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Abstract

The development of a heuristic to solve an optimisation problem in
a new domain, or a specific variation of an existing problem domain, is
often beyond the means of many smaller businesses. This is largely due
to the task normally needing to be assigned to a human expert, and such
experts tend to be scarce and expensive. One of the aims of hyper-heuristic
research is to automate all or part of the heuristic development process
and thereby bring the generation of new heuristics within the means of
more organisations. A second aim of hyper-heuristic research is to ensure
that the process by which a domain specific heuristic is developed is itself
independent of the problem domain. This enables a hyper-heuristic to
exist and operate above the combinatorial optimisation problem “domain
barrier” and generalise across different problem domains.

A common issue with heuristic development is that a heuristic is of-
ten designed or evolved using small size problem instances and then as-
sumed to perform well on larger problem instances. The goal of this the-
sis is to extend current hyper-heuristic research towards answering the
question: How can a hyper-heuristic efficiently and effectively adapt the
selection, generation and manipulation of domain specific heuristics as
you move from small size and/or narrow domain problems to larger size
and/or wider domain problems? In other words, how can different hyper-
heuristics respond to scalability issues?

Each hyper-heuristic has its own strengths and weaknesses. In the
context of hyper-heuristic research, this thesis contributes towards under-
standing scalability issues by firstly developing a compact and effective
heuristic that can be applied to other problem instances of differing sizes in



a compatible problem domain. We construct a hyper-heuristic for the Ca-
pacitated Vehicle Routing Problem domain to establish whether a heuris-
tic for a specific problem domain can be developed which is compact and
easy to interpret. The results show that generation of a simple but effective
heuristic is possible.

Secondly we develop two different types of hyper-heuristic and com-
pare their performance across different combinatorial optimisation prob-
lem domains. We construct and compare simplified versions of two ex-
isting hyper-heuristics (adaptive and grammar-based), and analyse how
each handles the trade-off between computation speed and quality of the
solution. The performance of the two hyper-heuristics are tested on seven
different problem domains compatible with the HyFlex (Hyper-heuristic
Flexible) framework. The results indicate that the adaptive hyper-heuristic
is able to deliver solutions of a pre-defined quality in a shorter computa-
tional time than the grammar-based hyper-heuristic.

Thirdly we investigate how the adaptive hyper-heuristic developed in
the second stage of this thesis can respond to problem instances of the
same size, but containing different features and complexity. We investi-
gate how, with minimal knowledge about the problem domain and fea-
tures of the instance being worked on, a hyper-heuristic can modify its
processes to respond to problem instances containing different features
and problem domains of different complexity. In this stage we allow the
adaptive hyper-heuristic to select alternative vectors for the selection of
problem domain operators, and acceptance criteria used to determine whether
solutions should be retained or discarded. We identify a consistent differ-
ence between the best performing pairings of selection vector and accep-
tance criteria, and those pairings which perform poorly.

This thesis shows that hyper-heuristics can respond to scalability is-
sues, although not all do so with equal ease. The flexibility of an adaptive
hyper-heuristic enables it to perform faster than the more rigid grammar-
based hyper-heuristic, but at the expense of losing a reusable heuristic.
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Chapter 1

Introduction

Determining how to solve an optimisation problem in a new domain, or a
specific variation of an existing problem domain, is a task normally as-
signed to a human expert. In the commercial world, such experts are
in short supply and the cost of hiring one is beyond the means of many
smaller businesses. Consequently the search for better means of solving
new optimisation problem domains rarely moves beyond the boundaries
of large corporate organisations and academia. Smaller organisations are
often left to satisfy their needs using established rule-of-thumb (heuristic)
methods and off-the-shelf solvers such as those supplied within standard
spreadsheet software packages (e.g. Microsoft Excel).

When given the task of solving an optimisation problem in a new do-
main, a human expert will often draw on his or her experience and look
for similarities between the new problem domain and an existing problem
domain capable of being solved with an established algorithm or heuris-
tic. If a comparable existing problem domain can be identified, then the
first attempt at solving the problem in the new domain is often to modify
an established algorithm or heuristic to accommodate the different aspects
of the new problem domain. Alternatively, the new problem definition is
relaxed to match an existing problem domain, which can be solved and
the solution repaired to satisfy the aspects of the new problem domain.

1



2 CHAPTER 1. INTRODUCTION

This process can be time consuming and result in a complex set of oper-
ators that are specific to the problem domain. Any modification to the
problem definition may require the whole process to be repeated from the
beginning.

Traditional methods of solving combinatorial optimisation problems
use algorithms and heuristics, such as a branch-and-bound algorithm [29]
or meta-heuristic search, e.g., tabu search [34]. In general, these meth-
ods achieve good results but often require detailed domain information
and can be complex and time consuming to design and execute. A hyper-
heuristic is useful where a more general (domain independent) method is
required. A common problem when applying heuristics to an optimisa-
tion problem is that they often perform well on some problem instances,
but poorly on others. Helping to identify which heuristic to apply to a
particular problem instance is one of the objectives of hyper-heuristic re-
search. The hyper-heuristic requires only outline knowledge of the prob-
lem domain and is particularly useful when dealing with specific varia-
tions to common optimisation problems.

1.1 Hyper-heuristics

The term hyper-heuristic was defined by Cowling et al. [22] as “heuris-
tics to choose heuristics”. Ochoa et al. [71] note that the focus in hyper-
heuristic research is to adaptively find a solution method rather than pro-
ducing a solution for the particular problem instance at hand. They repeat
the observation by Ross [76] that the difference between hyper-heuristics
and (meta-)heuristics is that it is the search space of heuristics, rather
than the search space of problem solutions, that is traversed. Burke et
al. [14] classify hyper-heuristics into two broad categories, those which se-
lect heuristics and those which generate new heuristics by recombining the
component operators of one or more existing heuristic(s) (see Figure 1.1).
Both categories offer a means to automate the development of heuristics
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Figure 1.1: The conceptual relationship between a hyper-heuristic, heuris-
tic and operators

to solve problem instances in new problem domains or variations of exist-
ing problem domains. Several cross-domain hyper-heuristics have been
successfully designed, including those developed by Misir et al. [64] and
Sabar et al. [80].

One of the more common hyper-heuristics is Genetic Programming
(GP) [44], which is capable of evolving solutions to complex problems
and can handle mathematical, logical and operational values with equal
ease. By adding a grammar (Grammar Guided Genetic Programming
(GGGP) [58]) it is possible to reduce the likelihood of generating semanti-
cally meaningless output.

A hyper-heuristic should be suitable for use on any combinatorial op-
timisation problem domain. To ensure the required level of domain inde-
pendence is preserved, we focus the main work in this thesis on hyper-
heuristics which comply with the HyFlex [70] (Hyper-heuristic Flexible)
framework specifications. For detailed analysis we use a Vehicle Routing
Problem (VRP) domain. The VRP was introduced in 1959 by Dantzig and
Ramser [24] and has wide application in transportation and logistics.
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1.2 Motivation and Research Questions

The motivation for this research is to reduce the need for scarce, and often
expensive, human experts who are currently required when selecting or
generating heuristic methods for new, larger or more complex combinato-
rial optimisation problems. There are potential benefits to industry if an
efficient and effective method of solving specific variations to common op-
timisation problem domains can be automatically evolved in a reasonable
development and implementation time and cost.

A common issue with heuristic development is that a heuristic is of-
ten designed or evolved using small size problem instances and then as-
sumed to perform well on larger problem instances. The goal of this the-
sis is to extend current hyper-heuristic research towards answering the
question: How can a hyper-heuristic efficiently and effectively adapt the
selection, generation and manipulation of domain specific heuristics as
you move from small size and/or narrow domain problems to larger size
and/or wider domain problems? In other words, how can different hyper-
heuristics respond to scalability issues?

A problem instance or domain presents scalability issues when the
combination of computational time limit, instance size and/or domain
complexity requires a hyper-heuristic to alter its default strategy for se-
lecting, generating and manipulating the low-level operators or heuris-
tics in order to deliver a solution within the specified computational time
limit. Ultimately the effectiveness of a hyper-heuristic is constrained by
the computational time limit and the quality of the unseen low-level oper-
ators and heuristics for it to manage. Performance of the hyper-heuristic
should therefore be gauged by the degree to which the hyper-heuristic
makes effective use of the available computational time rather than the
solution the domain specific heuristics and operators deliver.

A hyper-heuristic is provided with only limited knowledge of the prob-
lem domain. If this were not the case, then the hyper-heuristic would be
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similar to a meta-heuristic and become customised for the specific problem
domain. The limited domain knowledge may be restricted to the quantity
and broad category of the low-level operators, without any data structure
level detail of what action each operator performs or how. Some existing
hyper-heuristic frameworks, such as HyFlex (Hyper-heuristic Flexible) [70]
only allow the hyper-heuristic to extract minimal runtime performance
data about each operator and heuristic, requiring the hyper-heuristic to
make decisions based on incomplete information.

1.3 Research Approach

We break our investigation into scalability into three stages and develop or
adapt suitable hyper-heuristics for each stage. The hyper-heuristics we de-
velop for the second and third stages of this thesis comply with the more
restrictive HyFlex framework [70] which provides a clearer definition of
the information which may flow across the domain barrier between the
hyper-heuristic and the low-level problem domain. HyFlex [70] was de-
veloped for the first Cross-domain Heuristic Search Challenge (CHeSC)
[69] in 2011. The goals of each stage and the hyper-heuristics we develop
are:

1. To develop and use a hyper-heuristic to generate a “compact” heuris-
tic capable of delivering “good” solutions to a range of Capacitated
Vehicle Routing Problem (CVRP) instances of different sizes. To achieve
this we develop a grammar-based hyper-heuristic using Grammati-
cal Evolution (GE) [78], to generate heuristics for the CVRP domain.
This stage is described in Chapter 4.

2. To develop and compare the relative performance, on seven com-
binatorial optimisation problem domains, of simplified versions of
two existing hyper-heuristics. The two hyper-heuristics use very dif-
ferent approaches. One generates new heuristics using a training
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set of instances for off-line learning, while the other selects opera-
tors (heuristics) using an on-line learning approach. This stage is
described in Chapter 5. The two hyper-heuristics used are:

(a) A grammar-based hyper-heuristic using a generic Grammar Guided
Genetic Programming (GGGP) method [57]. This is a simplified
version of the hyper-heuristic developed by Sabar et al. [80].

(b) A simplified version of the adaptive hyper-heuristic designed
by Misir et al. [64] which won the first CHeSC [69] in 2011.
This hyper-heuristic uses a single operator selection vector and
a new solution is only accepted if its objective value is at least
as good as the solution it will replace.

3. To investigate the impact that different features of a problem instance
have on the effectiveness of a hyper-heuristic (i.e. scalability). We ex-
tend the options available to the adaptive hyper-heuristic described
above by increasing the number of operator selection vectors and so-
lution acceptance criteria available to it. This final stage is described
in Chapter 6.

Although the hyper-heuristics we implement in the second and third
stages are capable of generating solutions in any HyFlex [70] compatible
problem domain, we use a Vehicle Routing Problem (VRP) domain and in-
stances for detailed testing and analysis before demonstrating the domain
independence of the hyper-heuristic on other domains. The VRP has wide
ranging application in the transport and logistics industry. Generating a
good solution, and possibly several alternatives, to a VRP instance can
have significant operational and cost benefits to the industry.

The Capacitated Vehicle Routing Problem (CVRP) [24, 87] contains a
single depot holding a fleet of identical vehicles. A set of customers, each
at a known location and with a known demand, are to be serviced. The
objective is to service all customers while travelling the shortest possible
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total distance. Each customer must be serviced only once (split deliveries
across multiple routes are not permitted), and the capacity of each vehicle
must not be exceeded at any time. This type of problem is relatively easy to
understand, but is nevertheless a NP-hard [46] combinatorial optimisation
problem.

1.4 Contributions

In the context of hyper-heuristic research, this thesis contributes towards
understanding scalability issues in three stages:

1. To develop a compact and effective heuristic that can be applied to
other problem instances of differing sizes in a compatible problem
domain. This will demonstrate whether a single heuristic can han-
dle scalability issues, or whether different heuristics are required for
different sized problems. This stage is detailed in Chapter 4 and
summarised in the following articles which have been published, or
accepted for publication:

(a) “Hyper-heuristics, Grammatical Evolution and the Capacitated
Vehicle Routing Problem” [55]. This paper was accepted as a
poster for the Genetic and Evolutionary Computation Confer-
ence (GECCO) in 2014.

(b) “Developing a Hyper-heuristic using Grammatical Evolution
and the Capacitated Vehicle Routing Problem” [54]. This pa-
per was accepted for publication in the proceedings of the 10th
Simulated Evolution and Learning (SEAL) conference in 2014.

2. To compare the performance of two different types of hyper-heuristic
across seven different combinatorial optimisation problem domains:

(a) A grammar-based hyper-heuristic which generates a new reusable
heuristic from the component parts (operators) of other heuris-
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tics. This hyper-heuristic extends the outcomes from the first
stage of this thesis.

(b) An adaptive hyper-heuristic which dynamically selects oper-
ators from a set of candidates, and develops (on-line) a cus-
tomised heuristic for an unseen problem instance. The hyper-
heuristic is provided with only minimal detail about the opera-
tors within the problem domain.

This will establish whether some types of hyper-heuristic respond to
scalability issues better or worse than other types of hyper-heuristic.
This stage is detailed in Chapter 5 and summarised in the paper “A
Comparison between Two Evolutionary Hyper-heuristics for Com-
binatorial Optimisation” [53]. This paper was accepted for publica-
tion in the proceedings of the 10th Simulated Evolution and Learning
(SEAL) conference in 2014.

3. To investigate how the adaptive hyper-heuristic developed in the
second stage of this thesis can respond, with different computational
budgets, to problem instances of the same size, but containing dif-
ferent features and complexity. During this stage we identify which
of 48 possible pairings of the key components used by the adap-
tive hyper-heuristic perform well, and which perform poorly. This
stage is detailed in Chapter 6 and summarised in the paper “Hyper-
heuristic Operator Selection and Acceptance Criteria”. This paper
has been submitted to the 15th European Conference on Evolution-
ary Computation in Combinatorial Optimisation (EvoCOP, 2015).

In this thesis we provide a review of relevant literature in Chapter 2 fol-
lowed by an illustration of how we develop a hyper-heursitic and CVRP
problem domain containing a set of relevant operators (heurisitic compo-
nents) in Chapter 3. Chapters 4, 5 and 6 detail the three stages outlined
above, including the experimental results and performance comparisons.
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This is followed by overall conclusions and recommendations for further
research in Chapter 7.
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Chapter 2

Literature Review

This thesis combines three components: the vehicle routing problem, hyper-
heuristics, and grammar guided genetic programming. This chapter re-
views the literature for each component.

2.1 Combinatorial Optimisation

Many complex everyday problems involve finding an optimal solution in
a large, but finite, solution space. Combinatorial optimisation [18] oper-
ates on the domain of those optimisation problems, in which the set of fea-
sible solutions is discrete, or can be reduced to discrete, and in which the
goal is to find the best solution. Combinatorial optimisation is concerned
with the study of effective algorithms and heuristics for solving such prob-
lems by intelligently exploring the solution space. In many cases, exhaus-
tive search is not feasible for all but the smallest examples. Many such
problems, but not all, are NP-hard [31] problems to solve.

2.1.1 Vehicle Routing Problem

The VRP was introduced in 1959 by Dantzig and Ramser [24], and Lenstra
and Rinnooy Kan [46] showed this to be a NP-hard [31] combinatorial op-

11
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timisation problem. The problem domains that are collectively referred to
as VRP have been well studied and come in many variations. They have
wide ranging application in transportation and logistics.

The aim when solving a VRP is to allocate each customer’s delivery to
a vehicle route such that the solution achieves a minimum cost of servicing
all customers. A VRP includes constraints on the capacity of each vehicle,
and/or the duration or distance a vehicle may travel. Further features may
be added, such as time windows for servicing a particular customer [82],
or allowing multiple depots or interchanges to be considered.

Capacitated Vehicle Routing Problem

One of the simplest variations of VRP is the Capacitated Vehicle Routing
Problem (CVRP) [87]. Informally, the CVRP domain can be expressed in
the following way. A supplier needs to deliver goods to a number of cus-
tomers at different locations. Each customer requires a known quantity
of goods from the supplier which must be delivered in a single load. To
transport the goods, the supplier operates a fleet of identical vehicles. The
customer deliveries must be allocated to vehicles such that (a) each cus-
tomer is visited exactly once, (b) each vehicle’s capacity is never exceeded,
and (c) the aggregate distance travelled by all vehicles is as short as possi-
ble.

In general, a solution for any problem in a VRP domain will consist of
a set of vehicle routes, each starting and ending at the depot and visiting
a particular sequence of customers. A typical solution to a CVRP instance
is given in Table 2.1 and illustrated in Figure 2.1.

Other forms of Vehicle Routing Problem Domains

More complex variations of VRP domains include:

1. Pick-up and delivery [1] where goods may need to be transported in
either direction between the supplier and the customer or between
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Route Customer sequence (and demand) Distance (and Load)

1 1, 7 (4), 2 (11), 3 (7), 6 (21), 8 (8), 10 (5), 1 112 (56)

2 1, 11 (6), 9 (1), 4 (8), 5 (14), 12 (12), 14 (13), 1 102 (54)

3 1, 17 (21), 20 (25), 22 (7), 15 (3), 1 77 (56)

4 1, 13 (13), 16 (9), 19 (9), 21 (18), 18 (10), 1 84 (59)

Total 375 (225)

Table 2.1: Example CVRP solution. Four routes, starting and ending at
the depot (node 1) and visiting selected customers in the sequence shown.
Each customer is visited exactly once. Demand (load) shown in brackets.
Vehicle capacity is 60. The solution is illustrated in Figure 2.1.

one location and another.

2. Time windows for delivery [82, 9] where a customer must be visited
between specified times of the day.

3. Multiple depots and/or satellite facilities [1] where deliveries may orig-
inate from any one of several sources or vehicles replenished mid-
route.

4. Split deliveries [1] where a delivery for a customer may be divided
and delivered by more than one vehicle.

5. Interchanges [1] where deliveries in transit may be transferred from
one vehicle to another at designated locations. This includes multi-
modal transportation problems (e.g. train→ ship→ truck).

6. Non-homogeneous vehicles [1] where the fleet of vehicles have different
capacities and/or capabilities (e.g. refrigerated or bulk liquid trans-
porters).

7. Open vehicle routing [1] where a vehicle ends its route at the last cus-
tomer to be serviced.
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Figure 2.1: Illustration of a 4-route solution to CVRP instance E-n22-k4 [1]
shown in Table 2.1 with a total distance of 375.

8. Capacitated arc routing [60, 59] where the demand is linked to the arcs
between locations rather than the location (customer).

2.1.2 Other Combinatorial Optimisation Domains

The HyFlex [70] framework used in the second and third stages of this the-
sis contain implementations of other combinatorial optimisation problem
domains. These include:

1. Bin packing, where the problem is to assign a set of objects to bins,
each with a fixed capacity, while minimising the number of bins re-
quired [56].

2. Travelling salesman, where a single minimum cost route between
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locations is required [47].

3. Permutation flow shop is a special type of flow shop scheduling
problem in which the processing order of the jobs on the machines
is the same for each subsequent step of processing (i.e., job B cannot
leapfrog ahead of job A later in the sequence if job A was processed
ahead of job B early in the sequence). The problem is to sequence
the jobs to minimise idle and wait times [84].

4. Maximum satisfiability (MAX-SAT), where the problem is to deter-
mine the maximum number of clauses of a given Boolean formula in
conjunctive normal form that can be made true by an assignment of
truth values to the variables of the formula [3].

5. Personnel scheduling, where the problem is to create a roster subject
to various constraints [16, 7].

2.1.3 Algorithms and Heuristics for VRP

Cordeau [19], Gendreau et al. [32], Goel and Gruhn [36] and Shaw [81] de-
scribe a range of heuristics and meta-heuristics for VRP instances. Their
work extends the earlier survey by Laporte [45], who describes six algo-
rithms and four heuristics suitable for solving VRP instances. Solving a
VRP instance involves a trade-off between computation speed and achiev-
ing the best possible solution. Only relatively small CVRP instances are
able to be solved optimally in reasonable computation time (e.g. using
branch-and-bound [29]). Consequently heuristics are used to find the best
solution possible in the computation time available. In this context, a
heuristic is a sequence of operators which develop a solution that is not
necessarily an optimal solution, nor guaranteed to be feasible.

There are three established approaches to generating solutions to a
CVRP.
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Figure 2.2: Operation of Clarke and Wright Savings heuristic merging two
routes into one.

1. Construction heuristics. Solutions are built iteratively by inserting and
recombining customer deliveries until no further additions are pos-
sible. This approach does not attempt to further improve a solution
once built. Typical examples include:

(a) Clarke and Wright Savings (CWS) [17]. This method initially
creates out-and-back routes between the depot and each cus-
tomer. The heuristic combines routes (providing load feasibility
is preserved) in a descending order of cost savings, s (see Figure
2.2). The formula used is:

Max sji = d0i + dj0 − dji

such that 0 is the depot; i is the first, and j the last, customer
serviced on two different existing routes; dij is the distance be-
tween customers i and j.

(b) Matching based heuristic methods [25, 2] which are similar to
CWS but use a different method of calculating the savings value.

(c) Multi-route improvement heuristic methods [85, 43] which swap
or rotate customer deliveries between routes.
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A construction heuristic builds a solution step-by-step by selecting
and inserting a customer delivery into a route. The selection criteria
is typically based on some easy to measure feature of the customer
(e.g. nearest/farthest unallocated customer to the depot, or customer
with the largest demand). Insertion usually entails examining the ex-
isting routes with available capacity and finding the route and place
the customer can be serviced with the smallest incremental distance
to the current (partial) solution.

2. Two-phase. Solutions are developed in two phases in a cluster-first,
route-second (or vice versa) process. With this approach, customers
are grouped based on some criterion and provisionally assigned to a
route constructed from the set of customers in the group. Customers
are moved or exchanged between routes until a terminating condi-
tion is reached. Typical examples include:

(a) Fisher and Jaikumar [30] heuristic which uses a solution to a
generalised assignment problem to form clusters.

(b) The Sweep [33] heuristic which clusters deliveries based on the
polar co-ordinates of the customer relative to the depot.

(c) The Petal Method [79] which is an extension of the Sweep method.

3. Meta-heuristics. Various methods referred to as meta-heuristics have
been developed over the last 40 years. Blum and Roli [8] describe
meta-heuristics as strategies that guide the search process with the
goal to efficiently explore the adjacent and/or wider solution space
in an attempt to find near-optimal solutions. In general, these achieve
good results but require a degree of problem specific information
and are often complex and time consuming to design and execute.
A particularly successful meta-heuristic for solving VRP with time
windows [82] is the variation of the Tabu Search heuristic [34] devel-
oped by Cordeau et al. [20] who add a simple exchange mechanism
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to the search process.

There are a number of variations to Tabu Search [34, 35]. In its ba-
sic form, Tabu Search moves from a trial solution to another trial
solution by identifying and evaluating the best move from a list of
candidate moves. To prevent the search from doubling-back or loop-
ing, a move that would restore a previous trial solution is blocked
(made “tabu”) from being added to the list of candidate moves for a
specified number of iterations.

Iterated Local Search (ILS) [48] iteratively alternates between apply-
ing an operator (a “kick”) which mutates the current solution, and
a local search which attempts to improve the mutated solution. The
ILS iterations continue until a pre-defined stopping condition is reached,
e.g., a time limit. Walker et al. [88] add an adaptive process to a basic
ILS which they call Adaptive Iterated Local Search. Their adaptive
process uses a learning mechanism to select the mutation and local
search operations from a set of candidate operators. The greater the
improvement achieved by the operators in a defined number of pre-
vious iterations, the more likely those operators will be selected at
the start of the next iteration.

Alternative approaches combine the selected features of multiple so-
lutions in an attempt to arrive at a better solution. Such a method is pro-
posed by Nagata and Bräysy [66]. They use a crossover technique they call
edge assembly crossover. They report good results using the technique but
only demonstrate it on problems with unit demands and parent solutions
with the same number of routes.

A general heuristic for a standard CVRP and four variations (with
time-windows, multiple depot, non-homogeneous vehicles, and open rout-
ing (see Section 2.1.1)), is proposed by Pisinger and Ropke [73]. They
firstly reformulate the respective problems into a format they call Rich
Pickup and Delivery Problem with Time Windows. Then an adaptive large



2.2. EVOLUTIONARY COMPUTATION 19

neighbourhood search [75] is applied in cycles using neighbourhoods de-
fined by the selected combination of ruin and recreate operators. The ruin
and recreate process repeats until no further improvements are found or a
pre-defined time limit is reached.

2.2 Evolutionary Computation

Evolutionary Computation (EC) is a sub-field of artificial intelligence that
borrows ideas from, and is inspired by, natural evolution and adapta-
tion [90]. EC covers a number of techniques based on evolutionary pro-
cesses and natural selection, including Ant Colony Optimisation, Evolu-
tion Strategy, Genetic Algorithms, Genetic Programming, Learning Clas-
sifier Systems, and Particle Swarm Optimisation. This thesis only makes
use of Genetic Programming as described below.

2.2.1 Genetic Programming

Genetic Programming (GP) [44, 74] is a population based technique and an
extension of both Genetic Algorithms (GA) [21] and automatic program-
ming. The aim of GP is to build computer programs that are not expressly
designed and programmed by human beings [52]. Individuals within the
population compete for survival by adapting as best they can to the en-
vironmental conditions. Each individual is assessed and given a fitness
score which determines its relative strength to its peers. This in turn in-
creases or decreases the individual’s chance of survival. Copying natural
selection, crossovers between individuals, mutation and death are part of
the process of adaptation (see Figure 2.3). For each generation, individ-
uals within the previous generation are selected for breeding or, through
elitism, transferred unchanged into the new generation. Breeding selec-
tion is often done by a tournament selection or roulette wheel process,
whereby a predetermined number of individuals are randomly selected,
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weighted by fitness. Crossover and/or mutation is performed on the se-
lected individuals as illustrated in Figure 2.3. The process can be a com-
putationally cheap method that is capable of dealing with many problems,
providing there is a means of determining the individual’s fitness [51]. An
advantage GP has over GA is in its ability to handle individuals of differ-
ent lengths.

2.2.2 Grammar Guided Genetic Programming

Manrique et al. [52] describe Grammar Guided Genetic Programming
(GGGP) [57] as an extension of traditional GP by employing context-free
grammars (CFG) (see the green shaded box in Figure 2.4) to generate pos-
sible solutions to a problem as sentences. GGGP uses the grammar to
provide a formal definition of the syntactic problem constraints and uses
a derivation tree (see Figure 2.5) for each sentence to encode the solutions.
In doing so the likelihood of invalid individuals being generated is re-
duced.

Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary computation technique pi-
oneered by Ryan et al. [78]. A key feature of GE is the separation between
the search engine and the problem. This enables different classes of prob-
lem to be solved using the same search engine, and conversely, an alterna-
tive engine can be employed to create and evolve a ‘genotype’. The linking
element is a grammar relevant to the class of problem, e.g., CVRP, which
is applied through a mapper to the output of the search engine. Defining
a good grammar requires a degree of inspiration and experimentation as
the structure and content of the grammar can influence the quality of the
result, much in the way the grammar of a natural language defines the
richness of that language.

The mapping process is illustrated in Figure 2.4. Each integer in the
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Figure 2.3: Illustration of GP single point crossover and mutation oper-
ations on tree-based individuals. The crossover operator takes a branch
from each parent and swaps them to produce two new children. The mu-
tation operator randomly transforms individual elements into a new ele-
ment.
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Figure 2.4: A GE linear genotype mapped with a generic Backus Naur
form grammar [67] using modular arithmetic. The elements of the geno-
type are mapped in sequence until a complete sentence is produced.

linear genotype is taken in turn and mapped to the appropriate rule in
the grammar. For example, the first integer, 15, is mapped to the first rule
in the grammar, <Heuristic>, which has three elements. Using modular
arithmetic, 15 mod 3 leaves a remainder of 0, meaning the first element
<A1> (a non-terminal) is selected. The second integer in the genotype is
mapped to the <A1> rule (2 elements) meaning <B1><B2> is selected.
The process continues in a depth-first search until all non-terminals are
resolved.
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Figure 2.5: A derivation tree created by the example shown in Figure 2.4.

McKay et al. [57] note that GE belongs to a wider family of Grammar
Guided Genetic Programming (GGGP) approaches [89] which emerged in
the mid 1990s. They note that in GE the genotype is linear, as opposed to
the tree structure used in both standard Genetic Programming (GP) [44]
and other grammar based GP. The linear genotype enables a range of the-
ory and practice applicable to Genetic Algorithms and Evolution Strate-
gies to be employed. The benefits of GGGP over standard GP include the
ability of the grammar to restrict the search space and reduce the likeli-
hood of generating semantically meaningless output.

Over the last decade there has been research into the benefits and chal-
lenges of using GE. Rothlauf and Oetzel [77] have investigated the map-
ping of the genotype to the output (phenotype) in GE and find geno-
type neighbours in the population do not correspond well with pheno-
type neighbours produced by the grammar, a phenomenon they refer to as
a low degree of locality. The consensus among researchers, notably in the
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Figure 2.6: The effect of GE Single Point Crossover on a derivation tree.
The crossover point between D and E in the linear genotype (left) cuts
across three branches of the derivation tree (right).

works of Rothlauf et al. [77, 86], is that there needs to be a close correlation
(high locality) between genotype neighbours and phenotype neighbours
for an efficient search process. Sub-Tree crossover and Sub-Tree mutation
[37] are regarded as the best means of achieving this in GE. This requires a
reverse mapping of the phenotype to the genotype to ensure a crossover is
only performed between compatible points. Thorhauer and Rothlauf [86]
note that the single point crossover operation (see Figure 2.3) has a very
different effect when applied in GE than when applied in standard GP, re-
sulting in GE crossovers involving, on average, half of the tree structure
as illustrated in Figure 2.6.

Another known feature of GE is redundancy in both the encoding and
length of the genotypes. GE uses variable length integer (or bit) strings
(codon strings) which are mapped with the grammar using modular arith-
metic. This means numerous different encodings will map to the same
sentence in the grammar. Also, since the length of genotype can be longer
(possibly by a considerable amount) than that needed by the grammar
mapper, the population may comprise of many different individuals who
only differ from each other in the unused portion of the genotype.

The use of tree-adjunct or tree-adjoining grammars [38] as suggested
by McKay et al. [57] and Murphy et al. [65] may remedy some of these
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issues, although the technique does not scale well and a grammar such as
the one we use in Chapter 4 would generate an unmanageable number of
tree elements.

2.3 Hyper-heuristics

As noted in Section 1.1 on page 2, more recent research has looked at
hyper-heuristics, which Cowling et al. [22] define as “heuristics to choose
heuristics”. Ochoa et al. [71] note that the focus in hyper-heuristic re-
search is to adaptively find a solution method rather than producing a solu-
tion for the particular problem instance at hand. They repeat the observa-
tion by Ross [76] that the difference between hyper-heuristics and (meta-
)heuristics is that it is the search space of heuristics, rather than the search
space of problem solutions, that is traversed. However the delineation be-
tween heuristics (rules-of-thumb), meta-heuristics (heuristics employing
some form of solutions exploration strategy [8]) and hyper-heuristics can
become blurred since both meta-heuristics and hyper-heuristics are also
heuristics. In this thesis we treat heuristics and meta-heuristics the same
way, and reserve the term hyper-heuristic to mean heuristics to choose
heuristics [22].

A hyper-heuristic can be used to dynamically manage the low-level
problem domain as the problem instance is being solved (on-line learning),
or to develop a heuristic using a separate set of training instances (off-line
learning), and apply the resulting heuristic to the problem instance to be
solved.

Burke et al. [14] note that one aim of hyper-heuristic research is to
provide a general solver for different problem domains. Such a hyper-
heuristic is independent of the problem specific domains on which it op-
erates. A hyper-heuristic which achieves this independence is referred to
as existing and operating above the domain barrier. Another aim of hyper-
heuristic research is to reduce the need for human experts by partially au-
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tomating the process which develops and manipulates the low-level (do-
main specific) operators and heuristics which generate and search through
candidate solutions of a problem instance. The desired result from the
hyper-heuristic is either a reusable heuristic for the problem domain, or a
process which dynamically manipulates low-level operators while solving
a given problem instance. The hyper-heuristic needs to deliver a good so-
lution in a reasonable computation time to a problem instance in any given
problem domain. In this respect, the terms good and reasonable are context
sensitive.

Different hyper-heuristic search methods, including the impact of scal-
ability issues, are studied by Keller and Poli [39, 40, 41]. They conclude
that using GP to develop a (meta-)heuristic from the component parts of
low-level heuristics achieves good outcomes with problem instances of
different sizes. Burke et al. [11] study the benefits of adding a memory
mechanism to the heuristic design for the one-dimensional bin packing
problem to enable basic data (e.g., minimum piece size seen so far) to be
stored and recalled as the solution is evolved.

Burke et al. [14] classify current hyper-heuristic approaches into one of
two types:

1. Selection of one or more heuristics from a small collection of can-
didate heuristics. The hyper-heuristic first selects the appropriate
heuristic(s) and then endeavours to adjust whatever parameters the
selected heuristic(s) require to produce a good solution. The param-
eter settings may be dynamically adjusted for the problem instance
(on-line learning) or fixed for all instances within a problem domain
based on experience from solving a training set of problem instances
(off-line learning).

2. Generation of new heuristics by recombining the operators (or com-
ponents) of existing heuristics. An on-line learning process adjusts
the operator combinations as well as setting any parameters. An on-
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line learning process can also be applied to a set of training instances
to determine a reusable sequence of one or more heuristics and any
relevant parameters. The evolved sequence of heuristics is stored for
future application on unseen problem instances in the same prob-
lem domain. If application of the heuristic does not involve further
training (e.g. parameter modification), this two-stage combination
of training and application is usually referred to as off-line learning.
Heuristics evolved in this manner are essentially a recombination of
a sequence of operators.

Cross-domain hyper-heuristic approaches have been successfully de-
signed by Misir et al. [63, 64], and Sabar et al. [80] to solve small scale
timetabling, bin packing and vehicle routing problem instances of compa-
rable complexity. The hyper-heuristic designed by Misir et al. [64] com-
plies with the HyFlex (Hyper-heuristic Flexible) framework [70] specifi-
cations. Drake et al. [26] develop a hyper-heuristic which constructs initial
solutions to a set of small VRP instances and then modifies the solutions
using low-level heuristics within a variable neighbourhood search frame-
work. The mixed quality of the results from this latter work illustrates
the challenges faced in choosing the appropriate number and mix of can-
didate heuristics when using a hyper-heuristic to select or develop new
heuristics. Misir et al. [62] also investigate the impact that the choice of
candidate heuristics has on the effectiveness of the hyper-heuristic and ar-
rive at a similar conclusion.

Misir et al. [61] summarise some of the various evolutionary and learn-
ing methods employed by hyper-heuristic researchers. One of the more
common methods is Genetic Programming [44], which is capable of evolv-
ing solutions to complex problems and can handle mathematical, logical
and operational elements with equal ease. By adding a grammar (Gram-
mar Guided Genetic Programming [58]) it is possible to reduce the likeli-
hood of generating semantically meaningless output. This is particularly
useful when evolving sequences of operators containing logical or oper-
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ational elements. Burke et al. [14, 10] note that in some respects GP can
be regarded as a hyper-heuristic approach to select or generate heuristics.
Sabar et al. [80] use GP in this way.

Different applications of hyper-heuristic approaches and problem types
are contained in Burke et al. [15] (bin packing using Genetic Program-
ming); Kendall and Li [42] (competitive travelling salesman problem us-
ing game theory); and Ochoa et al. [71] (timetabling using a graph based
hyper-heuristic approach).

Kendall and Li [42] solve the Competitive Travelling Salesman Problem
(CTSP) for two competing salesmen, by providing a selection of five low-
level construction operators relevant to the CTSP. These are chosen in a
sequence determined by applying Game Theory [68].

Misir et al. [61, 64] develop a hyper-heuristic which generalises across
six optimisation problem domains, including vehicle routing. Their work
was initially undertaken for the First Cross-domain Heuristic Search Chal-
lenge (CHeSC) [69] in 2011, which they won by a comfortable margin
against 19 other entrants. The organisers of CHeSC provided the hyper-
heuristic framework (HyFlex [70]). The approach by Misir et al. [61, 64]
consists of repeating a multi-step process until a pre-determined time limit
has expired.

Misir et al. [62] subsequently investigated the impact that different
sets of low-level operators have on the performance of the hyper-heuristic.
Their hyper-heuristic and subsequent research influences the direction of
this thesis. Burke et al. [13] propose a hyper-heuristic approach using
Genetic Programming [44] to generate new heuristic methods from opera-
tors (or components) of existing methods. Hyper-heuristic research using
the Grammatical Evolution [78] variation of GGGP is described in work
by Bader-el-Den and Poli [5] and Bader-el-Den, Poli and Fatima [6]. In
both cases the problem domain was timetabling and the hyper-heuristic
approach used Genetic Programming to generate heuristics.

Two recent works, both using Grammatical Evolution, have a strong
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influence on this thesis. Firstly, the hyper-heuristic used by Drake et al.
[26] initially constructs a solution to a VRP instance and then seeks to im-
prove the solution using a variable neighbourhood search framework. The
grammar used is very detailed and many low level operators and param-
eters are defined in the grammar. Their work illustrates the many chal-
lenges faced when applying a hyper-heuristic. They show that the correct
choice of candidate low-level operators and the structure of the grammar
are both critical to the outcome.

The second work influencing this thesis is that of Sabar et al. [80]. Their
work focuses on using a hyper-heuristic approach to develop a general
solver capable of solving a variety of combinatorial optimisation prob-
lems including timetabling and VRP. Low-level operators, containing a
choice of local search operations, acceptance criteria and adaptive mem-
ory parameters are selected and combined to form templates. The hyper-
heuristic approach evolves these templates into heuristics relevant to the
problem domain. This study also discovered that improved results can be
obtained if the evolution process improves multiple solutions in parallel.

In the first and second stages of this thesis we follow the example of
Burke et al. [12, 13] and generate new heuristics from the operators (or
components) of existing heuristics. Examples of grammars we have used
to achieve this are given in Section 4.2 on page 55, and Section 5.2 on page
74. Burke et al. [12, 13] study the evolution of local search methods which
define neighbourhoods and efficiently traverse the search space. While
application of their evolved methods did not find the best known solutions
to the bin packing problems sampled, the technique was shown to work
well.

Summary

In this chapter we have reviewed the relevant literature relating to com-
binatorial optimisation problems (vehicle routing problems in particular),
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genetic programming (Grammatical Evolution and grammar-guided GP
in particular) and hyper-heuristics. We have discussed the different types
(selection and generation) of hyper-heuristic and their application in pre-
vious research. In Chapter 3 we discuss the functional requirements of
software applications to create hyper-heuristics and to solve generic com-
binatorial optimisation problem domains. We then develop and imple-
ment the applications, which are detailed in Chapters 4, 5 and 6.



Chapter 3

Constructing a Problem Domain
and Hyper-heuristic

In this chapter we discuss the features of generic problem domains and
hyper-heuristics compatible with the HyFlex [70] framework. We illus-
trate the features of a problem domain by constructing a Capacitated Ve-
hicle Routing Problem domain. Construction of different types of hyper-
heuristic are illustrated in Chapters 4, 5 and 6. The hyper-heuristic and
problem domain are linked by the domain barrier which acts as an inter-
face between the two parts (see Figure 3.1).

3.1 Generic Problem Domain

The problem domain contains all the necessary tools to solve a problem
instance compatible with that domain, but lacks the knowledge on how
to arrive at the best solution. A problem domain needs to provide the
following functions to enable compatible problem instances to be solved
under the guidance of the hyper-heuristic.

1. The ability to load and interpret a problem instance.

2. To store a set of operators (heuristic components) which can con-

31
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Figure 3.1: High level overview of the linkage between a hyper-heuristic
and a problem domain.

struct or manipulate an interim solution to create a new solution.
The set should be sufficient in number and diversity to support a
variety of actions.

3. The ability to apply an operator to a solution and evaluate the result.

4. To store data relating to the number of times each operator is used
while solving a particular problem instance, and the operator’s exe-
cution time.

5. To generate and store an initial (small) population of solutions.

6. To add or remove a solution from the population of solutions.
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7. To calculate a fitness value for a solution and compare it to other
solutions. This includes applying any penalty for incomplete or in-
feasible solutions.

8. To output details of the best solution held in the population of solu-
tions on demand.

In general terms, the hyper-heuristic will instruct the problem domain
to apply a particular operator to a selected solution from the population of
solutions. Most operators work on a single (primary) parent solution, but
some, e.g., a crossover operator, may require a secondary parent solution
as well. The problem domain applies the operator and calculates the fit-
ness of the resulting solution. The hyper-heuristic will decide whether to
retain or discard the new solution based on acceptance criteria determined
by the hyper-heuristic. If the solution is to be retained, then it replaces:

1. The primary parent solution if the new solution is strictly better than
the primary parent solution, or if the primary parent solution is not
the best solution found so far.

2. A randomly chosen solution (other than the best solution found so
far) otherwise.

The secondary parent solution (if used) is not altered. A single version
of the best found solution so far is always preserved in the population
regardless of the acceptance criteria. Should multiple solutions be equally
good as the best solution found so far, then only the first best solution
found is preserved. All other equally good solutions may be replaced by
new, possibly inferior, solutions. Figure 3.2 illustrates this process.

3.2 HyFlex Framework

The HyFlex (Hyper-heuristic Flexible) framework [70] was originally de-
veloped in 2011 for the First Cross-domain Heuristic Search Challenge
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Figure 3.2: An overview of the contents of a generic problem domain and
application of an operator to a solution.

(CHeSC) [69]. The framework includes six in-built optimisation problem
domains (see Section 2.1.2 on page 14), to which we add a standard Ca-
pacitated Vehicle Routing Problem (CVRP) [87] domain:

1. Maximum satisfiability (MAX-SAT)

2. One-dimensional bin packing

3. Permutation flow shop

4. Personnel scheduling

5. Travelling salesman problem (TSP)

6. Capacitated vehicle routing with time windows

7. Standard CVRP (added domain)
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Associated with each in-built problem domain is a set of between 8 and
15 unseen low-level operators (heuristics). Each set contains at least one
operator belonging to each of the four defined operator types: mutation,
ruin-recreate, local search and crossover. A crossover operator swaps parts of
one solution with another solution in an attempt to create a better solution.

Each operator can use (if appropriate) the two HyFlex parameters α
and β, where (0 ≤ α, β ≤ 1 ). The Intensity of Mutation parameter, α,
affects the scale of any mutation or ruin operation, e.g., 0.5 would mean
half the current solution would be altered by an operator using this pa-
rameter. The Depth of Search parameter, β, defines a range or number of
repetitions an operator will undertake to find an improved solution in a
single execution of the operator.

Each operator is only visible to the hyper-heuristic to the extent al-
lowed by the HyFlex [70] specifications. Operator visibility is restricted
to the following properties:

1. Operator Type. A mandatory attribute of each operator contained
within a HyFlex problem domain. There are four defined operator
types:

(a) Mutation operators add or reposition an element in a solution.
Operators of this type would generally only involve simple ma-
nipulations requiring a short computational time which is only
marginally affected by the size of the problem instance.

(b) Ruin-Recreate operators destroy a segment of an existing solu-
tion, chosen by the operator implementation, and then rebuild
the segment to form a new solution. These operators are more
complex than a mutation operator and typically require a longer
computational time. The computational time may vary substan-
tially depending on the size of the problem instance.

(c) Local Search operators define and search a solution neighbour-
hood for improvements. These operators generally apply a de-
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gree of logic to the search so can be expected to have a higher
chance of improving a solution than the other operator types.
However, the computational time may be much longer, and
could escalate polynomially (or worse) as the problem instance
size increases.

(d) Crossover operators combine elements of two current solutions
to form a new solution. The computational time of a crossover
operator varies but is often similar to a ruin-recreate operator.

2. Uses Intensity of Mutation. An indicator to show whether this op-
erator uses the global Intensity of Mutation, α, parameter.

3. Uses Depth of Search. An indicator to show whether this operator
uses the global Depth of Search, β, parameter.

4. Call Record. The number of times the operator has been executed
during a run is calculated and is visible to the hyper-heuristic on
demand.

5. Call Time Record. The aggregate of the execution time of each oper-
ator during a run is recorded and is visible to the hyper-heuristic on
demand.

3.3 Capacitated Vehicle Routing Problem Domain

We now detail the design of the operators and the management of the
population of solutions in our new HyFlex [70] compatible CVRP domain.
The domain we have designed includes the ability to easily add or remove
individual operators, although we do not use this feature in this thesis.



3.3. CAPACITATED VEHICLE ROUTING PROBLEM DOMAIN 37

3.3.1 Operator Design

For the CVRP domain we modify the twelve low-level operators proposed
by Walker et al. [88] for a CVRP-with-time-windows domain, by remov-
ing the time window elements from each operator. There are 4 mutation,
2 ruin-recreate, 4 local search and 2 crossover operator types (see Section
3.2). Other than each operator’s label, type and the use of two global pa-
rameters, α and β, the details of the operators described in this section are
invisible to the hyper-heuristic.

1. Mutation Operators [M]. All mutation operators move or exchange
randomly selected customers. The resulting routes are not necessar-
ily feasible.

(a) Swap within route [M0]. A route is randomly selected. Two
adjacent customers in that route are randomly selected and their
delivery sequence swapped within the route.

(b) Move within route [M1]. A route, and two adjacent customers
in that route, are randomly selected and the pair randomly moved
to elsewhere (not necessarily adjacent) in the delivery sequence
within the route.

(c) Move to another route [M2]. Two routes are randomly selected.
A customer from the first route is randomly selected and in-
serted into the least-cost position in the delivery sequence of the
second route. The operator does not check the modified route
for load feasibility.

(d) Swap between routes [M3]. Two routes are randomly selected.
One customer from each of the two routes is randomly selected
and the two customers swapped between the routes. Each cus-
tomer replaces the other in the sequence of deliveries. The op-
erator does not check the modified routes for load feasibility.
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2. Ruin-recreate Operators [R]. Both ruin-recreate operators destroy a
segment of the current solution and reinsert the displaced customers
into the solution in the best possible location. Reinsertion positions
are restricted to those which result in a feasible route. Both operators
use the Intensity of Mutation, α, parameter.

(a) Band ruin [R0]. A customer, i, is randomly selected. An addi-
tional n customers, where n is the number of customers in the
problem instance multiplied by the Intensity of Mutation (α) pa-
rameter (rounded up), are also selected by choosing customers
with a y-axis coordinate closest to i (see Figure 3.3). The set of
n+1 customers are removed from their current routes and rein-
serted in a random order into the route and delivery sequence
which provides the least incremental cost of insertion, while re-
taining load feasibility. A new route is created if necessary.

(b) Ring ruin [R1]. A customer, i, is randomly selected. An addi-
tional n customers (where n is the number of customers in the
problem instance multiplied by the Intensity of Mutation (α) pa-
rameter (rounded up)) are also selected by choosing customers
with a distance from the depot closest to the distance between
the depot and i (see Figure 3.4). The set of n + 1 customers are
removed from their current routes and reinserted in a random
order into the route and delivery sequence which provides the
least incremental cost of insertion, while retaining load feasibil-
ity. A new route is created if necessary.

3. Local Search Operators [S]. All local search operators use the depth
of search, β, parameter. We use the four search operators designed
by Walker et al. [88] although none are traditional local search oper-
ators.

(a) Move if better [S0]. Two routes are randomly selected. A cus-
tomer from the first route is randomly selected and inserted into
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Figure 3.3: Illustration of the zone affected by a band-ruin operator [R0]
based on customer number 9 and an Intensity of Mutation, α, value of 0.28

the least-cost position in the delivery sequence of the second
route. If the modified second route is infeasible due to overload-
ing, then a single customer (randomly selected from customers
with demand ≥ excess load) may be displaced from the second
route to restore load feasibility. The displaced customer, if any,
is reinserted into the least-cost feasible route and delivery se-
quence, or a new route created if necessary. If the new solution
is better than the original solution then the process terminates.
Otherwise the process is repeated for up to n iterations, where n
is the number of customers in the problem instance multiplied
by the Depth of Search, β, parameter (rounded up).

(b) Swap if better [S1]. Two routes are randomly selected. One
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Figure 3.4: Illustration of the zone affected by a ring-ruin operator [R1]
based on customer number 9 and an Intensity of Mutation, α, value of
0.28

customer from each of the two routes is randomly selected and
the two customers swapped between the routes. Each customer
replaces the other in the sequence of deliveries. The resulting
routes may not be feasible. If the new solution is feasible and
better than the original solution then the process terminates.
Otherwise the process is repeated for up to n iterations, where n
is the number of customers in the problem instance multiplied
by the Depth of Search, β, parameter (rounded up). This oper-
ator is similar to the Swap Between Routes operator [M3], but
will make up to n attempts to find an improved solution.

(c) 2-opt exchange [S2]. Two routes are randomly selected and
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each route is reversed with 0.5 probability. The tails of the two
routes are swapped from randomly chosen positions. If the new
solution is feasible and better than the original solution then the
process terminates. Otherwise the process is repeated for up to
n iterations, where n is the number of customers in the prob-
lem instance multiplied by the Depth of Search, β, parameter
(rounded up).

(d) Move to best [S3]. Two routes are randomly selected. A cus-
tomer from the first route is randomly selected and inserted into
the least-cost position in the delivery sequence of the second
route. If the new solution is feasible and better than the orig-
inal solution then the process terminates. Otherwise the pro-
cess is repeated for up to n iterations, where n is the number of
customers in the problem instance multiplied by the Depth of
Search, β, parameter (rounded up).

4. Crossover Operators [X]. Crossover operators combine parts of two
parent solutions to produce a single new solution.

(a) Random combine [X0]. Calculates a value, v = (0.5+α)
2

(per
Walker et al. [88]), where α is the Intensity of Mutation param-
eter. Creates a new solution from two solutions by taking indi-
vidual routes, with probability of v, from the first solution. Then
routes from the second solution are added providing there is
no duplication of customer deliveries. Any customers not con-
tained in the new solution are inserted in random order into the
least-cost route and delivery sequence (or a new route created)
in the new solution.

(b) Largest combine [X1]. Ranks routes from two solutions based
on the number of customer deliveries in the route. Creates a
new solution by iteratively adding the ranked routes (largest
number of customers first, ties broken randomly) providing no
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customer deliveries are duplicated. Any customers not con-
tained in the new solution are inserted in random order into the
least-cost route and delivery sequence (or a new route created)
in the new solution.

There are no operators belonging to the other operator type.

3.3.2 CVRP Solution Generation

The problem domain generates and stores a small population of solutions.
Sabar et al. [80] observe that developing multiple solutions in tandem im-
proves the diversity of the population of solutions, and thereby reduces
the likelihood of the solution development process stalling. The nature
and effect of stalling is discussed further in Section 6.3.1 on page 94. The
size of the population is determined by the hyper-heuristic and is a bal-
ance between solution diversity and the dilution of computational effort
across multiple solutions. If only a single solution is held in the popula-
tion, then the crossover operators are unable to work correctly and may
simply return the parent solution. At the other end of the scale, a large
population requires an increase in the time and effort directed towards
improving multiple solutions, some of which may be incapable of becom-
ing the best solution.

The CVRP domain we developed generates new solutions by firstly
calculating the aggregate demand from all customers, and dividing the ag-
gregate by the vehicle capacity (rounding up) i.e. routesmin =

⌈∑
demand

capacity

⌉
.

This provides the minimum possible number of routes required. The min-
imum number of empty routes are created and customers are then ran-
domly assigned to a route. Some of the resulting routes may be overloaded
and therefore infeasible. Infeasible routes are heavily penalised when the
solution fitness evaluation is made to enable all solutions to be evaluated
and to encourage retention of feasible solutions.

In the CVRP domain we have developed, feasibility penalties include:
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1. Unallocated customer: the cost of an out-and-back route from the
depot to the customer is added to the fitness value.

2. Overloaded route: A manually set penalty plus the cost of out-and-
back routes from the depot to each customer allocated to the route is
used for the fitness value instead of the total distance of the route.

3. Duplicated customer: A manually set penalty. This situation should
not occur with the implementation described above.

3.4 Developing a Hyper-heuristic

In this section we describe the requirements to develop a hyper-heuristic
compatible with the HyFlex [70] framework. To be effective, a hyper-
heuristic needs to be independent of the problem domain. If the hyper-
heuristic is not independent of the domain then it should more accurately
be described as a meta-heuristic [14].

As discussed in Section 2.1.3 on page 15, Burke et al. [14] classify
hyper-heuristics into two broad categories; those which select a heuristic
from a set of candidate heuristics, and those which generate a new heuris-
tic from the operators (components) of existing heuristics. In practise a
hyper-heuristic may perform both selection and generation functions at
different stages of the process.

3.4.1 Domain Independence

In this thesis we take “domain independence” to include the following
features:

1. The hyper-heuristic is linked to the problem domain by an interface
(domain barrier, see Figure 3.1) through which only limited standard
information may flow. This means the problem domain and hyper-
heuristic can be changed without affecting the other.
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2. The hyper-heuristic is responsible for controlling the development
of a solution to a problem instance by manipulating the operators
(heuristic components) within the problem domain. However, the
hyper-heuristic has:

(a) Only outline knowledge of the function each operator performs.
It has no knowledge of how the operator performs its function.

(b) No knowledge about the problem instance size or features.

(c) No knowledge of the quality of the interim solution other than
a single fitness value provided by the evaluation function con-
tained within the problem domain application. The problem
domains we use in this thesis seek to minimise the solution fit-
ness.

(d) Has no means of identifying whether an optimal solution has
been achieved.

The HyFlex [70] framework described in Section 3.2 provides a def-
inition of what information may flow across the domain barrier consis-
tent with our description above. There is an assumption that the prob-
lem domain application is fit-for-purpose and contains a sufficient num-
ber and diversity of operators. Some operators may perform simple add or
move functions without applying any logic, while others may be complex
heuristics capable of generating a solution to a problem instance on their
own. The performance of a hyper-heuristic is constrained by the available
computational time, the problem domain complexity and the problem in-
stance size. Since the hyper-heuristic has minimal knowledge about the
problem domain and instance, and the computational time limit is usually
a manually set parameter, the hyper-heuristic faces a difficult challenge.

Given these constraints, the performance of a hyper-heuristic should
be measured on the basis of how efficient it is at using the available com-
putational time. Although the ultimate goal is to enable a problem do-
main to deliver the best possible solution, it is unreasonable to compare
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the quality of a hyper-heuristic to other algorithms and heuristics based
on the solution value alone.

3.4.2 Computational Time

Setting the computational time limit is a trade-off between solution qual-
ity and speed. When dealing with a new problem domain, or previously
unseen problem instance, it is difficult to know an appropriate setting. In
part, progress towards achieving a “good” solution is dependent on the
quality of the operators built into the problem domain application. These
may be limited in their ability to manipulate a solution or require excessive
computational time to execute.

A further factor is that the initial solution(s) from which computation
begins are controlled by the problem domain and unknown to the hyper-
heuristic. This may vary from an empty or randomly generated solution
to one which has used an established heuristic to develop a solution of
reasonable quality. Further development of the solution(s) from these dif-
ferent starting positions may proceed at widely differing rates.

In the case of an empty or randomly generated solution, a hyper-heuristic
can be expected to make significant improvements in the early stages of
the computation. As time elapses, however, further improvements be-
come harder to find and an increasingly large number of operator appli-
cations fail to make progress. The hyper-heuristic should ideally respond
to this situation and we discuss this further in Section 6.3.1 on page 94.

3.4.3 Population of Solutions

Having a population of solutions means the computational time must be
divided between different solutions, thereby reducing the time spent work-
ing on the “best” solution.

Research by Sabar et al. [80] identified that working on a small number
of solutions in tandem achieves a better quality of solution than trying to
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improve only a single solution. When using the HyFlex [70] framework, it
is preferable for there to be a population of at least two solutions to enable
the crossover type of operator to function correctly (see Section 3.2). An
upper bound on the number of solutions in the population is a trade-off
between maintaining diversity and dividing the available computational
time across multiple solutions. In this thesis we use a population of six
solutions, which is consistent with the population size used by Sabar et al.
[80].

Working with a small number of solutions gives the benefit of focusing
computational effort. This increases the number of attempts to improve a
particular solution, and can enable a more thorough search for improve-
ments. It also avoids wasting time and effort improving solutions which
may be clones of the best found solution, or be so poor that considerable
effort is required to improve them.

Working with multiple solutions enables diversity. This can be use-
ful when a particular solution is unable to be improved further using the
operators available in the problem domain. Improving an alternative so-
lution from the population may lead to a new best found solution, and
unblock the development of better solutions. However, each solution de-
velopment requires a share of the computational time which can become
too thinly spread if the population of solutions is excessive.

Summary

In this chapter we have described the requirements for a generic hyper-
heuristic and problem domain compatible with the HyFlex [70] frame-
work, and illustrated construction of a new CVRP domain. In the next
chapter we illustrate development of a heuristic using a grammar-based
hyper-heuristic.



Chapter 4

Developing a Compact and
Effective Heuristic

In this chapter we discuss the first stage of this thesis which has the goal
of using a hyper-heuristic to generate a compact and effective heuristic for
a problem domain with only deterministic operators. The hyper-heuristic
developed for this stage uses the Grammatical Evolution (GE) [78] varia-
tion of a grammar guided genetic programming (GGGP) [89] approach. A
detailed description of how GE and GGGP work is outside the scope of
this thesis. Section 2.2.2 on page 20 gives some background to the relevant
aspects of GE and GGGP applicable to this research.

4.1 Hyper-heuristic with Grammatical Evolution

The grammar based hyper-heuristic (GEgrammarHH) used in the first
stage of this thesis is developed using Grammatical Evolution (GE) [78].
The concept behind GE, and some of the challenges faced when using it,
are discussed in Section 2.2.2 on page 20. In this section we will confine
our discussion to the development and application of the grammar and
hyper-heuristic used in this chapter.

GEgrammarHH uses a loosely defined interface (domain barrier) be-

47
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tween the hyper-heuristic and the Capacitated Vehicle Routing Problem
(CVRP) [87] domain built specifically for this stage. In this respect, it
differs significantly from the second grammar-based hyper-heuristic de-
scribed in Section 5.2 on page 74 and the adaptive hyper-heuristics de-
scribed in Chapters 5 and 6, which conform to the more rigid HyFlex
[70] framework specifications. The hyper-heuristic and CVRP domain
described in this chapter were implemented in the GEVA (Grammatical
Evolution in Java) [72] application and our own additional Java program.

One of the aims of this stage is to assess the suitability of GE as a hyper-
heuristic, since there are already several reports of using GE for this pur-
poses in the literature (see Section 2.2.2 on page 20).

The CVRP domain used with this hyper-heuristic is described in Sec-
tions 4.1.1 and 4.1.2. This domain is different from that described in Sec-
tion 3.3 on page 36, although it could be adapted to conform to the HyFlex
[70] framework specifications. Additionally, this CVRP domain contains
only deterministic operators. This means a heuristic applied to a particu-
lar CVRP instance will always generate the same solution.

Each heuristic consists of four distinct elements:

1. A strategy which defines how the heuristic is to be developed.

2. A sequence of one or more operators (excluding a search operator)
to construct or modify the current partial solution.

3. A search operator to improve the current partial solution.

4. The number of times the whole sequence of operators (including the
search operator) is repeated to deliver a complete and feasible solu-
tion. We refer to each repetition of the sequence of operators as a
cycle.

Table 4.1 details the process a generated heuristic will perform with
GEgrammarHH.
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4.1.1 GEgrammarHH Strategy

The GEgrammarHH enables a choice of strategy when developing a CVRP
solution. This is set by the strategy element which defines how the solu-
tion is initialised and developed. We include two basic strategies to be
employed when developing a heuristic.

1. Build Strategy: A heuristic developed using a build strategy starts
with an empty solution and routes are iteratively developed. All cus-
tomers are initially placed in a pool of unallocated customers until
selected for placement into the current partial solution. Build oper-
ators are used to select and place customers into the solution in a
chosen sequence. The placement of customers is such that feasibility
of the solution is preserved.

The strategy may optionally specify that a number of routes be ini-
tialised by placing one customer in each route. We refer to this as
seeding. The method of selection and number of customers allocated
during seeding is determined by a parameter of the chosen strategy.

2. Improve Strategy: An improvement strategy starts with a complete
(i.e. all customers are allocated to a route) and feasible, but possi-
bly sub-optimal, solution developed using a fast heuristic. We use
individual out-and-back routes from the depot to each customer, al-
though any fast heuristic (e.g. the CWS heuristic [17] ) could be used
to develop a starting solution.

4.1.2 GEgrammarHH Operators

An operator manipulates the current partial solution. Application of some
operators may result in a customer being returned to the pool of unallo-
cated customers.

A successful heuristic need not necessarily be intuitive, so a range of
build, modify and destroy operators are enabled with few constraints on
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Table 4.1: Algorithm for GEgrammarHH

T ← set strategy (build or improve)
k ← randomly select number of operators
if T is build then

i← select initial seeding method
si0 ← initialise (partial) solution
for n← 1 to k do
optypen ← select build or improve operator
oprepeatn ← select number of repetitions
opparamn ← select parameter
end

end if
else if T is improve then
s0 ← initialise (complete) solution (out-and-back routes)
for n← 1 to k do
optypen ← select improve operator
oprepeatn ← select number of repetitions
opparamn ← select parameter
end

end if
searchtype ← select local search operator
searchparam ← select parameter(s)
r ← 0

while (r < 1) or (sr < sr−1) or (sr is incomplete) then
increment r

sr ← sr−1

for n← 1 to k do
sr ← sr+ execute optypen

end
sr ← sr+ execute searchtype

evaluate sr

repeat
return sr−1

end
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the selection of an operator or the number of times it is executed. The
operators described below, including the search operators, are all deter-
ministic. Consequently, application of a generated heuristic will always
produce the same result on a particular problem instance. This is a differ-
ent approach than that taken with the operators designed for the CVRP
domain described in Section 3.3 on page 36, which use random selection
of elements.

The CVRP domain contains a set of operators which fall into three cat-
egories:

1. Build operators. These operators are applied to an empty or par-
tial solution. An unallocated customer is selected and inserted into
a route and location providing the route remains feasible and the in-
cremental distance travelled by all vehicles as a result of the insertion
is minimised. If insertion cannot be made into an existing route, then
a new route is created. The selection of an unallocated customer uses
one of the following criteria:

(a) Cheapest: the customer who can be inserted at least incremen-
tal cost.

(b) Largest Demand: the customer with the largest demand.

(c) Farthest: the customer farthest from the depot.

(d) Nearest: the customer nearest the depot.

(e) Remotest: the customer farthest away from the depot or any
allocated customer.

In event of ties in the selection process, the customer nearest the de-
pot or with the largest demand (as applicable) is chosen. A build
operator has two parameters:

• How many times execution of the operator is repeated.
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• Whether replacement of an existing customer in a route is per-
mitted when considering insertion of a new customer into that
route. A replaced customer is blocked from being reinserted
in the same route for the remaining repetitions of the current
operator. However the customer may be reinserted by another
operator or by the same operator in a later cycle.

2. Improve operators. These operators perform similar functions to
the mutation and ruin-recreate operators described in Section 3.3.1
on page 37. The following operators are enabled:

(a) Merge Best Saving: This operator iteratively takes two routes
in the order stored within the problem domain (oldest unmod-
ified route first) and concatenates them by linking the last cus-
tomer in the first route to the first customer in the second route.
During the iterative process the same two routes in opposite or-
der are considered, but the direction of a route is never reversed.
If the route is load feasible, and the saving in distance is greater
than any other feasible pairing (best-improving), the merger is
accepted.

(b) Merge Next Nearest: This operator selects two routes in the
same way the Merge Best Saving operates. If the route is load
feasible, and the distance between the two newly linked cus-
tomers is shorter than any other feasible pairing, the merger is
accepted.

(c) Split Routes: The longest route in the current solution is di-
vided into two. In this thesis the division point is arbitrarily set
(to simplify the grammar), but the operator is capable of receiv-
ing a parameter to determine the division point. If all routes
contain fewer customers than specified by the division point,
then this operator has no effect.
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(d) Redo Route: The route which has remained unaltered for the
longest is discarded, and the customers returned to the pool of
unallocated customers.

(e) Remove Lowest Demand: The allocated customer with the small-
est demand is returned to the pool of unallocated customers.

3. Search operators. Three search operators are implemented. We limit
the search operator to one execution per cycle to keep the computa-
tional time within reasonable bounds.

(a) 2 opt: This search, designed by Croes [23] works on each route
in turn and iteratively reverses a segment of the route. The ex-
change is accepted if a shorter route is achieved as a result, oth-
erwise it is discarded. The search terminates best improving
solution.

(b) 3 exchange: This is similar to 2 opt and iteratively reverses one
or both of two adjacent segments of the route. The exchange is
accepted if a shorter route is achieved as a result, otherwise it is
discarded.

(c) Iterated Local Search: This is a deterministic variation of the
Iterated Local Search designed by Lourenço et al. [48]. The op-
eration of this search is described in Section 4.1.3. While this
search proved successful on the CVRP instances we tested, the
data structure and our implementation of the search means it
does not scale well and the computational time becomes exces-
sive on CVRP instances larger than 100 customers in size.

4.1.3 Deterministic Local Search

Table 4.2 describes the operation of the deterministic iterated local search
algorithm we have developed. The operator requires two parameters to
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Table 4.2: Algorithm for Deterministic Iterated Local Search

let N be the set of customers allocated to a route in the current solution

range← parameter sets the range of search

pair each i and j ∈ N where distancei,j ≤ range

sort pair(i, j) by ascending distancei,j

while queue of pair(i, j) is not empty

let Ra and Rb be the routes containing i and j respectively

if Ra 6= Rb then Ra ← concatenate Ra, Rb (depot will appear twice) and Rb removed

swap positions of i and j in Ra

improve Ra using either 2opt [23] or 3 exchange

if depot appears in intermediate position within Ra, divide Ra into two routes

if better feasible routes result, update current solution.

repeat

return solution

determine the range of search and whether to use 2 opt [23] or 3 exchange
in the second stage. An example is given below.

1. In the example shown in Figure 4.1, we consider the pairing of cus-
tomers 4 and 6 as part of an iterated local search using a 3 exchange
operator. The depot is numbered 0. The two routes are initially
(0, 1, 2, 6, 0) and (0, 4, 7, 5, 3, 0).

2. These are concatenated to create a route (0, 1, 2, 6, 0, 4, 7, 5, 3, 0).

3. The positions of customer 4 and 6 are swapped, producing
(0, 1, 2, 4, 0, 6, 7, 5, 3, 0).

4. Adjoining segments are individually reversed to search for a better
solution. The iteration with the segments (0, 1, 2, | 4, 0, | 6, 7, 5, 3, | 0)
produces (0, 1, 2, 0, 4, 3, 5, 7, 6, 0).
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Figure 4.1: Example of the operation of the local search used with GEgram-
marHH. Two routes before and after the iterated local search improve-
ments. Other routes and customers omitted for clarity.

5. The route is split into two routes at the position of the interim depot
producing [0, 1, 2, 0] and [ 0, 4, 3, 5, 7, 6, 0]. Evaluation of these two
routes gives a better solution than the original solution, so the new
solution is retained.

4.2 GE Grammar

We use GE to select the operators and their respective parameters. To
achieve this we define a grammar that maps the linear output of the ge-
netic programming search engine (the genotype) to a syntactically correct
and semantically meaningful sequence of operators.

The only element of a heuristic that is not specified in the grammar
is the number of cycles. Instead, the sequence of operators (up to a pre-
defined maximum number of cycles) are repeated until a cycle ends with:

1. Build Strategy: a solution in which all customers are allocated to a
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Table 4.3: Grammar used to develop heuristics for the GEgrammarHH.

<strategy> ::= build, <seed>, <num>,0 ; <action1> <search>;
<strategy> ::= improve, 0, 0; <action2> <search>;
<action1> ::= <build>; | <build>; <action1> | <build>; <action2>
<action2> ::= <improve>; | <improve>; <action2>
<build> ::= <select>,<num>,<replace>
<improve> ::= <improve1>,<num> | <improve2>
<improve1> ::= mergeBestSavings |mergeNextNearest
<improve2> ::= splitRoutes, 1, <num> | redoRoute, 1
<improve2> ::= removeLowestDemand, 1
<search> ::= 2opt | 3exc | iterated-local-search,<num>, 0, <optType>
<select> ::= cheapest | largestDemand | farthest | nearest | remotest
<seed> ::= blank | seedcheapest | seedfarthest | seednearest
<num> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
<replace> ::= 0 | 1
<optType> ::= 2 | 3

route.

2. Improve Strategy: no improvements have been made to the solution
during the last cycle.

The grammar is structured so a strategy is specified as the first element.
Thereafter selected operators, and any required parameters, are added in
sequence, terminating with a search operator. The Backus Naur form [67]
grammar we use is detailed in Table 4.3.

A typical heuristic from the mapper takes the following form:

build, seedfarthest, 10, 0; mergeBestSavings, 9, 0; cheapest, 5, 1; iterated-local-
search, 8, 0, 3;

The heuristic is passed to the problem domain which interprets and
processes it (illustrated in Section 4.3). If a complete solution is not achieved



4.3. EXAMPLE OF CVRP SOLUTION CONSTRUCTION 57

within the pre-defined maximum number of cycles, the distance is set to
∞. The total distance of the solution (fitness) is passed back to the hyper-
heuristic.

We adopt the requirement that applying a given heuristic to a partic-
ular CVRP instance will always generate the same solution. To this end,
all random number generation occurs within the GE search engine and is
passed as a parameter(s) with each operator. This includes the local search
operator which follows a deterministic sequence when seeking improve-
ments.

4.3 Example of CVRP Solution Construction

Construction of a CVRP solution from an empty solution (build strategy)
is illustrated in Figures 4.2 through 4.6. This method uses a heuristic gen-
erated by a grammar-based hyper-heuristic described in Table 4.3. They
are different operators to those described earlier in Section 3.3.1 on page
37.

1. seedfarthest, 10, 0. The first operator initialises the solution by cre-
ating out-and-back routes to the ten (per the parameter) customers
who are the farthest from the depot. An illustration of the result is
shown in Figure 4.2. This operator is applied only once during the
development of the solution.

2. mergeBestSavings, 9, 0. The ten routes created in the previous step
are connected together by iteratively concatenating two routes, pro-
viding a feasible route is created. A maximum of nine (per the first
parameter) concatenations are made. The pairs are linked in a se-
quence determined by the size of the saving made by the merger.
This and the preceding operator are the two operators exhaustively
used in the Clarke and Wright Savings heuristic [17] (see Section 2.1.3
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Figure 4.2: Development of a solution to E-n22-k4.vrp [1] problem in-
stance. The solution is initialised by the operator seedfarthest, 10, 0 by cre-
ating out-and-back routes to the ten customers farthest from the depot.

on page 15). An illustration of the result from the application of this
operator is shown in Figure 4.3.

3. cheapest,5,1. Five (per the first parameter) unallocated customers
are added to the interim solution. Customers are selected on a min-
imum cost of insertion basis (cheapest). The second parameter indi-
cates that an existing customer can be displaced from a route if the
insertion of the new customer into that route would otherwise make
the route infeasible. Displacement is only allowed if the resulting
route has a lower cost than before. In the event there is a choice of
customers to displace, the one whose removal creates the least cost
route is selected. Once displaced, the customer cannot be returned
to the same route for the remaining iterations of this operator. In the
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Figure 4.3: In a maximum of nine steps, the ten previous routes are merged
to produce three feasible routes.

example illustrated in Figure 4.4 customers 9, 11, 15, 17 and 18 are
inserted and customers 21 and 22 displaced.

4. iterated-local-search, 8, 0, 3. A local search operator (described in
Section 4.1.3) is applied to the interim solution. In this example no
improvements are made to the solution shown in Figure 4.4.

Since there are still eight unallocated customers, the solution is incom-
plete. The heuristic therefore makes another cycle, iteratively applying
operators 2, 3 and 4 in each cycle until a cycle ends with a complete solu-
tion. In this example the application of operators 2 and 3 in the third cycle
add all the remaining customers to the solution (see Figure 4.5). This is the
first complete solution and has a total route distance of 493.

The local search operator is applied and improves the solution to that
shown in Figure 4.6. The heuristic halts as the solution is now complete
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Figure 4.4: The results of the insertion of five new customers (9, 11, 15, 17
and 18) using the cheapest, 5, 1 operator. The second parameter permits
displacement of customers and customers 21 and 22 are returned to the
pool of unallocated customers.

(route distance 375). Feasibility has been maintained throughout the de-
velopment process.

4.4 Experiment Design

We use 30 replications for each of 40 CVRP instances developed by Augerat
et al. and Eilon et al. [1, 4, 28]. These instances (from the A and E pre-
fix instances) range in size from 32 to 101 customers (see Tables 4.5 and
4.6) and some contain a variety of features including remote depots, clus-
tering of customers, asymmetric and/or non-Euclidean distances. These
instances have been used by other researchers due to their “difficult” na-
ture. We perform six sets of experiments using the combinations of GE
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Figure 4.5: All customers are allocated to a route during Cycle 3. This
figure shows the interim solution prior to the final application of the local
search operator.

population and generations shown in Table 4.4. We test different numbers
of GE generations (between 10 and 1,000) and population size (between
40 and 100). Additionally we test different combinations of crossover and
mutation functions (see Section 4.5.1).

Each set of experiments is repeated twice, firstly using an on-line learn-
ing process to dynamically customise the heuristic for the problem in-
stance being solved, and secondly using off-line learning with a different
set (fromB prefix instances of Augerat et al. [1, 4]) of six problem instances
for training, and applying the resulting heuristic to the 40 CVRP instances.
During training the fitness of the heuristic is the aggregate of the distances
for each of the six training instances.

In order to evaluate the quality of the generated heuristics, the solu-
tions generated by the best heuristic from each set of experiments are com-
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Figure 4.6: The final solution to E-n22-k4.vrp [1] problem instance.

pared to the “best” solution [1] for each problem instance.

4.5 Stage 1 Results

The results from our sixth set of experiments with GEgrammarHH are
shown in Tables 4.5 and 4.6 and compared to the “best” results avail-
able from [1]. Since some of the published solutions use different dis-
tance rounding rules, we have recalculated the published solutions to en-
sure consistency with the two decimal place rounding of distances used in
these experiments. The labelling of the test instances [1] can be identified
as being from the set produced by Augerat et al. [4] (prefixed A) or Eilon
et al. [28] (E), with n nodes (n−1 customers plus a depot) and a minimum
of k routes required, i.e. k =

⌈∑
demand

capacity

⌉
.

Since generation of a CWS heuristic [17] from individual operators is
enabled by the grammar, the solution generated by the CWS heuristic
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Table 4.4: Grammatical evolution parameter settings. Crossover and mu-
tation functions: single point crossover (SPX), sub-tree crossover (STX),
integer flip mutation (IFM) and sub-tree mutation (STM). Average num-
ber of operators (NumOps) in a heuristic excludes initialisation and search
operators. Quality =

∑
distancebestHeuristic∑
distancebestPublished

Experiment Set 1 2 3

GE Population 60 100 80

GE Generations 1000 500 100

Crossover rate 0.8 0.9 0.8

Mutation rate 0.2 0.1 0.1

Crossover SPX+IFM SPX+IFM STX+STM

+ Mutation STX+STM

Average NumOps 41.3 29.2 16.0

Quality (on-line) 102.3% 102.4% 101.5%

Quality (off-line) 105.2% 104.1% 103.8%

Most common cheapest cheapest farthest

operators nearest farthest cheapest

Least commom redoRoute redoRoute redoRoute

operators splitRoutes mergeNextNearest mergeNextNearest

Experiment Set 4 5 6

GE Population 40 40 40

GE Generations 250 25 10

Crossover rate 0.75 0.8 0.9

Mutation rate 0.25 0.1 0.1

Crossover SPX+IFM STX+STM STX+STM

+ Mutation STX+STM

SPX+STM

Average NumOps 19.1 11.3 5.4

Quality (on-line) 101.7% 101.0% 100.8%

Quality (off-line) 104.0% 102.4% 101.7%

Most common cheapest nearest cheapest

operators nearest largestDemand farthest

Least commom redoRoute redoRoute redoRoute

operators splitRoutes splitRoutes splitRoutes
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Table 4.5: Results (part 1) from on-line learning and off-line learning ex-
periments compared to published best solution [1] (recalculated to ensure
rounding consistency). Results from applying the CWS heuristic (see Sec-
tion 2.1.3 on page 15) shown for comparison.

CVRP CWS CWS+2opt Off-line On-line Best

A-n32-k5 843.69 830.67 787.08 787.08 787.81
A-n33-k5 712.05 712.05 668.66 662.11 662.76
A-n33-k6 776.26 776.02 742.69 742.69 742.69
A-n34-k5 810.41 810.41 780.94 780.94 780.94
A-n36-k5 828.47 828.47 810.37 802.13 802.13
A-n37-k5 707.81 695.42 672.47 672.47 672.59
A-n37-k6 976.61 976.61 958.66 950.85 952.22
A-n38-k5 768.13 766.22 734.18 733.95 734.18
A-n39-k5 901.99 901.99 828.99 828.99 828.99
A-n39-k6 863.08 863.07 835.25 833.20 833.20
A-n44-k7 976.04 972.94 945.44 938.18 938.18
A-n45-k6 1006.45 1006.45 954.47 949.56 944.88
A-n45-k7 1199.98 1199.10 1149.88 1147.28 1147.28
A-n46-k7 939.74 939.74 918.13 917.72 918.13
A-n48-k7 1112.82 1103.99 1074.34 1074.34 1074.34
A-n53-k7 1099.45 1083.81 1020.15 1012.25 1013.31
A-n54-k7 1201.20 1187.67 1177.88 1171.68 1171.68
A-n55-k9 1099.84 1098.41 1100.81 1074.96 1074.46
A-n60-k9 1421.88 1410.70 1360.59 1355.80 1355.80
A-n61-k9 1102.23 1094.49 1051.25 1048.35 1039.08
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Table 4.6: Results (part 2) from on-line learning and off-line learning ex-
periments compared to published best solution [1] (recalculated to ensure
rounding consistency). Results from applying the CWS heuristic (see Sec-
tion 2.1.3 on page 15) shown for comparison.

CVRP CWS CWS+2opt Off-line On-line Best

A-n62-k8 1352.81 1348.53 1303.68 1302 .42 1294.28
A-n63-k9 1687.96 1684.02 1638.08 1633.94 1622.14
A-n63-k10 1352.48 1343.59 1322.92 1319.05 1313.74
A-n64-k9 1486.92 1481.90 1428.14 1415.61 1400.83
A-n65-k9 1239.42 1239.03 1192.70 1184.66 1181.69
A-n69-k9 1210.78 1205.98 1176.37 1165.99 1165.99
A-n80-k10 1860.94 1858.98 1792.40 1769.91 1766.50
E-n13-k4 290.00 290.00 290.00 290.00 290.00
E-n22-k4 388.77 388.77 375.28 375.28 375.28
E-n23-k3 621.09 582.93 568.56 568.56 568.56
E-n30-k4 534.45 517.41 505.01 505.01 505.01
E-n31-k7 1263.00 1263.00 1213.00 1205.00 1205.00
E-n33-k4 843.10 842.80 837.67 837.67 838.72
E-n51-k5 584.64 584.64 524.81 524.61 524.61
E-n76-k7 738.13 733.96 693.73 687.60 687.60
E-n76-k8 794.74 785.63 744.25 740.66 740.66
E-n76-k10 907.39 902.09 841.42 836.53 837.36
E-n76-k15 1054.60 1054.32 1051.63 1035.81 1035.81
E-n101-k8 889.00 883.97 832.06 828.84 828.84
E-101-k14 1139.07 1137.91 1108.58 1095.15 1095.15
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should, if discovered by the search engine, represent an upper bound on
generated solutions.

Tables 4.5 and 4.6 show that it is possible to apply a GE-based hyper-
heuristic to select operators to generate a heuristic for a CVRP instance
that delivers a high quality solution. The hyper-heuristic can work with
both construction and improvement strategies. The results show that it
is possible to develop a heuristic using off-line learning that can generally
deliver better quality solutions than the CWS heuristic for the range of
problem instances used in these experiments. However, the CWS heuristic
followed by 2-opt will produce a reasonable result that cannot be consis-
tently matched or beaten by any single heuristic discovered using on-line
learning. The strength of the on-line learning lies in developing a cus-
tomised heuristic that produces a better quality solution (compared to off-
line learning) to a specific problem instance. Applying the best outcome
from a small number of general heuristics developed using off-line learn-
ing improves the overall quality of solutions, but still falls short of what
can be achieved by generating a customised heuristic for a specific CVRP
instance.

Table 4.4 indicates that some of the operators, such as the splitRoutes
and redoRoute, can be simplified or omitted. This table also shows that re-
ducing the number of GE generations leads to the resulting heuristic con-
tains significantly fewer operators. When using 1,000 GP generations, the
resulting heuristic can contain a sequence of up to 200 operators, whereas
limiting the run to 10 generations means a heuristic rarely contains more
than a dozen operators. The heuristics with only a few operators prove
to be just as effective as those with numerous operators indicating that
increasing the number of operators in a sequence does not necessarily im-
prove performance.
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4.5.1 Crossover and Mutation Operators in GE

As part of the experimentation with GEgrammarHH we also examine
a number of parameter settings used by GE during the generation of a
heuristic. In Section 2.2.2 on page 20 we identify several different ways to
perform crossover and mutation in GE. When using the sub-tree crossover
and mutation operators recommended by Manrique et al. [21, 52], we ob-
serve an early and rapid decline in the diversity of the population (see
Figure 4.7). A lack of diversity in the population makes it harder for the
search engine to deliver better solutions to those already found.

In our fourth set of experiments (with 250 generations) we compare
three different combinations of crossover and mutation operators to ob-
serve any change in the performance of the hyper-heuristic and quality of
the solutions. As illustrated in Figure 4.7 the performance of these oper-
ators is quite different although all eventually arrived at similar solutions
despite the diversity (or lack thereof) in the population. The difference be-
tween the operators lies in the speed of execution and the average fitness
of the current population.

Figure 4.7 illustrates the difference in the performance of the crossover
and mutation operators by measuring the average fitness of the individu-
als in the population in the first 100 generations (of 250) of a typical exam-
ple (CVRP instance A-n37-k6.vrp [1]). The upper line records the average
fitness from using single point crossover and intFlip mutation operators.
This results in a wider variance in the fitness of the individuals in the pop-
ulation compared to sub-tree crossover and sub-tree mutation operators
(lowest line). The population created by the latter combination rapidly
converges towards the best fitness found so far and thereafter shows little
diversity. The hybrid single point crossover and sub-tree mutation com-
bination retains diversity in the population for longer, but then converges
on the best fitness found so far.
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Figure 4.7: Comparison between Sub-Tree and Single Point crossover and
Sub-Tree and IntFlip mutation operators. Showing average population fit-
ness per generation on the A-n37-k6.vrp [1] problem instance. Population
size = 80.

4.5.2 Identifying Neighbouring Solutions

If, as discussed in Section 2.2.2 on page 20, high locality is a desirable fea-
ture, then we need to be able to define what makes two solutions in GE
(i.e., heuristics) neighbours. With hyper-heuristics the elements used are
operators to be processed rather than the raw data of the problem instance
to be solved. If we were solving a CVRP instance directly we could iden-
tify neighbouring solutions by the similarity of routes or commonality of
arcs between customers.

With a hyper-heuristic, the sequence of operators and parameters can-
not be easily identified as neighbours. A minor change to the sequence of
operators, or a parameter, will likely result in a radically different solution
when the heuristic is applied to a problem instance. It is therefore inap-
propriate to refer to a sequence of operators as neighbours simply because
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they appear similar. This raises the question of whether the feedback from
the fitness evaluation of each member of the population needs to be more
complex than a single numeric score and, if so, how should the search
engine interpret such feedback.

4.6 Stage 1 Conclusions

Although we have not investigated further, improvements to the compu-
tational time may be possible when solving larger instances by interpret-
ing the number of repetitions of each operator relative to the problem in-
stance size rather than as an absolute number. This should reduce the
number of times the computationally slower search operator is called.

Elements of the hyper-heuristic search process show scope for consid-
erable improvement. The decision to use GE has provided challenges, in-
cluding many of those discussed in Section 2.2.2 on page 20. While we
have achieved good results using GE it is difficult to avoid the impres-
sion that the search process is not as efficient as it could be. This inef-
ficiency may lie in the nature of the feedback provided from the fitness
evaluation function. A CVRP contains two interdependent sub-problems:
vehicle loading and travel distance. The single score based on distance
alone does not adequately assist the search engine. Further, as identified
by Rothlauf and Oetzel [77], the low degree of locality between genotype
and phenotype may hinder an efficient search process. Applying the pro-
posed hyper-heuristic using GE on the CVRP reveals there are a number of
barriers to achieving high locality, which we discussed in Section 4.5.2. For
this reason, our second grammar based hyper-heuristic (see Section 5.2 on
page 74) uses a generic Grammar Guided Genetic Programming (GGGP)
approach [89].
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Summary

In this chapter we have demonstrated that it is possible to generate both
a general and an instance-specific heuristic for CVRP instances using a
hyper-heuristic and GE. However, GE is possibly not a good choice of
method as a hyper-heuristic and therefore in the following chapters we
will apply a more fundamentally sound GGGP method. In the second
stage of this thesis we compare the performance of two different hyper-
heuristics when applied to multiple problem domains. We modify the
hyper-heuristic developed for the experiments described in this chapter
to conform to the HyFlex [70] framework and use a more generic gram-
mar.



Chapter 5

Performance Comparison of
Different Hyper-heuristics

In this chapter we investigate the second stage of this thesis in which
we compare the performance of two different types of hyper-heuristic
on seven different problem domains. The two hyper-heuristics are cho-
sen as representative examples of hyper-heuristics at the opposite ends
of the selection-generation spectrum [14]. Both hyper-heuristics are com-
patible with the HyFlex [70] framework (see Section 3.2 on page 33). As
discussed in Section 2.3 on page 25, hyper-heuristics can be classified into
those which select an operator or heuristic from a set of candidate opera-
tors, and those which generate a new heuristic from the operators (compo-
nents) of other heuristics. A hyper-heuristic can be used to dynamically
manage the low-level problem domain as the problem instance is being
solved (on-line learning), or to develop a heuristic using a separate set of
training instances (off-line learning), and apply the resulting heuristic to
the problem instance to be solved.

In this stage we create two simplified versions of existing hyper-heuristics.
These are described in Sections 5.1 and 5.2. The first is an adaptive hyper-
heuristic which selects operators dynamically using on-line learning. The
second generates a heuristic using off-line learning, and the heuristic is

71
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then applied to the problem instance to be solved. The second hyper-
heuristic requires a training phase to generate the heuristic, and we inves-
tigate whether the additional time used for training results in a reduced
computational time when the heuristic is applied to a problem instance to
be solved.

5.1 Adaptive Hyper-heuristic (AdaptiveHH)

An adaptive hyper-heuristic (AdaptiveHH) is similar to a meta-heuristic,
and manipulates the unseen low-level operators to find a solution to a
single problem instance. AdaptiveHH is only suitable for on-line learning
since the process is dynamically customised for a given problem instance.

The original multi-phase adaptive approach by Misir et al. [64], and
the modifications made for this thesis, are as follows:

1. Operator Selection Probability Vector. Selection of operators is
based on a probability vector. In the first phase, all operators have
an equal chance of being randomly selected at each iteration. After
a defined number of iterations, or time limit, AdaptiveHH starts a
new phase and the probability vector is recalculated and normalised
based on each operator’s success rate, ri, in the previous phase:

ri =
number of improving solutionsi

operator callsi

The modified vector improves the chances of operators with a higher
success rate being selected during the new phase. Misir et al. [64]
use more complex formulae to recalculate the vector, incorporating
operator execution time and time remaining. We introduce time
weighted performance measures in the third stage of this thesis (see
Chapter 6). The selection probability of an operator which consis-
tently fails to improve the solution is gradually reduced to a speci-
fied minimum (which may be zero).
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2. Operator Selection and Execution. To facilitate the crossover oper-
ator type (see Section 3.2 on page 33), which uses two parent solu-
tions, a small population of solutions is maintained at any one time.
Initially the population consists of, say, 6 solutions generated using
the unseen construction method defined for the relevant problem do-
main. An operator is selected and applied to a solution in the current
population of solutions. Misir et al. [64] use the best solution found
so far as the primary parent solution whereas we randomly select a
parent solution from the population at each iteration.

3. Reinitialisation. If no improved solutions are achieved for a speci-
fied number of iterations (i1) then the parameters α, β (see Section 3.2
on page 33) are increased in steps of 0.025. If no improved solutions
are achieved for a larger specified number of iterations (i2, where
i2 � i1), then the population of solutions (other than the best found
so far) is reinitialised using the construction method defined for the
relevant problem domain. The reinitialisation process also resets the
parameters α and β to the defined minimum values.

4. “Relay” Hybridisation. Misir et al. [64] include a step which selects
and executes operators in pairs. We omit this step in the interests of
simplicity.

5. Adaptive Move Acceptance. In the event no improving solutions
are found for a defined number of iterations, Misir et al. [64] incor-
porate a step which enables selection of a solution other than the best
found so far as the primary parent solution for the next iteration. We
omit this step as it is unnecessary when randomly selecting the pri-
mary parent solution.

The hyper-heuristic is repeated until a pre-determined time limit or
early termination condition (i.e. attainment of a target value) is reached.
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5.2 HyFlex Compatible Grammar Based Hyper-

heuristic

The second hyper-heuristic we describe in this chapter is based on the
grammar guided GP [89] approach taken by Sabar et al. [80] which uses
GP [44] in the manner described by Burke et al. [10]. The grammar guided
genetic programming (GGGP) [89, 57] hyper-heuristic (GrammarHH) is a
generation approach using on-line learning during training and no learn-
ing when applied to a new problem instance, i.e., it is a generation ap-
proach with off-line learning. GrammarHH evolves a single heuristic,
with parameter values, suitable for solving comparable problem instances.
We use a separate set of six different sized problem instances for training.

GrammarHH develops a reusable heuristic which can be applied to
any problem instance in the same domain. The GP population consists
of low-level heuristics evolved from component operators in one of the
sequences in the “language” defined by the domain independent gram-
mar (see Table 5.1). Each heuristic consists of one or more operators from
the mutation and/or ruin-recreate operator types (see Section 3.2 on page
33) which are applied in sequence. This is followed by a search operator
which may be preceded or succeeded by a crossover operator. This design
is similar to the general structure of the heuristics developed in stage one
of this thesis.

GrammarHH is implemented in Java using the HyFlex HyperHeuris-
tic [70] template which defines the data structures and methods the hyper-
heuristic requires to interface with a HyFlex compatible problem domain.
GGGP is implemented as strongly-typed GP within the ECJ [49, 50] Java
software package. When evaluating a member of the GGGP population,
the evaluation code we have added to the ECJ application creates a Gram-
marHH object containing the heuristic created from the grammar. Gram-
marHH implements the heuristic on the unseen problem domain and re-
turns the solution value (fitness) to the ECJ application.
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Table 5.1: Grammar used with GrammarHH on the CVRP domain. The
HyFlex parameters, α and β, are set by the < global > production rule.

LHS Options
< heuristic > < global >< alter >< localsearch >

< global > < range >< range >

< alter > < mutate > | < mutate >< alter >

< localsearch > < search > | < search >< crossover > |
< crossover >< search >

< range > 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 |
0.55 | 0.6 | 0.65 | 0.7 | 0.75 | 0.8

< mutate > m0 | m1 | m2 | m3 | r0 | r1
< crossover > x0 | x1
< search > s0 | s1 | s2 | s3

Each type of operator in the grammar is identified by a letter prefix fol-
lowed by a identification number. For convenience, and to avoid use of
modular arithmetic, the < mutate >, < crossover > and < search > rules
in the grammar are customised for each problem domain to match the
number of operators of each operator type. A domain independent gram-
mar can be generated by omitting this customisation and using modular
arithmetic to map the selected rule to the operator.

Tournament selection is used at each new GP generation to choose the
heuristics on which GP crossover and mutation operators are to be applied
to create the next generation. Sabar et al. [80] used Grammatical Evolu-
tion [78] to manage the GP process, whereas we use a generic Grammar
Guided Genetic Programming (GGGP) [89, 57] approach.

During the training phase we apply the evolved heuristic to the same
six problem instances used for training during the experiments in stage
one (see Section 4.4 on page 60). The fitness value is the aggregate of the
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individual solution distances. The evolved heuristic is repeatedly applied
to each test problem instance until a time limit or early termination condi-
tion is reached.

In these experiments with GrammarHH, only improving or equally
good solutions are accepted, whereas Sabar et al. [80] include a choice
of eight different acceptance criteria. We repeat training 30 times and
store every generated heuristic that delivers a fitness on the six training
instances within a specified target threshold (within 1.5% of the aggregate
of the best found solutions to each instance).

5.3 Experiment Design

The experiments with GrammarHH were conducted in parallel with Adap-
tiveHH to measure the comparative performance of the two hyper-heuristics.
There is no literature which compares a generation hyper-heuristic and a
selection hyper-heuristic on the same problem domain. Our aim is to learn
about their relative strengths and weaknesses.

We measure the speed of each hyper-heuristic in finding (if possible) a
solution equal to, or better than, one of two targets set at 0.5% and 1.5%
above the best solution found during the stage one experiments (see Chap-
ter 4) on each of 58 CVRP instances [1]. These instances are the 40 CVRP
instances used in stage one from the A and E prefix instances (see Section
4.4 on page 60) together with 18 B prefix instances of Augerat et al. [1, 4]
(in addition to the 6 instances used for training in both stages one and
two). The instances range in size between 32 and 262 customers. Due to
the small number of instances in the six in-built HyFlex domains, we do
not extend the speed-to-target test to those domains.

Both hyper-heuristics will endeavour to select the best performing op-
erators from an unseen set of operators applicable to the problem do-
main. The problem domains we use contain between 8 and 15 operators.
We analyse the frequency with which each operator is selected by Adap-
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Table 5.2: Parameters used for experiments.

Parameter AdaptiveHH GrammarHH
Time limit 2 mins. 2 mins.
Parameter value range 0.2 ≤ α, β ≤ 0.8 0.2 ≤ α, β ≤ 0.8

Parameter adjustment threshold 500 calls n/a
Parameter increment on threshold 0.025 n/a
No progress reinitialisation 10,000 calls 10,000 calls
Hyflex Solution Population 6 6
GP Heuristic Population n/a 25
GP Generations n/a 8
GP Crossover probability n/a 0.8
GP Mutation probability n/a 0.2

tiveHH in the seven problem domains using fixed two minute runs. In the
case of the CVRP domain, we also compare the frequency with the num-
ber of times the operator is selected as part of a “good” heuristic generated
by GrammarHH.

After some preliminary experimentation we use the parameter settings
shown in Table 5.2. Based on the results from the stage one experiments,
the GP population size and number of generations are set at the values
shown.

5.4 Results and Discussion

We evaluate performance of the operator selection process and the attain-
ment of the solution target values. Our experiments described in Chapter
4 established a best found solution (bfs) for each CVRP instance (minimi-
sation objective) and target values established, being bfs + 0.5% and bfs +
1.5%.
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5.4.1 Operator selection and performance

We compare the number of times a particular operator is called, its relative
success rate, and failed run rate (i.e. zero improving solutions in a run)
when using AdaptiveHH and GrammarHH. We conduct this experiment
using a maximum computation time of 2 minutes per run to achieve two
target solution values. If, during the run, improving solutions cease to
be achieved for 10,000 consecutive operator executions, the population of
solutions (other than the best solution found so far) is reinitialised. The
run continues with a fresh set of solutions, generated using the unseen
construction method defined for the problem domain.

We observe each operator’s average execution time but, unlike Misir et
al. [64], we do not use the execution time to adjust the operation selection
vector. In the CVRP domain the local search operators have an execution
time approximately 36 times longer, and the ruin-recreate and crossover op-
erators approximately 12 times longer, than the mutation operators on the
problem instances used in these experiments.

Table 5.3 records the results from AdaptiveHH across 1,920 runs (30
repetitions × 64 CVRP instances (58 + 6 GrammarHH training instances))
with the CVRP problem domain using a maximum computation time of
2 minutes per run. We record a success against an operator each time the
operator delivers an improved solution when executed (which may not be
on the best solution to date). A failed run is recorded against an operator
if the operator fails to deliver a single improved solution during the entire
run.

The GrammarHH selection results in Table 5.3 are based on the num-
ber of times an operator is contained in the 47 different heuristics that
achieved a fitness within a defined threshold (aggregate of best found in-
stance solutions +1.5%) during training.

A total of 724.7 million operator executions were made during the 1,920
runs with AdaptiveHH when allowing a maximum computation time of
2 minutes per run. A run was terminated early if the current solution for
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Table 5.3: CVRP Domain: Operator call (selection) and execution record.
Operators described in Section 3.3.1. Runs: 1,920 (30 runs × 64 instances).
Total operator calls (AdaptiveHH): 724.7 million. A failed run is recorded
if an individual operator fails to deliver a single improved solution during
an entire run.

Operator Calls per Failed AdaptiveHH GrammarHH
(see 3.3.1) Improvement Run Call Rate Selection

M1 10,669 54.9% 3.0% 5.8%
M2 18,117 83.9% 0.9% 1.9%
M3 14,332 42.4% 3.6% 6.7%
M4 18,028 85.6% 0.7% 4.8%
R1 6,727 0.5% 16.1% 15.4%
R2 5,926 0.7% 17.6% 10.6%
S1 4,280 2.5% 16.4% 13.5%
S2 9,688 38.1% 4.4% 8.6%
S3 6,360 20.2% 9.5% 8.6%
S4 6,610 13.6% 8.3% 4.8%
X1 6,572 7.9% 14.0% 13.5%
X2 20,586 0.6% 5.4% 5.8%

the CVRP instance was within a target value of 0.5% above the best solu-
tion found during the experiments in the first stage of this thesis. Overall
computation time for the 1,920 runs was 30.5 hours.

Comparable operator call results for the six in-built Hyflex problem
domains (see Section 3.2 on page 33), grouped by operator type, are shown
in Table 5.4. The in-built domains each contain 10 or 12 problem instances.
Each problem instance is solved 30 times using different random number
generator seeds. The data is therefore based on 300 or 360 runs for each
domain.
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Table 5.4: Low-level operator type performance across 300 or 360 runs us-
ing AdaptiveHH on in-built HyFlex [70] domains. A failed run is recorded
if an individual operator fails to deliver a single improved solution during
an entire run. Note that the in-built crossover operator in the Bin Packing
domain fails to capture usage data.

Domain Operator Number Call Calls per Failed
Type Ops. Rate improvement Run

CVRP+TW mutation 3 22.5% 299 29.3%

ruin-rec. 2 20.2% 503 1.7%

search 3 39.3% 69 6.2%

crossover 2 18.0% 229 0.0%

TSP mutation 5 7.7% 34,482 99.6%

ruin-rec. 1 1.0% ∞ 100%

search 3 87.1% 5,881 46.0%

crossover 4 4.2% 75,578 99.9%

MaxSAT mutation 5 62.4% 88 6.3%

ruin-rec. 1 3.2% 1,508 81.9%

search 2 28.3% 84 0.0%

crossover 2 6.1% 2,565 89.2%

Bin Packing mutation 3 n/a 146 39.7%

ruin-rec. 2 n/a 113 11.0%

search 2 n/a 56 1.5%

crossover 1 n/a n/a 35.3%

Flow Shop mutation 5 8.4% 62,472 99.8%

ruin-rec. 2 16.9% 770 81.0%

search 4 68.0% 1,265 5.9%

crossover 4 6.7% 20,305 99.7%

Psnl Sched mutation 1 8.9% ∞ 100%

ruin-rec. 3 25.9% 9 76.6%

search 5 36.8% 2 34.5%

crossover 3 28.4% ∞ 100%
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5.4.2 Speed to Target Solution

We assess the speed at which each hyper-heuristic reaches (if possible)
two target solution values for each of 58 CVRP instances ranging in size
between 32 and 262 customers. A maximum time of 2 minutes is allowed
to achieve the target value, after which the run is classified as out of time.
Each instance is run 30 times, and the time to reach (if possible) a solution
equal to, or better than, the two target values recorded. The two target
values are based on the best solution to each CVRP instance found during
the stage one experiments. GrammarHH uses the best performing heuris-
tic obtained from the training phase. The results are shown in Table 5.5.

5.4.3 Discussion

Because AdaptiveHH adjusts the probability of an operator being selected
based on its performance, selections become biased towards operators
which have a higher success rate. Table 5.3 illustrates that both hyper-
heuristics select operators in roughly the same proportion. However, Adap-
tiveHH uses the full range of operators during each run, whereas Gram-
marHH uses only one generated heuristic (of 47) containing a small sub-
set of operators. The low success rate of mutation operators is offset by
the relative speed of execution. However, some mutation operators have
a very high failed run rate meaning additional calls of this type of op-
erator may not achieve improving solutions regardless of the number of
calls made. By comparison, the two ruin-recreate type operators in the
CVRP domain have a relatively high success rate and a very low failed
run rate, suggesting additional calls of either of these two operators might
achieve improved solutions faster. The call rate shown in Table 5.3 illus-
trates that AdaptiveHH has progressively biased the selection towards the
ruin-recreate operators and the first of the local search operators.

Table 5.4 illustrates that operators of a particular type do not perform
consistently across domains and in some cases individual operators may
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Table 5.5: Time to achieve (if possible) target solution on 58 CVRP in-
stances run 30 times. Maximum 2 minute time limit. Target based on
best found solution (bfs) to each instance during preliminary test runs.

Time Adaptive Grammar Adaptive Grammar
(seconds) bfs + 0.5% bfs + 0.5% bfs + 1.5% bfs + 1.5%

0→ 1 491 266 726 453

1→ 5 150 192 228 311

5→ 10 93 98 104 138

10→ 20 91 94 101 122

20→ 30 43 47 60 50

30→ 60 71 77 92 91

60→ 120 99 87 88 102

out of time 702 879 341 473

≤ 5 secs.(all) 37% 26% 55% 44%

.. small inst. 79% 62% 94% 79%

.. mid size inst. 48% 35% 68% 62%

.. large inst. 6% 4% 26% 20%

out of time (all) 40% 51% 20% 27%

.. small inst. 11% 23% 1% 8%

.. mid size inst. 34% 47% 15% 20%

.. large inst. 71% 77% 40% 50%

have a very high failed run rate (100% in some cases). This leaves some do-
mains with only a few productive operators, e.g., the Flow Shop domain.
The challenge for the hyper-heuristic is to quickly identify and focus on
applying those operators which perform well. The call rate results in Ta-
ble 5.4 indicate that AdaptiveHH has, in general, successfully identified
the best performing operators and biased selection accordingly.

Generally, AdaptiveHH outperforms GrammarHH in both speed and
number of times the target value is attained. This relative performance
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between the two hyper-heuristics is consistent across all sizes of problem
instances. Repeat experiments using the next three best heuristics devel-
oped during GrammarHH training achieve similar outcomes. Allowing
more computational time enables some out-of-time runs to achieve the
target value.

Overall, knowledge gained during the training phase of GrammarHH
(i.e. which domain-specific operators are productive) does not improve
the computation speed compared to AdaptiveHH when working on a
problem instance to be solved. The computational time expended during
the training phase is therefore not recovered. There is evidence that the
flexibility of AdaptiveHH outperforms the more rigid structure of Gram-
marHH when applied to new problem instances. This is possibly due to
the variable performance of the mutation operators, which periodically
fail for the entire run. In such cases, AdaptiveHH applies alternative op-
erators, whereas GrammarHH is unable to adjust its approach. However
the difference in performance may also be due to numerous factors rang-
ing from the structure and content of the GrammarHH grammar to the
arbitrary setting of the parameters both hyper-heuristics require. The fit-
ness function used during training may also have biased the heuristic’s
fitness evaluation towards larger problem instances.

Deciding whether to terminate a run early, or allow execution to con-
tinue until the time limit is reached, is a trade-off between speed and qual-
ity. In this stage we use attainment of a target value to trigger early termi-
nation. However it may not always be possible to specify a realistic tar-
get when dealing with previously unseen problem instances. As shown
in Table 5.5, some runs find a “good” solution in under 1 second. With
AdaptiveHH at least one (in some cases, all) of the thirty runs with each
instance attained the target solution within one second with 50 of the 58
CVRP instances.
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5.5 Stage 2 Conclusions

These experiments indicate that both hyper-heuristics can successfully ma-
nipulate unseen low-level operators in different problem domains to de-
liver solutions of a reasonable quality. Table 5.4 shows that operators can
vary substantially in effectiveness and efficiency, requiring the operator
selection process to respond to domain specific factors. The stage two ex-
periments show the flexibility of AdaptiveHH outperforms the more rigid
structure of GrammarHH in both computational speed and solution qual-
ity.

With hindsight, there appears to be a good case for including the op-
erator execution time in the operator selection vector adjustment process
when using AdaptiveHH. Also, increasing the number and range of choice
of Operator Selection Vectors and Solution Acceptance Criteria may also
provide opportunities for better performance.

Summary

In this chapter we have compared the performance of two hyper-heuristics
of contrasting design. As discussed, extending AdaptiveHH to provide a
wider choice of Operator Selection Vectors and Solution Acceptance Crite-
ria may improve the ability of the hyper-heuristic to respond to scalability
issues. We investigate this in the third stage of this thesis, which is de-
scribed in Chapter 6.



Chapter 6

Managing Scalability with an
Adaptive Hyper-heuristic

As discussed in Chapter 5, we show that an adaptive hyper-heuristic can
be a successful approach when applying an evolutionary computation
method to solving combinatorial optimisation problems. By using a pair-
ing of an operator (heuristic) selection vector and solution acceptance cri-
teria, an adaptive hyper-heuristic can manage development of a “good”
solution within an unseen low-level problem domain in a commercially re-
alistic computational time. However not all selection vectors and solution
acceptance criteria pairings deliver competitive results when faced with
differing problem instance features and computational time limits. In this
stage of this thesis we use pairings of six different operator selection vec-
tors and eight solution acceptance criteria, and monitor the performance
of the adaptive hyper-heuristic when applying each pairing to a set of 50
CVRP instances we have created. The problem instances are all the same
80-node size (79 customers + 1 depot), but with different features. Our re-
sults show that a few pairings of operator selection vector and acceptance
criterion perform consistently well, while others require a longer compu-
tational time to deliver competitive results. We also investigate some of
the features of a problem instance that may influence the performance of

85



86CHAPTER 6. MANAGING SCALABILITY WITH AN ADAPTIVE HYPER-HEURISTIC

the selection vector and acceptance criterion pairings.
The adaptive hyper-heuristic, AdaptiveHH2, described in this chap-

ter is an enhanced version of the adaptive hyper-heuristic described in
Chapter 5. With AdaptiveHH2 we provide multiple choices for Operator
Selection Vector and Solution Acceptance Criteria. Conceptually, Adap-
tiveHH2 iteratively selects and applies an unseen operator from the prob-
lem domain. The resulting solution is then retained or discarded based on
the acceptance criteria specified by AdaptiveHH2. AdaptiveHH2 requires
a number of parameters which set the computation time, the number of
intermediate decision points (phases), and the choice of operator selection
vector and acceptance criterion to use (see Figure 6.1). The two main com-
ponents of AdaptiveHH2 are:

1. The Operator Selection Vector. This vector is used to select the next
operator to apply. The vector is updated at the start of each phase
based on the performance of the operator in the preceding phase(s).
It determines the probability of each operator being selected and ap-
plied to the current solution.

2. The Solution Acceptance Criteria. Once an operator modifies a so-
lution to create a new solution, the hyper-heuristic needs to decide
whether to accept (retain) or discard the new solution.

6.1 Operator Selection Vector Design

AdaptiveHH2 operates for a specified time limit which is broken down
into a specified number of phases of equal duration. The operator selec-
tion vector is updated at the end of each phase. The choice of selection
vector and acceptance criterion is fixed at the beginning of the run and is
not altered during the run. The selection vector consists of an array of op-
erators, each with a probability of selection. In the initial selection vector
(regardless of type) all operators have an equal probability of selection.
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Figure 6.1: Overview of how an adaptive hyper-heuristic interacts with a
low-level problem domain across the domain barrier.

We follow the example of Misir et al. [64] and allow some of the selec-
tion vectors described below to exclude operators for one or more phases
(i.e. the selection probability is zero). The number of phases an unsuc-
cessful operator is excluded is based on a performance penalty. The first
time an operator is excluded, the performance penalty is set to one. This
means the operator is readmitted to the selection vector at the end of the
next phase (i.e. one phase exclusion) with a probability of 0.01 prior to nor-
malisation. If the operator is immediately excluded again during the vec-
tor update process at the end of the readmission phase, the performance
penalty, and hence the number of exclusion phases, is increased by one.
Should the operator be readmitted and survive the vector update process
into the succeeding phase, then the performance penalty is reset to one.

The AdaptiveHH used during the second stage of this thesis (see Chap-
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ter 5) used only the Basic Selector [BS]. In this stage of this thesis we exam-
ine the relative performance of the 48 different pairings of operator selec-
tion vector and solution acceptance criteria described below and in Section
6.2. The operator selection vectors are of our own design, but use compo-
nents of the single selection vector used by Misir et al. [64].

1. [FS] Fixed Selector: The initial vector is not altered during the run,
so provides a benchmark against which other selection vectors can
be measured. All operators have an equal probability of selection
regardless of performance.

2. [BS] Basic Selector: Updates probabilities by evaluating the success
rate of each operator, ri, since the start of the run:

ri =
number of improvementsi

number of callsi

This vector does not exclude operators and sets a minimum proba-
bility of selection as 0.01 prior to normalisation.

3. [P1] Phase Selector (1): Updates probabilities by evaluating the suc-
cess rate of the each operator, ri, in the most recent phase:

ri =
number of improvementsi

number of callsi

During the update process a threshold is set equal to 1
3

of the success
rate of the best performing operator, rbest, in that phase. If ri ≥ rbest

3

it is included in the selection vector for the next phase with a proba-
bility of ri, minimum 0.01, prior to normalisation. Operators where
ri <

rbest
3

are excluded from the vector for the number of phases de-
termined by their performance penalty.

4. [P2] Phase Selector (2): Updates probabilities by evaluating the suc-
cess rate of the each operator, ri, in the most recent phase:

ri =
number of improvementsi

number of callsi
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This vector does not exclude operators and sets a minimum proba-
bility of selection at 0.01 prior to normalisation. It differs from [BS]
in that this selection vector only considers performance during the
most recent phase.

5. [T1] Time Weighted Phase Selector (1): The time weighted selec-
tor uses a time weight, wi, to penalise slower operators. This is cal-
culated using the average operator execution time, averageOpT ime,
during the preceding phase:

wi =

√
averageOpT imei

averageOpT imefastest

The time weighted success rate of each operator, ri, in the most recent
phase is evaluated:

ri =
number of improvementsi
wi × number of callsi

During the update process a threshold is set equal to 1
3

of rbest. If
ri ≥ rbest

3
it is included in the selection vector for the next phase with

a probability of ri, minimum 0.01, prior to normalisation. Opera-
tors where ri < rbest

3
are excluded from the vector for the number of

phases determined by their performance penalty.

6. [T2] Time Weighted Phase Selector (2): Calculation of the time weight,
wi, and success rates, ri, are identical to that described for [T1]. For
this selector all ri are ranked highest to lowest, including those ex-
cluded from the selection vector (ri = 0). A threshold, T , is set equal
to the ri of the operator ranked NumberOfOperators

2
(T may be zero). If

ri ≥ T , it is included in the selection vector for the next phase with a
probability weighting of 1

rank , prior to normalisation.
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6.2 Acceptance Criteria Design

Each application of an operator takes a current solution and modifies it to
create a new solution. The new solution is then considered for acceptance
into the small population of solutions. If the new solution is not accepted
then it is discarded. If the new solution is at least as good as the solution it
will replace, then it is automatically accepted into the population of solu-
tions regardless of the acceptance criteria specified by the hyper-heuristic.
The following eight acceptance criteria are those proposed by Sabar et al.
[80] with minor modifications. As far as possible we have retained the
labels and arbitrary values proposed by Sabar et al. [80] and only made
changes which are necessary to satisfy HyFlex framework [70] constraints.
In all cases, the new solution is compared to the solution it will replace (if
accepted) in the population of solutions.

1. [IO] Improving or Equal Only: Only improving (better objective
value) or equally good solutions are accepted. All other solutions
are discarded.

2. [AM] Accept Move: All new solutions are accepted.

3. [SA] Simulated Annealing: Non-improving solutions are accepted
with a probability e−δ/t, where δ is the change in the objective value
between the old and new solutions. The “temperature”, t, is 0.5 ×
Sbest × 0.85phase−1, where Sbest is the current best solution objective
value [83]. The probability of a non-improving solution being ac-
cepted decreases as (a) the change in objective value increases and
(b) as time progresses.

4. [MC] Exponential Monte Carlo: Non-improving solutions are ac-
cepted with a probability e−δ, where δ is the change in the objective
value between the old and new solutions. The probability of a non-
improving solution being accepted decreases as the change in objec-
tive value, δ, increases.
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5. [RR] Record to Record Travel: Non-improving solutions are accepted
if the new solution has an objective value less than or equal to 1.03×
Sbest, where Sbest is the current best solution objective value [27].

6. [GD] Great Deluge: Non-improving solutions are accepted if the
new solution has an objective value less than or equal to

(1 + 0.85phase−1)× Sbest

where Sbest is the current best solution objective value [27]. The prob-
ability of a non-improving solution being accepted decreases as time
progresses.

7. [NA] Naı̈ve Acceptance: Non-improving solutions are accepted with
0.5 probability.

8. [AA] Adaptive Acceptance: Non-improving solutions are accepted
with a probability 1− 1

C
, where C > 0 is a counter which increments

every 10,000 consecutive operator calls without an improvement in
the objective value of the best solution found so far. The counter
is reset to 1 each time an improved best solution objective value is
found. The probability of a non-improving solution being accepted
increases when the search for better solutions reaches a plateau and
new best found solutions become harder to find.

6.3 Experimental Design

We test the effectiveness of AdaptiveHH2 by rating each solution gener-
ated against the best solution objective value achieved within the compu-
tational time limit. We use different pairings of operator selection vector
and acceptance criterion. There are 48 possible pairings of operator selec-
tion vector (6) and solution acceptance criteria (8). Parameters also set the
rules about how AdaptiveHH2 responds if progress towards improving
the current solution is stalled.
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These experiments use the CVRP domain described in Section 3.3 on
page 36, which is compatible with the HyFlex [70] framework. We create
50 random 80-node (79 customers + 1 depot) problem instances requiring
a minimum of between 3 and 19 routes. Each problem instance is ran-
domly created using an 80×80 grid. Each instance contains three nodes at
fixed locations (see Figure 6.2), one of which is the depot, and the other 77
nodes at randomly generated locations. Vehicle capacity is fixed at 1,000
units and each customer’s demand is a randomly generated integer with
an upper bound ranging from 5% to 45% (randomly set for each instance)
of the vehicle capacity, with a minimum demand of 1 unit.

The size of the population of solutions is set at six. The hyper-heuristic
is only provided with the number of operators of each operator type and
has no knowledge of the actual function each operator performs.

We seek to determine:

1. Whether there are particular pairings of operator selection vector
and acceptance criterion which consistently perform well or poorly
compared to other pairings in arriving at a “good” solution within
a short computational time. We examine how each pair affects the
frequency with which each operator type is selected.

2. Whether the location of the depot in relation to the customers in-
fluences the consistency and quality of the solutions. To this end
we take a problem instance (see Figure 6.2) and relocate the depot
by swapping the grid coordinates of the depot with one of two cus-
tomers highlighted. The problem instance is otherwise unchanged.
The alternative depot locations are chosen so that the depot is geo-
graphically: (a) central, (b) off-centre, and (c) remote.

3. Although we use CVRP instances of the same size, the differing cus-
tomer demand values mean solutions require a minimum number of
routes ranging from 3 to 19. We examine the influence the number
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Figure 6.2: Randomly generated 80-node problem instance on an 80 × 80

grid, showing the 3 alternative depot locations (highlighted).

of routes has on the performance of the operator selection vector and
acceptance criterion pairings.

We compare the quality of the results from 30 replications on a set of
50 randomly generated 80 node CVRP instances. We rate individual so-
lutions against the best solution found during the batch of runs (typically
1,440 runs, being 30 replications of 48 pairings) using the following for-
mula (lower ratings are better).

ratingi =
(
100× (solutioni − solutionbest)

solutionbest

)2

This provides an indication of the relative performance of each pair com-
pared to its peers.

We conduct 25-phase (see Section 5.1 on page 72) experiments using
three different depot locations on 50 CVRP instances. We measure perfor-
mance of each pair using computational time limits of 1, 5, 15, 30, 60, 120
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and 300 seconds. AdaptiveHH2 includes a reinitialisation mechanism we
have designed if no improving solutions are found for 10,000 consecutive
operator calls (see Section 6.3.1). It also contains an early termination con-
dition (see Section 6.3.1) should there still be no improvements to the best
found solution for two consecutive phases. The purpose of this mecha-
nism is to allow processing to be halted when the hyper-heuristic detects
there is a very low likelihood of making further improvements to the best
found solution so far.

6.3.1 Stalling

The best found solution may reach a state where no further improvements
have been made for a considerable number of operator applications. We
refer to this phenomenon as stalling. Assuming sufficient computational
time is allowed, the rate at which the best found solution is improved
will gradually diminish and eventually stall. This may, of course, be due
to the best found solution being an optimal solution. Unfortunately, the
hyper-heuristic has no means of knowing when an optimal solution has
been reached. However, the lack of further improvements may also be due
to solution development becoming stuck at a particular solution which is
beyond the ability of the operators to break free from. This is commonly
referred to as “local optima”, but note that the local optima is only defined
with respect to the operators available. The hyper-heuristic has no means
of knowing the cause of the stalling, and must therefore apply a single set
of actions in response.

For the hyper-heuristics conforming to the HyFlex [70] framework spec-
ifications we have followed the example of Misir et al. [64] and develop a
multi-stage approach, repeating each stage multiple times before moving
onto the next stage. The stages we have developed are:

1. Global parameter adjustment: The hyper-heuristic can instruct the
problem domain to adjust the global α and β parameters (see Section
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3.2 on page 33). This will adjust the performance of the operators that
use either or both those parameters although the appropriate size of
the required change is difficult to predict. This adjustment may be
sufficient to enable an operator to create a new solution which di-
rectly or indirectly enables progress towards improving the current
best found solution. In this thesis we set the threshold to trigger an
adjustment in the global parameters every 500 consecutive operator
calls without any improving solution.

2. Reinitialise solutions: If no further improvements to the best found
solution occur from adjusting the global parameters, the next option
is to reinitialise the population of solutions, other than the best found
solution so far. This is a more drastic change which discards all but
one of the current solutions. It can, however, provide the large scale
change that may be able to overcome the cause of the stalling. Less
drastic options include adding rather than replacing solutions in the
population of solutions. In this thesis we set the threshold to trig-
ger a reinitialisation at 10,000 consecutive operator calls without any
improving solution.

3. Change operator selection vector and/or solution acceptance cri-
terion: If both the preceding stages fail (or as an alternative to reini-
tialisation), then the operator selection vector and/or solution accep-
tance criterion can be replaced during an interim phase update. We
omit this feature in AdaptiveHH2, but it is a recommended option
in future research.

4. Early termination: If all these adjustment attempts fail, then the
hyper-heuristic should consider terminating the computation and re-
turn the current best found solution.

Since the hyper-heuristic has no detailed knowledge of the problem
domain, nor of the problem instance size and features, there is no
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means of determining the best computational time to allow. Conse-
quently a manually specified computational time limit may be exces-
sive or insufficient to arrive at a “good” solution. When faced with a
previously unseen problem instance, it may be very difficult to man-
ually estimate the appropriate computational time to allow. Conse-
quently there is a tendency to err on the side of caution, and specify
a generous computational time limit. However, in a commercial en-
vironment, a “good” solution may be required as soon as possible
and unnecessary computational effort may be costly. We therefore
include in the design of AdaptiveHH2 a mechanism that terminates
the computation regardless of the computational time still available.

Setting the appropriate threshold to trigger early termination is dif-
ficult. This thesis focuses on appropriate criteria for the operators
contained within the CVRP domain we have created. Further work
is required to adjust these parameters and modify the criteria for a
generic problem domain. In this thesis we enable early termination
if either a target objective value (which may be set to zero) is reached
or if no improvements to the objective value of the best found solu-
tion are found for N consecutive operator calls, P phases, or T time.

6.4 Results and Discussion

Tables 6.1 to 6.4 and Figure 6.3 show the results for all pairings from the
batches using a 60 second computational time limit for each depot loca-
tion. Table 6.5 shows results from the five best and five worst performing
pairings identified in Tables 6.1 and 6.2. Widely differing customer de-
mand values mean the 50 CVRP instances require a minimum of between
3 and 19 routes to service all customers. Tables 6.3 and 6.4 compare the
performance of pairings on problem instances where the minimum num-
ber of routes is small (3–5 routes), medium (6–13 routes) and large (14–19
routes). Table 6.5 shows the change in performance over different compu-
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Figure 6.3: Comparison of acceptance criteria and selection vector per-
formance during 60 seconds runs shown in Table 6.1. Lower ratings are
better.

tational time limits. In Table 6.5 the performance is measured against the
best solution found in any batch for each CVRP instance and depot loca-
tion. Early terminations only affect the data when allowing a 300 seconds
computational time limit. A negligible number (<0.1%) of early termina-
tions occurred with a 120 second time limit, and none with the shorter
time limits.

Tables 6.1 and 6.2 illustrate the difference in performance when the de-
pot is at different locations. While all pairings provide better results when
the depot is located centrally compared to off-centre, the better perform-
ing pairings generally show improving performance when the depot is
moved even further away from the centre. In contrast, the poorer per-
forming pairings generally show neutral to worsening results the farther
the depot is located from the geographic centre. This highlights that the
size of the problem instance is not the only factor influencing the perfor-
mance of the hyper-heuristic.
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Table 6.1: Part 1: Average rating of each selection vector and acceptance
criteria pair over 3 depot locations × 30 replications × 60 seconds runs on
50 randomly generated CVRP instances (80 nodes, 3 depot locations (see
Figure 6.2)). Lower ratings are better. Best five performing pairings in
bold; five worst in italics. Also see Table 6.2.

Accept. Select. Central Off-cen. Remote Avge. Std.
Criteria Vector Depot Depot Depot Rating Dev.

IO FS 10.33 12.35 13.02 11.90 13.62
IO BS 10.09 12.50 13.04 11.88 13.53
IO P1 9.96 12.29 12.99 11.75 13.50
IO P2 10.09 12.29 12.96 11.78 13.38
IO T1 9.60 11.21 11.99 10.93 12.50
IO T2 9.74 11.63 12.50 11.29 12.85

AM FS 9.01 11.89 10.61 10.51 12.42
AM BS 8.09 11.09 10.02 9.73 11.37
AM P1 8.19 11.74 10.79 10.24 12.27
AM P2 7.51 11.57 10.72 9.93 11.97
AM T1 6.25 10.17 8.86 8.43 10.84
AM T2 7.35 10.78 9.48 9.20 10.95
SA FS 6.81 9.25 9.13 8.40 10.31
SA BS 5.93 8.56 8.94 7.81 10.36
SA P1 7.19 10.34 10.36 9.30 11.52
SA P2 6.74 9.65 10.02 8.80 10.74
SA T1 5.59 8.06 7.83 7.16 9.60
SA T2 6.10 8.80 8.77 7.89 10.35
MC FS 9.75 10.96 12.38 11.03 12.54
MC BS 11.02 13.03 14.70 12.92 14.28
MC P1 11.92 14.34 15.87 14.04 15.28
MC P2 13.49 16.35 17.36 15.73 17.04
MC T1 11.77 15.01 15.37 14.05 15.60
MC T2 9.99 11.05 12.49 11.18 12.96
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Table 6.2: Part 2: Average rating of each selection vector and acceptance
criteria pair over 3 depot locations × 30 replications × 60 seconds runs on
50 randomly generated CVRP instances (80 nodes, 3 depot locations (see
Figure 6.2)). Lower ratings are better. Best five performing pairings in
bold; five worst in italics. Also see Table 6.1.

Accept. Select. Central Off-cen. Remote Avge. Std.
Criteria Vector Depot Depot Depot Rating Dev.

RR FS 6.77 9.46 9.76 8.66 10.88
RR BS 6.50 9.25 9.63 8.46 10.76
RR P1 7.73 11.30 11.91 10.31 12.27
RR P2 9.21 13.85 14.29 12.45 14.21
RR T1 9.29 13.05 13.16 11.83 13.55
RR T2 6.55 9.30 10.17 8.68 11.01
GD FS 7.66 9.33 9.81 8.93 11.14
GD BS 6.47 7.98 9.22 7.89 10.29
GD P1 8.15 10.35 11.00 9.83 11.92
GD P2 7.57 9.82 10.69 9.36 11.31
GD T1 6.15 8.74 8.42 7.77 10.32
GD T2 6.72 8.49 8.88 8.03 10.33
NA FS 6.71 9.66 8.99 8.45 10.61
NA BS 5.96 8.68 8.11 7.59 10.01
NA P1 6.38 9.63 9.04 8.35 10.51
NA P2 6.33 9.35 8.86 8.18 10.20
NA T1 4.58 7.60 6.95 6.37 8.88
NA T2 5.88 8.64 8.22 7.58 9.84
AA FS 8.58 10.60 9.92 9.70 11.58
AA BS 8.08 9.48 9.51 9.03 10.85
AA P1 8.28 10.31 9.96 9.52 11.55
AA P2 8.12 10.74 10.49 9.78 11.91
AA T1 7.04 9.93 9.26 8.75 11.29
AA T2 7.62 9.55 9.39 8.85 11.04
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Table 6.3: Comparison (part 1) of average rating of each selection vector
and acceptance criteria pair on CVRP instances requiring a small (15 in-
stances), medium (18 instances) and large (17 instances) minimum num-
ber of routes. Lower ratings are better. Best five performing pairings in
bold; five worst in italics. Also see Table 6.4.

Acceptance Selection 3-5 6-13 14-19 Average Std.Dev.
Criteria Vector routes routes routes Rating

IO FS 8.58 12.58 13.64 11.90 13.62
IO BS 8.20 12.52 13.93 11.88 13.53
IO P1 8.30 12.56 13.43 11.75 13.50
IO P2 8.04 12.39 13.92 11.78 13.38
IO T1 7.57 11.60 12.73 10.93 12.50
IO T2 8.18 11.79 13.07 11.29 12.85

AM FS 6.13 12.42 11.60 10.51 12.42
AM BS 5.65 11.45 10.84 9.73 11.37
AM P1 5.88 12.00 11.49 10.24 12.27
AM P2 6.37 12.12 10.07 9.93 11.97
AM T1 6.23 10.56 7.59 8.43 10.84
AM T2 5.40 10.79 10.25 9.20 10.95
SA FS 5.91 9.00 9.60 8.40 10.31
SA BS 5.67 8.59 8.54 7.81 10.36
SA P1 6.44 10.02 10.63 9.30 11.52
SA P2 6.16 9.38 10.15 8.80 10.74
SA T1 6.30 8.25 6.53 7.16 9.60
SA T2 5.49 8.67 8.81 7.89 10.35
MC FS 7.65 11.84 12.66 11.03 12.54
MC BS 8.24 14.16 15.03 12.92 14.28
MC P1 9.56 15.27 16.03 14.04 15.28
MC P2 11.55 16.90 17.56 15.73 17.04
MC T1 11.84 15.99 13.45 14.05 15.60
MC T2 7.78 11.97 12.84 11.18 12.96
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Table 6.4: Comparison (part 2) of average rating of each selection vector
and acceptance criteria pair on CVRP instances requiring a small (15 in-
stances), medium (18 instances) and large (17 instances) minimum num-
ber of routes. Lower ratings are better. Best five performing pairings in
bold; five worst in italics. Also see Table 6.3.

Acceptance Selection 3-5 6-13 14-19 Average Std.Dev.
Criteria Vector routes routes routes Rating

RR FS 6.57 9.09 9.76 8.66 10.88
RR BS 5.76 8.84 10.09 8.46 10.76
RR P1 6.94 10.65 12.50 10.31 12.27
RR P2 7.94 12.97 15.29 12.45 14.21
RR T1 9.51 12.80 12.47 11.83 13.55
RR T2 6.05 8.87 10.46 8.68 11.01
GD FS 5.78 10.03 10.05 8.93 11.14
GD BS 5.18 8.83 8.86 7.89 10.29
GD P1 5.83 10.96 11.57 9.83 11.92
GD P2 6.40 10.20 10.63 9.36 11.31
GD T1 6.41 9.01 7.35 7.77 10.32
GD T2 5.40 8.77 9.18 8.03 10.33
NA FS 5.76 9.82 8.89 8.45 10.61
NA BS 5.30 8.71 8.01 7.59 10.01
NA P1 5.93 9.55 8.78 8.35 10.51
NA P2 6.57 8.91 8.56 8.18 10.20
NA T1 5.84 7.43 5.54 6.37 8.88
NA T2 5.30 8.77 7.93 7.58 9.84
AA FS 6.32 11.08 10.66 9.70 11.58
AA BS 5.94 9.94 10.31 9.03 10.85
AA P1 6.56 10.53 10.60 9.52 11.55
AA P2 6.72 10.99 10.71 9.78 11.91
AA T1 6.60 10.14 8.75 8.75 11.29
AA T2 6.14 9.74 9.88 8.85 11.04
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As shown in Tables 6.1 and 6.2, some pairings, such as [SA][T1] and
[NA][T1], consistently perform better than other pairings. The pairings
using the [MC] and [IO] acceptance criteria generally perform poorly and
require a longer computational time to achieve results competitive with
the better performing pairings

A possible cause of this difference is the diversity in the population of
solutions. Pairings using the [IO] acceptance criterion, and to a lesser ex-
tent [MC], work with a smaller diversity of interim solutions compared to
other forms of acceptance criteria. This means that time and effort are not
lost on improving low quality solutions that may never become the best
solution in the current population of interim solutions. This is a useful
trait if the computational time limit is very short, since effort is directed
towards improving a better quality solution. On the other hand, accept-
ing only improving or equally good solutions can cause the population
of solutions to stagnate and eventually become clones of the best found
solution. Once this stage is reached the crossover operators become inef-
fective and there is a tendency for the process to stall. The hyper-heuristic
has a mechanism to reinitialise the population of solutions in the event
of stalling, but this is only effective if the selection vector and acceptance
criterion pairing can avoid regenerating the same set of solutions.

Tables 6.1 and 6.2 also confirm that there is an inter-dependency be-
tween the operator selection vector and the acceptance criterion and it is
insufficient to separately evaluate each, even though they carry out dif-
ferent functions. An increase in the number of routes (see Tables 6.3 and
6.4 ) as well as the relative location of the depot are influencing factors as
well. However, Tables 6.1 to 6.4 also show that the relative performance
of operator selection vector and acceptance criterion pairings compared to
other pairings is not greatly altered by the number of routes or depot loca-
tion. A better performing pairing will consistently deliver higher quality
solutions than poorer performing pairings regardless of the depot location
or the minimum number of routes.
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Table 6.5: Average rating of five best and five worst performing pairings
from Tables 6.1 and 6.2 on 50 CVRP instances × 3 depot locations × 30
replications, when allowing a different computational time limit (in sec-
onds). All ratings are measured against the best solution to each instance
(and depot location) found during any of the seven batches.

Accept. Select. 1sec. 5sec. 15s 30s 60s 120s 300s
NA T1 45.27 18.85 12.39 9.25 6.88 5.37 4.07
SA T1 48.08 20.47 14.14 10.52 7.72 5.88 4.28
NA T2 888.03 22.97 13.96 10.81 8.19 6.34 4.67
NA BS 57.72 19.90 13.79 10.89 8.19 6.16 4.49
GD T1 47.08 22.33 14.97 11.27 10.55 6.40 4.63
RR P2 46.62 25.11 18.92 15.88 13.29 10.72 8.16
MC BS 60.19 23.67 18.64 16.06 13.73 11.77 9.69
MC P1 52.42 29.00 21.62 18.00 14.85 12.35 9.93
MC T1 54.62 28.95 21.95 18.82 14.88 12.03 9.83
MC P2 51.74 30.51 23.19 20.01 16.62 13.53 10.96

Table 6.5 shows the performance of each pair improves with a longer
computational time limit, but not all improve at the same rate. The [NA][T2]
pair performs poorly with the 1 second computational time limit but well
with longer time limits, indicating a minimum time limit (or number of
operator calls) per phase is necessary for some pairings before the opera-
tor selection vector update process can be effective. In these experiments
the improvement in the performance of the better performing pairings ap-
pears to be reaching a plateau with a 300 second time limit. However,
the poorer performing pairings show a non-trivial improvement in per-
formance between 120 and 300 seconds time limits, suggesting a longer
computational time may produce further improvements.

Table 6.6 illustrates how different pairings of operator selection vector
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Table 6.6: Average number of operator calls, success rate (ri, as defined in
Section 6.1) and mix of operator type selection between the six selection
vectors (SV) and the Naı̈ve Acceptance [NA], Exponential Monte Carlo
[MC] and Improving or Equal Only [IO] acceptance criteria (AC) during
experiments using a 60 seconds computational time limit. Best performing
pairings (from Tables 6.1 and 6.2) in bold, worst in italics.

AC SV Number Success Mutation Ruin- Local Crossover
calls Rate Recreate Search

NA FS 236,900 11.82% 33.34% 16.66% 33.33% 16.67%

NA BS 168,900 8.12% 12.65% 15.44% 47.01% 24.89%
NA P1 138,300 5.53% 5.86% 10.41% 54.29% 29.44%

NA P2 231,000 4.71% 4.40% 3.57% 29.40% 62.63%

NA T1 749,400 5.78% 2.34% 2.88% 3.53% 91.24%
NA T2 187,500 6.82% 17.08% 14.81% 45.22% 22.89%

MC FS 220,800 1.43% 33.36% 16.64% 33.34% 16.66%

MC BS 253,600 2.38% 7.11% 5.71% 30.27% 56.91%
MC P1 246,100 2.54% 3.41% 2.61% 30.81% 63.17%
MC P2 269,600 2.70% 3.30% 1.64% 23.59% 71.47%
MC T1 821,400 2.73% 1.68% 0.84% 1.68% 95.80%
MC T2 323,800 1.79% 51.81% 11.63% 22.07% 14.49%

IO FS 229,900 0.16% 33.32% 16.66% 33.35% 16.67%

IO BS 196,100 0.14% 18.31% 18.28% 39.00% 24.41%

IO P1 201,000 0.15% 25.29% 18.55% 35.22% 20.94%

IO P2 191,800 0.16% 22.32% 18.20% 33.23% 26.25%

IO T1 512,100 0.18% 34.95% 8.69% 8.55% 47.81%

IO T2 373,200 0.16% 56.22% 12.51% 18.85% 12.41%
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and acceptance criterion affect the frequency with which particular oper-
ator types are called. The number of calls illustrates how the more ag-
gressive of the two time weighted selection vectors, [T1], biases operator
selection towards the faster mutation and crossover operators and away
from the slower local search operators. The second time weighted selec-
tion vector, [T2], maintains are more balanced selection approach. The
Fixed Selector [FS] reflects the 4:2:4:2 balance between the four operator
types in the CVRP domain.

The time-weighted selectors favour the faster mutation operators at
the expense of the slower search operators. This is a trade-off between
speed and quality. Table 6.6 shows that a large number of operator calls
is not critical to the quality of the solution. This table also illustrates the
lower number of calls made to crossover type operators when the [IO]
acceptance criteria is used, reflecting the reduced effectiveness of these
operators in this situation. In contrast the time weighted selector [T1] al-
most exclusively uses the crossover operator with both the Naı̈ve Accep-
tance [NA] and Exponential Monte Carlo [MC] acceptance criteria. With
[NA], the resulting solutions are among the best, while with [MC] they
are among the worst. This can be explained by the difference in the di-
versity of the population of solutions, as reflected in the relative operator
call success rates. However other factors such as parameter values and the
number of early terminations (42% during 300 seconds time limit) due to
best found solutions no longer improving, may also influence the differ-
ence in overall solution quality.

6.5 Stage 3 Conclusions

These experiments show that the performance of an adaptive hyper-heuristic
is influenced by the choice of operator selection vector and solution accep-
tance criterion pairing. However, the relative performance of each pairing
is not greatly changed by different features of the problem instance. As
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noted by Sabar et al. [80], maintaining a small population of solutions
provides a greater diversity of solutions. This in turn reduces the likeli-
hood of stalling, and so minimises the adverse effects of drastic changes
such as reinitialisation. We have used a number of manually set parame-
ter settings, particularly in relation to the mechanisms we have designed
to handle stalling and early termination of the computation. While the
chosen parameters appear to work satisfactorily, there is scope for further
research into this aspect of the AdaptiveHH2 design.

When comparing the results in Tables 6.1 to 6.5 we deduce the follow-
ing about the operator selection vector and acceptance criteria pairings.

1. Generally perform well:

(a) Time Weighted Phase Selectors [T1] and [T2] with the Naı̈ve Ac-
ceptance [NA] criterion. The time weighted operator selection
vectors bias selection of operators towards the faster operators.
Slower operators are either excluded (with [T1]) or the prob-
ability of selection greatly reduced (with [T2]). Consequently
relatively few operators are employed during a single phase.
In contrast, the [NA] acceptance criterion accepts more non-
improving solutions than most other acceptance criteria. This
combination of concentrated application of a few fast operators
on a moderately diverse set of solutions seems to work well.

(b) Time Weighted Phase Selector (1) [T1] with Simulated Anneal-
ing [SA] acceptance criterion. This combination allows more
non-improving solutions to be admitted to the population in the
early stages of computation, but progressively moves towards
accepting only improving or equally as good solutions.

2. Generally perform poorly:

(a) Any operator selection vector with the Exponential Monte Carlo
acceptance criterion [MC]. Further research is required to fully
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understand why pairings using the [MC] acceptance criterion
consistently perform poorly. Preliminary investigations indi-
cate the lack of diversity in the population of solutions hinders
the ability of the preferred operators to work effectively.

(b) Any operator selection vector with the Improving or Equal Only
acceptance criterion [IO]. The lack of diversity in the population
of solutions is the most likely cause of the poorer performance
of pairings using the [IO] acceptance criterion. Since the [IO]
acceptance criterion was used in stage one of this thesis (see
Chapter 5), the performance of both of the hyper-heuristics may
improve further, in absolute terms, if a different acceptance cri-
terion is used.

Further research is recommended in the following areas:

1. Enabling the hyper-heuristic to change the choice of operator selec-
tion vector and/or solution acceptance criterion at an interim phase
update.

2. Investigating performance using problem instances of different sizes
and in different domains.

3. Determining a good number of phases, and whether each phase should
be limited by time or by number of operators calls (or a combination
of both).

4. The design and parameters for the mechanisms to handle stalling
and early terminations.

Summary

In this chapter we have investigated different pairings of operator selec-
tion vector and solution acceptance criteria and established that some pair-
ings perform better than others. We also show that the number of operator
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calls does not influence the solution quality, indicating quality over quan-
tity generally leads to better outcomes. In the next chapter we summarise
the research done in this thesis and suggest areas for further research.



Chapter 7

Conclusions

The goal of this thesis, outlined in Section 1.2 on page 4, is to extend cur-
rent hyper-heuristic research towards answering the question: How can a
hyper-heuristic efficiently and effectively adapt the selection, generation
and manipulation of domain specific heuristics as you move from small
size and/or narrow domain problems to larger size and/or wider domain
problems, i.e., managing scalability?

The subject is too large to adequately cover in a single Masters thesis,
so, as detailed in Section 1.3 on page 5, we have investigated three aspects
of hyper-heuristic scalability:

1. In the first stage of this thesis we investigate whether a single heuris-
tic can handle scalability issues, or if different heuristics are required
for different sized problems. We conclude that it is possible for a
hyper-heuristic to evolve a heuristic for a specific problem domain
that can deliver “good” solutions to problem instances of different
sizes and containing different features. While the data structures
and design of the CVRP domain used in the first stage of this the-
sis limit the effectiveness of the local search heuristic on larger size
problem instances, we conclude that this is not as a result of the
hyper-heuristic design. The deterministic local search we developed
is effective, but its implementation in the CVRP domain is inefficient
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and the computational time becomes excessive on large sized prob-
lem instances.

2. In the second stage of this thesis we establish whether some types
of hyper-heuristic respond to scalability issues better or worse than
other types of hyper-heuristic. We conclude that hyper-heuristics
do not handle scalability issues equally well. The flexibility of the
adaptive hyper-heuristic enables better performance than the more
rigid structure of the grammar based hyper-heuristic, even though
the grammar we use generates a heuristic similar in structure to the
successful heuristics created in stage one.

We also note that the grammar-based hyper-heuristic using off-line
learning provides a compact and easily understood heuristic, which
is useful if a reusable heuristic is required. The adaptive hyper-
heuristic dynamically customises the development of a solution for
a given problem instance, so is closer in approach to the grammar-
based hyper-heuristic using on-line learning. We also conclude that
both hyper-heuristics used during the second stage of this thesis can
be readily applied to different problem domains.

3. In the third stage of this thesis we investigate how the adaptive hyper-
heuristic developed in the second stage responds to problem instances
of the same size, but containing different features and complexity.
We also apply different computational budgets to monitor the ef-
fect of the computational time limit on scalability issues. During this
stage we identify which of 48 possible pairings of the key compo-
nents used by the adaptive hyper-heuristic perform well, and which
perform poorly. We enhance the adaptive hyper-heuristic to enable
a wider choice of operator selection vector (SV) and solution accep-
tance criteria (AC). Analysis of quality of solutions obtained when
using different pairings of SV and AC (Tables 6.1 and 6.2 on pages 98
and 99) show some pairings perform better than others. However,
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as shown with the [NA][T2] AC:SV pairing in Table 6.5 on page 103,
an AC:SV pairing which generally performs well can produce very
poor results if the computational time limit, or one of the parameters,
is not set at a good value.

7.1 Contributions

This thesis contributes to the general understanding of scalability issues
when using hyper-heuristics. Each stage of this thesis contributes as fol-
lows:

1. Stage 1 differs from previous research (see Section 2.3 on page 25)
in that we only use deterministic low-level operators to manipulate
solutions to CVRP instances. We show that competitive results can
be achieved in this way.

2. Stage 2 contributes by building and comparing two hyper-heuristics
of contrasting design, and learning some of their respective strengths
and weaknesses across seven different problem domains. A compar-
ative performance analysis of this nature has not been previously
researched. We show that the adaptive hyper-heuristic we devel-
oped can consistently deliver better results than the grammar-based
hyper-heuristic.

3. Stage 3 shows that scalability issues can arise from different features
of the problem instance and the computational budget, and that in-
stance size is not the only cause of scalability issues. This thesis con-
tributes by learning how 48 different pairings of operator selection
vector and solution acceptance criteria perform with different com-
putational budgets.
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7.2 Recommendations for Further Research

As stated at the beginning of this chapter, the subject of scalability is very
large and completion of this thesis opens further questions for future re-
search. Some recommendations for future research arise as a result of the
work done for this thesis:

1. Deterministic Local Search Operator: If the implementation of the
local search operator can be modified to streamline (a) identification
of nearest neighbours and (b) evaluation of swaps, then this search
operator may be very effective. Implementation of this search as an
option within the CVRP domain operators described in Section 3.3.1
on page 37 would enable better evaluation of the value of this search
operator.

2. Validation of Operator Selection Vector and Solution Acceptance
Criteria Pairings: Further experiments using different problem in-
stance sizes and different problem domains would establish whether
the better performing pairings identified in the stage three experi-
ments continue to perform well, or whether other pairings can before
better in certain circumstances.

3. Computational Time Limit: In this thesis we manually specified the
maximum computational time limit. If the hyper-heuristic is to be
truly independent of the low-level problem domain and instance,
then the hyper-heuristic needs to be able to determine an appropri-
ate computational time and not rely on a manually set parameter.
This is an area which would require considerable further research
to be effective. We have provided an early termination mechanism
in AdaptiveHH2, but further work is required on this to make the
mechanism suitable for generic problem domains. The early termi-
nation parameters we have set are relevant to the CVRP domain we
have used, but may be too large or too small for other domains.
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4. Changing Selection Vector and Acceptance Criteria: As suggested
in Section 6.3.1 on page 94, and illustrated in Table 6.5 on page 103,
an adaptive hyper-heuristic may be able to avoid some performance
issues if it were allowed to change the operator selection vector and
solution acceptance criteria pair during a phase update process. Do-
ing this may be a more effective way of overcoming solution devel-
opment stalling than simply reinitialising the solutions.

5. Grammar-guided Parameter Setting: While we have shown that a
hyper-heuristic can handle scalability issues, there remain a large
number of manually and arbitrarily set parameters. Future research
could establish which of these parameters are critical to the quality
of the outcome. Can these parameters be set using an automated
method? Although we have identified an adaptive hyper-heuristic
performs better than one developed using grammar based genetic
programming (GGGP), there is scope for a GGGP approach to be
taken to set the various parameters for the adaptive hyper-heuristic.
Setting and adjusting the HyFlex [70] global parameters, α and β, is
particularly problematic, and there is scope for a GGGP approach to
be taken towards defining rules to initialise and update these global
parameters.

6. Time-weighted Operator Selection Vectors: Further research into
the performance of the time-weighted operator selection vectors (see
Section 6.1 on page 86) on problem instances of different sizes would
enable appropriate adjustments to be made to the arbitrary thresh-
olds set with these vector types. Again, this may be a situation where
a GGGP approach may help adjust or design new operator selection
vectors.

7. Recreating and Improving Established (Meta-)heuristics: Can a grammar-
based hyper-heuristic evolve or describe an established meta-heuristic
from component parts? For example, can a hyper-heuristic recreate
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Tabu Search [34], Iterated Local Search [48] or Simulated Annealing
[83]?

8. Identifying Scalability Issues: Since the hyper-heuristic has no knowl-
edge of the problem instance size or features, how can the hyper-
heuristic identify and adapt to instances with different features?

9. Domain Memory: A hyper-heuristic may be required to repeatedly
develop heuristics to solve almost identical problem instances. How
can the hyper-heuristic use prior knowledge to help deliver a “good”
heuristic in the shortest time possible? How can the trade-off be-
tween the value of knowledge and the cost of storing and retrieving
information be managed?

10. Transfer Learning: Can a heuristic developed for one problem do-
main be successfully applied to problem instances in another do-
main, e.g., VRP→ VRP with pick-up and delivery [73]?
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WOODWARD, J. Exploring hyper-heuristic methodologies with ge-
netic programming. In Computational Intelligence: Collaboration, Fusion
and Emergence, C. Mumford and L. Jain, Eds. Springer, 2009, pp. 177–
201.

[14] BURKE, E., HYDE, M., KENDALL, G., OCHOA, G., ÖZCAN, E.,
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