
Towards a Social Cloud
Framework for Collaborative

eResearch

by

Ashfag M. Thaufeeg

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Engineering
in Computer Science.

Victoria University of Wellington
2012

Abstract

Collaboration has always been an important aspect of scientific research.
The coming of internet opened the doors for greater levels of collabora-
tion for the research community, first enabled by email and then by web
2.0 based online portals called VREs. A new force, social networks, are
bringing a paradigm shift to online research communities. Social net-
works could foster a more vibrant research environment powered by so-
cial activities such as sharing, community creation, tagging and commu-
nity groups.

This thesis explores the idea of using the power of social networks to
create a social cloud to contribute and share computing resources. The
prototype implementaion, called the Social Collaborative Cloud (SoCC),
uses facebook as the underlying social network. The prototype was eval-
uated using simulations of both real and synthetic datasets, as well as real
world tests.

ii

Acknowledgments

First I would like to thank my supervisor, Dr Kris Bubendorfer, for his
guidance throughout the thesis.

I would also like to thank Dr. Andy Linton for his help in configur-
ing out the test machines used for the implementation, and my colleague
Koshy John and Kyle Chard for their helpful suggestions.

Last but not least, I would also like to thank Julia Harrison of Victoria
International Office for her support throughout my stay in New Zealand.

iii

iv

Contents

1 Introduction 1
1.1 Contributions . 2

1.2 Thesis Organisation . 4

1.3 Related publications . 4

2 Background 7
2.1 Service Oriented Computing 7

2.1.1 Overview . 7

2.1.2 Infrastructure as a Service 8

2.1.3 Platform as a Service 9

2.1.4 Software as a Service 9

2.2 Social Networks . 9

2.2.1 Overview . 9

2.2.2 Basic Concepts and Features of Social Networks . . . 10

2.2.3 Development APIs . 13

2.3 Virtual Research Environments 15

2.3.1 Overview . 15

2.3.2 Functions of a VRE . 15

3 Related Work 17
3.1 Fire Dynamics Simulation Demonstrator 17

3.2 myExperiment . 17

3.3 nanoHUB.org . 18

v

vi CONTENTS

3.4 Social Cloud Computing . 19

3.4.1 Overview . 19

3.4.2 Social Market . 21

3.5 Social Storage Cloud . 22

3.6 The Social Cloud for Public eResearch 22

4 SoCC Architecture 25

4.1 Overview . 25

4.2 Design Decisions . 26

4.2.1 Use of facebook for the prototype 26

4.2.2 Use of Virtual Machines for resource sharing 27

4.3 Implementing a VRE Over Facebook 27

4.4 Architectural Components of SoCC 28

4.4.1 SoCC Application Server 29

4.4.2 Account Manager . 29

4.4.3 Resource Manager . 30

4.4.4 User Resource . 30

4.4.5 Scheduler . 32

4.4.6 EventPublisher . 32

4.4.7 Image Store . 32

4.5 Interactions in the SoCC . 32

4.5.1 User Registration . 33

4.5.2 Resource Registration 33

4.5.3 Virtual Organisation Creation 35

4.5.4 Compute Requests . 36

4.6 Virtualisation . 38

4.6.1 Overview . 38

4.6.2 Advantages of Virtualisation 39

4.6.3 Approaches to Virtualisation 41

4.6.4 Virtualisation Management Middleware 43

4.7 SoCC FairShare Scheduler . 44

CONTENTS vii

4.7.1 Fair share scheduling concept 44
4.7.2 Using the fair share scheduler in SoCC 45

5 Testing And Evaluation 49
5.1 Real World Tests . 49

5.1.1 Performance of Compute Instantiations 50
5.1.2 Evaluation of Extension Mechanisms 53

5.2 Simulation Tests . 55
5.2.1 Design of the Simulator 55
5.2.2 Test Dataset . 59
5.2.3 Algorithms Tested . 62
5.2.4 Simulations . 64
5.2.5 Simulations Using the AuverGrid Trace 65
5.2.6 Simulations Using the Balanced Trace 70

6 Conclusions 75
6.1 Major Contributions . 76
6.2 Future Work . 78

viii CONTENTS

Chapter 1

Introduction

Sharing and collaboration has always been important aspects of scientific
research. Whereas in the past the only opportunity for productive com-
munication exists when scientists visits other institutions or meet in con-
ferences, the internet has brought a paradigm shift in this area. Electronic
communication and services such as email and online file sharing services
has allowed scientists to conduct collaborative research spanning institu-
tional and national boundaries.

We are now at the point of another paradigm shift in scientific collabo-
ration, brought about by the advent of social networks. The use of social
models is promoting rapid sharing and collaboration at a level not seen
before ([33]), leading to productivity. Online research communities such
as myExperiment ([21]) and nanoHUB.org ([30]) has allowed sharing of
datasets and documentation, tagging and commenting on research arte-
facts and collaborative research. These websites attempts to serves as a
portal where scientists can conduct research. In other words, the provide
a Virtual Research Environment (VRE) for scientists.

Although most of these VREs has brought with it greater sharing and
collaboration, they still do not go far enough to harness the real capabilities
possible with a social model. Commercial social networks such as face-
book and LinkedIn, although not specifically scientific research communi-

1

2 CHAPTER 1. INTRODUCTION

ties, have fostered a more vibrant community of people from all fields and
age groups. It therefore provokes the consideration that these commercial
networks could be utilised as a VRE.

Another important development is the cloud computing model. High
Performance Computing (HPC) traditionally has been provided by insti-
tutional grids. The internet has allowed the online delivery of grid ser-
vices such as TeraGrid ([20]) and commercial cloud services such as Ama-
zon EC2 ([2]). HPC computing capabilities are still a scarce resource. This
has given rise to volunteer computing efforts such as BOINC ([14]), which
enables the general public to volunteer their spare computing capacity to
scientific research.

Some VREs, such as nanoHUB.org, utilise these cloud computing ser-
vices to deliver specific capabilities directly within the VRE environment,
such as running simulations and modelling. More recently, the Social
Cloud concept ([18]]) attempts to address this problem by enabling com-
puting resources to be shared using social relationships found in a social
network. This model utilises the social relationships between parties as
a basis and motivating force to encourage the sharing of computing re-
sources.

The goal of this thesis is to utilise the capabilities of social networks to
implement a socially motivated, computing resource sharing framework.
In particular, the VRE capabilities of social networks will be used to inte-
grate a social cloud with a virtualised resource sharing framework, called
the Social Collabortive Cloud or SoCC. The result of the thesis would be a
working prototype of SoCC integrated to a commercial social network.

1.1 Contributions

The main body of work for this thesis is the design and implementation
of a prototype Social Cloud framework integrated into a social network.
Specifically, this thesis makes the following research contributions:

1.1. CONTRIBUTIONS 3

• Design and build a prototype Social Collaborative Cloud. The pro-
totype should satisfy the following requirements:

– Integrate seamlessly with the social network environment. In order
to facilitate ease of use and acceptability by users, the prototype
must integrate well with a social network. This means that in-
formation such as usernames and email addresses must not be
duplicated (it has to use what the user has provided to the so-
cial network), the users privacy settings must be respected, and
should not duplicate any social network functionality, such as
builtin user groups and chat boards.

– Implement a IaaS/PaaS cloud model. The SoCC prototype is aimed
at scientific researchers, whose primary need is access to raw
computing resources. SoCC provides a combined Infrastructure
as a Service (IaaS) and Platform as a Service (PaaS) cloud com-
puting model to serve this need. It provides the basic resource
fabric that can be customised to run a set of Virtual Machines
(VMs) of a required specification such as CPU, Memory and
storage (IaaS model). SoCC also provides the option to launch
a pre-configured VM with a selection of Operating Systems and
software packages and use it run computations (PaaS model).

– Use Virtual Machines (VMs) for resource sharing. VMs provide a
number of advantages over traditional grids, which is investi-
gate in more detail in section 4.6. The prototype must imple-
ment an easy and straightforward mechanism for users to in-
stantiate and use VMs, while preserving the advantages of us-
ing VMs.

– Implement a scheduling framework that encourages sharing. The
main purpose of the Social Collaborative Cloud is to encour-
age collaboration among scientists and sharing of computing
resources. To this end, the SoCC prototype must implement a

4 CHAPTER 1. INTRODUCTION

way that would encourage participating users to contribute re-
sources, while giving them more in return.

– Be open. Openness is viewed as a basic requirement of any VRE
([21]). To this end the SoCC prototype must use open protocols
and standards as much as possible. It should also provide a way
to extend its functionality to cater advanced users or users with
very specific requirements.

• Evaluate the performance of the SoCC prototype. Two sets of tests
were done. The first set is composed of the real world tests intended
to evaluate the workings of the prototype, and to investigate the im-
pact of the use of a social network has on the implementation. The
second set of tests evaluate the performance of the scheduling al-
gorithms via a simulation. The simulation uses a real world grid
dataset adapted to be used in the SoCC environment, as well as a
synthetic trace to evaluate extreme cases.

1.2 Thesis Organisation

The thesis is organised as follows: Chapter 2 explores some background
knowledge that would form the foundation of this work. Chapter 3 looks
at related work, and chapter 4 details the architecture and implementation
of the SoCC prototype. Chapter 5 presents the real world and simulation
tests to evaluate the performance of the SoCC prototype. Chapter 6 con-
cludes this thesis and suggests areas for future research.

1.3 Related publications

The following publication outlines the initial work done on this thesis. I
was the first author for this paper, and is co-authored with my supervisor
Kris Bunendorfer, and Kyle Chard from University of Chicago.

1.3. RELATED PUBLICATIONS 5

• Ashfag M. Thaufeeg K. Bubendorfer K.Chard. Collaborative eRe-
search in a Social Cloud, 7th IEEE International Conference on e-
Science in Stockholm, Sweden, December 2011.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter looks at the background knowledge and concepts that serves
as the foundation for this thesis.

2.1 Service Oriented Computing

2.1.1 Overview

Traditional computing approaches consists of each organisation imple-
menting and maintaining their own computing infrastructure. In the early
days of computing before the explosion of the Internet, most organisations
that require a computing capability invested heavily in their own data cen-
tres with servers and networking equipment, technical staff and in many
cases their own software developers as well.

However, with the connectivity and opportunities that came with the
Internet, computing infrastructures, and IT in general, has evolved into
specialised services [38]. As a result, it is common to find computing ca-
pabilities being delivered over the Internet, more generally referred to as
Service Oriented Computing (SOC).

Due to the wide range of computing services that are possible, from
raw infrastructure capabilities to software, it is possible to partition SOC

7

8 CHAPTER 2. BACKGROUND

into three major layers, also known as the cloud stack ([29]), as shown in
figure 2.1.

... ...

Infrastructure as a Service

Platform as a Service

Software as a Service

Software 1 Software n...

Figure 2.1: Service Oriented Architecture Layers.

Some definitions only refer to the lower stacks as the cloud [15], mostly
due to the fact that the software stack has been around for some time (re-
ferred to as Software as a Service), while the lower stacks are a more recent
innovation.

2.1.2 Infrastructure as a Service

The lowest layer of the service stack is the infrastructure layer. At this layer
the capabilities of the computing hardware, generalised into networking,
storage and computing, is exposed to the client in the form of Infrastruc-
ture as a Service (IaaS). It is important to note that it is very uncommon
for the raw hardware to be exposed to the client. Rather, the current trend
is to expose a uniform view of the infrastructure layer to the client by us-
ing resource virtualisation [31]. This form of virtualisation allows the ser-
vice provider to hide the heterogeneity of their infrastructure (eg: different
server models) and present the client with a standard and uniform view.

2.2. SOCIAL NETWORKS 9

2.1.3 Platform as a Service

The platform layer is an intermediate layer in figure 2.1. This layer consists
of software implementations, so there is a certain overlap of this layer and
the layer above (the software layer). However, the common view of this
layer is that any software that is used to host other software or serves as
an execution environment to other software [32]. With this definition, web
hosting software such as Apache and execution environments such as Java
Virtual Machine can be viewed as a Platform as a Service (PaaS). However,
more common to be served as PaaS are Operating Systems (eg: Ubuntu,
Microsoft Windows) which serves as a platform for virtually any other
software.

2.1.4 Software as a Service

This is the top most layer of the service stack, and its common definition is
any software that is directly consumed by the client[32]. Note that depend-
ing on the client user, the definitions of PaaS and SaaS can be different. For
example, a web developer may view the Apache web hosting software as
in the SaaS layer, while a user running a blogging software most likely
would view Apache in the PaaS layer. Most current cloud services fits
into this layer, such as web based email, online photo galleries and video
sharing.

2.2 Social Networks

2.2.1 Overview

A Social Network, as the name suggests, is an online community of users
linked to each other by social relationships. Social relationships here refers
real world relationships such as friendship, kinship, professional acquain-
tance etc. In this sense, the Social Network represents a graph with the

10 CHAPTER 2. BACKGROUND

users being the nodes and the edges being their relationships.
There is no rule as to what a node in a Social Network can be. It could

be an individual user, an organisation or even a country. For brevity, in
this section we would only refer to nodes as individuals, but it should be
remembered that node and relationship heterogeneity still applies.

Figure 2.2: Social Network - Individuals and Relationships.

2.2.2 Basic Concepts and Features of Social Networks

1. Relationships
A relationship in a Social Network is a connection between two indi-
viduals, or in another words, an edge in the social graph. This con-
nection could be of many natures. For example, family relationship,
friendships, a common interest or common professional fields are all
possible relationships between individuals. In general a social net-
work would represent all these relationships with just one type of an
abstract link between two individuals, which is referred to in most
Social Networks as a friend connection.

Although its not possible to differentiate between different relation-

2.2. SOCIAL NETWORKS 11

ship types (eg: professional relationship or family relationship) in
general, some Social Networks does allow a user to organise indi-
viduals relationships into groups (eg: friend circles in Google+), thus
allowing the links to be differentiated as far as that individual is con-
cerned. It should be noted that these relationship differentiations
makes sense only in the context of a particular individual, as differ-
ent individuals may organise the same relationship differently.

It could argued that relationships between individuals are the fun-
damental feature of Social Networks, as relationships gives rise to
the various other properties of Social Networks.

2. Personal Social Network
An individuals Personal Social Network comprises of all the direct
relationships of that individual (figure 2.3). This network forms a
sphere of influence for that individual - i.e he or she can influence,
via the direct relationships, other individuals in the Personal Social
Network and vice versa.

Figure 2.3: An individuals Personal Social Network.

Personal Social Networks are important as they allows relevant in-

12 CHAPTER 2. BACKGROUND

formation to spread among individuals that has something in com-
mon. For instance, a piece of information shared by a scientist about
some research work would be received by members in that scientists
Personal Social Network, who are likely to contain other scientists
with similar interests. The information could then get shared further
through those scientists Personal Social Networks. The same mecha-
nism can also work in the opposite direction. For example, if enough
members in an individuals Personal Social Network joins a group,
then that individual might be pressured to join as well.

3. Social Incentives
Social Incentives refers to the forces that motivate individuals to share
or contribute in a Social Network. The nature of the incentive would
depend on such factors as what is being shared, the nature of the
relationship or trust between individuals etc. For example, an in-
dividual might share a photo gallery with family members only for
personal satisfaction without expecting anything in return. Another
individual might share a photo gallery with the whole community,
expecting others to commend his work and as a result raise his social
standing.

Often, the required incentive is related to the level of trust in a Social
Network[35]. Trust is an abstract term referring to how willing an
individual is to share something with another individual. Varying
degrees if trust, or levels, might exists in a Social Network as shown
in figure 2.4.

An individual might not require more than personal satisfaction or
moral responsibility to contribute or share something in his or her
Personal Social Network. If sharing is to happen outside the Per-
sonal Social Network, then a more elaborate incentive might be re-
quired, such as a monetary reward or a mutual benefit.

Levels of trust might also vary within the Personal Social Network.

2.2. SOCIAL NETWORKS 13

Figure 2.4: Levels of trust in a Social Network. An individual is more
likely to trust another individual who is closer, while far away individuals
are not as trustworthy.

For example, an individual might trust family members more than
friends, and may trust friends more than professional acquaintances.

2.2.3 Development APIs

An important feature in today’s commercial Social Networks is the built in
developer support. Almost all Social Networks provides some form of an
API (Application Programming Interface) to allow individuals to extend
the functions of the Social Network in some manner. This feature also
serves as a magnet to attract more users to the Social Network, by lever-
aging the skills of third-party developers to integrate interesting applica-
tions, such as games. However, the most useful aspect of the development
APIs of Social Networks is that it can be used to integrate Social Network
functions into other applications.

For reasons detailed in section 4.2, facebook was selected as the test
bed Social Network for this thesis. Therefore, we will look at the face-

14 CHAPTER 2. BACKGROUND

book developer API and dvelopment model in this section, although the
fundamentals are the same for all Social Networks.

Figure 2.5 shows the high level architecture of the facebook application
model. A developer can signup to the facebook developer website and get
a unique key for each application they want to develop.

Figure 2.5: Facebook application model.

As shown in the figure, the application is nothing more than a piece of
standard html (a web page) rendered inside an iframe within the facebook
UI. The app will require a backend server (App Server) to generate the
html. When the developer registers his app, facebook will save the URL
for this App Server which would form that applications link inside the
facebook UI. When a user clicks this link, the app is opened inside the
iframe.

In order for the developer to have access to the users private informa-
tion, such as the users email address, the user would first need to authorise
the app for this information. This happens the first time the user opens a
facebook app. Thus, an app would not have any information about a user

2.3. VIRTUAL RESEARCH ENVIRONMENTS 15

that has not been authorised by that user for that app.

2.3 Virtual Research Environments

2.3.1 Overview

Traditional means of collaboration between researchers (prior to web 2.0)
consists mainly of email exchanges and face to face interaction in confer-
ences. With the popularity of web 2.0, new modes of collaboration that
takes advantage of web 2.0 features such as social networks, online data
sharing and real-time messaging has become possible.

In fact, web 2.0 technologies has advanced to a level that it is now pos-
sible to provide a complete web based environment that allows efficient
project management, communication, sharing and other services amongst
researchers. A Virtual Research Environment (VRE), as its name suggests,
is a web based interface that provides integrated access to these services.

2.3.2 Functions of a VRE

The main functions of a VRE, according to definitions from [21, 32] can be
described as follows:

1. Management of research artifacts
Research artifacts refer to documents, datasets, computer programs
and any other computer stored object that is related to the research.
A VRE must have the facilities to create, update, share and search
such artifacts.

2. Provide a social model for interaction between researchers
A VRE must encourage cooperation and sharing. It should imple-
ment features found in Social Networks such as community feed-
back and discussions, providing credit to researchers who shares the
most, establish relationships with other researchers etc.

16 CHAPTER 2. BACKGROUND

3. Provide an open environment
A VRE must implement standardised APIs and development mod-
els. Make it easy for developers to extend the capabilities of the en-
vironment.

4. Make research artifacts actionable
This means that research artifacts such as datasets and experiment
descriptions arent merely stored or archived in the VRE. Rather, they
can be executed by invocating remote services. In other words, re-
search can be conducted directly from the VRE.

Chapter 3

Related Work

3.1 Fire Dynamics Simulation Demonstrator

This is a facebook interface for the Fire Dynamics Simulator (FDS) simu-
lation package ([19]). Its interest here is because of its use of facebook to
provide users access to a backend grid configured with the FDS software
package. The demonstrator is built as a facebook applicattion (figure 3.1),
allows users to submit simulation jobs to the backend grid and download
results once the computations are completed. Being built into facebook,
users are able to share datasets and results, participate in others exper-
iments and discuss reasearch. This is a very specific, focused facebook
application that allows users to submit FDS jobs to a specific grid. Both
the grid and FDS software packages are pre-configured by the developers.

3.2 myExperiment

myExperiment([21]), shown in figure 3.2 is a Virtual Research Environ-
ment for scientists, focused on sharing scientific workflows and related
materials. The VRE implements a social model, which allows users to up-
load content and share with others, enables scientists to form groups for

17

18 CHAPTER 3. RELATED WORK

Figure 3.1: Fire Dynamics Simulator facebook interface.

conducting and collaborating on research etc. It also allows users to de-
fine actionable reserach objects, which are research materials such as datasets
and workflows which can be submitted to external services for processing
right from the VRE interface. myExperiment has built in support for some
workflow management packages, and also provides a public API for de-
velopers to extend its functionality.

3.3 nanoHUB.org

nanoHUB.org ([30]) is an online portal for the nanotechnology reserach
community. It provides a repository of software tools, research and teach-

3.4. SOCIAL CLOUD COMPUTING 19

Figure 3.2: myExperiment VRE.

ing materials focused on the nanotechnology field. nanoHUB supports
basic community focused fuctions such as user uploaded tutorials and re-
serch materials, tagging and ratings.

The most interesting feature of nanoHUB.org is archive of browser
based simulation tools. These tools allow users to run simulation soft-
ware inside a browser window, with the actual simulations powered by
public grids. nanoHUB.org currently has a very active user base, which as
of 2010 stands at 167,196 users([26]).

3.4 Social Cloud Computing

3.4.1 Overview

From [17], the definition of a Social Cloud is as follows:

A Social Cloud is a resource and service sharing framework util-

20 CHAPTER 3. RELATED WORK

ising relationships established between members of a social network.

Therefore, the fundamental feature that distinguishes a Social Cloud
from other forms of cloud computing is the social relationships between
members of the cloud. These relationships comes from the social network
from which the Social Cloud is overlaid, as shown in figure 3.3.

Figure 3.3: Multiple Social Cloud overlays over a Social Network.

Social Clouds are similar to volunteer computing models. In volunteer
computing, users donate their idle computing capacity to public projects,
such as SETI@Home [13], without expecting a monetary return. The mo-
tivations for such contributions can be either a sense of community good
will, or the high status resulting from contributing more than others.

Social Clouds takes advantage of the relationships in the social net-
work to form the necessary trust and motivation for contribution. Trust
provides the primary motivation for users to risk allowing other members
in their personal social network to access their resources. Social standing,
such as recognition in the community as well as mutual benefit are also
motivations for contribution.

3.4. SOCIAL CLOUD COMPUTING 21

3.4.2 Social Market

At the centre of the Social Cloud is the the Social Market. The Social Mar-
ket regulates and manages the resource tradings that occur in the Social
Cloud. It consists of the protocols and economic models selected to en-
force a particular market behaviour.

The specific protocols and economic models of the Social Market de-
pends on the nature of the resource been traded, the type of relationships
between members and the level of trust between them. Taking account
these factors, several models are possible. The following lists some so-
cially motivated market models ([18]):

1. Volunteer. In this model, users selfishly share their resources with
other members. The motivation behind this model is an idelistic one,
such as charity. This is a high risk model, where users are generally
not held responsible for bad behaviour.

2. Trophy. In this model, users contribute in return for a special status
in the community. This can take the form of a badge in the users
profile, or a ranking in the community to recognise the users contri-
bution. The driving force in this model is fame, where users expect a
higher social status in the community in return for their efforts.

3. Reciprocation. In this model, users are rewarded with higher prior-
ity when requesting resources depending on how much they them-
selves have contributed. Users who contribute more are favoured
over those that contributes relatively less. The motivation behind
this model is the need for more resources due to the scarcity of the
resource among individual users possession. The market ensures
that if the user contributes, then that user would be prioritised when
requesting resources for themselves.

4. Reputation. This is a model that depends on individual users repu-
tations when allocating resources. Reputation is a social status a user

22 CHAPTER 3. RELATED WORK

earns from the community. Users who do not cheat, interact with the
community more or otherwise shows good social behaviour would
have a higher reputation. Users with higher reputation are favoured
by the Social Market when resources are allocated.

3.5 Social Storage Cloud

The Social Storage Cloud (figure 3.4) is a prototype storage service im-
plemented on facebook ([18, 17]). The service is implemented as a face-
book application, and uses a virtual currency based social market to trade
storage services (figure 3.4). The service supports both posted price and
auction mechanisms. When users sign-up to the application, they are pro-
vided with a Globus Monitoring and Discovery System (MDS) identifier
which they can use to configure their own storage services. The storage
service can then register with the Social Storage Cloud and sell storage
space.

3.6 The Social Cloud for Public eResearch

This is a volunteer computing framework built on top of facebook ([23]). It
uses the BOINC [4] project as the underlying volunteer computing service.
A facebook application connects the BOINC servers, facebook, users and
projects (figure 3.5).

The framework uses the facebook relationships to promote volunteer
computing projects among a users friends. It uses a number of social in-
centives, such as Project Champions and Compute Magnates ([23]) to en-
courage users to contribute.

3.6. THE SOCIAL CLOUD FOR PUBLIC ERESEARCH 23

Figure 3.4: Social Storage Cloud.

24 CHAPTER 3. RELATED WORK

Figure 3.5: Social Cloud for Public eResearch.

Chapter 4

SoCC Architecture

This chapter details the architecture and implementation details of the pro-
totype Social Collaborative Cloud. We first give an overview of the design
followed by some of the design decisions behind choosing facebook for
the underlying Social Network and use of Virtual Machines for resource
sharing. We then look at how a VRE can be implemented using the face-
book interface, and how SoCC can be implemented as a extension to the
basic VRE. The rest of the chapter details the implementation of SoCC.

4.1 Overview

SoCC is intended to fuse the worlds of social networks and cloud com-
puting. The goal is to harness the power of social networks, such as its
inherent friend relationships and collaboration capabilities, to provide a
VRE environment that would allow computing resource sharing.

To this end, a primary design goal of SoCC is to not break the under-
lying social network model in the process. This is achieved by storing as
much information in the social network, and only storing the information
related to the computing resources and accounting is stored in the SoCC
application server. No existing functionality in the social network is du-
plicated – integration is prioritised when ever possible. Users would use

25

26 CHAPTER 4. SOCC ARCHITECTURE

the social networks features to carry out essential activities such as docu-
ment sharing, group discussions and forming relationships. Users would
also the social network for authentication. Only the social cloud feature is
implemented by SoCC.

For example, SoCC would use the social networks group feature to
implement Virtual Organisations. This would allow users to form VOs
by creating groups in the social network using a familiar interface. Any
changes that is made to the social networks group would be reflected in
the corresponding SoCC VO, such changes to member permissions. This
model allows SoCC to feel as part of the social network, not as an external
application with a interface inside the social network.

Another consideration is that in this SoCC prototype we are target-
ing scientific researchers. Their needs are such that low level computing
resources are preferred in order to run CPU intensive algorithms and pro-
cess large datasets. SoCC therefore provides both IaaS and PaaS models
of cloud computing. The PaaS model would allow scientists to quickly
deploy a pre–configured VM image to run their computations, while the
IaaS model would allow the VM to be customised with the required CPU
power, memory and storage to run whatever software tools they require.

4.2 Design Decisions

4.2.1 Use of facebook for the prototype

When deciding on a Social Network to build SoCC, the two major Social
Networks, LinkedIn and facebook was considered. LinkedIn appeared at-
tractive because of its orientation for catering towards professional users
and thus appeared more suited for the target audience of SoCC [9, 5].
However, facebook had the better developer support as a result of its suc-
cess, and already boasts millions of applications [3,4] and a very active
developer forum. Also some of the related work has been already done

4.3. IMPLEMENTING A VRE OVER FACEBOOK 27

on facebook [12, 17]. For these reasons facebook was selected to build the
SoCC prototype.

4.2.2 Use of Virtual Machines for resource sharing

The advantages of Virtual Machines for resource sharing will be discussed
in detail on section 4.6. Coupled with the fact that major cloud providers
are already using this model ([2, 6, 7]) and already many scientific work
are being done on VMs ([36, 24]) it was decided to use Virtual Machines
as the resource sharing model for SoCC.

4.3 Implementing a VRE Over Facebook

Facebook already serves well the extensible and developer support re-
quirements of a VRE as discussed in section 2.3. It has a very extensive de-
veloper support network and provides very intuitive APIs to make avail-
able the user account and social information to third party applications.
Figure 4.1 shows the main interface of facebook with important areas in
the interface labelled.

When viewed as a VRE, the labelled areas in figure 4.1 implements the
following functions.

• Area 1: This is the main menu of the facebook interface and provides
access to social functions, such as searching for friends and organis-
ing events. This menu serves the same functions as a VRE.

• Area 2: This menu is the extension point to add functionalities to the
VRE. It shows the apps currently added by the user. SoCC would be
built as a facebook app and would be just another addition to this
menu. More VRE functions, such as data analysis tools and docu-
ment sharing can be built as facebook apps and added here.

28 CHAPTER 4. SOCC ARCHITECTURE

Figure 4.1: Facebook main interface.

• Area 3: This menu shows the groups the user is a member of. This
feature would be used to implement Virtual Organisation functions
of the VRE and is discussed in more detail in section 4.5.3.

• Area 4: This is the main content area of the facebook interface. Apps
(implementing VRE functions) can be configured to open in this area
giving the user a sense of integration with the Social Network.

4.4 Architectural Components of SoCC

The logical components of the SoCC is shown in figure 4.2.

4.4. ARCHITECTURAL COMPONENTS OF SOCC 29

Figure 4.2: Architectural Components of SoCC.

4.4.1 SoCC Application Server

This is the server that hosts the facebook application code and the Account
Manager, Resource Manager and Scheduler components.

4.4.2 Account Manager

This component interacts with the facebook public developer API. It han-
dles the user creation and VO creation functions. It’s address is provided
as the end-point when registering the SoCC app in facebook. The account
manager stores locally only minimal information about the user, namely
the facebook user id and email address, so as to not duplicate any infor-
mation.

30 CHAPTER 4. SOCC ARCHITECTURE

4.4.3 Resource Manager

This component does all the interactions with the user resource. It’s ad-
dress is exposed to the User Agent hosted on the user resource. It handles
the submitting of compute requests and receiving status updates from the
User Agent about the resource and hosted computes. It exposes a REST
interface to the Local Agent hosted on the user resource to push this infor-
mation. The Resource Manager stores information about the user resource,
such as the address of the Local Agent, available capacity, currently hosted
computes and their status etc.

4.4.4 User Resource

The user resource is the computer cluster (here on referred to simply as
user resource) registered by the user. It contains standard server or com-
puters capable of hosting compute instances. The Local Agent located on
the resource handles all interactions with the SoCC Resource Manager,
and is required to implement a REST interface to create, update and ter-
minate compute instances, as well as to push status information to the
Resource Manager.

The Local Agent is a very light weight REST interface. The user only
have to implement REST calls for receiving compute requests, resource
availability and status queries. In most cases the user would only need to
write a plugin for whatever Virtualisation Management Middleware that
is being user.

Users do not need a large cluster or high-end machines to contribute
resource. The SoCC prototype uses a cluster of 3 machines, with the Local
Agent hosted on one of the machine. This cluster was created using the
OpenNebula Virtualisation Management Middleware ([11]), with a couple
of custom ruby scripts to implement the Local Agent.

It is also possible to make the Local Agent a proxy for a third party
cloud. For example, Amazon EC2 provides an API for users to program-

4.4. ARCHITECTURAL COMPONENTS OF SOCC 31

matically deploy and monitor instances on its infrastucture. The Local
Agent could be written to deploy instances on Amazon EC2 and forward
the IP addresses and status updates to SoCC Resource Manager. In the fu-
ture, such a Local Agent can also be made available for as a downloadable
tool for SoCC users, to ease the process. This would be an alternative op-
tion for users that do not have the infrastructure themselves to contribute
resources.

SoCC does not place too much restrictions on the specification of the
hosts in the user resource. To handle the heterogeneity, the Local Agent is
required to report the resource capacity in terms of compute units. This is
similar to how Amazon EC2 [12] exposes its resources. In the SoCC proto-
type, this is achieved by a simple benchmarking using linpack to measure
the processor performance. Using a compute instance of 1 virtual CPU and
1GB RAM hosted on a Intel Quad Core i5 host, the linpack reported a score
of 25 GFlops. For the prototype this score is defined as one compute units
performance. However, standardising the compute performance across
user resources is a difficult exercise. Amazon EC2 itself, which has been
providing cloud services for a long time, recommends users do their own
benchmarking to measure the expected performance from their instances
[1].

To simplify requesting and hosting compute instance, SoCC defines
compute types similar to Amazon EC2. A compute type represents a spec-
ification (eg: 1 Virtual CPU, 1 GB RAM, 5 GB storage) of a compute, and is
labelled small, medium and large depending on its resource requirements.
When submitting a computes request, a user selects the required compute
type from a dropdown menu instead of manually specifying the resource
requirements.

32 CHAPTER 4. SOCC ARCHITECTURE

4.4.5 Scheduler

This component handles scheduling of compute requests. It decides when
to accept or reject requests. The SoCC prototype implements a fair share
scheduler, detailed in section 4.7.

4.4.6 EventPublisher

The Event Publisher provides an extension point to the SoCC framework.
It publishes events related to the compute instances running in the cloud,
such as when an instances is booting, running or terminated. When users
make a compute request, they have the option of supplying a REST end-
point that can receive the event notifications from this component. The
real world evaluation tests in section 5.1.2 shows how to make use of this
feature to automate creation of a virtual cluster in SoCC.

4.4.7 Image Store

The Image Store contains the standard set of images for computes. These
images are meant to provide an OS images customised for common sce-
narios such as running simulations or hosting a web server. Using these
images minimise the time to deploy an instance, as these would already
be cached in the user resources so there is not image transfer overhead.
Users also have the option to user their own custom image as well, but
with the tradeoff of requiring additional time to transfer their image over
the network.

4.5 Interactions in the SoCC

This section details the interactions that occurs between the various com-
ponents of SoCC whan carrying out common use cases .

4.5. INTERACTIONS IN THE SOCC 33

4.5.1 User Registration

Figure 4.3 shows the interactions that occur during user registration.

Figure 4.3: First time user registration.

The user uses the standard facebook mechanism to search for the SoCC
application and selects to install it. SoCC requires users to expose their
facebook id and facebook group information. Facebook Id is required to
identify the user uniquely. The group information is required to handle
the VO management. After the user authorises this information to SoCC,
facebook forwards the request to the SoCC Account Manager which per-
sists the user id in its local database.

4.5.2 Resource Registration

Figure 4.4 shows the interactions that occur during user resource registra-
tion.

34 CHAPTER 4. SOCC ARCHITECTURE

Figure 4.4: User resource registration.

Before the user can register a resource, they first need to implement the
Local Agent in their resource. The Local Agent is simply a REST end-point
with interfaces to submit computes and query the resource, such as the
available capacity and currently running computes. In addition the user
would also need to download and cache the standard compute images
from the SoCC website.

After performing these steps, the user can register the resource by sub-
mitting the REST end-point of the Local Agent to the SoCC Resource Man-
ager. The Resource Manager would do an initial query right away to de-
termine if the Local Agent is running. If all is well control is returned to
the user.

4.5. INTERACTIONS IN THE SOCC 35

4.5.3 Virtual Organisation Creation

In SoCC, there is a one-to-one correlation between a VO and a facebook
group. A VO is always linked to a facebook group and cannot exist with-
out one. VO functions are split between facebook and SoCC as follows.

• Facebook: User management functions, such as accepting members
and assigning roles are handled using the standard facebook groups
UI. A user can join a group by navigating to the facebook groups
page and clicking the Join Group buttom. The owner of the group
can assign admin roles to members, as well as make the group public
or closed. Members can post messages to the group, chat with other
members, set up events and share documents.

• SoCC: SoCC handles VM creation, scheduling and resource man-
agement functions. When a users opens the SoCC app, all facebook
groups that has been registered as VOs and which this users is a
member of is listed. Clicking on one of these will take the user to
the VO UI where the user can take various actions in the context
of the VO. The particular actions a user can take would depend on
their role in the associated facebook group. Admin users can create
and delete VMs. Other users can view the resource usage charts and
recent activity of the VO. SoCC uses the facebook API to post mes-
sages to the facebook group to inform other members about various
actions related to the VO, such as when a member contributes more
resources.

Thus, there are two UIs for VOs. One is the facebook group UI, which
handles all the user management and social functions. The other is the
SoCC UI, which is accessible from the facebook SoCC application. This UI
handles user resource and VM management functions.

Table 4.1 shows the various mappings of facebook group roles to VO
roles in SoCC, and their permissions.

36 CHAPTER 4. SOCC ARCHITECTURE

Facebook Group roles SoCC VO roles

owner
Creates the facebook group. Assigns
admin roles to other members.

owner
Creates the VO by registering the
facebook group in the SoCC app.

Admin
Moderates the facebook group.

Admin
Manages VM instances (create, delete
etc). Represents the actual scientists
working on the project.

Member (non-admin)
Post messages, creates and shares
documents etc.

Contributor
Users who contribute shares to the
VO. This may be ordinary users as
well other parties not directly related
to the VO, but are interested in con-
tributing to the project.

Table 4.1: Facebook group and VO role mappings

Figure 4.5 shows the interactions that occur during the creation of a
VO.

The Account Manager retrieves the groups which the user is a member
of in facebook, and from this set filters out any groups not owned by the
user and groups that has already been registered. The resulting list of
groups is then presented to the user to make a selection. The selected
group id is then saved in the local database and appears in the users SoCC
menu as a VO.

4.5.4 Compute Requests

Compute requests in SoCC are made in the context of a VO. i.e individual
users cannot make a compute request without creating a VO first. This
mechanis is required to discourage selfish use of resources and encourage

4.5. INTERACTIONS IN THE SOCC 37

Figure 4.5: Virtual Organisation creation.

collective collaboration.

The normal flow of actions when a user uses a built-in standard image
is shown in figure 4.6.

The user starts by first selecting a VO, and then submitting a compute
request. The Resource Manager forwards this request to the scheduler
which makes a decision to accept or reject the request. If an accept deci-
sion is made, the Resource Manager then submits the request to the Local
Agent of the resource selected by the scheduler. At this point the Resource
Manager returns immediately to the user without waiting for a response
form the Local Agent. The Local Agent would then periodically push the
compute state changes to the Resource Manager, and the user can monitor
this information from the SoCC application. When the compute status be-
comes RUNNING, the SoCC application would also show the IP address of
the compute reported by the Local Agent.

Instead of supplying a built-in standard image, users can also use their

38 CHAPTER 4. SOCC ARCHITECTURE

Figure 4.6: Creating a compute instance using a built-in standard image.

own custom images. In this case the user would first need to stage thee
custom compute image to a remote location before submitting the com-
pute request. This url of the location would then need to be submitted
with the compute request. The interactions would be the same as in figure
4.6, except that the Local Agent would download the custom image before
instantiation.

4.6 Virtualisation

4.6.1 Overview

As the name implies, virtualisation refers to a virtual representation of a
resource, as opposed to an actual resource. Virtualisation can be applied
to different resource types. For example, Network Virtualisation allows
running multiple networks sharing a single physical network. Storage Vir-

4.6. VIRTUALISATION 39

tualisation allows representing multiple storage devices as a single single
storage device. However, in this section, we are interested in look at vir-
tualisation as a method of sharing computing resources.

When applied to computing resources, Virtualisation can be defined as
the virtual representation of computing hardware. The virtualised hard-
ware are called Virtual Machines. To the client users, Virtual Machines
would appear as any other physical hardware, with CPU, disk and RAM.
However, a single physical machine can host many Virtual Machines, which
allows the capacity of the physical machine to be shared across the running
Virtual Machines.

4.6.2 Advantages of Virtualisation

Virtualisation offers a number of advantages over grids jobs:

1. Isolation
Virtualisation provides isolation greater isolation between users than
the level of isolation provided by the Operating System (process iso-
lation). Process isolation allows various means of inter-process com-
munication, such via the file system, inter process communication
(eg: dbus) or possibly from buffer overflow exploits allowing one
process to read from another process address space. This is fully
prevented by virtualisation, thereby providing a greater level of se-
curity and protection of the guest OS from other users running on
the same system.

2. Easier checkpointing and migration
A running VM can be easily saved directly to a file, moved and
restarted in another machine with the state preserved. This comes
without the overhead associated with migrating and checkpointing
grid jobs, which requires separate handling of job execution state
and stored data and also often requires the job to support it. The eas-

40 CHAPTER 4. SOCC ARCHITECTURE

ier checkpointing and migration facilities also aids in implementing
dynamic load balancing and distribution as well.

3. Efficient resource usage
A single host machine can run many Virtual Machines. This allows a
single high specification server to do the job of several low specifica-
tion servers, but with lower total power consumption and required
rack space. Virtualisation also allows the resources consumed by a
running Virtual Machine to be scaled to the required amount by the
user, which is not possible with dedicated physical machines.

4. Greater flexibility in platform
Choices of guest OS allows running software not supported by the
host OS. This eases maintenance and support for cloud vendors (such
as Amazon EC2), as the client can instantiate a VM with a suitable
OS to run the required software.

5. Hardware transparency
Virtualisation hides the possible heterogeneity of the hardware in a
data center. Using virtualisation, a client would only see a standard
representation of hardware instead of the actual processor models,
speeds and memory types. This allows for deploying different com-
binations of hardware in a data center, as well as upgrading existing
hardware without affecting the clients.

The primary disadvantage of virtualisation is that multiples instances
of an OS running on the same machine results in a lot of duplicated state,
with each guest OS running a copy of base libraries and software stack.
However, the advantages of virtualisation far outweighs this short com-
ing, and with the popularity of the SOC paradigm, virtualisation has now
become the prevailing choice for cloud vendors providing Infrastructure
and Platform as a Service solutions, such as Amazon EC2, Microsoft Win-
dows Azure and Rackspace.

4.6. VIRTUALISATION 41

4.6.3 Approaches to Virtualisation

Full Hardware Visrualisation

This is the virtualisation approach used by most cloud vendors (cite Ama-
zon EC2, Rackspace, GoGrid). With this approach, the underlying hard-
ware is fully virtualised, with a guest Operating System running on top of
a hypervisor (figure 4.7). The hypervisor is a piece of software that pro-
vides the virtualisaton facilities, such as disk and network IO, memory
management and processor sharing. To the guest OS, the hypervisor ap-
pears as a physical hardware, but under the hood the hypervisor uses the
underlying host Operating Systems APIs to carry out its functions.

Host OS

VM 1 VM 2

...

VM n

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Figure 4.7: Full Hardware Virtualisation. Figure showing VMs running on
top of the hypervisor.

There are two main methods for full hardware virtualisation:

1. Para Virtualisation
With this method, the guest OS has a customised kernel to facilitate
virtualisation. This does not require hardware support from the host
machine, so can be used on old architectures.

2. Hardware Assisted Virtualisation
This form of virtualisation is support by hardware extensions (eg:

42 CHAPTER 4. SOCC ARCHITECTURE

Intel VT and AMD Hyper-V). A hypervisor supporting this method
of virtualisation provides full support for the required architecture,
so that any OS can be install in the hypervisor without any modifi-
cations to the guest OS kernel.

Operting System Level Virtualisation

In this approach, multiple VMs are run on top of the same OS, as shown
in figure 4.8. The VMs share the basic OS kernel and other basic OS ser-
vices as the host machine, but uses various isolation techniques, such as
container based isolation methods and sandboxing [28, 16] to isolate the
VMs. To the user, each VM appears as an stand alone entity, with its own
root file system.

Host OS, with shared image

Virtualisation
Container

Provides admin,
security and
isolation functions

VM 1 VM 2

...

VM n

Figure 4.8: Operting System Level Virtualisation. Figure showing the VMs
running inside a container.

This provides better efficiency than the above two approaches as basic
OS features are not duplicated. However, the trade-off is that the VM OS
has to be the same as the host OS and does not provide the same level
of isolation among guest VMs [34], so this from of virtualisation does not
provides all of the benefits expected of full hardware virtualisation. De-
spite this, it has found use in the real world (eg: PlanetLab).

4.6. VIRTUALISATION 43

4.6.4 Virtualisation Management Middleware

When using virtualisation for anything more than running a single virtual
machine, such as when providing a cloud service, it is rare to interact di-
rectly with the hypervisor. More common today is to use a virtualisation
management middleware to create, delete and manage a group of virtual
machine instances. There are several such middlewares available today –
Ganeti, Eucalyptus and OpenNebula being a few examples.

Although all these middlewares comes from different vendors, they
all have a very similar architecture under the hood. Figure 4.9 shows the
logical layout of this common architecture when deployed on a cluster.

OS

VMM

OS

Hypervisor

libvirtd

VMM

OS

Hypervisor

libvirtd

VMM

...

Controlling Node

Worker Node 1 Worker Node n

Figure 4.9: Virtualisation Management Middleware Architecture.

The basic deployment of a Virtualisation Management Middleware re-
quires a copy of the middleware to be installed on each node of the cluster.
One of the nodes is designated as a controlling node. This node acts as the
interface to the outside world and can receive commands from users. The
rest of the nodes acts as the worker nodes which hosts the created Vir-
tual Machines. These nodes also have the required hypervisor and libvirt
daemons installed. The controlling node takes the function of load bal-
ancing the worker nodes, scheduling and monitoring the running Virtual

44 CHAPTER 4. SOCC ARCHITECTURE

Machines.

Some virtualisation management middleware, such as Ganeti, provides
pure management of Virtual Machines. i.e it provides only the basic func-
tions of creating, deleting, management and monitoring Virtual Machines.
Other middlewares, such as Eucalyptus and OpenNebula provides a more
complete middleware stack to facilitate deploying private and public clouds,
such as user management and built in support for standard protocols such
as OCCI (Open Cloud Computing Interface [10]). With these middle-
wares, the technical barriers and know how that is required to deploy a
cloud service has now become very small.

4.7 SoCC FairShare Scheduler

Fair share scheduling allocates resources to users based on how much of
the resource a user is entitled to. Originally described by Kay and Lauder
[11] in 1988 for allocating machine shares for students, variants of this
scheduler has also been applied in grid environments for job queueing [27,
25, 37]. This section presents an implementation of a fair share scheduling
mechanism for SoCC.

4.7.1 Fair share scheduling concept

The concept behind faire share scheduler is that each user is entitled to a
share of a scarce resource, and the scheduler would need to ensure that
each user gets, in the long run, a portion of the resource proportional to
their share. The original paper describes a fair share scheduler used in a
university computing department for allocating CPU process properties.
In that implementation, each user is given a numerical figure representing
that users share. For example, a first year student may be given 100 shares
while a second year student may get 200 shares, reflecting the amount of
work each student is expected to do. The scheduler would then use these

4.7. SOCC FAIRSHARE SCHEDULER 45

figures to calculate the priorities of students CPU processes, resulting in a
CPU usage picture corresponding to the students shares in the long run.
Although this scheduler was used to schedule CPU processes, it can be
adapted to any constrained resource shared among user for non-monetary
purposes.

4.7.2 Using the fair share scheduler in SoCC

The incentive for users in contributing resources to SoCC is that they get
a greater return than what is contributed. Therefore the goal of the sched-
uler in SoCC is that each VO is entitled to a minimum share of resources
equal to that contributed by its users (its fair share), plus more depend-
ing on current utilisation. So a VO compute request should always be
granted if resources are available and if it is currently not using its enti-
tled minimum share of resources. If it is already using its minimum enti-
tlement, then the scheduler must make best attempt to fulfill the request
while favouring those who contributes the most.

The fair share implementation in SoCC prototype solves this problem
by setting a threshold on the utilisation below which all compute requests
are granted. Figure 4.10 shows a graph with the threshold marked at 70%.
Below this value, all compute requests are accepted to allow users to make
make maximum use of the available resources, even those who are con-
tributing very little. This mechanism allows the the resources to be utilised
even when heavy contributors are not using them.

When the utilisation threshold is reached, the fair share algorithm kicks
in to favour heavy contributors. The following formula is used to calculate
the minimum share a VO must posses in order for a request to be accepted
in this situation:

This is the formula of the straight line graph in figure 4.10. It represents
the minimum shares a VO must possess above the utilisation threshold. If
the shares of the requesting VO is less than this value, then the request is

46 CHAPTER 4. SOCC ARCHITECTURE

Figure 4.10: Graph showing the utilisation threshold above which the fair
share algorithm would apply.

Figure 4.11: Equation to calculate the minimum shares required to submit
a request.

rejected. Some implementations have opted to queue the requests instead
of an outright rejection [22], but this is not implemented in the prototype
to prevent users from making advanced reservations and dominating the
system.

The shares of a VO is a quantitative measure of entitlement of the VO to
the resources available in SoCC. In the implementation its value is simply
the sum of the resource units contributed by its constituent users, since
this represents a VOs contribution. The variable MinShare represents the
share of the VO with the lowest contribution, and MaxShare represents
the share of the VO with the highest contribution.

This scheduler ensures VOs with few members, or with members that
can not make a large contribution will have to make use of the cloud dur-

4.7. SOCC FAIRSHARE SCHEDULER 47

ing low utilisation periods. It does this while favouring VOs who con-
tribute more during high utilisation periods, providing an incentive for
contribution. Alternative approaches for scheduling, such as using virtual
currencies, does not ensure this behaviour.

A performance evaluation of this scheduler on a real world trace and a
synthetic balanced trace is presented in the next chapter.

48 CHAPTER 4. SOCC ARCHITECTURE

Chapter 5

Testing And Evaluation

This chapter describes the tests done to evaluate the performance of the
Social Collaborative Cloud. Two groups of tests were done. The first
group comprises of real world tests to subjectively evaluate the suitabil-
ity of SoCC in practical usage. The second group comprises of simulations
done to evaluate the effectiveness of the scheduler.

5.1 Real World Tests

This section is intended to demonstrate the working of SoCC by testing
real world use cases. It is not intended to demonstrate its readiness for
production use, but rather the workings of the architecture of this initial
prototype.

Figure 5.1 shows a screenshot of the tested prototype. The tests were
carried out in a 1Gb LAN environment with one Intel Core2Duo 3.0GHz
CPU, 4GB RAM machine hosting the SoCC application server, and three
Intel Core i5 3.0GHz CPU, 4GB RAM machines acting as a user resource.
Out of these three machines, one was dedicated to host the Local Agent.

49

50 CHAPTER 5. TESTING AND EVALUATION

Figure 5.1: SoCC facebook application.

5.1.1 Performance of Compute Instantiations

These tests are intended to evaluate the performance of the two image
distribution methods. As outlined in section 4.5.4, there are two image
distribution methods.

• Method 1: The user selects a standard cached image from the VM
creation screen. With this option, the image would already have been
cached in the target resources, so the image transfer time to the target
resource would be almost nil.

• Method 2: With this option the users prepare their own custom im-

5.1. REAL WORLD TESTS 51

age and upload it to a staging area. When the user creates the com-
pute, the URL of this image is given to SoCC. When the compute is
scheduled to a resource, the Local Agent located on the resource first
needs to downloads the image the local storage before it can instan-
tiate the compute. This option gives the user more flexibility while
sacrificing compute instantiation time.

Figure 5.2 shows a screenshot of the compute request screen. With both
methods, two types of images were test. The first image is of a light-
weight, 40MB linux distribution called ttylinux. This is suitable when a
user wishes to quickly deploy a compute, or to use as a starting point to
create a custom image from scratch. It comes with only the basic linux
packages, notably a C compiler and bash interpreter.

Figure 5.2: SoCC compute request screen.

52 CHAPTER 5. TESTING AND EVALUATION

The second image is a Ubuntu 10.04 server linux image. This image
is 5GB in size, and comes with all of the common packages expected of
a general purpose linux distribution, including the Apache web server,
mysql database and Network File System support. This image is suitable
for a compute to start using with minimal configuration for many common
scenarios.

The following figure 5.3 represents the life cycle of the compute cre-
ation process.

Figure 5.3: Compute life cycle state.

The states are as follows:

• received. The image is received by SoCC.

• created. The image has been created on the scheduled resource and
is booting. For the image distribution methods 2, the image has to
bee transferred before this can occur, thereby delaying the booting
time.

• running. This state is reported when the image has a IP address
assigned and is running.

Table 5.1 and figure 5.4 represents the results of this experiment (this
particular result set was also published in the related publications in sec-
tion 1.3):

As seen from the graphs, the total boot up time is dependent on the
image size. Especially if the image is a custom image, the image transfer

5.1. REAL WORLD TESTS 53

create (sec) boot (sec)

ttylinux option 1 10 15
ubuntu 10.04 option 1 820 126
ttylinux option 2 2 10
ubuntu 10.04 option 2 2 125

Table 5.1: Compute instantiation timings with the different image distri-
bution methods.

time dominates the total startup time, suggesting that its important to offer
a collection of images suitable for many common scenarios.

5.1.2 Evaluation of Extension Mechanisms

The extension interface is intended for advanced users who would like to
integrate SoCC with their own system, or would like more customisabil-
ity. The following tests demonstrate the working and performance of this
interface.

This test creates a virtual cluster in the SoCC cloud. To achieve this,
the user uploads a customised image that has been seeded with contextu-
alisation scripts that would configure the computes network settings with
information about the other nodes of the cluster. This is made possible by
the SoCC Event Publisher and a REST service setup by the user. The REST
service is setup so that it can receive the event notifications published by
the Event Publisher. Figure 5.5 shows this arrangement.

Interactions occuring in figure 5.5 are as follows:

• Step 1. User submits request for 3 computes, with custom images.

• Step 2. The Resource Manager forwards the request to the scheduled
resource.

54 CHAPTER 5. TESTING AND EVALUATION

Figure 5.4: Compute instantiation with the different image distribution
methods.

• Step 3. The Local Agent of the resource downloads the users im-
ages from the remote location and instantiates the computes. The
Local Agent pushes the status updates of the computes to the SoCC
Resource Manager.

• Step 4. The Resource Manager notifies the users registered REST
service with the compute status updates.

• Step 5. When the REST service have received the RUNNING state
for all the 3 computes, it ssh to each compute with the information
about the others computes. The cluster contextualisation scripts on
the computes then configures the network interfaces of the compute.

The REST was setup on a local dekstop computer. The only image
used for this test was the ubuntu image. Figure 5.6 shows the results of
this experiment.

For comparison, figure 5.7 shows the same test done using a cached
image with the same contextualisation scripts. As both graphs shows, the
overhead taken to take advantage of the extension mechanism to perform

5.2. SIMULATION TESTS 55

Figure 5.5: Using the extension mechanism to create a virtual cluster.

a contextualisation is very small compared to whole process.

5.2 Simulation Tests

The simulation tests evaluates the effectiveness of the fair share scheduler
implementation in SoCC. The tests in this section compare the fair share
scheduler against a random scheduler and two virtual currency based
schedulers. These tests require a large number of users and several com-
pute submissions which, due to the time scale set for this thesis, can not
be conducted in a real world setting. Hence a simulation approach was
adopted.

5.2.1 Design of the Simulator

The simulator is a custom Java programme written to simulate the vari-
ous components of the SoCC architecture (figure 5.8). Instead of using an
existing simulation package, a custom simulator was opted for in order
to model the unique characteristics of a social network and also because

56 CHAPTER 5. TESTING AND EVALUATION

Figure 5.6: Virtual cluster creation using a custom image.

it was intended to improve and extend the simulator as a tool for use in
future work.

The Scheduler component implements the scheduling algorithm and
is swappable with different implementations. The simulator accepts three
sets of input data (figure 5.9):

1. The description of the users and their associated Virtual Organisa-
tions,

2. Distribution of resources among the users and

3. A trace of the compute submissions

Each set of data is read by the simulator from a text file formatted in
a simple description language. The users description input file consists of
the users and their associated Virtual Organisation in the cloud:

#

Users and VOs input file.

#

[USERS]

5.2. SIMULATION TESTS 57

Figure 5.7: Virtual cluster creation using a cached image.

ID NAME CREDITS

1 @user1 100

2 @user2 100

...

[VOS]

VO_ID USER_ID

1 1

1 2

1 10

2 4

...

The resource distribution input file consists of how the resources are
distributed among the users:

#

User resource distribution input file

#

USER_ID RESOURCE_UNITS

1 4

58 CHAPTER 5. TESTING AND EVALUATION

Figure 5.8: Simulator UML diagram.

2 4

...

The compute trace input file consists of a trace of the compute submis-
sions to SoCC:

#

Compute trace input file.

#

ID USER_ID VO_ID SUBMIT_T RUN_T TYPE HOURS

1 1 1 0 39 small 72

2 2 2 11 1 small 72

3 3 3 19 56 small 72

4 3 3 20 55 small 72

...

Each record in this file is tagged with the Virtual Organisation that re-
quested the compute, along withe the time, duration and the type of the
compute.
The simulator submits compute requests from this trace to the scheduler,

5.2. SIMULATION TESTS 59

Figure 5.9: Inputs and outputs of the simulator.

and records various parameters throughout the simulation run. At the end
of the simulation the recorded data is written to the output files.

5.2.2 Test Dataset

The test dataset chosen for this evaluation was the AuverGrid trace se-
lected from the Grid Workloads Archive (GWA) [8]. The GWA hosts a
number of contributed grid traces from various public grids. The Auver-
Grid is used primarily for high-energy physics research and consists of
dual 3GHz Pentium IV Xeon nodes distributed over 5 clusters. In total
the grid has a capacity of 475 CPUs, and the dataset contains the usage
trace for one year. As the datasets in GWA are in Grid Workloads Format
(GWF), for the following tests the trace had to be first converted to the
compute trace formats described in the previous section. In addition, the
dataset had to be sanitised by doing the following:

• All invalid jobs were removed (jobs that were cancelled before start-
ing resulting in zero run time),

• Since the dataset is a trace from a grid environment, the jobs are de-
scribed in terms of the required CPUs and memory. These were re-
placed with an equivalent compute type (eg: small, medium).

60 CHAPTER 5. TESTING AND EVALUATION

• Each job in the dataset contained a user and group identifier, rep-
resenting the user that submitted the job and the group that user
belonged to. From this information the number of unique users and
groups was counted. The groups were modelled as VOs, and the
users in the jobs that contained a particular group (VO) identifier
was treated as that VOs members. The users and VOs were then
copied to separate input files, and each users was given 100 initial
credits for the virtual currency based simulations.

• Resources were assigned to users using a Poisson distribution with
a mean value of 10 units.

After preparation, the AuverGrid trace had the following characteristics:

• Number of users: 401

• Number of VOs: 8 (VO1: 158 users, VO2: 107 users, VO3: 16 users,
VO4: 47 users, VO5: 46 users, VO6: 11 users, VO7: 10 users, VO8: 8
users)

• Number of computes: 339314 with an average duration of 71 hours.

Figure 5.10 shows the number of users in each VO, and figure 5.11
shows the total resource units contributed by the users of each VO, which
is the sum of the resource contributions of its constituent users. Figure
5.12 shows the resources used by each VO if there were no rejections (i.e
unlimited capacity). This figure shows how much resources each VO con-
sumes relative to each another, and is shown for the first hundred days for
clarity (the resource usage for the rest of the days shows a similar pattern).

5.2. SIMULATION TESTS 61

Figure 5.10: Number of users in each VO.

One observation from figure 5.12 is that the VOs are submitting com-
pute requests roughly proportional to the resources they are contributing.
For testing the effectiveness of the fair share scheduler, a more balanced
trace was also generated where each VO submits the same amount of com-
pute requests. This was generated by allocating an average of 300 com-
putes each with an average of 71 hour duration (derived using a poisson
process with a mean value of 300 and 71) to each VO every day. This re-
sults in resource consumtion of almost 4 times more than that is available
from the cloud. This would allow to test the effectiveness of the scheduler
in high utilisation scenarios. The new resource consumption with this bal-
anced trace is shown in figure 5.13. The simulations that follows tests the
various schedulers with both of these compute traces.

62 CHAPTER 5. TESTING AND EVALUATION

Figure 5.11: Resource contributions by each VO.

5.2.3 Algorithms Tested

The following scheduling algorithms was simulated against the fair share
scheduler:

1. Random scheduler. This algorithm simply selects a random resource
from the list of resources with available capacity when a compute
request is submitted. It does not take into account which VO is sub-
mitting the request and operates on a fist come fist serve basis.

2. Global pricing. This algorithm uses the virtual currency to calcu-
late a cost per unit resource per hour based on global supply and
demand. Thus, if the utilisation is zero, the cost will also be zero. As
the utilisation rises, the cost per unit resource also rises. Figure 5.14
shows how the cost is calculated.

When a compute request is accepted, the scheduler transfers the
credits from the users of the VO to the user hosting the resource.
The hosting user is selected using a round robin algorithm, which

5.2. SIMULATION TESTS 63

Figure 5.12: Daily resource consumed by each VO for the original Auver-
Grid trace.

always selects the user who have not served a request for the longest
duration and who have free capacity.

3. Local pricing This algorithm uses a similar unit resource per hour
cost calculation algorithm, except that the pricing agent is on the lo-
cal resource. The local resources calculate the cost based on its own
load, which results in different resources offering different prices.
The scheduler submits the request to the resource the resource that
offers the lowest price and transfers the credit.

64 CHAPTER 5. TESTING AND EVALUATION

Figure 5.13: Daily resource consumed by each VO for the synthetic trace.

5.2.4 Simulations

This section describes results of running the simulator with the test dataset.
Each scheduling algorithm was simulated using several resource distri-
butions among the users. With each run, the following information was
recorded and plotted at the end of the run:

• Daily max and min resource utilisations,

• Compute rejection rates, both due to lack of capacity and lack of
credits,

• Spot price variations (for the Global Pricing Model)

5.2. SIMULATION TESTS 65

Figure 5.14: Global pricing algorithm.

5.2.5 Simulations Using the AuverGrid Trace

Utilisation

(a) Resource utilisation when using random
scheduler with AuverGrid trace.

(b) Resource utilisation when using global pricing
with AuverGrid trace.

66 CHAPTER 5. TESTING AND EVALUATION

(c) Resource utilisation when using local pricing
with AuverGrid trace.

(d) Resource utilisation when using fair share
scheduler with AuverGrid trace.

Compute request rejections

(e) Compute request rejections when using ran-
dom scheduler with AuverGrid trace.

(f) Compute request rejections when using global
pricing with AuverGrid trace.

5.2. SIMULATION TESTS 67

(g) Compute request rejections when using local
pricing with AuverGrid trace.

(h) Compute request rejections when using fair
share scheduler with AuverGrid trace.

VO resource consumption

(i) Daily VO resource consumption when using
random scheduler with AuverGrid trace.

(j) Daily VO resource consumption when using
global pricing with AuverGrid trace.

Discussion

Table 5.3 shows the utilisation of the schedulers in numbers.

68 CHAPTER 5. TESTING AND EVALUATION

(k) Daily VO resource consumption when using
local pricing with AuverGrid trace.

(l) Daily VO resource consumption when using
fair share scheduler with AuverGrid trace.

First thing that is noticeable from this set of results is the poor perfor-
mance of the global and local pricing schedulers using virtual currencies.
This is not surprising when how these two algorithms operate is consid-
ered. Each user is given a fixed amount of credit (100 in this case), and
the VO uses the credits of its constituent users to buy computes. Eventu-
ally the VO exhausts its bag of credits, and if other VOs aren’t requesting
enough computes themselves, then the VO can not generate credits to buy
anymore computes. Figure 5.12 shows that within the first 100 days only
VO 1 submits the bulk amount of computes, so after a point VO 1 simply
runs out of credits.

The performance of random and fair share scheduler is very close. The
fact that a random scheduler is performing well might appear a bit sur-
prising at first. The random scheduler just submits any request it gets as
long as there is free capacity. Thus, as long as the total requests does not
exceed the available capacity, those requests would be fulfilled. And this
is what is happening here precisely. The rejections graph shows that close
to the 70 day mark a sudden burst of rejections occurs corresponding to a
sudden increase in requests during this time.

5.2. SIMULATION TESTS 69

Random Scheduler Global Pricing Local Pricing Fairshare Scheduler

VO1 50256 88711 88711 88711
VO2 51432 60763 59147 88906
VO3 51590 9408 12249 18992
VO4 50256 26681 25016 45212
VO5 43668 26312 28204 47687
VO6 54740 6321 5527 10766
VO7 48965 5953 8273 12706
VO8 53134 4204 4449 8035
Total 404041 228353 231576 321015

Table 5.2: Utilisation figures for the AuverGrid trace in resource units con-
sumed.

The performance of the fair share scheduler is not surprising. This
scheduler grants every request as long as the total utilisation stays below a
certain level (set to 70% in this case). As soon as the utilisation goes above
this threshold the fair share algorithm comes into play and requests are
granted to those making a greater contribution. In this case VO 1 makes
the greatest contribution and also submits the most request during the pe-
riod shown, so its requests are granted.

70 CHAPTER 5. TESTING AND EVALUATION

5.2.6 Simulations Using the Balanced Trace

Utilisation

(m) Resource utilisation when using random
scheduler with balanced trace.

(n) Resource utilisation when using global pricing
with balanced trace.

(o) Resource utilisation when using local pricing
with balanced trace.

(p) Resource utilisation when using fair share
scheduler with balanced trace.

5.2. SIMULATION TESTS 71

Compute request rejections

(q) Compute request rejections when using ran-
dom scheduler with balanced trace.

(r) Compute request rejections when using global
pricing with balanced trace.

(s) Compute request rejections when using local
pricing with balanced trace.

(t) Compute request rejections when using fair
share scheduler with balanced trace.

72 CHAPTER 5. TESTING AND EVALUATION

VO resource consumption

(u) Daily VO resource consumption when using
random scheduler with balanced trace.

(v) Daily VO resource consumption when using
global pricing with balanced trace.

(w) Daily VO resource consumption when using
local pricing with balanced trace.

(x) Daily VO resource consumption when using
fair share scheduler with balanced trace.

Discussion

Table 5.3 shows the utilisation of the schedulers in numbers.

5.2. SIMULATION TESTS 73

Random Scheduler Global Pricing Local Pricing Fairshare Scheduler

VO1 50256 88711 88711 88711
VO2 51432 60763 59147 88906
VO3 51590 9408 12249 18992
VO4 50256 26681 25016 45212
VO5 43668 26312 28204 47687
VO6 54740 6321 5527 10766
VO7 48965 5953 8273 12706
VO8 53134 4204 4449 8035
Total 404041 228353 231576 321015

Table 5.3: Utilisation figures for the balanced trace in resource units con-
sumed

Once again the performance of global and local pricing virtual cur-
rency schedulers is not surprising. The utilisation is higher in this bal-
anced trace than the AuverGrid trace simply because all VOs are submit-
ting requests fairly equally, so each VO is also generating credits as much
as it is spending. However, since VO 1 has the most users, and hence have
the most credits, it can buy most of the computes it is requesting. The
other VOs are more unfortunate as their fewer users results in not being
able to generate as much credit as the VO requires.

The random scheduler achieves 100% utilisation, and then starts re-
jecting. It accepts requests as long as their is free capacity, and does not
distinguish in any way between who is making the request. The result
is that very light contributors like VOs 6, 7 and 8 gets an equal share as
heavy contributors like VO 1.

Most interesting from these results is the performance of the fair share
scheduler. The compute requests in this balanced trace goes well above
the total available capacity in the cloud, so the fair share algorithm appro-
priates the scarce capacity proportionally among all the VOs depending
on their contribution. Since VO 1 is the largest contributor, it pretty much

74 CHAPTER 5. TESTING AND EVALUATION

gets all its requests fulfilled. The reason utilisation peaks at about 80% is
that the fair share scheduler is saving the free capacity at this point for
heavy contributors. Since VOs 6, 7 and 8 are very light contributors, their
requests gets rejected at this point. This is clearly seen in the VO resource
consumption graphs. It should be noted that, as far as utilisation goes,
the random scheduler manages to best the fair share scheduler. However,
it does this at the cost of fairness, treating each VO equally instead of re-
warding VOs that contribute more. The utilisation tradeoff for achieving
fairness the fair share scheduler makes in this regard is therefore the right
behaviour for a social cloud.

Chapter 6

Conclusions

Social networks has brought a revolution in how people interact and share
information. In the scientific research community, the opportunities pro-
vided by social networks presents a paradigm shift in how collaborative
research can be done. The aim of this thesis is to build upon the strengths
of social networks, taking advantage of its superior collaboration capabili-
ties, to build a Virtual Research Environment (VRE) that would enable dy-
namic sharing of computing resources among scientific researchers. As a
result, the Social Collaborative Cloud (SoCC) presented in this thesis fuses
the previously separate worlds of cloud computing and social networks.

In order to realise the goals of SoCC, it was first necessary to identify
ways to adapt a social network environment to a VRE. Facebook, which
was selected as the social network for the SoCC prototype, provided a
straight forward way of achieving this. Its user interface already had the
necessary features for a VRE, and its development model provided an
ideal way to integrate SoCC into the facebook UI.

To harness the collaborative and social capabilities of facebook, such as
groups and chat boards, SoCC was designed not to duplicate any existing
functionality of facebook. Thus, common activities such as authentication,
role and membership management were all done using the facebook UI.
The result was a SoCC prototype that felt as an extension to facebook in-

75

76 CHAPTER 6. CONCLUSIONS

stead of a third party application. Users could use the familiar interface of
facebook to share documents and files, form online communities and do
group chatting and video conferencing, and use SoCC only to harness and
contribute computing resources.

In the end, while realising the collaborative capabilities of social net-
works, SoCC solves another important problem in conducting scientific
research – the scarcity of computing resources. Computing capabilities has
always been a constrained resource traditionally provided by institutional
grids, and more recently by public cloud vendors such as Amazon. SoCC
solves this problem by allowing rapid and dynamic sharing of computing
capabilities among the social network members. The fair share scheduler
of SoCC allows users to contribute the limited computing capability they
have, and in return gets access to the resources contributed by other mem-
bers.

6.1 Major Contributions

In summary, this thesis has made the following major contributions:

1. Identified a strategy for adapting the facebook interface to a VRE. The var-
ious extension points of the facebook interface (such as groups and
content areas) was utilised using the facebook developer API to in-
tegrate the SoCC framework into facebook. This effort resulted in a
SoCC architecture that semlessly blends with the facebook interface.
Facebooks group feature in particular was used to provide the Vir-
tual Organisation functions of a VRE. This allows users to manage
VRE using the familiar and easy to use group management tools of
facebook, with all changes made seamlessly reflected in the VO.

2. Architected a framework to integrate a Social Cloud with the facebook so-
cial network, and implemented a facebook app to realise it. The solution
requires only minimal information to be relinquished by the user,

6.1. MAJOR CONTRIBUTIONS 77

namely the users facebook id and group information. With such
minimal information, duplication of data was avoided as much as
possible. An important side effect of this is that the users facebook
security and privacy settings was carried seamlessly across to the
SoCC application. For example, since the SoCC VO and facebook
group has a one-to-one mapping, any changes made to the facebook
group member permissions is immediately reflected in the SoCC VO
members.

3. Architected a resource sharing framework that allows users to dynamically
share their resources, and implemented a scheduling framework that en-
courages contribution while making a best attempt to give more in return.
Using Virtualisation Management Middleware, it is not difficult for
users to setup a small cluster using a few machines. The Local Agent
in the architecture is very light-weight, requiring minimal effort on
behalf of the users to implement it.

The architecture enables users to consume the cloud using an IaaS or
PaaS model. The IaaS model allows users to customise the required
VM specification such as CPU, memory etc, and launch a set of VMs
with the required specifications to run their workloads. Or if a user
needs to deploy a VM quickly, he or she can use the streamlined PaaS
model to select a pre–configured VM image and easily launch it with
a single click to run a computation.

The SoCC scheduler is an adaptation of the fair share scheduler to the
SoCC environment. It ensures that all users are able to use the cloud
during low utilisation periods, allowing VOs with resource scarcity
among its users to make use of the cloud. During high utilisation
periods, the scheduler favours VOs whose users contributes more,
thereby giving an incentive for contribution.

4. Demonstrated the workings of the SoCC prototype via real world tests and
simulations. The real world tests exercised two use cases to demon-

78 CHAPTER 6. CONCLUSIONS

strate the functioning of the prototype, while the simulations evalu-
ated the effectiveness of the scheduling algorithm.

6.2 Future Work

The work done on SoCC in this thesis only demonstrates the viability of
the social cloud concept. More work is required to make it practical in a
production environment. The following are a few suggestions for future
work in this field, that I believe provides for interesting research subjects.

1. Integrate SoCC into more social networks. As mentioned in the require-
ments for the SoCC prototype, the reason facebook was chosen is
because of its mature development mode. However, social networks
like LinkedIn and Google+ serves an important user base that would
be an ideal target for SoCC. I believe any future production version
of SoCC must integrate with these social networks as well.

2. Implement a robust security model for SoCC. In this thesis security issues
was largely ignored. This was because the resulting increase in the
scope of the thesis that would have resulted if that was not the case
would not have sat well with the time scale set for this thesis. How-
ever, a social environment provokes some interesting challenges in
this area. Any practical SoCC implementation must deal with fake
users, cheating users, Denial of Service (DoS) attacks etc.

3. Extension to SaaS model. The SoCC prototype was targeted towards
scientific researchers. As such an IaaS/PaaS model was concluded to
be more suitable. However, a social cloud such as SoCC could also
target researchers in other fields, such as economists and artists. A
SaaS model would serve this group well. For example, SoCC could
be extended to deploy an online photo gallery host in one-click, or a
web site for a conference in a similar manner.

6.2. FUTURE WORK 79

4. Integration with Commercial Cloud Vendors. If it could be done, this
could have immense benefit. For example, Amazon Simple Stor-
age Service (Amazon S3, [3]) is a very popular cloud storage facil-
ity. It would be natural for a scientist to use S3 as a staging area for
datasets. Some level of integrated support to ease the use of such
services would make SoCC more appealing for scientists.

80 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Amazon ec2 instance types. http://aws.amazon.com/ec2/

instance-types/.

[2] Amazon elastic compute cloud (amazon ec2). http://aws.

amazon.com/ec2/.

[3] Amazon simple storage service. http://aws.amazon.com/s3.

[4] Boinc volunteer computing framework. http://boinc.

berkeley.edu/.

[5] Facebook vs. twitter vs. linkedin vs. google+. http://blogs.

computerworld.com/18603/facebook_vs_twitter_vs_

linkedin_vs_google_plus.

[6] Gogrid. http://www.gogrid.com/.

[7] Gogrid. http://www.rackspace.com/.

[8] The grid workloads archive. http://gwa.ewi.tudelft.nl/

pmwiki/pmwiki.php?n=Main.Home.

[9] Linkedin vs. facebook for business in 2011. http:

//socialmediatoday.com/nealschaffer/252062/

linkedin-vs-facebook-business-2011-battle-begins.

[10] Open cloud computing interface. http://occi-wg.org/.

81

82 BIBLIOGRAPHY

[11] Opennebula virtualisation management middleware. http://

opennebula.org/.

[12] Progress thru processors. http://www.facebook.com/

progressthruprocessors.

[13] Seti@home volunteer computing project. http://setiathome.

berkeley.edu/.

[14] ANDERSON, D. Boinc: a system for public-resource computing and
storage. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Inter-
national Workshop on (nov. 2004), pp. 4 – 10.

[15] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R. H.,
KONWINSKI, A., LEE, G., PATTERSON, D. A., RABKIN, A., AND ZA-
HARIA, M. Above the clouds: A berkeley view of cloud computing.
Tech. rep., 2009.

[16] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource containers:
a new facility for resource management in server systems. In Pro-
ceedings of the third symposium on Operating systems design and imple-
mentation (Berkeley, CA, USA, 1999), OSDI ’99, USENIX Association,
pp. 45–58.

[17] CHARD, K., BUBENDORFER, K., CATON, S., AND RANA, O. Social
cloud computing: A vision for socially motivated resource sharing.
Services Computing, IEEE Transactions on PP, 99 (2011), 1.

[18] CHARD, K., CATON, S., RANA, O., AND BUBENDORFER, K. So-
cial cloud: Cloud computing in social networks. In Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on (july 2010), pp. 99
–106.

[19] CURRY, R., KIDDLE, C., MARKATCHEV, N., SIMMONDS, R., TAN,
T., ARLITT, M., AND WALKER, B. Facebook meets the virtualized

BIBLIOGRAPHY 83

enterprise. In Enterprise Distributed Object Computing Conference, 2008.
EDOC ’08. 12th International IEEE (sept. 2008), pp. 286 –292.

[20] DAHAN, M., NUTHULAPATI, P., MOCK, S., DOOLEY, R., HURLEY,
P., AND BOISSEAU, J. Increasing teragrid user productivity through
integration of information and interactive services. In Grid Computing
Environments Workshop, 2008. GCE ’08 (nov. 2008), pp. 1 –11.

[21] DE ROURE, D., GOBLE, C., BHAGAT, J., CRUICKSHANK, D.,
GODERIS, A., MICHAELIDES, D., AND NEWMAN, D. myexperiment:
Defining the social virtual research environment. In eScience, 2008.
eScience ’08. IEEE Fourth International Conference on (dec. 2008), pp. 182
–189.

[22] GRIT, L. E., AND CHASE, J. S. Weighted fair sharing for dynamic
virtual clusters. In Proceedings of the 2008 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer systems (New
York, NY, USA, 2008), SIGMETRICS ’08, ACM, pp. 461–462.

[23] JOHN, K. The social cloud for public eresearch. Master’s thesis,
School of Computer Engineering and Computer Science, Victoria
University of Wellington, 2010.

[24] JUVE, G., DEELMAN, E., VAHI, K., MEHTA, G., BERRIMAN, B.,
BERMAN, B., AND MAECHLING, P. Scientific workflow applications
on amazon ec2. In E-Science Workshops, 2009 5th IEEE International
Conference on (dec. 2009), pp. 59 –66.

[25] KIM, K. H., AND BUYYA, R. Fair resource sharing in hierarchical vir-
tual organizations for global grids. In Proceedings of the 8th IEEE/ACM
International Conference on Grid Computing (Washington, DC, USA,
2007), GRID ’07, IEEE Computer Society, pp. 50–57.

[26] KLIMECK, G., ADAMS, G., MADHAVAN, K., DENNY, N., ZENTNER,
M., SHIVARAJAPURA, S., ZENTNER, L., AND BEAUDOIN, D. Social

84 BIBLIOGRAPHY

networks of researchers and educators on nanohub.org. In Cluster,
Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International
Symposium on (may 2011), pp. 560 –565.

[27] KRAWCZYK, S., AND BUBENDORFER, K. Grid resource allocation:
allocation mechanisms and utilisation patterns. In Proceedings of the
sixth Australasian workshop on Grid computing and e-research - Volume
82 (Darlinghurst, Australia, Australia, 2008), AusGrid ’08, Australian
Computer Society, Inc., pp. 73–81.

[28] LAADAN, O., AND NIEH, J. Operating system virtualization: practice
and experience. In Proceedings of the 3rd Annual Haifa Experimental
Systems Conference (New York, NY, USA, 2010), SYSTOR ’10, ACM,
pp. 17:1–17:12.

[29] LENK, A., KLEMS, M., NIMIS, J., TAI, S., AND SANDHOLM, T.
What’s inside the cloud? an architectural map of the cloud landscape.
In Software Engineering Challenges of Cloud Computing, 2009. CLOUD
’09. ICSE Workshop on (may 2009), pp. 23 –31.

[30] LUNDSTROM, M. Nanotechnology and cyberinfrastructure: The
nanohub experience. In University/Government/Industry Micro/Nano
Symposium, 2008. UGIM 2008. 17th Biennial (july 2008), p. 111.

[31] PRODAN, R., AND OSTERMANN, S. A survey and taxonomy of in-
frastructure as a service and web hosting cloud providers. In Grid
Computing, 2009 10th IEEE/ACM International Conference on (oct. 2009),
pp. 17 –25.

[32] ROTH, B., HECHT, R., VOLZ, B., AND JABLONSKI, S. Towards a
generic cloud-based virtual research environment. In Computer Soft-
ware and Applications Conference Workshops (COMPSACW), 2011 IEEE
35th Annual (july 2011), pp. 267 –272.

BIBLIOGRAPHY 85

[33] ROURE, D., GOBLE, C., ALEKSEJEVS, S., BECHHOFER, S., BHAGAT,
J., CRUICKSHANK, D., FISHER, P., KOLLARA, N., MICHAELIDES, D.,
MISSIER, P., NEWMAN, D., RAMSDEN, M., ROOS, M., WOLSTEN-
CROFT, K., ZALUSKA, E., AND ZHAO, J. The evolution of myexperi-
ment. In e-Science (e-Science), 2010 IEEE Sixth International Conference
on (dec. 2010), pp. 153 –160.

[34] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER, A., AND PE-
TERSON, L. Container-based operating system virtualization: a scal-
able, high-performance alternative to hypervisors. In Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007 (New York, NY, USA, 2007), EuroSys ’07, ACM, pp. 275–
287.

[35] STANOEVSKA-SLABEVA, K., WOZNIAK, T., HOFFEND, I., AND EBER-
MANN, J. Towards a concept for inclusion of social network informa-
tion as context information. In Ultra Modern Telecommunications Work-
shops, 2009. ICUMT ’09. International Conference on (oct. 2009), pp. 1 –5.

[36] SUBRAMANIAN, V., MA, H., WANG, L., LEE, E.-J., AND CHEN, P.
Rapid 3d seismic source inversion using windows azure and amazon
ec2. In Services (SERVICES), 2011 IEEE World Congress on (july 2011),
pp. 602 –606.

[37] TOMÁS, L., ÖSTBERG, P.-O., CAMINERO, B., CARRION, C., AND

ELMROTH, E. An adaptable in-advance and fairshare meta-
scheduling architecture to improve grid qos. In Proceedings of the 2011
IEEE/ACM 12th International Conference on Grid Computing (Washing-
ton, DC, USA, 2011), GRID ’11, IEEE Computer Society, pp. 220–221.

[38] ZHAO, Y. Service oriented infrastructure framework. In Services -
Part I, 2008. IEEE Congress on (july 2008), pp. 99 –100.

