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Abstract

This thesis describes a syrnboJ.ic execution system, pAI{, that is able
to sYmbolically execute loops. PAII achieves this by generalizing the
effect of a few loop iterations to pred.ict the effect of an unknown

nurnber of iterations. PAII operates on relatively unstructured. loops
that incrude rgo to' tlr)e coltstructs, arlowing multiple exits from a

loop.

PAN uses a trlo stage g:eneralization approach using technigues
developed in Artificiar rntel-rigence systems. The first stage uses
models of expected loop effects and requires only limited search to
generalize the effect of simpJ-e loops. The second stage uses a less
constrained approach that can generalize the effects of more complex
loops by using extensj-ve search.

Fundamental to pAlil, s generalization metbod is the
sequence, These are identified using modefs and used
of the generalization procesa.

concept of a

in both stages
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Chapter 1

fntroduction

1 . 1 PROGRJA}T A}IAIYSIS

Tbe analysis of an exi-sting conputer program to determine what it
does is.a problem well known to computer prograrrmers. Even when

creating a new progran from correct specificat.ions, such an analysis
is often performed informally as a test of correctness. For existing
programs racking correct specifications, such an anarysis often
precedes prog'ram correction or modification.

rhis analysis can be seen as the reverse of prograrmning: it will be
given a program as input and produce as output a program
specification consisting of non procedural. statements in a formal
1ogic.

The difficult and unpopular nature of this task has prompted attempts
to automate it, especiarty by the recognition of rcl-iches, or
stereotlped program fragrrnents .

This thesis examines a new approach to automated program analysis
using symbolic execution.

symbolic execution is a technigue for rexecuting' a program without,
assigning specific values to the input data. rnstead, such data is
given a rsymbolic' value and rexecution, wirr produce output as a

function of the input. ?his technigue has been particularly usefur in
program verification (i.e. verifying that the program conforms to its
specification) . However, use of symbolic execution is usualJ,y
restricted to segments of code which do not allow iteration so as to
avoid problems with executing 1oops.

10



A sYmbolic executor ateps through the program in a similar fashion to
a rreal' executor. The major distinction between these two methods of
execution arises when the program branches at a conditional_
stat,ement. unrike a real executor, a symbolic executor cannot, in
gteneral, decide which branch to take as the condition wiII invoLve
input data whose value is unknown. The usual method of handling this
situation is to alLow the symbolic executor to take both branches by
producing tno sets of output varuesr each associated with a

constraint on the input data sufficient to make the appropriate
condition true. However, in the special case where the conditional
statement is a loop exit condition, this method .Ieads to the symboJ.ic
executor performing an indefinite number of loop iterations. with
each ner.r iteration performed, dif ferent output statements and
associated input constraints are generated, and the analysis task
never completes.

Previous attempts to address this problem have focused on solving
recurrence rel-ations established during a single Ioop iteration. The

original contribution of this thesis is to suggest that this problem
can be approached as a generalization problem. rn particular, the
outPut statements and associated input constraints generated from a

small nurnber of iterations can be generalized to infer equivalent
data for an indefinite nurnber of iterations. This thesis demonstrates
that this method overcomes some of the problerns associated irith
solving recurrence relations, particularly the problem of conditional
recurrence relations, enabling relatively unstructured 100ps to be
successfulJ.y analysed. Additionalry, this method allows an inproved
method of determining Ioop exit conditions. Thus we can rnake symbolic
execution a more useful- program analysis tool by extend,ing the class
of programs which can be analysed.

To support this vi-ewpoint, reference will be made to a particular
program anarysis system, pAN, implemented using the principres
described in this thesis.

11



A program anaLysis system such as PAIiI may usefulJ-y become a component
in a larger computer system. The extended NODDY system, being
deveroped at victoria university, currentry includes a component,

which automatically generates robot programs from input traces
[Andreae 1985]. This system does not currentry rknow, what these
prograns do, in the sense of having non procedural specifications of
their effect. An intended use of PAlil is to a1l-ow the NODDy system to
automatically generate programs from traces, and then specifications
from the proglams.

AlternativeJ-y, PAN could find a place in an automated programmer's
assistant. Such systems often store prograns and their non procedural
specificationsT and probrems arise in j-ntroducing nevr programs
without specifications or regenerating specifications from programs
manualry modified. rn both cases pAN courd be used to generate the
description from the program.

1.2 OUTLINE OF TEESIS

The thesis is organized as follows:

Chapter 1. Section 1.3 introduces some terminology, Section
1.4 presents a scenario strowing informalLy how pAI.t analyses
two programs from different domains. Section 1,5 contains an

overview of pAt'I. section 1.5 comments on the scope of the
anarysis task being attempted. section l.'t reviews rerated
work.

Chapter 2 specifies the languages used by programs which can

be analysed by PAll, and the output specifications.

Chapter 3 describes the symbolic execution component of pAlt,

and the special processing performed to aid the loop
generalization and loop exit processing steps.

Chapter 4 shows how pAN uses the output of symbolic
execution to perform Ioop generalization, determining the
effect of an indefinlte number of iterations.

12



Chapter 5 describes the loop exit processing, used to find
the condition required to exit from the loop.

chapter 6 identifies cases that normal loop generalization
wilL not handre, and describes a search intensive method
used to extend Lhe range of the generalizer.

chapter 7 addresses the problems of converting the state of
the executor at program exit into an understandable program
specification.

chapter 8 concludes the thesis with a discussion of the
original contributions presented in this thesis and the
st.rengths and weaknesses of pAif.

The appendix contains further complete examples of programs
that PAN has successfully anal-ysed.

1.3 TERMINOLOGY

This section introduces sufficient terminology for the examples and.

overview presented l-at.er in this chapter. symbolic execution attempts
to mimic real execution. A real executor steps through a program
testing conditions or making changes to its world (files, variabLes,
bLocks etc). It does not need. to record either the resuJ-t of a test
or the effect it has had on the world. It only needs to remember the
last statement executed so as to be abl-e to continue the execution at
the correct point in the proglam.

A symboric executor, however, does not have a rear world t.o run in,
so must maintain a symbotj.c description of such a world. If a

symbolic execution has reached some statement s in the program, then
this description of the worLd will need to l-ncrude both the
conditions on the world required to reach s, and the cumurative
effect of executing arL statements up to and including s. Also,
instead of having to remember a singre rl.ast statement executed,, a

symboric executor needs to control an execution which may be

13



proceeding down several different branches concurrently. These
aspects of symbolic execution are described using the forlowing
terms:

Program a set of statements, each of which has one or
more statements specified as successors.

execution state a descriptlon of the world when symboJ.ic

execution has reached some specific progran

st,atement S. We say this execution state is
associated with S.

exeeution path a sequence of execution states from the
beginning of the program to some specific
program statement

l

active execution

states

path conditions

effects

Using this ternr:inologryl the
an execution state E from

associated with some program

a nerd execution stat.e E, is
reguired to execute S and

the most recently created execution states in
any execution path. These execution states
are those which can be used to continue the
slmbolic execution. This is a generalization
of a real executor, s r last statement
executed' .

t hat pa rt of an execut ion state that
describes the conditions that must be true in
the world for execution to have traversed
some specific path

that part of an execution state that
descrj.bes ttre effect, the program has had on

the world.

slmbolic execution proceeds by selecting
the active execution stat.es. E will be

statement S. If S' is a successor of S,

created from E by adding the conditions
the effects of executing S. E' then

14



repl-aces E in the active execution states. Note that both E and E,
now both exist, Et has only repJ.aced E in the active execution
states, not in the fuLl set of execution states.

1.4 SCENaRTO

This section presents one example from each of the two domains that
PAN has been tested on, and informalJ-y steps through a pAN analysis
of them- In order to introduce these examples before pAI\r bas been
described, it has been neeessary to greatly sfunplify many detaLls.

rn the robot domain, programs control a robot hand that ls able to
move and grasp objects if it is in contact wit.h them. The robot is
also eguipped with sensors so that it can test physical properties of
the object contacted (such as coLor).

The example program is presented in figure L-2. rn this example the
robot hand 'finds' objects by repeatedry executing the statement
rmove until- contact up to (o l) , . Every time this statemeirt is
executed the robot hand is at. position pos-a. Thus the statement
instructs the robot to move at angle o from pos-a until- either it
contacts an object or I units have been moved. rf we refer to the
robot's line of movement by the triple (pos-a, O, f), then we can
refer to the objects contacted as Lst from (pos-a, o, l), 2nd from
(pos-s, (D, 1) etc.

Thus the program in figure l-2 finds arr objects from the line
(pos-a, o, r). The bLue objects are moved to position pos-b and the
red objects to pos-c. The effect of this program on the world is
shown in figure 1-1. The line at pos-a did contain g objects. The

first five have already been moved and three remain on the rine. The

first five have been moved to pos-b if blue and to pos-c if red.

15



I pos-b

I orlr" objecrs

objects not yet
moved

POS-a
J.ength L

U pos_c

t] red objecrs
u

Figure L-1 Effect of program on World

we expect PAN to produce the forlowing prograrn speclfLcation:

V object (object e (pos-a, O, I) n cotor(object) - bLue +
position(object) = pos-b)

V object (object e (pos-a, O, l) a color(object) = red -)
position(object) = pos-c)

Pan's analysis l-s described in flve phases:

symbolic executl_on before loop generalization
loop g:eneralization

symbolic execution after loop generalLzation
exl-t processing

interpretation

SYMBOLIC EXECUTION BEFORE LOOP GENERALIZATION

we describe the f irst synbolJ.c executj.on phase by specl-fying, the
effect that executing each program statement has on pNilrs set of

16



execution states. The program statement nr:rtbers refer to those in
figure 1-2.

Stat- Stat- Effect on pANrs Execut:lon States
ment No ment Name

1 start An executl-on atate Ls initiarized as having
no path conditions or effects.

2 move to A new execution state is created with effects
Pos-a showing that the robot hand is now at

position pos-a.

3 roop entry pAI{ performs bookkeeping tasks when a loop J.s

entered, these are not described here.

4 move until A real executor would execute this statement
contact by movJ.ng the robot hand at angle O until
up to
(O, 1)

either an object is contacted or the hand has

moved I units. Thus this step is conditional
- its effect depends upon how many objects
are on the line.

Since a sltmbOlic executor cannot determine
whether any objects wiII be found tt must

handle bot,h possibilities. Thus two nelit

execution states are created. One of them
wilL be made to reflect the cage in which the
line is enpty by addLng:

number of objects on line (pos-a, O, I)
=Q

to the path conditions, and

robot hand at poeition 1 units at angle
O from pos-a and not in contact

L7



Stat- Stat-
ment No ment Name

if contact

Effect on PAlil's Execution Stateg

to the effects.

The other execution state
reflect the caae Ln which

enpty by adding

will be made to
the line is not

number of objects on line (pos-a, O, 1)

>1.

to the path conditions, and

robot hand is in contact
from line (pos-a, O, f)

to the effects.

with 1st object

This statement is asking whether the robot
hand is in contact. pAtil will symbolicalJ.y
execute this statement in the two different
execution atateg created in stat,ement 4. In
the first of these, the line (pos-a, Q, I)
was empty and the robot is not in contact,
Thus this execution state Ls inconsist,ent
wl-th the condition in staternent S.
Consequently, no new execution state
associated with statement 5 can be created.

In the second executLon state, the line
(pos-a, O, f) was not eq)ty at statement 4,

and the robot hand is in contact. Thus this
execution state already contains the
condition requJ-red to execute statement 5. So

18



move t,o Pos-a

loop entry

untll contact
upto(OnI)

if c:ontact if not contact

if eo}or = blue if color = red loop exlt

mo've-to pos-b move-to pog-c

o positi.on

Figure L-2 - Ro-b'ot Domaln ENample

I

I

I

I

I

I

L
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,Stat- St,rit-

BeDf_xs $gnr, Nene

tf cotor

= blue

grasP

move t'o

POs-b

\ ,. 
^,i.rf'!d^\\

,e*to i,t

\o t-''

)r' .: "t
.l

ElfFect on P.Alil, e ExqcutLon Etnters

a n€r executlon state l_s created whlch onlt
require{t updating of ninor bookaeping data..

The conditi.orr requLred to exeoute th:lg
ct,atement .ls neither ioeonslstent h'Lth, D,or

,eontalned in, the execution etate created bf
execut{Dgr statement 5. peN etrecutes thLs
atatement b5r creati.ng a new executLon gtAt€
with

eoJ.or (let objeot la .trine (po,a-a, O, l) )

= bLue

added to tbe path condit.ions.

A new executlon state ie created wi.ttr ef,fects
show:i.ng that the robot hand l_s g:raspJ.ng.

SJ.nce t,he robst, hand ls graspinE the tst
obJeet frorn lLne (pos-a, lb, l) r a ner
execution state is rcreated with ef fects
showing that botl the robot hand and this
objeet are now at, pos-b 1..e.

posttio-rr (,robot harrd) * pos-b
posJ.tion (lst, object from ll.ne

(,trros-a, 0, l)) - pos-b.

lhese statenentg ar€ xesuted as for 6, '70 gl

except that the color of, th€ objec,t {.g r_ed

and it Ls moved ,to pesltj.o'l pos-c instEad of
pos-b.

9, 10

11
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Stat,- Stat-
nent tilo ment Name

LZ ungirasB

14 Lf not contaet

15 troop exit

loop enLry

Synbo.!.i.c eaeerrtl.on now B,roceeds
loop until the required number

the purgose of tbls exa*ple, i.t
are required.

Effeqt .on F.i$tt s Fxee.ptl_on Statea

The execrtl-on states establ.iahed by executlng
statemeats I and 11 rLl!. both be used to
execute sta,ter@at t2, New executLon stat€s
wLII be created wl.th eff,ects t,o trndLeate that.
the robot hand ls no trong€r graspLng.

Botlr executl.on atates estabu.ehed by
executing siatemenE LZ wiII be us€d. to
ea€cut,e gtat€ment 1-3. New execut,ion atates
wLil. be created ulth ef,f,eats to show the
r,obot hand -ig notr at posl.tl_on pos-a.

Thl,e is th-e c€nverae ef statement S, Thus sf,
the two exeeution states f.rorn statement 4,
only t,he oDe with no obJeet on tbe ll.ne
(pos-an O, X) uil.l be used to create a nert

execution gtate assoclat€d wLth thl.s
etatement.

lulen a loop exLt statenieDt is reached, FA!{

chec.ks whethe,r looP Eeneralization has been
performed. Sinae it hasn.t, this statenent Ls

not executed.

PIAN perforiqs boolckeeplng tasks when a loop l,s
entered, these are not deeeribed here.

13 morre to
at 6teP

,.\}
tl^r"t
l:

*r

\-r I'-:'
al

pop,ition

3

\.1'"
f d.'

\p.o [c 'f,*

trt' * ai-* 
**

throug.h subsequent iteratione of the
of, i.teratiorrs has been reached. FoE

nill be assrmpd that three iteratl.ons

)rl+ sc" o

.-, .' .,\r'
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LOOP GENERALIZATION

PAN now has a record of the execution states associated nith the loop
entry statement after zero, one, t.wo and three iterations. From these
PAN produces a single generalized execution state which represents
the execution state after an indefinite nurnber of roop iterations.

The objects in each executLon state are related to the nurnber of
iterations as follows:

From these facts the generalization process will infer the following
fact about a generaLized execution state:

iteration
0

1

2

3

iteration
k

This sequence of

(sequence i

objects in execution states
none

1st object from line (pos-a, O, f)
lst and 2nd objects from line (pos-a, 0, L)

1st, 2nd and 3rd objects from Line (pos-a, O, I)

objects
lstr 2nd, 3rdr...rkth objects from line (pos:a, O,

1)

objects is represented by

1 to k (ith object from (pos-a, O, I) ) ) .

which is given the name SEQUENCE-1.

Some of the path conditions in the execution states describe objects.
The conditions describing objects from sEeuENcE-1 are now used to
create subsequences. The appropriate constraint,s are color (object) E

red and color(objece) blue. These are used to generate two more

sequences:

SEQUENCE-2

SEQUENCE-3

(object: object € SEQUENCE-I a color(object) - blue)
(object: object € SEQUENCE-I n color(object) - red)
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These sequences are now used to generarize the effects of the
execution states. The followlng relationships are found:

all- objects in SEQUENCE-2 have position equal to pos-b
aII objects in SEQUENCE-3 have position equal to pos-c

A generalized execution state is non created, with the above
relationshlps on SEQUENCE-2 and SEQITENCE-3 as effects. This executLon
state represents the effect, the program would have after k
iterations.

syMBor,rc ExEcurroN AF.TER toop cENERAr,rzATroN , ,. .. ,i' r ' tr1"

The sYmbolic execution now recomnences with the generalLzed execution
state created above. Execution proceede as follows:

Stat- Stat- Effect on pAlil's Execution States
ment No ment Name

4 move until As in the previous execution of thl_s

contact conditional statement, two execut,ion states
up to are created. One of them wilL be made to
(O, 1) reflect the case in which the line is now

empty by adding

number of objects in Line (pos-a, O, l)
=ft

to the path conditions (since k objects have

al-ready been obtained from this Line), and

robot hand at position L units at angle
O frorn pos-a and not in contact

to the effects.

!T,
I
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Stat- Stat-
ment No ment Name

Effect on PAlilts Execution Stateg

The other execut.ion state Ls

reflect the case in whieh

empty by adding

In the first of these

Iine (pos-a, O, I) nag

number of objects frorn line (pos-a,

r) 2k

and

robot hand is in contact wl_th (k+1)th

object from Line (pos-a, O, 1,.

5-13 Execution then proceeds through these
stat.ements beginning with the second
execution state created whl_Ie executing
statement 4.

loop entry When a loop entry statement, is reached after
loop generalization has been performed, pAl{

verifies that the loop generalization wag

correct. This process is not described here.

PAN will execute this statement using both
executLon states created while executLng
statement 4. However, in the second of these
execution sLates, the line (pos-a, O, f) was

not ernpty and the robot is Ln contact. Thus,

this execution state is inconsistent nith the
condition in statement 15. Consequently, no

new execution state associated with statement
15 can be created.

, i l-tt

1{ if not contact

will be rnade to
the Line i.s not

execution states, the
ernpty, and the robot

(b,
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15 loop exit

hand is not in contact. Thus, this executLon
state already contains the condition Ln

statement 15, so a new execution state Ls

created which only requires updatLng of minor
bookeeping data.

As a loop exlt statement has now been reached
after loop generalization, exJ.t processing is
invoked.

EXIT PROCESSTNG

The principal function of the exit process is to deternr:ine a value
for the unknown iteration count k. rn this exanpJ-e the sJ.ngle
execution state associated with the J-oop exlt statement contal,ns an
explicit value for k - the path condition:

k = number of objects in tine (pos-a, O, l)

which was added when symbolically executJ-ng statement 4. Thus a new

execution state is created with thLs value substituted for k wherever
it occurs, in the definition of sEeuENcE-l, and in the path condition
for this execution state. Note that this path condition now becomes

number of objects in u.ne (pos-a, o, l) - number of objects i.n
line (pos-a, O, l)

which is arways true i.e. there is no path condltion required.

INTERPRETATION

The execution state created by exit processing is then used to
execute the next statement. Howeverr since this is a stop statement,
the execution state is interpreted to produce the required output
specification:

25



V objecr (object
V objecr (object

where

SEQUENCE-2

SEQUENCE-3

SEQUENCE-1

-)
-)

€

€

SEQUENCE-2

SEOUBNCE-3

position(object) - pos-b)

position(object) : pos-c)

(object: object e SEQUENCE-I n color(object) - blue)
(object: object € SEQUENCE-I a color(object) : red)
(sequence i = 1 to (nurnber of objects in 1ine
(pos-a, O, L) ) (ith object in lLne (pos-a, O, I) )

Since an object is from line (pos-a, O, f) if and only if it is in
SEQUENCE-I, this is equivalent to the required specification.

DP DOMAIN EXAI.IPLE

rn the dp domain, programs process data held in records. The data in
each record is divided into fields, each of which can be referenced
by name. Records are organized into files and fitay be accessed
sequentially or by key. Existing files may be read or updated and new

files created.

The dp domain example program is shown in figure 1-3. Anarysis of
this program shows pA.N operating Ln a differenL domain, and aJ.so

demonstrates PAN's response to a more difficuft generalization
problem. rn the roop generalization phase of the first example, pAry

found a simple relationship with which it generalized the effects of
the execution states. However, in the current example the search for
a simple relationship to exp3.ain the value of the variable v fairs,
and PAN must resort to a more search intensive technique.

The program in figure 1-3 finds the minimum value of the weight field
of al-l records in file A. The reference to rweight A, in statements
6, 7 and 8 means the vaLue of the weight field for the current record
of fiLe A. Given a specific record x, from file A, then (weight x)
means the va.Lue of the weight field in record x.
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we expect PAIiI to produce the folrowing output specification:

v = minimuml{ weight(j): j e ftte A}).

Program analysis is again described in five phases:

symbolic execution before loop generalization
loop generallzation
symbolic execution after loop generalization
exit processing

interpretation

SYMBOIJIC EXECUTTON BEFORE LOOP GENERALIZATION

symbolic execution before loop generalization witl proceed. in much
the same way as in the previous example. we mereJ.y need. to note t.hat
the first time through the loopr the condition required to execute
statement 8, v

high-values in the execution state. consequently, statement g wirr
not be executed. rn subseguent toop iterations, the conditions at
statements 5 and I wilL both be consistent with the execution st.ater
and PAN will take both branches, addl-ng euitabl-e conditions to the
Path conditions of the executl.on states. Thus after three iterations
there wirl be 8 execution states associated with the roop entry
statement. The 4 created on the third iteration wirr contain:

1. number of iterations - 3r

path conditions:
nurnber of records in file A 2 3,
weight (lst record in file A) < weight (2nd, record in
fite A)

weight (lst record in file A) < weight (3rd record in
ftte A)

"tt"":": 
weighr (lst record in. fire A)

27



r.r''Jol fi'': [" e'rc1il rr'rt

2. n'umbet .Of i.teratLOne - 31 f., n l-a.,,,r 1i,'- 
t,.sr-.' '

path conditions:
nurr6er of, records ia file A } 3,
weight(lat resord in fLle Al E wel.gbt(2nd record in
f,i].e A)

weLght(2nd record Ln fil.e A) ( weight(3rd record in
ftle A)

ef,feets !

v - weight(Znd record in fiLe A)

3. number of lteratl,ous - 3r
path eonditions:

nurnber of reeords Ln flIe A > 3,
welght (let reeord in fl].e at 2 weJ.ght (2nd re.cord in
ftle A)

wenght (2rld record ln file A) t w,eight (3rd :cecord in
fi..te A)

effects:
v = weight(3rd recof,d ln fLle A)

4. nt*mber of Lteratl_one _ 3,
path conditLons:

nrlnber of, recorde ln trile A 2 3,
weigilrt (1st record in ftte A) ( weighL(Znd record i.n
f:ll€, A)

wei.ght(2nd record Ln flle a) l weight(3rd record Ln
ftle Al

effects:
v = weight(3rd record ln file A}

looP GENERtArrrzATroN

trn the sane lra1r that objeets $ere gene.ra$.:ued Lnto a aeguence Lrr the
fitst, exarq>I,e, PAII will generallze the 1ct, 2nd2 and 3rd records frorn
the file A Lnto a aeq{uence

SEQIIENCJ-I. - (segu€nce L - I to k (Ltb record ln ftte Al l .

r ..r\ ri\- i 
; l" 

.'

l,-o-, ,t^ iL,t 'r'- 
''- \ 

L i,l.,,F r
,. ,-' 

'' 

j

'l ' '

\ - ',,...L.( 2g



v := high-values

sequential- read A

if not c,rarrents (^Ai

loop exit

if v E weight(A) if v < welgfrt(Al

;= weight (A)

.Flgure 1-3 - DP, Domain Example
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PAN wilt then try to use the path conditions on records in sEeuENcE-l
to generate subseguences. rn this example, however, the availabre
conditions are more complicated and l-nvolve multipte records. pAl.l

attemPts to express these conditj.ons .in a form suitable for creatingr
subsequences, but fails. PAN then tries to generalize the effects
using the single avairabre sequence. rn this case, this means trying
to find a simple refationship that expresses the value of v in terms
of SEQUENCE-1 . This also is unsuccessfuL because pAl'l d.oes not i-nclude
'minimum' as one of these simple reLationships.

Having failed to find a simple relationship gJ.ving a walue for v, pAlit

now resorts to a search intensive technique. rt begins by expanding
the facts in each execution state which has completed at least one
loop iteration. This expansion uses a set of ruLes ful1y explained in
cbapter 6 - For this example, however, the following rules are
relevant

a.
}\

d.

e.

-t

given x : y generate x s y l("'

givenx2ygenerateySx
given x S y and y < z generate x S z
given P (it.em) and item e S, generate 3y (y e S n p (y) )

given p (item) for al_L items in S, generate Vy (y € S -+ p (y) )

where S is a seguence and p is a predicate.

when applied to the facts in the execution state 2, for example,
these rules wiLl enable the followlng facts to be generated:

S weight (1st record in file
< weight (2nd record in file
S weight (3rd record in file

which in turn leads to

Vy (y e SEQUENCE-1 + v S weight (y) )

v

v

A)

A)

A)

30



And fron

v = weXght (2nd record La fi!.e A)

palv wiJ"-l gereerate

3y (y' € SECIUENCE-!, n v = weight(y) I .

whren thLs' expaBsj.gn process ia conplete, paN r€turna to the t3ek of
trlting to f,ind a relatj.onship to explain the value of v. pAlit aa,su11ies

that any p,redicate Lnvoluing v whlch hag b€en generated using the
f acts f :csrn evrerlt exeeut.ion state, should also be true in t,he,
generalized executlon state. The conJunetJ.on of these predieates
provides a relatLonshir J-nvorving' v. trn this ex4rple, the onJ.y
pred'iea-teE lnvolving v ieneneted .ln aIl executl.on states are:

Vy (y € SEgilJENCE-t + v ( weight (y,))

and

3y (y € SEQU-EI{CE-I rr v - relght(y)r.

f,ro,trt these PAN i.s able t,o as,aert that v obeys the folrowinE
relationshlXr

v1' (y e sEguENcg-1 + \r s wei4ht(y)) a 3y (y e sEguENcE-l A g =
weigh,r (rr) ) .

FAr{ noht bullds a geaeralJ.zed execution state w}lose output valrres
assert thart v obey's the relatLonship above, or:

v G {z: 3y (y € SEQ.ITENCE-I n z - ee,ight(y, }

rr Vy (y € SEQIIETvCE-L + z S nelght(Vl ) l .

I
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sYltBout'q E't(EclrlrroN AFTER rrqop GENER.ALXZAITC'N

Synboll-c exeout,ion of gtatenent 9 adds

nurntroer of rie,cordg in f,ile A - k

to the Path conditl'oas. Exeeution of statement 10 then inl.tLates exLt,
prsEesging.

EXr" PROSESST.}16

Loop extt iu the figst exargrle oceull?ed che:r line (po.s-a, O, 1)
oorl.tained rro nore objects,, rn thls exarnple an egu.l.vatrent, rore .ts

trrlalred by f,ile A havl,ngr no more recordg. thusr by the s-ane reasoningl
J.oop exit processing wd.l.I ptovlde a vaLue for k of (nurnber of recordg
in fiLe A),

TNTa'RPREEATTON

PAld wlIl outtr)ut a program specLfication contal.nJ.ng

v € te: 3y (lr e SEOUENCE-I a s - re"i.ghr{,y.) )
n Vy (y e SEOUENCE-L + z S weight(y)) l.

where

sBount'leg-l = (sequence i = 1 to (number sf reoords in fil,e A)
(it'h reeord in fj.le A) t .

since a reeord. is Ln gEeuENcE-l :if and onry lf tt ia J.n file a, this
is equivalent to:

n e (z: 3y (y E (fJ,J-e A) rr z - ueight(y))
a Vy (y € (file A) + z S weLght (y) l l.
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why is this different to the expected specification? rn the roop
generalization section it was stated that pAlt does not inc.Lude
rminimum' as one of its possible relationships. This being the case,
we can hardly expect pAl{ to express its output in terms of a
re.Lationship it does not know. However, pAl.l does the next best thing,
and comes up with a rer.ationship for v which cour-d act as a
definition of minimum. Thus pAl.l is not rimited to expressing output
specifications in terms of known relatLonships, but is able Eo use
these relationships to create new, more complicated ones.

1.5 PAN O\IERVIEW

PAN is a program anarysis system in the sense that it. accepts a
program as input and produces a specification of the program as
output. This specification describes the effect the program has on
the world. We first discuss how a symbolic execution system, such as
PAI{!, can produce specif ications.

PAN' l-ike any sYmbolic execution system, uses execution states whicb
are descriptions of the world when execution has reached some
specific program statement, s. we say that an executi_on state
describing the worrd when execution has reached stat,ement s is
associated with s. These descriptions contain trro principar
comPonents - the path conditions wtrich must be true in the world for
execution to reach s, and the effects that the program has had on the
worLd by executing statements up to and including s. Thusr when
symbolic execution reaches the end of the program, we wiLl have a sec
of one or more execution states sl, . . ., sn, which are descriptions of
the world after the whofe program has run.

From 51,...rSn, program specifications can be
Si contains path conditions Ii and effects Ei.
represent the program specification

produced. Suppose each

These execution states

(I1 -+ E1) '\ lr2 + EZ,t

which is the specification

n {In + En)

output by PAlr.
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The above discussion shows that the probrem of producing a
specification can be solved if execution states associated with aII
program statements can be generated. 9le now discuss the generation of
these execution states, firstry for programs without loops and then
separately for loops.

1.5.1 Generation of Execution states for Non Looping progr:nq

Generation of execution stateg for programs without loops is ,rot
particularly difficult and is a feature of a1l symbolic execution
systems. Since sYmbolic execution must proceed down multiple branches
when a conditional statement is reached, there will- be, at any point.
in the execution' a set, of statements in different branches which are
the last statement executed in that branch. The execution states
associated with these statements are carled active, and any one of
them may be used to advance the execution.

Thus, the symboric executor continues execution by selecting an
active execution st.ate and finding all successors of the associated
statement - For each successor statement a ner,r execution state is
created which is a modified version of the selected one. The
modifications consist of the foLlowing:

if the program statement is conditionar, then the condit.ion
from the statement is added to the path conditions

any changes the program statement makes to the world is
added to the effects.

This processing constitutes symbolic execution of a single stat.ement
and is accomplished by an rexecutor' specific to the type of
statement. An executor is a routine which understands how to
interpret the parameters of the statement and the effect it has on
the worl-d. For exampre, an executor for the rmove-to x, statement
knows that the effect of this statement is that the robot hand is now

at x' and if it is grasping, then the grasped object is also at x.
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Executors foc conditJ.ona! etatements have the added responsibi.li.ty of
checkl-og wtrether the addl.ti.on of the new path condl.tlong has u|acle the
exeeutioo state inconsistent. trf, suoh a sltuatLon Ls detect,ed, then
the exeeuLi-on state describes a world siLuation whLeh could not be
eff.ected bg a neal erlecutor, and is discarded.

onoe execution of the Succecsor statements Ls aonqllete, the newly
generat,ed etteeut,ion States replace the se.Iected o.ne in the acti.ve
cet. Rgpetition of, this p.nocess wilt e.ventually produce execution
atates whieh are deacriptions of, the norld af,ter the wbole program
has runr and c,an be used to generate the reguJ.red progra,m
speeifJ.catlon.

1.5.2 Generat{on of Exeest:Lon Statec for Loops

rn thi's sectiorl we dlseuss the spe.cial problems f,aced by syrnbol1e
execuLion of r.oops. we can descEibe a grenerar loop as having a Loop
ent-rtrr a .roop bo@1r and one or mor€ loop exits, aa strrown ln figure
tr"-4.

Eigure 1-4 General Loop Format

Loop entry-

loop exit loop exit
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r.l;1
rn PAN programs the first statement in a loop is always a speciar
rloop entry' statement, and the first statements outside the loop are
rloop exit' statements. rf a program containing such a roop is
sYmbolically executed, then the process described above is sufficient
to ensure that execution reacheg the loop entry statement i.e. an
execution state associated with loop entry will be created. pAN

includes executors for loop entry and, loop exit statements which only
perform housekeeping tasks as these statements have no effect on the
worl-d.

rf symboric execution is continued into the loop body, t,hen
eventually condition statements will be reached which determine
whether execution proceeds back to J-oop entry or to one of t.he loop
exit statements. As usuaI, when condition statements are reached,
symbolic execution wi]L conLinue down all branches. Thus another
execution state associated with roop entry and execution states
associated with all loop exits will be created. From the execution
states associated with the loop exits, syrnbolic execution can proceed
on to the end of the program. From the nevr execution state associated
with loop entry, another symbolic execution through the loop can be
performed, and symbolic execution will never end. Execution st.ates
associated with the loop exits wilL be created which describe the
effect of the loop after 1, z, 3.., iterations. But no comprete
description of the loop wiLt be generated and , conseguently, no
specifications of the program can be produced.

The centra.l- contribut.ion of this thesis is to describe a method
whereby execution states can be generated that are associated with
loop exit and furly describe the effect of the roop. Thus, once
sYmbolic execution has continued from these execution states and

reaches program end, full program specifications can be produced.

PAN generates execution states associated with the loop exit
statements by a four stage process, as follows:

L/ symbolic execution of the roop is continued until some

reguired number of iterations have been performed
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2l a generalization process is then perforned uslng the
eNeeutiion states asisocLated $lth the roop entry statenent.
The resuLt of this process is to pr,oduee a oingle actLve
exeeution state which represents the effect of an indeflnLte
nuniber lc of loop Lterat,:lons. Tiis process ls, referred to ag

J. oop g'eneral--izatioo,

s1mbol.io execut.ion then proceeds begJ.nnJ.ng with this
generalized execdt{on atate untl-l execut:ion' stateg
associated wtth each loop exit. and a ne$ execut,l.on state
assoctated with loop entry have been created.

3t

4l

s/

the exe,cuLLon states assoe"iated
statedent are anal.ysed to produce a

iteratLonsl k, Thls process i.s
prooes'slng.

uLth each Loop e:rLt
value for the nurnlser of
ref erred to aa ex:it

the nen executl.on Stat€, associated
to ver:lfy the generallzation.

wi.t}r loop entrry l-s uged

I,oop generall.zatiorr Ls grerf,ormed by the f,ollowi,ng proeedure

any items referred to tn the e:recutlon staLes associ.ated

with loop errtry are repJ-aced by seqJuencqs wtrerever possible

tbe condltions l"neluded in any coadition etatenent .ln the
Ioop are use.d t,o suggest suhseqgences thich ean be created
frorn thes:e se'quences

lhe ef,f,ects o.f the execution states are errpressed in terms
of, aequences wherever possibtre

seguerrc€s artd the effectg exp.ressed in terns of geqlue$ge.s

are used to create a s.lngle EeneralJ.zad executlon state.
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Exit processing is performed by analysing the conditions
any condition statements executed between loop entry and
obtain a value for the number of toop iterationsr k.

1.5. SCOPE OF THE PROGRJA}T ANAIYSIS

occurring
loop exit

tn

to

The scope of
programs it
are expected

a

can

og

program analysis system is determined by the class of
accept as input and the program specifications which

output.

1.6.1 Input Programs Accepted by pAt{

PAN accepts programs from two distinct domains, robot manipulation
and data processing (dp). programs from both domains have the same

structure and control statements (statements that control the flow of
control through the program) . A program is structured as a dlrected
graph- Each node in the graph represents a program statement and the
edge between adjacent nodes determines the intended order of
execution. A statement may have multipre successors only if each is a

conditional statement. Condit.ional statements are based on Dijkstrars
guarded commands t19751. Thus a conditional statement rguards' the
entry to a program branch. That branch is onry executed if the guard
is true.

J

Directed graphs allow the representation of arbitrarily complex and
unstructured loops. pAlI places some restrictions on these loopsr
di-scussed in chapter 2, but does permit loops that are more complex
than st.ructured iterative constructs such as while, do etc.

In addition to the control statements, PAII programs include domain
specific statements. rn the robot domain these st,at.ement,s controL one
or more robot hands. fn the dp domain they allow records and files to
be processed. The robot programs control a blind trdo dimensional
robot- From these Programs the size of the objects manipulated cannot
be inferred. this has implications for the output specifications_\
which is/ discussed below.
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L.6.2 Output Specifications produced by pAt{

we now describe the output specifications in terms of format,
correctness and completeness. output specifications produced by pAt{

are expressed in the first order predicate calculus, enhanced to
include concepts such as objects, sequences of objects, fires, robot
hands etc. For exampre, an output specification could consist of

Vobject (object € SEQUENCE-I -+ position(object) : pos-b)

^ SEQUENCE-1 = (sequence i = 1 to size (Iine (pos-a, O, 1) )

(ith object in line (pos-a, O, l) ) )

meaning that the effect of the prog:ram is that arl objects from the
line of length L in direction o from pos-a end up at pos-b. A more
formal description of this ranguage is presented in chapter 2.

The correctness of PAN's specifications depends on the correctness of
the execution states from which they are produced. The correctness of
these, in turn, depends upon the correctneEs of the processes which
create them, ordinary symbolic execution and loop generalization.
Since sYmbolic execution creates execution states using executors
which are an encoding of the effect of each tlpe of statement, we can
assume such execution states are created correctly. Loop
generalization, however, is more suspect since it. is inferring the
effect of the loop from the few iterations actually performed.

However, PAl'l verifies that loop generalization is correct. rf the
inferred effect of the loop as described by the generalized execution
state is E(k), where k is the iteration count, then the effect after
k+1 iterations should be E(k+L), where E(k+1) represents the result
after replacing k by k+1 in the generalized execut,ion state. pAN

performs another loop iteration beginning with the generalized
execution state. This wil-I produce new execution st.ates associated
with the roop entry statement, which describe the effect after
another roop iteration. These can be compared with E(k+1). Any
generalization which is not verified is discarded. This verification
Process arlows us to assert that pAlil specifications are correct.

t i .. \-("
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PAN specifications are correct, but they are not guaranteed to be
complete. We may distinguish between two sources of incompJ.eteness:
l-imitations of PAN which courd be corrected, and fundamentar
l-initations of the programs being analysed.

In the first category, PAll will not be able to express specificatLons
in terms of concepts which lt does not know. For exampre, the
specifications for the dp domain program in section 1.4 should
ideal)-y, be expressed. in terms of the minimum functj.on. Since pAl.I

does not know this function, it produced a less than idear
specif ication. Also in the f irst category, pAlil, s anal.ysis will be
incomplete if J.oop generalization fails to express the effects of the
loop in terms of the sequences it has generated. Experience with pAlil

has shown that failures of this type usually occur when anal.ysing
programs deliberately constructed to have an obscure struct.ure which
even humans find difficul-t to analyse. This point is further
discussed in Chapter 4.

A limitation fundamentar to the programs being analysed is pAlitrs

inabirity to recognise identicar objeets in the robot domain. For
example, suppose a program first moves aLr objects from line 1 to
I'ine 2 and later moves all ob jects f rom line 2 xo line 3. pAlil, s

specifications for such a program would be:

all objects in J'ine 1 moved to line 2

all objects in line 2 moved to line 3

instead of

all objects in line 1 moved to ]ine 3.

contact with the same object is
designed to control a blind robot.
shape, two separate contact,s could

However, in general, repeated

irnpossible to detect in a program

Since objects may be of arbitrary
always be with the same object.
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Also in the first categoly is that pAN does not determine
preconditions for robot statements. For example, move statements
assume that there is free space between the current position and the
destinati-on. However, since the size of the robot hand and other
object.s in the environment is unknown, the amount of free epace
required to complete a move cannot be determined. For this reason,
determination of the preconditions of the program was excLuded from
the scope of PAIiI . _,.i

I

L.1 REI.ATED SYSTEMS

fn discussing work related to pi{N,

the method used to achieve that
existing programs without assuming

The method that pAN uses to achieve

we need to consider PAlil's goal and

goal . PAlil's goal- is to analyse
the existence of specificat,ions.

that goal is symbolic execution.

Most closely related to PAl.l are other symbolic execution program
anarysers, since they have the sarne goal and use the same method to
achieve their goal. Less closely rerated are systems which perform
program analysis by other methods. Only distantly related are systems
which use symbolic execution to achieve other goals. we use these
three categories in our discussion of related systems.

Program analysis systems which do not use symbolic execution have to
directry analyse the input program, and this affects syscem
performance. Synbolic execution systems are ]ess sensit.ive to the
vagaries of coding style - aE rong as the effects are the same, the
same analysis wil"l ensue. systems that directly anaryse the input
program perform better at recognising known code fragments (cLiches).

L.7.L Other Sy:mbolic Execution progran Analysers.

A system closely related to pAl{ is that of cheatham, Holloway and
TownJ-ey t1979l. this system extends previous syrnbolic execution
analysers by attempting to handl-e loops with an indefinite nurnber of
iterations. The method used is to derive recurrence relatlons between
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variabres modified in the loop by slrnbolically executing a single
loop iteration

For example, given a loop which simply increments a variable v, they
define the value of v after k iteratLons to be v.. They now
slmbo1ically execute the loop and show that

- v + 1.
k+l tr

They then use

relations to show

prespecified rules for solving conrmon recurlence

vr:vo*kr

where v is the value of v before the loo! was executed.
0

Probl-ems arise with this method when several non independent
recurrence relations need to be solved, or the equat.ions are
conditional.

Cheatham et aI solve these problems for lirnited special cases. For
example' they show conditional recurrence relations can be solved if
it is possible to find. ranges of k within which the relations become
non conditional.

Howeve!' this technigue wilL not work for the tlpes of programs being
considered in this thesis. Consider the first exarnple in section 1.3.
rf recurrence relations were derived for this program they would be

conditiona] on properties of Lhe objects being processed, and we

could not find ranges of k within which the equations would be
unconditional.

Even vrorse, we are interested in programs in which the condj.tion
contains a variable which al-so occurs in t.he recurrence relations.
The second exampre in section 1.3 is of this type. rf such a pEogram
were used to find the minirnurn value of an array A, we wouLd have the
recurrence relation:

I
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vr if vr < Alkl
AIkl if v >Alkl

while, obviously a specific rule to recognize this particular case
coul-d be introduced, the difficulty of sorving such recurrence
relations generarry is a major reason vrhy the pAI\r system useg the
aLternative method of generalizing frorn a small number of iterations.

The same techniques for solving recurrence relations nere still being
used by Richardson and Clarke t19B5l.

The cAN system of Goosens [19?9, 1981] also soLves recurrence
relations to determine the effect of k loop iterations. This system
assumes that loops will be represented as recursive carLs to the
procedure being analysed. The result of symbolical_ty executing the
procedure is assumed to result in interim results of the form:

path condition 1 then effect
path condition 2 then effect

pat.h condition n-1 then effect n-1
path condition n then recursive procedure caII.

In other words the procedure is assumed to terminate except in the
case of a single path condition. Thus this system can only analyse
programs presented in a suitabl-e language. rf the type of programs
analysed in this thesis were represented in a language suitabl-e for
cAN, they could still not be anarysed since murtiple recursive
procedure ca1ls woufd be reguired. on the other handr the cAlr system
is particularly concerned with extending the symbolic execution
technigue to rrsP type ranguages which arlow variabLes (and other
entities) to be rmeta-described'. Thus in a LrSP assignment statement
such as sET, the reft hand side may not sirnply refer to a specific
variable but may itself be a conditional expression whose value
cannot be determined by a symbolic executor. This extension is
outside the scope of both pAN and the cheatham et ar system.

if
if

1

z

1I

if
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Bot,h the CAN and Cheatham et aL systems analyse loop exit conditions
by including them in the set of recurrence reLations to be solved.
This contrasts with PAlil, which first finds a generalized execution
state and then separately determines the condition required to exit
from the loop. This approach all.ows pAl-l to cope with programs having
muLtiple loop exits, which do not appear to have been atrowed for in
any previous system.

A less closely related system is that of cohen t19g3l, which
syrnbolicaLry executes specifJ.cations instead of programs. rn this
case only rsirnple loops' are allowed, ones in which rthe sdme thing
is done to each of a set of objects'. rn this way the main issues
being addressed in this thesis are avoided. Similar corunents apply to
the symbolic execution of specifications in Kemmerer t19g5l.

L.1 .2 Other Prograrn Analysers

A significant project at Mrr in recent yeara has been the
Programmer's Apprentice [Rich, shrobe and waters, 1g?9]. one aspect
of this projeet concerns the analysis of existing programs. Anarysis
begins by obtaining a program description in terms of plan building
methods (PBMs) lWaters, 19?9]. Thus a loop of the form

doi=1to
if A(i) < 0

A (i)
od

10

would be divided up into a basic loop
A (i)

i - l- to 10, a rfil-ter'

0. Also, the ttemporal
do

sequences,A(i)i=].to].0and{A(i):1(i<knA(i)<
recognized. These temporal sequences are eguivalent to the seguences
produced in a PAII analysis. However, in this earry work the anarysis
output nas onry concerned with being ab.Le to describe a program in
terms of its parts (i.e. PBMo). This left unresolved the guestion of
whether PBMs couLd be used to generate program specifications.
Indeed, as waters tj.9?91 states rit can be arbitrarily difficult to
determine what a basic loop does given the behaviour of its partsr.
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In order to produce program specifications two further stages have
since been deveJ-oped. Firstr the PBI'I output, catLed plan Calculusr is
converted into a lf.Low graph,, which does not contain loops [Brotsky,
19841. The looping connections have been rcut, and repraced with
annotations stating their relationships.

The second stage parses the fLow graph and produces a program
description' by matching the parse output against prans from a

prespecj-fied library lzelinka 1986]. This system has a similar goa],
but a very different approach, from the pAN system. Th'e rel.iance on a

plan }ibrary has the advantage that a new program can be recognized
as the same or simitar to an earl-ier one. The disadvantage is that
only limited anarysis can be perforrred for a program whose rparse

tree' fails to match an existing plan. rn this case a parse is
started at every non terminal node of the flow graph in order to at.

least produce a partiar program description. This produces some good
results, but as stated by zelinka t19861, the examples used only work
because the successfully analysed fragments'are disjoint...connected
by data flow with no unrecognizable sections in betweenr.

1.7.3 Other Uses of Symbolic Executioa

An extensive number of symboric execution systems have been
deveJ-oped. However, since these do not generally deal with plogram
analysis of loop programs with unknown specifications, they are only
distantly related to pAN. consequently, only a small sample of these
systems is discussed here.

a general- introduction into the use of symbolic execution see,

example, Cl-arke and Richarson t19S1l

The DESIGNER system of Steir and Kant t19e5l uses symbolic execution
to test program fragrnents against expected inputs/outputs and time
constraints This system does not currently handfe an indefinite
nurnber of loop iterations. However, in considering possible future
work they state

For

for
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'Feoplel ,orr uhe other. hand, usually recogmiae a correct loop nhen
a srnaftr nruntler of test cases work.n and ue ol.sh to aapture tbls
abtrity t,o :reeoglize famLlJ-ar patterns fron the structure sf tbe
al,gorithnr and f,rom s36ibolie or te:st care execut"lqo 1!l our
stSE€I[,. r

Althou.Erh. PAN is pr:rlmarl,Ly concern'ed wteh der!.vi.ng pro,grafi
sPee,Lf treatl,ons;, rather than testJ.ng l)roglarns agrai.nst eNpeoted
reeultsp i-t goes solne way to providi.ng such an ,ability for sJErbotric
execution!

fhe tuto::ing syst,enr of riaubech and Elsenstadt l19g1l uses s1ryqbolLc

exeeuEl-on to analyse studlent progtarur and oornp-are thej,r effect with
an expected eol.utlon. I,ooBo are ha.ndled by derf.vJ.ng :cecurrence
nelatlons as de,serLbed in 1.6.x., but iu thts eaae the tel.atLone are
foohed up in a dalabase eontainl.ng p.atterns of, eNpected rerations.

The, gYste$ of DanneiaburE and Ear,rat t19S21 Is repreaentatlve of,
glr€iterns uslng syinbo,li.c .execution to p,r.o\re that a loop obelrs pr€sta.ted
J-oop Lnv'arl.ants. s'lreh syst,eiDs have only a dj.sta-at rel.ationship to
PAN.
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Chapter 2

Representation
As a program analyser, pAril accepts programs as input and produces
specifications as output. ttris chapter descrLbes how the input
plograms and output specificatj.ons are represented.

2. 1 PROGRJA}I IJIIIGUAGE

PAN was primarily developed to exprore the effectiveness of
generalization as a program analysis method. ?husr to be convincing,
PAN must analyse programs which include those features which make

program anarysis difficul-t - loops and variables. Arsor to
demonstrate the domain independence of the generalization process,
PAN must analyse programs from multiple domains.

A secondary goar of the pAlI system is to act as a component of the
Noddy system being developed at victoria university. As such, pAlt is
expect.ed to analyse Noddy programs.

To meet both these goals, pAN has been designed to anal.yse programs
in a language which is an extension of that generated by the Noddy

system. The Noddy system programs are limited to the robot domain,
and do not allow variabres. The extended program language used by pAl.I

arlows variabl-es and also applies to the dp domain. The language is
for side-effect programs - programs that manipulate or modify
external objects in some world outside the proglram, rather than
manipulating values internar to the program. rn this sense, it is the
cornplete opposite of a functional ranguage. A conseguence is that it
has no data structures and prograrns are not intended to make much use
of internal variables.

The remainder of this section describes the structure of pAlilrs

analysis language, discusses the expressiveness of this ranguage and
tben describes the syntax and semantics in detail.
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2.I.1 Structure of pAll,s progran Language , ln"

r,ike the Noddy system, pAlil, s program representation is based on f row
diagrams - A frow diagram consists of boxes connected by arrowg
representing the fl-ow of control. Each flow diagram box contains
either a condition, an action or a fLow conttol marker. The
boxr together with its contents, is referred to as a staternert. Trro
f.Low control marker statements are start and stop. Each program
contains a single start statement and one or more stop statements.
Each statement, except the stop statement, has one or more arrows
proceeding from it. Each statement except the start statement has one
or more arrows pointing to it. The successors of a statement s are
the statements pointed to by the arrows out of s and the
predecessors of s are the statements that have arrows pointing at
S.

For example, figure 2-l
statements. Statements 1,

Statements3and4are
statement.

shows a simple program containing seven

2, 5 and 7 are flow conlrol markers.
condition statements and 6 is an action

start

loop entry

if <cond-1> if <cond-2>

loop exit <act-1>

Figure 2-L A Simple pAN program
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A program is executed by beginning at the start statement and
following the arrows to the successors untiL a stop statement is
reached. Given two statements s and s" lre say there is a pat}, from
s to s' if rtre can find statements s1r...rsn such that sl is a
successor of s, si+l is a succeasor of si, and s, is a successor of
sn. For every statement s there must be a path from the start
statement to s, and a path from s to one of the stop statements. The
flow control- markers would be ignored by a rreaU executor - they are
purely for the benefl-t of a slmbolLc executor and are discussed. later
in this chapter. An act,ion statement ls executed by performing the
sPecified action. condition statements are of the form if
<condition). They are executed by evaruating <condition). rf
<condition) is true then control continues on to the successors to
the condition statement. Conditional branching' can therefore be
represented by nultiple arroers out of one statement with each
successor statement being a condition statement, as shown in figure
z-l -

if <cond-1,> if <cond-2> if <cond-3>

I

Figure 2-2 Conditional Branchj_ng

A statement with nurtiple arrovrs going out is said to be at a fork
in the Program (statement 2 in figrure z-Ll. A statement rdith multiple
arrords going in is said to be at a merge in the prog:ram (also
statement 2 in figure 2-r - though a statement which is at a fork
does not have to be at a merge). A branch in a program is a linear
sequence of statements beginning at the start statement, a statement
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at a merge, or a statement irunediatety foll0wing a statement
fork, and continuing to a stop statement, a statement at a fork
statement immediately preceding a statement at a merge.

we insist that alL successors of a statement at a fork are condition
statements- These act as guards or gates into a branch. The construct
for conditional branching described above is sirnil.ar to guarded
commands, introduced by Dijkstra t19?sl . Dijkstra intended that the
construct be non deterministic - an executor can continue down any
one of the branches with a true guard. programs geneiated by the
Noddy system also implement conditional branching using this
construct, but the condition statements are ordered and execution
will continue down the first branch with a true guard. For a symbolic
execution system, such as pAN, these distinctions are not
significant, since generalry the guard conditions cannot be proved
either true or fa1se, and execution wil-J. proceed down all branches.

ata
ora

fteration is represented
there must be at least
statements following the
program is to be able to

by a loop in the flow diagram. In a 1oop,

one statement. at a fork and one of the
fork must be external to the loop if the

haLt successfully.

2.L.2 Restricting Loop Structure

The flow diagrams as presented in the previous section can represent
a wide range of iterative constructs, including unrestricted use of
'go tos'. This is deliberate, since a major goal of pAN is to
investigate the problems of analysing loops with limited structure
in particular, loops with murtipre unstructured exit paths.

However, PAl,l is not abre to anaryse comp.l-etety unstructured roops.
PAN requires the folJ_owing (informal) restrictions to be placed on
loops:

each loop can only be entered via a single statement
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this rentry staternentt is executed once for each iteration
of the 1oop.

The benefits that can be derived from these restrict,ions are
developed in chapters 3 and 4. We now express these requirements more
formally as restrictions on the flow diagrams to be analysed by pAN.

An earlier attempt to represent pAlilrs input language as a formar
granunar was abandoned because of the difficulty of representing these
restrictions.

we first need to introduce our loop terrninology. we hrant to be able
to specify loops by identifying the first and tast statements in a

J-oop, ref,erred to as loop entry and loop exit. rf we ignore nested
loops, the loop entry statement of a roop is the statement s such

that there is a path from S back to s, but this is not true of any of
S's predecessors. The loop exits of a loop are those statements from
which there is no path back to the loop entry, whil.e f rom a.rr
predecessor statement.s there are paths back to the loop entxy. The

formaL definitions of loop entry and roop exit which folrow are
compricated by having to cope with nested loops. This is done by
using inductive defj-nitions. we say that a statement in a fLow
diagram is at a Joop entEy if it obeys the following inductive
definition

a statement S is at loop entry at step 0

from S to S and there is a predecessor,

there is no path from S, to S,

a statement S is at loop entry
path from S to S which does not
at ).oop entry at steps 0 to n,
such that there is no path S' to
Ioop entry at steps 0 to n.

there is a path

of S such that

at step n*1 if there is a

pass through any statements
and S has a predecessor, S,

S' except via statements at

if
st

-a
S

statement S is at loop entry if there is some n such that
is at loop entry at step n.
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For :exanE>[er la f.i-,grure 2-3n s2 wxrl be identified as at loop entrlr at
Btep 0. as there Ls a path from s2 to sz and $2 hag a predeeegFsr,r
Sl,r, such that tbere Ls no path from 31 to Str-. 53 and Sl wil_l Dot be
iderrtifieGt as at ro:op entry at step 0 becauge at,though there are
patb's frorn S3 t'o S3 and frorn $4 to Sllr all the predeceasors of 53 and
54 also have p-athg baek to themselves.

Ilorrever, at atsep l Sll will be identLf,ied as at, Ioop entry einc€ there
is a path frorn sd to s4 trhlch does not go througn* sz and thLs Ls aot
true for 54rs predecessor S3.

we aay Bhat a B aterrent s' in a flow dJ.agram ls at loop exit for S

where s is a statement. at loop €uLry it it, obeyg the foJ-lorcng
r$nduetine def ini.t ion

Fi,gure 2-3 rdentifying statements at Loop Entry- and Exit

I

staft
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- s' is at loop exit for s at step 0 if there is no path from
s' to s and from every predecessor of s, there is a path
back to S

- s' is at loop exit for s at step n+1 if there is no path
from s' to s except through another 100p entry statement
that has a loop exit identified at steps 0 to n, and from
every predecessor of s' there is a path back to s that does
not go through another loop entry statement that has a loop
exit identifieo at steps 0 to n

- s' is at roop exit for s if there is some n such that s' is
at loop exit for S at step n.

Thus referring again to figure 2-3, statement s6 is at roop exit for
s2 at step 0, and statement s5 is at loop exit for s4 at step 1.

Given a statement s at loop entry we define the Joop begi.nrirg ut s
as all- statements S, which obey the following:

- there is a path from S to S, without going through a

statement. at loop exit for S.

Given these definitions, we can nolr precisely specify the roop
restrictions that pAN places on flow diagrams:

Loop Restriction 1:

the only statement in a J.oop beginning at s which has a

predecessor outside the loop is S.

Loop Restriction 2:

if a loop L beginning at statement s' contains a statement s,
such that there is a path f rorn s to s within L that d.oes not
include s', then s is contained in a loop beginning at aome

statement St, in L.

rn fact, restriction 2 is a conseqruence of our the definition of a

Ioop. To prove this we first need the following lesuna.
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tenuna: any path from statement s back to statement s goes through
a statement S, at loop entry, such that there Ls no loop
exit for S' on the path.

Proof:

we firsL prove that the path contains some statement at loop entry.
we prove this by contradiction. suppose that the path from s back to
s does not contain any statement at roop entry. Then by the
definition of at loop entry, al1 predecessors of s must have the same

property, or otherwise s wouLd have been defined as at loop entry.
Continuing this reasoning, aIl. predecessors of the predecessors must
also have this property etc. since by the definition of the start
statement, there is a path from start to s, then we eventually have
to concl-ude that the start statement has this property, which is not
possible since the start statement is not permitted any predecessors.

we now know that. the path from s to s must include at Least one
statement at loop entry, say s1. we prove the remainder of Lhe lemma

by showing that if the proposition is not true there must be an
j-nfinite number of statemenLs on the path s to s. rf sl does not have
an exit on this path then the lernma is proved. suppose, conversely,
s1 does have an exit on the path, say s2. For s2 to have been defined
as at loop exit, then any path from 52 to 51 must be via a loop enrry
statement which had previousry had loop exits found, say s3.

rf s3 does not have an exit on the paLh, then again the remma is
proved, but if it does, then we can again show tbat another loop
entry exists on the path which had exits found before s3. This
reasoning can be continued indefinitely, as shown in figure z-4 (al .

Since there cannot be an infinite number of statements on the pat.h S

to Sr one of them must have no exit on the path as reguired.
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J-oop enttl

loop exit

lo,op entry

(a)

Figrlre 2-4 (a) Froof of Lernma (b) proof o.f Loop
Restnlction 2

?noof of lroCIp Resb.nictiorr 2:

suPPose t'hat tl.e loop L starctS-ng at ataterent S does have a statemeat
,g,, wiLh a pat,h fronr s' to sf whloh does not i,netrude s1 and st J.s not
l-n any roop tt in r". Therr by the lernnal there Ls a statenrent sl oa

tlre trrath s' to st which doeg not have an exit on the path (see figrure
2-4(b)I. By the definLtio.n of the loop starting at St, S, Ls in thls
looBl as re.qu5-ted.

The expressLvene6s of this restrlcte languags is iiiscuased j.n

section 2.1.5.

(b)
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2.L.3 RestrictLng Conditional Breaching

The flow diagrams presented in section 2.L.L can represent a wide
range of conditional constructs, incruding unrestricted use of tgo

to's. The method that PAriI uses to analyse loops reguires that some

restrictions are placed on the gtructure of conditional branching.
PAI{ requires the following (informal) restrictions to be placed on
conditional branching:

in all cases at Least one of the cond.ition statements
following a statement at a fork must have a true condition

conditional branching must be cleanly nested - two
conditional branches cannot overlap. r

The benefits of these restrictions are developed in chapters 3 and 4.
To give a graphical representation of the second, more complicated
restriction, consider the program fragments in figure 2-5. we allow
the fragment in 2-5 (a) . Thus we do not i-nsist that all paths starting
at S1 merge back at the same point. But $re do not. allow the fragment
in 2-5 (b) because the conditionaf branching beginning at 52 over)-aps
that beginning at Sl" - In order to motivate the formal staternent of
conditional branching restrictions, note that one way of
characterising what is rwrong, wittr 2-4 (b) is .there are paths
beginning at s2 and s3 which merge at s5 but there is a path
beginning at s2 which does not pass through s5r. rn other wordsl rde

want to restrict conditional branching so that aII paths from 52 must
pass through 55. Now if the whole of the conditional branch is in a

loop, all paths from s2 wilL pasa through s5 by performing another
roop iteration and then executing the path s1, s3, s5. This still
does not make rhe conditionaL branch in 2-5 (b) acceptable, so we need

to state the restriction on conditional branching so that all paths
from s2 pass through s5 without performing another loop iteration.
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we now want to express the above requirements for conditional
branching as restrictions on the flow diagrams to be analysed by pAlit.

we first need to introduce our conditional branching terminology. lle
have previously defined a statement being at a merg'e and, at a fork.
we nott relate these two concepts. Let the successors to the statement
S at a fork be the conditl,on statements S1r...rSn. We say that a

statement s' which is at a merge is at a menge for the fork at s
if:

there are paths from at least two of the Sirs to S, tdithout.
going through loop entry or loop exit of any loop S is in

no predecessors of S, have this property for the same Sits.

Given this definition, r,re can nolv specify precisely the conditional
branching restrictions that pAl.I plaoes on flow diagrams as

(a)

Figure 2-5 (a) Cleanly Nested and (b)
Conditional Branches

(b)

Not Cleanly Nested
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Conditional Restriction 1:
If a statement S at a fork has successors 51, . . ., SD, with
conditions Clr...rC!r, then CL v C2 v ... v Cn = T

Conditional Restrl-etion 2:
if s' is at a merg:e for the statement s at a fork, with
successors s1'...rsD, then if there is a path from an si to s',
then every path start,ing at si can be extended to incLude s'
without going through statements at loop entry or loop exit for
any loop that S is in.

Conditional Restriction 3:
a statement cannot be at a merge for two forks.

we nor,t show some of effects that these restrictions have on the
structure of conditional branches. Firstly we present a theorem which
shows that the conditional branching restrictions ensure that a

conditional branch starting at a fork sF ean only be entered, via sF.

rheorem 2-1: Given a statement sM at merge for the statement
a fork, there is no path from the start statement
except via SF.

Proof: Suppose the contrary is true. Then there are paths pl and F2

from the start statement to sM, p1 via sF' and. p2 not via sF.
Let the first place where these paths deviate be the
statement SF2, which must be at a fork. Thus SF2 has
condition statements SC1 and SC2 as successors, so that SC1

is on P1 and sc2 on p2. Now there are paths from sc2 and sc1

to SM. But SM cannot be at a merge for SF1, by the
conditional branch restrictions since it is at merge for
sF' Therefore there must be some predecessor of sM such that
there are paths from SC1 and SCz to this predecessor. By

looking at predecessors, predecessors of predecessors etc of
this statement we musL eventuaLLy find a statement S, which
is at merge for SF2. Since by the conditional branch

SF at
to SM
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restrictior$ aII patbs friom SG1 and gC2 gci through S,
p2 do. We now have the sl-tuat{sn ghorrr Ln fJ.gure 2-6,
tt ig not knorn where I is on the path SF.,2-SC1-EF-SE,

Figure 2-6 A conditionar tsranch Entered at Non Fork.

Pl and

ttrough

We oorqplete ttre proof by showlng thEt S n;ust be equal to S!!.
First sup.Pose that s Ls b'efore or equal to sF. Thig vl,orates
sondit,j,onal braneh reetrLctLons f,or OOndltLorral b,ranch gF2

becau'se then there is a patb froln SC2 to S/ but also a path,
P2 f,roqr Scz nhich does not go thEou€ih s. (trf pz went tlrrough
S' then :g'lnoc S Ls before gF, F2 would also go through SF7

contrary to the definition of p?l - AlternatLvely, if S Ls

after S-E', but not, equal o gll, then choose sorre pathl F3,
ftorn sF to stl nhl,ch does not go through s. rhrs ls posslble

I

1

I

,
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since otherwise sl'l woul-d not be at merge for sF since any

successors of sF which have paths to sM wourd afso have
paths to the predecessor of sM on the path from s to SM. But
now the path SF2-SCl-SF-p3 does not go through S, which
violates conditional branch restrictions for conditionaL
branch beginning at sFz, since there is a path from sc1 to
s' which requires alr paths from scl go through s. Thus s

must be equal to SM, which violates the restriction that a

statement can only be at merge for one statement at a fork.

For the next result we need to define the point where all branches of
a conditional branch merge. we say that a merge statement sl'i is the
.Last merge for a statement sF at a fork if sld is at a merge for sF

and there is a path from every condition successor of sF to sM

without goingr through any roop entry or exit for any loop sF j.s in.

The last merge can be thought of as the end of the conditional
branch. we now prove our main result on the structure of conditional
branches. The following theorem shows that when hre have nested
conditiona.L branches, any inner conditional branches end before
merges are encountered for an outer conditionaL branch.

Theoren 2-2: rf statement st{ is at a merge for the statement sF at
a fork, and a path from SM to SF passes t.hrough a

statement SF2 at a fork, then this path also contains a

last merge for SF2.

Proof: Every path through SF2 must go through Sl4 by the conditional
branch restrictions. Also by these restrictions, SM cannot
be at a merge for SFz. Thus there must be a predecessor of
SM which also has the property that aI1 paths from SF2 pass

through it. Look at predecessors, predecessors of
predecessors etc of SM untif one if found which has al-l
paths from SF2 going through it but its predecesso! doesnrt.
Thj-s is a last merge for SF2 as required.
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Tlrese theorerns are used in chapters 3 and 4. The e>ipresgi.venesa of,

thia restrj.cted lang,uage Ls dLssuesed in section A.1.S.

2.t.4 FIsr Goatrol Harkers

Ag st'aLed irt sectisn 2 .1 .1r FAtiIf s program atateme$t.a are e.lthet
condJ.tions, aotl.ons, or f,Iow cont,rol rr.arkers, I[e non descrl,be w]rat

the flow control markers d,r€1 why thelr are requJ-red, and the e*Lent
to whieh t'hey reduce th€, generarity of pAN's lnput language.

Ehe flow contrsl markers .used by FAI{ are:

loop ,entgy

loop exi,
merge

start
stop.

trn sectlon 2 . L. L and 2.n .2 we defined what is neant by a gtater.rent

heing at loop eatqr'r. at lso;l exLt and a,t ne.rge,. t[hese concepts, hEve

been aeli"berateJ.y defLned to have nanes co.:3rre,spondJng to fLow control.
markers' fn f,act, we etant to be abje to ref,er j.ndiserirninately to a

,statement be'ing at .I"oop entry (loop exit, merge,) ol being ,a loop
entlry {lloop exlt. nerge) statement. Thus we requirel

alJ- et,at.exnentg at troop e:ntry are Loop entty statenenLs. At.[ J"oop

entry statedents are at loop entry,

aL1 statenernts at a h€rge but oot at loop entry are serge
statenrente. A11 laenge stAternents are at a rrerge..

alJ. at€tenent,s aL loop exit are puceeeded by oRe loop e:elt
ataterrefrt for eae,h troop being exited. Al-1 loo,p exit statenents
succeed a statenent at Loop exit.
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move to pos-a

move until contact up to O, 1

if contact if not contact

grasp

move to pos-b

ungrasp

.\

Figure 2-7 (a) program Fragment Without FLow Control
Markers

The fLow control- marker statements roop entry, loop exit and merge
wouLd be ignored by a real executor, so why are they required in
PAlil's analysis language? The reason is that it is useful for a

symbolic executor to know when key positions in the program have been
reached. The actions taken by pAN when roop entry, roop exit and
merge statements are reached is described in Chapter 3.

we now address the question of whether the requirement to include
flow control rnarkers reduces the generality of pAl,lrs input ranguage.
rn fact, hre c]aim that there is no loss of generarity, as the flow
control markers could be added automatical_J-y. For example, consider
the program shown in figrure 2-7 lal. The definition of at roop entry
and at loop exit specified in section 2.1.2 could be turned into a

I
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p-rocediitre whLeh nsuLd reoognlee c'.tr,at gtatement .1 Ls aB

s'tateElien't 6 Ls at loop exit. flew s'tate$ents courd thea
produce the ptogr@ ln f4gure Z-7lbl,

Ioop entry and

be lnserted to

loo-p entry

rnorr€ until oont;acL uB to O, I

if contact if not contact

loop exit

move to pos-b

ungrasp

Fi.gtare 2-7 (b) Prograrn Fra$nent With Flow Control Markers
Added

rf the p;rogr:arn bas nested loopsl then rnulEj.ple loop exit stateg1g,ntg
c,ito be:lnse,rted. M€r,ge stat€nents aEe ev€n e.a,gieF, to,g€nerat€r
automatically. Although sr,rch a lrtogran preproc€ssor has not bEen

buil^E for PB}I, LU wouJ.d be stralgrhtforrard. to prEduoe one.
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2.1,5 Expreasiveo€,s,s of, pll{rc tn$y:l,a liaagutEe

ttaving introduced the structure of pelil's Lnput aaalyc:lo J.anguarge, ne
need to addrese tlre guestion of how exlrresal-ve thl.s lar.rguage is. A
program analyser *hielr :is succegsful because Lt only allows a very
reqtricted input language ls not interestlngr,, Flrug we rant to strow
that conditl-onal aind iteratLve constructs f:r,on more conventional
ranguages can be re1>resented i'n p.atilrs rest,r.icted frow dJ.agrams.

Fgr conditi,ooal eonstr.uets we oonsLder the eonunon ti.f...then...elget
eongtruct anct the LISP rcond, coagtruct.

rff <conditisn-tr) then (actLOn-l> else (actiOn-2>t can be represented
j-n FAN's analysl.s language as shown in f,i.gpre 2-8,

Fignrre 2-8 Representation of IF TIIEN ELSE

-- 

,----- 

----b--.--

whereas I (eond (conditlon-lu actionl)
(condition-2 aetion2)
(,coradltioa-.3 actLon3),

can be tepresented as sbowD in figure 2-9.

These rel)resent,atl.ons triviali.y satlsf,5i the re,st,rictisr,rs Ln section
2. 1 .3.

i-f <condition-L> if -<Condition-1>

<action-1> <action-2>

x-------.=-
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if eondition-]. if -coDdition-Lconditisn-2
if rcondition-l

-condition-2eondition-3

actionl

Figure 2,-9 Repre.Eentation of COND

loop entrli

if <condition> if =(condition>

<aaLion> Ioop exit

Flgure 2-10 Represrentation of WIIEN
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loop entry

ifiSn tfi>n

(action> loop exit

Figrure Z-LL Represent,ation o€ FOR

--,-q+-.--- ________

For iteratiwe construc,Ls, we choose rrheRr and if,ot.r egngt.ruots.
rwhen <con*[Lion] (actlon], can be r€pr€segted as in figrure Z-1;O, and

'f,o.r i. = l to n <action)-r earr be represeated as ghown 1o flgure Z-j,L.

ttron€v€r' the PltN lnput languaEe also al.Lors .Ies:s gtructured
LLeratLon, lnoJ-udiag loops wl,th rnrrltiple exlts from diff,erent parts
of, the .Loop as shown in figure 2-LZ-

Thus we have showo that FAIiI's sueceag at program analystrs cannot be
attributed t,o d nestricted Brogram domain.

2.1.6 E*trrresciou

The nemailnds:e of gecti.on 2.1 deserl,bes the a].Iouablg pAlI stEtenents.
Eaeh gtatement is descr{bed b1r' lts F!'ntar( ancl s.emaneics. Many. of
these stat.enenta contai.n boolean or arj.thnetlc e*presslono, w.hich are
d,asertbed f lrst.
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if <condi.t,ion-,t> if <condition-2>

<acLlon-1> loop exi.t

if <condition-3> if <condition-4>

Ioop exit

Figune 2't2 Represent,atl.on of Less st,ructur,ed rterat.Lon
_-_-_-- ____-:___

Svntax of, Arlthmetic E:qrr€,sgiong

<arithrnetie errpresslon) : := (arithsretLc opecand)
<arLttunet J.c operator)
{(arlthnetic operand}} |

<arithrret,ic operand>

+l-l*lt
<aritllnretic $rpresslolp I

<lrroperty>(<identlf,Ler>) | <varLabtre> |

,(nurnbe.r.)

<identifier) ::- (fl-te Ldentlfler> | <nanC identif{er)

<a.r.ithnretJ"e operator> I :=
<aritlrrroetic operand} : :=
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Syntax of Boolean Expressions

(boolean expression) ;;= (boolean operand) (boolean operator>
(boolean operand) | rrot (boolean operand,)

I <bootean operand.)

::: and I or
::= (boolean expression) | <bootean term> | t I

(variabLe)

<logical operand) <Iogical operator>
<Iogical operand)

::= = | t | . I > | <

: := <property>(<identifier>) I <variable>

| <atittrmetic expression)

(bool-ean operator>
(booJ-ean operand)

(boolean term> ::=

<logicaI operator>
<logical operand)

FI

Semantics of Expressions

The meaning of these terms generarly follows Lhe usual computer
science interpretation. The operand <propert,y(<file identifier>) is
only used in the dp domain and refers to the field calLed <properry>
in the current record of file <file identifier>. The operand
<proPerty> (<hand identifier>) is only used in the robot domain and
refers to the physical attribute caL.Led <property> of the object
contacted by hand <hand identifier>.

The operand (variable) should be interpreted as the usual computer
science concept - an area of memory used for temporary storagfe of
va.l-ue which can be retrieved by the variabl-e name. AII variables are
global in scope and extent and no syntactic distinction is made

between variables having arithmetic, boolean or other vaJ.ues.
However, to regitimately occur as an arithmetic operand a variable
must have a numeric valuer whereas to occur as a boolean operand it
must have a booLean val_ue.

2.L.7 Condition Statonentg

PAlil's input language contains onry a single condition statement.
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2.1.8 Flor Coatrol Martcerg

As dLseussed l-n sectl.on 2.t-40 the ftow eontrol markers do not have
anlz nreaning f,or a real executor. I{osever, for eonpleteneas, thelr are
all described here.

S.tart

Tf

Syatar:

Senarrtlcs:

SSmtaxr

Semantl.cs:

Stop

Syntax:

Semantics:

t{erEe

Syntax:

if (boolean exprea,sLon>,

Th€ <boolean e*pressl.on) l_s evaluated. ff, tt has a

value of T, eaecut,l-on ean continue wlttr the suecessors
of, thl's stateurent.r ettrerwlse it canrt.

start

Signalo the beginaing of the program, Obvi-oua1y both
teal artd s,ynbolic executors need to kaow where the
prograrn starts. Borrevern this can be dooe by fC,ndlng
tbe single staternent wj.th no predece,s,sors, or b11

LnsistJ.ng that the statement j.s firat ln the flow
graph. The expl,icit start statement was nalnl-y included
for cornpatibility wlth Noddy proglr:ans.

6totr}

Sigaal-s end of, the pleoEram, nquivalerrt conments to
those .tn start also apply here.

rlerge
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Semantics:

Loop Entry

Syntax:

Semantics:

Loop Exit

Syntax:

Semantics:

Signals a position in the program where two (or more)

branches merge. would be i.grnored by a real executor.

loop entry

Signals a position in the program where a loop begins.
The restrictions on loops introduced in section 2.L.2
insures that each loop has a' single poeition having
this property. t{ould be igrrored by a real executor.

loop exit

Signals a position in the program where a loop ends.
There may be several such positions for each loop.
Would be ignored by a real executor.

2.L.9 Action Statements

vle now describe the action statements, which make up the majorJ.ty of
FAlil's analysis language. Most of these statements are specific to a

particular Program domain. Thus we describe these statements in three
categories; domain independent, robot domain and dp domain.

2.1 .9.1 Dornain Independent Statoftent

The onJ-y domain independent statement currently included in pN,It s

input language is the assignment statement. In the robot domain this
statement alrows the robot to use any special abirities it may have
to modify properties of a contacted object. For example, if a

painting robot is abre to modify an objectrs color, this witr be done
using an assignment statement specifying coror as the property
modified.
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This use of the assignment statement alJ-ows all obJect propertJ-es
other than position to be changed (position is changed using move

statements because these affect the robot as well as the contacted
object). Thus the assig:nment statenent arlows pAN programs to have
the same effect as languages whLch include more specific conrnands,
such as rpaint' without unnecessarily encurnbering' the pAlI input
program language.

The assignrnent statement l-n the dp domain aLlows fields in records to
be gJ.ven new values.

In both domains assignment statements can al.so be used to change the
value of variables.

Assigmment

Syntax: <1hs assignment> :: (rhs assignment)

where

(lhs assignment> ::= <variable> |

<property> (<file identifler)) |

<property> (<hand j-dentif ier>)
<rhs assignrnent) ::: (arithmetic expression) |

(booLean expressLon)

Semantics: if the <lhs assignment) is
<property> (<file-identifier>) r then the assignment
statement is updating the property (field) in current
record of fiLe specified by file-identifier; if the
<lhs assignment) is <property>(<hand-identifler>), then
the statement is rnodifylng the object contacted by
hand-identifier by changing the specified property;
otherwise the statement is changing the value of the
specif ied variabl.e.
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The (rhs assignment> is evaluated and assigned to the field,
property or variable as determined above.

2.L.9.2 Robot Domain Statenents

Programs written for the robot domain are intended to manipulate a
blind 2-dimensionar robot witb one or mole rhandsr. under program
instruction t,he robot is abre to move its hands and to grasp and
ungrasp objects. objects can be grasped by a robot hand onJ-y if that
hand is currently in contact with the obJect. once an object has been
grasped by a robot hand, any movement by that hand also moves the
object.

rn order that a robot hand can come into contact with an object
without damaging it, special 'move until contact, instructions are
provided, which presurnably cause the robot hand to move more slowly.
For each hand the boolean expression contact<hand-identifier) will
have the value T if hand-identifier is in contact, and F otherwise.
Thus rcontact' is a special tproperty' detected by the robot hand.

The robot is also abl-e to nodify attributes of the contacted object,
other than just its position. These modifications are handLed by the
generar rassignment' statement discussed above in section 2.1..9.1.

Program statements specific to this domain are as foLlows.

Move-to

Syntax: move-to <hand-identifier> <x coordinate> <y coordinate>

where

(x coordinat.e>

<y coordinate>

Semantics:

(arithmetic expression)
<arit,hmetic expression)

the robot hand specified by hand-identifier moves to
position specified by (x coordinater y coordinate). If
the robot hand is grasping an object, it aLso moves.
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This instructLon assumes ttrele are no obstructl-ons in
the path of the robot hand.

Move-by:

gtrntax: raove-by (handsidentif.ter) <x coor.d,:lnate) <y coordLaate>

Sentantl.cs: sane 68 gto\t€-tor except that, nerp posl.tion ls speclfied
as an increment from the current positf.on, {nstead of

. as an abselute value.

Move-unti l-olrntact

Sltntax! !$arr-e-unt,.irl--oontact <haad-ldentii.fl-er) (angJ-e)

where

(angJ"e) : ;= (ar.iLlrnret,i.c e:rpressl-on)

senantics-: tbe robot traad specLfied by hand-ident.i.f,ier, mo\res at
tlre specLfied angre in a special reautLpus' mode and
oto.p€ as eooo aE Lt deteetg contact. Mo,ve&ent continues
ilnde,finit,ely unti.l contact is actrl_eved,

Move-unt i1-conta et-up-to

syntax: rnove-untdL-centact-up-to (hand-l.dentifie!> <a.rrgr,e>

(dLstance>

where

(distanee) | := <arithrnetLc expr,ess:lon>

semantic's: sarne ag ,rnove-unt:ll-contact, except that if the :robot
band is stirl not Ln coaLsct when <dis,tance> has been
moved, the :cobot hand stops.
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Grasp

Syntax: grasp <hand-identifier>

semantics: only al-fowed if the specified robot hand is in contact
and not grasping. The contacted object is grasped.

Ungrrasp

Slmtax: ungrasp <hand-identifier>

Semantics: reverse of grasp

2.L.9.3 Data Processing DomaLn Statenentr

Programs written for this domain process fil-es and records. Files can

be read from or written to, either sequentially or by key. Whenever

read statements are used the boolean expression
currenL (<file-identifier>) wirl be set to T for a successful- read
from file file-identifler and F otherwise. Thus having a 'currentt
record is a special property of each file. No such facility is used

for write statements i.e. they are assumed to aLways be successful. A

key used to specify a record in a keyed read can be any predicate on

fields within the record.

No special provision is made to handLe duplicates - during a keyed

read any record satisfying the predicate is retrieved; during a keyed

write a new record is always written even if it is identicar to an

existing onel in which case a duplicate wiII be ereated.

Once a successful read statement has been executed, the current. fife
record is available for processing.

Within a single program, sequential files can only be either read
from or written to, but not both. There is no such limitation on

keyed fi1es. No explicit open Etatements are used. The first file
access (whether read or write) performs this function.
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Program etaternent,s s12eci.fi.c to the dp doma.Ln are as follofs.

SeEuentl-al-r.ead

Eltatax: sequential-read <fl-1e-ideati.f,ter>

senant:ics: eLther the nelrt, record Ls read fron t-he fJ.tre specLfl,ed
by ff-1e-ldentlf,l--etr a$d becoraes the cu.rrent record, f,rosl

that file, or the fl-le is exhausted. and no record, is
cead (,in whlch eaae the,re l"s nou no eurrent 

=eaor.€ll .

gqqrtehLial-irrilte

Slmiax; sequent:laL-write <file-l-dentif,:ier>

serttaat,ics: the current ree,ord, f rorn the f,lle specif ied by
f,ile-identl-fl-er ls written to th€ f,i.Le.

Keyed-r.ead

synt'ax: keyed-read <fi-1e-iderati,fier> <bpolean enp.ression>

Semarltics: eithea e recsr obeyinE tlre bootrean exlrreasion Ls read,

f,'or Lhe fi_Ie, speetfied by file-identiifier, or no sr:eh

record exiets aod the read fal.ls (,1^n whLch ca,se there
ig aow no eurtent reco:rdl .

Keyed-w,rice

81mtax:, keyed-write (f,lJ.e-ident$fler)

seqtantlce: the crrrrent riesord frorn the flle specifled b.rr fi.le
.i,denti.fLer d.s $rltten to tbe file.
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2 .2 SPECIFICATTON REPRESENTATTON

The goal of the pAN syst,em ie to produce non iterative proglram
specifications. To make these specifications both concise and
unarnbig'uous, bre represent them in a rogicar language . This section
describes this language, somewhat informalry, but in sufficient
detail that a formal description of the J.anguage could be constructed
if reguired. we begin with a tlped first order pred,icate calcuLus,
extended to include arithmetic'and set theory. Thus we assume the
language inc.l.udes the concepts of :

types (integers, real numbers, strings, objects, sources and

sequences)

Iogical and arithmetic operators
const.ants

cardinality
numbers

variabl-es

predicates

functions
terms

weL] formed formuJ.ae (wff)
truth and falsity.

Further extensions to this language are required to represent
concepts from our two domains, such as files and linesr EDd also to
rePresent the relationships between objects, sources and sequences.
some simple functions on seguences are also need.ed. Thus, we extend
the language to include:

for each of the tlpest objects, sources and sequences, the
special constants, OBJECT-n, SOURCE-n and SEeUENCE-n, for
all integers n, where OBJECT-n are of tlpe object, SOURCE-n

are of tlpe source and SEQUENCE-n are of type sequence.

the representation of files and lines, using the functions
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;f,1-Le: sttings -> sources'

!-ine: nuqrberg x nunrbers x nurnbers x nunibera -> :gorilrce.s..

The intended lnterpretat:lon ot f,iJ.e(fire-narnell is the so:lrrce
that ls a f nre with narne f l.le-nagrG. The intended
interp:cetatj.on of lLne(j., j, kr L) is the source tbat l,s a
line of lengrtb }r at angle h1 from the poLnt (1, J) tLe 2
dinrens!.onal space

a lanquage csnstruct for representc.ng the object,s rqt,rl.eved
from a s,gur.o€, using the funcLione

sequgntial-object-Lll-souree: J.ntegers X soureeg -)
obJects

keyed-.clbJect-in-so,urce,:unary predicates X gourees ->
obJectc.

and the srenbershlp pnediaate e.

Thus if n i.,g arr i,nteger and s ls a sou!3ce, then the intended
inteEpretation o.f sequent,,:i.al-ob.Jeet-in-source(nr S,l, ls the
nth obJect ret:rieve, from S. If p LE a predica,ue wLth the
f ree va:ri.ab-te rlten'i then the Lntended integp::€tatlon gf,

keyed-obJect-in-souroe (F (ttent , sl i.s a$ oJrJ,ect retrlev.ed
f,rorn s,oure.e S uhLch satisfies p. If r is att sbrJeet therl x €

S ls r.aterBreted t,o nean x !ra,s retrienr.ed f,rorn S.

a language construct for constructiag prirrlti.ve seqqeaees
f:rgrr obJects, sortrces, o'r otbe.r oeqnrence.a and the predi.cate
E f'or repr€ae,nttng nenbership of, primltLve eerluences. nhus

if D '.s a functlon on lnteEers erhoae rang-e i.s a set of Lterns

of type objecta, sources, or aeqlueflces, and n Ls an lnteger"
thdn

(sequence i ,=, 1 to n D,(l,l )

71



is a term of type sequence. Thus, this construct is an
abbreviation of the n-tuple (D(1), D(21,...rD(n)), where
each D(i) is an object, source or sequence. If S is a
primitive seqluence, then x € s is a werr formed. formura with
the intended interpretation that x - D(i) for some i, 1 < i
S n.

a language construct, for creating subsequences from
sequences and the predicate e for representing membership of
subsequences. Thus if S is'a seqfuence, and p is a unary
predicate, then

(item: item e S n p(item))

is of type sequence. The

objects included in S which

subsequence, then x € St is
intended interpretation that

intended interpretation is the
afso satisfy P. If S, is such a
a weII formed formula with the

x € S n P(x).

represent.ation of size of sources and seguences, meaning the
number of elements they contain. since we have defined
membership of sources and seqluences and our basic language
is assumed to include set theory, ere can define the size as

the cardinality of the set of members in each construct by
the axiom

size(x) - cardinality({item: item e x})

where x is of type source or sequence.

a function, item-in-seqluence, for referring to an item by
its position in a sequence. Thus if n is an integer and S is
a seqluence, then item-in-sequence (n, S) r is a term of the
same type as the elements of s. The intended interpretation
is that itern-in-sequence(n1 S)r is the nth item in S.
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a functionr position-in-sequence, for referrl.ng to the
position an item occupJ.es in a sequence. Thus if x e s nhere
S is a seqluence, then posl.tion-in-seguence (X, St is an
integer. The intended Lnterpretation is that
position-in-seguence(xr sl = nr if x is the nth element, of
s.

a function, map, for specifying corresponding members of
seqluences of egual length. Thus tf s and s, ire sequences
such that size (S) = slze (S, ) , then map (item, S, St ) l_s

defined as

item-in-sequence (position-in-sequence (item, S), S' )

The interpretation of map l-s that it maps the nth element of
S to the nth element of S'.

rn this extended language, a specification is represented by a wff in
the form

(Pl + Ql) ,^. (P2 -+ Qzl A rr (Pn + Qn)r

the ploglam satisfies Pi, then the
to n.

SpecS.ficatLoa Language .

meaning that if the J_nput to
program has effect ei, for i : 1

2.2.L Sorne Exarqrleg of Uaing the

We now provide some examples

language.
of specifications represented in this

SuPpose we have a program which moves the first object from the line
(pos-a, O, 1) to pos-b if it is bLue and to pos-c otherwise. In our
formal specification language, this would be expressed, as:
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(SOURCE-I = Iine (pos-a, O, I) n

OBJECT-1 : sequentLal-object-in-source(1, SOURCE-I) A

color (OB,IECT-l) = bfue
+ position(OBJECT-I) = pos-b)

(SOURCE-I - line (pos-a, O, I) n
OBJECT-I - sequential-object-in-source (1, SOURCE-I) 'r
-r color(OBJECT-I) = blue

-+ position (oBJECT-1) = pos-c)

For another example, consider again the robot domain example f,rom
section 1.3. This program moves all bfue objects frorn Line (pos-a, o,
l-) to pos-b and red objects to pos-c.

This woul_d be expressed as:

SOURCE-1. = line (pos-a, O, l) n
SEQIIENCE-1 = (sequence i = 1 to SIZE(SOURCE-I)

sequential-object-in-source (i, SOURCE-I) ) ^
sE0uENcE-2 = (item: item € sEeuENcE-1 n color(item) = bluel  
SEQUENCE-3 = (item: itern e SEQIIENCE-I a color(item) = red)

-) (Vitem (item e SEeUENCE-2 + position(irem) - pos-b) zr

Vitem (item € SEQUENCE-3 -+ position(item) = pos-c))

To demonstrate the usefuLness of the map function, consider the
progran in figure 2-13. rn this program the speciflcation wirl
include the sequences :

SEQUENCE-1 = (sequence i = 1 to n seguentiar-object-in-source(i,
souRcE-1)

SEQUENCE-2 - (sequence i = 1 to n sequential-object-in-source(i,
sorIRcE-2)

where

80



loop entry

seguentiaL read A

seguential read B

if weight (A) = weigrht (B)

color(A) := blue

tr

Figure 2-L3 Subsequences using two sources.

SOURCE-I = file (A)

SOURCE-2 = file (B) .

To describe the action taken at statement 6, we need a subsequence of
all objects in SEQUENCE-I which obey the condition at st,atement 5.
This subsequence consistg of a1I objects frorn SEQUENCE-1 whose

weights are equal to the weight of corresponding objects from
SEQUENCE-2. These can be expressed using the map function as

SEQUENCE-3 = (item: item e SEQUENCE-I a weight (item) =

weight (map (item, SEQUENCE-1, SEQUENCE-?',I't .

we can nord express the specifJ.cation of the program fragment as:

SOURCE-I = file(A) rr

SOURCE-2 = file(B) ,r
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SEQU,ENCETI = {sequenoe i,= I ton eeqgential-,object-Ln-eource(ia
SOIIRCE-I) I a

SEQOENCE-2 = (sequen:ce .i - 1 to n segqe4tl.al-objece-Ln-eource(L,
sonRcE-zt) 

^
SES,IIENCE-3, = (lte!n; ltem €, SEOUENCE-I n weigtrt (ited I

neJ,ght (map (lternr SEeUET{CE-trr sEeuENcE-2l } |
-+ Viten(lten E SEQUENCE-3 + eolor{ltem' ,= blue)

fn eosre Paqgralns:, obJreats have propettl.es.mon{fled ln a- way that Ls
dependent on the objectte posit:lon in a sequenoe. For e*arE)le, a

progrdm rnay nove' ar.tr o.bJeot.a frorn line (pos'-a, o, r), so ttrat the
flret obJect ls rnoved ts {1r1}r the second to (zrzl etc. Tlre

opecflf,i.cat'Lon for thle eould be expre,ssed usl,ngr the speeifl,cat,!-on
Iarrgnrage as:

SOURCE-1 * l:[ne (pos-,a7 @, 1) ,r
SEgUEt{C-E-tr = lsequeoce i * 1 to sLze (SOURCE-I)

oequential,-obJect -La-source ( tr 7 SOURCE-I ) I

-t VLten (tt-en E 6EettENCE-1 -' pooition(i.teml -
(pos ltioo- Lr,r-sequence ( item, SEO,UENCE-I ),
position-in-sequence (item, SECIIENCE-I) ) )

SBeqlflcat.j.ons of more eoql].ex ,progrra$a aan be constructed frorn these
l.anguage comi?one:,lts. Further exarples ar?e preseoted Ln the ,appendlN.
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Chapter 3

Execution States, Program Analysis
and Symbolic Execution

3.1 INTRODUCTION

Given some initial state of the world, real execution of a program

will produce some particurar effect. observing such a single real
execution does not aIlow us to describe the general relationship
between initiaL worLd states and effects. Symbolic execution, on the
other hand, attempts to simuLate program execution for a general
rsymbolic' input. The result of such a simulation should allow
program effects to be expressed as a function of t.he initial state.

Both real and symbolic execution of an entire program are achieved by

repeated execution of individual program statements. Real execution
of a single program statement may involve updating the executor's
internar state and/or modifying the domain in which the program

operates. A symbolic executor mimics these effects by maintaining
symbolic descriptions of both the executort s int.ernal state and the
effect the program has had on its domain of execution at each point
in the program. These symbolic descriptions are referred to as

execution states. Thus the effect of symbolically executing a program

statement S is to produce the execution state at the point following
the statement. This execution state describes the effect of executing
all statements up to, and including, S.

Conditional statements are those which control entry to different
Program branches. The simplest conditional statements are those which

control entry to two program branches. one branch is entered if the
condition is true and the other if it is farse. upon reaching such

statementsr a real executor will evaluate the conditions to determine
which branch to fol-l.ow. A symbolic executor, on the other hand, in
general, wiLl not be able to determine whether the condition is true

83



or fal-se. Instead' the symbolic executor wil-L take both branches. A

separate execution state will be created for each branch and the fact,
that the condition is true wilt be added to one execution state and
the fact that it is false added to the other. Thus the execution
states associated with any execution state S wiLl contain facts
derived from all conditions on the path traversed to reach s. we

distinguish between these facts and the remainder of the execution
state' by referring to the former as path conditions and the latter
as the effects.

Each execution state can be associated with a singJ_e program
statement - the statement executed by the symboric executor in
producing that state. A statement ,however, can be associated with
many execution states. This arises because the same plogram statement
may be reached by different paths through the program.

Since different paths through the program may have different effects
the execution of a program statement reguires that a separate
execution state be produced for each such path. Thus a program
statement' S, may be associated with all the different execution
states produced by executing S.

The execution states associated with a single stat.ement cannot be

simpry rmergedt into a singte execution state. To see why, suppose
that the statement vras in a 1oop. Then the execution states
associated with this statement wilJ- refl-ect the effects of one, two,
three... loop iterations. A single tmerged' execution state would
have to describe the effect after an indefinite number of iLerations,
which is exactly the problem which has made symbolic execution of
loops hardr and is the major issue addressed by this thesis.

For a program vrithout loops, symbolic execution is an adeguate

Program analysis technique. Each execution state associated with a

stop statement implicitly contains a partial program specification of
the form path conditions -+ effects. The conjunction of these partial
specifications are the fulr program specification. However, for
programs with loops, symbolic execution aLone is not adequate, as the
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comPlete set of execution statea associated with stop statements can

never be produced. Thus the pAlI program anal.ysis system combines

symbolic execution with separate technigues for J.oop anarysis.
symboric execution and loop analysis techniques are organised as
separate tasks, both of which use execution states. The remainder of
this chapter describes the contents of the execution states, shows

how PAt{ schedul-es the various tasks it has availabLe and describes in
detail- the symbolic execution task.

3.2 EXTCUTION STATES

Because of the problem of conditional statements discussed above, any

sYmbolic executor needs to maintain multiple execution states. Most

slmbolic execution systems discard an execution state once it has

been used to forward the symbolic execution. In the pAN system,
however, loop generalization reguires the execution states after one,

two r three or more loop iterations to be avail-able to the
generalization process. To ensure that sufficient information is
avaiLable, PAN retains all- execution stateg. This requires pAN to
record some additional bookkeeping information with each execution
stater to be able . to distinguish those execution states being
retained for generalization from those stiLl actively involved in
symbolic execution. Again to assist loop generalization, pAl.I also
records some history in the execution states. Of course, PAI.I a.Iso
records the \standard' data of path conditj.ons and effects. These

categories of information are used in the following detailed
description of PAN, s execution states.

3.2.1 Effects

A sYmbolic executor needs to describe the effect the program has had

on the world in whj.ch the program executes. This data is generatry
standard information which alL symbolic executors need to maintain.
The only unusual features are the use of objects to refer to either
physical objects or fiLe records, and the information recorded on

sequences. The information is recorded ln the foltowing categories.
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Variable Data

PA$r programs are allowed to refer to simple variables, and the
program may have had the effect of changing the value of some of
these variables. so, rde record ttre value of each variabre so far
encountered in the program. VariabLes are identified by ghe name used
in the Program. rhis information is used whenever a varl-able occura
in program expressions which need to be evaluated (e.g. conditional
expressions, or parameters of action statements).

Thusr we rnay record v - 6 o! hr = weight(OBJECT-1).

Object Data

For each object encountered during program execution, we record the
value of any changed properties. The word, .objectsr is used
generically to mean the fundamental e.Lement in the worLd the program
runs in. rn the robot domain, these are physicar objects, whereas in
the dp domain they are records frorn a fiJ-e. properties refer to
physical properties of physicar objects or the value of fields in a

record. Each property is identified by the name used in the program.
This information is used whenever an object property that has been
modified occurs in a program expression which needs to be evaluated.

However' since updated properties record the principal effect the
program has had on its environment, this data is primarily used in
Program interpretation - the process of producing program
specifications from the execution states. This data is generalized
into seguences during roop generarization. Two examples of updated
properties are:

color(OB,'ECT-1) = red

and

position(OB.TECT-Z) = (lrZ)
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Source Data

For each source identified during program execution, we record:

the current object
the number of retrievals attempted (sequential input
only) or number of writes (sequential output sources
an exhausted indicator (sequential sources only)

sourcea

only)

The word source is used gen6ricalry to mean the method of specifying
objects in the program. rn the robot domain objects are specified by
the lines on which they are contacted, whereas in the dp domain
records are specified by the files from which they are retrLeved.

The current object specifies the most recently accessed object from
the source, if there i.s one. rn the dp domain it is used whenever a

Program statement refers to a source as a way of specifying the
current object from that source. For example, the program statement

x :: weight (A)

means that the variabte x
current object from source

assigned the vaLue of the weight of theas

A.

The number of objects
of the next object to
objects retrieved : 2r

as the 3rd object from

retrieved is used to determine the definition
be retrieved. For example, if the number of

then the next object retrj-eved will be defined
that source.

The number of retrieval.s attempted acts like a special type of
variableT not referenced in the program but reguired by the symbolic
execut.or to keep track of its position in a sequential file. (A real
executor would al-so need such a variable if the language alLowed such
statements as \read ntb record, . ) pAlilr s use of this variable is
further discussed in section 3.3.5 in describing symbolic execution
of statements which sequentially retrieve objects from sources.
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The exhauated indicator,
obtain an object from the
had no more objects). If
to access the source will

Obiect Seguence Data

if set, shows that the
source was unsuccessful

this indicator is set,
always be unsuccessful.

previous attempt to
(because the source

subsequent attenptg

For each object seqluence, rde record the same Lnformation as for
objects i.e. the value of updated properties.

seguence information is only created in the J-oop greneralizatLon
process. Sequence information is used in program interpretation and,
for programs containing nested loops, for further generalization.

Robot Statrrs Data

In the robot domain only, pAN records, for each robot hand:

its position
object contacted (if any)

an indicator to show whether hand is grasping or not.

This inforrnation is needed to determine which object (if any) has its
position changed when the robot hand moves, and what its new position
is.

3.2.2 Path Conditions

The path condition in an execution st,ate contains a boolean
expression that the initial state of the worLd must satisfy in order
for the Program to have the effect described in the remainder of the
execution state.

Any given execution state is associated with a program statement and
records the effects of symbolicarly executing some path through the
Program up to and including that statement. This path can only be

traversed if the initial state of the worrd is such that all
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conditions along the path are true. The path condition is therefore
the conjunction of these conditions.

To formalise this definition, we first need to introduce our
terminology for the instantlation of a predicate. conditions may
contain references to files, hands and variabres. A condition is
eval-uated in any execution state by instantiating fires by the
current object, hands by the contacted object and variabtes by their
current value. we use the convention that the instantiation of
predicate C(xrr...rxn), with free variables, xrr...rtn, by
value" trr...rr, is represented by C(xr/vrr...rxn/vnl . If
we want to show the instantiation with the appropriate values in
execution state E' then we write c (xrr . . . r xn) ./E or strnply c/E if
the free variabLes in the predicate do not need to be individualty
identified.

Now suPpose PAN execution has proceeded from the start atatement down

some path P, to reach statement s. suppose further that pAl.I created
execution states Er, . . ., Enr when executing condition statements
containing condition" Crr...rCn on this path, and execution state
E when executing s. The path condition for executlon state E is
then defined as

C/E n
l1

aC/Er
nn

simpJ-ified if necessary.

For example, path condition could consist of:

(color(OBJECT-1) = red) lr (size(SOURCE-I) < 10)

3 -2.3 History

PAI'I also records some historical information, for use in the loop
general-ization process. Chapter 4 gives a detail-ed descriptl-on of the
use of this information. At this point we merery state that this
information enables PAl.l to reconstruct from the execution st,ates the
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structure of conditional branching within the loop and the conditions
required to enter each branch. To specify this information, we first
need to introduce the concept of a statement condition. Given any
statement within a loop, the statement. condition, for any iteration
of the looP, is the condition which needs to be true for execution to
reach that statement from roop entry, using any possibre program
path.

Before formalising this definition, we introduce an alternate form
for representing instantj.ation. rhis is required because pAN needs to
be able to identify the instantiation on statement conditions. Given
a predicate C (xrr . .. r*o) with free variableu *, t .. . txnr we

use C (x, Itr], . . ., Xn tv I ) to represent an instantiation of
x-1...12r by v.r...rv which is explicitly recorded, rather1n-ln
than simpJ-y substituted into C. Tn other words, both *, and ,,
are recorded. rf c is instantiated with appropriate values from
execution state E and individual values do not need to be identified,
we write C [E] .

To formalise the definition of the statement condition, suppose a

statement s in a loop can be reaclred down paths prr...rp. from
loop entry without passing again through loop entry or a roop exit
for this loop entry. Beginning with a singJ-e exeeution state E

associated with loop entry, suppose that execution of p, produces
execution states E-iL, ...rE-irTlrr when executing cond.itions
c-i1'...,c-im. on P we define the statenent condition c to11
reach S starting in execution state E as

c: (c-1.1[E-11] A ..
(C-nlIE-n].1 n

Since the instantiation
the uninstantiated torm

of the form xrtvrJ by xr.

a C-1m [E-In ] ) v
tt

n C-nm [E-nm ] ) .
DN

explicitly recorded, we can always derive
a statement condition by replacing terms

Ls

of

Note that when we define the
loopr the loop may contain

statement condition
inner loops. Such
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appear expLicitLy in the definition
the purpose of statement conditions
were of the form shown in figure 3-1.

the statement condition. For
treat each inner loops if it

ot

we

of course, condition-Lr...rcondition-n are not explicitly defined in
the program, but we assume that these conditions can be determined as
part of loop processing'. Given such a representation of an inner
roop' condition-1r . . ., condition-n, will, being conditions, be
inchlded in statement conditions in the outer loop.

This method of handling inner loops means that, the statement
condition for a statement S in a loop cannot be determined until all
inner loops on the path from the loop entry to s have been anal-ysed.
PAI,I scheduling, described later in this chapter, ensures that loops
are analysed in the correct order so that statement conditions can

always be determined. How the conditions in figure 3-1 can be
deterrnined is addressed in Chapter 5.

The use of the statement condition requires that it satisfies the
following:

if a loop contains two statements S and S' that intuitively
require the same conditions in order to reach them from 1oop

entry, then the statetnent condition to reach S starting from
execution state E will be equivalent to the statement
condition to reach s' starting from the same execution state
E

given two execution states E and E, associated with loop
entry, the uninstantiated form of the statement condition to
reach some statement S in a loop starting from E wilL be

equivalent to the statement condition to reach S starting
from Et.

These conditions are related ln that they are affected by the extent
to which the statement condition is sirnplified. Tbe second
requirement is triviarty true if the statement condition is not
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statement in
outer loop

inner loop
loop entry

condition-1 condition-n

inner loop
loop exit L

inner loop
loop exit n

statement in
outer loop

statement in
outer loop

Figure 3-1 fnner Loops for Statement Condition

simplified at al-1. However, the first requires that some

simplification is perforrned. To see why, consider the program
fragment in figure 3-2. If oBJEcT-l is read from file a and the value
of x is 5, the statement condition to reach S is

coLor(AIOBJECT-Ll ) = red

while that to reach S' is

(cofor(AIOBJECT-11) = red n x[5] < n) v
(color(AIOBJECT-I1) = red n xt5l ) n) .

Simplification of the statenent condition for S, produces

color(AIOBJECT-I1 ) = red
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loop entry

if color (A.) '= r'€'d if, -rcoLor (A) : at€d

if,x<n ifx.}n

Equal Statenent

3

Figure 3-2 - Staternenes with Conditions



v 3E high-values

J.oop entry

if v E wej.ght(A) if v < weight(A)

v := weiEht (A)

4.

6.

E"igure 3-3 - Staternent Conditions on Different lterations

whieh .l-s equ,aL to the statement, condltj.on for sr meeting tbe fLrst
reqtrirernent. fn this strrp.llftcation A!OBJECT-11 oan be treated aa a
terfi dist.Lnct from OB.IECT-1 . ff . however, ter:mg of the form x [v] atc€

treated as being equivalent to vr then the sec,ond requirement, abo.ve

will not be gatlafied. To see why, cor:side! the program frragrment

show$ in fJ.g'ure 3-3.

Suppose that during symbollc executi,or.r of, thte pr,oEran, we hawe two

execution states E and E' aseoeiated wlth loop entryl E beJ.ng the
state aften [ro logp ite,ratlons and B, beJ-ng the state af,ter one
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iteration. The statements conditions to reach statement 6 from E and
E' will be

weight (AIOBJEC?-I] ) S x[high-values]

and

weight (AIOBJECT-I] ) < xfweight (OB,IECT-I] l

assuming the first two objects read from file' A are oBJEcr-l and

oBJEcr-z, since on the first iteration the path through statement 6

wiLl be taken and x will be given the val-ue weight (oBJEcr-l) . Butr
assuming the simplification rule, n < high-varues, for any number n,
the f irst of these expressions may be sirnpJ-if ied to !, if
x[high-values] is treated as eguivalent to high-values. To avoid this
problem, PAll simplifies the statement condition treating x[v] and v
as distinct terms.

The statement condition has some simiLarities to the path condition.
However, they differ in that

the statement condition is only defined for statements in a

l-oop, and only describes the conditions between loop entry
and the statemenr

the statement condition records the condition to reach a

statement down any path, not a particular path

the instantiation of the statement condition can be
identified, and this limits the simprification which can be
performed

we ale now in a position to describe the history recorded by pAll.

Given an execution state, E, associated with a statement s in a roop,
creat,ed after execution has proceeded from execution state Et

associated with loop entry, then the statement condition to reach s
from E' is recorded in E. This historical information is recorded for
each loop the statement is in.
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This history allows PAI.I to reconstruct the program structure during
loop generaLization. However, this information could not be obtained
simpJ.y by examining the program. The predicates from the condition
statements in the loop courd be determined thls wryr but the
instantiation could not.

3.2.4 Bookkeeping Data

To enabfe the slmboric executor to keep track of its numeroug
execution statesr vre record on each state the associated statement,,
parent execution state, status and loop data.

status is used to determine what t,ype of processing is reguired
the execution state. possible values are:

The

for

act ive

dead

waiting l-oop

generalization

normal symbolic execution can be continued
from this execution state
no further processing is required for this
execution state
execution state has reached loop entry after
some number of loop iterations

waiting exit execution state has reached loop exit
processing statement after }oop generalization

waiting merge execution state has reached a merge statement

waiting execution state has reached program end
interpretation

The symbolic execution process described beLow always creates a new

execution state from an existing one. Thus execution states have a

Parent/chil-d relationship, which is recorded in the parent execution
state. This relationship allows us to describe one execution state as
descended from another.
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rf the l-ast statement executed is within one or more loops, then pAl.l

requires information about these loops for two reasons. Firstly, in
order to ensure that only a specified number of iteratlons are
performed before loop generalization, Pll'lit needs to record the nurnber
of iterations performed. Secondly, because symbolic execution only
allows loop exit after loop generalization, an indicator is required
of whether a loop has yet been generalized.

3-2.5 Names and Definitions

Much of the information recorded in the execution states involves
objectsr sources or seqluences. For crarity, these are referred to
using identifiers of the form oBJEcT-n, souRCE-n and sEeuENCE-n.

These identifiers need to be related to the definition of each i-tem.
This information is the same for al-l execution states and we refer to
it as global data.

3 . 3 PROGRiAI.! AI{ALySIS

3.3.1 Introduction

Having described execution states, ne are in a position to describe
j.n more detail how pAN uses symbolic execution to perform program
analysis. The intention is to allow slzmbolic execution to continue
until execution has reached program end.

Once this point has been reached, then the execution states
associated with stop statements are interpreted to produce the
program specification which is the output from the program analysis.
rf these execution states are E1r...rEn containing path conditions
P1,...,pD and effects elr...re,A, then the required program
specification can be derived by simplifying the expression

(P1 -+ Q1) n (p2 + e2l n ... n (pn + en) .

The apparent simplicity of this scheme is complicated by loops in the
input program. Regardless of language and representation a loop rnust
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ahrays contain a condltion which controls exit from the roop. The
inability of a symbotic executor to deterrnine the truth of this
condition will read to loop execution continuing indefinitely.

PAII addresses this probrem by analysing loops using a three stage
approach: first, the execution states produced during a few loop
iterations are generalized to a single execution state representing
the effect of an indefinite number of iterations,. second, the
generalizations produced. are verified to be invariants by performing
another loop iteration; thirdr. syrnbolic execution using the
generalized execution state continues untLl all possible loop exits
have been reached, at which point loop exit processing determines the
number of loop iterations performed.

NormaL symbolic execution then continues from the loop exits using
the execution states produced by the loop exit analysis.

Both loop generalization and loop exit processing differ from normal
sYmbolic execution in that they use multipte execution states, and

cannot be perforrned untir all these stat,es are available. This is
also true of a merge process which is required for updating the
statement condition stored ln the execution state historv.

Thus symbolic execution is onry one component, of tbe pAll system. rn
fact, PAI-I consists of several distinct components calIed processes.
At any one time, onJ.y one of these processes is active, controlled by
a scheduling process as shown in figure 3-4.

Figure 3-4 - Structure of PAf.l
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The function of each process is surmrrarized as follows:

Proeess Funetion

scheduler Decide which plocegs to run next.
initialization Begins program analysJ.s.
sYmbolic execution Symbollcally executes one or more statement,s.
nerge Updates statemenL condltion at a merge

statement inside a loop.
J.oop generalizatiori Generalizes al-1 execution states at loop

entry.
exi.t processing DetermLneg number of loop iteratlons

performed.
interpreter outputs program specification from execution

states at program end.

3.3.2 Process Descr:Lption

This section describes the individual pAN processes in more detair.

Initial"ization process

Input: program to be analysed
Output: a single execution state

This process is invoked once, when PAIiI is executed. PAl.l requests an

input program and then finds the singre rstart, statement within the
Program. Piql.l tben creates an execution state, associates it with this
start statement and sets its status set to active.

Svmbolic Execution process

rnput: a single active execution state representing execution up to
and includJ-ng some statement S

output: nerr execution states representing execution of a1r
statements up to and including all successor statements of S
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PAll finds the statement associated with the input execution state. It
then scans the input program to find all successors of this
statement. PAl.l changes the status of the input execution state to
dead unless it is associated with a roop entry statement of an
ungenerarized loop, in which case it is changed to rwaiting .Loop

generalization'. Then, for each succesaor statement pAl.I:

creates a nevr execution state which is initially a copy of
the input execution state

updates the execution state according to the instructions in
the statement. PAII has an update subprocess for each tlpe of
statement and simply carls the update subprocess associated
with the name of the comnand in the statement.

This process is simple because the actual knowledge of how to execute
a particulat statement is in the subprocesses. There are three groups
of statements - condition statements, flow control markers and action
statements. PAN symbolically executes condition statements by
updating the path and statement conditions. It executes flow control
markers by updating history and bookkeeping information. It executes
action statements by updating the effects. The subprocesses for these
three groups are described in sections 3.3.3r 3.3.4 and 3.3.5
respectivel-y.

Merqe Process

fnput: a set of execution states associated with a single mergie

statement, that are descended from a single execution state
associated with the loop entry
same set of execution states updatedOutput:

section 3.2.3 defined the statement condition recorded in any
execution state created during execution of a statement in a 1oop.
Using this definition the statement condition could be derived by
finding the appropriate conditions from the program and instantiating
them using previously created execution states. A more efficient way
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of finding the statement condition is to create it from the one
recorded on the parent execution state. By the definition of the
statement condition it is easy to show that given execution states E

and Et associated with statements s and sr, where sr is a predecessor
of S and S is not a merge statement, E' is the parent of E

if s is not an if statement, then the stat,ement condition in
E equals the statement condition in E'

if S is an if statement, with condj_tion C, then the
statement condition for E is the conjunction the statement
condition in E' and ClEl.

Thus the statement condition in E can easily be determined from that
in E' , except possibly in the case that s is a merge statement. rn
this case we want to show that the statement condition can be derived.
by forming the disjunction of the statement conditions from all
execution states associated hrit.h predecessors of S.

Theorem 3-1: rf a sLatement. sM is at a merge, then the statement
condition tp reach SM is the disjunction of the
statement condition of every predecessor of SM.

Proof: Suppose there are paths prr...rpn from loop entry to SM,

and the predecessors of S ara S,, . . . , S^. Then
P.'...rP can be divided into disjoint sets1n
SP.r...rSP r so that SP contains paths which reach SMlD1

via S.. Since by definition the statement condition to
1

reach SM is the disjunction of the conditions on atl of
P-r...rP , while the statement condition for each Srnl
is the disjunction of all the conditions on Spr, the
result foLLows.

Corollary: If a statement SM is at a mergie, and the predecessors

of SM have associated execution states E r...rE,
lD

with statement conditions Cr, . . . , Cn, then the
atatement condition in any execution state E assocl.ated
with SM ls : C v C v ... v C.
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Proof: Since the statement condition recorded in an execution state
1s simpJ-y the statement condition of the assocl_ated
statement the resul-t follows from the above theorern.

Thus, when a merge statement is reached, the statement condition to
be recorded in any execution state associated with the merge

statement can be derived from the statement conditions in all
execution states associated with the predecessors of the merge

statement. This function is performed by the merge process. rt cannot
be i-nvoked until atr the execution states associated with
predecessors have been created. This is ensured by the scheduling
process discussed in section 3.3.6. Note that the merge process works

in conjunction with the merge subprocess which sirnply changes the
status of execution states reaching a merge statement to .waiting

merg'et. The merge process is then invoked to create the new statement
condition.

Thus the merge Process retrieves the statement conditions from each
input execution state and forms the disjunction of these expressions.
This expression then becomes the statement conditj-on on the output
execution states which are given a status of active.

we now prove some additional results on the form of the statement
condj-tion at a merge staLement. These results are used in the loop
generalization described in Chapter 4.

For the first result we need a definition of the depth of conditional
branching. we say that a conditj-onaL branch starting at fork sFL is
jnside a conditional branch starting at fork sF2 if sF1 is on a

Path from SF2 to a statement at merge for SF2. A conditional branch
starting at fork SF has depti n if there are n conditional branches
starting at forks sF1r...2sFn, such that each sFi+1 is inside sFi,
and SF1 : SF.

For the first theorem, recall that a merge statement sM is the rast
merge for the statement sF at a fork if sM is at a merge for sF and

there is a path from every successor of SF to St4.
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lheoren 3-2: rf sM is a last merge for fork sF, then the statement
condition at sF is equivarent to the statement
condition at SM.

Proof: Proof is by induction on the depth of conditional branchinq
of the conditional branch beginning at SF.

ff the conditional branch starting
there are no inner branches.
P.r...rP from loop entry toln

C-11, ...C-1m r ... rC-nl, .. .rC-nm .
l-

the statement condition at SM is

(C-lL n ^ C-1m) v
I

at SF has depth 0, then

Suppose there are paths

SM, with conditions
Then, by definition,

v (C-n1 a n C-nm )
n

suppose the conditions occurrl-ng in paths from sF to sM are
C , .. . rC , some subset ofrp
C-11r... C-1mr r... rC-n1r...rC-nmn. Since, by the
induction hlpot.hesis, there are no statements at a fork
between SF and SM, Cr, . . . rCo must, be the conditj.ons in
tbe successor statements to sF. Thus, eaeh path between sF

and SM will- include a single condition from Cr, . . . rCr.
Note consider any path 

", 
from loop entry to SM. If n,

contains a condition from Cr, . . . rCo, tshen there is
another path, P r, identicai- to t, except going through a

different condition from Cr, . . . rCo. So, for any term,
(C-i1 n n a-\), in the statement cond.ition at SM

which includes a condition from C., . . . tC , there will be
rp

a set of terms identical to this one except incruding
dj-f f erent members of Crr . . . rCo. But since C, v v
C_ !, these terms can be simplified by removing

P

C ""C '1F

Thus the statement condition at SM wilt not incLude any
conditions occurring between SF and SM. Also, by theorem
2-t, any path from loop entry to SM goes through SF, so the
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statement condition at sM does not inctude any conditions
not in the statement condition at sF, and therefore they are
identical, as req[uired.

we now suppose t.hat the resurt is true for conditional
branches of depth D-1r and we want to show it is true for
conditionar branches of depth n. we foLlow the statement
condiLion as it varies down a path p from sF to sM. Suppose

the statement condition at sF is c. rf the successor to sF

on P has condition C., then the stat,ement condition at
this statement will be C n Ci. For any succeed.ing
statement on P, we observe that if it is neither a condition
or a merge, then the statement condition will be unchanged.
ff a statement at a fork is encountered on p, then by
theorem 2-2r there wiLl be another statement further down p

which is a J-ast merge for this stat.ement at a fork. The

conditj-onal branch at this fork can have depth at most n-1,
so by the induction hlpothesis, the statement condi.tLon at
the last merge wiLl be the same as at the fork. Thus, apart
from statements at merge for sF, the statement condition at
tbe end of P will still be C ,r Cr. But since, by theorem
3-1, the effect of merge statements on the statement
condition is to form the disjunct.ion of statement conditions
at preceding branches, this means that the statement
condition when sM is reached will be a disjunction of terms
of the form (C n Cr). Now since SM is a last merge for SFl

there are paths from each successor of SF to SM, and so each

ci wil,r occur in at leasr one such term. Thus the statement
condition at SI'1 is

nC "' v (c

v ... v C

c)
P

)

)v
I

(c

T

(c

:c
-c
=Q

as reguired.
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Theorem 3-3: suppose sl'l is at a merge for sF at a fork, and sF has
successors S1r...rSp which are on paths from SF to SM

rf S1r...rSp contain condition" Crr...rCo, then the
statement condition at sM is eguivarent to the
statement condition at SF ^ 

(C. v ... v Co) .

Proof: Suppose the conditional branch starting at SF has
conditionar branching depth of n. The argument in the
theorem above did not use the fact that, sM was a last. merge
for SF except to assert C, v v 

"o 
= T. Therefore,

using the same reasoning we can show that the statement
condition at SM statement condition at SF n (C, v v
C ) as required.

P

Loop Generalization process

fnput: a set of execution states associated with a loop entry
statement that are all descended from a singre execution
state associated with the same loop entry statement (This
execution state will be the one which has done zero
iterations. Atr other execution states in the set will have
compl-eted a different number of iterations, varying from
zero to the number of iterations reguired for
generalization) .

output: a single generalized execution state, with the number of
Ioop iterations unknown.

The restriction of the input to execution states descended from a

single execution state associated with the loop entry requires aome

explanation. suppose that a branch in the program prior to the loop
has the effect that execution reaches loop entry down two different
paths. This will_ result in thro execution st.ates being associated with
the loop entry statement which have different path cond.itions or
effects that are not caused by the roop. The loop generalization
Processes are intended to generarJ-ze the effects of the Loop, so that
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the different execution states created during loop execution are
generalized into a single execution state. Howeverr w€ c?Dnot erq)ect
these Processes to generalize differences which arose outside the
loop. Thus these processes operate on seta of execution states which
onry contain differences introduced during l-oop executl.on. This is
achieved by restricting the set of execution states to ones descended
from a single execution state assoclated rrith loop entry.

Chapters 4 and 7 describe this process.

Loop Exit Process

fnput: a set of execution states associated with all ]-oop exit
statements of a J-oop and all descended from a single
execution state associated with the loop entry statement.

Output: a set of updated execution states, with duplicate execution
states removed and the value of the number of loop
iterations known-

Chapter 5 describes this procesg

Tnterpreter Process

fnput: aL1 execution states having reached program end (i.e. those
that with status rwaiting interpretationt ) .

Output: program specifications

Chapter 6 describes this process.

3.3.3 Symbolic Executlon of Condition Statescntc

The only conditi_on statement in
statement.

the program language is the if
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ff Statement

The input statement, is in the form if <bool-ean expression). The first
steP in processing this statement is to instantiate the boolean
expression as reguired for updating the statement condition, by:

replacing each variable by variable-identifier [va].uel

replacing any expression of the form
property (<iire-icentifier)) rilith
proPerty(<fi1e-identifier>[ (OBJECT-n] ] where OBJECT-n is the
current object from file <file-tdentifier> and any
expression of the form property(<hand-identifier>) with
property (<hand-identifier) [OBJECT-n] ) where OBJECT-n ls the
object contacted by hand <hand-identifier>.

This instantiated expression is then used to update the statement
condition if the execution state is in a loop whose associated
execution states have not been generalized. rf the statement
condition on the input executl-on state is p, and the instantiated
expression is Q, then the new statement condition is p n o. The

remainder of this subprocess does not require that instantl-ations can
be identified, so each term of the form variabre [value] in the
instantiated expression is simply repJ.aced by rvaluer. Arso any
expression of the form property(oBJEcr-n) is repraced with the
updated varue of that property from the object data held on the
execution state (if any)

At this point a rreal' executor wouLd be able to determine whether
the instantiated expression was true or false. rn general, a symbolic
executor will, not be able to do this. However, in sorne cases, aLl or
part of an expression may be provably true or false.

For example, we could have an if statement of

if color (file-A) : green n lengrth (file-A) > 5
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Now, if the execution state has oBJEcr-l as the current object in
file-A' and the path conditions of the execution state contaLn

length(oBJECT-11 = 20,

then we can prove that the second conjunct of the above e:<pression is
true. This still doesn't determine the truth of the whoLe expression,
but leaves an runresolved expresgionr of

color(OBJECT-I) : green.

The advantages and disadvantages of tryJ.ng to determine the truth of
of an if predicate are discussed below in section 3.3.?. The current
version of PAr'l al-lows the user to specify whether a theorem prove!
shoul-d be invoked when an if st.atement is processed.

The theorem prover used by pAN is discussed in section 3.3 .7.L, and
includes the abllity to return the runresolved expression, if the
expression cannot be proved either true or false.

Assuming then that this feature is enabled, PAI,I passes the theorem
Prover the instantj.ated expression and a list of known facts obtained
frorn the execution state.

rf the theorem prover returns F, pAr'I simply sets the status of the
ne$r execution state to dead.

rf the theorem prover returns T, pAI\r simply exits from the if
subprocess.

rf the theorem prover returns an unresolved expression, p, then this
is used to update the path conditions. If the input execution state
has a path condition of e, then it is updated to p n e.
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3.3.{ Slarbolic Execution of FIou Control Markerr

Stop Statement

The stop subprocess simply sets the status of the
rwaiting int.erpretationr .

Loop Entrv Stat-ement

execution state to

rf the execution state currentry has no data on the J-oop being
entered' then the net{ J.oop is added to the bookkeeping data with
iteration count of zero, and generarization indicator set to
rungeneralizedt 

.

rf this roop has alread.y been generarized, then the effects of a
further loop iteration are used to verify the generall-zation. This is
described in Chapter 5. f f t.he l_oop has not been general.ized, then
the iteration count is incremented. rf the iteration count has nos,
reached the number of iterations required before loop generalization,
then the execution state is changed to rwaiting general.izationr.

Loop Exit Subprocess

rf the data for the innermost loop on the execution state shows
generalization has not been performed, then loop exit is premature,
and PAN changes the status of the execution state to rdeadr.
Otherwise PAI{ changes the status to rwaiting exit processing, so that
this execution state will- act as input to the loop exit process.

Merge Statement

The only processing required when a merge statement is
update the statement cond.ition by the merge process
section 3 -3 -2. This information is onry maintained
states in loops, therefore if the input execution state
then its status is changed to rwaiting merger p

subprocess does nothing.

reached, is to
described in

for execution
is in a loop,

otherwise the
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3 .3 .5 S3zrnbolic Execution of lctLon Staterenta

Action statements provide the program language with the ability to
modify the world in which the program execut,es. Thusr these
statementa vary depending upon the domain. rntroduction of a new

domain or extensions t.o the ranguage facirities provided in the dp

and robot domains would reguire additionaL action statements and

corresponding subprocesses to slzmbolically execute them. No other
changes to the PAN systen should be required.

Move-to Statement

The move-to statement changes properties of the hand specified in the
statement and the position of any object the hand is grasping. The

positi.on of the hand is set to the position in the statement. If the
hand was grasping, t.he grasped object's position is also set t.o this
position. Otherwise the robot status is set to no contact.

Move-by Statement

Processing is the same as for move-to, except that the new position
is the current position of the specified hand prus the increment
specified in the input statement.

I"love-unt i1-cont act Statement

The move-unti1-contact statement defines a line (source) by
(position, angle), where position is the current position of the
robot hand referenced in the input statement, and the angle is as

specified in t.he input statement.

This source may not have been previously
it will need to be added to the global
source data initialized.

Since this statement always succeeds in

encountered, in which case

data, and execution state
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increments the nurnber of objects retrieved from the source before
determining the definit,ion of this new object as

sequential-object-in-source (nurnber of objects retrieved,
source identifier).

This object is added t.o the global data if necesaary. Finarly, we set
the position of the robot hand specified in the input statement to be
at the same position as the new object i.e. to be at

position (object-identifier), and both Lhe current object for source
and object contacted by hand to be this new object.

Move-until-contact-up-to Statement

The move-until-contact-up-to statement defines a rine (source) by
(starting-position, ang1e, rength), where starting-position is the
current position of the robot hand specified in the statement, while
angle and length are as specified directly in the input statement.

As for move-until-contact, this source may need to be added to the
globa] data and the execution state source data initialized. Unlike
move-until-contact, the processing for this statement has to deal
with the complexity of a conditional outcome - a new object may or
may not be found. The outcome of this condition depends on the nurnber

of retrievals attempted from t.he source compared to the number of
objects originally in the source, referred to as size (souRCE-n),
where SOUR'CE-n is the identifier of the source. Another object will
be found if size (SOURCE-n) 2 number of retrievals attempted, and no

object will be found if size(SOURCE-n)

attempted. As discussed in section 3.2.L, the rnurnber of retrievals
attempted' is a special type of variabre, not explicitly referenced
in the input program, but implicitly required by the use of a

sequentiar source. For a given Eource, souRCE-n, we can give this
variable tbe name SOURCE-n-number-of-retrievals-attempted. Using this
variabre, r're can e:ipress the conditions for the source having or not
having another object as:
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size (SoURCE-n) > SOURCE-n-number-of-retrievals-attempted

and

size (SOURCE-n) < SOuRCB-n-number-of-retrievals-attempted.

These conditions, will be recorded in the statement condition as

- size (SOURCE-n) > SouRCE-n-nr.unber-of-retrlevals-attempted

[value of
SOURCE -n-numbe r- of - ret r ieva 1 s -a t t empt edl

and

size (SOURCE-n) < SOuRcE-n-number-of-retrievaLs-attempted

[value of
SOURCE-n-numbe r-of - ret rieva I e -att empted] .

Thus, to process the move-unti1-contact-up-to statementr w€ first
check to see if the Line is already exhausted. rf so, we set the hand.

position to the end of the l-ine (i.e. current positl-on plus length at
specified angle) . rn addition, if the execution state is .j-n a roop
which has not been generalized, we add

size (SOURCE-n) < SOuRCE-n-number-of -retrievals-attempted
lvalue of

SOURCE -n -numbe r-o f - ret rieva I s - a t tempted l

to the statement condition.

rf the source has not already been marked exhausted, we need to show

two possibre resurts i.e. the source l-s now exhausted or it is not.
To do this we create a nehr execution state as a copy of the input
execution state.
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Then one executiox,l atate .i.s updated to reflect the eond{ti-on where
ttre lLne is exhausted by:

settlng th€ pos:ltLon of the robot hand to curnent posltion
pJ"ue length at spec,ified angle

addJ-ng

. 
size (SOIIRCE-nI ( va].ue of

SOITRCE-n-nuniber-of - ret rtreva J"s-attempted

to the F4th c,o-nditlons.

adding

size (SOURCE-n ) < SOURcE-n-nuniber-of -reet r{evaIs-attenpted

. lvalue of
SOUnCE-n-nunrber-of -ret rievatre-atterptedl

t.o the staternent condi.tion If the executioR state is in a

rgop whose ass,ociat,ed executi.on stat.es have not been
greaeralJ-zed.

The, oEher execution state ls updated t,o reflect the coadltlon where
the line ior not exharasted by:

ereat,i.ng a netr object as in move-untlJ.-eontaot

settl.ng position of robot hand to be the lnitial positlon of
this obJect, spec,l.fled as posl.tion (obJect-identtf,ie:r) r 6ad
object eontacted to be obJect-l_dentifl.er.

- setting last obJect taken f,rom tbe source t,o be
objeet-identlfier

adding
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size (SOURCE-n) 2 value of
SOURCE-n-number-of -retrieva J.s-attempted

to the path conditions.

- adding

size (SOURCE-n) > S0llRCE-n-number-of-retrievaLs-attempted

lvalue of
SOURCE-n-nurnber-of - ret rieva 1s -attemptedl

to the statement condition if the executlon state is in a

loop whose associated execution states have not been
generalized.

Grasp Statement

The robot status sLot is updated to show the hand specified in the
statement J-s grasping.

Ungrrasp Statement

The robot st.atus data is updated to shovr Lhe hand specified in the
statement is not grasping.

Seguential- Read Statement

The processing required for this statement is the same as for
move-until-contact-up-to apart from the following differences:

- object source is identified by file name rather than by
(starting-position, J.ength, angle)
robot status data is not used.

Sequential Write Statement

The current object for the specifJ-ed source (ftle) is found from the
source data in the execution state. rt is an error if there is no
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current object (since in this case the data to be written to the fil.e
bas not been specified).

The number of objects written ig incremented.

The object definition of the current object is created as
seguential-object-in-souree (number of objects written,
source-identifier) and the source data is updated to show that this
source has no current object.

Keyed Read Statement

The keyed read statement retrieves an object from the specified
source (fire) by key. The key is specified by a predicate which the
object must satisfy. The soulce may not have been previously
encountered' in which case it wi.l-l need to be added to the global
data and execution state source dat,a initialized.

This is a conditional statement in that an object satisfying the
predicate P as specified in the statement may not exist. Thus we

create a ner.r execution state as a copy of the input one.

Then one execution state is updated to reflect the condition where no

object that satisfies the predicate exists by:

- recording that the source has no current object

- adding

r J o (P(o) A o € source-identifier)

to the path conditions. This is also added to the statement
condition if the execution state is in a loop whose

associated execution states have not been g:eneralized.

The other execution state is updated to reflect the condition where

an object satisfying the predicate does exist by:
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ereating a uen obJect deliaed as

keyed-ob j ect -in- s outce (F r aonrce- ldent Lf ier)

nith an identifler of OB,JECT-r,r.

set current. obieet j,n source tO OB.,JECTin

- addLng

3 o (p(ol n o e aoprce-identifierl

to path eonditions. Thls is aleo added to tbe st,atertrent

condition i.f the exeeutlon state is lO a loop whose

associ.ated exec,utLon states have not been generalLzed.

Iteyred Wfj-t.e Statemedt

Tl,re eurrenL objeet, for th€ speadfied aouroe Ls f,:ound frsm tlre Eaulcea
da,ta i'n the execut,ton ctate. r-t iis an e:rror if there is no eurrent
object (sloce in tbLs case the dat,a to be wrl.tten Co the fiLe haa not,

been speetfted).

The souree data is updated to ehow n.o eu,rrent obJect.

.&ssiqnrnent Statement I :=l

The right hand side of, the assigrrneht s.tatement Ls first evaluated
by;

substituting f,or each varLabjte its value

substituting p.lropelrtlr(OBTfECT-nl for any expreosl.on of the
forrn propqrty"(fi.1e-l.dentif,leD wtrere OtsJECl-n is the currgnt
obJect. from fLle f,ile-identifier and propen^y (OB\IEC,I-n) for
any exproesioa of the fo,nr property(hand-l.dentifLer) where

QBJECT-n is the obJect contacted by haad hand-l.dentLf.ler

t==_--:
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substit.uting the value of property (OB,IECT-n) f or any
expression of the form property(oBJEC?-n) where the value
property(oBJECT-n) is obtained frorn the object data held on

the execution state (if any)

This expression is then simplified and used to update the variable
value or object property as specified in the left hand side of t.he

assignment statement.

rn the case of a dp program writing an output file, this may be the
first reference to the modified object or even the first reference to
the fire the object is in. rn the first case the object is createdi
in the second case both the object and the source are created and the
object is made the current object for this source. Hohreverr the
creation of an object in this way does not establish the object, s

definition (in fact the object may never be written to the file) and

so it left undefined untir the seguential write is processed as

described above.

3.3. 6 P.AIrl Scheduling

Given the number of processes which pAN has available, how is it to
decide which t.o run?

The simpJ-est of these processes is
run once, when pAN begins analysis
interpretation process analyses
execution, and is only run when al1

the initialization process. It is
of a new program. Conversely, the

the results of the symbolic
other processes are complete.

The three processes merge, loop generalization and loop exit require
a set of execution states to be avail,abLe before they can run
successfully. However, instead of trying to run one of these
Processes and having to check whether all- required execution states
are availabre, PAN uses a simpler approach. rt assigns priorities to
the Processes in such a h'ay that a proceas will never be initiated
unless all reguired execution states are availabLe.
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To determine these priorities, ne first observe that pAtil's loop
analysis method reguires. that it first slmbolicalry executes loops,
then generalizes them and finarly performs exit processing. This
means that within a given loopr the scheduler mugt assign priorities
so that

priority (slmbolic executor) > priority (loop generalizer)

and

priority (1oop generalizer) ) priority (exit process).

To place the merge process in this priority list, we note that the
merge process cannot take place until all executj.on states to be

merged have been generated i.e. we require

priority (symbolic execution) > priority (merge process)

Also' since the merge plocess can occur inslde a roop (but not vice
versa), in order to complete the symbolic execution of the loopz we

require

priority (merge process) > priority (foop generalization).

This is not yet adequate to define the priority of the merge process
as a singJ"e roop may contain severar merge statements each having
associated execution states which are waiting merge processing. This
probJ.em may be addressed by the observation that we need to ensure
that the merge process will- not be initiated until, an execution state
has arrived from alr merging branches. This can only be guaranteed if
we process the merge statements in \execution ordert i.e. give higher
priority to merging execution states associated lrith statement m over
those associated with statement n, where there is a path from m to n

within the loop.

To clarify this point, consider the merge statements in figure 3-5.
Suppose statement L has associated execution states from branches A

118



and B, and statg$ent 2 has assoc:laeed executlon states frorh braneh C.
we nugt perforrn the rreeEE€ of executloa stat-es assoclated nlth
statenent 1 before these executl,on states ca$ reach statement Z,
allowiag the nerge at statenent 2 to prqceed.

-.---_----

Figure 3-5 - Pri,orlty of Merging Execution States

FJ-narry we eonsider t-he prJ-ority o€ progiEa&s wlth nested roolrs. rn
this ease we may t,hinlc of ,atr inner toop a9 a single cooqround

s.taten6nL wl.thin th,e O.ute.n Xoop, This r,stat,enentr will need Lo be
executed, before Loop generalJ.zatj.on of the o.ut.er loop ean proceed.
since the lnner .loop ni1l eontaLn its own loop entry, loop exlt and,
possibJ.y merge statenents, we r.equiEe that the sahedule,! wLll gi.ve
higl,rer priority to lrroceosi.ng exeeutlon s ,ates associated wtth
staternents' in the inner loop ove:c tr)rosesel.nE esecution states. ftofir
ttre outer loop.

The abpve reqtrlrer€nta .are gret by the foll-owinE scheduli.nE algorLttln:
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Selreduli.ng A].oorl-thrn

IF ther,e ar€ ng exeeutiOn states

perform lnltl,allzatLon

ELSE

rF all ex.ecution stat,es alie elEtler dead otr rwaitlng
interBretat,lont

perf o rln lnterp,retat ion
exit PNI

ELSE IF any actl.ve executlon states erlst

plc,li one aud pass to slznboLie executo.r

ELSE

co.Ileat alL execution at,ates nhich have th6 rnaximurn

mrnber of loope J.n loop dat,a (i,e. Er€ aE:aocl,ated rlth
statenents from the l,nnermost loo1ll .

IF any of, these er(sc-utlon states bave ,etatu,s rwa5,tlnE

'mgrge'

pa s to lrerge schedulingr

ELSE IF any of, the8e executisn ltates have status
r wait.ing generallzatlont

pasa to geneEalizer seheduling

EL'SE

pass al--I of thece executlon states wLth status
rraf.ting ex.tt trloces,sing, to exlt scheduling.

LZ0



Merge Schedu.l_ing

From all input execution states, retain those which are earliest in
execution order. Statement n is earlier than statement m if there is
a path from n to m inside the loop (i.e. without passing through a

loop exit statement for this loop - see exampre in figure 3-5 above).

From these execution states, pick any set which are associated with a

single merge statement, and are descended from a single execution
state associated with the J-oop eirtry, and pass to the merge process.

Generalizer Scheduling

Pick any set of execution states associated nith a single J-oop entry
statement, that are descended from a single execution state
associated with the loop entry statement, and pass to the loop
generalization process .

Looo Exit Sr':hcdrr'l ina

Pick any set of execut'ion states associated with all. loop exit
statements from a single loop, which are descended from a single
execution state associated with the loop entry statement, and pass to
the loop exit process.

3.3.7 The Case for Theoren proving

As has been discussed above, a slmbolic executor is generally not
abLe to prove conditionar statements either true or false.
Neverthel,essr pANts tif, statement processing discussed above does
attempt to do so by calring a theorem prover. since theorem proving
considerabry sl-ows the program analysis, is it worth doing at arl?
This is a guestion which does not seem to have been addressed in the
literature on symbolic execution.

There can even be some advantages in not trying to do it. consider
the program shown in figure 3-6. Assuming that PAl.l performs less than
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J-oop entry

rnove-unti1-contact-up,-t0 harrrd-A @ I

ti;=x+1

lf contact (hand-A) if r contact (hand-A)

loop exit

ifx>15 lfxSL5

weight (hand-A) := 1 weight (hand-A) z= 2

1L.

L2.

13,

Figure 3-6 - Prro,grram Anal.y.sed Bett,e-:i wit,hout rheorem
__ ___ _____ - ___::::i:g__ _

15 lootrr .lterations before J.oop generatri.zatLonT then by uslng theonem
provlngr PAt{ wj-l1 a^twayc b€ able to prove that the eond.Ltion j.n
statestent ? is false and ctatenent 9 wlII never be executed. ThiE
w{ll result in inconqplete loop anaLysis,
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If, however, no attempt is made to prove
then PAN wilL tlaverae each path on
g:eneralization, the following seguences wilL

SEQUANCE-I = (sequence i
souRcE-l) )

(item: item e
(item: item e

statementsTandgtrue,
each iterat,ion. At loop
be generated:

1 to k sequential_item_in_source (i,

SEQUENCE.l

SEQUENCE-1

Ax>
nx(

since the definition of SEQ'ENCE-2 and sEQuENcE-3 contain a varlable,
x, PAITI will try to express the var-ue of x in such a way that it canbe removed from the definitions of these sequences. rn this case x isalways equal to the length of sEQUENCE-1, which wilt al]ow sEQUENCE_2
and SEeUENCE-3 to be reexpressed as:

SEQUENCE-2

SEQUENCE-3

SEQUENCE-2 =

SEQUENCE-3 =

Even worse, in other
analysis. Consider the

(item: j-tem e SEeUENCE-1 n
position-in-sequence (item,

(item: itern e SEQUENCE-I n
position-in-sequence (item,

15)

15).

SEQUENCE-1) > 15)

SEQUENCE-1) < 15)

to incorrect

The Process used here to remove variables from sequence definitions
is fulty exprained in chapter 4. once these seqluences have beengenerated a complete analysis of the program wil_I follow.
Although this method. works werL in this case, it does so at the costof all0wing execution states to hold inconsist,ent information. rnparticular, the first frame which passes atatement 7 wi1r. have

x > 15 added to the path conditions

and

x : 1 in the variables data.

Programs, this method can Lead
program fragment in figure 3_7.
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fn this case, at the end of syrnbolic executionr the execution statesto be interpreted wirl include an execution state which describes theeffect of passing through statement s 2, { and 7. This executr.on
state, and wlll contain a path condition of

weight(OBJECT-I) = heavy n color(OtsJECT_1) = red

and corresponding
be traversed by
i-ncorrect.

effects. Howeverr sLnce the
any real executorr the

path 2, 4, 7 couLd not
resultJ.ng analysis ls

sequential read file-A

if weight (f,ile-A)
heavy if -l weight (file-A)

heavy

color(file-e) := blue color (file-a) := red

if color (fi1e-A) = blue if color (fiJ-e-e) = red

Figure 3-? Program Analysed
proving

I

fncorrectly Without Theorem
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To avoid producing such results, PAN alerays attempts to prove

conditj-onal staLements either true or fal-se usinE the theorem prover
described below.

The correct method to perform a symbolic execution analysis on such a

Program is to }et the generalized execution state produced from the
first J-oop generalization initiate another set of loop iterations,
producing more execution states for generalization. These would then
be used to produce a second generalized execution state and this
Process woufd continue until loop generalization produces no nelr

information.

PAN does not currently perform more than one roop generalization, but
should be extended t,o do so.

3.3.7.1 Theorern Proving

Theorem proving could be supplied by a system external. to pAN.

obviously, PAN would also need to supply an external theorem prover
with the currently known facts. These are availabre from the path
conditions, variabLes, objects and object sequences data herd on the
execution state.

Since a convenient theorem prover nas not avaiLable when PAtl vras

constructed, a simple theorem prover was devel-oped. This theorem

Prover is not adequate as a general theorem prover but is
satisfactory for the programs so far analysed by pAN. rt, shourd not
been seen as a part of the contribution of this thesis and is onJ.y

described here briefly for completeness.

This theorem prover is passed a candidate predicate and a .rist of
known facts.

The theorem prover extends this list of facts by using the following
rules:
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from (P n 0) gieaerate P, Q

' (<P0) r '|r (<Po)
t (-FQl n ' Gegl
' (=FQl r i (=QP)

' ePg) x n (sQP)

'r (>p,o) n " (<QP)
n' (<FQ) n n (>0P)
' {<pQ) 6 tr (>QPl

'r {< P Q} and, (( 0 R) 'generate (< P R)

" (3,r91 'il (<0R) n i (<FR)
' (<PQ) " (2PQ) r n (-PQ)

The co-mpooents of, the eandidate predLcate are,trow exarnined
reeursively. For ea,ch eorq>onent P, if p.Ls a known factr rqplace P by

T in the ,candidate predlcate. ff -iF ls a factl replace P by F Ln the
carrdid,ate predlaate,.

Once thls Brocess is c,onplete, the regultiag predLcate ia sfuoplified
and returr,led,
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Chapter 4

Loop GeneralizaLion

4.L INTRODUCTION

The most distinctive feature of PAN as a program ana.lysis system is
its method of analysing -loops. PAN analyses toops by generalizing the

effect of a few iterations, to produce the effect after an indefinite
number of iLerations. The idea of using generalization for this
purpose was largely derived from the observation that. hurnan

Progratnmers can often describe a loop after an informal symbolic

execution of two or three it.erations.

The task of such a generalization process is to produce a single
execution state that generalizes the effect of several execution
states. More specifically, PAN must determine the objects and sources

that will- exist in this generalized execution state, describe their
updated properties (modified values of fields in the dp domain or
physical properties in the robot domain) and determine the value of
any variabLes.

The task of determining the objects and sources in the generalized

execution state is a specific case of the more generaL task:

given a set
describe a set
observation O

h

of observations {Orr .. . rOn

of items, determine the items

associated with integer k.

l, each of which
which woul-d be in an

of k, but may

other items.

Note that the items in Ok may not sinply be a function
depend on other facts in Ok, particularly properties of
For example, if we had

o:
I

o:
2

o:
3

o:
a

items

items

items

items

(1 red bal-l, 1 bLock]

{1 red ball' 1 green ball, I block}

{3 red balls, 3 bfocks}

{1 red ball, 3 green balls, 1 blockl
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then a

o:
k

possible value for O. is
r

k balls, n blocks (where n = number of red balls)

So, in this case, the number of blocks depends on the nurnber of red

baIfs.

A system addressing a generalization probJ.em similar to this is the

SPARC/E systern described in Dietterich and Michalski t19851 . This

system has been desigried to pJ-ay the game of Eleusis, whlch involves

finding patterns in sequences of playing cards. Given a secluence of k

cards <card, ' ..., cardr), SPARC/E finds the set Q*., of
a&nissible next cards. this set may depend on any of the properties

of cards (card | ..., card ).

PAN's task is in some ways harder in that an exact description of the

objects in the generalized execution atate is reguiredT not just a

set of admissible ones. On the other hand, seqluences in Eleusis are

often quite complicated, whereas investigations with PAI.I have shown

that sequences required for program anal.ysis are usually much

simpler.

Thus the specific techniques used by Dietterich and l{ichalski were

not found suitable for use in PAliI. However, their approach in trying
to fit the input data to various parametized models has been

sucoessfuJ-Iy adopted in PAN. Deitterich and I'tichalski define a model

as follows:

"A model is a structure that specifies the syntactic form of a

class of descriptions. A model consists of model parameters and a

set of constraints that the model places on the forms of the

descriptions. The process of specifying the values for the

parameters of a model is called parametizing the model. The

process of filling in the form of the parametized model is called
instantiating the model.'

L28
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Separate modefs are used for determining the objects in the

generalized execution st,ate, describing their updated propertS-es and

finding the vaLue of variables. These are further discussed below.

None of PAlil's models use parameters.

Once PAlr has determined the objects and soutces that shoufd be

included in a generalized execution state it. must determine the

updated properties of the objects. this task is a special case of the

more general task:

given a set of observations {Or, . . . r on} r each of which

describes the properties of a fixed set of iterns {Ir, .rI"}r

determine the properties of these items in observation O*.

If r"re added the restriction that the properties can be divided into

descriptors (those which can be observed) and symptoms (those which

we are trying to predict) and the symptoms of an item must only

depend on other descriptors of that same itern, this generalization

could be performed using generalization methods developed for

learning systems, such as those described ln Michalski[1983].

To use these methods, the observations {O-'...rO } must only

contain expressions of the form

P. (itern) + Qi(item)

where n, is some predicate made up from descriptors and O is a

symptom.

These would be generalized to some expression

P(item) + Q(item)

true in all observations.

We now shon that PAlil, s generalization task cannot be exPressed in

this way, so that the methods described in Michalski t19831 cannot be
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used. since each observation used by PAN is, in fact, an execution
state, we can, for each observation, obtain an expression

P+Q

by setting P to be the path conditions and O the effects of the
execution stat,e. To obtain the form above, the expression p -+ e would
need to be restated as:

(PL + QI) n (P2 + QZl n ... A (Pn + 0n)

where each Pi + Qi invoLves only a single item, pi being const.ructed
from descriptors and Qi from symptoms. However, the execution state
expression, P + O generated by pAN cannot always be represented as

subexpressions involving only one item. For exampre, if pAI.l is
anal-ysing a loop which includes the condition

if weighL (A) - weight (B)

then the execution states to be g,eneralized may include expressions
of the form

(weight (OBJECT-I) = weight. (OBJECT-2) ) -t Q

for some Q, which cannot be reexpressed to invoLve a single object.

Because of this PAll instead uses the model approach mentioned above

to generalize execution sLates.

Producing a generalized execution state also requires pAN to
generalize the value of variables. The special nature of variables
adds peculiarities to the generalization task which seem to occur
only in program related problems (e.g. program anarysis or program
verification), and do not seem to have been previously approached
using generalization. PAI.I uses models to express variable valueg in
terms of generalized objects in the generalized execution state, ag

described beLow
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In addition to the use of these models, another generalization

technique used in Dietterich and MichaLskitl9S5l and adapted for PAliI,

is that of adding derived properties. Simply stated' this technique

consists of adding derived attributes to those explJ-citly provided,

before generalizing. GeneraLization may sometimes be successful usJ.ng

the derived attributes where it would be unsuccessful if restricted

to the explicitly provided input attributes. For exampler in the game

Eleusis, a particular card may be described as ljack of hearts'r but

generalization may need to use the fact that the card is rred' or ra

picture cardf

In PAN this techni.gue has been considerably extended. fnstead of just

looking for derived attributes of a single object, PAlil can use all

facts available in an execution state to derive additional facts for

use in generalization. Since, in PAN, this tectrnique has become very

computationally expensive, it is only used when necessary. Thus PAI-I

first tries to generalize the execution states without using derived

facts, and only includes them if this Process fail-s. The Eeneration

of derived facts is described in Chapter ?, and this chapter merely

mentions how the decision to use this method is made '

4 .2 OVERVIEY{ OF PAIiI GENERAIIZATION

The task addressed

execution state that
of iterations, given

a few iterations.

by PAN generalization is to produce a singJ-e

describes the effect after an lndefinite numbel

the execution states describing the effect after

PAN divides this task into three major comPonents:

describe the objects that would exist in a generalized

execution state using the sequence terminology described in

Chapter 2.

describe the effect that the loop has on updated object

properties by describing them in terms of seguences'
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find the value of each variable in the generalized executLon

state, expressed Ln terms of seguences.

These tasks show that seguencea are a key component. in pAlil,s loop
analysis method. A PAN seguence is conceptuarLy sirnilar to the
temporal seqpences developed as part of the Prograngners Apprentice
Project IWaters 1979]. Given a statement in a loop which is
repeatedly executed, we can form a sequence of execution states
associated with that statement, that were created during the first'
second, thirdr.. etc iteration of that loop. From this sequence of
execution statesr sequences of items created in each execution stat,e

can be formed. (This is a simplification since PAr.I will actually have

many execution states which have completed any given number of
iterations. ) Such a sequence is temporal in the sense that items are

created over time i.e. one in each iteration. Treating this sequence

as a non temporal aggregate item allows the loop effects to be

described in a non iterative manner, eventually leading to non

procedural prograrn specifications being produced.

For example, consider the program fragment in figure 4-1. The program

has been coded so that each record read from file A is separately
updated so that its color field has the value red. The loop is used

as the mechanism for processing each record. If, however, the
seguence of records created at statement 2. say SEQUENCE-I, is
treated as an aggregate object, the program can be represented as

having the effect shown in figure 4-2. The programs shown in figures
4-I and 4-2 have the same effect, but figure 4-2 does not include a

locp and so leads easily to the production of specifications.

PAN generalization does not try to explicitly produce programs

expressed in terms of sequences as shotdn in figure 4-2. fnstead it
uses sequences t.o describe the effects of the loop in a non iterative
manner.

As mentioned above, PAN aequences are conceptualty similar to the
temporal sequences used in the Prograrsnerts Apprentice. However there
a!e differences. The Programmer,s Apprentice consttucts sequences
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sequent.ial re,ad .A

eolor (A) := red

Figure 4't Seguence of, Reeords
IndivLduall,y

Being Proeessed

obtain SE0UENCE-L

color (SEOIENCE*I) := red

EiEUre 4-2 Seqr:,ence of Re.csrds Processed as an Aggregate
gb'ject

fron examinatioa of prqgraln eode', 'wheteag PAN congt'ruets segueaee'g

fr.qsr examlnatLon of execution states. This ensures that FAlf catl

construct Eeqluences regardleos of peculiarities Ln eoding' A tnor€

sigr,rJ.f icant d^if f e,rence ls in t,he uae of seqluesces. Since the

Frogralnhe,r's Apprent,ice is not a synboJ.ic e*ecutl'on S1'cterq Lt doe.s

noL hav"e a descriptLqn of the ef,feets 'of the program, sinee PluI does

have su,eh a deecriptl6nr it Ls able to use sequenoea to produee a non

procedural dreseriptlon of tr)roEirans eontatnlng' iterat{'oa'.
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4 .3 SEQUENCE GENERjilTTON

{.3.1 Introduction

Having given an overview of the rofe that seguences can Play in
produeing non iterative specifications for loops, lte non introduce

the method by which sequences are genelated. PAI.I generates two tlpe
of sequences, primitive seguences and subsequences. Primitive
seguences are expressed as (sequence i:1 to n D(i)), where D(i) is
the definition of the ith item in the sequence. Thus to generate a

primitive seqluence, PAN needs to

- identify the objects in it
- determine the generalized description of the objects in

terms of the sequence variable

- determine an exPression for the length of the sequence.

Subseguences are expressed as (item: item e S n P (item) ), where S is

a sequence and P is a predicate. Thus to generate .a subsequence PAlil

needs to find a predicate which can be apptied to the items in the

sequence S. Subsequences are equivalent to the Programrner's

Apprentice temporal sequences generated by a filter.

Generating primitive seguences is an inductive Process since a

sequence describes items which will be generated in iteration k, from

the items which have actually been produced in the first few

iterations. this process is hard, principally because each execution

state being generalized will- have a different combination of objects

to be included in any given seq[uence, and because we allow items t,O

be defined in terms of other items. Conseguently, if item- , item-S

and item-6 are defined in terms of item-1, it,em-2 and item-3 which

are included in seqluence 51, a sequence 52, which can be generated

from item-4, item-S and item-5 may not become obvious until the

definition of these items is reexpressed in terms of 31. This implies

that sequences need to be generated in the correct otder.
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Subsequences are generated by applying predicates to the prirnitive

seguences or previously generated subsequences. These predicates are

based on the conditions which occurred in the conditional statementg

within the loop. Generation of these predicates to aPPly to a

sequence S is, however, far from trivial because:

- the condition may refer to several items, sorne included in S

and others not

- the cond,ition may have incLuded a variable with a value set

in some previous iteratlon of the loop. Thus variables can

disrupt the orderly temporal nature of the iteration by

retaining values from an earlier time.

To make these ideas more concreter we now look at some example loops

and the sequences required to analyse them. Considering how PAIiI can

generate these sequences will suggest a sequence generation procedure

which we then try to apply to a general loop structure.

Example Sequence Generation

As a first example, consider again the Program fragrnent first
presented as figure 2-t3' and reproduced here as figure 4-3. The

interpret.ation in section 2.2 used the following sequences

SEQUENCE-I - (sequence i - 1 to n sequential-object-in-source(i,
souRcE-1) )

SEQUENCE-2 = (seguence i = L to n sequentiaf-object-in-source(i,
souRcE-2) )

SEQUENCE-3 : (item: item e SEQUENCE-I n weight (item) =

weight (map(item' SEQUENCE-I' SEQUENCE-2) ) )

where SOURCE-1 and SOURCE-2 axe defined as fite (A) and file (B) .

How are these aequences generated? The execution states to be

generalized wiII all include objects defined as:
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sequential read A

:sequentidl read B

if we5,ght (A) = weight (,8)

color (A) l= b.l.ue

5.

Figure 4-3 - Subseque-nces using tlto s6p[QQS o

sequentlal-ob ject-i -eor'rrce (:l r SOIIRCE-I)

and

sequeCItial.-object-in-sonree (tr SOURCE-2 t

f or i f ronr tr to th€ nuriber gf, t"oop itetationa petfo11pd. Thue

SEOITENCE-I and SEQ['ENCE-2 ean be ge'ne=ated by

recogniairrg t!1at there are. seta of qbj.ects nhose def,loLtlons

varlir ontry LR a singtre integer-

putttng the obJeots j.ata order o ereation" glving thl-s

lnteger the values 1r 2. 3r..- i'e. tshe lth value l"s i'

nl.l.l, at thls Polnt' slnSrly be therhe length of these seq[en€eg
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nunber of iterations k (a value for k witl be found during exit

processing as explained in chapter 5).

Generating SE9UENCE-3 reguires the recognitlon that the condition in

statement 5 is applied to the objects in SEQUENCE-I and SEQUENCE-2.

During program executionr the condition in statement 5 will have been

instantiated with objects which are now included in SEQUENCE-I and

SEQUENCE-2; this may suggest that the rule for using condit,ions to

produce subseguences is

if the condition has been

included in SEQUENCE-n,

subsequences of SEQUENCE-n.

However' this is not adeguate

program in figure 4-4.

So, in this case

the condition in
instantiated with

instantj.ated with objects which are

then use the condition to form

as can be shown bY considering the

Interpretation of this program reguires that a vafue for \11 as

updated by statement 6, be expressed in terms of a sequence' Since v

is the sum of weights of objects passing through statement 6, which

are those objects from SEQUENCE-1 that satisfied the condition in

statement 5, we now require the subseguence

SEQUENCE-3 = (item: item e SEQUENCE-I ^
weight(nap(item, SEOUENCE-1, SEOUENCE-2) ) < 10)

we need to form a subsequence of SEQUENCE-1 using

- statement 5, even though that condition is never

objects in SE9UENCE-1.

Thus, in general, we need to use the condition in an if statement to

form subsequences of every sequence which has objects which can be

referenced in the statements succeeding the if statement - This means

generating subsequences from afl seqruences consisting of objects that

rrere the current objecL from a file or the object in contact with a

robot hand when the if statement was executed. Usigg of the map

function in creating these subsequences requires the aeqnrences to
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loop entsrlt

s quential read A

sequential read B

if weight (B)

r/ := v + weight (A)

sequentiaL read C

Figu:le 4-4 - ExampJ,e of toop St'ruct'ure

- 
D--- 

--;-;'-- =---5---+----

hav€ the
8,e.![u€'rO€

obJects

lenElh.

sarne length, We will seer latet in the chapterr that P.A,til's

er.eation proced,ure enguaes that sequenceA that consist of

eurrent w,hen a4 if stat,enent was executed will be of egual

IiavlnE looked at the sub-segr.rences that need to be ereated usLnE the

conditi,on in an if ELaternenti w€ row c,onsid€r the length of segtrenees

cons:Lsting of obJects cEeated *.hen executing stat"ements la the btanch

begrLnning at that if statelFnt, Such a sequence uhlch wLlL be

Eenerated by obJ,ects e.reated b.y statenent. 7 Ln flgrune 1l-11:

SEQUENCE-4 = (s.equence l,= 1to n saquential-obJect-in=soutce(..1r

souRcE-3J ) .
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The length of this seqluence, 112 in any execution state wiI] egual the

nunlcer of t,imes statement ? was executed. But this is equal to ttle

number of times statement 5 was true, which is the lengrth of

SEQUENCE-3. Obviously, if we want to exPress n in terms of

SEQUENCE-3, we need to have generated SEQUENCE-3 before SEQUENCE-4.

This suggests that generation of seguences for analysing the program

in figure 4-4 needs to take place in the following order:

generate sequences for objects breated in the unconditional

code of statements 3 and 4

form subsequences of these sequences using the conditions in

all the if statements succeeding statement 4

form sequences for objects created in statements following

these if staternents such as statements 6 and 7.

Developing a Sequence Generation Algorithm

We novr extend the reasoning above by considering J-oops with an

arbitrarily complicated structure of conditional branching. We first

examine ttre effect of condition statements in sequence generation and

then the effect of merge statements.

Consider the condition statements in the loop shown in figure 4-5'

Each "branch i" is a branch as defined in Chaptex 2. Suppose that on

each iteration objects hrere created when executing statements in

branch 0. To generate seqluences from these objects, we can look for

groups of objects whose definitions vary only in numbers whose values

can be expressed as a function of the object's position in the groupl

arranged in order of creation. Let, the sequences generated be

referred to as 51' . , ., SP.

We initially consider the simpler case in which condition 1 is an

expression involving objects created in branch 0, and does not

include variabfes. (Condition I rinvolves' objects if it refers to a

file's current object or a robot hand's contacted object')
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loop e,ntry

if co,ndition 2if condition 1.

if condition 1-2if, condition X.-1

b'rar:rch 1-2bnanch L-l-

if condition n

FiEute 4-5 - Frogram Structure within a Loop

?o be able to descrlbe the agtlon taken by brEnslr 1' rhich nay

ineJ-ude rnodi.f y-i.ng propertie.s of tho,ae ob jects f rorn aeguences

Strr...rstr) that al-e eurrent when brancl.r X. is executedr we need tO be

able to etqlreac' the suboequea'ees of slr " 'rsP which satisfy eqndition

1.

Sgrbolie executiora of condition 1 in
result. i,n the current obJects being

the f orm fil.e (<file-identi'fierll
Conditl-on 1 wllL Lhen be ln the form

P (cur!,ent obJeats at oonditl.on tr)

for s,goe P,

rf rre rBak€ the stnprifirlng assu't )tion

eome fterattroll sf Lhe loop si1l
Lnstant,Lated for expreo,siono of

or hand (<hand-identlfier>)'

!,{0

that eveE-Y aequence generat€4



from objects created in branch i contains exactly one object from
each execution of branch i, and every object created in every
iteration has been included in a seqluence, then the current objects
on the ith iteration wirr consist of the ith object frorn each

sequence, so condition 1 can be stated as

P (ith 31 item, . . ., it.h Sp itern)

The subseguence of Sj items satisfying condition 1, say Srj, wlll
include those'Sj items which satisfy p. i.e.

s' j = (item: item e Sj /\ p(ith 51 item,..., ith Sj-l item,
item, ith Sj+1 item, . . ., ith sp itern) ) .

But since the above assumption means that aII seqluences S1r...rSp
will be the same length, this correspondence can be expressed using
the map function defined in Chapter 2 as

s'j : (item: item e Sj n e(map(itern, Sj, 51),...rmdp(item, SJ

Sj-1), iten, map(item, Sj, Sj+l),--,, rnap(item, Sj,
sp))).

If 51, . . ., Sp were of different lengths, we would need to introduce
relationships more complex than .mapr. This has not been found
necessary for any of the programs which have been analysed.
Restricting t,he relationship between sequences to map is a current
limitation of t.he PAN system. Note that, in any execution state, all-
subsequences St1r...rS'p created by condition 1 are also the same

length, since each contains t.hose items from 31r...rSp which make

P(current objects at condition 1) true (this is proved more formally
beJ-ow) .

Referring again to figure 4-5, objects may arso have been created in
branclr 1. As before, ,these objects are put into groups with
definitions varying only in numeric parameters, and from each group a

sequence is created. Our simplifying assumption ensures that the
length of these sequences will be the number of times branch 1 is
executedl which is equal to the length of any of the Srj sequences.
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Thus the following seguences contaln objectg

condition 1-1 was executed:

which were current when

that contain

of merge statements on sequence

shown in figure 4-5, in which Paths

merge at single st'atement.

the subseguences of the branch 0 sequences,

items satisfying condition 1 i.e. S'1, . . ., StP

oequences containing items created ln branch 1.

We now form subseguences of al.L these seqfuences in the same way ag

above, using condition 1-1 in place of condition 1

This process can be repeated until all branches beginnlng with

conditions have been Processed.

vile now consider the effect
generation. Consider the merge

from condition-1' . . ., condition-n

To describe t.he actions taken in branch-i we need to be able to

express the subseguences which consist of objects current when the

merge statement is executed. If sequences S1, ' ' ', Sp consist of

objects which were current when the statenent at a fork was executedr

t,hen the items in any Si whiCh were also current when the merge vras

executed wilL be those which satisfy the conditions reguired for

execution to reach the merge statement. By the definition of the

statement condition, this wiII be the difference between the

statement condition to reach the merge from that to reach the

statement at a fork. But by theorem 3-3 this is

condition-l v condition-2 v ... v condition-n'

The instantiation of any condition-i when the condition was executed

wi]l consist of items current when the fork statement uas executed.

Thus if we set

P' = condition-l v condition-2 v -.. v condition-n
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+

f--T--
lcondition I

- 
-T v

lcondition-n I lconartion-l

I

I

Ftgure 4-6 General Merge Fo-rnat

srJ,= (itemr itenr e S j rr F? (na5r{itemr S j, SXl r' ' ''maP (Lten'

sj sJ-1), ltemr nap(tterrri sJ, si+l) t.. tt naP(iltefib SJt

sp))).

trt. ls Lhe re,Etr,ietLons on cond:Lt,iona,l branching introduced in seetlon

2.1 .g that ena,ure,a that sgbsequelrces clrrrent wtrren a nerge gtatement

Ls exeeuted oan be e:tpressed in th13 f orrn. without t'lte'ge

re.4r;trlctions, the statg4ent condltion to reaeh the mergie stateroent

iriay eoatair,l objeets created ,after Lhe f,orkr nhieb could not be used

to forrn subsequeneec io the fosr of, S'J above'

th€rr P' fuLfil,s the
sulqseglrenoe of, any Si

can be expreesed as

SequeDces €ieneraEed fnom J.telrrs

ner,Ee wiltrr as abover hlve ttle

game'requireurents ag, P aboveT L'e' ttre

cuqrent rthen th€ melg.e Etqterent is exec'uted

created Ln the ,branch beg'lnrrlng at the

aane lengt-h as the8e subseggeaces'
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statement at fork

condition-2condition-1.
:_

t"-t.t.t."'"-l

I

Figure 4-7 Last Merge Format'

As a final observation on branches beginnlng with a merge, hte

consider branches which follow the last merge for a fork. In thig

case ne have the situatlon as shown in figure 4-7.

In this cds€1 if vre consider a sequence which consists of items

current at the fork, then by the reasoning above the subsequence of

items current at tbe lnerge will consist of those items which satisfy

the disjunct of the conditions. But in this case the disjunct of the

conditions is simply T, so seguences created in the branch beginning

with the merge will be the same as those created in the branch ending

with the fork. Thus these branches can be treated as a single branch

for the purpose of grenerating sequences. This applies to any branches

which are reached from loop entry under the same conditions.

branch-i
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ConditLons Containl-ngr Variables

We now consider the
condj-tions containJ-ng

more cornplex case of forming: subsequences from
variables.

Suppose now we have condition-l followLng a fork, involving variables
v1'...rvrle in addition to current objects. Condition-l wilt nou be in
the form:

P (current objects at condition-1rvlr . . . evnt

rf seqluences sl.r...rsp have been generated in processl-ng the branch
ending with the fork, then by our previous assumption, the current
object in the ith iteration will be the ith member of s1r...rsp. Thug

condition-l can be expressed as

P(ith 51 itemr...r ith Sp itemrvlr...rvn)

As a first stage in generating subsequences of sl1...;sp which
satisfy P vre simply all.ow p to continue to refer to variables by
their identifiers. so, as above, for each j frorn 1 to p, we would
form:

s'j : (iteln; item e Sj n p(map(itemr Sj, 51)r..., map(item,
Sj Sj-1), item, map(item, Sj, Sj+1),-.., map(J-tem, Sj,
Sp), v1r...rvn) ) .

Note that this can only be done if the occurrence of variables in a

condition can be explicitly recognized. Such a sequence definition
cannot be used in the general.ized execution state as it contains
unknown values for vle...rv!t. Thus a second stage is invoked which
tries to express the vaLues of vi in terms of previousJ.y defined
seqJuences and their current objects. This process is described in
sectl-on 4.4 below.
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Sununarv of Progress

The sequence generation Process outlined above depends on

determining:

L/

2/

the items which

sequences - those

reached under the

are candidates for generating Primitive
created in the aame branch or a branch

same conditions

the conditions to use for generating subsequences ' These

conditions either originate from if statements (for

specifying those objects that satisfy the conditions

required to enter a branch beginning with an if statement)

o: t from the disjunction of such conditions (for sPecifying

those objects that satisfy the conditions required to enter

a branch beginning with a merge statement') In both caaes

the occurrence of variabfes needs to be explicitly

identified.

Both these requirements can be met by the statement condition, which

has been expressly designed for this purPose.

Reguirement 1 is rnet by the fact that a1l items created in branches

reacbed under the same conditions will have been created in execution

states having identical statement conditions if instantiation is

ignored.

The first part of requirement 2 is met by the fact that if seguences

have been created from items in some branch, branch-i whose

statements have statement condition P, then any condition 0

succeeding this branch will have caused a statement condition of P n

e to be recorded in the execution state created when the condition is

executed.

The second part of requirement 2 is met by the fact ttrat if seguences

have been created from items in some branch, branch-i, whose

statements have statement condition Pt then if the branch is
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succeeded by conditions C1r...rCn in the first statements of Paths

which later merge, then P n (C1 v v Cn) will be recorded in the

execution state created when the merge is processed'

To sununarizer the statement conditions Preserve the structure of the

conditional branching within the loopr and it is tbis structure which

determines the sequences and subseguences required for Ioop

generalization.

Trems Defined in Tffi

The sequence generation model creates seguences using the definitions

of objects. The method of representing the definition of objects

which are defined in terms of other items requires careful handling.

Consider the program fragment in figure 4-8.

Two execution states, after four iterations could contain the

following

Execution state 1:

OBJECT-I : sequential-object-in-source (1, SOURCE-I)

OBJECT-2 : sequential-object-in-source (2, SOURCE-1)

oBJEcT-3 : sequential-object-in-source (3, SoURcE-1)

OBJECT-  = sequential-object-in-source (4, SOURCE-1)

OB,JECT-S : keyed-object-in-source (weight (item) =

weight (OBJECT-I) , SOURCE-2)

OBJECT-5 - keyed-object-in-source (weight (itemct) =

weight (OBJECT-3) ' SOURCE-2)

color(oBJEcT-1) = red, -col-or(object-2) = red

color(OBJECT-3) : redr -color(object-4) = red

Execution state 2:

OB,1ECT-! = sequential-object-in-source (1, SOURCE-I)

OBJECT-2 : sequential-object-in-source 12, SOURCE-1)

OB.7ECT-3 - sequential-object-in-source (3r SOURCE-1)
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seqUential read A

if eolor (A) = r€d

keyed read A weight (B) = weight (A)

I

Figure 4-8 Definition of objects f,on sequence Generation

OBJECT-4

oBir3cr-7

OBTIECS-8 =

-rcoJ-oE (OBJECT-I)

1co].or {OBJECT-3)

ceguEnt, j,a1-object-Ln-source ( 4, SOURCE-I )

keyed-object-in-source (weight (iten) E

weIght. (OEJECT-Z) r SOIIRCE'Z;

keyed-object-in-gource (weight (it,en) =

neiglrt (OB.I-EC!-4) , SOURCE-Z)

color(object-Z) = red

oolor (obJect-tl) - red
=t€r

= red,

r,n each exeeution statel the. definitlor s of oB.tEcr-sf oBitEcr-6,
oBJEcr-? and oBJEcT-8 have terr$s containLng othe: objects. rf we

Eulrstitute the definLtlons of theee obJeets l-nto the defLnitions of
oDJECI-5, oBJECT-6, .OB\TECT-I and oB,fECT-8, we obta:i$

Exccution state 1:

OBJECT-S - ke)red-ob,jeet-in-source (ueight (ltetq) -
weight (sequentlal-obJect-ln-sou,rce ( 1, SOIIRCE-I ), SOURCE-2 I

Ots{IECT-6 = keyed.-object-Ln-souree (neight (l-tesr} =

ne:lEht (sequential-ob ject -l-n-souree (3 r SOU,RCE-I l, SOITRCE-2 l
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Execution state 2:

OB.IECT-7 = keyed-objeet-in-source(weight (iten) =

weight (seguential-object-in-source (2' SOIIRCE-I) r SOURCE-2)

OBJECT-8 : keyed-object-in-source (weight (iten) =

Given these definitions, tbere is no simple function f, which will-

aLlow these definitions to be expressed as

OBJECT-$ = keyed-object-in-source (weight (itern) =

weight (seguential-object-in-source (f (1) , souRcE-l), SOURCE-2)

OBJECT-6 = keyed-object-in-source (weight (item)

weight (sequential-object-in-source (f (2) , SoURCE-1) , SOURCE-2)

OBJECT-Z = keyed-object-in-source (weight (item) =

weight (seguential-object-in-source (f (1) I souRcE-1), SoURCE-2)

OBJECT-8 - keyed-object-in-source (weight. (iten)

weight (sequential-object-in-source (f (2), souRcE-1), SOURCE-2)

Thus no sequence can be generated from these definitions. Howevert

OBJECT-I, OBJECT-2, OBJECT-3 and OBJECT-4 will already have generated

the sequence

SEQUENCE-I : (sequence i = 1 to k seguential-object-in-source(i,
souRcE-1) ) .

Then the condition on color(A) : r€dr wilL have been used to generate

the subsequence

SEQUENCE-2 - (item: item e SEQUENCE-I n color(item) = red) '

In each execution state, lre can therefore represent the objects used

in definitions of oBJECT-5, oBJECT-6, OBJECT-7 and OB.TECT-8 as

Execution state 1:

OBJECT-I = itern-in-sequence(1r SOURCE-1)

OBJECT-3 = item-in-sequence (2r SOURCE-I)
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Execution state 2:

OBJECT-2 = item-in-sequence (1r SOURCE-1)

OBJECT-4 = item-in-sequence(2, SOURCE-I)

Substituting these facts into the definition of OBJECT-s, OBJECT-6,

OBJECT-? and OBJECT-8, we obtaln

Execution state 1:

OB;ECT-5 = keyed-object-in-source (weight (item)

weight (item-in-seguence (1, SEQUENCE-2) ' SOURCE-2) )

OBJECT-5 = keyed-object-in-source (weight (item)

weight (item-in-seguence (2, SEQUENCE-2) , SOURCE-21 )

Execution state 2:

OBJECT-? = keyed-object-in-source (vleight (item)

weight (item-in-sequence (1r SEQUENCE-2) ' SOURCE-2) )

OB,lEcT-8 = keyed-object-in-source (weight (item) -
weight (itern-in-sequence (2r SEQUENCE-2) ' SOURCE-2) )

It is now straightforward to generate the sequence

SEQUENCE-3 - (sequence i = 1 to size(SEQUENCE-2)

keyed-object-in-source (weight (item) =

weight (item-in-sequence (ir SEQUENCE-2) , SOURCE-2) ) )

in both execution states.

For this reason, whenever an objectr adY oBJEcT-1, has a definition

which refers to another itern (objectr source or sequence) that is a

member of a sequeDC€; ne rePresent that oBJEcT-1 using

item-in-seguence(i, SEQUENCE-n), where SEQUENCE-n is the smallest

sequence that the item is in.

We have now introduced the sequences which PAI{ needs to generate and

the role played by the statement condition in secfuence generation'
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The models for seguence generation described j.n the next section are

designed to generate these sequencea'

' 1.3.2 Sequence Generatlon Models

We are now ready to specify in detail the sequences g:enerated by PAI{'

This speci-fication is in the form of two models. Each model describes

a sequence which wiII be produced if the specified conditions are

satisfied by the execution state3 being generalized. After the modeLs

have been presented, an algorithm is presented, showlng how execution

state conditions can be tested against the models in a efficient

manner.

Two models are used, one to generate primitive sequences and the

other Lo generate subsequences.

Model 1 Primitive Seguences

Suppose we are given execution state" E, t " ' tE"t to be

generalized. A primitive sequence will be generated whenever we can

find a set of items I, 1 < i 3 g, in each execution statet which
J

satisfy the following:

-theitemswerecreatedbystatementswiththesame
uninstantiated statement condition P for the loop being

generalized.

- the definition of any item in any I. is of the form

D(n ,...rD ), where Il. 1...1tl are integers 
)

lnln

- functions fI,...rfm, can be found, such that the ith member

of I. is

D(f1(i),...'fm(i))

- the size of r. equals either the iteration count in each

,, if P is ;, or the slze of a previously generated

sequence associated with P-
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If these conditions are satisfied the pri:nitive sequence

(sequence i = 1 to h D(f1(i) r---'fn(i)))

wiII be generated,

iteration count)

sequence S.

Given a

we say

egual to
A(R,+

For the next model, hte note that an execution state E associated with

Ioo! entry describes the effect thir program has had after execution

has traversed some Path H through zero or more iterations' During

each of these iterations, statement conditions wl-Il have been

recorded on the execution states created while traversing H.

The statement conditions recorded in these execution states provide a

history of the path traversed to reach the execution state E. we 8ay

that an execution state has a statement condition R in the history

of the ith iteration if R is recorded in an execution state that is

created while executing path lt in the ith iteration of the loop' If

the iteration is not significant we simply say that an executlon

state has R jn the historY.

and associated vtith P, where either h = k (the

or h = size (S) for some previously generated

set of statement conditions in a history contalning R and

that R is minimally sttonger than P' if R -+ P' R is

P and there is no Rt, R not equal to Rt, such that (R +

P). | .\

P,

not

Rr)

Model 2 Subseguences

Suppose we are given
generalized. If sequences

and are associated with a

of Er...rE, and these
lq

execution state" E, t -.. tEnt to be

S1r...rSP, have previously been generated,

statement condition, P, from the histories

histories contain a minimally stronger

, associated with R,condition R = P n Q, then generate S1'r..'rSP'

where Si' is defined as

Si, - (item: itern e Si ^ Q')
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where o, is obtained from o by replacing any instantiation

[(source-identifier>/<object-identifier>] either by ltem tf

<object-identifier> is a mernber of Sl, or by map(item, Si, SJI if
(object-identLfier> is a member of Sj, j not equal to j'.

As discussed in lDeveloping a Seguence Generatlon Algorithm' abover

it is the conditional branch restrictions of section 2.2.3 and their

consequences (especially Theorem 3.3) that guarantee that each

<object-identifier> is in one of S1r...rSP, as long as sequence

generation has been successful uP to and including sequences

assoclated ?rith P.

{.3.3 Sequence Generation Algoritbn

These models are used to generate seguences as follows:

Find any items (objects, sources or sequences) created by a

statement in the loop being generalized with a statement

condition of T. Retrieve the definitions of these items and

replace any other itern I in the definition by item-in-sequence (ir

SEQUENCE-n), if r is the ith itern in SEQUENCE-n and SEQUENCE-n is

the smallest aequence f is in. Use sequence model 1 to generate

sequences for these items. Let these sequences be S1r...rSP'

Now take the history of statement conditions from every execution

state, drop duplicates, and put the remainder into a partial

order of strength of the condition, i.e. P < Q if and only if Q +

P.

1.

2.

Let the weakest conditions be {C1,

n, to form subsequences of Sj,
generation model 2.

.rCn). Use each Ci' 1 < i <

1

3. Repeat steps 1 and 2 for every condition, C, in ordere so that ln

step L, use items created by statements with statement condition

C instead of T, and in step 2. using conditions minirnally

strong'er than C instead of the neakest conditions.
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Continue until all" conditions have been Processed-

{.3 . { Propert:Les of, Seguencer

we now demonst,rate two important properties

using these models.

Theorerq {-1: Let S1r...rSP, be a set of

the seguence generation models

same statement condition P.

following:

Proof:

of sequencea created

sequences created using

and associated with the

51, . . ., SP, satisfy ttre

they are aII the same size in any execution state

for every execution state, each member of any Si

was created on a different iteration

for every execution state the jth members of each

si nas created on the same iteration, the jth to

include P in the historY.

proof is by induction on the statement condition that

s1r...rSp are associated with. FOr seqluenceg associated with

the statement .condition Tr model I requires that these

seguences are al.ways equal in length to the iteration count-

For this to be true for execution gtates which have

completed lt 2, 3r... iterations, these sequences must have

one member created on each iteration. Since the statement

condition T is in every it.eration of every execution state

(by definition of the statement condition) these sequences

obey the proposition.

Now suppose that the proposition is true for sequenceg

associated with statement condition P and f, = P ,r O is a

rninimally stronger statement. condition in the history of

some execution state. We 1tant to show the proposition is

true for all aeguences associated with R' we first
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demonstrate this for sequences created using model 2 and

tben uging model 1.

Let the seguences associated with P be S1r"'rSP, and

subseguences 51'r...rSP' be the sequences generated from

them using rnodel 2. Thus Sit = (item: item e Si a Q'(item))r
where Q, is as defined in model 2. Let the iterations in

which R Ls in the history of some execution state be

I1r...rIITt. we first show that for any Si, 1 S i 3 P, the

rnembers of Si that are included in Si', are those created

during one of I1r...rIfi.

Intuitively rfe are trying to show that if items in si were

created by atatements with statement condition P, then the

items in Si' (itern: item e Si ^ Q(item)) consist of tbose

items in Si created by statements wl'th statement condltion

PnQ.

First suppose that R is in the history of some iteration.

Ttren by the definition of the history, R = P A A was

recorded in that iteration. Now a3 shown in the proof of

theorem 3-2, only one of two program structures give rise to

a change in the statement conditions. Either o is the

conditlon in a statement succeeding one at a fork, or Q is

the disjunct of several such conditions at the beginning of

paths which meet at a merge. In the first cds€r the fact

that P n Q was recorded means that the statement containing

the condition vras executed and ao the condition must bave

been satisfied by the current members of S1r"'rSP' In the

second case the fact that the P a Q wag recorded means that

the merge statement was executed and conseqluently one of the

paths to that merge was executed. Thus the condition at the

beginning of that path must have been satisfied by the

current members of S1r...rSP and since Q is the disjunct of

such conditions, it also must have been satisfied. Thus in

either case O is satisfied by the items in Slr "'rSp for

ttris iteration- But since O is satisfied if and only if Ot

is satisfied, then these items are in S1'r...rSp"
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Converselyr suppose that for some iteration' the Ltems in

S1r...rSp are also in 51'r..'rSP'' By the inductl-on

hlpothesis P must be in the history for this iteration. For

the items to be in s1rr,..rSP,r then they must satisfy 0.

But sLnce A is satisfiedr then if 0 is in a condition

succeeding a statement at a forkr that statement will be

executed. This will cause the statement condition to be

updated to p a o. If o is the disjunct of conditions

succeeding a fork, then one of these wiLl be executed and

when'the merge atatement is reached again, P ,l O will be

recorded.

we now know that, for each i, the members of Sit are those

members of si created on the ith iteration that had R in the

iteration history. But since, by assumption, each member of

Si is created on a different iteration' so must each member

of sir be. Also, since each si is the same size, and the nth

element of si is in si' if and only if R is in the history

of the nth iteration, if and only if the nth element of Sj

is in Sj', Si' and Sj' are the same size'

For sequences associated with R, created using model !'

their lengthsr by the rules of model 1, must be equal to the

lengthofanySi,.Thisshowsthattheyarethesamelength.
AI3o, for this to be true for execution stateg having

completed 1, 2' 3r... iterationsr the members of these model

I sequences rnust have been created in the same iteration

tlrat sit members were created. since si' mernbers obey the

proposition, so must sequences created using model 1 '

Tbe next theorem shows that there is a refation between the items in

sequences and items used in instantiation if the program satisfies a

Constraint on instantiation. ,ln item which is the current record from

a file or the object currently contacted by a robot hand, will be

used to instantiate any Program statements which refer to that item

by specifying the file or hand. we expect that a well behaved program

will not try to refer to an item in this way unless it is certain
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if color (A) = red

Figure 4-9 Possibly Invalid Instantiation

that such an item exists. For examplel consider the program fragment

shown in figure 4-9.

The referenee to A in statement 3 is not valid unless A is read Ln

all paths which reach statement 3. In the simple caae in which a

single statement is used to create an item, we can exPress this

requirement as folfows:

if an item is created at statement S and used to instantiate

statement S' then all paths to S' must Pass through S'

we say a program uses sirnpJe jnstantiatjon if it obeys this

condition. For statements in a loop this means that if the statement

condition to reach s is cr and that to reach s' is ct, then ct + c.

For programs which satisfy this constraint we can Prove the following

theorem.

Theoren l-2: suppose, in the syrnbolic execution of a Progran

statement s, an itern is used to instantl.ate
file(<fi].e-identl-fier>)orhand(<hand-identifier>).If
the Program uses simple instantiatlon' then if this

item is included in any seqluences, it rill be in a
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Proof

sequence Sp associated $rith the statement condition P

required to reach S.

Furt.hermore, the tth time the statement S is executedr

the i.nstantiated item will be the ith member of SP.

First suppose that the item was created by a statement with

the same statement condition as S. In this case if the item

is in any sequences it wilt be in a sequence SP generated

using model 1, and S will be associated with P'as required'

Now suppose that the item is created in some earlier

statement with statement condition O. Then, since the

program uses simple instantiation, P + Q. Since the item is

in a sequence it must be in a seqluence SQ generated using

model 1 and associated with o. Now since execution of the

program reaches statement S in the iteration in which the

item is referenced, P will be in the history for this

iteration. When subsequences were Createdr the Statement

conditions will have been put into a partia). order, with Q

before P. suppose the part of this ordering containing P and

Q is, QrRrr...rRnrP such that

P + R -) ... + R J Q,

and R is minimal-ly stronger
stronger than R., and P is

t

Then model 2 will have created

than Q, R.*, is minimallY

minirnally stronger than R

subsequences

51 : (item: item e SQ n Rr)

(item: item e Sn-l
(item: item e Sn n

But because

if and only
-)R ->n

they are in
R + Q, items

t
and satisfy P.

^ 
R)

D

P)

Sn=
SP=

be

hre

+
SQ

P

if

wiIl
Since

in SP

know

158



that the item is ln SQ, and P

iteration, then bY theorem 4-1r

is in the historY for this
the item wiII also be in SP.

To prove the extension we note that the ith time that the

statement S is executed is the ith iteration that contains P

j,n the history. Butr by theorem 4-1, this is the iteration

in which the ith member of sP wag created as reguired.

As shown bY these

statement conditions

For this reason t.hese

theorems, seqluences associated with the same

have items which are current at the same tiJne'

sequences are called concurrent'

l1 .3 - 5 Evaluation of, the Sequence Generatlon I'tethod

Having presented a method of generating seguences it is appropriate

to ask under what conditions is this method successful' By

successful, we mean that alt items created during execution of some

branch which is repeatedly executedr have been included in sequences'

I4e claim that the method will be successfur if and only if the

following proposition holds:

Propoeition {-1:

The definitions of

statement, condition
t.he number of times

items generated by statements with the same

can be expressed in a way that varies only on

these atatements have been executed'

This is expressed more formally in the following theorem'

Theorern {-3: If one execution of a set of statements with the same

statement condition generates n itemst then these items

wilLbe in sequences if and only if the definitions of

the items generated on the jth execution of the

statements can be exPressed as

,on(fn(j) )
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Proof:

for some functions fL, . .., fn'

If the definitions of the n items can be expressed as

D1 (fl (j) ) , . . .,DD (fn (j1 I

then since these items will have Lhe same statement

condition at the time they hrere createdr tbe sequence

generation Proceas will produce the seqluences:

(sequence i = 1 to m D1(f1(i)))

(sequencei:1to Dn (fn (i) ) )m

Conversely, if the items are inctuded in sequencesr then

they must have first been Put into primitive sequences as

above using model 1. Then the jth iteration produces objects

def ined as D1( j) , . . . rDn ( j) 1 3s r€![uired.

since the success of the method depends on the truth

proposition, we want to know whether this proposition

hold for programs expressible in the language described

of
is

in

the above

likety to
chapter 2.

For objects generated from seguential sourcesr the answer depends

upon whether a single statement is generating objects from the same

source. If it is, then the proposition above will be truer since

objects wilL have definitlons sequential-object-in-source(1r

SOURCE-t), sequential-object-in-source12t SOURCE-I) etc- If some

other statement is afso generating objects from the same source,

then, the above proposition wilL not be satisfied- To see that this

is sor first suppose that the other statement has the same statement

condition, then the definition of items produced on the jth execution

of these statements wiLl be

sequent ia l-ob j ect-in-source (2 i'L, SOURCE-I I

sequential-object-in-source (2 j r SOURCE-1)
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which does not satisfy the theorem. Alternatively, if the other

statement generating objects from the same source has a different

statement condition then the objects created from either set of

statements with the sarne statement conditlons !til] not include all

the objects from the source and again the proposition will not be

satisfied.

For keyed sources the ansr'ter depends uPon whether the predicate P

used in the keyed read statement contains variables, If it doesn't7

then on each execution of the keyed read statement, P can only vary

in the objects current when the keyed read statement was executed.

Now as shown by theorem 4-2, if P refers to other objects which have

been put into a seq[uence, then the ith time the keyed read is

executedr these objects will be the ith members of some seqruence'

Thus, if the objects created by the keyed read are

object-lr...robject-n, ttren when the other objects referred to in the

definition of object-i are replaced by the item-in-sequence (m' S)

form as required by the sequence generation algorithm, m will be i.

In this form the definitions of object-lr...robject-n will easily be

made into a sequence since they wilt be the same aPart from the ith

definition having the integer i where the jth has integer j. An

example of this procedure has been previously given at the end of

section 4.3.1,

Thus P, and therefore the objects created by the keyed read that uses

p, do obey the proposition if no variables occur in P. If P does

contain a variable, then the proposition will only be obeyed if the

variable, s value on executing the keyed read statement only depends

on the nurnber of times the statement has been executed'

We can conclude that we can expect many rnormal' programs to obey the

proposition and hence that the sequence generation as described will

be successful for these Programs. This does not mean tbat it is hard

to create programs which do not obey the proposition. Either we can

include seguential reads from the same source in different branchest

or keyed reads using variables in the predicate whose values cannot

be expressed as a function of the number of times the branch has been

151



executed (e.g. a variabfe

branch has been executed)

for a human to analYse

eannot cope with them.

cbuld count the number of times some other

. However, since such programs are difficult
ne need not b€ too disappointed that PAll

we can also evaluate the sequences generation rnethod by comparJ-ng it

with some obvious alternatives. As a first aLternative we consider

whether instead of grouping objects with the same statement

condition, as done in model 1r we should simply grouP objects created

.by the same statement. since al.I PAt{ sequences generated using model

1 do actually consist of items created from a single statement' this

coufd be done without changing the seguences created'

Howeverrwescillneedtoapplymodel2l-othesesequences'Ag
discussed in section 4.3.1, model 2 needs to apply a single Predicate

to aLl sequences associated with the same statement condition' Thus

if we simplified model 1 by grouping items by their creation

statement, we would need to add a new steP to gEouP these sequences

by statement condition before being able to aPPly model 2 '

As a second alternative to the sequence generation metlrOdr vte

consider whether we shoutd aPPly model- 1 to all items created by the

same source. fhis appears attractive when one congider9 the program

in figure 4-10, for whichr as hte have seen by tbe above discussion

pAN is not able to generate sequences of objects from file (source)

B.If,insteadofthePAlilrnethodrh'etrytogeneratesequencesfrom
objects created from file B, regardless of which gtatement created

them, then we can generate lhe sequence

SEQUENCE-I = (sequence i = 1 to n

sequential-object-in-source (i, B) ) '

However, there are several problems with this apparently attractive

approach. As a first problem, we again have a difficulty with

applying model 2. There witl" be two subsequences of seguence 1' those

items generated from the statement in the branch beginning with

condition 1, and those items generated from the gtatement in the
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seguential read A

if condition Lif condition 1

sequential read Bsequential read B

Figure 4-10 Same Source Used in Two Branches

branch beginning with condition
generated by urodel 2 ontY if tt is
fact concurrent with

2. These subsequences will
recognized that SEQUENCE-I is

be

ln

SEQUENCE-2 : (sequence i - 1 to n

sequential-object-in-source (i' A) )

and that condition 1 and condition 2 are to be applied to both of

these aeqluences.

Thus application of model 2 requJ-res that SEQUENCE-I and SEQUENCE-z

are to be grouped for generation of subsequences, whlch l-s a non

t,rivial task. We return to this subject shortly. A second problem

with this alternative is that PAliI does not always generate seguenceg

from a single source. l{hen analysing a robot Ptogram which finds the

first object in line L, the firgt object in line 2, then the fl-rst

object in line 3, PAt{ will generate the seqluence

(seguence i : 1 to n (first object' in ltne ll )
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h'hich could not be done if seguence generation ls done by grouping

items from the aame source. A related problem occura with two keyed

reads in different branches using the same source. rn this case, we

saw earLier in this section that PAlil's method of grouping the objects
from eaeh read separately wirl generate gequences (unless, possibly
variables are used in the key). This alternative method will not work
because the definitions .of the objects from both sources wl-II not
have a simple relationship between them. A fj.nal probrem witb this
method is that it cannot be easily extended to programs of the form
shown in figrure 4-11. Trying to find a seqluence from the objects
created from file B now runs into problems with finding the length of
the sequence. We now return to the fact that PAll cannot find
sequences for the program in figure 4-10. Rather than adopting this
alternate method, vrith all its drsadvantages, a better solution
would be to extend PAtit's model 1 so that it first tries to find
sequences for items created with the same statement condition, as

currently, andl if this failsr to then try to find seguences of items
which were created with statement conditions s1, . . ., sn which satisfy
the following:

sequential- read A

if condition if condition if condition

sequential read B sequential read B

Figure A-LL Same Source Used in Two Out of Three
Branches
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S1r. .rsn

Ql v
are of the form P a Q1r...rP A Qnt where

... v Qn - T.

If any such seguences can

sequences associated with

PAN is not currentlY able

be found they should be the same length as

P and used with them to form subsequences'

to do this but sbould be extended to do so'

4.4 REsoLuTroN oF TEE vJ|IuE oF \IARIABI,ES t'sED IN

SEQITENCE DEFINITIONS

{.{.1 Introductlon

we now address the problem that some of the subsequences generated by

the sequence generation rnodels will be defined in terms of a variabl-e

of unknown value. Since these seguences have not yet been uSedr aPart

from possibly appearing in the definition of other seqluences, we are

free to discard them if necessary. Resolution means that either the

subseguence is successfulty redefined without variablesr or it is not

used further in the loop generalization process '

Before presenting

we first discuss

seqruences.

models and an algorithm for resolving these values'

the program situations in which variables occur in

without the use of variabfes a Progiram

object from a source. GeneraIlYt

expressiveness of program by allowing the

non current objectsr or reference the size

can reference any current

variables increase the

program to either reference

of some eet of objects.

There are two trivial cases. Firstly, we nay find tbat the variabLe

in guestion is in fact not being updated in the loop being

generalized i.e, has the same value in every execution state inPut to

the generalization Process- rn this case we simply replace the

variable by its value in aII seguence definitions. Secondlyt the

variable may always reference only current objecca. This is

illustrated by the two programs in figure 4-L2. The use of a variable

in this case does not increase the expressiveness of the Program' If
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sequential read A

v := weight(A)

ifv<10

sequential read A

if weight (A)

Figure 4-L2 - Unnecessary use of a Variable

the left hand program fragment in figure

we can expect the following seguences to
4-12 is part of a looPr then

be generated:

SEQUENCE-1 = (sequence i = 1 to
sequential-object-in-source (i, SOURCE-1)

SEQUENCE-2 = (item: item e SEQUENCE-I n v < 10)

Let the objects in SEQUENCE-I be oBJECT-1' OBJECT-2, oBJECT-3' Then

the value of v as used in the condition and recorded in the statement

conditions will have values weight (OBJECT-1), weight (OBJECT-2),

weight (OBJECT-3) . The significant clraracteristics of this use of a

variable as Part of a condition generatingi a subseguence of some

sequence S are that:

if a statement condition containing v is in the history

iteration i, its instantiation will involve items created

iteration i

and

all the items involved in the instantiation of v are members

of S. (This can be generalized so that the items are in a

selluences concurrent ]rith S).

Identification of this case allows it to be trandled by a seParate

model.

of
in
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we no$ tura our attenti-otl to 4ore intereatl-ng cases ' A subgequeace

sI3, rrhoge, de.fi.nltlon csntains va,rlables must ba,v€ been etreated by

applyl.ngslo,mecondl'tionPlnvo'tvtngva::lablevtoagequenaesll'e.
..

52 = dtem: iterq e 51 n F(it€m, v)) '

We want te f,ind an e*prea.cion Q(tte!trrt so that

LteEi e s1 + Q(item) = P(itenrr rr)

alto-w{ng S2 to be exP.r.essed ae

52 = (itemi Ltem e 51 n Q(tten)).

Two oasea which ocogl frequenLly are:

v l,e counting the size o,f the sequence 51

tt is a fuoction on sorne PtoPe'rty of all otJeete tn 51'

For the f,Lrst Gas€r cQne'ider the Plogran fragrnent {n figure e-13 ' rf

v Ls inlttaliuGd t,o z€rQt and tlri,s fragllrent oceur'a- ln a lo'oPr the

seqJrrence generation tnet'hod will produee

Figrlre 4-13 - Va,riable Counting Size of Sequence

sequential read A.

v i= v+1

lfv<10
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51 - (sequence

sonRcE-l) )

, tt - (item: item

For any item in 51,

be the size of S1t

can express 52 as

51 - (sequence

souRcE-l) )

32 = (iten: item

52 - (ltem: item e 51 n posJ.tion-in-sequence(itemr 51) < 10)

For the second case consider the Program fragment ln figure 4-14'

Again, we assume v is initialized to zgxol and this fragment' occurs

in a loop. The same sequences

i - 1 to n sequential-object-in-source(ir

€51rlv<101

at tbe time the condition on v ls tested, v will
whictr is the position of the item in 51. Thus we

i - I to n sequential-object-ln-source(i'

€S1nv<10)

are generated,

condition on v

items in 31 at
item in 31 i.e.

!lz€lsll
v: E

1-l

But Ln thl-s case' for any item in 51, at the tfune the

is tested, v will be the sum of the weight of all

that point, fron the first up to the Posltion of that

we will have

weight (item-in-sequence (i, S1) )

sequential read A

v := v + weight(A)

ifv<10

Figure 4-:-4 - variable summing weight of seguence
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and S2 can be exPressed ag

52 - (ltem: item e 31 n

porlt!on-tn-raqo6c. (1t6, sl,

E weight(itern-in-sequence(i' 51)) < 10)

Both of these examplee can be extended to allow a suPerset of 51 to

be .substituted for 51

1.4.2 Resolution of Variables ln seguence Definl.tLon Model

We now present models which formal.ise the cases in which PAN is able

to resolve a variable occurring in the definition of a sequence. A

variable v occurrlng in the definitj,on of the sequence s2

52 = (iten: itern e 51 ^ P (itemr v) )

will be cafled resolvabfe if it obeys one of the following models'

Model 1

v has the aame value in alJ- input execution states, in which case :lt

is replaced by its value.

Model 2

The instantiation of v in every occurrence of P (itemr v) in the

tristory of every execution state is an expression involving onLy

items which were the last in 51 or concurrent sequences at the ti-ute

that P (item' v) was recorded.

If this is the case, suppose the instantiation of v Ln some

occurrence of P (item, v) in the history of an execution state, :cefers

to items: item-lr...ritem-n. Form Q from F(itemt v) by

replacing each I'tem-i by rnaP(itemr S', S1) if tteni € S''

concurlent with sl and s' not equal to 51
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I

I

I

I

l

82

f,eplaeinE itesi-i bti Ltsn if, ,iten € S1.

is then redefined as

S2 = (itern: ltem e 51 n Q(trtenl)'

I'todel. 3

There l.,g go[ne geqluence, 'S. that is
instantletion of v in every occutr€nce

of, every e,:iecution state is tt e slze 'of

vras reeo,rded. In thl-g cagF rePlace v

s),

Mqde'I 4

a supqrpet of s2, and t'he

of P(lternn vl ln tbe hlstory
S at the time that, P (ltem. v)

by pocltion-ln-sequenee (l'teil'

there is some seguence Sr that ls a aupeaaet of 32' and the

instantiatio-r.l of v Ln every occurlrience of P (itenrr v) Ln the hLstoty

of everyi execu,t,ion state l-s the sum os ptoduot of, eome ProPerty of

aL] Ltesrs in $ at the' tfine that p('it'en, v) was E'eeorded l'e'

rl$,(5f
v: E

!-l

p (fLenr-in-se€Iuence (ir s) )

p (iteln-ln-seqtruence (i' S) l

fo,r so4e prollerty P.

trn thls ca-3€ tse leplaa€. v bY

poclttrotr-ln-lcqu.Orec{ltctq, 5l

l_ P (1tenr-l'n-seqnr€nee (t' sl )

dz.lg)
\r= II

t-l
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posltlon-in-seguenqe (lten' st

n p(item-in-seguence(i' s) )

1-l

{.4.3 Resolution of Variable in Sequence Plocelt

In using the above models, sequences rnust be processed in the correct

order to ensure we do not resolve a variable by rePlacing it by an

expression involving a seqpence which may later be removed (because

this sequence contains a different unresolvable variable).

Thus PAI.I ensutes that it processes any sequence Si before processing

any seguence sj that is defined in terms of Si' A seqpence S is

processed by checking whether its definition involves variables' If

it does, then an attempt is made to resolve each variable using the

above models. If this is unsuccessful, the seqluencet and all

sequences defined in terms of S are removed'

4 .5 VARIABLE VAI,T'ES AT LOOP ENTRI

4 .5.1 rntroduction

we have now dealt with the special cage of generalizing the value of

variables used in seguence definitions. These values are not

necessarily the same as the value of the variable at loop entry'

The generalized execution state, which is the outPut of the loop

generalization process, reflects the situation at loop entry after an

indefinite nurnber of iterations. Thus the value of variables at loop

entry needs to be generalized from the input execution states' using

the values in the variables data, regardless of whether the variables

occur in sequence definitions.

For variables in sequence definitionsr we specified models for the

resolvable values of the variable. If a variable could not be

resolved the sequence was sinply removed from the loop generalization

Drocess. Failure to find a value of the variable at loop entry,

1?1.



however, is more serious.and results in a generalized execution state
with an unknown vaLue for the variable. Thus we use a two stage

approach. Tfe first look for a value for the variable using a model

-that is an extension of the one for variables in sequences. If this
fails then the rbrute force search', described separately in chapter
6t is invoked. This two stage approach has the advantage of being
able to gttickly analyse those variables with simpJ-e values and only
uses the more powerful but time consuming method if it is rearry
required.

The following analysis refers specifically to variables, but applies
egually well to any val-ue generated by all iterat.ions of the loop.
For example, it applies to an updated property of a single object
present in all input execution states, as in the program in figure
4-15. In this case, file A is a report showing the total weight of
all records in file B. Program analysis of the value of total_ (A) at
loop entry is the same as if it were a variable. An object used in
this way will have no definition when the l-oop is generalized,
because it has not been read or written and, as discussed in chapter
3, object definitions are always assigned by read or write
statements. Thus PAN tries to apply the following variable analysis
not only to variabLes, but to any updated property of any object
without a definition.

To begin the discussion of what we would expect as a model of
variable values, we first note that, as in tbe sequence definitlon
variable anal-ysis, we may have the simple cases - either the variabl,e
is not being altered by the loop, or is alvsays an expression
involvingr only objects which were current, when the variabLe was

updated. rn the first case no further analysis is required. rn the
second case the value of v in any execution state witl involve those
objects current when v was Last updated. rf v is updated in branch i,
tben by theorems 4-1 and 4-2, if branch i is executed n times in
total' these objects will be the nth members of concurrent seqfuences

of length n. Thus they can be expressed as item-in'sequence(size(S)r
S) for some sequence S.
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start

total(A) := 0

Ioop entry

seguential read B

if not current (B)if current (B)

loop exittotal (A) : =
tot.at (A) + weight (B)

sequential write A

10.

Figure 4-15 - RePort Total'

For non trivlaf cases, we extend the

sequence definitions. !{e still need

expressed in terms available in tbe

we are no longer constrained to find

into the definitton of a subsequence'

The case of a variable counting the size of

a variable counting the sum or difference

seguences. The case of the variable being

property of all objects in a seeluence is

model for variables occurring in

to find a value for the variable

generalized execution stater but

a value which can be substituted

a sequence is extended to
of the sizes of several

a sum or Product of some

extended to the varlable
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beir.lg a function. of the eqln or product o'f, one or mo:te prope'rtles of

all o:bJects from geveral sequonces.

' 11or an exarnple of the second o?3€r a varlabtre v may haue the value

weight (,OB.'ECI-1) * weigbt (OB,tECr-2)

- weigrht. (OBJECT-3| * weigtrt (O8,I.ECT-11)

* wel.ght (OE{7EC?-51: * lreight (ODJECT-6)

- welgbt (OtsiECr-?) * weight'(OBiIECT-8)

+ welglt (oE!tEcr-g) * weight (oBiEcT-lo)

where

51 = (OtsrIEC!-L OBJEC'T-S OBUECT-9}

32 =, {OBJECT-Z OB.tECs-5 OB'IECT-f0}

33 = {OB.IIGT-3 OB'JECT-7}

34 : [OB.IETCT-4 OB"TECT-B).

wi,th {g1 s2} and ts3 s4l concutrrent palrs,of sequenc'esq v san then be

expressed as:

(weight (lte,rn.i.rr-sequence (1r 31) ) * weight (ite.nr-j.n-se{uer.r.9e (11 s2} )

+trrZidr|?'fl

+ r tf 3 r r r 3 ')))

(weight dt.em-in-sequence ,]', 
:t, 

) * weigtrt (item-tn-se!$ence (1r 
ill I

Or

rla!XaD

E weight [item-i-n-s€quence (lr S1l')'

't:l

* wel,ght (lteur-in-selluence (1, s2) )
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.lr.ttat)
E weight, (item-l-n-sequeace (1, S3t )

, :, i-l

* neigrht (.lteni-l-n-sequence (i, S4) ) .

this tlPe of leauang'errent ls posc.tble beeause tlre ori.gJ.nal value for
v can be e<pressed in the f,ornl

v = (termt + tegle + tetm3) (term4 + tesns)

where

ternlr tern? and tern3 only eontaJ.R iterns from concurrent
s€!$rerlees {sl 821

temlr te:inz and termS are the aame except terrnl ref,e:nenceg

the first itenr fron a seqluenee, whe:ce tean2 references the
second and tern8 the thigd

- gize((terrnt te:cm2 terrn3l) = sLze(Sl) = slze(S!')
- sinilar eoadLt{ons are true for te::rn4 and tenns.

we aEe now ready to p,Eesent Ln detail the moders and atgorithrn for
the values of variables at loot! enErlr.

4.5.2 Uo&Ic f,or VarLable Value! at lroop Entry

Tlre value of a vari.able v at' Ioop entry wi1l be called re.soJvaDl,e

it it eatisfies one of the f,otlow:h,rg rnodels.

Model 1

v lrae the sane value in alL input executJ.on states Ln nhl,ch case thLs
vahre ie used in the geraeral.ieed exeeution sbate.

!6de1 2

There Ls a set of csncurrent aequenges slr...,sp such that the value
of v' reconded Ln the vard,abres data in alt i.nput executlon states' ls
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the same expression involving the last items of these seguences- In

this ca3e, the value used in the generalized executlon state is the

expression formed by replacing each ltern which is the last member of
'seguence S by item-in-seguence (size (S) r S)

Model- 3

There is a set of sequences S1r-..rSP such that tbe value of v is t

size(Sl) t size(S2) + t size(SP) in all input execution states'

fn this case the same expression is used aE the value of v in the

generalized execution state.

Model 4

In all input
P(err...re.),
following:

execution statesr the value of v is some expression

where each e. is a subexpression obeying the

rlre (sl

each e is of the form I term(i) or
I

t-l

rlzc (Sl

n term(i) for some sequence 51 where each term(l)
!-t

is identicaf except term(i) may refer to the ith mernber

of some seguence S' concurrent with S' where tern(j)

refers to the jtn mernber of S'

In this case the value of v used in the generalized execution state

is the expression P'(€rr.'.r",), where P' is formed from P by

replacing each item that occurs in term(i) and is a member of s"

concurrent with S, by item-in-sequence (i' S') .

{.5.3 Algorithm for Einding variable values at Loop Entla/

The algorithm proceeds bY trYing
at loop entry to each model.

folfows.

to match the value of all variables

Thus for each variabLer proceed as

].t6



1.

2.

Try to match against the first model by sinrpJ-y checking the value

of the variabfe in each execution state'

Try to match against the second model by checking whether the

value of y1 apart from reference to iterns in seguences, is the

same in all execution states. If it is, then choose any execution

state and find a set of concurrent sequences whose fast members

are the items in the value of v in that executlon state. If such

a set can be found, see if they have the same proPerty for every

execution state. If sor the value of-v is formed by reptacing

each item by an expression of the form item-in-seguence(size(s),

S). Otherwise, return to the first execution state and find

another set of concurrent sequences to try' If no more Sets can

be found, then the variable is not resolvable using Lhis modef'

Choose any execution state and try to find a match of the value

of v to t,he size of a sequence in this execution state. If this

can be found, see if v is the size of the same sequence in all

other execution states. If not, try other single sequences' If

this is also not successful, try the sum of two sequences, and

then the difference of two sequences. continue in this way until

all combinations of a size(sl) iE a size(sp) have been tried'

If stitl not successful, then value of v is not resofvable using

this rnodel .

4. Testing whether a value of v satisfies the fourth model may

require some manipulation of v's value' Much of this will be

already done by the Expression simplification Process described

in Chapter 7' since this will grouP * and * terms' Thus the

following algorithm will suffice:

pick any execution state and examine the vaLue of v' If

v contains any subexpressions of the form

terml + term2 + .. + termnt

then use associative and reffexive properties

addition to reexPress these as

?
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(terml-1 +

... + ternh-n )
tl

eo that each form

associated with
sil, . . ., Sipr so that

+ terml-n) + + (termh-l +

(terni-1
a set

+

of,

termi-I , ... rterml-n, are ldentical excePt

that termi-j contains the jth iteT from one

of the concurrent sequences where termi-k

contains the kth item from the game sequence'

n = size of any of the current sequences
I

if this can be done, then replace each item frorn any

sequence S of the concurrent' sequencest occurring in

termi-j, by item-in-sequence(i, S)r which allows the

subexpression to be written as

rlze tsllf rlrc (shll

Etermr(i) +... + Etermrr(i).
t-r 1-l

Dosinr:ilarprocessingforsubexpressionsinvolving*'
using II format. At this point we will have a set of

alternate values of v, say Vrr ' ' ' rvn' If any of

these is derived in a].l execution states' and contains

noitemswhichareinsequences'thenitsatisfiesthe
model and is used as the value of the variable in the

generalized execution state '

1I .6 UPDATED OBi'TCT PROPERTIES

{.5.1 Iatroduction

we non address the last major task of

analysing the updated properties of any

being generalized. As for finding the

+ termi-n ) can bet
concurrent seguences

the generalization Process:

objects created ln the IooP

values of variables at looP
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entry, rde first try to explain these properties ln terms of a model.
Only if this fails is the brute force search of chapter 6 Lnvoked.

we first consider the J-ikely values for updated properties. suppose
we are considering the updated properties of some seguence s, updated
in branch j of the program. on any given loop iteration, the
assignment statement performing the property update could have

referenced either the val-ue of variables or the current items
available in branch j. By theorem 4-2, the ith time this update
occurs it will be'updating the ith mernber of s .and the only otber
current objects wil-l- also be the ith nembers of sequences concurrent
with S. So, apart from the value of variables, the updated property
of the ith item in S can only reference the ith items from sequences

51, . . ., Sp, concurrent with S.

Variabres can greatl-y increase the comprexity of updated properties.
However, a variable being updated during the loop is generarry
computing some val-ue which only has meaning when all iterations are
i.nctuded. Thus the interim varue of such a variabre i.e. the value on

the ith execution of branch j, is unlikeLy to be used in updating the
property of the ith member of S.

one exception to this, however, is when the updated property of the
ith item in s depends upon i. This would occur in a dp program which
numbers each record (e.9. in a report rine) or in a robot program
whj-ch moves the first object in S to (1 , !1, the second to (2 , Ll,
the third to (3 , 1) etc.

Thus the updated property moder described below only allows for
variables used to update properties in this simple way.

To find an algorithm to use such a moder, we must bear in mind that
we may find that only some objects in a seqluence have updated
properties. For example, consider the program fragment of figure
4-16. Sequence generation will produce:
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S1

s2

s3

s4

S5

(sequence i :
(item: item e
(item: item e
(item: item e
(item: item e

1 t.o k sequential-item-in-source (i, SoURCE-1) )

51 ,r color (item) = blue)

51 n -rcolor(item) = blue)

32 ,r length (item) > 10)

52nlength(item)S10)

In this case only some of the items in sl will have an updated weight

property i.e. tbose also in s2. obviously we cannot exPect to obtain

a general statement about the updated ProPerty of all items in a

sequence if only some of them have that Ploperty uPdated. Thus vte

should only try to fit the modef to those seguences in which all

items have the ProPerty uPdated.

We also want to ensure that we use the mosE general. possible sequence

to state the property uPdates. For example, referring again to the

above seqluences, we would not want to state that items in s4 and s5

have updated weight property with vaLue of 1. while this is true, it

is more economical to state thls of seqfuence 52 instead' We can

ensure that our analysis fits these reguirements by analysLng

sequences, subsequences, subsubsequences etc' untiL an explanation of

the updated ProPerty is found.

4.6.2 Updated ProPertY Mode1

we say that the value of updated ProPerty P is reso'lvable for

sequence S of length rll if the values of p, for aII rnembers of S'

p r ... rp r varY onlY in two waYs

there
refers

st

of
is
to

some seguence

t.he ith rnember

concurrent with S such that P,

s,

pr contains the nurnbers trr....rt,

and functions f r . .. rf can be foundr so that
tp

fr(j) - tJr, for 1< j s n, 1< i ( m'
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i.I-,contact-up-to A O I'

if not contact (A)if contact (A)

rf not co'ror (A) = blueif color (A) = blue

weight (A) := I'

if lengrth (A) < 10if length (A)

Figure 4-16 - gartial Property Llpdate Exanple

In this case the seguence has the uPdated prropert! descrilced byt

F(iten-'in-secluelrae(J" Sl) = p' n 1 3 J S n

where pt ls formed from P. bY

neplaeing *r, bY fr(i) for I 3 j 3 n

reptracing the ith elenent of any seguence 8n concurrent with

S by lten-ln-seqrience (i" Sn) -

tr,9tr



1

2.

{t.6.3 Updated Property AlgorLthn

Place seguences into a partial order, so that 51 < 52 if 52 is a

subsequence of S1.

Process seguences so that if sl 1 52, 51 is processed before 52.

If a sequence s contains any element with an updated ProPerty,

see if every element of s has this property uPdated. If sor then

try to fit the updated ProPerty to the above model' If successful

do not analyse the ProPerty for any subsequence of S' If not

every element of S has proPerty updated or the attempt to fit the

model is unsuccessful, then continue processing if s has any

subsequences. otherwise anarysis has failed for this property and

will be referred to the brute force search described in chapter

6.

4 .7 GENERJAI.IZATION OUTPUT

The analysis above of variabre varues and updated object properties

may need to invoke the brute force search' If so it wiLl be done

before ttre processing described in the remainder of this chapter'

However, rather than divert from the discussion of the usual analysis

fLow, this has been I'eft for description in Chapter 6 ' For now we

proceed onwards with ttre production of a generalized execution state'

Some minor housekeePing

a generalized val-ue of

domain, and a val-ue for

sequentiaL source.

is discussed first - we may be able to obtain

the position of robot hands in the robot

the number of retrievals attemPted from each

4.1 .L Position of Robot Handg, object contacted' Grasping'

Thepositionofeachrobothandisexpressedascoordinatesin2D
space i.e. in the form (x, y)- For a given robot hand' only one such

position will exist for each hand. Thus there is nothing to prevent

us from treating x and y as variables, and using the full variable
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analysis process described above, including, if necessary, the brut,e
force search of Chapter 6.

However, this was not realized when pAN nas impremented and pAl{

instead tries to explain each robot hand position as a function of
the iteration count. That is, for a given hand h, ne try to find
functions fl and f2 such t,hat

xn = fl (k) and yn - f2 (k)

where k is the iteration count. If such functions fl and f2 cannot be

foundr then these vaLues are set to tunknown,. This usualry doesntt
Present probrems in practice, as programs which have complicated
expressions for robot hands at loop generalization usually return the
hands to some fixed point at loop exit.

For generalizing the object contacted by a robot handr we have much

less scope. our generarized va.Lue must be expressed only in terms
available in the greneralized frame. Also, the obJect contacted by a

robot hand on the last loop iteration must have been created in the
l-ast execution of some branch, branch i. Thus the object wilt be the
last object of one of those sequences generated by objects created in
branch i.

Our generalization is tben very simple:

if, in every execution state, hand h is not in contact, then
it will not be in contact in the generalized execution
state.

otherwise, if there is a sequence s, such that the object
contacted by hand h is always the last object in this
seqluence, then in the generalized execution state the object.
contacted is set to

item-in-sequence( (size S) r S)

otherwise, object contacted is set to runknown,
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Finally, to derive the generalized value of grasping; bte simply set

this to T or F, if it bas that value in every execution state,

otherwise to runknownt.

4.7 .2 Number of, Retrlevals Atteq>ted, current object and Exhausted

Indicator of Sources.

As for the robot position described above, the number of retrievals

attempted is really an implicit variabfer and should have been

analySed in the same way as other variables. However, when PAlil waS

constructed it was recogfnized that the number of retrievals attempted

will egual the number of times the program code retrieving objects is

executed. If this is contained in some branch, branch i, this will- be

the same as t.he number of times this branch is executed, whichr in

turn is the size of any seqluences generated from objects created in

this branch.

Thusr we expect that this implicit variable will end loop execution

with a value egual to the size of some sequence. we fook for such a

seguence s, and if one can be found, set the value of the implicit

variable to size (S) . If no such S can be foundr the number of

retrievals attempted is set to runknown'. Currenu object is analysed

as for robot hand in contact, as described above. ExhauSted indicator

is analysed as for grasping as described above'

L.1.3 Production of Generalized Execution State

The final task of loop general-ization is to actually produce a single

generalized execution state. Since producing this execution state has

been the aim of the whole chapt.er, we now only need to describe how

the results of the previous sections are used for this purpose.

we begin with the single execution state E that is associated with

IooP entry and has an iteration count of zexo' we then retrieve

additional information from the other execution states associated

with loop entry and the results of the loop generalization process'

$te add to E alt objects and sources identified during loop execution
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erhich have not been put into sequences. we then add all the sequences

generated by the method descrlbed in sections a.3.2 and 4.a'2' The

updated propertles of these sequences determl-ned Ln gectlon 4'6'2 ate

itso recorded. Any variables identified durl-ng loop generalization

are recorded and any variable values resolved :[n sectl'on 4.5.2 are

also recorded. The robot hand and sequentLal source attributes

described in section 4.?.1 are recorded. Finalty housekeeplng data is

updated to ensure that slmbolic executlon can contlnue from thi8

generalized execution s.tate. This involves setting the iteration

cooni to the indeterminate value kr setting the status of the

execution state to actLve and the loop status to exiting.
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Chapter 5

Loop Exit

Once a J.oop has been generalized there are two outstanding loop

processing tasks. One is to find a value for the loop iteration count

on exit and the other is to verify that the generalization is

correct. These processes corresPond to the two paths that execution

can take starting with the generalized execution state. Either a loop

exit statement is reached, in which case a value for the iteration

count can be determined, or loop entry is reached, in which case the

generalizat.ion can be verified. We first describe the processing when

loop exit is reached' referred to as exit processing and then

describe verification. These descriptions show that verification and

loop exit processing require similar comPonents.

5.1 EXIT PROCESSING

One characteristic feature of PAlil's loop analysis process, is that

analysis of loop exit conditions has been made a separate process

distinct from l-oop generalization. The primary function of this

process is to determine a value for the loop iteration count at loop

exit. Having a distinct process to analyse loop exit conditions

appears to be unigue to PAN. The'usual'method that symbolic

executO!s uSe to analyse lOOPs, uSing recurrenge relatiOngt treats

the value of the iteration count, on exit as just one more reLation to

be solved simultaneously with any other relations describing the

effect of the loop. See, for example, Cheatham et aI t19791 '

Having a separate process to analyse exit conditions enabfes PAIiI to

analyse loops with more complex exit conditions than those handled by

other analysis systems. In particular, PAI{ can analyse programs

having loops with muLtiple exits, whose position in the loop is not

determined by the iteration construct used. As described !n Chapter

4, PAlil, s toop analysis method first generalizes the execution states
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at loop entry, and then continues symbolic execution. once all

possible execution states have been created at loop exit statements,

these execution stat.es are used in analysis of exit eonditions.

However, this is not the only way that generalization coufd be used

to analyse loops. Consider the loop structure in figure 5-1. One

possible lray of anal-ysing such a program would be to allow the

symbolic executol to perform several iterations as far as the loop

exit statements. Generalization would then be performed on the

execution states that are associated with loop exit 1 and loop exit

2. This generalization would include determlning the exit conditions

and would therefore appear simpler than PAN's method of using a

separate process for analysing exit conditions. Ho$tever, such a

method would suffer from reguiring two generalizationsr and since

loop generalization is the most time consuming task performed by PAI{,

would almost double the time required to analyse a program. AISO'

correct analysis of loop exit conditions means that the

generalization processes woufd not be fully independent '

nxit from the loop in figure 5-1 occurs when either cond-l or cond-5

are true, and this j-nformation will only be available by examining

the execution states at boLh loop exit I and loop exit 2 '

To avoid these problems, PAN loop analysis onl-y performs

generalization of execution states at loop entry. The result of this

generalization is a single execution state, as described in chaPter

4. The normal symbolic executo!, described in chapter 3' will then

continue untit execution has reached all possible loop exitS

statements. At this point the loop exit processing described in this

section is invoked. It analyses all execution states to determine the

vafue of the iteration count, which was left undetermined by the

generalization at looP entry

One comp)-ication with this Process is that the sequences created when

generalizing execution states at loop ent.ry may need to be extended

to properly describe the situation at loop exit. This complication is

not serious enough to outweigh the advantages of PAtil's method of loop

analysis.
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loop exit X

if cond-5

loop exit, 2

I

Figure 5-1 - Multiple LooP Exits

Ihereforer tbere ar,e two,sLages to FA![ troop exit analy-ela: fLrst
extendlng the sequences to inelude any l-terns created betfleen J.oop

entry alrd the loop exit; second, de,tennlning a value for the

Lterat,lon count. Note Lhat, extendlng sequenceE involveg analys'ing

each executXon state separatelyl whereag deteqd;nj.ng a vaXue for the

ite:raL{on eount Lnv.olveF ana!..ysing aII execution states assgciated

with loo4r exit statenrents.
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5.1.1 Extendtng Sequences

The information in the execution states

will be carried forward, event'ually to

Thusr we want' to enaure that they contain

sequences and items-

associated wit.lr looP exit

the specifications outPut.

the best rePresentation of

The execution states input to the loop exit process will have

sequences created during loop generalization and, possibly'

additionar sources and objects created becween rooP entry and loop

exit. For nested looPs, the exit path for an outer loop may have

contained an inner roop. Thus, even ne!', sequences may have been

created. Although not essentiar for program anarysis, it is

nevert'helessdesirabletocheckwhetherthesenewitemscanbefitted
into existing sequences. To see the impact that this process has on

the program analysis, consider the program in figure 5-2' The

generalized execution state will have selpences

51= (sequencei=1tok
sequent,ial-object-in-source (i, souRCE-1) )

32 : (item: item e 51 n color(item) - red)

53= (item: iteme 51n-color(item) =red)

having updated ProPerties of

V item (item € 52 -+ posiuion(itern) : pos-b)

and

V item (item e 53 -t positionlitem) - pos-c)'

Two execution states wiII be associated with loop exit. one, 81, wiII

be the result after execution has gone through statement 5 and wirl

have a new red object, with an updated position property of pos-b'

The other, FIZ, will be the result after execution has gone through

statement i, and wirr have a new not red object, witn an updated
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fto\re-to A pos-a

councer l= 0

-until--contact A 6

if -r estror (A) = redif corLor (A) = red

lBove-to A Pos-cnove-to A Pos-b

coulrter ':= c'dunt'€f $ x'

if couoter ) 10if eount.er 5 10 L6"

t7.

18,

itens on LooP ExiE
19r0

NewFIGURE 5.-2 -



positl.onProPertyofPog-c.Bothexecutionstatesmust,betheresult
of execution having gone ttrrough statement L6, at which t'ime the

valueofcounterwillhavebeenk+1'Thusltheseexecutionstates
willhavepathconditionsof(coIor(oBJEcT-1)-red^k+l>].0)and
(-color (oB.tECT-l) = red n k+l > 10) ' respective)-y, where

OBJECT-L = sequential-obJect-in-source (k*1r SOURCE-I)'

rfseguenceextensionisnotperfornred'thenassumingkhasbeen
resolved to the value 10 by the process described below, then since

10+1 > 10 can be sfunplified to T, the output specifications produced

will be

if color(OBJECT-I) = red

then

V item (itern e S2 + position(item) = pos-b)

V item (iten € S3 '+ position(item) - pos-c)

positlon(OBJECT-I) = Pos-b

where

OBJECT-I - sequential-object-Ln-source(11, SOURCE-1)

51: (sequencei-1to10
seguential-object-in-source (1, souRcE-1) )

52 = (it,em: item e 51 n color(iten) = red)

53= (item: iteme 51n-color(item) =red)

and

if - color (OB.IECT-l) = red

then

V item (iten € s2 '+ positS-on(item) = pos-b)

V item (item € s3 + posit'ion(item) = pog-c)

position(OBJECT-I) - Pos-c
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Yrhere

OBJECT-1 = seqluential-object-in-source (11r SOITRCE-I)

51=(sequencei=1to10
sequential-object-in-source (i, SOITRCE-1) )

32 = (item: iteni e Sl n col-or(Lten) : red)

53 = (itern: item e 51 n - color(itern) = red)

This is not wronlJ, but is clumsy compared to the alternative
specification

V item (item e 52 + position(item) = pos-b)

V itern (item € 53 + posit,ton(item) - pos-c)

where

SL-(sequencei:1to11
sequential-object-in-source (i, SOURCE-1) )

52 - (item: item e SL ^ color(item) - red)

93 - (item: item e Sl ur -r colo!(itern) - red)

To achleve thl.s eecond form of epecification, PA![ needs to extend the
seqluences to include OB.IECT-I, af,t,er whLch the tgo execution states
will have different, path conditions but identicat effects. Mergj-ng of
these execution states is rriscussed at the end of section 5.L.2,
where this example is revisited. Note that extendlng the sequences to
include oBJEcr-l requires recognizing that the updated properties of
oBJEcr-l are consistent wLth the updated properties of s2 and s3. we

now congider the general reguirements of extendLng seqluences.

rnitialry igmoring the problerur asaociated wl-th updated propert,ies, a

sequence of the form

g = (seguence i = 1 to n D(i))

may be extended to
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g = (sequence i = 1 to n+1 D(i))

if the execution

D (n+1) .

IfasequenceSis
may also be included

state contains an item-j, whose definition is

extended to include a new item, item-jt the iten

in subsequences of S. Given a subsequence

S' = (item: it,em e S ^ P(iten))

then item-j will be in S' if P (item-j) is satisfied'

Now considering that both items and sequences have updated

properties, it is necessary to ensure that the updated properties of

the items are consistent with those of the seguences ic is added to'

Recatl from section 4.6 that a sequeoce including items with updated

propertiesnaybegeneralizedbyrecordingupdatedpropertieson
subsequences. Thus to det.ermine whether an item added to a sequence

ha s cons istent updated properties, ete need to consider t'he

subsequences the item is in, and then compare the uPdated properties

of the sequence and all of these subsequences with those of the item'

we now consider two comptications in thls apparently sirnple process'

The first complication concerns references to other sequences' The

definition of the next item in a selluencer the definition of the new

item to be includedr the values of the updated properties, and the

definitions of subseguencesr may alI contain references to other

sequences in such subexpressions a9:

size (S)

item-in-sequence (i' S)

position-in-sequence (item, S)

map(itemr S, S').

The use of such expressions is complicated by the fact that sequences

are being' modified by the sequence extension Process' and the walues

of such expressions may change when a sequence is extended' fhis
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complicationcanbeaddressqdbyextendingsequencesinanordersuch
that if the definition of sequence sl refers to sequence s2, then s2

is extended before S1, and all sequences are extended before

propertiesaretestedforconsistency.Noncircularityisguarant,eed
bythefactthatifanyseguences,isusedinthedefinitionor
updated properties of some other gequence S' then S' must be a

superset of a sequence concurrent with S' This can be verified by

consideringallprocessesdescribedinsections4.3l4.4and4.S.

The Second complication involves concurrent Seqluences' The use of the

map function to define subsequences requires ghat concurrenE

sequencesarethesamelength.ItisthereforeinvalidEoextenda
sequence unless a.Ll concurrent sequencea are also extended'

We are now readY to

algorithm makes use

sequences, and the

seqluence generation

described in section

present an algorithm t'o extend sequences' This

of the association of statement conditiong with

distinction between seguences generated using

mod.el 1 and those generated using model 2' ag

4.3.2.

Seguence Extension Algrorithm

Let the weakegt statement conditions associated with Sequences be

Cr...'C RePeat stePs 2 through 6 for I = 1 to m'
1.

2. For every sequence S : (seguence | = 1 to n

execution state that is associated with gtatement

t,ry to find an item I, so thac the definition of I

this cannot be done for every such sequence then

extending any sequences.

D (1) ) in the

condition C r
I

- D(n+l). If
exit rrit,hout

? ForeverysequenceSextendedinL,fl-ndallsubsequence'
subsubseguences' of S. Each of theset will be of Lhe form 32

(item: item e 51 n P (item) ), where 51 is eiLher extended in 1'

or is itself a subsequence of such a seqluence ' See whether t'he

item, I, added to S' is in 52 by testing whether I € 51 and using

the theorem prover to establish whether P(I) is true'
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4.

5.

For every subsequence 52, found in step 3 to include a new item,
try to extend every primitive aeguence concurreot wl-t,h S2. If
this cannot be done, then exit without extending any sequences.

Now for every primitive eeqluence, S, which has been extended with
item I, we check consistency of the updated properties. Let
subsequences, subsubsequencea, etc of S which include I be

{51r...rSn}. Suppose item r has propertie" prr...rpo updated

with values rr.,...,rn. For alJ. i = L to e, check that t,here

is a j. 1 < j < n7 ao that Sj has updated property pr with
value or. Conversely, given any property p, with value v of any

Sj, check that p is one of the prr I 5 i < q, and v is equal to
v.. If t,his consistency test failsr then exit without extendingr

i.

any sequences.

If a primitive sequence S is extended to include the new item, !,
then remove I from the execution state, replacing any reference
to I by item-in-seqluence(size(S)r I).

5.1.2 Resolving the Iteration Count

We non consider the loop analysis tasks which involve multiple
executl-on states. The most obvious of these is to determine the value
of the iteration count. Even for progirams having multiple exitg, this
proceaa is relatively straightforward because of the quatity of
information which has been previously determined. Each execut,ion

state associated with a loop exit explicitly recordg the path
condition which must, be satisfied for execution to reach loop exit
from the start st,atement. If we remove from the path condition the
component required to reach loop entry from the start statement we

are left with the condition which must be eatisfi-ed to traverse some

specific pat,h from loop entry to loop exit. We refer to this
condition as the exit condition for this execution state. Suppose

t,hat execut,ion states E1r...rEn are associated with a]-l loop exit
statements and have exit conditions of P1r...rP[r. Since execution
will" exit. from the loop as soon as any of these conditions is
satisfied, the conditLon which needs to be satisfied for exlt is

5.
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Pl v v Pn. The iteration count on exiting the loop will be the
rninihum integer value which makes Pl v v Pn t,rue. So, if we can

express P1 v ... v Pn as a function of the it,eration count k, i.e.

P(k) = Pl v ... v Pn

then the value of the iteration count on exit will be

.,r! 
: (minimum { j: p(j) A (integer j))

We now consider some examtrrles of what is required to e:q)ress the
disjunction of the exit conditions, Pl v v Pn, as a function of
the it.eration count.

In some cases the connection between the exit conditions and the
iteration count k is explicit. For example, Ioop generalization of
the program fragment in figure 5-3 wilt deterrnine t,hat count,er = k at
loop entry. Thus the execution stat,e associated wit,h the loop exi.t
st,atement will have exit, condition of k+1 > 10. Since on exit, k is
always the minimum integer to make the exit condition true, we easily
establish that k : 10.

.xlt

In other cases' the connection is more indirect. Consider the program

fragment in figtrre 5-4. rn this case we will have thro execution
states associated with the tlro loop exit, statements. One will have an

exit condition of color(OBJECT-n) = red and the other color(OBJECT-n)

= blue. So far these exit conditions do not seem to involve k.
However, when \ire subst,itute in t,he definition of the ob jectsl we

obtain:

color (sequential-object-in-source (k+1, SOURCE-1) ) = red

and

color (seguential-object-in-source(k*1, SO[]RCE-1) ) - blue.
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counter := 0

eounteE l= counter + 1

if e,ounter :> I0i.f counte,r S 1.0

loop exlt

E IGITRE 5-3 - S.i-mpJ.e Exl-t Constrai'nts

--------

I

E'"IGURE 5-,ll - More Complex ENit Constralnts

loop entry

ttroV€-runEi.l-eontact A

i.f col.or (A)
blueif -r (color (a)

red v blu-e)

loop exit
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Since exit will

becomes true we

occur as soon as one or the other of these predicates

can derive:

k - m:lnimum( t j : color (sequent,ial-object,-in-source ( j+1r

SOURCE-I) ) = red

v color (seguential-object-in-source ( j+1'

SOURCE-I)) = bluel)

Thusr in general, vte see that we need to

conditions the definiuion of any items whose

substitute into the exit
definit.ions involve k'

once the iterat,ion count has been resolved, what other looP exit

analysisist,hereinvolvingmultipleexecutionstatesassociatedwith
loopexitsLatements?InChapter3Twhenthestatementconditionwas
defined, rle stated that each inner loop was to be t'reated ag shown in

figureS-5.IfexecutionreachesloopexitL,thenconditionineeds
to be added to the statement condition' We can noi{ det'ermine the

valueofconditioni.Ifloopexitl.hasexecut'ionstatesE1,...,En
associatedwithitrhavingexitconditionsofPlr."rPnrthenthe
condition required to reach roop exit i down any path Ls P1 v v

Pn. Thusr if the exiting loopr L, is nested in an outer loopr with

etatement condition e reguired, to reached the roop entry of t, then

the statement condition to reach loop exJ't' i is Q n (Pl v "' v Pn)'

Figure 5-5 Inner Loops for Statement Condit'ion

loop entry

condition-ncondition-L

Ioop exit nIoop exit L
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Thefinaltaskofl-oopexit'analysisistoengurethatnounneceggary
execution stat,es are allowed to exit from Ehe 1oop. consider again

theprograminfigureS-2.Since9'enor'haveanet,hodforextending
sequences and determining Ehe value of k' let us see if we are now in

a position to produce the more concise specification identified in

section 5.1.1. The seguence extension process will extend seguences

51, 52 and 53 to include oB.'EcT-l, and any reference to oBJEcT.l will

be replaced by item-in-sequence (k*1, 51) , since the extended size of

51 is k+L.

The iteration count at exit will then be resolved

process described earlier in this section' llowever'

be trilo execution states associated with loop

conditions will have been modified to be

and

by the removal

each execution

two execution
produced of:

to !L, using the

there will stiU
exit. Their Path

color(seguenuial-object-in-source(11, SOURCE-I) ) = red

- color(sequential-object-in-source(11'SOURCE) ) = red'

of OBTIECT-I from the execution Etates' The effects in

state are now t,he game. The fact ghat tte still have

states will lead to an eventual specificatlon being

if color(seguential-object-in-source(11' SOURCE-1) ) = red

then

es2+
es3+

V

V

itern (item

item (itern

position(item) - Pos-b)

position(item) = Pos-c)

where
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Sl- =

52=
53-

(sequencei=1to11
sequent,ial-object-in-source (i, SOURCE-I) )

(item: item e 51 n color(item) = red)

(item: it,em e 51 n - color(J'tern) : red)

and

if - color(sequential-object,-in-source(11,souRcs-l) ) = red.

then

es2+
€s3-)

V

V

item (item

item (itern

position (item) = Pos-b)

cosition(item) = Pos-c)

where

51=(sequencei=1to11
sequential-object'-ln-source (i, SOURCE-1) )

32 = (item: item e 51 n color(item) - red)

53 = (item: item e 51 ,r -r color(lt'en) = r€d)

Thisspecificationisstl.llnotsatisfact'ory.Theproblemiscauged
by the fact that we have teto execution states which only vary in path

conditions. Since execution states can be int'erpreted as

if pattr condition then effect

t,hen whenever we have associated with a slatement s, execution states

Elr...,EnidenticalexcePtforpathconditionsFl,...,Ptl,thenwecan
.rEn $tith a single execution state with a path condit'ion

v Pn. Since this situation is likely to occur because

sequenceshavebeenextended,loopexitanalysischeckswhetherthere
are any sec of execution states associated with any loop exit,

statements which are identical except for path condltions, and if so'

mergJesthem.Performingsuchasimplificationatloopexicwill
enable PAIiI to analyse the program in 5-2 correctly'

replace 81, ..
ofPlv
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We are noet readY to describe

processing on multiPle execution

the algorithm for the looP exit

states.

1.

Exit Algorithm

Supposet'heexitcondl-tlonsinexitingexecutionstatescontain
P1r...rPD. Find P = P1' v Pzt v Fn" the combined exit

condition, where Pi' is formed from Pi by replacing any iEem

referred to in Pi by its definition, if that definition contains

the iteration count k.

aIl
in

2. The value of k on exit is then given

(integer j))), where P(j) is derived

occurrences of k by ). This value then

al-l exiting execution states-

by (minimum tj: P(j)

from P bY rePlacing

replaces all uses of k

associated with this statenentt

execution states are identical

For each grouP:

3.Nowforeachexitstatementandtheexecutionstatesassociated
with it:

Group the execution states

so that in each grouP the

except for Path conditions.

Let the Path conditions for these execution states in

the group be Ql, . . . rQn with exit conditions P1' ' ' ' 'PD'
Define O = 01 v v Qn and P = Pl v v Pn' Now

pick one of the execution states in the giroup, replace

the path conditions with Q and add P to the statement

condition of the next outermost loop (if there is one) '

Change the status of the execution state to active and

update the loop data by removing the innermost loop'

Change the status of atl- other execution states in the

group to dead.
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5 . 2 GENERJALIZATION \TERIFICATION

This section describes how the correctness of PAN's loop

generalizationcanbeverified..Thegeneralizedexecutionstate
producedattheendofChapter4isintendedtorePresenttheeffect
ofkiterations.ThisexecutionstatecontainskaSavariableand
maybereferredtoasE(k).SinceE(k)wasgeneralizedfromexecution
states which incruded all those having compJ-eted one iterationr we

know that E(1) does represent uhe effect after one iteration' we want

toshowthatifE(k)rePresentstheeffectafterkiterationsthen
E (k+1) represents the effect after kf1 iterations ' We can then assert

by ind.uction that the generalization is correct '

To find the effect after k+1 iterations we begin symbotic execution

fromE(k)andproceeduntilwehaveexecutionstatesEl,...'En
associated wich loop entry, having performed k+l iterations ' For each

i,\.rettantuoshowthattheeffectrepresentedbyEiisthesameas
the effect represented by E (k+1) ' The only compJ'ication with this

scheme is the now familiar one of extending seguences' consider again

theprograminfigure5-2,t'histfuneinthecontextofgenerallzation
verification. once execut'ion resumes from E(k)' t'wo execution states

ElandF,2willbeassociatedwithloopent'rytravingcompletedk+1
iterations. Their effects can be summarised as:

Etl .

V item (item e 52 -+

V it.em (item € s3 +
position (OB.IECT-I) =

where

position (itern) = Pos-b)

position(iLem) = Pos-c)

pos-b

oBJEcr-l : sequential-object-in-source (k*1' SoURCE-1)

31=(sequencei-1tok
sequential-object-in-source (ir SOURCE-1) )

32 = (itern: item e 51 n color(item) = red)

33= (itern: iteme 51,l-color(item) -red)
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E2z

V item (item € SZ + position(it,en) = pos-b)

V item (item e 53 -+ position(item) : pos-c)

position(OBJECT-I) : pos-c

where

OB.IECT-1. - sequent,ial-object-in-source (k+1, SOURCE-I)

51 : (sequence l" = 1 to k

sequential-objecu-in-source (i, SOURCE-I) )

52 = (item: item e 51 n color(itern) - red)

53 : (item: item e 51 n - cofor(item) = red)

Whereas the effect of E(k+l) will be

V item (item e 52 -+ position (itern) = pos-b)

V item (item € 53 + posiEion(item) = pos-c)

where

Sl. = (sequence i - 1 to k*l
sequential-object-in-source (i, SOURCE-I) )

52 = (item: item e Sl. a col-or (item) = red)

53 = (item: item e 51 ,r -r color(item) - red).

So far the effects of E1 and E2 are not the same as those of E (k+1) .

However, once sequences have been extended as described for loop

exit the effects of E1 and E2 will be the s:rme as that of E(k+l).

Thus the generalization verification requires the s;rme gequence

extension process as that used by loop exit processing. AIso, the
mechanical procedure for checking that the effects of Ei are the same

as the effects of E (k+1) is the sErme as that required for merging

those execution states associated wittr loop exJ.t that, are identl-cal
apart from path condit,ions. Thus generalizat,ion verification requires
sinuilar processing to Ioop exit. processing.
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The algoli't,hn for greneraliaatlon verlfl.catj.on caB be stated ag 
l

fol.]-ows.

1. tseginaing wiLb ths general.tzed err€cutlon state E (k) I rese a1mbo1'lo

ex€eution to gpnerat€ €E€GusLon states Elt " '7E!!11 associated wlth

loop entry' rePrasenti'ng the effects after k*1 i'terations'

2. Extend aeqruences irl E1'1 " " 1En usllng the algiorltha i'n sectl'on

5 .1.1.

3. verify that the effect of each Ei - the effect of E(k+l) '
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Chapter 6

Brute Force Search

6.1 INTRODUCTION

The brute
technigues t

brute force
the models

force search is the second of PAIiI'a two generalization

the first beinqi the models described in Chapter 4' The

search, being far more time consuming' is only invoked if

fail to find a general-ization'

The idea behind the brute force search is very simple - a

generalization task which fails using ral{ input data m:ry succeed

after additional facts have been derived' from the J-nput data' This

technique has been successfully used by Dietterich and

MichalskitlgS5l in the SPARC/E system which can play the game

Eluesis.Forexample,givenacarddescribedaaljackofhearts'r
this system will add Ehe derived fact chat the card is red, before

generalization is actempted. However, in the sPARC/E syatemt

additional data on any object is derived without considering dat'a

available about other objects' Given propertle" P,.'''''P' of some

objectr !t€w PtoPerties P,,rr"'rP" of the same object are

derived.WhileusefulforplayingEluesis,thisrestrictedtechnique
would not provide sufficient power t,o significantly extend the

prograns that pAlr can analyse. Thus we eXtend the technigue so that

not only does PAN use all relevanu facts to derive D€w ofi€Sr but this

derivatj.onprocessactuallyproducesthegeneralization.InPAlil,s
case this means that this derivation Process produces the generalized

facts required for the generalized execution state' The task being

attempted can be described in terms not specific to program analysis

as follows:

Suppose we are

Each Oi contains

in gome logical

provided with a set

observations in the

language. we want to

of observations 01, . . . rOn'

form of well formed formulas

derive a single observation
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O, which l-s a

formula P is in
inOifori=1

gener.alJ-zation of 01, .

o if and only if P is
to n, by the following

..rOD in the

derivable from

method:.

sense that a

the fornulas

for each Oi, continue to apply

available, to the formulas ln
obtained

define O as 01' A 02' n ... n

any derivation rules that are
Oi until a stable set Oit is

On'.

used for generalization tasks? The

sets. It tnay not be possible to
of time. For example, suppose Oi

Why is such a method not cornmonly

problem lies in producing the Oi'
produce thern in any finite amount

contains the formulas:

weight (OB.IECT-I) = l
weight (OB,JECT-2) - I
weight, (OB.IECT-3) - 3

weight (OBJECT-1)

weight (oBJECT-1)

weight (OBJECT-I)

and derivation rules include arithmetic substitution. we can generate

weight (OB.]ECT-2) - 1

2 * weight (OBJECT-2) - 3

3 * weight (OB.IECT-2) - 5

etc, so that Oit is not a

apply the derivation rules
derive OL" , and use 01, t n
O. This however makes the

used the critical factor. In

finite set. Of course, we could simply
to each Oi for some specified time to
02" n n On" as an approxirnation of

order in which the derivation rules ale
the above example, we nay never generate

weight (OB.IECT-3) = weight (OBJECT-1) * welght (OB.IECT-2) .

which may be the desired generalization. Thus' Ilmiting the
derivation of new formulas by tirne does not address the real problems
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with this method: that most applications of derivation rules will not
produce formulas useful for the generalization task. Thus the
challenge is to lfunit the derivation rules to those which will
produce only a limited set of neer formulas containing those most

Iikely to be a valid generalization.

To address this problem, we recall from Chapter 4 that in the partly
generalized execution states available to PAlil, we have, in addition
to formulas, Lhe powerful concept, of a sequence. Since seqluences

describe those sets of items which have been distinguished by the
program being analysed, any useful greneralizations are likeIy to
involve seqluences and rile can restrict nany derivation rules by

expressing them in terms of aequences instead of unrestricted sets.
Experiments with PAI.I have sho$rn that with a carefully chosen set of
derivation rules, the brute force search can provide solutions to
many different progrram analysis generalization problems in reasonable

time.

Programs that PAN can analyse using this technique, but which cannot

be analysed using t,he models of Chapter 4 include:

programs which determLne the maximum or nrinimum of a

seqluence. An example of PADI analysing such a program lrag

given in Chapt,er 1.

programs in which variables have values which are a function
of both the size of a sequence as well as t,he values of
properties of it,ems in a sequence. An example of this type

of program in given in figure 6-17 in which v has the value

!1zG (S,

E posit,ion-in-segrrence (item-in-sequence (i, s) ) *

weight (item-in-sequence (i, S)

where S = (sequence i = 1 to n

sequential-object-in-source ( i, A) )

1

2.
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3. programs in which variables are used to refer to the
properties of non current items. An exarple of this type of
prograrn is given in figure 6-2, in which v is used in this
wdy, enabling a single record of file B to be created from

tlro records of fil-e A.

programs in which the updating of aome property of items in
a seguence S is controlled by a variable counting the size
of some selluence not equal to S. An example of this L]Pe of
program is given in the appendix.

obviously the brute force search cannot extend the analysis system

beyond the capabilities of the specification Ianguage described in
Chapter 2. The strength of t,he method is in being able to describe
effects using the languagre components available' such aa sLze,

position-in-sequence etci in a flexible way. Thls contrasts with the

models of Chapter 4, which are only able to describe effects which

are structured in the way required by the model.

The remainder of this chapter first describes in detail PAITI's use of
this technigue, t,he init.ial set of forrnula and the derivation rules
used. It then describes t,he use of the derived formulas to complete

the generalization task. The chapt,er finally describes how the
process has been made efficient enough to be practical.

6.2 PAI{'S I'SE OF BRSTE FORCE SEjARCE

As discussed in Chapter 4, the brute force search is only invoked if
oEher methods have failed. In particular, it is used when loop
generalization has failed to explain:

the value of a variable at loop entry

the value of an updated property for items included in a

aequence.

A
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This process is called by loop generallzation and it's input is:

all execution

coxnpleted the

states input to loop generalizatlon whLch have

full number of iteraeiong

the identifiers of any variables not successfully analysed

a list of (object , property) pairs' t'he objects being

members of some geqluence, and having an unsuccesgfully

analysed ProPerty.

looP ent,ry

sequential read A

if -' current (A)if current (A)

loop exitc:=c+1

v := v + c * weight(A)

Variable Value

209
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Ioop entry

sequential read A

if current (A) if -r current (A)

weight (B) = weight (A) + v loop exit

write B

v := weight (B)

Figure 6-2 Variable Referencing Previous Item

The output from this process consists of new values for variables and

new properties of, sequences. Each variable will either have a

generalized value, or the value runknown'. Similarly, each updated

object property wiJ.l either be explained by an updated property of a

selnlence the object is in, or else wiII have the value runknown'.

The brute force geareh operates on each execution state in turn. For
each execution state an init.ia]. set of forrulas is obtained and

expanded. The resu.Lts from alJ. oqransions are then analysed.
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6.3 INITIAI. SET OF FORMT'I,AS

The brute force search'for a single execution state operates by

expanding an initial set of formulas obtained from the e*ecutlon

state,globaldata'andthepartialresultsofloopgeneralization.

The set of fo:rrrulas obtained f rom t,he execution state consists of :

- the value of all variables

- the value of a1l updaeed ProPerties of objects

- the Path condition.

The set of formulas obtained' from global data consisus of:

- the definition of each object'

the set of formulas obtained from t'he partial results of, loop

generalization consists of:

- the definition of each sequence

- the size of each sequence

- the members of each sequence'

6 .4 BRUTE FORCE E:{PANSION

once the initial set of formulas for an execution state has been

found, the brute force search proceeds to generate additional

formulas using the rules. shown in table 6-1' These rules are ad hoc'

t,hey erere setected by considering how a languagte comPonent such aa

size or position-in-seguence could be introduced into an expression'

The rest of this section describes these ruleg in more detail'
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t-

Eable 6-1 Brute Force El{Ennsl-on Rul.e

trn thic table S neans a s€quence, O l,s an object and n2 n are
integers.

eateEa4r Sa8te .lction

Sfunple Sequence r$J.ae replace n btr aLze (rSl

,8ubst:iltuti.on rtem in Sequence replace O by

i.ten-1n-seqluence (1, s)

Poslt,l.on ln S,€qr,reoce regrtrace n by

posi.tion-in-seguence (O, S)

Iioglcal al]. r.uLes used j.n the theor.em prover
Deduct,ion E:ristential replacg P(O) by

Quantifl-cation 3* (xe gAP(a))
Unlversal relrJ"ace P (O1) 7 . . .7P (On; 5"
Qnantlf,i.catLsn V * (* € S + P(x))

Seguence AJ.l ftens Ln Seqqenee rep:!.ace teilr-l + ,.. + teln-n
Substi.t,utLon byr

..le.lll

E t6!n(t)
t-l

r.eplaee term-L * ... * terr1t-tl

bV

dat(Sl
n teEn(t)
1.l

Propertlt of Sequenee rep.Laee

ploperty (item-in-seqnusnce (1, S) )

- Q(m 2...7rtr ) for i - 1rltt
to sJ.ze(s) by

V t (1 g i. S eize(S,l -r
pn'operty ( item-ln-sequeace ( l, s )

- O(f, (11r.,.',f; (tr)))
1l

2,L2



Se$reBcELSj.ce.

trf there Lg a forcurla P; that eonta.lng an J,n!€gfet 1r., equal to size (Sl

for some se(Frenae S, then geneEate Pt, shich ls derlved f.rom F by

repJ-acirrgr n by size(S).

An exarnple of the use of this rule Ls t,o detes(dne that, a varl.able Ls

co,untLng' the size of a seq[uence. llote that this allowc the brute
force s,earoh to generate a fonrula equivalent to the nost inportant
of tbose generated b1r $odel- 3 for varlab.Le values d.lscussed in
seetj.oo {.5. Honrerrer, bqcause thLg nrXe operates on any Lnleger of
the r'i.ght value rrithin a (poselbly)' lar"ger expre'g€Lour lt Ls llo:is
genera.L.

trtgm in Se$rence

trf, ther€ i.s a fornulla of 'the form P (OBJECT-n) ' where OB.TECT-n Ls the

Jth elerrent of sone sequeace 5r then generate

F,{ltem-in-sequence (J7 S) ) .

lfo example this rutre i-a to g,enerate

weigrht (item-tn-seque$ce (1n Str) ) - we.lght (lteur-,in-seqrlenee (1,r

s2t )

+

we.lght ( lten-ia-sequenoe ( I I

s3) l

ne.Lght (itern-in-aequehee (2r S,1) ) - weight (item-l.n-sequence (2,

s2) )

+

wel,ght ( iten-in-sequence ( 2,

s3) )
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ereight (l-tem-in-sequence (3, 51) ) - weight (Ltem-in-sequence (3,

s2) ,

+

weight ( l-tem-in-sequence ( 3,

s3) )

from

weJ.ght, (OBJECT-I) = weight, (OB.IECT-4) + weight (OBJECT-7)

weight (OBJECT-2) = wei.ght (OBJECT-S) + weight (OBJECT-8)

weight. (OBJECT-3) = weight (OBJECT-6) + weight (OB,IECT-9)

where S1' 52 and 53 are sequences such thaL 51 = IOB.IECT-1 OBJECT-2

OBJECT-3), 92 - {OBJECT-4 OBJECT-S OBJECT-6}, 53 = {OB.IECT-7 Ots.tECT-8

OBJECT-g } .

Position in Seguence

ff there is a formula of the form P (m), where m ig an Lnteger whLch

eguals position-in-sequence(OBJECT-n, S) for some sequence S and

OBJECT-n' and n does not appear in F as part of item-l-n-seguence(n,
S'), then generate a new formula

P (position-in-sequence (OB.IECT-n, S) ) .

An example of this rule is to grenerate

weight (OB,JECT-l) = position-l-n-sequence (OB.tECf-l, S, )

weight (OB.IECT-21 : position-in-sequence (OBJECT-2, S' )

$reight (OBJECT-3) - position-in-sequence (OBJECT-3, St )

from

weight (OB\]ECT-1) = 1

weight, (OB.IECT-2) = I
weight (OB.IECT-3) : 5
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where OBJECI-I is lst in S', OBiIECT-2 Ln 2nd in S' and OBfiCT-3 is
5th in S'.

Some comment is required on the limit,ation that n must not appear J-n

item-in-sequence (n, S') . ff we do allow n to appear in this
subexpression, then this rule interacts in an unfortunat,e lray with
the ltem in Sequence rule. Startingr with

P (rn)

these rul-es woul-d al1ow us to generate

P (position-in-sequence (OB.TECT-n, S) ) by Position in Sequence

P (posit,ion-in-seguence (Ltem-1-n-sequence (J-, S) r S) )

by ltem in Sequence

P (pos it ion-in-sequence ( item-in-sequence
(position-in-sequence(OBJECT-n' S) r S)' S) )

by Position in Sequence

etc

Such a serLes of formuLas Ls very unlikely to be useful, and is
prevented by tbe above restriction.

Simpl-e Logrical Rules

All the ruleg previously discussed in the theoren prover, sect.ion

3.2.7.L, are used. These' allow simple logical- deductions on our seE

of formulas.

Existential Ouantif ication

If there is a formula P (OB.TECT-n) and OBJECT-n e S, for eone sequence

S, then generate

3o (o e S a P(o)).
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This rule was used in the generation of minimum weight of a seguence

in the dp domain example in section 1.4.

Universal Ouantif ication

If t,here are formulas P (OB.IECT-i) for i = 1 to n, and S is a sequence

such that $ = {QBJECT-I ... OBJECT-n}' then generate

Vo (o e S + P(o)).

Thls rule was also used in tbe generation of the minimum weight of a

9equence.

A1I Items in a Sequence

If there is a formuta P.that can be expressed so t,hat it contains a

subexpreasion terrn-l + + t.erm-n, such that term-lr...rterm-n are

t,he same except, term-i refers to the ith element from concurrent
seqluences {S1 Sp}, where tenn-j refers to the jth element, and

the size of each Si is n. We can then generate P', which is derived
from P by replacing

term-l + ... + term-n

by

rlz€ (31,

E tern(i)
t-1

where term is derived from term-l by replacing any reference to an

element, of {S1 Sp} by l-tern-in-sequence(ir Sj) for approprlate j.

The only manipulation on P that Ls done to try to achieve the
reguired form are the associative and connrut,atLve laws for addition.

The rule also applies to subexpression term-l * ... * t€rrr-rrr by

replacing + by * and E by II.
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&n exaryX.e of the uee o,f tbis rule Le for a s]@olt e varl"abtre v whoge

value i.s glven by the fommrLa

v = weLgtrttoBilEC-T,-1) * welght(oB"lEeT-21 + weight (oBit"Eel.3)

and

g = {,oBiIEcT-l oBJEe!-2 osJECr-3}.

We wl-ll then generate a aew fo::nula.

v- X weighu(iten-in-sequeace(1,, Sl)
I.!

NpLe that this rule aLtows tbe brute fo:ce search Eo gen€Eate

forrnulas equLralenE tso tllose geneiated by raodel 4 f,or varlabLe vaLuec

as dicct&ssed ln seclIon 4.5. Ilonener, because Ehls rule olreEates o{r

arlr' aubexpreEslon of the right form lL is nore general than nsdcl 4.

PropcEt.n .ot .Seslarrce

If there is a set of, formulas

property(item-Ln-se-guence(i, Sl ) - e(r.. ... rr*l

,fo,r i = 1, to nr rthoee r-ight hand sides dLffer only in the, raLue of k

nu-ntbers altd wheEe S. Ls a sequ€nce of glze t\ then gene(ate a nes

fo:nrul.,a

Vi (1 g i 3sLze(S) + property(itenr-in-sequenee(i,n $))

= 0(f (il ... f (i)))

r'here fr(il = *r, fo" I = 1 to $r j = 1 to k.

$tl,s rule allows ut to r,ecord Ehe updated properties of all obJecee

in a sequeqree ln a single fornula.
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An example of the use of this rule is to generate

Vi (1 < i S size(S1) -r weight(item-in-seguence(i, 51))
: weight (itern-in-sequence (lr 52) )

weight (item-in-sequence (i, 53) ) )

from the formulas established in the example for Item in Seguence.

6.5 AI{AI"YSTNG TgE RESULTS

Use of the rules described in section 6.4

formulas for each execution state. How

variables and updated object propert,ies?

6.5.1 Analysing VarLable Values

g'ives us an expanded set of
are these uaed to analyse

The preferred solution to finding a variable value is that, for every

execution state t,he expanded set of for:urulas contains a member v = Q,

where a is expressed in terms of known val-ues which will appear in
t.he generalized execution state. Note t.hat values which have

themselves been updated by the program do not count as known values,
since thie can result in deecribing one unknown in terms of another.

To achieve such a solution, we require the following:

v O occura in the expanded formulas for every execution
stat.e

O contains no variables or items which are members of
sequences.

Q contains no updaEed properties of object.s variables.

lf, however, hre cannot find such an expregsion for v, then we still
may be able to find a solution for v by consldering: those formulas

which contain v. rf these formulas ar€ Qlr ...rQD, then the value of

or
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v is constralned by saEisfying Ql n Q2 A ^ Qn. Of course, more

than one value may obey this constraLntr but we can state

v€ {z; Q'(z)}

where Q' i" 0t n Q2 n ,r Qn with v repJ.aced by z. This procedure

was used in the dp domaLn example ln section L.4, rhere v nas found

to be the minimum weJ.ght of the l-tems in a seguence.

To use this form we need to find at least one formula Q that contains
v in the expanded formulas for all execution statea, and is otherwlse
expressed in terms of known values which will appear in the
greneralized execution stat,e.

Thus we need to find the set of formulasr Qr obeying the following:

- O occuls l-n che expanded formulas for every execution st,ate

- O contains v, but contains no otbeE variables or items which

are members of seguences.

- A contains no updated properties of objects or sequences.

!{e then express v usingi the expression as above.

If lre cannot find any such formulagr we aet the value of v to
runknowrt' .

6.5.2 AnalysLng Updated ObJect Propertl.es

Since, in the generalized execution gtater updated properties of
items in seqluenees are recorded against the Eeqluence, the only
relevant formulas are thoae which express the updated property of a

whole sequence. These formulas are of the form

Vi (1 < i Ssize(S) +property(item-in-sequence(i, S)

= Q(i) )
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Such formulas express the updated property for sequence S.

As for variable values, we require that such a formula be generated

from the initial formulas of every execut,ion st,ates, and that Q is
expressed in terme of known values which will appear in t,he

generalized execution suate. However, in this cEs€7 as discussed ln
section 4.6, we want to e:q)resE updated properties in the most

greneral way possible. Thusr given a Eequence 51 with subsequences 52

and 53, the expanded formulas may contain:

Vi (1 < iS size(S1) Jproperty(item-in-sequence(i, s1))

= Ql(i) )

Vi (1 < issize(S2) +property(item-in-seguence(i, 52))

= Q2(i))
Vi (1 < i< size(S3) +property(item-ln-sequence(L, S3))

- Q3(i))

for the same property. In thls case only the formula for 51 should be

used, as it is more general than those for 32 and 53 (i.e. it
rexplains' the updated propert,ies of more objecte).

Thus we require a formula P obeying the following:

- P is of the fornr

Vi (1 S i < sl-ze(S) -+ property(ltem-in-sequence(i; S))

= Q(t))

and occurs in the expanded formulas for every execution
sLate

- O contains no variables or items which are members of
seqluences

- O contains no updat,ed properties of objects or seq[uences
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ff such

property

there is no formula P' of the forrn

Vi(1 <i(size(S') -' property(item-in-sequence (i' S') )

obeyinq the above conditions,

=Q'(i))

where S' is a superset of S.

it is recorded as the updatedformula P can be found,

the sequence S.

a

of

The updated property of any item which is not explained by the
updat.ed properties of any sequence the item is in is set to
runknownt.

6.6 MAKING TgE BRUTE FORCE SEARCA EFFICIENT

6.5.1 Search Speed

In the introduction to this chapter we discussed why the brute force
search t,echnique is not generally used - the generat,ion of new

formulas will never terminate. Having overcome this problem in PAll's

use of the technigue by limiting the expansion rulesr vre are faced
with the problem that the speed of greneration of new formulas may

decrease as the number of formulas increases. In this section we show

that a nice feature of PAIiI's derivation rules allows new formulas to
be generated at nearly constant speed.

Given a set of rules Rlr...rRn that operate on single formulas and a

set Q of formulas {P1 Pm} Lo expand, a simple brute force search

algorithm could operate by repeating the following:

for each i from 1 to n, try to apply Ri to each Pj for
to m. If the rule fires and resuLts in a formula P not
t,hen add P t,o the end of Q and increment, m.

This algorithm suffers from the disadvantage that it repeatedly testE
whether rule Ri can operate on forrnula Pj. This problern becomes norse

j=1
in Q'
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as t,he size of the set Q increases. Thus the tirne required to produce

one nelr formula increases with the size of O and t,he algoriuhm

becomes less and less efficient,.

Now let us consider rules that operate on multiple formulas. we may

say tbat rule Ri can produce a nen forrrula from formulas Plr...rPp €

Q, if PLr...rPp satisfy some condition C i.e. C(Plr...rPp) is true.

An algorithm to expand Q using such rules could operate by repeating
the following:

for each Ri, search O for a formula Pl which could make

C(P1, ) true. Search again through A for P2, P3 etc
until either the search fails or Plr...rPp are found so that
C(P1r...rPp) is true. If rule Ri now produces a nelr formula

P not in Q, add it to the end of Q and increment m.

Such an algorithm potentially reguires p passes over the set Q before
it, can fire a single rule. Such a method may be required for rules
having a condition, C, such that tre cannot determine whether Pi can

satisfy C unt,il P1r...rPi-1 are already known. Hotdever, an

examinat,ion of the brute force search rules shons that this is not
required here. The mult.l-formula rules are guch that once any formula
Pi is identified, the set of all the ot,her formulas is determined;

and so can be found in a single pass over Q.

Thus f or PAlil's brute force search expansion lre can suggest the
alternate multiformula alg:orithm as:

for each Ri, search O for a formula Pj which could make

c(...Pj...) true. Then in a single pass of Qr try to find
P1r...Pj-1rPj+lr...rPp to complete condition C. If rule Ri

now produces a new formula P and P is not in Qt add it t,o

the end and increment m.

The main remaining problem wit,h this algrorithm is now similar to the
problem with the single formula rule algorithm. Moet of the time wl-Il
eventually be spent testlng whether C(...Pj...) could be true.
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we now look at a way of addressing these problemsr first for singiJ-e

formula rules.

Given a rule Ri and a set Q of formulas, it is easy to see that if Ri

fail-s to fire on formula Pj e Q, or Ri can fire on Pj but produces a

P al.ready in Q, then Ri will never be able to generate a ne!,r formula

from Pj. Thus we would like to t,ry to apply Ri only to those members

of Q which have not already failed to produee a new fornula. This can

be done by maj-ntaining a neyr set Qi, in addiLion to Q, where Qi
contains only those elements of Q which have not yet failed for rule
Ri. Initially, we set Qi = O. Thus a more efficient single formula

algorithm would be:

for each i, try to apply Ri to eactr Pj € Qi. If the rule
fires and produces a new formula P not in Q, t,hen add P to Q

and to every Qi. If t,he ruJ-e fails to produce such a nert

formula, then renove Pj from Qi.

This modified algorithm results in some addit.ional memory costs.
However, the difference in processing time should be dramatic. As

time passea and Q increases in size. there will be some addLt.ional
processing required to see if a nerr formula is in O. This seems

unavoidable, but is overshadowed by the gain in efficiency aehieved

by only allowing rule Ri to fail on Pj once (eit,her because Ri can't
fire on Pj, or because the resulting formula P is already in Q).

Can this approach also be used for rules that operate on multiple
formulas? The eguivalent algorithm would be:

for each Ri, try every Pj € Qi to see whet,her Pj couJ.d make

C(...Pj...) true. If sor then search O for
P1r...rPj-1rPj+1,...rPp to complete condition C. If these
can be found, and application of the rule results in a new

formula P not in Qr then add P to Q and to every Qi. If any

of the above steps fail, then remove Pj from Qi.
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This algorit,hm achieves the same efficiency gain as the algorlthm for
single formula rules. However, J.t is not trivlally obvious that, lt
does not timit the formulas which can be grenerated. A for:rula Pj

which Ls removed from Qi beeause P1r...rPj-LrPJ+lr...rPP cannot be

found, cannot be totally discarded because if P1, . . . rPj-lrPj+lr . . . rPp

are later generatedr then we need formula Pj to complete condition C.

Howeverr ds each P1r...rPj-1rPj+1r...rPp is generated it will
initially be added to Qi and so anot.her attempt to fire Ri wl-J.l be

made. when the last of these is added to Qi, then Ri wiII indeed

fire. This is because the brute force search rules which require
multiple formulas are independent of which formula is used to begin

the search for the rernainder.

An example may make this clearer. Consider the sinple muLtiformula

rule included as one of the Simple Logical Rules from section 5.4

Ri: from (< P Q) and (< Q R), generate (< P R).

Suppose that (< x y) is l"nit,ially added to Q and QL, but there is at
that tirne no formula of the form (< y zl in O for any z. Since
(a * t) is in Qi an attempt to fire Ri w111 be made, but will fail.
(< x y) will then be deleted from Qi. At a latrer stagie, (< y., is
added to Qi and Q. Another attempt will then be made to fire Ri and

will succeed since given (< y z) we wiLl find the formula (a * t) in
Q, which wilt then allow' Ri to gienerate (( x z), which will be added

to Q and Qi.

thus, as long as muLtiformula brute force search rules are written in
such a eray that given any formula Pj which could make C(...Pj...)
true, a search of 0 is done for all other Plr..,rPj-LrPj+lr...rPp,
tben the above efficient algorithm is corrplet,e, in the sense that it
will generate the same formulas as the initial simple algorithm.

we see from the above that the brute force expansion has been made

efficient by utilising properties of the expansion rules. The brute
force expansion rules were not selected to satisfy these properties.
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In factr these properties hras only notlced when the brute force
search had been implemented wl-thout making use of them and found to
be too slow. It is an open grrestion as to whet,her there are useful
expansion rules that, do not satisfy these properties.

The efficient form of the algorithrns has been tested in PAll, and

results in an almost constant rate of production of new formulas. fn
practice the Qi sets are usually only a very small subset of 0.

6.6.2 Menory Requirenents

The brute force search will grenerally produce a largre number of
formulas from any given executl-on state. Section 5.5 showed that most,

of these formulas will not be used in analysis i.e. their only

function was to allow other, more useful formulas to be g:enerated.

The only formulas used ln analysis are t,hose which:

- j-nclude an unanalysed variable and do not conlain any items

from sequences

or

- are of the forrn '

Vi (1 < i (size(S) +property(item-in-seguence(i, S)

= Q(i))

and do contain any items from sequencea or variables or

updated properties of objgcts or seguences.

Thus, once the brute force search is complete for some execution

state, we can drop all formulas which do not satisfy either of t,he

above conditions. If the number of execution staees to analyse is
Iarge, this can result in significant memory savings.
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Chapter 7
Interpretation and Simplification

7.L INTRODUCTION

When symbolic execution has finished, the program has effectiveJ.y
been analysed. However, the results of this analysls are contained in
the execut.ion states that are associated erit.h t,he stop staeements in
the program. It is the task of the interpretation process to
interpret these results into a human readable form. Interpret,ation is
in fact very simple since all the real work has been done by prevJ.ous

processes. The onJ-y complication in this process is thatr for human

readability it is necessary that, the expressions produced by the
int,erpretation process are in a suitably simplified form. For

example, it rnay be correct t'o state

if

color(OBJECT-1) : red v -r color(OB,yECT-1) : red

then

v = weight (OBJECT-I) - weight (OB.]ECT-1)

but this is hardly a satisfactory way

value zero at program end. This
information from the execution states
then describes how this information is

of saying that v always has the
chapter first describes the

which needs to be presented and

simplified for readabilJ-ty.

7 .2 EI(ECUTION STATE INTERPRETATION

Each execution state to reach program end represents a formula

P+Q
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where P is the path condLtion of the execution st,ate and Q is the
effects. The effects consist of the value of variables and the
updat.ed propertieE of objects and object sequences. tsoth the path

condition and the effects may refer to objects, sources or sequences.

The definition of these items needs to be included in order to make

the specifications complete.

The form of the interpretation is as follows:

LI

path condition

then

variable-id-l : variable-value-1

variable-id-n = variable-value-n

object-property-l (object-l) - object-proPerty-value-1

"Or".a-n.on"ra"-^ tobi..a-.f - obi""a-p.op"tty-rr.fu"-*

Vi (1 <iSsize(sequence-1) +
sequence-property- 1 ( itern-in-sequence ( i, seguence-1 ) ) '
sequence-property-value-1 (i ) )

Vi (1 <iSsize(sequence-p) -+

seqluence-property-p (item-in-sequence (i, sequence-p) ) -
aequence-property-value-p ( i ) )

where
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itern-id-l is defined as def-l

item-id-q is defined as def-q

The variable-idt s

variables data. For

can also be included

and variable-value's
programs in the robot

as special variables if

are obtained from the
domain, the robot status
reguired.

the object and objectThe updated properties
seqluences data.

are obtained from

The it,em-id's
execution state
global data.

consist of al].
interpretation

items referred t,o

Their definitions
elsewhere in the

are retrieved from

The above interpret,aLion is produced for each execution state
associated with a stop statement. The disjunction of all such

interpretations' constitutes the progr;rm specification produced by

PAI.I.

Note that in t,he above interpretatLon the path condition will be

expressed in terms of the state of the worl-d before the program

starts. To see that this is sor recall that path condl-tions are

created when condition statements in the program are executed. Any

such condition statement tests the value of a variable or object
property. The value that a variable or object property can take is
determined by the action statements. These allow variables and object
properties to be given values that are a funct,ion of variables,
object properties and constants (literals or numbers occurring in the
prog'ram). Thus an inductive argrurnant can be used to show that any

variable or object property has a value which is a function of the
initial values of objecu properties and variables. Since these values
are used to create path conditions, path conditions will be expressed

in terms of the initial values of variables and object properties.
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7.3 EXPRESSION STMPLIE IC,ATION

The description of expression sfunplification has been included in
this chapter as it is only in the interpretatj-on process that
unsimplified expressions become visible. fn fact, PAI.I sirnplifies
expressions whenever they are created or updated, using the process

described in this sect,ion.

The role which the expression simplification process plays in uhe PAII

system is somewhat sirnilar to the theorem prover: expression
simplification involves issues independent of those being explored J-n

PAN and t,his process could have been supplied by an ext,ernal system.

As such a system was not readily available, a simple simplificaEion
system has been developed, sufficient to cope with PAl.l expressLons so

far encountered.

The input to this process is an expression, and t,he output is a

sinplified form of the expression. The simplification process works

by applying a set of simplificat,ion rulesl of the form

input form -) output form

specifying that any expression matching the input form should be

rewrit,ten as the output form. The input expression is recursively
dissected until the simplest subexpressions are reached. These are

then simplified by applying all simplification rules whose left hand

sides match the expression. The original expression is then
reassembled, with simplification being performed as each

subexpression is rebuilt,

For example, suppose t,he input expression is

((a - 0) + (2 + 1)) - (b * 0))

then dissection would result in the simplest subexpressions of:

(a-0), (2+L7, (b*0)
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lthiob would be ei.npli.fl.ed to

a1 J1 0.,

Reas8esib,ly would thea yleJ-d.

((a + 3) - 0)

whioh woul be sinqplif,Led to (a + 3).

& problem arises sittr thLs schcrne when a rule ereates a ner icner
suberp:ress'Lon. In thls ease thls inner euborpresaion may Lteelf need

to be sl-nplLf ied, and PAll solves thJ's by reeursJ.vely Lnvokirlg

exp.resei.on eianSrllfLcat,ion for tlll,s subexpressisn.

For eaa4pler one o,f the sfuqpliflcat,ion rules used by FAI! ia

(x - (" - y, 'zl -> (x * g) (n * z).

ff thia i.s applLed to

(a-(3-br-2't

tle gre!.

(a + bl - (3 + 2).

lfow€ver' 13 + 2:l Lteelf ueedg to be stlpltfied to 52 so (3 + 2) rLll
be passed to expEeso.lon sl,nqilLfJ.eats:l.on from wLt-hin thLs nile. Uge of
this nethod enguEes that a sim$,ficgtlon rule 'n€ver returrrg aa

e*preselon wL.th an unstrnplLf,led subexpreesion,

7 .4 SX!'PLTE'ICAIIrOI RSLES

PASIts sinpltf,ication process useg the foIJlowlng tuJ.es.
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7.1.L llogicll Rrrlcs

If x y z are any expressl,ons,

(-r F) -> T

(-' T) -> F
(xnl[rty) -> (x'ry)
(xaF'ry) -)F
(xlrya (-rx)) ->f
((xvY1 a (xvz)) -> (xv (Yrz))
(xnlrrnz)
prover
(xvyv (-lx)) ->T
((x n y) v (x 

^ zll -> (x a (y v z))
(zv (xny1 v ((-a) 

^y)) -) (zvy1

1.{.2 AalthmtLe Rulcs

rf w x Jr z ate any e{pres,giong and n rt ar€ nurnbetst

(,n.* x + n) ;> (r + value(n + m))

(n * I * m) -> (x * va].ue{n * m))

(n - rn) -) valllue (n - sr)

(n / n) -) value (n / m)

(x+ (w +y) I zl -) (x + s+ y + z)

(x'* (w * y) * e) -} (x * w * y * z.l

(x * (w - t1 + z, -) ((x * r * z) - yl
(x- (w-y) -zl
(a-b)
((x - y; - z't

lxttui yllzit
(a/bt
((x / y) ,/ zl -) (x | (y * zll
(x+0t ->)r
(x-01 -)x
(x*1) -)x
(x*0) ->0
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Note thau where tbe expression remains meaningful, terms can be

omitted - e.g. the rule for (n + x + m) is intended to include (n *
m). Also, the order of the operands is not slgmifJ.cant tf the
operator is corunutative - e.9. the rule for (n + x + m) is Lntended

toincLude (n*m+x).

7.4.3 Corryarison Rules

If w y y z are any expressions and n m nunberg,

(n>m)
(n<m)
(n=m)
(n2n)
(n<m)
(high-valuee ( x)

(high-values ) x)
(x > (x + n)) -> F

(x< (x+n)) -> T

7.4.1 l{iainn Ruleg

If x y z are any expressions, n Ls an lnteger and P a fonrula,

minimum([j: (j : x) ]) -> x
minirun({J: ((n + 51 > x) ,r integer(j)})
P(m:lnl-mum(tj: P(j)l) -> T

7.5 COMMENTS ON SIIIPLIFICATION RI'I.ES

The simpltcity of PAN's slnplification process necessitates
simplification rules with stronger preconditions than would be

required in a rnore sophisticated system. The fact that any eJ.igible
rule will be used to modify the expression means that the rules must

inmediately produce a simpler form. This can be compared with a

Eystem which allowed backtracking in whLch the rules could be tried
to see if they eventually resulted in a simpler expression.
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For exarnple, the effeet of the logical rule

(z v (x a yl v (('.'x) ,r yl; -> 1z v y)

could then be achieved by including the siupler rules

(z v x v !r) -> (a v (x v yl)
(x,ry1 + (yAx).

Then given

(a v (b ,r c) v ((- b) n cl)

we eouLd gieaerate

(a v 1(e a b) v (c rr '(r b)))).

Eh€n, applS'i.ng the existing rrr.le

((x ,r y) 'v (g^ zl) -> (x l (y v z))

to the subexpress{,oa

(tc n b) v (e n (- b),))

would produce

(c n (b v (-r b))).

the sthes exis'tJ.ng rules would thea genelate c giving (a v cl f,'or the
fuIl e4pressi.oa whLch Ls equlvalent to applyi.ng PAltts rule.

The first step in tbis process is to apply

(,2 v x v:yl -> {z v (x r/ yt)
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nhich r€sults in a $ore eorEllex erpressi,on, Since at this point it
not obvious that any benefit will result from appLyJ-ng this rule,
do not allow it in the sinple, non backtracklng sygtem used by Pau.

fnclusl.on of the ninlrnum nrle

P(nintnr:n(lJ: F(j)l) -) I

while ob'vLoustry t,rue nay requ:Lre gqne justifl.cat.lon. Cone{der the
exangrle of a progran which includes a loop which readg obJects fron a

sequenciaL Eou:ree, SOUReE-1' and exltg when a red obJect is f,ogad.

The path condltion wd.l.l, be

P (le) - c-olor(sequentl-al.-object-L,n-gource(Ic+l' SOIIRCE'II ) -,red.

Th'e exit procesa *ill use this to generate a vatrue for lc - of

ls
we

I

k=
.rt t rrinlmun( [ j : color (sequential-object-in-source ( j+1r

SO{IRCE-I) ) - red})

- mlnJ,mun({J: p(J)})

rbi.s va!,ue for k.,.. wlJ.L thea be subctLtuted whetever k
the exeeut.ion state, J.ncludinE the path co.ndttioo F (k) r

P(ntntrnun({J: P(j) l) L.e. T. SLnce the path cond.LtLon ls
lrlteEn)retati.on process, Euch a s.l-npfifJ.eation is requlred.

occtlrs in
to produce

uced i.n the
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Chapter 8

Conclusion

This thesis has described a progfram analysis system, PA.ll, based on

symbolic. execution and g'eneralization. The primary contribution of
this thesis, however, is not to describe a particular program

analysis system, but to demonstrate that the combination of symbolic

execution and generalizat,ion can produce a powerful system for
analysing J-oop programs.

Such a system requires the generalization to produce an execution
state represent,ing t.he effect of some unknown nurnber of iterations
from the execution states produced during the first few iterations.
The secondary contribution of this thesis is to propose one method of
performing such a generalization. This method generalizes by using

sequences generated from those items in the execution st.at,es with
similar definitions. It should be noted that performing the
generalization by other means (either without using sequences or
using a different seguence generation method) would not detract from

the central concept of using greneralization with slmbolic execution.

The remainder of this chapter makes t,his discussion more concrete by

relating these concept.s to PAN. It describes t,he original
contributions of the PAlr system, Lhe st,rengths and weaknesses of such

a system and identifies aspects of the system which could usefully be

extended.

8 .1 WS,AT PAN DOES

PAN accepts a program to be analysed as input, and produces a

specification as output. No additional informat,ion, such as intended

specifications or program cliches, is assumed. Thus PAI'I does not
address the tasks of checking that a program satisfies an intended

specification or describing a program in terms of known cliches.
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8.2 ORIGINAI, CONTRIBUTIONS OF TgE PA}I SYSTEM.

8.2.L fdentification of a Nev Prog,ran Class

PAI'I prograns are described using the standard terminologry of directed
graphs. Directed graphs can represent progrann with unrestricted
iterat,ive and conditional constructs. PAl,l accepts for analysis a

subset of these programs - those satisfying the restrictions
identified in Chapt,er 2. This subset represents a middle ground

beuween complet,ely unconstrained prograrns and those onJ-y allowing:
it,erat,ive and conditional constructs such as whiler if then etc.
Defining and establishing the properties of this class of programs

has occupied a significant, part of this t,hesis.

PAIiI's success in analysing' this class of programs rnay indicate that,

it would be worthwhile trying other progrtrm analysis technJ.guea on

the same set of prograrffr.

8.2.2 Loop Generalizatioa

Traditionally' the major weakness of symbolic execution as a program

analysis technique has been its inability to handle loops. The

principal contribution of the PAll system is to demonstrate that this
problem can be addressed by using a technigue based on

general-ization. PAI'I generalizes the ef fect of a few loop it,erations
to determine the effect of an arbitrary nurnber of iterations.

8.2.3 lwo Ieve]. GeneralLzatioa

Performing J.oop analysis using g:eneralization reguires the
identification of generalizatj-on rules that predict the effect of an

indefiniue nurnber of loop iterations from the few iterations actually
perf ormed. PAIV' s f irst task in the greneralizat.ion procesa is to
generate seguences. PAI{ does t.hj-s using structured parameterized

rules referred to as models, following t,he terminologry of Dietterich
and Michalski t19851 . Models are also used as a first rnethod of
expressing the effect, of the loop in terms of sequences.
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By examining numerous programs from the ewo domains under

consideration, the following conclusions were reached on the
effectiveness of models for loop analysis:

most of the effects produced by loops

a small nurnber of it,erat,ions using a

generalization models

can

few

be predicted from

relatively simple

a few loops have unusuaf loop effects. A generalization
model to handfe each such loop would produce a cumbersome

system which would still be unLikely t,o cope with an unusual

loop not previously encountered.

PAN's design ref lects these f indings . PAbl has tlro g:eneralization

strategies - the first using a small nudber of J.oop generalization
models, and the second using a more greneral but computationally
expensive technique. Sirnpfe prograns can be analysed qtrickly uslng

the loop generalization models.

Any unusual loop which cannot be handled by these rules i-s analysed

by a method referred to as the brute force search. This technique

uses a combination of simple rules and extensive eearch to greatly
extend the program effects which can be greneralized. Compared to
usingr models, the brute force search has the significant advant,age of
allowing PAIiI to analyse loop effects using arbitrary combinations of
known functions. We savr the example in section L.4 in which PAll

analyses a progrram whose loop effect is finding the minimum of a

sequence of values. The minimum function is, J.n fact,, unknown to the
loop generalizer, but the effect was successfuJ-Iy described in terms

of more primitive functions.

8.2.1 Sepalate Analysis of E=It Conditlons

PAN also introduces a new method of analysing loop exit. conditions.
This is not included in the loop generalization process. Once the
effect of an arbitrary number of loop iterations has been determined,

PAI{ continues symbolic execution until ttre loop exit (s) are reached.
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At that point the Ioop exit conditions are analysed to deterrnine t,he

number of J-oop iterat,ions actually performed.

This method enables PAI.I to clearly identify t,he conditions required
to reach any given loop exit. Thus PAIiI is relat,ively insensitive to
the complexity of loop exit conditions or t.he nunber of loop exits.
This contrasts with more traditional met,hods such as in Cheatham,

Holloway and TownleylL979)t in which loop exit conditions ale
determined simultaneously with determining the effect of the loop.
The problem of whether these methods can cope with multiple loop

exits does not seem to have been addressed.

8.2.5 Execution State Representation

Development of PAN required an execution state representation
suitable for both symbolic executlon, loop greneralization and exLt
processing. PAIiI's execut,ion states, expressed in terms of ob jects,
sources, seqluences and variables have shown that a domain independent

representation is possible. Thus the essential domain independent

feaLures of sources, objects and seguences have been identified and

only these are recorded in the execution states. Also, the new

concept of statement condition has been introduced and its value to
the loop generalizat,ion process demonstrated.

8.2.6 Generalization VerificatLon

PAN demonstrates that a program analyser based on synbolic execution
can easily verify loop generalization by executing another iteration
of the loop and comparing the results (in the execution states) with
those predicted by the loop generalization. Of course, the hard part
is to actuaLly perform the loop generalization. Thusr alEhough FAlit's

Ioop generalization is induct,ive and therefore not, guaranteed

correctr the generalization can be checked to ensure correctness,
though not completeness.
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8.2.7 lheoran Provlng

PAII also addresses a less significant problem with symbolic execution

- failure to recognize conditionaL statements as provably true or
false can lead to incorrect analysis. It has been argued in this
thesis that it is unacceptable to igmore this fact. PAI{ addresses the
problem by invoking a theorem prover as each conditional statement is
symbolically executed.

8 .3 g\ZAIUATING PA}I'S PERFORIIA}ICE

PAlil rdas constructed to test the effectiveness of generalization as a

program analysis technique rather than as a practical program

analysis tool. NevertheJ-ess, the significance of the PAII systetn may

be clarified by cont,rasting the streng'ths and weaknesses of PAU as a

program analysis system.

8.3.1 Strengths of the PAtil Syrten.

Range of Programs Analysed

PAlr{ has demonstrated the abilJ-ty to analyse prog'rams which, t,he

author believes, could not be analysed by any other existing program

analysis aystem without modification or augmenting its libraries (a

cliche driven system can al-ways analyse a program if t,hat program is
added to the cliche library!). PAN can analyse programs that include
the following featules:

loops may contal-n variable and object property updateE which

are both conditional and interdependent,

unstructured branching using rgo tots

J.oops may cont,ain inner loops

loops may have multiple exits from any position in the loop.
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This thesis has nog attempted to determine precisely the set of
prograns which PAN can analyse. The progtram restrictions in Chapter 3

and the theorems and discussions in Chapter 4 do allow a subset of
PAll analysabLe progrrams to be specified as those prog:rams that

are specified in terms of directed graphs and satisfy t,he

restrictions in Chapter 2

have effects satisfying the models in Chapter 4

However lhis is not satisfactory for two reasons. Firstly, we do not

know how to describe those programs with effects satisfying the
models in Chapter 4 in terms of restrictions on directed graphs.

Secondly it ignores the prograrur analysable by the brut,e force search

method. A fuller investig'ation of this subject is outside the scope

of this thesis.

Code fndependence

Slznbolic execution mimics real execution by rexecutingr' each program

statement to determine its effect on the execution stat,e. Once

execution of a statement is completed, further analysis deals

exclusively with t,hese effects (as recorded ln execution states)
rather than the program statements themselves. Thus alternatl-ve ways

of coding whj-ch produce the s.rme effect will lead to identical
progiram analysis. For a trivial examgrle, reversing the order of two

program statements nay have no effect on program execution and if
this is the case, no change r*ill be caused in a PAII analysis. This

contrasts with analysis systems which directly examine the program

code. In these systems alternate coding may cause considerable
difficulty in program analysis.

Mrrltinla Drrmains

PAtiI was originally developed for the robot
t,his method of program analysis has been

erith lrhich PAI{ was extended t,o include the

domain. The generality of
demonstrat,ed by the ease

dp domain. Nevt domains can
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be added by simply adding the ability to symbolically execute any nert

statements reguired.. This is possible because PAI{' s execution stateE

are domain independent. Once PAN has executed a domain dependant

statement by creating a nen execution state, alJ- further processeg

that use that execution state are domain independent.

8.3.2 l{eaknesses of the PAt{ Systen

Sequence Restrictions

PAN uses sequences as a fundamental part, of its greneralization
process. These sequences must contain distinct items. Thus PAN is
limited to programs in which each loop iteration processes a new

item. This excludes prograrns containing loops which only manipulate

the value of a fixed set of variables. Thus PAI.I is not able to use

the va1ues of t,he variables in each iteration as a sequence. PAl.l is
able to analyse loops in which each iteration processes a distinct
element of a variable array.

Failure to Use Previous Analysis

we have said that PAII does not address the task of identifying
cliches. In fact, PAN does not even recogmise the same code in a

single program analysis. This leads to code being reanalysed. For

example, when analysing prograns wit,h nested loopsr any inner loops

will be executed and generalized several tirnes. To rectify this
problem PAN would have to represent the effect of an inner loop as if
it were a single statement. No serious consideration has been given

to extending eAl.l in this way.

Difficrrlfv in Flxtenrlinrt Gcncr:lizetinn Ftrr'les

If a PAI.I analysj-s fails, then either new models may need to be added

or t.he brute force search rules extended. PAN has been designed to
make this an easy task, but only for a programmer i.e. no 'user"
interface exists for adding models or rules.
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The sigmificance of t,his weakness depends on the view t,hat one t,akes

of the PAI{ system. Viewed as a test bed for invest,igat,ing loop
generalization as a progra.m analysis technigue, this is not an

important weakness. However, if PAI.I were to be seriously considered

as part of an automaced proqranurdng system, then this weakness is one

which would reguire correction.

8.4 EXTENSIONS TO PA}I

I .,1 .1 Adding a Learning Coryonent

we have discussed in section 9.4.2 above the need to easily be able

to add new models and brute force search rules. A more challenging
extension would be to allow relationships identified by the brute
force search to be automatically added to the g'eneralization models.

This would enable PAI\I to learn models by it,setf and greatly increase
the speed of analysing programs which satisfy the new model.

8.4.2 Production of Precondltions

PAII does not currently anal.yse the preconditions necessary for a

program to operate. To extend PAII to generat,e preconditions would

firstly require adding the preconditions for each tlpe of statement

to PAII's existing knowledge of the atatement. As each statement is
executed, precondit.ions would be stored as a new data tlpe on PAli[t g

execution states. At loop generalization time, these preconditions
would have to be generalized so aa to be expressed in terms available
on the generalized execution state. The usefulness of this extension
is questionable in the domains which have been investigat.ed. For

example, as discussed in section L.6.2, the preconditions for robot
movement cannot be determined from the program stat.ements, since the

size of the robot is unknown.

I./t.3 Additional Loop GeneralLzatLons

As a resul-t of using theorem proving to prove conditional st.at.ements

true or false, PAbl's loop g:eneralization rnay be incomplete. For
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examPIe'aIoopwhichcontainsthetestlifcounter>
always be provably false in the first few iterations, if the counter
is initialized to zero and incremented on each iteration. In this
case some of the loop has not been executedl and wi]-l not be included
in J-oop generalization. This problem can be rsolved' by not
performing theorem proving, but only at tlre cost of allowing the
possibility of inconsistent, execution states. A better solution would

be provided by lett.ing the generalized execution state produced by
the first loop gieneralization initiate another set of toop
iterat.ions, producing more execution states for generalization. These

would then be used to produce a second generalized execut,ion state,
and this process would continue until loop genera.Lization produced no

new information (i.e. until a fixed point is found). Such an

extension would not require any nelr concepts but, would reguire
changes to both the loop generalizer and t,he scheduling components of
PAI{.

8.4.4 More FJ.exible Sequence Generation

In Chapter 4 we discussed the problems caused by only applying
sequence generation models to ieems created by statementg having the
same statement condition. In particular, we discussed the fact that
PAII cannot currently analyse the program shoriln in fig"ure 8-1 because

it cannot create seguences of items from file B. fn Chapter 4 a

solut,ion to this problem was discussed that would allow PAtil to form
gequences from items created by statements having statements
conditions of the form P n Q1, P a 0n, where Ql v Qn - T.

This woufd enable PAN to analyse programs like the one in figure 8-1

and wouLd be a relatively trivial extension to PAN.

8.{.5 Reduction of the Conditional Braach Restrictions

The restrictions on conditional branching introduced in section 2.?.3
ensure that statement conditions used to creat,e subsequences on some

set of concurrent sequences Srr...rSo are only expressed in terms

of items in S.r...rSn. As a counter example, consLder the program

in figure 8.2. In this case t,he statement condition to reach the
merge stat,ement is
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sequential read A

if red (A) if - red (A)

srequential" read B sequentiaL read B

Figufe 8-1 Prog:ram not AnaX,ysable by PA!il

sequenti,al read A

if red (A) if -' ced (A)

seqJllenti'a]. read B

if heavy (B) if -r heavy (B)

Figure 8-2 Frograrn whlch Violates the Conditional Branefr
Restrictisns
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(-' red(A) a heawy"(B)) v red(A)

rhich sinplif,ies ro

heavy (B) v r:ed.(A) .

$.ince th-is condition. ls attnfuoally st:coager than the condiEion to
reach statertrent l0 ths subs€guenc€ ,gerrerati,on model of geetL.gn 4.3.2
wtlL uEe' lt Ls caeate a subseggeaoe frofi the se{u€D. 9r 'S, o"f it.ffiei
fs,srn f-l-l-e A, naruelgt

(seqq.enoe i =, 1 to rk. seEu€nt.ia1-obJect-Ln--souree(ir fi.le(A))l

Blrt sLnce th.,is cQnd.ltLo,n contalns itesrs not in S o.r arlll teqlr€nces

eoneuEreat wittr S the subsequence genetatioo nodel w{I1 fail. The

condttd.onal brarleh restri.etLons a,tse suffieLent to avold thLs pto-bleB,

but not neeessaly. PAN couLd be lnprowed by ed.ther flnding weahar

conditions whleh are Etill suf,f,Lcd.eat to avoid the problem or by
nakJ.ag the s'rLrsequence generat.Lon noden more sefectlve i.n choooing

co,Sditi.oss.
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Appendix A

Further Examples

A.1 TNTRODSCTION

PAN has been tested on approxJ-mately thirty programs, which cannot

a1l be described in this t.hesis. Program fragments and t,he examples

in section 1.4 have been used to illustrate PAI{ analyses. The

intention of this appendix is to describe a PAl.[ analysis of four
programs choser.r t.o illustrate key features of the system.

A.2 EXTENDED SEQUEIICE E)(IMPLE

The first example program is illustrated in figure A-1. To analyse

this prograrn PAIiI needs to use sequences initiaUy defined in terms of
variables, and t,hen to extend such sequences in exit processing.

This proglam moves the first b+1 object,s on the line at angle O from
pos-a. The ones that are not, red are moved to pos-d. The red ones are
moved to pos-b if, they are ln the flrst a objects frorn the line and

to pos-c ot,herwise.

PAl.l Output Specification

r-t

T

then

counter = b
vi (1 <i<

SEQUENCE-4)

vi (1 <i<
SEQUENCE.5)

+1
size (SEQUENCE-4)

- pos-b)

size (SEQUENCE-S)

: paS-C)

+ position (item-in-seguence (i,

+ position (item-in-seguence (i1
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il-contact A

if color(A) - red if - color (A) - Eed

if counter S a if counter > a

ve-to A pos-b ve-to A pos-c

Figure A-1 - Extended Sequences (Part 1|
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unglasp A

Counter :- counter + 1

if counter S b if counter > b

loop exit

Figrure A-1 - Extended Sequences (Part 2).

Vi (1 < i 3 size(SEQUENCE-3) +position(item-in-aequence(L,
SEQUENCE-3) o pos-d)

where

SEQUENCE-I is defined as (sequence L -
sequential-item-in-sourc€ (lr SOURCE-I)

SEQUENCE-2 is defined as (item: item €

color(iten) = red)

SEQUENCE-3 is defined as (ltern: Ltenr e

-r color (item) - red).

SEQUENCE-4 is defl.ned as (ltem: item e

pos ition-in-sequence ( item, SEQttE$rCE-l )

SEQUENCE-S is defined as (item: Lten e

position-in-segnence (itern, SEQUENCE-I)

SOURCE-I is defined as line(pos-a, O)

ltob
)

SEOI'ENCE-1

SEQIIENCE-1 n

SEQUENCE-2

sa)
SEQUENCE-2

>a)
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Cornments

During loop g'eneralization, PAlf generated SEQUENCE-I using seqfuence

generation model 1, while it, generated all other sequences using
sequence g'eneration model 2. SEQUENCE-4 and SEQUENCE-S were initially
defined in terms of the variable 'counterr. However, PAI'I resolved
this variable to posiUion-in-seguence form using model 3 for
variables occurring in sequences. PAN also resolved the updated
properties of objects in SEQUENCE-3, SEQUENCE-4 and SEQUENCE-S by the
updated properties model, and t,he value of 'counter' at loop entry to
size(SEQUENCE-1) + 1 - k*1r using variable at loop entry model 3.

During exit processing PAN extended the Eeguences. SEQUENCE-I,

initiaUy defined as

(sequence i : 1 to k seguential-object-in-source (i, SOURCE-1) )

$ras extended to

(sequence i = 1 to k+l segrrential-object-in-source (i, SOURCE-1) )

Recall that subsequences of the form (o: o € S ^ P(o)) are extended

by determining wtrether a nen item in S satisfiee P. Now in the case

of SEQUENCE-4, for example, this involves determining whether the
last it.em in the extended SEQUENCE-2 satisfies

position-in-sequence(item, SEOUENCE-I) S a.

PAN determined the value of position-in-sequence (itern, SEQUENCE-I)

for the neer item in SEQUENCE-I as size(SEQUENCE-1) = k+1. Thus the
new itern in SEQUENCE-2 lrill also be in SEQUENCE-4 if k+1- < a. For the
execut.ion state associated with loop exit that describes the effect
of executing the at,atements on the path passing through st,atement 9,

execution of statement 9 added counter = k+1

conditions. Thus SEQUENCE-Z will be extended to include the new

object. SimiLarLy SEOUENCE-S and SEQUENCE-3 will be extended Ln those
execution states associated with loop exit that describe the effect
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of executing statements on paths passing through statements 10 and 8

respectively. The three execution stat,es will now be identical (apart
from path conditions). Thus only a single execution st,ate wl,ll be

allowed to exit. The value of k in this execution state was resolved
bysimp1ifyingt'heexitconditiontocounter-k+2>
value of k on exit of b-1. when substituted into the single execution
state chosen for exit, counler will- have a value of b+l and

SEQUENCE-1 will now be defined as

(seguence i : 1 to b seguential-object-in-source(i, SOURCE-I)) .

A.3 KEYED FILE EXII.{PI.E

The second example is ilLust,rated in figure A-2. It showg PAlil, s

ability to analyse a prograrn updaLingr specified records from a keyed

file. Also, several- updated properties have been assJ-gmed to the
correct sequence and the single item from file C has been analysed in
the same eray as if it were a variable.

This program updates a keyed fLle of account records j.n a banking
application syst.em. The accounts to update are specifled by the
account numbers read from seguential flle A. The account number ie
used to retrieve account detalls from keyed file B. The

date-Iast-processed is updated and if the account balance is not
zere, credit or debit interest is increased and date-last-interest is
updated. The total of the account balanceg of aU accounts accessed

is calculated and written out as a sinqle record t,o file C.

PAN Output Specification

if

T

then
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total (e) :- 0

if current (A) :Lf -' CU,aEEGt, (A)

keyed-read B
accolrnt-nreber,(8) r
acoount,-nlrFb€E (AJ

f -r euareat(El

total (Cf :-
t,oEa1(C) + balrnee(E}

Figlrss A-2 - Keyed FIte, Examgll_.e tpart 1)
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14. -last-processed (B)
todays-date

16. lif balance(B) < 0

la"ltt-lttterest (B) : -
19. la"Uit-ittterest (B) +

debit-interest-rate (B)
balance (B)

if balance (B) - Q

if balance(B) > 0

credit-interest (B) :=
credi.t-interesC (B) +
credit-interest-rate (B)
balance (B)

date-last,-l.nterest (B) !-
todays-date

Figure A-2 - Keyed FJ.le Exarn5lle (Part 2)
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rlte tSeOUE!|CE-3,

total(OBJECT-I) : E balance(item-in-sequence(i, SEQUENCE-3))

Vi (1 < i S size(SEeUENCE-3) +
dat,e-last-processed(iten-in-sequence (i, SEQUENCE-3) =

todays-date)
Vi (1 <iSsize(SEQUENCE-4) -+

credit-interest (it,em-in-sequence (i, SEQUENCE-4) )

credit-interest (item-in-sequence (i, SEQUENCE-4) ) +

credit-interest-rate (item-in-sequence (i, SEQUENCE-4) ) *

balance (it,em-in-sequence (i, SEQUENCE-4) ) )

Vi (1 < i ( size(SEQUENCE-5) +
debit-interest (item-in-sequence (1, SEQUENCE-S) ) =

debit-interest (item-in-sequence (i, SEQUENCE-s) ) +

debit-interest-rate (item-in-seguence (J-, SEQUENCE-S) ) *

balance (item-in-sequence (i, SEQUENCE-S) ) )

vi (1 <issize(SEQUENCE-6) -)
date-last-interest, (item-in-sequence (i1 SEQUENCE-5)

todays-date)

where

OB,IECT-I is defined as seguentl-al-object-in-source(1r SOURCE-3)

SEQUENCE-I is defined as (sequence i = 1 to size (SOURCE-I)

seguential-object-j.n-source (i, SOURCE-1) )

SEQUENCE-2 is defined as (it,em: item e SEQUENCE-1 n 3object
(object € SOURCE-2 n account-nunber(object) = account-nurnber
(icem) ) )

SEQUENCE-3 is defined as (sequence i = 1 to size(SEQUENCE-2)

keyed-ob ject-in-source ( account-nurnber ( ob ject ) = account-number

(item-in-sequence (i, SEQITENCE-I) ) , SOURCE-2) )

SEQUENCE-4 is defined as (item: ieem e SEQUENCE-3 n balance
(item) > 0)

SEQUENCE-S is defined as (itern: iten e SEQUENCE-3 n balance
(item) < 0)

SEQUENCE-6 is defined as (item: item e SEQUENCE-3 zr (balance

(it.em) <0) vbalance(item) >0)))
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SOURCE-I is defined as file(A)
SOURCE-2 is defined as file (B)

SOURCE-3 is defl-ned as f ile (C)

Comments

In this example' note that the size of both SEQUENCE-I and SEo['ENCE-3

are expressed in terms of the size of another item, SOURCE-I and

SEQUENCE-2 respect,iveJ-y. PAI'I generated SEQUENCE-3 directly using
sequence generation model L, which can express size either as t,he

iteration count, or the size of a previously grenerated sequence.

We no!{ describe how the size of SEQUENCE-I was determined. PA}I

initially set the size of SEQUENCE-I to the iteration count k using
sequence generation model- 1. fn loop generalization PAII also set the
number of retrievals from SOURCE-I = file A to k. When synbolic
execution continued after loop generalization it attempted another
retrieval from SOURCE-1r dt statemenL 4, for a total of k+l
retrievals attempted. To exit from the loop, statement 6 was

executed, which had the effect of putting k+L : (number of retrievals
attempt,ed from SOURCE-1)

Thus exit processing used k+1 > size (SOURCE-L) to determine the value

for k t,o exit as

rninimum(t j: j+1 > size(SOURCE-I) l) - size(SOURCE-I) .

This will then replace k in the definition of SEQUENCE-I.

During loop generalization PAN also g:enerallzed the updated
properties of the objects in SEQUENCE-3 and each of its subseqluences,

SEQUENCE-4, SEQUENCE-S and SEQUENCE-5. In each case the updated

property has been described in terms of the most general sequence.

Also the credit and debit interest property updatse for SEQUENCE-4 and

SEQUENCE-S varies for each item in the sequence.

Correct analysis of date-1ast,-int,erest, updaeed

reguired the generation of SEQUENCE-6, contalning
statement 2Lt

itens with an

in
aII

254



updated value for date-last-Lnterest. This, Ln t,urn, requLred that
t,he statement condl-tions contaLn balance (ob ject) < 0 v

balance (object)

sectLon 3 .3.2 .

Finally, the single object in file C, which acts as tf it were a

variabJ-e' waa correctly analysed by variables model. { to be the total
of the baLances in SEQUENCE-3.

A.4 BRUTE FORCE ENII.YSIS OI. I'PDATED PROPERTY

The third exauple program is Lllustrated in figure A-3. In this
progiram items in a sequence are updated depending on their position
in another sequence. This cannot be handted by the models in Chapter

4 and requires the brute force search.

The progran splits a lLne of di-fferent coloured blocks into two

linesr one of red blocks and one of non-red blocks. It moveE all
objects on the line of J.ength I at angle tD from pos-a. The Lt,h such

object Ls moved to (Xl , Y1+i) if it is red and to (XZ , y2+Ll

otherwise.

PAIiI Output Specification

J-I

T

then

counter = size (SOURCE-I)

Vi (1 < i 3 size(SEQITENCE-2) +position(itern-in-sequence(i7
SEQUENCE-2) = (Xl , Yl +

position-in-sequence (item-l-n-seguence (i, SEQUENCE-2),

SEQUENCE-I) ) ) )
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count,er := counter + 1

move-to A pos-a

-until-contact-up-to A O I

if contact(A) l-f -r contact (A)

rasp A

if color(A) - red if, -r color(A) E red

move-to A (XLrY1+counter) ve-to \ (X2,12+counter)

10.

11.

Fi.giure A-3 - Brute Force Search AnalysLs of Updated Property.
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Vi (1 < i S size(SEQUENCE-3) + positJ-on(item-Ln-seguence(J.,

SEOUENCE-3) = (XZ , Y2 +

position-in-sequence (item-in-sequence (1, SEQUENCE-3),

SEQUENCE-I) ) ) )

where

SEQUENCE-I is defined as (sequence i - I to (size SOURCE-I)

(seguential-object-in-source i SOURCE-I) )

SEQUENCE-2 is defined as {it,em: item e SEQUENCE-I n (color item)

= red)

SEQUENCE-3 is defined as {item: item e SEOUENCE-I n - (color
item) : redl
SOURCE-I is def ined as l-ine (pos-a, 0, I) .

Contrnentg

This program is deceptlve. At first sight it appears as if t,he model

for updated properties should be able to handle the updated position
of SEQUENCE-2 and SEQUENCE-3. As stated in section 4.5, this model

can handle the case of a sequence with an updat,ed property whose

valueT for a given itern, depends on the position of that item in the
sequence. However, in this case the updated propert,y of items in
SEQUENCE-2 and SEQUENCE-3 depends on the position of the Ltems in a

d.ifferent seqluence, SEQUENCE-I. This is not a common situatlon, and.

the brute force search was invoked to conplete the analysis.

The initial formulas for the brute force expansion for one execution
state included

SEQUENCE-I : {OBJECT-I OB.IECT-2 OB.]ECT-3}

SEQITENCE-2 = {OBJECT-I OBJECT-3}

SEQUENCE-3 : {O8.IECT-21

color(OBJECT-I) - colbr(OBJECT-3) = red
a color(OBJECT-2) : red
position(OBJECT-1) = (X1, Yl + 1)

posit,ion(OB.IECT-2) = (X2, 12 + 2)

position(OBJECT-3) = (x1, Y1 + 3)

257



From position (OB.IECT-l) = (X1, y1 + 1) , the $q)ansion procesa

qenerated:

position(OBTIECT-I) = (X1, Y1 + poEition-Ln-seguence(OB,JECT-1,

SEQUENCE-1)

by the Position in Sequence rule, and then

position (item-in-sequence (1, SEoUENCE-2) ) =

(X1, Y1 + position-in-seguence (OBJECT-I, SEQIIENCE-I)

by the Itern in Sequence ruleT and then

position (item-in-sequence (1, SEQUENCE-2) ) -
(X1, Yl + position-in-seguence(item-in-sequence(1r SEQUENCE-2),

SEQUENCE.I) )

by another application of the ftem in Sequence rule.

Similarly2 from position(OBTIECT-3) = (Xlr Yl + 3), the Eame rules
generated

posJ-t,ion (item-in-sequence (2, SEQUENCE-2) ) -
(x1, Yl * position-in-seguence (item-in-sequence12, SEQIIENCE-2),

SEQUENCE-I ) ) .

Then, since SEQUENCE-z = {OBJECT-I OBJECT-3}, the Property of Atl
Itema in a Sequence rule Eenerated

Vi (1 5 I S size(SEQUENCE-2) -+ position(l-tem-Ln-sequence(i,
SEQITENCE-2) = (X1, Yl + position-ln-sequence(itern-in-sequence(2t

SEQUENCE-2), SEQUENCE-I) } ).

Since this formula was generated in all execution states whlch have

any j-t,ems in SEQUENCE-2, it was included in the generall,zed execution
stat,e. Similarly for the updated properties of SEQITENCE-3.
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8 .5 IOOP WITEIN A IOOP

The fourth example progir:rm is illustrated in figrure A-{. This program

hae neeted loops wLth multiple exits from the inner loop.

The program moves objects from the a+l lines at angle Q frorn (X0rf0),
(Xo+XrYo+Y) r..., (X0*aXrY0*ay). Objects are moved from each line to
pos-a until a red or bhie object is found. If this object is red it
is moved to pos-b, otherwise to pos-c, then t,he program proceedo to
the next line.

PAltl Output Specl-fication

.l-I

color (item-in-sequence (a*1, SEQUENCE-6) ) - red

then

posLtion(A) = pos-b

grasPing(A) E F

object-contacted(A) : ttem-in-sequence (a*1, SEQUENCE-6)

(Note: the above are robot st,atus variables).
counter : a+l
Vi (1 < i ( size(SEeUENCE-5) +
Vj (1 S j 3 size(item-in-sequence(i, SEQUENCE-5) +
position(item-in-sequence (j, item-in-sequence (i, SEQITENCE-S) ) ) =

pos-a) )

Vi (1 <iSsize(SEeUENCE-7) -+

position(item-in-sequence (j-, SEQUENCE-?) ) = pos-b)
Vi (1 S i 3 size(SEeuENcE-8) +
position(item-in-sequence (i, SEQUENCE-8) ) = pos-c)

where
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A (X0,Y0'

Ioop eatry 1

loop entry 2

-until-contact A O

if color(A) - bLue

loop exit 2 if - coJ.orlA) -
n - color (A) ' blue

move-to A pos-c to A pos-a

move-to A (at-step
posLcion (A) )

10.

13. 15.

16.

L7.

18.

Figure A-4 - Loop nithJ.n a Loop (Pa!t 1)
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counter :- counter + 1

if counter 3 a if counCer > a

move-to A (at,-step 5
position (A) )

loop exj.t 1

-by A (XrY)

Eigiure A-4 Loop within a Loop (Part 2)

SEQUENCE-4 is defined as

(sequence i - L to a+1 (line(X0 + (i-11X, y0 + (i-l)y), O))

SEQUENCE-S is defined as

(sequence i - 1 to a+1 (sequence J - 1 to n(i)
sequential-object-in-source (j, item-tn-sequence (i, SEQUENCE-/I) I ) )

SEQUENCE-6 is defined as

(sequencei=1toa+l
sequent, J.al-ob Ject-in-gource (n ( i ) +1,

item-Ln-sequence (i, SEQUENCE-4) ) )

SEQUENCE-? ls defined as

(item: item e SEOIIENCE-6 n color(it,ern) - red)

SEQUENCE-8 is defined as

(item: item e SEOIJENCE-6 n color(Ltem) = blue)
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II

n (i)
mininum( { j:
color ( seguent ial-object-in-source ( j +1'

(item-in-sequence(i, SEQUENCE-4) ) ) ) = red

color ( seguential-ob ject-in-source ( j*1,
(item-in-sequence (i, SEQUENCE-4) ) ) ) : blue))

color(item-in-sequence (a+1, SEQUENCE-6) ) = blue

then

position (A) = pos-c

grasping (A) : F

object-concacted(A) = item-in-sequence (a+1. SEQUENCE-6)

(Note: the above are robot status variables).
remainder of this case is as above.

Co[unents

This is the most complex example presented and reguires a more

extensive explanation. gle first deal with the use of rat,-st.ep'in

st,atements 18 and 23. Although not described in PAN's input langiuage

in chapter 2, PAIiI programs are actually allowed to refer to the value

of variables or object propert,ies at previous statements. This is a

feature of the extended Noddy system of which PAl,t forms a part. Since

this is eguivalent to the use of additional variables, (in which

these values could have been stored) it did not aeem necessary to
further complicate the description of the input language by including
this feature.

Before PAll generalizes the outer loopr it will be executed sone

specified number of times. Each execution of the outer loop will
include executingr generalizing and exlting from the inner loop. Once

PAtt has generalized the outer loopr exit from this loop will involve
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another execution, lJeneralization and exit from the inner l-oop. PAI{

scheduling will ensure that these processeg are performed in thj-s
order.

The first generalization of the inner loop will produce

SOURCE-1 = line((X0, y0), O))

SEQUENCE-I : (sequence i = 1 to k

sequential-object-in-source (i, SOURCE-I) )

Vi (1 <iSsize(SEQUENCE-1.) -t
position(item-in-sequence(i, SEQUENCE-I) ) = pos-a)

counter : 0

nunber of iteration attempted from SOURCE-I - k.

When symbolic execution is continued after loop grenerallzation, an

execution state wiII be associated wl-th each exit, from the inner
loopr each having a neld objectl OBJECT-I, defined as

sequential-object-in-source(k*l, SOURCE-I) and exit conditions of
color(OB.IECT-l) - red and color(OBJECT-I) = blue respectively. Exit
processing wiII attempt, to include OBJECT-I in SEQUENCE-I, but this
will fail as OB.IECT-1. is not at position pos-a. The value of k on

exit is then determined by

minimum( { j:
color(sequential-object-in-source(j+lr SOURCE-I) ) = red

color(sequential-object-in-source(j+l, SOURCE-I) ) = bluel)

This val-ue for k will then

execution states. Execution

stat.es until loop entry is
re ill be moved to either
incremented to 1.

Thus, after one

will be available

be substit,uted wherever it occurs in the
will then continue from these execution
reached, duringr which process, OB.IECT-1

pos-b or pos-c and counter will be

iteration of the outer loop,
for generalization:
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Execution State 1:

SOURCE-I = Iine((xOr I0), O)

SEQUENCE-I = (seqgence i - 1 to nl
seguentLal-object-in-source (i, SOURCE-I) )

Vi (1 <iSei.ze(SEQUENCE-1) +
position (l-tem-in-sequence (i, SEQUENCE-I) ) - pos-a)

OBJECT-I = seqluentlal-object-in-source (n1+1, SOURCE-I)

color (OB,IECT-L) = red
position (OB.IECT-l) = pos-b

counter - 1

Execution State 2:

SOURCE-I = li.ne((X0, y0), O)

SEQUENCE-I = (seguence i = 1 to nl
sequential-obJect.-in-source (i, SOURCE-I) )

vi (1 <i(sLze(SEQUENCE-1) -)
posl-tion(item-in-sequence(i, SEQUENCE-I) ) = pos-a)

OBJECT-I = seguential-object-in-source (n1+1, SOURCE-I)

color(OBJECT-I) - blue
position(OBJECT-I) = poe-c

counter = 1

where

n1 =

ninimum( ( J:
color(seguential-object-in-gource ( j+1, SOURCE-I) ) - red
v

color(sequent,ial-object-in-source(j+1, SOURCE-I) ) - blue))

After the second and thj-rd iterations of the outer loop have been

performed, we will have addLtion execution states:
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Execr,rtXotr State 3:

gou.RcBi-z = I{ne((xo + x, Y0 + ll' O)

SEQIIENCE-2 = (raquenc€ iL - 1 to n2

sequentLal.-obJeet-in*souree (l' SOURCE-2) )

Vi (1 g i S Eize(SEQUENCE-2) -t
positioa (l.ten'in-sequence (J-, SEQUENCE-2) ) - pre.e-at

OBJECT-2 - esqggntLal-obJec|-l.a-souree (n2*1, SOURCE-2)

color(OBJEeT-2) - red
posit,lon (O:EitEeT-2; - poe-b

counter - 2

Execqtlon Statse 4:

gottRcE-2 - ILne ( (x0 + x, Y0 + f,') , o)
SEQII,ENCE-2 - ($equ,ence l- - I' to n2

eequenli.al-object-Ln-s,ouree (i.r SO(IRCE-2 ) )

Vt (1 S i. ( size(gEOttENCE-Z1 +
Position (iter-r-in-sequ€nce (i' SEOUEI{CE-2} ) = poe-a)

OBiIECT-2 - sequentLal-obJect-ln-souree (n2+1, soURcE-zt

color(OBirEcr-zl - blue
positl.or (OB.IECT-2) = poa-c

corriBter = 2

lrh€re

n2-
nininun( t J :

eolor(seqrrenti.al-objcct-in-source 1 j+1r SOSRCE-2) )' red
'\t

oolor (sequentl,al.-object-1n-souree (J+1, SOIIRCE-2I ) - btr,uel )

and
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Execution State 5:

SOURCE-3 - Iine((X0 + 2*X, Y0 + 2*Y), O)

SEQUENCE-3 - (seguence i = 1 to n3

sequential-obJect-in-source (i, SOIIRCE-3) )

Vi (1 < i 3 size (SEQUENCE-3) +
posit,ion (Ltem-in-sequence (i, SEQIJENCE-3) ) r pos-a)

OBJECT-3 - seqluential-object-in-source (n3*1, SOITRCE-3)

color(OB,IECT-3) = red
position(OBJECT-3) = pos-b

counter : 3

Execution SLate 6:

SOURCE-3 - line ( (X0 + 2*X, Y0 + 2*Y) , O)

SEQUENCE-3 = (aequence l- = 1 to n3

sequential-obJect-in-source ( J-, SOURCE-3) )

Vi (1 <tSsize(SE0UENCE-3) -+

posit.ion (itesr-l-n-sequence (1, SEQIIENCE-3) ) - pos-a)

OBJECT-3 = sequential-object-in-source (n3+1, SOURCE-3)

color(OBJECT-3) - blue
position(oBJEcT-3) = pos-c

counter - 3

where

n3=
(minimum { j :

:otor(sequential-object-in-source 
(j+lr SOURCE-3) ) - red

color(seguential-object-in-source (j+l, SOURCE-3) ) = bluel)

PAIiI will t,hen generalize soulces in the outer loop into the sequence

SEQUENCE-4 * (sequence i - 1 to k
(line (x0 + (i-t1*1, tO * (i-1) *y), O) ) .
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Aa specified in the seqpence greneration algrorithm, the definl-tion of
SOURCE-I' SOURCE-2 and SOURCE-3 occurrJ.ng in SEQUENCE-I, SEQUENCE-2,

SEQUENCE-3, OB.IECT-I, OBJECT-2 and OBJECT-3 will now be replaced by

item-in-sequence(1, SEQUENCE-4), item-in-sequence(2' SEQUENCE-4) and

item-in-sequence(3, SEQUENCE-4), allowing SEQUENCE-1' SEoUENCE-2 and

SEQUENCE-3 to be generalized t,o

SEQUENCE-S = (sequence i = 1 to k (sequence j = 1 to n(i)
sequential-object-in-source ( j r ( iten-in-sequence ( ir
SEQUENCE-4) ) )

where

n (i)
minimum( { j:
color ( seguential-ob ject-in-source ( j+1,

(item-in-sequence(i, SEQUENCE-4) ) ) ) - red

v

color ( sequential-ob ject-in-source ( j+1,

(item-in-seguence(i, SEQUENCE-4) ) ) ) = bluel) .

OB.fECT-L, OBJECT-2 and OBJECT-3 will be generaLized to

SEQUENCE-6 = (sequence i = 1 to k

sequential-ob ject-in-source (n ( t),
item-in-sequence (i, SEQUENCE-4) ) )

SEQUENCE-7 : (item: item e SEQUENCE-6 n color(Ltem) = red)

SEQUENCE-8 = (item: it,em e SEQUENCE-6 n color (item) = blue)

Next the values of counter will be generalized to size (SEQUENCE-4) ,

which is k, by variables at loop entry model 3. Since the it,ens in
SEQUENCE-5 (SEQUENCE-I, SEQUENCE-2 and SEQUENCE-3) each have an

updated property of

Vj (1 < j3size(sEQuENcE-i) +
posiBion(item-in-sequence(j, SEQUENCE-i) ) - pos-a)
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for i - L, 2 and 3, the updated properties nodel will produce an

updated property for SEQIIENCE-S of

Vi (1 <iSsize(SEQITENCE-5) +
Vj (1 S j S size(item-in-eeguence(i. SEOUENCE-S)) +
position(item-in-seltuence (jr itenr-in-seguence (i, SEQUENCE-SI ) ) -
pos-a) )

The objects in SEQUENCE-6, SEQITENCE-7 and SEQIIENCE-8 also have

updated properties, which will be generalized to

vi (1 < i 3 size(SEQUENCE-7) +
position(item-in-sequence(i, SEQUENCE-7) ) = pos-b)

Vi (1 < i 5 size(SEQUENCE-8) +
position (item-Ln-seguence (L, SEQUENCE-8) ) = pos-c)

Finally, the robot position witl be generalized to (X0 t k*Xr Y0 +

k*Y) .

Symbolic execution will now continue, beglnnlng wLth the generalized

execution state from the outer loop. To reach the exlt of the outer
IooPr however, it is necessary to reenter the inner loop. TlrusT

another set of it,erations and generalization of the l-nner loop will
be performed. This process will produce a generalized execution st,ate

whi.ch now contains:

SEQUENCE-4 = (sequence i = 1 ao *oo"",

Ij.ne ( (x0 + (L-1) *x, Y0 + (t-1) *Y) , O) ) .

SEQUENCE-S - (sequence i = 1 to k

(sequenceJ=1ton(i)
aequential-object-in-source ( j r ( itern-ln-sequence ( l,

SEQUENCE-4} ) )

SEQUENCE-6 - (sequence L = 1 ao koo".,

sequential-ob ject-in-source (n ( i ),
item-in-sequence (i, SEQUENCE-4) ) )
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SEQUENCE-7 - (item: item e SEQUENCE-6 n color(item) - redl

SEQUENCE-8 = (it.em: item e SEOUENCE-5 lr color(iten) - blue)
Vi (1 < t 3 size (SEQUENCE-S) -+

Vj (1 < j ( size(item-in-sequence(i, SEOUENCE-S)) -+

position (item-in-sequence (j, it,em-in-sequence (ir SEQUENCE-S) ) ) =

Pos-a) )

Vi (1 <iSsize(SEQUENCE-?) -+

position(item-in-seguence(i, SEQUENCE-7) ) = pos-b)

Vi (1 <i(size(SEQUENcE-8) -+

position(item-in-sequence(i, SEQUENCE-8) ) = pos-c)

counter : koo"",

previously g:enerated, with the addition of

SEQUENCE-9 - (sequence i = 1 to kr_.,

sequential-object-in-source (i, SOURCE-4) )

SOURCE-4 = line (X0 + koo."r**, t0 * kou..r*Y) , O)

vi (1 <i3size(SEQUENCE-9) -t
position(item-in-sequence (i, SEQUENCE-9) ) = pos-a)

where

n (i)
minimum( { j:

color ( sequential-ob ject-in-source ( j+1 r

(item-in-sequence (i, SEQUENCE-4) ) ) ) - red
v

color (sequential-object-in-source ( j+1,
(item-in-sequence(i, SEQUENCE-4) ) ) ) = bluel) .

and, since we now have two unresolved iteration counts, they have

been distinguished by k.nn", and koot"_. Two execution stateg
will be associated with the exit of the inner loop, each having a nei{

object' OB.IECT-4, defined as sequentLal-object-in-source(kr*.r*1,
SOURCE-4) and exit condit,ions of color(OBJECT-4) = red and

color(OB.IECT-4) = blue respectively. Again, an attempt will be made

to include oBJECT-4 into SEoUENCE-9, which wiII fail because OBJECT-4
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is not at pos-a. The exit conditions wLll then be used to resolve
kto

lsrrr

k = minimLm({j: p(j) l)Lmrr

where

P (i) E color(seguential-object-in-souree (j+1, SOURCE-4) ) - red

v

color (seguential-object-in-source (j+1' SOURCE-4) ) - blue.

This wiJ-l then be substituted wherever kr.o., occur,E Ln the
execution states J-ncluding the path condltions whLch contain
colo! (sequentl-al-object-in-sou.." (k.oo.,+1, SOURCE-4) ) = red and

color (eequential.-object-in-sourc. (kr*.,*l, SOURCE-4) ) : b1ue.

Slztrbolic execution now continues from these executlon states to the
exit from the outer loop. In doing so, the count,er ln Lncrernented to
koo"..*l and the path conditions have counter -\u... + 1 > a

added to them. Thusr two execution states will be associated with the
exit from the outer loop. the new iterns created durl.ng the exLt path
are SEQUENCE-9, SOIIRCE-4 and OBiIECT-4. These will be successfully
incJ.uded in SEQUENCE-5, sEeuENcE-4 and SEQUENCE-6. Slnce these
execution states cont,ain exit conditione of

*oo."r*1 > a A color(seguentl_aL-object-in-gourc" (krn .r*1,
SOURCE-4) ) = red

and

k +1 >a
outa!

SOURCE-4) )

,r color (seguential-object-in-gource

= blue

(k *1,'
,.urr

we obtain a val-ue of k of
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koo.". - mlnlmun({j:
(j+1 >a^
color(sequent5.a1-object-in-source(k. *1r SOURCE-4)) = red)

(j+1 >a^
color(sequential-object-in-source(k. *1, SOURCE-4)) - blue)

)).

Simplification using the rule (x n y) v (x n z) + x   (y v zl will
then produee

koo... - minimun(( j: j+1 > a 
^

(color(sequentlal-object-in-source(k. *1, SOURCE- )) - red

color(sequential-object-in-source(k. *I, SOITRCE-A) ) - blue)

)).

Butr by the definition of P, above, this shows

kouter ninimum({ j: j+l > a rr P(k,*.,) }).

ButT since k. - rnLnimum({j: P(j)}), sinpltfJ.caLLon will produce
imer

P(k ) - T, so that
lmar

koo.." = minlmum({ j: j+l > a}) : a.

when this is substituted wherever koo.., occurs in the execution

states, we will obtain the final form as output by the interpretation
process. Finally, we note that the two execution states will not be

merged as they are not quit,e identical. In one the robot ls noer at.

pos-b' while in the other it is at pos-c. In other words; the final
position of the robot depends on the color of the very last obJect

moved. Note that in PAlf's output interpret,atJ.on' this laet object is
now defined as the }ast, object in SE0UENCE-6.
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