σ
2
1 ,σ

2
2 ,σ

2
3}

Ω
′ = {EM′ ,β

′
01,β

′
02,β

′
03,β

′
12,β

′
13,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2
,σ ′2

2
,σ ′3

2}.

The removed edge (β23) specifies which parameters need to be updated in the

candidate model. Here we generate the following parameters for model M′: β ′03
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φ11φ11

Model M

Y1

Y2
Y3

Q1

Q2
Q3

Y1

Y2
Y3

Model M’

Q1

Q2
Q3

β12β12 β13β13

φ22 φ33 φ22 φ33β23

’

’ ’

’ ’

Figure 5.3: Example causal network structures for both the current (M) and candi-
date (M′) models, given a removal step proposing the removal of the trait-to-trait
effect of trait 2 on trait 3 (β23).

and σ ′3
2. Furthermore, the number of directed edges in the candidate phenotype

network structure decreases by one, i.e. EM′ = EM−1. It follows that:

{β ′01,β
′
02,β

′
12,β

′
13,φ

′
11,φ

′
22,φ

′
33,σ

′
1

2
,σ ′2

2}= {β01,β02,β12,β13,φ11,φ22,φ33,σ
2
1 ,σ

2
2 }.

To move from model M to M′, new parameters are generated from the follow-

ing proposal distributions:

EM′ = EM−1 (see Eqn. 5.8)

β
′
03|β̂ ′03, σ̂

′
3

2,Vβ ′03
∼ N

(
β̂
′
03,

1
τ

σ̂ ′3
2Vβ ′03

)
(see Eqn. 4.12)

σ
′
3

2|σ̂ ′3
2 ∼ Unif

(
0.5σ̂ ′3

2,1.5σ̂ ′3
2
)

(see Eqn. 4.14).

To move from model M′ to M, the parameter proposal distributions are:

EM = EM′+1 (see Eqn. 5.9)

β03|β̂03, σ̂
2
3 ,Vβ03 ∼ N

(
β̂03,

1
τ

σ̂
2
3Vβ03

)
(see Eqn. 4.15)
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β23|β̂23, σ̂
2
3 ,Vβ23 ∼ N

(
β̂23,

1
τ

σ̂
2
3Vβ23

)
(see Eqn. 4.16)

σ
2
3 |σ̂2

3 ∼ Unif
(
0.5σ̂

2
3 ,1.5σ̂

2
3
)

(see Eqn. 4.17),

where for parameter p, Vp is as defined in Equation 4.11 (p. 78).

The neighbourhood for model M given a remove step, Ne(M,x = xR), and for

model M′ given an add step, Ne(M′,x′ = xA), are given in Figure 5.4, such that:

|Ne(M,x = xR)|
|Ne(M′,x′ = xA)|

=
3
2
.

Here, q(x′ = xA|Ω′,S′) is the probability of an add step given EM′ = 2 edges,

Ne(M , x = xR)

Y1

Y2 Y3

Ne(M’ , x’ = xA)

M’M

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

Figure 5.4: The neighbourhood for the current model, given a remove step, and for
the candidate model, given an add step; denoted Ne(M,x = xR) and Ne(M′,x′ =
xA), respectively.
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given in Table 5.1 (p. 147) as 0.125. Similarly, q(x = xR|Ω,S) = 0.25 such that

q(x′ = xA|Ω′,S′)
q(x = xR|Ω,S)

=
0.125
0.25

=
1
2
.

It follows that the proposal ratio for this example is:

q(u′M|S,x′ = xA,Ω′,S′)
q(uM′|S′,x = xR,Ω,S)

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

q(x′ = xA|Ω′,S′)
q(x = xR|Ω,S)

=
q(β03|β̂03, σ̂

2
3 ,Vβ03)q(β23|β̂23, σ̂

2
3 ,Vβ23)q(σ

2
3 |σ̂2

3 )

q(β ′03|β̂ ′03, σ̂
′
3

2,Vβ ′03
)q(σ ′3

2|σ̂ ′3
2)

× 3
4
.

Similarly, the prior ratio is:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′03|S′)p(σ ′3

2|S′)
p(β03|S)p(β23|S)p(σ2

3 |S)
× exp(λ ),

assuming the prior on the state of a connection between nodes is uniform, i.e.

p1g = p2g = p3g = 1/3. It follows that the acceptance probability for this example

remove step is:

αremove = min(1,rremove)

rremove =
p(Y|Ω′,S′,Q,Λ,G,r)
p(Y|Ω,S,Q,Λ,G,r)

p(β ′03|S′)p(σ ′3
2|S′)

p(β03|S)p(β23|S)p(σ2
3 |S)

exp(λ )×

q(β03|β̂03, σ̂
2
3 ,Vβ03)q(β23|β̂23, σ̂

2
3 ,Vβ23)q(σ

2
3 |σ̂2

3 )

q(β ′03|β̂ ′03, σ̂
′
3

2,Vβ ′03
)q(σ3′

2|σ̂ ′3
2)

× 3
4
.

The general expression of the likelihood is given in Equation 5.3 (p. 147), and the

Jacobian is 1 (see Appendix C.4).



5.4. SUMMARY OF THE BAYESIAN APPROACH II 165

5.4 Summary of the Bayesian approach to estimat-

ing an unknown phenotype structure

1. Initialise the chain by specifying an initial causal network structure by sam-

pling from the edge priors and confirming acyclicity. Generate new parame-

ter values using the proposal distributions in Equations 4.22 – 4.25 (pp. 84 –

85), using the MLE for the initial model as the current parameter estimates.

The initial model is now referred to as the current model, M = {Ω,S}.

2. Select a move type x with probability q(x|Ω,S), given in Table 5.1 (p. 147),

where

∑
x∈X

q(x|Ω,S) = 1 for all (Ω,S)

and x is one of

• update (xU ): update all parameters in the current model

• add (xA): add a directed edge to the current phenotype network

• remove (xR): remove a directed edge from the current phenotype net-

work

• reverse (xS): reverse the direction of one of the directed edges in the

current phenotype network

• relocate (xC): relocate one of the directed edges in the current pheno-

type network, i.e. delete one edge and propose a new, distinct directed

edge.

3. Given move type x, propose a candidate phenotype network structure S′ with
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probability

q(S′|x,Ω,S) =

 1
|Ne(M,x)| , if S′ ∈ Ne(M,x)

0, otherwise

where

∑
S′∈S

q(S′|x,Ω,S) = 1 for all (x,Ω,S).

4. Generate a set of random variables uM′ ∈ UM′ , with probability density

q(uM′|x,S′,Ω,S)

and the parameters of the new state of the chain, Ω′ are generated by the

deterministic function gMM′ , such that

Ω
′ = gMM′(Ω,uM′).

• If x = xU then the proposal distributions are given in Equations 4.22 –

4.25 (pp. 84 – 85), dependent on the current parameter estimates (Ω).

• If x ∈ {xA,xR,xS,xC} then the phenotype network structure is altered

and the parameter proposal distributions are given in Equations 4.12 –

4.14 (pp. 79 – 80).

5. Calculate the acceptance probability:

α = min(1,r)
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where

r =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
q(u′M|S,x′,Ω′,S′)
q(uM′|S′,x,Ω,S)

×

q(S|x′,Ω′,S′)
q(S′|x,Ω,S)

q(x′|Ω′,S′)
q(x|Ω,S)

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
and

rupdate is given in Equation 4.31 (p. 86)

radd is given in Equation 5.14 (p. 155)

rremove is given in Equation 5.17 (p. 161)

rreverse is given in Equation 4.34 (p. 90)

rrelocate is given in Equation 4.37 (p. 96).

6. Determine whether to accept or reject the candidate model by drawing a ran-

dom number from a uniform distribution (between 0 and 1).

• If the random number is less than the α , accept the candidate model.

The candidate model is now the current model: M = {Ω′,S′}.

• If the random number is greater than α , reject the candidate model.

The current model remains unchanged: M = {Ω,S}.

7. Repeat steps 2 – 6 until the chain has converged to a stationary state and a large

number of samples from the posterior have been drawn.

5.5 Simulation study II

With the extension of our model search approach to include models of varying

dimensions, we incorporated a prior for the number of edges in a phenotype net-
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work structure, designed to prefer simpler models over more complex ones, given

the hyperparameter λ > 0. This simulation study demonstrates how the value of

λ influences the performance of the reversible jump algorithm, and how this may

vary for different sized QTL and trait-to-trait effects.

Following Appendix B, data was simulated for five traits and five QTL with the

true causal network structure given in Figure 4.7, included below for convenience.

The true parameter values were varied in order to determine how this approach is

influenced by different combinations of QTL and trait-to-trait effects. Both small

and large QTL effects and trait-to-trait effects are selected with values between

0.1 and 1.2. This range was based upon those values in published data sets; for

example, Dhungana et al. (2007) and Mi et al. (2010). We note that it is possible

for the effects to be positive or negative. We simulate six data sets, one for each

of the parameter sets listed in Table 5.2, each with n = 500 individuals, labelled

5.1 – 5.6 to indicate that they relate to this chapter.

Y1

Y2 Y3

Y4 Y5

Q1

Q2 Q3

Q4 Q5

φ11

φ22 φ33

φ55φ44

β13β12

β24 β35

β45

The true causal network structure for the simulated data sets 5.1 – 5.6. The true
parameter values for each data set are listed in Table 5.2.
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Table 5.2: True parameter values for data sets 5.1 – 5.6.

data set
parameter 5.1 5.2 5.3 5.4 5.5 5.6

β01 0.5 0.5 0.5 0.5 0.5 0.5
β02 0.5 0.5 0.5 0.5 0.5 0.5
β03 0.5 0.5 0.5 0.5 0.5 0.5
β04 0.5 0.5 0.5 0.5 0.5 0.5
β05 0.5 0.5 0.5 0.5 0.5 0.5
β12 0.2 0.6 1.1 0.2 0.6 1.1
β13 0.2 0.6 1.1 0.2 0.6 1.1
β24 0.2 0.6 1.1 0.2 0.6 1.1
β35 0.2 0.6 1.1 0.2 0.6 1.1
β45 0.2 0.6 1.1 0.2 0.6 1.1
φ11 0.1 0.1 0.1 1.2 1.2 1.2
φ22 0.1 0.1 0.1 1.2 1.2 1.2
φ33 0.1 0.1 0.1 1.2 1.2 1.2
φ44 0.1 0.1 0.1 1.2 1.2 1.2
φ55 0.1 0.1 0.1 1.2 1.2 1.2
σ2

1 1.0 1.0 1.0 1.0 1.0 1.0
σ2

2 1.0 1.0 1.0 1.0 1.0 1.0
σ2

3 1.0 1.0 1.0 1.0 1.0 1.0
σ2

4 1.0 1.0 1.0 1.0 1.0 1.0
σ2

5 1.0 1.0 1.0 1.0 1.0 1.0

• Data set 5.1: small QTL effects and small trait-to-trait effects

• Data set 5.2: small QTL effects and medium trait-to-trait effects

• Data set 5.3: small QTL effects and large trait-to-trait effects

• Data set 5.4: large QTL effects and small trait-to-trait effects

• Data set 5.5: large QTL effects and medium trait-to-trait effects

• Data set 5.6: large QTL effects and large trait-to-trait effects.
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For each of the data sets 5.1 – 5.6 we consider different values of λ in the

prior for the number of edges in the phenotype network structure, in order to

determine what effect this has on the reversible jump MCMC algorithm for each

data set. We consider values of λ corresponding to no complexity penalty (λ = 0)

up to a high complexity penalty of λ = 10, which spans a large enough range for

us to determine the effect of the prior for each simulated data set. The results

are separated into two sections, 5.5.1 and 5.5.2, for small and large QTL effects,

respectively.

Following the recommendation from (Neto et al. 2010) we ran long chains,

with N = 1,000,000 iterations. Each had a burn-in period of 100,000 iterations

removed and every 10th iteration was retained, so 90,000 states are stored. Five

chains were run for each data set. Figures 5.5 and 5.9 were created using the

first chain run for data sets 5.1 – 5.3 (small QTL effects) and 5.4 – 5.6 (large

QTL effects), respectively. They present three key features to illustrate the perfor-

mance of each chain; the mean number of edges in the visited models, the number

of different models visited, and the joint posterior probability of the true model

(denoted p(MT RUE |D)), calculated as in Section 4.6.

Here we use the terms ‘causal network’ and ‘phenotype network’ interchange-

ably, as the genetic architecture is assumed known and therefore only the pheno-

type network structure can vary — the estimation of the phenotype network struc-

ture then implies the estimation of the causal network structure and vice versa.

5.5.1 Small QTL effects

Data sets 5.1 – 5.3 all have small QTL effects, with the trait-to-trait effects in-

creasing in size from small (data set 5.1), to medium (data set 5.2), to large (data

set 5.3). The results are displayed in Figure 5.5 and are also tabulated in Appendix
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5.1:
 small QTL effects

 and small
 trait−to−trait effects

5.2:
 small QTL effects

 and medium
 trait−to−trait effects

5.3:
 small QTL effects

 and large
 trait−to−trait effects
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Figure 5.5: Summary of the results from the first chain run for simulated data sets
with small QTL effects, for λ = 0, · · · ,10. The joint posterior probability of the
true model is denoted p(MT RUE |D), and the true model has five directed edges,
indicated by the red horizontal line in the plots for the mean number of edges.

E (Table E.1, p. 276).

The combination of small trait-to-trait effects and small QTL effects (data set

5.1) was unable to identify the true causal network structure — the joint posterior

probability was never greater than 0.0044. However, it did visit the most models,
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Y1

Y2 Y3

Y4 Y5

β31β21

β42 β35

β54

λ = 0 λ = 2

Y1

Y2 Y3

Y4 Y5

β31

β35

β54

p = 0.0934 p = 0.0824

Figure 5.6: The models with the greatest joint posterior probabilities (denoted p)
for the first chain run for data set 5.1, when λ is equal to 0 and 2.

the number of which decreased as the value of λ increased. The model with

the greatest joint posterior probability differed depending on the value of λ ; two

example phenotype network structures are given in Figure 5.6 (p. 172). The most

noticeable difference is that when λ = 0, the estimated model has five directed

edges; however, increasing λ to 2 has removed two of the directed edges. This

is to be expected as a large value of λ causes simpler models, i.e. models with

fewer directed edges, to be preferred. With small effects, the true model has such

a small signal that the chain is moving around easily, and can be influenced by

the prior more than other data sets with larger effects: increasing λ resulted in

the mean number of edges in the visited models to steadily decrease, as the prior

caused simpler models (with fewer directed edges) to be preferred.

Keeping the QTL effects small and increasing the trait-to-trait effects to a

‘medium’ size (as in data set 5.2) does not significantly change the joint poste-

rior probability of the true model (the greatest value of the posterior probability

was 0.0536, when λ = 8,9,10; see Table E.1, p. 276). However, the trait-to-trait
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Y1

Y2 Y3

Y4 Y5

β13β21

β42 β35

β45

Figure 5.7: The model with the greatest joint posterior probability for all values
of λ for the first chain run for data set 5.2.

effects have increased enough to improve the signal of the true model such that

the mean number of edges in the visited models is now constant around 5, regard-

less of the size of λ used in the prior. We also note that the number of models

searched has significantly decreased from when we had small trait-to-trait effects.

At most, the chain visited 38 different models; we were able to estimate the num-

ber of edges correctly, but could not estimate the true model. The model with

the greatest joint posterior probability is the same regardless of the size of λ used

here, and is given in Figure 5.7. This phenotype network structure has 5 directed

edges, as does the true model, although two of the directed edges have been re-

versed: including β21 and β42 instead of β12 and β24. The chain is detecting a

causal relationship, but it is unable to determine the direction of causality.

Further increasing the trait-to-trait effects to be ‘large’ (data set 5.3) resulted

in the joint posterior probability of the true model increasing to around 0.4 for

most values of λ . Interestingly, the relationship between the value of λ and the

posterior probability of the true model is not monotonic, but instead there is some

interplay between the two, as detailed in Figure 5.8. Figure 5.8 includes the two

models with the greatest joint posterior probabilities (denoted MT RUE and MA),

and the joint posterior probability for each, given λ . The difference between
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the phenotype network structures of the two models is the reversal of one edge,

with MA including β21 instead of β12 as in MT RUE . As both models include five

directed edges, the prior would not favour one model over the other; however, it

would alter the moves accepted by the chain, with a large value of λ in the prior

encouraging the acceptance of moves to models with fewer directed edges —

changing the set of models visited by each chain. We note that the joint posterior

probability of the true model was gradually decreasing as λ was increased from

0 to 5, and the posterior probability of model MA increases until it becomes the

model with the greatest joint posterior probability. However, when λ = 6,7 the

posterior probability of the true model peaks before decreasing back to around

0.36 for larger values of λ .

For data set 5.3 the mean number of edges in the visited model was around the

Y1

Y2 Y3

Y4 Y5

β13β21

β24 β35

β45

Y1

Y2 Y3

Y4 Y5

β13β12

β24 β35

β45

λ = 0 0.4481 0.1803
λ = 1 0.3821 0.3726
λ = 2 0.3807 0.3486
λ = 3 0.3859 0.3928
λ = 4 0.3462 0.4924
λ = 5 0.3435 0.3968
λ = 6 0.5755 0.2800
λ = 7 0.5140 0.3175
λ = 8 0.3710 0.4391
λ = 9 0.3623 0.4136
λ = 10 0.3671 0.4049

MTRUE MA

Figure 5.8: Models with the greatest joint posterior probability for different values
of λ , for data set 5.3. The posterior probabilities in the blue boxes highlight the
model with the greatest joint posterior probability.
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true number of edges in the model (5) for all values of λ used. The increase in

the size of the trait-to-trait effects (from medium to large) resulted in more models

being visited when λ = 0; however, as λ increased, this number decreased to just

4 models visited.

5.5.2 Large QTL effects

Data sets 5.4 – 5.6 all have large QTL effects, with the trait-to-trait effects increas-

ing in size from small (data set 5.4), to medium (data set 5.5), to large (data set

5.5). The results are displayed in Figure 5.9 and are also tabulated in Appendix E

(Table E.2, p. 277).

Data set 5.4 combined small trait-to-trait effects with large QTL effects, and

we note that for λ = 0 fewer models were searched than in data set 5.1 (with small

QTL effects). Furthermore, in data set 5.1 with small QTL effects, the mean num-

ber of edges in the estimated models continuously decreased as λ increased (see

Figure 5.5, p. 171), but in data set 5.4 (with large QTL effects) the mean number of

edges in the models visited by the chain appears more stable, equal to the number

of edges in the true model until λ = 4 when it begins to decline. The joint pos-

terior probability of the true model has greatly improved with larger QTL effects:

going from 0.0044 (in data set 5.1 with small QTL effects) to 0.7239 (with large

QTL effects) when λ = 0; see Table E.2 (p. 277). The joint posterior probability

of the true model slightly increases as λ is increased from 0, until λ becomes

too large (λ = 4) and it begins to decline. As the joint posterior probability of

the true model decreases, the number of models visited by the chain slightly in-

creases. Figure 5.10 gives a good example of our prior on the number of edges in

the phenotype network structure prefers simple models with fewer directed edges;

the true phenotype network structure is the model with the highest joint posterior
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Figure 5.9: Summary of results from the first chain run for simulated data sets
with large QTL effects, for λ = 0, · · · ,10. The joint posterior probability of the
true model is denoted p(MT RUE |D), and the true model has five directed edges,
indicated by the red horizontal line in the plots for the mean number of edges.

probability for 0 ≤ λ ≤ 6, then the edge corresponding to β24 is removed when

λ = 7 and 8 (model MA), and a second edge corresponding to β35 is removed for

λ = 9 and 10 (model MB). The model with the greatest joint posterior probabil-

ity has fewer edges as λ increases. This is expected, as larger values of λ cause
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simpler models to be preferred.

When small QTL effects were combined with medium-sized trait-to-trait ef-

fects in data set 5.2, the true model had a low joint posterior probability regardless

of the value of λ (see Figure 5.9, p. 176, and Table E.2, p. 277). Now, with large

QTL effects as in data set 5.5, we note that there has been a significant increase

in the joint posterior probability of the true model: going from 0 (in data set 5.2

with small QTL effects) to 0.6486 (in data set 5.5 with large QTL effects) when

λ = 0. Furthermore, the posterior probability increases as λ increases — the in-

crease in the size of the trait-to-trait effects (from small to medium) has made the

analysis less sensitive to the value of λ . The mean number of edges in the visited

λ = 0 0.7239
λ = 1 0.8282 0.0066
λ = 2 0.8199 0.0062
λ = 3 0.8434 0.0306
λ = 4 0.7280 0.0607
λ = 5 0.6736 0.1364 0.0024
λ = 6 0.5083 0.2643 0.0171
λ = 7 0.2597 0.4147 0.0960
λ = 8 0.1130 0.4137 0.2316
λ = 9 0.0185 0.2821 0.4008
λ = 10 0.0031 0.1130 0.3710

Y1

Y2 Y3

Y4 Y5

β13β12

β24 β35

β45

Y1

Y2 Y3

Y4 Y5

β13β12

β35

β45

Y1

Y2 Y3

Y4 Y5

β13β12

β45

MTRUE MA MA

Figure 5.10: The joint posterior probabilities of models visited by the chain, for
different values of λ , for data set 5.4. MT RUE is the true model. The joint pos-
terior probabilities in boxes highlight the model with the greatest joint posterior
probability. If a posterior probability is not listed, then the model was not one of
the top 10 models with the greatest posterior probabilities for the given value of
λ .
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models and the number of models visited have changed very little from data set

5.2; however, fewer models have been visited than when small trait-to-trait effects

are present (data sets 5.1 and 5.4). With large QTL effects and medium-sized

trait-to-trait effects, the chain does not mix well, especially with large values of

λ .

In data set 5.3, with small QTL effects and large trait-to-trait effects, we saw

some interplay between the value of λ and the joint posterior probability of the

true model (see Figure 5.5, p. 171); however, once we increased the size of the

QTL effects (as in data set 5.6, with large QTL effects) we no longer see this re-

lationship. When the trait-to-trait effects are large, increasing the size of the QTL

effects has resulted in little change in the mean number of edges in the estimated

models, and in the number of models visited. However, the posterior probabil-

ity of the true model has greatly increased: beginning at 0.8789 when λ = 0 and

going to 1 when λ = 10 (see Table E.2 in Appendix E, p. 277). Unfortunately,

few models were searched for large values of λ , so mixing is poor for large QTL

effects and large trait-to-trait effects.

Overall, our simulation study investigating the effects of our prior on the num-

ber of edges in a phenotype network structure, has revealed the following about

the simulated data sets 5.1 – 5.6:

1. it is possible to identify the true causal network structure when there are

small QTL effects; however, the trait-to-trait effects must be large (i.e.

around 1.1)

2. there is not necessarily a monotonic relationship existing between the joint

posterior probability of the true model and the value of λ in the prior for the
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number of edges in a phenotype network structure

3. large QTL effects will, in general, lead to a greater joint posterior probabil-

ity of the true model

4. large trait-to-trait effects will, in general, lead to a greater joint posterior

probability of the true model

5. large QTL effects will, in general, make the RJMCMC sampler less sensi-

tive to large values of λ in the prior for the number of edges in a phenotype

network structure

6. the presence of small QTL effects and small trait-to-trait effects will mean

the chain searches the model space well; however, the true model has a small

signal and it is therefore difficult to determine the direction of causality

between traits

7. large effects make it difficult for the chain to propose favourable moves,

therefore mixing is slow and long chains are required.

In Chapter 4 we restricted the number of directed edges in the phenotype net-

work structure; consequently observing poor mixing and many of the dimension

independent parameters failed the Gelman–Rubin convergence diagnostic. Next,

we briefly consider the convergence of the reversible jump approach where the

number of directed edges in the model can vary.

5.5.3 Convergence assessment for data sets 5.1 – 5.6

Note that in Chapter 5 we have used the same data sets as in Chapter 4, and added

two extra data sets generated from parameter sets with medium sized trait-to-trait
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effects. This means that by setting λ = 0, we can compare the convergence of data

sets 5.1, 5.3, 5.4 and 5.6 to data sets 4.1, 4.2, 4.3 and 4.4, respectively. However, as

the number of directed edges can now vary, the chains use different initial models

than those in Chapter 4, apart from chain 1, which is the same for all data sets.

As the initial models have changed, we do not expect to see the same results as in

Chapter 4.

To assess convergence for data sets 5.1 – 5.6 we ran five chains for each data

set, given λ = 0. Each set of chains is summarized in a figure in a similar manner

to the simulation study in Chapter 4. We note the initial model used, the num-

ber of models visited by each chain, and the joint posterior probability of the true

model, as well as providing a graphical display of the marginal posterior probabil-

ity of each directed edge and presenting the model with the greatest joint posterior

probability. This allows us to get an impression of how the chains are moving. In

addition, Table 5.3 (p. 190) gives the Gelman–Rubin convergence diagnostic for

the dimension independent parameters for all six data sets (5.1 – 5.6).

Data set 5.1

Data set 5.1 is comprised of small QTL effects and small trait-to-trait effects, and

is the same as data set 4.1 (see Figure 4.12, p. 113). Allowing the number of edges

in the phenotype network structure to vary has significantly increased the number

of models visited by the chain. In data set 4.1 each chain visited around 100

models (see Figure 4.12, p. 113), and by introducing add and remove steps most

chains visited around 500 models (see Figure 5.11). The true model was visited

in four of the five chains, with joint posterior probabilities similar to those for

data set 4.1, p(MT RUE |D) < 0.01 for all chains. Chain number 4 searched fewer

models than the other chains; however, the initial model contained the maximum
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number of edges possible and not a single directed edge in common with the true

model. As a result, this chain did not visit the true model and got stuck at a

local maxima as the minor changes able to be proposed to the phenotype network

structure (using add, remove, reverse and relocate steps) were not large enough for

a favourable model to be proposed. According to the Gelman–Rubin diagnostic

in Table 5.3 (p. 190), the dimension independent parameters have all converged

as the values are all close to 1.

Data set 5.2

Data 5.2 combines small QTL effects and medium trait-to-trait effects, and so

there is no corresponding data set in Chapter 4. However, we note that as the

trait-to-trait effects have increased from those used in data set 5.1, the number of

models visited has decreased to about 30 models (see Figure 5.12, p. 183). The

true model was not visited in any of the five chains, even though it was visited

in four of the chains for data set 5.1 in Figure 5.11. Increasing the size of the

trait-to-trait effects has decreased mixing. Once again chain number 4 searched

fewer models than the other chains, due to the unfavourable initial model. The

Gelman–Rubin diagnostic for the dimension independent parameters, given in

Table 5.3 (p. 190), indicates that the log likelihood and the QTL effects appear

to have converged, although longer chains are recommended. Unfortunately, the

other dimension independent parameters have not converged.

Data set 5.3

Data set 5.3 is comprised of small QTL effects and large trait-to-trait effects, and

is the same as data set 4.2 (see Figure 4.17, p. 121). Allowing the number of edges

in the phenotype network structure to vary has significantly increased the number

of models visited by the chain. In data set 4.2 each chain visited just 3 or
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Figure 5.11: A summary of the performance of each chain for data set 5.1 with λ = 0. The number of models visited
is denoted n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest
joint posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D)= p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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Figure 5.12: A summary of the performance of each chain for data set 5.2 with λ = 0. The number of models visited
is denoted n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest
joint posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D)= p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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4 models (see Figure 4.17, p. 121), and by introducing add and remove steps most

chains visited up to 63 models (see Figure 5.13). In Chapter 4 the true model is

visited by two chains; here we have proposed different initial models, and the true

model was visited by just one chain, with a joint posterior probability of 0.4481.

Again, chain number 4 searched fewer models than the other chains, due to the

unfavourable initial model. The Gelman–Rubin diagnostic for the dimension in-

dependent parameters, given in Table 5.3 (p. 190), indicates that the QTL effects

appear to have converged as values are close to 1, although longer chains are rec-

ommended. Unfortunately, the other dimension independent parameters have not

converged.

Data set 5.4

Data set 5.4 is comprised of large QTL effects and small trait-to-trait effects, and

is the same as data set 4.3 (see Figure 4.22, p. 128). Allowing the number of

edges in the phenotype network structure to vary has increased the number of

models visited by the chain. In data set 4.3 each chain visited about 5 models (see

Figure 4.22, p. 128), and by introducing add and remove steps most chains visited

around 50 models (see Figure 5.13). In Chapter 4 the true model was estimated

by all chains; here we have proposed different initial models and the true model

was the model with the greatest joint posterior probability for four chains, with

p(MT RUE |D) > 0.5 in each case. Again, chain number 4 searched fewer models

than the other chains, due to the unfavourable initial model. These chains have

converged according to the Gelman–Rubin diagnostic for the dimension indepen-

dent parameters in Table 5.3 (p. 190).

Data set 5.5

Data 5.5 combines large QTL effects and medium trait-to-trait effects, and so there
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Figure 5.13: A summary of the performance of each chain for data set 5.3 with λ = 0. The number of models visited
is denoted n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest
joint posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D)= p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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Figure 5.14: A summary of the performance of each chain for data set 5.4 with λ = 0. The number of models visited
is denoted n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest
joint posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D)= p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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is no corresponding data set in Chapter 4. However, we note that as the size of

the trait-to-trait effects have increased from those used in data set 5.4, the number

of models visited has decreased to about 20 – 30 models (see Figure 5.14). The

true model was the model with the highest joint posterior probability in two of

the five chains, but it was not visited in the remaining three chains. This is an

improvement from data set 5.2, with small QTL effects and medium trait-to-trait

effects, where the true model was not visited by any of the five chains. Increasing

the size of the QTL effects has increased the signal of the true model. Increasing

the size of the trait-to-trait effects (from data set 5.4) has decreased mixing, with

the chains searching fewer models. Again, chain number 4 searched fewer models

than the other chains, due to the unfavourable initial model. The Gelman–Rubin

diagnostic for the dimension independent parameters, given in Table 5.3 (p. 190),

indicates that none of the dimension independent parameters have converged.

Data set 5.6

Data set 5.6 is comprised of large QTL effects and large trait-to-trait effects, and

is the same as data set 4.4 (see Figure 4.26, p. 134). Allowing the number of edges

in the phenotype network structure to vary has generally increased the number of

models visited by the chain. In data set 4.4 each chain visited just 1 – 2 models

(see Figure 4.22, p. 128), and by introducing add and remove steps chains visited

up to 29 models (see Figure 5.13). Unfortunately, chains 2, 3 and 4 in Figure 5.14

(p. 186) do not visit many models, so mixing is poor. As a result, these chains

have not converged according to the Gelman–Rubin diagnostic for the dimension

independent parameters, and have the largest potential scale reduction factors ob-

served for all data sets 5.1 – 5.6; see Table 5.3 (p. 190).

In general, allowing the number of edges in the phenotype network to vary has
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Figure 5.15: A summary of the performance of each chain for data set 5.5 with λ = 0. The number of models visited
is denoted n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest
joint posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D)= p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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Figure 5.16: A summary of the performance of each chain for data set 5.6 with λ = 0. The number of models visited
is denoted n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The greatest
joint posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when p(Mk|D)= p∗.
The posterior probability of the true model is denoted p(MT RUE |D).
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Table 5.3: The Gelman–Rubin convergence diagnostic for data sets 5.1 – 5.6,
corresponding to the chains summarized in Figures 5.11 – 5.16.

data set 5.1 5.2 5.3 5.4 5.5 5.6
likelihood 1.02 1.10 42.3 1.04 26.3 114.00

β01 1.12 7.31 5.09 1.03 13.3 19.60
β02 1.01 1.68 13.7 1.05 10.6 14.30
β03 1.04 5.03 3.92 1.02 7.53 12.10
β04 1.01 3.26 2.04 1.03 9.45 29.90
β05 1.17 7.18 3.13 1.03 7.18 27.00
φ11 1.01 1.25 1.07 1.01 5.24 9.60
φ22 1.00 1.04 1.72 1.01 2.46 9.19
φ33 1.01 1.35 1.04 1.01 1.52 7.32
φ44 1.00 1.01 1.04 1.01 2.18 1.12
φ55 1.01 1.23 1.24 1.00 1.70 1.31
σ2

1 1.01 8.14 6.38 1.00 6.12 16.8
σ2

2 1.00 2.23 11.3 1.00 7.17 8.12
σ2

3 1.02 4.70 4.53 1.00 1.52 15.7
σ2

4 1.01 2.88 2.44 1.00 7.46 32.1
σ2

5 1.02 7.49 3.20 1.00 8.28 39.3

improved mixing. That said, mixing is still slow and long chains are required. For

data sets simulated with large effects (QTL-to-trait and trait-to-trait) the chains

do not tend to visit many models, meaning that convergence and mixing are still

a concern and an area for future research. We will discuss the consequences of

assuming an incorrect genetic architecture in Section 5.7, and then we use this

reversible jump algorithm on the published winter wheat data set in Section 5.8.

Later, in Section 5.9, we propose the double step which will allow the chain to

propose slightly larger steps in the hope that if a model has two or more badly

placed edges, a double step will help it fix itself.

Next, we compare the estimated phenotype network structures from simulated

data sets 5.1 – 5.6 to those obtained by the QTLnet algorithm by Neto et al. 2010.
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5.6 Comparison to the QTLnet algorithm

In this section we briefly compare our RJMCMC II algorithm (including the add

and remove steps) to the QTLnet algorithm from Neto et al. (2010). The QTLnet

algorithm has been implemented in R using the ‘qtlnet’ package (Neto & Yandell

2014).

The RJMCMC II algorithm was implemented in R (Version 3.2.0), and gen-

erally took around 52 hours to complete 1,000,000 iterations on a 64 bit Intel(R)

Core(TM) i5-4440 Quad 3.1GHz machine with 8GB RAM, running up to four

chains in parallel. As the code was written from scratch, we note that the run

time could be significantly improved by optimising the R code and converting

key functions to C. Once the code has been optimised and key functions are con-

verted to C, we expect the computing time required to drastically decrease. The

contribution of this thesis is in the approach taken, not the efficiency of the R

code; however, more details on the R code used are given in Appendix F. The

QTLnet code has been optimised, with an updated version of the ‘qtlnet’ package

released in February 2015. As a result, the QTLnet algorithm took just 1 minute

to complete 1,000,000 iterations.

The models with the greatest joint posterior probability are given in Figure

5.17 for data sets 5.1 – 5.3, and in Figure 5.18 for data sets 5.4 – 5.6. For each

data set we have run 5 chains, with the initial models given in Figures 5.11 – 5.16.

For data sets 5.1 – 5.3, with small QTL effects, the small joint posterior prob-

abilities for both the RJMCMC II and QTLnet algorithm indicate that the chains

are moving between many different phenotype network structures; however, the

QTLnet algorithm is the first to identify the true phenotype network structure,
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indicated by an asterisk (∗), in data set 5.2 (with small QTL effects and medium-

sized trait-to-trait effects). For data set 5.3, with small QTL effects and large

trait-to-trait effects, the QTLnet algorithm also estimates the true phenotype net-

work structure in more chains than the RJMCMC II algorithm, and appears to be

moving (within the model space) better than the RJMCMC II approach proposed

in this thesis. This is confirmed by Table 5.4, which gives the joint posterior prob-

ability of the true phenotype network structure, as estimated by the RJMCMC II

and QTLnet algorithms, for data sets 5.1 – 5.6. The QTLnet algorithm visits the

true model in every chain for data sets 5.1 – 5.3. The QTLnet algorithm should

also estimate the genetic architecture; however, the QTL effects used in data sets

5.1 – 5.3 were too small, and the QTLnet algorithm did not identify any QTL that

had an effect on the traits Y1, Y2, Y3, Y4 and Y5.

For data sets 5.4 – 5.6 with large QTL effects, the larger joint posterior prob-

abilities for both the RJMCMC II and QTLnet algorithm indicate that the chains

are moving between few phenotype network structures; however, the RJMCMC II

algorithm identifies the true phenotype network structure, indicated by an asterisk

(∗), in all three data sets. Here, for large QTL effects, the QTLnet algorithm did

identify the approximate QTL locations, but it failed to estimate the true pheno-

type network structure. For large QTL effects, the RJMCMC II algorithm, appears

to be moving (within the model space) better than the QTLnet algorithm, which

appears to have problems with overfitting; consistently estimating a model with

extra edges. Table 5.4 gives the joint posterior probability of the true phenotype

network structure, as estimated by the RJMCMC II and QTLnet algorithms, and

we note that the QTLnet algorithm did not estimate the true phenotype network

structure when the QTL effects were large.
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DATA SET 5.1 DATA SET 5.2 DATA SET 5.3
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Figure 5.17: The phenotype network structures with the greatest joint posterior probability (p∗) for each chain, for
data sets 5.1 – 5.3. An asterisk (∗) in the upper right corner indicates that the true phenotype network structure has
been estimated.
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RJMCMC II RJMCMC II RJMCMC IIQTLnet QTLnet QTLnetchain

1

2

3

4

5

*

*

*

*

*

*

*

*

Figure 5.18: The phenotype network structures with the greatest joint posterior probability (p∗) for each chain, for
data sets 5.4 – 5.6. An asterisk (∗) in the upper right corner indicates that the true phenotype network structure has
been estimated.
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Table 5.4: The joint posterior probability of the true phenotype network structure,
as estimated by the RJMCMC II and QTLnet algorithms, for data sets 5.1 – 5.6.

data set 5.1 5.2 5.3
chain RJMCMC II QTLnet RJMCMC II QTLnet RJMCMC II QTLnet

1 0.0044 0.0211 0 0.1432 0.4481 0.2031
2 0.0045 0.0189 0 0.1276 0 0.1698
3 0.0079 0.0100 0 0.1543 0 0.2098
4 0 0.0189 0 0.1643 0 0.2131
5 0.0058 0.0155 0 0.1343 0 0.2175

data set 5.4 5.5 5.6
chain RJMCMC II QTLnet RJMCMC II QTLnet RJMCMC II QTLnet

1 0.7239 0 0.6486 0 0.8789 0
2 0.7279 0 0 0 0 0
3 0.5643 0 0 0 0 0
4 0 0 0 0 0 0
5 0.6856 0 0.6545 0 0.8122 0

By comparing the RJMCMC II approach proposed in this thesis to the estab-

lished QTLnet algorithm we have identified the following issues:

1. The QTLnet algorithm is much faster to run in R. We need to optimise our

R code by exporting key functions to C.

2. The QTLnet algorithm is moving between models better than the RJMCMC

II algorithm when the QTL effects are small. In order to improve mixing,

the proposal distributions we use need tuning.

3. Both the RJMCMC II and the QTLnet algorithms have trouble moving be-

tween models when the effect sizes are large. However the QTLnet algo-

rithm has a problem with overfitting. Therefore, the RJMCMC II approach

proposed in this thesis is more likely to estimate the phenotype network

structure when the QTL effects are large.
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5.7 Incorrect genetic architecture
The extension to the RJMCMC approach proposed in this thesis assumes that the

genetic architecture is known. This section provides two small simulated exam-

ples to demonstrate how the approach performs if the “known” genetic architec-

ture is actually incorrect.

First, suppose that there is a minor mistake in the genetic architecture: one

QTL is incorrect. Let the true causal network structure be that which is given

in Figure 4.7 (p. 103); however, suppose that instead of QTL 4 affecting trait 4

(Q4→ Y4) we have incorrectly specified that a new QTL, Q6, is affecting trait 4

(Q6→ Y4). This incorrect genetic architecture is illustrated in Figure 5.19. Using

data set 5.4, generated using the parameter set given in Table 5.2 (p. 169), we

simulate QTL genotypes for Q6 for all n = 500 individuals and run five chains

with the same initial models as those used in Figure 5.14 (p. 186). Assuming the

correct genetic architecture, the true phenotype network structure was the model

with the highest joint posterior probability in four of the five chains (see Figure

5.14, p. 186). Each chain searched between 14 – 51 models, and mixing was poor.

The chains generally visited more models when the genetic architecture assumed

Y1

Y2 Y3

Q1

Q2 Q3

Y4 Y5

Q4 Q5

Q6

Figure 5.19: Assuming an incorrect genetic architecture: Q6 has a direct effect on
trait Y4 and the QTL Q4 has been excluded from the causal network structure.
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is incorrect, visiting between 8 and 739 different phenotype network structures.

The second chain visited the most models, and the true phenotype network struc-

ture had the highest joint posterior probability; p(MT RUE |D) = 0.1887. However,

this was the only chain to visit the true phenotype network structure. Other chains

estimated phenotype network structures in which one or both the true causal re-

lationships connected to Y4 were reversed, and an extra trait-to-trait effect was

estimated. We note that even causal relationships upstream of the incorrect QTL

effect were affected.

Next, let us assume that there is a larger mistake in the genetic architecture.

Suppose that QTL Q4 has not been identified as having an effect on trait 4 (Q4 6→

Y4) and an additional QTL, Q7, has been identified as having an effect on trait 1

(Q7→Y1). This incorrect genetic architecture is illustrated in Figure 5.20. Again,

using data set 5.4, generated using the parameter values given in Table 5.2 (p.

169), we simulate QTL genotypes for Q7 for all n = 500 individuals and run five

chains with the same initial models as those used in Figure 5.14 (p. 186). The

results are summarized in Figure 5.22.

Y1

Y2 Y3

Q1

Q2 Q3

Y4 Y5

Q4 Q5

Q7

Figure 5.20: Assuming an incorrect genetic architecture: Q7, has been identified
as having an effect on trait 1 and the QTL Q4 has been excluded from the causal
network structure.
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DATA SET 5.4 assuming an incorrect genetic architecture (I)

Initial 
model:

p(eg|D)

p(Mk|D) = p*

p(MTRUE|D)

Y1

Y2 Y3

Y4 Y5

Y1

Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

0 0.1887 0 0 0

p* = 0.3906 p* = 0.1887 p* = 0.2465 p* = 0.2393 p* = 0.2603

n(models) 2698236739206
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Y4 Y5
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Y4
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Y2 Y3

Y4 Y5
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Y2 Y3

Y4 Y5
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Y2 Y3
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Y4 Y5

Y1

Y2 Y3

Y4 Y5

Figure 5.21: A summary of the performance of each chain for data set 5.4 assuming an incorrect genetic architecture
(I). The number of models visited is denoted n(models), and the marginal posterior probability of the directed edge
eg is denoted p(eg|D). The greatest joint posterior probability is denoted p∗, such that model Mk has the greatest
posterior probability when p(Mk|D) = p∗. The posterior probability of the true model is denoted p(MT RUE |D).
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DATA SET 5.4 assuming an incorrect genetic architecture (II)

Initial 
model:

p(eg|D)

p(Mk|D) = p*

p(MTRUE|D)

Y1

Y2 Y3

Y4 Y5

Y1

Y2 Y3

Y4 Y5

0 0 0 0 0

p* = 0.4482 p* = 0.2264 p* = 0.2766 p* = 0.2304 p* = 0.2853

n(models) 2498246370183
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Figure 5.22: A summary of the performance of each chain for data set 5.4 assuming an incorrect genetic architecture
(II). The number of models visited is denoted n(models), and the marginal posterior probability of the directed edge
eg is denoted p(eg|D). The greatest joint posterior probability is denoted p∗, such that model Mk has the greatest
posterior probability when p(Mk|D) = p∗. The posterior probability of the true model is denoted p(MT RUE |D).
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The chains have generally visited more models with an incorrect genetic ar-

chitecture, visiting between 8 and 370 different phenotype network structures.

However, none of the chains visit the true phenotype network structure. The phe-

notype network structures estimated typically have additional edges and reverse

the true direction of causality.

In conclusion, it is possible to for the RJMCMC II approach to estimate the

true causal network structure if the assumed genetic architecture is not too differ-

ent from the true causal network structure; however, in general, estimated phe-

notype network structures have additional edges and reverse the true direction of

causality. Therefore we require that the genetic architecture be correct and known

a priori.

5.8 Winter wheat data example

Dhungana et al. (2007) use a Structural Equation Model (SEM) to analyse genotype-

by-environmental interactions in wheat. This example is included here to demon-

strate that the extension to the reversible jump Markov chain Monte Carlo al-

gorithm proposed in this thesis is capable of estimating the phenotype network

structure of a real data set, not to do a comprehensive analysis on this data set.

A detailed description of the data is given in Campbell et al. (2003). A total of

2,268 observations from a population of recombinant inbred chromosomes lines

(RICLs-3A) was used, created by crossing cv. Cheyenne (CNN) and the chro-

mosome substitution line CNN (Whichita 3A). The set of quantitative traits used

includes the grain yield (Y LD) and the yield-component traits 1000 kernel weight

(T KW ), kernels per spike (KPS), and spikes per square metre (SPSM). Campbell

et al. (2003) performed linkage analysis on these traits and identified six genetic

markers linked to QTL: Xtam055, Xbarc86, Xbarc67, Xksua6, Xbcd1555, and
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Xbcd361. Just as in Dhungana et al. (2007) we will use these markers as proxy

QTL, so that we may consider the QTL genotypes to be known.

Dhungana et al. (2007) model genotype-by-environment interactions; they

have climate data for daily minimum and maximum temperature (◦C), daily solar

irradiance (W m−2), and daily precipitation (mm) at each of the experimental sites

at the time of each experiment. A total of 10 environmental covariates were con-

sidered by Dhungana et al. (2007); the mean daily temperature (T 1, T 2, T 3), total

solar radiance (SR1, SR2, SR3), and total precipitation (P0, P1, P2 and P3), where

the suffix used denotes the period of the winter wheat growing season, as specified

by the winter wheat development model developed by Streck et al. (2003):

1. seedling emergence to terminal spikelet initiation

2. terminal spikelet initiation to anthesis

3. anthesis to physiological maturity.

The total precipitation also includes the total precipitation during the three months

before sowing (P0) so as to account for soil moisture before sowing. Using prior

knowledge regarding wheat development, Dhungana et al. (2007) state that the

environmental covariates from periods 1 and 2 were used to model SPSM and

KPS genotype-by-environment interactions (SPSMGEI and KPSGEI , respectively),

those from periods 2 and 3 were used to model T KW genotype-by-environment

interactions (T KWGEI), and as SPSM, KPS and TKW all affect YLD, all ten envi-

ronmental effects were used to model YLD genotype-by-environment interactions

(Y LDGEI) (Dhungana et al. 2007, Donmez et al. 2001). Furthermore, the covari-

ate P0 was also used for modeling all yield and yield component genotype-by-

environment interactions. The causal network structure estimated by Dhungana

et al. (2007) is given in Figure 5.23.
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φ11 = 0.11 

β13 = -0.63

SPSMGEI

KPSGEI

YLDGEI

TKWGEI

β12 = -0.62

β14 = 1.25

β23 = -0.35

β24 = 0.71

β34 = 0.47

Xbarc67*T2
Xtam055*T1

Xbcd1555*P2

Xbarc86*T2

Xtam055*SR2

Xksua6*T1

Xbcd1555*P1

Xtam055*P0

φ21 = 0.12 

φ31 = -0.10 φ14 = 0.07 

φ42 = 0.08 

φ52 = -0.08 

φ54 = 0.05

φ62 = -0.07 
φ64 = 0.07 

φ83 = 0.09 

φ73 = 0.11 

Figure 5.23: The final causal network structure as estimated by Dhungana et al.
(2007).

Unfortunately we were unable to obtain the data required to define the three

periods of the winter wheat growing season and so we may only model the QTL

effects. We therefore expect to see some difference in the final parameter esti-

mates. Dhungana et al. (2007) found that all genotype-by-environmental interac-

tions involving the proxy QTL Xbcd361 resulted in non-significant path coeffi-

cients, so this proxy QTL has been excluded from the genetic architecture used

in this analysis. The genetic architecture that we assume here is given in Figure

5.24, where we simplify the QTL and quantitative traits to the following notation:

Y1: spikes per square metre (SPSM)

Y2: kernels per spike (KPS)

Y3: 1000 kernel weight (TKW)

Y4: grain yield (YLD)
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Q1: Xbarc67

Q2: Xbcd1555

Q3: Xksua6

Q4: Xtam055

Q5: Xbarc86.

Following Dhungana et al. (2007), before inferring the phenotype network

structure we fitted a randomized block design to each of the quantitative traits,

and the residuals were then used in our analysis. This is to remove any variability

due to the variety of wheat, and the replications done over different locations

throughout a number of years.

5.8.1 Wheat data without a complexity prior

We set λ = 0, such that the prior on the number of edges in the phenotype network

structure will not favour models with fewer directed edges. We ran very long

Y1

Y2 Y3

Y4

φ11

Q1

Q2Q4

Q5Q3

φ14

φ21
φ22

φ32

φ41

φ42

φ24φ44

φ43

φ53

Figure 5.24: The genetic architecture based on that used by Dhungana et al.
(2007) who modeled the genotype-by-environment interactions, instead of the di-
rect QTL effects we use here.
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chains, with N = 2,000,000 iterations. Applying a burn-in period of 100,000

iterations and retaining every 10th iteration left 190,000 states stored.

The marginal posterior probability of each directed edge, and the model aver-

aged parameter estimates are calculated as outlined in Section 4.6. The marginal

posterior probabilities for each directed edge are displayed in Figures 5.25 and

5.26, where the six directed edges with the greatest posterior probabilities are:

β12, β13, β14, β23, β24 and β34. Edges β12, β13, β14, β24 and β34 have a poste-

rior probability of 1, meaning that they were included in all of the causal network

structures visited by the chain. Despite the large number of iterations, only 2 mod-

els were visited by the chain (each with 6 directed edges) indicating mixing was

poor. The two models visited by the chain are given in Figure 5.27 along with

the joint posterior probability of each. The true model, as published by Dhun-

gana et al. (2007), is the model we have estimated with the greatest joint posterior

probability: Model 1 with p(MT RUE |D) = 0.8133. The other model searched has

reversed one of the edges: the edge between traits Y2 and Y3 (KPS and TKW).

The parameter estimates for the true model only are given in Tables 5.5 and

5.6; Dhungana et al. (2007) did not present their estimates for the trait intercepts

and residual variances, so we present them in a separate table. As expected, our

estimates are slightly different from those obtained by Dhungana et al. (2007),

with the 95% credible intervals not containing the true parameter values published

by Dhungana et al. (2007). We note that many estimates are close, however, so we

calculate the direct and indirect effects of each trait or QTL on the primary trait

of interest, grain yield (Y LD, or Y4), to compare our results to those obtained by

Dhungana et al. (2007). The causal network structure complete with the estimated

QTL and trait-to-trait effects is given in Figure 5.28, and the corresponding direct,

indirect and total effects on yield are given in Table 5.7 (p. 209).
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Figure 5.25: The marginal posterior probability of each directed edge eg, denoted
p(eg|D) for the winter wheat data set with λ = 0. The terms “B.ij” denote the
trait-to-trait effect βi j, i.e. the effect of trait i on trait j. The edges comprising the
true model are indicated by solid black bars and an ‘∗’ next to the label of the
directed edge.

Y1

Y2 Y3

Y4

0.0 < p < 0.2
0.2 < p < 0.4
0.4 < p < 0.6
0.6 < p < 0.8
0.8 < p < 1.0

Figure 5.26: For the winter wheat data set with λ = 0: the marginal posterior
probability of each directed edge displayed in the context of a phenotype network
structure. The thicker the directed edge, the larger the marginal posterior proba-
bility.
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Y1

Y2 Y3

Y4

Model 1: p = 0.8133

Y1

Y2 Y3

Y4

Model 2: p = 0.1867

Figure 5.27: The two estimated phenotype network structures, with the joint pos-
terior probabilities denoted p. The true model is Model 1.

Table 5.5: Parameter estimates for the true model. Note that the true values for
the QTL effects are taken from Dhungana et al. (2007) so they actually refer to the
genotype-by-environment interaction.

Parameter True Value Estimated Value 95% CI
β12 -0.62 -0.542 (-0.579, -0.507)
β13 -0.63 -0.236 (-0.286, -0.186)
β14 1.25 1.129 (1.116, 1.142)
β23 -0.35 -0.170 (-0.218, -0.123)
β24 0.71 0.609 (0.597, 0.623)
β34 0.47 0.450 (0.440, 0.462)
φ11 0.11 0.116 (0.009, 0.222)
φ14 0.07 0.041 (0.014, 0.067)
φ21 -0.10 0.169 (0.069, 0.272)
φ22 -0.08 -0.093 (-0.171, -0.011)
φ24 0.05 -0.003 (-0.030, 0.024)
φ32 0.80 0.115 (0.038, 0.194)
φ41 0.12 0.088 (0.001, 0.175)
φ42 -0.07 0.207 (0.138, 0.277)
φ43 0.09 -0.099 (-0.195, -0.027)
φ44 0.07 -0.022 (-0.043, 0.000)
φ53 0.11 -0.025 (-0.100, 0.052)
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Table 5.6: Parameter estimates for the trait intercepts and residual variances for
the true model.

Parameter Estimated Value 95% CI
β01 -0.171 (-0.249, -0.094)
β02 -0.141 (-0.208, -0.078)
β03 0.073 (0.000, 0.155)
β04 -0.003 (-0.023, 0.017)
σ2

1 0.983 (0.927, 1.043)
σ2

2 0.695 (0.656, 0.738)
σ2

3 0.953 (0.898, 1.011)
σ2

4 0.065 (0.061, 0.069)

The calculation of the indirect and total effects were outlined in Section 2.1,

but we also give the following example. There exist four different paths from

Xbarc67 (Q1) to Y LD (Y4), see Figure 5.28. For each path, we calculate the prod-

uct of the path coefficients, and the indirect effect of Q1 on Y4 is the sum of these;

φ11β14 +φ11β13β34 +φ11β12β24 +φ11β12β23β34

= (0.116)(1.129)+(0.116)(−0.236)(0.45)+(0.116)(−0.542)(0.609)+

(0.116)(−0.542)(−0.170)(0.45)

= 0.1310+(−0.0123)+(−0.0383)+0.0048

= 0.0852

The total effect is the sum of the direct and indirect effects. The direct effect of

Q1 on Y4 is 0.041, and so the total effect of Q1 on Y4 is 0.126 as given in Table 5.7.

Let us briefly interpret the results by first focusing on the effects of the quan-

titative traits on yield.

• Spikes per square metre (SPSM, or Y1) has the strongest positive total effect

on yield, even including the negative indirect effect. This implies that, in
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general, the more spikes per square metre, the higher the grain yield. Both

the direct and indirect effects of SPSM on YLD are similar to what was

published by Dhungana et al. (2007), with a large positive direct effect of

SPSM on YLD estimated, and a negative indirect effect.

• The kernels per spike (KPS, or Y2) has a large positive total effect on grain

yield, but the direct and indirect effects are smaller than those estimated

for the spikes per square metre. These estimates are still consistent with

Dhungana et al. (2007), with a medium sized positive total effect on yield,

and a small negative indirect effect. With an overall positive direct effect of

KPS on YLD, this implies that, in general, the more kernels per spike, the

higher the grain yield.

• Thousand kernel weight (TKW, or Y3) only has a direct effect on grain yield.

This effect is estimated as being 0.450 using our approach, and as 0.47

by Dhungana et al. (2007) using environmental data. With a positive total

effect of TKW on YLD, this implies that, in general, the higher the thousand

kernel weight, the higher the grain yield.

Interestingly, even without including the environmental data the relative scale

of the total effects are the same as published by Dhungana et al. (2007); the spikes

per square metre have the strongest positive effect on the grain yield, followed by

the kernels per spike, and then the thousand kernel weight.

The environmental effects have had to be excluded from our analysis, so we

cannot compare the QTL effects estimated here to the genotype-by-environment

interactions used in Dhungana et al. (2007), but we will comment on the compara-

tive size of the total effects. Our study included the five QTL that Dhungana et al.
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Table 5.7: Direct and indirect effects on grain yield for the true model (parameter
estimates given in Table 5.5 and Figure 5.28). The effects published in Dhungana
et al. (2007) are given in red.

direct effect indirect effect total effects
Y1 1.129 -0.395 0.734

(SPSM) 1.25 -0.64 0.61
Y2 0.609 -0.077 0.532

(KPS) 0.71 -0.16 0.55
Y3 0.450 0 0.450

(TKW) 0.47 0 0.47
Q1 0.041 0.085 0.126

Xbarc67×T 2 0.07 0.07 0.14
Q2 -0.003 0.075 0.072

Xbcd1555×P1 0.05 -0.05 0
Xbcd1555×P2 0 -0.07 -0.07

Q3 0 0.061 0.061
Xksua6×T 1 0 0.05 0.05

Q4 -0.022 0.130 0.108
Xtam055×T 1 0 0.07 0.07
Xtam055×SR2 0 0.04 0.04
Xtam055×P0 0.07 -0.04 0.03

Q5 0 -0.011 -0.011
Xbarc86×T 2 0 0.05 0.05

Y1

Y2 Y3

Y4

φ11 = 0.116

Q1

Q2Q4

Q5Q3

φ14 = 0.041 

φ21 = 0.169

φ22 = - 0.093 

φ32 = 0.115 

φ41 = 0.088

φ42 = 0.207 

φ24 = -0.003φ44 = -0.022

φ43 = -0.099 

φ53 = -0.025 

β12 = -0.542 β13 = - 0.236 

β34 = 0.450

β23 = -0.170 

β14 = 1.129 

β24 = 0.609

Figure 5.28: The estimated effects for the model with the highest joint posterior
probability (the true model).
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(2007) identified as being significant, because we assume that the genetic archi-

tecture is known. The estimates of the QTL direct and indirect effects for the true

model are listed in Table 5.7, and we have included the genotype-by-environment

interactions identified by Dhungana et al. (2007) with the corresponding QTL in-

cluded in the interaction term.

• Xbarc67 (Q1) has small positive direct and indirect effects on grain yield,

very close to those estimated by Dhungana et al. (2007) for the Xbarc67×

T 2 interaction. As a result, Xbarc67 is positively related to grain yield with

a total effect of 0.126 compared to 0.14 for Xbarc67×T 2 as estimated by

Dhungana et al. (2007).

• Xbcd1555 (Q2) has very small negative direct effect and a very small pos-

itive indirect effect on grain yield. However, Dhungana et al. (2007) iden-

tified a negative indirect effect of the interaction terms Xbcd155×P1 and

Xbcd1555×P2. The size of the indirect effects are similar, but the sign

(+/−) differs because we estimate the direct QTL effect, not the genotype-

by-environment interaction.

• Xksua6 (Q3) has only an indirect effect on the grain yield; a small posi-

tive total effect of 0.061 which is similar to the value of 0.05 estimated by

Dhungana et al. (2007) for the term Xksua6×T 1.

• Xtam055 (Q4) has a very small negative direct effect and a larger (but still

small) positive indirect effect on grain yield, resulting in a positive total

effect of 0.108, not too dissimilar in sign and size from the genotype-by-

environment interactions published in Dhungana et al. (2007).

• Xbarc86 (Q5) only has an indirect effect on grain yield, −0.011, so it does
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differ in sign from the Xbarc86×T 2 interaction used by Dhungana et al.

(2007); however, both are close to zero. Xbarc86 is negatively associated

with grain yield.

Based on our estimates, QTL 1 – 4 are positively related to grain yield. A RIL

population has two possible genotypes at any given marker, so suppose 0 denotes

a genotype corresponding to the parental type cv. Cheyenne (CNN) and 1 corre-

sponds to the parental type Whichita 3A. Then the parental type Whichita 3A at

QTL 1 – 4 is more favourably associated with higher grain yield. On the other

hand, the parental type Whichita 3A at QTL 5 is less favourable for the grain

yield.

5.8.2 Wheat data with a complexity prior

Including a strict complexity penalty where λ = 10 has not changed the results

from Section 5.8.1 where λ = 0. The true model is still the model with the greatest

joint posterior probability; however, this has decreased to p(MT RUE |D) = 0.6653,

with the chain now visiting 5 models. Mixing is still poor.

Figure 5.29 illustrates all of the models visited, both with no complexity

penalty (λ = 0) and a large complexity penalty (λ = 10). We note that the chain

is slow moving; however, in each case the true phenotype network structure has

been identified with a large joint posterior probability. With a larger λ the chain

prefers models with fewer edges, here the chain has searched one model with five

edges (instead of six).
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Phenotype networks searched when λ = 0

Y2

Y1

Y4

Y3 Y2

Y1

Y4

Y3

p=0.8133 p=0.1867

Phenotype networks searched when λ = 10

Y2

Y1

Y4

Y3 Y2

Y1

Y4

Y3

Y2

Y1

Y4

Y3

Y2

Y1

Y4

Y3

Y2

Y1

Y4

Y3

p=0.6653 p=0.1924 p=0.1294

p=0.0127 p=0.0001

Figure 5.29: Phenotype networks visited for the winter wheat data set, with λ = 0
and λ = 10. The joint posterior probability, denoted p, is given for each pheno-
type network structure.

5.9 The double step

In addition to the standard add (or birth), remove (or death) and reverse steps

in RJMCMC methods, Lunn et al. (2009) propose the ‘replace’ step; deleting

a number of parameters, say δ , and then replacing them with the same number

of new parameters — distinct from those that were deleted. This type of step

allows the sampler to make larger steps between models, allowing more of the

parameter space to be searched (Lunn et al. 2009). Here in Chapter 5 we have

already proposed a relocate step, which removes one directed edge and relocates
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it to a new (distinct) position, performing the replace step proposed by Lunn et al.

(2009) with δ = 1.

Now, we extend on the idea of the replace step proposed by Lunn et al. (2009),

and create our own trans-dimensional version which we refer to as the ‘double’

step. Our double step will combine two of the moves used to alter the phenotype

network structure. We consider combinations of the following move types: add,

remove, and reverse. Six different types of double steps are then possible, listed

in Section 5.9.1. We exclude the relocation step as it can already be considered

a type of double step — a simultaneous add and remove step. Following Lunn

et al. (2009), we include the constraint that a newly added edge must be placed

in a new distinct position, i.e. if we propose to add one directed edge and remove

another we cannot add an edge between the same two nodes from which we re-

move an edge. This increases mixing by reducing the number of redundant moves

attempted.

The acceptance probability is detailed in Section 5.9.2 and an example of a

double step is given in Section 5.9.3. In Section 5.9.4 we use simulated data from

Section 5.5 to implement the double step, and briefly compare the results to those

previously obtained.

5.9.1 Different types of double step:

The double step, denoted by xD,d , selects two steps that alter the phenotype net-

work structure and combines them into one step, so the modifications to the phe-

notype network structure will be carried out simultaneously. For this reason, the

double step, xD, has type d, and is denoted xD,d . The six different double steps

are:
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Table 5.8: The probability of each move type, as well as the number of candi-
date models for move type x, |Ne(M,x)|. There exist NT traits, such that there are
NT (NT − 1) unique directed edges possible; subsets of these edges form the cur-
rent and candidate phenotype network structures. Model M has EM edges, with
the maximum number of directed edges denoted max(E) = 1

2NT (NT −1).

Number of edges in model M
Move type x 0 1≤ Ek ≤ (max(E)−1) max(E)
Update (xU) 0.5 0.5 0.5
Add (xA) 0.4 0.1 0.0
Remove (xR) 0.0 0.1 0.2
Reverse (xS) 0.0 0.1 0.2
Double (xD) 0.1 0.2 0.1

Size of the neighbourhood of model M
Move Type (x) |Ne(M,x)|
Update (xU) 1
Add (xA) ∑

NT (NT−1)
g=1 Ia(Ag[M])I∈(g|S))

Remove (xR) EM

Reverse (xS) ∑
EM
g=1 Ia(Sg[M])

Double (xD) |Ne(M,xD,d)|

d = 1: add two edges (xD,1)

d = 2: add an edge and remove an existing edge (xD,2);

this is the same as the relocate step detailed in Section 4.4

d = 3: add an edge and reverse an existing edge (xD,3)

d = 4: remove two existing edges (xD,4)

d = 5: remove one edge and reverse another (xD,5)

d = 6: reverse two existing edges (xD,6).

The probabilities for the selection of a move type, given model M, are denoted

q(x|Ω,S) and are given in Table 5.8. Note that the size of the neighbourhood for
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a double step is denoted |Ne(M,xD,d)| in Table 5.8 as it differs depending on the

type of double step d selected. In order to specify |Ne(M,xD,d)| for d = 1, · · · ,6,

we use the indicator functions given in Equation 4.3 (p. 72) in addition to the

newly defined operators DAA,g∗ , DAS,g, f , DRS,g, f , and DRR,gast such that:

• DAA,g∗[M] ∈M is a new model which adds the pair of directed egdes g∗ (to

S) with an associated generation of new parameter values

• DAS,g, f [M] ∈M is a new model which adds the g and reverses the edge f

(in S) with an associated generation of new parameter values

• DRS,g, f [M] ∈M is a new model which removes the edge g and reverses the

edge f (in S) with an associated generation of new parameter values

• DSS,g∗[M] ∈M is a new model which reverses the pair of directed egdes g∗

(in S) with an associated generation of new parameter values

For NT traits, the model M has EM edges, and let max(E) denote the maximum

number of directed edges in a phenotype network structure, max(E) = 1
2NT (NT −

1).

1. |Ne(M,xD,1)|=
2(max(E)−EM)C2

∑
g=1

Ia(DAA,g∗[M])

where the number of different combinations of two edges that can be added

with 2(max(E)−EM) possible directed edges is equal to 2(max(E)−EM)C2 =

(2(max(E)−EM))!
2!(2(max(E)−EM)−2)! .

2. |Ne(M,xD,2)|=
EM

∑
g=1

NT (NT−1)

∑
f=1

Ia(Cg, f [M])IR( f ,g|S)I∈( f |S)

where this is the same as the neighbourhood for a relocate step described in

Section 4.4.
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3. |Ne(M,xD,3)|=
2(max(E)−EM)

∑
g=1

EM

∑
f=1

Ia(DAS,g, f [M])

where one of 2(max(E)−EM) directed edges can be added to model M and

one of EM edges can be reversed.

4. |Ne(M,xD,4)|=EM C2

where the number of pairs of edges that can be deleted with EM edges in the

current model is equal to EMC2 =
EM!

2!(EM−2)! .

5. |Ne(M,xD,5)|=
EM

∑
g=1

EM

∑
f=1; f 6=g

Ia(DRS,g, f [M])

where one of EM edges can be removed and given the removal of the gth

edge, one of EM−1 edges can be reversed (i.e. f 6= g).

6. |Ne(M,xD,6)|=
EMC2

∑
g=1

Ia(DSS,g∗[M])

where the number of pairs of edges that can be reversed with EM possible

edges is equal to EMC2 =
EM!

2!(EM−2)! .

5.9.2 Acceptance probability for a double step

The proposal of model M′ given model M can be split into three steps:

• the selection of the move type,

• the selection of the candidate phenotype network structure (given the move

type),

• the generation of new candidate parameters (given the move type, and the

candidate phenotype network structure).
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Given in Equation 5.10 (p. 152), the proposal ratio for a move from model M

to M′ is therefore:

q(u′M,S,x′|Ω′,S′)
q(uM′ ,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

|Ne(M,x)|
|Ne(M′,x′)|

q(x′|Ω′,S′)
q(x|Ω,S)

.

The double step has six substeps and so the probability of selecting a double

step of type d, given model M, is denoted q(x = xD,d|Ω,S) and has two compo-

nents;

q(x = xD,d|Ω,S) = q(x = xD|Ω,S)q(d|xD,Ω,S). (5.18)

The probability of selecting a double step, given model M, is denoted q(x =

xD|Ω,S) and is given in Table 5.8 (p. 214); the probability of selecting the substep

d, given a double step, is denoted q(d|xD,Ω,S). Not all of the different types of

replace step can be carried out on all models, so

q(d|xD,Ω,S) =
1

∑d ID(M,d)

where ID(M,d) is an indicator function:

ID(M,d) =

 1, if |Ne(M,x = xD,d)| ≥ 1

0, otherwise.
(5.19)

It follows that the proposal ratio for a move from model M to M′, given a double

step, is therefore:

q(u′M,S,x′|Ω′,S′)
q(uM′ ,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

|Ne(M,x = xD,d)|
|Ne(M′,x′ = xD,d′)|

q(x′ = xD|Ω′,S′)q(d′|xD,Ω′,S′)
q(x = xD|Ω,S)q(d|xD,Ω,S)

, (5.20)



218 CHAPTER 5. ESTIMATION OF A PHENOTYPE NETWORK II

where |Ne(M,x = xD,d)| is the number of candidate (acyclic) models comprising

the neighbourhood of the current model, given a double step of type d (denoted

xD,d). The reverse of move type xD,d is denoted xD,d′ , where the substep d′ is the

reverse of d:

xD,d′ =



xD,1, if x = xD,4

xD,2, if x = xD,2

xD,3, if x = xD,5

xD,4, if x = xD,1

xD,5, if x = xD,3

xD,6, if x = xD,6.

(5.21)

The product of the candidate parameter proposal densities for model M′ is

denoted by q(uM′|S′,x,Ω,S) in Equation 5.20 where the candidate parameter pro-

posal distributions for a move from model M to model M′ are given in Equations

4.12 – 4.14 (p. 79). These are the same for all move types that alter the structure

of the phenotype network, so will not be re-stated here. The number of edges in

model M′ will differ depending on the type of double step proposed. Suppose

the current model has EM edges, where 2 ≤ EM ≤ (max(E)−2). The number of

edges in the candidate model, EM′ , is:

EM′ = EM +η (5.22)

where

η =



−2, if x = xD,4

−1, if x = xD,5

0, if x = xD,2,xD,6

1, if x = xD,3

2, if x = xD,1.
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The product of the current parameter generating densities for model M is denoted

by q(u′M|S,x′,Ω′,S′) in Equation 5.20 where the current parameter generating dis-

tributions for a move from model M′ to M are given in Equations 4.15 – 4.17 (p.

80). The number of edges in model M is:

EM = EM′+η
′ (5.23)

where

η
′ =



−2, if x′ = xD,4

−1, if x′ = xD,5

0, if x′ = xD,2,xD,6

1, if x′ = xD,3

2, if x′ = xD,1.

By combining two steps that alter the structure of the phenotype network we

are likely to have an overlap in the parameters which need to be updated; if this

occurs the parameters should only be updated once.

The parameter prior distributions are defined in Equation 4.7 (p. 73), and the

phenotype network prior is as defined in Equation 5.6 (p. 150), such that the ratio

of priors is:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=

∏
NT
t=1

{
p(β ′0t |S′)p(σ ′t

2|S′)
}

∏
NT
t=1

{
p(β0t |S)p(σ2

t |S)
}
[∏

NT
t=1 ∏s∈υY (t) p(β ′st |S′)

∏
NT
t=1 ∏s∈υY (t) p(βst |S)

]
×

[
∏

NT
t=1 ∏`∈υQ(t) p(φ ′`t |S′)

∏
NT
t=1 ∏`∈υQ(t) p(φ`t |S)

]
p(S′)
p(S)

. (5.24)

Following the general form of the acceptance probability given in Equation

5.2 (p. 145), and substituting in the proposal and prior ratios in Equations 5.20
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and 5.24, the acceptance probability for a double step is:

αdouble = min(1,rdouble) where

rdouble =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
q(u′M|S,x′ = xD,d′ ,Ω′,S′)
q(uM′ |S′,x = xD,d ,Ω,S)

×

q(S|x′ = xD,d′ ,Ω′,S′)
q(S′|x = xD,d ,Ω,S)

q(x′ = xD,d′ |Ω′,S′)
q(x = xD,d′ |Ω,S)

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
=

p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)
p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)

∏
NT
t=1

{
p(β ′0t |S′)p(σ ′t

2|S′)
}

∏
NT
t=1

{
p(β0t |S)p(σ2

t |S)
}
×

[
∏

NT
t=1 ∏s∈υY (t) p(β ′st |S′)

∏
NT
t=1 ∏s∈υY (t) p(βst |S)

][
∏

NT
t=1 ∏`∈υQ(t) p(φ ′`t |S′)

∏
NT
t=1 ∏`∈υQ(t) p(φ`t |S)

]
p(S′)
p(S)

×

q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

|Ne(M,x = xD,d)|
|Ne(M′,x′ = xD,d′)|

q(x′ = xD|Ω,S)q(d′|xD,Ω,S)
q(x = xD|Ω,S)q(d|xD,Ω,S)

(5.25)

The general expression of the likelihood is given in Equation 5.3 (p. 147), and

the Jacobian is 1 (see Appendix C.5). If we assume a uniform prior on the state

of a connection between any two trait nodes, then the ratio of phenotype network

priors simplifies to p(S′)
p(S) = exp(−λ (EM′−EM)). However, this implies that an

edge is more likely to be included in the phenotype network structure (in one of

two directions) than not.

5.9.3 Example of a double step

Suppose that we want to carry out a double step to move from model M to M′;

the example causal network structures are given in Figure 5.30. Let us select a

double step with d = 3, where we propose the reversal of an existing edge and the

addition of a new edge.

In this example we have a set of parameters for the current model, Ω, and a
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set of parameters for the candidate model, Ω′:

Ω = {EM,β01,β02,β03,β04,β12,β13,β14,β23,β24,φ11,φ22,φ33,φ44,σ
2
1 ,σ

2
2 ,σ

2
3 ,σ

2
4 }

Ω
′ = {EM′ ,β

′
01,β

′
02,β

′
03,β

′
04,β

′
12,β

′
13,β

′
14,β

′
24,β

′
32,β

′
34,φ

′
11,φ

′
22,φ

′
33,φ

′
44,σ

′
1

2
,σ ′2

2
,σ ′3

2
,σ ′4

2}

Only those parameters affected by the addition of β ′34 and the reversal of β23 are

updated, such that:

{β ′01,β
′
12,β

′
13,β

′
14,β

′
24,σ

′
1

2}= {β01,β12,β13,β14,β24,σ
2
1}.

To move from M to M′, new parameters are generated from the following

Y1

Y2 Y3

Y4

Model M Model M'

β12 β13

β14

β24

β23

Y1

Y2 Y3

Y4

β12 β13

β14

β24

β32

β34

Q1 Q1

Q2 Q2 Q3Q3

Q4 Q4

φ11φ11

φ22φ22 φ33φ33

φ44φ44

'
'

'

'

'

'

'
'

'

'

Figure 5.30: Example causal network structures for both the current (M) and
candidate (M′) models, given a double step with d = 3. Here, we propose the
addition of β ′34 and the reversal of β23.
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proposal distributions:

EM′ = EM +1 (see Eqn. 5.22)

β
′
0t |β̂ ′0t , σ̂

′
t
2,Vβ ′0t

∼ N
(

β̂
′
0t ,

1
τ

σ̂ ′t
2Vβ ′0t

)
for t = 2,3,4 (see Eqn. 4.12)

β
′
st |β̂ ′st , σ̂ ′t

2,Vβ ′st
∼ N

(
β̂
′
st ,

1
τ

σ̂ ′t
2,Vβ ′st

)
for {st} ∈ {32,34} (see Eqn. 4.13)

σ
′
t
2|σ̂ ′t

2 ∼ Unif
(

0.5σ̂ ′t
2,1.5σ̂ ′t

2
)

for t = 2,3,4 (see Eqn. 4.14)

where for parameter p, Vp is as defined in Equation 4.11 (p. 78). To move from

model M′ to M, the parameter proposals are:

EM = EM
′−1 (see Eqn. 5.23)

β0t |β̂0t , σ̂
2
t ,Vβ0t ∼ N

(
β̂0t ,

1
τ

σ̂
2
t Vβ0t

)
for t = 2,3,4 (see Eqn. 4.15)

β23|β̂23, σ̂
2
3 ,Vβ23 ∼ N

(
β̂23,

1
τ

σ̂
2
3Vβ23

)
(see Eqn. 4.16)

σ
2
t |σ̂2

t ∼ Unif
(
0.5σ̂

2
t ,1.5σ̂

2
t
)

for t = 2,3,4 (see Eqn. 4.17).

In this example, |Ne(M′,x′ = xD,d′)| and |Ne(M,x = xD,d)| are of different

sizes; the neighbourhoods for the candidate and current models are given in Fig-

ures 5.31 and 5.32, respectively. It follows that:

|Ne(M,xD,d)|
|Ne(M′,x′ = xD,d′)|

=
4

19
.

The proposal ratio for a move from model M to M′, given a double step, is

therefore:

q(u′M,S,x′|Ω′,S′)
q(uM′ ,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

|Ne(M,x = xD,d)|
|Ne(M′,x′ = xD,d′)|

q(x′ = xD|Ω′,S′)q(d′|xD,Ω′,S′)
q(x = xD|Ω,S)q(d|xD,Ω,S)

.
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Figure 5.31: The neighbourhood for the candidate model, model M′ in Figure
5.30, given a double step of type d = 5; Ne(M,x′ = xD,5). That is, the reversal of
an existing edge and the removal of another existing edge.
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Figure 5.32: The neighbourhood for the current model, model M in Figure 5.30,
given a double step of type d = 3; Ne(M,x = xD,3). That is, the reversal of an
existing edge and the addition of a new distinct edge.

Here q(x′= xD|Ω′,S′) is the probability of selecting a double step given EM′ =

6, given in Table 5.8 (p. 214) as 0.1. Similarly, q(x = xD|Ω,S) = 0.2, such that

q(x′ = xD|Ω′,S′)
q(x = xD|Ω,S))

=
0.1
0.2

=
1
2

Given model M and x= xD, the probability of selecting a double step of type d = 3

is:

q(d = 3|xD,Ω,S) =
1
5

as a double step of type D = 1 cannot be selected, as EM + 2 > max(E). Given

model Mk
′ and x = xD, the probability of selecting a double step of type d′ = 5 is:

q(d′ = 5|xD,Ω′,S′) =
1
3
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as a double step of any type including an add step (i.e. d = 1,2,3) cannot be

selected, as EM +1 > max(E). It follows that

q(d′|xD,Ω′,S′)
q(d|xD,Ω,S)

=
5
3
.

Following Equation 5.20 (p. 217), the proposal ratio for this example is:

q(u′M,S,x′|Ω′,S′)
q(uM′ ,S′,x|Ω,S)

=
q(u′M|S,x′,Ω′,S′)
q(uM′ |S′,x,Ω,S)

|Ne(M,x = xD,d)|
|Ne(M′,x′ = xD,d′)|

q(x′ = xD|Ω′,S′)q(d′|xD,Ω′,S′)
q(x = xD|Ω,S)q(d|xD,Ω,S)

=
q(β02)q(β03)q(β04)q(β23)q(σ2

2 )q(σ
2
3 )q(σ

2
4 )

q(β ′02)q(β
′
03)q(β

′
04)q(β

′
32)q(β

′
34)q(σ

′
2

2)q(σ ′3
2)q(σ ′4

2)
× 10

57
.

Similarly, the prior ratio is:

p(Ω′|S′)
p(Ω|S)

× p(S′)
p(S)

=
p(β ′02)p(β ′03)p(β ′04)p(β ′32)p(β ′34)p(σ ′2

2)p(σ ′3
2)p(σ ′4

2)

p(β02)p(β03)p(β04)p(β23)p(σ2
2 )p(σ2

3 )p(σ2
4 )

× exp(−λ ),

assuming the prior on the state of a connection between any two trait nodes is

uniform, i.e. p1g = p2g = p3g = 1/3. It follows that the acceptance probability for

this example double step is then

αdouble = min(1,rdouble) where

rdouble =
p(Y|Ω′,S′,Q,Λ,G,r)p(Ω′|S′)p(S′)

p(Y|Ω,S,Q,Λ,G,r)p(Ω|S)p(S)
×

p(β ′02)p(β ′03)p(β ′04)p(β ′32)p(β ′34)p(σ ′2
2)p(σ ′3

2)p(σ ′4
2)

p(β02)p(β03)p(β04)p(β23)p(σ2
2 )p(σ2

3 )p(σ2
4 )

×

exp(−λ )
q(β02)q(β03)q(β04)q(β23)q(σ2

2 )q(σ
2
3 )q(σ

2
4 )

q(β ′02)q(β
′
03)q(β

′
04)q(β

′
32)q(β

′
34)q(σ

′
2

2)q(σ ′3
2)q(σ ′4

2)
× 10

57
.

The general expression of the likelihood is given in Equation 5.3 (p. 72), and the

Jacobian is 1 (see Appendix C.5).
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5.9.4 Example with simulated data set 5.6

Here we run our reversible jump MCMC approach to estimate an unknown phe-

notype network structure with a double step in the move space X. We use the

data set 5.6, with large QTL effects and large trait-to-trait effects, to illustrate this

new step by comparing the results to those in Section 5.5. Previously, this data set

correctly identified the true causal network structure with a high posterior proba-

bility, although there was poor mixing. Therefore it will provide a good example

for the double step. We set λ = 0 so that any changes will be due to the inclusion

of the double step. The results from the five chains repeated with the inclusion of

a double step (excluding the relocation step) are presented in Figure 5.33 and the

differences resulting from the inclusion of the double step are outlined in Table

5.9. By comparing Figure 5.33 to Figure 5.16 (p. 189) and looking at the sum-

mary in Table 5.9, we determine that the removal of the relocate step used in the

Table 5.9: Comparison of simulation results for data set 5.6 with λ = 0, includ-
ing the number of models searched and the joint posterior probability of the true
model, p(MT RUE |D).

first approach second approach
(with relocate step) (with double step)

Chain 1 models searched 19 22
p(MT RUE |D) 0.8789 0.7894

Chain 2 models searched 4 20
p(MT RUE |D) 0 0.8363

Chain 3 models searched 10 20
p(MT RUE |D) 0 0

Chain 4 models searched 1 3
p(MT RUE |D) 0 0

Chain 5 models searched 29 31
p(MT RUE |D) 0.8122 0.8179
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first approach and the introduction of the double step described in Section 5.9 has

resulted in the chain visiting additional models compared to the more conservative

approach in Section 5.5. Furthermore, the true phenotype network structure has

been identified in chain 2, where the approach previously got stuck at a local max-

ima. The joint posterior probability of the true model did decrease slightly in the

the first chain; however, at p(MT RUE |D) = 0.7894 the joint posterior probability

of the true model is still large, and indicates the true model is the model that best

fits the data. The parameter estimates for the true model are given in Table 5.10

for chain 1, and we note that the introduction of the double step (and the removal

of the relocation step) has had little effect on the parameter estimates, nor has it

affected the size of the 95% credible intervals, as expected. All credible intervals

for both approaches contain the true parameter values.
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Figure 5.33: A summary of the performance of each chain for data set 5.6 with a double step. The number of models
visited is denoted n(models), and the marginal posterior probability of the directed edge eg is denoted p(eg|D). The
greatest joint posterior probability is denoted p∗, such that model Mk has the greatest posterior probability when
p(Mk|D) = p∗. The posterior probability of the true model is denoted p(MT RUE |D).
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Table 5.10: Parameter estimates for the true model for data set 5.6; comparing
parameter estimates obtained with and without the double step. Intervals includ-
ing the true value are indicated by an asterisk (∗).

first approach second approach
(with relocation step) (with double step)

true estimated estimated
parameter value value 95% CI value 95% CI

β01 0.5 0.532 (0.397,0.665)∗ 0.532 (0.401,0.664)∗

β02 0.5 0.504 (0.361,0.645)∗ 0.505 (0.361,0.649)∗

β03 0.5 0.451 (0.304,0.591)∗ 0.447 (0.300,0.588)∗

β04 0.5 0.562 (0.392,0.733)∗ 0.568 (0.408,0.729)∗

β05 0.5 0.473 (0.276,0.672)∗ 0.452 (0.258,0.655)∗

β12 1.1 1.116 (1.044,1.190)∗ 1.117 (1.043,1.195)∗

β13 1.1 1.135 (1.062,1.209)∗ 1.135 (1.059,1.210)∗

β24 1.1 1.092 (1.043,1.142)∗ 1.091 (1.041,1.142)∗

β35 1.1 1.081 (1.022,1.140)∗ 1.080 (1.023,1.139)∗

β45 1.1 1.124 (1.078,1.169)∗ 1.128 (1.080,1.176)∗

φ11 1.2 1.042 (0.862,1.223)∗ 1.044 (0.865,1.226)∗

φ22 1.2 1.086 (0.922,1.254)∗ 1.085 (0.917,1.261)∗

φ33 1.2 1.19 (1.018,1.356)∗ 1.198 (1.023,1.368)∗

φ44 1.2 1.115 (0.946,1.281)∗ 1.110 (0.942,1.270)∗

φ55 1.2 1.113 (0.935,1.283)∗ 1.123 (0.951,1.301)∗

σ2
1 1.0 1.044 (0.922,1.182)∗ 1.044 (0.922,1.182)∗

σ2
2 1.0 0.989 (0.873,1.120)∗ 0.988 (0.872,1.119)∗

σ2
3 1.0 0.978 (0.863,1.107)∗ 0.977 (0.863,1.104)∗

σ2
4 1.0 0.947 (0.836,1.073)∗ 0.947 (0.837,1.072)∗

σ2
5 1.0 1.021 (0.901,1.157)∗ 1.022 (0.901,1.158)∗
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Chapter 6

Discussion

This thesis has extended the trans-dimensional reversible jump algorithm to de-

velop a Bayesian approach to estimate an unknown phenotype network structure

existing among multiple interacting traits. Our approach is a subproblem of causal

network structure estimation because we assume that the genetic architecture un-

derlying the given set of traits is known.

Recent QTL mapping methods incorporate multiple traits, and focus on the

estimation of an unknown causal network structure existing among a set of quan-

titative traits, referred to here as the phenotype network structure. The number of

possible structures is known to increase rapidly as the number of traits increases,

therefore an efficient trans-dimensional search algorithm is required to search both

within and between models. It follows that the approach taken in this thesis is in

line with current causal network structure determination methods. This exten-

sion to standard reversible jump MCMC methods is more flexible than traditional

structural equation modeling, allowing the entire model space to be searched with-

out restriction. It has similarities to the QTLnet algorithm proposed by Neto et al.

(2010), which uses reversible jump MCMC to jointly infer the phenotype network

231
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structure and genetic components.

The QTLnet algorithm proposes the joint inference of the phenotype network

structure and the genetic components, whereas we assume that the genetic archi-

tecture is known and focus on the subproblem of estimating the unknown pheno-

type network and the QTL effects. This has simplified our approach, reducing the

number of parameters and allowing us to focus on the estimation of the pheno-

type network structure. It is not unreasonable to assume that the QTL genotypes

and locations are known: Dhungana et al. (2007) used known genetic markers

as proxy QTL, for example. Any established QTL mapping method for multiple

traits could be used to estimate the genetic architecture prior to the analysis on the

phenotype network structure. If the assumed genetic architecture is incorrect, it is

likely that our approach will estimate an incorrect phenotype network structure.

However, if the genetic architecture is mostly correct we may still estimate the

true phenotype network structure provided the search is repeated from different

positions in the model space. Future research could remove the assumption of the

genetic architecture being known, adding an extra layer to the approach so that

it may jointly infer the genetic architecture and the phenotype network structure.

Such an extension would be straightforward as there are many existing methods

for single- or multiple-trait QTL mapping. However, this would increase the num-

ber of parameters, and would require more computing time to obtain results.

Another way in which our approach differs from the QTLnet algorithm is with

the proposal distributions used. Our approach makes use of maximum likelihood

estimates in the chain. We note that the use of the multivariate normal distribution

would be more efficient; however, we obtain the MLE from separate regressions

of each trait on the traits and QTL directly affecting it. This still makes for an

efficient sampler using well-tuned proposal distributions.
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Chapter 3 illustrated that a score-based greedy hill-climbing search strategy

using AICc is capable of estimating an unknown phenotype network structure;

however, there was a tendency to select models of a higher dimension than the

true model, i.e. extra parameters were estimated. We introduce a prior on the

number of edges in a phenotype network structure which causes simpler models,

models with fewer directed edges, to be preferred. We also have a prior on the

graph structure which considers the state of a connection between each pair of

trait nodes (here referred to as reversed, absent or forwards). Assuming a priori

independence among connections, the joint probability for the phenotype network

structure of a model is the product over all connections between nodes. This

seems to work well; however, we note that if we are to assume a uniform prior

on the state of a connection between any two trait nodes, it implies that an edge

is more likely to be included in the phenotype network structure (in one of two

directions) than not. The prior on a graph structure is a current area of research.

Neto et al. (2010) simply assumed a uniform prior over all phenotype network

structures, which is the common approach. Recently, however, Sheridan et al.

(2010) have proposed priors that consider the degree of a node, i.e. the number

of edges connecting to other nodes, whereas Scutari (2013) focuses on the edges.

Scutari (2013) uses a multivariate trinomial random variable to model the connec-

tions between nodes, focusing on the set of possible edges instead of the set of

possible network structures. This reduces the dimension of the sample space from

super-exponential to quadratic in the number of variables (Scutari 2013).

In our simulation study in Chapter 5, the prior on the number of edges in the

phenotype network structure was found to affect the posterior probability of the

true model in various ways, depending on the true parameter values. Most notably,

the relationship between the size of the hyperparameter λ and the joint posterior
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probability of the true model is not monotonic; there is some interplay between the

two. For example, in data set 5.4, with large QTL effects and small trait-to-trait

effects, the posterior probability of the true model was maximised when λ = 3,

but further increasing λ only decreased the joint posterior probability, with the

sampler searching more models with a lower dimension than the true model. The

interplay between the prior and the posterior probability of the true model was

more prominent in the data sets simulated with small QTL effects, where the true

model isn’t easily identifiable. This interplay is unlikely to occur with large effects

as they make the model easier to identify. With current research in the area, there

is a demand for future research regarding the graph prior. For future research we

would like to explore the use of a prior on only those directed edges included in

the given causal network structure, instead of a prior on the state of a connection

between two nodes. Furthermore, we would like to expand on the prior for the

number of edges in a phenotype network structure, specifically focusing on the

hyperparameter λ which defines how strict the penalty is, and treating it as an

unknown parameter.

Neto et al. (2010) experienced slow mixing of the Markov chain with their

QTLnet algorithm, and we have had concerns regarding mixing and convergence

in our simulation studies as well. In Chapter 4 we restricted the number of edges

within a model and determined that both mixing and convergence were typically

poor. However, this was expected as fixing the number of edges restricted the way

in which the sampler was able to propose new phenotype network structures. This

means that if a model had two or more badly placed edges it couldn’t easily fix

itself. The solution was to allow the number of edges to vary in Chapter 5. This

did improve mixing from Chapter 4, although mixing was still poor.

The QTLnet algorithm searches the model space using standard trans-dimensional
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steps, proposing the single addition, removal and reversal of trait-to-trait relation-

ships. Our approach incorporates additional move types from those used in Neto

et al. (2010); in Chapter 4 the relocate step was used, equivalent to a simultaneous

add and remove (or birth and death) step, with the specification that a new edge

cannot be added between the same two nodes from which an edge was removed.

This relocation step was then developed into a double step in Chapter 5, combin-

ing two steps that alter the structure of the phenotype network, possibly changing

the dimension of the model by more than one. Reversible jump Markov chain

Monte Carlo methods are known to be very slow moving and generally require

long chains with large thinning windows, so combining two steps that alter the

causal network structure will help to prevent the chain from getting stuck at local

maxima. The inclusion of the double step for data set 5.6 yielded very similar re-

sults to the traditional add, remove, reverse and relocate steps, although it helped

the sampler move between different phenotype networks — even estimating the

true model in a chain previously stuck at a local maxima. The double step has

potential for future research, creating different ways to move between models of a

different dimension. For example, it could expand on the replace step proposed by

Lunn et al. (2009). Lunn et al. (2009) proposed a step to alter the causal network

structure by deleting δ edges and adding δ new (distinct) edges. This could be

extended to delete δ edges and add γ new (distinct) edges, where δ and γ need not

be equal. This type of step proposes candidate models which may differ greatly

from the current model, and so the more conservative double step was proposed

in this thesis.

The sampler used in this thesis selected candidate models in a different way

to the QTLnet algorithm. We define the neighbourhood of a phenotype network

structure as being conditional on the selected move type x; instead of containing
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all possible candidate phenotype network structures given all move types, as in

Neto et al. (2010). This makes it faster to obtain the neighbourhood for a given

model when the number of traits is large.

Our trans-dimensional Bayesian approach was applied to the winter wheat

data set published in Dhungana et al. (2007). We were not able to obtain the

data on the environmental factors used, but our analysis incorporating the direct

effects of QTL produced results comparable to those published by Dhungana et al.

(2007). Although mixing was once again poor, the phenotype network structure

published in Dhungana et al. (2007) was identified as the model with the greatest

joint posterior probability. Even though the true model contained the maximum

number of directed edges possible for the number of quantitative traits, the true

model was estimated when a large value of λ was used in the prior. In other words,

the prior for the number of edges in a phenotype network structure is designed to

favour moves to phenotype networks with fewer edges, but if the true model has

a large number of edges then it can still be estimated, even with a strict prior.

The causal network structure of wheat contained effects of all sizes, and generally

speaking, the estimated direct and indirect effects of each QTL, or quantitative

trait, on grain yield were similar to those published by Dhungana et al. (2007)

both in size and sign (i.e. positive or negative).

The example causal networks used in this thesis incorporate only a few trait

nodes. In practice, the number of nodes in the causal network can vary greatly.

Published data sets such as the winter wheat data set (see for example Dhungana

et al. 2007) incorporates only four trait nodes, where as (Neto et al. 2010), for ex-

ample, use a liver hot spot data set that incorporates 16 trait nodes. Currently, this

approach has had to be restricted to small causal network structures because of the

R code used to implement the algorithm. Once the code has been optimised we
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can extend the approach to accomodate larger networks. This must be done with

caution as the size of the model space increases super-exponentially as the number

of traits increases. We therefore strongly recommend repeating the search from a

variety of different positions to ensure that the model space has been searched ap-

propriately. The extension of the double step will allow for the proposal of larger

steps between models, and should increase mixing for larger networks which may

require larger steps to escape local maxima.

The trans-dimensional Bayesian approach taken in this thesis addresses three

of the six QTL mapping objectives outlined in Chapter 1; it is able to estimate the

size of QTL effects on the trait(s) of interest, it can estimate the size of the trait-to-

trait effects, and most importantly, it can infer the phenotype network structures

existing among multiple interacting traits, thus enabling more accurate estimation

of QTL effects on related traits than previous approaches.
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Appendix A

Biological Principles

A.1 Mendelian inheritance

Mendelian inheritance originates from a 1865 paper written by Gregor Mendel,

and has been included in many published articles and textbooks since; see for

example Russell (2006). Mendel summarized his findings into three laws:

1. Law of Segregation

2. Law of Independent Assortment

3. Law of Dominance

(Russell 2006). These laws are discussed in Sections A.1.1-A.1.3.

A.1.1 Law of Segregation:

During gamete formation, the alleles for each gene segregate

(separate) from each other so that each gamete carries only one
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allele for each gene (half the gametes carry one allele, and the

other half carry the other allele).

Let us focus on a specific individual with the genotype Aa at a given locus. Dur-

ing the reproductive process known as meiosis gametes (reproductive cells) are

produced, half carrying the allele A, half a, at the specified locus. A gamete is ei-

ther an egg (for females) or a sperm (for males) such that the two combine during

sexual reproduction and the resulting offspring will inherit one allele from each

parent via the gametes.

A.1.2 Law of Independent Assortment:

Genes for different traits can segregate independently of one

another in gamete production.

Prior to meiosis the genetic material is replicated and each chromosome is then

comprised of two sister chromatids (i.e. two identical copies). When gametes are

formed (during meiosis) homologous chromosomes, i.e. pairs of chromosomes

with the same arrangement of genetic loci, are known to crossover — transferring

genetic material from one chromosome to another. This is recombination and is

a feature of independent assortment; see the example in Figure A.1, focusing on

a single pair of chromosomes. Independent assortment is the random assortment

of homologous chromosomes such that one will be randomly selected for each

gamete (i.e. each gamete will contain a mixture of maternal and paternal genes).

Genes located close together on the same chromosome are more likely to be

inherited together. The distance between two loci within the genome can be de-

termined using the recombination fraction (also referred to as the recombination

frequency) (Xu 2013). The recombination fraction is the frequency with which
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a

a

A

a b

B

b

B

An individual 
with genotype 
AaBb has one 
chromosome 

inherited from 
each parent.

Homologous 
chromosomes 

align and 
crossover

The pairs of homologous 
chromosomes are divided 

in half to form haploid 
gamete cells, comprised of 
both maternal and paternal 

genes.

a b

A B

a b

ba

B

A B

A

A b

A B
AB

aB

Ab

ab

Possible 
gametes

a b

Prior to meiosis 
chromosomes 
are replicated, 

each is now 
comprised of 

two sister 
chromatids

A B

Figure A.1: An example of independent assortment occurring during gamete pro-
duction: assume that we have an individual from an F2 population, with genotype
AaBb (with AB on one chromosome, ab on another), where A and a are alleles
at locus 1, and B and b are alleles at locus 2. Here the resulting gametes are of
genotypes AB, aB, Ab and ab.

a single chromosomal crossover will take place between two genes during ga-

mete production and has a maximum value of 0.5 (or 50%), which would indicate

that the genes are on opposite ends of the chromosome, or perhaps on different

chromosomes. If the number of crossovers is odd then the allelic composition

of the chromosome now differs from the parental chromosomes and is termed a

‘recombinant chromosome’ (Russell 2006).

A recombination fraction (θ ) between two loci, is used to obtain the map

distance via a mapping function. In this thesis we use Haldane’s map distances

obtained via Haldane’s mapping function, although other mapping functions do

exist, e.g. Kosambi’s mapping function (Kosambi 1943). Given a recombination

fraction, θ , the map distance, h, is expressed in Morgans (where 100 centiMorgans

(cM) = 1 Morgan), also called map units, where 1cM is approximately equal to a
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recombination fraction of 0.01:

h =
1
2

ln(1−2θ) (A.1)

(Haldane 1919, Lynch & Walsh 1998).

Consider the example given in Figure A.2, where we have three genetic makers

(labelled A, B, and C) and the recombination fraction between loci j and k is

denoted θ jk.

Mapping functions differ by the assumptions made about where crossovers

occur. Haldane’s mapping function assumes that crossovers occur at any point on

the chromosome, randomly and independently, such that Trow’s formula holds:

θAC = θAB +θBC−2θABθBC (A.2)

(Trow 1913). In other words, the recombination fractions are not additive, but

the map distances are. Let the map distance between loci j and k be denoted

h jk, using Haldane’s mapping function given in Equation A.1 we can show that

the map distances are additive assuming that crossovers occur at any point on the

A B C

θBCθAB

θAC

Figure A.2: Recombination fractions θAB, θBC and θAC between genetic markers
A, B and C.
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chromosome (i.e. Trow’s formula holds):

hAB +hBC =
1
2

ln(1−2θAB)+
1
2

ln(1−2θBC)

=
1
2

ln((1−2θAB)(1−2θBC))

=
1
2

ln(1−2θAB−2θBC +4θABθBC)

=
1
2

ln(1−2(θAB +θBC−2θABθBC))

=
1
2

ln(1−2θAC) (see Eqn. A.2)

= hAC.

Note that Haldane’s mapping function can be rearranged to calculate the recom-

bination fraction given the distance, h.

A.1.3 Law of Dominance:

Some alleles are dominant while others are recessive; an organ-

ism with at least one dominant allele will display the effect of

the dominant allele.

Alleles can be either dominant or recessive and are denoted, for example, A and a

respectively. If the two alleles are the same, e.g. AA or aa, the QTL genotype is

said to be homozygous: homozygous dominant for AA, and homozygous recessive

for aa. A heterozygous QTL genotype refers to the presence of one dominant and

one recessive allele, e.g. Aa. A recessive allele is only fully expressed in the

phenotype when the genotype is homozygous recessive. However the dominant

allele is expressed in the phenotype with a homozygous dominant genotype, or

with a heterozygous genotype where it may mask the effect of the recessive allele.
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A.2 Populations used in QTL mapping studies

There are many different population types which are used in QTL mapping stud-

ies. Here, in Sections A.2.1 – A.2.4, we introduce four of the population types

commonly used in QTL mapping literature: F2, backcross, doubled haploid and a

recombinant inbred line (RIL), respectively.

A.2.1 F2 population

An F2 population is obtained by crossing (mating) two different homozygous in-

bred lines to form an F1 (first filial) generation. This F1 population is comprised

entirely of heterozygotes - with one allele inherited from each parent. Individuals

from the F1 generation are then crossed to obtain the F2 (second filial) generation.

See Figure A.3 for an example cross.

Parental 
Generation

XAA aa

A aGametes

F1

Generation
XAa Aa

A aGametes A a

F2

Generation
AA aaAa Aa

Figure A.3: An example of the creation of an F2 population, focusing on one locus
with alleles A and a.
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Individuals from an F2 population have one of three genotypes at each locus

(Russell 2006). These three genotypes are homozygous recessive, heterozygous,

and homozygous dominant; for example, aa, Aa and AA, respectively. Consider

the following example incorporating one locus from an F2 population. Let the

parents have genotypes Aa and Aa (both from the F1 generation), the offspring

resulting from this cross then have one of three genotypes at the given locus,

shown in the following Punnett square:

A a
A AA Aa
a Aa aa

With three possible genotypes at a locus, both additive and dominance effects

can be estimated for an F2 population. This is achieved by using the Cocker-

ham genetic model; see Cockerham (1954), Kao & Zeng (2002). Building on

the Fisher genetic model which uses the least squares principle to partition the

conditional phenotypic value into three types of QTL effects additive, dominance,

and epistatic (Fisher 1918), the Cockerham genetic model further partitions the

epistatic variance into components using orthogonal contrasts.

A.2.2 Backcross population

Individuals from a backcross population have one of two genotypes (Russell 2006),

which makes them simpler to analyse than more complicated populations such as

an F2 population. A backcross population is obtained by crossing two inbred lines

to form an F1 generation, then individuals from the F1 generation are crossed with
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one of the parents to obtain the backcross population, see Figure A.4 for an exam-

ple cross.

Consider the following example incorporating one locus from a backcross

population. Let the parents have genotypes Aa (from the F1 generation) and aa

(from the parental generation), the possible genotypes at this locus for offspring

resulting from this cross are shown in the following Punnett square:

a a
A Aa Aa
a aa aa

Parental 
Generation

XAA aa

A aGametes

F1

Generation
XAa aa

A aGametes a a

Backcross 
Population

Aa aaaa Aa

Figure A.4: An example of the creation of a backcross population, focusing on
one locus with alleles A and a.
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A.2.3 Doubled Haploid Population

Individuals with one copy of each chromosome are said to be haploid (Russell

2006). Doubled haploid populations are often used in studies involving plants

as haploid plants are sterile so the chromosomes must be doubled to make them

fertile. A popular method of obtaining a doubled haploid population is to apply

the drug colchicine on the roots of haploid plants to double the chromosomal

information and produce doubled haploid shoots (Ouyang et al. 1994). Figure

A.5 illustrates that as the chromosomes are doubled, the resulting genotypes are

homozygous only — no heterozygotes exist within a doubled haploid population.

An advantage of a doubled haploid population is that the production of doubled

haploids only requires one generation, and is much faster than other breeding

procedures required to obtain homozygotes, such as a recombinant inbred line

(Ouyang et al. 1994).

The analysis for a doubled haploid population is similar to that for a backcross

population as there are only two possible combinations of alleles at each locus.

A

B

AA

BB

Haploid
Doubled
Haploid

Figure A.5: An example of the production of a doubled haploid population with
alleles A and B at two loci.
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A.2.4 Recombinant Inbred Line

A Recombinant Inbred Line (RIL) is the result of crossing two inbred strains then

continuously selfing or sibling mating to create inbred lines. This process takes

time, but the advantage is that each strain can be considered eternal because re-

combination will not change the homozygous individuals, proving an unlimited

source from which data can be obtained (Zheng et al. 2012). Figure A.6 illus-

trates the formation of recombinant inbred lines by selfing, adapted from Broman

(2005).

Parental 
Generation X

F1

Generation

F

.

.

.

.

F2

Generation

8

Figure A.6: An example of the formation of recombinant inbred lines by selfing.
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Data simulation

Chapters 3, 4, and 5 all simulate data as described in this section, and the nota-

tion used here in summarized in Table 3.1 (p. 37). In order to simulate data for

multiple traits, a true causal network must be decided upon. That is, the genetic

architecture and the phenotype network structure are set. From Section 1.2, the

genetic architecture includes:

• the number of QTL

• the QTL locations

• the QTL genotypes

• the knowledge of which QTL affect which traits.

Knowing which QTL affect which traits means that we know which QTL parame-

ters we need to estimate, as in a multiple trait analysis not all QTL affect all traits,

i.e. the set of QTL parents for each trait are known

υQ = (υQ(1), · · · ,υQ(NT )) .

257



258 APPENDIX B. DATA SIMULATION

The phenotype network is estimated using a model selection procedure, such that

the set of trait parents for each trait will vary. The set of parent traits is denoted

by υY ;

υY = (υY (1), · · · ,υY (NT )) .

This explanation of data simulation will be further simplified by using a dou-

bled haploid population, where the genotypes are recorded as “1” or “0” (homozy-

gous dominant and recessive, respectively), but can easily be extended to model

other populations.

Summary of how data is simulated:

1. Randomly sample NM marker genotypes for n individuals according to the

chosen breeding design.

Once the marker genotypes have been simulated the locations of Nqtl

QTL are specified by the user, where the location of the `th QTL is denoted

λ` = (ξ`,γ`,θ`) as described in Section 1.1 and illustrated in Figure 1.1,

included here for convenience. We assume that only one QTL can be located

Ql

Markers on 
chromosome 

ξl = k k1 γl = k2 k3 k4 k5

θl

The location of the `th QTL is defined by the chromosome it is located on (ξ` = k),
the left flanking marker (γ` = k2) and the recombination fraction (θ`).
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within each marker interval (see for example, Zeng 1994).

2. For each of the Nqtl QTL, generate QTL genotypes for all i = 1, · · · ,n indi-

viduals, denoted qi` for `= 1, · · · ,Nqtl , given the flanking marker genotypes

of each individual and the position of the QTL within the interval using

conditional probabilities as given in Table B.1 (for a doubled haploid popu-

lation).

3. Decide upon the causal network structure; specify the set of QTL and trait

parent nodes, denoted υQ(t) and υY (t) for each of the t = 1, · · · ,NT quan-

titative traits. Also specify the values for the corresponding QTL-to-trait

and trait-to-trait effect parameters. An example causal network structure is

given in Figure 1.2, with three quantitative traits, denoted Y1, Y2 and Y3, and

three QTL, denoted Q1, Q2 and Q3, given here for convenience.

4. Given the causal network structure (i.e. all necessary QTL effects and trait-

to-trait effects), generate quantitative trait values via equations B.1 and B.2.

Traits which are the furthest upstream (i.e. those with no parent traits) are

Table B.1: The probability of the `th QTL genotype for individual i from a dou-
bled haploid population, given the left- and right-flanking marker genotypes (gi1
and gi2, respectively). Let p =

rG1Q`
rG1G2

, where rG1Q`
is the recombination fraction

between marker G1 and the `th QTL (Q`), and rG1G2 is the recombination fraction
between markers G1 and G2.

Marker Genotype Genotype of `th QTL, qi`
gi1 gi2 AA (1) aa (0)
0 0 0 1
0 1 p 1− p
1 0 1− p p
1 1 1 0
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φ22

φ11

Y1

Y2 Y3
β23

β12

Q1

Q2

Q3

φ31

φ33

An example causal network structure with three quantitative traits (Y1, Y2, Y3),
three QTL (Q1, Q2, Q3), two trait-to trait effects (β12, β23) and four QTL effects
(φ11, φ22, φ31, φ33).

simulated first as they are only affected by QTL. The quantitative trait values

for n individuals are drawn from a normal distribution as follows:

Yit ∼ N

(
µit = β0 + ∑

`∈υQ(t)
φ`tqi`,σ

2
t

)
(B.1)

given the specified QTL effects of each `th QTL on the tth trait, denoted

φ`t . The intercept, β0, and the residual variance for trait t, σ2
t , are also

specified by the user. Equation B.1 should be used if υY (t) = /0, i.e. no other

quantitative traits have a direct effect on trait Yt . Those traits with parent

traits must incorporate the additive effects of the traits directly upstream,

denoted υY (t) for trait t:

yit ∼ N

(
µit = β0t + ∑

`∈υQ(t)
φ`tqi`+ ∑

k∈υY (t)
βktyit ,σ

2
t

)
(B.2)

where βkt is a trait-to-trait effect, specifically the effect of trait k on trait t

as specified by the user in the causal network structure.
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The Jacobian

This Appendix supplements Chapters 4 and 5, following Section 4.1.4 to compute

the Jacobian for the move types used in our reversible jump Markov chain Monte

Carlo approach. The Jacobians for the reverse, and relocation steps are used in

Chapter 4, and are computed in Sections C.1 – C.2. The Jacobians for the add,

remove and double steps are used in Chapter 5, and are computed in Sections C.3

– C.5.

Most parameters in Ω and Ω′ are in the same space and so we partition Ω and

Ω′ to reflect the fact that they share a set of parameters, with ΩMM′ and ΩM′M

denoting those parameters in both models M and M′, and ΩM\M′ denoting those

parameters in model M, but not M′. It follows that:

Ω = (ΩMM′,ΩM\M′)

Ω
′ = (Ω′M′M,Ω′M′\M)

261
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C.1 Jacobian for the reverse step

A reverse step alters the phenotype network structure, removing a directed edge

from model M and adding the reversed directed edge to form S′, the phenotype

network structure for model M′ (M′ = {Ω′,S′}). Consider the example given

in Section 4.3.1, using models M and M′ shown in Figure 4.3 (p. 91). We are

reversing β23, such that:

Ω = (Ω\β23,β23)

Ω
′ = (Ω′ \β

′
32,β

′
32)

uM′ = β
′
32

u′M = β23,

and

(Ω,uM′) = (Ω\β23,β23,β
′
32)

(Ω′,u′M) = (Ω′ \β
′
32,β

′
32,β23).

The Jacobian is calculated according to Equation 4.20 (p. 83):

JS =

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣ (C.1)

=

∣∣∣∣∂ (Ω′ \β ′32,β
′
32,β23)

∂ (Ω\β23,β23,β
′
32)

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∂Ω′\β ′32
∂Ω\β23

∂Ω′\β ′32
∂β23

∂Ω′\β ′32
∂β ′32

∂β ′32
∂Ω\β23

∂β ′32
∂β23

∂β ′32
∂β ′32

∂β23
∂Ω\β23

∂β23
∂β23

∂β23
∂β ′32

∣∣∣∣∣∣∣∣∣
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JS =

∣∣∣∣∣∣∣∣∣
I11,11 011,1 011,1

01,11 0 1

01,11 1 0

∣∣∣∣∣∣∣∣∣
= −1 (C.2)

where 0n,p denotes a matrix of zeros with n rows and p columns, In,n denotes an

identity matrix of size n, and |Ω| = |Ω′| = 12. We take the absolute value of the

Jacobian, so JS = 1. This result from the example reverse move extends to the

reversal of any edge.

C.2 Jacobian for the relocate step

A relocate step alters the phenotype network structure, removing edge g from

model M and relocating it at location f such that edge g is removed, and the new

distinct edge f is added to form the acyclic phenotype network structure S′ for

model M′ (M′ = {Ω′,S′}).

Consider the example given in Section 4.4.1 (p. 97), using models M and M′

shown in Figure 4.5 (p. 97). We are relocating β12 to β ′23, it follows that:

Ω = (Ω\β12,β12)

Ω
′ = (Ω′ \β

′
23,β

′
23)

uM′ = β
′
23

u′M = β12,

such that

(Ω,uM′) = (Ω\β12,β12,β
′
23)

(Ω′,u′M) = (Ω′ \β
′
23,β

′
23,β12).
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The Jacobian is calculated according to Equation 4.20 (p. 83):

JC =

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
=

∣∣∣∣∂ (Ω′ \β ′23,β
′
23,β12)

∂ (Ω\β12,β12,β
′
23)

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∂Ω\β ′23
∂Ω\β12

∂Ω\β ′23
∂β12

∂Ω\β ′23
∂β ′23

∂β ′23
∂Ω\β12

∂β ′23
∂β12

∂β ′23
∂β ′23

∂β12
∂Ω\β12

∂β12
∂β12

∂β12
∂β ′23

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
I10,10 010,1 010,1

01,10 0 1

01,10 1 0

∣∣∣∣∣∣∣∣∣
= −1 (C.3)

where 0n,p denotes a matrix of zeros with n rows and p columns, In,n denotes an

identity matrix of size n, and |Ω| = |Ω′| = 11. We take the absolute value of the

Jacobian, so JC = 1. This result from the example relocate step extends to the

relocation of any edge.

C.3 Jacobian for the add step

An add step alters the phenotype network structure, adding an edge to model M.

Consider the example given in Section 5.2.1 (p. 155), using models M and M′

shown in Figure 5.1 (p. 156). We are adding β ′23, it follows that:

Ω = Ω

Ω
′ = (Ω′ \β

′
23,β

′
23)
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uM′ = β
′
23

u′M = /0

such that

(Ω,uM′) = (Ω,β ′23)

(Ω′,u′M) = (Ω′ \β
′
23,β

′
23).

The Jacobian is calculated according to Equation 4.20 (p. 83):

JA =

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
=

∣∣∣∣∂ (Ω′ \β ′23,β
′
23)

∂ (Ω,β ′23)

∣∣∣∣
=

∣∣∣∣∣∣
∂Ω′\β ′23

∂Ω

∂Ω′\β ′23
∂β ′23

∂β ′23
∂Ω

∂β ′23
∂β ′23

∣∣∣∣∣∣
=

∣∣∣∣∣∣ I12,12 012,1

01,12 1

∣∣∣∣∣∣
= 1 (C.4)

where 0n,p denotes a matrix of zeros with n rows and p columns, In,n denotes an

identity matrix of size n, and |Ω|= 12 and |Ω′|= 13. This result from the example

add step extends to the addition of any edge.

C.4 Jacobian for the remove step

A remove step alters the phenotype network structure, removing an edge from

model M.
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Consider the example given in Section 5.3.1 (p. 161), using models M and M′

shown in Figure 5.3 (p. 162).

We are removing β23 , it follows that:

Ω = (Ω\β23,β23)

Ω
′ = Ω

′

uM′ = /0

u′M = β23

such that

(Ω,uM′) = (Ω\β23,β23)

(Ω′,u′M) = (Ω′,β23).

For this example of the remove step the Jacobian is calculated according to

Equation 4.20 (p. 83):

JR =

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
=

∣∣∣∣ ∂ (Ω′,β23)

∂ (Ω\β23,β23)

∣∣∣∣
=

∣∣∣∣∣∣
∂Ω′

∂Ω\β23

∂Ω′

∂β23
∂β23

∂Ω\β23

∂β23
∂β23

∣∣∣∣∣∣
=

∣∣∣∣∣∣ I12,12 012,1

01,12 1

∣∣∣∣∣∣
= 1 (C.5)
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where 0n,p denotes a matrix of zeros with n rows and p columns, In,n denotes an

identity matrix of size n, and |Ω|= 13 and |Ω′|= 12. This result from the example

remove step extends to the removal of any edge.

C.5 Jacobian for the double step

A double step alters the phenotype network structure in one of six ways, combin-

ing pairs of add, remove and reverse steps to propose changes to model M.

Consider the example given in Section 5.9.3 (p. 220), we propose a double

step with d = 3, such that we add an edge, and reverse an edge. We use models M

and M′ shown in Figure 5.30 (p. 221). We are therefore removing β23 from model

M and adding β ′32 and β ′34, it follows that:

Ω = (Ω\β23,β23)

Ω
′ = (Ω′ \{β ′32,β

′
34},β ′32,β

′
34)

uM′ = (β ′32,β
′
34)

u′M = β23

such that

(Ω,uM′) = (Ω\β23,β23,β
′
32,β

′
34)

(Ω′,u′M) = (Ω′ \{β ′32,β
′
34},β ′32,β

′
34,β23).

The Jacobian is calculated according to Equation 4.20 (p. 83):

JD =

∣∣∣∣∂ (Ω′,u′M)

∂ (Ω,uM′)

∣∣∣∣
=

∣∣∣∣∂ (Ω′ \{β ′32,β
′
34},β ′32,β

′
34,β23)

∂ (Ω\β23,β23,β
′
32,β

′
34)

∣∣∣∣
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JD =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Ω′\{β ′32,β
′
34}

∂Ω\β23

∂Ω′\{β ′32,β
′
34}

∂β23

∂Ω′\{β ′32,β
′
34}

∂β ′32

∂Ω′\{β ′32,β
′
34}

∂β ′34
∂β ′32

∂Ω\β23

∂β ′32
∂β23

∂β ′32
∂β ′32

∂β ′32
∂β ′34

∂β ′34
∂Ω\β23

∂β ′34
∂β23

∂β ′34
∂β ′32

∂β ′34
∂β ′34

∂β23
∂Ω\β23

∂β23
∂β23

∂β23
∂β ′32

∂β23
∂β ′34

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

I17,17 017,1 017,1 017,1

01,17 0 1 0

01,17 0 0 1

01,17 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −1 (C.6)

where 0n,p denotes a matrix of zeros with n rows and p columns, In,n denotes an

identity matrix of size n, and |Ω|= 18 and |Ω′|= 19. We take the absolute value

of the Jacobian, so JD = 1. For all different types of double step, the Jacobian is 1.



Appendix D

Trace plots for data set 4.2

Included in this appendix are the trace plots and corresponding densities for all

parameters estimated by the chain starting with initial model 1 in Figure 4.17 for

data set 4.2, to illustrate how the chain is mixing. We include all stored states of

the chain, and if a parameter is not included here, then it was not estimated at all

in the chain.

These trace plots were created in R using the traceplot() function in the ‘coda’

package with the default bandwidth; see Plummer et al. (2006).

Figure D.1: Trace plot and density for parameter β01.
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Figure D.2: Trace plots and densities for parameters β02, β03, β04, β05 and σ2
1 .
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Figure D.3: Trace plots and densities for parameters σ2
2 , σ2

3 , σ2
4 , σ2

5 and β12.
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Figure D.4: Trace plots and densities for parameters β13, β21, β24, β31, and β35.



273

Figure D.5: Trace plots and densities for parameters β42, β45, φ11, φ22, and φ33.
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Figure D.6: Trace plots and densities for parameters φ44 and φ55.



Appendix E

Simulation II results: for varying λ

This Appendix supplements the simulation study in Chapter 5, demonstrating how

the prior on the number of edges can be used to penalize models with too many

edges. These tables contain the estimates used to plot Figures E.1 and E.2.
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Table E.1: Tabulated results for simulated data sets 5.1 – 5.3, for λ = 0, · · · ,10. The mean number of edges in the
visited models is denoted E[EM], the number of models visited by the chain is denoted nmodels, and the joint posterior
probability of the true model is denoted p(MT RUE |D).

5.1 5.2 5.3
λ E[EM] nmodels p(MT RUE |D) E[EM] nmodels p(MT RUE |D) E[EM] nmodels p(MT RUE |D)
0 5.01 509 0.0044 5.30 38 0.0000 5.29 63 0.4481
1 4.51 436 0.0025 5.12 31 0.0370 5.09 38 0.3821
2 3.91 295 0.0038 5.06 23 0.0478 5.04 25 0.3807
3 4.51 216 0.0002 5.01 13 0.0000 5.01 21 0.3859
4 2.96 170 0.0000 5.01 12 0.0000 5.01 17 0.3462
5 2.54 125 0.0000 5.00 8 0.0000 5.00 8 0.3435
6 2.15 97 0.0000 5.00 3 0.0000 5.00 5 0.5755
7 1.84 84 0.0000 5.00 4 0.0000 5.00 6 0.5140
8 1.37 54 0.0000 5.00 4 0.0536 5.00 4 0.3710
9 0.92 35 0.0000 5.00 4 0.0536 5.00 5 0.3623

10 0.50 26 0.0000 5.00 4 0.0536 5.00 4 0.3671
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Table E.2: Tabulated results for simulated data sets 5.4 – 5.6, for λ = 0, · · · ,10. The mean number of edges in the
visited models is denoted E[EM], the number of models visited by the chain is denoted nmodels, and the joint posterior
probability of the true model is denoted p(MT RUE |D).

5.4 5.5 5.6
λ E[EM] nmodels p(MT RUE |D) E[EM] nmodels p(MT RUE |D) E[EM] nmodels p(MT RUE |D)
0 5.15 49 0.7239 5.40 31 0.6486 5.12 19 0.8789
1 5.04 33 0.8282 5.16 20 0.8486 5.10 17 0.9023
2 5.02 26 0.8199 5.04 11 0.9642 5.03 12 0.9712
3 4.97 21 0.8434 5.02 8 0.9841 5.01 7 0.9903
4 4.92 26 0.7280 5.00 8 0.9962 5.00 6 0.9968
5 4.82 25 0.6736 5.00 5 0.9961 5.00 4 0.9994
6 4.59 32 0.5083 5.00 5 0.9983 5.00 3 0.9994
7 4.19 32 0.2597 5.00 1 1.0000 5.00 2 0.9994
8 3.79 35 0.1130 5.00 2 0.9984 5.00 1 1.0000
9 3.35 45 0.0185 5.00 1 1.0000 5.00 1 1.0000
10 2.79 58 0.0031 5.00 1 1.0000 5.00 1 1.0000
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Appendix F

Technical Appendix

The extension to the traditional trans-dimensional reversible jump algorithm as

detailed in Chapters 4 and 5 is currently implemented in R (Version 3.2.0; see R

Core Team 2014). The analysis on our simulated data in Chapters 4 and 5 (with

data on 5 QTL and 5 traits for 500 individuals) generally took around 52 hours

to complete 1,000,000 iterations on a 64 bit Intel(R) Core(TM) i5-4440 Quad

3.1GHz machine with 8GB RAM, running up to four chains in parallel.

Almost all of the code was written from scratch, making use of base R func-

tions such as rnorm and lm to obtain the least squares estimates where necessary

(R Core Team 2014). The ‘pscl’ package was used so that the inverse gamma

(igamma) function was defined, and the ‘parallel’ and ‘snow’ packages were used

to run chains in parallel (Jackman 2015, R Core Team 2014, Tierney et al. 2013).

As the code was written from scratch, we note that the run time could be

significantly improved by optimising the R code and converting functions to C.

The contribution of this thesis is in the approach taken, not the efficiency of the R

code. Increasing the size of the causal networks to be estimated greatly increases

the amount of computing time required, requiring weeks to run long chains. This
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is the result of coding in R, once code has been optimised and key functions are

converted to C, we expect the computing time required for large causal network

structures to drastically decrease.

A brief outline of the R code used in this thesis is given below, including a

description of the code used to implement the RJMCMC algorithm, as well as the

code used to generate the results.

F.1 The RJMCMC algorithm

In order to run the RJMCMC algorithm given in Chapters 4 and 5, we require a

data set with NT trait nodes and a known genetic architecture comprised of Nqtl

QTL with Nφ QTL effects on our NT traits.

Consider the example causal network structure given in Figure F.1, with three

trait nodes and two QTL. The genetic architecture is assumed to be known, so

we know that QTL 1 affects trait 1 (φ11) and QTL 2 affects trait 2 (φ22). We

also know that with three trait nodes, there are six unique directed edges existing

between traits (β12, β13, β21, β23, β31, β32).

In order to initialise the chain, we are required to input the following:

• A list of possible parameters; the trait-to-trait effects, trait intercepts, QTL

effects and residual variances for each trait

par.order.names <- c("B.12","B.13","B.21","B.23","B.31","B.32",

"B.01","B.02","B.03","phi.11","phi.22","sigma.1","sigma.2",

"sigma.3")

• The initial model (where the chain starts) is specified by a vector specifying

the inclusion or exclusion of parameters, corresponding to the list of possi-

ble parameters above. We could choose to randomly select a start the state
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Y1 

Y2 Y3 

Q1 

Q2 

Figure F.1: Example causal network structure to demonstrate the input and output
of the R code.

of each edge (reversed, absent, or exists) until an acyclic model is obtained,

or we could start the chain at a specific model. See Section F.2 to see how

a cyclic model is identified. Let us select an initial model with only one

trait-to-trait effect, β12, such that we have:

initial.model <- c(1,0,0,0,0,0,1,1,1,1,1,1,1,1)

• In order to initialise the chain we also need to specify the sample size

(“nind”), the number of traits (“ntrait”), the number of QTL effects (“nqtl”),

the number of iterations to run (“niter”) and the thinning window we wish

to use (thin). For example:

nind <- 500; ntrait <- 5; nqtl <- 5

niter <- 1000000; thin <- 10

Once the chain has been initialised then a move type is selected randomly

using the runi f function and the move type probabilities given in Table 5.8 (p.
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214). Given the selected move type, a candidate phenotype network structure is

randomly selected from the neighbourhood of all possible acyclic models (given

the selected move type).We use the lm function in R to obtain the LSE and from

these we propose new candidate values and calculate the acceptance probabilities

α = min(1,r)

where r is given in Equations 4.31 (p. 86), 4.34 (p. 90), 4.37 (p. 96), 5.14 (p.

155) and 5.17 (p. 161) for the update, reverse, relocate, add and remove steps,

respectively. Note that if the double step is included, then we exclude the relocate

step and use rdouble given in Equation 5.25 (p. 220). If the move is accepted the

candidate model becomes the current model, otherwise the current model remains

unchanged.

F.2 Identifying cyclic models

Code was created (from scratch) to determine if a given phenotype network struc-

ture was acyclic. The algorithm iteratively follows each directed path from each

trait node Yt (t = 1, · · · ,NT ) and stops once all directed paths have been checked,

or if a cycle is found (i.e. if it identifies a directed path back to Yt). The R code is

given below and it requires the vector cyc.mat — a causal network structure given

in vector form (specifying the inclusion or exclusion of parameters). The R code

is followed by an example to illustrate how the code works.

cyclic.model <- function(cyc.mat){

CYCLE <- 0

## With ntrait trait nodes and nqtl QTL effects, a model

## requires at least 2 edges to create
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## a directed path.

if(sum(cyc.mat)>=( 2*ntrait+nqtl + 2)){

## Get a list of edges in the model and determine which

## traits they originate from (from.list) and which traits

## they go to (to.list).

edge.names <- cyc.mat[1:(ntraitˆ2-ntrait)]

exist.edges <- par.order.names[1:(ntraitˆ2-ntrait)][

edge.names==1]

from.list <- 0

to.list <- 0

for(ee in 1:length(exist.edges)){

edge <- strsplit(exist.edges[ee],split="")

from.list <- c(from.list,as.numeric(edge[[1]][3]))

to.list <- c(to.list,as.numeric(edge[[1]][4]))

}

from.list <- from.list[-1]

to.list <- to.list[-1]

## For each trait with an edge originating from it,

## follow all directed paths and determine

## if there is a directed path back to that trait.

## CYCLE becomes 1 if a cycle is found.

for(ll in 1:length(from.list)){

from <- from.list[ll]

start <- from

to <- to.list[from.list==from]

from <- to

count <- 1

while(CYCLE==0 && count<=length(from.list)){

if(!is.na(sum(from))){

to <- 0
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for(pp in 1:length(from)){

to <- c(to,to.list[from.list==from[pp]])

}

to <- as.numeric(levels(as.factor(to)))

if(length(to)>1){

to <- to[2:length(to)]

}

from <- to

for(pp in 1:length(to)){

if(to[pp]==start){

CYCLE <- 1

}

}

}

count <- count+1

}

}

}

## return CYCLE, which is 1 is a cycle was found,

## and 0 otherwise.

return(CYCLE)

}

Let us consider the example phenotype network structure in Figure F.2. Start-

ing with node Y1, we identify the two directed paths given in Figure F.3 (a), but

no cycle has been identified yet as there is no directed path back to Y1. Moving

to node Y2, we identify the directed path given in Figure F.3 (b), and this time

we have identified a cycle. The algorithm terminates and indicates this model is

cyclic.
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Y1 

Y2 Y3 

Y4 

Figure F.2: Example causal network structure to demonstrate the identification of
a cyclic graph.

a) 

b) 

Y1 Y2 Y3 Y4 Y2 
t = 1 

Y3 Y4 Y2 

Y2 Y3 Y4 Y2 
t = 2 

Figure F.3: Using directed paths to identify cycles within a graph.

Following from the example given above in Figure F.1 (with NT = 3 trait

nodes), an output file is created to store information regarding the (thinned) chain.

The output file is set out as follows:
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"step" "move" "Nedges" "B12" ... "s3" "llike" "lpost" "a" "acc"

"1" "initial" "1" "0.53" ... "1.27" "-3617.39" "-3663.25" "1" "Y"

"10" "reloc" "2" NA ... "1.05" "-3696.07" "-3741.06" "0.31" "N"

where the parameters β12, β13, β21, β23, β31, β32, β01, β02, β03, σ2
1 , σ2

2 , and σ2
3

are represented by

"B12" ... "s3"

to reduce space here. Recording the following information about the current state

of the chain:

• Iteration number (step).

• Proposed move type (move). Note that the initial model has the move type

recorded as“initial”.

• Number of edges in the current model (Nedges).

• Current parameter estimates (corresponding to β12, β13, β21, β23, β31, β32,

β01, β02, β03, σ2
1 , σ2

2 , and σ2
3 ) which are NA if the parameter is not in the

current model.

• Log likelihood (llike).

• Log posterior density (lpost).

• The acceptance probability (a).

• Whether or not this was an accepted candidate model (acc =“Y”) or if the

candidate model was rejected and this is the previous state of the chain (acc

= “N”).
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F.3 Presenting the results

The simulation results in this thesis focus on presenting the joint posterior prob-

ability of the models visited by the chain, the marginal posterior probabilities of

the trait-to-trait effects (directed edges), and the comparison of the log posterior

values. Continuing with the example above, we identify the different phenotype

network structures visited by the chain using the following R code:

## Load the results file for a particular chain.

data <- read.table(file.choose(),header=T)

## discard a burn in of 100,000.

data <- data[data$step>100000,]

## Trait-to-trait effect parameters excluded from the estimated

## model will be recorded as NA. Create a matrix, B, to specify

## which parameters were present/absent in the model.

## 1 = present and 0 = absent.

B <- data[,4:9]

B[!is.na(B)] <- 1

B[is.na(B)] <- 0

## Determine how many different models were visited by the chain

## by combining the presence/absence indicators for each of the

## trait-to-trait effect parameters. Each different sequence of 0s

## and 1s specifies a different phenotype network structure.

models <- rep(NA,nrow(B))

for(i in 1:nrow(B)){

models[i] <- paste(B[i,1], B[i,2], B[i,3], B[i,4], B[i,5],

B[i,6], sep="")

}

The joint posterior probability for each model, here called ‘model.jp, is then:
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## Record the models visited.

models.factor <- levels(as.factor(models))

## Determine the joint posterior probability of each model visited.

model.jp <- rep(NA,length(models.factor))

for(i in 1:length(models.factor)){

model.jp[i] <- sum(models==models.factor[i])/length(models)

}

To calculate the marginal posterior probability for each directed edge, find the

models incorporating that edge, and sum up their joint posterior probabilities. The

resulting marginal posterior probabilities for each directed edge can be presented

in a bar chart, or graphically in the context of the phenotype network structure.

## List trait-to-trait effects.

trait.effects <- c("B.12","B.13","B.21","B.23","B.31","B.32")

## Record joint posterior probabilities.

edges.jp <- rep(0,length(trait.effects))

for(i in 1:length(trait.effects)){

## List models in which the edge exists.

exists <- levels(as.factor(models[!is.na(eval(parse(

text=sprintf("data$%s",trait.effects[i]))))]))

## If the edge was included in at least one of the models

## visited, add the joint posterior probabilities.

if(length(exists)>0){

for(j in 1:length(exists)){

edges.jp[i] <- edges.jp[i] +model.jp[models.factor==exists[j]]

}

}

}

## Plot the marginal posterior probabilities in a bar chart.

par(mfrow=c(1,1))
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plot.new()

## Use an asterisk to identify directed edges in the true model.

## Here we assume that the true model has three edges: B.12,

## B.13 and B.23.

ejp.names <- c("B.12*","B.13*","B.21","B.23*","B.31","B.32")

names(edges.jp) <- ejp.names

barplot(edges.jp,cex.names=0.45,names=ejp.names,xlab="edges",

col=c("black","black","grey","black","grey","grey"),

ylab=expression(’p(e’[g]*’|D)’),ylim=c(0,1.0))

dev.copy(pdf,file=" edgemarginalpost_bar.pdf)

dev.off()

## Plot the marginal posterior probabilities in the context

## of a phenotype network structure.

par(mfrow=c(1,1))

plot.new()

## Plot trait nodes:

text(.4, .98, substitute(Y[1]),cex=1.5)

text(.1, .65, substitute(Y[2]),cex=1.5)

text(.7, .65, substitute(Y[3]),cex=1.5)

points(x =.4, y =.98, cex = 6, lwd=2)

points(x =.1, y =.65, cex = 6, lwd=2)

points(x =.7, y =.65, cex = 6, lwd=2)

## Plot the directed edges, where the edge thickness is

## dependent upon the marginal posterior probability.

## Determine the line thickness for each directed edge.

thick <- rep(0.1,length(edges.jp))

thick[(edges.jp[1] >=0.2)&&(edges.jp[1]<0.4)] <- 0.3

thick[(edges.jp[1] >=0.4)&&(edges.jp[1]<0.6)] <- 0.5

thick[(edges.jp[1] >=0.6)&&(edges.jp[1]<0.8)] <- 0.7
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thick[edges.jp>=0.8] <- 0.9

## Plot the directed edges.

arrows(.36,.94,.14,.69,angle=7.5,lwd=(7*thick[1])) # B.12

arrows(.45,.96,.67,.71,angle=7.5,lwd=(7*thick[2])) # B.13

arrows(.13,.71,.35,.96,angle=7.5,lwd=(7*thick[3])) # B.21

arrows(.16,.66,.64,.66,angle=7.5,lwd=(7*thick[4])) # B.23

arrows(.66,.69,.44,.94,angle=7.5,lwd=(7*thick[5])) # B.31

arrows(.64,.64,.16,.64,angle=7.5,lwd=(7*thick[6])) # B.32

## Add a legend:

leg.txt <- c(expression(’0.0 < p(e’[g]*’|D) < 0.2’), expression(

’0.2 < p(e’[g]*’|D) < 0.4’),

expression(’0.4 < p(e’[g]*’|D) < 0.6’),

expression(’0.6 < p(e’[g]*’|D) < 0.8’),

expression(’0.8 < p(e’[g]*’|D) < 1.0’))

legend(0.675, 0.22, leg.txt, lwd=c(7*0.1,7*0.3,7*0.5,7*0.7,7*0.9),

merge = TRUE)

dev.copy(pdf,file="edgemarginalpost_network.pdf")

dev.off()

The phenotype network structures with the highest joint posterior probabili-

ties can be plotted in groups of up to four. The following R code plots the four

phenotype network structures with the greatest joint posterior probabilities.

## Order the models according to the joint posterior probabilities.

models.order.prob <- model.jp[order(model.jp)][length(model.jp):1]

models.order.factor <- models.factor[order(model.jp)][

length(model.jp):1]

par(mfrow=c(2,2))

for(i in 1:4){
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## Select the model and identify the edges comprising it.

c.model <- models.order.factor[i]

c.model <- as.numeric(strsplit(c.model,"")[[1]])

pon.incl <- par.order.names[c.model==1]

## Plot the trait nodes.

plot.new()

text(.5, .92, substitute(Y[1]),cex=1.5)

text(.2, .65, substitute(Y[2]),cex=1.5)

text(.8, .65, substitute(Y[3]),cex=1.5)

points(x =.5, y =.92, cex = 6, lwd=2)

points(x =.2, y =.65, cex = 6, lwd=2)

points(x =.8, y =.65, cex = 6, lwd=2)

## Plot the edges comprising the selected model.

## B.12

if(sum(pon.incl=="B.12")==1){

arrows(.42,.88,.26,.71,angle=7.5,lwd=2)

}

## B.21

if(sum(pon.incl=="B.21")==1){

arrows(.26,.71,.42,.88,angle=7.5,lwd=2)

}

## B.13

if(sum(pon.incl=="B.13")==1){

arrows(.58,.88,.74,.71,angle=7.5,lwd=2)

}

## B.31

if(sum(pon.incl=="B.31")==1){

arrows(.74,.71,.58,.88,angle=7.5,lwd=2)

}
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## B.32

if(sum(pon.incl=="B.32")==1){

arrows(.72,.64,.28,.64,angle=7.5,lwd=2)

}

## B.23

if(sum(pon.incl=="B.23")==1){

arrows(.28,.64,.72,.64,angle=7.5,lwd=2)

}

## Label the plot according to where the model joint

## posterior probability fals in the top 10.

## E.g. "Model 1" is the model with the greatest

## joint posterior probability.

text(sprintf("Model %s: p = %s", as.character(i),

as.character(round(models.order.prob[i],4))),x=.5,y=0)

}

dev.copy(pdf,file="top4models_graph.pdf")

dev.off()


