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A Note on Inequality-Preserving

Distributional Changes∗

John Creedy

New Zealand Treasury and Victoria University of Wellington

Abstract

This note considers the problem of distributing a fixed amount

of money (‘income’) among a given number of people, such that in-

equality (measured by either the Gini or Atkinson measure) takes

a specified value. It is well known that simultaneous equations ad-

mit of many solutions where the number of variables exceeds that of

equations (constraints). However, the approach examines cases where

there are just one or two degrees of freedom, clarifying the resulting

range of distributions. The properties of simultaneous disequalising

and equalising transfers are discussed.

∗In preparing this note I have benefited from encouragement by Peter Lambert and

discussions with Chris Ball, Norman Gemmell and Justin van de Ven.
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1 Introduction

Suppose it is required to distribute a fixed amount of money (for conve-

nience, referred to as ‘income’) among a given number of people, such that

the resulting Gini or Atkinson inequality measure takes a specified value.1

Having specified this requirement, the question arises of whether it implies

a unique income distribution. Is there more than one allocation that gives

rise to the same inequality measure? From one perspective, this is a trivial

problem. Imposing one or more moments of a distribution, along with an

inequality measure, simply specifies linear and nonlinear constraints on the

values in a distribution.2 So long as the number of individuals exceeds the

number of constraints, there are some degrees of freedom in selecting values:

the simultaneous equations do not necessarily have a unique solution.

Despite this obvious property of simultaneous equations, the present note

explores this question more formally, for Gini and Atkinson measures, in

very simple contexts where the number of degrees of freedom is deliberately

restricted to a minimum.3 Indeed, situations are explored where only one

or two degrees of freedom are available. The results nevertheless are not

restricted to the small populations, since it could simply be assumed that

the other income levels are held fixed.4 Clearly, starting from some arbitrary

distribution, an inequality measure can be preserved if an equalising transfer

in one range of the distribution is appropriately matched by a disequalising

transfer elsewhere. The problem is to determine the nature of such transfers

if a continuous range of distributions is to be identified. For example, if two

1Since these are relative measures, and are thus not affected by equal proportional

changes in all incomes, the actual fixed amount is not important and the requirement

could just as well be expressed in terms of income shares.
2As explained below, the Atkinson and Gini inequality measures are defined in each

case as the proportional difference between an equally-distributed equivalent income, ,

and the arithmetic mean. For the Atkinson measure,  is a power mean and for the Gini

measure, it is a reverse-rank weighted mean.
3On these measures see, for example, Atkinson(1970) and Lambert (2001).
4The fact that incomes must be positive and, in the case of the Gini measure, the

ranks of individuals play an important role, means that the choice of individual incomes

is further restricted. These restrictions are not modelled explicitly here, but of course

they are checked when investigating numerical examples and ultimately limit the range of

alternative distributions.
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measures, the mean and an inequality measure, must be constant, then the

consideraton of just three individuals (within a larger unspecified and fixed

population) provides one degree of freedom and the ability to move between

distributions using two income transfers operating in opposite directions.

Section 2 examines the Gini inequality measure. First, it considers the

case where both the Gini and the arithmetic mean are held constant and it is

found that a range of distributions can satisfy these constraints. Second, the

variance is also held constant, and again a range of such distributions exists.

Section 3 considers the case of the Atkinson inequality measure, showing

that the allocation of a given income among a fixed number of people to

achieve a specified Atkinson measure is, like the Gini, not unique. In each

case illustrative examples are given of the types of transfer which can lead

from one distribution to another having the same inequality.

2 The Gini Measure

This section examines the Gini measure, for which a number of different

expressions can be found. One of the most frequently used formulae is the

following. For a distribution, 1  2    , with arithmetic mean, ̄,

the standard Gini inequality measure can be written as:

 =
+ 1


− 2

2̄

X
=1

(+ 1− ) (1)

The crucial term here is the sum,
P

=1 (+ 1− ), which, for constant ,

 and ̄, must be constant.5

2.1 Distributions with Equal Means

Another way of expressing the question raised in the introduction is to ask

whether it is possible to have a mean-preserving change in the distribution of

5Writing the reverse-ranked weighted mean as ̄ =

{P
=1 (+ 1− )} 

P
=1 (+ 1− ), it can be seen that, for large , the Gini

is effectively 1− ̄̄. Hence, ̄ is the equally distributed equivalent income for the

Gini welfare function. However, the following discussion is for small , and the form given

above is not replication invariant.
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, for which the value of  remains unchanged? Would a judge, whose value

judgements are characterised by those lying behind the Gini index, actually

be indifferent between two (or possibly more) allocations?

The answer is particularly simple if  = 2 and there are only two individ-

uals. If ∗ = 22̄ denotes the share of income going to the richer person,

then (1) becomes6  = ∗ − 1
2
and the allocation is:

2 = 2̄ (+ 05) (2)

with:

1 = 2̄− 2 (3)

Clearly, 2  1 and there is only one allocation satisfying the requirement.
7

From this allocation, any change which leaves the arithmetic mean unchanged

(for which 1 = −2) causes  to change. Similarly, any change which

leaves  unchanged requires a change in the arithmetic mean income. With

two conditions (constant ̄ and ) and only two income levels, there are no

degrees of freedom in selecting the allocation. This is of course not surprising

with only to individuals and two constraints. Any possibility of having the

two conditions satisfied by more than one allocation requires at least a degree

of freedom in the choice of one of the  values.

Suppose  = 3. Then for unchanged mean and Gini, it is required to

have, for given  and :

31 + 22 + 3 =  (4)

and:

1 + 2 + 3 =  (5)

From (5):

1 = − 2 − 3 (6)

and substituting in (4):

2 = 3− − 23 (7)

6This result for the above form of the Gini measure is given by Shorrocks (1995). An

alternative version for the form of Gini that, for small , lies between 0 and 1 is given by

Subramanian (2002).
7In this case of  = 2, the maximum value that can be taken by  is 0.5.
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Thus it is possible to set the value of 3, the higher income level, and allow

the corresponding values of 2 and 1 to be easily obtained by using (7)

and then (6). The above question thus reduces to finding, for given  and

 whether more than one combination of  values can be obtained which

preserves the rank order. Suppose  = 10 and  = 6, so that ̄ = 2. Setting

3 = 3 produces 2 = 2 and 1 = 1. However, if 3 = 28, the resulting

values of 2 and 1 are 2.4 and 0.8 . Both distributions give values of  of

0.222.8

It is well known that the Gini measure can be related to an area in the

famous Lorenz curve diagram.9 The Gini measure is twice the area between

the diagonal line of equality and the Lorenz curve. As an area measure, the

Gini is not concerned with precisely which parts of the distribution contribute

most to inequality. The two Lorenz curves are shown in Figure 1, where

the curve for the second distribution [08 24 28] is the dashed line. This

second distribution is closer to the line of equality for the higher part of

the distribution but is further from the line of equality for the lower part of

the distribution. Since the ranks of the individuals must remain unchanged,

the two distributions involve simply moving the two Lorenz curve points

(corresponding to the cumulative incomes associated with 1/3 and 2/3rds

of the population) up or down somewhat. In each Lorenz curve the area

contained by the Lorenz curve and the diagonal is the same. Intersecting

Lorenz curves usually motivate the need for an explicit inequality measure,

since a basic ‘dominance’ result does not apply, but in this case the Gini

measure cannot distinguish between the two distributions.

Consider instead the distribution [0 3 3] for which the Lorenz curve fol-

lows the diagonal beyond the 2/3rds point and the Gini area is all contained

to the left of that point (with  = 0333). Another distribution with the

same Gini is obtained simply by reducing inequality at the bottom of the dis-

8For these two distributions [1 2 3] and [08 24 28] the Atkinson values are quite

different. For example, for  of 0.2 and 1.2, the Atkinson values for the first distribution

are 0.018 and 0.110 respectively, while for the second distribution they are 0.022 and 0.152.
9With incomes ranked in ascending order, the Lorenz curve plots, starting from the

lowest income, the relationship between the cumulative proportion of total income and

the proportion of people to whom it is attributed.

4



Figure 1: Two Lorenz Curves with Equal Ginis

tribution and increasing it at the top end: thus, to give just one alternative,

[02 26 32] is found to have the same Gini value and of course the same

arithmetic mean. A way to view the two distributions is to see that, starting

from [0 3 3], an equalising transfer of 0.2 is made from person 2 to person

1, and at the same time a disequalising transfer of 0.2 is made from person

2 to person 3. There are two equal transfers from the middle person.

The nature of the effective transfers can be seen using the following ap-

proach, which begins from a given distribution and investigates the changes

in 1, 2 and 3 for which the arithmetic mean and Gini are fixed. The Gini

value for  = 3 can be written as:

 = 2− 2
3

µ
31 + 22 + 3

1 + 2 + 3

¶
(8)

Totalling differentiate  with respect to 1, 2 and 3, and impose the con-

dition 1 = − (2 + 3) to ensure that the arithmetic mean remains un-

changed. Then setting  = 0 gives the result, after a little algebra, that:

2

3
= −2 (9)

Hence the slope of the relevant constraint is fixed, irrespective of the  values.
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Hence, this is precisely the change illustrated in the first example and the

diagram above, where 3 falls by 0.2 from 3 to 28 and 2 rises by 0.4 from

2 to 24. And of course 1 must change by − (04− 02) = −02 and thus
fall from 1 to 0.8. Importantly, there is thus a range of allocations satisfying

the requirement that  = 0222 and ̄ = 2. In each case, any number of new

distributions can be found satisfying the required conditions. In summary,

specifying an allocation of a fixed income among a given number of people,

where the distribution must have a given Gini value, does not imply a unique

allocation. Indeed, a range of distributions is consistent with the specified

Gini.

2.2 A Common Mean and Variance

In the above example the variance of the first distribution is 0667 while

for the second distribution it is 0.747. The question arises of whether it is

possible to have a change in the distribution which preserves both the mean

and the variance, while also holding the Gini value constant. If a judge wishes

to allocate a fixed sum of money to achieve both a given Gini and variance,

is the resulting distribution unique? In this case, the additional constraint

involves a loss of a further degree of freedom, so it is necessary to increase

the population size to  = 4, the required conditions, for given values of ,

 and  , are as follows. For constant Gini (for a given ̄):

41 + 32 + 23 + 4 =  (10)

and for a constant arithmetic mean:

1 + 2 + 3 + 4 =  (11)

Furthermore, a constant variance, for a given arithmetic mean, requires:

21 + 22 + 23 + 24 = (12)

From (11):

1 = −
4X

=2

 (13)

6



and substituting in (10):

2 = 4 (− 3 − 4) + 23 + 4 −

= 4− 23 − 34 − (14)

Subsituting (14) into (13) gives:

1 =  − 3+ 3 + 24 (15)

Hence, substituting in (12) gives the quadratic:

 = [− 3 − 4 − {4− 23 − 34 −}]2

+ {4− 23 − 34 −}2 + 23 + 24 (16)

For given values of ,  and  , and setting a value of 4, the quadratic

(16) can be solved for 3.
10 The question then involves determining whether

there are two real and distinct roots for 3 and whether those resulting values

give rise to corresponding values of 2 and 1, using (13) and (14), which are

positive and preserve the necessary rank order.

For example, suppose that  = 8, so that ̄ = 2, and  = 15, with

 = 2154. Setting 4 = 35 it is found in this case that (16) has two

roots of 2.2 and 2.8. Hence there are two distributions, [02 21 22 35] and

[08 09 28 35] that have the same mean, variance and Gini value.11 Going

from one distribution to the other effectively involves two simultaneous trans-

fers — one being disequlising while the other is equalising, from or towards

person 2, depending on which is considered to be an ‘initial distribution’.

Consider the slope of the relevant constraint, relating 3 and 4, by begin-

ning with a particular distribution and investigating changes in  values for

which the Gini and first two moments are constant. Totally differentiating:

 =
5

4
− 1
2

µ
41 + 32 + 23 + 4

1 + 2 + 3 + 4

¶
(17)

10Extending the requirement to include a fixed third moment would thus be rather

cumbersome as it would require the solution to a cubic in addition to a quadratic similar

to (16).
11In this case,  = 03125.
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and using:

1 = − (2 + 3 + 4) (18)

gives:

2 = −23 − 34 (19)

Then differentiating 21+22+23+24 totally, setting the result equal to zero

and substituting for 1 and 2 using (18) and (19) gives:

3

4
=

3 − 1 − 2 (2 − 1)

4 − 1 − 3 (2 − 1)
(20)

Unlike the previous example, the slope of this constraint is not constant.

Hence in general even small discrete changes from a given distribution do

not satisfy the additional requirement.

Nevertheless the existence of a range of solutions can easily be seen by

solving the above simultaneous equations for a different imposed value of 4.

Starting from [08 09 28 35], suppose that there is an equalising transfer

of 0.1 from person 4 (the richest individual) to person 3, while there is si-

multaneously a disequalising transfer of 0.1 from person 1 (the poorest) to

person 2. This results in the distribution [07 10 29 34], which clearly en-

sures that total income is unchanged and is also found to maintain a fixed

variance and Gini value. Hence, as before, only one degree of freedom is

enough to generate the result that a range of distributions exist such that

the first two moments and the Gini measure are constant. With a fifth per-

son, giving two degrees of freedom, it is easy to see that a much wider range

of distributions can satisfy the three constraints.12

3 The Atkinson Measure

This section considers the Atkinson inequality measure, , which is defined,

for a relative inequality aversion parameter of , as:

 = 1− 

̄
(21)

12For example, if a fifth person is added to [02 21 22 35], with 5 = 4, then  = 12,

 = 27, ̄ = 24 and  = 375. If one unit is transferred from person 5 to person

4, and at the same time one unit is transferred from person 2 to person 3, resulting in

[02 20 23 36 39], the three constraints are satisfied.
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where  is the equally-distributed equivalent income given by the power

mean:

 =

(
1



X
=1

1−

)1(1−)
(22)

However, the question arises of whether two or more distributions can be

found having the same Atkinson measure. Suppose only the mean is imposed,

so that three values provide a necessary degree of freedom, and the sum, ,

and equally distributed equivalent, , are given. Using 1 =  − 2 − 3

and the definition of the equally distributed equivalent income, the value of

2, for given values of 3,  and , is given by the root or roots of:

(− 2 − 3)
1−
+ 1−2 + 1−3 − 31− = 0 (23)

It is found that this expression can have no real roots, one root or two real,

positive and distinct roots. For example, suppose that  = 6 so that ̄ = 2,

and for  = 03,  = 18. Setting 3 = 3, it is found that there are two

solutions for 2, equal to 0.2 and 2.8. However, the symmetry gives rise to

corresponding values of 1 of 2.8 and 0.2. Since the ranks are not relevant,

having specified the value of 3, there is thus only one distribution, given

by [02 28 30], that is consistent with the imposed value of  and the

arithmetic mean, which together give .
13 However, simply by setting 3 to

alternative values, a range of alternative distributions clearly exists for which

the mean and Atkinson inequality measure are fixed. For example, starting

from the above distribution, suppose that person 2 transfers 1.4 to person

3 and 0.4 to person 1. This combines an equalising with a disequalising

transfer and results in the distribution [06 10 44], which has the same

Atkinson measure as the initial distribution.

With one extra individual, and hence an increase in the number of de-

grees of freedom to two, it is possible to generate an even wider range of

possibilities. The equalising transfer in one range of the distribution can be

13Furthermore, using 1 = − (2 + 3) and setting the total differential, , equal

to zero gives 2 = −3 (3 − 1)  (2 − 1). Since 23 is not constant, this ex-

pression cannot be used to examine discrete changes. This contrasts with the Gini case

discussed above where only the arithmetic mean and inequality are constant and there are

three individuals.
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combined with a disequalising transfer in another range of the distribution,

involving a different pair of individuals (rather than the two transfers taking

place from the middle-income person only). First, for 1  2  3  4,

suppose a small amount − is transfered from 2 to 1 while simultaneously

+ is transferred from 3 to 4. Setting the total differential of  equal to

zero gives the result that, for an unchanged :

+

−
=

−1 − −2
−3 − −4

(24)

Again, this expresses the tangent to the required constraint imposed on the

two changes to ensure that the Atkinson measure is constant. Given the

nonlinearity involved, it cannot be used to consider a range of distributions.

Consider instead the simple extension of (23) to four individuals, giving:

(− 2 − 3 − 4)
1−
+ 1−2 + 1−3 + 1−4 − 41− = 0 (25)

It is now possible to set 3 and 4 and determine, for given ,  and , the

required values of 1 and 2. As before, where two real roots for 2 exist,

these simply provide interchangeable values for 1 and 2 so that, since the

ranks are not relevant, only one distribution satisfies the condition. However,

two simultaneous transfers can be examined. Suppose that for  = 4 and

 = 03, it is required to have ̄ = 20 and  = 18. First, setting 4 = 4

and 3 = 25 gives the result that 2 = 135 and 1 = 015. Then suppose

that there is a disequalising transfer at the top end of the distribution such

that 4 becomes 4.2 and 3 becomes 2.3. Solving (25) gives new values for

2 = 13 and 1 = 02, for which the same conditions are satisfied for  and

. Hence an equalising transfer at the bottom end of the distribution of 005

from 2 to 1 can be combined with a disequalising transfer at the top end,

of 0.2 from 3 to 4, to maintain the Atkinson inequality measure.
14

14For this case of − = 005, the expression in (24) gives a value of + = 043, showing
the extent of the nonlinearity of the constraint, since for the discrete change examined, it

is necessary only to transfer 02 from 3 to 4.
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4 Conclusions

This note has considered the problem of distributing a fixed amount of money

(‘income’) among a given number of people, such that inequality, as measured

by either the Gini or Atkinson measure, takes a specified value. In particular,

the question arises of whether a unique distribution is implied. In general, it

is trivially obvious that, given a set of constraints (in the form of moments of

the distribution), a range of solutions to the implied simultaneous equations

can generally be found. However, this note has explored the characteristics of

the two inequality measures for cases where only one or two degrees of free-

dom are available. The examination of small populations is not a restriction,

since the income values other than the small number being considered may

simply be regarded as being fixed. The measures differ in that the inequal-

ity constraint for the Gini involves a linear combination of income values,

involving the rank positions, whereas for the Atkinson measure a nonlinear

constraint is imposed, involving the degree of relative inequality aversion.

For both inequality measures, the intuition was confirmed that only one

degree of freedom is necessary to generate a range of possible distributions,

for cases where the mean and inequality are constrained and (in the case

of the Gini measure) where the first two moments and inequality are con-

strained. For the Gini measure it was found that the choice of one income

level (the degree of freedom) can give rise to two different distributions giving

the same Gini value (and moments): that is, the simultaneous equations can

generate two distinct solutions (satisfying the requirement that values are

non-negative and preserve the rank order). Furthermore, a range of distrib-

utions is obtained simply by varying the income level imposed. In the case

of the Atkinson measure, when one of the income levels is imposed (using

the degree of freedom), the simultaneous equations can give rise to only one

feasible solution: where two solutions are generated, they imply the same dis-

tribution since the rank order of individuals is not important. Nevertheless,

a range of distributions is consistent with a fixed Atkinson measure, obtained

by varying the imposed income level. In both Gini and Atkinson cases, the

variations are clearly identified with simultaneous equalising and disequal-
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ising transfers. For a sufficiently large population, it should in general be

possible to find multiple allocations for which any number of moments of the

distribution, along with an inequality measure, are equal.15

The important question arises of whether this feature matters for the

practical measurement of inequality. To the extent that the two measures

can be interpreted as reflecting explicit (though quite different) sets of value

judgements of a disinterested judge, the fact that a ‘stable’ value of inequality

— along with an unchanged arithmetic mean — is consistent with quite sub-

stantial changes in the precise nature of the frequency distribution of income

is not important. The judge is by definition indifferent to all such distri-

butions. Hence, the main implications are for the reporting of inequality

measures, where exercises involve examination of the implications of adopt-

ing alternative value judgements.16 Thus readers of a document showing that

a particular summary inequality index is constant, and who do not necessar-

ily share the value judgements implicit in the measure used, need to be well

aware that the distribution may have changed in ways that those readers

consider to be important. This again supports the presentation of a range of

summary measures, or at least the use of extensive sensitivity analyses, even

though — when broad agreement is obtained — space constraints may mean

that all results cannot be reported.

15To give just one example using numerical methods, the distributions [1 2 4 5 10]

and [08 26 63 52 10] have the same Gini and first three moments. The second can be

obtained from the first by using two disequalising transfers and one equalising transfers.

Small variations in the top income (of 10) generate two solutions for each imposed value

of 5.
16Of course, in many reports inequality measures are reported with no clarification of

the value judgements involved. The Gini, for example, is often described simply as being

‘widely used’, as if that were sufficient justification for the reader to accept the results

without question.
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