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Abstract 

Studies along the Kermadec arc, SW Pacific, over the past two decades have shown the presence of 

numerous volcanoes with histories of caldera collapse, and abundant evidence of explosive eruptions 

involving evolved magmas (dacite to rhyodacite). However, as there are only two substantially emergent 

volcanoes in the arc, Raoul and Macauley, the history of this explosive volcanism is difficult to constrain 

from subaerial exposures. In contrast, the marine record offers the opportunity to document activity from 

these volcanoes over a longer time period. This thesis presents stratigraphic and chemical data from 

sediment cores collected along offshore transects west and east of Raoul and Macauley islands. Individual 

grain analysis of glass shards from the tephra layers was conducted using electron microprobe and laser 

ablation inductively coupled plasma mass spectrometry to analyse each shard for major and trace element 

compositions. These geochemical data allowed for discrimination between successive tephra deposits, and 

identification of 51 tephra layers in the cores, each of which is interpreted to represent a single eruptive 

event. The data also addressed the diversity or uniformity of individual eruptions and traced changes in 

the geochemistry of the eruption units through time. Oxygen isotope analyses of foraminifera were used 

to construct an age model for the cores, allowing model age estimates of individual tephra units and 

proving the marine core record extends back to ca. 170 ka. Silicic volcanism from these two volcanoes 

dates back to at least ca. 166 ka, indicating that it is not a recent development as the onshore record would 

suggest. Onshore exposures on Macauley Island record only one silicic eruption, the 6.3 ka Sandy Bay 

Tephra; however, the offshore cores show that Macauley has erupted silicic magmas since 166 ka, and is 

the dominant source for tephras recorded in the cores.  

Construction of a tephrochronology of the cores provides a context as to the eruptive frequency of 

volcanoes along the arc, indicates apparent fluctuations in the magma supply rate, and also indicates that 

fractionation is the dominant process by which silicic magmas are generated in the arc. The average 

eruptive frequency of Raoul and Macauley volcanoes is 1 eruption/kyr. If extrapolated to the other 

volcanoes along the arc, there are ca. 40 eruptions/kyr of significant size that could be preserved in the 

marine record.  The presence of periods of quiescence in the eruptive history implies that magma supply 

rates may have a primary control on the frequency of eruptions linked to compositions, such that when 

supply rates slow, the magmas stall in the crust and fractionate to form silicic magmas.  
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1.1 Introduction 

 

Intra-oceanic arcs are less well documented than continental arcs, yet are important in the generation of 

continental crust and may present a hazard in the form of explosive eruptions. An increasing number of 

studies are drawing attention to the frequency and significance of silicic volcanic events and associated 

caldera-bearing edifices in intra-oceanic arcs, the process through which silicic magmas are generated, and 

the risk they present to communities. Onshore information on past eruptions is limited, however, 

examination of marine core material, in addition to the more common use of dredge sampling, can be 

used to establish the frequency and magnitude of past eruptions in oceanic arcs. In this thesis I use a case 

study of marine cores collected from the Kermadec arc, SW Pacific (Figure 1.1), to illustrate the value of 

core materials by establishing the number and compositional characteristics of tephras from silicic 

explosive eruptions, and to address how silicic magmas are generated in such a setting. 

 

Figure 1.1 Overview of the regional setting for this study. White triangles 
are volcanoes of the Kermadec arc and black triangles represent volcanoes 
of continental New Zealand (Image courtesty of NIWA). 
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1.1.1 Research objectives 

The aim of this study is to provide a detailed picture of Quaternary explosive volcanism in the northern 

Kermadec arc utilising tephrochronological methods on marine cores. These data are then used to assess 

eruption size and frequency and present preliminary estimations of the hazards posed by large silicic 

eruptions in the region.  

Key research techniques include: 

 Major element chemical analysis of tephra glass shards using Electron Probe MicroAnalysis 

(EPMA) 

 Trace elements chemical analysis of glass shards using Laser Ablation Inductively Coupled 

Plasma – Mass Spectrometry (LA ICP-MS) 

 Development of an age model for the whole depth of the marine cores using δ18O analyses of  

foraminifera 

 Development of a tephrochronology for the cores 

These techniques will be used to answer the following key questions: 

A. Is silicic volcanism in the Kermadec arc a recent development, or does it pre-date records 

preserved onshore? 

B. Is there any cyclicity to the eruption of silicic magmas? If yes, what processes can explain 

this? 

C. How frequent are eruptions of a sufficient size to be preserved in the cores? 

  

1.1.2 Thesis structure 

This thesis is presented in seven chapters with additional information provided in appendices: 

Chapter 1) Introduction: An overview of tephrochronology techniques and the research aims of this thesis. 

Chapter 2) Setting: A background to the geological settings and location of the study area. The geological 

setting provides a background to the Kermadec arc and an overview of the volcanoes investigated here 

whilst site settings discusses the ocean current and wind characteristics of the study area. 

Chapter 3) Methods: A description of the stratigraphic and analytical tools used to obtain stratigraphic and 

geochemical data. Included in this chapter are the results from secondary standards used to measure the 

precision and accuracy of the major and trace element data. 

Chapter 4) Geochemistry results: Presents key geochemical results. The chapter is divided into major and 

trace element data, concluding with correlations between cores.  
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Chapter 5) Stratigraphy results: Presents key results pertaining to the stratigraphy of the cores including 

identification of facies, presentation of isotopic data, and fitting of these data to established oxygen 

isotope curves to provide a chronology, especially beyond the limits of radiocarbon dating. 

Chapter 6) Discussion: An interpretation of the results is presented, focusing on a complete 

tephrochronology including the identification of the source volcano for each tephra and the calculation of 

the eruptive frequency for Raoul and Macauley volcanoes.  

Chapter 7) Conclusions: A summary of the key findings of this study, along with proposed avenues for 

future work. 

Appendices: A series of appendices (A-D) containing core descriptions, non – invasive properties of the 

marine cores, and major and trace element data collected.  

1.2 Oceanic arc volcanism and the generation of silicic magmas 

 

Intra-oceanic arcs provide a reasonably simple setting in which to study subduction zones. As there is 

little sialic crustal input in these areas, it is easier to understand magma-generation processes in the mantle 

and how continental crust is generated (Leat and Larter, 2003). Magmas of mafic and felsic compositions 

dominate the erupted compositions of oceanic arcs, with a distinct lack of intermediate compositions 

being recorded (Leat et al. 2003; Leat and Larter, 2003, Tamura and Wysoczanski, 2006). The eruption of 

silicic material in subduction settings was previously thought to be a minor phase of intra-oceanic arc 

volcanism, however more recent work shows that silicic volcanism can be abundant in intra-oceanic 

settings (Leat and Larter, 2003), and at water depths >1000 m, which was previously thought to inhibit 

explosive silicic eruptions (Busby, 2005). 

Models for the generation of silicic magmas in this intra-oceanic arc setting have fuelled longstanding and 

continued debate with competing models of crustal anatexis versus crystal fractionation being proposed. 

For the Kermadec arc in particular, arguments for both crustal anatexis by melting of amphibolic crustal 

material (e.g. Smith et al. 2003a; 2006; 2009) and fractional crystallisation (e.g. Haase et al. 2006; Saunders 

et al. 2010;  Barker et al. 2012; 2013) have been put forward to explain the presence of silicic magmas. A 

potentially valuable contribution to the debate on silicic magma generation in intra-oceanic arcs where 

there are limited subaerial exposures is to identify and analyse tephra layers preserved in marine cores. 

Such cores can provide a high resolution record of significant volcanic events in the region and provide 

an overview of the evolution of the magma system over time.   

Silicic magmas in intra-oceanic arc settings are reasonably voluminous in surficial deposits and have been 

documented in the Izu-Bonin arc (e.g. Tamura and Tatsumi, 2002), the South Sandwich arc (e.g. Leat and 

Larter, 2003; Leat et al. 2003) and the Kermadec arc (e.g. Brothers and Martin, 1970; Brothers and Searle, 
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1970; Ewart et al. 1977; Lloyd and Nathan, 1981; Worthington et al. 1999; Smith et al. 2003a; 2006; 2009, 

Barker et al. 2012; 2013). However, because most of these records are surficial with samples collected 

from marine dredging, there is no stratigraphic context for the samples, unless correlations can be made 

to onshore dated deposits. This is one of the major strengths of using marine cores to look at eruptive 

material in a submarine setting as correlations can be made in tephra layers between cores to generate a 

detailed tephrochronology.  

 

1.3 Kermadec arc marine core samples 

Volcanism from the Kermadec arc system has been well studied with numerous expeditions undertaken 

in the region since the 1960’s, focusing on identifying the petrological, tectonic and geophysical 

characteristics of the arc (see Smith and Price (2006) for a comprehensive review). In particular, with the 

emergence of multibeam mapping, numerous submarine volcanic cones have been discovered since the 

1990’s (Wright et al. 2006; Graham et al. 2008; Wysoczanski et al. 2010; Barker et al. 2012) and the focus 

was again drawn to the system as a whole as a type-example of intra-oceanic tectonic subduction. 

There are two significant subaerial outcrops along the length of the arc: Raoul and Macauley Islands. 

These islands are the emergent parts of large strato-cone volcanoes that record volcanism in the arc 

dating back to ca. 1.5 Ma (Lloyd and Nathan, 1981).  There are other subaerial exposures along the length 

of the arc (Smith et al, 1988), but these are much small in size and will not be addressed in this study.  On 

the R.V Tangaroa TAN0706 voyage (May 2007), sediment core retrieval for 19 sites was attempted, with 

10 sediment cores successfully collected from both the forearc and back-arc regions surrounding Raoul 

and Macaulay Islands (Figure 1.2) (Table 1.1). Retrieval of some material from sites C7, C9 and C12 

(Figure 1.2) was analysed and data is presented in Chapter 4. Multibeam mapping using the Kronsberg 

EM300 echosounder and multi-channel seismic reflection mapping undertaken on the same and earlier 

voyages shows that the bathymetry to the west of the islands slopes down from the Kermadec Ridge to 

the Havre Trough, and on the east slopes down to the Kermadec Trench (Figure 1.2). Piston and gravity 

coring methods were used, with penetration limited by the presence of resistant layers of coarse volcanic 

ash and lapilli material. As such the longest records are more distal to the islands, with the longest core 

collected measuring 309.5 cm in length. A preliminary study of these cores by Shane and Wright (2011) 

found evidence for 27 discrete macroscopic tephra layers as well as numerous heterogeneous tephra 

layers with records extending back beyond 50 ka. This study reanalyses these cores and presents a more 

detailed tephrostratigraphy, which is then used to determine the frequency and size of eruptions in the 

region, as well as to provide first order insights into silicic magma generation. 
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TAN0706 Station Data 

Station Gear Water depth (m) Latitude Longitude 

TAN0706 - 1 Piston 2550 29 22.917 S 179 27.044 W 

TAN0706 - 2 Piston 2430 29 22.247 S 179 10.195 W 

TAN0706 - 3 Piston 2144 29 21.326 S 179 00.818 W 

TAN0706 - 4 Gravity 2258 29 21.190 S 179 01.699 W 

TAN0706 - 5 Gravity 2424 29 19.897 S 178 47.999 W 

TAN0706 - 8 Piston 3350 29 16.260 S 177 00.971 W 

TAN0706 – 9 Gravity 3065 29 16.726 S 177 20.571 W 

TAN0706 - 10 Gravity 2654 29 16.719 S 177 32.170 W 

TAN0706 - 12 Gravity 3721 30 20.768 S 177 40.877 W 

TAN0706 - 13 Gravity 3288 30 19.235 S 177 48.057 W 

TAN0706 - 15 Gravity 2574 30 17.066 S 177 57.738 W 

TAN0706 - 16 Piston 2353 30 10.404 S 179 42.534 W 

Figure 1.2. Bathymetry surrounding Raoul Island, Raoul SW and Macauley Island in the Kermadec 
arc as well as the location of core sites examined in this study (see Table 1.1 below). EM300 
multibeam mapping extends west and east of the island illustrating the complex bathymetry in 
greater detail. (Image courtesy of NIWA). Note that material retrieved for C7 is located in the same 
position as C8.  

Table 1.1 Location and water depth for each of the marine cores successfully retrieved 

on the R.V Tangaroa TAN0706 voyage and studied in this thesis.  
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1.4 Tephrochronology 

 

The definition of tephra encompasses all explosively generated, unconsolidated pyroclastic materials up to 

a size of 64 mm, and includes both fall and flow deposits (Shane, 2000; Lowe, 2011). The definition of 

tephrochronology sensu stricto refers to using tephra layers as isochronous layers to connect together 

sequences, allowing for the transferral of determined ages (relative or numerical) between cores (Westgate 

and Briggs, 1980; Shane, 2000; Pearce et al., 2004; Lowe, 2011). Tephrostratigraphy is the study of the 

distribution and stratigraphic relationships of tephras and associated materials within a single core, 

including their relative and numerical ages (Lowe, 2011). Once the tephrostratigraphy for each core has 

been determined, a tephrochronology can be constructed using methods to determine the physical, 

geochemical and mineralogical properties of tephra layers, as well as determining an age for each layer 

where possible. Stratigraphic relationships, major and trace element geochemistry, glass morphology and 

mineral assemblages can be used to establish correlations (Kennett and Huddleston, 1972; Lowe, 2011).  

In general, the principles of constructing a tephrochronology have been well studied and documented. 

Major element concentrations of glass shards have primarily been the method used to geochemically 

correlate tephra layers. While trace elements have been used for decades when analysing deep-sea tephras 

(e.g., Bowles et al., 1973) it has only recently been more widely recognised that trace elements are often 

crucial in distinguishing between tephra layers with nearly identical major elements. Trace element 

concentrations may show variations of orders of magnitude in tephras with similar major element 

compositions, making correlations much easier and more accurate (Bowles et al., 1973; Allan et al., 2008). 

They can also provide insights into chamber dynamics and magma evolution over time. This study utilises 

stratigraphic position and both major and trace element geochemistry to correlate tephra layers. 

Tephra layers are erupted and deposited almost instantaneously in terms of the geological time scale. 

Layers deposited in the deep-sea tend to be a few to tens of centimetres thick and are predominantly 

composed of glass shards up to a few hundred microns in diameter with scattered crystals and lithic 

fragments interspersed throughout (Manville and Wilson, 2004). These tephra layers often display sharp 

basal contacts and gradational or bioturbated upper contacts (Fisher and Schmincke, 1984). Previously 

only macroscopic tephra layers (visible to the naked eye) could be identified and studied, but as new 

methods of non-invasive analysis have developed, microscopic tephra layers (cannot be seen with the 

naked eye) can now be identified which allows for much more detailed and well-constrained volcanic 

histories to be constructed. In this study many macro and microscopic tephra layers were identified using 

techniques outlined below. 

 1.4.1 Stratigraphy 

The stratigraphy of marine cores can be established using some or all of the following methods: 
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a) Core descriptions 

b) Magnetic Susceptibility 

c) Spectrophotometer readings 

d) Grain Size analysis 

e) Carbonate Content 

f) Laser Grain Size analysis 

g) X-ray Imagery 

h) Photography 

i) Oxygen Isotope analysis 

j) Radiocarbon dating 

k) Tephra correlations 

l) Paleomagnetism 

This study uses the methods a to k listed above to construct a detailed stratigraphy for each of the cores. 

Much of the material in marine tephra layers is juvenile volcanic material, which over time, and exposure 

to processes such as sediment reworking or bioturbation, may become contaminated with other material 

such as detrital sediment (Westgate and Briggs, 1980; Froggatt, 1983; Westgate et al., 1994; Pearce et al., 

1996). For this reason bulk analysis methods such as X-Ray Fluorescence are unsuitable, as any 

contaminants will lead to inaccuracies. Analysis using grain specific methods such as EPMA and LA ICP-

MS allows individual glass shards to be examined, with the shards representing the pure glass phase of the 

melt (Pearce et al., 2004). A benefit of this method is that single glass shards are analysed, so the amount 

of sample required is very small when compared to bulk analysis methods (Westgate et al., 1994). It also 

allows the identification of compositional heterogeneities in the melt, which may indicate that complex 

processes contributed to the chemical variations in the parental magma chamber.  

1.4.2 Dating techniques 

Different dating methods can be used to establish stratigraphic relationships in cores, those used in this 

study being radiocarbon dating, oxygen isotope analysis and sedimentation rates. Radiocarbon dating is 

useful for dating material preserved in marine cores from the past 50,000 years. Most of the material that 

is used for dating tephras in marine cores is organic detritus which must be carefully selected (Calderoni 

and Turi, 1998). The ideal material for the 14C dating is material such as charcoal or organic detritus 

preserved within the tephra layer itself. However the most common source of material for carbon dating 

in marine cores is microfossils preserved in the bracketing sediments. The carbon dates used in this study 

were obtained by processing selected species of planktic foraminifera at the Rafter Laboratories at GNS 

Science, New Zealand and were published by Shane and Wright (2011).  

The abundance of foraminifera tests in marine sediments makes them an ideal material for analysis for 

several parameters that can act as proxies for age determinations. Since the oxygen isotope ratios of 
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foraminifera tests were discovered to be of use in constructing marine core stratigraphies, this tool has 

become standard when correlating and dating deep sea sediments (Emiliani, 1955; Shackleton and 

Opdyke, 1973; Jansen, 1989). The oxygen isotope values of the tests can be used to construct an oxygen 

isotope curve which can be correlated with existing global oxygen isotope curves exhibiting globally 

synchronous events (Jansen, 1989). As the oxygen isotope content of foraminfera tests varies between 

glacial and interglacial cycles (in response to oxygen isotopic changes in the sea water) , age-depth models 

can be created where isotope stage boundaries can be distinguished and ages established in tandem with 

other absolute dating techniques (Jansen, 1989; Weaver et al. 1998). In deep sea cores, however, the 

preservation potential of foraminifera tests is an issue as tests recovered often show signs of breakage and 

dissolution as a result of predation and the effects of mildly acidic water (Hayward et al., 2010). There are 

two ecological ‘types’ of foraminifera; planktics which live in the water column and infaunal benthics 

which burrow into bottom sediments.  Benthic tests are more resistant to dissolution than those of their 

planktic counterparts, which is reflected in the degree of preservation of tests. This is more marked below 

the lysocline, which in the Pacific Ocean lies at ca. 3500 m water depth (Douglas and Woodruff, 1981). 

Different benthic foraminifera are associated with different water bodies and depths. In the Pacific Ocean 

the two benthic foraminifera used in this study, Cibicides wullerstorfi and Uvigerina peregrina are associated 

with bottom waters and can be found at differing depths (Douglas and Woodruff, 1981; McCave et al., 

2008). Bottom waters in the study area are a mix of upper Circumpolar Deep water and North Pacific 

Deep water (Bostock et al., 2011). 

An important indirect method of establishing age estimates in core stratigraphy and for tephras is through 

inferring the rates of sedimentation for the non-tephra material. This can be subject to significant errors 

due to fluctuating sedimentation rates between glacial and interglacial cycles and mass wasting events 

which deposit significant amounts of material in relatively short timeframes. Sedimentation rates in the 

southern Kermadec arc region show large fluctuations between glacial/interglacial cycles, with much 

more sediment, derived from the New Zealand landmass, being deposited during glacial cycles (Pillans 

and Wright, 1992). Sediment input in the study area for this thesis is, however, more limited due to its 

greater distance from substantial landmass. However during glacial periods when sea level falls the 

sedimentation rate could still increase, resulting in problems for the approximate tephra ages published by 

Shane and Wright (2011), which were dependent on estimated sedimentation rates.  

Sedimentation rates are also important in the preservation and recognition of individual tephra layers as 

these are easier to distinguish as a discrete event when separated by a thickness of sediment. Tephra 

fallout from the atmosphere can occur within days if the material remains in the troposphere and is 

washed out (Oberhuber et al., 1998). An issue with this pertains to the settling rates of different volcanic 

material though the water column. Stokes Law allows the settling velocity of particles to be calculated 

based on Equation 1.1. Using this equation in experiments led to the discovery that generally the fastest 

settling particles are large, heavy and spherical and the slowest settling particles are irregularly shaped and  

Page 9



 

small.  The general principle is that in water where currents are faster than the settling velocity you would 

expect the particle to be transported further laterally than vertically over time. Experiments by Fisher 

(1965) indicate that layers may become mixed due to differential settling rates of various volcanic 

products and that only very fine grained particles follows the settling velocity outlined by Stokes Law 

(Fisher, 1965). This is an important consideration when interpreting any heterogeneous tephra layers.  

Normally graded tephra layers may represent a near-instantaneous eruption, as the water column works to 

separate particles based on their settling velocity. In longer or intermittent eruptions complex grading is 

often observed as delivery of particles is more continuous (Ledbetter and Sparks, 1979). However this 

does not take into account particle aggregation as discussed below. The grain size of a deposit is a 

complex function of the distance from source, explosivity of the eruption and atmospheric conditions 

(Carey, 1997).  

Settling time through the ocean plays an important role in the location and thickness of tephra deposits. 

While it was initially thought that ocean currents would disperse tephra delivered from above, research 

has found that particle aggregation often occurs readily, and the tephra shards join together to form 

particulate aggregates which settle out to the ocean floor more rapidly than individual shards (Shaw et al., 

1974; Carey, 1997). Accretionary lapilli associated with phreatomagmatic eruptions would settle through 

the ocean more rapidly, before breaking up upon reaching the sea floor (Fisher and Schminke, 1984). 

Another process affecting tephra deposition is that of vertical gravity currents. When tephra reaches the 

air-water interface the settling velocity decreases dramatically and the surface layer of water becomes 

loaded with tephra. This creates a diffuse vertical gravity current which transports the tephra particles 

rapidly down towards the sea-floor at velocities that are one to three orders of magnitude faster than that 

observed by Stokes-law settling (Fisher, 1965; Carey, 1997; Manville and Wilson, 2004). The rapidity of 

this process minimises the effects of currents on tephra dispersal and highlights the dominance of wind 

directions in determining the distribution of tephra (Carey and Sigurdsson, 1980; Carey, 1997). 

The dispersal of volcanic material from a plume is strongly controlled by prevailing winds, the height to 

which the plume ascends (Wilson and Walker, 1987; Sparks et al., 1997), and other factors such as ocean 

currents and bathymetry must be considered when looking at tephra deposition (Shane, 2000); these 

factors will be discussed further in Chapter 2. Important factors which need to be considered are 

bioturbation, turbidity flows, remobilisation of sediments and preferential deposition of tephra due to 

wind and current controls.   

Equation 1.1 Equation detailing the components used to calculate Stokes law 
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1.4.3 Tephrochronology in the Kermadec arc 

The only significant subaerial exposures in the Kermadec arc are on Raoul and Macauley islands, the 

emergent portions of volcanoes which have produced large silicic eruptions.  Raoul Island and Macauley 

Island have been widely studied, with the onshore exposures yielding some of the only information we 

have on the history of the arc. Outcrop exposures on Raoul Island display the oldest volcanic eruptive 

units, which were erupted >1 Ma (Lloyd and Nathan, 1981). Macauley Island hosts much younger units, 

and the island is dominated by the deposits of a single eruption, the Sandy Bay Tephra (SBT), which 

erupted approximately 6.3 ka ago (Lloyd et al., 1996). The petrology of the arc is generally considered to 

be relatively simple for a volcanic arc; however an interesting shift from predominantly basalt-basalt 

andesite volcanism to more silicic dacite and rhyolitic eruptions occurs on Raoul Island at 3.7 ka (Lloyd 

and Nathan, 1981; Smith et al., 2006). As the eruptive record is relatively young, we cannot see if this is a 

unique change in the history of Raoul volcano, or if it is part of a cyclical evolution of magma 

compositions. One way to address this is to construct a tephrochronology from marine cores collected 

offshore from Raoul and Macauley islands, which provide a more detailed volcanic history and allow us to 

look at the composition and frequency of eruptions as recorded in the cores over a longer time period 

than that available from the terrestrial record.  

Two studies have been conducted on sediment cores from the Kermadec arc. The first was conducted on 

cores from around the Kermadec islands by Ninkovich (1968) as part of a broad exploration of tephras in 

the SW Pacific. Unfortunately there is no geochemical data from these layers and the youngest 

macroscopic tephra layers were dated to ca. 0.31 Ma, which is older than the cores examined for this 

thesis. The second tephrochronology study in the Kermadec arc used the same cores that are studied in 

this thesis and has been published by Shane and Wright (2011). They found that the core record extended 

beyond 50 ka, including 27 macroscopic tephra layers ranging in thickness from <1 cm to ca. 50 cm. 

Major elements of glass from samples were determined and it was found that samples displayed either 

distinctly medium-K (labelled as high-K in their study) or low-K trends. Compositional bimodality was 

identified for many samples and was attributed to incomplete magma mixing. Heterogeneous tephra 

layers were also identified and attributed to one or more of: (a) the slow sedimentation rates which would 

not allow for separation of separate events by a sediment horizon, (b) bioturbation, or (c) vertical mixing 

of tephras after deposition (Shane and Wright, 2011). The most heterogeneous tephra layers were 

explained as near-contemporaneous eruptions from two or more volcanoes. Three discrete tephra layers 

were proposed to have correlatives in numerous cores; a layer identified as the SBT was found in five 

cores, and two other correlative tephra layers were found in two cores (see Figure 1.3). After identifying 

these correlatives, they conclude that there are a total of 11 low-K affinity and 12 high-K affinity tephra 

layers, each of which are considered to represent an individual event. From examination of rocks in the 

subaerial records of Raoul and Macauley islands, Shane and Wright (2011) observed that the volcanic 

eruptives of Raoul show low-K trends and those of Macauley Volcano display a high-K trend. Based on 

this observed trend, tephra layers were assigned a source volcano based on K2O content.  

Page 11



 

The source of the tephra layers identified in the study conducted by Shane and Wright (2011) were 

attributed to Raoul and Macauley islands almost exclusively. They examined the potential of other 

submarine volcanoes in the region to be the source of tephra layers and found a more distant source to be 

“less likely” due to the water depth above the volcanoes requiring an “exceptionally large eruption” to 

produce a plume of a sufficient size to deposit tephra (Shane and Wright, 2011).  Wind and current 

directions in the region would also inhibit the preservation and dispersal of tephra to the core sites from 

these submarine volcanoes. Tephra layers in the cores to the west of the islands were the result of ash 

cloud dispersal and subsequent water column fallout while some of those to the east of the islands could 

have been sourced from turbidites and represent the fine-grained distal deposits from a turbidite or from 

turbidite suspension clouds (Shane and Wright, 2011).  

The SBT received much attention in their study, as it was the only tephra layer which could be 

confidently correlated between cores and correlated to onshore deposits. The tephra was traced in cores 

one, three, five and thirteen with the deposit being classed as thickest in Core 13 where it was identified 

as being 13 cm thick as illustrated in Figure 1.3. They also revised the age of the eruption from 6310 ka as 

published by Lloyd et al. (1996) from onshore organic matter to 5.7 ka based on radiocarbon ages 

obtained from the cores, stratigraphic positioning of tephra layers in the cores and sedimentation rates. 

This age revision will be addressed in Chapter 5.  

This study re-examines the cores initially examined by Shane and Wright (2011) in greater detail and 

presents new findings, using a wider range of analytical techniques.  
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Figure 1.3 Tephrochronology published by Shane and Wright (2011) showing correlations between cores 
and also the SBT. The radiocarbon ages are presented in bold and have been calibrated using the 
CalPal_2007_HULU curve and have the marine reservoir age subtracted, with the calculated 
sedimentation rate ages in italics.  
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Chapter 2 
Setting 
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2.1 Regional overview  

 

2.1.1 The Kermadec arc  
The Tonga-Kermadec-New Zealand island arc volcanic system extends some 2800 km from the continental 

volcanic province of the Taupo Volcanic Zone (TVZ) in New Zealand to the intra-oceanic island arc volcanic 

province of Tonga (Ewart et al., 1977). The Kermadec arc stretches nearly 1500 km offshore from the TVZ to 

25.60S, where the Louisville Ridge intersects the Pacific–Australian plate subduction zone at the Kermadec Trench. 

The volcanoes of the active Kermadec arc are spaced at intervals of 30-50 km along the Kermadec Ridge, with a 

total of 40 known volcanic edifices along the length of the arc (Graham et al., 2008). Raoul, Macauley, Curtis and 

L’Esperance islands between ca. 290S and 310S are the only partially emergent volcanoes along the arc. Many of the 

volcanoes fall along ESE trending ridges, normal to the NNE trend of the Kermadec Ridge, interpreted to reflect a 

structural control over the location of the volcanoes along the arc (Lloyd et al., 1996; Worthington et al., 1999; 

Campbell et al., 2007). The distance from the subduction zone to the associated volcanic front is controlled by the 

angle of the subducting slab, which steepens northwards (Graham et al., 2008). The arc front is ca. 300 km from the 

trench at 370S and ca. 185 km at 320S.  Parallel to the Kermadec arc is the remnant Colville arc; both were 

contiguous until back arc spreading, as a result of slab rollback, began at approximately 4 Ma to develop the Havre 

Trough (Wright, 1993; Wright et al., 1996; Graham et al., 2008). The Colville and Kermadec ridges are now separated 

by some 130 km at the 2000 m isobath (Wright, 1993). 

The onset of arc activity in the SW Pacific has been attributed to changes in plate motion which led to an increase in 

plate convergence at around 25 Ma (Ballance et al., 1999). Convergence rates increase northwards along the ridge 

away from the Pacific-Australian pole of rotation with rates of convergence of 53±1 mm yr-1  at 350S,  58 mm yr-1 at 

320S  and  66 mm yr-1 at 280S (DeMets et al., 1990; Wallace et al., 2009). The differences between the rates are 

accommodated by back-arc extension in the Lau-Havre-Taupo rift systems (Smith and Price, 2006).  

Volcanism in the southern Kermadec arc is dominated by basaltic to basaltic-andesitic volcanism, whereas north of 

320 S, volcanism is dominated by more silicic (SiO2 >63%), explosive, caldera forming eruptions, recorded especially 

in younger deposits (Ewart et al., 1977; Brothers and Martin, 1980; Lloyd and Nathan, 1981; Graham et al., 2008). 

The petrology of the Kermadec arc displays wider geochemical variability than the Tonga arc to the North (Ewart et 

al., 1977). Overall, sampled eruptive units of the Kermadec arc display bimodal compositions with basaltic-andesites 

and dacites dominating the petrology of the arc (Tamura and Wysoczanski, 2006; Graham et al., 2008). Magmatism 

in the northern Kermadec arc is recognised as being relatively hybrid in nature, with short residence times in the 

crust illustrated by the presence of numerous xenoliths, xenocrysts and also disequilibrium textures (Graham et al., 

2008). Trace element data show that the Kermadec arc volcanic rocks have a determinable sediment subduction 

signature which decreases northwards with distance from the New Zealand landmass (Gamble et al.,1996; Ewart et 

al., 1998). The most complete record available of Kermadec arc eruptive units is on Raoul and Macauley islands, 

which have been extensively studied (Brothers and Martin, 1970; Brothers and Searle, 1970; Ewart et al., 1977; Lloyd 

and Nathan, 1981; Worthington et al., 1999; Smith et al., 2003a,b; 2006; 2009, Barker et al., 2012; 2013). Much work 

has been conducted on subaerial deposits, but little on those from the seafloor. 
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Figure 2.1.  Regional setting of the Tonga-Kermadec-TVZ subduction system. Relative 
plate motions (mm/yr) are represented by arrows, taken from Wallace et al., (2009) 
following from DeMets et al. (1994). The modern TVZ outline is taken from Wilson et al., 
(1995). The direction of sediment drift (Hikurangi fan drift) is adapted from Carter and 
McCave (1994) and Carter et al. (1996). The volcanoes in this study are outlined in squares. 
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The 2007 voyage of the RV Tangaroa collected both dredge samples from the seafloor surrounding Raoul and 

Macauley islands, as well as from a newly discovered volcanic edifice referred to as Raoul SW in this study 

(following Barker et al., 2012). Both of these volcanoes have produced large silicic eruptions during the Holocene, 

associated with caldera formation (Lloyd and Nathan, 1981; Lloyd et al., 1996). The tephra layers preserved in these 

cores will allow us to produce a more detailed picture of silicic volcanism in the region extending back to >50 ka, 

giving a detailed history of silicic volcanism in the region to be pieced together. Descriptions of the volcanoes are as 

follows.   

2.1.2 Raoul Volcano 

Raoul Island is located 1155 km north of Auckland (Worthington et al., 1999) and is the northernmost and largest 

subaerial exposure in the Kermadec arc. The island rises to 520 m above sea level and is the 29.4 km2 subaerial 

exposure of the larger Raoul stratovolcano, which has a volume of 214 km3 and dimensions of 28 by 20 km at the 

900 m isobath (Brothers and Searle, 1970; Ewart et al., 1977; Worthington et al., 1999; Smith et al., 2006). The island 

provides relatively detailed exposures of 8 eruptive groups (Lloyd and Nathan, 1981) dating back to ca. 1 Ma, 

ranging from the Boat Cove Formation (earliest) to more recent deposits (Table 2.1). 

 Early development of the stratocone was founded atop submarine volcanic and calcareous sediments, dated to ca. 1 

Ma, with the early formations consisting of basalt to basaltic-andesite successions. The early stages of volcanism on 

Raoul are tholeiitic basalts and basaltic-andesites, which dominated until 3.7 ka when silicic, caldera forming 

volcanism became more predominant (Brothers and Searle, 1970).  

The largest calderas, Denham and Raoul, are slightly elongated in the NE-SW direction, perpendicular to the 

principle extension axis of the Kermadec arc. Raoul Caldera has dimensions of 3 x 2 km2 and formed as a result of 

the Matatirohia and Oneraki eruptions; other formations erupted from this caldera are the Green Lake, Blue Lake 

and Tui Lake as listed in Table 2.1. Denham Caldera has dimensions of 6.5 x 4 km and >300 m depth and formed 

as a result of the voluminous Fleetwood eruption at 2.2 ka of ca. >8 km3 of dacitic material (Lloyd and Nathan, 

1981; Worthington et al., 1999; Smith et al., 2006).  

Volcanism from Raoul Volcano is relatively frequent, with numerous eruptions observed since the 1800s (Healy et 

al., 1965; Lloyd and Nathan, 1981). The onshore exposure records only the most recent subaerial eruptions, and 

only those which are large enough or erupted in favourable conditions to be preserved. To date ca. 15 km3 of dacitic 

material has been erupted since 3.7 ka (Worthington et al., 1999; Smith et al., 2006).  

EM300 mapping on the flanks around Raoul Island found evidence for mass wasting events with submarine 

landslides from large volume failures. Many of the flows observed were up to 1.5 km in width and had run-outs of 

up to 12 km (NIWA, 2007). Most of these flows originated from the shelf break at around 120 m water depth. Two 

new caldera volcanoes were discovered through the EM300 mapping, one to the NW and the other to the SW of 

Raoul Island. The north-western caldera has a diameter of 4 km, with caldera walls up to 1000 m high and displays 

evidence of hydrothermal venting (NIWA, 2007). The south-western caldera, Raoul SW, is outlined in section 2.1.4.  
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Formation Age 

(ka) 

Vent location Eruption description 

Ngaio Group  

   [2006 breccia]  Raoul Caldera  

   1964 breccia  Green Lake (Raoul caldera)  Phreatic 

   1872 (observed)  Green Lake (Raoul caldera) 

and Denham Caldera 

Phreatomagmatic 

   1814 (observed)  Denham Caldera Phreatomagmatic 

   Smith Breccia 0.18 Raoul Caldera Phreatic 

   Tui breccia (0.28) Raoul Caldera Phreatic 

   Sentinel 0.28 Denham caldera? Small pumiceous dacite 

   Rangitahua 0.37 Raoul Caldera Small; pumiceous dacite, pyroclastic cone 

   Meyer (0.5) Meyer Islands Small, scoriaceous basaltic andesite 

   Expedition breccia 1.1 Raoul Caldera Phreatic 

   Pukekohu breccia (1.25) Raoul Caldera Phreatic 

   Green Lake pumice 1.4 Raoul Caldera Medium, pumiceous dacite 

   Floated pumice  Raoul caldera Dacite pumice, floated from crater lake dome 

   Rayner (1.55) Raoul Caldera Small, pumicous dacite 

   Judith (1.85) Raoul Caldera Medium, scoriaceous basaltic andesite 

   Bell (2.05) Denham Caldera? Small pumiceous dacite 

   Fleetwood 2.2 Denham Caldera Voluminous pumiceous dacite, pyroclastic flows 

   Oneraki 3.15 Raoul Caldera Large, pumiceous dacite, pyroclastic flows 

   Matatirohia 3.7 Raoul Caldera Large, pumiceous dacite, pyroclastic flows 

Older Formations              Description 

Moumoukai (4 - 

10) 

Basaltic andesite flows and pyroclastic deposits, stratocone formed, now cut by 

Raoul caldera  

Hutchison 

 

(50 - 

100) 

Basaltic andesite flows, debris flows, fall and pyroclastic flow deposits. Stratocone 

built near current day Denham caldera 

D' Arcy 

 

(100 - 

200) 

Basalt and basaltic andesite flows with interbedded pyroclastic deposits 

 

Boat Cove 600 - 

1400 

Pillow basalt, hyaloclasite and calcareous sediments outcropping, possibly formed 

stratocones 

Table 2.1 Summary of eruptions from Raoul and Denham calderas. Adapted from Brothers and Searle, 1970; 

Lloyd and Nathan, 1981; Worthington et al., 1999; Barker et al., 2012. 

 

The age of the Boat Cove volcanics was determined using K-Ar dating. The ages for the Ngaio group were determined 

using 
14

C dating. Those eruptives of the Ngaio group with ages in brackets were determined taking into account 

paleosol thicknesses (Lloyd and Nathan, 1981). 
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 2.1.3 Macauley Volcano 

Macauley Island is situated approximately 100 km south of Raoul Island and represents the tip of an otherwise 

submerged caldera volcano. The island itself is relatively small (3 km2) when compared to the submarine edifice 

which occupies 380 km2 at the 900 m isobath (Figure 2.3: Lloyd et al., 1996). The highest part of the island is Mount 

Haszard at ca. 238 m above sea level. Macauley Island is situated on the southeast rim of the submarine Macauley 

Caldera, which has a ca. 12 km diameter and reaches depths of ca. 1.1 km (Lloyd et al., 1996). Access to the island is 

limited, as most of the shoreline consists of steep cliff sections.  These preserve a partial record of the erupted units, 

described by Brothers and Martin (1970) and summarised in Table 2.2. These cliff sections reveal that the pre-

caldera volcanic centre was subaerial and has erupted a variety of volcanic material (Brothers and Martin, 1970). 

North Cliff Aa lava flows are interpreted as forming an early stage of subaerial shield growth from a vent location 

just to the north of the island. The unit reaches up to 15 m above sea level, with much of the unit extending below 

sea level. Shortly after the effusive North Cliff Formation ceased, the Boulder Beach Formation was erupted as 

sequences of basaltic fall, surge and ballistic deposits (Lloyd et al., 1996). This phreatomagmatic style of eruption was 

succeeded by the Annexation Formation, which was a return to an effusive style of volcanism. Lavas of the 

Annexation Formation were erupted from just north of the island, and built the volcano to ca. 150 m height and 4 

km in diameter. Explosive episodes are represented by thin tephra units between lava flows. An abrupt switch in 

volcanism followed with the eruption of the dacitic Sandy Bay Tephra (SBT), represented by multiple ignimbrite 

flow units resting on lithic and ash beds (Smith et al., 2003a). The roughly bedded nature of the flow deposits 

indicates discontinuous eruption of the pyroclastic flows due to either multiple individual eruptions or episodic 

collapse of a continuous high eruptive column. Onshore distribution of the tephra deposits indicates a source to the 

north of the island, and the submarine caldera is thought to have been formed as a result of this eruption (Brothers 

and Martin, 1970; Lloyd et al., 1996; Smith et al., 2003b).  The Haszard Formation followed, producing mainly lava 

flows and a scoria cone in the early phase of the eruptives. Flank fissuring and effusive flows were succeeded by the 

strombolian eruptions of the Haszard scoria member, which escalated into perhaps a sub-plinian eruption, forming 

thick massive scoria deposits (Lloyd et al., 1996). The end of the Haszard Formation sequence was phreatomagmatic 

accompanied by partial sector collapse in the northern section of the crater.  

Onshore exposures show that the majority of the eruptives preserved are lava flows and tuff units which are 

relatively uniform high-alumina basalts or basaltic-andesite, with the exception of the SBT (Brothers and Martin, 

1970; Lloyd et al., 1996; Smith et al., 2003b). The SBT is a pumiceous, light grey vitric tuff that is the only silicic 

deposit recorded on the island. Composed predominantly of juvenile dacitic poorly sorted material, it is also 

inclusion rich, containing materials such as gabbros and glass cumulates thought be from older units (Brothers and 

Martin, 1970; Lloyd et al., 1996). Up to 100 m thick at the southern end of the volcano, the unit thins to 15 m in the 

north, due mainly to erosional processes (Lloyd et al., 1996). The eruption has been dated (using fossil carbon from 

vegetation in the lower units of the tephra) to 6.31 yr BP (Lloyd et al., 1996), an age which has been revised to ca. 5.7 

ka by Shane and Wright (2011). The carbon age obtained by Lloyd et al. (1996) is a conventional radiocarbon age, 

whereas Shane and Wright (2011) used planktic foraminifera in sediment cores to date the eruption. The accuracy of 

this will be addressed further in Chapter 5. 
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Table 2.2. Table of eruptive formations preserved on Macauley Island. Adapted from Brothers and Martin 

(1970) and Lloyd et al. (1996). 

  
Formation Eruption description 

   Grand Canyon 

Formation 

Thin sequence of sedimentary rocks deposited in Grand Canyon, consists of 

interbedded tuffs, sandstones, mudstones and volcanic sands.  

   Haszard Formation 

i. Parakeet Tuff 

member 

ii. Haszard scoria 

member 

iii. Cascade Lavas 

i. Thin, well bedded, partially welded tuffs, thickest surrounding Mt 

Haszard, 

ii. Single massive bed of scoriaceous basalt, deposited as a coarse volcanic 

ash (?), thickest surrounding Mt Haszard,  

iii. Overlies notable erosional unconformity, series of olivine basalt flows, 

plagioclase rich, flowed from vent source/s near Mt Cascade. 

   Sandy Bay Tuff Highly pumiceous grey vitric tuff, irregular bedding structures (subaerially erupted), 

inclusion rich (crystalline gabbros, glassy fragments, abraded boulders, fragments of 

older eruptives), overlies slight erosional unconformity, 60 bm thickness at Sandy Bay, 

thinning to the northwest. 

Perpendicular Cliff 

intrusion 

Internally irregular igneous intrusion (olivine basalts on eastern edge); could contain 

fragments of older eruptives. 

Annexation Lavas Gently dipping porphyritic vesicular olivine basalt flows, thin continuous flows 

separated by scoriaceous layers. 

Boulder Beach 

Formation 

Atop angular unconformity, interbedded coarse sandstone grits, conglomerates, breccias 

of volcanic debris. Interbedded, dyke fed lava flow.  

North Cliff Lavas Subaerially deposited, highly vesicular olivine basalt aa flows, horizontally deposited. 
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Eruption size estimates range from a minimum of 1-5 km3 (Lloyd et al., 1996) to a maximum of 100 km3 (Latter et 

al., 1992) the latter of which, if correct, would make the Sandy Bay eruption one of the largest globally during the 

Holocene (Latter et al. 2012). The accurate correlation of tephras in the marine cores studied here may offer 

additional constraints on the volume of the eruption, and also identify the distribution of material erupted. 

Previous EM300 mapping (TAN0205), combined with data collected on the TAN0706 voyage, reveal the complex 

bathymetry surrounding Macauley Island. Macauley Island itself represents less than ca. 5% of the volcanic edifice as 

illustrated in Figure 2.3. To the west of the island, the outer flanks of the edifice structure reveal sea-floor 

morphologies including mega-ripple bedforms up to 110 m in height which are concentrically orientated proximal to 

the caldera rim (NIWA, 2007). These bedforms are inferred to be associated with large-scale sector collapse and 

associated density flows. To the east, the sea-floor morphology indicates that the bathymetry of the pre-caldera 

edifice channelled pumice-laden density flows to the north, east and south (NIWA, 2007).  

2.1.4 Raoul SW 
Discovered via EM3000 multibeam mapping on the TAN0706 RV Tangaroa voyage in 2007, this unofficially named 

volcanic edifice is located to the southwest of Raoul Island (Figure 2.4). It forms a caldera structure ca. 4 km in 

diameter, with the caldera floor at water depths of ca. 1200 m and walls ca. 500 m high. Dredge samples recovered 

were fresh in appearance and the pristine morphology of the edifice suggests that it has been a site of recent 

explosive volcanism (Barker et al., 2012;2013). 
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Figure 2.4 Map showing the bathymetry surrounding Raoul Island and the newly discovered Raoul SW 
volcanic edifice. a). Location of Raoul SW in relation to Raoul volcano. b). Bathymetric map of Raoul SW, 
with the locations of the dredge hauls from the RV Tangaroa TAN0706 voyage indicated by red lines and 
labelled by dredge number. Adapted from Barker et al. (2012) 

(b) 
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2.2 Site setting and influences on tephra dispersion 

 

As the Kermadec arc is relatively isolated, few studies have investigated the oceanographic or atmospheric 

conditions in any detail. As such, much of what we know of those conditions in the region is inferred from more 

detailed studies conducted closer to the New Zealand continent. The SW Pacific Ocean is heavily influenced both 

by Antarctica and the equatorial Pacific regions, resulting in dynamic atmospheric and oceanic conditions.  Ocean 

currents from Antarctica bring cool water into the region, where it mixes with warm water transported from 

equatorial regions (Figure 2.5). At depth currents are reasonably weak, but can be locally intensified due to 

bathymetric controls. Atmospheric conditions are controlled by Hadley Cell circulation, with the prevailing winds in 

the region being easterlies. The region is also strongly affected by the El Nino Southern Oscillation (ENSO) climate 

modes, the strength of which varies on 3 – 7 year timescales and is controlled over a longer timescale by the 

Interdecadal Pacific Oscillation and potentially the present warming phase  (Ummenhoffer and England, 2007; 

Carter et al., 2008; Gomez et al., 2012). Understanding winds and ocean currents in the region is important to 

understand when interpreting the tephrochronology and for identifying preferential transport directions of tephra 

dispersal.  

2.2.1 Currents and water masses 
From examing studies conducted in the southern Kermadec arc we can reasonably assume that localised currents 

around the seamounts affect the distribution of sediments in the region, which may have important ramifications for 

tephra deposition and dispersal. Images published by Wright (1996; 2001) show that around the southern Kermadec 

arc seamounts localised bottom-currents form winnows and ripple structures down to water depths of ca. 2200 m. 

However as all of the cores in this study, with the exception of Core 3, are collected from > 2200 m, I conclude that 

the cores are unaffected by this process.  

2.2.1.1 Present day settings 

Past studies in the region have shown that there is at present no dominant current in the areas surrounding Raoul 

and Macauley islands. The influence of the Deep Western Boundary Current (DWBC) is largely restricted to the 

Kermadec Trench in water depths >2000 m (Whitworth et al., 1999). The Tasman Front flows into the southern end 

of the Havre Trough–Kermadec arc system and the East Auckland Current eddy does not extend that far north 

(Wright et al., 1995; Tilburg et al., 2001; Wright, 2001). In the southern Havre Trough – Kermadec arc system 

differing water bodies dominate at depth: between 2200 – 2500 m depth upper circumpolar deep water (UCDW) 

entrained within the DWBC is evident, and interfingers in sills with the North Pacific deep water (NPDW) at depths 

of 1200 – 1400 m and 2200 – 2500 m depth (Wright et al., 1995).  The generalised trend of the low velocity currents 

in the area are to the north, meaning that if currents do play a role in tephra dispersal in the region one would expect 

a small north trending pattern to emerge from marine core records. Data presented by Thiede et al. (1997) contradict 

this, however, and they conclude that the surface currents in the study area flow southwards. The recent pumice raft 

erupted from Havre has been observed hundreds of km’s from source. Much of the material has floated in a NW 

direction, towards Tonga; however some material has been observed well to the south of Havre (Richard 

Wysoczanski, pers comm.). Currents in the region can therefore disperse material from an eruption in variable 

directions.  The lack of high velocity currents in the region indicates that the main control on the directional 
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dispersal of subaerially transported tephras is wind direction aided by rapid settling as discussed in Chapter 1 (Carter 

et al., 2003).  

A comprehensive study by Wright (2001) on the submarine volcanoes of the Kermadec arc from 340 50’ S to 360 50’ 

S found that currents in the region were controlled mainly by the East Cape eddy, an offshoot of the Tasman Front. 

The East Cape eddy has surface speeds varying from ca. 30-40 cm/s, dropping to ca. 10 cm/s at 1000 m water 

depth (Wright, 2001). The influence of this eddy decreases at ca. 2000 m water depth, where limited amounts of 

water from the DWBC spill into the southern Kermadec arc (Warren et al., 1994; Wright, 2001). At depths of up to 

ca. 1800 m Wright (1996; 2001) observed bedforms associated with current flow, such as sediment winnowing, 

ripples and scour textures. It is possible that some of these processes may act in the region that the cores in this 

study were sourced from, however, all of the cores were collected from water depths of >2100 m, at which current 

velocities are low, so it is unlikely that any major bedform development or sediment transport processes have taken 

place.  

Sediment deposition occurs as the (DWBC) flows around the Chatham Rise, turning North into the Hikurangi 

Trough through Valerie Passage and subsequently flowing into the Kermadec Trench (Carter and Mitchell, 1987; 

Carter and McCave, 1994; Hall et al., 2001). The DWBC changes flow paths and depositional and erosional zones 

during glacial/interglacial cycles, the current itself intensifying in both inflow and ventilation into the Pacific region 

during glacial cycles (Hall et al., 2001). The current entrains large amounts of sediment, and large depositional 

sediment drifts are located along the fringes of the flow in many areas. Before passing into the Kermadec Trench 

the DWBC entrains sediment flowing through the Hikurangi Trough and mobilises it northwards, but thickened 

sediment only occurs as far North as 350 S (Carter and McCave, 1994; Carter et al., 1996). The majority of the 

Kermadec Trench sea floor shows minimal evidence of sediment, and what sediment is present there is likely to be 

subducted rather than forming an accretionary prism. Channels feeding sediment into the DWBC increase their 

input during glacial cycles due to increasing terrigenous erosion. 

Volcanic material erupted from the Taupo Volcanic Zone is incorporated into the DWBC as it rounds the northern 

tip of the Chatham Rise (Carter et al., 1996). As noted earlier the main depositional centre for this airborne material 

is to the East of the North Island, but it is possible that some material is transported further North. Material from 

an eruption of significant magnitude and duration could potentially be preserved as a distinct layer in these cores, 

but it is unlikely that material from smaller eruptions would be preserved as a distinct layer; it is possible that there 

will be numerous shards from these smaller TVZ eruptives preserved in the cores.  

 

2.2.1.2 Glacial/interglacial cycles 

During the glacial periods, deep sea records indicate that sea surface temperatures (SST) in the region 300 – 450 S in 

the Tasman Sea were 20C colder when compared to present-day temperatures (Wright et al., 1995; Weaver et al., 

1998), and were 40C colder in the southern Havre Trough (Weaver et al., 1998).  These temperature decreases reflect 

the colder glacial climate but may be enhanced locally by increased upwelling of cool bottom waters in response to 

increased glacial wind speeds (Schulmeister et al., 2004).  Current systems changed positions also at 13.5 ka, with the 

Tasman Front entering into the Pacific at 320S, 60 North of its current position (Carter et al., 2008). Cooling 

occurred in the southern Havre Trough at ca. 11 ka, followed by warming at ca. 8 ka before the waters again cooled 

to present day temperatures (Weaver et al., 1998). From this we can extrapolate similar timings and events further 
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North in the cores studied here, but the intensity of the fluctuation may vary in light of the stronger subtropical 

influence in the study area. As Carter et al. (2008) noted, the impact of the Antarctic Cold Reversal (14.5 to 12.5 ka) 

was ameliorated at 40°S by the subtropical inflow. Hence such Antarctic forcing of the ocean/climate in the study 

area is likely to be even more subdued. Changes in currents during glacial cycles is important to note, as it may affect 

tephra dispersal to the cores, as well as the sedimentation rate (as alluded to above) which will affect the accuracy of 

tephra ages calculated using sedimentation rates.  

2.2.2 Wind dynamics 
The Kermadec arc straddles the transition zone between Hadley Cell circulation north of 300 S and Ferrel Cell 

circulation south of 300 S (Sturman and Tapper, 2005) (Figure 2.6).  

2.2.2.1 Present day settings  

Dominant westerly trade winds to the south are associated with Ferrel Cell circulation and South East trending trade 

winds to the north are part of the Hadley cell circulation (Figure 2.6). Within the study area complex wind patterns 

are evident, controlled by seasonal wind patterns and ENSO. At latitudes of ca. 300 S westerly winds are dominant as 

cooled tropical air descends towards the surface in this subtropical high pressure belt. The winds at the top of the 

Hadley cell can reach up to 200 km hr-1 in the subtropical jet streams before descending to the surface (Sturman and 

Tapper, 2005).  The mean maximum velocity of 60 m/sec in the jet stream occurs in winter at around 13.7 km 

height and slows to 23 m/sec in February (Maunder, 1971) due to increases in the temperature gradient 

(Schulmeister et al., 2004). This region is an area of high air pressure due to the descending air, so often the winds 

are variable and light. On Raoul Island the average yearly wind speed is ca. 12 km hr-1 (weather2, 2012). In summer 

months, the study area is an area of high pressure with south-easterly trade winds while in winter it is an area of low 

pressure with southwesterlies (Rasmussen and Carpenter, 1982; Salinger et al, 1995; Thiede et al., 1997). 

Some direct measurements of the wind speed and atmospheric structure above Raoul Island are presented in Tables 

2.3 and 2.4, which were collected during the period from November 1973 – September 1979 (Reid and Penney, 

1982). The upper level atmospheric measurements were collected using either a theodolite or laser tracking of a 

hydrogen filled balloon.   

2.2.2.2 Climate variability  

Wind intensity fluctuates between glacial/interglacial cycles, with more intense winds inferred to occur during glacial 

periods due to increasing temperature gradients between the poles and the equators. During glacial periods the 

winds north of the Chatham Rise are thought to reduce in intensity and the prevailing westerly winds shift 

northwards by 7-10o in response to changing circulation patterns (Toggweiler et al., 2006). Over the Kermadec 

islands the prevailing winds swing around to prevailing north to northwest winds (Weaver et al., 1998).  
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Figure 2.5. Oceanography of the southwest Pacific Ocean around New Zealand and the Kermadec Ridge. 
The elements shown are the Tasman Front, East Auckland Current (EAUC), East Cape Eddy (ECE), East 
Cape Current (ECC), the Deep Western Boundary Current (DWBC) and the Sub-Tropical Front (STF) 
along with known surface water currents (Carter et al., 1995; Tilburg et al., 2001; Carter et al., 2003; Carter 
et al., 2008). Outline of the Taupo Volcanic Zone taken from Wilson et al., 1995. Image courtesy of NIWA.  
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Mean wind speed (m/s) at varying pressures above Raoul Island 

LEVEL 

(mb) 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Mean 

900 7.9 9.3 9.0 9.4 8.6 10.1 9.1 9.8 8.6 7.6 7.3 7.1 8.7 

800 7.0 6.5 6.7 8.0 8.5 10.6 11.2 11.0 9.5 8.6 6.6 6.8 8.3 

700 7.4 6.9 6.6 8.5 9.9 12.3 13.9 13.6 11.5 10.7 7.5 7.6 9.6 

600 8.7 7.9 7.6 10.5 13.2 16.9 19.0 18.9 16.0 14.3 9.5 9.5 12.5 

500 10.9 10.0 10.3 14.0 19.1 24.5 26.3 26.8 22.4 18.9 13.4 12.7 17.1 

400 14.9 13.3 14.2 19.3 25.4 33.5 36.3 37.6 31.0 24.9 18.3 16.6 23.2 

300 19.0 19.1 19.6 25.6 35.3 44.1 48.8 47.6 40.8 33.2 25.9 22.5 30.4 

200 22.7 24.4 23.5 29.3 42.3 46.4 48.3 45.3 41.7 36.6 31.2 26.8 32.2 

100 9.4 9.7 10.1 11.0 18.0 17.7 19.2 17.5 11.5 12.1 12.3 11.7 11.6 

Measured Heights at differing pressure levels at Raoul Island 

Pressure (mb) 500 400 300 200 150 100 

Height (km) 5.8 7.4 9.5 12.2 14.0 16.5 

Figure 2.6 Diagram illustrating the circulation dynamics of the Southern Hemisphere (Sturman and 
Tapper, 2006) 

Table 2.3.  Table displaying mean wind speeds at varying pressure levels above Raoul Island from the 
period November 1973 - September 1979. Taken from Reid and Penney (1982). 

Table 2.4. Table summarising the measured heights of differing pressure levels recorded at Raoul 
Island. Data from Reid and Penney (1982). 
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Interannual climate variability over the study area is dominated by the effects of ENSO which have direct and 

measurable impacts on climatic and oceanic conditions in the study area although the signal is much softer than 

areas closer to the equator (Karoly, 1989; Salinger et al., 2001). During El Nino years there is increased precipitation 

in the study area, and prevailing north-easterly winds (Rasmussen and Carpenter, 1982; Ummenhofer and England, 

2007). During the strong ENSO event of 1982-1983, winds fluctuated from south-easterlies in winter of 1982, to 

south-westerlies in the summer months then changed again to north-westerlies in autumn of 1983 at heights of ca. 

1.5 km (Rasmussen and Wallace, 1983). Winds speeds associated with an ENSO event are up to ca. 50 m/s-1 in the 

troposphere at heights of ca. 12 km (Karoly, 1989). During ENSO events the distribution of tephra is likely to be 

different to a normal year; however the resolution of this study is not high enough to distinguish these events.  

Other climatic signals evident in the area are the effects of the Interdecadal Pacific Oscillation (IPO) and the 

Southern Oscillation (SO) which moderate the intensity of ENSO (Salinger et al., 2001). ENSO is a complex two-

way cycle between the atmosphere and ocean whereby weakening of the southeast trade winds causes a decrease in 

upwelling rates along the eastern Pacific, resulting in increased SST’s which influences atmospheric conditions 

further (Cane, 1983).  

 

 

 

  

Page 30



 
 

 

Chapter 3 

Methods 
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3.1 Sample Collection 

 

On board the R.V. Tangaroa each core was split in two: the working split core and the reference core. 

Prior to and post analysis the reference split of the core is kept in cold storage to enhance preservation. 

Non-invasive (or non-destructive) analyses, which included visual logging, geophysical techniques and 

imaging, were carried out on the reference core.  Following these analyses the reference core was sealed 

for future reference. Based on the results of non-invasive analyses, sampling of the working split core was 

conducted. Sediment, foraminifera and tephra samples were then processed and analysed as described 

below. An outline of the analytical methods used is summarised in Figure 3.1 

Figure 3.1 Flow chart illustrating the methods used to create a detailed core stratigraphy. Non 
invasive analyses were conducted on the reference split of the core and invasive analyses (sampling) 
were conducted on the working split of the core.  
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3.2 Non-invasive methods 

 

All data collected using the methods below are illustrated in Appendix B and methods except for the core 

descriptions are represented in Figure 3.2.  

3.2.1 Photography  

Photographs of the cores were taken using a mounted SLR Olympus Camedia E-20 camera with an ED 

lens, 4.0 times zoom and 5.0 megapixels. The images were processed using Adobe Photoshop Elements 

2.0.   

3.2.2 Core descriptions 

Detailed descriptions were conducted on each core, identifying different units within each core and 

noting any interesting structures. Colour was identified using the Munsell colour chart. All core 

descriptions can be found in Appendix B.  

3.2.3 Magnetic susceptibility 

Magnetic susceptibility measurements were collected using a Magnetic Susceptibility Meter (model MS2), 

produced by Bartington instruments of Oxford, England. Measurements were collected every 2 cm to 

avoid overlapping data, and processed on an Excel spreadsheet provided by NIWA.  

3.2.4 Spectrophotometer 

Measurements were collected using a Minolta Spectrophotometer CM-508D (Version 2.05) in Munsell 

mode with the white calibration set to 90.00 (L*). Measurements were collected at 2 cm intervals along 

the core to avoid overlapping data. The raw data was processed using an excel spreadsheet developed by 

staff at NIWA. 

3.2.5 X-Ray 

The reference split from the cores was X-rayed using the facilities at NIWA. The core splits which are 

approximately 5 cm in thickness were X-rayed in 30 cm lengths using a Varian PaxScan 4030E flat panel 

imaging system and an Ecotron EPX-F2800 portable veterinary X-ray generator. Typical energy settings 

for this study were 100 kVp and 6.4 mA. Exposure and grey-level mapping were controlled using 

proprietary Varian software (ViVA 2.0, Revision L.04) to produce images similar to the one shown in 

Figure 3.2.  
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Figure 3.2 Example of an image displaying the non-invasive method results used in determining core 
stratigraphy 

Physical properties from non-invasive analysis (TAN0706 – 13) 
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3.3 Invasive methods – sediment and foraminifera 

 

Physical sampling of the cores was undertaken to prepare samples for analysis by several analytical 

methods (Figure 3.1). Samples consisted of sediment, foraminifera and tephra.  

3.3.1 Sample collection  

Sediment samples were collected from hemipelagic zones identified by core descriptions at 3, 4 or 5 cm 

intervals depending on the published sedimentation rate of the core (Shane and Wright, 2011).   

3.3.2 Grain size sieving preparation and analysis  

The hemipelagic sediment samples were weighed into beakers, and the dry weight recorded. They were 

then filled with distilled water, shaken, and left to soak overnight. They were then ultrasonicated for a few 

minutes, before being emptied into a sieve set (140 µm and 60 µm mesh sizes) and rinsed using distilled 

water. When the water ran clear, the samples (in their sieve fractions) were swilled into folded filter paper, 

and the water drained off. The <60 µm fraction was rinsed further, with the mud being decanted. The 

leftover material was then swilled into filter paper. The samples were put into an oven at 400C and left to 

dry overnight. They were then emptied into labelled acid washed plastic bottles.  Each fraction was 

weighed once in the bottle, and the weights corrected using an Excel spreadsheet.  

3.3.3 Laser grain size analysis 

Approximately 6 g of sample was inserted into a beaker filled to ¾ full with washing solution. The beaker 

was shaken then ultrasonicated for ca. 15 seconds. The sample was then washed into the machine using 

distilled water. The machine used was a LS 13 320 Laser Diffraction Particle Size Analyser with an 

Aqueous Liquid Module attached. An auto rinse with an average time of 152 seconds was conducted 

between samples and if the obscuration value was still high another rinse was conducted. Run settings 

were set to 90 seconds.  

3.3.4 Calcium carbonate analysis 

Using small foil dishes (tared) and the Mettle PC 200 balance, 0.333 g of dried sediment was weighed out. 

The sediment was then ground, using a mortar and pestle until the grain size was homogenized. The 

sample was then redried and reweighed.  

Using small foil dishes (tared) and the Mettle PC 200 balance, 0.333 g of dried sample sediment was 

weighed out and inserted into the carbonate test tube. The same was done for two CaCO3 standards for 

each run, the standard used being AnalaR from BDH chemicals which is pure, minimum assay 99.5%. 

The rim of the tube was wiped with paper tissues and 5 drops of distilled water added to prevent puffing 

when the acid was introduced. Using a syringe, approximately 3 ml of 70% orthophosphoric acid was 

inserted into the side arm of the tube, taking care not to drip any acid on the sediment below. O rings 

coated in silicone grease were put on the bomb, followed by the bomb lid. A clamp was applied to ensure 
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a vacuum could form, and all bomb lids were closed. Measurements were conducted using a standard 

method summarised in Muller and Gastner (1971) and Dunn (1980).  The results were entered into an 

Excel spreadsheet supplied by NIWA and the percentage carbonate calculated.  

3.3.5 Foraminifera 

A variety of foraminifera species were present in the marine cores. A brief description of characteristic 

habitats of the species used for oxygen isotope analysis is given in Table 3.1.  

Foraminifera samples were washed using a 60 µm nylon sieve and distilled water until the water ran clear. 

They were washed into filter paper and dried overnight at 400C. After washing, the >60 µm fraction of 

each mixed hemipelagic and tephra sample was examined for foraminifera. If present, the planktic species 

of Globigerina bulloides, Globorotalia inflata and Globigerinoides ruber, along with the benthic species of Uvigerina 

peregrina and Cibicidoides wuellerstorfi were hand-picked under a binocular microscope (see Table 3.1). For 

the planktic species which were more abundant, > 10 specimens were picked. Benthic species were 

present in lesser abundances and those present were picked.   

Individual species from each sample were then washed and separated by picking individual species with a 

fine artist’s brush and placing them into a 10 mL Teflon tube containing MilliQ water. A 10 mL Teflon 

pipette was used to remove all water, and the tube was filled again with MilliQ. This was repeated once 

more before the tube was semi-immersed in a sonic bath for up to 3 seconds. The water was again 

pipetted out and the sample flushed with MilliQ. Each individual foraminifera was then picked and placed 

back into the sample holder.  

3.3.6 Oxygen isotope analysis 

The use of oxygen isotopes in stratigraphic studies was pioneered by Urey (1947) and continued by 

Emiliani (1955). The general principle upon which this stratigraphic tool is based is that oxygen isotopic 

fractionation between water and calcite during carbonate formation is temperature dependent. Positive 

values indicate enrichment in the heavier isotope (δ18O) and negative values indicate enrichment in the 

lighter isotope (δ16O) relative to Vienna Pee Dee Belemnite (vPDB). Isotope values are presented in delta 

notation (δ) using Equation 3.1. It then follows that the oxygen isotopic value of measured foraminiferal 

calcite depends on the formation temperature and the isotopic composition of the water in which cacite 

precipitation occurred (Jansen, 1989). The isotopic composition of the formation waters varies between 

glacial and interglacial cycles, and this allows the correlation of measured isotopic compositions and 

variations to that of global and locally recorded isotopic variations therefore giving us an approximate 

age. More than one species was used in this study order to construct a complete history, following Jansen 

(1989).   

Equation 3.1 Equation used to determined the oxygen isotope ratio (Emiliani, 1955) 
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Planktic Benthic 

Globigerina bulloides Globorotalia inflata Globigerinoides ruber Uvigerina peregrina Cibicidoides wuellerstorfi 

Characterises upwelling 

conditions; found above 400 m 

water depth, but mainly above 

the thermocline; borderline 

between spinose and non-

spinose species, calcifies during 

spring. 

Transitional to subpolar 

species; encrusted by smooth 

calcite deposit; reflect 

temperatures at 100–400 m 

depth. 

Shallow water dweller; tropical 

to sub-tropical species, 

calcifies in summer. 

Dwells at depths from 

50-5000 m, infaunal 

species dwelling in 

bottom sediments at ca. 

150 mm depth   

Dwells at depths of 400-3000 

m.; epifaunal species living in 

bottom sediments at ca. 10 mm 

depth or attached to substrates 

above the sediment surface 

Hemleben et al., 1989; Ganssen 

and Kroon, 2000 

Hemleben et al., 1989; Ganssen 

and Kroon, 2000 

Hemleben et al., 1989; 

Ganssen and Kroon, 2000; 

Thiede et al., 1997 

Hayward et al., 2001; 

Hayward et al., 2010 

Hayward et al., 2001 ; Hayward 

et al., 2010 

Table 3.1 Table displaying information on the appearance and habitat of each of the foraminifera used in this study. Note the distinction between the epifaunal 

planktic foraminifera and the infaunal benthic foraminifera.  
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Foraminifera samples were analysed at NIWA Greta Point, Wellington using an automated individual-

carbonate reaction (Kiel III) device coupled with a Finnigan MAT252 mass spectrometer. The samples 

were first reacted with 3 drops of H3PO4 at 75°C before being analysed. The internal precision of 

measurements is 0.02-0.08‰ for δ18O and 0.01-0.06‰ for δ13C, external precision is 0.03‰ for δ18O and 

0.02‰ for δ13C relative to vPDB. All values reported are relative to vPDB where δ13C has a value of 

+1.95‰ and δ18O has a value of -2.20‰ for NBS19 calcite. 

 

3.4 Invasive methods – tephra 

 

Tephra samples were collected based on information gained from the non-invasive methods described 

above, the most important being the X-ray imaging and magnetic susceptibility measurements which 

most clearly identified areas of potential tephra. Samples which were tephra rich were collected from a ca. 

1 cm x 1 cm area. Those which were less tephra rich were collected from a ca. 2 cm x 1 cm area.  

3.4.1 Tephra sample preparation 

Tephra samples were prepared for analysis following the methods used by Allan et al. (2008) adapted from 

Froggatt (1983). The samples were rinsed into beakers using deionised water and placed into an ultra-

sonic bath for >30 seconds. The muddy water was then decanted off and the process repeated until the 

water was mostly clear. The samples were then wet sieved through nylon mesh sieves of 140 µm and 60 

µm using distilled water. The size fractions were washed from the sieves onto filter paper and dried 

overnight at 400C. Between each sample the mesh was rinsed and placed in the ultrasonic bath for >3 

minutes to remove any particles. The cleaned samples consisted of mainly glass shards, with minor 

amounts of crystals, foraminifera and diatoms in varying proportions.  

Epoxy mounts were made by mixing epoxy resin and hardener at a ratio of 3:1 and then poured into 

standard plastic moulds and left to cure overnight. Six holes were drilled into each epoxy resin mount and 

the tephra samples were subsequently mounted, taking care to avoid any cross-contamination. The 

mounts were then polished using 250-4000 grit silicon carbide paper and 3 µm and 1 µm liquid diamond 

suspensions on a polishing lap. Finally a 25 µm carbon coating was applied before EPMA analysis to 

ensure the surface was conductive.  

For LA-ICP-MS analysis the epoxy mounts were polished using 1 µm liquid diamond suspension to 

remove the carbon coating and cut into halves. The mounting process is illustrated in Lowe (2011).   
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3.4.2 Electron Probe Microanalyser 

Major and minor element analysis was conducted on a JEOL JXA 8320 Superprobe electron probe 

microanalyser (EPMA) at Victoria University of Wellington (VUW). The EPMA is equipped with an 

energy dispersive X-ray spectrometer (EDS), 5 wavelength dispersive X-ray spectrometers (WDS), and 

detectors able to image in backscattered electron (BSE) and secondary (SEI) mode. 

EPMA analyses were undertaken on 32 mm epoxy discs each containing six samples, or 3 samples if they 

were cut to a half moon shape illustrated in Figure 3.3. All analyses were conducted using WDS. 

International standards of similar composition to the material being analysed were used to calibrate the 

EPMA for quantative analyses and to measure any machine drift. The standards used were Smithsonian 

standards VGA99 and VG-568 (Jarosewich et al., 1980), and the MPI-DING standards T1-G and ATHO 

(Jochum et al., 2006) for SiO2, Al2O3, TiO2, FeO, MnO, MgO, CaO, Na2O, and K2O. The Smithsonian 

standard Scapolite R6600-1 (Jarosewich et al., 1980) was used to calibrate for Cl. Analysis of glass shards 

used an electron beam defocused to 10 µm, a beam current of 8 nA to reduce the effects of alkali-

migration during irradiation and an accelerating voltage of 15 kV. Major element oxide concentrations 

were calculated using the ZAF method, where Z is the mass number, A is the absorption and F the 

fluorescence and are used to correct for matrix effects which report incorrect major element 

concentrations. A minimum of 12 shards were analysed per tephra sample to accommodate bimodality, 

heterogeneity or inherited glass shards. In some samples the shard sizes were not large enough to 

accommodate the spot size, resulting in less shards being analysed.  A minimum of 5 shards per sample 

were analysed. A BSE (Figure 3.4) was taken of each sample so that each glass shard analysed for major 

elements could also be analysed for trace elements using the LA ICP-MS as an internal standard (i.e. a 

measured amount of an element) must be used to correct the data (Allan et al., 2008) 

Figure 3.3 Carbon coated epoxy mount (left) ready for analysis using 
EPMA, and an epoxy mount ready for LA ICP-MS analysis (right). 
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Secondary standards were analysed together with sample glass shards (approximately one standard to ten 

sample shards) to monitor for machne drift and test for precision and accuracy. The results of standard 

analyses are given in Table 3.2. Note that the 2σ precision values decrease for those elements which have 

lower concentrations (e.g. Cl is only just above detection limit in most standard glasses analysed, so the 

mineral scapolite was used as a standard). In general the results show high levels of precision and 

accuracy. 

3.4.2.1 EPMA glass shard major and minor element analytical precision and 

accuracy 

Calibrated standards (Tables 3.2-3.5) were run as unknowns every ca. 20 analyses to measure instrumental 

drift (if any present) and to monitor the accuracy and precision of the measurements. The results of these 

analyses show that the machine was stable, and the results are plotted in Tables 3.2 - 3.5. These tables 

display the 2σ analytical precision calculated from numerous analyses of the calibrated standards. Note 

that the 2σ precision values decrease for those elements which have lower concentrations. As the glass 

standards all yielded low precision values for Cl, an additional standard, Scaptolite was analysed which has 

higher concentrations of chlorine and all Cl values presented here have been corrected using this 

standard. Analytical totals for individual glass shards ranged from 85% to 105%, but only glass shards 

with totals between 93-103% have been included in the dataset. Samples with low totals are unrealistic 

and most likely result from hitting epoxy during analysis. A correction factor was applied to the major 

element data in order to correct for instrument drift within the EPMA.  

A correction factor was calculated for each individual analysis session and applied to the data collected 

during that session only (Table 3.6). The average major element compositions and the precision of 

individual glass shards from each tephra layer are presented in Appendix C. For samples in which there 

was bimodality in the glass shard population, a separate average has been calculated and attributed to the 

population.  
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Figure 3.4 Images showing two tephra samples taken in BSE mode,  highlighting the differences in tephra shard size between samples. The image on the left 

is sample 13-26 which has larger glass shards than sample 1-87 on the right. The smaller images show laser pits generated by the LA ICP-MS. Glass shards in 

sample 1-87 are much smaller than in 13-26, and the pit has ablated most of the shard, and potentially ablated through the shard to the material underneath.  

A B 
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ATHO standard (n = 167 )                 

  SiO2 Al2O3 TiO2 FeO MnO MgO CaO Na2O K2O Cl 

Average 75.95 12.24 0.23 3.22 0.07 0.08 1.77 3.33 2.67 0.04 

Maximum 78.93 12..72 0.26 3.54 0.13 0.15 1.83 4.05 2.81 0.06 

Minimum 74.33 11.84 0.20 2.90 0.00 0.06 1.66 3.02 2.44 0.00 

2σ 2.18 0.41 0.03 0.26 0.04 0.04 0.10 0.83 0.13 0.02 

% 2σ  2.89 3.70 27.72 9.90 83.27 66.49 6.26 31.09 5.02 81.15 

Reference value  75.60 12.20 0.25 3.27 0.10 0.10 1.70 3.75 2.64 0.04 

% offset 0.46 0.39 -9.80 -1.46 -30.18 -13.59 4.11 -11.04 1.40 -6.97 

VG568 standard (n = 162 )                   

  SiO2 Al2O3 TiO2 FeO MnO MgO CaO Na2O K2O Cl 

Average 76.98 12.05 0.05 1.04 0.02 0.02 0.49 3.48 4.83 0.10 

Maximum 79.77 12.59 0.09 1.52 0.07 0.08 0.64 3.93 5.06 0.14 

Minimum 73.54 11.81 0.00 0.31 0.0 0.00 0.36 2.28 4.07 0.00 

2σ 1.45 0.31 0.05 0.29 0.03 0.03 0.12 0.55 0.36 0.04 

% 2σ  1.89 2.60 105.84 26.00 184.75 149.67 18.85 15.85 7.63 45.37 

Reference value  76.96 12.17 0.08 1.08 0.02 0.03 0.45 3.52 4.93 0.10 

% offset 0.03 -0.96 -37.50 -3.51 0.00 -16.66 10.00 -0.99 -1.96 -0.29 

Table 3.2 EPMA precision and accuracy for the international glass standard ATHO measured in this study. The reference value is 

taken from Jochum et al. (2006) and these values as well as the mean and the 2σ values are reported in wt.%. Standard values are 

averaged across all analyses. 

Table 3.3 EPMA precision and accuracy for the international glass standard VG568 measured in this study. The reference value is 

taken from Jarosewich et al. (1980) and these values as well as the mean and the 2σ values are reported in wt.%. Standard values are 

averaged across all analyses. 
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T1-G standard (n = 166 )                   

  SiO2 Al2O3 TiO2 FeO MnO MgO CaO Na2O K2O Cl 

Average 59.27 17.05 0.72 6.35 0.10 4.12 7.04 3.20 2.00 0.01 

Maximum 59.58 17.35 0.77 6.87 0.15 4.59 7.28 3.48 2.09 0.03 

Minimum 57.85 16.71 0.68 5.95 0.00 3.49 6.79 2.28 1.82 0.00 

2σ 2.13 0.49 0.04 0.37 0.04 0.64 0.22 0.35 0.11 0.01 

% 2σ  3.59 2.89 5.60 5.92 49.82 16.59 3.23 11.12 5.68 119.02 

Reference value  58.60 17.10 0.75 6.44 0.12 3.75 7.10 3.13 1.96 0.01 

% offset 1.15 -0.26 -4.23 -1.28 -14.96 9.89 -0.83 2.42 2.50 -2.65 

VGA99 standard (n = 60 )                 

  SiO2 Al2O3 TiO2 FeO MnO MgO CaO Na2O K2O Cl 

Average 51.74 12.58 4.12 13.26 0.17 5.39 9.24 2.79 0.85 0.02 

Maximum 53.25 12.89 4.27 13.54 0.22 5.89 9.44 3.00 0.87 0.03 

Minimum 50.11 12.10 3.97 13.07 0.14 4.78 9.04 2.46 0.79 0.01 

2σ 2.14 0.51 0.16 0.32 0.04 1.56 2.41 0.2 0.04 0.01 

% 2σ  4.15 4.08 3.91 3.82 23.70 12.78 2.34 8.34 4.69 61.57 

Reference value  51.01 12.47 4.12 13.35 0.20 5.05 9.23 2.68 0.84 0.02 

% offset 1.43 0.88 0.09 -0.66 -14.00 6.89 0.17 4.40 1.19 17.07 

Table 3.4 EPMA precision and accuracy for the international glass standard T1-G measured in this study. The reference value is taken from 

Jochum et al. (2006) and these values as well as the mean and the 2σ values are reported in wt.%. Standard values are averaged across all analyses. 

Table 3.5 EPMA precision and accuracy for the international glass standard VG-A99 measured in this study. The reference value is taken from 

Jarosewich et al. (1980) and these values as well as the mean and the 2σ values are reported in wt.%. Standard values are averaged across all analyses. 
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Table 3.6 Correction factors calculated for individual analysis sessions to correct for machine drift. 

 

3.4.3 Laser Ablation Inductively Coupled Mass Spectrometry 

Trace element compositions of individual glass shards were measured using an Agilent 7500CS octopole 

ICP-MS at Victoria University of Wellington. The minor and trace elements analysed are presented in 

Table 3.7 along with the analytical conditions. Internal standards used for this study were Si (29Si) and Ca 

(43Ca), which were determined from EPMA analysis. Due to conflicting results from mono-isotopic 

measurements of some elements, multiple isotopes for some elements (86Sr, 88Sr, 90Zr, 91Zr, 151Eu, 153Eu) 

were measured in later runs to provide confidence in trace element measurements. Standards were run in 

between each sample to measure for any machine drift. 

Laser ablation analyses were generally attained using a 35 µm static spot in order to counterbalance low 

sensitivity at a repetition rate of 5 Hz and laser power at 85%. Further machine parameters are presented 

in Table 3.7. Three different calibration standards were used. ATHO was initially used for tephra layers 

with SiO2 compositions > 63%. Many of these samples had to be reanalysed however due to machine 

fluctuation compromising the data. When these samples were re-run, NIST612 (Jochum et al., 2011) was 

used as a calibration standard. For tephra layers with SiO2 contents <63%, BCR-2G was used. Si was 

used as the internal standard for samples with SiO2 contents > 63%, as Ca was low in abundance in the 

more evolved glasses. Ca was used as the internal standard for samples with SiO2 contents <63%. 

 

  

Correction 

Factor SiO2 Al2O3 TiO2 FeOt MnO MgO CaO Na2O K2O Cl 

A 1.00 0.99 1.08 1.00 1.00 0.88 1.00 1.07 0.98 0.72 

B 1.00 1.02 1.07 1.05 1.47 1.02 1.01 0.94 1.02 0.99 

C 1.01 1.00 1.09 1.04 1.00 0.84 0.99 0.98 1.01 1.11 

D 0.99 0.99 1.00 0.99 0.96 0.99 0.96 1.05 0.96 1.00 

E 1.01 1.00 1.15 1.00 - 0.89 0.99 0.99 1.01 0.97 

F 0.97 0.98 1.08 1.04 - 0.92 0.93 0.95 1.01 1.09 
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ICP-MS   

System Agilent 7500 octopole 

Detection Mode Pulse and analog 

Ablation mode Spot 

Laser power 85% 

Repetion rate 5Hz 

Spot size 35 µm 

Analysis   

Background aquisition 60s 

Sample aquisition 60s 

Washout times 70s 

Measured isotopes  

7Li, 23Na, 24Mg, 29Si, 43Ca, 44Ca, 45Sc, 47Ti, 51V, 
53Cr,55Mn, 59Co, 60Ni, 63Cu, 66Zn, 71Ga 

  

85Rb, 86Sr, 88Sr, 89Y, 90Zr, 91Zr, 93Nb, 95Mo, 133Cs, 138Ba, 
139La, 140Ce, 141Pr,  

  

146Nd,147Sm, 151Eu, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 
166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 182W, 208Pb, 
232Th, 238U 

Tuning   

Tuning standards ATHO, BCR-2G, NIST612 

Monitored Isotopes during 

tuning 7Li, 24Mg, 29Si, 43Ca, 88Sr, 138Ba, 208Pb, 238U 

Calibration standards ATHO, BCR-2G, NIST612 

Oxide interference 248/232Th, typically <1.5% 

Carrier gas (argon) 0.82-0.89 L/min 

Ablation gas(helium) 80-91.5% 

RF power 1500 W 

Standards and 

calibration    

Calibration standards ATHO, BCR-2G, NIST612 

Internal standard 29Si or 43Ca 

Precision/accuracy standard ATHO, BCR-2G, NIST612 

Standards and calibration  ATHO, BCR-2G, NIST612 

Table 3.7 LA ICP-MS instrumental and analytical operating parameters 
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3.4.3.1 LA ICP-MS data acquisition and processing 

Abundances of individual trace elements were calculated relative to a bracketing standard (either ATHO-

G, BCR-2G or NIST612), which was analysed under identical conditions. Trace element data collected 

from repeated analyses is presented in Tables 3.8, 3.9 and 3.10.  

Data reduction was achieved using the software Iolite (version 2.15), which was developed at the 

University of Melbourne, Australia (Paton et al., 2011). Iolite is a self-contained package for Igor Pro 

which was developed by Wavemetrics Incorporated. Iolite presents data collected from the LA ICP-MS 

(for this study) in graphical form versus time, and allows the user to view combinations of trace elements 

simultaneously as shown in Figure 3.5. This provides a unique framework to visually identify any potential 

problems with data points (Figure 3.6). Data integration periods are displayed visually as a box 

encompassing a selected time period of data and a 95% confidence window for the average value (Figure 

3.6A). A more detailed discussion on the process and merits of using Iolite as a data reduction scheme is 

given in Paton et al. (2011).  

In this study issues were encountered due to several factors as outlined below: 

A. High Sr background levels 

This is illustrated in Figure 3.6A. The Sr values even at background levels for analyses using the 

calibration standard NIST612, are orders of magnitude higher than is normal. This is an issue 

with the machine rather than standards, and for this study it is assumed that Iolite (using the 

background levels) corrects for this.  

B. Small glass shards 

Many of the glass shards analysed using LA ICP-MS were close to the 35 µm diameter of the 

laser beam. Small shards were found in this study to be thin, and often the laser beam would 

penetrate through the glass shard and into the underlying material (Figures 3.6B and 3.6C). Care 

was needed when processing the data to ensure that only the exposed glass shard was analysed, 

and that the underlying material was not included in the data processed.  

In addition, often the diameter of the laser beam was the same size, or a little larger than the glass 

shard itself (Figure 3.4B). Data produced from these points was often questionable, as 

surrounding material (either glass shards or epoxy) was measured. If a clear peak was identifiable 

it was analysed, otherwise the glass shard data was discarded. 

In some samples the shard size was not large enough to accommodate the laser spot size, which resulted 

in fewer shards being analysed. A minimum of 5 shards per sample were analysed, but often for the 

smaller samples the data was unusable, so only the useable data is presented in Appendix D. Some 

samples of interest were re-probed to gather more major element data, resulting in some samples having 

up to 29 analyses. 
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Figure 3.5 Image illustrating Iolite data display. The top image is of sample KA from the main screen while the bottom image is from the sample in the traces window screen.  

The traces window allows for more elements to be displayed, allowing for more accurate selection of data. Note the data is plotted versus time and the horizontal component 

of the data integration box represents the time period of data selected, and the vertical component represents the 95% confidence interval in the for the average value.  
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A B 

C D 

Figure 3.6 (A) Zoomed in image of an ATHO standard. Note the high 86Sr background value. Above the selected time period of data the average,  2SE and duration of selection are 

displayed. (B) Image highlighting one of the strengths of visual processing of data. The peak of the trace element values declines rapidly then increases. The best explanation of this is 

that the laser beam has penetrated through the glass shard being analysed (the sharp drop of trace element values) and begins to analyse the underlying material (the trace element 

data begins to increase). (C) A similar process to (B), where the laser penetrates through the glass shard and begins to analyse the material beneath, here represented by a sharp peak 

in 44Ca and 86Sr values (has started to analyse an underlying feldspar). (D)  Sample where all of the data represented is from a single glass shard, as the laser did not penetrate through 

the shard.  
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Chapter 4  
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4.1. Geochemistry of Kermadec arc tephra layers  

 

In the collection of major-element analytical data, considerable care was taken in shard selection and 

culling of analyses that were considered suspect. The same approach was taken with the collection of 

trace element data. A description of the analytical methods used is given in Chapter 3. Major element data 

for each samples is given in Appendix C and trace element data for each shard analysed is given in 

Appendix D.  

4.1.1. Classification of Kermadec arc tephra layers 

Major element data reveal that the tephra layers in this study have a broad range of compositions, with 

the dominant bulk compositions of the tephra layers being basaltic-andesite and rhyolite (Figure 4.1). 

Individual shards show a wider range in composition, varying in SiO2 content from basalt to rhyolite as 

defined on the total alkali-silica (TAS) diagram (Figure 4.2). Notably, while bulk tephra compositions 

display a strong bimodal composition, individual glass shard analyses show a more even distribution that 

includes andesitic and dacitic compositions. 

For the most part, the glass shards display a positive correlation between K2O and SiO2 and a negative 

correlation between CaO and SiO2 (Figure 4.3 and figures in section 4.1.2). Lower SiO2 shards (basalt-

andesite) show a range of K2O values between 0.25–1.80 wt%, while higher SiO2 shards (dacite-rhyolite) 

show a range in values from 0.45-2.75 wt%. The samples display a medium-K trend and a low-K trend as 

identified in Shane and Wright (2011) (classified in their study as high-K and low-K, respectively) and 

Barker et al. (2013), which becomes more evident with increasing SiO2 contents.  Most of the tephra 

layers analysed have chemistries that plot in the tholeiite field (Figure 4.4) and also fall in this field when 

plotted on an AFM diagram (after Irvine and Baragar, 1971), an alkali index vs. Al2O3 diagram (after 

Wilson, 1989), or K2O – FeO*/MgO diagram (after Gill, 1981).  

Samples examined in this study are taken to represent a single tephra unit and tephras which are 

homogeneous (show < 8 wt% variation in the SiO2 content) are inferred to represent a single eruptive 

event. Exceptions to this are tephras which are found to be correlatives (tephras from different cores 

erupted in the same event), which is discussed further below and heterogeneous or bimodal tephras. 

These will be discussed further in Chapter 6.  

Sample names for tephras collected in this study are listed as the core number, followed by the depth 

location of collection (in cm’s), e.g. C4 24.5-25.5. Samples reanalysed from Shane and Wright (2011) are 

notated as the core number and depth to the base of the tephra unit (in cm’s), e.g. 2-33.  

Glass shards from the collected clasts were analysed for this study, and the results are presented within 

the core the clast was preserved in.  
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Figure 4.2 Total Alkalis – Silica (TAS) diagram displaying the values for individual glass shards in 
each core. Note the higher abundances of rhyolite and basaltic-andesite compositions, while noting 
that there is not a clear gap in the andesite compositional range. Compositional boundaries are 
from Le Maitre et al. (1989).  

Figure 4.1 Diagram showing the dominant bulk compositions of the samples analysed in this study. Note 
that the blue data is for all samples; where a sample showed two distinct populations they were both 
plotted (data presented in Appendix B). The red plots are homogeneous samples only, which show that 
basaltic-andesite and rhyolite are the two dominant modes.   
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Figure 4.4 Diagram displaying SiO2 vs. FeOt/MgO (wt %) for individual glass shards in each 
core. Dashed lines denote boundaries between low-Fe, medium-Fe and high-Fe groups. 
Boundaries between 50-70 wt % SiO2 were taken from Arculus (2003) and between 70-80 wt % 
calculated using an equation from Arculus (2003). The dividing line between tholeiite and calc-
alkaline compositions was calculated from Wilson (1989).  

Figure 4.3 Diagram showing the range in SiO2 vs. K2O contents from individual glass shards from 
each of the cores. Compositional boundaries are taken from Miyashiro (1974).  
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4.1.2 Major element chemistry 

4.1.2.1. Raoul cores 

Cores TAN0706-1 to TAN0706-10 were collected from transects west and east of Raoul Island (see 

Figure 1.2). In general, Raoul tephras display K2O contents between 0.2-1.95 wt %. The cores also show 

typical fractionation trends, with a distinct negative correlation between SiO2 and CaO or MgO. A general 

overview of the geochemical trends for each of the cores is given below, with further information for any 

divergent samples.  

Core 1 (80.1 km West) – Although TAN0706-1 is the most distal core, it contains the most tephra layers. 

A total of 18 samples were analysed from this core, of which 14 were found to be homogeneous and thus 

likely to represent discrete events. The vast majority of the tephra layers are rhyolitic.  

Tephras from Core 1 divide into two trends which correlate with stratigraphic position within the core. 

The younger samples (C1 39-40 to 1-97) are tholeiitic , high-Fe, medium-K, and have higher FeO/MgO 

contents relative to the stratigraphically older tephras.  Older tephra layers (C1 158-159 to C1 302-303, 

but excluding C1 177-178) cluster on the boundary between tholeiite and calc-alkaline fields, are medium-

Fe, low-K and have low FeO/MgO. Tephra layers C1 269-270-C1 296-297 are potentially sourced from 

the same eruption, as they have identical major element concentrations. Trace elements may be able to 

distinguish between them, and this will be investigated below. 

Shards from tephra 1-97 shows two divergent parallel trends, one medium-K the other low-K. Variations 

in CaO show a tight cluster of rhyolitic, low-Ca shards with a distinct, near horizontal trend. The rest of 

the shards in this sample show a typical negative correlation between CaO and SiO2. The horizontal 

trending shards are slightly higher in CaO than the older tephras in the core but follow an identical trend.  

Tephra C1 114-115 has similar K2O contents to the older tephra layers, but CaO and FeO/MgO contents 

are similar to the younger tephras, making this tephra distinctive in its age group. Tephra C1 177-178 is 

heterogeneous with SiO2 contents between 57-79 wt %. With the exception of three shards (which are 

similar geochemically to the older tephras), the compositions are medium-K, high-Fe and show a negative 

correlation between CaO or MgO against SiO2.  

Core 2 (65.4 km West) – The single tephra in Core 2 (2-33) contains predominantly medium-K, high-Fe 

shards, with the exception of two outliers. C2 10cm clast displays low-K, medium-Fe and straddles the 

boundary between tholeiitic and calc-alkaline. C2 19cm clast is a high-Fe tholeiitic and is low-K.  
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Figure 4.5 Variation diagrams of selected major oxides against SiO2 for samples in core TAN0706-1. All 
analyses have been corrected for machine drift as outlined in Chapter 3. Raw data is presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening down-core. 
Each point represents a single glass shard, and their depth is in cms.   
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Figure 4.6 Variation diagrams of selected major oxides against SiO2 for samples in core TAN0706-2. All 
analyses have been corrected for machine drift as outlined in Chapter 3. Raw data is presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening downcore. 
Each point represents a single glass shard, and their depth is in cms.  
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Core 3 (57.2 km West) – A total of nine samples were analysed from Core 3, with seven of them showing 

a wide range in SiO2 contents (Table 4.2). The majority of the shards analysed are tholeiitic, and the 

tephras divide into either a medium-K or low-K trend.  

Shards from tephra 3-15 display a range in SiO2 contents from 55-73 wt % and plot on the high-Fe and 

medium-Fe tholeiitic boundary. All of the shards in this tephra are low-K and there is a generally positive 

correlation between K2O and SiO2 contents, as well as a negative correlation between CaO, MgO and 

FeOt and SiO2. Tephra C3 24.5-25.5 is predominantly in the high-Fe tholeiitic range, but with a few 

shards shards in the calc-alkaline range.  The tephra is homogeneous in terms of its SiO2 content but 

shows a range in FeOt and K2O at similar silica contents. The majority of shards from this tephra are 

medium-K and show a general positive correlation between K2O and SiO2, but six shards are divergent 

from the bulk of the tephra, and plot in the low-K range and show a near horizontal positive correlation. 

These are the same shards which have lower Fe values than the rest of the sample. Most of the shards in 

tephra C3 27.5-28.5 are medium-K, with three outliers following the same trend as described above for 

shards from C3 24.5-25.5. Tephra C3 29-29.5 is a homogeneous tephra with medium-K and high-Fe 

values.  

Core 4 (58 km West) – Tephra shards analysed from Core 4 show a range in SiO2 contents from 50-79 wt 

% and are generally high-Fe, tholeiitic, medium-K basaltic-andesites, with the exceptions listed below.  

Tephra C4 24-25 is low-K with shards ranging from 51-78 wt % SiO2. Most of the shards form a positive 

correlation between SiO2 and K2O, with the exception of three mafic shards. Tephra C4 40-41 ranges in 

SiO2 content from 53-71 wt % with the basaltic-andesite shards having low-K and the higher SiO2 shards 

straddling the low-K/medium-K boundary. C4 51.5cm clast has a unique major element composition, 

distinguishing it from the other samples analysed in the core, as it is low-K, medium-Fe in composition, 

and straddles the boundary between the tholeiitic and calc-alkaline fields. Shards from tephra C4 62-63 

are predominantly low-K basaltic-andesites, with the exception of one low-K rhyolite shard. Tephra 4-84 

is a low-K, high-Fe sample, with the bulk of the sample having SiO2 contents between 53-63 wt %. The 

exception to this is two high SiO2 shards that plot in a different trend to the rest of the sample in terms of 

the major oxides. Tephra 4-120 displays bimodality in terms of SiO2 content, K2O content and FeOt 

content. The lower silica shards plot in the tholeiitic high-Fe, medium-K range, and the higher silica 

shards plot in the calc-alkaline med-Fe, low-K range range. C4 144.5-145.5 shards vary in SiO2 content 

from 52-71 wt %. With increasing SiO2 content two distinct trends emerge, one low-K and high-Al, the 

other medium-K. The low-K shards straddle the boundary between tholeiitic and calc-alkaline.  
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Figure 4.7 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-3. All 
analyses have been corrected for machine drift as outlined in Chapter 3. Raw data is presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening downcore. 
Each point represents a single glass shard, and their depth is in cms.  
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Figure 4.8 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-4. All 
analyses have been corrected for machine drift as outlined in Chapter 3. Raw data is presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening downcore. 
Each point represents a single glass shard, and their depth is in cms.  
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Core 5 (45.9 km West) – Tephras in Core 5 range in SiO2 from 49-78 wt % and are predominantly 

medium-K, high-Fe. Sample 5-6 and the C5 4 cm clast are very similar in composition in all of the major 

oxide diagrams and form a trend distinct to the other tephras.  

Cores 7 & 8 (47.6 km East) – Cores 7 and 8 were collected from the same location (Core 7 collection was 

unsuccessful so Core 8 was sampled in the same location) so the data are presented together.  All of the 

shards analysed from cores 7 and 8 are low-K, with the one exception mentioned below. Samples range 

from 52-77 wt % SiO2, with most of the shards being basaltic-andesitic or andesitic. Most of the samples 

are high-Fe tholeiitic, with the exception of C8 7-7.5 which plots along the high-Fe/medium-Fe 

boundary. A few outlier shards from other samples are also in the medium-Fe range. Tephra C8 1-2 has 

two outlier shards, which have higher silica content, are medium-K and calc-alkalic.  

Cores 9 – Shards from Core 9 are all low-K, high-Fe tholeiitic. Two shards with SiO2 values of 63 wt % 

have much higher Fe content than the other shards and form different major element trends to the other 

shards in the sample.  

Core 10 (20.4 km East) - Both samples in Core 10 are predominantly medium-K, with C10 6-7 being 

medium-Fe calc-alkaline and C10 7-8 being tholeiitic. Tephra C10 7-8 straddles the boundary between 

medium and high-Fe.  
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Figure 4.9 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-5. All 
analyses have been corrected for machine drift as outlined in Chapter 3. Raw data is presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening downcore. 
Each point represents a single glass shard, and their depth is in cms.  
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Figure 4.10 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-7 & 8. All 
analyses have been corrected for machine drift as outlined in Chapter 3. Raw data is presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening downcore. 
Each point represents a single glass shard, and their depth is in cms.  
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Figure 4.11 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-9 & 10. All 
analyses have been corrected for machine drift as outlined in Chapter 3. Raw data is presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening downcore. 
Each point represents a single glass shard, and their depth is in cms.  
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4.1.2.2. Macauley cores 

Cores TAN0706-12 to TAN0706-16 were collected from transects west and east of Macauley Island 

(Figure 1.2). In general, Macauley cores show distinct medium-K and low-K trends at higher SiO2 

contents (>65 wt. %) which are less distinct at lower SiO2 values. Like the samples from the Raoul cores, 

they also show typical fractionation trends with a positive correlation between K2O and SiO2 and negative 

correlations between CaO and MgO and SiO2.  

Core 12 - Only two shards from Core 12 were analysed. Both of the shards are low silica, high-K and 

high-Fe tholeiitic.  

Core 13 (32.6 km East)- Tephra shards from Core 13 show a range in SiO2 content from 47-78 wt %, and 

are predominantly medium-K, high-Fe tholeiitic, with the exceptions mentioned below. 

Tephra 13-26 shows a range in SiO2 content from 51-76 wt %, with lower silica shards displaying a large 

range in K2O values from 0.2-1.2 wt %, whereas higher silica shards cluster together with K2O values of 

1.6-1.9 wt %. There are two anomalous shards, which have silica values around 70 wt % and K2O values 

of 0.6 wt %. Tephra 13-33 ranges in silica content from 53-78 wt % and is predominantly low-K, with Fe 

contents ranging from high-Fe to medium-Fe. Most of the shards are tholeiitic, but those with medium-

Fe contents straddle the tholeiite/calc-alkalic boundary. Two shards from 13-51 plot in the medium-Fe 

calc-alkalic range. The higher silica shards are low-K, with the lower silica shards having higher K values 

than the more evolved shards. C13 clast is medium-Fe calc-alkalic with K contents that straddle the low-

K – medium-K boundary.   

Core 15 (24.2 km East) –Tephra shards range in SiO2 content from 48-75 wt % and are predominantly 

basaltic-andesitic, medium-K tholeiitic, with the higher silica shards being high-K, and the lower silica 

shards straddling the medium-Fe/high-Fe boundary. The tephras in this core show a well defined 

fractionation trend, especially highlighted in the SiO2 vs. CaO plot.  

Tephras C15 6-7 and C15 18-19 show shards ranging from low-Fe to high-Fe and from calc-alkaline to 

tholeiite. C15 0-1 and C15 3-4 have shards showing both medium-Fe and high-Fe; both are tholeiitic.  

Core 16 (66.7 km West) -  Tephra shards in Core 16 range from 48-79 wt % SiO2 and are predominantly 

medium-K high-Fe tholeiites which display a well defined fractionation trend.  

Tephra C16 48.5-49 is bimodal, and the higher silica shards are low-K, and range from medium-Fe calc-

alkaline to high-Fe tholeiitic, while the lower silica shards are medium-K.  Tephra C16 54-55 is a 

homogeneous rhyolitic layer with all shards having a low-K content. Tephra C16 206-207 crosses the 

boundary between low-K and medium-K and straddles the compositional gap between basaltic-andesitic 

and rhyodacitic.  
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Figure 4.12 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-12. All 
samples have been corrected for machine drift as outlined in Chapter 3. Raw data are presented in 
Appendix C. Each point represents a single glass shard, and their depth is in cms.  
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Figure 4.13 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-13. All 
samples have been corrected for machine drift as outlined in Chapter 3. Raw data are presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening downcore. 
Each point represents a single glass shard, and their depth is in cms.  
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Figure 4.14 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-15. All 
samples have been corrected for machine drift as outlined in Chapter 3. Raw data is presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening downcore. 
Each point represents a single glass shard, and their depth is in cms.  
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Figure 4.15 Variation diagrams of selected major oxides against SiO2 for samples in TAN0706-16. All 
samples have been corrected for machine drift as outlined in Chapter 3. Raw data are presented in 
Appendix C. Lighter samples are stratigraphically younger, with symbol colours darkening 
downcore. Each point represents a single glass shard, and their depth is in cms.  
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4.1.3 Trace element chemistry 

Geochemisty commonly acts as a fingerprint for each tephra, with each eruption in principle showing a 

unique chemical signature which allows us to identify it as a discrete event. As identified in section 4.1., 

tephras often show similar major element compositions that make identifying discrete events difficult. 

Trace elements are generally more sensitive to magmatic processes and show differences in magma 

composition on more precise scales than is possible with major elements alone.  

 In most cores a large range in trace element variations were observed (with the exception of the older 

samples in Core 1) allowing for identification of discrete tephras in each core. All tephra layers examined 

for trace elements show variations between individual shards, even where the tephra layer is 

homogeneous in terms of major element composition, possibly reflecting compositional variations in the 

magma chamber prior to eruption (see Chapter 6). An example of this is tephra 1-87, where Sr values 

range from 123-192 ppm. Tephra layers that are heterogeneous in major element composition also show 

the largest variations in trace element compositions, which is to be expected. An example of this is tephra 

C16 48.5-49 with SiO2 values ranging from 48.58-76.18 wt % and Sr values ranging from 114-275 ppm.    

A number of trace elements have been found to be particularly useful in identifying distinct tephra layers 

that correspond to individual eruptive events, and these are shown in the proceeding figures.  SiO2 (wt %) 

is plotted against La and Dy to highlight variations in light rare earth elements (LREE) and heavy rare 

earth element (HREE), respectively, with increasing silica content. Sr is plotted against Rb to distinguish 

variations in large ion lithophile (LIL) elements, and Nb (an incompatible high field strength element 

(HFSE) is plotted again Yb (HREE) to show variations in less mobile trace elements. Two trace element 

ratios are also plotted; Zr/Y vs. Ba/Sr and Zr/Nb vs. Y/Sc as they separated out the tephras and allowed 

for identification of discrete events and potential correlatives to be identified.  

4.1.3.1 Raoul cores 

Core 1 - Younger tephra layers are distinct from the older tephras (Figure 4.14) in that they are more 

enriched in REE and LIL elements. The older tephras have higher Ba/Sr ratios and a higher range in 

Zr/Nb and Y/Sc, with no discernible trend between the two. All of the older tephras show identical 

ranges in trace element variations with the exception of  tephra C1 302-303 which shows less spread in 

trace element contents.  

Identification of discrete tephras within the younger samples is more straightforward. Tephra C1 80-81 

plots as a distinct cluster in Sr vs. Rb and Zr/Y vs. Ba/Sr plots. With the exception of two outlier shards, 

tephra 1-97 forms a distinguishable cluster in each trace element plot (Figure 4.16). Notably, this tephra 

plots within a similar range to the older tephras in the SiO2 (wt %) vs. REE plots, Sr vs. Rb and Nb vs. 

Yb plots. In the Zr/Y vs. Ba/Sr trace element ratio plot tephra 1-97 forms a distinct cluster with low 

Zr/Y concentration. Tephra C1 114-115 directly overlies this cluster, as do two outlier shards from 

tephra 1-87.    

Page 75



 

Core 2 – With the exception of the single analysis from C2 19 cm clast, all of the shards analysed are high 

silica and both C2 10 cm clast and 2-33 samples follow the same geochemical trends, whilst being distinct 

from one another. Only one shard from the sample C2 19 cm clast was successfully analysed and this 

plots separately from other samples from core 2, with lower concentrations of all trace elements plotted 

(Figure 4.15). Tephra 2-33 shows an increase in Rb with no change in Sr compositions, with an identical 

trend in the Zr/Nb vs. Y/Sc plot.  

Core 3 - Three of the stratigraphically older tephras (C3 24.5-25.5 to C3 29-29.5) are distinct to the other 

tephras (all of the younger tephras and the oldest tephra) in that they have significantly higher trace 

element concentrations (Figure 4.18). Notably, the oldest tephra (tephra 3-31) has trace element 

concentrations similar to the stratigraphically younger tephras. All of the tephra layers in this core are able 

to be distinguished as discrete events based on the trace element data, with the exceptions of C3 27.5-28.5 

and C3 29-29.5, which are virtually indistinguishable.  

Core 4 - The high silica sample, C4 51.5 cm clast, forms a distinct cluster in the trace element plots, with 

the exception of the Sr vs. Rb plot where it plots in a similar range to the lower silica samples. Tephras C4 

62-63 and C4 144.5-145.5 have lower La than the rest of the samples, with C4 144.5 145.5 also having 

lower Dy than other samples analysed. Tephra 4-120 has two higher silica shards, with trace element 

concentrations distinct from the other tephras in this core. Tephra 4-129 has similar trace element 

concentrations to C4 126-127 but with slightly lower concentrations of La, Dy and Rb. Tephra 4-153 is 

similar to the other low silica tephras, but is distinct in terms of the SiO2 vs. La and Zr/Y vs. Ba/Sr plots. 

Tephra C4 174.5-175.5 forms a distinct cluster in the Sr vs. Rb plots and the two ratio plots, having 

higher Ba/Sr and Y/Sc ratios than the other samples in the core.  

Core 5 – Core 5 samples show a wide range in trace element concentrations, with the REE abundances 

showing a positive correlation with increasing silica content, mirroring the major element trend. The 

samples in the core, with the following exceptions, are distinct. C5 4 cm clast and tephra 5-6 overlap in all 

of the trace element plots. Tephras 5-45 and 5-47 plot very similarly in terms of their trace elements with 

the exception of one shard from 5-47.  

Cores 7 & 8 – All of the tephra layers in these two cores are distinct in SiO2 vs. REE plots. Shards from 

the same tephra show tight clusters in trace element concentrations arnd ratios, with tephras 7-6 and C8 

7-7.5 showing the most variation.  

Core 9 – Tephra shards in Core 9 show a wide range in trace element composition.  

Core 10 – The two tephras in Core 10 have similar trace element compositions. However, in all of the 

trace element plots C10 6-7 is slightly more geochemically evolved, with C10 7-8 clustering in the lower 

range of C10 6-7 in the Nb vs. Yb plot and the Zr/Y vs. Ba/Sr plot.  
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Figure 4.16 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-1. Each symbol represents an individual analysis. Lighter coloured symbols 
represent stratigraphically younger samples, with colours darkening down core. Each point represents the 
analysis from a single glass shard, and their depth is in cms.  
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Figure 4.17 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-2. Each symbol represents an individual analysis. Lighter coloured symbols 
represent stratigraphically younger samples, with colours darkening down core. Each point represents the 
anlaysis from a single glass shard, and their depth is in cms.  
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Figure 4.18 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-3. Each symbol represents an individual analysis. Lighter coloured symbols 
represent stratigraphically younger samples, with colours darkening down core. Each point represents the 
analysis from a single glass shard, and their depth is in cms.  
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Figure 4.19 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-4. Each symbol represents an individual analysis. Lighter coloured symbols 
represent stratigraphically younger samples, with colours darkening down core. Each point represents the 
analysis from a single glass shard, and their depth is in cms.  
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Figure 4.20 Variation diagrams of selected major and trace elements, including trace element ratio plots 
for samples from core TAN0706-5. Each symbol represents an individual analysis. Lighter coloured 
symbols represent stratigraphically younger samples, with colours darkening down core. Each point 
represents the analysis from a single glass shard, and their depth is in cms.  
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Figure 4.21 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-7 & 8. Each symbol represents an individual analysis. Lighter coloured 
symbols represent stratigraphically younger samples, with colours darkening down core. Each point 
represents the analysis from a single glass shard, and their depth is in cms.  
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Figure 4.22 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-9 & TAN0706-10. Each symbol represents an individual analysis. Lighter 
coloured symbols represent stratigraphically younger samples, with colours darkening down core. Each 
point represents the analysis from a single glass shard, and their depth is in cms.  
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4.1.3.2 Macauley cores 

Core 12 – The trace element concentrations of the shards analysed for Core 12 have very low 

concentrations, which are most likely a function of analytical issues so the data has been discarded.  

Core 13 – Samples show wide variations in terms of the silica and trace element concentrations, with no 

distinctive trends.  

The five youngest tephras (Tephras 13-9 to C13 17.5-18) show a range in trace element concentrations at 

similar and low silica content. They are virtually indistinguishable, except for 13-13 top which has a 

slightly lower Zr/Y ratio and has slightly lower Sr values. C13 15-16 also has slightly lower Sr values, 

along with a two shards from C13 11-12 and three shards from C13 17-17.5.  

Tephra 13-26 forms a distinct cluster in terms of its SiO2 vs. La, Nb vs. Yb and trace element ratios. 

While the sample has both low and high silica shards, the majority of the sample is high silica and is 

reasonably enriched in the trace elements shown in the plots.  It forms a separate but co-linear trend to all 

but one (C13 clast) of the samples on the Zr/Y vs. Ba/Sr plot, having a higher Zr/Y ratio. Tephra 13-33 

is high silica, but generally has lower trace element concentrations compared to tephra 13-26. They cluster 

together in the SiO2 vs. Dy plot, but are distinct in the other trace element plots. Tephra 13-51 is 

distinctive in terms of its lower Sr and La concentrations than the other higher silica shards. It also has 

the highest Ba/Sr ratio, and follows the same trend as sample 13-33 in this.  

Core 15 – All of the tephras analysed are low silica (due to poor data from the higher silica shards 

examined), and have very similar trace element concentrations with generally positive correlations on 

bivariant plots. The only sample which shows any measurable difference from the rest of the shards is 

C15 3-4 which has four shards with higher trace element concentrations, although the rest of the sample 

plots with the other tephras in the core.  

Core 16 - Tephras show a range in trace element concentrations with no correlation to silica. With the Sr 

vs. Rb and Nb vs. Yb plots there is a general positive correlation present. C16 206-207 is homogeneous in 

silica content (averaging 65 wt % SiO2), however it shows the greatest range in Nb vs. Yb, forming a 

distinct cluster in the trace element ratio plots, with the exception of one outlier shard. Tephras C16 214-

215 and C16 238-239 also have low trace element concentrations, similar to that of tephra C16 158-159; 

unlike C16 158-159 they do follow the positive correlation mentioned above. C16 214-215 plots with C16 

206-207 in the Zr/Y vs. Ba/Sr plot.  
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Figure 4.23 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-13. Each symbol represents an individual analysis. Lighter coloured symbols 
represent stratigraphically younger samples, with colours darkening down core. Each point represents the 
analysis from a single glass shard, and their depth is in cms.  
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Figure 4.24 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-15. Each symbol represents an individual analysis. Lighter coloured symbols 
represent stratigraphically younger samples, with colours darkening down core. Each point represents the 
analysis from a single glass shard, and their depth is in cms. 
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Figure 4.25 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
samples from core TAN0706-16. Each symbol represents an individual analysis. Lighter coloured symbols 
represent stratigraphically younger samples, with colours darkening down core. Each point represents the 
analysis from a single glass shard, and their depth is in cms.  

Page 87



 

4.2 Overall geochemical trends 

 

In general, the higher silica samples are more enriched in  incompatible trace elements relative to lower 

silica samples. With the exception of the samples analysed in Core 1, there is no obvious trend showing 

increasing enrichment in incompatible elements with decreasing stratigraphic age of tephras. In Core 1 

the younger tephras are noticeably enriched in all major and trace elements relative to the older tephras.   

Figures 4.5-4.15 illustrate the range of SiO2 compositions of all the glass shards analysed for each core. 

The data all clearly indicate that fractionation and/or mixing trends are present in most of the cores. 

There is a positive relation between SiO2 and K2O, and a negative trend between SiO2 and CaO which is 

characteristic of fractional crystallisation (Figures 4.26-4.28). Trace element analyses also indicate that 

fractionation is prevalent amongst the samples as illustrated, for example, by a positive trend between 

SiO2 and La (Brophy, 2008).  

Forty of the tephra layers analysed were homogeneous in major elements, displaying narrow SiO2 

compositional ranges (<8% 2σ  variation), 17 of the tephra layers showed pronounced compositional 

bimodality, and 32 samples were heterogeneous in SiO2 composition (>8% 2σ variation).  

Homogeneous tephras show a divergent pattern in SiO2 vs. K2O, with distinct low-K and medium-K 

trends evident (Figure 4.26). Two tephras span the compositional gap, one being andesitic, the other 

dacitic. With the exception of these two, homogeneous tephras are either basaltic-andesite or rhyolite. 

Many of the heterogeneous layers show distinct fractionation trends as, although there is variation in SiO2 

content, the shards are clearly compositionally related (Figure 4.27).  A distinct low-K and medium-K 

trend is evident and, unlike in the homogenous tephras, there is no evident composition gap between 

basaltic-andesites and rhyolites.  

Bimodal tephra layers are predominantly basaltic-andesite and rhyodacite glass shards, with only one 

tephra spanning the compositional gap between the two (Figure 4.28). A low-K and medium-K trend can 

be distinguished, but this is not as distinct as with the homogeneous tephras.  
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Figure 4.26 Variation diagrams of SiO2 vs. K2O and CaO for homogeneous tephras 
showing the range of data obtained in this study. Each point represents a single glass 
shard.  
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Figure 4.27 Variation diagrams of SiO2 vs. K2O and CaO for heterogeneous tephras showing the 
range of data obtained in this study. Each point represents a single glass shard. 
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Figure 4.28 Variation diagrams of SiO2 vs. K2O and CaO for bimodal tephras analysed in this 
study. Each point represents a single glass shard. 
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Samples that are representative of the entire dataset are presented in Figures 4.29-4.31. Figure 4.29 shows 

the overall major element trends, with the distinctive fractionation trends evident in all plots. The 

distinction between low-K and medium-K tephras is also clear. The trace element plots (Figure 4.30) 

show the range in trace element concentrations relative to silica, other trace elements and also trace 

element ratios. These plots show that the trace elements allow us to distinguish individual eruptive events, 

and highlight eruptions that are geochemically related both within and between cores. 

Multi-element and REE plots show that the tephras in this study have high concentrations of fluid- 

mobile, large ion lithophile (LIL) elements (K, Rb, Cs, Ba, Pb, Sr,) and relatively low concentrations of 

high field strength (HFS) elements (Ti, Ta, Nb) relative to mid-ocean ridge basalt (MORB). This is 

characteristic of arc magmas and similar to previously derived values from Kermadec arc samples (Figure 

4.31). Three samples in the REE plot shown little to no depletion in Eu and two of these samples have 

lower concentrations in the multi-element plot relative to the other samples. These samples have lower 

silica and display lower trace element ratio values as shown in Figure 4.30.  

The multi-element and REE plots again show the distinction between individual events, and these graphs 

have been used to correlate tephras as presented below.  
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Figure 4.29 Variation diagrams of SiO2 vs. major oxides for selected samples which are representative of 
the dataset as a whole. Each point represents a single glass shard, and their depth is in cms.  
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Figure 4.30 Variations diagrams of various major and trace elements and trace element ratios for selected 
samples which are representative of the dataset as a whole. Each point represents a single glass shard, and 
their depth is in cms.  
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Figure 4.31 Multi-element plot and REE plot for selected samples representative of the overall 
dataset. Multi-element plot normalised to N-MORB values of Sun and McDonough (1989) and 
REE plot normalised to chondrite values from Sun and McDonough (1989). 
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4.3 Geochemical correlations of tephra layers between cores 

 

 Where tephra layers had similar elemental concentrations, they were plotted separately in order to see if 

they were correlatives and sourced from the same event. Major elements were used in the first instance 

and, if tephras had identical major element compositions, then trace elements were plotted in order to 

confirm whether they were from the same event, or from geochemically related magmas. Multi-element 

and REE plots were also used to confirm any correlations. Tephras examined which were potential 

correlatives are indicated below. Here we also re-examine correlations identified by Shane and Wright 

(2011) using their data and new data collected in this study on the same samples.  

Tephra layers C15 0-1 – C15 22-23 share very similar elemental concentrations to samples examined from 

the banded tephra unit in Core 13 (Tephras C13 11-12, C13 13.5-14 – C13 21-22). The multi-element plot 

and REE plot clearly show that all of these tephras correlate, as there is no distinction between them 

(Figure 4.32).  Trace elements from C13 18.5-19 and C13 21-22 have anomously low trace element 

concentrations due to issues with the analysis. The multi-element and REE plots show that these two 

samples, whilst having low trace element concentrations, follow the same geochemical trend, and are 

assumed to correlate to the other tephras here examined.  It may pay to note here that the SBT is present 

at the base of the banded tephra layer in Core 13; however it does not correlate to the tephras examined 

above as determined by examining the trace element concentrations.  

Shane and Wright (2011) correlated tephras between cores 1, 2, 3, 5 and 13 that they inferred were part of 

the Sandy Bay Tephra (SBT). Tephras 3-31 and 5-47 correlated by Shane and Wright (2011) appear to be 

the geochemically related, lower silica relative to the SBT based upon major element anyalysis (Figure 

4.33). When the trace elements are analysed however, it becomes evident that 3-31 is not the SBT as it 

plots separately to published data presented by Smith et al. (2003b) and Barker et al. (2013). Tephras 1-87, 

2-33, 5-47 and 13-26 do correlate with the SBT in all major and trace element concentrations. Several 

tephra layers from Core 1 (1-87 and C1 75-76), however, also had similar composition to the SBT 

eruption (Figures 4.33 and 4.34). When plotted against values published by Smith et al. (2003b) and Barker 

et al. (2013) it can be confirmed that 1-87 is the SBT. Tephras C1 75-76 and C3 29-29.5 are very similar 

geochemically, but are slightly more enriched in REEs (Figure 4.35). They could be from a very 

geochemically similar magma source or could be the more evolved end-member of the SBT.  

Two other tephra correlations presented by Shane and Wright (2011) are tested here: tephras 4-161 and 

16-187, and tephras 13-51 and 16-71. Tephras 4-161 and 16-187 were reanalysed for both major and trace 

element data.  The data published by Shane and Wright (2011) for these samples show that they have very 

similar major element compositions, with silica compositions ranging from 50-66 wt %.  Data collected in 

this study shows that while the major elements are similar, 4-161 has lower silica values than that of 16-
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187. The REE and multi-element plots also show that generally tephra 4-161 is distinctly less evolved 

than 16-187 (Figure 4.36). So while they are very similar in major elements, they do not correlate.  

Tephras PS 13-51 and PS 16-71 are also very similar in major elements as shown in Figure 4.37. Only 

tephra 13-51 was reanalysed in this study, so there are no trace element concentrations for tephra 16-71. 

Based on the major elements alone, the two tephras are very similar, and could well be correlatives. 
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Figure 4.32 Multi-element plot and REE plot for potential correlatives. C13 18.5-19 and C13 
21-22 have appear less enriched, but this is due to issues with the analysis. These two 
samples follow the same geochemical trends as the other potential correlatives. Multi-
element plot normalised to N-MORB values of Sun and McDonough (1989) and REE plot 
normalised to chondrite values from Sun and McDonough (1989). 
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 Figure 4.33 Variation diagrams of selected major oxides vs. SiO2 for potential SBT correlative 
tephra layers. All analyses have been corrected for machine drift as outlined in Chapter 3. Each 
point represents a single glass shard, and their depth is in cms. Previously derived SBT values 
have been plotted from Barker et al. (2013) and Smith et al. (2003b). 

Page 99



 

 

Figure 4.34 Variation diagrams of selected major and trace elements, including trace element ratio plots for 
potential SBT correlatives. Each point represents a single glass shard, and their depth is in cms. Previously 
derived SBT values from Barker et al. (2013) and Smith et al. (2003b) have been plotted. 
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Figure 4.35 Multi-element diagram and REE plot showing the mean of each of the potential SBT 
correlative samples. Multi-element plot normalised to N-MORB values of Sun and McDonough (1989) and 
REE plot normalised to chondrite values from Sun and McDonough (1989). Note that although very 
similar geochemically, tephras C1 75-76 and C3 29-29.5 are slightly enriched in REEs compared to the 
other samples and SBT values published in Barker et al. (2013). 
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Figure 4.36 Multi-element plot and REE plot for shards from samples 4-161 and 16-187 
to show that the two tephras are distinct. Multi-element plot normalised to N-MORB 
values of Sun and McDonough (1989) and REE plot normalised to chondrite values 
from Sun and McDonough (1989). 
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Figure 4.37 Variation diagrams for SiO2 vs. major oxides for tephra layers 13-51 and 16-71, identified as 
correlatives by Shane and Wright (2011). KH 13-51 was analysed in this study and this data has been 
corrected for machine drift as outlined in Chapter 3. Each point represents a single glass shard, and their 
depth is in cms. PS 13-51 and 16-71 have been adapted from the published values by Shane and Wright 
(2011) in order to be comparable with the data from this study. KH = this study, PS = Shane and Wright.  
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4.4 Summary of geochemical findings 

Of the 89 samples analysed in this study, 40 were homogenous (<8 % 2 sd SiO2 variation). A summary of 

the results of geochemical analysis determing homogeneous, heterogeneous and bimodal tephra are 

presented in Table 4.1, which also shows the number of tephra samples analysed for each core. Three of 

the homogeneous samples were individual pyroclasts found in the cores, and are not considered to 

represent a discrete event. Also two of the homogeneous samples were correlatives with the SBT, and 

represent a single event; this has been taken into account when reporting the number of events recorded 

in the cores. Twenty seven of the samples presented in Shane and Wright (2011) were reanalysed and the 

combined results are presented in Table 4.2, showing the offset between the two datasets.  After taking 

discrepancies between the datasets into account, this study presents 31 new tephra layers, each interpreted 

to represent a discrete eruptive event. Shane and Wright (2011) reported only 27 discrete tephra events, 

so with the results of this study a total number of discrete events recorded in the cores is 58. However, as 

shown in Table 4.2, two of the tephra samples presented as homogenous by Shane and Wright (2011) 

have in this study been found here to be heterogeneous. Therefore, there are a total of 56 homogeneous 

tephra events represented in the cores. As mentioned earlier in this chapter, many of the heterogeneous 

tephra layers show evidence of fractional crystallisation and may represent a discrete eruptive event. This 

will be discussed in more detail in Chapter 6.  

Table 4.1 Summary table of results from this study outlining how many samples from each core were 

analysed and how many samples from each core were homogenous, heterogeneous or bimodal.  

 

Core number Number of 

samples analysed 

Homogeneous  

samples 

Bimodal 

samples 

Heterogeneous 

samples 

 

TAN0706-1 18 14 4 - 
Ra

ou
l 

TAN0706-2 3 2 - 1 

TAN0706-3 9 2 3 4 

TAN0706-4 14 8 - 6 

TAN0706-5 6 3 1 2 

TAN0706-7 3 2 - 1 

TAN0706-8 4 1 2 1 

TAN0706-9 1 - 1 - 

TAN0706-10 2 2 - - 

TAN0706-13 14 3 5 6 

M
ac

au
le

y 

TAN0706-15 7 1 1 5 

TAN0706-16 8 2 - 6 

Totals 89 40 17 32  
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sample 

number 1-.40KH   1-.40PS   % offset 1-.87KH   1-.87PS   

% 

offset 

n 10   10     26   9     

EPMA mean 2 sd          

SiO2 (wt %) 71.88 4.39 72.37 4.06 -0.49 73.15 6.37 71.63 1.05 1.52 

Al2O3 13.04 9.48 12.78 5.85 0.27 12.87 8.59 13.04 2.51 -0.17 

TiO2 0.60 34.31 
0.59 

33.36 
0.01 

0.60 44.93 
0.59 

16.11 
0.00 

FeOt 4.12 37.63 4.07 21.92 0.05 4.00 42.99 4.19 10.50 -0.19 

MnO 0.04 329.03 0.15 54.09 -0.11 0.13 65.55 0.16 51.06 -0.03 

MgO 0.48 52.96 0.57 58.49 -0.09 0.53 61.71 0.64 28.20 -0.11 

CaO 2.68 24.81 2.74 22.43 -0.06 2.60 34.70 2.96 9.92 -0.36 

Na2O 2.24 77.51 4.64 5.58 -2.40 3.48 23.72 4.65 4.78 -1.17 

K2O 1.54 24.48 1.67 30.01 -0.13 1.58 64.04 1.71 9.33 -0.14 

Cl 0.35 54.82 0.41 36.70 -0.06 0.30 61.88 0.42 25.34 -0.12 

Total 96.97 2.57    99.17 3.69     

sample 

number 1-.97KH   1-.97PS   % offset 2-.33KH   2-.33PS   

% 

offset 

n 29   10     28   9     

EPMA            

SiO2 (wt %) 73.06 14.77 75.40 2.29 -2.34 73.78 8.50 71.39 3.16 2.39 

Al2O3 12.71 17.08 12.14 3.71 0.56 13.21 7.68 13.02 3.48 0.19 

TiO2 0.52 79.13 0.43 32.21 0.09 0.62 35.92 0.61 53.17 0.01 

FeOt 3.89 95.04 3.19 35.04 0.71 4.23 27.26 4.46 27.56 -0.23 

MnO 0.06 226.94 0.15 84.57 -0.08 0.04 281.60 0.19 67.62 -0.15 

MgO 0.72 251.39 0.42 45.28 0.30 0.54 53.36 0.65 43.90 -0.11 

CaO 2.94 107.88 2.49 21.98 0.45 2.84 25.94 3.08 26.81 -0.23 

Na2O 3.41 17.73 4.45 6.18 -1.04 2.90 68.12 4.47 3.09 -1.57 

K2O 1.22 138.46 1.08 23.64 0.14 1.62 27.94 1.73 15.67 -0.12 

Cl 0.21 61.10 0.25 48.99 -0.04 0.34 41.82 0.40 24.76 -0.06 

Total 98.74 4.38       100.13 5.24       

Table 4.2 Major element results for samples analysed by Shane and Wright (PS) (2011) and reanalysed in this study 

(KH). The data from Shane and Wright (2011) is italicised, and the offset between the data in each study presented. n 

represents  the number of glass shards analysed in each sample. Data from Shane and Wright (2011) has been adapted 

from the published values in order to be comparable to the data from this study. Depth downcore is in cm (1-40 = Core 

1, 40 cm depth) 
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sample 

number 3-.15KH   3-.15PS   % offset 3.-.31KH   3-.31PS   % offset 

n 30   10     13   10     

EPMA mean 2sd          

SiO2 (wt %) 59.61 15.09 64.25 26.26 -4.63 62.21 29.09 66.60 20.92 -4.39 

Al2O3 14.71 9.57 13.95 17.07 0.76 13.62 10.51 13.70 18.45 -0.08 

TiO2 1.04 29.69 0.80 66.11 0.24 0.91 66.85 0.83 69.66 0.08 

FeOt 10.21 40.20 7.79 107.58 2.42 8.12 105.33 6.79 97.43 1.33 

MnO 0.03 389.23 0.23 40.94 -0.20 0.13 88.90 0.19 77.09 -0.06 

MgO 3.10 59.07 2.21 150.07 0.89 2.60 168.78 1.64 132.22 0.96 

CaO 7.58 38.65 6.00 94.11 1.58 5.90 118.61 4.79 96.35 1.11 

Na2O 2.87 27.19 3.65 46.43 -0.79 3.19 59.54 3.98 30.25 -0.78 

K2O 0.59 41.79 0.88 100.72 -0.29 1.27 128.48 1.21 74.17 0.06 

Cl 0.14 53.57 0.24 73.57 -0.10 0.20 130.18 0.28 32.78 -0.08 

Total 99.88 2.47       98.14 4.93       

sample 

number 4-.84KH   4-.84PS   % offset 4-120KH   4-120PS   % offset 

n 22   10     9   9     

EPMA            

SiO2 (wt %) 55.97 10.05 56.09 9.38 -0.12 60.70 27.51 72.22 16.36 -11.52 

Al2O3 14.08 7.66 14.21 16.36 -0.13 13.46 2.39 13.55 8.83 -0.09 

TiO2 1.34 28.73 1.21 36.41 0.12 0.49 101.40 0.56 106.49 -0.07 

FeOt 12.46 14.02 12.53 27.75 -0.07 2.39 53.71 3.13 192.70 -0.73 

MnO 0.06 288.19 0.24 79.29 -0.18 0.12 118.52 0.17 91.66 -0.05 

MgO 3.78 50.98 3.73 68.76 0.05 0.64 73.04 0.86 222.12 -0.22 

CaO 8.37 25.84 8.43 30.28 -0.06 2.42 55.84 2.85 128.26 -0.44 

Na2O 2.48 22.95 2.75 44.70 -0.27 4.07 19.01 5.13 26.34 -1.06 

K2O 0.56 47.30 0.62 53.44 -0.06 1.18 28.25 1.23 24.02 -0.05 

Cl 0.12 73.28 0.18 57.03 -0.06 0.16 34.74 0.29 29.44 -0.14 

Total 99.22 4.24       96.35 6.11       

Table 4.2 continued 
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sample 

number 4-129KH   4-129PS   % offset 4-153KH   4-153PS   % offset 

n 11   9     9   10     

EPMA mean 2 sd          

SiO2 (wt %) 55.79 2.38 
56.00 

7.08 
-0.22 

53.98 3.95 
63.91 

18.80 
-9.92 

Al2O3 14.42 5.25 14.40 7.27 0.02 14.27 14.54 14.08 8.92 0.19 

TiO2 1.20 6.29 1.16 14.42 0.03 1.17 8.16 0.87 47.96 0.30 

FeOt 11.41 11.30 11.92 18.24 -0.51 11.40 11.79 7.96 67.37 3.44 

MnO 0.16 53.21 0.22 57.47 -0.07 0.15 103.58 0.26 63.19 -0.11 

MgO 3.28 15.16 3.78 52.59 -0.50 3.91 74.07 1.88 144.21 2.04 

CaO 7.42 8.02 8.15 29.38 -0.73 7.71 12.68 5.18 84.57 2.53 

Na2O 3.02 9.69 3.06 34.97 -0.04 3.03 22.15 4.04 28.70 -1.02 

K2O 1.02 21.66 1.02 46.86 0.00 0.78 29.18 1.46 56.05 -0.67 

Cl 0.16 31.53 0.28 58.03 -0.13 0.13 32.42 0.37 55.79 -0.24 

Total 97.86 0.88     96.54 0.91     

sample 

number 4-161KH   4-161PS   % offset 5-.47KH   5-.47PS   % offset 

n 10         9   10     

EPMA            

SiO2 (wt %) 54.08 3.76 57.50 15.63 -3.42 58.21 33.99 66.83 19.92 -8.62 

Al2O3 14.68 3.07 14.87 11.20 -0.19 12.90 4.45 13.54 27.77 -0.64 

TiO2 1.21 8.88 1.09 29.23 0.12 0.56 32.05 0.77 60.95 -0.21 

FeOt 11.55 7.71 10.57 43.83 0.99 4.08 13.10 6.83 104.11 -2.75 

MnO 0.17 69.77 0.22 73.67 -0.05 0.12 27.35 0.20 119.40 -0.08 

MgO 3.80 9.38 3.45 70.15 0.35 0.55 31.88 1.68 215.73 -1.13 

CaO 8.14 7.43 7.79 45.63 0.35 2.75 22.51 4.56 96.77 -1.82 

Na2O 3.01 7.47 3.34 38.99 -0.33 3.55 5.79 4.00 40.71 -0.45 

K2O 0.74 22.65 0.93 56.02 -0.19 1.62 15.17 1.27 76.58 0.35 

Cl 0.12 20.79 0.24 75.49 -0.12 0.28 46.22 0.32 75.30 -0.04 

Total 97.21 1.80       97.12 1.78 2.59 231.81   

Table 4.2 continued 
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sample 

number 7-.6KH   7-.6PS   % offset 13-.9KH   13-.9PS   % offset 

n 2   10     10   10     

EPMA mean 2 sd          

SiO2 (wt 

%) 56.14 3.86 68.21 28.61 -12.07 58.59 31.90 71.92 5.93 -13.33 

Al2O3 13.61 13.76 13.13 26.55 0.49 14.05 19.08 12.90 8.82 1.15 

TiO2 1.28 17.21 0.76 79.76 0.53 0.93 67.23 0.60 49.31 0.33 

FeOt 12.20 31.48 6.55 137.00 5.65 8.66 80.11 4.19 27.82 4.47 

MnO 0.16 19.45 0.15 142.61 0.01 0.14 86.57 0.16 73.20 -0.02 

MgO 3.03 28.49 1.68 172.33 1.35 3.22 153.78 0.75 128.10 2.47 

CaO 7.78 0.71 5.09 114.78 2.69 6.91 94.91 3.04 30.65 3.88 

Na2O 2.73 17.01 3.59 42.87 -0.86 3.03 42.14 4.54 7.25 -1.51 

K2O 0.43 25.83 0.68 58.58 -0.25 0.76 67.27 1.54 38.62 -0.77 

Cl 0.09 28.28 0.18 60.90 -0.08 0.12 89.45 0.36 36.84 -0.24 

Total 97.46 0.48    96.42 1.26 4.36 60.49   

sample 

number 13-13KH   13-13PS   % offset 13-26KH   13-26PS   % offset 

n 6   10     27   9     

EPMA            

SiO2 (wt 

%) 55.17 10.00 68.62 17.92 -13.45 64.00 27.69 57.26 17.93 6.74 

Al2O3 14.47 8.09 13.55 12.86 0.92 13.89 10.77 15.14 22.59 -1.25 

TiO2 1.16 20.52 0.72 79.61 0.43 0.97 61.95 1.06 34.92 -0.09 

FeOt 11.30 19.62 5.69 96.66 5.62 8.06 95.11 10.49 49.78 -2.43 

MnO 0.13 73.08 0.20 75.52 -0.07 0.07 277.88 0.21 66.72 -0.14 

MgO 3.46 58.46 1.19 209.30 2.27 2.13 158.09 3.62 73.33 -1.49 

CaO 7.70 33.79 3.93 108.26 3.77 5.59 97.77 8.03 48.49 -2.44 

Na2O 2.88 13.86 4.23 25.21 -1.35 3.14 28.95 3.19 42.88 -0.05 

K2O 0.89 79.41 1.50 56.54 -0.61 1.13 94.55 0.82 53.62 0.31 

Cl 0.15 80.97 0.38 42.36 -0.23 0.25 87.11 0.19 89.60 0.06 

Total 97.30 1.56       99.22 3.48       

           

           

           

           

Table 4.2 continued 
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 sample 

number 13-33KH   13-33PS   % offset 13-51KH   13-51PS   % offset 

n 30   9     10   10     

EPMA mean 2sd          

SiO2 (wt %) 69.71 16.46 68.70 15.36 1.01 70.56 23.45 67.82 30.37 2.73 

Al2O3 13.71 20.82 14.29 32.42 -0.58 12.79 18.96 13.67 35.56 -0.88 

TiO2 0.61 69.18 0.60 80.35 0.01 0.56 113.94 0.59 96.58 -0.03 

FeOt 4.61 91.91 5.06 108.87 -0.45 4.68 153.82 5.65 138.23 -0.96 

MnO 0.07 237.40 0.14 113.56 -0.07 0.05 329.75 0.16 71.40 -0.11 

MgO 1.18 220.40 1.15 162.23 0.04 1.00 225.14 2.13 252.80 -1.12 

CaO 4.21 102.67 4.63 87.09 -0.41 3.67 109.37 5.12 133.59 -1.45 

Na2O 3.37 26.55 4.28 32.66 -0.90 2.39 73.00 3.82 44.66 -1.43 

K2O 0.84 77.27 0.94 60.41 -0.10 0.88 30.75 0.83 64.34 0.05 

Cl 0.16 94.88 0.22 86.54 -0.06 0.19 58.09 0.22 58.97 -0.03 

Total 98.48 4.47    96.77 2.47     

sample 

number 13-75KH   13-75PS   % offset 15-32KH   15-32PS   % offset 

n 2   6     15   11     

EPMA            

SiO2 (wt %) 50.26 3.15 50.80 2.50 -0.54 55.32 4.29 58.08 22.50 -2.77 

Al2O3 12.10 24.44 15.51 12.13 -3.41 14.54 4.75 14.74 13.48 -0.20 

TiO2 0.66 66.81 
0.96 

79.42 
-0.30 

1.17 15.31 
1.07 

49.36 
0.10 

FeOt 10.96 62.16 12.36 28.22 -1.39 10.99 14.25 10.56 53.32 0.43 

MnO 0.24 45.62 0.23 95.94 0.00 0.16 56.37 0.17 69.53 -0.01 

MgO 9.78 46.03 5.52 58.17 4.26 3.38 19.23 3.53 66.16 -0.15 

CaO 13.89 55.56 12.52 28.19 1.36 7.60 11.77 7.69 49.28 -0.09 

Na2O 1.39 121.28 1.61 26.63 -0.22 3.03 12.19 3.22 28.23 -0.19 

K2O 0.10 127.07 0.37 129.39 -0.27 0.70 26.17 0.70 36.68 0.00 

Cl 0.03 212.13 0.11 70.08 -0.08 0.14 28.53 0.22 52.70 -0.07 

Total 99.41 1.57       97.05 1.10       

Table 4.2 continued 
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sample 

number 16-187KH   16-187PS   % offset 

n 8   9     

EPMA mean 2sd     

SiO2 (wt %) 59.43 12.83 60.88 14.91 -1.45 

Al2O3 14.63 8.12 14.47 5.78 0.16 

TiO2 1.11 19.87 1.09 20.74 0.03 

FeOt 9.11 41.17 9.03 49.97 0.08 

MnO 0.14 133.61 0.18 89.77 -0.05 

MgO 2.71 75.09 2.61 82.77 0.09 

CaO 6.66 49.26 6.53 48.55 0.13 

Na2O 3.40 19.24 3.87 27.92 -0.47 

K2O 0.87 43.25 1.05 58.48 -0.18 

Cl 0.13 35.36 0.29 58.71 -0.16 

Total 98.19 3.06       

 

Table 4.2 continued 
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Chapter 5  

Stratigraphy Results 
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5.1 Introduction 

 

Ten piston cores collected on the TAN0706 voyage of the R.V. Tangaroa from offshore of Raoul and 

Macauley islands in the Kermadec arc form the stratigraphic database for this study. Non-invasive 

analyses were conducted on the cores, along with selected sediment and tephra sampling in order to 

construct a robust stratigraphy and associated tephrochronology for the dataset. The texture, laser grain 

size and calcium carbonate composition were analysed for 85 samples from the cores, oxygen isotope 

compositions were determined for 57 samples from three cores, and chemical analyses were conducted 

on 89 tephra samples as presented in Chapter 4. Data collected is presented in graphical format. Detailed 

core descriptions are presented in Appendix A. 

 

5.2 Lithostratigraphy 

 

Given the great variety of sediments (including volcanic ash layers) present in the cores, the most concise 

way of encapsulating their main characteristics is to group them into lithofacies. Lithofacies are distinctive 

bodies of sediment distinguished by characteristics such as colour, texture and sedimentary structures 

(Boggs, 1987).  Eight lithofacies are used to describe the core materials in this study.  

Facies A – Olive brown silt (bioturbated) typically occurring near the top of the cores collected. It is 

pale yellow - greyish brown clayey silt with signs of bioturbation and ranges in thickness from three to 37 

cm.  Facies A is generally (but not exclusively) underlain by an olive brown silt (Facies B, see below) 

Facies B – Olive brown silt typically occurring below Facies A. It is light yellowish-olive brown, clayey 

coarse silt with no bioturbation and some faint laminations. The coarser grain size is associated with the 

presence of both foraminifera and fine ash. There are numerous tephras interspersed with this facies 

(Facies E, see below). The unit ranges in thickness from four to 103 cm and has a sharp basal contact.  

Facies C – Grey fine sand is found exclusively in the lower section of Core 16 and is a light to dark grey 

silty fine sand, bioturbated unit with occasional laminations present throughout. Coarser grain sizes are 

associated with the tephras interspersed throughout this facies (Facies E, see below). The unit ranges in 

thickness from 19.5 to 22 cm.  

Facies D – Light grey sand is found beneath Facies C in Core 16 and is light grey silty sand with no 

bioturbation. Laminations are present throughout as are tephra layers (Facies E, see below). Coarser 

grains are associated with tephras. Two small clasts (1 x 1 cm) were found embedded in this facies. The 

unit is 51 cm thick.  
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Facies E – Brown to grey ash occurring throughout the cores. They are divided into subfacies based on 

texture and colour.  

E1 – Olive grey ash : fine-medium ash with coarse ash grains throughout. Slight bioturbation may be 

present in some layers. Thickness ranges from a few cm to 24 cm. Only present in cores collected from 

offshore of Macauley Island.   

E2 – Black fine-medium ash : distinct colour and textural banding throughout. Thickness ranges from 

3.7 to 16 cm. Only present in Core 13.  

E3 – Greyish brown fine ash: small lapilli size at the top of the unit, slightly darker towards the base. The 

unit is 7.2 cm thick and is only present in Core 4.  

E4 – Olive brown ash: medium-coarse ash. The unit is 12 cm thick and is only found in Core 4.  

E5 – Dark grey coarse ash:  coarse ash with some very coarse ash, slight colour banding. Thickness 

ranges from two to six cm. Only found in cores collected from offshore of Raoul Island.  

E6 – Light grey ash:  fine-medium ash which is a few cm in thickness  

E7 – Light brown fine ash: fine-medium ash. Thickness from 3.5 to 15 cm. Only present in Core 16.  

E8 – Black medium-coarse ash: coarse ash graded unit. Lower contact slightly bioturbated. Thickness 

ranges from 1-3.7 cm. Only present in Core 3.  

E9 – Grey medium-coarse ash: graded unit, Lower contact bioturbated. Thickness ranges from 4 – 13 

cm.  

E10 - Dark grey to black fine-coarse ash: slight reverse grading. Thickness ranges from 2 to 5 cm.  

E11 - Black ash with lapilli: graded unit, from fine –coarse ash near the top of the unit, grading to 

medium lapilli at the base. Thickness ranges from 2.7 to 6.5 cm and is present in Cores 7/8.  

E12 – Olive ash to lapilli: graded unit, from medium lapilli at the base to fine-medium ash at the top of 

the unit. Lapilli covered in olive sandy material. Complex sloped boundary. Thickness of 6.5 cm. Only 

found in Core 10.  

E13 – Dark grey lapilli: medium ash to medium lapilli . Faint normal grading evident. Sharp basal 

contact. Thickness of 9 cm. Only present in Core 10.   

E14 – Grey fine-medium ash: slightly bioturbated lower contact. Thickness of 2cm. Only present in Core 

15.   

E15 – Dark grey ash: fine – very coarse ash with a few lapilli present. Normal colour gradation. Sharp 

basal contact. Thickness of 21 cm. Only found in Core 15.  

E16 - Black coarse ash: coarse–very coarse ash, few fine lapilli. Thickness of 1.5 cm. Only present in core 

15.   
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Facies F – Light brownish grey silty clay which shows no sign of bioturbation and has a sharp lower contact. It 

is present only in Core 1 and is 16 cm thick.  

Facies G – Olive grey silty clay which varies from light olive grey to light brownish grey which varies from silty 

clay to clayey silt. The unit is bioturbated, and ranges in thickness from 6.5 to 7.5 cm and is present exclusively in 

Core 1. 

Facies H – Greyish brown silty sand varies in colour from greyish brown to olive grey with some colour banding. 

The unit is bioturbated and only present in Core 1 and is 17 cm thick 

 

5.3 Non-Invasive properties 

 

Non-invasive analyses were conducted on the reference split of the cores in order to present a complete 

stratigraphy and also to select the best areas for sampling for both tephra and foraminifera.  Results are 

summarised in Figure 3.11, with figures of each core displaying the non-invasive properties presented in 

Appendix B.  
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Figure 5.1 Lithology and stratigraphy of cores at locations offshore of Raoul Island showing the distance from Raoul Island and water depth 

at which the core was taken.  
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Figure 5.2 Lithology and stratigraphy at core locations from offshore of Macauley Island showing the distance of the core location from Macauley 

Island and water depth at which the core was extracted. 
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5.4 Calcium carbonate content 

 

Calcium carbonate content was analysed for 87 samples. Calcium carbonate content of sediment samples 

varies throughout each core, and is generally lowest in tephra rich sections of the core. Samples from 

Core 1 are anomalous, in that they have much lower carbonate values than samples from any other core. 

During sampling there was noted a lack of foraminifera in the Core 1, so it follows that the carbonate 

content would be low. When presenting the mean carbonate content for each lithofacies the data from 

Core 1 has thus been omitted. The exception to this is Facies F, which is present only in Core 1. The 

carbonate properties for each facies are described below, and summarised in box and whisker diagram 

format in Figure 5.3. Carbonate curves for each of the major cores were generated to show variation 

downcore (Figure 5.4).

Figure 5.3 Box and whisker plots for the calcium carbonate content of 
each facies. Note that samples from Core 1 were omitted due to 
anomalously low CaCO3 contents, with the exception of samples which 
make up Facies F.  
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Figure 5.4 CaCO3 contents of samples in each core, showing downcore variations. Note the anomalously low CaCO3 content of samples in Core 1.  
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5.5 Sediment textures 

 

Two methods were used to assess the grain size characteristics of sediment samples, as outlined in 

Chapter 3.  

 5.5.1 Grain sizes from sieving  

Data collected from the sieving of samples at various size fractions (>140 µm, 140-60 µm and <60 µm) 

were collated to find the cumulative percentage represented by each size fraction. Material <60 µm is silt 

or clay, material between 60-140 µm is very fine-fine sand, and material >140 µm is any fraction coarser 

than fine sand (as defined by Udden, 1914; Wentworth, 1922). As illustrated in Figure 5.5 below, Core 1 

is dominated by the <60 µm size fraction, with very little material >140 µm. Cores 4 & 16 show more 

variation in grain size, as the middle sections of each core are dominated by the larger grain sizes. Core 13 

is of lower resolution as less samples were collected from this core. In general, however, Core 13 displays 

the coarsest overall grain sizes, with the <60 µm size faction having the lowest cumulative percent.  

 5.5.2 Grain sizes from laser diffraction analysis 

Laser grain size descriptions are based on the Folk and Ward (1957) method and the distinction between 

grain sizes is presented in Table 5.1.Results were processed in GradiStat version 8.0 (developed by Blott, 

2010). Results, divided up by lithofacies,  are presented in Figure 5.6. With the exception of Facies E the 

majority of the facies are composed of material with silt or sandy silt grain sizes and all facies are poorly 

sorted. Facies A and B show the widest range of grain sizes. Figure 5.7 shows the total % of each facies 

which is gravel, sand or mud. We can see that no facies has any gravel component; all have some sand 

component which is a minor % of the total facies composition, with the exception of Facies E which is 

sand rich. Figure 5.8 shows the compositional breakdown of the grain sizes into smaller factions. It shows 

that Facies E is noticeably coarser compared to the other facies, with the majority of the samples ranging 

from very coarse sand to very fine sand. All of the other facies are predominantly very coarse silt to very 

fine silt. Facies G seems to be slightly coarser than the other sedimentary facies, with 60% of the samples 

being coarser than coarse silt. 
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<63 um 63-140 um >140 um 

Figure 5.5 Grain size factions that make up a cumulative % of the samples. Note that the x axis scale changes for each sample as the numbers displayed 
indicate the sample location.  

 

Page 121



 

 

  

Figure 5.6 Sand:Silt:Clay (>63/63 - 2/<2 µm) diagram showing the composition of 
samples for each of the facies as determined by laser grain size analysis. Note that most 
of the facies display very similar textures, with the exception of Facies E.  

 

 

 
Grain Size Descriptive term 

phi mm 

  
 

Very Large 
 

 

 

 
      Boulder 

-10 1024  

  Large 

-9 512  

  Medium 

-8 256  

  Small 

-7 128  

  Very small 

-6 64   

  Very coarse 

      Gravel 

-5 32  

  Coarse 

-4 16  

  Medium 

-3 8  

  Fine 

-2 4  

  Very fine 

-1 2   

  Very coarse  

 

 

 
      Sand 

0 1  

 microns Coarse 

1 500  

  Medium 

2 250  

  Fine 

3 125  

  Very fine 

4 63   

  Very coarse  

 

 

 
       Silt 

5 31  

  Coarse 

6 16  

  Medium 

7 8  

  Fine 

8 4  

  Very fine 

9 2   

  Clay  

 

 

Table 5.1 Grain size table adopted in GradiStat program, 

modified from Udden (1914) and Wentworth (1922). 
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Figure 5.7 Cumulative plot displaying the composition of each facies between gravel/sand/mud 

(>2mm/2mm – 63 µm /<63 µm) as determined in GradiStat.  

 

Figure 5.8 Cumulative plot displaying the composition of each facies in finer detail, with grain sizes ranging 

between very coarse sand (1 mm) to clay (<2 µm).  

 

Table 5.2 Sediment properties for each facies. Grain size properties were determined using GradiStat. The 

mean and range of CaCO3 for each facies was calculated excluding data from Core 1, as it is anomalously 

low in CaCO3 (with the exception of Facies F). 
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5.6 Chronostratigraphy 

 

Foraminifera samples underwent oxygen isotope analysis at NIWA (Greta Point, Wellington) in order to 

construct a more robust age model for the cores and extend past the roughly 50 ka limit of radiocarbon 

dating (cf. Shane and Wright, 2011). The benefits of this method are manifold; the relative age of the 

entire core can be determined, all tephras can be assigned a relative age and more robust sedimentation 

rates can be calculated. Oxygen isotope analyses were undertaken on foraminifera from three cores 

(Cores 4, 13 and 16). An age model for Core 1 was originally planned, however when sampling the 

paucity of foraminifera in the core made this unfeasible and it was decided that the resolution would be 

too low to be of use in this study.  

 5.6.1 Age models  

The oxygen isotope data from these cores were input into AnalySeries 1.2 (Paillard et al., 1996), a program 

which uses a global reference oxygen isotope curve, LR04 (Lisiecki and Raymo, 2005) as a guide. Data 

from this study were then wiggle-matched or correlated to this reference curve. The data from each of the 

cores used to construct the age model are presented in Table 5.3 (note that benthic species were used).  

This correlation provided relative ages for the cores. This method does have inherent uncertainties, as 

discussed in Paillard et al. (1996), and there is also uncertainty in the correlation between data in this study 

and the reference curve; however this is very difficult to quantify. In order to minimise the uncertainty in 

the correlation, reliable ‘tie points’ are used, such as large transitions between glacial and interglacial 

cycles. In this study, oxygen isotope data from the benthic species Uvigerina peregrina for cores 13 and 16 

and Cibicidoides wuellerstorfi for Core 4 were used to make correlations with the global reference curve.  

Tephras complicate the age modelling process, as they are considered to be near instantaneous events and 

not part of background sedimentation. For this reason, the tephra layers are ‘deleted’ from the core, 

yielding the length of sedimentary material in the core and subsequently the actual depth that sediment 

samples were collected from. This actual depth is used as input into AnalySeries 1.2 along with the 

oxygen isotope data, and after correlating this data to the LR04 reference curve an age model is produced 

for each core.  After correlation, a spreadsheet called 1AGECAL (part of the AnalySeries 1.2 program) is 

used to systematically re-add the tephra layers, without changing the overall age of the core based on the 

age model. This allows for tephras to be assigned ages based on the oxygen isotope curve.   

Cores 4 and 13 were able to be correlated against the reference curve of Lisiecki and Raymo (2005); 

however, only two tie points were able to be used for both cores as shown in Figure 5.9. These two cores 

showed a glacial to modern sequence, which is reflected in the calculated ages which are presented in the 

Tables 5.4 and 5.5. The cores extend back to ca. 56 ka and ca. 33 ka, respectively. These age models could 

be improved with the collection and analysis of more samples from each core.  

Page 124



 

The presence of correlative tephra layers across cores provides an age tie point if the age of the tephra is 

known. For example, the Sandy Bay Tephra (SBT) from Macauley is present in three cores in this study: 

1, 2 and 13. The SBT occurs at the base of Core 2, which means that this core extends to ca. 6.3 ka. It is 

also present as tephra 13-26 in Core 13; this conflicts, however, with the age model calculated here which 

dates the tephra layer at 12.5 ka. This contradiction again highlights the need to increase the resolution of 

the age model for this core.  

Core 16 provided a robust correlation with the reference curve, as illustrated in Figure 5.9. Three tie 

points were used in the correlation with the reference curve, and other, tentative, tie points are also 

shown. The oxygen isotope curve for this core shows that the record extends back to the previous glacial, 

MIS6. The model ages calculated are presented in Table 5.6 and suggest that the Core 16 stratigraphic 

record extends back to ca. 170 ka.  

 

 

  

Table 5.3 Oxygen isotope data collected in this study and used to create an age model for 

the cores. Note that Cores 13 and 16 used oxygen isotope data from Uvigerina peregrina 

whilst Cibicidoides wuellerstorfi was used for Core 4 as more data was analysed for this 

sample. Precision data for the analyses is presented in Chapter 3.  
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Figure 5.9 Oxygen isotope values presented from this study alongside the reference values from Lisiecke 
and Raymo (2005). The black dashed lines represent the tie points used to wiggle-match between the two 
curves, and the red lines are tentative tie points.  
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Table 5.4 Calculated ages for Core 4 using the reference curve from Lisiecke and 
Raymo (2005). Note that where there are two identical ages in the far right column 
this indicates the base and top of a tephra layer. As tephra deposits represent near-
instantaneous events the top of the unit is considered to have the same age as the 
bottom.  

 

Figure 5.10 Age model for Core 4 presented as age downcore. Note that areas 
where the depth increases but the age does not include the presence of a tephra 
layer. 
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Table 5.5 Calculated ages for Core 13 using the reference curve from 
Lisiecke and Raymo (2005). Note that where there are two identical ages in 
the far right column this indicates the base and top of a tephra layer. As 
tephra deposits represent near-instantaneous events the top of the unit is 
considered to have the same age as the bottom.  

 

Figure 5.11 Age model for Core 13 presented as age downcore. Note that areas where the depth 
increases but the age does not include the presence of a tephra layer. The record for Core 13 

starts at 10 ka, which could be the result of the core top being lost during recovery. 
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Table 5.6 Calculated ages for Core 16 using the reference curve from Lisiecke 
and Raymo (2005). Note that where there are two identical ages in the far right 
column this indicates the base and top of a tephra layer. As tephra deposits 
represent near-instantaneous events the top of the unit is considered to have the 
same age as the bottom.  

 

Figure 5.12 Age model for Core 16 presented as age downcore. Note that areas where 
the depth increases but the age does not include the presence of a tephra layer. 
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 5.6.2 Sedimentation rates 

Sedimentation rates for the cores were published by Shane and Wright (2011) using the carbon ages they 

obtained. They found that the sedimentation rate for Core 1 was 75-440 mm kyr-1, and the rates for cores 

4, 13 and 16 were in the range 1-35 mm kyr-1. Here I recalculate these sedimentation rates based on my 

recognition of more tephra layers, re-estimation of their thicknesses and an improved age model. The age 

for each of the cores is presented in Table 5.7 below. The age for Core 1 is based on the radiocarbon age 

10.5 ka at 235 cm depth published by Shane and Wright (2011) and also the identification of the SBT at 

87 cm depth which is 6.3 ka. Both of these ages were taken into account when calculating the 

sedimentation rate. Here I use an age of 11.5 ka for the base of the core yielding a sedimentation rate of 

210 mm kyr-1. The sedimentation rate for Core 4 is based on the age model, and yields a rate of 26 mm 

kyr-1.  Cores 3 and 5 have a tephra layer at their base which Shane and Wright (2011) identified as the 

SBT, which date the base of the cores at 6.3 ka. However after reanalysis in this study, I have found that 

the tephra is Core 3 is not a correlative. Core 3 has a radiocarbon age of 2.5 ka collected from 

approximately half way down the core. Here I estimate that the age at the base of the core will be ca. 5 ka, 

and the sedimentation rate based upon this age is ca. 55 mm kyr-1. Cores 8 and10 have no correlative 

tephra layers and no radiocarbon ages with which to determine an approximate age of the core, and as 

such no sedimentation rate has been calculated for these cores. Tephra in Core 15, from 2 to 23 cm 

correlate to the SBT, indicating that the age at 23 cm depth is 6.3 ka. As the tephra above this was 

deposited in one event, no estimation can be made as to the age at the base of the core, here listed as 

>6.3 ka.  

 

5.6.3 Accuracy of age model 

The age model for Core 13 begins at 10 ka. However the radiocarbon age from Shane and Wright (2011) 

date the sediment at 7 cm depth at 4.5 ka and the SBT which is 6.3 ka is present at 26 cm depth. This 

highlights some of the uncertainty with the age model for this core and indicates that the sediment has 

possibly been reworked, yielding an incorrect radiocarbon age.  

Shane and Wright (2011) also correlated tephras 16-71 and 13-51. If we rely on the age model, the two 

tephras have an age difference of 15 ka, largely dependent on the accuracy of the Core 13 age model. This 

Table 5.7 Recalculated sedimentation rates for cores investigated in this study. Note that ages in bold are based 
upon ages determined in this study, whilst those in italics are based upon estimated ages following from the 
carbon ages published by Shane and Wright (2011).  
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would indicate that the correlation is dubious, but may possibly be within error of the Core 13 age model.  

Shane and Wright (2011) also correlated tephras 4-161 and 16-187. In similar fashion, in the age models 

presented here, tephra 16-187 is ca. 83 ka older than 4-161, and the two, while having similar 

geochemistry, cannot be correlatives (see chapter 4). 

In order to confirm the robustness of the age model developed from Core 16, the oxygen isotope curve 

was plotted alongside data collected from other stratigraphic analysis (Figure 5.13).  As illustrated, 

changes in the oxygen isotope content are reflected in other proxies, and are especially distinguishable in 

the locations of the tie points for the age model. This again highlights the robustness of the age model for 

Core 16 and that the radiocarbon age of 43.5 ka published by Shane and Wright (2011) is unreliable.
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Figure 5.13 Graphical representation of data obtained from TAN0706-16 using non-invasive methods (A-F) and invasive methods (G-I). A) Photograph of core. B) X-

ray image of core. C) Facies model for core. D) Spectral reflectance (nm). E) Colourmetric analysis (L*). F) Magnetic susceptibility. G) CaCO3 content (% of sample). 

H) Sieved cumulative grain size analysis (space between 0 and blue line represents <60 µm; space between blue and red lines represents 60-140 µm; space between red 

line and 100 represents >140 µm). I) Oxygen isotope curve (δ18O).  Green shaded boxes highlight areas where changes are evident in different proxies, and these 

correlate with the tie points used to construct the age model (as illustrated in Figure 5.9).  
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6.1 Source volcanoes of marine core tephras 

 

Determining the source of tephras preserved in the core can tell us much about the frequency of 

eruptions from each volcanic centre, the temporal evolution of the magmatic system at each volcano, and 

also give indications as to the transport mechanisms for volcanic material in the Kermadec arc. Here I 

compare the geochemistry of tephras in this study to published data for a range of volcanic centres in the 

arc, and where possible determine the volcanic sources for the tephra layers.  

6.1.1 Potential source volcanoes 

Individual tephra layers can be assigned a volcanic source based on documented geochemical trends from 

each of the volcanic edifices in the area. The volcanic edifices along the arc show distinct trends in K 

content (Figure 6.1), and the K content is thus used here as a first order method to propose the volcanic 

source of tephras following Shane and Wright (2011). Published data show that Raoul volcano produces 

low-K material, whilst Macauley volcano produces predominantly medium-K material plus minor 

amounts of low-K material (Ewart et al., 1977; Worthington et al., 1999; Smith et al, 2006; Barker et al., 

2012; 2013). Rather than just assigning the source of tephra to these two volcanoes, however, I also 

consider the possibility of inputs from more distant volcanoes. For example, the recent submarine 

eruption of Havre volcano produced a large pumice raft, which shows that volcanic material sourced 

from the arc can be transported hundreds of kilometres from source (Priestley, 2012).  

Figure 6.1 K2O content vs. SiO2 for volcanic products from volcanoes along the Kermadec arc. Data for 
volcano U, Hinepuia, Rakahore, Gamble and Hinetapeka from Graham et al. (2008), data for Raoul, 
Macauley and Healy from Barker et al. (2013) and data from Giggenbach, Sonne and Brothers from Haase 
et al. (2006). Unpublished data from Havre were provided by Richard Wysoczanski (NIWA).  
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Figure 6.2 Location of submarine and subaerial volcanoes along the Kermadec arc (red triangles are 
basaltic – andesitic volcanoes, and yellow circles are silicic caldera volcanoes). Raoul, Macauley and 
Healy volcanoes were the main focus of the TAN0706 research voyage. Image courtesy of NIWA. 
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Correlation to published data from subaerial formations has also been attempted. As the tephras are more 

evolved, however, than most of the subaerial material this can only act as a second order method to 

confirm the source volcano.  

Geochemical fields for selected volcanoes (locations shown in Figure 6.2) along the arc were generated, as 

follows.  

1. Giggenbach and Brothers volcanoes are high-K.  

2. Macauley and Healy volcanoes are medium-K.  

3. Havre forms a distinct third field that has slightly lower-K than the Macauley and Healy field 

4. The northern volcanoes, U, Hinepuia and Hinetapeka form a field (here referred to as the 

Northern field) with K contents between Macauley and Raoul. 

5. Raoul and Gamble volcanoes are low-K.  

6. Raoul SW is low-K and forms a distinct, slightly more evolved field relative to Raoul   

When considering tephra compositions that plot broadly in the Macauley/Healy field, the tephras are 

assumed to be sourced from Macauley Volcano, due to its close proximity to the core sites and the 

distance to Healy Volcano. This is supported by the geochemistry which is more similar to Macauley than 

to Healy. In similar fashion, the Raoul/Gamble field tephras are assumed to be sourced from Raoul, 

either from Denham or Raoul calderas (unless specifically stated). No samples had compositions to 

suggest that they could have been sourced from any of Healy, Gamble, Giggenbach or Brothers 

volcanoes. 

The geochemical compositional fields shown by the tephra samples allow for correlation to the volcanic 

source of the tephra layers (Figure 6.3). Tephras that were not easily distinguished into a geochemical field 

or crossed over multiple fields were examined in more detail and plotted against geochemical data from 

onshore deposits. The geochemical trend of these tephras was compared to the onshore deposits, and 

where possible a source volcano was assigned. Where a specific source was unable to be assigned the 

tephra the field name is undetermined. A complete list of all tephras examined in this study, along with 

the assigned volcanic source and age is presented in Table 6.1.  
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6.1.2 Volcanic source of tephra layers 

The stratigraphically younger medium-K samples from Core 1 plot within the Macauley field with a few 

glass shards plotting in the Havre field (Figure 6.4). There are three exceptions to this. Tephras 1-87 and 

1-97 show both medium-K and low-K compositions, with low-K shards having lower concentrations 

than stratigraphically older tephras in the core. Tephra C1 114-115 plots only in the low-K field. Tephra 

1-87 is predominantly medium-K with only four shards of a low-K composition. This tephra is correlated 

with the Sandy Bay Tephra (SBT), with the four low-K shards most likely inherited. The SBT will be 

discussed in more detail later in the chapter. Tephras 1-97 and C1 114-115 lay within the Raoul field.  

Tephras C1 158-159 and C1 163-164 plot in the Northern field with a slight overlap with the Raoul field. 

However the geochemical trend of the samples follows that of the Northern volcanoes, and these 

samples are interpreted to be sourced from this region. Tephra C1 177-178 has two shard populations. 

The lower silica shards plot in the Macauley field, whereas the more evolved shards form a near vertical 

trend between the Macauley and Raoul fields (Figure 6.4). The evolved shards are most likely inherited, 

although they could also reflect magma mixing in the source chamber. As such the sample is listed as 

being sourced from Macauley.  

Figure 6.3 Compositions of tephra layers in this study compared to published data on volcanic materials from 
the region. The orange field represents the spread of data from Brothers and Giggenbach, blue represents 
Macauley and Healy, purple represents Havre, green represents volcano U, Hinepuia and Hinetapeka (referred 
to as the Northern field), red represents Raoul and Gamble and the yellow field represents the spread of data 
from Raoul SW. Data for volcano U, Hinepuia, Rakahore, Gamble and Hinetapeka from Graham et al. (2008), 
data for Raoul, Raoul SW, Macauley and Healy from Barker et al. (2013) and data from Giggenbach, Sonne and 
Brothers from Haase et al. (2002). Unpublished data from Havre were provided by Richard Wysoczanski 
(NIWA). 
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Table 6.1 Complete list of all tephras examined in this study, along with the assigned volcanic source and 
age. Ages calculated using sedimentation rates are in italics, the SBT is in bold, and ages determined from 
our age model are in regular font.  
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The older tephra samples (tephras C1 269-270 to C1 296-297) are interpreted to originate from the same 

event, due to the tephras having identical major and trace element concentrations. These tephras are low-

K and plot in the Northern field (Figure 6.4). These volcanoes are capable of producing large, silicic 

caldera forming eruptions. The prevailing modern wind direction in the region above 2.1 km is W, 

however, so material was not likely to have been transported towards the core site from a subaerial 

plume. Material could possibly be transported to the core locations via a pumice raft, similar to the recent 

Havre pumice raft but with amounts of tephra entrained in the raft (Priestley, 2012). However current 

direction makes this unlikely and a large amount of pumice would need to be entrained in the raft in order 

for a tephra layer to be preserved. Another possibility is that these tephras were sourced from Raoul 

Table 6.1 continued 

Page 140



 

Volcano and are more evolved, reflecting a magmatic system that is no longer represented in the subaerial 

deposits on the island. I list the source of these tephras to be undetermined.  

Tephra 2-33 is medium-K and is sourced from Macauley Volcano. A few shards in the sample display 

lower-K contents, but these are most likely inherited grains. The two clasts found in the core will be 

discussed in detail later.  

Samples from Core 3 are sourced from 3 different geochemical fields. Tephras C3 loose top, C3 12-12.5 

and 3-15 are all sourced from Raoul. Tephras C3 8-9 and C3 10.5-11 correlate to the Northern 

geochemical field, whilst the older tephras, C3 24.5 - 25.5 to 3-31 are all sourced from Macauley.  

Two tephras in Core 4 closely mirror the geochemical trends of subaerial deposits of Raoul Island; C4 62-

63 and 4-84 (15.7 and 22.6 ka respectively) are very similar geochemically to the Hutchison and 

Moumoukai – Blue Lake formations. The Hutchison Formation is believed to have formed between 50 

and 100 ka and the Moumoukai, between 4 and 10 ka (Lloyd and Nathan, 1981). However these ages are 

inferred from poor resolution K/Ar dating and the tephras in this core may be more accurate markers of 

the true ages of these units. Tephra C4 62-63 correlates well to the Hutchison Formation; the tephra 

shows more evolved compositions than the Moumoukai Formation but it does follow the same 

geochemical trend.  

All of the tephra layers preserved in Core 5 are sourced from Macauley, with the exception of tephra 5-6. 

This tephra has slightly lower-K than the other samples, and plots in the Havre field.  

Tephras from Cores 7 & 8 are very similar to the subaerial deposits on Raoul Island, with the exception 

of tephra C7 loose top, which correlates with the Northern field. While the tephras are more evolved and 

show a wider range of K contents, they overlap many of the subaerial deposits. However when the trace 

elements were examined none of the tephras could be correlated with specific subaerial examples.  

Tephras from Core 10 are only slightly more evolved than the subaerial deposits on Raoul Island, and 

follow the same geochemical trend. In this case they could correlate to the Fleetwood Formation, Green 

Lake Formation or Matatirohia Formation. Age data are lacking for core 10, however, so I cannot 

correlate the core tephras with any of the subaerial formations with confidence, but that the data are 

consistent with these tephras being sourced from Raoul volcano. 

All of the tephras from Core 13, with the three exceptions (13-9, 13-33, 13-51), are inferred to be sourced 

from Macauley (Figure 6.5). Tephra 13-9 displays no clear trend, and glass shards from the tephra plot in 

both the Raoul and Macauley fields. This is considered to most likely reflect a combination of eruptive 

events from different sources. Two tephras are sourced from Raoul Volcano, 13-33 and 13-51. Tephra 

13-33 closely mirrors a few of the younger subaerial deposits on Raoul Island. Stratigraphically however 

they cannot be correlated, as 13-33 is beneath the SBT which dates it to >6.3 ka, and older than the 

subaerial silicic deposits on Raoul.    
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Figure 6.4 Variation diagrams for each core collected from offshore of Raoul Island and examined in the study, 
compared to published data on volcanic material from the region. The orange field represents data from Brothers 
and Giggenbach, blue represents Macauley and Healy, purple represents Havre, green represents volcano U, 
Hinepuia and Hinetapeka (referred to as the Northern field), red represents Raoul and Gamble and the yellow 
field represents the spread of data from Raoul SW. Data for volcano U, Hinepuia, Rakahore, Gamble and 
Hinetapeka from Graham et al. (2008), data for Raoul, Raoul SW, Macauley and Healy from Barker et al. (2013) 
and data from Giggenbach, Sonne and Brothers from Haase et al. (2002). Unpublished data from Havre were 
provided by Richard Wysoczanski (NIWA). Each symbol represents a single glass shard, and their depth is in cms.  
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Samples from the banded unit of Core 13 (tephras C13 15-18 to C13 23.5-24) are all heterogeneous and 

show a wide range of elemental concentrations. The SBT at the base of the unit displays very similar 

major element geochemical trends to the above banded material, however the trace element 

concentrations of the SBT are enriched relative to the banded tephras. The banded tephra layer will be 

discussed in section 6.1.4.  

All of the tephras in Core 15 are sourced from Macauley Volcano. Tephra C15 12-13 is a low silica tephra 

and plots across the boundary between the Macauley and Raoul fields. As shown in Figure 4.32, tephras 

from 2 to 23 cm depth in Core 15 correlate to the banded tephra layer, here interpreted to represent the 

latter eruption stages of the SBT from Macauley Volcano.  

Tephras from Core 16 are sourced from a range of volcanic centres. The youngest tephras C16 48.5-49 

and C16 54-55 are sourced from Raoul Volcano. Tephra C16 206-207 plots between the Macauley and 

Northern fields, but fits best with the Northern field. This tephra is distinct in that as a homogeneous 

tephra it somewhat straddles the divide between the bimodal predominant basaltic-andesite and rhyolite 

compositions of other homogeneous tephras. It mirrors the geochemical trends of both Hinepuia and 

Hinetapeka from the Northern field, fitting best with Hinetapeka. Another possible source for this tephra 

Figure 6.5 Variation diagrams for each core collected from offshore of Macauley Island and examined in the study, 
compared to published data on volcanic material from the region. The orange field represents spread of data from Brothers 
and Giggenbach, blue represents Macauley and Healy, purple represents Havre, green represents volcano U, Hinepuia and 
Hinetapeka (referred to as the Northern field), red represents Raoul and Gamble and the yellow field represents the spread 
of data from Raoul SW. Data for volcano U, Hinepuia, Rakahore, Gamble and Hinetapeka from Graham et al. (2008), data 
for Raoul, Raoul SW, Macauley and Healy from Barker et al. (2013) and data from Giggenbach, Sonne and Brothers from 
Haase et al. (2002). Unpublished data from Havre was provided by Richard Wysoczanski (NIWA). Each symbol represents 
a single glass shard. 
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is Havre. The data published for Havre has higher silica content; however the geochemical trend of C16 

206-207 aligns perfectly with Havre Volcano. All other tephras in the core are sourced from Macauley 

Volcano.  

6.1.3 Volcanic source of clasts 

Clasts in Core 2 fall within the Northern field, mirroring the trends of Hinetapeka and Hinepuia closely. 

The glass shards from the C2 10 cm clast are more evolved than the northern samples, whilst the glass 

shards from the C2 19 cm clast mirror the trend of Hinetapeka samples having slightly higher K contents. 

It is thus possible that Hinetapeka was the source of this clast. 

The clast from Core 4 mirrors in composition the geochemical trend of pumice collected from Raoul SW. 

The C4 51.5 cm clast and the pumices from Raoul SW (Barker et al. 2013) correlate closely in terms of Ca, 

Al and Mg, but differ in terms of the Ti and total alkali contents (Figure 4.8). This suggests that there was 

pumice-forming activity at Raoul SW at ca. 7.2 ka.  

Two samples from Core 5 display an interesting trend; C5 4 cm clast and 5-6 tephra layer are correlatives, 

and show no increase in K content with increasing Si content. This geochemical trend is identical to that 

shown by pumice collected from the recent eruption of Havre volcano which lies to the south of the core 

site (Figure 6.2). The recent pumice raft erupted from Havre has spread out over a large area and 

generally moved to the northwest, which would take it very near the core site for Core 5 (Richard 

Wysoczanski, pers. comm..). I propose that the clast in Core 5 was deposited via oceanic transport of a 

pumice raft; the clast is sub-rounded with slight weathering indicating that it was transported for a 

distance before deposition occurred. The clast can be correlated to an underlying tephra, 5-6, which 

possibly represents the fall deposit of a subaerial plume during eruption. The clast was deposited after the 

tephra layer was deposited, consistent with a pumice raft source. Both the travel time for the raft and the 

slow settling of the waterlogged pumice would have resulted in the clast being deposited after the main 

tephra layer. The interpretation is supported by the geochemical and stratigraphic evidence.  

C13 clast correlated well with a pumice sample collected from Macauley caldera by Barker et al. (2012). 

C13 clast is slightly more evolved than D33_PC02, which was collected from the E flank of the Macauley 

edifice, but the two are near identical in elements K, Ti, Al and Ca. The clast in core 13 may represent a 

slightly more evolved composition from the same eruption as D33_PC02.  

Table 6.2 Complete list of all clasts examined in 
this study, along with the assigned volcanic source 
and age. Ages calculated using sedimentation rates 
are in italics. 
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6.1.4 Sandy Bay Tephra 

The banded tephra unit in Core 13 warrants special mention, as it proves a unique feature within the 

cores studied. Multiple samples were collected from this unit, due in part to the unique banding as 

identified using X-ray imaging (Figure 6.6), to see whether the different bands of tephra had different 

compostions. As shown in Chapter 4, the tephras from this banded unit are sourced from the same 

eruption, part of a 12.5 cm thick tephra deposit. They are all heterogeneous, but show the same range and 

geochemical trend. This indicates that they were erupted from the same magma chamber in a pulsating 

eruption style, allowing time for particles to settle out to the ocean floor (forming a distinct band) before 

the next layer was deposited. This is most likely related to the eruption of the SBT, as tephra 13-26 is at 

the base of the banded unit. . 

Figure 6.6 Images of the banded tephra unit in TAN0706-13. The 
X-ray image on the right highlights the banded nature of the 
deposit, while we can see from the photograph on the left that the 
unit is continuous and unbioturbated. 
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 Tephras from the banded unit have different trace element compositions to 13-26 when examined, and 

all have lower silica contents. I propose here that during the initial stages of the SBT more evolved 

material from near the top of the magma chamber was erupted, producing the pyroclastic deposits 

recorded in the subaerial units (Smith et al., 2003b). As the eruption continued it progressively tapped 

down to less evolved magma in the chamber which was entrained into the eruption column, and 

deposited as the material represented in the banded tephra unit. The lack of bioturbation in the banded 

unit supports the formation of the tephra within a short amount of time. The thick tephra unit in Core 

15, from 2 to 23 cm depth correlates to the banded tephra unit in Core 13 and is therefore also a record 

of the latter stage of the SBT eruption.  

Silicic lithic blocks are also recorded in the pyroclastic onshore deposits (Smith et al., 2003b). Tephra C16 

206-207 is a homogeneous tephra which is distinctive (Figure 4.26) in that it is a dacite and does not plot 

well within any of the defined geochemical fields (Figure 6.5). However, it does plot very well with the 

existing published data from the silicic lithic clast from the SBT (Figure 6.7). Here I interpret the silicic 

lithic clasts and tephra C16 206-207 to be correlatives, indicating that the silicic lithic clasts were erupted 

at ca. 146 ka.  

Data published on pumice clasts collected from Macauley caldera show three geochemical trends, one 

medium-K, one low-K, and the other intermediate-K (Barker et al., 2013). The medium-K pumice clast 

(Macauley D25) is sourced from Macauley, and the low-K clast (Macauley D33_04) is interpreted in this 

study to be sourced from Raoul, as it falls within the Raoul geochemical field. The source of the 

intermediate-K pumice (Macauley D33_02) was unclear, as it did not plot in any of the geochemical 

fields. In light of the identification of silicic volcanism at Macauley as far back as ca. 146 ka as discussed 

above, C13 clast and pumice Macauley D33_02 were plotted against known values of the silicic lithic 

clasts (Figure 6.8). We can see that they are all geochemically related, as they form a distinct trend, so the 

pumice clast was likely formed in one of these eruptions. These findings support the conclusions of 

Barker et al. (2012) who stated that the eruptive history of Macauley is much more complex than initially 

thought and that material preserved onshore records only a part of the eruptive history of the volcanic 

centre.   
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Figure 6.7 Variation diagrams of major oxides and trace elements showing comparisons between tephra 
layers and silicic lithic blocks erupted as part of the SBT (Smith et al., 2003b). Each point represents a 
single glass shard, and their depth is in cms.  
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Figure 6.8 Compositions of submarine pumice clasts collected around Macauley 
(Barker et al., 2013) compared to the silicic lithic clasts found in the Sandy Bay 
Tephra (Smith et al., 2003b), along with the C13 clast. 
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6.2 Modes of emplacement and preservation of the tephra layers 

Subduction zone volcanoes generate large amounts of volcaniclastic materials due to the explosive nature 

of the volatile rich silicic magmas, especially those associated with caldera formation. Here I briefly 

discuss the various possible methods of emplacement that are relevant to the cores described in this 

thesis.  

6.2.1 Primary emplacement processes 

6.2.1.1 Subaqueous eruptions 

Submarine plumes may be produced by deep to shallow submarine volcanoes. There are three main types 

of submarine eruption (Kano, 2003; Rotella et al., 2013) that could contribute material to the samples: 

1. Explosive magmatic eruption – driven by magma vesiculation, forms an eruption column 

composed of pumice and volcanic gas which has a similar structure to a subaerial plinian 

eruption (Cashman and Fiske, 1991). Materials are deposited to the seafloor in turbulent density 

currents, forming normally graded deposits.  

2. Phreatomagmatic eruption – relatively small scale eruption resulting from water interacting 

directly with magma. Materials are deposited mostly via dilute volcaniclastic flows 

3. Tangaroan eruption (Rotella et al., 2013) – effusive eruptive style based upon pumice recovered 

from the seafloor around Macauley Island. Foamy magma erupts without fragmenting, and rises 

towards the surface as blebs while still internally vesiculating. The blebs can be transported by 

currents before becoming waterlogged and/or fragmenting to form clasts.  

The most likely eruptive type to provide material present in the sediment cores is a magmatic eruption. 

This produces larger amount of material which may be transported greater distances. An explosive 

submarine eruption of silicic composition forms a submarine eruption column, ejecting gas and hot 

pumice into the water column (Allen and Stewart, 2003; Kano, 2003; Carey and Schneider, 2011). Where 

eruptions have a high magma flux, buoyant mixtures of pumice, ash and hot water rise to the surface, 

spreading out to form a mushroom-shaped mixture of water and particles and small subaerial plumes may 

be produced (Stix, 1991; Carey and Schneider, 2011). A pumice raft is often produced which may float 

vast distances and for a year or more (Bryan et al., 2004). Material is often entrained in the raft and is 

transported great distances before falling out and settling to the sea-floor. Deposition of the entrained 

material is dependent upon local conditions, as wave action and storm condition would disperse the raft 

and enhance the loss of entrained detritus. This would make the deposition of a discrete tephra layer 

unlikely. Deposition from a pumice raft is, therefore, dependent upon weather conditions as well as the 

volume of material initially erupted and entrained in the raft.  
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As mentioned in the above section, Havre has produced a similar eruption in the recent past (Figure 6.9), 

with deposits in Core 5 inferred to record both the settling of the ash-laden plume (tephra 5-6) and 

pumice clasts (C5 4 cm clast) to the seafloor.  

6.2.1.2 Subaerial eruptions  

Large subaerial explosive eruptions generate buoyant eruption plumes that inject large amounts of tephra 

into the atmosphere.  Winds then distribute the material over large areas. If distributed over water, the 

tephra eventually falls and settles out through the ocean to produce a distinct isochronous fine-grained 

deposit that can be correlated over large areas (Carey and Schneider, 2011). The dispersal of tephra 

erupted in subaerial plumes is controlled by the eruption column height, the wind speed and direction and 

the volume of material erupted (Sparks et al. 1992). Material delivered to the water column from above 

can either settle via passive fallout (following Stoke’s Law, as outlined in Chapter 1) or it can form vertical 

gravity currents which rapidly transport material to the sea floor (Carey, 1997). Depending on the distance 

from source, these deposits can be several to tens of centimetres thick and display a sharp base with a 

bioturbated top. They are also typically normally graded, with crystals and coarser material concentrating 

at the base of the unit (Sparks and Ledbetter, 1979). The thickness of the tephra layers is a function of the 

volume of erupted material, height of the eruptive column and the prevailing wind strength and direction 

(Fisher and Schmincke, 1984).  

Pyroclastic flows are also a feature of subaerial eruptions, where partial collapse of a subaerial plume 

occurs and the pyroclastic flow decouples from the plume and continues to spread laterally along the sea 

floor. Pyroclastic flows can also be generated directly from submarine eruption plumes. The resulting 

Figure 6.9 Satellite image showing products of the July 2012 eruption of Havre Volcano (image collected 
July 18, 2012). Note the subaerial plume and pumice raft. The discoloured water near the pumice raft 
indicates the presence of a plume rich in gas and ash (as discussed in the text). Image from NASA Earth 

Observatory 
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deposits contain volcanic material such as crystals, tephra and pumice as well as entrained marine 

materials such as sediments and foraminifera (Carey and Sigurdsson, 1980; Fisher and Schmincke, 1984). 

Subaerially generated pyroclastic flows that enter water often generate turbidity currents. 

Material in Core 10 provides evidence of submarine pyroclastic flows. A 10 cm section of the core is 

normally graded, with medium lapilli at the base, grading upwards to fine sand. This differs from the 

lapilli unit below, as much of the material is covered in olive, muddy sand which is here interpreted to 

have been entrained into a density current, coating the lapilli in marine sediment before deposition 

occurred.  

6.2.2 Secondary emplacement processes 

6.2.2.1 Volcaniclastic turbidites 

Sediment gravity flows are the main mechanism for the transport of volcaniclastic material of the ocean 

floor (Carey and Schneider, 2011). There are many possible causes for volcaniclastic turbidity currents, 

and all of the primary volcanic processes outlined above can provide material for turbidity currents during 

or after eruptions. In order to form turbidity currents, rapid accumulation of volcaniclastic debris, a 

sloping surface, mixing between the sediment and water, and a trigger mechanism is needed to generate 

initial movement (Carey and Schneider, 2011).  

The 28 cm thick, tephra-rich unit in Core 1 (from 269 to 297 cm depth) is interpreted to have formed by 

a turbidity current, which transported volcaniclastic material to the core site. This would explain the 

thickness and sediment-rich nature of the unit.  

Core 10 shows evidence of having been deposited by a submarine pyroclastic flow as it has normal 

grading from medium lapilli at the base of the unit to medium ash at the top of the unit (from 11.5-20.5 

cm depth). Material near the base of the unit contains distinguishable minerals (quartz and mafic crystals), 

and blebs of scoria and dacitic material.  

6.2.2.2 Settling and winnowing of tephra 

Glass shards and other material in the tephra may be sorted during settling in the water column. Larger 

shards and denser (more mafic) material may settle more quickly than smaller and lighter (silicic) material 

resulting in grading of the shards. If there is compositional difference between large and small shards this 

will result in compositional grading of the tephra unit. Another process that can affect tephra 

composition is winnowing during transport in a turbulent flow. While these processes may affect the 

composition of tephra samples it is difficult, to identify samples that have been affected. In any case it 

would not affect any interpretation of a tephra layer representing a single event. 
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6.2.3 Preservation of tephra layers in the marine environment 

Bioturbation has long been recognised as a process effecting the preservation of tephra layers. Marine 

organisms are capable of dissipating tephra layers with initial thicknesses <1 cm with their ability to mix 

ash through sediment tens of centimetres thick (Sigurdsson and Carey, 1981; Fisher and Schmincke, 1984; 

Pillans and Wright, 1992). Bioturbation is present throughout the cores examined in this thesis, mainly 

associated with sedimentary facies A, C, G and H (see descriptions in Chapter 5). Many of the 

bioturbated sections contain visible sand size grains that appear to be volcanic ash, potentially thin 

deposits from eruptions that have been completely obscured and mixed into the surrounding sediment. 

The top contacts of some of the tephra units show evidence of bioturbation where, after cessation of 

deposition, marine organisms have disturbed the upper limits of the units. Without bioturbation it is likely 

that more, thin tephra layers would be preserved.  

Another process affecting the preservation of tephra layers is the sedimentation rate. As outlined in 

Chapter 5, many of the cores have slow sedimentation rates, especially cores 13 and 16 which have 

sedimentation rates of 11 and 12 mm/kyr respectively. This will result in bioturbation of many of the 

tephras and may also result in tephras from multiple eruptions forming what appears to be one unit but 

which may have contrasting geochemical trends. A few tephras in the cores possibly display this feature, 

particularly tephra C4 144.5-145.5 (Figure 4.27).  Tephra samples which do have two distinct geochemical 

trends within one sample are interpreted to represent multiple eruptive events the deposits of which have 

subsequently been mixed due to insufficient sediment to separate the individual eruptive deposits. 

Sediment reworking can also occur as a result of bottom currents in the area, which are locally intensified 

around bathymetry (Wright et al., 2001). The cores were collected from >2200 m water depth, so the 

effects of sediment reworking as a result of currents will be minimal as outlined in Chapter 2.  

Secondary remobilisation of volcaniclastic material can also cause mixing of tephras, yielding a 

heterogeneous signature. In some cases slumping can result in repeated sections in marine cores, as 

reported in the ODP Site 1123 core (Allan et al., 2008). The only evidence of this process recorded in the 

cores is near the base of Core 13, where it appears either slumping or a turbidity current has emplaced 

material. The tephra sampled from this unit, 13-75, was difficult to analyse, as much of the deposit was 

crystal rich, with small amounts of fragmented tephra present, along with foraminifera entrained in the 

sample (Figure 6.10). 
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6.3 Homogeneous vs. heterogeneous tephras and implications for magma 

genesis 

6.3.1 Homogeneous tephras 

A total of 40 homogeneous samples were analysed in this study. Unless otherwise stated, each of these is 

interpreted to represent a single eruptive event. Samples may display homogeneity due to either 

geochemical or depositional processes. As shown in Figure 4.26, the homogeneous tephras range in 

composition from basaltic-andesitic to rhyolitic, with the majority being of rhyolitic, representing the 

evolved components of magma chambers.  

Geochemically similar magma chambers may deposit tephras that are thought to be from the same event. 

One of the benefits of trace elements data is that we can see geochemical changes at finer scales than with 

major elements. These small scale changes can help separate geochemically similar tephras, allowing 

precise identification of single eruptive events.  

6.3.2 Heterogeneous tephras 

Out of a total of 89 tephra samples analysed, a total of 32 were heterogeneous in compositional range 

(>8% SiO2 2σ variation). In some samples one or two shards differed from the composition of the rest of 

the sample, in others there was a broad range of compositional values (see Figures 4.5-4.15). 

Heterogeneous tephras include samples with shards of highly variable composition that appear to be 

genetically unrelated. These samples were likely subjected to secondary processes, such as those outlined 

Figure 6.10 SEM Image of sample 13-75 showing the mixed nature of the 
deposit. 
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in section 6.2.2 above. Other samples show shards with a wide range in composition but that appear to be 

related by fractionation and/or mixing processes. 

6.3.3 Bimodal tephras 

There are a total of 11 bimodal tephras preserved in the cores, defined as having two distinct populations 

within the same sample. The majority of these show basaltic-andesitic and rhyolitic compositions (Figure 

4.28). This bimodality could be caused by the sample containing glass shards from two events, as 

mentioned above, or from magmatic processes. It is most likely that these bimodal samples represent 

either incomplete magma mingling or magma mixing between a fractionated evolved magma and a 

basaltic intrusion (as documented for Raoul by Barker et al., 2013). The majority of the bimodal samples 

show some evidence of geochemical relation between the two populations, indicating that the mafic and 

silicic members are genetically related. 

6.3.4 Kermadec arc magmatic processes and the generation of silicic magmas 

Fractional crystallisation is one method proposed to generate silicic magmas in arc settings (Leat et al., 

2003; Saunders et al., 2010; Barker et al., 2013). Smith et al. (2003a) propose that crustal anatexis is the 

process whereby much of the magmas in the Kermadec arc were generated. This is contradicted by recent 

work of Saunders et al. (2010) and Barker et al. (2013) which argues that fractional crystallisation is the 

dominant process in the generation of silicic magmas in the Kermadec arc (for a full discussion see 

Barker et al. (2013). As shown in Figures 4.5-4.15 fractionation trends are evident in many of the tephra 

layers, and these indicate that fractional crystallisation is indeed the dominant process in the generation of 

silicic magmas in the region. This is supported by preliminary interpretation of plots with reference to the 

model of Brophy (2008), which suggests that as silica increases, La should also increase (Figure 6.11).  

However, this will not be expanded on here as it is beyond the scope of this study.    

Fractionation of magmas may result in eruption of geochemically diverse and related tephras in the same 

eruptive event. Many tephras in this study show a range in silica content, including curvilinear trends 

rather than linear trends expected for magma mixing. Heterogeneous tephras that are clearly 

geochemically related and interpreted to be sourced from a fractionated magma source are considered to 

represent a single discrete event, and have been added to the final number of distinct eruptions recorded 

in the sediment cores. Much of the basaltic, basaltic-andesitic material erupted shows wide compositional 

ranges, and provides evidence for compositionally heterogeneous evolved melts. These melts could be 

formed by a number of processes, the most likely of which is either magma injection into a partially 

evolved magma chamber or magma injection into an evolved chamber resulting in magma mixing 

triggering an eruption which preferentially erupts the more buoyant basaltic material.  
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Figure 6.11 Preliminary plots of SiO2 (wt.%) vs La (ppm) for representative samples, 
showing clear fractionation trends (following from Brophy, 2008) 
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6.4 A tephrochronological model for Raoul and Macauley marine cores 

 

An integrated model for the tephrochronology of the Raoul and Macauley cores analysed here is 

presented as Figure 6.12. Development of a tephrochronology depends upon age dating of the cores so 

that we are able to date the tephra layers present. It is important to note that once we extend past 50 ka, 
14C dating cannot be relied upon and the ages are based on the oxygen isotope model. As shown in Figure 

6. 12, the carbon ages published by Shane and Wright (2011) do not correlate with our model ages. Whilst 

the younger ages in Cores 3, 13 and 16 and the two older carbon ages in Core 1 are most likely accurate, 

we propose here that their carbon dates >13 ka have been affected by sedimentary processes (such as 

biological reworking of older material or redistribution), as they do not correlate with our age models and 

yield distinctly older ages than indicated by oxygen isotope analysis, especially evidenced by the 

reasonable isotope chronology of Core 16.  

The 6.0 ka date obtained for Core 1 is here interpreted to be affected by sedimentary processes, as the 

SBT is present directly above this layer, and from reliable 14C dates from onshore material we know this 

to be 6.3 ka. In light of discrepancies between our age model and the other carbon ages published by 

Shane and Wright (2011) we favour the 6.3 ka age for the eruption, rather than the revised age of ca. 5.7 

ka (Shane and Wright, 2011).  

The sedimentation rate ages for Core 1 were calculated in three sections, using the known age of the SBT, 

as well as the two older carbon dates published to calculate the ages of tephras in Core 1. Ages in Core 2 

were calculated using the known age of the SBT at the base of the core. Ages for Core 3 were determined 

using the 14C age of Shane and Wright (2011) to calculate the sedimentation rate. Ages presented in 

Figure 6.12 for cores 4, 13 and 16 are calculated using the age model developed in this study. The younger 

carbon ages from these cores were not used in the development of the age models, but do correlate well 

with our age model dates. 

The final tephrochronology for the marine cores examined in this study indicates that the oldest tephra 

preserved is ca. 166 ka (Figure 6.13). This tephra is also the oldest record of silicic volcanism in the 

Kermadec arc. The tephra records preserve evidence of fluctuations in magma generation, with periods of 

quiescence in the generation of both mafic and silicic materials. The cores show that until ca. 18 ka 

basaltic-andesitic materials were abundant, as is recorded in the sediment cores and also onshore Raoul 

and Macauley Islands. Since that time silicic volcanism has become more prevalent (Figure 6.12).  

Other correlations proposed by Shane and Wright (2011) have in this study been discounted. The 

correlation between 16-71 and 13-51 is dubious, as the age difference between the two based upon the 

age models is ca. 15 ka, however, as mentioned in Chapter 5, this may be within the error of the Core 13 

age model. The correlation between 4-161 and 16-187 is in this study discounted, due to the stratigraphic 
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age difference between the two of ca. 83 ka. While they may be similar geochemically, they are not 

correlatives.  

This leaves the only correlative in the cores as the SBT, which is found across five different cores from 

offshore of Raoul and Macauley islands.  
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Figure 6.12 Tephrochronology 
for the cores analysed in this 
study. Where possible the 
volcanic source of tephra layers 
has been assigned, presented as 
a coloured line. For tephras 
which were part of a generalised 
field but a specific source was 
unable to be identified the 
tephra has been presented as a 
white line.  A solid line between 
cores indicates a correlation, 
and a dashed line infers the 
relative position of the 
correlative if it was present. 
Radiocarbon ages published by 
Shane and Wright (2011) are to 
the left of the cores; while ages 
calculated in this study (either 
by oxygen isotope analysis or 
sedimentation rate calculations) 
are presented on the right. Note 
that the age calculation for core 
3 is based upon radiocarbon 
ages.  
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Figure 6.13 Erupted compositions of materials preserved in the cores over the past ca. 170 
ka. Periods of quiescence are evident as is the increase in silicic volcanism in the past ca. 
18 ka. Compositions represent populations within each sample (i.e. if a sample is bimodal, 
both populations are included) (see Appendix C) 
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6.5 Frequency and magnitude of Kermadec arc eruptions 

 

The cores, while providing a much higher resolution record of volcanism in the region, do not preserve a 

record of every eruption over the past 170 ka. It must also be noted that there is not a 1:1 

correspondence between onshore exposures and preservation in cores. With the exception of the SBT, no 

tephra layer has been correlated to an onshore deposit with absolute certainty. This again highlights that 

the cores represent a minimum eruptive frequency.  

A total of 43 eruptions are recorded in the cores, with another nine tephra layers potentially representing 

individual eruptions (lower graph in Figure 6.14). Based on evidence in the cores, the past 10 kyr has been 

the most volcanically active time period over the past 170 ka, with 25 distinct eruption signatures 

recorded. There was a period of quiescence around 20 kyr, roughly coincident with the Last Glacial 

Maximum. There is another period of quiescence between 50-109 ka, and again from 120-130 ka. It is 

important to note however that prior to 50 ka, there is only one core with a record from this period, so it 

is not surprising to see a drop in the number of tephras. Based upon the age models, only four samples 

were collected from around that time, and they are all heterogeneous. Overall, there is ca. 1 eruption of 

significant enough size to be recorded in the cores every 4 ka. If the record from the past 10 ka is 

considered, there was an average of 2.5 volcanic eruptions every 1 ka of significant enough size to be 

preserved. I propose that this is a more realistic estimate of the true eruption rate.  

Looking at individual volcanoes, Macauley Volcano produces an eruption of significant size to be 

preserved in the cores with a frequency of ca. 3 eruptions/ 2 kyr while Raoul Volcano has an eruptive 

frequency of ca. 2 eruptions/ 3 kyr, yielding an average eruptive frequency for the two volcanoes at 1/ 

kyr (using eruptive frequency in the past 10 ka). If all of the volcanoes along the length of the arc show 

similar eruptive frequencies, the arc produces ca. 40 large eruptions/ ka.  
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Figure 6.14 Eruptive frequencies of the volcanic centres over time. The top graph 
plots all tephra samples examined in this study, while the lower graph shows the 
eruptive frequency for the tephras which represent a single eruptive event.  
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Chapter 7 
Conclusions 
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7.1 Key findings of this study 

 

A combination of stratigraphic and geochemical data obtained from analysis of marine cores collected 

from off Macauley and Raoul volcanoes in the Kermadec arc lead to the following key conclusions: 

A. The number of total discrete events preserved in the cores is 51, incorporating the findings of 

Shane and Wright (2011) who identified 27 eruptive events recorded in the cores. My findings 

indicate that explosive volcanism is more prevalent at Raoul and Macauley volcanoes than 

previously thought. Most of the eruptive events recorded in the cores are not represented in the 

onshore deposits. The geochemistry of these tephra layers indicate that silicic volcanism has been 

a feature of magmatic systems at the two volcanoes for the late Pleistocene and is not limited to 

the Holocene as indicated by the onshore exposures (e.g., <4 ka on Raoul).   

B. Construction of an age model for the cores based on oxygen isotope analysis and wiggle-

matching to published chronologies indicates that the oldest core (C16, offshore from Macauley 

Island) extends back to ca. 170 ka (MIS6). This has allowed the construction of a more detailed 

volcanic history for the region. From this we are able to see that there appear to be significant 

periods of volcanic quiescence (ca. >50 ka), where no eruptions of a significant enough size to be 

preserved are erupted.   

C. Fractionation appears to be the predominant method of generating silicic materials in the region, 

as the majority of the tephras analysed in this study show distinct fractionation trends from the 

glass chemistry. Contrasting models have been proposed for the generation of silicic magmas in 

the Kermadec arc, with crustal anatexis being proposed by some (Smith et al., 2003a, b; 2006; 

2010) and fractional crystallisation proposed by others (Saunders et al., 2010; Barker et al., 2013). 

My preliminary results are consistent with fractional crystallisation being the dominant method by 

which these silicic magmas are generated. 

D. Trace element geochemistry provides a more precise means of not only correlating tephras, but 

distinguishing tephras that have near identical major element compositions. Collection of these 

trace elements also allows for identification of processes occurring in the magma chamber to be 

made, as is outlined in point C above.   

7.2 Key questions addressed 

 

Three key questions were listed in Chapter 1, and the work presented in this thesis addresses them as 

follows. 

Key question (A) was: is silicic volcanism in the Kermadec Arc a recent development, or does it pre-date 

records preserved onshore? As shown in Chapters 4 and 5, it has been established that the record of 
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silicic volcanism in the arc dates back to at least ca. 170 ka (the oldest tephra contains dominantly dacitic 

shards) indicating that silicic eruptions are simply not a recent development. It is interesting that none of 

these eruption deposits prior to 6.3 ka (the Sandy Bay Tephra on Macauley: Smith et al., 2003b) or ~4 ka 

(Matatirohia on Raoul: Lloyd and Nathan, 1981) are preserved subaerially on Macauley or Raoul islands, as 

these volcanoes appear to have produced the majority of silicic tephras preserved in the cores. Only one 

silicic eruption, the Sandy Bay Tephra, is recorded on Macauley Island, which is interesting as much of 

the silicic material preserved in the cores are inferred to be sourced from Macauley volcano (Figure 6.14). 

The diverse silicic compositions recorded in glassy lithic fragments in the Sandy Bay Tephra (Smith et al., 

2003b) and dredged pumices from the edifice flanks (Barker et al., 2013) show that the erupted history of 

the arc is much more diverse and complex than previously thought.  

 

Key Question (B) was: is there any cyclicity to the eruption of silicic magmas? If yes, what processes can 

explain this?. From the tephras in the cores it can be seen that there are fluctuation in the magma supply, 

with long periods of quiescence (ca. >50 ka) followed by periods of high activity. In this study I interpret 

this to be due to differences in magma supply rates. In the past, basaltic-andesitic volcanism dominated, 

as recorded in the sediment cores and more especially in the onshore stratigraphic successions. The main 

bodies of Raoul and Macauley massifs are composed almost entirely of basaltic material. The stratigraphy 

of the islands indicates that there were rapid shield building periods followed by periods of lesser volcanic 

activity, and Holocene eruptions would suggest that the periods of rapid shield growth are followed by 

periods of smaller silicic eruptions which have low preservation potentials. This is best explained by 

periods of steady and fast magma supply from below which produces voluminous basaltic eruptions 

which build up the shield volcano. The magma supply then slows, and due to the density trap in the crust 

the magma ponds and begins to fractionate, forming more silicic magmas (Barker, 2010). These silicic 

magmas are erupted periodically and generally in smaller volumes. The magma supply then seems to kick-

start and the supply again becomes steady and basaltic cone growth begins again.  

 

Key Question (C) was: how frequent are eruptions of a significant enough size to be preserved in the 

cores?. Based upon the constructed tephrochronology and the age model developed, I calculate that 

overall, ca. 1 eruption every 4 ka is recorded in the cores. If we look at the eruption rate from the past 10 

ka we see that ca 2.3 eruptions are recoded every 1 ka. This is more likely to represent the actual eruptive 

frequency, as only three cores pre-date 15 ka, and only one extends back to 170 ka.   

7.3 Future Work 

 

This study opens up many avenues which can be investigated. Many questions remain about the size and 

eruptive volume of the silicic volcanism in the arc, which require further investigation.  
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1. The resolution of the age models for Cores 4 and 13 could be improved with higher resolution 

sampling. This would allow us to improve the oxygen isotope model and more accurately classify 

the ages of the tephras preserved in the cores.  

2. Collection of more sediment cores from the area would allow a more detailed history of 

volcanism in the arc to be constructed. Longer cores would preserve more eruptive events, and 

improve upon our understanding of the frequency of eruptions in the region. Collection to the 

west of the arc is important for the future, as the prevailing wind direction in the region 

preferentially disperses volcanic material in that direction, increasing the preservation potential of 

the tephra layers. Collection of sediment cores to the east of the arc could also yield tephra layers 

erupted during periods of ENSO, providing a more detailed tephrochronology of arc volcanism.  

3. These sediment cores could provide useful data for glacial/interglacial paleooceanographic 

changes in the mid-latitudes of the Southwest Pacific. Few studies have been conducted on 

paleooceanographic changes occurring in this region, which lies in a key location to record 

changes in the DWBC (Wright et al., 1995; Whitworth et al., 1999) and Tasman Front (Carter et 

al., 2008), as well as changes in the prevailing wind directions. Sediment cores also yield other 

useful information on grain size, floral and faunal assemblages, and carbonate components, 

which can tell us much about the nature of the water column and regional water conditions, 

including changes in sea surface temperatures, stratification, mixing and productivity during 

glacial/interglacial cycles. The scope of this study cannot investigate all of these variables, but 

could be an important avenue for future work.  

4. Major and trace element data collected in this study indicate that fractional crystallisation is the 

dominant process in forming silicic tephras in the Kermadec Arc (Saunders et al., 2010; Barker et 

al., 2013). The dataset could be expanded on and interpreted in greater detail, focusing on 

modelling of the data using the Brophy (2008) model to classify the fractionation parameters.   

5. Trace elements of glass shards examined in this study could be used to conduct a detailed study 

on the magmatic processes occurring in the magma chamber shortly before eruption. Barker 

(2010) found that many minerals were not in equilibrium with the melt, indicating magma mixing 

occurring shortly before eruption. Trace element data analysed in this study could be used to 

investigate this further, particularly on the tephra mineral assemblages.   
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