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Abstract A gas bubble rising steadily in a pure liquid otherwise at rest at a mod-
erate Weber number is, to a good approximation, of oblate spheroidal
shape. Previous analytical calculations of that shape at high Reynolds
numbers have ignored viscosity. This paper shows that if one includes
viscosity by incorporating Rayleigh’s dissipation integral in Lagrange’s
equations, then the speed of rise is that given by Moore, and the shape
is that found for inviscid flow by El Sawi using the virial integral and
by Benjamin using Hamiltonian theory.
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1. INTRODUCTION

When a gas bubble rises steadily, at high Reynolds number Re and
moderate Weber number W, in a fluid otherwise at rest, the flow has
long been known to be irrotational to a good approximation, except in
weak viscous boundary layers around the surface and down the wake
(Moore, 1965). In this context “weak” means that the boundary layer
is required only to bring the shear stress at the bubble surface to zero
from its nonzero value of order nU/a in the irrotational flow, where 7 is
the dynamic viscosity of the liquid, U is the speed of rise, and a is the
radius of the sphere with the same volume as the bubble. The Reynolds
number Re and the Weber number W are defined by

Re =2Ua/v, W = 2pU%a/o, (1.1)
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where v is the kinematic viscosity 7n/p, p is the density and o is the
surface tension. Because the boundary layer need not bring U to zero,
the velocity in it is reduced by an amount of order URe '/? instead
of the O(U) in a conventional strong layer, except for a small region
of linear size O(aRe'/%) where the velocity reduction is O(U Re~1/%)
(Moore, 1965). If Re is not sufficiently large and if W is sufficiently
large, that reduction is not small and a recirculating eddy may appear in
the rear stagnation region (Ryskin and Leal, 1984; Christov and Volkov,
1985; Dandy and Leal, 1986; Blanco and Magnaudet, 1995), but this
paper ignores that possibility.

Lagrange’s equations have occasionally been used in publications on
bubbles in viscous irrotational flow (Voinov and Golovin, 1970; Ceschia
and Nabergoj, 1978; Kok, 1993). Voinov and Golovin ignored distortion
from spherical shape, and Ceschia and Nabergoj ignored gravity. A
complication in both of those papers was allowing for change in volume of
the bubble. That must be done if one wishes to study a pulsating bubble,
but it may be neglected if, as here, one merely wishes to consider a bubble
rising steadily under gravity in a liquid. Kok (1993) used Lagrange’s
equations for a pair of bubbles of constant size, but he assumed that
his bubbles were spherical. In unpublished work, Wilson and Blake
(personal communication, J. R. Blake) have studied a cloud of nearly
spherical bubbles, by using multipole expansions and solving Lagrange’s
equations numerically.

There have been many more publications using Rayleigh’s dissipation
function with irrotational flow involving bubbles, a method pioneered by
Levich (1949) and used to good effect by Moore (1963) for a spherical
bubble with corrections due to boundary layers, by Moore (1965) with
additional corrections due to distortion from spherical shape, and by
Sangani and Didwania (1993) for a swarm of spherical bubbles, but
none of these authors used Lagrange’s equations. The purpose of this
paper is to show that those equations can both simplify the work and
extend the applicability of the results.

2. THEORY

If a Newtonian viscous fluid of constant density and viscosity, whose
velocity tends to zero at infinity, contains a bubble of constant volume
and is acted on by conservative and viscous forces, and the flow is ir-
rotational, and is uniquely determined by n generalised coordinates g;
and their time derivatives ¢;, ¢ = 1...n, and the total kinetic energy
is T(qi, qi), the total potential energy is V(g;), and the total rate of
viscous dissipation of energy is D(qg;,q;), then (Rayleigh, 1873; Voinov



and Golovin, 1970; Ceschia and Nabergoj, 1978) Lagrange’s equations
reduce to
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In our case we assume that the bubble is spheroidal (Moore, 1965;
El Sawi, 1970; El Sawi, 1974; Benjamin, 1987), that ¢; is the height of
the bubble’s centre above a fixed level, so that the speed of rise U = ¢,
and that go = ¥, the ratio of horizontal to vertical semi-axis of the
bubble. Thus

2
T= gTragUQK, (1.3)
4 3
V= —3TPIaq + oA, (1.4)
D = 12mnU%G + O(q3), (1.5)

and if ¢ = (x2 — 1)~/2, so that cot™' ¢ =sec !,
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(Lamb, 1932; Moore, 1965; Harper, 1970; Harper, 1971). Strictly, T
should also contain a term in ¢»2, but the contribution of that term to
equation (1.2) vanishes in steady flow. So does the term in that equa-
tion which accounts for the work done in changing the size of a bubble.
Neither additional term is considered here. Lagrange’s equations then
give, for i = 1,2 respectively,
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Equation (1.10) reproduces the first-order result obtained by simply
equating D to the rate of loss of gravitational potential energy (Moore,
1965), and equation (1.11) reproduces the known inviscid result using
virial theory (El Sawi, 1970), which is also deducible by Hamiltonian
methods (Benjamin, 1987). One would expect equation (1.10) to emerge



in the present theory, because the present assumptions are the same as
Moore’s if his boundary-layer correction to the irrotational flow is ig-
nored. However it is at first sight surprising that equation (1.11) for a
viscous liquid should be identical with the inviscid theory of El Sawi and
Benjamin, but it happens that in steady flow there is no contribution to
the i = 2 Lagrange equation from viscosity. That is because D contains
terms in ¢12 and ¢»2 but not in ¢ o, because reversing one of i, g, but
not both, must leave D unchanged.

3. CONCLUSIONS

Lagrangian theory confirms Moore’s leading-order approximation for
the speed of rise as a function of Reynolds number and axis ratio Y,
and it shows for the first time that the El Sawi-Benjamin inviscid theory
giving the Weber number W as a function of x still holds to leading
order for a bubble rising in a viscous liquid if Re is large.

The advantages of the present method are that it gives a simple route
to the result of El Sawi and Benjamin, and it does so without using
their assumption of inviscid flow. The disadvantage of the method is
that it gives neither the structure of the viscous boundary layer at the
surface, nor higher approximations to the pressure there. As a result
(Moore, 1965) the theory needs corrections to the drag of order Re™'/?
and to the shape of order Re™!, and those corrections account for part
of the discrepancy between the present theory and detailed computation
(Ryskin and Leal, 1984; Christov and Volkov, 1985). The remainder
of the discrepancy arises because irrotational theory cannot describe a
standing eddy at the rear of the rising bubble. Moore showed that in the
limit of large Re no such eddy appears, but because the velocity in the
rear stagnation region is reduced by O(Re_l/ 6) of its value, it would not
be surprising if eddies appeared there at moderate Reynolds number.
The computational work revealed them.
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