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Abstract

This thesis describes a symbolic execution system, PAN, that is able
to symbolically execute loops. PAN achieves this by generalizing the

effect of a few loop iterations to predict the effect of an unknown

number of iterations. PAN operates on relatively unstructured loops

that include ‘go to’ type constructs, allowing multiple exits from a
loop.

PAN uses a two stage generalization approach using techniques

developed in Artificial Intelligence systems. The first stage uses

models of expected loop effects and requires only limited search to
generalize the effect of simple loops. The second stage uses a less

constrained approach that can generalize the effects of more complex

loops by using extensive search.

Fundamental to PAN’s generalization method is the concept of a

sequence. These are identified using models and used in both stages

of the generalization process.
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Chapter 1

Introduction

1.1 PROGRAM ANALYSIS

The analysis of an existing computer program to determine what it

does is 'a problem well known to computer programmers. Even when

creating a new program from correct specifications, such an analysis
is often performed informally as a test of correctness. For existing
programs lacking correct specifications, such an analysis often
precedes program correction or modification.

This analysis can be seen as the reverse of programming: it will be

given a program as input and produce as output a program

specification consisting of non procedural statements in a

logic.

formal

The difficult and unpopular nature of this task has prompted attempts

to automate it, especially by the recognition of ‘cliches’ or

stereotyped program fragments.

This thesis examines a new approach to automated program analysis

using symbolic execution.

Symbolic execution is a technique for ‘executing’ a program without
assigning specific values to the input data. Instead, such data is
given a ‘symbolic’ value and ‘execution’ will produce output as a
function of the input. This technique has been particularly useful in
program verification (i.e. verifying that the program conforms to its
specification). However, use of symbolic execution is usually
restricted to segments of code which do not allow iteration so as to

avoid problems with executing loops.
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A symbolic executor steps through the program in a similar fashion to
a ‘real’ executor. The major distinction between these two methods of
execution arises when the program branches at a conditional
statement. Unlike a real executor, a symbolic executor cannot, in
general, decide which branch to take as the condition will involve
input data whose value is unknown. The usual method of handling this
situation is to allow the symbolic executor to take both branches by
producing two sets of output wvalues, each associated with a
constraint on the input data sufficient to make the appropriate
condition true. However, in the special case where the conditional
statement is a loop exit condition, this method leads to the symbolic
executor performing an indefinite number of loop iterations. With
each new iteration performed, different output statements and

associated input constraints are generated, and the analysis task

never completes.

Previous attempts to address this problem have focused on solving
recurrence relations established during a single loop iteration. The
original contribution of this thesis is to suggest that this problem
can be approached as a generalization problem. In particular, the
output statements and associated input constraints generated from a
small number of iterations can be generalized to infer equivalent
data for an indefinite number of iterations. This thesis demonstrates
that this method overcomes some of the problems associated with
solving recurrence relations, particularly the problem of conditional
recurrence relations, enabling relatively unstructured loops to be
successfully analysed. Additionally, this method allows an improved
method of determining loop exit conditions. Thus we can make symbolic

execution a more useful program analysis tool by extending the class

of programs which can be analysed.

To support this viewpoint, reference will be made to a particular

program analysis system, PAN, implemented using the principles
described in this thesis.

11



A program analysis system such as PAN may usefully become a component

in a larger computer system. The extended NODDY system, being

developed at Victoria University, currently includes a component

which automatically generates robot programs
[Andreae 1985]. This

from input traces
system does not currently ‘know’ what these
programs do, in the sense of having non procedural specifications of
their effect. An intended use of PAN is to allow the NODDY system to

automatically generate programs from traces, and then specifications

from the programs.

Alternatively, PAN could find a place in an automated programmer’s

assistant. Such systems often store programs and their non procedural

specifications, and problems arise in introducing new programs

without specifications or regenerating specifications from programs

manually modified. In both cases PAN could be used to generate the

description from the program.

1.2 OUTLINE OF THESIS

The thesis is organized as follows:

= Chapter 1. Section 1.3 introduces some terminology, Section

1.4 presents a scenario showing informally how PAN analyses

two programs from different domains. Section 1.5 contains an

overview of PAN. Section 1.6 comments on the scope of the

analysis task being attempted. Section 1.7 reviews related
work.

Chapter 2 specifies the languages used by programs which can

be analysed by PAN, and the output specifications.

Chapter 3 describes the symbolic execution component of PAN,
and the special processing performed to aid the loop

generalization and loop exit processing steps.

== Chapter 4 shows how PAN uses the output of symbolic
execution to perform loop generalization, determining the

effect of an indefinite number of iterations.

12



= Chapter 5 describes the loop exit processing, used to find

the condition required to exit from the loop.

= Chapter 6 identifies cases that normal loop generalization
will not handle, and describes a search intensive method

used to extend the range of the generalizer.

- Chapter 7 addresses the problems of converting the state of
the executor at program exit into an understandable program

specification.

= Chapter 8 concludes the thesis with a discussion of the
original contributions presented in this thesis and the

strengths and weaknesses of PAN.

- The appendix contains further complete examples of programs

that PAN has successfully analysed.

1.3 TERMINOLOGY

This section introduces sufficient terminology for the examples and
overview presented later in this chapter. Symbolic execution attempts
to mimic real execution. A real executor steps through a program
testing conditions or making changes to its world (files, variables,
blocks etc). It does not need to record either the result of a test
or the effect it has had on the world. It only needs to remember the
last statement executed so as to be able to continue the execution at

the correct point in the program.

A symbolic executor, however, does not have a real world to run in,
So must maintain a symbolic description of such a world. If a
symbolic execution has reached some statement S in the program, then
this description of the world will need to include both the
conditions on the world required to reach S8, and the cumulative
effect of executing all statements up to and including S. Also,
instead of having to remember a single ‘last statement executed’, a

symbolic executor needs to control an execution which may be

13



proceeding down several different branches concurrently. These

aspects of symbolic execution are described using the following

terms:

program a set of statements, each of which has one or

more statements specified as successors.

execution state a description of the world when symbolic
execution has reached some specific program
statement S. We say this execution state is

associated with S.

execution path a sequence of execution states from the
rEe beginning of the program to some specific

program statement

active execution the most recently created execution states in
states any execution path. These execution states
are those which can be used to continue the
symbolic execution. This is a generalization
of a real executor’s 1‘last statement

executed’ .

path conditions that part of an execution state that
describes the conditions that must be true in
the world for execution to have traversed

some specific path

effects that part of an execution state that
describes the effect the program has had on

the world.

Using this terminology, the symbolic execution proceeds by selecting
an execution state E from the active execution states. E will be
associated with some program statement S. If S’ is a successor of S,
a new execution state E’ is created from E by adding the conditions

required to execute S and the effects of executing S. E’ then

14



replaces E in the active execution states. Note that both E and E’
now both exist, E’ has only replaced E in the active execution

states, not in the full set of execution states.

1.4 SCENARIO

This section presents one example from each of the two domains that
PAN has been tested on, and informally steps through a PAN analysis
of them. In order to introduce these examples before PAN has been

described, it has been necessary to greatly simplify many details.

In the robot domain, programs control a robot hand that is able to
move and grasp objects if it is in contact with them. The robot is
also equipped with sensors so that it can test physical properties of

the object contacted (such as color).

The example program is presented in figure 1-2. In this example the
robot hand ‘finds’ objects by repeatedly executing the statement
‘move until contact up to (® 1)’. Every time this statement is
executed the robot hand is at position pos-a. Thus the statement
instructs the robot to move at angle ® from pos-a until either it
contacts an object or 1 units have been moved. If we refer to the
robot’s line of movement by the triple (pos-a, ®, 1), then we can
refer to the objects contacted as 1st from (pos-a, ®, 1), 2nd from

(pos-s, ®, 1) etc.

Thus the program in figure 1-2 finds all objects from the line
(pos-a, @, 1). The blue objects are moved to position pos-b and the
red objects to pos-c. The effect of this program on the world is
shown in figure 1-1. The line at pos-a did contain 8 objects. The
first five have already been moved and three remain on the line. The

first five have been moved to pos-b if blue and to pos-c if red.

15
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pos-c

Figure 1-1 Effect of Program on World

red objects

length 1

We expect PAN to produce the following program specification:

V object (object € (pos-a, ®, 1) A color (object)
position(object) = pos-b)

V object (object € (pos-a, ®, 1) A color (object)

position(object) = pos-c)
Pan’s analysis is described in five phases:

symbolic execution before loop generalization

loop generalization

symbolic execution after loop generalization
exit processing

interpretation

SYMBOLIC EXECUTION BEFORE LOOP GENERALIZATION

We describe the first

blue —

red —

symbolic execution phase by specifying the

effect that executing each program statement has on PAN’s set of

16



execution states.

figure 1-2.

Stat- Stat-

ment No ment Name

1 start

2 move to
pos-a

3 loop entry

move until
contact

up to

(@, 1)

The program statement numbers refer to those in

An execution state is initialized as having

no path conditions or effects.

A new execution state is created with effects
showing that the robot hand is now at

position pos-a.

PAN performs bookkeeping tasks when a loop is

entered, these are not described here.

A real executor would execute this statement
by moving the robot hand at angle @ until
either an object is contacted or the hand has
moved 1 units. Thus this step is conditional
- its effect depends upon how many objects

are on the line.

Since a symbolic executor cannot determine
whether any objects will be found it must
handle both possibilities. Thus two new
execution states are created. One of them
will be made to reflect the case in which the

line is empty by adding:

number of objects on line (pos-a, @, 1)
=0

to the path conditions, and

robot hand at position 1 units at angle

® from pos-a and not in contact

17



if contact

to the effects.

The other execution state will be made to
reflect the case in which the 1line is not

empty by adding

number of objects on line (pos-a, @, 1)
21

to the path conditions, and

robot hand is in contact with 1lst object

from line (pos-a, @, 1)

to the effects.

This statement is asking whether the robot
hand is in contact. PAN will symbolically
execute this statement in the two different
execution states created in statement 4. 1In
the first of these, the 1line (pos-a, @, 1)
was empty and the robot is not in contact.
Thus this execution state is inconsistent
with the condition in statement 5.

Consequently, no new execution state

associated with statement 5 can be created.

In the second execution state, the 1line
(pos-a, @, 1) was not empty at statement 4,
and the robot hand is in contact. Thus this
execution state already contains the

condition required to execute statement 5. So

18



1. start

Y

2. |move to pos-a

N
4
3. |[loop entry
\\4
4. |move until contact
up to (@ , 1)
Y
Z Se
B ™ 7~
5. |i1f contact 14. |if not contact
\
- 4 g V%
- <

if color = blue 9. [if color = red 15. |loop exit

7. |grasp 10. |grasp 16.

stop

move-to pos-b 11. |move-to pos-c

\V
N

12 |ungrasp

4
13 |move-to position
at step 3
y
<
~

Figure 1-2 - Robot Domain Example
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6 if color
= blue

7 grasp

8 move to
pos-b

9, 10

11

a new execution state is created which only

requires updating of minor bookeeping data..

The condition required to execute this

statement is neither inconsistent with, nor
contained in, the execution state created by
executing statement 5. PAN executes this

statement by creating a new execution state

with

color (1lst object in line (pos-a, b, 1))

= blue

added to the path conditions.

A new execution state is created with effects

showing that the robot hand is grasping.

Since the robot hand is grasping the 1st

object from 1line (pos-a, ®, 1), a new
execution state is created with effects
showing that both the robot hand and this

object are now at pos-b i.e.

position(robot hand) = pos-b
position(lst object from line

(pos-a, ®, 1)) = pos-b.

These statements are executed as for 6, 7, 8,
except that the color of the object is red
and it is moved to position pos-c instead of

pos-b.

20



Stat- Stat-
ment No ment Name

12 ungrasp

13 move to position

at step 3

\\

14 if not contact

15 loop exit

3 loop entry

The execution states established by executing
Statements 8 and 11 will both be used to
execute statement 12. New execution states
will be created with effects to indicate that

the robot hand is no longer grasping.

Both execution states established by

executing statement 12 will be used to
execute statement 13. New execution states
will be created with effects to show the

robot hand is now at position pos-a.

This is the converse of statement 5. Thus of
the two execution states from statement 4,
only the one with no object on the line
(pos-a, @, 1) will be used to create a new
execution state associated with this

statement.

When a loop exit statement is reached, PAN
checks whether loop generalization has been
performed. Since it hasn’t, this statement is

not executed.

PAN performs bookkeeping tasks when a loop is

entered, these are not described here.

Symbolic execution now proceeds through subsequent iterations of the

loop until the required number of iterations has been reached. For

the purpose of this example, it will be assumed that three iterations

are required.

21



LOOP GENERALIZATION

PAN now has a record of the execution states associated with the loop
entry statement after zero, one, two and three iterations. From these
PAN produces a single generalized execution state which represents

the execution state after an indefinite number of loop iterations.

The objects in each execution state are related to the number of

iterations as follows:

iteration objects in execution states
0 none
1 lst object from line (pos-a, ®, 1)
2 1st and 2nd objects from line (pos-a, ®, 1)
3

1st, 2nd and 3rd objects from line (pos-a, @, 1)

From these facts the generalization process will infer the following

fact about a generalized execution state:

iteration objects
k 1st, 2nd, 3xd,...,kth objects from line (pos-a, @,
1)

This sequence of objects is represented by
(sequence i = 1 to k (ith object from (pos-a, @, 1))).

which is given the name SEQUENCE-1.

Some of the path conditions in the execution states describe objects.
The conditions describing objects from SEQUENCE-1 are now used to
Create subsequences. The appropriate constraints are color (object) =

red and color(object) = blue. These are used to generate two more

sSequences:

SEQUENCE-2 (object: object € SEQUENCE-1 A color(object) = blue)

SEQUENCE-3

(object: object € SEQUENCE-1 A color(object) = red)

22



These sequences are now used to generalize the effects of the

execution states. The following relationships are found:

all objects in SEQUENCE-2 have position equal to pos-b

all objects in SEQUENCE-3 have position equal to pos-c

A generalized execution state is now created, with the above
relationships on SEQUENCE-2 and SEQUENCE-3 as effects. This execution

state represents the effect the program would have after k

iterations.

Y] LIC EXE ION AFTER LOOP GENERALIZA N

The symbolic execution now recommences with the generalized execution

state created above. Execution proceeds as follows:

Stat- Stat- Effect on PAN’s Execution States
ment No ment Nam
4 move until As in the previous execution of this
contact conditional statement, two execution states
up to are created. One of them will be made to
(®, 1) reflect the case in which the 1line is now

empty by adding

number of objects in line (pos-a, ¥, 1)
=k

to the path conditions (since k objects have

already been obtained from this line), and

robot hand at position 1 units at angle

® from pos-a and not in contact

to the effects.

23



3

14

loop entry

if not contact

The other execution state is will be made to
reflect the case in which the 1line is not

empty by adding

number of objects from line (pos-a, @,

1) 2k

and

robot hand is in contact with (k+1)th

object from line (pos-a, @, 1).

Execution then proceeds through these
statements beginning with the second
execution state created while executing

statement 4.

When a loop entry statement is reached after
loop generalization has been performed, PAN
verifies that the loop generalization was

correct. This process is not described here.

PAN will execute this statement using both
execution states created while executing
statement 4. However, in the second of these
execution states, the line (pos-a, ®, 1) was
not empty and the robot is in contact. Thus,
this execution state is inconsistent with the
condition in statement 15. Consequently, no
new execution state associated with statement

15 can be created.

In the first of these execution states, the

line (pos-a, ®, 1) was empty, and the robot

24



hand is not in contact. Thus, this execution
state already contains the condition in
statement 15, so a new execution state is
created which only requires updating of minor

bookeeping data.

15 loop exit As a loop exit statement has now been reached
after loop generalization, exit processing is

invoked.

EXIT PROCESSING

The principal function of the exit process is to determine a value
for the wunknown iteration count k. In this example the single
execution state associated with the loop exit statement contains an

explicit value for k - the path condition:

k = number of objects in line (pos-a, ®, 1)
which was added when symbolically executing statement 4. Thus a new
execution state is created with this value substituted for k wherever
it occurs, in the definition of SEQUENCE-1, and in the path condition

for this execution state. Note that this path condition now becomes

number of objects in line (pos-a, ®, 1) = number of objects in

line (pos-a, @, 1)
which is always true i.e. there is no path condition required.
INTERPRETATION
The execution state created by exit processing is then used to
execute the next statement. However, since this is a stop statement,

the execution state is interpreted to produce the required output

specification:

25



V object (object € SEQUENCE-2 — position(object) = pos-b)
V object (object € SEQUENCE-3 — position(object) = pos-c)

where
SEQUENCE-2 = (object: object € SEQUENCE-1 A color(object) = blue)
SEQUENCE-3 = (object: object € SEQUENCE-1 A color (object) = red)
SEQUENCE-1 = (sequence i = 1 to (number of objects in line

(pos-a, ®, 1)) (ith object in line (pos-a, @©, 1))

Since an object is from line (pos-a, ®, 1) if and only if it is in

SEQUENCE-1, this is equivalent to the required specification.

DP DOMAIN EXAMPLE

In the dp domain, programs process data held in records. The data in
each record is divided into fields, each of which can be referenced
by name. Records are organized into files and may be accessed

sequentially or by key. Existing files may be read or updated and new

files created.

The dp domain example program is shown in figure 1-3. Analysis of
this program shows PAN operating in a different domain, and also
demonstrates PAN’s response to a more difficult generalization
problem. In the loop generalization phase of the first example, PAN
found a simple relationship with which it generalized the effects of
the execution states. However, in the current example the search for
a simple relationship to explain the value of the variable v fails,

and PAN must resort to a more search intensive technique.

The program in figure 1-3 finds the minimum value of the weight field
of all records in file A. The reference to ‘weight A’ in statements
6, 7 and 8 means the value of the weight field for the current record
of file A. Given a specific record x, from file A, then (weight x)

means the value of the weight field in record x.
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We expect PAN to produce the following output specification:
v = minimum({ weight(j): j € file A}).
Program analysis is again described in five phases:

symbolic execution before loop generalization
loop generalization

symbolic execution after loo§ generalization
exit processing

interpretation
YMBOLI X TION BEF L NE

Symbolic execution before loop generalization will proceed in much
the same way as in the previous example. We merely need to note that
the first time through the loop, the condition required to execute
statement 8, v < weight(A), will be inconsistent with v being
high-values in the execution state. Consequently, statement 8 will
not be executed. 1In subsequent loop iterations, the conditions at
statements 6 and 8 will both be consistent with the execution state,
and PAN will take both branches, adding suitable conditions to the
path conditions of the execution states. Thus after three iterations
there will be 8 execution states associated with the loop entry

statement. The 4 created on the third iteration will contain:

1. number of iterations = 3,
path conditions:
number of records in file A 2> 3,
weight (1st record in file A) < weight (2nd record in
file A)
weight (1st record in file A) < weight (3rd record in
file A)

effects:

v = weight (1st record in file A)
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2. number of iterations = 3,
path conditions:
number of records in file A 2> 3,
weight (1st record in file A) 2 weight (2nd record in
file Aa)
weight (2nd record in file A) < weight (3rd record in
file A)
effects:
v = weight (2nd record in file A)
3l number of iterations = 3,
path conditions:

number of records in file A

v

3,
weight (1st record in file A) 2 weight (2nd record in
file a)

weight (2nd record in file A) 2> weight (3rd record in
file a)

effects:

v = weight (3rd record in file A)

4, number of iterations = 3,
path conditions:
number of records in file A 2> 3,

weight (1st record in file A) < weight (2nd record in
file a)

weight (2nd record in file A) 2 weight (3rd record in
file A)

effects:

v = weight (3rd record in file A)

LOOP GENERALIZAT

In the same way that objects were generalized into a sequence in the

first example, PAN will generalize the 1st, 2nd, and 3rd records from
the file A into a sequence

SEQUENCE-1 = (sequence i = 1 to k (ith record in file Aa)).
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PAN will then try to use the path conditions on records in SEQUENCE-1
to generate subsequences. In this example, however, the available
conditions are more complicated and involve multiple records. PAN
attempts to express these conditions in a form suitable for Creating
subsequences, but fails. PAN then tries to generalize the effects
using the single available sequence. In this case, this means trying
to find a simple relationship that expresses the value of v in terms
of SEQUENCE-1. This also is unsuccessful because PAN does not include

‘minimum’ as one of these simple relationships.

Having failed to find a simple relationship giving a value for v, PAN
now resorts to a search intensive technique. It begins by expanding
the facts in each execution state which has completed at least one
loop iteration. This expansion uses a set of rules fully explained in

Chapter 6. For this example, however, the following rules are

relevant:
Corm el
a. given x = y generate x < y }
b. given x > y generate y < x
(>3 given x < y and y < z generate x < z
al given P(item) and item € S, generate dy (y € S A P(y))
e. given P(item) for all items in S, generate Vy (y € S — P(y))

where S is a sequence and P is a predicate.

When applied to the facts in the execution state 2, for example,

these rules will enable the following facts to be generated:

<
IA

weight (1st record in file A)

<
IA

weight (2nd record in file A)

<
IA

weight (3rd record in file A)

which in turn leads to

Vy (y € SEQUENCE-1 — v < weight(y)).
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And from

v = weight (2nd record in file B3)

PAN will generate
dy (y € SEQUENCE-1 A v = weight (y)) .

When this expansion process is complete,>PAN returns to the task of
trying to find a relationship to explain the value of v. PAN assumes
that any predicate involving v which has been generated using the
facts from every execution state, should also be true in the
generalized execution state. The conjunction of these predicates
provides a relationship involving v. In this example, the only

predicates involving v generated in all execution states are:
Vy (y € SEQUENCE-1 — v < weight (y))

and
Jy (v € SEQUENCE-1 A v = weight (y)) .

From these PAN is able to assert that v obeys the following

relationship

Vy (y € SEQUENCE-1 — v < weight(y)) A dy (y € SEQUENCE-1 A v =
weight (y)) .

PAN now builds a generalized execution state whose output wvalues

assert that v obeys the relationship above, or:

v € {z: Jy (y € SEQUENCE-1 A z = weight (y))
A Vy (y € SEQUENCE-1 — z < weight(y))}.
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YMBOLI XECUTION AF P N

Symbolic execution of statement 9 adds

number of records in file A = k

to the path conditions. Execution of statement 10 then initiates exit

processing.

XIT PROCESSIN

Loop exit in the first example occurred when line (pos-a, @, 1)
contained no more objects. In this example an equivalent role is
played by file A having no more records. Thus, by the same reasoning,

loop exit processing will provide a value for k of (number of records
in file Aa).
INTERPRETATION

PAN will output a program specification containing

v € {z: dy (y € SEQUENCE-1 A z = weight (y))
A Vy (y € SEQUENCE-1 — z < weight (y)) }.

where

SEQUENCE-1 = (sequence i = 1 to (number of records in file A)

(ith record in file A)).

Since a record is in SEQUENCE-1 if and only if it is in file A, this

is equivalent to:

v € {z: dy (y € (file A) A z = weight(y))
A Vy (y € (file a) —» z £ weight (y)) }.
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Why is this different to the expected specification? In the loop
generalization section it was stated that PAN does not include
‘minimum’ as one of its possible relationships. This being the case,
we can hardly expect PAN to express its output in terms of a
relationship it does not know. However, PAN does the next best thing,
and comes up with a relationship for v which could act as a
definition of minimum. Thus PAN is not limited to expressing output
specifications in terms of known relationships, but is able to use

these relationships to create new, more complicated ones.

1.5 PAN OVERVIEW

PAN is a program analysis system in the sense that it accepts a
program as input and produces a specification of the program as
output. This specification describes the effect the program has on
the world. We first discuss how a symbolic execution system, such as

PAN, can produce specifications.

PAN, like any symbolic execution system, uses execution states which
are descriptions of the world when execution has reached some
specific program statement S. We say that an execution state
describing the world when execution has reached statement S is
associated with 8. These descriptions contain two principal
components - the path conditions which must be true in the world for
execution to reach §, and the effects that the program has had on the
world by executing statements up to and including S. Thus, when
symbolic execution reaches the end of the program, we will have a set
of one or more execution states S81,...,8n, which are descriptions of

the world after the whole program has run.

From S1,...,8n, program specifications can be produced. Suppose each
Si contains path conditions Ii and effects Ei. These execution states
represent the program specification

(I1 - E1) A (I2 -5 E2) A ... A (In — En)

which is the specification output by PAN.
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The above discussion shows that the problem of producing a
specification can be solved if execution states associated with all
program statements can be generated. We now discuss the generation of
these execution states, firstly for programs without loops and then

separately for loops.

1.5.1 Generation of Execution States for Non Looping Programs

Generation of execution states for programs without loops is not
particularly difficult and is a feature of all symbolic execution
Systems. Since symbolic execution must proceed down multiple branches
when a conditional statement is reached, there will be, at any point
in the execution, a set of statements in different branches which are
the last statement executed in that branch. The execution states
associated with these statements are called active, and any one of

them may be used to advance the execution.

Thus, the symbolic executor continues execution by selecting an
active execution state and finding all successors of the associated
statement. For each successor statement a new execution state is
created which is a modified version of the selected one. The

modifications consist of the following:

— if the program statement is conditional, then the condition

from the statement is added to the path conditions

= any changes the program statement makes to the world is

added to the effects.

This processing constitutes symbolic execution of a single statement
and is accomplished by an ‘executor’ specific to the type of
statement. An executor is a routine which understands how to
interpret the parameters of the statement and the effect it has on
the world. For example, an executor for the ‘move-to x’ statement
knows that the effect of this statement is that the robot hand is now

at x, and if it is grasping, then the grasped object is also at x.
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Executors for conditional statements have the added responsibility of
checking whether the addition of the new path conditions has made the
execution state inconsistent. If such a situation is detected, then
the execution state describes a world situation which could not be

effected by a real executor, and is discarded.

Once execution of the successor statements is complete, the newly
generated execution states replace the selected one in the active
set. Repetition of this process will eventually produce execution
states which are descriptions of the world after the whole program

has run, and can be used to generate the required program

specification.
1.5.2 Generation of Execution States for Loops
In this section we discuss the special problems faced by symbolic

execution of loops. We can describe a general loop as having a loop

entry, a loop body and one or more loop exits, as shown in figure
1-4.

N4

loop entry

Y

N

loop body

% %4

[ ]

loop exit loop exit
| |

Figure 1-4 General Loop Format
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e
In PAN programs the first statement in a loop is always a special
‘loop entry’ statement, and the first statements outside the loop are
‘loop exit’ statements. If a program containing such a loop is
symbolically executed, then the process described above is sufficient
to ensure that execution reaches the loop entry statement i.e. an
execution state associated with loop entry will be created. PAN
includes executors for loop entry and loop exit statements which only

perform housekeeping tasks as these statements have no effect on the

world.

If symbolic execution is continued into the loop body, then
eventually condition statements will be reached which determine
whether execution proceeds back to loop entry or to one of the loop
exit statements. As usual, when condition statements are reached,
symbolic execution will continue down all branches. Thus another
execution state associated with loop entry and execution states
associated with all loop exits will be created. From the execution
states associated with the loop exits, symbolic execution can proceed
on to the end of the program. From the new execution state associated
with loop entry, another symbolic execution through the loop can be
performed, and symbolic execution will never end. Execution states
associated with the loop exits will be created which describe the
effect of the loop after 1, 2, 3... iterations. But no complete
description of the loop will be generated and , consequently, no

specifications of the program can be produced.

The central contribution of this thesis is to describe a method
whereby execution states can be generated that are associated with
loop exit and fully describe the effect of the loop. Thus, once
symbolic execution has continued from these execution states and

reaches program end, full program specifications can be produced.

PAN generates execution states associated with the loop exit

statements by a four stage process, as follows:

1/ symbolic execution of the loop is continued until some

required number of iterations have been performed
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2/ a generalization process is then performed using the
execution states associated with the loop entry statement.
The result of this process is to produce a single active
execution state which represents the effect of an indefinite
number k of loop iterations. This process is referred to as

loop generalization.

3/ symbolic execution then proceeds beginning with this
generalized execution state until execution states
associated with each loop exit and a new execution state

associated with loop entry have been created.

4/ the execution states associated with each loop exit
statement are analysed to produce a value for the number of
iterations, k. This process is referred to as exit

processing.

5/ the new execution state associated with loop entry is used

to verify the generalization.
Loop generalization is performed by the following procedure

=2 any items referred to in the execution states associated

with loop entry are replaced by sequences wherever possible
- the conditions included in any condition statement in the
loop are used to suggest subsequences which can be created

from these sequences

- the effects of the execution states are expressed in terms

of sequences wherever possible

= sequences and the effects expressed in terms of sequences

are used to create a single generalized execution state.
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Exit processing is performed by analysing the conditions occurring in
any condition statements executed between loop entry and loop exit to

obtain a value for the number of loop iterations, k.
1.6. SCOPE OF THE PROGRAM ANALYSIS

The scope of a program analysis system is determined by the class of
programs it can accept as input and the program specifications which

are expected as output.
1.6.1 Input Programs Accepted by PAN

PAN accepts programs from two distinct domains, robot manipulation
and data processing (dp). Programs from both domains have the same
structure and control statements (statements that control the flow of
control through the program). A program is structured as a directed
graph. Each node in the graph represents a program statement and the
edge between adjacent nodes determines the intended order of
execution. A statement may have multiple successors only if each is a
conditional statement. Conditional statements are based on Dijkstra’s
guarded commands [1975]. Thus a conditional statement ‘guards’ the

entry to a program branch. That branch is only executed if the guard

is true.

{
Directed graphs allow the representation of arbitrarily complex and
unstructured loops. PAN places some restrictions on these loops,
discussed in Chapter 2, but does permit loops that are more complex

than structured iterative constructs such as while, do etc.

In addition to the control statements, PAN programs include domain
specific statements. In the robot domain these statements control one
or more robot hands. In the dp domain they allow records and files to
be processed. The robot programs control a blind two dimensional
robot. From these programs the size of the objects manipulated cannot
be inferred. This has implications for the output specifications

which is discussed below.
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1.6.2 Output Specifications Produced by PAN

We now describe the output specifications in terms of format,
correctness and completeness. Output specifications produced by PAN
are expressed in the first order predicate calculus, enhanced to
include concepts such as objects, sequences of objects, files, robot

hands etc. For example, an output specification could consist of

Vobject (object € SEQUENCE-1 — position (object) = pos-b)
' A SEQUENCE-1 = (sequence i = 1 to size(line (pos-a, ®, 1))
(ith object in line(pos-a, @, 1)))

meaning that the effect of the program is that all objects from the
line of length 1 in direction ® from pos-a end up at pos-b. A more

formal description of this language is presented in chapter 2.

The correctness of PAN’s specifications depends on the correctness of
the execution states from which they are produced. The correctness of
these, in turn, depends upon the correctness of the processes which
create them, ordinary symbolic execution and loop generalization.
Since symbolic execution creates execution states using executors
which are an encoding of the effect of each type of statement, we can
assume such execution states are created correctly. Loop
generalization, however, is more suspect since it is inferring the

effect of the loop from the few iterations actually performed.

However, PAN verifies that loop generalization is correct. If the
inferred effect of the loop as described by the generalized execution
state is E(k), where k is the iteration count, then the effect after
k+l iterations should be E(k+l), where E(k+1l) represents the result
after replacing k by k+1 in the generalized execution state. PAN
performs another loop iteration beginning with the generalized
execution state. This will produce new execution states associated
with the loop entry statement, which describe the effect after
another loop iteration. These can be compared with E(k+1). Any
generalization which is not verified is discarded. This verification

process allows us to assert that PAN specifications are correct.

oA X v oo
o
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PAN specifications are correct, but they are not guaranteed to be
complete. We may distinguish between two sources of incompleteness:
limitations of PAN which could be corrected, and fundamental

limitations of the programs being analysed.

In the first category, PAN will not be able to express specifications
in terms of concepts which it does not know. For example, the
specifications for the dp domain program in section 1.4 should
ideally, be expressed in terms of the minimum function. Since PAN
does not know this function, it produced a less than ideal
specification. Also in the first category, PAN’s analysis will be
incomplete if loop generalization fails to express the effects of the
loop in terms of the sequences it has generated. Experience with PAN
has shown that failures of this type usually occur when analysing
programs deliberately constructed to have an obscure structure which
even humans find difficult to analyse. This point is further

discussed in Chapter 4.

A limitation fundamental to the programs being analysed is PAN’s
inability to recognise identical objects in the robot domain. For
example, suppose a program first moves all objects from line 1 to
line 2 and later moves all objects from line 2 to line 3. PAN’s

specifications for such a program would be:

all objects in line 1 moved to line 2

all objects in line 2 moved to line 3
instead of

all objects in line 1 moved to line 3.
However, in general, repeated contact with the same object is
impossible to detect in a program designed to control a blind robot.

Since objects may be of arbitrary shape, two separate contacts could

always be with the same object.
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Also in the first category is that PAN does not determine
preconditions for robot statements. For example, move statements
assume that there is free space between the current position and the
destination. However, since the size of the robot hand and other
objects in the environment is unknown, the améunt of free space
required to complete a move cannot be determined. For this reason,

determination of the preconditions of the program was excluded from

the scope of PAN. pleardiksrs P kg o

1.7 RELATED SYSTEMS

In discussing work related to PAN, we need to consider PAN’s goal and
the method used to achieve that goal. PAN’s goal is to analyse
existing programs without assuming the existence of specifications.

The method that PAN uses to achieve that goal is symbolic execution.

Most closely related to PAN are other symbolic execution program
analysers, since they have the same goal and use the same method to
achieve their goal. Less closely related are systems which perform
program analysis by other methods. Only distantly related are systems
which use symbolic execution to achieve other goals. We use these

three categories in our discussion of related systems.

Program analysis systems which do not use symbolic execution have to
directly analyse the input program, and this affects system
performance. Symbolic execution systems are less sensitive to the
vagaries of coding style - as long as the effects are the same, the
same analysis will ensue. Systems that directly analyse the input

program perform better at recognising known code fragments (cliches).
1.7.1 Other Symbolic Execution Program Analysers.

A system closely related to PAN is that of Cheatham, Holloway and
Townley [1979]. This system extends previous symbolic execution

analysers by attempting to handle loops with an indefinite number of

iterations. The method used is to derive recurrence relations between
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variables modified in the loop by symbolically executing a single

loop iteration.

For example, given a loop which simply increments a variable v, they
define the value of v after k iterations to be v . They now
k

symbolically execute the loop and show that

They then use prespecified rules for solving common recurrence

relations to show
v =v 4+ k,
k 0
where v0 is the value of v before the loop was executed.

Problems arise with this method when several non independent
recurrence relations need to be solved, or the equations are

conditional.

Cheatham et al solve these problems for limited special cases. For
example, they show conditional recurrence relations can be solved if

it is possible to find ranges of k within which the relations become

non conditional.

However, this technique will not work for the types of programs being
considered in this thesis. Consider the first example in section 1.3.
If recurrence relations were derived for this program they would be
conditional on properties of the objects being processed, and we
could not find ranges of k within which the equations would be

unconditional.

Even worse, we are interested in programs in which the condition
contains a variable which also occurs in the recurrence relations.
The second example in section 1.3 is of this type. If such a program
were used to find the minimum value of an array A, we would have the

recurrence relation:
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v = v if v < A[k]
k+1 k k

A[k] if v 2 Alk].

While, obviously a specific rule to recognize this particular case
could be introduced, the difficulty of solving such recurrence
relations generally is a major reason why the PAN system uses the

alternative method of generalizing from a small number of iterations.

The same techniques for solving recurrence relations were still being

used by Richardson and Clarke [1985].

The CAN system of Goosens [1979, 1981] also solves recurrence
relations to determine the effect of k loop iterations. This system
assumes that loops will be represented as recursive calls to the
procedure being analysed. The result of symbolically executing the

procedure is assumed to result in interim results of the form:

if path condition 1 then effect 1

if path condition 2 then effect 2

. - . . .

if path condition n-1 then effect n-1

if path condition n then recursive procedure call.

In other words the procedure is assumed to terminate except in the
case of a single path condition. Thus this system can only analyse
programs presented in a suitable language. If the type of programs
analysed in this thesis were represented in a language suitable for
CAN, they could still not be analysed since multiple recursive
procedure calls would be required. On the other hand, the CAN system
is particularly concerned with extending the symbolic execution
technique to LISP type languages which allow variables (and other
entities) to be ‘meta-described’. Thus in a LISP assignment statement
such as SET, the left hand side may not simply refer to a specific
variable but may itself be a conditional expression whose value

cannot be determined by a symbolic executor. This extension is

outside the scope of both PAN and the Cheatham et al system.
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Both the CAN and Cheatham et al systems analyse loop exit conditions
by including them in the set of recurrence relations to be solved.
This contrasts with PAN, which first finds a generalized execution
state and then separately determines the condition regquired to exit
from the loop. This approach allows PAN to cope with programs having

multiple loop exits, which do not appear to have been allowed for in

any previous system.

A less closely related system is that of Cohen [1983], which
symbolically executes specifications instead of programs. In " this
case only ‘simple loops’ are allowed, ones in which ‘the same thing
is done to each of a set of objects’. In this way the main issues
being addressed in this thesis are avoided. Similar comments apply to

the symbolic execution of specifications in Kemmerer [1985].

1.7.2 Other Program Analysers

A significant project at MIT in recent years has been the
Programmer’s Apprentice [Rich, Shrobe and Waters, 1979]. One aspect
of this project concerns the analysis of existing programs. Analysis
begins by obtaining a program description in terms of plan building

methods (PBMs) [Waters, 1979). Thus a loop of the form

doi=1+to 10
if A(i) < 0

A(i) =0
od
would be divided up into a basic loop - do i = 1 to 10, a ‘filter’
A(i) < 0, and an ‘augmentation’ A(i) = 0. Also, the ‘temporal
sequences’ A(i) i = 1 to 10 and {A(i): 1 € i € k A A(i) < 0} are

recognized. These temporal sequences are equivalent to the sequences
produced in a PAN analysis. However, in this early work the analysis
output was only concerned with being able to describe a program in
terms of its parts (i.e. PBMs). This left unresolved the question of
whether PBMs could be used to generate program specifications.
Indeed, as Waters [1979] states ‘it can be arbitrarily difficult to

determine what a basic loop does given the behaviour of its parts’.
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In order to produce program specifications two further stages have
since been developed. First, the PBM output, called Plan Calculus, is
converted into a ‘flow graph’, which does not contain loops [Brotsky,
1984]. The looping connections have been ‘cut’ and replaced with

annotations stating their relationships.

The second stage parses the flow graph and produces a program
description, by matching the parse output against plans from a
prespecified library [Zelinka 1986]. This system has a similar goal,
but a very different approach, from the PAN system. The reliance on a
plan library has the advantage that a new program can be recognized
as the same or similar to an earlier one. The disadvantage is that
only limited analysis can be performed for a program whose ‘parse
tree’ fails to match an existing plan. In this case a parse 1is
started at every non terminal node of the flow graph in order to at
least produce a partial program description. This produces some good
results, but as stated by Zelinka [1986], the examples used only work
because the successfully analysed fragments ‘are disjoint...connected

by data flow with no unrecognizable sections in between’.

1.7.3 Other Uses of Symbolic Execution

An extensive number of symbolic execution systems have been
developed. However, since these do not generally deal with program
analysis of loop programs with unknown specifications, they are only
distantly related to PAN. Consequently, only a small sample of these

systems is discussed here.

For a general introduction into the use of symbolic execution see,

for example, Clarke and Richarson [1981]

The DESIGNER system of Steir and Kant [1985] uses symbolic execution
to test program fragments against expected inputs/outputs and time
constraints. This system does not currently handle an indefinite
number of loop iterations. However, in considering possible future

work they state

45



‘People, on the other hand, usually recognize a correct loop when
a small number of test cases work, and we wish to capture this
ability to recognize familiar patterns from the structure of the

algorithm and from symbolic or test case execution in our

system.”’

Although PAN is primarily concerned with deriving program
specifications, rather than testing programs against expected

results, it goes some way to providing such an ability for symbolic

execution.

The tutoring system of Laubsch and Eisenstadt [1981] uses symbolic
execution to analyse student programs and compare their effect with
an expected solution. Loops are handled by deriving recurrence
relations as described in 1.6.1, but in this case the relations are

looked up in a database containing patterns of expected relations.

The system of Dannenburg and Ernst [1982] is representative of
systems using symbolic execution to prove that a loop obeys prestated

loop invariants. Such systems have only a distant relationship to
PAN.
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Chapter 2
Representation

As a program analyser, PAN accepts programs as input and produces
specifications as output. This chapter describes how the input

programs and output specifications are represented.

2.1 PROGRAM LANGUAGE

PAN was primarily developed to explore the effectiveness of
generalization as a program analysis method. Thus, to be convincing,
PAN must analyse programs which include those features which make
program analysis difficult - 1loops and variables. Also, to
demonstrate the domain independence of the generalization process,

PAN must analyse programs from multiple domains.

A secondary goal of the PAN system is to act as a component of the
Noddy system being developed at Victoria University. As such, PAN is

expected to analyse Noddy programs.

To meet both these goals, PAN has been designed to analyse programs
in a language which is an extension of that generated by the Noddy
system. The Noddy system programs are limited to the robot domain,
and do not allow variables. The extended program language used by PAN
allows variables and also applies to the dp domain. The language is
for side-effect programs - programs that manipulate or modify
external objects in some world outside the program, rather than
manipulating values internal to the program. In this sense, it is the
complete opposite of a functional language. A consequence is that it
has no data structures and programs are not intended to make much use

of internal variables.

The remainder of this section describes the structure of PAN’s
analysis language, discusses the expressiveness of this language and

then describes the syntax and semantics in detail.
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2.1.1 Structure of PAN’s Program Language

Like the Noddy system, PAN’s program representation is based on flow

diagrams. A flow diagram consists of boxes connected by arrows

representing the flow of control. Each flow diagram box contains

either a condition, an action or a flow control marker. The

box, together with its contents, is referred to as a statement. Two

flow control marker statements are start and stop. Each program

contains a single start statement and one or more stop statements.

Each statement, except the stop statement, has one or more arrows

proceeding from it. Each statement except the start statement has one

Or more arrows pointing to it. The successors of a statement S are

the statements pointed to by the arrows out of S and the

predecessors of S are the statements that have arrows pointing at
5.

For example, figure 2-1 shows a simple program containing seven

statements. Statements 1, 2, 5 and 7 are flow control markers.

Statements 3 and 4 are condition statements and 6 is an action

statement.

T start

\ &

N
2. |loop entry
o Y N
< 7~

/ 7 N
3. |if <cond-1> 4, |if <cond-2>
5. |loop exit 6. |<act-1>
% Y
=

7. |stop

Figure 2-1 A Simple PAN Program
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A program is executed by beginning at the start statement and
following the arrows to the successors until a stop statement is
reached. Given two statements S and S’, we say there is a path from
S to S’ if we can find statements S1,...,Sn such that Sl is a
successor of S, Si+l is a successor of Si, and S’ is a successor of
Sn. For every statement S there must be a path from the start
statement to S, and a path from S to one of the stop statements. The

flow control markers would be ignored by a ‘real’ executor - they are

purely for the benefit of a symbolic executor and are discussed later

in this chapter. An action statement is executed by performing the

specified action. Condition statements are of the form if

<condition>. They are executed by evaluating <condition>. If
<condition> is true then control continues on to the successors to
the condition statement. Conditional branching can therefore be
represented by multiple arrows out of one statement with each

successor statement being a condition statement, as shown in figure
2=2.

any
statement
\4
Z N
~ /'
4 \'4 4
if <cond-1> if <cond-2> if <cond-3>

I T T

Figure 2-2 Conditional Branching

A statement with multiple arrows going out is said to be at a fork
in the program (statement 2 in figure 2-1). A statement with multiple
arrows going in is said to be at a merge in the program (also
statement 2 in figure 2-1 - though a statement which is at a fork
does not have to be at a merge). A branch in a program is a linear

sequence of statements beginning at the start statement, a statement
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at a merge, or a statement immediately following a statement at a
fork, and continuing to a stop statement, a statement at a fork or a

statement immediately preceding a statement at a merge.

We insist that all successors of a statement at a fork are condition
statements. These act as guards or gates into a branch. The construct
for conditional branching described above is similar to guarded
commands, introduced by Dijkstra[1975]. Dijkstra intended that the
construct be non deterministic - an executor can continue down any
one of the branches with a true guard. Programs generated by the
Noddy system also implement conditional branching using this
construct, but the condition statements are ordered and execution
will continue down the first branch with a true guard. For a symbolic
execution system, such as PAN, these distinctions are not
significant, since generally the guard conditions cannot be proved

either true or false, and execution will proceed down all branches.

Iteration is represented by a loop in the flow diagram. In a loop,
there must be at least one statement at a fork and one of the
statements following the fork must be external to the loop if the

program is to be able to halt successfully.
2.1.2 Restricting Loop Structure

The flow diagrams as presented in the previous section can represent
a wide range of iterative constructs, including unrestricted use of
‘go tos’. This is deliberate, since a major goal of PAN is to
investigate the problems of analysing loops with limited structure -

in particular, loops with multiple unstructured exit paths.

However, PAN is not able to analyse completely unstructured loops.

PAN requires the following (informal) restrictions to be placed on

loops:

= each loop can only be entered via a single statement
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- this ‘entry statement’ is executed once for each iteration

of the loop.

The benefits that can be derived from these restrictions are
developed in chapters 3 and 4. We now express these requirements more
formally as restrictions on the flow diagrams to be analysed by PAN.
An earlier attempt to represent PAN’s input language as a formal
grammar was abandoned because of the difficulty of representing these

restrictions.

We first need to introduce our loop terminology. We want to be able
to specify loops by identifying the first and last statements in a
loop, referred to as loop entry and loop exit. If we ignore nested
loops, the loop entry statement of a loop is the statement S such
that there is a path from S back to S, but this is not true of any of
§’s predecessors. The loop exits of a loop are those statements from
which there is no path back to the loop entry, while from all
predecessor statements there are paths back to the loop entry. The
formal definitions of loop entry and loop exit which follow are
complicated by having to cope with nested loops. This is done by
using inductive definitions. We say that a statement in a flow
diagram is at a loop entry if it obeys the following inductive

definition

= a statement S is at loop entry at step 0 if there is a path
from S to S and there is a predecessor, S’ of S such that

there is no path from S’ to S

= a statement S is at loop entry at step n+l if there is a
path from S to S which does not pass through any statements
at loop entry at steps 0 to n, and S has a predecessor, S’
such that there is no path S’ to S’ except via statements at

loop entry at steps 0 to n.

2 a statement S is at loop entry if there is some n such that

S is at loop entry at step n.
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For example, in figure 2-3, S2 will be identified as at loop entry at
step 0, as there is a path from S2 to S2 and S2 has a predecessor,
S1, such that there is no path from S1 to S1. S3 and S4 will not be
identified as at loop entry at step 0 because although there are
paths from S3 to S3 and from S4 to S4, all the predecessors of S3 and

S4 also have paths back to themselves.

However, at step 1 S4 will be identified as at loop entry since there

is a path from S4 to S4 which does not go through S2 and this is not

true for S4’s predecessor S3.

We say that a statement S’ in a flow diagram is at loop exit for S

where S is a statement at loop entry if it obeys the following

inductive definition

\'%

S2

S3

Y

N

S5

N

S6

stop

Figure 2-3 Identifying Statements at Loop Entry and Exit
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~- S8’ is at loop exit for S at step 0 if there is no path from

8’ to S and from every predecessor of S’ there is a path

back to S

= S’ is at loop exit for S at step n+l if there is no path
from S’ to S except through another loop entry statement
that has a loop exit identified at steps 0 to n, and from
every predecessor of S’ there is a path back to S that does

not go through another loop entry statement that has a loop

exit identified at steps 0 to n.

= S’ is at loop exit for S if there is some n such that S$’ is

at loop exit for S at step n.

Thus referring again to figure 2-3, statement S6 is at loop exit for

S2 at step 0, and statement S5 is at loop exit for S4 at step 1.

Given a statement S at loop entry we define the loop beginning at S

as all statements S’ which obey the following:

F there is a path from S to S’ without going through a

statement at loop exit for S.

Given these definitions, we can now precisely specify the loop

restrictions that PAN places on flow diagrams:

Loop Restriction 1:

the only statement in a loop beginning at S which has a

predecessor outside the loop is S.

Loop Restriction 2:

if a loop L beginning at statement S’ contains a statement S,
such that there is a path from S to S within L that does not
include S’, then S is contained in a loop beginning at some

statement S’’ in L.

In fact, restriction 2 is a consequence of our the definition of a

loop. To prove this we first need the following lemma.
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Lemma : any path from statement S back to statement S goes through
a statement S’ at loop entry, such that there is no loop

exit for S’ on the path.

Proof:

We first prove that the path contains some statement at loop entry.
We prove this by contradiction. Suppose that the path from S back to
S does not contain any statement at loop entry. Then by the
definition of at loop entry, all predecessors of S must have the same
property, or otherwise S would have been defined as at loop entry.
Continuing this reasoning, all predecessors of the predecessors must
also have this property etc. Since by the definition of the start
statement, there is a path from start to S, then we eventually have
to conclude that the start statement has this property, which is not

possible since the start statement is not permitted any predecessors.

We now know that the path from S to S must include at least one
statement at loop entry, say S1. We prove the remainder of the lemma
by showing that if the proposition is not true there must be an
infinite number of statements on the path S to S. If S1 does not have
an exit on this path then the lemma is proved. Suppose, conversely,
S1 does have an exit on the path, say S2. For S2 to have been defined
as at loop exit, then any path from S2 to S1 must be via a loop entry

Statement which had previously had loop exits found, say S3.

If S3 does not have an exit on the path, then again the lemma is
proved, but if it does, then we can again show that another loop
entry exists on the path which had exits found before S3. This

reasoning can be continued indefinitely, as shown in figure 2-4(a).

Since there cannot be an infinite number of statements on the path S

to S, one of them must have no exit on the path as required.
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Figure 2-4 (a) Proof of Lemma (b) Proof of Loop
Restriction 2

Proof of Loop Restriction 2:

Suppose that the loop L starting at statement S does have a statement
S’ with a path from S’ to S’ which does not include S, and S’ is not
in any loop L’ in L. Then by the lemma, there is a statement S1 on
the path S’ to S’ which does not have an exit on the path (see figure
2-4(b)). By the definition of the loop starting at S1, S’ is in this

loop, as required.

The expressiveness of this restricted language is discussed in

section 2.1.5.
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2.1.3 Restricting Conditional Branching

The flow diagrams presented in section 2.1.1 can represent a wide
range of conditional constructs, including unrestricted use of ‘go
to’s. The method that PAN uses to analyse loops requires that some
restrictions are placed on the structure of conditional branching.

PAN requires the following (informal) restrictions to be placed on

conditional branching:

- in all cases at least one of the condition statements

following a statement at a fork must have a true condition

= conditional branching must be cleanly nested - two

conditional branches cannot overlap.

The benefits of these restrictions are developed in Chapters 3 and 4.
To give a graphical representation of the second, more complicated
restriction, consider the program fragments in figure 2-5. We allow
the fragment in 2-5(a). Thus we do not insist that all paths starting
at S§1 merge back at the same point. But we do not allow the fragment
in 2-5(b) because the conditional branching beginning at S2 overlaps
that beginning at S1. In order to motivate the formal statement of
conditional branching restrictions, note that one way of
characterising what is ‘wrong’ with 2-4(b) is ‘there are paths
beginning at S2 and S3 which merge at S5 but there is a path
beginning at S2 which does not pass through S5°. In other words, we
want to restrict conditional branching so that all paths from S2 must
pass through S§5. Now if the whole of the conditional branch is in a
loop, all paths from S2 will pass through S5 by performing another
loop iteration and then executing the path S1, 83, S5. This still
does not make the conditional branch in 2-5(b) acceptable, so we need
to state the restriction on conditional branching so that all paths

from S2 pass through S5 without performing another loop iteration.
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We now want to express the above requirements for conditional
branching as restrictions on the flow diagrams to be analysed by PAN.
We first need to introduce our conditional branching terminology. We
have previously defined a statement being at a merge and at a fork.
We now relate these two concepts. Let the successors to the statement
S at a fork be the condition statements S1,...,Sn. We say that a

statement S’ which is at a merge is at a merge for the fork at S
if:

= there are paths from at least two of the Si’s to S’ without

going through loop entry or loop exit of any loop S is in
= no predecessors of S’ have this property for the same Si’s.

Given this definition, we can now specify precisely the conditional

branching restrictions that PAN places on flow diagrams as

S1 S1
14 \
1> . et
S2 S3 S4 S2 S3
Y \'4 Y % v
4 v \”—+
S5 S4 S5
L

\
/]
<
<
=
~

y > <
Y
S6
S6
(a) (b)

Figure 2-5 (a) Cleanly Nested and (b) Not Cleanly Nested
Conditional Branches
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Conditional Restriction 1:
If a statement S at a fork has successors S1l,...,8n, with

conditions Cl1,...,Cn, then Cl vC2V ... vCh =T

Conditional Restriction 2:
if S8’ is at a merge for the statement S at a fork, with
successors S1,...,Sn, then if there is a path from an Si to S
then every path starting at Si can be extended to include S’
without going through statements at loop entry or loop exit for

any loop that S is in.

Conditional Restriction 3:

a statement cannot be at a merge for two forks.

We now show some of effects that these restrictions have on the
structure of conditional branches. Firstly we present a theorem which
shows that the conditional branching restrictions ensure that a

conditional branch starting at a fork SF can only be entered via SF.

Theorem 2-1: Given a statement SM at merge for the statement SF at
a fork, there is no path from the start statement to SM

except via SF.

Proof: Suppose the contrary is true. Then there are paths Pl and P2
from the start statement to SM, Pl via SF and P2 not via SF.
Let the first place where these paths deviate be the
statement SF2, which must be at a fork. Thus SF2 has
condition statements SCl1 and SC2 as successors, so that SC1
is on Pl and SC2 on P2. Now there are paths from SC2 and SC1
to SM. But SM cannot be at a merge for SF1, by the
conditional branch restrictions since it is at merge for
SF. Therefore there must be some predecessor of SM such that
there are paths from SCl1 and SC2 to this predecessor. By
looking at predecessors, predecessors of predecessors etc of
this statement we must eventually find a statement S, which

is at merge for SF2. Since by the conditional branch
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restrictions all paths from SCl and SC2 go through S, P1 and
P2 do. We now have the situation shown in figure 2-6, though

it is not known where S is on the path SF2-SC1-SF-SM.

SF2
V
2 S
N 7
SC2 SC1
% Y
P2 Pl
SF
N\ e N\
7 ~ rd
P2 + P1 Y P3
N Z
= <
Y
SM

Figure 2-6 A Conditional Branch Entered at Non Fork.

We complete the proof by showing that S must be equal to SM.
First suppose that S is before or equal to SF. This violates

conditional branch restrictions for conditional branch SF2

because then there is a path from SC2 to S, but also a path,
P2 from SC2 which does not go through S. (If P2 went through
S, then since S is before SF, P2 would also go through SF,
contrary to the definition of P2). Alternatively, if S is
after SF, but not equal to SM, then choose some path, P3,

from SF to SM which does not go through S. This is possible
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since otherwise SM would not be at merge for SF since any
successors of SF which have paths to SM would also have
paths to the predecessor of SM on the path from S to SM. But
now the path SF2-SC1-SF-P3 does not go through S, which
violates conditional branch restrictions for conditional
branch beginning at SF2, since there is a path from SCl1 to
S, which requires all paths from SCl go through S. Thus S
must be equal to SM, which violates the restriction that a

statement can only be at merge for one statement at a fork.

For the next result we need to define the point where all branches of
a conditional branch merge. We say that a merge statement SM is the
last merge for a statement SF at a fork if SM is at a merge for SF
and there is a path from every condition successor of SF to SM

without going through any loop entry or exit for any loop SF is in.

The last merge can be thought of as the end of the conditional
branch. We now prove our main result on the structure of conditional
branches. The following theorem shows that when we have nested
conditional branches, any inner conditional branches end before

merges are encountered for an outer conditional branch.

Theorem 2-2: If statement SM is at a merge for the statement SF at
a fork, and a path from SM to SF passes through a
statement SF2 at a fork, then this path also contains a

last merge for SF2.

Proof: Every path through SF2 must go through SM by the conditional
branch restrictions. Also by these restrictions, SM cannot
be at a merge for SF2. Thus there must be a predecessor of
SM which also has the property that all paths from SF2 pass
through it. Look at predecessors, predecessors of
predecessors etc of SM until one if found which has all
paths from SF2 going through it but its predecessor doesn’t.

This is a last merge for SF2 as required.
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These theorems are used in Chapters 3 and 4. The expressiveness of

this restricted language is discussed in section 2.1.5.

2.1.4 Flow Control Markers

As stated in section 2.1.1, PAN’s program statements are either
conditions, actions, or flow control markers. We now describe what
the flow control markers are, why they are required, and the extent

to which they reduce the generality of PAN’s input language.
The flow control markers used by PAN are:

= loop entry
= loop exit
~ merge

= start

= stop.

In section 2.1.1 and 2.1.2 we defined what is meant by a statement
being at loop entry, at loop exit and at merge. These concepts have
been deliberately defined to have names corresponding to flow control
markers. In fact, we want to be able to refer indiscriminately to a
statement being at loop entry (loop exit, merge) or being a loop

entry (loop exit, merge) statement. Thus we require:

all statements at loop entry are loop entry statements. All loop

entry statements are at loop entry.

all statements at a merge but not at loop entry are merge

statements. All merge statements are at a merge.

all statements at loop exit are succeeded by one loop exit
statement for each loop being exited. All loop exit statements

succeed a statement at loop exit.
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Figure 2-7 (a) Program Fragment Without Flow Control
Markers

The flow control marker statements loop entry, loop exit and merge
would be ignored by a real executor, so why are they required in
PAN’s analysis language? The reason is that it is useful for a
symbolic executor to know when key positions in the program have been
reached. The actions taken by PAN when loop entry, loop exit and

merge statements are reached is described in Chapter 3.

We now address the question of whether the requirement to include
flow control markers reduces the generality of PAN’s input language.
In fact, we claim that there is no loss of generality, as the flow
control markers could be added automatically. For example, consider
the program shown in figure 2-7(a). The definition of at loop entry

and at loop exit specified in section 2.1.2 could be turned into a
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procedure which would recognise that statement 1 is at loop entry and

statement 6 is at loop exit. New statements could then be inserted to
produce the program in figure 2-7(b).

loop entry

Y

move to pos-a

move until contact up to @, 1

« 1 5
AN
if contact if not contact
4 \'Z
grasp loop exit
move to pos-b stop
%
ungrasp
<

Figure 2-7 (b) Program Fragment With Flow Control Markers
Added

If the program has nested loops, then multiple loop exit statements

can be inserted. Merge statements are even easier to generate

automatically. Although such a program preprocessor has not been

built for PAN, it would be straightforward to produce one.
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2.1.5 Expressiveness of PAN’s Analysis Language

Having introduced the structure of PAN’s input analysis language, we
need to address the question of how expressive this language is. A
program analyser which is successful because it only allows a very
restricted input language is not interesting. Thus we want to show
that conditional and iterative constructs from more conventional

languages can be represented in PAN’s restricted flow diagrams.

For conditional constructs we consider the common ‘if...then...else’

construct and the LISP ‘cond’ construct.

‘If <condition-1> then <action-1> else <action-2>’ can be represented

in PAN’s analysis language as shown in figure 2-8,

| >
if <condition-1> if —<condition-1>
\\Z \
<action-1> <action-2>

l N Z |
= <

Figure 2-8 Representation of IF THEN ELSE

whereas ‘(cond (condition-1 actionl)
(condition-2 action2)
(condition-3 action3)’

can be represented as shown in figure 2-9.

These representations trivially satisfy the restrictions in section
2.1:3.
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Figure 2-10 Representation of WHEN
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Figure 2-11 Representation of FOR

For iterative constructs, we choose ‘when’ and ‘for’ constructs.
‘When <condition> <action>’ can be represented as in figure 2-10, and

‘for i = 1 to n <action>’ can be represented as shown in figure 2-11.

However, the PAN input language also allows less structured

iteration, including loops with multiple exits from different parts

of the loop as shown in figure 2-12.

Thus we have shown that PAN’s success at program analysis cannot be

attributed to a restricted program domain.

2.1.6 Expressions

The remainder of section 2.1 describes the allowable PAN statements.
Each statement is described by its syntax and semantics. Many of

these statements contain boolean or arithmetic expressions, which are

described first.
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Figure 2-12 Representation of Less Structured Iteration

<arithmetic expression> ::= <arithmetic operand>

<arithmetic operator>
{<arithmetic operand>} |

<arithmetic operand>
<arithmetic operator> ::=+ | - | * | ;

<arithmetic operand> ::= <arithmetic expression> |

<property>(<identifier>) | <variable> |

<number>

<identifier> ::= <file identifier> | <hand identifier>
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ntax Boolean Expr i

<boolean expression> ::= <boolean operand> <boolean operator>
<boolean operand> | not <boolean operand>
| <boolean operand>

<boolean operator> ::= and | or

<boolean operand> ::= <boolean expression> | <boolean term> | T l F |

<variable>

<boolean term> ::= <logical operand> <logical operator>

‘ <logical operand>

<logical operator> ::= = | > | < | > | <

<logical operand> ::= <property>(<identifier>) | <variable>

l <arithmetic expression>

The meaning of these terms generally follows the usual computer
science interpretation. The operand <property(<file identifier>) is
only used in the dp domain and refers to the field called <property>
in the current record of file <file identifier>. The operand
<property>(<hand identifier>) is only used in the robot domain and
refers to the physical attribute called <property> of the object
contacted by hand <hand identifier>.

The operand <variable> should be interpreted as the usual computer
science concept - an area of memory used for temporary storage of
value which can be retrieved by the variable name. All variables are
global in scope and extent and no syntactic distinction is made
between wvariables having arithmetic, boolean or other values.
However, to legitimately occur as an arithmetic operand a variable
must have a numeric value, whereas to occur as a boolean operand it

must have a boolean value.
2.1.7 Condition Statements

PAN’s input language contains only a single condition statement.
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Syntax:

Semantics:

if <boolean expression>

The <boolean expression> is evaluated. If it has a
value of T, execution can continue with the successors

of this statement, otherwise it can’t.

2.1.8 Flow Control Markers

As discussed in section 2.1.4, the flow control markers do not have

any meaning for a real executor. However, for completeness, they are

all described here.

Start

Syntax:

Semantics:

Stop

Syntax:

Semantics:

Merge

Syntax:

start

Signals the beginning of the program. Obviously both
real and symbolic executors need to know where the
program starts. However, this can be done by finding
the single statement with no predecessors, or by
insisting that the statement is first in the flow
graph. The explicit start statement was mainly included

for compatibility with Noddy programs.

stop

Signals end of the program. Equivalent comments to

those in start also apply here.

merge
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Semantics: Signals a position in the program where two (or more)

branches merge. Would be ignored by a real executor.

Loop Entry

Syntax: loop entry

Semantics: Signals a position in the program where a loop begins.
The restrictions on loops introduced in section 2.1.2
insures that each loop has a’ single position having
this property. Would be ignored by a real executor.

Lo Exi

Syntax: loop exit

Semantics: Signals a position in the program where a loop ends.

There may be several such positions for each loop.

Would be ignored by a real executor.

2.1.9 Action Statements

We now describe the action statements, which make up the majority of
PAN’s analysis language. Most of these statements are specific to a
particular program domain. Thus we describe these statements in three

categories; domain independent, robot domain and dp domain.

2.1.9.1 Domain Independent Statement

The only domain independent statement currently included in PAN’s
input language is the assignment statement. In the robot domain this
statement allows the robot to use any special abilities it may have
to modify properties of a contacted object. For example, if a
painting robot is able to modify an object’s color, this will be done
using an assignment statement specifying color as the property

modified.
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This use of the assignment statement allows all object properties
other than position to be changed (position is changed using move
statements because these affect the robot as well as the contacted
object). Thus the assignment statement allows PAN programs to have
the same effect as languages which include more specific commands,
such as ‘paint’ without unnecessarily encumbering the PAN input

program language.

The assignment statement in the dp domain allows fields in records to

-be given new values.

In both domains assignment statements can also be used to change the

value of variables.

Assignmen
Syntax: <lhs assignment> := <rhs assignment>
where

<lhs assignment> = <variable> |

<property>(<file identifier>) |
<property>(<hand identifier>)
<rhs assignment> ::= <arithmetic expression> |

<boolean expression>

Semantics: if the <lhs assignment> is
<property>(<file-identifier>), then the assignment
statement is updating the property (field) in current
record of file specified by file-identifier; if the
<lhs assignment> is <property>(<hand-identifier>), then
the statement is modifying the object contacted by
hand-identifier by changing the specified property;
otherwise the statement is changing the value of the

specified variable.
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The <rhs assignment> is evaluated and assigned to the field,

property or variable as determined above.

2.1.9.2 Robot Domain Statements

Programs written for the robot domain are intended to manipulate a
blind 2-dimensional robot with one or more ‘hands’. Under program
instruction the robot is able to move its hands and to grasp and
ungrasp objects. Objects can be grasped by a robot hand only if that
hand is currently in contact with the object. Once an object has been

grasped by a robot hand, any movement by that hand also moves the

object.

In order that a robot hand can come into contact with an object
without damaging it, special ‘move until contact’ instructions are
provided, which presumably cause the robot hand to move more slowly.
For each hand the boolean expression contact<hand-identifier> will
have the value T if hand-identifier is in contact, and F otherwise.
Thus ‘contact’ is a special ‘property’ detected by the robot hand.

The robot is also able to modify attributes of the contacted object,
other than just its position. These modifications are handled by the

general ‘assignment’ statement discussed above in section 2.1.9.1.

Program statements specific to this domain are as follows.

Move-to

Syntax: move-to <hand-identifier> <x coordinate> <y coordinate>

where

<x coordinate>

<arithmetic expression>

<y coordinate> <arithmetic expression>

Semantics: the robot hand specified by hand-identifier moves to

position specified by (x coordinate, y coordinate). If

< the robot hand is grasping an object, it also moves.
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This instruction assumes there are no obstructions in

the path of the robot hand.

Syntax: move-by <hand-identifier> <x coordinate> <y coordinate>
Semantics: same as move-to, except that new position is specified

as an increment from the current position, instead of

as an absolute value.

Syntax: move-until-contact <hand-identifier> <angle>

where
<angle> ::= <arithmetic expression>
Semantics: the robot hand specified by hand-identifier, moves at

the specified angle in a special ‘cautious’ mode and
stops as soon as it detects contact. Movement continues

indefinitely until contact is achieved.

Move-until-contact-up-to

Syntax: move-until-contact-up-to <hand-identifier> <angle>

<distance>
where
<distance> ::= <arithmetic expression>
Semantics: same as move-until-contact except that if the robot

hand is still not in contact when <distance> has been

moved, the robot hand stops.
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Grasp

Syntax: grasp <hand-identifier>

Semantics: only allowed if the specified robot hand is in contact

and not grasping. The contacted object is grasped.

Ungrasp

Syntax: ungrasp <hand-identifier>

Semantics: reverse of grasp

2.1.9.3 Data Processing Domain Statements

Programs written for this domain process files and records. Files can
be read from or written to, either sequentially or by key. Whenever
read statements are used the boolean expression
current (<file-identifier>) will be set to T for a successful read
from file file-identifier and F otherwise. Thus having a ‘current’
record is a special property of each file. No such facility is used
for write statements i.e. they are assumed to always be successful. A

key used to specify a record in a keyed read can be any predicate on

fields within the record.

No special provision is made to handle duplicates - during a keyed
read any record satisfying the predicate is retrieved; during a keyed
write a new record is always written even if it is identical to an

existing one, in which case a duplicate will be created.

Once a successful read statement has been executed, the current file

record is available for processing.

Within a single program, sequential files can only be either read
from or written to, but not both. There is no such limitation on
keyed files. No explicit open statements are used. The first file

access (whether read or write) performs this function.
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Program statements specific to the dp domain are as follows.

Sequential-read

Syntax: sequential-read <file-identifier>

Semantics: either the next record is read from the file specified
by file-identifier, and becomes the current record from
that file, or the file is exhausted and no record is

read (in which case there is now no current record).

Sequential-write

Syntax: sequential-write <file-identifier>

Semantics: the current record from the file specified by

file-identifier is written to the file.

Keyed-read

Syntax: keyed-read <file-identifier> <boolean expression>

Semantics: either a record obeying the boolean expression is read
for the file specified by file-identifier, or no such

record exists and the read fails (in which case there

is now no current record).

-wri

Syntax: keyed-write <file-identifier>

Semantics: the current record from the file specified by file

identifier is written to the file.
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2.2 SPECIFICATION REPRESENTATION

The goal of the PAN system is to produce non iterative program
specifications. To make these specifications both concise and
unambiguous, we represent them in a logical language. This section
describes this language, somewhat informally, but in sufficient
detail that a formal description of the language could be constructed
if required. We begin with a typed first order predicate calculus,
extended to include arithmetic and set theory. Thus we assumé the

language includes the concepts of:

= types (integers, real numbers, strings, objects, sources and
sequences)

e~ logical and arithmetic operators

= constants

- cardinality

- numbers

- variables

Es predicates

- functions

= terms

- well formed formulae (wff)

- truth and falsity.

Further extensions to this language are required to represent
concepts from our two domains, such as files and lines, and also to
represent the relationships between objects, sources and sequences.
Some simple functions on sequences are also needed. Thus, we extend

the language to include:
= for each of the types; objects, sources and sequences, the
special constants, OBJECT-n, SOURCE-n and SEQUENCE-n, for
all integers n, where OBJECT-n are of type object, SOURCE-n

are of type source and SEQUENCE-n are of type sequence.

= the representation of files and lines, using the functions
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file: strings -> sources

line: numbers X numbers X numbers X numbers -> sources.

The intended interpretation of file(file-name) is the source
that is a file with name file-name. The intended
interpretation of line(i, j, k, 1) is the source that is a
line of length 1, at angle k, from the point (i, j) in 2

dimensional space.

a language construct for representing the objects retrieved

from a source, using the functions

sequential-object-in-source: integers X sources ->
objects
keyed-object-in-source:unary predicates X sources ->

objects.

and the membership predicate €.

Thus if n is an integer and S is a source, then the intended
interpretation of sequential-object-in-source(n, S), is the
nth object retrieved from S. If P is a predicate with the
free variable ‘item’, then the intended interpretation of
keyed-object-in-source (P (item), S) is an object retrieved
from source S which satisfies P. If x is an object then x €

S is interpreted to mean x was retrieved from S.

a language construct for constructing primitive sequences
from objects, sources, or other sequences and the predicate
€ for representing membership of primitive sequences. Thus
if D is a function on integers whose range is a set of items
of type objects, sources, or sequences, and n is an integer,

then

(sequence i = 1 to n D(i))
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is a term of type sequence. Thus, this construct is an
abbreviation of the n-tuple (D(1), D(2),...,D(n)), where
each D(i) is an object, source or sequence. If S is a
primitive sequence, then x € S is a well formed formula with

the intended interpretation that x = D(i) for some i, 1 <1

< n.

a language construct for creating subsequences from
sequences and the predicate € for representing membership of
subsequences. Thus if S is 'a sequence, and P is a unary

predicate, then

(item: item € S A P(item))

is of type sequence. The intended interpretation is the
objects included in S which also satisfy P. If S’ is such a
subsequence, then x € 8’ is a well formed formula with the

intended interpretation that x € S A P(x) .

representation of size of sources and sequences, meaning the
number of elements they contain. Since we have defined
membership of sources and sequences and our basic language
is assumed to include set theory, we can define the size as
the cardinality of the set of members in each construct by

the axiom

size(x) = cardinality({item: item € x})
where x is of type source or sequence.
a function, item-in-sequence, for referring to an item by
its position in a sequence. Thus if n is an integer and $ is
a sequence, then item-in-sequence(n, S), is a term of the

same type as the elements of S. The intended interpretation

is that item-in-sequence(n, S), is the nth item in S.
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= a function, position-in-sequence, for referring to the
position an item occupies in a sequence. Thus if x € S where
S is a sequence, then position-in-sequence(X, S) is an
integer. The intended interpretation is that
position-in-sequence(x, S) = n, if x is the nth element of

S

= a function, map, for specifying corresponding members of

sequences of equal length. Thus if S and S’ are sequences

such that size(S) = size(S’), then map(item, S, S’) is

defined as

item-in-sequence (position-in-sequence (item, S), S’)

The interpretation of map is that it maps the nth element of

S to the nth element of S’.

In this extended language, a specification is represented by a wff in

the form

(P1L - Q1) A (P2 -5 Q2) A ... A (Pn - 0On),

meaning that if the input to the program satisfies Pi, then the

program has effect Qi, for i = 1 to n.

2.2.1 Some Examples of Using the Specification Language.

We now provide some examples of specifications represented in this

language.
Suppose we have a program which moves the first object from the line

(pos-a, @, 1) to pos-b if it is blue and to pos-c otherwise. In our

formal specification language, this would be expressed as:
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(SOURCE-1 line (pos-a, ®, 1) A
OBJECT-1 = sequential-object-in-source(l, SOURCE-1) A
color (OBJECT-1) = blue

— position (OBJECT-1) = pos-b)

(SOURCE-1 = line(pos-a, ®, 1) A
OBJECT-1 = sequential-object-in-source(l, SOURCE-1) A
— color (OBJECT-1) = blue

— position (OBJECT-1) = pos-c)
For another example, consider again the robot domain example from
section 1.3. This program moves all blue objects from line (pos-a, D,
1) to pos-b and red objects to pos-c.

This would be expressed as:

SOURCE-1 = line (pos-a, ®, 1) A

SEQUENCE-1 = (sequence i = 1 to SIZE (SOURCE-1)
sequential-object-in-source (i, SOURCE-1)) A

SEQUENCE-2 = (item: item € SEQUENCE-1 A color(item) = blue) A

SEQUENCE-3 = (item: item € SEQUENCE-1 A color(item) = red)

— (Vitem (item € SEQUENCE-2 — position(item) = pos-b) A

Vitem (item € SEQUENCE-3 — position(item) = pos-c))

To demonstrate the usefulness of the map function, consider the

program in figure 2-13. In this program the specification will

include the sequences

SEQUENCE-1 = (sequence i = 1 to n sequential-object-in-source (i,
SOURCE-1)
SEQUENCE-2 = (sequence i =1 to n sequential-object-in-source (i,
SOURCE-2)
where
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1. |start

V

2. |loop entry

3. |sequential read A

1%

4. |[sequential read B

c | N
b s

5. |if weight (A) = weight (B)

6. |color(A) := blue

Figure 2-13 - Subsequences using two sources.

SOURCE-1 file ()

SOURCE-2 = file(B).

To describe the action taken at statement 6, we need a subsequence of
all objects in SEQUENCE-1 which obey the condition at statement 5.
This subsequence consists of all objects from SEQUENCE-1 whose
weights are equal to the weight of corresponding objects from

SEQUENCE-2. These can be expressed using the map function as

SEQUENCE-3 = (item: item € SEQUENCE-1 A weight (item) =
weight (map (item, SEQUENCE-1, SEQUENCE-2))).

We can now express the specification of the program fragment as:
SOURCE-1 = file(A) A

SOURCE-2 = file(B) A
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SEQUENCE-1

(sequence i = 1 to n sequential-object-in-source (i,

SOURCE-1)) A

SEQUENCE-2 = (sequence i = 1 to n sequential-object-in-source (i,
SOURCE-2)) A
SEQUENCE-3 = (item: item € SEQUENCE-1 A weight (item) =

weight (map (item, SEQUENCE-1, SEQUENCE-2)))
— Vitem(item € SEQUENCE-3 — color(item) = blue)
In some programs, objects have properties modified in a way that is
dependent on the object’s position in a sequence. For example, a
program may move  all objects from line (pos-a, ®, 1), so that the
first object is moved to (1,1), the second to (2,2) etc. The

specification for this could be expressed using the specification

language as:

SOURCE-1 = line(pos-a, ®, 1) A
SEQUENCE-1 = (sequence i = 1 to size (SOURCE-1)
sequential-object-in-source (i, SOURCE-1))
— Vitem (item € SEQUENCE-1 — position(item) =
(position-in-sequence (item, SEQUENCE-1),

position-in-sequence (item, SEQUENCE-1)))

Specifications of more complex programs can be constructed from these

language components. Further examples are presented in the appendix.
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Chapter 3

Execution States, Program Analysis
and Symbolic Execution

3.1 INTRODUCTION

Given-some initial state of the world, real execution of a program
will produce some particular effect. Observing such a single real
execution does not allow us to describe the general relationship
between initial world states and effects. Symbolic execution, on the
other hand, attempts to simulate program execution for a general
‘symbolic’ input. The result of such a simulation should allow

program effects to be expressed as a function of the initial state.

Both real and symbolic execution of an entire program are achieved by
repeated execution of individual program statements. Real execution
of a single program statement may involve updating the executor’s
internal state and/or modifying the domain in which the program
operates. A symbolic executor mimics these effects by maintaining
symbolic descriptions of both the executor’s internal state and the
effect the program has had on its domain of execution at each point
in the program. These symbolic descriptions are referred to as
execution states. Thus the effect of symbolically executing a program
statement S is to produce the execution state at the point following
the statement. This execution state describes the effect of executing

all statements up to, and including, S.

Conditional statements are those which control entry to different
program branches. The simplest conditional statements are those which
control entry to two program branches. One branch is entered if the
condition is true and the other if it is false. Upon reaching such
statements, a real executor will evaluate the conditions to determine
which branch to follow. A symbolic executor, on the other hand, in

general, will not be able to determine whether the condition is true
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or false. Instead, the symbolic executor will take both branches. A
separate execution state will be created for each branch and the fact
that the condition is true will be added to one execution state and
the fact that it is false added to the other. Thus the execution
states associated with any execution state S will contain facts
derived from all conditions on the path traversed to reach S. We
distinguish between these facts and the remainder of the execution
state, by referring to the former as path conditions and the latter

as the effects.

Each execution state can be associated with a single program
statement - the statement executed by the symbolic executor in
producing that state. A statement ,however, can be associated with
many execution states. This arises because the same program statement

may be reached by different paths through the program.

Since different paths through the program may have different effects
the execution of a program statement requires that a separate
execution state be produced for each such path. Thus a program
statement, S, may be associated with all the different execution

states produced by executing S.

The execution states associated with a single statement cannot be
simply ‘merged’ into a single execution state. To see why, suppose
that the statement was in a loop. Then the execution states
associated with this statement will reflect the effects of one, two,
three... loop iterations. A single ‘merged’ execution state would
have to describe the effect after an indefinite number of iterations,
which is exactly the problem which has made symbolic execution of

loops hard, and is the major issue addressed by this thesis.

For a program without loops, symbolic execution is an adequate
program analysis technique. Each execution state associated with a
stop statement implicitly contains a partial program specification of
the form path conditions — effects. The conjunction of these partial
specifications are the full program specification. However, for

programs with loops, symbolic execution alone is not adequate, as the
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complete set of execution states associated with stop statements can
never be produced. Thus the PAN program analysis system combines
symbolic execution with separate techniques for loop analysis.
Symbolic execution and 1loop analysis techniques are organised as
separate tasks, both of which use execution states. The remainder of
this chapter describes the contents of the execution states, shows
how PAN schedules the various tasks it has available and describes in

detail the symbolic execution task.

3.2 EXECUTION STATES -

Because of the problem of conditional statements discussed above, any
symbolic executor needs to maintain multiple execution states. Most
symbolic execution systems discard an execution state once it has
been used to forward the symbolic execution. In the PAN system,
however, loop generalization requires the execution states after one,
two, three or more 1loop iterations to be available to the
generalization process. To ensure that sufficient information is
available, PAN retains all execution states. This requires PAN to
record some additional bookkeeping information with each execution
state, to be able  to distinguish those execution states being
retained for generalization from those still actively involved in
symbolic execution. Again to assist loop generalization, PAN also
records some history in the execution states. Of course, PAN also
records the ‘standard’ data of path conditions and effects. These
categories of information are used in the following detailed

description of PAN’s execution states.

3.2.1 Effects

A symbolic executor needs to describe the effect the program has had
on the world in which the program executes. This data is generally
standard information which all symbolic executors need to maintain.
The only unusual features are the use of objects to refer to either
physical objects or file records, and the information recorded on

sequences. The information is recorded in the following categories.
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PAN programs are allowed to refer to simple variables, and the
program may have had the effect of changing the value of some of
these variables. So, we record the value of each variable so far
encountered in the program. Variables are identified by the name used
in the program. This information is used whenever a variable occurs
in program expressions which need to be evaluated (e.g. conditional

expressions, or parameters of action statements).

Thus, we may record v = 6 or w = weight (OBJECT-1) .

Data

For each object encountered during program execution, we record the
value of any changed properties. The word ‘objects’ is used
generically to mean the fundamental element in the world the program
runs in. In the robot domain, these are physical objects, whereas in
the dp domain they are records from a file. Properties refer to
physical properties of physical objects or the value of fields in a
record. Each property is identified by the name used in the program.
This information is used whenever an object property that has been

modified occurs in a program expression which needs to be evaluated.
However, since updated properties record the principal effect the
program has had on its environment, this data is primarily used in
program interpretation - the process of producing program
specifications from the execution states. This data is generalized
into sequences during loop generalization. Two examples of updated
properties are:
color (OBJECT-1) = red

and

position(OBJECT-2) = (1,2)
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ur Data

For each source identified during program execution, we record:

= the current object
= the number of retrievals attempted (sequential input sources
only) or number of writes (sequential output sources only)

- an exhausted indicator (sequential sources only)

The word source is used generically to mean the method of specifying
objects in the program. In the robot domain objects are specified by
the lines on which they are contacted, whereas in the dp domain

records are specified by the files from which they are retrieved.

The current object specifies the most recently accessed object from
the source, if there is one. In the dp domain it is used whenever a
program statement refers to a source as a way of specifying the

current object from that source. For example, the program statement

X := weight (A)

means that the variable x is assigned the value of the weight of the

current object from source A.

The number of objects retrieved is used to determine the definition
of the next object to be retrieved. For example, if the number of
objects retrieved = 2, then the next object retrieved will be defined

as the 3rd object from that source.

The number of retrievals attempted acts like a special type of
variable, not referenced in the program but required by the symbolic
executor to keep track of its position in a sequential file. (A real
executor would also need such a variable if the language allowed such
statements as ‘read nth record’.) PAN’s use of this variable is
further discussed in section 3.3.5 in describing symbolic execution

of statements which sequentially retrieve objects from sources.

87



The exhausted indicator, if set, shows that the previous attempt to
obtain an object from the source was unsuccessful (because the source
had no more objects). If this indicator is set, subsequent attempts

to access the source will always be unsuccessful.
Object Sequence Data

For each object sequence, we record the same information as for

objects i.e. the value of updated properties.

Sequence information is only created in the loop generalization
process. Sequence information is used in program interpretation and,

for programs containing nested loops, for further generalization.

Robot Status Data
In the robot domain only, PAN records, for each robot hand:

= its position
= object contacted (if any)

& an indicator to show whether hand is grasping or not.

This information is needed to determine which object (if any) has its
position changed when the robot hand moves, and what its new position

is.
3.2.2 Path Conditions

The path condition in an execution state contains a boolean
expression that the initial state of the world must satisfy in order
for the program to have the effect described in the remainder of the

execution state.

Any given execution state is associated with a program statement and
records the effects of symbolically executing some path through the
program up to and including that statement. This path can only be

traversed if the initial state of the world is such that all
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conditions along the path are true. The path condition is therefore

the conjunction of these conditions.

To formalise this definition, we first need to introduce our
terminology for the instantiation of a predicate. Conditions may
contain references to files, hands and variables. A condition is
evaluated in any execution state by instantiating files by the
current object, hands by the contacted object and variables by their
current value. We use the convention that the instantiation of
predicate C(xl,...,xn), with free wvariables, xl,...,xﬂ by
values Vot g is represented by C(xI/vU...,xn/vﬁ. If
we want to show the instantiation with the appropriate values in
execution state E, then we write C(xl,...,xn)/E or simply C/E if
the free variables in the predicate do not need to be individually

identified.

Now suppose PAN execution has proceeded from the start statement down
some path P, to reach statement S. Suppose further that PAN created
execution states E],...,EJ when executing condition statements
containing conditions C],...,Cn on this path, and execution state
E when executing S. The path condition for execution state E is

then defined as
Cl/E1 A e W Cn/En,
simplified if necessary.
For example, path condition could consist of:
(color (OBJECT-1) = red) A (size (SOURCE-1) < 10).
3.2.3 History
PAN also records some historical information, for use in the loop
generalization process. Chapter 4 gives a detailed description of the

use of this information. At this point we merely state that this

information enables PAN to reconstruct from the execution states the
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structure of conditional branching within the loop and the conditions
required to enter each branch. To specify this information, we first
need to introduce the concept of a statement condition. Given any
statement within a loop, the statement condition, for any iteration
of the loop, is the condition which needs to be true for execution to
reach that statement from loop entry, using any possible program

path.

Before formalising this definition, we introduce an alternate form
for representing instantiation. This is required because PAN needs to

be able to identify the instantiation on statement conditions. Given

a predicate C(x ,...,x) with free variables X oo x, we
1 n n
use C(xlln l,...,x [v]) to represent an instantiation of
b n n
X ogpowarX by v,...,v which is explicitly recorded, rather
n 1 n

than simply substituted into C. In other words, both xi and vi
are recorded. If C is instantiated with appropriate values from
execution state E and individual values do not need to be identified,

we write C[E].

To formalise the definition of the statement condition, suppose a
statement S in a loop can be reached down paths P:""'Pn from
loop entry without passing again through loop entry or a loop exit

for this loop entry. Beginning with a single execution state E
associated with loop entry, suppose that execution of P1 produces
execution states E—il,...,E—inh, when executing conditions

c-i1, ...,C-inu on Pi. We define the statement condition C to

reach § starting in execution state E as

C = (C-11[E-11] A ... A C—lnH[E—lnh]) V ses V¥
(C-n1[E-nl] A ... A C-nm [E-nm ]).
n n

Since the instantiation is explicitly recorded, we can always derive
the uninstantiated form of a statement condition by replacing terms

of the form xihﬂ] by x{

Note that when we define the statement condition for a statement in a

loop, the loop may contain inner loops. Such inner loops do not
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appear explicitly in the definition of the statement condition. For
the purpose of statement conditions we treat each inner loops if it

were of the form shown in figure 3-1.

Of course, condition-1,...,condition-n are not explicitly defined in
the program, but we assume that these conditions can be determined as
part of loop processing. Given such a representation of an inner
loop, condition-1,...,condition-n, will, being conditions, be

included in statement conditions in the outer loop.

This method of handling inner loops means that the statement
condition for a statement S in a loop cannot be determined until all
inner loops on the path from the loop entry to S have been analysed.
PAN scheduling, described later in this chapter, ensures that loops
are analysed in the correct order so that statement conditions can
always be determined. How the conditions in figure 3-1 can be

determined is addressed in Chapter 5.

The use of the statement condition requires that it satisfies the

following:

- if a loop contains two statements S and S’ that intuitively
require the same conditions in order to reach them from loop
entry, then the statement condition to reach S starting from
execution state E will be equivalent to the statement
condition to reach S’ starting from the same execution state

E

- given two execution states E and E’ associated with loop
entry, the uninstantiated form of the statement condition to
reach some statement S in a loop starting from E will be
equivalent to the statement condition to reach S starting

from E’.
These conditions are related in that they are affected by the extent

to which the statement condition is simplified. The second

requirement is trivially true if the statement condition is not
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loop entry
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outer loop outer loop
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Figure 3-1 Inner Loops for Statement Condition

simplified at all. However, the first requires that some
simplification is performed. To see why, consider the program
fragment in figure 3-2. If OBJECT-1 is read from file A and the value
of x is 5, the statement condition to reach S is

color (A[OBJECT-1]) = red

while that to reach S’ is

(color (A[OBJECT-1]) = red A x[5] < n) v

(color (A[OBJECT-1]) = red A x[5] 2 n).

Simplification of the statement condition for S’ produces

color (A[OBJECT-1]) = red
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1. |loop entry

\
2. |read A
Z N
~ P
Y \
3. |if color(a) = red 4., |if —color () = red
5. [s] |
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|
6. |if x < n 7. |12f x 2 n |
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8. |read B
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9. |merge

10. |s?

%
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11. |[merge

12. |read C

Figure 3-2 - Statements with Equal Statement Conditions
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1. |v := high-values

2. |loop entry

3. |read A
\'4

< \

-~ v
4. |if v 2 weight (A) 5. |[if v < weight (A)

WV N
6. |v := weight (A)
> <

7. |merge

Figure 3-3 - Statement Conditions on Different Iterations

which is equal to the statement condition for S, meeting the first
requirement. In this simplification A[OBJECT-1] can be treated as a
term distinct from OBJECT-1. If, however, terms of the form x[v] are
treated as being equivalent to v, then the second requirement above
will not be satisfied. To see why, consider the program fragment

shown in figure 3-3.
Suppose that during symbolic execution of this program, we have two

execution states E and E’ associated with loop entry, E being the

state after no loop iterations and E’ being the state after one
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iteration. The statements conditions to reach statement 6 from E and

E’ will be

weight (A[OBJECT-1]) < x[high-values]

and

weight (A[OBJECT-1]) < x[weight (OBJECT-1) ]

assuming the first two objects read from file A are OBJECT-1 and
OBJECT-2, since on the first iteration the path through statement 6
will be taken and x will be given the value weight (OBJECT-1). But,
assuming the simplification rule, n £ high-values, for any number n,
the first of these expressions may be simplified to T, if
x[high-values] is treated as equivalent to high-values. To avoid this
problem, PAN simplifies the statement condition treating x[v] and v

as distinct terms.

The statement condition has some similarities to the path condition.

However, they differ in that

= the statement condition is only defined for statements in a
loop, and only describes the conditions between loop entry

and the statement

- the statement condition records the condition to reach a

statement down any path, not a particular path

- the instantiation of the statement condition can be
identified, and this limits the simplification which can be

performed

We are now in a position to describe the history recorded by PAN.
Given an execution state, E, associated with a statement S in a loop,
created after execution has proceeded from execution state E’
associated with loop entry, then the statement condition to reach §
from E’ is recorded in E. This historical information is recorded for

each loop the statement is in.
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This history allows PAN to reconstruct the program structure during
loop generalization. However, this information could not be obtained
simply by examining the program. The predicates from the condition
statements in the 1loop could be determined this way, but the

instantiation could not.

3.2.4 Bookkeeping Data

To enable the symbolic executor to keep track of its numerous
execution states, we record on each state the associated statement,

parent execution state, status and loop data.

The status is used to determine what type of processing is required

for the execution state. Possible values are:

= active normal symbolic execution can be continued
from this execution state
= dead no further processing is required for this
execution state
= waiting loop execution state has reached loop entry after
generalization some number of loop iterations

L waitin % execution state has reached loop exit

r in statement after loop generalization

- waiting merge execution state has reached a merge statement

- waiting execution state has reached program end

in r n

The symbolic execution process described below always creates a new
execution state from an existing one. Thus execution states have a
parent/child relationship, which is recorded in the parent execution
state. This relationship allows us to describe one execution state as

descended from another.
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If the last statement executed is within one or more loops, then PAN
requires information about these loops for two reasons. Firstly, in
order to ensure that only a specified number of iterations are
performed before loop generalization, PAN needs to record the number
of iterations performed. Secondly, because symbolic execution only
allows loop exit after loop generalization, an indicator is required

of whether a loop has yet been generalized.

3.2.5 Names and Definitions

Much of the information recorded in the execution states involves
objects, sources or sequences. For clarity, these are referred to
using identifiers of the form OBJECT-n, SOURCE-n and SEQUENCE-n.
These identifiers need to be related to the definition of each item.
This information is the same for all execution states and we refer to

it as global data.

3.3 PROGRAM ANALYSIS

3.3.1 Introduction

Having described execution states, we are in a position to describe
in more detail how PAN uses symbolic execution to perform program
analysis. The intention is to allow symbolic execution to continue

until execution has reached program end.

Once this point has been reached, then the execution states
associated with stop statements are interpreted to produce the
program specification which is the output from the program analysis.
If these execution states are El,...,En containing path conditions
Pl,...,Pn and effects Ql,...,0n, then the required program

specification can be derived by simplifying the expression

(P1 -5 Q1) A (P2 -5 Q2) A ... A (Pn > Qn).

The apparent simplicity of this scheme is complicated by loops in the

input program. Regardless of language and representation a loop must
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always contain a condition which controls exit from the loop. The
inability of a symbolic executor to determine the truth of this

condition will lead to loop execution continuing indefinitely.

PAN addresses this problem by analysing loops using a three stage
approach: first, the execution states produced during a few loop
iterations are generalized to a single execution state representing
the effect of an indefinite number of iterations; second, the
generalizations produced are verified to be invariants by performing
another 1loop iteration; third,. symbolic execution using the
generalized execution state continues until all possible loop exits
have been reached, at which point loop exit processing determines the

number of loop iterations performed.

Normal symbolic execution then continues from the loop exits using

the execution states produced by the loop exit analysis.

Both loop generalization and loop exit processing differ from normal
symbolic execution in that they use multiple execution states, and
cannot be performed until all these states are available. This is
also true of a merge process which is required for updating the

statement condition stored in the execution state history.

Thus symbolic execution is only one component of the PAN system. In
fact, PAN consists of several distinct components called processes.
At any one time, only one of these processes is active, controlled by

a scheduling process as shown in figure 3-4.

scheduler
initial- symbolic merge loop exit inter-
ization execution general- processing preter
ization

Figure 3-4 - Structure of PAN
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The function of each process is summarized as follows:

Process Function
scheduler Decide which process to run next.
initialization Begins program analysis.

symbolic execution Symbolically executes one or more statements.
merge Updates statement condition at a merge
statement inside a loop.

loop generalization Generalizes all execution states at loop

entry.

exit processing Determines number of loop iterations
performed.

interpreter Outputs program specification from execution

states at program end.

3.3.2 Process Description

This section describes the individual PAN processes in more detail.

Initialization Process

Input: program to be analysed

Output: a single execution state

This process is invoked once, when PAN is executed. PAN requests an
input program and then finds the single ‘start’ statement within the
program. PAN then creates an execution state, associates it with this

start statement and sets its status set to active.
lic Ex ion Pr
Input: a single active execution state representing execution up to
and including some statement S

Output: new execution states representing execution of all

statements up to and including all successor statements of §

99



PAN finds the statement associated with the input execution state. It
then scans the input program to find all successors of this
statement. PAN changes the status of the input execution state to
dead unless it is associated with a loop entry statement of an
ungeneralized loop, in which case it is changed to ‘waiting loop

generalization’. Then, for each successor statement PAN:

- creates a new execution state which is initially a copy of

the input execution state

- updates the execution state according to the instructions in
the statement. PAN has an update subprocess for each type of
statement and simply calls the update subprocess associated

with the name of the command in the statement.

This process is simple because the actual knowledge of how to execute
a particular statement is in the subprocesses. There are three groups
of statements - condition statements, flow control markers and action
Statements. PAN symbolically executes condition statements by
updating the path and statement conditions. It executes flow control
markers by updating history and bookkeeping information. It executes
action statements by updating the effects. The subprocesses for these

three groups are described in sections 3.3.3, 3.3.4 and 3.3.5

respectively.
Merge Process

Input: a set of execution states associated with a single merge
statement, that are descended from a single execution state
associated with the loop entry

Output: same set of execution states updated

Section 3.2.3 defined the statement condition recorded in any
execution state created during execution of a statement in a loop.
Using this definition the statement condition could be derived by
finding the appropriate conditions from the program and instantiating

them using previously created execution states. A more efficient way
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of finding the statement condition is to create it from the one
recorded on the parent execution state. By the definition of the
statement condition it is easy to show that given execution states E
and E’ associated with statements S and S’, where S’ is a predecessor

of S and S is not a merge statement, E’ is the parent of E

- if S8 is not an if statement, then the statement condition in

E equals the statement condition in E’

= if S is an if statement, with condition C, then the
statement condition for E is the conjunction the statement

condition in E’ and C[E].

Thus the statement condition in E can easily be determined from that
in E’, except possibly in the case that S is a merge statement. In
this case we want to show that the statement condition can be derived
by forming the disjunction of the statement conditions from all

execution states associated with predecessors of S.

Theorem 3-1: If a statement SM is at a merge, then the statement
condition tp reach SM is the disjunction of the

statement condition of every predecessor of SM.

Proof: Suppose there are paths P,...,P from loop entry to SM,
1 n
and the predecessors of S are S1""'S' Then
m
P1""’P can be divided into disjoint sets
n

SPI,...,SPM, so that SP1 contains paths which reach SM
via Si. Since by definition the statement condition to
reach SM is the disjunction of the conditions on all of
P1""'Pn' while the statement condition for each Si
is the disjunction of all the conditions on SPN the

result follows.

Corollary: If a statement SM is at a merge, and the predecessors
of SM have associated execution states E“...,E,
n
with statement conditions C1""'C ; then the
n

statement condition in any execution state E associated

with SM is = C v c2 V iwe VIC .,
1 n
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Proof: Since the statement condition recorded in an execution state
is simply the statement condition of the associated

statement the result follows from the above theorem.

Thus, when a merge statement is reached, the statement condition to
be recorded in any execution state associated with the merge
statement can be derived from the statement conditions in all
execution states associated with the predecessors of the merge
statement. This function is performed by the merge process. It cannot
be invoked until all the execution states associated with
predecessors have been created. This is ensured by the scheduling
process discussed in section 3.3.6. Note that the merge process works
in conjunction with the merge subprocess which simply changes the
status of execution states reaching a merge statement to ‘waiting
merge’ . The merge process is then invoked to create the new statement

condition.

Thus the merge process retrieves the statement conditions from each
input execution state and forms the disjunction of these expressions.
This expression then becomes the statement condition on the output

execution states which are given a status of active.

We now prove some additional results on the form of the statement
condition at a merge statement. These results are used in the loop

generalization described in Chapter 4.

For the first result we need a definition of the depth of conditional
branching. We say that a conditional branch starting at fork SF1 is
inside a conditional branch starting at fork SF2 if SF1 is on a
path from SF2 to a statement at merge for SF2. A conditional branch
starting at fork SF has depth n if there are n conditional branches
starting at forks SF1l,...,SFn, such that each SFi+l is inside SFi,
and SF1 = SF.

For the first theorem, recall that a merge statement SM is the last
merge for the statement SF at a fork if SM is at a merge for SF and

there is a path from every successor of SF to SM.
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Theorem 3-2: If SM is a last merge for fork SF, then the statement

Proof:

condition at SF is equivalent to the statement

condition at SM.

Proof is by induction on the depth of conditional branching

of the conditional branch beginning at SF.

If the conditional branch starting at SF has depth 0, then
there are no inner branches. Suppose there are paths
P],...,Pn from loop entry to SM, with conditions
C—ll,...C—lml,...,C-nl,...,C-nm . Then, by definition,

n

the statement condition at SM is
(C-11 A ... AC-Im) V ... Vv (C-n1 A ... A C-nm).
. 1 n

Suppose the conditions occurring in paths from SF to SM are
C;""'Cp' some subset of

C—ll,...C-lml,...,C—nl,...,C-nmn. Since, by the
induction hypothesis, there are no statements at a fork
between SF and SM, Cl,...,Cp must be the conditions in
the successor statements to SF. Thus, each path between SF
and SM will include a single condition from C:""'C'

p

Now consider any path Pi from loop entry to SM. If Px

contains a condition from C,...,C, then there is
1 P

another path, Pj, identical to Pi except going through a

different condition from C,...,C. So, for any term,
1 P
(C-31l A ... A C-ink), in the statement condition at SM
which includes a condition from C y+-.+C, there will be
1 P

a set of terms identical to this one except including

different members of C,...,C. But since Cl V. ... V
1 P
C = T, these terms can be simplified by removing
P
ClawsnC s
1 P

Thus the statement condition at SM will not include any
conditions occurring between SF and SM. Also, by theorem

2-1, any path from loop entry to SM goes through SF, so the
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statement condition at SM does not include any conditions
not in the statement condition at SF, and therefore they are

identical, as required.

We now suppose that the result is true for conditional
branches of depth n-1, and we want to show it is true for
conditional branches of depth n. We follow the statement
condition as it varies down a path P from SF to SM. Suppose
the statement condition at SF is C. If the successor to SF
on P has condition C{ then the statement condition at
this statement will be C A Ci. For any succeeding
statement on P, we observe that if it is neither a condition
or a merge, then the statement condition will be unchanged.
If a statement at a fork is encountered on P, then by
theorem 2-2, there will be another statement further down P
which is a last merge for this statement at a fork. The
conditional branch at this fork can have depth at most n-1,
so by the induction hypothesis, the statement condition at
the last merge will be the same as at the fork. Thus, apart
from statements at merge for SF, the statement condition at
the end of P will still be C A Ci. But since, by theorem
3-1, the effect of merge statements on the statement
condition is to form the disjunction of statement conditions
at preceding branches, this means that the statement
condition when SM is reached will be a disjunction of terms
of the form (C A CJ. Now since SM is a last merge for SF,
there are paths from each successor of SF to SM, and so each
Ci will occur in at least one such term. Thus the statement

condition at SM is

(C A C1) V ...V (CAC)
P
= C A (€ V .us 'V IC)
1 p
=CAT
= C

as required.

104



Theorem 3-3: Suppose SM is at a merge for SF at a fork, and SF has
successors S1,...,Sp which are on paths from SF to SM
If S81,...,Sp contain conditions Cl,...,Cp, then the
statement condition at SM is equivalent to the

statement condition at SF A (C1 V ... vC).
P

Proof: Suppose the conditional branch starting at SF has
conditional branching depth of n. The argument in the
theorém above did not use the fact tﬁat SM was a last merge
for SF except to assert C1 V ...V Cp = T. Therefore,
using the same reasoning we can show that the statement
condition at SM = statement condition at SF A (C1 V ... V

C) as required.
P

Loop Generalization Process

Input: a set of execution states associated with a loop entry
statement that are all descended from a single execution
state associated with the same loop entry statement (This
execution state will be the one which has done zero
iterations. All other execution states in the set will have
completed a different number of iterations, varying from
zero to the number of iterations required for

generalization).

Output: a single generalized execution state, with the number of

loop iterations unknown.

The restriction of the input to execution states descended from a
single execution state associated with the loop entry requires some
explanation. Suppose that a branch in the program prior to the loop
has the effect that execution reaches loop entry down two different
paths. This will result in two execution states being associated with
the loop entry statement which have different path conditions or
effects that are not caused by the loop. The loop generalization

processes are intended to generalize the effects of the loop, so that
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the different execution states created during loop execution are
generalized into a single execution state. However, we cannot expect
these processes to generalize differences which arose outside the
loop. Thus these processes operate on sets of execution states which
only contain differences introduced during loop execution. This is
achieved by restricting the set of execution states to ones descended

from a single execution state associated with loop entry.

Chapters 4 and 7 describe this process.

Loop Exit Process

Input: a set of execution states associated with all loop exit
statements of a loop and all descended from a single
execution state associated with the loop entry statement.

Output: a set of updated execution states, with duplicate execution
states removed and the value of the number of loop
iterations known.

Chapter 5 describes this process.

Interpr r Pr

Input: all execution states having reached program end (i.e. those

that with status ‘waiting interpretation’).
Output: program specifications
Chapter 6 describes this process.
3.3.3 Symbolic Execution of Condition Statements

The only condition statement in the program language is the if

statement.
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The input statement is in the form if <boolean expression>. The first
step in processing this statement is to instantiate the boolean

expression as required for updating the statement condition, by:

- replacing each variable by variable-identifier[value]

- replacing any expression of the form
property(<file—identifier>) with
property(<file-identifier>[ (OBJECT-n]) where OBJECT-n is the
current object from file <file-identifier> and any
expression of the form property(<hand-identifier>) with
property (<hand-identifier>[OBJECT-n]) where OBJECT-n is the

object contacted by hand <hand-identifier>.

This instantiated expression is then used to update the statement
condition if the execution state is in a loop whose associated
execution states have not been generalized. If the statement
condition on the input execution state is P, and the instantiated
expression is Q, then the new statement condition is P A Q. The
remainder of this subprocess does not require that instantiations can
be identified, so each term of the form variable[value] in the
instantiated expression is simply replaced by ‘value’. Also any
expression of the form property(OBJECT-n) is replaced with the
updated value of that property from the object data held on the

execution state (if any)

At this point a ‘real’ executor would be able to determine whether
the instantiated expression was true or false. In general, a symbolic
executor will not be able to do this. However, in some cases, all or
part of an expression may be provably true or false.

For example, we could have an if statement of

if color(file-A) = green A length(file-A) > 5
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Now, if the execution state has OBJECT-1 as the current object in

file-A, and the path conditions of the execution state contain
length (OBJECT-1) = 20,

then we can prove that the second conjunct of the above expression is
true. This still doesn’t determine the truth of the whole expression,

but leaves an ‘unresolved expression’ of
color (OBJECT-1) = green.

The advantages and disadvantages of trying to determine the truth of
of an if predicate are discussed below in section 3.3.7. The current
version of PAN allows the user to specify whether a theorem prover

should be invoked when an if statement is processed.

The theorem prover used by PAN is discussed in section 3.3.7:1, and
includes the ability to return the ‘unresolved expression’ if the

expression cannot be proved either true or false.

Assuming then that this feature is enabled, PAN passes the theorem
prover the instantiated expression and a list of known facts obtained

from the execution state.

If the theorem prover returns F, PAN simply sets the status of the

new execution state to dead.

If the theorem prover returns T, PAN simply exits from the if

subprocess.

If the theorem prover returns an unresolved expression, P, then this
is used to update the path conditions. If the input execution state

has a path condition of Q, then it is updated to P A Q.
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3.3.4 Symbolic Execution of Flow Control Markers

Stop Statement

The stop subprocess simply sets the status of the execution state to

‘waiting interpretation’.

If the execution state currently has no data on the loop being
entered, then the new loop is added to the bookkeeping data with
iteration count of =zero, and generalization indicator set to

‘ungeneralized’.

If this loop has already been generalized, then the effects of a
further loop iteration are used to verify the generalization. This is
described in Chapter 5. If the loop has not been generalized, then
the iteration count is incremented. If the iteration count has now
reached the number of iterations required before loop generalization,

then the execution state is changed to ‘waiting generalization’.

Exi

If the data for the innermost loop on the execution state shows
generalization has not been performed, then loop exit is premature,
and PAN changes the status of the execution state to ‘dead’.
Otherwise PAN changes the status to ‘waiting exit processing’ so that

this execution state will act as input to the loop exit process.

Merge Statement

The only processing required when a merge statement is reached, is to
update the statement condition by the merge process described in
section 3.3.2. This information is only maintained for execution
states in loops, therefore if the input execution state is in a loop,
then its status is changed to ‘waiting merge’, otherwise the

subprocess does nothing.
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3.3.5 symbolic Execution of Action Statements

Action statements provide the program language with the ability to
modify the world in which the program executes. Thus, these
statements vary depending upon the domain. Introduction of a new
domain or extensions to the language facilities provided in the dp
and robot domains would require additional action statements and
corresponding subprocesses to symbolically execute them. No other

changes to the PAN system should be required.

Move- T

The move-to statement changes properties of the hand specified in the
statement and the position of any object the hand is grasping. The
position of the hand is set to the position in the statement. If the
hand was grasping, the grasped object’s position is also set to this

position. Otherwise the robot status is set to no contact.
Move- T
Processing is the same as for move-to, except that the new position

is the current position of the specified hand plus the increment

specified in the input statement.

Move-until-contact Statement

The move-until-contact statement defines a line (source) by
(position, angle), where position is the current position of the
robot hand referenced in the input statement, and the angle is as
specified in the input statement.

This source may not have been previously encountered, in which case

it will need to be added to the global data, and execution state

source data initialized.

Since this statement always succeeds in finding a new object, PAN
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increments the number of objects retrieved from the source before

determining the definition of this new object as

sequential-object-in-source (number of objects retrieved,

source identifier).

This object is added to the global data if necessary. Finally, we set
the position of the robot hand specified in the input statement to be

at the same position as the new object i.e. to be at

position(object-identifier), and both the current object for source

and object contacted by hand to be this new object.
Move-until- —up-

The move-until-contact-up-to statement defines a 1line (source) by
(starting-position, angle, 1length), where starting-position is the
current position of the robot hand specified in the statement, while

angle and length are as specified directly in the input statement.

As for move-until-contact, this source may need to be added to the
global data and the execution state source data initialized. Unlike
move-until-contact, the processing for this statement has to deal
with the complexity of a conditional outcome - a new object may or
may not be found. The outcome of this condition depends on the number
of retrievals attempted from the source compared to the number of
objects originally in the source, referred to as size (SOURCE-n),
where SOURCE-n is the identifier of the source. Another object will
be found if size (SOURCE-n) 2> number of retrievals attempted, and no
object will be found if size(SOURCE-n) < number of retrievals
attempted. As discussed in section 3.2.1, the ‘number of retrievals
attempted’ is a special type of variable, not explicitly referenced
in the input pfogram, but dimplicitly required by the use of a
sequential source. For a given source, SOURCE-n, we can give this
variable the name SOURCE-n-number-of-retrievals-attempted. Using this
variable, we can express the conditions for the source having or not

having another object as:
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size (SOURCE-n) 2> SOURCE-n-number-of-retrievals—-attempted

and

size (SOURCE-n) < SOURCE-n-number-of-retrievals-attempted.

These conditions, will be recorded in the statement condition as

size (SOURCE-n) 2 SOURCE-n-number-of-retrievals-attempted
[value of

SOURCE-n-number-of-retrievals-attempted]

and

size (SOURCE-n) < SOURCE-n-number-of-retrievals-attempted
[value of

SOURCE-n-number-of-retrievals-attempted].

Thus, to process the move-until-contact-up-to statement, we first
check to see if the line is already exhausted. If so, we set the hand
position to the end of the line (i.e. current position plus length at
specified angle). In addition, if the execution state is in a loop

which has not been generalized, we add

size (SOURCE-n) < SOURCE-n-number-of-retrievals-attempted
[value of

SOURCE-n-number-of-retrievals-attempted]

to the statement condition.

If the source has not already been marked exhausted, we need to show
two possible results i.e. the source is now exhausted or it is not.

To do this we create a new execution state as a copy of the input

execution state.
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Then one execution state is updated to reflect the condition where

the line is exhausted by:

- setting the position of the robot hand to current position

plus length at specified angle

= adding

size (SOURCE-n) < value of

SOURCE-n-number-of-retrievals-attempted

to the path conditions.

= adding
size (SOURCE-n) < SOURCE-n-number-of-retrievals-attempted

[value of
SOURCE-n-number-of-retrievals-attempted]

to the statement condition if the execution state is in a

loop whose associated execution states have not been

generalized.

The other execution state is updated to reflect the condition where

the line is not exhausted by:
- creating a new object as in move-until-contact
- setting position of robot hand to be the initial position of
this object, specified as position(object-identifier), and

object contacted to be object-identifier.

= setting last object taken from the source to be

object-identifier

= adding
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size (SOURCE-n) 2 value of
SOURCE-n-number-of-retrievals-attempted

to the path conditions.
= adding
Size (SOURCE-n) 2 SOURCE-n-number-of-retrievals-attempted
[value of
SOURCE-n-number-of-retrievals-attempted)
to the statement condition if the execution state is in a
loop whose associated execution states have not been

generalized.

ra =3 men

The robot status slot is updated to show the hand specified in the

statement is grasping.

The robot status data is updated to show the hand specified in the

statement is not grasping.

ntial Rea atemen

The processing required for this statement is the same as for

move-until-contact-up-to apart from the following differences:
= object source is identified by file name rather than by

(starting-position, length, angle)

- robot status data is not used.

The current object for the specified source (file) is found from the

source data in the execution state. It is an error if there is no
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current object (since in this case the data to be written to the file

has not been specified).
The number of objects written is incremented.

The object definition of the current object is created as
sequential-object-in-source (number of objects written,
source-identifier) and the source data is updated to show that this

source has no current object.

The keyed read statement retrieves an object from the specified
source (file) by key. The key is specified by a predicate which the
object must satisfy. The source may not have been previously
encountered, in which case it will need to be added to the global

data and execution state source data initialized.
This is a conditional statement in that an object satisfying the
predicate P as specified in the statement may not exist. Thus we

Create a new execution state as a copy of the input one.

Then one execution state is updated to reflect the condition where no

object that satisfies the predicate exists by:
= recording that the source has no current object
— adding
—~ 3 o (P(o) A o € source-identifier)
to the path conditions. This is also added to the statement
condition if the execution state is in a loop whose

associated execution states have not been generalized.

The other execution state is updated to reflect the condition where

an object satisfying the predicate does exist by:
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= creating a new object defined as

keyed-object-in-source (P, source-identifier)

with an identifier of OBJECT-n.

= set current object in source to OBJECT-n

= adding

3 o (P(o) A o € source-identifier)

to path conditions. This is also added to the statement

condition if the execution state is in a loop whose

associated execution states have not been generalized.

K Wri atemen

The current object for the specified source is found from the sources
data in the execution state. It is an error if there is no current
object (since in this case the data to be written to the file has not

been specified).

The source data is updated to show no current object.

Assignment Statement (:=)

The right hand side of the assignment statement is first evaluated
by:

= substituting for each variable its value

= substituting property(OBJECT-n) for any expression of the
form property<file-identifier> where OBJECT-n is the current
object from file file-identifier and property(OBJECT-n) for
any expression of the form property(hand-identifier) where

OBJECT-n is the object contacted by hand hand-identifier
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- substituting the value of property(OBJECT-n) for any
expression of the form property(OBJECT-n) where the value
property (OBJECT-n) is obtained from the object data held on

the execution state (if any)

This expression is then simplified and used to update the variable
value or object property as specified in the left hand side of the

assignment statement.

In the case of a dp program writing an output file, this may be the
first reference to the modified object or even the first reference to
the file the object is in. In the first case the object is created;
in the second case both the object and the source are created and the
object is made the current object for this source. However, the
creation of an object in this way does not establish the object’s
definition (in fact the object may never be written to the file) and
so it left wundefined until the sequential write is processed as

described above.

3.3.6 PAN Scheduling

Given the number of processes which PAN has available, how is it to

decide which to rum?

The simplest of these processes is the initialization process. It is
run once, when PAN begins analysis of a new program. Conversely, the
interpretation process analyses the results of the symbolic

execution, and is only run when all other processes are complete.

The three processes merge, loop generalization and loop exit require
a set of execution states to be available before they can run
successfully. However, instead of trying to run one of these
processes and having to check whether all required execution states
are available, PAN uses a simpler approach. It assigns priorities to
the processes in such a way that a process will never be initiated

unless all required execution states are available.
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To determine these priorities, we first observe that PAN’s loop
analysis method requires that it first symbolically executes loops,
then generalizes them and finally performs exit processing. This
means that within a given loop, the scheduler must assign priorities

so that

priority (symbolic executor) > priority (loop generalizer)

and

priority (loop generalizer) > priority (exit process).

To place the merge process in this priority list, we note that the
merge process cannot take place until all execution states to be

merged have been generated i.e. we require

priority (symbolic execution) > priority (merge process).

Also, since the merge process can occur inside a loop (but not vice

versa), in order to complete the symbolic execution of the loop, we

require

priority (merge process) > priority (loop generalization).

This is not yet adequate to define the priority of the merge process
as a single loop may contain several merge statements each having
associated execution states which are waiting merge processing. This
problem may be addressed by the observation that we need to ensure
that the merge process will not be initiated until an execution state
has arrived from all merging branches. This can only be guaranteed if
we process the merge statements in ‘execution order’ i.e. give higher
priority to merging execution states associated with statement m over
those associated with statement n, where there is a path from m to n

within the loop.

To clarify this point, consider the merge statements in figure 3-5.

Suppose statement 1 has associated execution states from branches A
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and B, and statement 2 has associated execution states from branch C.
We must perform the merge of execution states associated with
statement 1 before these execution states can reach statement 2,

allowing the merge at statement 2 to proceed.

1. |merge

'
A

2. |merge

Figure 3-5 - Priority of Merging Execution States

Finally we consider the priority of programs with nested loops. In
| this case we may think of an inner loop as a single compound
statement within the outer loop. This ‘statement’ will need to be
executed before loop generalization of the outer loop can proceed.
Since the inner loop will contain its own loop entry, loop exit and,
possibly merge statements, we require that the scheduler will give
higher priority to processing execution states associated with

statements in the inner loop over processing execution states from

the outer loop.

The above requirements are met by the following scheduling algorithm:
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Scheduling Algorithm
IF there are no execution states
perform initialization

ELSE

IF all execution states are either dead or ‘waiting

interpretation’

perform interpretation

exit PAN
ELSE IF any active execution states exist
pick one and pass to symbolic executor

ELSE

collect all execution states which have the maximum
number of loops in loop data (i.e. are associated with

statements from the innermost loop).

IF any of these execution states have status ‘waiting

merge’
pass to merge scheduling

ELSE IF any of these execution states have status

‘waiting generalization’

pass to generalizer scheduling

ELSE

pass all of these execution states with status

‘waiting exit processing’ to exit scheduling.
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From all input execution states, retain those which are earliest in
execution order. Statement n is earlier than statement m if there is
a path from n to m inside the loop (i.e. without passing through a

loop exit statement for this loop - see example in figure 3-5 above).

From these execution states, pick any set which are associated with a
single merge statement, and are descended from a single execution

'state associated with the loop entry, and pass to the merge process.

Generalizer Scheduling

Pick any set of execution states associated with a single loop entry
statement, that are descended from a single execution state
associated with the loop entry statement, and pass to the loop

generalization process.

Exi h i

Pick any set of execution states associated with all loop exit
statements from a single loop, which are descended from a single
execution state associated with the loop entry statement, and pass to

the loop exit process.

3.3.7 The Case for Theorem Proving

As has been discussed above, a symbolic executor is generally not
able to prove conditional statements either true or false.
Nevertheless, PAN’s ‘if’ statement processing discussed above does
attempt to do so by calling a theorem prover. Since theorem proving
considerably slows the program analysis, is it worth doing at all?
This is a question which does not seem to have been addressed in the

literature on symbolic execution.

There can even be some advantages in not trying to do it. Consider

the program shown in figure 3-6. Assuming that PAN performs less than
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\,
2. |x :=0
N
7
\\4
3. |[loop entry
4. |move-until-contact-up-to hand-A & 1
\7
7\ 5. [x := x +1
o N
~ -
6. |if contact (hand-A) 11. |if = contact (hand-A)
A N Y
& > 12. |loop exit
4
7o [2f 5 > 15 8. [if x & 15
13. |stop
14 , \%
9. |weight (hand-a) := 1 10. |weight (hand-A) := 2
\7
< <

Figure 3-6 - Program Analysed Better Without Theorem
Proving

15 loop iterations before loop generalization, then by using theorem
proving PAN will always be able to prove that the condition in
statement 7 is false and statement 9 will never be executed. This

will result in incomplete loop analysis.
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If, however, no attempt is made to prove statements 7 and 8 true,
then PAN will traverse each path on each iteration. At loop

generalization, the following sequences will be generated:

SEQUENCE-1 = (sequence i = 1 to k sequential-item-in—source(i,
SOURCE-1))

SEQUENCE-2 = (item: item € SEQUENCE-1 A x > 15)

SEQUENCE-3 = (item: item € SEQUENCE-1 A x < 15) .

Since the definition of SEQUENCE-2 and SEQUENCE-3 contain a variable,
X, PAN will try to express the value of x in such a way that it can
be removed from the definitions of these Sequences. In this case x is
always equal to the length of SEQUENCE-1, which will allow SEQUENCE-2
and SEQUENCE-3 to be reexpressed as:

SEQUENCE-2 = (item: item € SEQUENCE~-1 A
position—in—sequence (item, SEQUENCE-1) > 15)
SEQUENCE-3 = (item: item € SEQUENCE-1 A

position-in-sequence (item, SEQUENCE-1) < 15)

The process used here to remove variables from sequence definitions
is fully explained in Chapter 4. Once these sequences have been
generated a complete analysis of the program will follow.

Although this method works well in this case, it does so at the cost
of allowing execution states to hold inconsistent information. 1In

particular, the first frame which passes statement 7 will have

X > 15 added to the path conditions

and

X = 1 in the variables data.

Even worse, in other programs, this method can lead to incorrect

analysis. Consider the program fragment in figure 3-7.
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In this case, at the end of symbolic execution, the execution states
to be interpreted will include an execution state which describes the
effect of passing through statements 2, 4 and 7. This €xecution

state, and will contain a path condition of

weight (OBJECT-1) = heavy A color (OBJECT-1) = red

and corresponding effects. However, since the path 2, 4, 7 could not

be traversed by any real eéxecutor, the resulting analysis is

incorrect.
1. |sequential read file-a
y
- \
~N -
2. |if weight (file-A) = 3.|if — weight(file—A).=
heavy heavy
y \
4. |color(file-a) := blue 5. |color(file-A) := red
I I
\ V
> <
%4
< \
V
6. |1if color(file-a) = blue 7. |1f color (file-A) = red

I |

| l

Figure 3-7 - Program Analysed Incorrectly Without Theorem
Proving
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To avoid producing such results, PAN always attempts to prove
conditional statements either true or false using the theorem prover

described below.

The correct method to perform a symbolic execution analysis on such a
program is to let the generalized execution state produced from the
first loop generalization initiate another set of loop iterations,
producing more execution states for generalization. These would then
be used to produce a second generalized execution state and this
process would continue until loop generalization produces no new

information.

PAN does not currently perform more than one loop generalization, but

should be extended to do so.

3.3.7.1 Theorem Proving

Theorem proving could be supplied by a system external to PAN.
Obviously, PAN would also need to supply an external theorem prover
with the currently known facts. These are available from the path
conditions, variables, objects and object sequences data held on the

execution state.

Since a convenient theorem prover was not available when PAN was
constructed, a simple theorem prover was developed. This theorem
prover 1is not adequate as a general theorem prover but is
satisfactory for the programs so far analysed by PAN. It should not
been seen as a part of the contribution of this thesis and is only

described here briefly for completeness.

This theorem prover is passed a candidate predicate and a list of

known facts.

The theorem prover extends this list of facts by using the following

rules:
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from (P A Q) generate P, Q
" (<P Q) U (P Q)
" (=P Q) "o (£ P Q)
" (=P Q) LI (= QP)
" (2P Q) "o (£ QP)
" (>P Q) v (< QP)
" (<P Q) "o (2 Q P)
" (<P Q) S (> Q P)
" (<P Q) and (< Q R) generate (< P R)
" (SPQ " (SQR " " (€ P R)
" (=sPQ " (2PQ " " (=P Q)

The components of the candidate predicate are now examined
recursively. For each component P, if P is a known fact, replace P by
T in the candidate predicate. If —P is a fact, replace P by F in the

candidate predicate.

Once this process is complete, the resulting predicate is simplified

and returned.
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Chapter 4
Loop Generalization
4.1 INTRODUCTION

The most distinctive feature of PAN as a program analysis system is
its method of analysing loops. PAN analyses loops by generalizing the
effect of a few iterations, to produce the effect after.an indefinite
number of iterations. The idea of using generalization for this
purpose was largely derived from the observation that human
programmers can often describe a loop after an informal symbolic

execution of two or three iterations.

The task of such a generalization process is to produce a single
execution state that generalizes the effect of several execution
states. More specifically, PAN must determine the objects and sources
that will exist in this generalized execution state, describe their
updated properties (modified values of fields in the dp domain or
physical properties in the robot domain) and determine the wvalue of

any variables.

The task of determining the objects and sources in the generalized

execution state is a specific case of the more general task:

given a set of observations {01,...,0 }, each of which
n
describe a set of items, determine the items which would be in an

observation O associated with integer k.
k

Note that the items in Ok may not simply be a function of k, but may
depend on other facts in 0Ok, particularly properties of other items.

For example, if we had

01: items = {1 red ball, 1 block}

02: items = {1 red ball, 1 green ball, 1 block}
03: items = {3 red balls, 3 blocks}

O : items = {1 red ball, 3 green balls, 1 block}

>
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then a possible value for O is
k
0 : k balls, n blocks (where n = number of red balls)

So, in this case, the number of blocks depends on the number of red
balls.

A system addressing a generalization problem similar to this is the
SPARC/E system described in Dietterich and Michalski[1985]. This
system has been designed to play the game of Eleusis,-which involves
finding patterns in sequences of playing cards. Given a sequence of k
cards <card1,...,cardk>, SPARC/E finds the set le of

admissible next cards. This set may depend on any of the properties

of cards <card,...,card >.
1 k

PEN’s task is in some ways harder in that an exact description of the
objects in the generalized execution state is required, not Jjust a
set of admissible ones. On the other hand, sequences in Eleusis are
often quite complicated, whereas investigations with PAN have shown

that sequences required for program analysis are wusually much

simpler.

Thus the specific techniques used by Dietterich and Michalski were
not found suitable for use in PAN. However, their approach in trying
to fit the input data to various parametized models has been

successfully adopted in PAN. Deitterich and Michalski define a model

as follows:

"A model is a structure that specifies the syntactic form of a
class of descriptions. A model consists of model parameters and a
set of constraints that the model places on the forms of the
descriptions. The 'process of specifying the wvalues for the
parameters of a model is called parametizing the model. The
process of filling in the form of the parametized model is called

instantiating the model."

128




Separate models are used for determining the objects in the
generalized execution state, describing their updated properties and
finding the value of variables. These are further discussed below.

None of PAN’s models use parameters.

Once PAN has determined the objects and sources that should be
included in a generalized execution state it must determine the
updated properties of the objects. This task is a special case of the

more general task:

given a set of observations (01,...,0 }» each of which
n
describes the properties of a fixed set of items {11""'1 Yo
m

determine the properties of these items in observation OK
If we added the restriction that the properties can be divided into
descriptors (those which can be observed) and symptoms (those which
we are trying to predict) and the symptoms of an item must only
depend on other descriptors of that same item, this generalization
could be performed using generalization methods developed for

learning systems, such as those described in Michalski[1983].

To use these methods, the observations {01,...,0 } must only
n

contain expressions of the form
P (item) — Qi(item)
1

where P 1is some predicate made up from descriptors and Qi is a
i

symptom.

These would be generalized to some expression
P(item) — Q(item)

true in all observations.

We now show that PAN’s generalization task cannot be expressed in

this way, so that the methods described in Michalski[1983] cannot be
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used. Since each observation used by PAN is, in fact, an execution

state, we can, for each observation, obtain an expression

P =20

by setting P to be the path conditions and Q the effects of the
execution state. To obtain the form above, the expression P — Q would

need to be restated as:

(P1 - Q1) A (P2 -5 Q2) A ... A (Pn = 0QOn)

where each Pi — Qi involves only a single item, Pi being constructed
from descriptors and Qi from symptoms. However, the execution state
expression, P — Q generated by PAN cannot always be represented as
subexpressions involving only one item. For example, if PAN is

analysing a loop which includes the condition

if weight (R) = weight (B)

then the execution states to be generalized may include expressions

of the form

(weight (OBJECT-1) = weight (OBJECT-2)) — Q

for some Q, which cannot be reexpressed to involve a single object.

Because of this PAN instead uses the model approach mentioned above

to generalize execution states.

Producing a generalized execution state also requires PAN to
generalize the value of variables. The special nature of variables
adds peculiarities to the generalization task which seem to occur
only in program related problems (e.g. program analysis or program
verification), and do not seem to have been previously approached
using generalization. PAN uses models to express variable values in
terms of generalized objects in the generalized execution state, as

described below.
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In addition to the use of these models, another generalization
technique used in Dietterich and Michalski[1985] and adapted for PAN,
is that of adding derived properties. Simply stated, this technique
consists of adding derived attributes to those explicitly provided,
before generalizing. Generalization may sometimes be successful using
the derived attributes where it would be unsuccessful if restricted
to the explicitly provided input attributes. For example, in the game
Eleusis, a particular card may be described as ‘jack of hearts’, but
generalization may need to use the fact that the card is ‘red’ or ‘a

picture card*.

In PAN this technigque has been considerably extended. Instead of just
looking for derived attributes of a single object, PAN can use all
facts available in an execution state to derive additional facts for
use in generalization. Since, in PAN, this technique has become very
computationally expensive, it is only used when necessary. Thus PAN
first tries to generalize the execution states without using derived
facts, and only includes them if this process fails. The generation
of derived facts is described in Chapter 7, and this chapter merely

mentions how the decision to use this method is made.

4.2 OVERVIEW OF PAN GENERALIZATION

The task addressed by PAN generalization is to produce a single
execution state that describes the effect after an indefinite number
of iterations, given the execution states describing the effect after

a few iterations.
PAN divides this task into three major components:
= describe the objects that would exist in a generalized
execution state using the sequence terminology described in

Chapter 2.

= describe the effect that the loop has on updated object

properties by describing them in terms of sequences.
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= find the value of each variable in the generalized execution

state, expressed in terms of sequences.

These tasks show that sequences are a key component in PAN’s loop
analysis method. A PAN sequence is conceptually similar to the
temporal sequences developed as part of the Programmers Apprentice
Project [Waters 1979). Given a statement in a loop which is
repeatedly executed, we can form a sequence of execution states
associated with that statement, that were created during the first,
second, third,.. etc iteration of that loop. From this sequence of
execution states, sequences of items created in each execution state
can be formed. (This is a simplification since PAN will actually have
many execution states which have completed any given number of
iterations.) Such a sequence is temporal in the sense that items are
created over time i.e. one in each iteration. Treating this sequence
as a non temporal aggregate item allows the loop effects to be
described in a non iterative manner, eventually leading to non

procedural program specifications being produced.

For example, consider the program fragment in figure 4-1. The program
has been coded so that each record read from file A is separately
updated so that its color field has the value red. The loop is used
as the mechanism for processing each record. If, however, the
sequence of records created at statement 2, say SEQUENCE-1l, is
treated as an aggregate object, the program can be represented as
having the effect shown in figure 4-2. The programs shown in figures
4-1 and 4-2 have the same effect, but figure 4-2 does not include a

loop and so leads easily to the production of specifications.

PAN generalization does not try to explicitly produce programs
expressed in terms of sequences as shown in figure 4-2. Instead it
uses sequences to describe the effects of the loop in a non iterative

manner.
As mentioned above, PAN sequences are conceptually similar to the

temporal sequences used in the Programmer’s Apprentice. However there

are differences. The Programmer’s Apprentice constructs sequences
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1. |loop entry

vV

2. |sequential read A

3. |color (A) := red

Figure 4-1 Sequence of Records Being Processed
Individually

obtain SEQUENCE-1

\

color (SEQUENCE-1) := red

Figure 4-2 Sequence of Records Processed as an Aggregate
Object

from examination of program code, whereas PAN constructs sequences
from examination of execution states. This ensures that PAN can
construct sequences regardless of peculiarities in coding. A more
significant difference is in the use of sequences. Since the
Programmer’s Apprentice is not a symbolic execution system, it does
not have a description of the effects of the program. Since PAN does
have such a description, it is able to use sequences to produce a non

procedural description of programs containing iteration.
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4 .3 SEQUENCE GENERATION
4.3.1 Introduction

Having given an overview of the role that sequences can play in
producing non iterative specifications for loops, we now introduce
the method by which sequences are generated. PAN generates two type
of sequences, primitive sequences and subsequences. Primitive
sequences are expressed as (sequence i = 1 to n D(i)), where D(i) is
the definition of the ith item in the sequence. Thus to generate a

primitive sequence, PAN needs to

o identify the objects in it
- determine the generalized description of the objects in
terms of the sequence variable

= determine an expression for the length of the sequence.

Subsequences are expressed as (item: item € S A P(item)), where S is
a sequence and P is a predicate. Thus to generate a subsequence PAN
needs to find a predicate which can be applied to the items in the
sequence S. Subsequences are equivalent to the Programmer’s

Apprentice temporal sequences generated by a filter.

Generating primitive sequences is an inductive process since a
sequence describes items which will be generated in iteration k, from
the items which have actually been produced in the first few
iterations. This process is hard, principally because each execution
state being generalized will have a different combination of objects
to be included in any given sequence, and because we allow items to
be defined in terms of other items. Consequently, if item-4, item-5
and item-6 are defined in terms of item-1, item-2 and item-3 which
are included in sequence S1, a sequence S2, which can be generated
from item-4, item-5 and item-6 may not become obvious until the
definition of these items is reexpressed in terms of S1. This implies

that sequences need to be generated in the correct order.
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Subsequences are generated by applying predicates to the primitive
sequences or previously generated subsequences. These predicates are
based on the conditions which occurred in the conditional statements
within the 1loop. Generation of these predicates to apply to a

sequence S is, however, far from trivial because:

= the condition may refer to several items, some included in §

and others not

- the condition may have included a variable with a value set
in some previous iteration of the loop. Thus variables can
disrupt the orderly temporal nature of the iteration by

retaining values from an earlier time.

To make these ideas more concrete, we now look at some example loops
and the sequences required to analyse them. Considering how PAN can
generate these sequences will suggest a sequence generation procedure

which we then try to apply to a general loop structure.
Example Sequence Generation
As a first example, consider again the program fragment first

presented as  figure 2-13, and reproduced here as figure 4-3. The

interpretation in section 2.2 used the following sequences

SEQUENCE-1 = (sequence i = 1 to n sequential-object-in-source (i,
SOURCE-1))

SEQUENCE-2 = (sequence i = 1 to n sequential-object-in-source (i,
SOURCE-2) )

SEQUENCE-3 = (item: item € SEQUENCE-1 A weight (item) =

weight (map (item, SEQUENCE-1, SEQUENCE-2)))

where SOURCE-1 and SOURCE-2 are defined as file(A) and file(B).

How are these sequences generated? The execution states to be

generalized will all include objects defined as:
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s start

4

2. |loop entry

3. |sequential read A

N

4. |sequential read B

< N
~ ~

I

5. |if weight (A) = weight (B)

6. |color(A) := blue

Figure 4-3 - Subsequences using two sources.

sequential-object-in-source (i, SOURCE-1)
and
sequential-object-in-source (i, SOURCE-2)

for i from 1 to the number of loop iterations performed. Thus

SEQUENCE-1 and SEQUENCE-2 can be generated by

= recognizing that there are sets of objects whose definitions

vary only in a single integer

= putting the objects into order of creation, giving this

integer the values 1, 2, 3,... i.e. the ith value is i.

The length of these sequences will, at this point, simply be the
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number of iterations k (a value for k will be found during exit

processing as explained in chapter 35).

Generating SEQUENCE-3 requires the recognition that the condition in
statement 5 is applied to the objects in SEQUENCE-1 and SEQUENCE-2.
During program execution, the condition in statement 5 will have been
instantiated with objects which are now included in SEQUENCE-1 and
SEQUENCE-2; this may suggest that the rule for using conditions to

produce subsequences is

if the condition has been instantiated with objects which are
included in SEQUENCE-n, then use the condition to form

subsequences of SEQUENCE-n.

However, this is not adequate as can be shown Dby considering the

program in figure 4-4.

Interpretation of this program requires that a value for v, as
updated by statement 6, be expressed in terms of a sequence. Since Vv
is the sum of weights of objects passing through statement 6, which
are those objects from SEQUENCE-1 that satisfied the condition in

statement 5, we now require the subsequence

SEQUENCE-3 = (item: item € SEQUENCE-1 A

weight (map (item, SEQUENCE-1, SEQUENCE-2)) < 10)

So, in this case we need to form a subsequence of SEQUENCE-1 using
the condition in statement 5, even though that condition is never

instantiated with objects in SEQUENCE-1.

Thus, in general, we need to use the condition in an if statement to
form subsequences of every sequence which has objects which can be
referenced in the statements succeeding the if statement. This means
generating subsequences from all sequences consisting of objects that
were the current object from a file or the object in contact with a
robot hand when the if statement was executed. Usiné of the map

function in creating these subsequences requires the sequences to
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dls, start

2. |loop entry

3. |sequential read A

Y

4. |sequential read B

< N
S

5. |if weight (B) < 10

\'4

6. |v := v + weight (A)

7. |sequential read C

Figure 4-4 - Example of Loop Structure

have the same length. We will see, later in the chapter, that PAN’s
sequence creation procedure ensures that sequences that consist of

objects current when an if statement was executed will be of equal

length.

Having looked at the subsequences that need to be created using the
condition in an if statement, we now consider the length of sequences
consisting of objects created when executing statements in the branch
beginning at that if statement. Such a sequence which will be

generated by objects created by statement 7 in figure 4-4:

SEQUENCE-4 = (sequence i =1 ton sequential-object-in-source (i,

SOURCE-3) ) .
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The length of this sequence, n, in any execution state will equal the
number of times statement 7 was executed. But this is equal to the
number of times statement 5 was true, which is the length of
SEQUENCE-3. Obviously, if we want to express n in terms of

SEQUENCE-3, we need to have generated SEQUENCE-3 before SEQUENCE-4.

This suggests that generation of sequences for analysing the program

in figure 4-4 needs to take place in the following order:

= generate sequences for objects created in the unconditional

code of statements 3 and 4

= form subsequences of these sequences using the conditions in

all the if statements succeeding statement 4

= form sequences for objects created in statements following

these if statements such as statements 6 and 7.

Developing a Sequence Generation Algorithm

We now extend the reasoning above by considering loops with an
arbitrarily complicated structure of conditional branching. We first
examine the effect of condition statements in sequence generation and

then the effect of merge statements.

Consider the condition statements in the loop shown in figure 4-5.
Each "branch i" is a branch as defined in Chapter 2. Suppose that on
each iteration objects were created when executing statements in
branch 0. To generate sequences from these objects, we can look for
groups of objects whose definitions vary only in numbers whose values
can be expressed as a function of the object’s position in the group,
arranged in order of creation. Let the sequences generated be

referred to as S1,...,Sp.

We initially consider the simpler case in which condition 1 is an
expression involving objects created in branch 0, and does not
include variables. (Condition 1 ‘involves’ objects if it refers to a

file’s current object or a robot hand’s contacted object.)
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loop entry

\
branch 0
¢ I >
\'% E \ g _—1
if condition 1 if condition 2 if condition n
\ . \ 4
branch 1 branch 2 branch n
% ' |
. e T e
\
if condition 1-1 if condition 1-2
\ \
branch 1-1 branch 1-2

T I
Figure 4-5 - Program Structure within a Loop

To be able to describe the actions taken by branch 1, which may

include modifying properties of those objects from sequences

S1,...,Sp that are current when branch 1 is executed, we need to be
able to express the subsequences of S1,...,Sp which satisfy condition
2.

Symbolic execution of condition 1 in some iteration of the loop will
result in the current objects being instantiated for expressions of
the form file(<file-identifier>) or hand(<hand-identifier>).

Condition 1 will then be in the form

P (current objects at condition 1)

for some P.

If we make the simplifying assumption that every sequence generated
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from objects created in branch i contains exactly one object from
each execution of branch i, and every object created in every
iteration has been included in a sequence, then the current objects
on the ith iteration will consist of the ith object from each

sequence, so condition 1 can be stated as

P(ith S1 item,..., ith Sp item).

The subsequence of Sj items satisfying condition 1, say S’j, will

include those-Sj items which satisfy P, i.e.

S’y = (item: item € Sj A P(ith S1 item,..., ith Sj-1 item,

item, ith Sj+1 item,..., ith Sp item)).

But since the above assumption means that all sequences S1,...,Sp
will be the same length, this correspondence can be expressed using

the map function defined in Chapter 2 as

S'j = (item: item € Sj A P(map(item, S3j, S1),...,map(item, Sj

$j-1), item, map(item, Sj, S3j+1),..., map(item, Sj,

Sp))) .
If S1,...,Sp were of different lengths, we would need to introduce
relationships more complex than ‘map’. This has not been found

necessary for any of the programs which have been analysed.
Restricting the relationship between sequences to map is a current
limitation of the PAN system. Note that, in any execution state, all
subsequences S’1,...,S'p created by condition 1 are also the same
length, since each contains those items from S1,...,Sp which make
P (current objects at condition 1) true (this is proved more formally

below) .

Referring again to figure 4-5, objects may also have been created in
branch 1. As before, these objects are put into groups with
definitions varying only in numeric parameters, and from each group a
sequence 1is created. Our simplifying assumption ensures that the
length of these sequences will be the number of times branch 1 is

executed, which is equal to the length of any of the S’j sequences.
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Thus the following seguences contain objects which were current when

condition 1-1 was executed:

- the subsequences of the branch 0 sequences, that contain

items satisfying condition 1 i.e. §'1,...,8'p
= sequences containing items created in branch 1.

We now form subsequences of all these sequences in the same way as

above, using condition 1-1 in place of condition 1.

This process can be repeated until all branches beginning with

conditions have been processed.

We now consider the effect of merge statements on sequence
generation. Consider the merge shown in figure 4-6, in which paths

from condition-1,...,condition-n merge at single statement.

To describe the actions taken in branch-i we need to be able to
express the subsequences which consist of objects current when the
merge statement is executed. If sequences s1,...,Sp consist of
objects which were current when the statement at a fork was executed,
then the items in any Si which were also current when the merge was
executed will be those which satisfy the conditions required for
execution to reach the merge statement. By the definition of the
statement condition, this will be the difference between the
statement condition to reach the merge £from that to reach the

statement at a fork. But by theorem 3-3 this is

condition-1 v condition-2 v ... Vv condition-n.
The instantiation of any condition-i when the condition was executed
will consist of items current when the fork statement was executed.

Thus if we set

P’ = condition-1 v condition-2 v ... Vv condition-n
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statement at fork

V
—— — — — — _———

N\ VY Y \
condition condition-1 condition-n condition
N .

e 4 .
merge
\
branch-i

Figure 4-6 General Merge Format

then P’ fulfils the same requirements as P above, i.e. the
subsequence of any Si current when the merge statement is executed

can be expressed as

s’y = (item: item € Sj A P’ (map(item, S3j, $1),...,map(item,
Sj sj-1), item, map(item, Sj, Sj+1), ..., map(item, S3j,
sp))) .

It is the restrictions on conditional branching introduced in section
2.1.3 that ensures that subsequences current when a merge statement
is executed can be expressed in this form. Without these
restrictions, the statement condition to reach the merge statement
may contain objects created after the fork, which could not be used

to form subsequences in the form of S’j above.

Sequences generated from items created in the branch beginning at the

merge will, as above, have the same length as these subsequences.
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statement at fork

‘ \
< >
WV V V
condition-1 condition-2 condition-n
| I I
| | I
| N | ) |
VY
merge
\
branch-i

Figure 4-7 Last Merge Format

As a final observation on branches beginning with a merge, we
consider branches which follow the last merge for a fork. In this

case we have the situation as shown in figure 4-7.

In this case, if we consider a sequence which consists of items
current at the fork, then by the reasoning above the subsequence of
items current at the merge will consist of those items which satisfy
the disjunct of the conditions. But in this case the disjunct of the
conditions is simply T, so sequences created in the branch beginning
with the merge will be the same as those created in the branch ending
with the fork. Thus these branches can be treated as a single branch
for the purpose of generating sequences. This applies to any branches

which are reached from loop entry under the same conditions.
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We now consider the more complex case of forming subsequences from

conditions containing variables.

Suppose now we have condition-1 following a fork, involving variables

vl,...,vn, in addition to current objects. Condition-1 will now be in
the form:
P (current objecté at condition-1,vl,...,vn).

If sequences S1,...,S5p have been generated in processing the branch
ending with the fork, then by our previous assumption, the current
object in the ith iteration will be the ith member of S1,..:,8p. Thus

condition-1 can be expressed as

P(ith S1 item,..., ith Sp item,vl,...,vn).

As a first stage in generating subsequences of Sl,...,Sp which
satisfy P we simply allow P to continue to refer to variables by
their identifiers. So, as above, for each j from 1 to p, we would

form:

s'j = (item: item € Sj A P(map(item, Sj, S1),..., map(item,
S8j sj-1), item, map(item, S3j, Sj+1),..., map(item, S,
Sp), v1l,...,vn)).

Note that this can only be done if the occurrence of variables in a
condition can be explicitly recognized. Such a sequence definition
cannot be used in the generalized execution state as it contains
unknown values for vl,...,vn. Thus a second stage is invoked which
tries to express the values of vi in terms of previously defined

sequences and their current objects. This process is described in

section 4.4 below.
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The sequence generation process outlined above depends on

determining:

1/ the items which are candidates for generating primitive
sequences - those created in the same branch or a branch

reached under the same conditions

2/ the conditions to use for generating subsequences. These
conditions either originate from if statements (for
specifying those objects that satisfy the conditions
required to enter a branch beginning with an if statement)
or, from the disjunction of such conditions (for specifying
those objects that satisfy the conditions required to enter
a branch beginning with a merge statement.) In both cases
the occurrence of variables needs to be explicitly

identified.

Both these requirements can be met by the statement condition, which

has been expressly designed for this purpose.

Requirement 1 is met by the fact that all items created in branches
reached under the same conditions will have been created in execution
states having identical statement conditions if instantiation is

ignored.

The first part of requirement 2 is met by the fact that if sequences
have been created from items in some branch, branch-i whose
statements have statement condition P, then any condition 0Q
succeeding this branch will have caused a statement condition of P A
0 to be recorded in the execution state created when the condition is

executed.

The second part of requirement 2 is met by the fact that if sequences
have been created from items in some branch, branch-i, whose

statements have statement condition P, then if the branch is
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succeeded by conditions Cl1,...,Cn in the first statements of paths
which later merge, then P A (Cl Vv ... Vv Cn) will be recorded in the

execution state created when the merge is processed.

To summarize, the statement conditions preserve the structure of the
conditional branching within the loop, and it is this structure which
determines the sequences and subsequences required for loop

generalization.

in n rm h m

The sequence generation model creates sequences using the definitions
of objects. The method of representing the definition of objects
which are defined in terms of other items requires careful handling.

Consider the program fragment in figure 4-8.

Two execution states, after four iterations could contain the

following

Execution state 1:

OBJECT-1 = sequential-object-in-source (1, SOURCE-1)
OBJECT-2 = sequential-object-in-source (2, SOURCE-1)
OBJECT-3 = sequential-object-in-source (3, SOURCE-1)
OBJECT-4 = sequential-object-in-source (4, SOURCE-1)
OBJECT-5 = keyed-object-in-source (weight (item) =
weight (OBJECT-1), SOURCE-2)
OBJECT-6 = keyed-object-in-source (weight (itemct) =
weight (OBJECT-3), SOURCE-2)
color (OBJECT-1)

I
I

red, —color (object-2) red

color (OBJECT-3)

red, —color (object-4) red

Execution state 2:

OBJECT-1 = sequential-object-in-source(l, SOURCE-1)
OBJECT-2 = sequential-object-in-source(2, SOURCE-1)
OBJECT-3 = sequential-object-in-source (3, SOURCE-1)
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Figure 4-8 Definition of Objects for Sequence Generation

OBJECT-4 = sequential-object-in-source (4, SOURCE-1)
OBJECT-7 = keyed-object-in-source(weight (item) =

weight (OBJECT-2), SOURCE-2)
OBJECT-8 = keyed-object-in-source (weight (item) =

weight (OBJECT-4), SOURCE-2)
—color (OBJECT-1) = red, color(object-2) = red
—color (OBJECT-3) = réd, color (object-4) = red

In each execution state, the definitions of OBJECT-5, OBJECT-6,
OBJECT-7 and OBJECT-8 have terms containing other objects. If we
substitute the definitions of these objects into the definitions of

OBJECT-5, OBJECT-6, OBJECT-7 and OBJECT-8, we obtain
Execution state 1:
OBJECT-5 = keyed-object-in-source (weight (item) =
weight (sequential-object-in-source (1, SOURCE-1), SOURCE-2)

OBJECT-6 = keyed-object-in-source (weight (item) =
weight (sequential-object-in-source (3, SOURCE-1), SOURCE-2)
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Execution state 2:

OBJECT-7 = keyed-object-in-source (weight (item) =
weight (sequential-object-in-source (2, SOURCE-1), SOURCE-2)

OBJECT-8 = keyed-object-in-source (weight (item) =

Given these definitions, there is no simple function £, which will

allow these definitions to be expressed as

OBJECT-5 = keyed—object-in—sourée(weight(item) =

weight (sequential-object-in-source (£(1), SOURCE-1), SOURCE-2)
OBJECT-6 = keyed-object-in-source (weight (item) =

weight (sequential-object-in-source (f(2), SOURCE-1), SOURCE-2)

OBJECT-7 = keyed-object-in-source (weight (item)
weight (sequential-object-in-source (£ (1), SOURCE-1), SOURCE-2)
OBJECT-8 = keyed-object-in-source (weight (item) =
weight (sequential-object-in-source (f(2), SOURCE-1), SOURCE-2)

Thus no sequence can be generated from these definitions. However,
OBJECT-1, OBJECT-2, OBJECT-3 and OBJECT-4 will already have generated

the sequence

SEQUENCE-1 = (sequence i = 1 to k sequential-object-in-source (i,
SOURCE-1)) .
Then the condition on color(A) = red, will have been used to generate

the subsequence

SEQUENCE-2 = (item: item € SEQUENCE-1 A color(item) = red).

In each execution state, we can therefore represent the objects used

in definitions of OBJECT-5, OBJECT-6, OBJECT-7 and OBJECT-8 as

Execution state 1:

OBJECT-1

I

item-in-sequence (1, SOURCE-1)
OBJECT-3

item-in-sequence (2, SOURCE-1)
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Execution state 2:

OBJECT-2

item-in-sequence (1, SOURCE-1)
OBJECT-4

item-in-sequence (2, SOURCE-1)

Substituting these facts into the definition of OBJECT-5, OBJECT-6,
OBJECT-7 and OBJECT-8, we obtain

Execution state 1:

OBJECT-5 = keyed-object-in-source (weight (item) =
weight (item-in-sequence (1, SEQUENCE-2), SOURCE-2))
OBJECT-6 = keyed-object-in-source (weight (item) =

weight (item-in-sequence (2, SEQUENCE-2), SOURCE-2))

Execution state 2:

OBJECT-7 = keyed-object-in-source (weight (item) =
weight (item-in-sequence (1, SEQUENCE-2), SOURCE-2))
OBJECT-8 = keyed-object-in-source (weight (item) =

weight (item-in-sequence (2, SEQUENCE-2), SOURCE-2))
It is now straightforward to generate the sequence

SEQUENCE-3 = (sequence i = 1 to size (SEQUENCE-2)
keyed-object-in-source (weight (item) =

weight (item-in-sequence (i, SEQUENCE-2), SOURCE-2)))
in both execution states.

For this reason, whenever an object, say OBJECT-1, has a definition
which refers to another item (object, source or sequence) that is a
member of a sequence, we represent that OBJECT-1 wusing
item-in-sequence (i, SEQUENCE-n), where SEQUENCE-n is the smallest

sequence that the item is in.

We have now introduced the sequences which PAN needs to generate and

the role played by the statement condition in sequence generation.
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The models for sequence generation described in the next section are

designed to generate these sequences.
4.3.2 Sequence Generation Models

We are now ready to specify in detail the sequences generated by PAN.
This specification is in the form of two models. Each model describes
a sequence which will be produced if the specified conditions are
satisfied by the execution states being generalized. After the models
have been presented, an élgorithm is presented, showing how execution

state conditions can be tested against the models in a efficient

manner.

Two models are used, one to generate primitive sequences and the

other to generate subsequences.

Model 1 Primitive Sequences

Suppose we are given execution states EU""E , to Dbe
g

generalized. A primitive sequence will be generated whenever we can

find a set of items I,' 1 € j £ g, in each execution state, which

satisfy the following:

= the items were created by statements with the same
uninstantiated statement condition P for the loop being

generalized.

& the definition of any item in any Ij is of the form

D(nl,...,n ), where nl,...,n are integers
m m
- functions f1l,...,fm, can be found, such that the ith member
of I is
3j

D(f1(i),...,fm(d))

= the size of Ij equals either the iteration count in each
Ej if P is T, or the size of a previously generated

sequence associated with P.
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If these conditions are satisfied the primitive sequence

(sequence i = 1 to h D(f1(i),...,fm(i)))
will be generated, and associated with P, where either h = k (the
iteration count) or h = size(S) for some previously generated

sequence S.

For the next model, we note that an execution state E associated with
loop entry describes the'effect the program has had after execution
has traversed some path H through zero or more iterations. During
each of these iterations, statement conditions will have been

recorded on the execution states created while traversing H.

The statement conditions recorded in these execution states provide a
history of the path traversed to reach the execution state E. We say
that an execution state has a statement condition R in the history
of the ith iteration if R is recorded in an execution state that is
created while executing path H in the ith iteration of the loop. If
the iteration is not significant we simply say that an execution

state has R in the history.

Given a set of statement conditions in a history containing R and P,
we say that R is minimally stronger than P, if R — P, R is not
equal to P and there is no R’, R not equal to R’, such that (R — R’)
A (R" = P). He.. ok

2 Su n
Suppose we are given execution states E:""'E , to Dbe
9
generalized. If sequences S1,...,SpP/ have previously been generated,

and are associated with a statement condition, P, from the histories

of El,...,E , and these histories contain a minimally stronger
S

condition R = P A Q, then generate S1’,...,Sp', associated with R,

where Si’ is defined as

Si’ = (item: item € Si A Q')
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where Q' is obtained from Q by replacing any instantiation
[<source-identifier>/<object-identifier>] either by item if
<object-identifier> is a member of Si, or by map (item, Si, 8§j) if

<object-identifier> is a member of Sj, j not equal to G -

As discussed in ‘Developing a Sequence Generation Algorithm’ above,
it is the conditional branch restrictions of section 2.2.3 and their
consequences (especially Theorem 3.3) that guarantee that each
<object-identifier> is in one of §S1,...,Sp, as long as sequence
generation has been Successful up to and including seguences

associated with P.
4.3.3 Sequence Generation Algorithm
These models are used to generate sequences as follows:

1. Find any items (objects, sources or sequences) created by a
statement in the loop being generalized with a statement
condition of T. Retrieve the definitions of these items and
replace any other item I in the definition by item-in-sequence (i,
SEQUENCE-n), if I is the ith item in SEQUENCE-n and SEQUENCE-n is
the smallest sequence I is in. Use sequence model 1 to generate

sequences for these items. Let these sequences be Sl,...,5p.

2. Now take the history of statement conditions from every execution
state, drop duplicates, and put the remainder into a partial
order of strength of the condition, i.e. P £ Q if and only if Q =
Pl
Let the weakest conditions be {Cl,...,Cn}. Use each Ci, 1 £ i <
n, to form subsequences of Sj, 1 £ j < p, using sequence

generation model 2.

3. Repeat steps 1 and 2 for every condition, C, in order, so that in
step 1, use items created by statements with statement condition
C instead of T, and in step 2, using conditions minimally

stronger than C instead of the weakest conditions.
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4. Continue until all conditions have been processed.

4.3.4 Properties of Sequences

We now demonstrate two important properties of sequences created

using the

Theorem 4

Proof:

se models.

-1: Let S1,...,Sp, be a set of sequences created using
the sequence generation models and associated with the
same statement condition P. S1,...,Sp, satisfy the

following:
= they are all the same size in any execution state

= for every execution state, each member of any Si

was created on a different iteration

= for every execution state the jth members of each
Si was created on the same iteration, the jth to

include P in the history.

Proof is by induction on the statement condition that
S1,...,Sp are associated with. For sequences associated with
the statement condition T, model 1 requires that these
sequences are always equal in length to the iteration count.
For this to be true for execution states which have
completed 1, 2, 3,... iterations, these sequences must have
one member created on each iteration. Since the statement
condition T is in every iteration of every execution state
(by definition of the statement condition) these sequences

obey the proposition.

Now suppose that the proposition is true for sequences
associated with statement condition P and R = P A Q is a
minimally stronger statement condition in the history of
some execution state. We want to show the proposition is

true for all sequences associated with R. We first
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demonstrate this for sequences created using model 2 and

then using model 1.

Let the sequences associated with P be S81,...,Sp, and
subsequences S1’,...,Sp’ be the sequences generated from
them using model 2. Thus Si’ = (item: item € Si A Q' (item)),
where Q' is as defined in model 2. Let the iterations in
which R is in the history of some execution state be
I1,...,Im. We first show that for any si, 1 £ i £ p, the
members of Si that are included in Sif, are tﬁose created

during one of Il,...,Im.

Intuitively we are trying to show that if items in Si were
created by statements with statement condition P, then the
items in Si’ = (item: item € Si A Q(item)) consist of those
items in Si created by statements with statement condition

P A Q.

First suppose that R is in the history of some iteration.
Then by the definition of the history, R = P A Q was
recorded in that iteration. Now as shown in the proof of
theorem 3-2, only one of two program structures give rise to
a change in the statement conditions. Either Q is the
condition in a statement succeeding one at a fork, or Q is
the disjunct of several such conditions at the beginning of
paths which meet at a merge. In the first case, the fact
that P A Q was recorded means that the statement containing
the condition was executed and so the condition must have
been satisfied by the current members of S1,...,Sp. In the
second case the fact that the P A Q was recorded means that
the merge statement was executed and consequently one of the
paths to that merge was executed. Thus the condition at the
beginning of that path must have been satisfied by the
current members of S1,...,Sp and since Q is the disjunct of
such conditions, it also must have been satisfied. Thus in
either case Q is satisfied by the items in S1,...,Sp for
this iteration. But since Q is satisfied if and only if Qf

is satisfied, then these items are in S1’,...,Sp’.
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Conversely, suppose that for some iteration, the items in
s1,...,Sp are also in s1’,...,5p’. By the induction
hypothesis P must be in the history for this iteration. For
the items to be in S1/,...,Sp’, then they must satisfy 0.
But since Q is satisfied, then if Q is in a condition
succeeding a statement at a fork, that statement will be
executed. This will cause the statement condition to be
updated to P A Q. If Q is the disjunct of conditions
succeeding a fork, then one of these will be executed and
when the merge statement is reached again, P A Q will be

recorded.

We now know that, for each i, the members of Si’ are those
members of Si created on the ith iteration that had R in the
jiteration history. But since, by assumption, each member of
Si is created on a different iteration, so must each member
of Si’ be. Also, since each Si is the same size, and the nth
element of Si is in Si’ if and only if R is in the history
of the nth iteration, if and only if the nth element of 59

is in S3j’, Si’ and Sj' are the same size.

For sequences associated with R, created using model 1,
their lengths, by the rules of model 1, must be equal to the
length of any Si’. This shows that they are the same length.
Also, for this to be true for execution states having
completed 1, 2, 3,... iterations, the members of these model
1 sequences must have been created in the same iteration
that 8i’ members were created. Since Si’ members obey the

proposition, so must sequences created using model 1.

The next theorem shows that there is a relation between the items in

sequences and items used in instantiation if the program satisfies a

constraint on instantiation. An item which is the current record from

a file or the object currently contacted by a robot hand, will be

used to instantiate any program statements which refer to that item

by specifying the file or hand. We expect that a well behaved program

will not try to refer to an item in this way unless it is certain
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Figure 4-9 Possibly Invalid Instantiation

that such an item exists. For example, consider the program fragment

shown in figure 4-9.

The reference to A in statement 3 is not valid unless A is read in
all paths which reach statement 3. In the simple case in which a
single statement is used to create an item, we can express this

requirement as follows:

if an item is created at statement S and used to instantiate

statement S’ then all paths to S’ must pass through S.

We say a program uses simple instantiation if it obeys this
condition. For statements in a loop this means that if the statement
condition to reach S is C, and that to reach S8’ is C’, then C" — C.
For programs which satisfy this constraint we can prove the following

theorem.

Theorem 4-2: Suppose, in the symbolic execution of a program
statement S, an item is used to instantiate
file (<file-identifier>) or hand(<hand-identifier>). If
the program uses simple instantiation, then if this

item is included in any sequences, it will be in a
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Proof

sequence SP associated with the statement condition P

required to reach S.

Furthermore, the ith time the statement S is executed,

the instantiated item will be the ith member of SP.

First suppose that the item was created by a statement with
the same statement condition as S. In this case if the item
is in any sequences it will be in a sequence SP generated

using model 1, and S will be associated with P -as required.

Now suppose that the item is created in some earlier
statement with statement condition Q. Then, since the
program uses simple instantiation, P — Q. Since the item is
in a sequence it must be in a sequence SQ generated using
model 1 and associated with Q. Now since execution of the
program reaches statement S in the iteration in which the
item is referenced, P will be in the history for this
iteration. When subsequences were created, the statement
conditions will have been put into a partial order, with Q
before P. Suppose the part of this ordering containing P and

Q is, Q,Rl,...,R P such that
n
P—)R—-)...—)Rl—-)Q,
n

and R1 is minimally stronger than Q, R11 is minimally
+

stronger than Ry and P is minimally stronger than R.
n

Then model 2 will have created subsequences

S1 = (item: item € SQ A RJ

Sn = (item: item € Sn-1 A R)
n

SP = (item: item € Sn A P)

But because P - R — ... =5 R — Q, items will be in SP
n 1

if and only if they are in SQ and satisfy P. Since we know
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that the item is in SQ, and P is in the history for this

iteration, then by theorem 4-1, the item will also be in SP.

z To prove the extension we note that the ith time that the
statement S is executed is the ith iteration that contains P
in the history. But, by theorem 4-1, this is the iteration

in which the ith member of SP was created as required.

As shown by these theorems, sequences associated with the same
statement conditions have items which are current at the same time. -

For this reason these sequences are called concurrent.
4.3.5 Evaluation of the Sequence Generation Method

Having presented a method of generating sequences it is appropriate
to ask under what conditions is this method successful. By
successful, we mean that all items created during execution of some

branch which is repeatedly executed, have been included in sequences.

We claim that the method will be successful if and only if the

following proposition holds:

Proposition 4-1:

The definitions of items generated by statements with the same
statement condition can be expressed in a way that varies only on
the number of times these statements have been executed.

This is expressed more formally in the following theorem.

Theorem 4-3: If one execution of a set of statements with the same
statement condition generates n items, then these items
will be in sequences if and only if the definitions of
the items generated on the Jjth execution of the

statements can be expressed as

D1(£1(3)),...,Dn(fn(3))
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for some functions fl,...,fn.
Proof: If the definitions of the n items can be expressed as
D1(£f1(3)),....Dn(fn(3))

then since these items will have the same statement
condition at the time they were created, the sequence

generation process will produce the sequences:

(sequence i = 1 to m D1(£f1(i)))

(sequence i = 1 to m Dn(fn(i))).

Conversely, if the items are included in sequences, then
they must have first been put into primitive sequences as
above using model 1. Then the jth iteration produces objects

defined as D1(j),...,Dn(j), as required.

Since the success of the method depends on the truth of the above
proposition, we want to know whether this proposition is 1likely to

hold for programs expressible in the language described in chapter 2.

For objects generated from sequential sources, the answer depends
upon whether a single statement is generating objects from the same
source. If it is, then the proposition above will be true, since
objects will have definitions sequential-object-in-source (1,
SOURCE-1), sequential—object—in—source(2, SOURCE-1) etc. If some
other statement is also generating objects from the same source,
then, the above proposition will not be satisfied. To see that this
is so, first suppose that the other statement has the same statement
condition, then the definition of items produced on the jth execution

of these statements will be

sequential-object-in-source (2j-1, SOURCE-1)
sequential-object-in-source(2j, SOURCE-1)
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which does not satisfy the theorem. Alternatively, if the other
statement generating objects from the same source has a different
statement condition then the objects created from either set of
statements with the same statement conditions will not include all
the objects from the source and again the proposition will not be

satisfied.

For keyed sources the answer depends upon whether the predicate P
used in the keyed read statement contains variables. If it doesn’t,
then on each execution of the keyed read statement, P can only vary
in the objects current when the keyed read statement was executed.
Now as shown by theorem 4-2, if P refers to other objects which have
been put into a sequence, then the ith time the keyed read is
executed, these objects will be the ith members of some sequence.
Thus, if the objects created by the keyed read are
object-1,...,0bject-n, then when the other objects referred to in the
definition of object-i are replaced by the item-in-sequence (m, §)
form as required by the sequence generation algorithm, m will be 1i.
In this form the definitions of object-1,...,object-n will easily be
made into a sequence since they will be the same apart from the ith
definition having the integer i where the jth has integer j. An
example of this procedure has been previously given at the end of

section 4.3.1.

Thus P, and therefore the objects created by the keyed read that uses
P, do obey the proposition if no variables occur in P. If P does
contain a variable, then the proposition will only be obeyed if the
variable’s value on executing the keyed read statement only depends

on the number of times the statement has been executed.

We can conclude that we can expect many ‘normal’ programs to obey the
proposition and hence that the sequence generation as described will
be successful for these programs. This does not mean that it is hard
to create programs which do not obey the proposition. Either we can
include sequential reads from the same source in different branches,
or keyed reads using variables in the predicate whose values cannot

be expressed as a function of the number of times the branch has been
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executed (e.g. a variable could count the number of times some other
branch has been executed). However, since such programs are difficult
for a human to analyse we need not be too disappointed that PAN

¢annot cope with them.

We can also evaluate the sequences generation method by comparing it
with some obvious alternatives. As a first alternative we consider
whether instead of grouping objects with the same statement
condition, as done in model 1, we should simply group objects created
‘by the same statement. Since all PAN sequences generated using model
1 do actually consist of items created from a single statement, this

could be done without changing the sequences created.

However, we still need to apply model 2 to these sequences. As
discussed in section 4.3.1, model 2 needs to apply a single predicate
to all sequences associated with the same statement condition. Thus
if we simplified model 1 by grouping items by their creation
statement, we would need to add a new step to group these sequences

by statement condition before being able to apply model 2.

As a second alternative to the sequence generation method, we
consider whether we should apply model 1 to all items created by the
same source. This appears attractive when one considers the program
in figure 4-10, for which, as we have seen by the above discussion
PAN is not able to generate sequences of objects from file (source)
B. If, instead of the PAN method, we try to generate sequences from
objects created from file B, regardless of which statement created

them, then we can generate the sequence

SEQUENCE-1 = (sequence i =1 to n

sequential—object—in—source(i, B)) .

However, there are several problems with this apparently attractive
approach. As a first problem, we again have a difficulty with
applying model 2. There will be two subsequences of sequence 1, those
items generated from the statement in the branch beginning with

condition 1, and those items generated from the statement in the
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Figure 4-10 Same Source Used in Two Branches

branch beginning with condition 2. These subsequences will be
generated by model 2 only if it is recognized that SEQUENCE-1 is in

fact concurrent with

SEQUENCE-2 = (sequence i = 1 to n

sequential-object-in-source (i, A))

and that condition 1 and condition 2 are to be applied to both of

these sequences.

Thus application of model 2 requires that SEQUENCE-1 and SEQUENCE-2
are to be grouped for generation of subsequences, which is a non
trivial task. We return to this subject shortly. A second problem
with this alternative is that PAN does not always generate sequences
from a single source. When analysing a robot program which finds the
first object in line 1, the first object in line 2, then the first

object in line 3, PAN will generate the sequence

(sequence i = 1 to n (first object in line 1))
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which could not be done if sequence generation is done by grouping
items from the same source. A related problem occurs with two keyed
reads in different branches using the same source. In this case, we
saw earlier in this section that PAN’s method of grouping the objects
from each read separately will generate sequences (unless, possibly
variables are used in the key). This alternative method will not work
because the definitions of the objects from both sources will not
have a simple relationship between them. A final problem with this
method is that it cannot be easily extended to programs of the form
shown in figure 4-11. Trying to find a sequence from the objects
created from file B now runs into problems with finding the length of
the sequence. We now return to the fact that PAN cannot find
sequences for the program in figure 4-10. Rather than adopting this
alternate method, with all its disadvantages, a better solution

would be to extend PAN’s model 1 so that it first tries to find
sequences for items created with the same statement condition, as
currently, and, if this fails, to then try to find sequences of items
which were created with statement conditions S1,...,Sn which satisfy

the following:

sequential read A

Y
< \
~ >
A\ Y N\
if condition 1 if condition 2 if condition 3
1
sequential read B sequential read B
\% Y
N &
< <
Vv
merge

Figure 4-11 - Same Source Used in Two Out of Three
Branches
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Sl,...,5n are of the form P A Q1,...,P A Qn, where

Ql v ... vQOn = T.

If any such sequences can be found they should be the same length as
sequences associated with P and used with them to form subsequences.

PAN is not currently able to do this but should be extended to do so.

4.4 RESOLUTION OF THE VALUE OF VARIABLES USED IN
SEQUENCE DEFINITIONS

4.4.1 Introduction

We now address the problem that some of the subsequences generated by
the sequence generation models will be defined in terms of a variable
of unknown value. Since these sequences have not yet been used, apart
from possibly appearing in the definition of other sequences, we are
free to discard them if necessary. Resolution means that either the
subsequence is successfully redefined without variables, or it is not

used further in the loop generalization process.

Before presenting models and an algorithm for resolving these values,
we first discuss the program situations in which variables occur in

sequences.

Without the use of variables a program can reference any current
object from a source. Generally, variables increase the
expressiveness of program by allowing the program to either reference

non current objects, or reference the size of some set of objects.

There are two trivial cases. Firstly, we may find that the variable
in question is in fact not being updated in the loop being
generalized i.e. has the same value in every execution state input to
the generalization process. In this case we simply replace the
variable by its value in all sequence definitions. Secondly, the
variable may always reference only current objects. This is
illustrated by the two programs in figure 4-12. The use of a variable

in this case does not increase the expressiveness of the program. If
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sequential read A sequential read A

N\ \
v := weight (A) if weight (A) < 10
\
if v < 10

Figufe 4-12 - Unnecessary use of a Variable

the left hand program fragment in figure 4-12 is part of a loop, then

we can expect the following sequences to be generated:

SEQUENCE-1 = (sequence i = 1 to
sequential-object-in-source(i, SOURCE-1)
SEQUENCE-2 = (item: item € SEQUENCE-1 A v < 10)

Let the objects in SEQUENCE-1 be OBJECT-1, OBJECT-2, OBJECT-3. Then
the value of v as used in the condition and recorded in the statement
conditions will have values weight (OBJECT-1), weight (OBJECT-2),
weight (OBJECT-3) . The significant characteristics of this use of a
variable as part of a condition generating a subsequence of some

sequence S are that:

= if a statement condition containing v is in the history of
iteration i, its instantiation will involve items created in

iteration i
and

- all the items involved in the instantiation of v are members
of S. (This can be generalized so that the items are in a

sequences concurrent with S).

Identification of this case allows it to be handled by a separate

model.
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We now turn our attention to more interesting cases. A subsequence
s2, whose definition contains variables must have been created by

applying some condition P involving variable v to a sequence Sl i.e.
. S2 = (item: item € S1 A P(item, V)).
We want to find an expression Q(item), so that
item € S1 — Q(item) = P(item, V)
allowing S2 to be expressed as
§2 = (item: item € S1 A Q(item)).
Two cases which occur frequently are:
= v is counting the size of the sequence sl
2 v is a function on some property of all objects in 81,
For the first case, consider the program fragment in figure 4-13. If

v is initialized to zero, and this fragment occurs in a loop, the

sequence generation method will produce

v = v+l

N
Y

if v < 10
l

Figure 4-13 - Variable Counting Size of Sequence
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Sl = (segquence i = 1 to n sequential-object-in—source(i,
SOURCE-1))
§2 = (item: item € S1 A v < 10}

For any item in S1, at the time the condition on v is tested, v will
be the size of S1, which is the position of the item in S1. Thus we

can express S2 as
S2 = (item: item € S1 A position—in—sequence(item, s1) < 10)
For the second case consider the program fragment in figure 4-14.

Again, we assume Vv is initialized to zero, and this fragment occurs

in a loop. The same sequences

S1 = (sequence i = 1 to n sequential—object—in—source(i,
SOURCE=-1) )
S2 = (item: item € S1 A v < 10}

are generated. But in this case, for any item in S1, at the time the
condition on v is tested, v will be the sum of the weight of all
items in S1 at that poiﬁt, from the first up to the position of that

item in S1 i.e. we will have

size(S1)
v = X, weight (item-in-sequence (i, S1))

sequential read A

\

v := v + weight (A)

& AN
~ rg 1

\

if v < 10

Figure 4-14 - Variable Summing Weight of Sequence
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and S2 can be expressed as

S2 = (item: item € S1 A
position-in-sequence (item, S1)

3 weight (item-in-sequence (i, S1)) < 10)
i=1

Both of these examples can be extended to allow a superset of S1 to

be substituted for S1.
4.4.2 Resolution of Variables in Sequence Definition Model

We now present models which formalise the cases in which PAN is able
to resolve a variable occurring in the definition of a sequence. A

variable v occurring in the definition of the sequence S2

$2 = (item: item € S1 A P(item, Vv))
will be called resolvable if it obeys one of the following models.
Model 1

v has the same value in all input execution states, in which case it

is replaced by its value.
Model 2

The instantiation of v in every occurrence of P(item, V) in the
history of every execution state is an expression involving only
items which were the last in S1 or concurrent sequences at the time

that P(item, v) was recorded.

If this is the case, suppose the instantiation of v in some
occurrence of P(item, v) in the history of an execution state, refers

to items: item-1,...,item-n. Form Q from P(item, V) by

- replacing each item-i by map(item, S’, S1) if itemi € S’,

concurrent with S1 and S’ not equal to Sl
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- replacing item-i by item if item € S1.,

82 is then redefined as

S2 = (item: item € S1 A Q(item)).

Model 3

There is some sequence S, that is a superset of s2, and the
instantiation of v in every occurrence of P(item, v) in the history
of every execution state is the size of § at the time that P (item, V)

was recorded. In this case replace v by position-in-sequence (item,

S) .

Model 4

There is some sequence S, that is a superset of S2, and the
instantiation of v in every occurrence of P(item, V) in the history

of every execution state is the sum or product of some property of

all items in S at the time that P(item, v) was recorded i.e.

size(S)

v= 2 p (item-in-sequence (i, S))
i=1
or
size(S)
v = I1 p(item-in-sequence (i, S))
i=1

for some property p.

In this case we replace v by
position-in-sequence(item, S)

Y pl(item-in-sequence(i, $§))
i=1

or
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position-in-sequence(item, S)
1 p(item-in-sequence(i, S))
i=1

4.4.3 Resolution of Variable in Sequence Process

In using the above models, sequences must be processed in the correct
order to ensure we do not resolve a variable by replacing it by an
expression involving a sequence which may later be removed (because

this sequence contains a different unresolvable variable) . -

Thus PAN ensures that it processes any sequence Si before processing
any sequence Sj that is defined in terms of Si. A sequence S is
processed by checking whether its definition involves variables. If
it does, then an attempt is made to resolve each variable using the
above models. If this is unsuccessful, the sequence, and all

sequences defined in terms of S are removed.
4.5 VARIABLE VALUES AT LOOP ENTRY
4.5.1 Introduction

We have now dealt with the special case of generalizing the value of
variables used in segquence definitions. These values are not

necessarily the same as the value of the variable at loop entry.

The generalized execution state, which is the output of the loop
generalization process, reflects the situation at loop entry after an
indefinite number of iterations. Thus the value of variables at loop
entry needs to be generalized from the input execution states, using
the values in the variables data, regardless of whether the variables

occur in sequence definitions.

For variables in sequence definitions, we specified models for the
resolvable values of the variable. If a variable could not be
resolved the sequence was simply removed from the loop generalization

process. Failure to find a value of the variable at loop entry,
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however, is more serious and results in a generalized execution state
with an unknown value for the variable. Thus we use a two stage
approach. We first look for a value for the variable using a model
-that is an extension of the one for variables in sequences. If this
fails then the ‘brute force search’, described separately in chapter
6, is invoked. This two stage approach has the advantage of being
able to quickly analyse those variables with simple values and only
uses the more powerful but time consuming method if it is really

required.

The following analysis refers specifically to variables, but applies
equally well to any value generated by all iterations of the loop.
For example, it applies to an updated property of a single object
present in all input execution states, as in the program in figure
4-15. In this case, file A is a report showing the total weight of
all records in file B. Program analysis of the value of total(A) at
loop entry is the same as if it were a variable. An object used in
this way will have no definition when the loop is generalized,
because it has not been read or written and, as discussed in chapter
3, object definitions are always assigned by read or write
statements. Thus PAN tries to apply the following variable analysis
not only to variables, but to any updated property of any object

without a definition.

To begin the discussion of what we would expect as a model of
variable values, we first note that, as in the sequence definition
variable analysis, we may have the simple cases - either the variable
is not being altered by the loop, or is always an expression
involving only objects which were current when the variable was
updated. In the first case no further analysis is required. In the
second case the value of v in any execution state will involve those
objects current when v was last updated. If v is updated in branch i,
then by theorems 4-1 and 4-2, if branch i is executed n times in
total, these objects will be the nth members of concurrent sequences
of length n. Thus they can be expressed as item-in-sequence (size(S),

S) for some sequence S.
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\
2. |total(a) := 0
>
3. |loop entry
Y
4. |sequential read B
< >
/N
5. |if current (B) 7. |if not current (B)
\% \
6. |total(pa) := 8. |loop exit
total (A) + weight (B)

< 9. |sequential write A

A\

10. |stop

Figure 4-15 - Report Total.

For non trivial cases, we extend the model for variables occurring in
sequence definitions. We still need to find a value for the variable
expressed in terms available in the generalized execution state, but
we are no longer constrained to find a value which can be substituted

into the definition of a subsequence.

The case of a variable counting the size of a sequence is extended to
a variable counting the sum or difference of the sizes of several
sequences. The case of the variable being a sum or product of some

property of all objects in a sequence is extended to the variable
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being a function of the sum or product of one or more properties of

all objects from several sequences.
¥or an example of the second case, a variable v may have the value

weight (OBJECT-1) * weight (OBJECT-2)

- weight (OBJECT-3) * weight (OBJECT-4)

*

+ weight (OBJECT-5) weight (OBJECT-6)

*

- weight (OBJECT-7) * weight (OBJECT-8)

+ weight (OBJECT-9) * weight (OBJECT-10)

where
S1 = {OBJECT-1 OBJECT-5 OBJECT-9}
S2 = {OBJECT-2 OBJECT-6 OBJECT-10}
S3 = {OBJECT-3 OBJECT-7}
sS4 = {ORJECT-4 OBJECT-8}.

with {81 S2} and {S3 S4} concurrent pairs of sequences. Vv can then be

expressed as:

(weight (item-in-sequence (1, S1)) * weight (item-in-sequence (1, S2))

+ " " 2 " ” " 2 "

+ " " 3 " " " 3 ll) ) )

(weight (item-in-sequence (1, S3)) * weight (item-in-sequence (1, S4))
" " 2 " " " 2 'l) ) )
or
size(S1)
h) weight (item-in-sequence (i, S1))

i=1

* weight (item-in-sequence (i, S2))
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size(s3)
Y weight (item-in-sequence (i, S3))
j=1

* weight (item-in-sequence (i, S4)).

This type of rearrangement is possible because the original value for

v can be expressed in the form:

v = (terml + term2 + term3) - (termd4 + term5)

where

= terml, term2 and term3 only contain items from concurrent
sequences {S1 52}

- terml, term2 and term3 are the same except terml references
the first item from a sequence, where term2 references the
second and term3 the third

- size({terml term2 term3}) = size(Sl) = size(S2)

- similar conditions are true for term4 and term5.

We are now ready to present in detail the models and algorithm for

the values of variables at loop entry.

4.5.2 Models for Variable Values at Loop Entry

The value of a variable v at loop entry will be called resolvable

if it satisfies one of the following models.

Model 1

v has the same value in all input execution states in which case this

value is used in the generalized execution state.

Model 2

There is a set of concurrent sequences S1,...,Sp such that the value

of v recorded in the variables data in all input execution states is
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the same expression involving the last items of these sequences. In
this case, the value used in the generalized execution state is the
expression formed by replacing each item which is the last member of

‘sequence S by item-in-sequence(size(S), S)

Model 3
There is a set of sequences S1,...,Sp such that the value of v is %
size(S1l) * size(S2) * ... * size(Sp) in all input execution states.

In this case the same expression is used as the value of v in the

generalized execution state.

Model 4

In all input execution states, the value of v is some expression

P(el,. ..,e), where each ei is a subexpression obeying the
n
following:
size(S)
- each e, is of the form X term(i) or
i=1
size(S)
Il term(i) for some sequence S, where each term(i)

i=1

is identical except term(i) may refer to the ith member
of some sequence S’ concurrent with §, where term(j)

refers to the jth member of 8’

In this case the value of v used in the generalized execution state

is the expression P’(e,...,e), where P’ is formed from P by
1 n

replacing each item that occurs in term(i) and is a member of S§',

concurrent with S, by item-in-sequence(i, S').
4.5.3 Algorithm for Finding Variable Values at Loop Entry

The algorithm proceeds by trying to match the value of all variables

at loop entry to each model. Thus for each variable, proceed as

follows.
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Try to match against the first model by simply checking the value

of the variable in each execution state.

Try to match against the second model by checking whether the
value of v, apart from reference to items in sequences, is the
same in all execution states. If it is, then choose any execution
state and find a set of concurrent sequences whose last members
are the items in the value of v in that execution state. If such
a set can be found, see if they have the same property for every
execution state. If so, the value of -v is formed by replacing
each item by an expression of the form item-in-sequence (size (S),
S). Otherwise, return to the first execution state and find
another set of concurrent sequences to try. If no more sets can

be found, then the variable is not resolvable using this model.

Choose any execution state and try to find a match of the value
of v to the size of a sequence in this execution state. If this
can be found, see if v is the size of the same sequence in all
other execution states. If not, try other single sequences. If
this is also not successful, try the sum of two sequences, and
then the difference of two sequences. Continue in this way until
all combinations of & size(S1l) & ... & size(Sp) have been tried.

If still not successful, then value of v is not resolvable using

this model.

Testing whether a value of v satisfies the fourth model may
require some manipulation of v's value. Much of this will be
already done by the Expression Simplification process described
in Chapter 7, since this will group + and * terms. Thus the

following algorithm will suffice:

= pick any execution state and examine the value of v. If

v contains any subexpressions of the form

terml + term2 + ... + termn,

then use associative and reflexive properties of

addition to reexpress these as

177



(terml-1 + ... + terml-nl) + ... + (termh-1 +

ee. t termh—nh)

so that each form (termi-1 + ... + termi—n) can be
associated with a set of concurrent sequences

Sil,...,sipi so that

- termi-1,. ..,termi—ni are identical except
that termi-j contains the jth item from one
of the concurrent sequences where termi-k

contains the kth item from the same sequence.
= n = size of any of the current sequences

if this can be done, then replace each item from any
sequence S of the concurrent sequences, occurring in
termi-j, by item-in-sequence(j, S), which allows the
subexpression to be written as

size(S11) size(shl)

Y terml(i) + ... + Y termh(i) .
i=1 i=1

Do similar processing for subexpressions involving *,
using Il format. At this point we will have a set of
alternate values of v, say vl,...,v{ If any of

these is derived in all execution states, and contains
no items which are in sequences, then it satisfies the
model and is used as the value of the variable in the

generalized execution state.
4.6 UPDATED OBJECT PROPERTIES
4.6.1 Introduction
We now address the last major task of the generalization process:

analysing the updated properties of any objects created in the loop

being generalized. As for finding the values of variables at loop
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entry, we first try to explain these properties in terms of a model.

Only if this fails is the brute force search of chapter 6 invoked.

We first consider the likely values for updated properties. Suppose
we are considering the updated properties of some sequence S, updated
in branch j of the program. On any given loop iteration, the
assignment statement performing the property update could have
referenced either the value of variables or the current items
available in branch 3j. By theorem 4-2, the ith time this update
occurs it will be- updating the ith member of S and the only other
current objects will also be the ith members of sequences concurrent
with S§. So, apart from the value of variables, the updated property
of the ith item in S can only reference the ith items from sequences

S1l,...,Sp, concurrent with S.

Variables can greatly increase the complexity of updated properties.
However, a variable being updated during the loop is generally
computing some value which only has meaning when all iterations are
included. Thus the interim value of such a variable i.e. the value on
the ith execution of branch j, is unlikely to be used in updating the

property of the ith member of S§.

One exception to this, however, is when the updated property of the
ith item in S depends upon i. This would occur in a dp program which
numbers each record (e.g. in a report line) or in a robot program
which moves the first object in S to (1 , 1), the second to (2 , 1),

the third to (3 , 1) etc.

Thus the updated property model described below only allows for

variables used to update properties in this simple way.

To find an algorithm to use such a model, we must bear in mind that
we may find that only some objects in a sequence have updated
properties. For example, consider the program fragment of figure

4-16. Seguence generation will produce:

179



S1

(sequence i 1 to k sequential-item-in—source(i, SOURCE-1))

S2 = (item: item € S1 A color(item) = blue)
S3 = (item: item € S1 A —color(item) = blue)
84 = (item: item € S2 A length(item) > 10)
S5 = (item: item € S2 A length(item) < 10)

In this case only some of the items in Sl will have an updated weight
property i.e. those also in S2. Obviously we cannot expect to obtain
a general statement about the updated property of all items in a
sequence if only some of them have that property updated. Thus we
should only try to fit the model to those sequences in which all

items have the property updated.

We also want to ensure that we use the most general possible sequence
to state the property updates. For example, referring again to the
above sequences, we would not want to state that items in S4 and S5
have updated weight property with value of 1. While this is true, it
is more economical to state this of sequence S2 instead. We can
ensure that our analysis fits these requirements by analysing
sequences, subsequences, subsubsequences etc, until an explanation of

the updated property is found.

4.6.2 Updated Property Model

We say that the value of updated property P is resolvable for
sequence S of length n, if the values of p, for all members of 8,

pl,...,p , vary only in two ways
n

- there is some sequence S’ concurrent with § such that P

refers to the ith member of S’

- p contains the numbers n ,...,n
i 11 im
and functions fi,...,f can be found, so that
P
fx(j) =n , for 1< 3j<n, 1<1is<m
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1. |loop entry

2. |move-until-contact-up-to A @ 1

N
P N
~ P
\ \
3. |if contact (&) 7. |if not contact (A)
' T
>
\ \
4, |if color(A) = blue 5. |if not color(A) = blue
1
6. |weight(a) :=1
\%
>
% \
7. |if length(a) > 10 8. |if length(A) < 10j

Figure 4-16 - Partial Property Update Example

In this case the sequence has the updated property described by
p(item-in-sequence(j, S)) = p', 1 < 7 <n

where p’ is formed from P, by
- replacing nlj by fj(i) for 1 £ 3 <n

- replacing the ith element of any sequence Sm concurrent with

S by item-in-sequence (i, Sm).
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4.6.3 Updated Property Algorithm

1. Place sequences into a partial order, SO that S1 < §2 if S2 is a

subsequence of Sl.

2. Process sequences so that if S1 < 82, S1 is processed before SZ.
If a sequence S contains any element with an updated property,
see if every element of S has this property updated. If so, then
try to fit the updated property to the above model. If successful
do not analyse the property for any subsequence of S. If not
every element of S has property updated or the attempt to fit the
model is unsuccessful, then continue processing if S has any
subsequences. Otherwise analysis has failed for this property and
will be referred to the brute force search described in Chapter

6.

4.7 GENERALIZATION OUTPUT

The analysis above of variable values and updated object properties
may need to invoke the brute force search. If so it will be done
pefore the processing described in the remainder of this chapter.
However, rather than divert from the discussion of the usual analysis
flow, this has been left for description in Chapter 6. For now we

proceed onwards with the production of a generalized execution state.

Some minor housekeeping is discussed first - we may be able to obtain
a generalized value of the position of robot hands in the robot

domain, and a value for the number of retrievals attempted from each

sequential source.

4.7.1 Position of Robot Hands, Object Contacted, Grasping.

The position of each robot hand is expressed as coordinates in 2D
space i.e. in the form (x , y). For a given robot hand, only one such

position will exist for each hand. Thus there is nothing to prevent

us from treating x and y as variables, and using the full variable
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analysis process described above, including, if necessary, the brute

force search of Chapter 6.

However, this was not realized when PAN was implemented and PAN
instead tries to explain each robot hand position as a function of
the iteration count. That is, for a given hand h, we try to find

functions f1 and f2 such that
xh = fl(k) and yh = f2 (k)

where k is the iteration count. If such functions fl1 and f2 cannot be
found, then these values are set to ‘unknown’. This usually doesn’t
present problems in practice, as programs which have complicated
expressions for robot hands at loop generalization usually return the

hands to some fixed point at loop exit.

For generalizing the object contacted by a robot hand, we have much
less scope. Our generalized value must be expressed only in terms
available in the generalized frame. Also, the object contacted by a
robot hand on the last loop iteration must have been created in the
last execution of some branch, branch i. Thus the object will be the

last object of one of those sequences generated by objects created in

branch i.
Our generalization is then very simple:

- if, in every execution state, hand h is not in contact, then

it will not be in contact in the generalized execution

state.

- otherwise, if there is a sequence S, such that the object
contacted by hand h is always the last object in this
sequence, then in the generalized execution state the object

contacted is set to
item-in-sequence ((size S), S)

- otherwise, object contacted is set to ‘unknown’.
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Finally, to derive the generalized value of grasping, we simply set
this to T or F, if it has that wvalue in every execution state,

otherwise to ‘unknown’.

4.7.2 Number of Retrievals Attempted, Current Object and Exhausted

Indicator of Sources.

As for the robot position described above, the number of retrievals
attempted is really an implicit variable, and should have been
analysed in the same way as other variables. However, when PAN was
constructed it was recognized that the number of retrievals attempted
will equal the number of times the program code retrieving objects is
executed. If this is contained in some branch, branch i, this will be
the same as the number of times this branch is executed, which, in
turn is the size of any sequences generated from objects created in

this branch.

Thus, we expect that this implicit variable will end loop execution
with a value equal to the size of some sequence. We look for such a
sequence S, and if one can be found, set the value of the implicit
variable to size(S). If no such S can be found, the number of
retrievals attempted is set to ‘unknown’. Current object is analysed
as for robot hand in contact, as described above. Exhausted indicator

is analysed as for grasping as described above.

4.7.3 Production of Generalized Execution State

The final task of loop generalization is to actually produce a single
generalized execution state. Since producing this execution state has
been the aim of the whole chapter, we now only need to describe how

the results of the previous sections are used for this purpose.

We begin with the single execution state E that is associated with
loop entry and has an iteration count of zero. We then retrieve
additional information from the other execution states associated
with loop entry and the results of the loop generalization process.

We add to E all objects and sources identified during loop execution
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which have not been put into sequences. We then add all the sequences
generated by the method described in sections 4.3.2 and 4.4.2. The
updated properties of these sequences determined in section 4.6.2 are
also recorded. Any variables identified during loop generalization
are recorded and any variable values resolved in section 4.5.2 are
also recorded. The robot hand and sequential source attributes
described in section 4.7.1 are recorded. Finally housekeeping data is
updated to ensure that symbolic execution can continue from this
generalized execution state. This involves setting the iteration
count to the indeterminate value k, setting the status of the

execution state to active and the loop status to exiting.
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Chapter 5

Loop Exit

once a loop has been generalized there are two outstanding loop
processing tasks. One is to find a value for the loop iteration count
on exit and the other is to verify that the generalization is
correct. These processes correspond to the two paths that execution
can take starting with the generalized execution state. Either a loop
exit statement is reached, in which case a value for the iteration
count can be determined, or loop entry is reached, in which case the
generalization can be verified. We first describe the processing when
loop exit is reached, referred to as exit processing and then
describe verification. These descriptions show that verification and

loop exit processing require similar components.

5.1 EXIT PROCESSING

One characteristic feature of PAN’s loop analysis process, is that
analysis of loop exit conditions has been made a separate process
distinct from loop generalization. The primary function of this
process is to determine a value for the loop iteration count at loop
exit. Having a distinct process to analyse loop exit conditions
appears to be unique to PAN. The ‘usual’ method that symbolic
executors use to analyse loops, using recurrence relations, treats
the value of the iteration count on exit as just one more relation to
be solved simultaneously with any other relations describing the

effect of the loop. See, for example, Cheatham et al [1979].

Having a separate process to analyse exit conditions enables PAN to
analyse loops with more complex exit conditions than those handled by
other analysis systems. In particular, PAN can analyse programs
having loops with multiple exits, whose position in the loop is not
determined by the iteration construct used. As described in Chapter

4, PAN’s loop analysis method first generalizes the execution states
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at loop entry, and then continues symbolic execution. Once all
péssible execution states have been created at loop exit statements,
these execution states are used in analysis of exit conditions.
However, this is not the only way that generalization could be used
to analyse loops. Consider the loop structure in figure 5-1. One
possible way of analysing such a program would be to allow the
symbolic executor to perform several iterations as far as the loop
exit statements. Generalization would then be performed on the
execution states that are associated with loop exit 1 and loop exit
2. This generalization woﬁld include determining the exitAconditions
and would therefore appear simpler than PAN’s method of using a
separate process for analysing exit conditions. However, such a
method would suffer from requiring two generalizations, and since
loop generalization is the most time consuming task performed by PAN,
would almost double the time required to analyse a program. Also,
correct analysis of loop exit conditions means that the

generalization processes would not be fully independent.

Exit from the loop in figure 5-1 occurs when either cond-1 or cond-5
are true, and this information will only be available by examining

the execution states at both loop exit 1 and loop exit 2.

To avoid these problems, PAN loop analysis only performs
generalization of execution states at loop entry. The result of this
generalization is a single execution state, as described in Chapter
4, The normal symbolic executor, described in Chapter 3, will then
continue until execution has reached all possible loop exits
statements. At this point the loop exit processing described in this
section is invoked. It analyses all execution states to determine the
value of the iteration count, which was left undetermined by the

generalization at loop entry

One complication with this process is that the sequences created when
generalizing execution states at loop entry may need to be extended
to properly describe the situation at loop exit. This complication is
not serious enough to outweigh the advantages of PAN’s method of loop

analysis.
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Figure 5-1 - Multiple Loop Exits

Therefore, there are two stages to PAN loop exit analysis: first
extending the sequences to include any items created between loop
entry and the loop exit; second, determining a value for the
iteration count. Note that extending sequences involves analysing
each execution state separately, whereas determining a value for the

iteration count involves analysing all execution states associated

with loop exit statements.
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5.1.1 Extending Sequences

The information in the execution states associated with loop exit
will be carried forward, eventually to the specifications output.
Thus, we want to ensure that they contain the best representation of

sequences and items.

The execution states input to the loop exit process will have
sequences created during loop generalization and, possibly,
additional sources and objects created between loop entry and loop
exit. For nested loops, the exit path for an outer loop may have
contained an inner loop. Thus, even new sSeéquences may have Dbeen
created. Although not essential for program analysis, it is
nevertheless desirable to check whether these new items can be fitted
into existing sequences. To see the impact that this process has on
the program analysis, consider the program in figure 5-2. The

generalized execution state will have sequences

S1 = (sequence i =1 to k
sequential-object-in—source(i, SOURCE=-1))

S2 = (item: item € S1 A color(item) = red)

3 = (item: item € S1 A — color(item) = red)

having updated properties of

V item (item € S2 — position(item) = pos-b)
and

V item (item € S3 — position(item) = pos-c).
Two execution states will be associated with loop exit. One, E1, will
be the result after execution has gone through statement 6 and will
have a new red object, with an updated position property of pos-b.

The other, E2, will be the result after execution has gone through

statement 7, and will have a new not red object, with an updated
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position property of pos-c. Both execution states must be the result
of execution having gone through statement 16, at which time the
value of counter will have been k+l1. Thus, these execution states
will have path conditions of (color (OBJECT-1) = red A k+l > 10) and
(—color (OBJECT-1) = red A k+l > 10), respectively, where

OBJECT-1 = sequential-object-in-source (k+l, SOURCE-1) .

If sequence extension is not performed, then assuming k has been
resolved to the value 10 by the process described below, then since
1041 > 10 can be simplified to T, the output specifications produced

will be

if color (OBJECT-1) = red

then
V item (item € S2 — position(item) = pos-b)
V item (item € S3 — position(item) = pos-c)
position (OBJECT-1) = pos-b

where
OBJECT-1 = sequential-object-in-source (11, SOURCE-1)
S1 = (sequence i = 1 to 10

sequential—object-in—source(i, SOURCE-1))
S2

(item: item € S1 A color(item) = red)

§3 (item: item € S1 A — color(item) = red)
and

if — color (OBJECT-1) = red

then

V item (item € S2 — position(item) pos-b)

V item (item € S3 — position(item) pos-—c)

position (OBJECT-1) = pos-¢C
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where

OBJECT-1 = sequential-object-in-source(ll, SOURCE-1)

S1 = (sequence i =1 to 10
sequential-object-in-source (i, SOURCE-1))

S2 = (item: item € S1 A color(item) = red)

S3 = (item: item € S1 A — color(item) = red)

This is not wrong, but is clumsy compared to the alternative

specification

V item (item € S2 — position(item) pos-b)

V item (item € S3 — position(item) pos-c)

where
S1 = (sequence i = 1 to 11
sequential-object-in-source (i, SQURCE-1))
S2 = (item: item € S1 A color(item) = red)
S3 =

(item: item € S1 A — color(item) = red)

To achieve this second form of specification, PAN needs to extend the
sequences to include OBJECT-1, after which the two execution states
will have different path conditions but identical effects. Merging of
these execution states is discussed at the end of section 5.1.2,
where this example is revisited. Note that extending the sequences to
include OBJECT-1 requires recognizing that the updated properties of
OBJECT-1 are consistent with the updated properties of S2 and S3. We

now consider the general requirements of extending sequences.

Initially ignoring the problems associated with updated properties, a

sequence of the form
S = (sequence i = 1 to n D(i))

may be extended to
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S = (sequence i = 1 to n+l D(1))

if the execution state contains an item-j, whose definition is

D(n+l) .

If a sequence S is extended to include a new item, item-Jj, the item

may also be included in subsequences of S. Given a subsequence
§* = (item: item € S A P(item))
then item-j will be in S8’ if P (item-j) is satisfied.

Now considering that both items and sequences have updated
properties, it is necessary to ensure that the updated properties of
the items are consistent with those of the sequences it is added to.
Recall from section 4.6 that a sequence including items with updated
properties may be generalized by recording updated properties on
subsequences. Thus to determine whether an item added to a sequence
has consistent updated properties, we need to consider the
subsequences the item is in, and then compare the updated properties

of the sequence and all of these subsequences with those of the item.

We now consider two complications in this apparently simple process.
The first complication concerns references to other sequences. The
definition of the next item in a sequence, the definition of the new
item to be included, the values of the updated properties, and the
definitions of subsequences, may all contain references to other

sequences in such subexpressions as:

- size(S)
- item-in-sequence (i, S)
- position-in-sequence (item, §)

= map (item, S, S').
The use of such expressions is complicated by the fact that sequences

are being modified by the sequence extension process, and the values

of such expressions may change when a sequence is extended. This
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complication can be addressed by extending sequences in an order such
that if the definition of sequence S1 refers to sequence S2, then S2
is extended before S1, and all sequences are extended before
properties are tested for consistency. Non circularity is guaranteed
py the fact that if any sequence s’ is used in the definition or
updated properties of some other sequence S, then S’ must be a
superset of a sequence concurrent with S. This can be verified by

considering all processes described in sections 4.3, 4.4 and 4.6.

The second complication involves concurrent sequences. The use of the
map function to define subsequences requires that concurrent
sequences are the same length. It is therefore invalid to extend a

sequence unless all concurrent sequences are also extended.

We are now ready to present an algorithm to extend sequences. This
algorithm makes use of the association of statement conditions with
sequences, and the distinction between sequences generated using
sequence generation model 1 and those generated using model 2, as

described in section 4.3.2.
' -

1. Let the weakest statement conditions associated with sequences be

Cl,...,C . Repeat steps 2 through 6 for 1 =1¢tom.
m

2. For every sequence S = (sequence 4 = 1 to n D(i)) 4in the
execution state that is associated with statement condition C{
try to find an item I, soO that the definition of I = D(n+l). If
this cannot be done for every such sequence then exit without

extending any sequences.

3. For every sequence S extended in 1, find all subsequence,
subsubsequences, ... of S. Each of these, will be of the form S2
= (item: item € S1 A P(item)), where S1 is either extended in 1,
or is itself a subsequence of such a sequence. See whether the
item, I, added to s,-is in $2 by testing whether I € S1 and using

the theorem prover to establish whether P(I) is true.
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4, For every subsequence S2, found in step 3 to include a new item,
try to extend every primitive sequence concurrent with S2. If

this cannot be done, then exit without extending any sequences.

5. Now for every primitive sequence, S, which has been extended with
item I, we check consistency of the updated properties. Let
subsequences, subsubsequences, etc of S which include I be
{Sl1,...,Sn}. Suppose item I has properties pl,...,pq updated
with values vl,...,vq. For all i = 1 to g, check that there
is a j, 1 £ j £ n, so that Sj has updated property P, with
value v . Conversely, given any property p, with wvalue v of any
Sj, check that p is one of the P, 1 £1i £ q, and v is equal to

v, - If this consistency test fails, then exit without extending

any sequences.

6. If a primitive sequence S is extended to include the new item, I,
then remove I from the execution state, replacing any reference

to I by item-in-sequence (size(S), I).
5.1.2 Resolving the Iteration Count

We now consider the loop analysis tasks which involve multiple
execution states. The most obvious of these is to determine the value
of the iteration count. Even for programs having multiple exits, this
process 1is relatively straightforward because of the quality of
information which has been previously determined. Each execution
state associated with a loop exit explicitly records the path
condition which must be satisfied for execution to reach loop exit
from the start statement. If we remove from the path condition the
component required to reach loop entry from the start statement we
are left with the condition which must be satisfied to traverse some
specific path from loop entry to loop exit. We refer to this
condition as the exit condition for this execution state. Suppose
that execution states El,...,En are associated with all loop exit
statements and have exit conditions of Pl,...,Pn. Since execution
will exit from the loop as soon as any of these conditions is

satisfied, the condition which needs to be satisfied for exit is
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Pl v ... VvV Pn. The iteration count on exiting the loop will be the
minimum integer value which makes Pl v ... Vv Pn true. So, if we can

express Pl v ... v Pn as a function of the iteration count k, i.e.
P(k) =Pl Vv ... Vv Pn
then the value of the iteration count on exit will be

k & = (minimum {j: P(j) A (integer j)).

ex.
We now consider some examples of what is required to express the
disjunction of the exit conditions, Pl v ... v Pn, as a function of

the iteration count.

In some cases the connection between the exit conditions and the
iteration count k is explicit. For example, loop generalization of
the program fragment in figure 5-3 will determine that counter = k at
loop entry. Thus the execution state associated with the loop exit
statement will have exit condition of k+1 > 10. Since on exit, k is
always the minimum integer to make the exit condition true, we easily
establish that kexit = 10.

In other cases, the connection is more indirect. Consider the program
fragment in figure 5-4. In this case we will have two execution
states associated with the two loop exit statements. One will have an
exit condition of color (OBJECT-n) = red and the other color (OBJECT-n)
= blue. So far these exit conditions do not seem to involve k.
However, when we substitute in the definition of the objects, we

obtain:

red

color (sequential-object-in-source (k+1, SOURCE-1))

and

blue.

color (sequential-object-in-source (k+1l, SOURCE-1))
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Since exit will occur as soon as one or the other of these predicates

becomes true we can derive:

k = minimum({j: color(sequential—object—in-source(j+l,
SOURCE-1)) = red
\% color(sequential-object—in-source(j+1,

SOURCE-1)) = blue})

Thus, in general, we see that we need to substitute into the exit

conditions the definition of any items whose definitions involve k.

Once the iteration count has been resolved, what other loop exit
analysis is there involving multiple execution states associated with
loop exit statements? In Chapter 3, when the statement condition was
defined, we stated that each inner loop was to be treated as shown in
figure 5-5. If execution reaches loop exit i, then condition i needs

to be added to the statement condition. We can now determine the

value of condition i. If loop exit i has execution states El,..«,En
associated with it, having exit conditions of Pl,...,Pn, then the
condition required to reach loop exit i down any path is P1 v ... V

Pn. Thus, if the exiting loop, L, is nested in an outer loop, with
statement condition Q required to reached the loop entry of L, then

the statement condition to reach loop exit 1 is Q A (Pl v ... Vv Pn).

loop entry
N
< >
condition-1| condition-n
)
loop exit 1 loop exit n

Figure 5-5 Inner Loops for Statement Condition
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The final task of loop exit analysis is to ensure that no unnecessary
execution states are allowed to exit from the loop. Consider again
the program in figure 5-2. Since we now have a method for extending
sequences and determining the value of k, let us see if we are now in
a position to produce the more concise specification identified in
section 5.1.1. The sequence extension process will extend sequences
S1, S2 and S3 to include OBJECT-1, and any reference to OBJECT-1 will
be replaced by item-in-sequence (k+1, S1), since the extended size of

S1 is k+1.
The iteration count at exit will then be resolved to 11, using the
process described earlief in this section. However, there will still
be two execution states associated with loop exit. Their path
conditions will have been modified to be
color(sequential-object—in—source(11, SOURCE-1)) = red
and
- color(sequential-object-in—source(ll,SOURCE)) = red.
by the removal of OBJECT-1 from the execution states. The effects in
each execution state are now the same. The fact that we still have
two execution states will lead to an eventual specification being
produced of:

if color (sequential-object-in-source (11, SOURCE-1)) = red

then

V item (item € S2 — position(item) pos-b)

V item (item € $3 — position(item) pos-c)

where
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Sl

(sequence i = 1 to 11
sequential—object-in—source(i, SOURCE-1))
52

(item: item € S1 A color(item) = red)

s3

(item: item € S1 A = color (item) = red)

and

if = color(sequential-object-in-source(ll,SOURCE—l)) = red.

then

V item (item € S$2 — position(item) pos=-b)

V item (item € S3 — position(item) pos-c)

where

S1 = (sequence i =1 to 11
sequential-object—in—source(i, SOURCE-1))

S2 = (item: item € S1 A color(item) = red)

S3 = (item: item € S1 A — color(item) = red)

This specification is still not satisfactory. The problem is caused
by the fact that we have two execution states which only vary in path
conditions. Since execution states can be interpreted as

if path condition then effect

then whenever we have associated with a statement S, execution states

El,...,En identical except for path conditions Pl,...,Pn, then we can
replace El,...,En with a single execution state with a path condition
of P V ... Vv Pn. Since this situation is likely to occur because

sequences have been extended, loop exit analysis checks whether there
are any set of execution states associated with any loop exit
statements which are identical except for path conditions, and if so,
merges them. Performing' such a simplification at loop exit will

enable PAN to analyse the program in 5-2 correctly.
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We are now ready to describe the algorithm for the loop exit

processing on multiple execution states.

Exit Al Lt}

1. Suppose the exit conditions in exiting execution states contain
Pl,...,Pn. Find P = P1’ v P2’ ... v Pn’, the combined exit
condition, where Pi’ is formed from Pi by replacing any item
referred to in Pi by its definition, if that definition contains

the iteration count k.

2. The value of k on exit is then given by (minimum {Jj: P(j) A
(integer 3j)}), where P(j) is derived from P by replacing all
occurrences of k by j. This value then replaces all uses of k in

all exiting execution states.

3. Now for each exit statement and the execution states associated

with it:

Group the execution states associated with this statement,
so that in each group the execution states are identical

except for path conditions. For each group:

Let the path conditions for these execution states in
the group be Ql,...,Qn with exit conditions Pl,...,Pn.
Define Q = Q1 Vv ... v Qn and P = P1 V ... V Pn. Now
pick one of the execution states in the group, replace
the path conditions with Q and add P to the statement
condition of the next outermost loop (if there is one).
Change the status of the execution state to active and
update the loop data by removing the innermost loop.
Change the status of all other execution states in the

group to dead.
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5.2 GENERALIZATION VERIFICATION

This section describes how the correctness of PAN’s loop
generalization can be “verified. The generalized execution state
produced at the end of Chapter 4 is intended to represent the effect
of k iterations. This execution state contains k as a variable and
may be referred to as E(k). Since E(k) was generalized from execution
states which included all those having completed one iteration, we
know that E(1l) does represent the effect after one iteration. We want
to show that if E(k) represents the effect after k iterations then
E(k+1l) represents the effect after k+1 iterations. We can then assert

by induction that the generalization is correct.

To find the effect after k+1 iterations we begin symbolic execution
from E(k) and proceed until we have execution states El,...,En
associated with loop entry, having performed k+1 iterations. For each
i, we want to show that the effect represented by Ei is the same as
the effect represented by E(k+l). The only complication with this
scheme is the now familiar one of extending sequences. Consider again
the program in figure 5-2, this time in the context of generalization
verification. Once execution resumes from E(k), two execution states

E1l and E2 will be associated with loop entry having completed k+1

iterations. Their effects can be summarised as:

El:

V item (item € S2 — position(item) pos-b)

V item (item € S3 — position(item) pos-c)

position (OBJECT-1) = pos-b
where

OBJECT-1 = sequential—object-in-source(k+1, SOURCE-1)

S1 = (sequence i =1 to k
sequential-object-in—source(i, SOURCE-1))

S2

(item: item € S1 A color(item) = red)

83 = (item: item € S1 A = color(item) = red)
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BZ:

V item (item € 82 — position(item) = pos-b)
V item (item € S3 — position(item) = pos-c)
position (OBJECT-1) = pos-c

where

OBJECT-1 = sequential-object-in-source(k+l, SOURCE-1)

Sl = (sequence i =1 to k
sequential-object-in-source (i, SOURCE-1))

S2 = (item: item € S1 A color(item) = red)

S3 = (item: item € S1 A — color(item) = red)

Whereas the effect of E(k+l) will be

V item (item € $2 — position(item) pos-b)

V item (item € S3 — position(item) pos-c)

where

S1 = (sequence i = 1 to k+l
sequential-object-in-source (i, SOURCE-1l))

S2

s3

(item: item € S1 A color(item) = red)

Il

(item: item € S1 A — color(item) = red).

So far the effects of El1 and E2 are not the same as those of E(k+1).
However, once sequences have been extended as described for loop

exit the effects of El and E2 will be the same as that of E(k+1l).

Thus the generalization verification requires the same sequence
extension process as that used by loop exit processing. Also, the
mechanical procedure for checking that the effects of Ei are the same
as the effects of E(k+l) is the same as that required for merging
those execution states associated with loop exit that are identical
apart from path conditions. Thus generalization verification requires

similar processing to loop exit processing.
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The algorithm for generalization verification can be stated as

follows.

1. Beginning with the generalized execution state E(k), use symbolic
execution to generate execution states El,...,En, associated with

loop entry, representing the effects after k+l iterations.

2. Extend sequences in El,...,En using the algorithm in section

5.1:1s

3. Verify that the effect of each Ei = the effect of E(k+1l).

204



'Chapter 6

Brute Force Search

6.1 INTRODUCTION

The brute force search is the second of PAN’s two generalization
techniques, the first being the models described in Chapter 4. The
brute force search, being far more time consuming, is only invoked if

the models fail to find a generalization.

The idea behind the brute force search is very simple - a
generalization task which fails using raw input data may succeed
after additional facts have been derived from the input data. This
technigue has Dbeen successfully used Dby Dietterich and
Michalski[1985] in the SPARC/E system which can play the game
Eluesis. For example, given a card described as ‘jack of hearts’,
this system will add the derived fact that the card is red, before
generalization is attempted. However, in the SPARC/E system,
additional data on any object is derived without considering data
available about other objects. Given properties pl,...,pn of some
object, new properties pMI,...,pm of the same object are

derived. While useful for playing Eluesis, this restricted technique
would not provide sufficient power to significantly extend the
programs that PAN can analyse. Thus we extend the technique so that
not only does PAN use all relevant facts to derive new ones, but this
derivation process actually produces the generalization. 1In PAN’s
case this means that this derivation process produces the generalized
facts required for the generalized execution state. The task being
attempted can be described in terms not specific to program analysis

as follows:
Suppose we are provided with a set of observations Ol,...,0n.

Each Oi contains observations in the form of well formed formulas

in some logical language. We want to derive a single observation
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0, which is a generalization of 01,...,0n in the sense that a
formula P is in O if and only if P is derivable from the formulas

in Oi for i = 1 to n, by the following method:.

= for each 0i, continue to apply any derivation rules that are
available, to the formulas in 0Oi until a stable set 0i’ is

obtained

- define 0 as 01" N 02’ N ... N On’.

Why is such a method not commonly used for generalization tasks? The
problem lies in producing the 0i’ sets. It may not be possible to
produce them in any finite amount of time. For example, suppose Oi

contains the formulas:
weight (OBJECT-1) = 1
weight (OBJECT-2) = 2

weight (OBJECT-3) = 3

and derivation rules include arithmetic substitution. We can generate

weight (OBJECT-1) = weight (OBJECT-2) - 1
weight (OBJECT-1) = 2 * weight (OBJECT-2) - 3
weight (OBJECT-1) = 3 * weight (OBJECT-2) - 5

. - . . . -

etc, so that 0i’ is not a finite set. Of course, we could simply
apply the derivation rules to each 0Oi for some specified time to
derive 0i’’, and use 0l N 02" N ... N On’’ as an approximation of
0. This however makes the order in which the derivation rules are

used the critical factor. In the above example, we may never generate

weight (OBJECT-3) = weight (OBJECT-1) + weight (OBJECT-2) .

which may be the desired generalization. Thus, limiting the

derivation of new formulas by time does not address the real problems
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with this method: that most applications of derivation rules will not
produce formulas useful for the generalization task. Thus the
challenge is to limit the derivation rules to those which will
produce only a limited set of new formulas containing those most

likely to be a valid generalization.

To address this problem, we recall from Chapter 4 that in the partly
generalized execution states available to PAN, we have, in addition
to formulas, the powerful concept of a sequence. Since sequences
describe those sets of items which have been distinguished by the
program being analysed, any useful generalizations are likely to
involve sequences and we can restrict many derivation rules by
expressing them in terms of sequences instead of unrestricted sets.
Experiments with PAN have shown that with a carefully chosen set of
derivation rules, the brute force search can provide solutions to
many different program analysis generalization problems in reasonable

time.

Programs that PAN can analyse using this technique, but which cannot

be analysed using the models of Chapter 4 include:

1. programs which determine the maximum or minimum of a
sequence. An example of PAN analysing such a program was

given in Chapter 1.

2. programs in which variables have values which are a function
of both the size of a sequence as well as the values of
properties of items in a sequence. An example of this type

of program in given in figure 6-1, in which v has the value

size(s)
Y position-in-sequence (item-in-sequence(i, S)) *
=1

weight (item-in-sequence (i, S)

where S = (sequence i =1 to n

sequential-object-in-source (i,3))
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3. programs in which wvariables are used to refer to the
properties of non current items. An example of this type of
program is given in figure 6-2, in which v is used in this
way, enabling a single record of file B to be created from

two records of file A.

4. programs in which the updating of some property of items in
a sequence S is controlled by a variable counting the size
of some sequence not equal to S. An example of this type of

program is given in the appendix.

Obviously the brute force search cannot extend the analysis system
beyond the capabilities of the specification language described in
Chapter 2. The strength of the method is in being able to describe
effects using the language components available, such as size,
position-in-sequence etc, in a flexible way. This contrasts with the
models of Chapter 4, which are only able to describe effects which

are structured in the way required by the model.

The remainder of this chapter first describes in detail PAN’s use of
this technique, the initial set of formula and the derivation rules
used. It then describes the use of the derived formulas to complete
the generalization task. The chapter finally describes how the

process has been made efficient enough to be practical.
6.2 PAN’S USE OF BRUTE FORCE SEARCH
As discussed in Chapter 4, the brute force search is only invoked if
other methods have failed. In particular, it is wused when loop
generalization has failed to explain:

= the value of a variable at loop entry

or

= the value of an updated property for items included in a

sequence.
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This process is called by loop generalization and its input is:

tates input to loop generalization which have

- all execution s
completed the full number of iterations

the identifiers of any variables not successfully analysed

the objects being

property) pairs,

(object
and having an unsuccessfully

- a list of
sequence,

members of some

analysed property.

start
c :=0
4
v := 0
>
loop entry
\
sequential read A
2 N
o~ 7
N if current (3&) if — current (A)
\ \
c :=c+1 loop exit
v := v + ¢ * weight (A) stop
<

Figure 6-1 Complex Variable Value
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Y
v :=0
>
loop entry
/
sequential read A
< I N
if current (A) if — current (A)
\ / %
weight (B) = weight (A) + v loop exit
write B stop
/
v := weight (B)

Figure 6-2 Variable Referencing Previous Item

The output from this process consists of new values for variables and
new properties of sequences. Each variable will either have a
generalized value, or the wvalue ‘unknown’. Similarly, each updated
object property will either be explained by an updated property of a

sequence the object is in, or else will have the value ‘unknown’.
The brute force search operates on each execution state in turn. For

each execution state an initial set of formulas is obtained and

expanded. The results from all expansions are then analysed.
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6.3 INITIAL SET OF FORMULAS
The brute force search for a single execution state operates by
expanding an initial set of formulas obtained from the execution
state, global data, and the partial results of loop generalization.
The set of formulas obtained from the execution state consists of:

= the value of all variables

= the value of all updated properties of objects

- the path condition.
The set of formulas obtained from global data consists of:

- the definition of each object.

the set of formulas obtained from the partial results of loop

generalization consists of:

- the definition of each sequence

- the size of each sequence

= the members of each sequence.
6.4 BRUTE FORCE EXPANSION
Once the initial set of formulas for an execution state has been
found, the brute force search proceeds to generate additional
formulas using the rules shown in table 6-1. These rules are ad hoc,
they were selected by considering how a language component such as

size or position-in-sequence could be introduced into an expression.

The rest of this section describes these rules in more detail.
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Table 6-1 Brute Force Expansion Rule

In this table S means a sequence, O is an object and n, m are

integers.
Category Name ‘ Action
Simple Sequence Size replace n by size(S)
Substitution Item in Sequence replace O by
item-in-sequence (i, S)
Position in Sequence replace n by
position-in-sequence (0O, S)
Logical all rules used in the theorem prover
Deduction Existential replace P (0) by
Quantification dx (x € S A P(x))
Universal replace P(01),...,P(On) by
Quantification Vx (x € S > P(x))
Sequence All Items in Sequence replace term-1 + ... + term-n
Substitution by
size(s)
b3 term(i)
i=1
replace term-1 * ... * term-n
by
size(s)
I1 term(i)
=1
Property of Sequence replace

property (item-in-sequence (i,S))

= Q(m ,...,m ) for i = 1
i1 ik

to size(S) by

Vi (l<i¢g€size(S) —

property (item-in-sequence (i,S)

=Q(f (1),...,£ (1)))
1 3
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Sequence Size

If there is a formula P, that contains an integer n, equal to size(S)
for some sequence S, then generate P’, which is derived from P by

replacing n by size(S).

An example of the use of this rule is to determine that a variable is
counting the size of a sequence. Note that this allows the brute
force search to generate a formula equivalent to the most important
of those generated by model 3 for variable values discussed in
section 4.5. However, because this rule operates on any integer of
the right wvalue within a (possibly) larger expression, it is more

general.

Item in Sequence

If there is a formula of the form P (OBJECT-n), where OBJECT-n is the

jth element of some sequence S, then generate
P (item-in-sequence(j, S)).
An example this rule is to generate

weight (item-in-sequence(l, S1)) = weight (item-in-sequence (1,
52))
+
weight (item-in-sequence (1,

s3))

weight (item-in-sequence (2, S1)) = weight (item-in-sequence (2,
$2))
3
weight (item-in-sequence (2,

$3))
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weight (item-in-sequence (3, S1)) = weight (item-in-sequence (3,
$2))
+
weight (item-in-sequence (3,

s$3))

from

weight (OBJECT-1)

weight (OBJECT-4) + weight (OBJECT-7)
weight (OBJECT-2)

weight (OBJECT-5) + weight (OBJECT-8)

weight (OBJECT-3) weight (OBJECT-6) + weight (OBJECT-9)

where S1, S2 and S3 are sequences such that S1 {OBJECT-1 OBJECT-2

OBJECT-3}, 82 = {OBJECT-4 OBJECT-5 OBJECT-6}, S3 {OBJECT-7 OBJECT-8

OBJECT-9}.

Position in Sequence

If there is a formula of the form P(m), where m is an integer which
equals position-in-sequence (OBJECT-n, S) for some sequence S and
OBJECT-n, and n does not appear in P as part of item-in-sequence (n,
S’), then generate a new formula

P (position-in-sequence (OBJECT-n, S)).

An example of this rule is to generate

weight (OBJECT-1) position-in-sequence (OBJECT-1, S’)

weight (OBJECT-2)

position-in-sequence (OBJECT-2, S')
weight (OBJECT-3)

position-in-sequence (OBJECT-3, S’)

from

weight (OBJECT-1)

] 1]
N R

weight (OBJECT-2)
weight (OBJECT-3) = 5
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where OBJECT-1 is 1st in S’, OBJECT-2 in 2nd in S’ and OBJECT-3 is
5th in S’.

Some comment is required on the limitation that n must not appear in
item-in-sequence(n, S$’). If we do allow n to appear in this
subexpression, then this rule interacts in an unfortunate way with
the Item in Sequence rule. Starting with

P (m)
these rules would allow us to generate

P (position-in-sequence (OBJECT-n, S)) by Position in Sequence

P (position-in-sequence (item-in-sequence (i, S), S))

by Item in Sequence
P (position-in-sequence (item-in-sequence
(position-in-sequence (OBJECT-n, S), S), S))
by Position in Sequence

etc

Such a series of formulas is very unlikely to be useful, and is

prevented by the above restriction.

Sincile Léeical Ful

All the rules previously discussed in the theorem prover, section
3.2.7.1, are used. These allow simple logical deductions on our set
of formulas.

Exi ntial ifi ion

If there is a formula P (OBJECT-n) and OBJECT-n € S, for some sequence

S, then generate

do (0o € S AP(0)).
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This rule was used in the generation of minimum weight of a sequence

in the dp domain example in section 1.4.

il 10 {ficat]

If there are formulas P (OBJECT-i) for i = 1 to n, and S is a sequence

such that S = {OBJECT-1 ... OBJECT-n}, then generate

Vo (0 € S - P(0)).

This rule was also used in the generation of the minimum weight of a

sequence.

All Ttems in a Sequence

If there is a formula P that can be expressed so that it contains a
subexpression term-1 + ... + term-n, such that term-1,...,term-n are
the same except term-i refers to the ith element from concurrent
sequences {S1 ... Sp}, where term-j refers to the jth element, and
the size of each Si is n. We can then generate P’, which is derived

from P by replacing

term-1 + ... + term-n

by
size(sl)
Y term(i)

i=1

where term is derived from term-1 by replacing any reference to an

element of {S1 ... Sp} by item-in-sequence(i, Sj) for appropriate j.

The only manipulation on P that is done to try to achieve the

required form are the associative and commutative laws for addition.

The rule also applies to subexpression term-1 * ... * term-n, by

replacing + by * and X by II.
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An example of the use of this rule is for a symbolic variable v whose

value is given by the formula

<
I

weight (OBJECT-1) + weight (OBJECT-2) + weight (OBJECT-3)

and

0
I

{OBJECT-1 OBJECT-2 OBJECT-3}.

We will then generate a new formula

size(5S)
v = > weight (item—-in-sequence (i, S))
i=1

Note that this rule allows the brute force search to generate
formulas equivalent to those generated by model 4 for variable values
as discussed in section 4.5. However, because this rule operates on

any subexpression of the right form it is more general than model 4.

Property of Sequence
If there is a set of formulas
property (item-in-sequence(i, S)) = Q(mi1 w0

ix

for i = 1 to n, whose right hand sides differ only in the value of k
numbers and where S is a sequence of size n, then generate a new

formula

Vi (1 £ 1 < size(S) — property(item-in-sequence (i, S))

= Q(f (1) ... £ (1))
1 k
where fj(i) = m1j for i =1 ton, j=1to k.

This rule allows us to record the updated properties of all objects

in a sequence in a single formula.
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An example of the use of this rule is to generate

Vi (1 £ i £ size(S1l) — weight (item—-in-sequence (i, S1))
= weight (item-in-sequence (i, S2))
+

weight (item-in-sequence (i, S3)))
from the formulas established in the example for Item in Sequence.

6.5 ANALYSING THE RESULTS

Use of the rules described in section 6.4 gives us an expanded set of
formulas for each execution state. How are these used to analyse

variables and updated object properties?
6.5.1 Analysing Variable Values

The preferred solution to finding a variable value is that for every
execution state the expanded set of formulas contains a member v = Q,
where Q 1is expressed in terms of known values which will appear in
the generalized execution state. Note that wvalues which have
themselves been updated by the program do not count as known values,

since this can result in describing one unknown in terms of another.
To achieve such a solution, we require the following:

= v = Q occurs in the expanded formulas for every execution

state

- Q contains no variables or items which are members of

sequences.
= Q contains no updated properties of objects or variables.
If, however, we cannot find such an expression for v, then we still

may be able to find a solution for v by considering those formulas

which contain v. If these formulas are Ql, ...,0n, then the value of
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’ v 1s constrained by satisfying Q1 A Q2 A ... A QOn. Of course, more

than one value may obey this constraint, but we can state

v E {z: Q' (z)}
where Q’ is Q1 A Q2 A ... A QOn with v replaced by z. This procedure
was used in the dp domain example in section 1.4, where v was found
to be the minimum weight of the items in a sequence.
To use this form we need to find at least one formula Q that contains
v in the expanded formulas for all execution states, and is otherwise
expressed in terms of known values which will appear in the
generalized execution state.

Thus we need to find the set of formulas, Q, obeying the following:

= Q occurs in the expanded formulas for every execution state

- Q contains v, but contains no other variables or items which

are members of sequences.

= Q contains no updated properties of objects or sequences.

We then express v using the expression as above.

If we cannot find any such formulas, we set the value of v to

‘unknown’ .

6.5.2 Analysing Updated Object Properties

Since, in the generalized execution state, updated properties of
items in sequences are recorded against the sequence, the only
relevant formulas are those which express the updated property of a

whole sequence. These formulas are of the form

Vi (1 £ i £ size(S) — property(item-in-sequence (i, S)

= Q(1))
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Such formulas express the updated property for sequence S.

As for variable values, we require that such a formula be generated
from the initial formulas of every execution states, and that Q is
expressed 1in terms of known values which will appear in the
generalized execution state. However, in this case, as discussed in
section 4.6, we want to express updated properties in the most
general way possible. Thus, given a sequence S1 with subsequences S2

and S3, the expanded formulas may contain:

Vi (1 £ 1 £ size(S1l) — property(item-in-sequence (i, S1))
= Q1(i))

Vi (1 £ i £ size(S2) — property(item-in-sequence (i, S2))
= Q2(1i))

Vi (1 £ i £ size(S3) — property(item-in-sequence (i, S3))
= Q3(1i))

for the same property. In this case only the formula for S1 should be
used, as it 1is more general than those for 82 and S3 (i.e. it
‘explains’ the updated properties of more objects).
Thus we require a formula P obeying the following:

- P is of the form

Vi (1 £ i £ size(S) — property(item-in-sequence(i, S))

= Q(i))

and occurs in the expanded formulas for every execution

state

= Q contains no variables or items which are members of

sequences

= Q contains no updated properties of objects or sequences
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- there is no formula P’ of the form

Vi (1 £ i < size(S’) — property(item-in-sequence (i, S’))

= Q' (1))

obeying the above conditions, where S’ is a superset of S.

If such a formula P can be found, it is recorded as the updated

property of the sequence S.

The updated property of any item which is not explained by the
updated properties of any sequence the item is in 1is set to

‘unknown’ .

6.6 MAKING THE BRUTE FORCE SEARCH EFFICIENT

6.6.1 Search Speed

In the introduction to this chapter we discussed why the brute force
search technique is not generally used - the generation of new
formulas will never terminate. Having overcome this problem in PAN’s
use of the technique by limiting the expansion rules, we are faced
with the problem that the speed of generation of new formulas may
decrease as the number of formulas increases. In this section we show
that a nice feature of PAN’s derivation rules allows new formulas to

be generated at nearly constant speed.

Given a set of rules R1l,...,Rn that operate on single formulas and a
set Q of formulas {Pl ... Pm} to expand, a simple brute force search

algorithm could operate by repeating the following:
= for each i from 1 to n, try to apply Ri to each Pj for j =1
to m. If the rule fires and results in a formula P not in Q,

then add P to the end of Q and increment m.

This algorithm suffers from the disadvantage that it repeatedly tests

whether rule Ri can operate on formula Pj. This problem becomes worse
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as the size of the set Q increases. Thus the time required to produce
one new formula increases with the size of Q and the algorithm

becomes less and less efficient.
Now let us consider rules that operate on multiple formulas. We may
say that rule Ri can produce a new formula from formulas Pl,...,Pp €

Q, if P1,...,Pp satisfy some condition C i.e. C(Pl,...,Pp) is true.

An algorithm to expand Q using such rules could operate by repeating

the following:

- for each Ri, search Q for a formula Pl which could make

CHPLy 5 s ) true. Search again through Q for P2, P3 etc
until either the search fails or Pl,...,Pp are found so that
C(Pl,...,Pp) is true. If rule Ri now produces a new formula

P not in Q, add it to the end of Q and increment m.

Such an algorithm potentially requires p passes over the set Q before
it can fire a single rule. Such a method may be required for rules
having a condition, C, such that we cannot determine whether Pi can
satisfy C until P1l,...,Pi-1 are already known. However, an
examination of the brute force search rules shows that this is not
required here. The multiformula rules are such that once any formula
Pi is identified, the set of all the other formulas is determined,

and so can be found in a single pass over Q.

Thus for PAN’s brute force search expansion we can suggest the

alternate multiformula algorithm as:

- for each Ri, search Q for a formula Pj which could make
C(...Pj...) true. Then in a single pass of Q, try to find
Pl,...Pj-1,Pj+1l,...,Pp to complete condition C. If rule Ri
now produces a new formula P and P is not in Q, add it to

the end and increment m.

The main remaining problem with this algorithm is now similar to the
problem with the single formula rule algorithm. Most of the time will

eventually be spent testing whether C(...Pj...) could be true.
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We now look at a way of addressing these problems, first for single

formula rules.

Given a rule Ri and a set Q of formulas, it is easy to see that if Ri
fails to fire on formula Pj € Q, or Ri can fire on Pj but produces a
P already in Q, then Ri will never be able to generate a new formula
from Pj. Thus we would like to try to apply Ri only to those members
of Q which have not already failed to produce a new formula. This can
be done by maintaining a new set Qi, in addition to Q, where Qi
contains only those elements of Q which have not yet failed for rule
Ri. Initially, we set Qi = Q. Thus a more efficient single formula

algorithm would be:

= for each i, try to apply Ri to each Pj € Qi. If the rule
fires and produces a new formula P not in Q, then add P to Q
and to every Qi. If the rule fails to produce such a new

formula, then remove Pj from Qi.

This modified algorithm results in some additional memory costs.
However, the difference in processing time should be dramatic. As
time passes and Q increases in size, there will be some additional
processing required to see if a new formula is in Q. This seems
unavoidable, but is overshadowed by the gain in efficiency achieved
by only allowing rule Ri to fail on Pj once (either because Ri can’t

fire on Pj, or because the resulting formula P is already in Q).

Can this approach also be used for rules that operate on multiple

formulas? The equivalent algorithm would be:

- for each Ri, try every Pj € Qi to see whether Pj could make
C(...Pj...) true. If so, then search Q for
Pl,...,Pj-1,Pj+1l,...,Pp to complete condition C. If these
can be found, and application of the rule results in a new
formula P not in Q, then add P to Q and to every Qi. If any

of the above steps fail, then remove Pj from Qi.
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This algorithm achieves the same efficiency gain as the algorithm for
single formula rules. However, it is not trivially obvious that it
does not limit the formulas which can be generated. A formula Pj
which is removed from Qi because P1l,...,Pj-1,Pj+l,...,Pp cannot be
found, cannot be totally discarded because if P1l,...,Pj-1,Pj+1,...,Pp

are later generated, then we need formula Pj to complete condition C.

However, as each P1l,...,Pj-1,Pj+1,...,Pp 1is generated it will
initially be added to Qi and so another attempt to fire Ri will be
made. When the last of these is added to Qi, then Ri will indeed
fire. This is because the brute force search rules which require
multiple formulas are independent of which formula is used to begin

the search for the remainder.

An example may make this clearer. Consider the simple multiformula

rule included as one of the Simple Logical Rules from section 6.4

Ri: from (< P Q) and (< Q R), generate (< P R).

Suppose that (< x y) is initially added to Q and Qi, but there is at
that time no formula of the form (< y z) in Q for any z. Since
(< x y) is in Qi an attempt to fire Ri will be made, but will fail.
(< x y) will then be deleted from Qi. At a later stage, (< y z) is
added to Qi and Q. Another attempt will then be made to fire Ri and
will succeed since given (< y z) we will find the formula (< x y) in
Q, which will then allow Ri to generate (< x z), which will be added
to Q and Qi.

Thus, as long as multiformula brute force search rules are written in
such a way that given any formula Pj which could make C(...Pj...)
true, a search of Q is done for all other P1l,...,Pj-1,Pj+l,...,Pp,
then the above efficient algorithm is complete, in the sense that it

will generate the same formulas as the initial simple algorithm.
We see from the above that the brute force expansion has been made

efficient by utilising properties of the expansion rules. The brute

force expansion rules were not selected to satisfy these properties.
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In fact, these properties was only noticed when the brute force
search had been implemented without making use of them and found to

be too slow. It is an open question as to whether there are useful

expansion rules that do not satisfy these properties.

The efficient form of the algorithms has been tested in PAN, and
results in an almost constant rate of production of new formulas. In

practice the Qi sets are usually only a very small subset of Q.

6.6.2 Memory Requirements

The brute force search will generally produce a large number of
formulas from any given execution state. Section 6.5 showed that most
of these formulas will not be used in analysis i.e. their only
function was to allow other, more useful formulas to be generated.

The only formulas used in analysis are those which:

= include an unanalysed variable and do not contain any items

from sequences
or
- are of the form -

Vi (1 £ i £ size(S) — property(item-in-sequence(i, $§)

= Q(1))

and do contain any items from sequences or variables or

updated properties of objects or sequences.

Thus, once the brute force search is complete for some execution
state, we can drop all formulas which do not satisfy either of the
above conditions. If the number of execution states to analyse is

large, this can result in significant memory savings.
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Chapter 7
Interpretation and Simplification

7.1 INTRODUCTION

When symbolic execution has finished, the program has effectively
been analysed. However, the results of this analysis are contained in
the execution states that are associated with the stop statements in
the program. It 1is the task of the interpretation process to
interpret these results into a human readable form. Interpretation is
in fact very simple since all the real work has been done by previous
processes. The only complication in this process is that, for human
readability it is necessary that the expressions produced by the
interpretation process are in a suitably simplified form. For

example, it may be correct to state
if
color (OBJECT-1) = red v — color(OBJECT-1) = red
then
v = weight (OBJECT-1) - weight (OBJECT-1)
but this is hardly a satisfactory way of saying that v always has the
value zero at program end. This chapter first describes the
information from the execution states which needs to be presented and
then describes how this information is simplified for readability.
7.2 EXECUTION STATE INTERPRETATION

Each execution state to reach program end represents a formula

P -0
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where P 1is the path condition of the execution state and Q is the
effects. The effects consist of the value of variables and the
updated properties of objects and object sequences. Both the path
condition and the effects may refer to objects, sources or sequences.
The definition of these items needs to be included in order to make

the specifications complete.
The form of the interpretation is as follows:
if
path condition

then

variable~-value-1

variable-id-1

variable-value-n

variable-id-n

object-property-1(object-1l) = object-property-value-1

. . . . . . . . . . . . . -

- . - - - . .

object-property-m(object-m) = object-property-value-m

Vi (1 £ i £ size(sequence-1) —

sequence-property-1(item-in-sequence (i, sequence-1))
sequence-property-value-1(i))

. . . . - - . . . .

Vi (1 £ i £ size(sequence-p) —

sequence-property-p (item-in-sequence (i, sequence-p))

sequence-property-value-p(i))

where
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item-id-1 is defined as def-1

B . - . . - . - .

item-id-q is defined as def-g

The variable-id’s and variable-value’s are obtained from the
variables data. For programs in the robot domain, the robot status

can also be included as special variables if required.

The updated properties are obtained from the object and object

sequences data.

The item-id’s consist of all items referred to elsewhere in the
execution state interpretation. Their definitions are retrieved from

global data.

The above interpretation is produced for each execution state
associated with a stop statement. The disjunction of all such
interpretations constitutes the program specification produced by

PAN.

Note that in the above interpretation the path condition will be
expressed in terms of the state of the world before the program
starts. To see that this is so, recall that path conditions are
created when condition statements in the program are executed. Any
such condition statement tests the wvalue of a variable or object
property. The value that a variable or object property can take is
determined by the action statements. These allow variables and object
properties to be given values that are a function of variables,
object properties and constants (literals or numbers occurring in the
program). Thus an inductive argumant can be used to show that any
variable or object property has a value which is a function of the
initial values of object properties and variables. Since these values
are used to create path conditions, path conditions will be expressed

in terms of the initial values of variables and object properties.
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7.3 EXPRESSION SIMPLIFICATION

The description of expression simplification has been included in
this chapter as it 1is only in the interpretation process that
unsimplified expressioné become visible. In fact, PAN simplifies
expressions whenever they are created or updated, using the process

described in this section.

The role which the expression simplification process plays in the PAN
system 1is somewhat similar to the theorem prover: expression
simplification involves issues independent of those being explored in_
PAN and this process could have been supplied by an external system.
As such a system was not readily available, a simple simplification
system has been developed, sufficient to cope with PAN expressions so

far encountered.

The input to this process is an expression, and the output is a
simplified form of the expression. The simplification process works

by applying a set of simplification rules, of the form
input form — output form

specifying that any expression matching the input form should be
rewritten as the output form. The input expression is recursively
dissected until the simplest subexpressions are reached. These are
then simplified by applying all simplification rules whose left hand
sides match the expression. The original expression is then
reassembled, with simplification being performed as each

subexpression is rebuilt.
For example, suppose the input expression is
((@a =0) + (2+1)) - (b *0))
then dissection would resﬁlt in the simplest subexpressions of:

(a -0, (2+1), (b *0)
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which would be simplified to

a, 3, 0
Reassembly would then yield

((a +3) - 0)
which would be simplified to (a + 3).
A problem arises with this scheme when a rule creates a new inner
subexpression. In this case this inner subexpression may itself need
to be simplified, and PAN solves this by recursively invoking
expression simplification for this subexpression.
For example, one of the simplification rules used by PAN is

(x = (w-y) —2) => (x+y) - (w+ 2z).
If this is applied to

(a - (3 -Db) = 2)
we get

(a '+ b)) = (34 2)
However, (3 + 2) itself needs to be simplified to 5, so (3 + 2) will
be passed to expression simplification from within this rule. Use of
this method ensures that a simplification rule never returns an
expression with an unsimplified subexpression.

7.4 SIMPLIFICATION RULES

PAN’s simplification process uses the following rules.
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7.4.1 Logical Rules

If x y z are any expressions,

(= F)

(= T)

(x AT AY)

(x A F A Y)

(2 Ay A (= x))
((x Vy) A (xvV
(x Ay A 2Z)
prover

(x vyv (= x))

->

-l

T
F

=> (x A Yy)

> F

->

z))

-> (x A z) if x — y can be proved by theorem

F

=> (x Vv (y A 2Z))

=>- T

((x A y) vV (x A 2))

=> (% A (v 2))

(z v (xAy) V(= x)Ay)) => (zvVvy)

7.4.2 Arithmetic Rules

If w x y z are any expressions and n m are numbers,

(n + x+m -> (x + value(n + m))

(n * x *m) -> (x * value(n * m))

(n — m) => value(n - m)

(n / m) -> value (n / m)

(x+ (Ww+y) +2) > (x+w+y+ 2z)

(x * (w*y) *z) => (x *w*y * z)

(x + (w=-y) +2) > ((x+w+ 2) -y

(x = (w=-y) - 2) > ((x +y) - (w + z)) if x is not of the form
(a = b)

((x =-y) - 2) -> (x- (y+ 2))

(x/ (w/y) / z) => ((x *y) / (w* z)) if x is not of the form
(a / b) '

((x/y) /z) =>(x/ (y* 2)

(x + 0) -> x

(x = 0) => X

(x *= 1) => X

(x * 0) -> 0
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Note that where the expression remains meaningful, terms can be
omitted - e.g. the rule for (n + x + m) is intended to include (n +
m) . Also, the order of the operands 1is not significant if the
operator is commutative - e.g. the rule for (n + x + m) is intended

to include (n + m + x).

7.4.3 Comparison Rules

If w y y z are any expressions and n m numbers,

(n > m) i value(n > m)
(n < m) o value(n < m))
(n = m) -> value(n = m)
(n 2 m) -> value(n 2 m)
(n € m) => value(n £ m)
(high-values < x) -> F
(high-values 2 x) -> T

(x > (x + n)) -> F

{x''< (%)) s T

7.4.4 Minimum Rules

If x y z are any expressions, n is an integer and P a formula,

minimum({j: (j = x)}) -> x
minimum({j: ((n + j) > x) A integer(j)}) -> (x - (n - 1))

P(minimum({j: P(J)}) -> T

7.5 COMMENTS ON SIMPLIFICATION RULES

The simplicity of PAN’s simplification process necessitates
simplification rules with stronger preconditions than would be
required in a more sophisticated system. The fact that any eligible
rule will be used to modify the expression means that the rules must
immediately produce a simpler form. This can be compared with a
system which allowed backtracking in which the rules could be tried

to see if they eventually resulted in a simpler expression.
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For example, the effect of the logical rule
(z V(XAY) V(=X AY)) => (zvVvy)
could then be achieved by including the simpler rules

(zvxvy) -> (zvVv (xvVvy))

(x A y) = (y A X).
Then given
(av({(bAac)v ((=Db) Ac))
we could generate
(a v ({cAab) v (caA (=Db)))).
Then, applying the existing rule
((xAy) V(xXAZ)) -> (xA (yV 2))
to the subexpression
((c Ab) v (c A (=D)))
would produce
(c A (bv (=Db))).

The other existing rules would then generate c giving (a v c) for the

full expression which is equivalent to applying PAN’s rule.
The first step in this process is to apply

(zvxvy => (zV (xVy))
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which results in a more complex expression. Since at this point it is
not obvious that any benefit will result from applying this rule, we

do not allow it in the simple, non backtracking system used by PAN.

Inclusion of the minimum rule

P(minimum({j: P(3)}) -> T
while obviously true may require some justification. Consider the
example of a program which includes a loop which reads objects from a

sequential source, SOURCE-1, and exits when a red object is found.

The path condition will be

P (k) = color(sequential-object-in-source (k+l, SOURCE-1)) = red.
The exit process will use this to generate a value for k " of
ex

k w minimum({j: color(sequential-object-in-source (j+1,
exit

SOURCE-1)) = red})

= minimum({j: P(3)})

This wvalue for k will then be substituted wherever k occurs in

exit

the execution state, including the path condition P(k), to produce

P(minimum({j: P(j)}) i.e. T. Since the path condition is used in the

interpretation process, such a simplification is required.
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Chapter 8
Conclusion

This thesis has described a program analysis system, PAN, based on
symbolic. execution and generalization. The primary contribution of
this thesis, however, is not to describe a particular program
analysis system, but to demonstrate that the combination of symbolic
execution and generalization can produce a powerful system for

analysing loop programs.

Such a system requires the generalization to produce an execution
state representing the effect of some unknown number of iterations
from the execution states produced during the first few iterations.
The secondary contribution of this thesis is to propose one method of
performing such a generalization. This method generalizes by using
sequences generated from those items in the execution states with
similar definitions. It should be noted that performing the
generalization by other means (either without using sequences or
using a different sequence generation method) would not detract from

the central concept of using generalization with symbolic execution.

The remainder of this chapter makes this discussion more concrete by
relating these concepts to PAN. It describes the original
contributions of the PAN system, the strengths and weaknesses of such
a system and identifies aspects of the system which could usefully be

extended.
8.1 WHAT PAN DOES

PAN accepts a program to be analysed as input, and produces a
specification as output. No additional information, such as intended
specifications or program cliches, is assumed. Thus PAN does not
address the tasks of checking that a program satisfies an intended

specification or describing a program in terms of known cliches.
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8.2 ORIGINAL CONTRIBUTIONS OF THE PAN SYSTEM.
8.2.1 Identification of a New Program Class

PAN programs are described using the standard terminology of directed
graphs. Directed graphs can represent programs with unrestricted
iterative and conditional constructs. PAN accepts for analysis a
subset of these programs - those satisfying the restrictions
identified in Chapter 2. This subset represents a middle ground
between completely unconstrained programs and those only allowing
iterative and conditional constructs such as while, if ... then etc.
Defining and establishing the properties of this class of programs

has occupied a significant part of this thesis.

PAN’s success in analysing this class of programs may indicate that
it would be worthwhile trying other program analysis techniques on

the same set of programs.
8.2.2 Loop Generalization

Traditionally, the major weakness of symbolic execution as a program
analysis technique has been its inability to handle 1loops. The
principal contribution of the PAN system is to demonstrate that this
problem can be addressed by wusing a technique based on
generalization. PAN generalizes the effect of a few loop iterations

to determine the effect of an arbitrary number of iterations.
8.2.3 Two Level Generalization

Performing loop analysis using generalization requires the
identification of generalization rules that predict the effect of an
indefinite number of loop iterations from the few iterations actually
performed. PAN’s first task in the generalization process is to
generate sequences. PAN does this using structured parameterized
rules referred to as models, following the terminology of Dietterich
and Michalski[1985]. Models are also used as a first method of

expressing the effect of the loop in terms of sequences.
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By examining numerous programs from the two domains under
consideration, the following conclusions were reached on the

effectiveness of models for loop analysis:

= most of the effects produced by loops can be predicted from
a small number of iterations using a few relatively simple

generalization models

- a few loops have unusual loop effects. A generalization
model to handle each such loop would produce a cumbersome
system which would still be unlikely to cope with an unusual

loop not previously encountered.

PAN’s design reflects these findings. PAN has two generalization
strategies - the first using a small number of loop generalization
models, and the second using a more general but computationally
expensive technique. Simple programs can be analysed quickly using

the loop generalization models.

Any unusual loop which cannot be handled by these rules is analysed
by a method referred to as the brute force search. This technique
uses a combination of simple rules and extensive search to greatly
extend the program effects which can be generalized. Compared to
using models, the brute force search has the significant advantage of
allowing PAN to analyse loop effects using arbitrary combinations of
known functions. We saw the example in section 1.4 in which PAN
analyses a program whose loop effect is finding the minimum of a
sequence of values. The minimum function is, in fact, unknown to the
loop generalizer, but the effect was successfully described in terms

of more primitive functions.

8.2.4 Separate Analysis of Exit Conditions

PAN also introduces a new method of analysing loop exit conditions.
This is not included in the loop generalization process. Once the

effect of an arbitrary number of loop iterations has been determined,

PAN continues symbolic execution until the loop exit (s) are reached.
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At that point the loop exit conditions are analysed to determine the

number of loop iterations actually performed.

This method enables PAN to clearly identify the conditions required
to reach any given loop exit. Thus PAN is relatively insensitive to
the complexity of loop exit conditions or the number of loop exits.
This contrasts with more traditional methods such as in Cheatham,
Holloway and Townley[1979], in which loop exit conditions are
determined simultaneously with determining the effect of the loop.
The problem of whether these methods can cope with multiple loop

exits does not seem to have been addressed.

8.2.5 Execution State Representation

Development of PAN required an execution state representation
suitable for both symbolic execution, loop generalization and exit
processing. PAN’s execution states, expressed in terms of objects,
sources, sequences and variables have shown that a domain independent
representation is possible. Thus the essential domain independent
features of sources, objects and sequences have been identified and
only these are recorded in the execution states. Also, the new
concept of statement condition has been introduced and its wvalue to

the loop generalization process demonstrated.
8.2.6 Generalization Verification

PAN demonstrates that a program analyser based on symbolic execution
can easily verify loop generalization by executing another iteration
of the loop and comparing the results (in the execution states) with
those predicted by the loop generalization. Of course, the hard part
is to actually perform the loop generalization. Thus, although PAN’s
loop generalization is inductive and therefore not guaranteed
correct, the generalization can be checked to ensure correctness,

though not completeness.
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8.2.7 Theorem Proving

PAN also addresses a less significant problem with symbolic execution
- failure to recognize conditional statements as provably true or
false can lead to incorrect analysis. It has been argued in this
thesis that it is unacceptable to ignore this fact. PAN addresses the
problem by invoking a theorem prover as each conditional statement is

symbolically executed.
8.3 EVALUATING PAN’S PERFORMANCE

PAN was constructed to test the effectiveness of generalization as a
program analysis technique rather than as a practical program
analysis tool. Nevertheless, the significance of the PAN system may
be clarified by contrasting the strengths and weaknesses of PAN as a

program analysis system.
8.3.1 Strengths of the PAN System.

Ran P

PAN has demonstrated the ability to analyse programs which, the
author believes, could not be analysed by any other existing program
analysis system without modification or augmenting its libraries (a
cliche driven system can always analyse a program if that program is
added to the cliche library!). PAN can analyse programs that include

the following features:

loops may contain variable and object property updates which

are both conditional and interdependent

- unstructured branching using ‘go to’s

- loops may contain inner loops

= loops may have multiple exits from any position in the loop.
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This thesis has not attempted to determine precisely the set of
programs which PAN can analyse. The program restrictions in Chapter 3
and the theorems and discussions in Chapter 4 do allow a subset of

PAN analysable programs to be specified as those programs that

= are specified in terms of directed graphs and satisfy the

restrictions in Chapter 2
= have effects satisfying the models in Chapter 4.

However this is not satisfactory for two reasons. Firstly, we do not
know how to describe those programs with effects satisfying the
models in Chapter 4 in terms of restrictions on directed graphs.
Secondly it ignores the programs analysable by the brute force search
method. A fuller investigation of this subject is outside the scope

of this thesis.

Code Independence

Symbolic execution mimics real execution by ‘executing’ each program
statement to determine its effect on the execution state. Once
execution of a statement is completed, further analysis deals
exclusively with these effects (as recorded in execution states)
rather than the program statements themselves. Thus alternative ways
of coding which produce the same effect will lead to identical
program analysis. For a trivial example, reversing the order of two
program statements may have no effect on program execution and if
this is the case, no change will be caused in a PAN analysis. This
contrasts with analysis systems which directly examine the program
code. In these systems alternate coding may cause considerable

difficulty in program analysis.
MElEielE 1 :
PAN was originally developed for the robot domain. The generality of

this method of program analysis has been demonstrated by the ease

with which PAN was extended to include the dp domain. New domains can

240



be added by simply adding the ability to symbolically execute any new
statements required. This is possible because PAN’s execution states
are domain independent. Once PAN has executed a domain dependant
statement by creating a new execution state, all further processes

that use that execution state are domain independent.

8.3.2 Weaknesses of the PAN System

Sequence Restrictions

PAN uses sequences as a fundamental part of its generalization
process. These sequences must contain distinct items. Thus PAN is
limited to programs in which each loop iteration processes a new
item. This excludes programs containing loops which only manipulate
the value of a fixed set of variables. Thus PAN is not able to use
the values of the variables in each iteration as a sequence. PAN is
able to analyse loops in which each iteration processes a distinct

element of a variable array.

Failure to Use Previous Analysis

We have said that PAN does not address the task of identifying
cliches. In fact, PAN does not even recognise the same code in a
single program analysis. This leads to code being reanalysed. For
example, when analysing programs with nested loops, any inner loops
will be executed and generalized several times. To rectify this
problem PAN would have to represent the effect of an inner loop as if
it were a single statement. No serious consideration has been given

to extending PAN in this way.

Difficulty in Extending Generalization Rules

If a PAN analysis fails, then either new models may need to be added
or the brute force search rules extended. PAN has been designed to
make this an easy task, but only for a programmer i.e. no "user"

interface exists for adding models or rules.
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The significance of this weakness depends on the view that one takes
of the PAN system. Viewed as a test bed for investigating loop
generalization as a program analysis technique, this is not an
important weakness. However, if PAN were to be seriously considered
as part of an automated programming system, then this weakness is one

which would require correction.

8.4 EXTENSIONS TO PAN

8.4.1 Adding a Learning Component

We have discussed in section 9.4.2 above the need to easily be able
to add new models and brute force search rules. A more challenging
extension would be to allow relationships identified by the brute
force search to be automatically added to the generalization models.
This would enable PAN to learn models by itself and greatly increase

the speed of analysing programs which satisfy the new model.

8.4.2 Production of Preconditions

PAN does not currently analyse the preconditions necessary for a
program to operate. To extend PAN to generate preconditions would
firstly require adding the preconditions for each type of statement
to PAN’s existing knowledge of the statement. As each statement is
executed, preconditions would be stored as a new data type on PAN’s
execution states. At loop generalization time, these preconditions
would have to be generalized so as to be expressed in terms available
on the generalized execution state. The usefulness of this extension
is questionable in the domains which have been investigated. For
example, as discussed in section 1.6.2, the preconditions for robot
movement cannot be determined from the program statements, since the

size of the robot is unknown.

8.4.3 Additional Loop Generalizations

As a result of using theorem proving to prove conditional statements

true or false, PAN’s loop generalization may be incomplete. For
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example, a loop which contains the test ‘if counter > 100’ will
always be provably false in the first few iterations, if the counter
is initialized to =zero and incremented on each iteration. In this
case some of the loop has not been executed, and will not be included
in loop generalization. This problem can be ‘solved’ by not
performing theorem proving, but only at the cost of allowing the
possibility of inconsistent execution states. A better solution would
be provided by letting the generalized execution state produced by
the first loop generalization initiate another set of loop
iterations, producing more execution states for generalization. These
would then be used to produce a second generalized execution state,
and this process would continue until loop generalization produced no
new information (i.e. until a fixed point is found). Such an
extension would not require any new concepts but would require
changes to both the loop generalizer and the scheduling components of

PAN.
8.4.4 More Flexible Sequence Generation

In Chapter 4 we discussed the problems caused by only applying
sequence generation models to items created by statements having the
same statement condition. In particular, we discussed the fact that
PAN cannot currently analyse the program shown in figure 8-1 because
it cannot create sequences of items from file B. In Chapter 4 a
solution to this problem was discussed that would allow PAN to form
sequences from items created by statements having statements
conditions of the form P A Ql, ... P A QOn, where Q1 v ... Qn = T.
This would enable PAN to analyse programs like the one in figure 8-1

and would be a relatively trivial extension to PAN.
8.4.5 Reduction of the Conditional Branch Restrictions

The restrictions on conditional branching introduced in section 2.7.3
ensure that statement conditions used to create subsequences on some
set of concurrent sequences Sl,...,Sn are only expressed in terms
of items in Sﬂ""sn' As a counter example, consider the program
in figure 8.2. In this case the statement condition to reach the

merge statement is
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sequential read A

v

N
7

if red(d) if = red(a)

Y v

sequential read B
T

sequential read B
I

Figure 8-1 Program not Analysable by PAN

1. |sequential read A

Y

< N
T 7

2. |if red(d) 3. |if = red(d)

4. |sequential read B

Y Vv

1'% y

5. |if heavy (B) 6. |if — heavy(B)

Y

7. |merge

Figure 8-2 Program which Violates the Conditional Branch
Restrictions
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(— red(A) A heavy(B)) v red(A)
which simplifies to
heavy(B) v red(a).

Since this condition is minimally stronger than the condition to
reach statement 1, the subsequence generation model of section 4.3.2
will use it to create a subsequence from the sequence, S, of items

from file A, namely
(sequence i = 1 to k sequential-object-in-source (i, file(a)))

But since this condition contains items not in S or any sequences
concurrent with S the subsequence generation model will fail. The
conditional branch restrictions are sufficient to avoid this problem,
but not necessary. PAN could be improved by either finding weaker
conditions which are still sufficient to avoid the problem or by
making the subsequence generation model more selective in choosing

conditions.
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Appendix A

Further Examples

A.1 INTRODUCTION

PAN has been tested on approximately thirty programs, which cannot
all be described in this thesis. Program fragments and the examples
in section 1.4 have been used to illustrate PAN analyses. The
intention of this appendix is to describe a PAN analysis of four

programs chosen to illustrate key features of the system.
A.2 EXTENDED SEQUENCE EXAMPLE

The first example program is illustrated in figure A-1. To analyse
this program PAN needs to use sequences initially defined in terms of

variables, and then to extend such sequences in exit processing.

This program moves the first b+l objects on the line at angle ® from
pos-a. The ones that are not red are moved to pos-d. The red ones are
moved to pos-b if they are in the first a objects from the line and

to pos-c otherwise.

PAN OQutput Specification

if

then

counter = b + 1

Vi (1 £ i £ size (SEQUENCE-4) — position(item-in-sequence (i,
SEQUENCE-4) = pos-b).

Vi (1 £ i £ size (SEQUENCE-5) — position(item-in-sequence (i,

SEQUENCE-5) = pos-c)
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if = color(A) = red

move-to A pos-d

1. |start
4
2. |counter := 1
N
/7
3. |loop entry
\/
4. |move-to A pos-a
N 5. |move-until-contact A @
6. |grasp A
Y
< N
~ 7
7. |if color(A) = red 8.
Y
SN
7
\/
9. |if counter £ a 10. |if counter > a
11. move-to A pos-b| 12. |move-to A pos-c| 13.
A NV
7
%
14. |merge
N
~ £
s Ty
15. |merge

Figure A-1 - Extended Sequences (Part 1)

247




18.

16. |ung

rasp A

17. |counter :=

counter + 1

Y

<
<

if counter < b

Figure A-1 -

N
7

19. |[if counter > b

20. |loop exit

21. |stop

Extended Sequences (Part 2).

Vi (1 £ i £ size(SEQUENCE-3) — position(item-in-sequence (i,

SEQUENCE-3) = pos-d)

where

SEQUENCE-1 is defined as (sequence i = 1 to b

sequential-item-in-source (i, SQURCE-1))

SEQUENCE-2 is defined as (item: item € SEQUENCE-1 A

color(item) = red)

SEQUENCE-3 is defined as (item: item € SEQUENCE-1 A

— color(item) = red).

SEQUENCE-4 is defined as (item: item € SEQUENCE-2 A

position-in-sequence (item, SEQUENCE-1) < a)

SEQUENCE-5 is defined as (item: item € SEQUENCE-2 A

position-in-sequence (item, SEQUENCE-1) > a)

SOURCE-1 is defined as line(pos-a, @)
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Comments

During loop generalization, PAN generated SEQUENCE-1 using sequence
generation model 1, while it generated all other sequences using
sequence generation model 2. SEQUENCE-4 and SEQUENCE-5 were initially
defined in terms of the wvariable "counter". However, PAN resolved
this wvariable to position-in-sequence form using model 3 for
variables occurring in sequences. PAN also resolved the updated
properties of objects in SEQUENCE-3, SEQUENCE-4 and SEQUENCE-5 by the
updated properties model, and the value of "counter" at loop entry to

size (SEQUENCE-1) + 1 = k+l1, using variable at loop entry model 3.

During exit processing PAN extended the sequences. SEQUENCE-1,

initially defined as

(sequence i = 1 to k sequential-object-in-source(i, SOURCE-1))
was extended to

(sequence i = 1 to k+l sequential-object-in-source(i, SOURCE-1))

Recall that subsequences of the form (o: o € S A P(o)) are extended
by determining whether a new item in S satisfies P. Now in the case
of SEQUENCE-4, for example, this involves determining whether the

last item in the extended SEQUENCE-2 satisfies
position-in-sequence (item, SEQUENCE-1l) < a.

PAN determined the value of position-in-sequence(item, SEQUENCE-1)
for the new item in SEQUENCE-1 as size (SEQUENCE-1) = k+1. Thus the
new item in SEQUENCE-2 will also be in SEQUENCE-4 if k+1 < a. For the
execution state associated with loop exit that describes the effect
of executing the statements on the path passing through statement 9,
execution of statement 9 added counter = k+1 £ a to the path
conditions. Thus SEQUENCE-2 will be extended to include the new
object. Similarly SEQUENCE-5 and SEQUENCE-3 will be extended in those

execution states associated with loop exit that describe the effect
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of executing statements on paths passing through statements 10 and 8
respectively. The three execution states will now be identical (apart
from path conditions). Thus only a single execution state will be
allowed to exit. The value of k in this execution state was resolved
by simplifying the exit condition to counter = k+2 > b, giving a
value of k on exit of b-1l. When substituted into the single execution
state chosen for exit, counter will have a wvalue of b+l and

SEQUENCE-1 will now be defined as

(sequence i = 1 to b sequential-object-in-source (i, SOURCE-1)).
A.3 KEYED FILE EXAMPLE

The second example is illustrated in figure A-2. It shows PAN’s
ability to analyse a program updating specified records from a keyed
file. Also, several updated properties have been assigned to the
correct sequence and the single item from file C has been analysed in

the same way as if it were a variable.

This program updates a keyed file of account records in a banking
application system. The accounts to update are specified by the
account numbers read from sequential file A. The account number is
used to retrieve account details from keyed file B. The
date-last-processed is updated and if the account balance is not
zero, credit or debit interest is increased and date-last-interest is
updated. The total of the account balances of all accounts accessed

is calculated and written out as a single record to file C.

PAN Out Specifi "

if

then
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start

2. |total(C) := 0

N

3. |loop entry

4. |sequential-read A

N4

Z
N

5. |if current (A)

Y

WV

keyed-read B

7. |account-number (B) =
account-number (A)

if — current ()

/

8. |loop exit

A4

sequential-write C

x,
7

Y

10. |if — current (B)

N

13.

11. |if current (B)

Y

total(C) :=
total(C) + balance(B)

\'%

12. |stop

Figure A-2 - Keyed File Example (Part 1)
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14. |date-last-processed(B) :=
- |todays-date

Y
L N\
< 7
I
if balance(B) = 0 16.!if balance(B) < 0
y
N/ 17. |if balance(B) > 0 s
18. |credit-interest(B) :=
credit-interest (B) +
credit-interest-rate (B) *
balance (B)
I
|debit-interest(B):=
o 19. ldebit-interest(s) +
|debit-interest-rate(8) *
!balance(B)
> <
/ I
\ 20. !merge
\'4
21. |date-last-interest(B) :=
todays-date
N Z
7 -

22. |merge

W

23. |keyed-write B

< |
~

Figure A-2 - Keyed File Example (Part 2)
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size (SEQUENCE-3)

total (OBJECT-1) = ¥  balance(item-in-sequence (i, SEQUENCE-3))

i1
Vi (1 £ i £ size (SEQUENCE-3) —

date-last-processed (item-in-sequence (i, SEQUENCE-3)

todays-date)

Vi (1 £ i £ size(SEQUENCE-4) —

credit-interest (item-in-sequence (i, SEQUENCE-4)) =
credit-interest (item-in-sequence (i, SEQUENCE-4)) +
credit-interest~-rate (item-in-sequence (i, SEQUENCE-4)) *
balance (item-in-sequence (i, SEQUENCE-4)))

Vi (1 £ i £ size (SEQUENCE-5) —

debit-interest (item-in-sequence (i, SEQUENCE-5)) =
debit-interest (item—in-sequence (i, SEQUENCE-5)) +
debit-interest-rate (item-in-sequence (i, SEQUENCE-5)) *
balance (item-in-sequence (i, SEQUENCE-5)))

Vi (1 £ i £ size(SEQUENCE-6) —

date-last-interest (item-in-sequence (i, SEQUENCE-6)

todays-date)

where

OBJECT-1 is defined as sequential-object-in-source(l, SOURCE-3)

SEQUENCE-1 is defined as (sequence i = 1 to size (SOURCE-1)
sequential-object-in-source (i, SOURCE-1))

SEQUENCE-2 is defined as (item: item € SEQUENCE-1 A Jobject
(object € SOURCE-2 A account-number (object) = account-number
(item)))

SEQUENCE-3 is defined as (sequence i = 1 to size (SEQUENCE-2)
keyed-object-in-source (account-number (object) = account-number
(item-in-sequence (i, SEQUENCE-1)), SOURCE-2))

SEQUENCE-4 is defined as (item: item € SEQUENCE-3 A balance

(item) > 0)
SEQUENCE-5 is defined as (item: item € SEQUENCE-3 A balance

(item) < 0)
SEQUENCE-6 is defined as (item: item € SEQUENCE-3 A (balance

(item) < 0) v balance(item) > 0)))
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SOURCE-1 is defined as file(A)
SOURCE-2 is defined as file(B)
SOURCE-3 is defined as file(C)

Comments

In this example, note that the size of both SEQUENCE-1 and SEQUENCE-3
are expressed in terms of the size of another item, SOURCE-1 and
SEQUENCE-2 respectively. PAN generated SEQUENCE-3 directly using
sequence generation model 1, which can express size either as the

iteration count, or the size of a previously generated sequence.

We now describe how the size of SEQUENCE-1 was determined. PAN
initially set the size of SEQUENCE-1 to the iteration count k using
sequence generation model 1. In loop generalization PAN also set the
number of retrievals from SOURCE-1 = file A to k. When symbolic
execution continued after loop generalization it attempted another
retrieval from SOURCE-1, at statement 4, for a total of k+1
retrievals attempted. To exit from the loop, statement 6 was
executed, which had the effect of putting k+l1 = (number of retrievals
attempted from SOURCE-1) > size(SOURCE-1) in the path conditions.
Thus exit processing used k+l1 > size (SOURCE-1l) to determine the value

for k to exit as
minimum({j: j+1 > size (SOURCE-1)}) = size(SOURCE-1).
This will then replace k in the definition of SEQUENCE-1.

During loop generalization PAN also generalized the updated
properties of the objects in SEQUENCE-3 and each of its subsequences,
SEQUENCE-4, SEQUENCE-5 and SEQUENCE-6. In each case the updated
property has been described in terms of the most general sequence.
Also the credit and debit interest property update for SEQUENCE-4 and

SEQUENCE-5 varies for each item in the sequence.

Correct analysis of date-last-interest, updated in statement 21,

required the generation of SEQUENCE-6, containing all items with an
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updated value for date-last-interest. This, in turn, required that
the statement conditions contain balance(object) < 0 v
balance (object) > 0, provided by the merge process described in

section 3.3.2.

Finally, the single object in file C, which acts as if it were a
variable, was correctly analysed by variables model 4 to be the total

of the balances in SEQUENCE-3.
A.4 BRUTE FORCE ANALYSIS OF UPDATED PROPERTY

The third example program is illustrated in figure A-3. In this
program items in a sequence are updated depending on their position
in another sequence. This cannot be handled by the models in Chapter

4 and requires the brute force search.

The program splits a line of different coloured blocks into two
lines, one of red blocks and one of non-red blocks. It moves all
objects on the line of length 1 at angle ® from pos-a. The ith such
object is moved to (X1 , Yl+i) if it is red and to (X2 , Y2+i)

otherwise.

PAN G S (£ ;

if

then

counter = size (SOURCE-1)
Vi (1 £ i £ size (SEQUENCE-2) — position(item-in-sequence (i,
SEQUENCE-2) = (X1 , Y1 +

position-in-sequence (item-in-sequence (i, SEQUENCE-2),

SEQUENCE-1))))
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1. |start

2. |counter := 0

>
3. |loop entry
\\4
4. |counter := counter + 1

5. |move-to A pos-a

6. |move-until-contact-up-to A @ 1

w/
Z N
o~ 7
7. |if contact (4) 8. |if — contact (A)
N 9. |grasp A 10. |loop exit
Y AV
>~
WV WV 11. |stop

12. |if color(A) = red 13. |[if = color(A) = red

move-to A (X2,Y¥2+counter)

14. |move-to A (X1,Yl+counter) | 15.

2
<

Y

16. |merge

17. |ungrasp A

<
<
Figure A-3 - Brute Force Search Analysis of Updated Property.
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Vi (1 £ i £ size(SEQUENCE-3) — position(item-in-sequence (i,
SEQUENCE-3) = (X2 , Y2 +
position-in-sequence (item-in-sequence (i, SEQUENCE-3),

SEQUENCE-1))))

where

SEQUENCE-1 is defined as (sequence i = 1 to (size SOURCE-1)
(sequential-object-in-source i SOURCE-1))

SEQUENCE-2 is defined as {item: item € SEQUENCE-1 A (color item)
= red}

SEQUENCE-3 is defined as {item: item € SEQUENCE-1 A — (color
item) = red}

SOURCE-1 is defined as line(pos-a, @, 1).

Comments

This program is deceptive. At first sight it appears as if the model
for updated properties should be able to handle the updated position
of SEQUENCE-2 and SEQUENCE-3. As stated in section 4.6, this model
can handle the case of a sequence with an updated property whose
value, for a given item, depends on the position of that item in the
sequence. However, in this case the updated property of items in
SEQUENCE-2 and SEQUENCE-3 depends on the position of the items in a
different sequence, SEQUENCE-I. This is not a common situation, and

the brute force search was invoked to complete the analysis.

The initial formulas for the brute force expansion for one execution

state included

SEQUENCE-1 = {OBJECT-1 OBJECT-2 OBJECT-3}
SEQUENCE-2 = {OBJECT-1 OBJECT-3}
SEQUENCE-3 = {OBJECT-2}

color (OBJECT-1) = color (OBJECT-3) = red
— color (OBJECT-2) = red

position (OBJECT-1) = (X1, Y1 + 1)
position (OBJECT-2) = (X2, Y2 + 2)

I

position (OBJECT-3) (X1, Y1 + 3)
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From position(OBJECT-1) = (X1, Y1 + 1), the expansion process

generated:

position (OBJECT-1) = (X1, Y1 + position-in-sequence (OBJECT-1,
SEQUENCE-1)

by the Position in Sequence rule, and then

position (item-in-sequence (1, SEQUENCE-2)) =
(X1, Y1 + position-in-sequence (OBJECT-1, SEQUENCE-1)

by the Item in Sequence rule, and then

position(item-in-sequence (1, SEQUENCE-2)) =
(X1, Y1 + position-in-sequence (item-in-sequence(l, SEQUENCE-2),

SEQUENCE-1) )
by another application of the Item in Sequence rule.

Similarly, from position(OBJECT-3) = (X1, Y1 + 3), the same rules

generated

position(item-in-sequence (2, SEQUENCE-2)) =
(X1, Y1 + position-in—sgquence(item—in-sequence(z, SEQUENCE-2) ,

SEQUENCE-1)) .

Then, since SEQUENCE-2 = {OBJECT-1 OBJECT-3}, the Property of All

Items in a Sequence rule generated

Vi (1 £ i £ size(SEQUENCE-2) — position(item-in-sequence (i,
SEQUENCE-2) = (X1, Y1 + position-in-sequence (item-in-sequence (2,

SEQUENCE-2) , SEQUENCE-1))).

Since this formula was generated in all execution states which have
any items in SEQUENCE-2, it was included in the generalized execution

state. Similarly for the updated properties of SEQUENCE-3.
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8.5 LOOP WITHIN A LOOP

The fourth example program is illustrated in figure A-4. This program

has nested loops with multiple exits from the inner loop.
The program moves objects from the a+l lines at angle ® from (X0,Y0),
(X0+X,Y0+Y), ..., (X0+aX,Y0+aY). Objects are moved from each line to

pos-a until a red or blue object is found. If this object is red it

is moved to pos-b, otherwise to pos-c, then the program proceeds to

the next line.

if
color (item-in-sequence (a+l, SEQUENCE-6)) = red
then

position(A) = pos-b

grasping(A) F

object-contacted(A) = item-in-sequence(a+l, SEQUENCE-6)
(Note: the above are robot status variables) .

counter = a+l
Vi (1 £ i £ size(SEQUENCE-5) —
Vj (1 £ j £ size(item-in-sequence (i, SEQUENCE-5) —

position(item-in-sequence(j, item-in-sequence (i, SEQUENCE-5)))

pos=-a))
Vi (1 £ i £ size(SEQUENCE-7) —

position (item-in-sequence (i, SEQUENCE-7)) = pos-b)
Vi (1 £ i £ size(SEQUENCE-8) —

position (item-in-sequence (i, SEQUENCE-8)) = pos-c)

where
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1. (start

\/

2. |move-to A (X0,Y0)

3. |counter := 0

%

4. |loop entry 1

/N

5. |loop entry 2

N4

6. |move-until-contact A @

7. ‘|grasp A

Wi N
-~ 7

8. |if color(A) = red 9. |if color(A) = blue

\V

Y Y

11. |loop exit 2| 12. |if = color)A) = red
A = color(A) = blue

10. |loop exit 2

13. |move-to A pos-b| 14. [move-to A pos-c| 15. [move-to A pos-a

% N N

16. |ungrasp

17. |merge

18. |move-to A (at-step S
position(a))

8
A\

Figure A-4 - Loop within a Loop (Part 1)
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] g

19. |ungrasp A

/
20. |counter := counter + 1
e N,
~ 7
/N
21. |if counter < a 22. |if counter > a
A4 YV
23. |move-to A (at-step 5 24. |loop exit 1
position (A))
25. |stop

26. |[move-by A (X, ¥)

/
¢ \

Figure A-4 Loop within a Loop (Part 2)

SEQUENCE-4 is defined as
(sequence i = 1 to a+l (line(X0 + (i-1)X , Y0 + (i-1)Y), ®))
SEQUENCE-5 is defined as
(sequence i = 1 to a+l (sequence j = 1 to n(i)
sequential-object-in-source (j, item-in-sequence (i, SEQUENCE-4))))
SEQUENCE-6 is defined as
(sequence i = 1 to a+l _
sequential-object-in-source(n(i)+1,
item-in-sequence (i, SEQUENCE-4)))
SEQUENCE-7 is defined as
(item: item € SEQUENCE-6 A color(item) = red)
SEQUENCE-8 is defined as

(item: item € SEQUENCE-6 A color(item) = blue)
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n(i)
minimum({Jj:
color (sequential-object-in-source (j+1,
(item-in-sequence (i, SEQUENCE-4)))) = red
Vv
color(sequential-object-in-source (j+1,

(item-in-sequence (i, SEQUENCE-4)))) = blue}).

g
color (item-in-sequence (a+1l, SEQUENCE-6)) = blue
then
position(A) = pos-c
grasping(A) = F
object-contacted(A) = item-in-sequence (a+l, SEQUENCE-6)
(Note: the above are robot status variables).
remainder of this case is as above.
Comments

This is the most complex example presented and requires a more
extensive explanation. We first deal with the use of ‘at-step’ in
statements 18 and 23. Although not described in PAN’s input language
in chapter 2, PAN programs are actually allowed to refer to the value
of variables or object properties at previous statements. This is a
feature of the extended Noddy system of which PAN forms a part. Since
this is equivalent to the use of additional variables, (in which
these values could have been stored) it did not seem necessary to

further complicate the description of the input language by including

this feature.

Before PAN generalizes the outer loop, it will be executed some
specified number of times. Each execution of the outer loop will
include executing, generalizing and exiting from the inner loop. Once

PAN has generalized the outer loop, exit from this loop will involve
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another execution, generalization and exit from the inner loop. PAN

scheduling will ensure that these processes are performed in this

order.

The first generalization of the inner loop will produce

SOURCE-1 = line( (X0, Y0), ®))
SEQUENCE-1 = (sequence i = 1 to k
sequential-object-in-source (i, SOURCE-1))
Vi (1 £ i £ size(SEQUENCE-1) —
position(item-in~sequence (i, SEQUENCE-1)) = pos-a)
counter = 0
number of iteration attempted from SOURCE-1 = k.
When symbolic execution is continued after loop generalization, an
execution state will be associated with each exit from the inner
loop, each having a new object, OBJECT-1, defined as
sequential-object-in-source (k+1l, SOURCE-1l) and exit conditions of
color (OBJECT-1) = red and color(OBJECT-1) = blue respectively. Exit
processing will attempt to include OBJECT-1 in SEQUENCE-1, but this

will fail as OBJECT-1 is not at position pos-a. The value of k on

exit is then determined by

k =
exit
minimum ({7:
color(sequential-object-in-source(j+1, SOURCE-1l)) = red
Vv

color (sequential-object-in-source(j+1, SOURCE-1)) = blue})

This value for k will then be substituted wherever it occurs in the

Execution will then continue from these execution
OBJECT-1

execution states.
states until loop entry is reached, during which process,
will be moved to either pos-b or pos-c and counter will be

incremented to 1.

Thus, after one iteration of the outer loop, the following states

will be available for generalization:
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Execution State 1:

SOURCE-1 = line( (X0, Y0), ®)

SEQUENCE-1 = (sequence i = 1 to nl
sequential-object-in-source (i, SOURCE-1))

Vi (1 £ i £ size (SEQUENCE-1) —
position(item—~in-sequence (i, SEQUENCE-1)) = pos-a)

OBJECT-1 = sequential-object-in-source(nl+l, SOURCE-1)
color (OBJECT-1) = red

position (OBJECT-1) = pos-b

counter = 1

Execution State 2:

SOURCE-1 = line((X0, Y0), ®)
SEQUENCE-1 = (sequence i = 1 to nl
sequential-object-in-source (i, SOURCE-1))
Vi (1 £ i £ size(SEQUENCE-1) —
position (item-in-sequence (i, SEQUENCE-1)) = pos-a)
OBJECT-1 = sequential-object-in-source (nl+l, SOURCE-1)
color (OBJECT-1) = blue

position (OBJECT-1) = pos-c
counter = 1

where
nl =

minimum({7:
color(sequential-object-in-source(j+1, SOURCE-1)) = red
v

color(sequential-object-in-source (j+1, SOURCE-1)) = blue})

After the second and third iterations of the outer loop have been

performed, we will have addition execution states:
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Execution State 3:

SOURCE-2 = line((X0 + X, Y0 + Y), ®)

SEQUENCE-2 = (sequence i = 1 to n2
sequential-object-in-source (i, SOURCE-2))

Vi (1 £ 1 £ size(SEQUENCE-2) —
position(item—in—seéuence(i, SEQUENCE-2)) = pos-a)

OBJECT-2 = sequential-object-in-source (n2+1, SOURCE-2)
color (OBJECT-2) = red

position (OBJECT-2) = pos-b

counter = 2
Execution State 4:

SOURCE-2 = line((X0 + X, Y0 + Y), &)
SEQUENCE-2 = (sequence i = 1 to n2
sequential-object-in-source (i, SOURCE-2))
Vi (1 £ i £ size(SEQUENCE-2) —
position (item-in-sequence (i, SEQUENCE-2)) = pos-a)
OBJECT-2 = sequential-object-in-source (n2+1l, SOURCE-2)
color (OBJECT-2) = blug
position (OBJECT-2) = pos-cC

counter = 2

where
n2 =
minimum({7j:
color (sequential-object-in-source (j+1, SOURCE-2)) = red
Vv
color (sequential-object-in-source(j+1, SOURCE-2)) = blue})
and
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Execution State 5:

SOURCE-3 = line((X0 + 2*X, Y0 + 2*Y), ®)
SEQUENCE-3 = (sequence i = 1 to n3
sequential-object-in-source (i, SOURCE-3))
Vi (1 £ i £ size (SEQUENCE-3) —
position (item-in-sequence (i, SEQUENCE-3)) = pos-a)
OBJECT-3 = sequential-object-in-source (n3+1, SOURCE-3)
color (OBJECT-3) = red
position (OBJECT-3) = pos-b

counter = 3

Execution State 6:

SOURCE-3 = line((X0 + 2*X, Y0 + 2*Y), @)
SEQUENCE-3 = (sequence i = 1 to n3
sequential-object-in-source (i, SOURCE-3))
Vi (1 £ i £ size(SEQUENCE-3) —
position (item-in-sequence (i, SEQUENCE-3)) = pos-a)
OBJECT-3 = sequential-object-in-source (n3+1, SOURCE-3)
color (OBJECT-3) = blue
position (OBJECT~-3) = pos-c

counter = 3

where
n3 =
(minimum {j:
color (sequential-object-in-source(j+1l, SOURCE-3)) = red
Vv
color (sequential-object-in-source (j+1, SOURCE-3)) = blue})
Sequence

PAN will then generalize sources in the outer loop into the

SEQUENCE-4 = (sequence i = 1 to k
(line (X0 + (i-1)*X, YO0 + (i-1)*Y), @)).
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As specified in the sequence generation algorithm, the definition of
SOURCE-1, SOURCE-2 and SOURCE-3 occurring in SEQUENCE-1, SEQUENCE-2,
SEQUENCE-3, OBJECT-1, OBJECT-2 and OBJECT-3 will now be replaced by
item-in-sequence (1, SEQUENCE-4), item-in-sequence (2, SEQUENCE-4) and
item-in-sequence (3, SEQUENCE—4), allowing SEQUENCE-1, SEQUENCE-2 and

SEQUENCE-3 to be generalized to

SEQUENCE-5 = (sequence i = 1 to k (sequence j = 1 to n(i)
sequential-object-in-source(j, (item-in-sequence (i,

SEQUENCE-4)))
where

n(i) =
minimum({Jj:
color (sequential-object-in-source (j+1,
(item-in-sequence (i, SEQUENCE-4)))) = red
v
color (sequential-object-in-source(j+1,

(item-in-sequence (i, SEQUENCE-4)))) = blue}).
OBJECT-1, OBJECT-2 and OBJECT-3 will be generalized to
SEQUENCE-6 = (sequence i = 1 to k

sequential-object-in-source(n(i),

item-in-sequence (i, SEQUENCE-4)))

(item: item € SEQUENCE-6 A color(item) red)

SEQUENCE-7
blue)

I
I

SEQUENCE-8 (item: item € SEQUENCE-6 A color(item)

Next the values of counter will be generalized to size (SEQUENCE-4),
which is k, by variables at loop entry model 3. Since the items in
SEQUENCE-5 (SEQUENCE-1, SEQUENCE-2 and SEQUENCE-3) each have an

updated property of

Vj (1 £ j £ size(SEQUENCE-i) —

position(item-in-sequence (j, SEQUENCE-i)) = pos-a)
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for i = 1, 2 and 3, the updated properties model will produce an

updated property for SEQUENCE-5 of

Vi (1 £ i £ size(SEQUENCE-5) —
Vj (1 £ j £ size(item-in-sequence (i, SEQUENCE-5)) —
position(item-in-sequence(j, item-in-sequence (i, SEQUENCE-5))) =

pos-a))

The objects in SEQUENCE-6, SEQUENCE-7 and SEQUENCE-8 also have

updated properties, which will be generalized to

Vi (1 £ i £ size (SEQUENCE-7) —

position (item-in-sequence (i, SEQUENCE-7)) = pos-b)
Vi (1 £ i £ size(SEQUENCE-8) —
position (item-in-sequence (i, SEQUENCE-8)) = pos-c)

Finally, the robot position will be generalized to (X0 + k*X, Y0 +

k*Y) .

Symbolic execution will now continue, beginning with the generalized
execution state from the outer loop. To reach the exit of the outer
loop, however, it is necessary to reenter the inner 1loop. Thus,
another set of iterations and generalization of the inner loop will
be performed. This process will produce a generalized execution state

which now contains:

SEQUENCE-4 = (sequence i = 1 to k .
outer
line ((X0 + (i-1)*X, Y0 + (i-1)*Y), ®)).
SEQUENCE-5 = (sequence i = 1 to k
outer
(sequence j = 1 to n(i)
sequential-object-in-source(j, (item—-in-sequence (i,
SEQUENCE-4)))
SEQUENCE-6 = (sequence i = 1 to k
outer

sequential-object-in-source(n (i),

item-in-sequence (i, SEQUENCE-4)))
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SEQUENCE-7 (item: item € SEQUENCE-6 A color(item) = red)

SEQUENCE-8 (item: item € SEQUENCE-6 A color(item) = blue)
Vi (1 £ i £ size (SEQUENCE-5) —
Vi (1 £ j € size(item-in-sequence (i, SEQUENCE-5)) —
position(item-in-sequence (j, item-in-sequence (i, SEQUENCE-5))) =
pos-a))
Vi (1 £ i £ size(SEQUENCE-7) —
position (item-in-sequence (i, SEQUENCE-7)) = pos-b)
Vi (1 £ i £ size(SEQUENCE-8) —
position (item-in-sequence (i, SEQUENCE-8)) = pos-c)
counter = k

outer

previously generated, with the addition of

SEQUENCE-9 = (sequence i = 1 to ki

nner

sequential-object-in-source (i, SOURCE-4))

SOURCE-4 = line (X0 + k *X, Y0 + k *y), @)
outer outer

Vi (1 £ i £ size (SEQUENCE-9) —

position(item-in-sequence (i, SEQUENCE-9)) = pos-a)
where

n(i) =
minimum({j:
color (sequential-object-in-source (j+1,
(item-in-sequence (i, SEQUENCE-4)))) = red
v
color (sequential-object-in-source (j+1,

(item-in-sequence (i, SEQUENCE-4)))) = blue}).

and, since we now have two unresolved iteration counts, they have

and k . Two execution states
outer

been distinguished by anu
will be associated with the exit of the inner loop, each having a new
object, OBJECT-4, defined as sequential—object-in-source(kUm“+1,

SOURCE-4) and exit conditions of color(OBJECT-4) = red and
color (OBJECT-4) = blue respectively. Again, an attempt will be made

to include OBJECT-4 into SEQUENCE-9, which will fail because OBJECT-4
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is not at pos-a. The exit conditions will then be used to resolve

k to
inner
k = minimum({j: P(3)})
inner
where
P(i) = color(sequential-object-in-source(j+1, SOURCE-4)) = red
v
color (sequential-object-in-source(j+1, SOURCE-4)) = blue.
This will then be substituted wherever k1 occurs in the
nner

execution states including the path conditions which contain
color(sequential-object—in—source(ki +1,SOURCE-4)) = red and
< nner

color(sequential—object—in—source(ki +1,SOURCE-4)) = blue.
r

nne
Symbolic execution now continues from these execution states to the
exit from the outer loop. In doing so, the counter in incremented to
k +1 and the path conditions have counter =k + 1 > a
outer outer

added to them. Thus, two execution states will be associated with the
exit from the outer loop. The new items created during the exit path
are SEQUENCE-9, SOURCE-4 and OBJECT-4. These will be successfully
included in SEQUENCE-5, SEQUENCE-4 and SEQUENCE-6. Since these

execution states contain exit conditions of

k +1 > a A color(sequential-object-in—source(ki +1,

outer nner

SOURCE-4)) = red
and

k +1 > a A color(sequential-object-in-source(k1 +1,

outer nner

SOURCE-4)) = blue

we obtain a value of k of

outer
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k = minimum({j:
outer

(3+1 > a A
color(sequential-object—in—source(k“m“+1, SOURCE=-4)) = red)
v

(j+1 > a A

color (sequential-object-in-source (k +1, SOURCE-4)) = blue)

inner
D

Simplification using the rule (x A y) V (x A z2) = x A (y Vv 2z) will
then produce
k = minimum({j: j¥1 > a A
outer
(color(sequential—object-in-source(ki +1, SOURCE-4)) = red
nner
v

color(sequential—object-in-source(ki +1, SOURCE-4)) = blue)
nner
Pe

But, by the definition of P, above, this shows

k = minimum({j: j+1 > a A P(k Y1) .
outer inner
But, since ki = minimum({j: P(j)}), simplification will produce
nner *
P(k ) = T, so that
inner
k = minimum({j: j+1 > a}) = a.
outer
When this is substituted wherever k occurs in the execution

outer

states, we will obtain the final form as output by the interpretation
process. Finally, we note that the two execution states will not be
merged as they are not quite identical. In one the robot is now at
pos-b, while in the other it is at pos-c. In other words, the final
position of the robot depends on the color of the very last object
moved. Note that in PAN’s output interpretation, this last object is

now defined as the last object in SEQUENCE-6.
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