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1 Maetric spaces

theory Metric
imports Euclidean-Space

begin

locale semimetric =
fixes dist :: 'p = 'p = real
assumes nonneg [simp]: dist x y > 0
and eq-0 [simp]: distxy =0+—x =y
and symm: dist x y = dist y x

begin

lemma refl [simp]: dist x x = 0
by simp

end

locale metric =
fixes dist :: 'p = 'p = real
assumes [simp|: distxy =0<+—x =y
and triangle: dist x z < dist y x + dist y z



sublocale metric < semimetric
proof
{fixw
have dist w w = 0 by simp }
note [simp| = this
fix x y
show 0 < dist x y
proof —
from triangle [of y y x| show 0 < dist x y by simp
qed
show dist x y = 0 <— x = y by simp
show dist x y = dist y x
proof —
{fixwz
have dist w z < dist z w
proof —
from triangle [of w z z] show dist w z < dist z w by simp
qed }
hence dist x y < dist y x and dist y x < dist x y by simp+
thus dist x y = dist y x by simp
qed
qed

definition norm-dist :: (‘a::real-normed-vector) = 'a = real where
[simp]: norm-dist x y = norm (x — y)

interpretation norm-metric: metric norm-dist
proof
fix x y
show norm-dist x y = 0 <— x = y by simp
fix z
from norm-triangle-ineq [of x — y y — z| have
norm (x — z) < norm (x — y) + norm (y — z) by (simp add: diff-minus)
with norm-minus-commute [of x y] show
norm-dist x z < norm-dist y x 4+ norm-dist y z by simp
qed

end

2 Miscellaneous results

theory Miscellany
imports Complex-Main
Metric
Vecl
begin



lemma unordered-pair-element-equality:
assumes {p, g} = {r,s}andp =7
shows g =s
proof cases
assume p = g
with ({p, q} = {r, s}) have {r, s} = {q} by simp
thus g = s by simp
next
assume p # g
with {p, q} = {r, s} have {r,s} — {p} = {q} by auto
moreover
from (p = r have {r, s} — {p} C {s} by auto
ultimately have {q} C {s} by simp
thus g = s by simp
qed

lemma unordered-pair-equality: {p, q} = {q, p}
by auto

lemma square-expand: (x::real)?> = x * x
proof —

have 2 = Suc 1 by simp

with power-Suc [of x 1] and power-one-right [of x] show ?thesis by arith
qed

lemma cosine-rule:

fixes a b ¢ :: real”('n:finite)

shows (norm-dist a c)> =

(norm-dist a b)? + (norm-dist b c)> +2 % ((a — b) - (b — ¢))
proof —

have (2 — b) + (b — ¢) =a — ¢ by simp

with dot-norm [ofa — b b — ]

have (a —b) - (b—c¢) =
((norm (a — ¢))? — (norm (a — b))?> — (norm (b — c))?) / 2
by simp

thus ?thesis by simp

qed

lemma scalar-equiv: v xs x = r g x
by vector

lemma norm-dist-dot: (norm-dist x y)? = (x — y) - (x — y)
by (simp add: power2-norm-eq-inner)

definition dep?2 :: 'a::real-vector = ‘a = bool where
dep2 uv = Jwrs.u=r*g WAV =5%g W

lemma real2-eq:



fixes u v :: real”2

assumes u$1 = v$1 and u$2 = v$2
shows u = v

by (simp add: Cart-eq [of u v] forall-2 assms)

definition rotate? :: real”2 = real’2 where
rotate2 x = vector [—x$2, x$1]

declare vector-2 [simp]

lemma rotate2 [simp|:
(rotate2 x)$1 = —x$2
(rotate2 x)$2 = x$1
by (simp add: rotate2-def)+

lemma rotate2-rotate2 [simp): rotate2 (rotate2 x) = —x
proof —
have (rotate2 (rotate2 x))$1 = —x$1 and (rotate2 (rotate2 x))$2 = —x$2
by simp+
with real2-eq show rotate2 (rotate2 x) = —x by simp
qed

lemma rotate2-dot [simp): (rotate2 u) - (rotate2 v) = u - v
unfolding inner-vector-def
by (simp add: setsum-2)

lemma rotate2-scaleR [simp]: rotate2 (k xg x) = k *g (rotate2 x)
proof —
have (rotate2 (k g x))$1 = (k xg (rotate2 x))$1 and
(rotate2 (k xg x))$2 = (k xR (rotate2 x))$2 by simp+
with real2-eq show ?thesis by simp

qed
lemma rotate2-uminus [simp|: rotate2 (—x) = —(rotate2 x)
proof —
from scaleR-minus-left [of 1] have
—1%g x = —x and —1 *g (rotate2 x) = —(rotate2 x) by auto
with rotate2-scaleR [of —1 x| show ?thesis by simp
qed

lemma rotate2-eq [iff]: rotate2 x = rotate2 y <— x =y
proof
assume x =y
thus rotate2 x = rotate2 y by simp
next
assume rotate? x = rotate2 y
hence rotate2 (rotate2 x) = rotate2 (rotate2 y) by simp
hence —(—x) = —(—y) by simp
thus x = y by simp



qed

lemma dot2-rearrange-1:
fixes u x :: real”2
assumes u - x = 0 and x$1 # 0
shows u = (u$2 / x$1) g (rotate2 x) (is u = ?u’)
proof —
from @ - x = 0) have u$1 * x$1 = —(u$2) * (x$2)
unfolding inner-vector-def
by (simp add: setsum-2)
hence u$1 * x$1 / x$1 = —u$2 / x$1 * x$2 by simp
with (x$1 # 0) have u$1 = ?u’$1 by simp
from (x$1 # 0) have u$2 = ?u’$2 by simp
with w$1 = ?u’$1) and real2-eq show u = ?u’ by simp
qed

lemma dot2-rearrange-2:
fixes u x :: real”2
assumes u - x = 0 and x$2 # 0
shows u = —(u$1 / x$2) =g (rotate2 x) (is u = ?u’)
proof —
from assms and dot2-rearrange-1 [of rotate2 u rotate2 x| have
rotate2 u = rotate2 ?u’ by simp
thus u = ?u’ by blast
qed

lemma dot2-rearrange:

fixes u x :: real”2

assumes u - x = 0 and x # 0

shows Jk. u = k xg (rotate2 x)
proof cases

assume x$1 = 0

with real2-eq [of x 0] and (x # 0) have x$2 # 0 by auto

with dot2-rearrange-2 and w - x = 0) show ?thesis by blast
next

assume x$1 # 0

with dot2-rearrange-1 and (u - x = 0) show ?thesis by blast
qed

lemma real2-orthogonal-dep2:
fixes u v x :: real2
assumes x #0andu-x=0andv-x =0
shows dep2 u v

proof —
let ?w = rotate2? x
from dot2-rearrange and assms have

drs.u=rx*g 2w A v =sx*g ?wby simp

with dep2-def show ?thesis by auto

qed



lemma dot-left-diff-distrib:
fixes u v x :: real”('n::finite)
shows (u —v) - x=(u-x) — (v-x)
proof —
have (u - x) — (v - x) = (Li€UNIV. u$i x x$i) — (L i€UNIV. v$i * x$i)
unfolding inner-vector-def
by simp
also from setsum-subtractf [of A i. u$i x x$i A i. v$i * x$i] have
... = (L i€UNIV. u$i x x$i — v$i * x$i) by simp
also from left-diff-distrib [where 'a = real] have
...= (L i€UNIV. (u$i — v$i) * x$i) by simp
also have
o= —9v)-x
unfolding inner-vector-def
by simp
finally show ?thesis ..
qed

lemma dot-right-diff-distrib:
fixes u v x :: real”('n::finite)
showsx - (u —v)=(x-u) — (x-0)
proof —
from inner-commute have x - (u — v) = (u — v) - x by auto
also from dot-left-diff-distrib [of u v x] have
.= UCX VX,
also from inner-commute [of x| have
...=Xx-+u—x-vbysimp
finally show ?thesis .
qed

lemma am-gm?2:
fixes a b :: real
assumesa > Oand b > 0
shows sqrt (a xb) < (a+b) /2
and sqrt (axb) =(a+b)/2+—a="D
proof —
have 0 < (a —b) % (a—b)and 0 = (a — b) x (a — b) <— a = b by simp+
with right-diff-distrib [of a — b a b] and left-diff-distrib [of a b] have
0<axa—2xaxb+bxb
and0=ax*xa—2*xaxb+bxb<—a=>bbyauto
hence4 xaxb<axa-+2*xaxb+bxb
and4xaxb=axa+2%axb+bxb<—a=>0Dbyauto
with right-distrib [of a + b a b] and left-distrib [of a b] have
4xaxb<(a+b)x(a+b)
and 4 xaxb= (a+Db)x (a+b) +— a=>bbysimp+
with real-sqrt-le-mono [of 4 x a x b (a + b) * (a + )]
and real-sqrt-eq-iff [of 4 * a x b (a + b) % (a + b)] have
sqrt (4 xaxb) <sgrt ((a+b) * (a + b))



and sqrt (4 xa xb) = sqrt ((a +b) x (a + b)) «— a = b by simp+
with @ > 0) and (b > 0) have sqrt (4 xaxb) <a+Db
and sqrt (4 a xb) =a + b <— a = b by simp+
with real-sqrt-abs2 [of 2] and real-sqrt-mult [of 4 a = b] show
sqrt (axb) < (a+10b) /2
and sqrt (a x b) = (a + b) / 2 <— a = b by (simp add: mult-ac)+
qed

lemma refl-on-allrel: refl-on A (A x A)
unfolding refl-on-def
by simp

lemma refl-on-restrict:
assumes refl-on A r
shows refl-on (AN B) (rN B x B)
proof —
from (refl-on A r) and refl-on-allrel [of B] and refl-on-Int
show ?thesis by auto
qed

lemma sym-allrel: sym (A x A)
unfolding sym-def
by simp

lemma sym-restrict:
assumes sym r
shows sym (r N A x A)
proof —
from (sym 1) and sym-allrel and sym-Int
show ?thesis by auto
qed

lemma trans-allrel: trans (A x A)
unfolding frans-def
by simp

lemma trans-restrict:
assumes frans r
shows trans (rN A x A)
proof —
from (trans r) and trans-allrel and trans-Int
show ?thesis by auto
qed

lemma equiv-Int:
assumes equiv A v and equiv B s
shows equiv (AN B) (rNs)
proof —
from assms and refl-on-Int [of A r B s| and sym-Int and trans-Int



show ?thesis
unfolding equiv-def
by auto
qed

lemma equiv-allrel: equiv A (A x A)
unfolding equiv-def
by (simp add: refl-on-allrel sym-allrel trans-allrel)

lemma equiv-restrict:
assumes equiv A v
shows equiv (AN B) (rN B x B)
proof —
from (equiv A r) and equiv-allrel [of B] and equiv-Int
show ?thesis by auto
qed

lemma scalar-vector-matrix-assoc:
fixes k :: real and x :: real’('n::finite) and A :: real”('m::finite)"'n
shows (k g x) vx A =k *g (x vx A)
proof —
{ fix i
from setsum-right-distrib [of k Aj. x$j * A$j$i UNIV|
have (Y jeUNIV. k * (x$j x A$j$i)) =k = (L jeUNIV. x$j * A$j$i) .. }
thus (k g x) v A =k xg (x vx A)
unfolding vector-matrix-mult-def
by (simp add: Cart-eq algebra-simps)
qed

lemma vector-scalar-matrix-ac:
fixes k :: real and x :: real’('n::finite) and A :: real”('m::finite)"'n
shows x v (kg A) =k *g (x vx A)
proof —
have x vk (k g A) = (k *g x) vx A
unfolding vector-matrix-mult-def
by (simp add: algebra-simps)
with scalar-vector-matrix-assoc
show x vx (k *g A) =k xg (x vx A)
by auto
qed

lemma vector-matrix-left-distrib:
fixes x y :: real”('n::finite) and A :: real”('m::finite)"'n
shows (x + y) vx A=xvx A+ yovx A
unfolding vector-matrix-mult-def
by (simp add: algebra-simps setsum-addf Cart-eq)

lemma times-zero-vector [simp]: A xv 0 = 0
unfolding matrix-vector-mult-def



by (simp add: Cart-eq)

lemma invertible-times-eq-zero:
fixes x :: real’('n:finite) and A :: real”'n"'n
assumes invertible A and A xv x = 0
shows x =0
proof —
from (invertible A)
and somel-ex [of AA". A xx A’ =mat 1 N A’ xx A = mat 1]
have matrix-inv A *x A = mat 1
unfolding invertible-def matrix-inv-def

by simp
hence x = (matrix-inv A xx A) v x by (simp add: matrix-vector-mul-lid)
also have ... = matrix-inv A *v (A *v x)
by (simp add: matrix-vector-mul-assoc)
also from (A *xv x = 0) have ... = 0 by simp
finally show x = 0.
qed

lemma vector-transpose-matrix [simp]: x vx transpose A = A v x
unfolding transpose-def vector-matrix-mult-def matrix-vector-mult-def
by simp

lemma transpose-matrix-vector [simp]: transpose A xv x = x v¥ A
unfolding transpose-def vector-matrix-mult-def matrix-vector-mult-def
by simp

lemma transpose-invertible:
fixes A :: real”('n:finite)"'n
assumes invertible A
shows invertible (transpose A)
proof —
from (invertible A) obtain A’ where A xx A’ = mat 1 and A’ xx A = mat 1
unfolding invertible-def
by auto
with matrix-transpose-mul [of A A’] and matrix-transpose-mul [of A’ A]
have transpose A’ xx transpose A = mat 1 and transpose A *x transpose A’ = mat 1
by (simp add: transpose-mat)+
thus invertible (transpose A)
unfolding invertible-def
by auto
qed

lemma times-invertible-eq-zero:
fixes x :: real’('n:finite) and A :: real*'n*'n
assumes invertible A and x vx A = 0
shows x = 0
proof —
from transpose-invertible and (invertible A) have invertible (transpose A) by auto

10



with invertible-times-eq-zero [of transpose A x| and (x vx A = 0)
show x = 0 by simp
qed

lemma matrix-id-invertible:
invertible (mat 1 :: ('a::semiring-1)"("n::finite)"'n)
proof —
from matrix-mul-lid [of mat 1 :: 'a*'n"'n]
show invertible (mat 1 :: 'a*'n"'n)
unfolding invertible-def
by auto

qed

lemma Image-refl-on-nonempty:
assumes refl-on Arand x € A
shows x € r“{x}
proof
from (refl-on A r) and (x € A) show (x, x) € r
unfolding refl-on-def
by simp
qed

lemma quotient-element-nonempty:
assumes equiv Arand X € A/ /r
shows 3 x. x € X
proof —
from (X € A/ /1) obtain x where x € A and X = r"“{x}
unfolding quotient-def
by auto
with equiv-class-self [of A r x] and (equiv A r) show 3 x. x € X by auto
qed

lemma zero-3: (3::3) = 0
by simp

lemma card-suc-ge-insert:
fixes A and x
shows card A + 1 > card (insert x A)
proof cases
assume finite A
with card-insert-if [of A x] show card A + 1 > card (insert x A) by simp
next
assume infinite A
thus card A + 1 > card (insert x A) by simp
qed

lemma card-le-UNIV:

fixes A :: ('n:finite) set
shows card A < CARD('n)

11



by (simp add: card-mono)

lemma setsum-forall-cong:

assumes V x€A. fx=gx

shows () x€A. fx) = (L x€A. g x)
proof —

from V x€A. fx=gx have A\x.xc A= fx=gx..

with setsum-cong show () x€A. fx) = (¥ x€A. g x) by simp
qed

lemma partition-Image-element:
assumes equiv Arand X € A//rand x € X
shows r“{x} = X
proof —
from Union-quotient and assms have x € A by auto
with quotient] [of x A r] have r’{x} € A/ /r by simp

from equiv-class-self and (equiv A r) and (x € A) have x € r“{x} by simp

from (equiv A v) and (x € A) have (x, x) € r
unfolding equiv-def and refl-on-def
by simp

with quotient-eql [of Ar X r"{x} x x]
and assms and (Image r {x} € A/ /1) and (x € Image r {x})
show r"“{x} = X by simp
qed

lemma card-insert-ge: card (insert x A) > card A
proof cases
assume finite A
with card-insert-le [of A x| show card (insert x A) > card A by simp
next
assume infinite A
hence card A = 0 by simp
thus card (insert x A) > card A by simp
qed

lemma choose-1:
assumes card S =1
shows 3 x. S = {x}
using (card S = 1) and card-eq-SucD [of S 0]
by simp

lemma choose-2:
assumes card S = 2
shows 3 xy. S = {xy}
proof —
from (card S = 2) and card-eq-SucD [of S 1]

12



obtain x and T where S = insert x T and card T = 1 by auto
from (card T = 1) and choose-1 obtain y where T = {y} by auto
with (S = insert x T) have S = {x,y} by simp
thus 3 xy. S = {x,y} by auto

qed

lemma choose-3:
assumes card S = 3
shows 3 xyz. S = {xy,z}
proof —
from (card S = 3) and card-eq-SucD [of S 2]
obtain x and T where S = insert x T and card T = 2 by auto
from (card T = 2) and choose-2 [of T| obtain y and z where T = {y,z} by auto
with (S = insert x T) have S = {x,y,z} by simp
thus 3 xy z. S = {x,y,z} by auto
qed

lemma card-gt-O-diff-singleton:

assumes card S > Oandx € S

shows card (S — {x}) =card S — 1
proof —

from (card S > 0) have finite S by (rule card-ge-0-finite)

with x € 5)

show card (S — {x}) = card S — 1 by (simp add: card-Diff-singleton)
qed

lemma eg-3-or-of-3:

fixes j :: 4

shows j = 3V (3 j:3.j = of-int (Rep-bitl j'))
proof (induct j)

fix j-int :: int

assume 0 < j-int

assume j-int < int CARD(4)

hence j-int < 3 by simp

show of-int j-int = (3::4) V (3 j":3. of-int j-int = of-int (Rep-bit1 j'))
proof cases
assume j-int = 3
thus
of-int j-int = (3:4) V (3 j':3. of-int j-int = of-int (Rep-bitl j'))
by simp
next
assume j-int # 3
with (-int < 3) have j-int < 3 by simp
with (0 < j-int) have j-int € {0..<3} by simp
hence Rep-bitl (Abs-bitl j-int :: 3) = j-int
by (simp add: bit1.Abs-inverse)
hence of-int j-int = of-int (Rep-bitl (Abs-bit1 j-int :: 3)) by simp
thus

13



of-int j-int = (3::4) V (3 j":3. of-int j-int = of-int (Rep-bit1 j'))
by auto
qed
qed

lemma sgn-plus:
fixes x y :: ‘az:linordered-idom
assumes sgn X = sgn y
shows sgn (x +y) =sgn x
proof cases
assume x = 0
with (sgn x = sgn y) have y = 0 by (simp add: sgn-0-0)
with (x = 0) show sgn (x + y) = sgn x by (simp add: sgn-0-0)
next
assume x # 0
show sgn (x + y) =sgn x
proof cases
assume x > 0
with (sgn x = sgn i) and sgn-1-pos [where ?'a = 'a] have y > 0 by simp
with (x > 0) and sgn-1-pos [where ?'a = a]
show sgn (x + y) = sgn x by simp
next
assume — x > 0
with x # 0) have x < 0 by simp
with (sgn x = sgn i) and sgn-1-neg (where ?'a = 'a] have y < 0 by auto
with (x < 0) and sgn-1-neg [where ?'a = 'a]
show sgn (x + y) = sgn x by simp
qed
qed

lemma sgn-div:
fixes x y = ‘a:linordered-field-inverse-zero
assumes y # 0 and sgn x = sgn y
showsx /vy >0
proof cases
assume y > 0
with (sgn x = sgn 1) and sgn-1-pos [where ?'a = a] have x > 0 by simp
with (y > 0) show x / y > 0 by (simp add: zero-less-divide-iff)
next
assume —y > 0
with y # 0) have y < 0 by simp
with (sgn x = sgn y) and sgn-1-neg [where ?'a = a] have x < 0 by simp
with (y < 0) show x / y > 0 by (simp add: zero-less-divide-iff )
qed

lemma abs-plus:
fixes x y :: ‘a:linordered-idom
assumes sgn X = sgn y
shows |x +y| = [x[ + [y|

14



proof —
from (sgn x = sgn i) have sgn (x + y) = sgn x by (rule sgn-plus)
hence |x + y| = (x + y) * sgn x by (simp add: abs-sgn)
also from (sgn x = sgn y)
have ... = x x sgn x + y * sgn y by (simp add: algebra-simps)
finally show |x + y| = |x| + |y| by (simp add: abs-sgn)

qed

lemma sgn-plus-abs:

fixes x y :: ‘a::linordered-idom

assumes |x| > |y|

shows sgn (x + y) = sgn x
proof cases

assume x > 0

with (x| > |y| have x + y > 0 by simp

with (x > 0) show sgn (x + y) = sgn x by simp
next

assume — x > 0

from (|x| > |y|) have x # 0 by simp

with (= x > 0) have x < 0 by simp

with (|x| > |y| have x + y < 0 by simp

with (x < 0) show sgn (x + y) = sgn x by simp
qed

lemma sqrt-4 [simp]: sqrt 4 = 2
proof —

have sqrt 4 = sqrt (2 % 2) by simp

thus sqrt 4 = 2 by (unfold real-sqrt-abs2) simp
qed

end

3 Tarski’s geometry

theory Tarski
imports Complex-Main Miscellany Euclidean-Space Metric
begin

3.1 The axioms

locale tarski-first3 =

fixesC:'p="p="p='p=bool (--=--1[99,99,99,99] 50)
assumes Al:Vab.ab=ba

and A2:Vabpgrs.ab=pqANab=rs—pqg=rs

and A3:Vabc.ab=cc—a=0b
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locale tarski-firsts = tarski-first3 +
fixes B:: 'p = 'p = 'p = bool
assumes A4: Vgabc. dx. BgaxNax=bc
and A5:Vabcda'b'c’d . a%bANBabcANBa'b'c’
Nab=a'b'ANbc=b'c'Nad=a"d' Nbd=0b"d’
—cd=c'd’

locale tarski-absolute-space = tarski-firsts +
assumes A6:Vab.Baba —a=b
and A7:Vabcpg.BapcANBbgc— (3x.BpxbABgxa)
and A11: VX Y. (3a.Vxy.xe XANyeY —Baxy)
— (3b.Vxy.xe X ANyeY —Bxby)

locale tarski-absolute = tarski-absolute-space +

assumes A8: dabc. - BabcAN—-BbcaAN—-Bcab

and A9:VpgabcpF#qghap=aqANbp=bgAcp=cq
—BabcVBbcaVBcab

locale tarski-space = tarski-absolute-space +
assumes A10:Vabcdt. Badt N\BbdcNhNa#d
— (3xy.Babx ANBacy ANBxty)

locale tarski = tarski-absolute + tarski-space

3.2 Semimetric spaces satisfy the first three axioms

context semimetric
begin
definition smC :: 'p = 'p = 'p = 'p = bool (- - =sm - - [99,99,99,99] 50)
where [simp]: a b =gy cd = dist a b = dist c d
end

sublocale semimetric < tarski-first3 smC

proof
from symm show Va b. a b =gy b a by simp
showVabpgrs.ab=smpqgNab=smtrs — pq=smtsbysimp
show Vabc.ab =gy cc— a=>bbysimp

qed

3.3 Some consequences of the first three axioms

context tarski-first3
begin
lemma Al ab=ba
by (simp add: A1)
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lemma A2 [ab=pgab=rs| = pqg=rs
proof —

assumeab=pgandab=rs

with A2 show ?thesis by blast
qed

lemma A3 ab=cc=a=0»
by (simp add: A3)

theorem th2-1:ab=ab
proof —

from A2’ [of baa bab] and A1’ [of b a] show ?thesis by simp
qed

theorem th2-2:ab=cd = cd=ab
proof —

assumea b =cd

with A2 [ofa b cd a b] and th2-1 [of a b] show ?thesis by simp
qed

theorem th2-3: [ab=cd;cd=ef]| = ab=ef
proof —

assumeab=cd

with th2-2 [of a b c d] have c d = a b by simp

assumecd =ef

with A2 [of cdabef] and (c d = a b) show ?thesis by simp
qed

theorem th2-4:ab=cd = ba=cd
proof —

assumeab=cd

with th2-3 [of baa b c d] and A1’ [of b a] show ?thesis by simp
qed

theorem th2-5:ab=cd = ab=dc
proof —

assumeab=cd

with th2-3 [of ab c d d c] and A1’ [of ¢ d] show ?thesis by simp
qed

definition is-segment :: 'p set = bool where
is-segment X £ Ixy. X = {x,y}

definition segments :: 'p set set where
segments = {X. is-segment X}

definition SC :: 'p set = 'p set = bool where
SCXY23Jwxyz X={w,x} ANY={y,z} A\wx=yz
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definition SC-rel :

: ('p set x p set) set where
SC-rel = {(X,Y) | X

p
Y.SCX Y}

lemma left-segment-congruence:
assumes {4, b} ={p,q} andpg=cd
showsab=cd
proof cases
assume a4 = p
with unordered-pair-element-equality [of a b p q] and {a, b} = {p, g}
have b = g by simp
with (p g = c d) and @ = p) show ?thesis by simp
next
assume a # p
with {a, b} = {p, g} have a = g by auto
with unordered-pair-element-equality [of a b q p] and {a, b} = {p, g}
have b = p by auto
with (p g =cd and @ = ¢) have ba = c d by simp
with th2-4 [of b a c d] show ?thesis by simp
qed

lemma right-segment-congruence:
assumes {¢,d} = {p,q} andab=pq
showsab=cd
proof —
from th2-2 [ofabp q| and @ b = p q) have p g = a b by simp
with left-segment-congruence [of cd p g a b] and {c,d} = {p, q}
have c d = a b by simp
with th2-2 [of c d a b] show ?thesis by simp
qed

lemma C-SC-equiv: ab = cd = SC {a, b} {c, d}
proof
assumea b =cd
with SC-def [of {a, b} {c, d}] show SC {a, b} {c, d} by auto
next
assume SC {a, b} {c, d}
with SC-def [of {a, b} {c, d}]
obtain w x y z where {4, b} = {w, x} and {c, d} = {y,z} andwx =y z
by blast
from left-segment-congruence [of a b w x y z] and
{a, b} = {w, x}> and
wx=y2z
have a b = y z by simp
with right-segment-congruence [of cd y z a b] and ({c, d} = {y, z}
show a b = ¢ d by simp
qed

lemmas SC-refl = th2-1 [simplified]
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lemma SC-rel-refl: refl-on segments SC-rel
proof —
note refl-on-def [of segments SC-rel]
moreover
{fixZ
assume Z € S5C-rel
with SC-rel-def obtain X Y where Z = (X, Y) and SC X Y by auto
from (SC X Y) and SC-def [of X Y]
have 3w x. X = {w, x} and Jy z. Y = {y, z} by auto
with is-segment-def [of X| and is-segment-def [of Y]
have is-segment X and is-segment Y by auto
with segments-def have X € segments and Y € segments by auto
with (Z = (X, Y)) have Z € segments x segments by simp }
hence SC-rel C segments x segments by auto
moreover
{ fix X
assume X € segments
with segments-def have is-segment X by auto
with is-segment-def [of X] obtain x y where X = {x, y} by auto
with SC-def [of X X]| and SC-refl have SC X X by (simp add: C-SC-equiv)
with SC-rel-def have (X, X) € SC-rel by simp }
hence V X. X € segments — (X, X) € SC-rel by simp
ultimately show ?thesis by simp
qed

lemma SC-sym:
assumes SC X Y
shows SC Y X
proof —
from SC-def [of X Y] and (SC X V)
obtain w x y z where X = {w, x} and Y = {y,z} andwx =y z
by auto
from th2-2 [of w x y z] and (w x = y 2 have y z = w x by simp
with SC-def [of Y X] and (X = {w, x}) and (Y = {y, z})
show SC Y X by (simp add: C-SC-equiv)
qed

lemma SC-sym” SCXY =SCY X
proof

assume SC XY

with SC-sym [of X Y] show SC Y X by simp
next

assume SC Y X

with SC-sym [of Y X] show SC X Y by simp
qed

lemma SC-rel-sym: sym SC-rel
proof —
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{fixXY
assume (X, Y) € SC-rel
with SC-rel-def have SC X Y by simp
with SC-sym’ have SC Y X by simp
with SC-rel-def have (Y, X) € SC-rel by simp }
with sym-def [of SC-rel] show ?thesis by blast
qed

lemma SC-trans:
assumes SC X Yand SCY Z
shows SC X Z
proof —
from SC-def [of X Y] and (SC X Y)
obtain w x y z where X = {w, x} and Y = {y,z} andwx =y z
by auto
from SC-def [of Y Z] and (SC Y Z)
obtainp grswhere Y = {p,q} and Z = {r, s} and p g = r s by auto
from (Y ={y,zp and Y ={p,q} and pg=rs
have y z = r s by (simp add: C-SC-equiv)
with th2-3 [of w x y z r s] and w x = y 2 have w x = r s by simp
with SC-def [of X Z] and (X = {w, x}) and (Z = {r, s}
show SC X Z by (simp add: C-SC-equiv)
qed

lemma SC-rel-trans: trans SC-rel
proof —
{fixXYZ
assume (X, Y) € SC-rel and (Y, Z) € SC-rel
with SC-rel-def have SC X Y and SC Y Z by auto
with SC-trans [of X Y Z] have SC X Z by simp
with SC-rel-def have (X, Z) € SC-rel by simp }
with trans-def [of SC-rel| show ?thesis by blast
qed

lemma A3-reversed:
assumesaa=bc
shows b = ¢

proof —
from @ a = b c) have b ¢ = a a by (rule th2-2)
thus b = c by (rule A3)

qed

end

sublocale farski-first3 C equiv segments SC-rel
by (simp add: equiv-def SC-rel-refl SC-rel-sym SC-rel-trans)

3.4 Some consequences of the first five axioms

context tarski-first5
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begin
lemma A4 3x.BgaxNax=bc
by (simp add: A4 [simplified])

theorem th2-8:aa =00

proof —
from A4’ [of - a b b] obtain x where a x = b b by auto
with A3’ [of a x b] have x = a by simp
with @ x = b b) show ?thesis by simp

qed

definition OFS :: ['p,'n,’p,’n,'p,'p,’p,'p] = bool where
OFSabcda'b'c'd =
BabcABa'b'c’Nab=a'b!ANbc=b'c'Nad=a'"d Nbd=b"d’

lemma A5": [OFSabcda’b'c'da #b] = cd=c'd’
proof —

assume OFSabcda’b'c’'d’anda # b

with A5 and OFS-def show ?thesis by blast
qed

theorem th2-11:
assumes hiypotheses:
Babc
Ba'b'c’
ab=a'b’
be=b'c’
showsac=a'c’
proof cases
assumea =b
with @ b = a’ b’ have a’ = b’ by (simp add: A3-reversed)
with (b ¢ = b’ ¢ and @ = b) show ?thesis by simp
next
assume g #= b
moreover
note A5’ [ofabcaa’b’c’a’] and
unordered-pair-equality [of a c| and
unordered-pair-equality [of a’ ¢']
moreover
from OFS-def [ofabcaa’b'c’a’] and
hypotheses and
th2-8 [of a a'] and
unordered-pair-equality [of a b] and
unordered-pair-equality [of a’ b’]
have OFSabcaa'b’c'a’ by (simp add: C-SC-equiv)
ultimately show ?thesis by (simp add: C-SC-equiv)
qed

lemma A4-unique:
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assumes g #aand Bgaxandax=bc
and Bgax'andax'=bc
shows x = x’
proof —
from SC-sym’ and SC-trans and C-SC-equivand @ x’'=bcand ax=bo
have a x = a x’ by blast
with th2-11 [of gax ga x'] and (B ga x) and B g a x") and SC-refl
have g x = g x' by simp
with OFS-def [of ga x x ga x x'] and
(Bgax and
SC-refl and
ax=axh
have OFS g a x x g a x x" by simp
with A5’ [of gax x gax x'] and (g # @ have x x = x x' by simp
thus x = x’ by (rule A3-reversed)
qed

theorem th2-12:
assumes g # a
shows dIx. Bgax Nax=bc
using (g # a) and A4’ and A4-unique
by blast
end

3.5 Simple theorems about betweenness

theorem (in tarski-first5) th3-1: Ba b b

proof —
from A4 [rule-format, of a b b b] obtain x where Ba b x and b x = b b by auto
from A3 [rule-format, of b x b] and (b x = b b) have b = x by simp
with (B a b x) show B a b b by simp

qed

context tarski-absolute-space
begin
lemma A6":
assumes Baba
showsa =0
proof —
from A6 and (B a b @) show a = b by simp
qed

lemma A7":

assumes Bapcand Bbgc

shows 3x. BpxbABgxa
proof —

from A7 and (Ba p ¢ and (B b g ¢) show ?thesis by blast
qed
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lemma A11"

assumesV xy.xc XAycY —Baxy

shows 3 b.Vxyxe XANyeY —Bxby

proof —

from assms have 3 0.V xy.x e X Ay € Y — Bax y by (rule exI)
thus 3 0.V xy.x e XAy €Y — Bxbyby (rule A11 [rule-format])
qed

theorem th3-2:
assumes Ba b c
shows Bcba
proof —
from th3-1 have B b c c by simp
with A7’ and (B a b ¢) obtain x where B b x b and B ¢ x a by blast
from A6’ and (B b x b) have x = b by auto
with (B ¢ x @ show B ¢ b a by simp
qed

theorem th3-4:
assumes Babcand Bbac
showsa =10

proof —
from Babc and Bbac and A7 [ofabcbal
obtain x where B b x b and B a x a by auto
hence b = x and a = x by (simp-all add: A6’)
thus a = b by simp

qed

theorem th3-5-1:
assumes Babdand Bbcd
shows Babc
proof —
from Babd and Bbcd and A7’ [ofabd b c]
obtain x where B b x b and B ¢ x a by auto
from (B b x b) have b = x by (rule A6)
with (B ¢ x @ have B ¢ b a by simp
thus B a b ¢ by (rule th3-2)
qed

theorem th3-6-1:
assumes Babcand Bacd
shows Bbcd
proof —
from (Bacd and (Ba b ¢ and th3-2 have B d ca and B ¢ b a by fast+
hence B d c b by (rule th3-5-1)
thus B b ¢ d by (rule th3-2)
qed
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theorem th3-7-1:
assumes b #cand Babcand Bbcd
shows Bacd

proof —
from A4’ obtain x where B a ¢ x and ¢ x = c d by fast
from (Ba b c) and (B a c x) have B b c x by (rule th3-6-1)
have c d = c d by (rule th2-1)
with b #c0and Bbcx and cx=cd)and (Bbcd
have x = d by (rule A4-unique)
with (B a ¢ x) show B a c d by simp

qed

theorem th3-7-2:
assumes b #cand Babcand Bbcd
shows Babd

proof —
from (Bbcd and (Ba b c) and th3-2 have Bd c b and B c b a by fast+
with (b # ¢ and th3-7-1 [of ¢ b d a] have B d b a by simp
thus B a b d by (rule th3-2)

qed

end

3.6 Simple theorems about congruence and betweenness

definition (in farski-first5) Col :: 'p = 'p = 'p = bool where
Colabc=BabcVBbcaVBcab

end

4 Real Euclidean space and Tarski’s axioms

theory Euclid-Tarski
imports Tarski Suplnf
begin

4.1 Real Euclidean space satisfies the first five axioms

abbreviation
real-euclid-C :: [real”('n::finite), real”('n), real”('n), real('n)] = bool
(-- =R - - [99,99,99,99] 50) where
real-euclid-C £ norm-metric.smC

definition real-euclid-B :: [real”('n::finite), real”('n), real”('n)] = bool
(BRr - - - [99,99,99] 50) where
BRabc23L0<IANI<IAb—a=1I1x%g(c—a)

interpretation real-euclid: tarski-first5 real-euclid-C real-euclid-B
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proof

By virtue of being a semimetric space, real Euclidean space is already known to
satisfy the first three axioms.

{fixgabc
have 3x. BrqaxNax=rbc
proof cases
assume g =a
let’x=a+c—»b
have Br qa ?x
proof —
let 71 =0 :: real
note real-euclid-B-def [of q a ?x]
moreover
have ?] > 0 and ?I < 1 by auto
moreover
from (g = @ have a — g = 0 by simp
hence a — g = ?1 g (?x — g) by simp
ultimately show ?thesis by auto
qed
moreover
havea — ?x =b — c by simp
hence a ?x =g b c by simp
ultimately show ?thesis by blast
next
assume g # a
hence norm-dist g a > 0 by simp
let ?k = norm-dist b ¢ / norm-dist q a
from (norm-dist g a > 0)
and divide-nonneg-pos [of norm-dist b ¢ norm-dist q a
have ?k > 0 by simp
let?x =a+ ?k xg (a — q)
have Br g a ?x
proof —
let?2l =1/ (1+ ?k)
from (?k > 0) have ?] > 0 by simp
note real-euclid-B-def [of q a ?x]
moreover
from (?k > 0) have ?] > 0 and ?I < 1 by auto
moreover
from scaleR-left-distrib [of 1 ?k a — q]
have (1 + ?k) xg (a — q) = ?x — g by simp
hence ?1 xg ((1 + ?k) *g (a — q)) = ?1 xg (?x — q) by simp
with (?] > 0) and scaleR-right-diff-distrib [of ?1 ?x q]
havea — g = ?1 xg (?x — q) by simp
ultimately show Br g a ?x by blast
qed
moreover
havea ?x =g b ¢
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proof —
from norm-scaleR [of ?k a — q] have
norm-dist a ?x = |?k| x norm (a — q) by simp
also from (?k > 0) have
... = ?k x norm (a — q) by arith
also from norm-metric.symm [of q a] have
... = ?k * norm-dist q a by simp
finally have
norm-dist a ?x = norm-dist b ¢ / norm-dist g a x norm-dist q a .
with (morm-dist g a > 0) show a ?x =R b c by auto
qed
ultimately show ?thesis by blast
qed }
thus Vgabc. 3x. B ga x A ax =R b c by auto
{fixabcda'b'c'd’
assume a # b and
Br abcand
Bra'b’c"and
ab=ra'b’ and
bc=rb'c’and
ad=ra’d and

bd =R bld,
havecd =g c¢’d’
proof —

{ fixm

fix p q r :: real”('n::finite)
assume 0 < m and
m < 1 and

p # qand
q—p=mx*g(r—p)
from (p # ¢ and (g — p = m xg (r — p)) have m # 0
proof —
{ assume m =0
with ( — p = m xg (r — p)) have g — p = 0 by simp
with (p # ¢ have False by simp }
thus ?thesis ..
qed
with m > 0) have m > 0 by simp
from (g — p = m xg (r — p)’ and
scaleR-right-diff-distrib [of m r p|
have g — p =m xg v — m xg p by simp
henceq—p—qg+p—mx*gr=
M*RT —M*gp —q+p—mMxgr
by simp
with scaleR-left-diff-distrib [of 1 m p] and
scaleR-left-diff-distrib [of 1 m q]
have (1 — m) g p — (1 — m) g g = m *g q — m *g v by auto
with scaleR-right-diff-distrib [of 1 — m p q] and
scaleR-right-diff-distrib [of m q r]
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have (1 — m) xg (p — q) = m xg (g — r) by simp
with norm-scaleR [of 1 — m p — q| and norm-scaleR [of m q — 7]
have |1 — m| x norm (p — q) = |m| * norm (q — r) by simp
with imm > 0)and m < 1)
have norm (q —r) = (1 —m) / m = norm (p — q) by simp
moreover from (p # ¢ have norm (p — q) # 0 by simp
ultimately
have norm (q — r) / norm (p — q) = (1 — m) / m by simp
with tn # 0) have
norm-dist q v / norm-dist p g = (1 — m) / m and m # 0 by auto }
note linelemma = this
from real-euclid-B-def [of a b c] and (Br a b ¢)
obtain  where 0 <land ! <1and b —a=1x%g (c — a) by auto
from real-euclid-B-def [of a’ b’ ¢ and (Bg a’ b’ ¢/)

obtain /' where0 < !’and I’ < 1and b’ —a’=1"xg (¢/ — a’) by auto

from @ # b) and @ b =g a’ b have a’ # b’ by auto
from linelemma [of 1 a b ¢] and
(I > 0)and
(1 <1 and
@ # b and
b—a=Ixg(c—a)
have ! # 0 and (1 — ) / | = norm-dist b ¢ / norm-dist a b by auto
from (1 — 1) / 1 = norm-dist b ¢ / norm-dist a b) and
{@ab=ra’b"and
bc=Rrb ch
have (1 — 1) / I = norm-dist b’ ¢’ / norm-dist a’ b’ by simp
with linelemma [of I"a’ b’ ¢/| and
q'> 0y and
(1'< 1 and
@' # b’ and
b"—a'=1"xg (¢ —a’)
havel’#0and (1 —1) /1= (1-1') / I'by auto
from(1—-1)/1=(1-1)/1
have (1 —1) /1x1x1'=(1—-1")/1I"x1x1"bysimp
with ({ # 0)and (' # 0) have (1 — 1) xI'= (1 — 1) x I by simp
with left-diff-distrib [of 1 11'] and left-diff-distrib [of 11" I]
have | = I’ by simp
{ fixm
fix p q r s :: real”('n::finite)
assume m # 0 and
q—p=mxg (r—p)
with scaleR-scaleR have r — p = (1/m) g (g — p) by simp
with cosine-rule [of r s p]
have (norm-dist r s)> = (norm-dist r p)% + (norm-dist p s)* +
2% ((1/m) xg (g —p)) - (p =)
by simp
also from inner.scaleR-left [of 1/m q — pp — s]
have ... =
(norm-dist r p)? + (norm-dist ps)® +2/m* ((g — p) - (p — s))
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by simp
also from (m # 0) and cosine-rule [of g s p]

have ... = (norm-dist r p)® + (norm-dist p s)? +
1/m x ((norm-dist q s)> — (norm-dist q p)> — (norm-dist p s)?)
by simp

finally have (norm-dist r s)> = (norm-dist r p)> + (norm-dist p s)> +
1/m x ((norm-dist q s)> — (norm-dist q p)> — (norm-dist p s)?) .
moreover
{ from norm-dist-dot [of r p] and (r — p = (1/m) *g (g — p))
have (orm-dist r p)? — ((1/m) & (0 — p)) - ((1/m) & (q — p))
by simp
also from inner.scaleR-left [of 1/m q — p] and
inner.scaleR-right [of - 1/m g — p]
have ... =1/m? x ((9 —p) - (9 - p))
by (simp add: square-expand)
also from norm-dist-dot [of q p] have ... = 1/m? % (norm-dist q p)?
by simp
finally have (norm-dist r p)> = 1/m?  (norm-dist q p)> . }
ultimately have
(norm-dist r s)? = 1/m? x (norm-dist q p)> + (norm-dist p s)* +
1/m * ((norm-dist q s)> — (norm-dist q p)*> — (norm-dist p s)?)
by simp
with norm-metric.symm [of q p]
have (norm-dist r s)? = 1/m? x (norm-dist p q)*> + (norm-dist p s)? +
1/m x ((norm-dist q s)> — (norm-dist p q)> — (norm-dist p s)?)
by simp }
note fiveseglemma = this
from fiveseglemma [of Ibacd) and { # 00 and b — a =1 *g (c — a))
have (norm-dist c d)> = 1/1? x (norm-dist a b)> + (norm-dist a d)> +
1/1 % ((norm-dist b d)> — (norm-dist a b)*> — (norm-dist a d)?)
by simp
also from ( = I’ and
{ab=ra’b"and
ad =ra’d) and

bd=gbdh

have ... = 1/1? x (norm-dist a’ b")?> + (norm-dist a’ d")*> +

1/1"  ((norm-dist b’ d")> — (norm-dist a’ b")?> — (norm-dist a’ d")?)
by simp
also from fiveseglemma [of I' b’ a’ ¢’ d’] and

(" # 0) and
b"'—a'=1"xg (¢ —a’)

have ... = (norm-dist ¢’ d")? by simp

finally have (norm-dist c d)? = (norm-dist ¢’ d’)* .
hence sqrt ((norm-dist ¢ d)?) = sqrt ((norm-dist ¢’ d')?) by simp
with real-sqrt-abs show ¢ d =g ¢’ d' by simp
qed }
thusVabceda'b'c'd'.
a#bANBrabcABra'b'c' A
ab=Rpa'b'’ANbc=Rb'c’'Nad=ga’d' Nbd=grb'd —
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cd=rc’'d
by blast
qed

4.2 Real Euclidean space also satisfies axioms 6, 7, and 11

lemma rearrange-real-euclid-B:
fixes w y z :: real”('n) and h
showsy —w=hxg (z—w)+—y=hxgz+ (1 —h)*xgw
proof
assume y — w = h *g (z — w)
hencey — w + w = h xR (z — w) + w by simp
hence y = h xg (z — w) + w by simp
with scaleR-right-diff-distrib [of h z w]
have y = h g z + w — h xg w by simp
with scaleR-left-diff-distrib [of 1 h w]
show y = h g z + (1 — h) g w by simp
next
assumey =hs*gz+ (1 —h) *xgw
with scaleR-left-diff-distrib [of 1 h w]
have y = h g z + w — h *g w by simp
with scaleR-right-diff-distrib [of h z w]
have y = I xg (z — w) + w by simp
hencey — w + w = h *g (z — w) + w by simp
thus y — w = h g (z — w) by simp
qed

interpretation real-euclid: tarski-absolute-space real-euclid-C real-euclid-B
proof
{fixab
assume Braba
with real-euclid-B-def [of a b a]
obtain | where b — a = [ xg (a — a) by auto
hence a = b by simp }
thus Va b. BR aba — a = b by auto
{fixabcpgq
assume BRrapcand BR bgc
from real-euclid-B-def [of a p c] and Brap ¢
obtain i wherei > 0andi < 1and p — a =i g (c — a) by auto
have 3x. BRpxb ABrgxa
proof cases
assume i = (
with (p —a =i xg (c — a)) have p = a by simp
hence p — a = 0 xg (b — p) by simp
moreover have (0::real) > 0 and (0::real) < 1 by auto
moreover note real-euclid-B-def [of p a ]
ultimately have Bg p a b by auto
moreover
{havea — g =1 g (a — q) by simp
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moreover have (1::real) > 0 and (1::real) < 1 by auto
moreover note real-euclid-B-def [of q a a
ultimately have BR q a a by blast }
ultimately have Bg p a b A BR q a a by simp
thus 3x. BR p x b A\ Br q x a by auto
next
assume i # 0
from real-euclid-B-def [of b g ¢] and (Br b g ¢
obtain j wherej > 0andj < 1and g — b =j*g (¢ — b) by auto
fromi@>0and G <1)
havel —i>0and 1 — i <1 by auto
from ( > 0) and (I — i > 0) and mult-nonneg-nonneg
have j x (1 — i) > 0 by auto
with (i > 0) and G # 0) have i + j x (1 — i) > 0 by simp
hence i + j * (1 — i) # 0 by simp
let?l=j*(1—1i)/ (i+j*(1-1i))
from diff-divide-distrib [of i +j* (1 — i) j* (1 —i)i+j=* (1 —i)] and
i+j*x(1—-10)#0
havel —?1 =i/ (i+j* (1 —1i)) by simp
let?k=ix(1—j)/ (j+ix(1—7j))
from right-diff-distrib [of i 1 j| and
right-diff-distrib [of j 1 i] and
mult-commute [of i j] and
add-commute [of i j]
havej+ix* (1 —j) =i+ jx (1— i) bysimp
with (4 j* (1 — i) # 0 havej +i* (1 —j) # 0 by simp
with diff-divide-distrib [of j + i % (1 —j) i* (1 —j)j+i* (1 —J)]
havel —?k=j/ (j+ix* (1 —j)) bysimp
with @ — 21 =i/ (i+j*(1— i) and
j4+ix(1—j)=i+j=*(1—1i)and
times-divide-eq-left [of - i + j * (1 — i)] and
mult-commute [of i |
have (1 — ?I) xj = (1 — ?k) = i by simp
moreover
{from 1 —?k=j/(j+ix(1—7)) and
jHix(1—j)=i+jx(1—1i)
have ?] = (1 — ?k) * (1 — i) by simp }
moreover
{from (1 —?1=i/(i+j*(1—1i)) and
Gix(1—j)=i+jx(1—1i)
have (1 — ?1) % (1 — j) = ?k by simp }
ultimately
have ?l sga+ ((1 —?) xj) *grc+ ((1 — ?I)
2k g b+ ((1 — ?k) x i) xg c + ((1 — ?k) *
by simp
with scaleR-scaleR
have ?lxga+ (1 —?l) xgj*gc+ (1 —?1) *g (1 —j) *g b=
2k *g b+ (1 — ?k) *gi*grc+ (1 —?k) *g (1 —i) *ga
by simp

(1 —1))*ga
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with scaleR-right-distrib [of (1 — ?1)j g c (1 — j) *g b] and
scaleR-right-distrib [of (1 — ?k) i*g c (1 — i) *g a] and
add-assoc [of ?1 xg a (1 — ?1) *g jxg c (1 — ?I) *g (1 —j) *g b] and
add-assoc [of ?k *g b (1 — ?k) g i g ¢ (1 — ?k) *g (1 — i) *g 4]
have ?l xga+ (1 — ?) xg (j*grc+ (1 —j) *g b) =
2k kg b+ (1 —?k) *g (i*gc+ (1 —1i) *ga)
by arith
from ?lxga+ (1 —?1) *g (j*grc+ (1 —j) *gb) =
2k xg b+ (1 — ?k) xg (i *gr ¢ + (1 — i) *g a)) and
p—a=ixg (c—a) and
(g —b=jx*g (c—Db) and
rearrange-real-euclid-B [of p a i c] and
rearrange-real-euclid-B [of q b j c]
have ?l g a + (1 — ?) xg g = ?k g b+ (1 — ?k) *g p by simp
let?x =?lsga+ (1 —7?1) xrq
from rearrange-real-euclid-B [of ?x q ?1 a]
have ?x — g = ?] xg (a — q) by simp
from (?x = ?k *g b + (1 — ?k) *g p) and
rearrange-real-euclid-B [of ?x p ?k b]
have ?x — p = ?k xg (b — p) by simp
from (i +jx (1 — i) > 0) and
j*(1—1i)>0 and
zero-le-divide-iff [of j* (1 — i) i+ j* (1 — i)]
have ?I > 0 by simp
from (i +j* (1 —i) > 0) and
>0 and
zero-le-divide-iff [of i i+ j* (1 —i)] and
1—-?1=i/(i+j*x(1—-14))
have 1 — ?I > 0 by simp
hence ?I <1 by simp
with (?] > 0) and
(?x —gq=7?l*g (a —q) and
real-euclid-B-def [of g ?x a]
have BRr q ?x a by auto
from (j < 1) have 1 — j > 0 by simp
with (I — ?] > 0) and
(1—=720)%(1—j)="?k and
zero-le-mult-iff [of 1 — ?11 — j]
have ?k > 0 by simp
from (j > 0) have 1 — j <1 by simp
from (?] > 0) have 1 — ?I < 1 by simp
with (1 —j < 1) and
(1—-j>0 and
mult-mono [of 1 —?111 — j 1] and
(1-=?D)*(1—j)=7hk
have ?k < 1 by simp
with (?k > 0) and
(?>x —p ="k xg (b—p) and
real-euclid-B-def [of p ?x b]
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have Br p ?x b by auto
with (B g ?x @) show ?thesis by auto
qed }
thusVabcpg.Brapc ABrbgc— (3x. BR pxb A Br q x a) by auto

{fixXY

assume Ja. Vxy. x€e XANye€Y — Braxy

then obtain s where Vxy.x € X Ay € Y — Br a x y by auto
have 3b.Vxy.x € XAye€Y — Brxby

proof cases
assume X C {a} VY = {}
let?b=a
{fixxy
assumex € Xandy €Y
with X C {a} VY = {}) have x = a by auto
from Vxy.xc XAyceY —Braxyandxec X andyc Y
have BR a x y by simp
with (x = a) have BR x ?b y by simp }
hence Vxy.x € XAy €Y — Br x ?by by simp
thus ?thesis by auto
next
assume (X C {a} VY = {})

hence X — {a} # {} and Y # {} by auto
from (X — {a} # {} obtain c where ¢ € X and ¢ # a by auto
from (c # a) have ¢ — a # 0 by simp
{ fixy
assumey € Y
with Vxy.x e XAye€Y — Braxy and c € X
have BR a c y by simp
with real-euclid-B-def [of a c y]
obtain / where/ > 0Oand ! < 1and c —a =1xg (y — a) by auto
from (c —a=1x%g (y —a)) and (¢ — a # 0) have | # 0 by simp
with ( > 0) have [ > 0 by simp
with ¢ —a=1x%g (y —a) havey —a = (1/1) g (c — a) by simp
from «( > () and ( < 1) have 1/I > 1 by simp
with (y —a = (1/1) xg (c — a))
have 3j>1.y — a =j *g (c — a) by auto }
note ylemma = this
from (Y # {}) obtain d where d € Y by auto
with ylemma [of d]
obtain jd where jd > 1 and d — a = jd xg (c — a) by auto
{ fix x
assume x € X
with Vxy.x e X Aye€Y — BraxyanddcY)
have BR a x d by simp
with real-euclid-B-def [of a x d]
obtain / where ! > 0 and x — a = [ *g (d — a) by auto
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from (x —a=1xg (d — a)) and
d—a=jdxg (c—a) and
scaleR-scaleR
have x —a = (I * jd) *g (c — a) by simp
hence 3i. x — a =i g (c — a) by auto }
note xlemma = this
let?S={j.j>1AN3yeY.y—a=js*p (c—a))}
from d € Y)and (jd > 1) and d — a = jd *g (c — a))
have ?S # {} by auto
let 72k = Inf 7S
let ?b = ?k *g c + (1 — ?k) g a
from rearrange-real-euclid-B [of ?b a ?k c]
have ?b — a = ?k xg (c — a) by simp
{fixxy
assumex € Xandy €Y
from xlemma [of x| and (x € X)
obtain i where x — a =i g (c — a) by auto
from ylemma [of y] and (y € V)
obtain j where j > 1 and y — a = j *g (c — a) by auto
with (y € Y) have j € ?S by auto
with Inf-lower have ?k < j by auto
{ fixh
assume /1 € 75
hence i > 1 by simp
from (h € ?5)
obtain z where z € Y and z — a = h *g (c — a) by auto
from Vxy.xc XAycY —Braxyandxc X)andzc Y
have BR a x z by simp
with real-euclid-B-def [of a x z]
obtain / where | < 1and x — a = g (z — a) by auto
with z — a = h xg (¢ — a)) and scaleR-scaleR
have x —a = (I * h) xg (c — a) by simp
with x —a =ix*g (c —a))
have i xg (c —a) = (I x h) xg (c — a) by auto
with scaleR-cancel-right and (¢ — a # 0) have i = | = h by blast
with ¢ < D) and (h > 1) have i < h by simp }
with (?S # {}) and Inf-greatest [of ?S] have i < ?k by simp
havey — x = (y — a) — (x — a) by simp
with(y —a=jxg (c—a) and x —a=1ixg (c —a)
have y — x =j *g (c —a) — i xg (c — a) by simp
with scaleR-left-diff-distrib [of j i ¢ — a]
have y — x = (j — i) *g (¢ — a) by simp
have ?b — x = (?b — a) — (x — a) by simp
with ?b —a="7?k*g (c —a) and x —a =ix*g (c —a)
have ?b — x = ?k xg (c — a) — i xg (c — a) by simp
with scaleR-left-diff-distrib [of ?k i ¢ — a]
have ?b — x = (?k — i) xg (c — a) by simp
have Br x ?b y
proof cases
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assume i = j

with ¢ < ?k) and (?k < j) have ?k = i by simp

with ?b — x = (?k — i) *g (¢ — a)) have ?b — x = 0 by simp

hence ?b — x = 0 g (y — x) by simp

with real-euclid-B-def [of x ?b y] show Bg x ?b y by auto

next

assume i # j

with ¢ < ?k) and (?k < j) have j — i > 0 by simp

with (y — x = (j — i) *g (c — a)) and scaleR-scaleR
havec —a=(1/ (j —i)) *r (y — x) by simp

with (?b — x = (?k — i) *g (¢ — a)) and scaleR-scaleR
have ?b — x = ((?k — i) / (j — i)) *r (y — x) by simp

let 21 = (?k — i) / (j — i)

from (?k < j) have ?k — i <j — i by simp

with (j — i > 0) have ?] < 1 by simp

from (i < ?k) and (j — i > 0) and pos-le-divide-eq [of j — i 0 7k — ]
have ?I > 0 by simp

with real-euclid-B-def [of x ?b y] and

(?1 < 1) and
b —x="?lxg (y — x))
show BR x ?b y by auto
qed }
thus 3b.Vxy.x € X Ay € Y — Br x by by auto
qed }
thus VX Y. (3a.Vxy.xe XANyeY —Braxy) —
(3b.Vxy.xe XANyeY — Brxby)
by auto
qed

4.3 Real Euclidean space satisfies the Euclidean axiom

lemma rearrange-real-euclid-B-2:
fixes a b ¢ :: real”('n::finite)
assumes | # 0
showsb —a=1xg (c—a)«—c=(1/1)*xgb+ (1 —1/1)*ga
proof
from scaleR-right-diff-distrib [of 1/1 b a]
have (1/1) xg (b —a) =c—a<+— (1/1) xg b — (1/1) *g a + a = ¢ by auto
also with scaleR-left-diff-distrib [of 1 1/1 a]
have ... +— ¢ = (1/1) xg b+ (1 — 1/1) *g a by auto
finally have eqg:
(1/)sg(b—a)=c—a+—c=(1/1)*xgb+ (1 —-1/])*ga.
{assume b —a=1x%g (c —a)
with (I # 0) have (1/1) xg (b — a) = c — a by simp
with eg show ¢ = (1/1) g b+ (1 —1/1) xga.. }
{assumec= (1/]) xg b+ (1 — 1/1) xga
with eq have (1/1) *g (b —a)=c—a ..
hence I xg (1/1) *g (b —a) =1xg (c — a) by simp
with ( # 0) show b — a =1 g (c — a) by simp }
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qed

interpretation real-euclid: tarski-space real-euclid-C real-euclid-B
proof
{fixabcdt
assume BRadtand BR bdcand a # d
from real-euclid-B-def [of ad t] and Brad b
obtain j wherej > 0andj < 1andd —a = *g (t — a) by auto
from d —a =j g (t —a)) and @ # d) have j # 0 by auto
with d — a = j xg (t — a)) and rearrange-real-euclid-B-2
have t = (1/j) g d + (1 — 1/j) *r a by auto
let ?2x = (1/j) #r b+ (1 — 1/]) #g a
let?y = (1/j) *rc+ (1 —1/j) *g a
from (j # 0) and rearrange-real-euclid-B-2 have
b—a=j*g (?x —a)and ¢ —a =j g (?y — a) by auto
with real-euclid-B-def and (j > 0) and ( < 1) have
Brab ?x and Br a ¢ ?y by auto
from real-euclid-B-def and (BR b d ¢) obtain k where
k>0andk <1andd — b=kx*g (c —b) by blast
from ¢t = (1/j) xr d + (1 — 1/j) *g @ have
t—?2x=(1/j) *xg d — (1/]) *gr b by simp
also from scaleR-right-diff-distrib [of 1/j d b] have
...=(1/j) *g (d — b) by simp
also from d — b =k *g (¢ — b)) have
...=kx*g (1/]) *g (c — b) by simp
also from scaleR-right-diff-distrib [of 1/j c b] have
... =k xg (?y — ?x) by simp
finally have t — ?x =k xg (?y — ?x) .
with real-euclid-B-def and k > 0) and (k < 1) have Br ?x t ?y by blast
with (Bgr a b ?x) and (BR a ¢ ?y) have
dxy.Brabx ABracy A Brxtybyauto}
thusVabcdt.BRadt N\BrbdcNa#d—
(3xy.BRabx ABracy ABrxty)
by auto
qed

4.4 The real Euclidean plane

lemma Col-dep2:
real-euclid.Col a b ¢ <— dep2 (b — a) (¢ — a)
proof —
from real-euclid.Col-def have
real-euclid.Col abc <— BrabcV Br bca V Br cab by auto
moreover from dep2-def have
dep2 (b—a) (c—a)«— (Jwrs.b—a=r*xgwAc—a=s%*gw)
by auto
moreover
{assume BRabcV BrbcaV Brcab
moreover
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{ assume Brabc
with real-euclid-B-def obtain | where b — a = [ xg (c — a) by blast
moreover have c —a = 1 *g (c — a) by simp
ultimately have Jwrs.b —a=r g w A c —a =s xg w by blast }
moreover
{ assume BRr bca
with real-euclid-B-def obtain | where c — b =1 xg (a — b) by blast
moreover have c —a = (¢ — b) — (a — b) by simp
ultimately have c —a =1 xg (a — b) — (a — b) by simp
with scaleR-left-diff-distrib [of | 1 a — b] have
c—a=(1—-1)x*g (a—Db)bysimp
moreover from scaleR-minus-left [of 1 a — b] have
b—a= (1) xg (a — b) by simp
ultimately have Jwrs.b —a=r*g w A c —a =s *g w by blast }
moreover
{ assume Br cab
with real-euclid-B-def obtain | where a — ¢ =1 xg (b — c) by blast
moreover have c —a = —(a — ¢) by simp
ultimately have c — a = —(I g (b — ¢)) by simp
with scaleR-minus-left have ¢ — a = (—I) xg (b — c) by simp
moreover have b —a = (b — ¢) + (¢ — a) by simp
ultimately have b —a =1 *g (b — ¢) + (=I) *g (b — c) by simp
with scaleR-left-distrib [of 1 —1 b — c] have
b—a=(1+ (1)) g (b —c) by simp
with ¢ —a = (=) xg (b — ¢)) have
Jwrs.b—a=r*xgwAc—a=sx*gwby blast }
ultimately have Jwrs.b —a=r*gw Ac —a=s*g wbyauto }
moreover
{assume Jwrs.b—a=r*gwWAc—a=5*gw
then obtain w r s where b —a =r *g w and ¢ — a = s *g w by auto
have BabcV BrbcaV Brcab
proof cases
assume s = (
with (¢ — a = s *g w) have a = c by simp
with real-euclid.th3-1 have B b ¢ a by simp
thus ?thesis by simp
next
assume s # 0
with (¢ — a = s xg w) have w = (1/s) *g (c — a) by simp
with 0 —a =7 *g w) have b — a = (r/s) *g (c — a) by simp
haver/s <0V (r/s > 0ANr/s<1)Vr/s>1Dbyarith
moreover
{assumer/s>0Ar/s<1
with real-euclid-B-def and & — a = (r/s) g (¢ — a)) have Brabc
by auto
hence ?thesis by simp }
moreover
{ assume r/s > 1
with 0 —a = (r/s) *g (c —a)) havec —a = (s/r) xg (b — a) by auto
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from (r/s > 1) and le-imp-inverse-le [of 1 r/s] have
s/r <1 by simp
from (r/s > 1) and inverse-positive-iff-positive [of r/s] have
s/r > 0 by simp
with real-euclid-B-def
and c —a= (s/r) *xg (b —a)
and s/r <1)
have BR a ¢ b by auto
with real-euclid.th3-2 have B b ¢ a by auto
hence ?thesis by simp }
moreover
{ assume r/s < 0
have b —c = (b —a) + (a — c) by simp
with b — a = (r/s) xg (c — a)) have
b—c=(r/s)*gr (c —a) + (a — c) by simp
have ¢ —a = —(a — ¢) by simp
with scaleR-minus-right [of r/s a — c] have
(r/s) g (c —a) = —((r/s) g (a — ¢)) by arith
with b — ¢ = (r/s) g (¢ — a) + (a — ¢)) have
b—c=—(r/s) xg (a —¢) + (a — c¢) by simp
with scaleR-left-distrib [of —(r/s) 1a — c] have
b—c=(—(r/s) +1)*g (a — c) by simp
moreover from (r/s < 0) have —(r/s) + 1 > 1 by simp
ultimately havea — c = (1 / (—(r/s) + 1)) xg (b — c) by simp
let?2l=1/(—(r/s)+1)
from (—(r/s) +1 > 1) and le-imp-inverse-le [of 1 —(r/s) + 1] have
?1 <1 by simp
from (—(r/s) +1> 1
and inverse-positive-iff-positive [of —(r/s) + 1]
have
21 > 0 by simp
with real-euclid-B-def and (?1 < 1) and @ — ¢ = ?I xg (b — c)) have
BRr c a b by blast
hence ?thesis by simp }
ultimately show ?thesis by auto
qed }
ultimately show ?thesis by blast
qed

lemma non-Col-example:
= (real-euclid.Col 0 (vector [1/2,0] :: real’2) (vector [0,1/2]))
(is — (real-euclid.Col ?a ?b ?c))
proof —
{ assume dep2 (?b — ?a) (?c — ?a)
with dep2-def [of ?b — ?a ?c — ?a] obtain w r s where
?b — ?2a=rxgwand ?c — ?a = s xg w by auto
have ?b$1 = 1/2 by simp
with (?b — ?a = r xg w) have r x (w$1) = 1/2 by simp
hence w$1 # 0 by auto
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have ?c$1 = 0 by simp
with (?c — ?a = s xg w) have s x (w$1) = 0 by simp
with w$1 # 0) have s = 0 by simp
have ?c$2 = 1/2 by simp
with (?c — ?a = s xg w) have s x (w$2) = 1/2 by simp
with (s = 0) have False by simp }

hence —(dep2 (?b — ?a) (?c — ?a)) by auto

with Col-dep2 show —(real-euclid.Col ?a ?b ?c) by blast

qed

interpretation real-euclid:
tarski real-euclid-C::([real 2, real 2, real"2, real"2] = bool) real-euclid-B
proof
{let?a =0 : real2
let ?b = vector [1/2, 0] :: real™2
let ?c = wvector [0, 1/2] :: real”2
from non-Col-example and real-euclid.Col-def have
—Br?a?b? AN—-Br?b?c?a A BR?c?a?bbyauto}
thus dabc::real’2. - BrabcAN—-BrbcaAN—-Brcab
by auto
{fixpgabc:real?2
assumep #gandap =R aqandbp=rbgandcp=rcqg
let ?m = (1/2) *g (p + q)
from scaleR-right-distrib [of 1/2 p q] and
scaleR-right-diff-distrib [of 1/2 q p] and
scaleR-left-diff-distrib [of 1/2 1 p]
have ?m — p = (1/2) *g (9 — p) by simp
with (p # ¢ have ?m — p # 0 by simp
from scaleR-right-distrib [of 1/2 p q] and
scaleR-right-diff-distrib [of 1/2 p q] and
scaleR-left-diff-distrib [of 1/2 1 q]
have ?m — q = (1/2) *r (p — q) by simp
with ?m — p = (1/2) g (9 — p)
and scaleR-minus-right [of 1/2 q — p]
have ?m — q = —(?m — p) by simp
with norm-minus-cancel [of ?m — p| have
(norm (?m — q))* = (norm (?m — p))? by simp
{ fixd
assume d p =R d g
hence (norm (d — p))? = (norm (d — q))? by simp
have (d — ?m) - (?m —p) =0
proof —
have d + (—q) = d — q by simp
have d + (—p) =d — p by simp
with dot-norm [of d — ?m ?m — p] have
(d — 7m) - (2m — p) =
((norm (d — p))? — (norm (d — ?m))? — (norm(?m — p))?) / 2
by simp
also from (norm (d — p))? = (norm (d — q))?
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and (norm (?m — q))? = (norm (?m — p))?
have
... = ((norm (d — q))* — (norm (d — ?m))? — (norm(?m — q))?) / 2
by simp
also from dot-norm [of d — ?m ?m — q]
and d + (—q) =d — ¢
have
co.=(d—=?m) - (?m — q) by simp
also from inner.minus-right [of d — ?m ?m — p]
and ?m — g = —(?m — p))
have
co.=—((d—=?m) - (?m — p)) by simp
finally have (d — ?m) - (?m —p) = —((d — ?m) - (?m — p)) .
thus (d — ?m) - (?m — p) = 0 by arith
qed }
note m-lemma = this
with @ p =g a ¢ have (a — ?m) - (?m — p) = 0 by simp
{ fixd
assume dp =R d g
with m-lemma have (d — ?m) - (?m — p) = 0 by simp
with dot-left-diff-distrib [of d — ?m a — ?m ?m — p|
and (a — ?m) - (?m —p) =0
have (d —a) - (?m — p) = 0 by simp }
with b p =R b ¢ and (¢ p =R c g have
(b—a)-(?m—p)=0and (c —a) - (?m — p) = 0 by simp+
with real2-orthogonal-dep2 and (?m — p # 0) have dep2 (b — a) (c — a)
by blast
with Col-dep2 have real-euclid.Col a b ¢ by auto
with real-euclid.Col-def have B abcV Br bca VvV Br ca b by auto }
thus Vpgabc:: real2.
pEqhap=RraqANbp=RrbgAcp=rcq—
BrabcVBrbcaV Bgrcab
by blast
qed

4.5 Special cases of theorems of Tarski’s geometry

lemma real-euclid-B-disjunction:
assumes ! > O0and b —a=1xg (c — a)
shows BrabcV Brach

proof cases
assume [ < 1
with (¢ >0 and 0 —a=1xg (c —a)
have By a b ¢ by (unfold real-euclid-B-def) (simp add: exI [of - 1])
thus BRabcV Brach..

next
assume — (I < 1)
hence 1/1 <1 by simp
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from «( > 0) have 1/1 > 0 by simp

from b —a=1x%g (c —a)
have (1/1) xg (b —a) = (1/1) *g (I *r (c — a)) by simp
with (= (I < 1) havec —a = (1/1) *g (b — a) by simp
with 1/ >0 and 1/1 < 1)
have Bg a ¢ b by (unfold real-euclid-B-def ) (simp add: exI [of - 1/1])
thus BRabcV Brach..
qed

The following are true in Tarski’s geometry, but to prove this would re-
quire much more development of it, so only the Euclidean case is proven
here.

theorem real-euclid-th5-1:
assumes a = band BRabcand Brabd
shows BracdV Bradc
proof —
from Brabc and Brabd
obtain / and m where ! > 0and b —a =1 xg (c — a)
andm>0andb —a=mxg (d —a)
by (unfold real-euclid-B-def ) auto
from b —a = m xg (d — a)) and @ # b) have m # 0 by auto

from ( > 0) and (m > 0) have I/m > 0 by (simp add: zero-le-divide-iff )

fromb—a=Ixg(c—a)and b —a=mx*g (d —a)
have m *g (d — a) =1 xg (c — a) by simp
hence (1/m) xg (m *g (d —a)) = (1/m) xg (I *g (c — a)) by simp
with im # 0) have d — a = (I/m) *g (c — a) by simp
with (/m > 0) and real-euclid-B-disjunction
show Br a cd V Br a d ¢ by auto
qed

theorem real-euclid-th5-3:
assumes Brabdand Bgracd
shows BRabcV Brach
proof —
from Brabd) and (Bracd
obtain [ and m where! > 0and b —a =1 xg (d — a)
andm>0andc—a=mx*g (d —a)
by (unfold real-euclid-B-def ) auto

show BRabcV Brach

proof cases
assume | =0
with b —a=1x%g (d —a) haveb —a =1 xg (c — a) by simp
with { =0
have Bg a b ¢ by (unfold real-euclid-B-def ) (simp add: exI [of - 1)
thus B abcV Brach..
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next
assume | # 0

from ( > 0) and (m > 0) have m/1 > 0 by (simp add: zero-le-divide-iff )

from b —a=1xg (d —a)
have (1/1) xg (b —a) = (1/1) g (I *g (d — a)) by simp
with ( # 0) haved — a = (1/1) xg (b — a) by simp
with ¢ —a=m *g (d — a)) have c —a = (m/l) xg (b — a) by simp
with (m /1 > 0) and real-euclid-B-disjunction
show Br a b c V Br a c b by auto
qed
qed

end

5 Linear Algebra

theory Linear-Algebra
imports Miscellany
begin

lemma exhaust-4:
fixes x :: 4
showsx=1Vx=2Vx=3Vx=4

proof (induct x)
case (of-int z)
hence 0 < z and z < 4 by simp-all
hencez=0Vz=1Vz=2Vz=3byarith
thus ?case by auto

qed

lemma forall-4: (V i::4.Pi) «<—P1ANP2ANP3ANP4
by (metis exhaust-4)

lemma UNIV-4: (UNIV::(4 set)) = {1, 2, 3, 4}
using exhaust-4
by auto

lemma vector-4:
fixes w :: 'a::zero
shows (vector [w, x,y, z] : 'a™4)$1 = w
and (vector [w, x,y, z] :: '0°4)$2 = x
and (vector [w, x,y,z] :: '0°4)$3 =y
and (vector [w, x,y, z] : '0°4)$4 = z
unfolding vector-def
by simp-all
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definition
is-basis :: (real('n::finite)) set = bool where
is-basis S £ independent S A span S = UNIV

lemma card-finite:
assumes card S = CARD('n: finite)
shows finite S
proof —
from (card S = CARD('n)) have card S # 0 by simp
with card-eq-0-iff [of S| show finite S by simp
qed

lemma independent-is-basis:
fixes B :: (real('n::finite)) set
shows independent B A card B = CARD('n) <— is-basis B
proof
assume independent B A card B= CARD('n)
hence independent B and card B = CARD('n) by simp+
from card-finite [of B, where 'n = 'n] and (card B = CARD('n))
have finite B by simp
from dim-univ [where 'n = 'n| and (card B = CARD('n))
have card B = dim (UNIV :: ((real'n) set))
by simp
with card-eq-dim [of B UNIV| and (finite B) and (independent B)
have span B = UNIV by auto
with (ndependent B) show is-basis B unfolding is-basis-def ..
next
assume is-basis B
hence independent B unfolding is-basis-def ..
moreover have card B = CARD('n)
proof —
have B C UNIV by simp
moreover
{ from (is-basis B) have UNIV C span B and independent B
unfolding is-basis-def
by simp+ }
ultimately have card B = dim (UNIV::((real"'n) set))
using basis-card-eq-dim [of B UNIV|
by simp
with dim-univ [where 'n = 'n] show card B = CARD('n) by simp
qed
ultimately show independent B A card B = CARD('n) ..
qed

lemma basis-finite:
fixes B :: (real('n::finite)) set
assumes is-basis B
shows finite B
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proof —
from independent-is-basis [of B] and (s-basis B) have card B = CARD('n)
by simp
with card-finite [of B, where 'n = 'n] show finite B by simp
qed

lemma basis-expand:
assumes is-basis B
shows Jc. v = (Y weB. (c w) g w)
proof —
from (is-basis B) have v € span B unfolding is-basis-def by simp
from basis-finite [of B] and (is-basis B) have finite B by simp
with span-finite [of B] and (v € span B)
show Jc. v = (Y weB. (c w) *xg w) by (simp add: scalar-equiv) auto
qed

lemma not-span-independent-insert:
fixes v :: (‘a::real-vector)™'n
assumes independent S and v & span S
shows independent (insert v S)
proof —
from span-superset and (v ¢ span S) have v € S by auto
with independent-insert [of v S| and (independent S) and (v ¢ span S)
show independent (insert v S) by simp
qed

lemma in-span-eq:
fixes v :: (a::real-vector)™'b
assumes v € span S
shows span (insert v S) = span S
proof
{ fixw
assume w € span (insert v S)
with (v € span S) have w € span S by (rule span-trans) }
thus span (insert v S) C span S ..

have S C insert v S by (rule subset-insertI)
thus span S C span (insert v S) by (rule span-mono)
qed

lemma dot-setsum-right-distrib:
fixes v :: real’'n
shows v - () jeS.wj) = (L jeS.v- (wj)))
proof —
have v - (Y jeS. wj) = (¥ i€UNIV. v$i * (Y jeS. (wj)$i))
unfolding inner-vector-def
by simp
also from setsum-right-distrib [where ?A = S and ?'b = reul|
have ... = () i€UNIV. Y jeS. v$i * (w j)$i) by simp
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also from setsum-commute [of A ij. v$i x (wj)$i S UNIV|
have ... = (¥ jeS. Y icUNIV. v$i * (w j)$i) by simp
finally show v - (Y jeS. wj) = (¥ jeS.v - (w]))
unfolding inner-vector-def
by simp
qed

lemma orthogonal-setsum:
fixes v :: real”'n
assumes V weS. orthogonal v w
shows orthogonal v (). wES. c w *s w)
proof —
from dot-setsum-right-distrib [of v]
have v - (Y weS.cw xsw) = (L weS.v - (cw xs w)) by auto
with inner.scaleR-right [of v]
have v - (Y weS.cw xsw) = (¥ weS.cw * (v - w))
by (simp add: scalar-equiv)
with (V weS. orthogonal v w) show orthogonal v (Y weS. ¢ w *s w)
unfolding orthogonal-def
by simp
qed

lemma orthogonal-self-eq-0:
fixes v :: (‘a::real-inner)”('n::finite)
assumes orthogonal v v
shows v =0
using inner-eq-zero-iff [of v] and assms
unfolding orthogonal-def
by simp

lemma orthogonal-in-span-eq-0:
fixes v :: real”('n: finite)
assumes v € span S and V weS. orthogonal v w
shows v =0

proof —
from span-explicit [of S] and (v € span S)
obtain T and u where T C S and v = (Y weT. u w xg w) by auto
from V weS. orthogonal v w) and (T C S) have V weT. orthogonal v w by auto
with orthogonal-setsum [of T v u] and v = (¥, weT. u w *g w))
have orthogonal v v by (auto simp add: scalar-equiv)
with orthogonal-self-eq-0 show v = 0 by auto

qed

lemma orthogonal-independent:
fixes v :: real’('n: finite)
assumes independent S and v # 0 and V weS. orthogonal v w
shows independent (insert v S)
proof —
from orthogonal-in-span-eq-0 and (v # 0) and vV w€S. orthogonal v w)
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have v & span S by auto
with not-span-independent-insert and (independent S)
show independent (insert v S) by auto

qed

lemma card-ge-dim:
fixes S :: (real”('n::finite)) set
assumes finite S
shows card S > dim S
proof —
from span-inc have S C span S by auto
with span-card-ge-dim [of S span S| and (finite S)
have card S > dim (span S) by simp
with dim-span [of S] show card S > dim S by simp
qed

lemma dot-scaleR-mult:
shows (kxga)-b=kx (a-b)anda- (k+gb) =kx* (a-Db)
unfolding inner-vector-def
by (simp-all add: algebra-simps setsum-right-distrib)

lemma dependent-explicit-finite:
fixes S :: (('a::{real-vector field})"'n) set
assumes finite S
shows dependent S <— (3 u. (3 v€S.uv #0) A (L v€S. uv *xg v) =0)
proof
assume dependent S
with dependent-explicit [of S|
obtain S’ and u where
S'CSand 3 veS’. uv #0and (Y veS" . uv*gv) =0
by auto
let 7u’ = A v.ifv e S then uvelse 0
from (S’ C S) and (3 veS’. u v # 0) have 3 vES. ?u’ v # 0 by auto
moreover from setsum-mono-zero-cong-right [of S S’ A v. 2u’ v xg v]
and (S’ C S and (Y v€S’. u v xg v) = 0) and (finite S
have () v€S. ?u’ v *g v) = 0 by simp
ultimately show (3 u. (3 v€S. uv #0) A (¥ vE€S. u v *g v) = 0) by auto
next
assume (3 u. (3 veS.uv #0) A (L ve€ES.uv*gv)=0)
with dependent-explicit [of S] and (finite S)
show dependent S by auto
qed

lemma dependent-explicit-2:

fixes v w :: (‘a::{field,real-vector})"'n

assumes v # w

shows dependent {v, w} «— (3 ij. (i #0Vj#0) Ni*gv+j*gw=0)
proof

let ?S = {v, w}
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have finite ?S by simp

{ assume dependent ?S
with dependent-explicit-finite [of ?S] and (finite ?S) and (v # w)
show 3 ij. (i#0Vj#0) Nixgv+j*gw=0Dbyauto }

{assume 3 ij. (i #0Vj#0) Ni*rv+j*gw =0
then obtain i and j where i # 0V j # O and i xg v + j *g w = 0 by auto
let 7u = A x. if x = v then i else |
from (i # 0V j # 0) and (@ # w) have 3 x€?S. ?u x # 0 by simp
from (i xg v 4 j *g w = 0) and (@ # w)
have () x€?S. ?u x g x) = 0 by simp
with dependent-explicit-finite [of ?S]
and (finite ?S) and (3 x€?S. 2u x # 0)
show dependent ?S by best }
qed

5.1 Matrices

lemma zero-times:
0 *x A = (0::real”('n::finite)'n)
unfolding matrix-matrix-mult-def and vector-zero-def
by simp

lemma zero-not-invertible:
= (invertible (0::real”('n::finite)"'n))
proof —
let ?A = O::real”'n"'n
let ?I = mat 1::real”'n™'n
let ?k = undefined :: 'n
have 21 $ 7k $ ?k # ?A $ ?k $ 2k
unfolding mat-def
by simp
hence ?A # ?I by auto
from zero-times have V. A. ?A xx A = ? A by auto
with (?A # ?I) show — (invertible ? \)
unfolding invertible-def
by simp
qed

Based on matrix-vector-column in HOL /Multivariate_Analysis/Euclidean_Space.thy
in Isabelle 2009-1:

lemma vector-matrix-row:
fixes x :: (‘a::comm-semiring-1)"'m and A :: ('a*'n"'m)
shows x vx A = () i€UNIV. (x$i) xs (A$i))
unfolding vector-matrix-mult-def
by (simp add: Cart-eq mult-commute)

lemma invertible-mult:
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fixes A B :: real”('n::finite)"'n
assumes invertible A and invertible B
shows invertible (A ** B)
proof —
from (invertible A) and (invertible B)
obtain A’ and B’ where A xx A’ =mat 1 and A’ xx A = mat 1
and B xx B’ = mat 1 and B’ xx B = mat 1
unfolding invertible-def
by auto
have (A xx B) xx (B xx A’) = A xx (B *x B') xx A’
by (simp add: matrix-mul-assoc)
with (A *x A’ = mat 1) and B ** B’ = mat 1)
have (A *x B) #* (B’ #x A') = mat 1 by (auto simp add: matrix-mul-rid)
with matrix-left-right-inverse have (B’ xx A') xx (A xx B) = mat 1 by auto
with ((A *x B) xx (B xx A') = mat 1)
show invertible (A xx B)
unfolding invertible-def
by auto
qed

lemma scalar-matrix-assoc:
fixes A :: real”'m"'n
shows k xg (A #* B) = (k xg A) *xx B
proof —
have V ij. (k *g (A *x B))$i$j = ((k *gr A) *x B)$i$j
proof default+
fix ij
have (k xg (A *x B))$i$j = k * (3 I€UNIV. A$i$l x B$I$))
unfolding matrix-matrix-mult-def
by simp
also from scaleR-right.setsum [of k A 1. A$i$l = B$I$j UNIV|
have ... = (Y I€UNIV. k = A$i$l = B$I$j) by (simp add: algebra-simps)
finally show (k *g (A *x B))$i$j = ((k xg A) *x B)$i$j
unfolding matrix-matrix-mult-def
by simp
qed
thus k xg (A ** B) = (k g A) *x B by (simp add: Cart-eq)
qed

lemma transpose-scalar: transpose (k xg A) = k g transpose A
unfolding franspose-def
by (simp add: Cart-eq)

lemma transpose-iff [iff]: transpose A = transpose B <— A = B

proof
assume transpose A = transpose B
with transpose-transpose [of A] have A = transpose (transpose B) by simp
with transpose-transpose [of B] show A = B by simp

next
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assume A = B
thus transpose A = transpose B by simp
qed

lemma matrix-scalar-ac:
fixes A :: real”'m"'n
shows A xx (k *g B) = k xg A *x B

proof —
from matrix-transpose-mul [of A k xg B] and transpose-scalar [of k B]
have transpose (A *x (k xg B)) = k *g transpose B xx transpose A

by simp

also from matrix-transpose-mul [of A B] and transpose-scalar [of k A +x B]
have ... = transpose (k xg A ** B) by (simp add: scalar-matrix-assoc)
finally show A xx (k xg B) = k xg A xx B by simp

qed

lemma scalar-invertible:
fixes A :: real”'m"'n
assumes k # 0 and invertible A
shows invertible (k xg A)
proof —
from (invertible A)
obtain A’ where A xx A’ = mat 1 and A’ xx A = mat 1
unfolding invertible-def
by auto
with k £ 0)
have (k xg A) xx ((1/k) xg A") = mat 1
and ((l/k) *R A/) * %k (k *R A) = mat 1
by (simp-all add: matrix-scalar-ac)
thus invertible (k xg A)
unfolding invertible-def
by auto
qed

lemma matrix-inv:
assumes invertible M
shows matrix-inv M +x M = mat 1
and M sx matrix-inv M = mat 1
using (invertible M) and somel-ex [of A N. M xx N = mat 1 A N xx M = mat 1]
unfolding invertible-def and matrix-inv-def
by simp-all

lemma matrix-inv-invertible:
assumes invertible M
shows invertible (matrix-inv M)
using (invertible M) and matrix-inv
unfolding invertible-def [of matrix-inv M]
by auto
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lemma vector-matrix-mul-rid:

fixes v :: (‘a:semiring-1)"('n::finite)

shows v vx mat 1 =v
proof —

have v v mat 1 = transpose (mat 1) v v by simp

thus v vx mat 1 = v by (simp only: transpose-mat matrix-vector-mul-lid)
qed

lemma vector-matrix-mul-assoc:

fixes v :: (‘a::comm-semiring-1)"'n

shows (v vx M) vx N = v vx (M *x N)
proof —

from matrix-vector-mul-assoc

have transpose N *v (transpose M xv v) = (transpose N *x transpose M) v v by
fast

thus (v vx M) v% N = v vx (M %% N)

by (simp add: matrix-transpose-mul [symmetric])

qed

lemma matrix-scalar-vector-ac:
fixes A :: real”('m::finite)"('n:finite)
shows A v (kg v) =k *g A %0 v
proof —
have A v (k xg v) = k *g (v v* transpose A)
by (subst scalar-vector-matrix-assoc [symmetric|) simp

also have ... = v vx k xR transpose A
by (subst vector-scalar-matrix-ac) simp
also have ... = v vx transpose (k xg A) by (subst transpose-scalar) simp
also have ... =k xg A *xv v by simp
finally show A v (k g v) =k *g A*vv.
qed

lemma scalar-matrix-vector-assoc:
fixes A :: real”('m::finite)"('n::finite)
shows k xg (A*vv) =k *g A *v v

proof —
have k g (A *v v) = k *g (v vx transpose A) by simp
also have ... = v vx k g transpose A
by (rule vector-scalar-matrix-ac [symmetric|)
also have ... = v v« transpose (k xg A) apply (subst transpose-scalar) ..
finally show k xg (A *v v) = k *g A *v v by simp
qed

lemma invertible-times-non-zero:
fixes M :: real”'n"('n::finite)
assumes invertible M and v # 0
shows M xv v # 0
using (invertible M) and (v # 0) and invertible-times-eg-zero [of M v
by auto
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lemma matrix-right-invertible-ker:
fixes M :: real”('m::finite)"('n::finite)
shows (3 M. M sx M'=mat 1) +— (V x.xvx M =0 — x =0)
proof
assume 3 M'. M s« M' = mat 1
then obtain M’ where M xx M’ = mat 1 ..
have transpose (M xx M') = transpose (mat 1) apply (subst (M #x M' = mat 1)) ..
hence transpose M’ xx transpose M = mat 1
by (simp add: matrix-transpose-mul transpose-mat)
hence 3 M"". M xx transpose M = mat 1 ..
with matrix-left-invertible-ker [of transpose M]
have V x. transpose M v x = 0 — x = 0 by simp
thus V x. x vx M = 0 — x = 0 by simp
next
assumeV x. xvx M =0— x=10
hence V x. transpose M v x = 0 — x = 0 by simp
with matrix-left-invertible-ker [of transpose M]
obtain M'' where M’ xx transpose M = mat 1 by auto
hence transpose (M'' xx transpose M) = transpose (mat 1) by simp
hence M «x transpose M" = mat 1
by (simp add: matrix-transpose-mul transpose-transpose transpose-mat)
thus 3 M. M *x M’ = mat 1 ..
qed

lemma left-invertible-iff-invertible:
fixes M :: real”('n::finite)"'n
shows (3 N. N xx M = mat 1) «— invertible M
using matrix-left-right-inverse
unfolding invertible-def
by auto

lemma right-invertible-iff-invertible:
fixes M :: real”('n::finite)"'n
shows (3 N. M xx N = mat 1) <+— invertible M
using left-invertible-iff-invertible
by (subst matrix-left-right-inverse) auto
definition symmatrix :: 'a*'n*'n = bool where
symmatrix M = transpose M = M

lemma symmatrix-preserve:
fixes M N :: (‘a::comm-semiring-1)"'n"'n
assumes symmatrix M
shows symmatrix (N sx M x transpose N)

proof —
have transpose (N s M sx transpose N) = N x transpose M s transpose N

by (simp add: matrix-transpose-mul transpose-transpose matrix-mul-assoc)

with (symmatrix M)
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show symmatrix (N sx M xx transpose N)
unfolding symmatrix-def
by simp
qed

lemma matrix-vector-right-distrib:
fixes v w :: real”('n::finite) and M :: real”'n”("m::finite)
shows M xv (v + w) =M *v v + M *0v w

proof —
have M xv (v + w) = (v + w) v« transpose M by simp
also have ... = v vx transpose M + w v* transpose M

by (rule vector-matrix-left-distrib [of v w transpose M])
finally show M *v (v + w) = M xv v + M *v w by simp
qed

lemma non-zero-mult-invertible-non-zero:
fixes M :: real"'n"'n
assumes v # 0 and invertible M
shows v v« M # 0
using (v # 0) and (invertible M) and times-invertible-eq-zero
by auto

end

6 Group Actions

theory Action
imports Group
begin

locale action = group +

fixes act :: 'b = 'a = 'b (infixl <o 69)

assumes id-act [simp]: b <o1=1b

and act-act”:

g € carrier G N h € carrier G — (b <0g) <oh=1b <o (g ® h)
begin

lemma act-act:
assumes g € carrier G and h € carrier G
shows (b <0g) <oh=b<o(g®h)
proof —
from (g € carrier G) and & € carrier G) and act-act’
show (b <0 g) <oh=0b <o (g ® h) by simp
qed

lemma act-act-inv [simp]:
assumes g € carrier G
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shows b <o g <oinvg=1"=
proof —
from (g € carrier G) have inv g € carrier G by (rule inv-closed)
with (¢ € carrier G) have b <o ¢ <o inv g = b <o ¢ ® inv g by (rule act-act)
with (¢ € carrier G) show b <o g <o inv g = b by simp
qed

lemma act-inv-act [simp]:
assumes g € carrier G
shows b <oinv g <og=1">
using (g € carrier G) and act-act-inv [of inv g]
by simp

lemma act-inv-iff:
assumes g € carrier G
shows b <oinvg=c+—b=c<og
proof
assume b <oinv g =c
hence b <o inv g <o g = ¢ <o g by simp
with (g € carrier G) show b = c <o g by simp
next
assume b =c<og
hence b <o inv g = ¢ <o g <o inv g by simp
with (g € carrier G) show b <o inv g = c by simp
qed

end

end

7 Projective Geometry

theory Projective
imports Linear-Algebra
Euclid-Tarski
Group
Action

begin

7.1 Proportionality on non-zero vectors

context vector-space
begin

definition proportionality :: ('b x 'b) set where
proportionality = {(x,y). x #0 Ay # 0 A (k. x = scale k y)}

definition non-zero-vectors :: 'b set where
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non-zero-vectors = {x. x # 0}

lemma proportionality-refl-on: refl-on non-zero-vectors proportionality
proof —
have proportionality C non-zero-vectors X non-zero-vectors
unfolding proportionality-def non-zero-vectors-def
by auto
moreover have YV xenon-zero-vectors. (x, x) € proportionality
proof
fix x
assume x € non-zero-vectors
hence x # 0 unfolding non-zero-vectors-def ..
moreover have x = scale 1 x by simp
ultimately show (x, x) € proportionality
unfolding proportionality-def
by blast
qed
ultimately show refl-on non-zero-vectors proportionality
unfolding refl-on-def ..
qed

lemma proportionality-sym: sym proportionality
proof —
{fixxy
assume (x, y) € proportionality
hence x # 0 and y # 0 and Jk. x = scale k y
unfolding proportionality-def
by simp+
from (Jk. x = scale k y) obtain k where x = scale k y by auto
with x # 0) have k # 0 by simp
with (x = scale k i) have y = scale (1/k) x by simp
with (x # 0) and (y # 0) have (y, x) € proportionality
unfolding proportionality-def
by auto
}
thus sym proportionality
unfolding sym-def
by blast
qed

lemma proportionality-trans: trans proportionality
proof —
{fixxyz
assume (x, y) € proportionality and (y, z) € proportionality
hence x # 0 and z # 0 and 3j. x = scale j y and k. y = scale k z
unfolding proportionality-def
by simp+
from (3j. x = scale j y) and (k. y = scale k z)
obtain j and k where x = scale j y and y = scale k z by auto+
hence x = scale (j * k) z by simp
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with (x # 0) and {z # 0) have (x, z) € proportionality
unfolding proportionality-def
by auto
}
thus trans proportionality
unfolding trans-def
by blast
qed

theorem proportionality-equiv: equiv non-zero-vectors proportionality
unfolding equiv-def
by (simp add:
proportionality-refl-on
proportionality-sym
proportionality-trans)

end

sublocale vector-space < equiv non-zero-vectors proportionality
using proportionality-equiv .

definition invertible-proportionality ::
((real*('n::finite)*'n) x (real”’n"'n)) set where
invertible-proportionality =
real-vector.proportionality N (Collect invertible x Collect invertible)

lemma invertible-proportionality-equiv:
equiv (Collect invertible :: (real”('n::finite)"'n) set)
invertible-proportionality
(is equiv ?invs -)
proof —
from zero-not-invertible
have real-vector .non-zero-vectors N ?invs = 2invs
unfolding real-vector.non-zero-vectors-def
by auto
from equiv-restrict and real-vector.proportionality-equiv
have equiv (real-vector.non-zero-vectors N ?invs) invertible-proportionality
unfolding invertible-proportionality-def
by auto
with (real-vector.non-zero-vectors N ?invs = ?invs)
show equiv ?invs invertible-proportionality
by simp
qed

7.2 Points of the real projective plane
typedef proj2 =

(real-vector.non-zero-vectors :: (real3) set)/ / real-vector.proportionality
proof
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from basis-nonzero

have (basis 1 :: real3) € real-vector.non-zero-vectors
unfolding real-vector.non-zero-vectors-def ..

thus real-vector.proportionality ** {basis 1} €
(real-vector.non-zero-vectors :: (real3) set)/ / real-vector.proportionality
unfolding quotient-def
by auto

qed

definition proj2-rep :: proj2 = real”3 where
proj2-rep x £ € v. v € Rep-proj2 x

definition proj2-abs :: real”3 = proj2 where
proj2-abs v & Abs-proj2 (real-vector.proportionality * {v})

lemma proj2-rep-in: proj2-rep x € Rep-proj2 x
proof —
let ?v = proj2-rep x
from quotient-element-nonempty and
real-vector.proportionality-equiv and
Rep-proj2 [of x|
have 3 w. w € Rep-proj2 x
unfolding proj2-def
by auto
with somel-ex [of A z. z € Rep-proj2 x]
show ?v € Rep-proj2 x
unfolding proj2-rep-def
by simp
qed

lemma proj2-rep-non-zero: proj2-rep x # 0
proof —
from
Union-quotient [of real-vector.non-zero-vectors real-vector.proportionality|
and real-vector.proportionality-equiv
and Rep-proj2 [of x| and proj2-rep-in [of x|
have proj2-rep x € real-vector.non-zero-vectors
unfolding quotient-def and proj2-def
by auto
thus proj2-rep x # 0
unfolding real-vector.non-zero-vectors-def
by simp
qed

lemma proj2-rep-abs:

fixes v :: real’3

assumes v € real-vector.non-zero-vectors

shows (v, proj2-rep (proj2-abs v)) € real-vector.proportionality
proof —
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from (v € real-vector.non-zero-vectors
have real-vector.proportionality ** {v} € proj2
unfolding proj2-def
and quotient-def
by auto
with Abs-proj2-inverse
have Rep-proj2 (proj2-abs v) = real-vector.proportionality ** {v}
unfolding proj2-abs-def
by simp
with proj2-rep-in
have proj2-rep (proj2-abs v) € real-vector.proportionality ** {v} by auto
thus (v, proj2-rep (proj2-abs v)) € real-vector.proportionality by simp
qed

lemma proj2-abs-rep: proj2-abs (proj2-rep x) = x
proof —
from partition-Image-element
[of real-vector.non-zero-vectors
real-vector.proportionality
Rep-proj2 x
proj2-rep x|
and real-vector.proportionality-equiv
and Rep-proj2 [of x| and proj2-rep-in [of x|
have real-vector.proportionality * {proj2-rep x} = Rep-proj2 x
unfolding proj2-def
by simp
with Rep-proj2-inverse show proj2-abs (proj2-rep x) = x
unfolding proj2-abs-def
by simp
qed

lemma proj2-abs-mult:
assumes ¢ # 0
shows proj2-abs (¢ *g v) = proj2-abs v
proof cases
assume v = (0
thus proj2-abs (¢ xg v) = proj2-abs v by simp
next
assume v # 0
with ¢ # 0)
have (¢ *g v, v) € real-vector.proportionality
and ¢ xg v € real-vector.non-zero-vectors
and v € real-vector.non-zero-vectors
unfolding real-vector.proportionality-def
and real-vector.non-zero-vectors-def
by simp-all
with eg-equiv-class-iff
[of real-vector.non-zero-vectors
real-vector.proportionality
C ¥R 0
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o
and real-vector proportionality-equiv

have real-vector.proportionality “* {c *g v} =
real-vector.proportionality ** {v}
by simp

thus proj2-abs (c g v) = proj2-abs v
unfolding proj2-abs-def
by simp

qed

lemma proj2-abs-mult-rep:
assumes ¢ # 0
shows proj2-abs (c *g proj2-rep x) = x
using proj2-abs-mult and proj2-abs-rep and assms
by simp

lemma proj2-rep-inj: inj proj2-rep
by (simp add: inj-on-inversel [of UNIV proj2-abs proj2-rep| proj2-abs-rep)

lemma proj2-rep-abs2:
assumes v #~ 0
shows 3 k. k # 0 A proj2-rep (proj2-abs v) =k xg v
proof —
from proj2-rep-abs [of v] and @ # 0)
have (v, proj2-rep (proj2-abs v)) € real-vector.proportionality
unfolding real-vector.non-zero-vectors-def
by simp
then obtain ¢ where v = ¢ xg proj2-rep (proj2-abs v)
unfolding real-vector.proportionality-def
by auto
with (v # 0) have ¢ # 0 by auto
hence 1/c # 0 by simp

from (v = ¢ *g proj2-rep (proj2-abs v))
have (1/c) xg v = (1/c) xR c *g proj2-rep (proj2-abs v)
by simp
with (¢ # 0) have proj2-rep (proj2-abs v) = (1/c) *r v by simp

with (I/c # 0) show 3 k. k # 0 A proj2-rep (proj2-abs v) =k *g v
by blast
qed

lemma proj2-abs-abs-mult:
assumes proj2-abs v = proj2-abs w and w # 0
shows d c.o=cx*gw
proof cases
assume v = (0
hence v = 0 *g w by simp
thusd c.co=cxgrw..
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next
assume v # 0
from (proj2-abs v = proj2-abs w
have proj2-rep (proj2-abs v) = proj2-rep (proj2-abs w) by simp
with proj2-rep-abs2 and w # 0)
obtain k where proj2-rep (proj2-abs v) = k g w by auto
with proj2-rep-abs2 [of v] and @ # 0)
obtain j where j # 0 and j xg v = k *g w by auto
hence (1/]) *g j *r v = (1/]) *r k *g w by simp
with (j # 0) have v = (k/j) *g w by simp
thusd c.o=cx*gw..
qed

lemma dependent-proj2-abs:
assumesp #Oandg# O0andi #0Vj#0andi*gp+j*gqg=10
shows proj2-abs p = proj2-abs q
proof —
havei # 0
proof
assume i = (
with (i # 0 V j # 0) have j # 0 by simp
with G xg p +j *g g = 0) and (g # 0) have i xg p # 0 by auto
with ( = 0) show False by simp
qed
with (p # 0) and G g p + j *r ¢ = 0) have j # 0 by auto

from (i #~ 0)
have proj2-abs p = proj2-abs (i xg p) by (rule proj2-abs-mult [symmetric|)
also from (i xg p + j xg ¢ = 0) and proj2-abs-mult [of —1 ] xR q]
have ... = proj2-abs (j *g q) by (simp add: algebra-simps [symmetric])
also from (j # 0) have ... = proj2-abs q by (rule proj2-abs-mult)
finally show proj2-abs p = proj2-abs q .

qed

lemma proj2-rep-dependent:
assumes i xg proj2-rep v + j *g proj2-rep w = 0
(isi*g ?p +j*g 29 =0)
andi #0Vj#0
shows v = w

proof —
have ?p # 0 and ?g # 0 by (rule proj2-rep-non-zero)+
with(i#0Vj# O and Gxg ?p+j*r 79 =0
have proj2-abs ?p = proj2-abs ?q by (simp add: dependent-proj2-abs)
thus v = w by (simp add: proj2-abs-rep)

qed

lemma proj2-rep-independent:

assumes p # g
shows independent {proj2-rep p, proj2-rep q}
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proof
let ?p’ = proj2-rep p
let 7q’ = proj2-rep q
let 7S = {?p/, 2q'}
assume dependent ?S
from proj2-rep-inj and (p # ¢ have ?p’ # ?q’
unfolding inj-on-def
by auto
with dependent-explicit-2 [of ?p’ ?q'] and (dependent ?S)
obtain i and j where i xg ?p' + j*xg ?2¢'=0and i 0V j# 0
by (simp add: scalar-equiv) auto
with proj2-rep-dependent have p = q by simp
with (p # ) show False ..
qed

7.3 Lines of the real projective plane

definition proj2-Col :: [proj2, proj2, proj2] = bool where
proj2-Col p g r £
(3 ij k. ixg proj2-rep p + j xg proj2-rep g + k =g proj2-rep r = 0
A (i#0 V j#0 V k#0))

lemma proj2-Col-abs:
assumesp #Oandg# Oandr #0andi #0Vj#0Vk#0
andisgp+j*rg+k*gr=0
shows proj2-Col (proj2-abs p) (proj2-abs q) (proj2-abs r)
(is proj2-Col ?pp ?pq ?pr)
proof —
from (p # 0) and proj2-rep-abs2
obtain i’ where i’ # 0 and proj2-rep ?pp = i’ xR p (is ?rp = -) by auto
from (g # 0) and proj2-rep-abs2
obtain j' where j' # 0 and proj2-rep ?pq = j’ xg g (is ?rq = -) by auto
from (r # 0) and proj2-rep-abs2
obtain k' where k' # 0 and proj2-rep ?pr = k' xg r (is ?rr = -) by auto
with i xgp+j*rq+kxgr=20
and (' # 0) and (proj2-rep ?pp =i’ xg p)
and (' # 0) and (proj2-rep ?pg = j' *g @
have (i/i’) xg ?rp + (j/j') *r ?rq + (k/k’) xg ?rr = 0 by simp

from (i’ # 0)and (' # 0 and k' # 0 and i A0V j# 0OV k#0
have i/i' #0V j/j'# 0V k/k’ # 0 by simp
with ((i/1) xg ?rp + (j/j') *r ?rq + (k/K') g 2rr =0
show proj2-Col ?pp ?pq ?pr by (unfold proj2-Col-def , best)
qed

lemma proj2-Col-permute:
assumes proj2-Col a b c
shows proj2-Col a c b
and proj2-Col bac
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proof —

let ?a’ = proj2-rep a

let ?b’ = proj2-rep b

let ?¢’ = proj2-rep ¢

from (proj2-Col a b ¢)

obtain i and j and k where
ixg?a’ +j*r 7'+ kxg ?2c'=0
andi#0Vj#0Vk#0
unfolding proj2-Col-def
by auto

from G xg 2a’ +j xg ?b' + k xg ?¢' = 0)
have i g ?a’ + kg 2¢' +j*g 2’ =0
and j g ?b’ +ixg ?a’ +kxg ?¢'=0
by (simp-all add: add-ac)
moreover from G £ 0V j# 0V k #0)
havei #0Vk#0Vj#0Oandj# 0V i# 0V k # 0 by auto
ultimately show proj2-Col a ¢ b and proj2-Col b a c
unfolding proj2-Col-def
by auto
qed

lemma proj2-Col-coincide: proj2-Col a a c
proof —
have 1 xg proj2-rep a + (—1) xg proj2-rep a + 0 xg proj2-rep ¢ = 0
by simp
moreover have (1::real) # 0 by simp
ultimately show proj2-Col aa c
unfolding proj2-Col-def
by blast
qed

lemma proj2-Col-iff:

assumes a # r

shows proj2-Col art <—

t=aV (3 i.t=proj2-abs (i xg (proj2-rep a) + (proj2-repr)))
proof

let ?a’ = proj2-rep a

let 71’ = proj2-rep r

let ?t' = proj2-rep t

{ assume proj2-Col a r t
then obtain /1 and j and k where
h *R ?ﬂ/+j *R ?7’/—|—k*R ?t/: 0
andh #0Vj#0Vk#0
unfolding proj2-Col-def
by auto

show t = a V (3 i. t = proj2-abs (i xg ?a’ + ?1'))
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proof cases
assume j =0
withh A0V j# 0V k#0 haveh # 0V k # 0 by simp
with proj2-rep-dependent
and (hxg ?a’ + jxg ?2r' + kxg ?2t' =0
and (=0
have t = a by auto
thust =a V (3 i. t = proj2-abs (i xg ?a’ + ?1')) ..
next
assume j # 0
have k # 0
proof (rule ccontr)
assume — k # 0
with proj2-rep-dependent
and hxg 2a’ +j*g 21’ + kxg 7' =0
and j # 0
have a = r by simp
with @ # r show False ..
qed

from (h xg 2a’ + j*xg 7'+ kxg ?2t' =0
have hh xg ?2a’ + j *g ?r' + k xg ?t' — k *g ?t' = —k =g ?t' by simp
hence h g ?a’ + j xg ?r' = —k xg ?t' by simp
with proj2-abs-mult-rep [of —k] and k # 0)
have proj2-abs (h g 2a’ + j xg ?r’) = t by simp
with proj2-abs-mult [of 1/j h xg ?a’ + j *g ?r'| and  # 0)
have proj2-abs ((h/j) *g ?a’ + ?r') =t
by (simp add: scaleR-right-distrib)
hence 3 i. t = proj2-abs (i *g ?a’ + ?r’) by auto
thust =a V (3 i. t = proj2-abs (i xg ?a’ + ?1')) ..
qed
}

{assume t = a V (3 i. t = proj2-abs (i xg ?a’ + ?1’))

show proj2-Col a r t

proof cases
assume f =a
with proj2-Col-coincide and proj2-Col-permute
show proj2-Col a r t by blast

next
assume f # a
with ¢t = a V (3 i. t = proj2-abs (i xg ?a’ + ?1')))
obtain i where t = proj2-abs (i xg ?a’ + ?r') by auto
from proj2-rep-dependent [of ia 1] and @ # 1)
have i xg ?2a’ + ?r’ # 0 by auto
with proj2-rep-abs2 and (t = proj2-abs (i xg ?a’ + ?r'))
obtain j where ?t' = j xg (i g ?a’ + ?r') by auto
hence ?t' — ?2t' = (jx i) *g 2a’ + j xg 7r' + (—1) xg 2t

by (simp add: scaleR-right-distrib)
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hence (j x i) *g ?a’ 4+ j g ?r' + (=1) g ?t' = 0 by simp

have 3 hjk hxg ?2a’ +jxg ?2r' + kxg 2t/ =0
ANh#0Vj#0Vk#D0)

proof default+
from ((j « i) *g 2a’ + jxg ?r' + (=1) xg 2t' =0
show (j i) xg ?a’ +jxg ?2r'+ (=1) *g ?7t'=0.
show j*i#0Vj+#O0V (—1:real) # 0 by simp

qed

thus proj2-Col a r t
unfolding proj2-Col-def .

qed

}
qed

definition proj2-Col-coeff :: proj2 = proj2 = proj2 = real where
proj2-Col-coeffa r t = € i.t = proj2-abs (i g proj2-rep a + proj2-rep r)

lemma proj2-Col-coeff :

assumes proj2-Colartand a # rand t # a

shows t = proj2-abs ((proj2-Col-coeff a r t) xg proj2-rep a + proj2-rep r)
proof —

from @ # 1) and (proj2-Col a r t) and  # a) and proj2-Col-iff

have 3 i. t = proj2-abs (i *g proj2-rep a + proj2-rep r) by simp

thus t = proj2-abs ((proj2-Col-coeff a r t) xg proj2-rep a + proj2-rep r)

by (unfold proj2-Col-coeff-def ) (rule somel-ex)

qed

lemma proj2-Col-coeff-unique’:
assumes a # 0 and r # 0 and proj2-abs a # proj2-abs r
and proj2-abs (i *g a + r) = proj2-abs (j *g a + r)
shows i = j
proof —
from @ # 0) and r # 0) and (proj2-abs a # proj2-abs r)
and dependent-proj2-abs [of a r - 1]
haveixga+r# 0andj *g a + r # 0 by auto
with proj2-rep-abs2 [of i xg a + 7]
and proj2-rep-abs2 [of j *g a + 7]
obtain k and | where k # 0
and proj2-rep (proj2-abs (i xg a + 1)) =k g (i *g a + 1)
and proj2-rep (proj2-abs (j xg a + 1)) =1%g (j*gra +r)
by auto
with (proj2-abs (i xg a + r) = proj2-abs (j xg a + r))
have (k * i) xga +kxgr=(I*j)xga+1l*gr
by (simp add: scaleR-right-distrib)
hence (kxi—1I*j)*ga+ (k—1)*gr=20
by (simp add: algebra-simps Cart-eq)
with @ # 0) and (r # 0) and (proj2-abs a # proj2-abs )
and dependent-proj2-abs [of ark i — 1 % jk — ]
havek xi — [ xj=0and k — | = 0 by auto
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from <k — [ = 0) have k = [ by simp

with k i — [ % j = 0) have k x i = k * j by simp
with k # 0) show i = j by simp

qed

lemma proj2-Col-coeff-unique:
assumes a # r
and proj2-abs (i xg proj2-rep a + proj2-rep r)
= proj2-abs (j g proj2-rep a + proj2-rep r)
shows i = j
proof —
let ?a’ = proj2-rep a
let ?r' = proj2-rep r
have ?a’ # 0 and ?r’ # 0 by (rule proj2-rep-non-zero)+

from (@ # r have proj2-abs ?a’ # proj2-abs ?r' by (simp add: proj2-abs-rep)
with (?a’ # 0) and ?r' #£ 0
and (proj2-abs (i xg ?a’ + ?r') = proj2-abs (j xg ?a’ + ?r'))
and proj2-Col-coeff-unique’
show i = j by simp
qed

datatype proj2-line = P2L proj2

definition L2P :: proj2-line = proj2 where
L2P 1 £ caselof P2Lp = p

lemma L2P-P2L [simp]: L2P (P2Lp) = p
unfolding L2P-def
by simp

lemma P2L-L2P [simp|: P2L (L2P 1) =1
by (induct 1) simp

lemma L2P-inj [simp]:
assumes L2P [ = L2P m
shows | = m
using P2L-L2P [of I] and assms
by simp

lemma P2L-to-L2P: P2Lp =1 +— p = L2P
proof
assume P2L p =
hence L2P (P2L p) = L2P | by simp
thus p = L2P [ by simp
next
assume p = L2P |
thus P2L p = [ by simp
qed
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definition proj2-line-abs :: real"3 = proj2-line where
proj2-line-abs v £ P2L (proj2-abs v)

definition proj2-line-rep :: proj2-line = real"3 where
proj2-line-rep | = proj2-rep (L2P 1)

lemma proj2-line-rep-abs:
assumes v # 0
shows 3 k. k # 0 A proj2-line-rep (proj2-line-abs v) = k *g v
unfolding proj2-line-rep-def and proj2-line-abs-def
using proj2-rep-abs2 and @ # 0)
by simp

lemma proj2-line-abs-rep [simp): proj2-line-abs (proj2-line-rep 1) =1
unfolding proj2-line-abs-def and proj2-line-rep-def
by (simp add: proj2-abs-rep)

lemma proj2-line-rep-non-zero: proj2-line-rep | # 0
unfolding proj2-line-rep-def
using proj2-rep-non-zero
by simp

lemma proj2-line-rep-dependent:
assumes i xg proj2-line-rep | + j xg proj2-line-rep m = 0
andi #0Vj#0
shows | =m
using proj2-rep-dependent [of i L2P 1 j L2P m| and assms
unfolding proj2-line-rep-def
by simp

lemma proj2-line-abs-mult:
assumes k # 0
shows proj2-line-abs (k g v) = proj2-line-abs v
unfolding proj2-line-abs-def
using k # 0)
by (subst proj2-abs-mult) simp-all

lemma proj2-line-abs-abs-mult:
assumes proj2-line-abs v = proj2-line-abs w and w # 0
shows Jd k.v =k g w
using assms
by (unfold proj2-line-abs-def ) (simp add: proj2-abs-abs-mult)

definition proj2-incident :: proj2 = proj2-line = bool where
proj2-incident p | = (proj2-rep p) - (proj2-line-rep 1) = 0

lemma proj2-points-define-line:

shows 3 [. proj2-incident p | A proj2-incident q |
proof —
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let ?p’ = proj2-rep p

let 2q" = proj2-rep q

let 7B = {?p’, 2q'}

from card-suc-ge-insert [of ?p’ {?q'}] have card ?B < 2 by simp
with card-ge-dim [of ?B] have dim ?B < 3 by simp

with lowdim-subset-hyperplane [of ?B]

obtain |’ where I’ # 0 and span ?B C {x.1"- x = 0} by auto
let ?1 = proj2-line-abs I

let 71" = proj2-line-rep ?1

from proj2-line-rep-abs and (' # 0)

obtain k where ?!"" = k xg I’ by auto

have ?p’ € ?B and ?q’ € ?B by simp-all
with span-inc [of ?B] and (span ?B C {x.1’- x =0}
have!’- ?p’=0and !’ - ?q' = 0 by auto
hence ?p’-1'=0and ?q’ - I’ = 0 by (simp-all add: inner-commute)
with dot-scaleR-mult(2) [of - k1] and (21" =k xg 1"
have proj2-incident p ?I A\ proj2-incident q ?1
unfolding proj2-incident-def
by simp
thus 3 [. proj2-incident p | A proj2-incident q | by auto
qed

definition proj2-line-through :: proj2 = proj2 = proj2-line where
proj2-line-through p q = € L. proj2-incident p I A proj2-incident q |

lemma proj2-line-through-incident:
shows proj2-incident p (proj2-line-through p q)
and proj2-incident q (proj2-line-through p q)
unfolding proj2-line-through-def
using proj2-points-define-line
and somel-ex [of A . proj2-incident p I N\ proj2-incident q ||
by simp-all

lemma proj2-line-through-unique:
assumes p # q and proj2-incident p | and proj2-incident q |
shows [ = proj2-line-through p q
proof —
let ?1' = proj2-line-rep 1
let ?m = proj2-line-through p q
let ?m’ = proj2-line-rep ?m
let ?p’ = proj2-rep p
let 7q’ = proj2-rep q
let 7A = {?p’, 29"}
let ?B = insert ?m' ?A
from proj2-line-through-incident
have proj2-incident p ?m and proj2-incident q ?m by simp-all
with (proj2-incident p I) and (proj2-incident q )
have V we?A. orthogonal ?m’ w and V we?A. orthogonal ?1" w
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unfolding proj2-incident-def and orthogonal-def
by (simp-all add: inner-commute)
from proj2-rep-independent and (p # q) have independent ? A by simp
from proj2-line-rep-non-zero have ?m’ # 0 by simp
with orthogonal-independent
and (independent ?A) and v we?A. orthogonal ?m’ w)
have independent ?B by auto

from proj2-rep-inj and (p # ¢ have ?p’ # ?q’
unfolding inj-on-def
by auto
hence card ?A = 2 by simp
moreover have ?m’ ¢ ?A
proof
assume ?m’ € ?A
with span-inc [of ?A] have ?m’ € span ? A by auto
with orthogonal-in-span-eq-0 and vV we?A. orthogonal ?m’ w)
have ?m’ = 0 by auto
with (?m’ # 0) show False ..
qed
ultimately have card ?B = 3 by simp
with independent-is-basis [of ?B] and (independent ?B)
have is-basis ?B by simp
with basis-expand obtain c where ?!" = (Y vE€?B. ¢ v *g v) by auto
let 21" = 21" — c ?m’ xg ?m’
from ?I' = (Y v€?B.cv *g v)) and ?m’ ¢ ?A)
have ?!" = (Y ve?A. c v xg v) by simp
with orthogonal-setsum [of ?A]
and vV we?A. orthogonal ?1’ w) and vV we?A. orthogonal ?m’ w)
have orthogonal ?1' 71" and orthogonal ?m’ 21"
by (simp-all add: scalar-equiv)
from (orthogonal ?m’ ?1")
have orthogonal (c ?m’ xg ?m’) 21" by (simp add: orthogonal-clauses)
with (orthogonal 21’ 21"
have orthogonal ?1"' 21" by (simp add: orthogonal-clauses)
with orthogonal-self-eq-0 [of ?1''] have ?1"" = 0 by simp
with proj2-line-rep-dependent [of 11 — ¢ ?m’ ?m] show | = ?m by simp
qed

lemma proj2-incident-unique:
assumes proj2-incident p |
and proj2-incident q |
and proj2-incident p m
and proj2-incident q m
showsp=gVIi=m
proof cases
assume p = g
thusp=qVvi=m..
next
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assume p # g
with (proj2-incident p I) and (proj2-incident q I)
and proj2-line-through-unique
have [ = proj2-line-through p q by simp
moreover from (p # q) and (proj2-incident p m) and (proj2-incident q m)
have m = proj2-line-through p q by (rule proj2-line-through-unique)
ultimately show p = q V [ = m by simp
qed

lemma proj2-lines-define-point: 3 p. proj2-incident p I \ proj2-incident p m
proof —
let ?I'=L2P1
let ?m’' = L2P m
from proj2-points-define-line [of 21’ ?m’]
obtain p’ where proj2-incident ?1' p’ A proj2-incident ?m’ p’ by auto
hence proj2-incident (L2P p') I A proj2-incident (L2P p') m
unfolding proj2-incident-def and proj2-line-rep-def
by (simp add: inner-commute)
thus 3 p. proj2-incident p I A\ proj2-incident p m by auto
qed

definition proj2-intersection :: proj2-line = proj2-line = proj2 where
proj2-intersection | m = L2P (proj2-line-through (L2P 1) (L2P m))

lemma proj2-incident-switch:
assumes proj2-incident p |
shows proj2-incident (L2P 1) (P2L p)
using assms
unfolding proj2-incident-def and proj2-line-rep-def
by (simp add: inner-commute)

lemma proj2-intersection-incident:

shows proj2-incident (proj2-intersection | m) |

and proj2-incident (proj2-intersection | m) m

using proj2-line-through-incident(1) [of L2P I L2P m]
and proj2-line-through-incident(2) [of L2P m L2P I]
and proj2-incident-switch [of L2P I]
and proj2-incident-switch [of L2P m]

unfolding proj2-intersection-def

by simp-all

lemma proj2-intersection-unique:
assumes | # m and proj2-incident p | and proj2-incident p m
shows p = proj2-intersection | m
proof —
from « # m) have L2P | # L2P m by auto
from (proj2-incident p I} and (proj2-incident p m)
and proj2-incident-switch
have proj2-incident (L2P 1) (P2L p) and proj2-incident (L2P m) (P2L p)
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by simp-all
with (L2P [ # L2P m) and proj2-line-through-unique
have P2L p = proj2-line-through (L2P 1) (L2P m) by simp
thus p = proj2-intersection I m
unfolding proj2-intersection-def
by (simp add: P2L-to-L2P)
qed

lemma proj2-not-self-incident:
= (proj2-incident p (P2L p))
unfolding proj2-incident-def and proj2-line-rep-def
using proj2-rep-non-zero and inner-eq-zero-iff [of proj2-rep p]
by simp

lemma proj2-another-point-on-line:
3 q.q # p A proj2-incident q |
proof —
let ?m = P2Lp
let ?q = proj2-intersection | ?m
from proj2-intersection-incident
have proj2-incident ?q | and proj2-incident ?q ?m by simp-all
from (proj2-incident ?q ?m) and proj2-not-self-incident have ?q # p by auto
with (proj2-incident ?q I) show 3 q. g # p A proj2-incident q | by auto
qed

lemma proj2-another-line-through-point:
3 m. m # 1 N\ proj2-incident p m
proof —
from proj2-another-point-on-line
obtain g where q # L2P I A proj2-incident q (P2L p) by auto
with proj2-incident-switch [of g P2L p]
have P2L q # | A proj2-incident p (P2L q) by auto
thus 3 m. m # I A\ proj2-incident p m ..
qed

lemma proj2-incident-abs:

assumes v # 0 and w # 0

shows proj2-incident (proj2-abs v) (proj2-line-abs w) <— v - w =0
proof —

from @ # 0) and proj2-rep-abs2

obtain j where j # 0 and proj2-rep (proj2-abs v) = j xg v by auto

from w # 0) and proj2-line-rep-abs

obtain k where k # 0
and proj2-line-rep (proj2-line-abs w) = k g w
by auto

with (j # 0) and (proj2-rep (proj2-abs v) = j *g v)

show proj2-incident (proj2-abs v) (proj2-line-abs w) <— v - w = 0
unfolding proj2-incident-def
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by (simp add: dot-scaleR-mult)
qed

lemma proj2-incident-left-abs:

assumes v # 0

shows proj2-incident (proj2-abs v) | <— v - (proj2-line-rep I) = 0
proof —

have proj2-line-rep | # 0 by (rule proj2-line-rep-non-zero)

with (@ # 0) and proj2-incident-abs [of v proj2-line-rep ||

show proj2-incident (proj2-abs v) 1 <— v - (proj2-line-rep 1) = 0 by simp
qed

lemma proj2-incident-right-abs:

assumes v # (0

shows proj2-incident p (proj2-line-abs v) «— (proj2-rep p) - v =0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

with (v # 0) and proj2-incident-abs [of proj2-rep p v]

show proj2-incident p (proj2-line-abs v) <— (proj2-rep p) - v =10

by (simp add: proj2-abs-rep)

qed

definition proj2-set-Col :: proj2 set = bool where
proj2-set-Col S £ 3 1.V p€S. proj2-incident p |

lemma proj2-subset-Col:
assumes T C S and proj2-set-Col S
shows proj2-set-Col T
using (I' C S) and (proj2-set-Col S)
by (unfold proj2-set-Col-def ) auto

definition proj2-no-3-Col :: proj2 set = bool where
proj2-no-3-Col S = card S = 4 A\ (¥ p€S. — proj2-set-Col (S — {p}))

lemma proj2-Col-iff-not-invertible:
proj2-Col p q r
«— — invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r| :: real’3"3)
(is - «— — invertible (vector [?u, ?v, ?w]))
proof —
let ?M = vector [?u,?v,?w] :: real"3"3
have proj2-Colp g r <+— (I x. x # 0 A x vx 2M = 0)
proof
assume proj2-Col p q r
then obtain i and j and k
wherei #0Vj#O0Vk#Oandi*g ?2u+j*gr 20+ k*xg ?2w=20
unfolding proj2-Col-def
by auto
let ?x = vector [i,j k] :: real’3
from G #0Vji#0Vk#O0
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have ?x # 0
unfolding vector-def
by (simp add: Cart-eq forall-3)
moreover {
from <i*R u +]*R ?U+k*R 2w =0
have ?x vx M =0
unfolding vector-def and vector-matrix-mult-def
by (simp add: setsum-3 Cart-eq algebra-simps) }
ultimately show 3 x. x # 0 A x v ?M = 0 by auto
next
assume d x. x Z0 A xvx ?M =0
then obtain x where x # 0 and x v+ ?M = 0 by auto
let ?i = x$1
let 7j = x$2
let ?k = x$3
from (x # 0) have ?i # 0 V ?j # 0 V ?k # 0 by (simp add: Cart-eq forall-3)
moreover {
from x vx ?M = 0)
have ?i g ?u + ?j xg 70 + Pk +g 2w =0
unfolding vector-matrix-mult-def and setsum-3 and vector-def
by (simp add: Cart-eq algebra-simps) }
ultimately show proj2-Col p q v
unfolding proj2-Col-def
by auto
qed
also from matrix-right-invertible-ker [of ?M]
have ... <— = (3 M. ?M xx M’ = mat 1) by auto
also from matrix-left-right-inverse
have ... «+— - invertible ?’M
unfolding invertible-def
by auto
finally show proj2-Col p q r <— — invertible ?M .
qed

lemma not-invertible-iff-proj2-set-Col:
— invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r| :: real"3"3)
«— proj2-set-Col {p,q,r}
(is — invertible ?M <— -)
proof —
from left-invertible-iff-invertible
have — invertible ?M <+— — (3 M'. M/ xx ?M = mat 1) by auto
also from matrix-left-invertible-ker [of ?M]
have ... +— (3 y.y #0 A ?M xv y = 0) by auto
also have ... «— (3 .V se{p,q,r}. proj2-incident s I)
proof
assume 3 y.y F0A?M*vy =0
then obtain y where y # 0 and ?M xv y = 0 by auto
let 7] = proj2-line-abs y
from CM vy = 0)
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have V se{p,q,r}. proj2-reps - y =0
unfolding vector-def
and matrix-vector-mult-def
and inner-vector-def
and setsum-3
by (simp add: Cart-eq forall-3)
with (y # 0) and proj2-incident-right-abs
have V se{p,q,r}. proj2-incident s ?1 by simp
thus 3 1.V se{p,q,r}. proj2-incident s I ..
next
assume 3 1.V se{p,q,r}. proj2-incident s |
then obtain [ where V se{p,q,r}. proj2-incident s I ..
let ?y = proj2-line-rep |
have ?y # 0 by (rule proj2-line-rep-non-zero)
moreover {
from v se{p,q,r}. proj2-incident s I)
have ?M *v 7y =0
unfolding vector-def
and matrix-vector-mult-def
and inner-vector-def
and setsum-3
and proj2-incident-def
by (simp add: Cart-eq) }
ultimately show 3 y. y # 0 A ?M v y = 0 by auto
qed
finally show — invertible ?M <— proj2-set-Col {p,q,r}
unfolding proj2-set-Col-def .
qed

lemma proj2-Col-iff-set-Col:
proj2-Col p q v <— proj2-set-Col {p,q,r}
by (simp add: proj2-Col-iff-not-invertible
not-invertible-iff-proj2-set-Col )

lemma proj2-incident-Col:
assumes proj2-incident p | and proj2-incident q | and proj2-incident r |
shows proj2-Col p q r

proof —
from (proj2-incident p I} and (proj2-incident q I) and (proj2-incident r )
have proj2-set-Col {p,q,r} by (unfold proj2-set-Col-def ) auto
thus proj2-Col p q r by (subst proj2-Col-iff-set-Col )

qed

lemma proj2-incident-iff-Col:
assumes p # q and proj2-incident p | and proj2-incident q |
shows proj2-incident r | <— proj2-Col p q r
proof
assume proj2-incident r |
with (proj2-incident p I) and (proj2-incident q )
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show proj2-Col p q r by (rule proj2-incident-Col)
next
assume proj2-Col p q r
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col )
then obtain m where V sc{p,q,r}. proj2-incident s m
unfolding proj2-set-Col-def ..
hence proj2-incident p m and proj2-incident q m and proj2-incident r m
by simp-all
from (p # @ and (proj2-incident p I) and (proj2-incident q |)
and (proj2-incident p m) and (proj2-incident q m)
and proj2-incident-unique
have m = [ by auto
with (proj2-incident r m) show proj2-incident r | by simp
qed

lemma proj2-incident-iff:
assumes p # q and proj2-incident p | and proj2-incident q |
shows proj2-incident r |
«— r=pV (3 k. r = proj2-abs (k g proj2-rep p + proj2-rep q))
proof —
from (p # ¢ and (proj2-incident p I) and (proj2-incident q )
have proj2-incident r | <— proj2-Col p q r by (rule proj2-incident-iff-Col)
with (p # ¢ and proj2-Col-iff
show proj2-incident r |
«—r=pV (3 k.r = proj2-abs (k g proj2-rep p + proj2-rep q))
by simp
qed

lemma not-proj2-set-Col-iff-span:

assumes card S = 3

shows — proj2-set-Col S <— span (proj2-rep ' S) = UNIV
proof —

from (card S = 3) and choose-3 [of S|

obtain p and g and r where S = {p,q,r} by auto

let ?u = proj2-rep p

let ?v = proj2-rep q

let 7w = proj2-rep r

let ?M = vector [?u, ?v, ?w) :: real”3"3

from (S = {p,q,r}) and not-invertible-iff-proj2-set-Col [of p q 7]

have — proj2-set-Col S <— invertible ?M by auto

also from left-invertible-iff-invertible

have ... +— (I N.N s« ?M =mat 1) ..

also from matrix-left-invertible-span-rows

have ... «— span (rows ?M) = UNIV by auto

finally have — proj2-set-Col S <— span (rows ?M) = UNIV .

have rows ?M = {?u, ?v, 2w}

proof
{ fix x
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assume x € rows ?M
then obtaini:: 3 wherex =?M $ i
unfolding rows-def and row-def
by (auto simp add: Cart-nth-inverse)
with exhaust-3have x = ?u Vx =70V x = 7w
unfolding vector-def
by auto
hence x € {?u, ?v, 2w} by simp }
thus rows ?M C {?u, 70, ?w} ..
{ fix x
assume x € {?u, ?v, ?w}
hence x = ?u V x = ?v V x = ?w by simp
hencex=?M$1Vx=?M$2Vvx=?M$3
unfolding vector-def
by simp
hence x € rows ?M
unfolding rows-def and row-def
by (auto simp add: Cart-nth-inverse) }
thus {?u, ?v, 2w} C rows ?M ..
qed
with S = {p,q,r}
have rows ?M = proj2-rep * S
unfolding image-def
by auto
with (- proj2-set-Col S <— span (rows ?M) = UNIV)
show — proj2-set-Col S <— span (proj2-rep * S) = UNIV by simp
qed

lemma proj2-no-3-Col-span:
assumes proj2-no-3-Col Sand p € S
shows span (proj2-rep ' (S — {p})) = UNIV
proof —
from (proj2-no-3-Col S) have card S = 4 unfolding proj2-no-3-Col-def ..
with (p € S) and (card S = 4 and card-gt-0-diff-singleton [of S p]
have card (S — {p}) = 3 by simp

from (proj2-no-3-Col S) and (p € S)
have — proj2-set-Col (S — {p})
unfolding proj2-no-3-Col-def
by simp
with (card (S — {p}) = 3) and not-proj2-set-Col-iff-span
show span (proj2-rep * (S — {p})) = UNIV by simp
qed

lemma fourth-proj2-no-3-Col:
assumes — proj2-Col p g r
shows 3 s. proj2-no-3-Col {s,r,p,q}
proof —
from (- proj2-Col p q r) and proj2-Col-coincide have p # q by auto
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hence card {p,q} = 2 by simp

from (- proj2-Col p g r) and proj2-Col-coincide and proj2-Col-permute
have r ¢ {p,q} by fast
with (card {p,q} = 2 have card {r,p,q} = 3 by simp

have finite {r,p,q} by simp

let ?s = proj2-abs () te{r,p.q}. proj2-rep t)
have 3 j. (¥ te{r,p,q}. proj2-rep t) = j *g proj2-rep ?s
proof cases
assume () te{r,p,q}. proj2-rep t) =0
hence (Y te{r,p,q}. proj2-rep t) = 0 =g proj2-rep ?s by simp
thus 3 j. (¥ te{rpq}. proj2-rep t) = j xg proj2-rep ?s ..
next
assume (). te{r,p,q}. proj2-rep t) # 0
with proj2-rep-abs2
obtain k where k # 0
and proj2-rep ?s = k g (¥ t€{r,p.q}. proj2-rep t)
by auto
hence (1/k) *g proj2-rep ?s = (3 te{r,p,q}. proj2-rep t) by simp
from this [symmetric]
show 3 j. (X te{rp.q}. proj2-rep t) = j xg proj2-rep ?s ..
qed
then obtain j where (Y te{r,p,q}. proj2-rep t) = j xg proj2-rep ?s ..
let 7c = At ift =?sthen1 — jelse 1
from (p # q have ?c p # 0 V ?c g # 0 by simp

let ?d = A t.if t = ?s then j else —1
let ?S = {?s,r,pq}

have ?s ¢ {r,p,q}
proof
assume ?s € {r,p,q}

from r ¢ {p,q}) and p # ¢
have ?c v xg proj2-rep r + ?c p xR proj2-rep p + ?c q *g proj2-rep q
= (L te{rpq}. 2c t *g proj2-rep t)
by (simp add: setsum-insert [of - - A t. ?c t g proj2-rep t])
also from (finite {r,p,q}) and (?s € {r,p,q}
have ... = ?c ?s xg proj2-rep ?s + (3 te{r,p,q}—{?s}. 2c t *g proj2-rep t)
by (simp only:
setsum-diffl’ [of {r,p.q} ?s A t. ?c t xR proj2-rep t])
also have . ..
= —j *g proj2-rep ?s + (proj2-rep ?s + (¥ te{r,p,q}—{?s}. proj2-rep t))
by (simp add: algebra-simps)
also from (finite {r,p,q}) and ?s € {r,p,q}
have ... = —j xg proj2-rep ?s + (L te{r,p,q}. proj2-rep t)
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by (simp only:
setsum-diffl’ [of {r,p.q} ?s A t. proj2-rep t,symmetric])
also from () te{r,p,q}. proj2-rep t) = j g proj2-rep ?s)
have ... = 0 by simp
finally
have ?c v xg proj2-rep r + ?c p xg proj2-rep p + ?c q *g proj2-rep q =0

with Pcp#£0V ?2cqg # 0
have proj2-Col p q v
by (unfold proj2-Col-def) (auto simp add: algebra-simps)
with (- proj2-Col p q r) show False ..
qed
with (card {r,p,q} = 3) have card ?S = 4 by simp

from (- proj2-Col p q r» and proj2-Col-permute
have — proj2-Col r p q by fast
hence — proj2-set-Col {r,p,q} by (subst proj2-Col-iff-set-Col [symmetric|)

have V u€?S. — proj2-set-Col (?S — {u})
proof
fix u
assume u € ?S
with (card ?S = 4) have card (?S — {u}) = 3 by simp
show — proj2-set-Col (?S — {u})
proof cases
assume u = ’s
with (?s ¢ {r,p,q} have ?S — {u} = {r,p,q} by simp
with (- proj2-set-Col {r,p,q}) show — proj2-set-Col (?S — {u}) by simp
next
assume u # 7s
hence insert ?s ({r,p,q} — {u}) = ?S — {u} by auto

from (finite {r,p,q} have finite ({r,p,q} — {u}) by simp

from (?s ¢ {r,p,q} have ?s ¢ {rp,q} — {u} by simp
hence V te{rp,q}—{u}. ?d t = —1 by auto

from (1 # ?s) and (u € ?S) have u € {r,p,q} by simp
hence (Y te{rpq}. proj2-rep t)
= proj2-rep u + (¥ te{r,p.q}—{u}. proj2-rep t)
by (simp add: setsum-diff1’)
with (Y te{r,p,q}. proj2-rep t) = j xg proj2-rep ?s)
have proj2-rep u
= j *g proj2-rep ?s — (Y te{r,p,q}—{u}. proj2-rep t)
by simp
also from v te{rp,g}—{u}. 2dt = -1
have ... =j xg proj2-rep ?s + (¥ te{r,pq}—{u}. 2d t g proj2-rep t)
by (simp add: setsum-negf)
also from (finite ({r,p,q} — {u}) and s ¢ {r,p,q} — {u}p
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have ... = (Y teinsert ?s ({r,p,q}—{u}). ?d t xg proj2-rep t)
by (simp add: setsum-insert)
also from (nsert ?s ({r,p,q} — {u}) = 7?5 — {u}p
have ... = (Y t€?S—{u}. ?d t xg proj2-rep t) by simp
finally have proj2-rep u = () t€?S—{u}. 2d t xg proj2-rep t) .
moreover
have V te?S—{u}. ?d t xg proj2-rep t € span (proj2-rep * (?S — {u}))
by (simp add: span-clauses)
ultimately have proj2-rep u € span (proj2-rep * (?S — {u}))
by (simp add: span-setsum)

have V te{rp,q}. proj2-rep t € span (proj2-rep * (?S — {u}))
proof
fix t
assume t € {r,p,q}
show proj2-rep t € span (proj2-rep * (?S — {u}))
proof cases
assume { = u
from (proj2-rep u € span (image proj2-rep (?S — {u}))
show proj2-rep t € span (proj2-rep * (?S — {u}))
by (subst t = w))
next
assume | # u
with (¢t € {rp,q}
have proj2-rep t € proj2-rep * (?S — {u}) by simp
with span-inc [of proj2-rep * (?S — {u})]
show proj2-rep t € span (proj2-rep * (?S — {u})) by fast
qed
qed
hence proj2-rep * {r,p,q} C span (proj2-rep * (?S — {u}))
by (simp only: image-subset-iff )
hence
span (proj2-rep * {r.p,q}) < span (span (proj2-rep * (75 — {u})))
by (simp only: span-mono)
hence span (proj2-rep * {r,p,q}) C span (proj2-rep  (?S — {u}))
by (simp only: span-span)
moreover
from (- proj2-set-Col {r,p,q})
and (card {r,p,q} =3
and not-proj2-set-Col-iff-span
have span (proj2-rep ' {r,p,q}) = UNIV by simp
ultimately have span (proj2-rep  (?S — {u})) = UNIV by auto
with (card (?S — {u}) = 3) and not-proj2-set-Col-iff-span
show — proj2-set-Col (?S — {u}) by simp
qed
qed
with (card 7S = 4)
have proj2-no-3-Col ?S by (unfold proj2-no-3-Col-def ) fast
thus 3 s. proj2-no-3-Col {s,r,p.q} ..
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qed

lemma proj2-set-Col-expand:
assumes proj2-set-Col S and {p,q,r} C Sandp #qandr #p
shows 3 k. r = proj2-abs (k xg proj2-rep p + proj2-rep q)

proof —
from (proj2-set-Col S)
obtain | where V t€S. proj2-incident t | unfolding proj2-set-Col-def ..
with {p,q,r} C S and (p # ¢ and  # p) and proj2-incident-iff [of p q 1 1]
show 3 k. r = proj2-abs (k xR proj2-rep p + proj2-rep q) by simp

qed

7.4 Collineations of the real projective plane

typedef cltn2 =
(Collect invertible :: (real”3°3) set)/ / invertible-proportionality
proof
from matrix-id-invertible have (mat 1 :: real"3"3) € Collect invertible
by simp

thus invertible-proportionality " {mat 1} €
(Collect invertible :: (real”3°3) set)/ / invertible-proportionality
unfolding quotient-def
by auto
qed

definition cltn2-rep :: cltn2 = real"3"3 where
cltn2-rep A = € B. B € Rep-cltn2 A

definition cltn2-abs :: real’3’3 = cltn2 where
cltn2-abs B £ Abs-cltn2 (invertible-proportionality ** {B})

definition cltn2-independent :: cltn2 set = bool where
cltn2-independent X = independent {cltn2-rep A | A. A € X}

definition apply-cltn2 :: proj2 = cltn2 = proj2 where
apply-cltn2 x A = proj2-abs (proj2-rep x vk cltn2-rep A)

lemma cltn2-rep-in: cltn2-rep B € Rep-cltn2 B
proof —
let ?A = cltn2-rep B
from quotient-element-nonempty and
invertible-proportionality-equiv and
Rep-cltn2 [of B]
have 3 C. C € Rep-cltn2 B
unfolding cltn2-def
by auto
with somel-ex [of A C. C € Rep-cltn2 B]
show ?A € Rep-cltn2 B
unfolding cltn2-rep-def
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by simp
qed

lemma cltn2-rep-invertible: invertible (clin2-rep A)
proof —
from
Union-quotient [of Collect invertible invertible-proportionality]
and invertible-proportionality-equiv
and Rep-cltn2 [of A] and cltn2-rep-in [of A]
have cltn2-rep A € Collect invertible
unfolding quotient-def and cltn2-def
by auto
thus invertible (clin2-rep A)
unfolding invertible-proportionality-def
by simp
qed

lemma cltn2-rep-abs:
fixes A :: real"3"3
assumes invertible A
shows (A, cltn2-rep (cltn2-abs A)) € invertible-proportionality
proof —
from (invertible A)
have invertible-proportionality ” {A} € cltn2
unfolding cltn2-def
and quotient-def
by auto
with Abs-cltn2-inverse
have Rep-cltn2 (cltn2-abs A) = invertible-proportionality “* {A}
unfolding cltn2-abs-def
by simp
with cltn2-rep-in
have cltn2-rep (cltn2-abs A) € invertible-proportionality “ {A} by auto
thus (A, cltn2-rep (cltn2-abs A)) € invertible-proportionality by simp
qed

lemma cltn2-rep-abs2:
assumes invertible A
shows 3 k. k # 0 A cltn2-rep (clin2-abs A) =k xg A
proof —
from (invertible A) and cltn2-rep-abs
have (A, cltn2-rep (cltn2-abs A)) € invertible-proportionality by simp
then obtain c where A = ¢ xg cltn2-rep (cltn2-abs A)
unfolding invertible-proportionality-def and real-vector.proportionality-def
by auto
with (nvertible A) and zero-not-invertible have ¢ # 0 by auto
hence 1/c # 0 by simp

let?k=1/c
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from (A = ¢ *g cltn2-rep (cltn2-abs A))

have ?k xg A = ?k *g ¢ *g clin2-rep (cltn2-abs A) by simp

with (¢ # 0) have cltn2-rep (cltn2-abs A) = ?k *g A by simp

with 2k # 0)

show 3 k. k # 0 A cltn2-rep (cltn2-abs A) = k xg A by blast
qed

lemma cltn2-abs-rep: clin2-abs (cltn2-rep A) = A
proof —
from partition-Image-element
[of Collect invertible
invertible-proportionality
Rep-cltn2 A
cltn2-rep A]
and invertible-proportionality-equiv
and Rep-cltn2 [of A] and cltn2-rep-in [of A]
have invertible-proportionality ** {cltn2-rep A} = Rep-cltn2 A
unfolding cltn2-def
by simp
with Rep-cltn2-inverse
show cltn2-abs (cltn2-rep A) = A
unfolding cltn2-abs-def
by simp
qed

lemma cltn2-abs-mult:
assumes k # 0 and invertible A
shows cltn2-abs (k xg A) = clin2-abs A
proof —
from &k # 0) and (invertible A) and scalar-invertible
have invertible (k xg A) by auto
with (invertible A)
have (k xg A, A) € invertible-proportionality
unfolding invertible-proportionality-def
and real-vector.proportionality-def
by (auto simp add: zero-not-invertible)
with eg-equiv-class-iff
[of Collect invertible invertible-proportionality k g A A]
and invertible-proportionality-equiv
and (invertible A) and (nvertible (k xg A))
have invertible-proportionality " {k xg A}
= invertible-proportionality * {A}
by simp
thus cltn2-abs (k xg A) = cltn2-abs A
unfolding cltn2-abs-def
by simp
qed

lemma cltn2-abs-mult-rep:
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assumes k # 0

shows cltn2-abs (k xg clin2-rep A) = A

using clin2-rep-invertible and cltn2-abs-mult and cltn2-abs-rep and assms
by simp

lemma apply-cltn2-abs:

assumes x # 0 and invertible A

shows apply-cltn2 (proj2-abs x) (cltn2-abs A) = proj2-abs (x vx A)
proof —

from proj2-rep-abs2 and (x # 0)

obtain k where k # 0 and proj2-rep (proj2-abs x) = k g x by auto

from cltn2-rep-abs2 and (invertible A)
obtain ¢ where ¢ # 0 and cltn2-rep (cltn2-abs A) = ¢ *g A by auto

from k # 0> and (¢ # 0) have k * ¢ # 0 by simp

from (proj2-rep (proj2-abs x) = k g x) and (cltn2-rep (cltn2-abs A) = c xg A)

have proj2-rep (proj2-abs x) vx clin2-rep (clin2-abs A) = (kxc) *g (x v A)
by (simp add: scalar-vector-matrix-assoc vector-scalar-matrix-ac)

with & % ¢ # 0)

show apply-cltn2 (proj2-abs x) (cltn2-abs A) = proj2-abs (x vx A)
unfolding apply-cltn2-def
by (simp add: proj2-abs-mult)

qed

lemma apply-cltn2-left-abs:
assumes v # 0
shows apply-cltn2 (proj2-abs v) C = proj2-abs (v v cltn2-rep C)
proof —
have cltn2-abs (cltn2-rep C) = C by (rule cltn2-abs-rep)
with @ # 0) and cltn2-rep-invertible and apply-cltn2-abs [of v cltn2-rep C]
show apply-cltn2 (proj2-abs v) C = proj2-abs (v v« cltn2-rep C)
by simp
qed

lemma apply-cltn2-right-abs:
assumes invertible M
shows apply-cltn2 p (cltn2-abs M) = proj2-abs (proj2-rep p v« M)
proof —
from proj2-rep-non-zero and (invertible M) and apply-cltn2-abs
have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs M)
= proj2-abs (proj2-rep p v« M)
by simp
thus apply-cltn2 p (cltn2-abs M) = proj2-abs (proj2-rep p vx M)
by (simp add: proj2-abs-rep)
qed

lemma non-zero-mult-rep-non-zero:
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assumes v # 0

shows v v« cltn2-rep C # 0

using (v # 0) and cltn2-rep-invertible and times-invertible-eq-zero
by auto

lemma rep-mult-rep-non-zero: proj2-rep p v+ cltn2-rep A # 0
using proj2-rep-non-zero
by (rule non-zero-mult-rep-non-zero)

definition cltn2-image :: proj2 set = cltn2 = proj2 set where
cltn2-image P A £ {apply-cltn2 p A | p. p € P}

74.1 As agroup

definition cltn2-id :: cltn2 where
cltn2-id = cltn2-abs (mat 1)

definition cltn2-compose :: cltn2 = cltn2 = cltn2 where
cltn2-compose A B £ cltn2-abs (cltn2-rep A *x cltn2-rep B)

definition cltn2-inverse :: cltn2 = cltn2 where
cltn2-inverse A = cltn2-abs (matrix-inv (cltn2-rep A))

lemma cltn2-compose-abs:

assumes invertible M and invertible N

shows cltn2-compose (cltn2-abs M) (cltn2-abs N) = cltn2-abs (M *x N)
proof —

from (invertible M) and (invertible N) and invertible-mult

have invertible (M *x N) by auto

from (invertible M) and (invertible N> and cltn2-rep-abs2
obtain j and k where j # 0 and k # 0

and clin2-rep (clin2-abs M) = j xg M

and clin2-rep (cltn2-abs N) = k xg N

by blast

from (j # 0) and ¢k # 0) have j * k # 0 by simp

from (cltn2-rep (cltn2-abs M) = j xg M) and (cltn2-rep (cltn2-abs N) =k *g N)
have cltn2-rep (cltn2-abs M) *x cltn2-rep (cltn2-abs N)
= (j* k) xg (M *x N)
by (simp add: matrix-scalar-ac scalar-matrix-assoc [symmetric|)
with ( x k # 0) and (invertible (M ** N))
show cltn2-compose (clin2-abs M) (cltn2-abs N) = cltn2-abs (M *x N)
unfolding cltn2-compose-def
by (simp add: cltn2-abs-mult)
qed

lemma cltn2-compose-left-abs:
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assumes invertible M
shows cltn2-compose (cltn2-abs M) A = cltn2-abs (M xx cltn2-rep A)
proof —
from (invertible M) and cltn2-rep-invertible and cltn2-compose-abs
have cltn2-compose (cltn2-abs M) (cltn2-abs (cltn2-rep A))
= cltn2-abs (M xx cltn2-rep A)
by simp
thus cltn2-compose (cltn2-abs M) A = cltn2-abs (M xx cltn2-rep A)
by (simp add: cltn2-abs-rep)
qed

lemma cltn2-compose-right-abs:
assumes invertible M
shows cltn2-compose A (cltn2-abs M) = cltn2-abs (cltn2-rep A xx M)
proof —
from (invertible M) and cltn2-rep-invertible and cltn2-compose-abs
have cltn2-compose (cltn2-abs (cltn2-rep A)) (cltn2-abs M)
= cltn2-abs (cltn2-rep A xx M)
by simp
thus cltn2-compose A (cltn2-abs M) = cltn2-abs (cltn2-rep A xx M)
by (simp add: cltn2-abs-rep)
qed

lemma cltn2-abs-rep-abs-mult:

assumes invertible M and invertible N

shows cltn2-abs (cltn2-rep (cltn2-abs M) s* N) = cltn2-abs (M *x N)
proof —

from (invertible M) and (invertible N)

have invertible (M xx N) by (simp add: invertible-mult)

from (invertible M) and cltn2-rep-abs2
obtain k where k # 0 and cltn2-rep (cltn2-abs M) = k xgr M by auto
from (cltn2-rep (cltn2-abs M) = k xg M)
have cltn2-rep (cltn2-abs M) xx N = k xg M *x N by simp
with k # 0) and (invertible (M x* N)) and cltn2-abs-mult
show cltn2-abs (cltn2-rep (cltn2-abs M) x* N) = cltn2-abs (M ** N)
by (simp add: scalar-matrix-assoc [symmetric|)
qed

lemma cltn2-assoc:

cltn2-compose (cltn2-compose A B) C = cltn2-compose A (cltn2-compose B C)
proof —

let ?A’ = cltn2-rep A

let ?B’ = cltn2-rep B

let ?C’ = cltn2-rep C

from cltn2-rep-invertible

have invertible ?A’ and invertible ?B" and invertible ?C' by simp-all

with invertible-mult

have invertible (?A’ xx ?B’) and invertible (?B’ xx ?C’)
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and invertible (?A’ xx ?B’ xx ?C’)

by auto
from (invertible (?A’ xx ?B’)) and (invertible ?C" and cltn2-abs-rep-abs-mult
have cltn2-abs (cltn2-rep (cltn2-abs (?A’ xx ?B’)) #x ?C)

= cltn2-abs (?A’ % ?B’ xx ?C’)

by simp

from (invertible (?B’ x* ?C")) and cltn2-rep-abs2 [of ?B’ xx ?C’]

obtain k where k #£ 0
and cltn2-rep (cltn2-abs (?B’ xx ?C")) =k *g (?B’ xx 2C)
by auto

from (cltn2-rep (cltn2-abs (?B’ xx ?C')) = k *g (?B’ xx 2C'))

have ?A’ xx cltn2-rep (cltn2-abs (?B’ xx ?2C')) = k *g (?A” %% ?B’ xx 2C’)
by (simp add: matrix-scalar-ac matrix-mul-assoc scalar-matrix-assoc)

with (k # 0) and (nvertible (?A’ % ?B’ xx ?C’))
and cltn2-abs-mult [of k A" sx ?B’ sx 2C/]

have cltn2-abs (?A’ xx clin2-rep (cltn2-abs (?B’ xx ?C')))
= cltn2-abs (?A" % ?B’ xx ?C’)
by simp

with (cltn2-abs (cltn2-rep (cltn2-abs (?A’ xx ?B’)) *x 2C)
= cltn2-abs (?A’ xx ?B’ xx ?C’))

show
cltn2-compose (cltn2-compose A B) C = cltn2-compose A (cltn2-compose B C)
unfolding cltn2-compose-def
by simp

qed

lemma cltn2-left-id: cltn2-compose cltn2-id A = A
proof —
let ?A’ = cltn2-rep A
from cltn2-rep-invertible have invertible ?A’ by simp
with matrix-id-invertible and cltn2-abs-rep-abs-mult [of mat 1 ?A]
have cltn2-compose cltn2-id A = cltn2-abs (cltn2-rep A)
unfolding cltn2-compose-def and cltn2-id-def
by (auto simp add: matrix-mul-lid)
with cltn2-abs-rep show cltn2-compose cltn2-id A = A by simp
qed

lemma cltn2-left-inverse: cltn2-compose (cltn2-inverse A) A = cltn2-id
proof —
let ?M = cltn2-rep A
let ?M’ = matrix-inv ?M
from cltn2-rep-invertible have invertible ?M by simp
with matrix-inv-invertible have invertible ?M' by auto
with (nvertible ?M) and cltn2-abs-rep-abs-mult
have cltn2-compose (cltn2-inverse A) A = cltn2-abs (?M’ xx ?M)
unfolding cltn2-compose-def and cltn2-inverse-def
by simp
with (nvertible ?M)
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show cltn2-compose (cltn2-inverse A) A = cltn2-id
unfolding cltn2-id-def
by (simp add: matrix-inv)
qed

lemma cltn2-left-inverse-ex:
3 B. cltn2-compose B A = cltn2-id
using cltn2-left-inverse ..

interpretation cltn2:
group (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
using cltn2-assoc and cltn2-left-id and cltn2-left-inverse-ex
and groupl [of (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)]
by simp-all

lemma cltn2-inverse-inv [simp]:
MO (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|) A

= cltn2-inverse A

using cltn2-left-inverse [of A] and cltn2.inv-equality

by simp

lemmas cltn2-inverse-id [simp] = cltn2.inv-one [simplified]
and cltn2-inverse-compose = cltn2.inv-mult-group [simplified)

7.4.2 As a group action

lemma apply-cltn2-id [simp|: apply-clin2 p clin2-id = p
proof —
from matrix-id-invertible and apply-cltn2-right-abs
have apply-clin2 p cltn2-id = proj2-abs (proj2-rep p v+ mat 1)
unfolding cltn2-id-def
by auto
thus apply-cltn2 p cltn2-id = p
by (simp add: vector-matrix-mul-rid proj2-abs-rep)
qed

lemma apply-cltn2-compose:
apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (cltn2-compose A B)
proof —
from rep-mult-rep-non-zero and cltn2-rep-invertible and apply-clin2-abs
have apply-clin2 (apply-clin2 p A) (cltn2-abs (cltn2-rep B))
= proj2-abs ((proj2-rep p vx clin2-rep A) vx cltn2-rep B)
unfolding apply-cltn2-def [of p A]
by simp
hence apply-cltn2 (apply-cltn2 p A) B
= proj2-abs (proj2-rep p vx (cltn2-rep A *x cltn2-rep B))
by (simp add: cltn2-abs-rep vector-matrix-mul-assoc)

from cltn2-rep-invertible and invertible-mult
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have invertible (cltn2-rep A xx cltn2-rep B) by auto

with apply-cltn2-right-abs

have apply-cltn2 p (cltn2-compose A B)
= proj2-abs (proj2-rep p vx (cltn2-rep A *x cltn2-rep B))
unfolding cltn2-compose-def
by simp

with apply-cltn2 (apply-cltn2 p A) B
= proj2-abs (proj2-rep p vx (cltn2-rep A *x cltn2-rep B)))

show apply-cltn2 (apply-cltn2 p A) B = apply-clin2 p (clin2-compose A B)
by simp

qed

interpretation cltn2:
action (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|) apply-clin2
proof
let ?G = (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
fix p
show apply-cltn2 p 1,5 = p by simp
fix A B
have apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (A ®,g B)
by simp (rule apply-cltn2-compose)
thus A € carrier G A B € carrier ?G
— apply-clin2 (apply-cltn2 p A) B = apply-clin2 p (A ®,g B)

qed

definition cltn2-transpose :: cltn2 = cltn2 where
cltn2-transpose A = cltn2-abs (transpose (cltn2-rep A))

definition apply-cltn2-line :: proj2-line = cltn2 = proj2-line where
apply-cltn2-line | A
£ P2L (apply-cltn2 (L2P 1) (cltn2-transpose (cltn2-inverse A)))

lemma cltn2-transpose-abs:
assumes invertible M
shows cltn2-transpose (cltn2-abs M) = cltn2-abs (transpose M)
proof —
from (invertible M) and transpose-invertible have invertible (transpose M) by auto

from (invertible M) and cltn2-rep-abs2
obtain k where k # 0 and cltn2-rep (cltn2-abs M) = k xgr M by auto

from (cltn2-rep (cltn2-abs M) = k xg M)

have transpose (clin2-rep (cltn2-abs M)) = k *g transpose M
by (simp add: transpose-scalar)

with (k # 0) and (invertible (transpose M))

show clin2-transpose (clin2-abs M) = cltn2-abs (transpose M)
unfolding cltn2-transpose-def
by (simp add: clin2-abs-mult)

qed
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lemma cltn2-transpose-compose:
cltn2-transpose (cltn2-compose A B)
= cltn2-compose (cltn2-transpose B) (cltn2-transpose A)
proof —
from cltn2-rep-invertible
have invertible (cltn2-rep A) and invertible (cltn2-rep B)
by simp-all
with transpose-invertible
have invertible (transpose (cltn2-rep A))
and invertible (transpose (cltn2-rep B))
by auto

from (invertible (cltn2-rep A)) and (invertible (cltn2-rep B))
and invertible-mult
have invertible (cltn2-rep A *x cltn2-rep B) by auto
with (invertible (clin2-rep A xx clin2-rep B)) and cltn2-transpose-abs
have cltn2-transpose (cltn2-compose A B)
= cltn2-abs (transpose (cltn2-rep A xx cltn2-rep B))
unfolding cltn2-compose-def
by simp
also have ... = cltn2-abs (transpose (cltn2-rep B) xx transpose (cltn2-rep A))
by (simp add: matrix-transpose-mul)
also from (invertible (transpose (clin2-rep B)))
and (invertible (transpose (clin2-rep A)))
and cltn2-compose-abs
have ... = clin2-compose (clin2-transpose B) (clin2-transpose A)
unfolding cltn2-transpose-def
by simp
finally show cltn2-transpose (cltn2-compose A B)
= cltn2-compose (cltn2-transpose B) (cltn2-transpose A) .
qed

lemma cltn2-transpose-transpose: cltn2-transpose (cltn2-transpose A) = A
proof —
from cltn2-rep-invertible have invertible (cltn2-rep A) by simp
with transpose-invertible have invertible (transpose (cltn2-rep A)) by auto
with cltn2-transpose-abs [of transpose (cltn2-rep A)]
have
cltn2-transpose (cltn2-transpose A) = clin2-abs (transpose (transpose (clin2-rep A)))
unfolding cltn2-transpose-def [of A]
by simp
with cltn2-abs-rep and transpose-transpose [of cltn2-rep Al
show cltn2-transpose (cltn2-transpose A) = A by simp
qed

lemma cltn2-transpose-id [simp)]: cltn2-transpose cltn2-id = cltn2-id

using cltn2-transpose-abs
unfolding cltn2-id-def
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by (simp add: transpose-mat matrix-id-invertible)

lemma apply-cltn2-line-id [simp]: apply-cltn2-line I clin2-id = |
unfolding apply-cltn2-line-def
by simp

lemma apply-cltn2-line-compose:
apply-cltn2-line (apply-cltn2-line | A) B
= apply-cltn2-line | (cltn2-compose A B)
proof —
have cltn2-compose
(cltn2-transpose (clin2-inverse A)) (cltn2-transpose (cltn2-inverse B))
= cltn2-transpose (cltn2-inverse (cltn2-compose A B))
by (simp add: cltn2-transpose-compose cltn2-inverse-compose)
thus apply-cltn2-line (apply-cltn2-linel A) B
= apply-cltn2-line | (cltn2-compose A B)
unfolding apply-cltn2-line-def
by (simp add: apply-cltn2-compose)
qed

interpretation cltn2-line:
action
(|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
apply-cltn2-line
proof
let ?G = (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
fix |
show apply-cltn2-line I 1,5 = | by simp
fix AB
have apply-clin2-line (apply-cltn2-line | A) B
= apply-cltn2-line | (A ®,5 B)
by simp (rule apply-cltn2-line-compose)
thus A € carrier G A B € carrier ?G
— apply-cltn2-line (apply-clin2-line | A) B
= apply-cltn2-line | (A @, B)

qed
lemmas apply-cltn2-inv [simp] = cltn2.act-act-inv [simplified)
lemmas apply-cltn2-line-inv [simp| = cltn2-line.act-act-inv [simplified|

lemma apply-cltn2-line-alt-def:
apply-cltn2-line I A
= proj2-line-abs (cltn2-rep (clin2-inverse A) xv proj2-line-rep 1)
proof —
have invertible (cltn2-rep (clin2-inverse A)) by (rule clin2-rep-invertible)
hence invertible (transpose (cltn2-rep (cltn2-inverse A)))
by (rule transpose-invertible)
hence
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apply-clin2 (L2P 1) (clin2-transpose (clin2-inverse A))
= proj2-abs (proj2-rep (L2P 1) vx transpose (cltn2-rep (cltn2-inverse A)))
unfolding cltn2-transpose-def
by (rule apply-cltn2-right-abs)

hence apply-cltn2 (L2P 1) (cltn2-transpose (cltn2-inverse A))
= proj2-abs (cltn2-rep (cltn2-inverse A) xv proj2-line-rep I)
unfolding proj2-line-rep-def
by simp

thus apply-cltn2-line [ A
= proj2-line-abs (cltn2-rep (cltn2-inverse A) *v proj2-line-rep )
unfolding apply-cltn2-line-def and proj2-line-abs-def ..

qed

lemma rep-mult-line-rep-non-zero: clin2-rep A xv proj2-line-rep | # 0
using proj2-line-rep-non-zero and cltn2-rep-invertible
and invertible-times-eq-zero
by auto

lemma apply-cltn2-incident:
proj2-incident p (apply-cltn2-line | A)
«— proj2-incident (apply-cltn2 p (cltn2-inverse A)) 1
proof —
have proj2-rep p v cltn2-rep (cltn2-inverse A) # 0
by (rule rep-mult-rep-non-zero)
with proj2-rep-abs2
obtain j where j # 0
and proj2-rep (proj2-abs (proj2-rep p vx cltn2-rep (cltn2-inverse A)))
= j *g (proj2-rep p vx clin2-rep (cltn2-inverse A))
by auto

let ?v = cltn2-rep (cltn2-inverse A) xv proj2-line-rep
have ?v # 0 by (rule rep-mult-line-rep-non-zero)
with proj2-line-rep-abs [of ?v]
obtain k where k # 0
and proj2-line-rep (proj2-line-abs ?v) = k g ?v
by auto
hence proj2-incident p (apply-cltn2-line | A)
> proj2-rep p - (cltn2-rep (cltn2-inverse A) v proj2-line-rep 1) = 0
unfolding proj2-incident-def and apply-cltn2-line-alt-def
by (simp add: dot-scaleR-mult)
also from dot-Imul-matrix [of proj2-rep p cltn2-rep (cltn2-inverse A)]
have
... < (proj2-rep p vx cltn2-rep (cltn2-inverse A)) -« proj2-line-rep | = 0
by simp
also from ¢ # 0)
and (proj2-rep (proj2-abs (proj2-rep p v cltn2-rep (cltn2-inverse A)))
= j xR (proj2-rep p vx cltn2-rep (cltn2-inverse A)))
have ... «— proj2-incident (apply-cltn2 p (cltn2-inverse A)) 1
unfolding proj2-incident-def and apply-cltn2-def
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by (simp add: dot-scaleR-mult)
finally show ?thesis .
qed

lemma apply-cltn2-preserve-incident [iff]:
proj2-incident (apply-cltn2 p A) (apply-clin2-line | A)
+— proj2-incident p |
by (simp add: apply-cltn2-incident)

lemma apply-cltn2-preserve-set-Col:
assumes proj2-set-Col S
shows proj2-set-Col {apply-cltn2 p C | p.p € S}
proof —
from (proj2-set-Col S)
obtain | where V p€S. proj2-incident p I unfolding proj2-set-Col-def ..
hence V g € {apply-cltn2 p C | p.p € S}.
proj2-incident q (apply-cltn2-line | C)
by auto
thus proj2-set-Col {apply-cltn2 p C | p.p € S}
unfolding proj2-set-Col-def ..
qed

lemma apply-cltn2-injective:
assumes apply-cltn2 p C = apply-clin2 q C
shows p =g
proof —
from (apply-cltn2 p C = apply-cltn2 q C)
have apply-cltn2 (apply-cltn2 p C) (cltn2-inverse C)
= apply-cltn2 (apply-cltn2 q C) (cltn2-inverse C)
by simp
thus p = q by simp
qed

lemma apply-cltn2-line-injective:
assumes apply-clin2-line | C = apply-cltn2-line m C
shows | = m
proof —
from (apply-cltn2-line | C = apply-cltn2-line m C)
have apply-cltn2-line (apply-cltn2-line | C) (cltn2-inverse C)
= apply-cltn2-line (apply-cltn2-line m C) (cltn2-inverse C)
by simp
thus | = m by simp
qed

lemma apply-cltn2-line-unique:
assumes p # g and proj2-incident p | and proj2-incident q |
and proj2-incident (apply-cltn2 p C) m
and proj2-incident (apply-cltn2 q C) m
shows apply-cltn2-line | C =m
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proof —
from (proj2-incident p )
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line | C) by simp

from (proj2-incident q |)
have proj2-incident (apply-cltn2 q C) (apply-cltn2-line | C) by simp

from (p # ¢ and apply-cltn2-injective [of p C g]

have apply-clin2 p C # apply-cltn2 q C by auto

with (proj2-incident (apply-cltn2 p C) (apply-cltn2-line 1 C))
and (proj2-incident (apply-cltn2 q C) (apply-cltn2-line | C))
and (proj2-incident (apply-cltn2 p C)
and (proj2-incident (apply-cltn2 q C)
and proj2-incident-unique

show apply-cltn2-line I C = m by fast

qed

m)
m)

lemma apply-cltn2-unigue:
assumes | # m and proj2-incident p | and proj2-incident p m
and proj2-incident q (apply-cltn2-line I C)
and proj2-incident q (apply-cltn2-line m C)
shows apply-cltn2 p C = q
proof —
from (proj2-incident p )
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line | C) by simp

from (proj2-incident p m)
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C) by simp

from ( # m) and apply-cltn2-line-injective [of | C m]

have apply-cltn2-line | C # apply-cltn2-line m C by auto

with (proj2-incident (apply-cltn2 p C) (apply-cltn2-line I C))
and (proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C))
and (proj2-incident q (apply-cltn2-line | C))
and (proj2-incident q (apply-clin2-line m C))
and proj2-incident-unique

show apply-cltn2 p C = q by fast

qed

7.4.3 Parts of some Statements from [1]

lemma statement52-existence:
fixes a :: proj2°3 and a3 :: proj2
assumes proj2-no-3-Col (insert a3 (range (op $ a)))
shows 3 A. apply-cltn2 (proj2-abs (vector [1,1,1])) A = a3 A
(V j. apply-cltn2 (proj2-abs (basis j)) A = a$j)
proof —
let ?v = proj2-rep a3
let ?B = proj2-rep “ range (op $ a)
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from (proj2-no-3-Col (insert a3 (range (op $ a)))
have card (insert a3 (range (op $ a))) = 4 unfolding proj2-no-3-Col-def ..

from card-image-le [of UNIV op $ a|
have card (range (op $ a)) < 3 by simp
with card-insert-if [of range (op $ a) a3]
and (card (insert a3 (range (op $a))) = 4
have a3 ¢ range (op $ a) by auto
hence (insert a3 (range (op $ a))) — {a3} = range (op $ a) by simp
with (proj2-no-3-Col (insert a3 (range (op $ a))))
and proj2-no-3-Col-span [of insert a3 (range (op $ a)) a3]
have span ?B = UNIV by simp

from card-suc-ge-insert [of a3 range (op $ a)]

and (card (insert a3 (range (op $a))) = 4

and (card (range (op $a)) < 3)
have card (range (op $ a)) = 3 by simp
with card-image [of proj2-rep range (op $ a)]

and proj2-rep-inj

and subset-inj-on
have card ?B = 3 by auto
hence finite ?B by simp
with (span ?B = UNIV) and span-finite [of ?B]
obtain ¢ where () w € ?B. (c w) *g w) = ?v by (auto simp add: scalar-equiv)
let ?C = yx i. ¢ (proj2-rep (a$i)) g (proj2-rep (a$i))
let ?A = cltn2-abs 2C

from proj2-rep-inj and @3 ¢ range (op $ a)) have ?v ¢ ?B
unfolding inj-on-def
by auto

have V i. ¢ (proj2-rep (a$i)) # 0
proof
fix i
let ?Bi = proj2-rep * (range (op $ a) — {a$i})

have a$i € insert a3 (range (op $ a)) by simp
have proj2-rep (a$i) € ?B by auto

from image-set-diff [of proj2-rep] and proj2-rep-inj
have ?Bi = ?B — {proj2-rep (a$i)} by simp
with setsum-diffl [of ?B A w. (c w) *g w)
and (finite ?B)
and (proj2-rep (a$i) € ?B)
have () w € ?Bi. (c w) xg w) =
(X w e ?B. (cw) *g w) — c (proj2-rep (a$i)) xgr proj2-rep (a$i)
by simp
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from @3 ¢ range (op $ a)) have a3 # a$i by auto

hence insert a3 (range (op $ a)) — {a$i} =
insert a3 (range (op $ a) — {a$i}) by auto

hence proj2-rep * (insert a3 (range (op $ a)) — {a$i}) = insert 2v ?Bi
by simp

moreover from (proj2-no-3-Col (insert a3 (range (op $ a))))
and a$i € insert a3 (range (op $ a)))

have span (proj2-rep * (insert a3 (range (op $ a)) — {a$i})) = UNIV
by (rule proj2-no-3-Col-span)

ultimately have span (insert ?v ?Bi) = UNIV by simp

from (?Bi = ?B — {proj2-rep (a$i)})
and (proj2-rep (a$i) € ?B)
and (card ?B = 3)
have card ?Bi = 2 by (simp add: card-gt-0-diff-singleton)
hence finite ?Bi by simp
with (card ?Bi = 2) and card-ge-dim [of ?Bi] have dim ?Bi < 2 by simp
hence dim (span ?Bi) < 2 by (subst dim-span)
with dim-univ [where 'n = 3] have span ?Bi # UNIV by auto
with (span (insert ?v ?Bi) = UNIV) and in-span-eq
have ?v & span ?Bi by auto

{ assume c (proj2-rep (a$i)) =0
with (Y w € ?Bi. (cw) *g w) =
(Y w e ?B. (cw) *g w) — c (proj2-rep (a$i)) *r proj2-rep (a$i))
and (Y w € ?B. (cw) xg w) = ?0)
have ?v = (Y w € ?Bi. (c w) *g w)
by simp
with span-finite [of ?Bi] and (finite ?Bi)
have ?v € span ?Bi by (simp add: scalar-equiv) auto
with (?v ¢ span ?Bi) have False .. }
thus ¢ (proj2-rep (a$i)) # 0 ..
qed
hence V we?B.cw # 0
unfolding image-def
by auto

from Cart-nth-inverse
have rows ?C = (A w. (cw) *g w) * ?B
unfolding rows-def
and row-def
and image-def
by auto

have V x. x € span (rows ?C)
proof
fix x :: real”3
from (finite ?B) and span-finite [of ?B| and (span ?B = UNIV)
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obtain ub where (Y we?B. (ub w) xg w) = x by (auto simp add: scalar-equiv)
have V we?B. (ub w) xg w € span (rows ?C)
proof
fix w
assume w € 7B
with span-inc [of rows ?C] and (rows ?C = image (A w. (c w) *g w) ?B)
have (c w) *g w € span (rows ?C) by auto
with span-mul [of (¢ w) xg w rows ?C (ub w)/(c w)]
have ((ubw)/(cw)) *g ((c w) *xg w) € span (rows ?C)
by (simp add: scalar-equiv)
with vV we?B.cw # 0) and (w € ?B)
show (ub w) g w € span (rows ?C) by auto
qed
with span-setsum [of ?B A w. (ub w) xg w| and (finite ?B)
have (Y we?B. (ub w) xg w) € span (rows ?C) by simp
with () we?B. (ub w) *g w) = x) show x € span (rows ?C) by simp
qed
hence span (rows ?C) = UNIV by auto
with matrix-left-invertible-span-rows [of ?C|
have 3 C’. C'#x ?C = mat 1 ..
with left-invertible-iff-invertible
have invertible ?C ..

have (vector [1,1,1] :: real’3) # 0
unfolding vector-def
by (simp add: Cart-eq forall-3)
with apply-cltn2-abs and (invertible ?C)
have apply-cltn2 (proj2-abs (vector [1,1,1])) ?A =
proj2-abs (vector [1,1,1] vx ?C)
by simp
from inj-on-iff-eq-card [of UNIV op $ a] and (card (range (op $ a)) = 3)
have inj (op $ a) by simp
from exhaust-3 have V i::3. (vector [1::real,1,1])$i = 1
unfolding vector-def
by auto
with vector-matrix-row [of vector [1,1,1] ?C]
have (vector [1,1,1]) v« ?C =
(Y ieUNIV. (c (proj2-rep (a$i))) *r (proj2-rep (a$i)))
by simp
also from setsum-reindex
[of op $ a UNIV A x. (c (proj2-rep x)) =g (proj2-rep x)]
and (nj (op $ a))
have ... = () x&(range (op $ a)). (c (proj2-rep x)) *r (proj2-rep x))
by simp
also from setsum-reindex
[of proj2-rep range (op $ a) A w. (c w) *g w]
and proj2-rep-inj and subset-inj-on [of proj2-rep UNIV range (op $ a)]
have ... = (Y we?B. (c w) *g w) by simp
also from (Y w € ?B. (c w) *g w) = ?v) have ... = ?v by simp
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finally have (vector [1,1,1]) v+ ?C = ?v.
with (apply-cltn2 (proj2-abs (vector [1,1,1])) ?A =
proj2-abs (vector [1,1,1] v ?C))
have apply-cltn2 (proj2-abs (vector [1,1,1])) ?A = proj2-abs ?v by simp
with proj2-abs-rep have apply-cltn2 (proj2-abs (vector [1,1,1])) ?A = a3
by simp
have V j. apply-cltn2 (proj2-abs (basis j)) ?A = a$j
proof
fix j
have ((basis j)::real"3) # 0 by (simp add: Cart-eq)
with apply-cltn2-abs and (invertible ?C)
have apply-clin2 (proj2-abs (basis j)) ?A = proj2-abs (basis j vx ?C)
by simp

have V ic(UNIV—{j}).
((basis j)$i * c (proj2-rep (a$i))) *r (proj2-rep (a$i)) = 0
by simp
with setsum-mono-zero-left [of UNIV {j}
A i. ((basis j)$i * ¢ (proj2-rep (a$i))) xgr (proj2-rep (a$i))]
and vector-matrix-row [of basis j ?C]
have (basis j) v« ?C = ?C$j by (simp add: scalar-equiv)
hence (basis j) v« ?C = ¢ (proj2-rep (a$j)) *r (proj2-rep (a$j)) by simp
with proj2-abs-mult-rep and v i. ¢ (proj2-rep (a$i)) # 0)
and apply-cltn2 (proj2-abs (basis j)) ?A = proj2-abs (basis j vx ?C))
show apply-cltn2 (proj2-abs (basis j)) ?A = a$j
by simp
qed
with (@apply-cltn2 (proj2-abs (vector [1,1,1])) ?A = a3)
show 3 A. apply-clin2 (proj2-abs (vector [1,1,1])) A = a3 A
(V j. apply-cltn2 (proj2-abs (basis j)) A = a$j)
by auto
qed

lemma statement53-existence:
fixes p :: proj2°4"2
assumes V i. proj2-no-3-Col (range (op $ (p$i)))
shows 3 C.V j. apply-cltn2 (p$0$j) C = p$1$j
proof —
let ?q = x i. x j::3. p$i $ (of-int (Rep-bitl j))
let ?D = x i. € D. apply-cltn2 (proj2-abs (vector [1,1,1])) D = p$i$3
A (V j. apply-cltn2 (proj2-abs (basis j')) D = ?q%i$;’)
have V i. apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$i) = p$i$3
A (V j. apply-cltn2 (proj2-abs (basis j')) (?D$i) = 2q$i%j’)
proof
fix i
have range (op $ (p$i)) = insert (p$i$3) (range (op $ (79%i)))
proof
show range (op $ (p$i)) D insert (p$i$3) (range (op $ (?q%i))) by auto
show range (op $ (p$i)) C insert (p$i$3) (range (op $ (?9%i)))
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proof
fix r
assume r € range (op $ (p$i))
then obtain j where r = p$i$j by auto
with eg-3-or-0f-3 [of J]
show r € insert (p$i$3) (range (op $ (?9%i))) by auto
qed
qed
moreover from (Y i. proj2-no-3-Col (range (op $ (p$i)))
have proj2-no-3-Col (range (op $ (p$i))) ..
ultimately have proj2-no-3-Col (insert (p$i$3) (range (op $ (?9%i))))
by simp
hence 3 D. apply-cltn2 (proj2-abs (vector [1,1,1])) D = p$i$3
A (V j'. apply-cltn2 (proj2-abs (basis j')) D = ?q%i$;’)
by (rule statement52-existence)
with somel-ex [of A D. apply-cltn2 (proj2-abs (vector [1,1,1])) D = p$i$3
A (V j. apply-cltn2 (proj2-abs (basis j')) D = 2q%i$;j’)]
show apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$i) = p$i$3
A (V j. apply-cltn2 (proj2-abs (basis j')) (?D$i) = ?q$i%j’)
by simp
qed
hence apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$0) = p$0$3
and apply-clin2 (proj2-abs (vector [1,1,1])) (?D$1) = p$1$3
and V j'. apply-cltn2 (proj2-abs (basis j')) (?D$0) = ?2q$0$;’
and V j'. apply-clin2 (proj2-abs (basis j')) (?D$1) = ?q$1$j’
by simp-all

let ?C = cltn2-compose (cltn2-inverse (?D$0)) (?D$1)
have V j. apply-cltn2 (p$0$%j) ?C = p$1$j
proof
fix j
show apply-cltn2 (p$0$j) ?C = p$19$j
proof cases
assume j = 3
with apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$0) = p$0$3)
and cltn2.act-inv-iff
have
apply-cltn2 (p$0$j) (cltn2-inverse (?D$0)) = proj2-abs (vector [1,1,1])
by simp
with apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$1) = p$1$3)
and (j =3
and cltn2.act-act [of cltn2-inverse (?D$0) ?D$1 p$0%j]
show apply-cltn2 (p$0%j) ?C = p$1$j by simp
next
assume j # 3
with eg-3-or-0f-3 obtain j’ :: 3 where j = of-int (Rep-bit1 j') by auto
with (V j. apply-cltn2 (proj2-abs (basis j')) (?D$0) = ?9$0%j"
and (Y j. apply-cltn2 (proj2-abs (basis j')) (?D$1) = ?q$1$j"
have p$0$j = apply-clin2 (proj2-abs (basis j')) (?D$0)
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and p$1$j = apply-clin2 (proj2-abs (basis j')) (?D$1)
by simp-all
from (p$0$j = apply-clin2 (proj2-abs (basis j')) (?D$0))
and cltn2.act-inv-iff
have apply-clin2 (p$0$j) (cltn2-inverse (?D$0)) = proj2-abs (basis j’)
by simp
with (p$1$j = apply-cltn2 (proj2-abs (basis j')) (?D$1))
and cltn2.act-act [of cltn2-inverse (?D$0) ?D$1 p$0%j]
show apply-cltn2 (p$03j) ?C = p$1$;j by simp
qed
qed
thus 3 C.V j. apply-cltn2 (p$0%j) C = p$19j by (rule exI [of - 2C])
qed

lemma apply-cltn2-linear:
assumes j g v + k *g w # 0
shows j g (v v cltn2-rep C) + k xg (w v* cltn2-rep C) # 0
(is 2u #0)
and apply-clin2 (proj2-abs (j xg v + k *xg w)) C
= proj2-abs (j g (v v cltn2-rep C) + k *g (w v cltn2-rep C))
proof —
have ?u = (j *g v + k *g w) v* cltn2-rep C
by (simp only: vector-matrix-left-distrib scalar-vector-matrix-assoc)
with (g v 4+ k *xg w # 0) and non-zero-mult-rep-non-zero
show ?u # 0 by simp

from (?u = (j *g v + k *g w) v* cltn2-rep C
and(j*Rv—l—k*Rw;éO)
and apply-cltn2-left-abs
show apply-cltn2 (proj2-abs (j *g v + k *g w)) C = proj2-abs ?u
by simp
qed

lemma apply-cltn2-imp-mult:

assumes apply-clin2 p C =g

shows 3 k. k # 0 A proj2-rep p vx cltn2-rep C = k *g proj2-rep q
proof —

have proj2-rep p v cltn2-rep C # 0 by (rule rep-mult-rep-non-zero)

from @apply-cltn2 p C = ¢
have proj2-abs (proj2-rep p vx clin2-rep C) = g by (unfold apply-cltn2-def)
hence proj2-rep (proj2-abs (proj2-rep p vx cltn2-rep C)) = proj2-rep q
by simp
with (proj2-rep p v cltn2-rep C # 0) and proj2-rep-abs2 [of proj2-rep p v cltn2-rep
C]
have 3 j. j # 0 A proj2-rep q = j *g (proj2-rep p vx cltn2-rep C) by simp
then obtain j where j # 0
and proj2-rep q = j *g (proj2-rep p vx cltn2-rep C) by auto
hence proj2-rep p vx cltn2-rep C = (1/j) *g proj2-rep q
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by (simp add: field-simps)
with § # 0)
show 3 k. k # 0 A proj2-rep p v* cltn2-rep C = k *g proj2-rep q
by (simp add: exI [of - 1/]])
qed

lemma statement55:
assumes p # g
and apply-clin2 p C =g
and apply-cltn2 qC =p
and proj2-incident p |
and proj2-incident q |
and proj2-incident r |
shows apply-cltn2 (apply-clin2 r C) C =r
proof cases
assume r = p
with @apply-cltn2 p C = q) and @apply-cltn2 g C = p)
show apply-cltn2 (apply-cltn2 r C) C = r by simp
next
assume r # p

from @apply-cltn2 p C = ¢) and apply-cltn2-imp-mult [of p C g]
obtain i where i # 0 and proj2-rep p v cltn2-rep C = i *g proj2-rep q
by auto

from @apply-cltn2 q C = p) and apply-cltn2-imp-mult [of q C p]
obtain j where j # 0 and proj2-rep q v* cltn2-rep C = j xg proj2-rep p
by auto

from (p # @
and (proj2-incident p )
and (proj2-incident q I)
and (proj2-incident r I)
and proj2-incident-iff
have r = p V (3 k. r = proj2-abs (k xg proj2-rep p + proj2-rep q))
by fast
with (v # p)
obtain k where r = proj2-abs (k xg proj2-rep p + proj2-rep q) by auto

from (p # ¢ and proj2-rep-dependent [of k p 1 q]
have k *g proj2-rep p + proj2-rep q # 0 by auto
with (r = proj2-abs (k xg proj2-rep p + proj2-rep q))
and apply-cltn2-linear [of k proj2-rep p 1 proj2-rep q]
have k xg (proj2-rep p vx cltn2-rep C) + proj2-rep q v cltn2-rep C # 0
and apply-cltn2 r C
= proj2-abs
(k xr (proj2-rep p vx cltn2-rep C) + proj2-rep q vx cltn2-rep C)
by simp-all
with (proj2-rep p vx cltn2-rep C = i xg proj2-rep q)
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and (proj2-rep q vx cltn2-rep C = j g proj2-rep p)
have (k i) xg proj2-rep q + j *g proj2-rep p # 0
and apply-clin2 v C
= proj2-abs ((k = i) *g proj2-rep q + j xg proj2-rep p)
by simp-all
with apply-cltn2-linear
have apply-cltn2 (apply-cltn2 r C) C
= proj2-abs
((k i) *g (proj2-rep q v cltn2-rep C)
+ j xR (proj2-rep p vx cltn2-rep C))
by simp
with (proj2-rep p vx cltn2-rep C = i xg proj2-rep q)
and (proj2-rep q vx cltn2-rep C = j xg proj2-rep p)
have apply-clin2 (apply-clin2 r C) C
= proj2-abs ((k = i j) g proj2-rep p + (j * i) xg proj2-rep q)
by simp
also have ... = proj2-abs ((i * j) xg (k *g proj2-rep p + proj2-rep q))
by (simp add: algebra-simps)
also from ( # 0) and (j # 0) and proj2-abs-mult
have ... = proj2-abs (k xg proj2-rep p + proj2-rep q) by simp
also from (r = proj2-abs (k xg proj2-rep p + proj2-rep q))
have ... =r by simp
finally show apply-cltn2 (apply-cltn2 rC) C =r.
qed

7.5 Cross ratios

definition cross-ratio :: proj2 = proj2 = proj2 = proj2 = real where
cross-ratio p q r s = proj2-Col-coeff p q s / proj2-Col-coeff p q r

definition cross-ratio-correct :: proj2 = proj2 = proj2 = proj2 = bool where
cross-ratio-correct p g r s =
proj2-set-Col {p,q,r,s} N\p#£qANr#£pANsFpAr#q

lemma proj2-Col-coeff-abs:
assumes p # gandj # 0
shows proj2-Col-coeff p q (proj2-abs (i g proj2-rep p + j *g proj2-rep q))
(is proj2-Col-coeffp q ?r = i/j)
proof —
from ( # 0)
and proj2-abs-mult [of 1/ i *g proj2-rep p + j *g proj2-rep g
have ?r = proj2-abs ((i/]) *r proj2-rep p + proj2-rep q)
by (simp add: scaleR-right-distrib)

from (p # ¢ and proj2-rep-dependent [of - p 1 q|

have (i/j) *g proj2-rep p + proj2-rep q # 0 by auto

with (?r = proj2-abs ((i/j) *gr proj2-rep p + proj2-rep q))
and proj2-rep-abs2
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obtain k where k # 0
and proj2-rep ?r = k xg ((i/]) *gr proj2-rep p + proj2-rep q)
by auto
hence (kxi/j) *g proj2-rep p + k =g proj2-rep q — proj2-rep ?r = 0
by (simp add: scaleR-right-distrib)
hence 3 [. (kxi/j) xg proj2-rep p + k g proj2-rep q + 1 *g proj2-rep ?r = 0
A (kxi/j #0Vk#0VI#0)
by (simp add: exI [of - —1])
hence proj2-Col p q ?r by (unfold proj2-Col-def ) auto

have ?r # p

proof
assume ’r =p
with ((kxi/j) g proj2-rep p + k xg proj2-rep q — proj2-rep ?r = 0)
have (kxi/j — 1) xg proj2-rep p + k g proj2-rep g = 0

by (simp add: algebra-simps)

with & # 0) and proj2-rep-dependent have p = g by simp
with (p # g show False ..

qed

with (proj2-Col p q ?r and p # q)

have ?r = proj2-abs (proj2-Col-coeff p q ?r xR proj2-rep p + proj2-rep q)
by (rule proj2-Col-coeff )

with (p # ¢ and (?r = proj2-abs ((i/]) *g proj2-rep p + proj2-rep q))
and proj2-Col-coeff-unique

show proj2-Col-coeff p q ?r = i/j by simp

qed

lemma proj2-set-Col-coeff:
assumes proj2-set-Col S and {p,q,r} C Sandp #gandr #p
shows r = proj2-abs (proj2-Col-coeff p q v *g proj2-rep p + proj2-rep q)
(is r = proj2-abs (?i *g ?u + ?v))
proof —
from {p,q,r} C S and (proj2-set-Col S)
have proj2-set-Col {p,q,r} by (rule proj2-subset-Col)
hence proj2-Col p q r by (subst proj2-Col-iff-set-Col )
with (p # ¢ and  # p) and proj2-Col-coeff
show r = proj2-abs (?i *xg ?u + ?v) by simp
qed

lemma cross-ratio-abs:
fixes u v :: real’3 and i j kI :: real
assumes u# # 0 and v # 0 and proj2-abs u # proj2-abs v
andj # Oand [ # 0
shows cross-ratio (proj2-abs u) (proj2-abs v)
(proj2-abs (i xg u + j *xg v))
(proj2-abs (k xg u + 1 *g v))
=jxk/ (ix])
(is cross-ratio ?p ?q ?r ?s = -)
proof —
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from (u # 0) and proj2-rep-abs2
obtain ¢ where g # 0 and proj2-rep ?p = g *g u by auto

from (@ # 0) and proj2-rep-abs2

obtain /s where I # 0 and proj2-rep ?q = h xg v by auto

with (¢ # 0) and (proj2-rep ?p = g *g w)

have ?r = proj2-abs ((i/g) *g proj2-rep ?p + (j/h) *g proj2-rep ?q)
and ?s = proj2-abs ((k/g) *g proj2-rep ?p + (1/h) *g proj2-rep ?q)
by (simp-all add: field-simps)

with (?p # ?¢) and (h # 0) and (j # 0) and « # 0> and proj2-Col-coeff-abs

have proj2-Col-coeff ?p ?q ?r = hxi/ (gx))
and proj2-Col-coeff ?p ?q ?s = hxk/ (g*])
by simp-all

with (¢ # 0) and h # 0)

show cross-ratio ?p ?q ?r ?s = jxk/ (ix])
by (unfold cross-ratio-def) (simp add: field-simps)

qed

lemma cross-ratio-abs2:
assumes p # g
shows cross-ratio p g
(proj2-abs (i g proj2-rep p + proj2-rep q))
(proj2-abs (j *g proj2-rep p + proj2-rep q))
= ]/1
(is cross-ratiop q ?r ?2s = -)
proof —
let ?u = proj2-rep p
let ?v = proj2-rep q
have ?u # 0 and ?v # 0 by (rule proj2-rep-non-zero)+

have proj2-abs ?u = p and proj2-abs ?v = q by (rule proj2-abs-rep )+
with (?u # 0) and (?v # 0) and (p # ¢ and cross-ratio-abs [of ?u ?v 111 j]
show cross-ratio p q ?r ?s = j/i by simp

qed

lemma cross-ratio-correct-cltn2:
assumes cross-ratio-correct p q r s
shows cross-ratio-correct (apply-cltn2 p C) (apply-clin2 g C)
(apply-cltn2 r C) (apply-cltn2 s C)
(is cross-ratio-correct ?pC ?qC ?rC ?sC)
proof —
from (cross-ratio-correct p q 1 s)
have proj2-set-Col {p,q,r,5}
andp #gandr#pands #pandr # g

by (unfold cross-ratio-correct-def) simp-all
have {apply-cltn2 t C | t. t € {p,q,r,s}} = {?pC,2qC,2rC,?sC} by auto

with (proj2-set-Col {p,q,r,s})
and apply-cltn2-preserve-set-Col [of {p,q,r,5} C]
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have proj2-set-Col {?pC,?qC,?rC,?sC} by simp

from (p # ¢ and (r # p) and (s # p) and  # @ and apply-cltn2-injective
have ?pC # ?qC and ?rC # ?pC and ?sC # ?pC and ?rC # ?qC by fast+
with (proj2-set-Col {?pC,?qC,?rC,?sC})
show cross-ratio-correct ?pC ?2qC ?rC ?sC
by (unfold cross-ratio-correct-def ) simp
qed

lemma cross-ratio-cltn2:
assumes proj2-set-Col {p,q,r;s} andp # gand r #p and s # p
shows cross-ratio (apply-clin2 p C) (apply-clin2 q C)
(apply-cltn2 r C) (apply-cltn2 s C)
= cross-ratiop q r s
(is cross-ratio ?pC ?qC ?rC ?sC = -)
proof —
let ?u = proj2-rep p
let ?v = proj2-rep q
let ?i = proj2-Col-coeffp q r
let ?j = proj2-Col-coeff p q s
from (proj2-set-Col {p,q,1,s}) and (p # @) and (r # p) and (s # p)
and proj2-set-Col-coeff
have r = proj2-abs (?i xg 2u + ?v) and s = proj2-abs (?j *g ?u + ?v)
by simp-all

let ?uC = ?u vx cltn2-rep C
let ?0C = ?v v cltn2-rep C
have ?uC # 0 and ?vC # 0 by (rule rep-mult-rep-non-zero)+

have proj2-abs ?uC = ?pC and proj2-abs ?vC = ?qC
by (unfold apply-cltn2-def ) simp-all

from (p # ¢ and apply-cltn2-injective have ?pC # ?qC by fast

from (p # ¢ and proj2-rep-dependent [of - p 1 4]

have ?i xg ?u 4+ ?v # 0 and ?j *g ?u + ?v # 0 by auto

with (r = proj2-abs (?i *g ?u + ?v)) and (s = proj2-abs (?j *g ?u + ?v))
and apply-cltn2-linear [of ?i 2u 1 ?v)
and apply-cltn2-linear [of ?j 2u 1 ?0]

have ?rC = proj2-abs (?i xg ?uC + ?vC)
and ?sC = proj2-abs (?j xg ?uC + ?vC)
by simp-all

with (?uC # 0) and (?vC # 0) and (proj2-abs ?2uC = ?pC)
and (proj2-abs ?vC = ?qC) and (?pC # 290
and cross-ratio-abs [of ?uC ?vC 11 ?i ?j]

have cross-ratio ?pC ?qC ?rC ?sC = ?j/?i by simp

thus cross-ratio ?pC ?qC ?rC ?sC = cross-ratiop q v s
unfolding cross-ratio-def [of pqrs] .

qed
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lemma cross-ratio-unique:
assumes cross-ratio-correct p q r s and cross-ratio-correct p q r t
and cross-ratio p q r s = cross-ratiop q r t
shows s =t
proof —
from (cross-ratio-correct p q r s) and (cross-ratio-correct p q r t)
have proj2-set-Col {p,q,r,s} and proj2-set-Col {p,q,r,t}
andp #gandr#pandr#gands#pandt#p
by (unfold cross-ratio-correct-def) simp-all

let ?u = proj2-rep p
let ?v = proj2-rep q
let ?i = proj2-Col-coeffp q r
let ?j = proj2-Col-coeff p q s
let 7k = proj2-Col-coeff p q t
from (proj2-set-Col {p,q,r,5}) and (proj2-set-Col {p,q,1,t})
and (p # ¢ and r # p) and (s # p) and (¢ # p) and proj2-set-Col-coeff
have r = proj2-abs (?i xg 2u + ?v)
and s = proj2-abs (?j g 2u + ?0v)
and t = proj2-abs (?k xg 2u + ?v)
by simp-all

from (r # ¢) and «r = proj2-abs (?i xg ?u + ?v))
have ?i # 0 by (auto simp add: proj2-abs-rep)
with (cross-ratio p q r s = cross-ratiop q r t)
have ?j = ?k by (unfold cross-ratio-def) simp
with (s = proj2-abs (?j *g ?u + ?v)) and (¢ = proj2-abs (?k *g ?u + ?v))
show s = t by simp
qed

lemma cltn2-three-point-line:
assumes p #gandr #pandr # g
and proj2-incident p | and proj2-incident q | and proj2-incident r |
and apply-clin2 p C = p and apply-cltn2 q C = q and apply-clin2 r C =r
and proj2-incident s |
shows apply-cltn2 s C = s (is ?sC = s)
proof cases
assume s = p
with apply-cltn2 p C = p) show ?sC = s by simp
next
assume s # p

let ?pC = apply-citn2 p C

let ?qC = apply-cltn2 q C

let ?rC = apply-cltn2 v C

from (proj2-incident p I} and (proj2-incident q I) and (proj2-incident r )
and (proj2-incident s I)
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have proj2-set-Col {p,q,r,s} by (unfold proj2-set-Col-def ) auto
with (pp # ¢ and r # p) and (s # p) and v # ¢
have cross-ratio-correct p q r s by (unfold cross-ratio-correct-def ) simp
hence cross-ratio-correct ?2pC ?qC ?rC ?sC
by (rule cross-ratio-correct-clin2)
with (?pC = p) and (?qC = g) and ?rC =1
have cross-ratio-correct p q r ?sC by simp

from (proj2-set-Col {p,q,r,s}) and (p # @) and (r # p) and (s # p)
have cross-ratio ?pC ?qC ?rC ?sC = cross-ratiop q v s
by (rule cross-ratio-clin2)
with (?pC = p) and (?qC = q) and ?rC =1
have cross-ratio p q v ?sC = cross-ratio p q v s by simp
with (cross-ratio-correct p q r 7sC) and (cross-ratio-correct p q v s)
show ?sC = s by (rule cross-ratio-unique)
qed

lemma cross-ratio-equal-clin2:
assumes cross-ratio-correct p q v s
and cross-ratio-correct (apply-cltn2 p C) (apply-clin2 q C)
(apply-cltn2 r C) t
(is cross-ratio-correct ?pC ?2qC ?rC t)
and cross-ratio (apply-cltn2 p C) (apply-cltn2 q C) (apply-cltn2 r C) t
= cross-ratiop q r s
shows t = apply-cltn2 s C (is t = ?sC)
proof —
from (cross-ratio-correct p q r s)
have cross-ratio-correct ?pC ?2qC ?rC ?sC by (rule cross-ratio-correct-cltn2)

from (cross-ratio-correct p q r s)

have proj2-set-Col {p,q,r,s} and p # gand r # p and s # p
by (unfold cross-ratio-correct-def) simp-all

hence cross-ratio ?pC ?qC ?rC ?sC = cross-ratiop q r s
by (rule cross-ratio-cltn2)

with (cross-ratio ?pC ?qC ?rC t = cross-ratiop q r s)

have cross-ratio ?pC ?2qC ?rC t = cross-ratio ?pC ?qC ?rC ?sC by simp

with (cross-ratio-correct ?pC ?2qC ?rC t)
and (cross-ratio-correct ?pC ?qC ?rC ?sC)

show t = ?sC by (rule cross-ratio-unique)

qed

lemma proj2-Col-distinct-coeff-non-zero:
assumes proj2-Colpgrand p #qandr #pand r # g
shows proj2-Col-coeff p q v # 0

proof
assume proj2-Col-coeffp g r =0

from (proj2-Col p q ) and (p # ¢ and  # p)
have r = proj2-abs ((proj2-Col-coeff p q r) *g proj2-rep p + proj2-rep q)
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by (rule proj2-Col-coeff )
with (proj2-Col-coeff p q v = 0) have r = q by (simp add: proj2-abs-rep)
with v # ¢ show Fulse ..
qed

lemma cross-ratio-product:
assumes proj2-Col pgsand p #gand s # p and s # g
shows cross-ratio p q r s * cross-ratio p q s t = cross-ratiop q r t
proof —
from (proj2-Col p g s) and (p # ) and (s # p) and (s # ¢)
have proj2-Col-coeff p q s # 0 by (rule proj2-Col-distinct-coeff-non-zero)
thus cross-ratio p q r s * cross-ratio p q s t = cross-ratiop q r t
by (unfold cross-ratio-def ) simp
qed

lemma cross-ratio-equal-1:
assumes proj2-Colpgrandp #qgandr #pand r # g
shows cross-ratiop grv =1
proof —
from (proj2-Col p g ) and (p # ¢ and « # p) and r # ¢
have proj2-Col-coeff p q r # 0 by (rule proj2-Col-distinct-coeff-non-zero)
thus cross-ratio p q r v = 1 by (unfold cross-ratio-def) simp
qed

lemma cross-ratio-1-equal:
assumes cross-ratio-correct p q v s and cross-ratiop qrs = 1
shows r =s
proof —
from (cross-ratio-correct p g r s)
have proj2-set-Col {p,q,r,s} andp # qandr #pandr # g
by (unfold cross-ratio-correct-def) simp-all

from (proj2-set-Col {p,q,r,5})
have proj2-set-Col {p,q,r}
by (simp add: proj2-subset-Col [of {p,q,r} {p.9.7.5}])
with (p # ¢ and r # p) and (v # @
have cross-ratio-correct p q r r by (unfold cross-ratio-correct-def ) simp

from (proj2-set-Col {p,q,r})
have proj2-Col p q r by (subst proj2-Col-iff-set-Col)
with (p # ¢ and v # p) and * #
have cross-ratio p q v r = 1 by (simp add: cross-ratio-equal-1)
with (cross-ratiop grs =1
have cross-ratio p q v r = cross-ratio p q r s by simp
with (cross-ratio-correct p q r r) and (cross-ratio-correct p q 1 s)
show r = s by (rule cross-ratio-unique)
qed

lemma cross-ratio-swap-34:
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shows cross-ratiop qs v =1 / (cross-ratiop q r s)
by (unfold cross-ratio-def ) simp

lemma cross-ratio-swap-13-24:
assumes cross-ratio-correct p q s and r # s
shows cross-ratio ¥ s p g = cross-ratiop q r s
proof —
from (cross-ratio-correct p q r s)
have proj2-set-Col {p,q,r,;s} andp # gandr #pands #pandr # g
by (unfold cross-ratio-correct-def, simp-all)

have proj2-rep p # 0 (is ?u # 0) and proj2-rep q # 0 (is ?v # 0)
by (rule proj2-rep-non-zero)+

have p = proj2-abs ?u and q = proj2-abs ?v
by (simp-all add: proj2-abs-rep)
with (p # ¢ have proj2-abs ?u # proj2-abs ?v by simp

let ?i = proj2-Col-coeffp q r
let ?j = proj2-Col-coeff p q s
from (proj2-set-Col {p,q,1,s}) and (p # @) and (r # p) and (s # p)
have r = proj2-abs (?i xg 2u + ?v) (is r = proj2-abs ?w)
and s = proj2-abs (?j g 2u + ?v) (is s = proj2-abs ?x)
by (simp-all add: proj2-set-Col-coeff )
with v # s) have ?i # ?j by auto

from (?u # 0) and (?v # 0) and (proj2-abs ?u # proj2-abs ?v)
and dependent-proj2-abs [of ?u ?v - 1]
have ?w # 0 and ?x # 0 by auto

from (r = proj2-abs (?i *g ?u + ?v)) and r # @
have ?i # 0 by (auto simp add: proj2-abs-rep)

have ?w — ?x = (?i — ?j) *g ?u by (simp add: algebra-simps)
with i #£ 7))
have p = proj2-abs (?w — ?x) by (simp add: proj2-abs-mult-rep)

have ?j xg 7w — ?i xg ?x = (?j — ?2i) *g ?v by (simp add: algebra-simps)
with (77 # 7))
have g = proj2-abs (?j xg ?w — ?i xg ?x) by (simp add: proj2-abs-mult-rep)
with ?w # 0) and (?x # 0) and r # s) and (?i # 0) and (v = proj2-abs ?w)
and (s = proj2-abs ?x) and (p = proj2-abs (?w — ?x))
and cross-ratio-abs [of 2w ?x —1 —2i 1 ?j]
have cross-ratio rs p q = ?j / ?i by (simp add: algebra-simps)
thus cross-ratio r s p q = cross-ratiop q r s
by (unfold cross-ratio-def [of p q 5], simp)
qed

lemma cross-ratio-swap-12:
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assumes cross-ratio-correct p q r s and cross-ratio-correct g p r s
shows cross-ratio qprs =1/ (cross-ratiop q rs)

proof cases
assume r = s

from (cross-ratio-correct p q v s)
have proj2-set-Col {p,q,r,s} andp # qandr #p and r # q
by (unfold cross-ratio-correct-def) simp-all

from (proj2-set-Col {p,q,7,s}) and (r = s)
have proj2-Col p q r by (simp-all add: proj2-Col-iff-set-Col)
hence proj2-Col q p r by (rule proj2-Col-permute)
with (proj2-Col p g vy and (p # ¢) and (r # p) and (r # ¢ and r = s)
have cross-ratiop g rs = 1 and cross-ratioqp rs =1
by (simp-all add: cross-ratio-equal-1)
thus cross-ratio g pr s =1 / (cross-ratio p q r s) by simp
next
assume r # s
with (cross-ratio-correct g p r s
have cross-ratio q p r s = cross-ratior s q p
by (simp add: cross-ratio-swap-13-24)
also have ... =1 / (cross-ratio r s p q) by (rule cross-ratio-swap-34)
also from (cross-ratio-correct p q r s) and (r # s)
have ... =1 / (cross-ratio p q r s) by (simp add: cross-ratio-swap-13-24)
finally show cross-ratio gprs =1/ (cross-ratiop q rs) .
qed

7.6 Cartesian subspace of the real projective plane

definition vector2-append1 :: real’2 = real’3 where
vector2-appendl v = vector [v$1, v$2, 1]

lemma vector2-appendl-non-zero: vector2-appendl v # 0
proof —
have (vector2-appendl v)$3 # 0$3
unfolding vector2-appendl-def and vector-def
by simp
thus vector2-appendl v # 0 by auto
qed

definition proj2-pt :: real”2 = proj2 where
proj2-pt v £ proj2-abs (vector2-appendl v)
lemma proj2-pt-scalar:
3 c. ¢ # 0 A proj2-rep (proj2-pt v) = c xR vector2-appendl v
unfolding proj2-pt-def
by (simp add: proj2-rep-abs2 vector2-append1-non-zero)

abbreviation z-non-zero :: proj2 = bool where
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z-non-zero p = (proj2-rep p)$3 # 0

definition cart2-pt :: proj2 = real"2 where
cart2-pt p =
vector [(proj2-rep p)$1 / (proj2-rep p)$3, (proj2-rep p)$2 / (proj2-rep p)$3]

definition cart2-append1 :: proj2 = real’3 where
cart2-appendl p = (1 / ((proj2-rep p)$3)) *g proj2-rep p

lemma cart2-appendl-z:
assumes z-1on-zero p
shows (cart2-appendl p)$3 =1
using (z-non-zero p)
by (unfold cart2-appendl-def) simp

lemma cart2-appendl-non-zero:
assumes z-101-zero p
shows cart2-appendl p # 0
proof —
from (z-non-zero p) have (cart2-appendl p)$3 = 1 by (rule cart2-append1-z)
thus cart2-append1 p # 0 by (simp add: Cart-eq exI [of - 3])
qed

lemma proj2-rep-cart2-append1:
assumes z-101-zero p
shows proj2-rep p = ((proj2-rep p)$3) g cart2-appendl p
using (z-non-zero p)
by (unfold cart2-append1-def) simp

lemma proj2-abs-cart2-appendl:

assumes z-101-zero p

shows proj2-abs (cart2-appendl p) = p
proof —

from (z-non-zero p)

have proj2-abs (cart2-appendl p) = proj2-abs (proj2-rep p)

by (unfold cart2-appendl-def) (simp add: proj2-abs-mult)

thus proj2-abs (cart2-appendl p) = p by (simp add: proj2-abs-rep)

qed

lemma cart2-appendl-inj:
assumes z-non-zero p and cart2-appendl p = cart2-appendl q
shows p =g
proof —
from (z-non-zero p) have (cart2-append1 p)$3 = 1 by (rule cart2-appendl1-z)
with (cart2-appendl p = cart2-appendl ¢
have (cart2-appendl q)$3 = 1 by simp
hence z-non-zero q by (unfold cart2-append1-def) auto

from (cart2-append]l p = cart2-appendl q)
have proj2-abs (cart2-appendl p) = proj2-abs (cart2-appendl q) by simp
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with (z-non-zero p) and (z-non-zero q)
show p = q by (simp add: proj2-abs-cart2-append1)
qed

lemma cart2-append1:
assumes z-101-zero p
shows vector2-append1 (cart2-pt p) = cart2-append] p
using (z-non-zero p)
unfolding vector2-appendl-def
and cart2-appendl-def
and cart2-pt-def
and vector-def
by (simp add: Cart-eq forall-3)

lemma cart2-proj2: cart2-pt (proj2-pt v) = v
proof —
let ?v’ = vector2-appendl v
let ?p = proj2-pt v
from proj2-pt-scalar
obtain c where ¢ # 0 and proj2-rep ?p = ¢ g ?v’ by auto
hence (cart2-pt ?p)$1 = v$1 and (cart2-pt ?p)$2 = v$2
unfolding cart2-pt-def and vector2-appendl-def and vector-def
by simp+
thus cart2-pt ?p = v by (simp add: Cart-eq forall-2)
qed

lemma z-non-zero-proj2-pt: z-non-zero (proj2-pt v)
proof —
from proj2-pt-scalar
obtain ¢ where ¢ # 0 and proj2-rep (proj2-pt v) = ¢ xg (vector2-appendl v)
by auto
from (proj2-rep (proj2-pt v) = ¢ *g (vector2-appendl v))
have (proj2-rep (proj2-pt v))$3 = c
unfolding vector2-append1-def and vector-def
by simp
with (¢ # 0) show z-non-zero (proj2-pt v) by simp
qed

lemma cart2-append1-proj2: cart2-appendl (proj2-pt v) = vector2-appendl v
proof —
from z-non-zero-proj2-pt
have cart2-appendl (proj2-pt v) = vector2-append] (cart2-pt (proj2-pt v))
by (simp add: cart2-appendl)
thus cart2-append] (proj2-pt v) = vector2-appendl v
by (simp add: cart2-proj2)
qed

lemma proj2-pt-inj: inj proj2-pt
by (simp add: inj-on-inversel [of UNIV cart2-pt proj2-pt| cart2-proj2)
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lemma proj2-cart2:
assumes z-101-zero p
shows proj2-pt (cart2-ptp) = p

proof —
from (z-non-zero p)
have (proj2-rep p)$3 g vector2-append1 (cart2-pt p) = proj2-rep p
unfolding vector2-appendl-def and cart2-pt-def and vector-def
by (simp add: Cart-eq forall-3)
with (z-non-zero p)
and proj2-abs-mult [of (proj2-rep p)$3 vector2-appendl (cart2-pt p)]
have proj2-abs (vector2-appendl (cart2-pt p)) = proj2-abs (proj2-rep p)
by simp
thus proj2-pt (cart2-ptp) =p
by (unfold proj2-pt-def ) (simp add: proj2-abs-rep)
qed

lemma cart2-injective:
assumes z-non-zero p and z-non-zero q and cart2-pt p = cart2-pt q
shows p =g
proof —
from (z-non-zero p) and (z-non-zero q)
have proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) = q
by (simp-all add: proj2-cart2)

from (proj2-pt (cart2-pt p) = p) and (cart2-pt p = cart2-pt q)
have proj2-pt (cart2-pt q) = p by simp
with (proj2-pt (cart2-pt q) = g show p = q by simp

qed

lemma proj2-Col-iff-euclid:
proj2-Col (proj2-pt a) (proj2-pt b) (proj2-pt c¢) <— real-euclid.Col a b c
(is proj2-Col ?p ?2q ?r <— -)
proof
let ?a’ = vector2-append1 a
let ?b" = vector2-append1 b
let ?¢’ = vector2-append1 c
let 2a’ = proj2-rep ?p
let ?b"" = proj2-rep ?q
let ?¢"' = proj2-rep ?r
from proj2-pt-scalar obtain i and j and k where
i#0and ?a" =i xg ?2a’
andj # 0 and ?b"" =j xg ?b’
and k # 0 and ?c” = k xg ?¢’
by metis
hence ?a’ = (1/i) *g ?a"’
and ?b’ = (1/j) *g ?b”
and ?c¢’ = (1/k) =g ?c”
by simp-all
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{ assume proj2-Col ?p ?q ?r
then obtain i’ and j’ and k' where
i"xg ?2a" +j' xg 20" + k' xg ?2¢"" = 0and i'£0 V j'#0 V k'#£0
unfolding proj2-Col-def
by auto

let 2i"" =i %1’

let 2j = j * |/

let ?k"' =k « k'

from (i#0) and (#0) and (k#0) and @'#0 V j'#0 V k'#0)
have ?i"'#0 Vv ?j"'#0 Vv ?k"'#0 by simp

from (' xg ?a” + ' xg 20" + k' xg 2¢"" = 0)
and (?a’ =i *g ?a’
and ?b"' =j xg ?b"
and (?c" =k xg ?c"

have ?i" xg ?2a’ + ?j'" xg ?b’ + ?k"' xg ?2¢' =0
by (simp add: mult-ac)

hence (?i"' g ?2a’ + ?j"" xg ?b" + ?k"" xR 72¢")$3 =0
by simp

hence ?i" + ?j" + ?2k" =0
unfolding vector2-appendl-def and vector-def
by simp

have (?i"' g ?2a’ + ?j"" xg ?b" + ?k"" xg 7¢")$1 =
(?i" xg a + ?j"" xg b + 2k xg )$1
and (?i" xg ?2a’ + ?j"" xg 70’ + ?k"" xR ?¢")$2 =
(?i” *R a -+ ?j// *R b —+ ?k” *R C)$2
unfolding vector2-appendl-def and vector-def
by simp+
with (21" g 2a’ + ?j" xg ?b’ + 2k xg ¢ =0
have ?i" xga + ?j" xg b+ ?k" xg c =0
by (simp add: Cart-eq forall-2)

have dep2 (b — a) (c — a)
proof cases
assume 7k’ =0
with (?i"" + ?j" + 2k = 0) have ?j" = —?i" by simp
with (21”0 v ?j"'#£0 V ?k"#0) and ?k"' = 0) have ?i"' # 0 by simp

from (71" xga+ ?j" xg b+ ?k" *xg c = 0)
and ?k" = 0) and ?j" = —?i"))
have ?i"" xg a + (—?i"" xg b) = 0 by simp
with (?i"' # 0) have a = b by (simp add: algebra-simps)
hence b — a = 0 xg (¢ — a) by simp
moreover have c —a = 1 *g (c — a) by simp
ultimately have 3 xfs.b —a=t*gx Ac —a=s*gx
by blast
thus dep2 (b — a) (¢ — a) unfolding dep2-def .
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next
assume ?k’' £ 0
from (71" + ?j"" + ?k'" = 0) have ?i"" = —(?j"' + ?k"") by simp
with ?i"" xga + ?j"" *g b+ ?k" xg c = 0)
have —(?j" + ?k"") xg a + ?j"" %g b + ?k" xg ¢ = 0 by simp
hence 7k xg (c —a) = — ?j"" «g (b —a)
by (simp add: scaleR-left-distrib
scaleR-right-diff-distrib
scaleR-left-diff-distrib
algebra-simps)
hence (1/7k") xg ?k"" xg (c —a) = (=?j""/ ?k"") g (b — a)
by simp
with (?k”" £ 0) have c — a = (=?j"" / ?k”") xg (b — a) by simp
moreover have b — a =1 xg (b — a) by simp
ultimately have 3 xfs.b —a =1 *g x A ¢ —a =s *g x by blast
thus dep2 (b — a) (¢ — a) unfolding dep2-def .
qed
with Col-dep2 show real-euclid.Col a b ¢ by auto
}

{ assume real-euclid.Col a b ¢
with Col-dep2 have dep2 (b — a) (c — a) by auto
then obtain x and t and s whereb —a =t *gxandc —a=s*g x
unfolding dep2-def
by auto

show proj2-Col ?p ?7q ?r
proof cases

assume t = 0

with (b — a =t *g x) have a = b by simp

with proj2-Col-coincide show proj2-Col ?p ?q ?r by simp
next

assume | # 0

from b —a=txgx and (c —a=s*g x)
have s xg (b —a) =t xg (c — a) by simp
hence (s —t) xga + (—s) g b +t*gc=0
by (simp add: scaleR-right-diff-distrib
scaleR-left-diff-distrib
algebra-simps)
hence ((s — t) g ?a’ + (—s) *g ?b' + t xg 72¢")$1 =10
and ((s —t) *g ?a’+ (—s) *g 2b' + t xg ?¢")$2 =10
unfolding vector2-appendl-def and vector-def
by (simp-all add: Cart-eq)
moreover have ((s — t) *g 2a’ 4+ (—s) *g 2b' + t xg 2¢/)$3 =0
unfolding vector2-appendl-def and vector-def
by simp
ultimately have (s — t) g ?a’ + (—s) *g ?b' + t %g 2¢' =0
by (simp add: Cart-eq forall-3)
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with ?a’ = (1/1) xg ?2a”)
and ?b' = (1/j) =g ?b")
and (¢’ = (1/k) =g 2c¢")

have ((s — t)/i) xg ?a’’ + (—s/j) *g ?b"" + (t/k) *g 2¢"" =0
by simp

moreover from (¢ # 0) and k # 0) have t/k # 0 by simp

ultimately show proj2-Col ?p ?7q ?r
unfolding proj2-Col-def
by blast

qed
}
ged

lemma proj2-Col-iff-euclid-cart2:
assumes z-non-zero p and z-non-zero q and z-non-zero r
shows
proj2-Col p q r <— real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is - «— real-euclid.Col ?a ?b ?c)
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
have proj2-pt ?a = p and proj2-pt ?b = q and proj2-pt 7c =r
by (simp-all add: proj2-cart2)
with proj2-Col-iff-euclid [of ?a ?b 2c]
show proj2-Col p q v <— real-euclid.Col ?a ?b ?c by simp
qed

lemma euclid-Col-cart2-incident:
assumes z-non-zero p and z-non-zero q and z-non-zero r and p # g
and proj2-incident p | and proj2-incident q |
and real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is real-euclid.Col ?cp ?cq ?cr)
shows proj2-incident r |
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
and (real-euclid.Col ?cp ?cq ?cr)
have proj2-Col p q r by (subst proj2-Col-iff-euclid-cart2, simp-all)
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col )
then obtain m where
proj2-incident p m and proj2-incident g m and proj2-incident v m
by (unfold proj2-set-Col-def, auto)

from (p # ¢ and (proj2-incident p I) and (proj2-incident q |)
and (proj2-incident p m) and (proj2-incident q m) and proj2-incident-unique
have [ = m by auto
with (proj2-incident r m) show proj2-incident r | by simp
qed

lemma euclid-B-cart2-common-line:
assumes z-non-zero p and z-non-zero g and z-non-zero r
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and B (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is BR ?cp ?cq ?cr)
shows 3 [. proj2-incident p I \ proj2-incident q I \ proj2-incident v |
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero 1)
and (BR ?cp ?cq ?cr) and proj2-Col-iff-euclid-cart2
have proj2-Col p q r by (unfold real-euclid.Col-def ) simp
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col )
thus 3 [. proj2-incident p I A proj2-incident q | A proj2-incident r |
by (unfold proj2-set-Col-def ) simp
qed

lemma cart2-append1-between:
assumes z-non-zero p and z-non-zero q and z-non-zero r
shows B (cart2-pt p) (cart2-pt q) (cart2-pt r)
+—— (3 k>0.k<1
A cart2-appendl q = k xg cart2-appendl v + (1 — k) *g cart2-appendl p)
proof —
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?cpl = vector2-appendl ?cp
let ?cql = vector2-appendl ?cq
let ?cr]l = vector2-appendl ?cr
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
have ?cpl = cart2-append1 p
and ?cql = cart2-appendl q
and ?crl = cart2-appendl r
by (simp-all add: cart2-append1)

have V k. 7cq — ?cp = k xg (?cr — 2cp) <— ?cq =k xg ?cr + (1 — k) *g 2cp
by (simp add: algebra-simps)

hence V k. ?cq — ?cp = k xg (Pcr — 2cp)
> 2cql =k xg 2cr]l + (1 — k) =g 2cpl
unfolding vector2-appendl-def and vector-def
by (simp add: Cart-eq forall-2 forall-3)

with (?cpl = cart2-appendl p)
and (?cql = cart2-appendl ¢
and (?crl = cart2-append1 r)

have V k. ?cq — ?cp = k xg (?cr — ?cp)
< cart2-appendl q = k xg cart2-appendl r + (1 — k) =g cart2-appendl p
by simp

thus Bg (cart2-pt p) (cart2-pt q) (cart2-pt r)
+— (Fk>0.k<1
A cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-append1 p)
by (unfold real-euclid-B-def) simp

qed

lemma cart2-append1-between-right-strict:
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assumes z-non-zero p and z-non-zero q and z-non-zero r
and Bg (cart2-pt p) (cart2-pt q) (cart2-ptr) and q # r
shows 3 k>0. k< 1
A cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
and (Bg (cart2-pt p) (cart2-pt q) (cart2-pt r)) and cart2-append1-between
obtain k wherek > 0and k <1
and cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
by auto

have k # 1
proof
assume k = 1
with (cart2-appendl q = k *g cart2-appendl r + (1 — k) *g cart2-append1 p)
have cart2-appendl q = cart2-append1 r by simp
with (z-non-zero q) have q = r by (rule cart2-appendl1-inj)
with (g # ) show False ..
qed
with &k < 1) have k < 1 by simp
with &« > 0)
and (cart2-appendl q = k g cart2-appendl r + (1 — k) *g cart2-appendl p)
show 3 k>0.k < 1
A cart2-appendl q = k *g cart2-appendl r + (1 — k) *g cart2-appendl p
by (simp add: exI [of - k])
qed

lemma cart2-append1-between-strict:
assumes z-non-zero p and z-non-zero q and z-non-zero r
and B (cart2-pt p) (cart2-pt q) (cart2-pt r) and q # p and g # r
shows 3 k>0.k < 1
A cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
and (B (cart2-pt p) (cart2-pt q) (cart2-pt r)) and (g # 1)
and cart2-append1-between-right-strict [of p q 7]
obtain k wherek > 0Oand k < 1
and cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
by auto

have k £ 0
proof
assume k = 0
with (cart2-appendl q = k g cart2-appendl r + (1 — k) =g cart2-append] p)
have cart2-appendl q = cart2-appendl p by simp
with (z-non-zero q) have q = p by (rule cart2-appendl1-inj)
with (g # p) show False ..
qed
with > 0) have k > 0 by simp
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with &k < 1)
and (cart2-appendl q = k g cart2-appendl r + (1 — k) g cart2-appendl p)
show 3 k>0.k < 1
A cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
by (simp add: exI [of - k|)
qed

end

8 Roots of real quadratics

theory Quadratic-Discriminant
imports Miscellany
begin

definition discrim :: [real real real] = real where
discrimabc=b> —4xaxc

lemma complete-square:
fixes a b ¢ x :: real
assumes a 7 0
showsa* x> +b*xx+c=0+— (2xaxx+b)? =discrimabc
proof —
have 4 xa? x x> +4d+xaxbxx +4dxaxc=4*xax (axx>+b*xx+c)
by (simp add: algebra-simps square-expand)
with @ # 0)
havea x x> + bsxx+c=0+—4dxa?+x> +4*xaxbxx+4xaxc=0
by simp
thusa x> +b*xx+c=0<+— (2%ax*x+b)>=discrimabc
unfolding discrim-def
by (simp add: square-expand algebra-simps)
qed

lemma discriminant-negative:
fixes a b c x :: real
assumes a # 0
and discrima bc < 0
showsa x> +bsxx+c#0
proof —
have (2 * a * x + b)?> > 0 by simp
with Wiscrima b c < 0) have (2 x a x x + b)? # discrim a b ¢ by arith
with complete-square and @ # 0) show a * x2 + b * x + ¢ # 0 by simp
qed

lemma plus-or-minus-sqrt:

fixes x y :: real
assumes iy > 0
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shows x? =y<—x=sqrtyVx=—sqrty
proof
assume x> =y
hence sqrt (x*) = sqrt y by simp
hence sqrt y = |x| by simp
thus x = sqrt y V x = — sqrt y by auto
next
assume x = sqrty V. x = —sqrty
hence x> = (sqrt y)? V x> = (— sqrt y)? by auto
with (y > 0) show x> = y by simp
qed

lemma divide-non-zero:

fixes x y z :: real

assumes x #= 0

showsxxy=z<+—y=z/x
proof

assume X x | =z

with (x # 0) show y = z / x by (simp add: field-simps)
next

assumey =z / x

with (x # 0) show x * y = z by simp
qed

lemma discriminant-nonneg:
fixes a b c x :: real
assumes a 7% 0
and discrimabc > 0
showsa x> +bxx +c=0+—
x = (=b+ sqrt (discrimabc)) / (2xa)V
x = (—b — sqrt (discrimabc)) / (2 x a)
proof —
from complete-square and plus-or-minus-sqrt and assms
havea x x> + b* x +c=0<+—
(2 % a) x x + b =sqrt (discrimabc) V
(2xa) xx+ b= — sqrt (discrima b c)
by simp
also have ... «— (2% a) x x = (=b + sqrt (discrimabc)) V
(2%a)*xx=(—b—sqrt (discrimabc))
by auto
also from @ # 0) and divide-non-zero [of 2 * a x|
have ... «— x = (=b + sqrt (discrimabc)) / (2% a) V
x = (=b — sqrt (discrimabc)) / (2 % a)
by simp
finally show a * x> + b * x + ¢ = 0 +—
x = (=b+ sqrt (discrimabc)) / (2xa)V
x = (—b — sqrt (discrimabc)) / (2xa).
qed
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lemma discriminant-zero:
fixes a b c x :: real
assumes a # 0
and discrimabc =0
showsa x> +bxx +c=0+—x=—b/ (2%a)
using discriminant-nonneg and assms
by simp

theorem discriminant-iff:
fixes a b c x :: real
assumes a # 0
showsa x> +bxx +c=0+—
discrimabc >0 A
(x = (=b + sqrt (discrimabc)) / (2xa) V
x = (—b — sqrt (discrimabc)) / (2 xa))
proof
assumea x x> +b*xx+c=0
with discriminant-negative and @ # 0) have —(discrim a b ¢ < 0) by auto
hence discrim a b ¢ > 0 by simp
with discriminant-nonneg and @ * x> + b * x + ¢ = 0) and (@ # 0)
have x = (—b + sqrt (discrimabc)) / (2 xa) V
x = (=b — sqrt (discrimabc)) / (2 % a)
by simp
with iscrima b ¢ > 0
show discrimabc > 0 A
(x = (—b + sqrt (discrimabc)) / (2%a) V
x = (=b —sqrt (discrimabc)) / (2 xa)) ..
next
assume discrimabc > 0 A
(x = (=b + sqrt (discrimabc)) / (2 xa) V
x = (—b — sqrt (discrimabc)) / (2 xa))
hence discrima b ¢ > 0 and
x = (=b+ sqrt (discrimabc)) / (2%a)V
x = (=b — sqrt (discrimabc)) / (2 xa)
by simp-all
with discriminant-nonneg and @ # 0) show a * x2 4+ b * x + ¢ = 0 by simp
qed

lemma discriminant-nonneg-ex:
fixes a b c :: real
assumes a # 0
and discrimabc > 0
shows I x.axx> +bxx+c=0
using discriminant-nonneg and assms
by auto

lemma discriminant-pos-ex:

fixes a b c :: real
assumes a 7 0
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and discrimabc > 0
shows I xy.x#yAaxx>+bxx+c=0Na*xy>* +bxy+c=0
proof —
let ?x = (—b + sqrt (discrimabc)) / (2 * a)
let 7y = (—b — sqrt (discrimabc)) / (2 * a)
from (discrim a b ¢ > 0) have sqrt (discrim a b ¢) # 0 by simp
hence sqrt (discrim a b ¢) # — sqrt (discrim a b ¢) by arith
with @ # 0) have ?x # ?y by simp
moreover
from discriminant-nonneg [of a b ¢ ?x|
and discriminant-nonneg [of a b ¢ ?y|
and assms
have a x ?x> + b x ?x + c = 0 and a * ?y?> + b * ?y + ¢ = 0 by simp-all
ultimately
show I xy.x#yAaxx>+bxx+c=0Aaxy*>+bxy+c=0Dby blast
qed

lemma discriminant-pos-distinct:
fixes a b c x :: real
assumes a # 0 and discrima b ¢ > 0
shows 3 y.x#yAaxy> +bxy+c=0
proof —
from discriminant-pos-ex and @ # 0) and discrima b c > 0)
obtain w and z where w # z
anda*xw? +bxw+c=0anda*xz>+bxz+c=0
by blast
show 3 y.x#yAaxy> +bxy+c=0
proof cases
assume X = w
with (w # z) have x # z by simp
with @22 + bxz+c=0)
show 3 y.x #y Aaxy?> +bxy+c=0byauto
next
assume x # w
with @ xw? +bxw+c =0
show 3 y.x £y Aaxy*> +bxy+ c=0byauto
qed
qed

end

9 The hyperbolic plane and Tarski’s axioms

theory Hyperbolic-Tarski

imports Euclid-Tarski
Projective
Quadratic-Discriminant
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begin

9.1 Characterizing a specific conic in the projective plane

definition M :: real’3"3 where
M = vector |
vector [1, 0, 0],
vector [0, 1, 0],
vector [0, 0, —1]]

lemma M-symmatrix: symmatrix M
unfolding symmatrix-def and transpose-def and M-def
by (simp add: Cart-eq forall-3 vector-3)

lemma M-self-inverse: M xx M = mat 1
unfolding M-def and matrix-matrix-mult-def and mat-def and vector-def
by (simp add: setsum-3 Cart-eq forall-3)

lemma M-invertible: invertible M
unfolding invertible-def
using M-self-inverse
by auto

definition polar :: proj2 = proj2-line where
polar p = proj2-line-abs (M v proj2-rep p)

definition pole :: proj2-line = proj2 where
pole | £ proj2-abs (M *v proj2-line-rep 1)

lemma polar-abs:
assumes v # 0
shows polar (proj2-abs v) = proj2-line-abs (M v v)
proof —
from w # 0) and proj2-rep-abs2
obtain k where k # 0 and proj2-rep (proj2-abs v) = k xg v by auto
from (proj2-rep (proj2-abs v) = k *g v)
have polar (proj2-abs v) = proj2-line-abs (k xg (M *v v))
unfolding polar-def
by (simp add: matrix-scalar-vector-ac scalar-matrix-vector-assoc)
with & # 0) and proj2-line-abs-mult
show polar (proj2-abs v) = proj2-line-abs (M *v v) by simp
qed

lemma pole-abs:
assumes v #~ 0
shows pole (proj2-line-abs v) = proj2-abs (M *v v)
proof —
from (v # 0) and proj2-line-rep-abs
obtain k where k # 0 and proj2-line-rep (proj2-line-abs v) =k *g v
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by auto

from (proj2-line-rep (proj2-line-abs v) = k *g v)

have pole (proj2-line-abs v) = proj2-abs (k xg (M *v v))
unfolding pole-def
by (simp add: matrix-scalar-vector-ac scalar-matrix-vector-assoc)

with k # 0) and proj2-abs-mult

show pole (proj2-line-abs v) = proj2-abs (M xv v) by simp

qed

lemma polar-rep-non-zero: M xv proj2-rep p # 0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

with M-invertible

show M xv proj2-rep p # 0 by (rule invertible-times-non-zero)
qed

lemma pole-polar: pole (polar p) = p
proof —
from polar-rep-non-zero
have pole (polar p) = proj2-abs (M xv (M *v proj2-rep p))
unfolding polar-def
by (rule pole-abs)
with M-self-inverse
show pole (polar p) = p
by (simp add: matrix-vector-mul-assoc proj2-abs-rep matrix-vector-mul-lid)
qed

lemma pole-rep-non-zero: M *v proj2-line-rep I # 0
proof —

have proj2-line-rep | # 0 by (rule proj2-line-rep-non-zero)

with M-invertible

show M xv proj2-line-rep | # 0 by (rule invertible-times-non-zero)
qed

lemma polar-pole: polar (pole l) =1
proof —
from pole-rep-non-zero
have polar (pole I) = proj2-line-abs (M *v (M v proj2-line-rep I))
unfolding pole-def
by (rule polar-abs)
with M-self-inverse
show polar (pole 1) =1
by (simp add: matrix-vector-mul-assoc proj2-line-abs-rep
matrix-vector-mul-lid)
qed

lemma polar-inj:

assumes polar p = polar q
shows p =g
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proof —
from (polar p = polar q) have pole (polar p) = pole (polar q) by simp
thus p = g by (simp add: pole-polar)

qed

definition conic-sgn :: proj2 = real where
conic-sgn p = sgn (proj2-rep p - (M *v proj2-rep p))

lemma conic-sgn-abs:
assumes v # 0
shows conic-sgn (proj2-abs v) = sgn (v - (M *v v))
proof —
from (v # 0) and proj2-rep-abs2
obtain j where j # 0 and proj2-rep (proj2-abs v) = j xg v by auto
from (j # 0) have j2 > 0 by simp

from (proj2-rep (proj2-abs v) = j xR v)
have conic-sgn (proj2-abs v) = sgn (j2 * (v - (M %v v)))
unfolding conic-sgn-def
by (simp add:
matrix-scalar-vector-ac
scalar-matrix-vector-assoc [symmetric|
dot-scaleR-mult
square-expand
algebra-simps)
also have ... = sgn (j2) * sgn (v - (M xv v)) by (rule sgn-times)
also from (> > 0) have ... = sgn (v - (M *v v)) by simp
finally show conic-sgn (proj2-abs v) = sgn (v - (M *v v)) .
qed

lemma sgn-conic-sgn: sgn (conic-sgn p) = conic-sgn p
by (unfold conic-sgn-def) simp

definition S :: proj2 set where
S £ {p. conic-sgn p = 0}

definition K2 :: proj2 set where
K2 £ {p. conic-sgn p < 0}

lemma S-K2-empty: SN K2 = {}
unfolding S-def and K2-def
by auto

lemma K2-abs:
assumes v %~ 0
shows proj2-abs v € K2 +— v - (M v v) < 0
proof —
have proj2-abs v € K2 <— conic-sgn (proj2-abs v) < 0
by (simp add: K2-def)
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with @ # 0) and conic-sgn-abs
show proj2-abs v € K2 <— v - (M v v) < 0 by simp
qed

definition K2-centre = proj2-abs (vector [0,0,1])

lemma K2-centre-non-zero: vector [0,0,1] # (0 :: real’3)
by (unfold vector-def) (simp add: Cart-eq forall-3)

lemma K2-centre-in-K2: K2-centre € K2
proof —
from K2-centre-non-zero and proj2-rep-abs2
obtain k where k # 0 and proj2-rep K2-centre = k xg vector [0,0,1]
by (unfold K2-centre-def) auto
from k # 0) have 0 < k? by simp
with (proj2-rep K2-centre = k xg vector [0,0,1])
show K2-centre € K2
unfolding K2-def
and conic-sgn-def
and M-def
and matrix-vector-mult-def
and inner-vector-def
and vector-def
by (simp add: Cart-eq setsum-3 square-expand)
qed

lemma K2-imp-M-neg:
assumes v # 0 and proj2-abs v € K2
shows v - (M *xv0v) <0
using assms
by (simp add: K2-abs)

lemma M-neg-imp-z-squared-big:
assumes v - (M xvv) < 0
shows (v$3)% > (v$1)? + (v$2)?
using @ « (M v v) < 0)
unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vector-def setsum-3 square-expand)

lemma M-neg-imp-z-non-zero:
assumes v - (M v v) < 0
shows v$3 # 0
proof —
have (v$1)? + (v$2)? > 0 by simp
with M-neg-imp-z-squared-big [of v] and @ - (M *v v) < 0)
have (v$3)? > 0 by arith
thus v$3 # 0 by simp
qed
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lemma M-neg-imp-K2:
assumes v - (M xvv) < 0
shows proj2-abs v € K2
proof —
from @ - (M xv v) < 0) have v$3 # 0 by (rule M-neg-imp-z-non-zero)
hence v # 0 by auto
with @« (M xv v) < 0) and K2-abs show proj2-abs v € K2 by simp
qed

lemma M-reverse: a - (M xv b) =b - (M xv a)
unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vector-def setsum-3)

lemma S-abs:
assumes v #~ 0
shows proj2-absv € S «— v+ (M *vv) =0
proof —
have proj2-abs v € S «— conic-sgn (proj2-abs v) = 0
unfolding S-def
by simp
also from @ # 0 and conic-sgn-abs
have ... +— sgn (v - (M *v v)) = 0 by simp
finally show proj2-abs v € S «— v + (M *v v) = 0 by (simp add: sgn-0-0)
qed

lemma S-alt-def: p € S <— proj2-rep p - (M *v proj2-rep p) = 0
proof —
have proj2-rep p # 0 by (rule proj2-rep-non-zero)
hence proj2-abs (proj2-rep p) € S <— proj2-rep p - (M *v proj2-rep p) = 0
by (rule S-abs)
thus p € S <— proj2-rep p - (M *v proj2-rep p) = 0
by (simp add: proj2-abs-rep)
qed

lemma incident-polar:
proj2-incident p (polar q) <— proj2-rep p - (M *v proj2-rep q) = 0
using polar-rep-non-zero
unfolding polar-def
by (rule proj2-incident-right-abs)

lemma incident-own-polar-in-S: proj2-incident p (polar p) <—p € S
using incident-polar and S-alt-def
by simp

lemma incident-polar-swap:
assumes proj2-incident p (polar q)
shows proj2-incident q (polar p)
proof —
from (proj2-incident p (polar q))
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have proj2-rep p + (M *v proj2-rep q) = 0 by (unfold incident-polar)
hence proj2-rep q - (M *v proj2-rep p) = 0 by (simp add: M-reverse)
thus proj2-incident q (polar p) by (unfold incident-polar)

qed

lemma incident-pole-polar:

assumes proj2-incident p |

shows proj2-incident (pole ) (polar p)
proof —

from (proj2-incident p I)

have proj2-incident p (polar (pole I)) by (subst polar-pole)

thus proj2-incident (pole I) (polar p) by (rule incident-polar-swap)
qed

definition z-zero :: proj2-line where
z-zero = proj2-line-abs (vector [0,0,1])

lemma z-zero:
assumes (proj2-rep p)$3 =0
shows proj2-incident p z-zero
proof —
from K2-centre-non-zero and proj2-line-rep-abs
obtain k where proj2-line-rep z-zero = k g vector [0,0,1]
by (unfold z-zero-def ) auto
with (proj2-rep p)$3 = 0)
show proj2-incident p z-zero
unfolding proj2-incident-def and inner-vector-def and vector-def
by (simp add: setsum-3)
qed

lemma z-zero-conic-sgn-1:
assumes proj2-incident p z-zero
shows conic-sgn p =1
proof —
let ?v = proj2-rep p
have (vector [0,0,1] :: real’3) # 0
unfolding vector-def
by (simp add: Cart-eq)
with (proj2-incident p z-zero)
have ?v - vector [0,0,1] =0
unfolding z-zero-def
by (simp add: proj2-incident-right-abs)
hence ?v$3 = 0
unfolding inner-vector-def and vector-def
by (simp add: setsum-3)
hence ?0 - (M v ?0) = (?0$1)% + (?v$2)?
unfolding inner-vector-def
and square-expand
and matrix-vector-mult-def
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and M-def

and vector-def

and setsum-3
by simp

have ?v # 0 by (rule proj2-rep-non-zero)
with (?0$3 = 0) have ?v$1 # 0 V ?0$2 # 0 by (simp add: Cart-eq forall-3)
hence (?0$1)% > 0 V (?0$2)? > 0 by simp
with add-sign-intros [of (?0$1)? (?0$2)?]
have (?0$1)% + (?0$2)? > 0 by auto
with (?0 - (M %0 ?0) = (?0$1)? + (?0$2)%
have ?v - (M *v ?v) > 0 by simp
thus conic-sgnp =1

unfolding conic-sgn-def

by simp

qed

lemma conic-sgn-not-1-z-non-zero:
assumes conic-sgn p # 1
shows z-non-zero p
proof —
from (conic-sgn p # 1)
have — proj2-incident p z-zero by (auto simp add: z-zero-conic-sgn-1)
thus z-non-zero p by (auto simp add: z-zero)
qed

lemma z-zero-not-in-S:
assumes proj2-incident p z-zero
showsp & S
proof —
from (proj2-incident p z-zero) have conic-sgn p = 1
by (rule z-zero-conic-sgn-1)
thusp ¢ S
unfolding S-def
by simp
qed

lemma line-incident-point-not-in-S: 3 p. p € S A proj2-incident p |
proof —

let ?p = proj2-intersection | z-zero

have proj2-incident ?p | and proj2-incident ?p z-zero

by (rule proj2-intersection-incident )+

from (proj2-incident ?p z-zero) have ?p ¢ S by (rule z-zero-not-in-S)

with (proj2-incident ?p )

show 3 p.p & S A proj2-incident p I by auto
qed

lemma apply-cltn2-abs-abs-in-S:
assumes v # 0 and invertible |
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shows apply-clin2 (proj2-abs v) (cltn2-absJ) € S
v+ (] xx M % transpose | xv v) =0
proof —
from (v # 0) and (invertible |)
have v v« | # 0 by (rule non-zero-muli-invertible-non-zero)

from (v # 0) and (invertible ])
have apply-clin2 (proj2-abs v) (cltn2-abs J) = proj2-abs (v vx ])
by (rule apply-cltn2-abs)
also from @ vx | # 0)
have... € S<+— (vovx]) - (M xv (vovx])) = 0 by (rule S-abs)
finally show apply-cltn2 (proj2-abs v) (cltn2-abs J) € S
< v - (] %% M s transpose | v v) = 0
by (simp add: dot-lmul-matrix matrix-vector-mul-assoc [symmetric])
qed

lemma apply-cltn2-right-abs-in-S:
assumes invertible |
shows apply-cltn2 p (cltn2-abs |) € S
< (proj2-rep p) - (J x* M *x transpose | xv (proj2-rep p)) = 0
proof —
have proj2-rep p # 0 by (rule proj2-rep-non-zero)
with (invertible |)
have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs J) € S
< proj2-rep p - (] *x M sx transpose | xv proj2-rep p) = 0
by (simp add: apply-clin2-abs-abs-in-S)
thus apply-cltn2 p (cltn2-abs J) € S
> proj2-rep p - (] *x M xx transpose | xv proj2-rep p) = 0
by (simp add: proj2-abs-rep)
qed

lemma apply-cltn2-abs-in-S:
assumes v # 0
shows apply-cltn2 (proj2-abs v) C € S
< v - (cltn2-rep C s M *x transpose (cltn2-rep C) xv v) = 0
proof —
have invertible (cltn2-rep C) by (rule cltn2-rep-invertible)
with (© # 0)
have apply-clin2 (proj2-abs v) (cltn2-abs (cltn2-rep C)) € S
< v - (cltn2-rep C sxx M *x transpose (cltn2-rep C) xv v) = 0
by (rule apply-cltn2-abs-abs-in-S)
thus apply-cltn2 (proj2-abs v) C € S
> v - (cltn2-rep C s M sx transpose (cltn2-rep C) xv v) = 0
by (simp add: cltn2-abs-rep)
qed

lemma apply-clin2-in-S:

apply-cltn2p C € S
> proj2-rep p - (cltn2-rep C xx M *x transpose (cltn2-rep C) xv proj2-rep p)
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=0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

hence apply-cltn2 (proj2-abs (proj2-repp)) C € S
> proj2-rep p - (cltn2-rep C s M *x transpose (cltn2-rep C) xv proj2-rep p)
by (rule apply-cltn2-abs-in-S)

thus apply-cltn2pC € S
< proj2-rep p - (cltn2-rep C s M *x transpose (cltn2-rep C) xv proj2-rep p)

by (simp add: proj2-abs-rep)
qed

lemma norm-M: (vector2-appendl v) - (M *v vector2-appendl v) = (norm v)? — 1
proof —
have (norm v)? = (v$1)? + (v$2)?
unfolding norm-vector-def
and setL2-def
by (simp add: setsum-2)
thus (vector2-append1 v) - (M xv vector2-appendl v) = (norm v)? — 1
unfolding vector2-appendl-def
and inner-vector-def
and matrix-vector-mult-def
and vector-def
and M-def
and power2-norm-eg-inner
by (simp add: setsum-3 square-expand)
qed

9.2 Some specific points and lines of the projective plane

definition east = proj2-abs (vector [1,0,1])
definition west = proj2-abs (vector [—1,0,1])
definition north = proj2-abs (vector [0,1,1])
definition south = proj2-abs (vector [0,—1,1])
definition far-north = proj2-abs (vector [0,1,0])

lemmas compass-defs = east-def west-def north-def south-def

lemma compass-non-zero:
shows vector [1,0,1] # (0 :: real3)
and vector [—1,0,1] # (0 :: real"3)
and vector [0,1,1] # (0 :: real’3)
and vector [0,—1,1] # (0 :: real"3)
and vector [0,1,0] # (0 :: real”3)
and vector [1,0,0] # (0 :: real”3)
unfolding vector-def
by (simp-all add: Cart-eq forall-3)
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lemma east-west-distinct: east # west
proof
assume east = west
with compass-non-zero
and proj2-abs-abs-mult [of vector [1,0,1] vector [—1,0,1]]
obtain k where (vector [1,0,1] :: real’3) = k *g vector [—1,0,1]
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (auto simp add: Cart-eq forall-3)
qed

lemma north-south-distinct: north # south
proof
assume north = south
with compass-non-zero
and proj2-abs-abs-mult [of vector [0,1,1] vector [0,—1,1]]
obtain k where (vector [0,1,1] :: real’3) = k xg vector [0,—1,1]
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (auto simp add: Cart-eq forall-3)
qed

lemma north-not-east-or-west: north ¢ {east, west}
proof
assume north € {east, west}
hence east = north V west = north by auto
with compass-non-zero
and proj2-abs-abs-mult [of - vector [0,1,1]]
obtain k where (vector [1,0,1] :: real’3) = k *g vector [0,1,1]
V (vector [—1,0,1] :: real”3) = k xg vector [0,1,1]
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (simp add: Cart-eq forall-3)
qed

lemma compass-in-S:
shows east € S and west € S and north € S and south € S
using compass-non-zero and S-abs
unfolding compass-defs
and M-def
and inner-vector-def
and matrix-vector-mult-def
and vector-def
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by (simp-all add: setsum-3)

lemma east-west-tangents:
shows polar east = proj2-line-abs (vector [—1,0,1])
and polar west = proj2-line-abs (vector [1,0,1])
proof —
have M v vector [1,0,1] = (—1) *g vector [—1,0,1]
and M v vector [—1,0,1] = (—1) *g vector [1,0,1]
unfolding M-def and matrix-vector-mult-def and vector-def
by (simp-all add: Cart-eq setsum-3)
with compass-non-zero and polar-abs
have polar east = proj2-line-abs ((—1) *g vector [—1,0,1])
and polar west = proj2-line-abs ((—1) =g vector [1,0,1])
unfolding compass-defs
by simp-all
with proj2-line-abs-mult [of —1]
show polar east = proj2-line-abs (vector [—1,0,1])
and polar west = proj2-line-abs (vector [1,0,1])
by simp-all
qed

lemma east-west-tangents-distinct: polar east # polar west
proof

assume polar east = polar west

hence east = west by (rule polar-inj)

with east-west-distinct show False ..
qed

lemma east-west-tangents-incident-far-north:
shows proj2-incident far-north (polar east)
and proj2-incident far-north (polar west)
using compass-non-zero and proj2-incident-abs
unfolding far-north-def and east-west-tangents and inner-vector-def
by (simp-all add: setsum-3 vector-3)

lemma east-west-tangents-far-north:
proj2-intersection (polar east) (polar west) = far-north
using east-west-tangents-distinct and east-west-tangents-incident-far-north
by (rule proj2-intersection-unique [symmetric])

instantiation proj2 :: zero

begin

definition proj2-zero-def: 0 = proj2-pt 0
instance ..

end

definition equator = proj2-line-abs (vector [0,1,0])
definition meridian = proj2-line-abs (vector [1,0,0])
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lemma equator-meridian-distinct: equator # meridian
proof
assume equator = meridian
with compass-non-zero
and proj2-line-abs-abs-mult [of vector [0,1,0] vector [1,0,0]]
obtain k where (vector [0,1,0] :: real”3) = k g vector [1,0,0]
by (unfold equator-def meridian-def ) auto
thus False by (unfold vector-def) (auto simp add: Cart-eq forall-3)
qed

lemma east-west-on-equator:
shows proj2-incident east equator and proj2-incident west equator
unfolding east-def and west-def and equator-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vector-def vector-def setsum-3)

lemma north-far-north-distinct: north # far-north
proof
assume north = far-north
with compass-non-zero
and proj2-abs-abs-mult [of vector [0,1,1] vector [0,1,0]]
obtain k where (vector [0,1,1] :: real"3) = k *g vector [0,1,0]
by (unfold north-def far-north-def ) auto
thus False
unfolding vector-def
by (auto simp add: Cart-eq forall-3)
qed

lemma north-south-far-north-on-meridian:
shows proj2-incident north meridian and proj2-incident south meridian
and proj2-incident far-north meridian
unfolding compass-defs and far-north-def and meridian-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vector-def vector-def setsum-3)

lemma K2-centre-on-equator-meridian:
shows proj2-incident K2-centre equator
and proj2-incident K2-centre meridian
unfolding K2-centre-def and equator-def and meridian-def
using K2-centre-non-zero and compass-non-zero
by (simp-all add: proj2-incident-abs inner-vector-def vector-def setsum-3)

lemma on-equator-meridian-is-K2-centre:
assumes proj2-incident a equator and proj2-incident a meridian
shows a = K2-centre
using assms and K2-centre-on-equator-meridian and equator-meridian-distinct
and proj2-incident-unique
by auto
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definition rep-equator-reflect = vector |
vector [1, 0,0],
vector [0,—1,0],
vector [0, 0,1]] :: real’3"3
definition rep-meridian-reflect = vector |
vector [—1,0,0],
vector [ 0,1,0],
vector [ 0,0,1]] :: real’3"3
definition equator-reflect = cltn2-abs rep-equator-reflect
definition meridian-reflect = cltn2-abs rep-meridian-reflect

lemmas compass-reflect-defs = equator-reflect-def meridian-reflect-def
rep-equator-reflect-def rep-meridian-reflect-def

lemma compass-reflect-self-inverse:
shows rep-equator-reflect xx rep-equator-reflect = mat 1
and rep-meridian-reflect ** rep-meridian-reflect = mat 1
unfolding compass-reflect-defs matrix-matrix-mult-def mat-def
by (simp-all add: Cart-eq forall-3 setsum-3 vector-3)

lemma compass-reflect-invertible:
shows invertible rep-equator-reflect and invertible rep-meridian-reflect
unfolding invertible-def
using compass-reflect-self-inverse
by auto

lemma compass-reflect-compass:

shows apply-cltn2 east meridian-reflect = west

and apply-cltn2 west meridian-reflect = east

and apply-cltn2 north meridian-reflect = north

and apply-cltn2 south meridian-reflect = south

and apply-cltn2 K2-centre meridian-reflect = K2-centre

and apply-cltn2 east equator-reflect = east

and apply-cltn2 west equator-reflect = west

and apply-cltn2 north equator-reflect = south

and apply-cltn2 south equator-reflect = north

and apply-cltn2 K2-centre equator-reflect = K2-centre
proof —

have (vector [1,0,1] :: real’3) vx rep-meridian-reflect = vector [—1,0,1]

and (vector [0,1,1] :: real’3) vx rep-equator-reflect = vector [0,—1,1]
and (vector [0,—1,1] :: real’3) vx rep-equator-reflect = vector [0,1,1]
and (vector [0,0,1] :: real’3) vx rep-equator-reflect = vector [0,0,1]
unfolding rep-meridian-reflect-def and rep-equator-reflect-def

and (vector [—1,0,1] :: real’3) vx rep-meridian-reflect = vector [1,0,1]
and (vector [0,1,1] :: real’3) vx rep-meridian-reflect = vector [0,1,1]
and (vector [0,—1,1] :: real’3) vx rep-meridian-reflect = vector [0,—1,1]
and (vector [0,0,1] :: real’3) vx rep-meridian-reflect = vector [0,0,1]
and (vector [1,0,1] :: real’3) vx rep-equator-reflect = vector [1,0,1]
and (vector [—1,0,1] :: real’3) vx rep-equator-reflect = vector [—1,0,1]
( [
( [
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and vector-matrix-mult-def
by (simp-all add: Cart-eq forall-3 vector-3 setsum-3)
with compass-reflect-invertible and compass-non-zero and K2-centre-non-zero
show apply-cltn2 east meridian-reflect = west
and apply-clin2 west meridian-reflect = east
and apply-cltn2 north meridian-reflect = north
and apply-cltn2 south meridian-reflect = south
and apply-cltn2 K2-centre meridian-reflect = K2-centre
and apply-cltn2 east equator-reflect = east
and apply-cltn2 west equator-reflect = west
and apply-cltn2 north equator-reflect = south
and apply-cltn2 south equator-reflect = north
and apply-cltn2 K2-centre equator-reflect = K2-centre
unfolding compass-defs and K2-centre-def
and meridian-reflect-def and equator-reflect-def
by (simp-all add: apply-cltn2-abs)
qed

lemma on-equator-rep:
assumes z-non-zero a and proj2-incident a equator
shows 3 x. a = proj2-abs (vector [x,0,1])
proof —
let ?ra = proj2-rep a
let ?cal = cart2-append] a
let ?x = ?cal$l
from compass-non-zero and (proj2-incident a equator)
have ?ra - vector [0,1,0] = 0
by (unfold equator-def) (simp add: proj2-incident-right-abs)
hence ?ra$2 = 0 by (unfold inner-vector-def vector-def ) (simp add: setsum-3)
hence ?cal$2 = 0 by (unfold cart2-append1-def) simp
moreover
from (z-non-zero a) have ?cal$3 = 1 by (rule cart2-append1-z)
ultimately
have ?cal = vector [?x,0,1]
by (unfold vector-def) (simp add: Cart-eq forall-3)
with (z-non-zero a)
have proj2-abs (vector [?x,0,1]) = a by (simp add: proj2-abs-cart2-append1)
thus 3 x. a = proj2-abs (vector [x,0,1]) by (simp add: exI [of - ?x])
qed

lemma on-meridian-rep:
assumes z-non-zero a and proj2-incident a meridian
shows 3 y. a = proj2-abs (vector [0,y,1])
proof —
let ?ra = proj2-rep a
let ?cal = cart2-append] a
let 7y = ?cal$2
from compass-non-zero and (proj2-incident a meridian)
have ?ra - vector [1,0,0] = 0
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by (unfold meridian-def) (simp add: proj2-incident-right-abs)
hence ?ra$1 = 0 by (unfold inner-vector-def vector-def ) (simp add: setsum-3)
hence ?cal$1 = 0 by (unfold cart2-append1-def) simp
moreover
from (z-non-zero a) have ?cal$3 = 1 by (rule cart2-append1-z)
ultimately
have ?cal = vector [0,7y,1]
by (unfold vector-def) (simp add: Cart-eq forall-3)
with (z-non-zero a)
have proj2-abs (vector [0,?y,1]) = a by (simp add: proj2-abs-cart2-append1)
thus 3 y. a = proj2-abs (vector [0,y,1]) by (simp add: exI [of - ?y])
qed

9.3 Definition of the Klein—-Beltrami model of the hyperbolic
plane

typedef hyp2 = K2
using K2-centre-in-K2
by auto

definition hyp2-rep :: hyp2 = real”2 where
hyp2-rep p = cart2-pt (Rep-hyp2 p)

definition hyp2-abs :: real”2 = hyp2 where
hyp2-abs v = Abs-hyp2 (proj2-pt v)

lemma norm-It-1-iff-in-hyp2:

shows norm v < 1 <— proj2-pt v € hyp2
proof —

let ?v’ = vector2-appendl v

have ?v’ # 0 by (rule vector2-append1-non-zero)

from real-less-rsqrt [of norm v 1]
and less-one-imp-sqr-less-one [of norm v
have norm v < 1 +— (norm v)? < 1 by auto
hence normv < 1 +— ?v’ - (M xv ?v’) < 0 by (simp add: norm-M)
with (70’ # 0) have norm v < 1 <— proj2-abs ?v’ € K2 by (subst K2-abs)
thus norm v < 1 <— proj2-pt v € hyp2 by (unfold proj2-pt-def hyp2-def)
qed

lemma norm-eq-1-iff-in-S:
shows norm v =1 <— proj2-ptv € S
proof —
let 70’ = vector2-appendl v
have ?v’ # 0 by (rule vector2-append1-non-zero)

from real-sqrt-unique [of norm v 1]

have norm v = 1 +— (norm v)? = 1 by auto
hence normv =1 +— ?v’ - (M *v ?0’) = 0 by (simp add: norm-M)
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with (?0” # 0) have norm v = 1 <— proj2-abs ?v’ € S by (subst S-abs)
thus norm v =1 <— proj2-pt v € S by (unfold proj2-pt-def)
qed

lemma norm-le-1-iff-in-hyp2-S:
normv <1 <— proj2-ptv € hyp2 U S
using norm-It-1-iff-in-hyp2 [of v| and norm-eq-1-iff-in-S [of v]
by auto

lemma proj2-pt-hyp2-rep: proj2-pt (hyp2-rep p) = Rep-hyp2 p
proof —

let ?p’ = Rep-hyp2 p

let ?v = proj2-rep ?p’

have ?v # 0 by (rule proj2-rep-non-zero)

have proj2-abs ?v = ?p’ by (rule proj2-abs-rep)

have ?p’ € hyp2 by (rule Rep-hyp2)

hence ?p’ € K2 by (unfold hyp2-def)

with (?v # 0) and (proj2-abs ?v = ?p’)

have ?v - (M *v ?v) < 0 by (simp add: K2-imp-M-neg)

hence ?v$3 # 0 by (rule M-neg-imp-z-non-zero)

hence proj2-pt (cart2-pt ?p’) = ?p’ by (rule proj2-cart2)

thus proj2-pt (hyp2-rep p) = ?p’ by (unfold hyp2-rep-def)
qed

lemma hyp2-rep-abs:
assumes norm v < 1
shows hyp2-rep (hyp2-abs v) = v
proof —
from (normv < 1)
have proj2-pt v € hyp2 by (simp add: norm-It-1-iff-in-hyp2)
hence Rep-hyp2 (Abs-hyp2 (proj2-pt v)) = proj2-pt v
by (simp add: Abs-hyp2-inverse)
hence hyp2-rep (hyp2-abs v) = cart2-pt (proj2-pt v)
by (unfold hyp2-rep-def hyp2-abs-def ) simp
thus hyp2-rep (hyp2-abs v) = v by (simp add: cart2-proj2)
qed

lemma hyp2-abs-rep: hyp2-abs (hyp2-rep p) = p
by (unfold hyp2-abs-def) (simp add: proj2-pt-hyp2-rep Rep-hyp2-inverse)

lemma norm-hyp2-rep-It-1: norm (hyp2-rep p) < 1
proof —
have proj2-pt (hyp2-rep p) = Rep-hyp2 p by (rule proj2-pt-hyp2-rep)
hence proj2-pt (hyp2-rep p) € hyp2 by (simp add: Rep-hyp2)
thus norm (hyp2-rep p) < 1 by (simp add: norm-It-1-iff-in-hyp2)
qed
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lemma hyp2-S-z-non-zero:
assumes p € hyp2 U S
shows z-non-zero p
proof —
from (p € hyp2 U S)
have conic-sgn p < 0 by (unfold hyp2-def K2-def S-def) auto
hence conic-sgn p # 1 by simp
thus z-non-zero p by (rule conic-sgn-not-1-z-non-zero)
qed

lemma hyp2-S-not-equal:
assumes a € hyp2 andp € S
shows a # p
using assms and S-K2-empty
by (unfold hyp2-def) auto

lemma hyp2-S-cart2-inj:
assumes p € hyp2 U S and g € hyp2 U S and cart2-pt p = cart2-pt q
shows p =g
proof —
from (p € hyp2 U S) and (g € hyp2 U S)
have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) = q
by (simp-all add: proj2-cart2)

from (cart2-pt p = cart2-pt q
have proj2-pt (cart2-pt p) = proj2-pt (cart2-pt q) by simp
with (proj2-pt (cart2-pt p) = p) [symmetric| and (proj2-pt (cart2-pt q) = q)
show p = g by simp
qed

lemma on-equator-in-hyp2-rep:
assumes a € hyp2 and proj2-incident a equator
shows 3 x. |x| < 1 A a = proj2-abs (vector [x,0,1])
proof —
from (@ € hyp2) have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with (proj2-incident a equator) and on-equator-rep
obtain x where a = proj2-abs (vector [x,0,1]) (is a = proj2-abs ?v)
by auto

have ?v # 0 by (simp add: Cart-eq forall-3 vector-3)
with @ € hyp2) and @ = proj2-abs ?v)
have ?v - (M *v ?v) < 0 by (unfold hyp2-def) (simp add: K2-abs)
hence x? < 1
unfolding M-def matrix-vector-mult-def inner-vector-def
by (simp add: setsum-3 vector-3 square-expand)
with real-sqrt-abs [of x] and real-sqrt-less-iff [of x> 1]
have |x| < 1 by simp
with @ = proj2-abs ?v)

135



show 3 x. |x| <1 A a = proj2-abs (vector [x,0,1])
by (simp add: exI [of - x])
qed

lemma on-meridian-in-hyp2-rep:
assumes a € hyp2 and proj2-incident a meridian
shows 3 y. |y| <1 A a = proj2-abs (vector [0,y,1])
proof —
from (@ € hyp2) have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with (proj2-incident a meridian) and on-meridian-rep
obtain y where a = proj2-abs (vector [0,y,1]) (is a = proj2-abs ?v)
by auto

have ?v # 0 by (simp add: Cart-eq forall-3 vector-3)
with @ € hyp2) and @ = proj2-abs ?v)
have ?v - (M *v ?v) < 0 by (unfold hyp2-def) (simp add: K2-abs)
hence y? < 1
unfolding M-def matrix-vector-mult-def inner-vector-def
by (simp add: setsum-3 vector-3 square-expand)
with real-sqrt-abs [of y] and real-sqrt-less-iff [of y* 1]
have |y| < 1 by simp
with @ = proj2-abs ?v)
show 3 . |y| <1 A a = proj2-abs (vector [0,y,1])
by (simp add: exI [of - y])
qed

definition hyp2-cltn2 :: hyp2 = cltn2 = hyp2 where
hyp2-cltn2 p A = Abs-hyp2 (apply-cltn2 (Rep-hyp2 p) A)

definition is-K2-isometry :: cltn2 = bool where
is-K2-isometry | = (¥ p. apply-cltn2p] €S +—p € S)

lemma cltn2-id-is-K2-isometry: is-K2-isometry cltn2-id
unfolding is-K2-isometry-def
by simp

lemma J-M-J-transpose-K2-isometry:
assumes k # 0
and rep] s M xx transpose rep] =k xg M (is ?N = -)
shows is-K2-isometry (cltn2-abs rep]) (is is-K2-isometry ?])
proof —
from (?N =k xg M)
have ?N xx ((1/k) *g M) = mat 1
by (simp add: matrix-scalar-ac k # 0) M-self-inverse)
with right-invertible-iff-invertible [of rep]]
have invertible rep]
by (simp add: matrix-mul-assoc
exI [of - M xx transpose rep] «x ((1/k) xg M)])
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have V t. apply-cltn2t?2] € S+—t €S
proof
fix t :: proj2
have proj2-rep t « ((k xg M) *v proj2-rep t)
=k * (proj2-rep t - (M xv proj2-rep t))
by (simp add: scalar-matrix-vector-assoc [symmetric| dot-scaleR-mult)
with N = k g M)
have proj2-rep t -+ (?N *v proj2-rep t)
= k * (proj2-rep t - (M xv proj2-rep t))
by simp
hence proj2-rep t - (?N *v proj2-rep t) = 0
> k x (proj2-rep t - (M *v proj2-rep t)) = 0
by simp
with & # 0)
have proj2-rep t + (?N *v proj2-rep t) =
< proj2-rep t -+ (M *v proj2-rep t)
by simp
with (nvertible rep])
have apply-cltn2 t ?] € S <— proj2-rep t - (M *v proj2-rep t) = 0
by (simp add: apply-clin2-right-abs-in-S)
thus apply-cltn2 t 2] € S <— t € S by (unfold S-alt-def)
qed
thus is-K2-isometry ?] by (unfold is-K2-isometry-def )
qed

S S

lemma equator-reflect-K2-isometry:
shows is-K2-isometry equator-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])
(simp-all add: M-def matrix-matrix-mult-def transpose-def
Cart-eq forall-3 setsum-3 vector-3)

lemma meridian-reflect-K2-isometry:
shows is-K2-isometry meridian-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])
(simp-all add: M-def matrix-matrix-mult-def transpose-def
Cart-eq forall-3 setsum-3 vector-3)

lemma cltn2-compose-is-K2-isometry:
assumes is-K2-isometry H and is-K2-isometry |
shows is-K2-isometry (cltn2-compose H |)
using (is-K2-isometry H) and (is-K2-isometry |)
unfolding is-K2-isometry-def
by (simp add: cltn2.act-act [simplified, symmetric])

lemma cltn2-inverse-is-K2-isometry:

assumes is-K2-isometry |
shows is-K2-isometry (cltn2-inverse J)
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proof —
{ fix p
from (is-K2-isometry |)
have apply-cltn2 p (cltn2-inverse ) € S
> apply-cltn2 (apply-clin2 p (cltn2-inverse J)) ] € S
unfolding is-K2-isometry-def
by simp
hence apply-clin2 p (cltn2-inverse ]) € S <—p € S
by (simp add: cltn2.act-inv-act [simplified]) }
thus is-K2-isometry (cltn2-inverse ])
unfolding is-K2-isometry-def ..
qed

interpretation K2-isometry-subgroup: subgroup

Collect is-K2-isometry

(|carrier = UNIV, mult = cltn2-compose, one = clin2-id|)

unfolding subgroup-def

by (simp add:
cltn2-id-is-K2-isometry
cltn2-compose-is-K2-isometry
cltn2-inverse-is-K2-isometry)

interpretation K2-isometry: group
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
using cltn2.is-group and K2-isometry-subgroup.subgroup-is-group
by simp

lemma K2-isometry-inverse-inv [simp]:
assumes is-K2-isometry |
shows MO (|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|) J
= cltn2-inverse |
using cltn2-left-inverse
and (is-K2-isometry |)
and cltn2-inverse-is-K2-isometry
and K2-isometry.inv-equality
by simp

definition real-hyp2-C :: [hyp2, hyp2, hyp2, hyp2| = bool
(- - =k - - [99,99,99,99] 50) where

AN
pq=Kkrs=
(3 A. is-K2-isometry A A\ hyp2-cltn2 p A = r A\ hyp2-cltn2 g A = s)

definition real-hyp2-B :: [hyp2, hyp2, hyp2] = bool
(Bk - --199,99,99] 50) where
B p q 1= Br (hyp2-rep p) (hyp2-rep q) (hyp2-rep r)

9.4 K-isometries map the interior of the conic to itself

lemma collinear-quadratic:
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assumes t =i*xga—+r
shows t - (M xvt) =
(a- Mxva))*i2+2%(a- (M*vr))*i+r-(Mx*vr)
proof —
from M-reverse have i * (a - (M xvr)) =ix* (r- (M *va)) by simp
with(t =ixga+ 7
showt - (M v t) =
(a-Mxva))*i2+2%(a- (M*vr))*i+r-(Mx*vr)
by (simp add:
inner.add-left
matrix-vector-right-distrib
inner.add-right
matrix-scalar-vector-ac
inner.scaleR-right
scalar-matrix-vector-assoc [symmetric|
M-reverse
square-expand
algebra-simps)
qed

lemma S-quadratic”:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q
shows proj2-abs (kg p +q) €S
——p-(M*vp)xk2+p-(M*vq)*2+k+qg-(M*vq)=0
proof —
let 7r=kxgp+9q
from (p # 0) and (g # 0) and (proj2-abs p # proj2-abs q)
and dependent-proj2-abs [of p q k 1]
have ?r # 0 by auto
hence proj2-abs ?r € S <— ?r - (M v ?r) = 0 by (rule S-abs)
with collinear-quadratic [of ?r k p q|
show proj2-abs 7r € S
= p-(M*vp)xk2+p-(M*vq)+«2+k+qg-(M*vq)=0
by (simp add: dot-lmul-matrix [symmetric| algebra-simps)
qed

lemma S-quadratic:
assumes p # q and r = proj2-abs (k g proj2-rep p + proj2-rep q)
showsrc S
< proj2-rep p - (M v proj2-rep p) * k>
+ proj2-rep p - (M *v proj2-rep q) * 2 x k
+ proj2-rep q - (M *v proj2-rep q)
=0

proof —
let ?u = proj2-rep p
let ?v = proj2-rep q
let 2w =k *g 2u + ?v
have ?u # 0 and ?v # 0 by (rule proj2-rep-non-zero)+
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from (p # ¢ have proj2-abs ?u # proj2-abs ?v by (simp add: proj2-abs-rep)
with (?u # 0) and (?v # 0) and (r = proj2-abs ?w)
showr € S
= 2u- (M*02u) k2 + 2u - (M0 ?20) 2 xk + 20+ (M %0 ?0) = 0
by (simp add: S-quadratic’)
qed

definition quarter-discrim :: real’3 = real”3 = real where
quarter-discrimp g = (p - (M xv q))> —p - (M *vp) * (q+ (M xvq))

lemma quarter-discrim-invariant:
assumes t =i *ga+r
shows quarter-discrim a t = quarter-discrim a r
proof —
from ¢t =i*xga+rn
havea - (M xvt)=ix*(a- (Mx*va))+a-(Mx*vr)
by (simp add:
matrix-vector-right-distrib
inner.add-right
matrix-scalar-vector-ac
scalar-matrix-vector-assoc [symmetric|)
hence (a - (M xvt))? =
(a- (Mx*va))?«i> +
2% (a-(M=x*va))*(a-(Mxvr))*i+
(a- (M x*vr))?
by (simp add: square-expand algebra-simps)
moreover from collinear-quadratic and t =i *ga + 1)
havea - (M xva) * (t - (M xvt)) =
(a- (Mxva))?«i>+
2% (a- (M=x*va))*(a-(Mxvr))*i+
a-(M=xva)x(r- (M=xvr))
by (simp add: square-expand algebra-simps)
ultimately show quarter-discrim a t = quarter-discrim a r
by (unfold quarter-discrim-def, simp)
qed

lemma quarter-discrim-positive:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2
shows quarter-discrimp q > 0
proof —
let 7i = —q%3/p$3
let?t="7i*xrp+gq

from (p # 0) and (?pp € K2)

have p - (M *v p) < 0 by (subst K2-abs [symmetric])
hence p$3 # 0 by (rule M-neg-imp-z-non-zero)
hence ?t$3 = 0 by simp

hence ?t - (M *v ?t) = (?t$1)% + (?t$2)?
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unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vector-def setsum-3 square-expand )

from (p$3 # 0) have p # 0 by auto
with (g # 00 and (?pp # ?pq) and dependent-proj2-abs [of p q ?i 1]
have ?t # 0 by auto
with (?t$3 = 0) have ?t$1 # 0 V ?t$2 # 0 by (simp add: Cart-eq forall-3)
hence (?t$1)2 > 0V (?t$2)? > 0 by simp
moreover have (?t$2)2 > 0 and (?t$1)? > 0 by simp-all
ultimately have (?t$1)% + (?t$2)2 > 0 by arith
with (7t -+ (M v ?t) = (?t$1)% + (?t$2)%) have ?t - (M xv ?t) > 0 by simp
with mult-neg-pos [of p - (M xv p)] and (p - (M xv p) < 0)
have p - (M *v p) % (?t - (M *v ?t)) < 0 by simp
moreover have (p - (M xv ?t))? > 0 by simp
ultimately
have (p - (M *v ?t))2 — p - (M *v p) * (?t - (M *v ?t)) > 0 by arith
with quarter-discrim-invariant [of 7t ?i p q
show quarter-discrim p q > 0 by (unfold quarter-discrim-def, simp)
qed

lemma quarter-discrim-self-zero:
assumes proj2-abs a = proj2-abs b
shows quarter-discrima b = 0
proof cases
assume b =0
thus quarter-discrim a b = 0 by (unfold quarter-discrim-def, simp)
next
assume b # 0
with (proj2-abs a = proj2-abs b) and proj2-abs-abs-mult
obtain k where a = k xg b by auto
thus quarter-discrima b = 0
unfolding quarter-discrim-def
by (simp add: square-expand
matrix-scalar-vector-ac
scalar-matrix-vector-assoc [symmetric|)
qed

definition S-intersection-coeffl :: real"3 = real’3 => real where
S-intersection-coeffl p q

£ (—p - (M xvq) + sqrt (quarter-discrim p q)) / (p - (M *v p))

definition S-intersection-coeff2 :: real’3 = real’3 = real where
S-intersection-coeff2 p q

A

£ (—p - (M *v q) — sqrt (quarter-discrimp q)) / (p - (M xv p))

definition S-intersectionl-rep :: real’3 = real"3 = real”3 where
S-intersectionl-rep p q = (S-intersection-coeffl p q) *r p + q

definition S-intersection2-rep :: real’3 = real’3 = real"3 where
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S-intersection2-rep p q = (S-intersection-coef2 p q) *r p + q

definition S-intersectionl :: real"3 = real’3 = proj2 where
S-intersectionl p q = proj2-abs (S-intersectionl-rep p q)

definition S-intersection2 :: real"3 = real’3 = proj2 where
S-intersection2 p q £ proj2-abs (S-intersection2-rep p q)

lemmas S-intersection-coeffs-defs =
S-intersection-coeff1-def S-intersection-coeff2-def

lemmas S-intersections-defs =
S-intersection1-def S-intersection2-def
S-intersection1-rep-def S-intersection2-rep-def

lemma S-intersection-coeffs-distinct:

assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2

shows S-intersection-coeffl p q # S-intersection-coeff2 p q

proof —

from (p # 0) and (?pp € K2)

have p - (M *v p) < 0 by (subst K2-abs [symmetric|)

from assms have quarter-discrim p q > 0 by (rule quarter-discrim-positive)
with (p - (M xvp) < 0)
show S-intersection-coeffl p q # S-intersection-coeff2 p q
by (unfold S-intersection-coeffs-defs, simp)
qed

lemma S-intersections-distinct:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2
shows S-intersectionl p q # S-intersection2 p q
proof—
from (p # 0) and (g # 0) and (Ppp # ?pq and (Ppp € K2)
have S-intersection-coeffl p q # S-intersection-coeff2 p q
by (rule S-intersection-coeffs-distinct)
with (p # 0) and (g # 0> and (?pp # ?pq) and proj2-Col-coeff-unique’
show S-intersectionl p q # S-intersection2 p q
by (unfold S-intersections-defs, auto)
qed

lemma S-intersections-in-S:

assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2

shows S-intersectionl p q € S and S-intersection2 p g € S

proof —

let ?j = S-intersection-coeffl p q

let 2k = S-intersection-coeff2 p q
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let?2a=p- (Mx*vp)
let?b=2x (p- (M x*vq))
let?2c=gq- (M xvq)

from (p # 0) and (?pp € K2) have ?a < 0 by (subst K2-abs [symmetric])

have gd: discrim ?a ?b ?c = 4 x quarter-discrim p q
unfolding discrim-def quarter-discrim-def
by (simp add: square-expand)

with times-divide-times-eq [of
2 2 sqrt (quarter-discrimp q) — p - (M v q) ?a]
and times-divide-times-eq [of
22 —p - (M=x*vq) — sqrt (quarter-discrim p q) ?a]
and real-sqrt-mult and real-sqrt-abs [of 2]

have ?j = (—?b + sqrt (discrim ?a ?b ?c)) / (2 * ?a)
and ?k = (—?b — sqrt (discrim 2a ?b 2c)) / (2 x ?a)
by (unfold S-intersection-coeffs-defs, simp-all add: algebra-simps)

from assms have quarter-discrim p q > 0 by (rule quarter-discrim-positive)

with gd

have discrim (p + (M *xvp)) (2% (p- (M=*vq))) (g (M=*vq)) >0
by simp

with (?j = (=2b + sqrt (discrim 2a ?b ?c)) / (2 x ?a))
and (?k = (—?b — sqrt (discrim ?a ?b ?c)) / (2 * ?a))
and (?a < 0) and discriminant-nonneg [of ?a ?b ?c ?j]
and discriminant-nonneg [of ?a ?b ?c ?k]

havep - (M *xvp) 2> + 2% (p- (M*0vq)) *?j +q- (Mx*vgqg) =0
andp - (M*vp)* 2k + 2% (p- (M*vq)) *?k+q- (M*vq) =0
by (unfold S-intersection-coeffs-defs, auto)

with (p # 0) and (g # 0) and (?pp # ?pg) and S-quadratic’

show S-intersectionl p q € S and S-intersection2 pq € S
by (unfold S-intersections-defs, simp-all)

qed

lemma S-intersections-Col:
assumes p # 0 and g # 0
shows proj2-Col (proj2-abs p) (proj2-abs q) (S-intersectionl p q)
(is proj2-Col ?pp ?pq ?pr)
and proj2-Col (proj2-abs p) (proj2-abs q) (S-intersection2 p q)
(is proj2-Col ?pp ?pq ?ps)
proof —
{ assume ?pp = ?pq
hence proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (simp-all add: proj2-Col-coincide) }
moreover
{ assume ?pp # ?pq
with (p # 0) and (¢ # 0) and dependent-proj2-abs [of p q - 1]
have S-intersectionl-rep p g # 0 (is ?r # 0)
and S-intersection2-rep p q # 0 (is ?s # 0)
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by (unfold S-intersectionl-rep-def S-intersection2-rep-def, auto)

with (p # 0) and (g # 0
and proj2-Col-abs [of p q ?r S-intersection-coeffl p q 1 —1]
and proj2-Col-abs [of p q ?s S-intersection-coeff2 p q 1 —1]

have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (unfold S-intersections-defs, simp-all) }

ultimately show proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps by fast+
qed

lemma S-intersections-incident:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-incident (proj2-abs p) | and proj2-incident (proj2-abs q)
shows proj2-incident (S-intersection1 p q) 1 (is proj2-incident ?pr 1)
and proj2-incident (S-intersection2 p q) 1 (is proj2-incident ?ps )
proof —
from (p # 0) and (g # 0)
have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (rule S-intersections-Col )+
with (?pp # ?pq> and (proj2-incident ?pp ) and (proj2-incident ?pq |
and proj2-incident-iff-Col
show proj2-incident ?pr | and proj2-incident ?ps [ by fast+
qed

lemma K2-line-intersect-twice:

assumes g € K2 and a # r

shows d su.s #uANseSAueSAproj2-Colars A proj2-Col ar u
proof —

let ?a’ = proj2-rep a

let ?r' = proj2-rep r

from proj2-rep-non-zero have ?a’ # 0 and ?r’ # 0 by simp-all

from (?a’ # 0) and K2-imp-M-neg and proj2-abs-rep and (@ € K2)
have ?a’ - (M *v ?a’) < 0 by simp

from (@ # r) have proj2-abs ?a’ # proj2-abs ?r' by (simp add: proj2-abs-rep)

from (@ € K2) have proj2-abs ?a’ € K2 by (simp add: proj2-abs-rep)

with (?a’ £ 0) and (?r' # 0) and (proj2-abs ?a’ # proj2-abs ?r"

have S-intersectionl ?a’ ?r’ # S-intersection2 ?a’ ?r' (is ?s # ?u)
by (rule S-intersections-distinct)

from (?a’ # 0) and (?r" # 0) and (proj2-abs ?a’ # proj2-abs 21"
and (proj2-abs ?a’ € K2)
have ?s € S and ?u € S by (rule S-intersections-in-S)+

from (?a’ # 0) and (?r' # 0)

have proj2-Col (proj2-abs ?a’) (proj2-abs ?r') ?s
and proj2-Col (proj2-abs ?a’) (proj2-abs ?r') 2u
by (rule S-intersections-Col )+
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hence proj2-Col a r ?s and proj2-Col a r 7u
by (simp-all add: proj2-abs-rep)
with (?s # 7w and (?s € S) and Pu € S
show 3 su.s #uANsecSANuecSANproj2-Colars A proj2-Col aru
by auto
qed

lemma point-in-S-polar-is-tangent:
assumes p € S and g € S and proj2-incident g (polar p)
shows g =p
proof —
from (p € S) have proj2-incident p (polar p)
by (subst incident-own-polar-in-S)

from line-incident-point-not-in-S
obtain r where r ¢ S and proj2-incident r (polar p) by auto
let ?u = proj2-rep r
let ?v = proj2-rep p
from (r ¢ S) and (p € S) and (g € S) have r # p and g # r by auto
with (proj2-incident p (polar p))
and (proj2-incident q (polar p))
and (proj2-incident r (polar p))
and proj2-incident-iff [of r p polar p q]
obtain k where q = proj2-abs (k xg ?u + ?v) by auto
with (# # p) and (g € S) and S-quadratic
have ?u - (M %0 ?2u) x k2 + 2u - (M %0 20) * 2 x k + 20 - (M %0 ?0) = 0
by simp
moreover from (p € S) have ?v - (M xv ?v) = 0 by (unfold S-alt-def)
moreover from (proj2-incident r (polar p))
have ?u - (M v ?v) = 0 by (unfold incident-polar)
moreover from (r ¢ S) have ?u - (M *v ?u) # 0 by (unfold S-alt-def)
ultimately have k = 0 by simp
with (g = proj2-abs (k xg 2u + ?v))
show q = p by (simp add: proj2-abs-rep)
qed

lemma line-through-K2-intersect-S-twice:
assumes p € K2 and proj2-incident p |
shows 3 gr.g#rAqeSAreS A proj2-incident q I A proj2-incident r |
proof —
from proj2-another-point-on-line
obtain s where s # p and proj2-incident s I by auto
from (p € K2) and (s # p) and K2-line-intersect-twice [of p s|
obtain g and r whereg #randg € Sandr € S
and proj2-Col p s q and proj2-Col p s r
by auto
with (s # p) and (proj2-incident p I) and (proj2-incident s )
and proj2-incident-iff-Col [of p s|
have proj2-incident q | and proj2-incident r I by fast+
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with (g #r and g € S)and (r € S)
show 3 qr.q#rANqeSAreS A proj2-incident q 1 A proj2-incident r |
by auto
qed

lemma line-through-K2-intersect-S-again:
assumes p € K2 and proj2-incident p |
shows 3 r.v £ q A r € S A proj2-incident r |
proof —
from (p € K2) and (proj2-incident p I)
and line-through-K2-intersect-S-twice [of p I]
obtain s and f wheres # fands € Sand t € S
and proj2-incident s | and proj2-incident t |
by auto
show 3 r.r # q A r € S A\ proj2-incident r |
proof cases
assume t = g
with (s # ) and (s € S) and (proj2-incident s I)
have s # g A\ s € S A proj2-incident s | by simp
thus 3 r.r g Ar €S A proj2-incident v [ ..
next
assume f # g
with t € S) and (proj2-incident t )
have t #q At € S A proj2-incident t | by simp
thus 3 r.r £g A r €S A proj2-incident r [ ..
qed
qed

lemma line-through-K2-intersect-S:
assumes p € K2 and proj2-incident p |
shows 3 r. v € S A proj2-incident r |
proof —
from assms
have 3 7.7 # p AN r € S A proj2-incident r |
by (rule line-through-K2-intersect-S-again)
thus 3 r.r € S A proj2-incident r | by auto
qed

lemma line-intersect-S-at-most-twice:

3 pq.V reS. proj2-incidentrl — r=pVr=gq
proof —

from line-incident-point-not-in-S

obtain s where s ¢ S and proj2-incident s | by auto

let ?v = proj2-rep s

from proj2-another-point-on-line

obtain t where t # s and proj2-incident t I by auto

let ?w = proj2-rep t

have ?v # 0 and ?w # 0 by (rule proj2-rep-non-zero)+
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let ?a = ?2v - (M *v ?v)
let ?2b =2 % (?v - (M %0 ?w))
let ?c = ?w - (M *v ?w)
from (s ¢ S) have ?a # 0
unfolding S-def and conic-sgn-def
by auto
let ?j = (—?b + sqrt (discrim ?2a ?b ?c)) / (2 * ?a)
let ?k = (—?b — sqrt (discrim ?a ?b ?c)) / (2 x ?a)
let ?p = proj2-abs (?j *g ?v + ?w)
let ?q = proj2-abs (?k xg ?v + ?w)
have V reS. proj2-incident r | — r=?pVr=72q
proof
fix r
assumer € S
with (s ¢ S) have r # s by auto
{ assume proj2-incident r |
with (t # s) and (v # s) and (proj2-incident s I) and (proj2-incident t
and proj2-incident-iff [of s t 1 1]
obtain i where r = proj2-abs (i xg ?v + ?w) by auto
with (r € S) and (¢ # s) and S-quadratic
have ?a * 2 4+ ?b i + ?c = 0 by simp
with (?a # 0) and discriminant-iff have i = ?j V i = ?k by simp
with r = proj2-abs (i g ?v + ?w)) have r = ?p V r = ?q by auto }
thus proj2-incident r | — r=?pVr=7q..
qed
thus 3 p gq. vV reS. proj2-incident r | — v = p V r = q by auto
qed

lemma card-line-intersect-S:
assumes T C S and proj2-set-Col T
shows card T < 2
proof —
from (proj2-set-Col T)
obtain | where V peT. proj2-incident p | unfolding proj2-set-Col-def ..
from line-intersect-S-at-most-twice [of ]
obtain b and c where V a€S. proj2-incident al — a = b V a = c by auto
with v peT. proj2-incident p ) and (T C S)
have T C {b,c} by auto
hence card T < card {b,c} by (simp add: card-mono)
also from card-suc-ge-insert [of b {c}] have ... < 2 by simp
finally show card T < 2.
qed

lemma line-S-two-intersections-only:
assumesp Zqandpc Sandgc Sandrec S
and proj2-incident p | and proj2-incident q I and proj2-incident r |
showsr=pVr=gqg
proof —
from (p # ¢ have card {p,q} = 2 by simp
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from (p € S) and (g € S) and (r € S) have {r,p,q} C S by simp-all

from (proj2-incident p I} and (proj2-incident q I) and (proj2-incident r )
have proj2-set-Col {r,p,q}

by (unfold proj2-set-Col-def ) (simp add: exI [of - I])
with ({r,p,q} C S) have card {r,p,q} < 2 by (rule card-line-intersect-S)

showr=pVr=qg

proof (rule ccontr)
assume — (r=pVr =)
hence r ¢ {p,q} by simp
with (card {p,q} = 2) and card-insert-disjoint [of {p,q} 7]
have card {r,p,q} = 3 by simp
with (card {r,p,q} < 2) show False by simp

qed

qed

lemma line-through-K2-intersect-S-exactly-twice:
assumes p € K2 and proj2-incident p |
shows 3 gr.q #r ANq €S ANr &S Aproj2-incident q I A\ proj2-incident r |
A (Y s€S. proj2-incident s — s =q Vs =r)
proof —
from (p € K2) and (proj2-incident p I)
and line-through-K2-intersect-S-twice [of p I]
obtain g and r whereg #randg € Sandr € S
and proj2-incident g | and proj2-incident v |
by auto
with [ine-S-two-intersections-only
show 3 qr.q#rANq€SANreS A proj2-incident q 1 A proj2-incident v |
A (V s€S. proj2-incident s — s =q Vs =r)
by blast
qed

lemma fangent-not-through-K2:
assumes p € S and g € K2
shows — proj2-incident q (polar p)
proof
assume proj2-incident q (polar p)
with (g € K2) and line-through-K2-intersect-S-again [of q polar p p]
obtain r where r # p and r € S and proj2-incident r (polar p) by auto
from (p € S) and (r € S) and (proj2-incident r (polar p))
have r = p by (rule point-in-S-polar-is-tangent)
with (v # p) show False ..
qed

lemma outside-exists-line-not-intersect-S:

assumes conic-sgn p = 1
shows 3 [. proj2-incident p I A (V¥ q. proj2-incident q1 — q ¢ S)
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proof —

let ?r = proj2-intersection (polar p) z-zero

have proj2-incident ?r (polar p) and proj2-incident ?r z-zero
by (rule proj2-intersection-incident )+

from (proj2-incident ?r z-zero)

have conic-sgn ?r = 1 by (rule z-zero-conic-sgn-1)

with (conic-sgnp = 1)

have proj2-rep p - (M *v proj2-rep p) > 0
and proj2-rep ?r - (M *v proj2-rep ?r) > 0
by (unfold conic-sgn-def) (simp-all add: sgn-1-pos)

from (proj2-incident ?r (polar p))
have proj2-incident p (polar ?r) by (rule incident-polar-swap)
hence proj2-rep p - (M *v proj2-rep ?r) = 0 by (simp add: incident-polar)

have p # ?r

proof
assume p = ?r
with (proj2-incident ?r (polar p)) have proj2-incident p (polar p) by simp
hence proj2-rep p - (M *v proj2-rep p) = 0 by (simp add: incident-polar)
with (proj2-rep p - (M v proj2-rep p) > 0) show False by simp

qed

let ?I = proj2-line-through p ?r
have proj2-incident p ?l and proj2-incident ?r ?1
by (rule proj2-line-through-incident)+

have V q. proj2-incident g ?l — q & S
proof
fix g
show proj2-incident g 21 — q & S
proof
assume proj2-incident q ?1
with (p # ?r) and (proj2-incident p ?I) and (proj2-incident ?r ?])
have g = p V (3 k. g = proj2-abs (k xg proj2-rep p + proj2-rep ?r))
by (simp add: proj2-incident-iff [of p ?r ?1 q])

show g ¢ S
proof cases
assume g = p
with (conic-sgn p = 1) show g ¢ S by (unfold S-def) simp
next
assume q # p
with (g = p V (3 k. g = proj2-abs (k xg proj2-rep p + proj2-rep ?r)))
obtain k where q = proj2-abs (k xg proj2-rep p + proj2-rep ?r)
by auto
from (proj2-rep p - (M *v proj2-rep p) > 0
have proj2-rep p - (M v proj2-rep p) * k* > 0
by (simp add: mult-nonneg-nonneg)
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with (proj2-rep p - (M *v proj2-rep ?r) = 0)
and (proj2-rep ?r - (M *v proj2-rep ?r) > 0)
have proj2-rep p - (M v proj2-rep p) * k>
+ proj2-rep p - (M *v proj2-rep ?r) % 2 x k
+ proj2-rep ?r - (M *v proj2-rep ?r)
>0
by simp
with (p # ?r) and (g = proj2-abs (k *g proj2-rep p + proj2-rep ?r))
show g ¢ S by (simp add: S-quadratic)
qed
qed
qed
with (proj2-incident p ?I)
show 3 1. proj2-incident p I A (Y q. proj2-incident g1 — q ¢ S)
by (simp add: exI [of - ?1])
qed

lemma lines-through-intersect-S-twice-in-K2:
assumes V [. proj2-incident p |
— (3 qr.q#rNqeSAreS A proj2-incident q 1 A proj2-incident r I)
shows p € K2
proof (rule ccontr)
assume p ¢ K2
hence conic-sgn p > 0 by (unfold K2-def) simp

have — (V 1. proj2-incident p 1 — (3 g r.
gq#rANqgeSNreS A proj2-incident g 1 A proj2-incident r 1))
proof cases
assume conic-sgn p = 0
hence p € S unfolding S-def ..
hence proj2-incident p (polar p) by (simp add: incident-own-polar-in-S)
let 7] = polar p
have = (3 g .
g#rANqgeSNAreS A proj2-incident q ?1 \ proj2-incident r ?1)
proof
assume 3 g 7.
g#rANqeSAreSAproj2-incident q ?1 A proj2-incident r ?1
then obtain g and » where g # rand g€ Sandr € S
and proj2-incident q ?I and proj2-incident r ?1
by auto
from (p € S) and (g € S) and (proj2-incident q ?D
and (r € S) and (proj2-incident r ?1)
have g = p and r = p by (simp add: point-in-S-polar-is-tangent )+
with (g # r show False by simp
qed
with (proj2-incident p ?I)
show — (Y [. proj2-incident p 1 — (3 q .
g#rANqgeSNreS A proj2-incident g1 A proj2-incident r 1))
by auto
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next
assume conic-sgn p # 0
with (conic-sgn p > 0) have conic-sgn p > 0 by simp
hence sgn (conic-sgn p) = 1 by simp
hence conic-sgn p = 1 by (simp add: sgn-conic-sgn)
with outside-exists-line-not-intersect-S
obtain [ where proj2-incident p l and V q. proj2-incident g1 — q & S
by auto
have = (3 g .
gq#rANqgeSNAreS A proj2-incident q 1 A proj2-incident r 1)
proof
assume 3 g 7.
g#rANqeSAreSAproj2-incident q I N\ proj2-incident r |
then obtain g where g € S and proj2-incident q | by auto
from (proj2-incident q I) and (¥ q. proj2-incident g1 — q ¢ S)
have g ¢ S by simp
with (g € S) show False by simp
qed
with (proj2-incident p I)
show — (Y . proj2-incident p 1 — (3 q .
g#rANqgeSNreS A proj2-incident g 1 A proj2-incident r 1))
by auto
qed
with (¥ I proj2-incident p I — (3 q r.
gq#rANqeSNreSAproj2-incident q 1 \ proj2-incident r 1))
show False by simp
qed

lemma line-through-hyp2-pole-not-in-hyp2:

assumes a € hyp2 and proj2-incident a |

shows pole | ¢ hyp2

proof —

from assms and line-through-K2-intersect-S

obtain p where p € S and proj2-incident p | by (unfold hyp2-def ) auto

from (proj2-incident p I)
have proj2-incident (pole ) (polar p) by (rule incident-pole-polar)
with (p € S)
show pole | ¢ hyp2
by (unfold hyp2-def ) (auto simp add: tangent-not-through-K2)

qed

lemma statement60-one-way:

assumes is-K2-isometry | and p € K2
shows apply-cltn2 p ] € K2 (is ?p’ € K2)
proof —

let ?]" = cltn2-inverse |

have V I'. proj2-incident ?p’1" — (3 q'r".
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g’ #r'Nq' € S Ar' €S A proj2-incident q" 1" \ proj2-incident r'17)
proof
fix I
let ?1 = apply-cltn2-line 1’ 7]’
show proj2-incident ?p'1’ — (3 q'r".
g’ #r'Nq' € SAr' €S A proj2-incident q" 1" A proj2-incident r'17)
proof
assume proj2-incident ?p’1’
hence proj2-incident p ?1
by (simp add: apply-cltn2-incident [of p I’ ?]]
cltn2.inv-inv [simplified))
with (p € K2) and line-through-K2-intersect-S-twice [of p ?]
obtain g and r whereg #rand g € Sandr € S
and proj2-incident q ?1 and proj2-incident r ?1
by auto
let 7q’ = apply-cltn2 q |
let ?r' = apply-clin2 r |
from (g # r and apply-cltn2-injective [of q | r] have ?q’ # ?r' by auto

from (g € S) and r € S) and (is-K2-isometry |)
have ?q’ € S and ?r’ € S by (unfold is-K2-isometry-def) simp-all

from (proj2-incident q ?I) and (proj2-incident r ?])
have proj2-incident ?q’ 1’ and proj2-incident ?r'1’
by (simp-all add: apply-clin2-incident [of - I ?]]
cltn2.inv-inv [simplified))
with (?q' # ?r)) and (?q" € S) and ?r' € S)
show 3 ¢’ r".
q'#r'Nqg' € SNt €S A proj2-incident q" 1" A proj2-incident v I’
by auto
qed
qed
thus ?p’ € K2 by (rule lines-through-intersect-S-twice-in-K2)
qed

lemma is-K2-isometry-hyp2-S:
assumes p € hyp2 U S and is-K2-isometry |
shows apply-cltn2 p | € hyp2 U S
proof cases
assume p € hyp2
hence p € K2 by (unfold hyp2-def)
with (is-K2-isometry |)
have apply-cltn2 p | € hyp2 by (unfold hyp2-def) (rule statement60-one-way)
thus apply-cltn2 p ] € hyp2 U S ..
next
assume p ¢ hyp2
with (p € hyp2 U S) have p € S by simp
with (is-K2-isometry |)
have apply-cltn2 p | € S by (unfold is-K2-isometry-def ) simp
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thus apply-cltn2 p ] € hyp2 U S ..
qed

lemma is-K2-isometry-z-non-zero:
assumes p € hyp2 U S and is-K2-isometry |
shows z-non-zero (apply-clin2 p J)
proof —
from (¢ € hyp2 U S) and (is-K2-isometry )
have apply-cltn2 p | € hyp2 U S by (rule is-K2-isometry-hyp2-S)
thus z-non-zero (apply-cltn2 p J) by (rule hyp2-S-z-non-zero)
qed

lemma cart2-appendl-apply-clin2:
assumes p € hyp2 U S and is-K2-isometry |
shows 3 k. k # 0
A cart2-appendl p vk cltn2-rep | = k xg cart2-append] (apply-cltn2 p ])
proof —
have cart2-append1 p v cltn2-rep |
= (1 / (proj2-rep p)$3) *r (proj2-rep p vx cltn2-rep ])
by (unfold cart2-appendl-def) (simp add: scalar-vector-matrix-assoc)

from (p € hyp2 U S) have (proj2-rep p)$3 # 0 by (rule hyp2-S-z-non-zero)

from apply-cltn2-imp-mult [of p ]|

obtain j where j # 0
and proj2-rep p vx cltn2-rep | = j xg proj2-rep (apply-cltn2 p J)
by auto

from (p € hyp2 U S) and (is-K2-isometry J)
have z-non-zero (apply-clin2 p J) by (rule is-K2-isometry-z-non-zero)
hence proj2-rep (apply-cltn2 p J)
= (proj2-rep (apply-cltn2 p J))$3 *g cart2-appendl (apply-cltn2 p ])
by (rule proj2-rep-cart2-appendl)

let 2k =1 / (proj2-rep p)$3 = j * (proj2-rep (apply-clin2 p J))$3
from ((proj2-rep p)$3 # 0) and (j # 0)

and (proj2-rep (apply-cltn2 p ]))$3 # 0)
have ?k # 0 by simp

from (cart2-appendl p vx clin2-rep |

= (1 / (proj2-rep p)$3) *r (proj2-rep p vx cltn2-rep J))

and (proj2-rep p vx clin2-rep | = j xg proj2-rep (apply-clin2 p J))
have cart2-appendl p vx cltn2-rep |

= (1 / (proj2-rep p)$ 3 * j) *g proj2-rep (apply-cltn2 p J)

by simp

from (proj2-rep (apply-cltn2 p J)

= (proj2-rep (apply-cltn2 p J))$3 *g cart2-append] (apply-cltn2 p ]))
have (1 / (proj2-rep p)$3 * j) *g proj2-rep (apply-cltn2 p J)
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= (1 / (proj2-rep p)$3 * j) xr ((proj2-rep (apply-cltn2 p ]))$3
xR cart2-appendl (apply-clin2 p ]))
by simp

with (cart2-append] p vx cltn2-rep |
= (1 / (proj2-rep p)$ 3 * j) =g proj2-rep (apply-cltn2 p J))

have cart2-append] p vx cltn2-rep | = ?k g cart2-append] (apply-clin2 p ])
by simp

with ?k # 0

show 3 k. k # 0
A cart2-appendl p vk cltn2-rep | = k xg cart2-append] (apply-cltn2 p ])
by (simp add: exI [of - ?k])

qed

9.5 The K-isometries form a group action

lemma hyp2-clin2-id [simp|: hyp2-clin2 p cltn2-id = p
by (unfold hyp2-cltn2-def) (simp add: Rep-hyp2-inverse)

lemma apply-clin2-Rep-hyp2:
assumes is-K2-isometry |
shows apply-clin2 (Rep-hyp2 p) ] € hyp2

proof —
from Rep-hyp2 [of p] have Rep-hyp2 p € K2 by (unfold hyp2-def)
with (is-K2-isometry |
have apply-cltn2 (Rep-hyp2 p) | € K2 by (rule statement60-one-way)
thus apply-cltn2 (Rep-hyp2 p) ] € hyp2 by (unfold hyp2-def)

qed

lemma Rep-hyp2-cltn2:
assumes is-K2-isometry |
shows Rep-hyp2 (hyp2-cltn2 p ]) = apply-cltn2 (Rep-hyp2 p) |
proof —
from (is-K2-isometry )
have apply-cltn2 (Rep-hyp2 p) ] € hyp2 by (rule apply-cltn2-Rep-hyp2)
thus Rep-hyp2 (hyp2-cltn2 p ]) = apply-clin2 (Rep-hyp2 p) |
by (unfold hyp2-cltn2-def ) (rule Abs-hyp2-inverse)
qed

lemma hyp2-cltn2-compose:

assumes is-K2-isometry H

shows hyp2-cltn2 (hyp2-cltn2 p H) | = hyp2-cltn2 p (cltn2-compose H |)
proof —

from (is-K2-isometry H)

have apply-cltn2 (Rep-hyp2 p) H € hyp2 by (rule apply-cltn2-Rep-hyp2)

thus hyp2-cltn2 (hyp2-cltn2 p H) | = hyp2-cltn2 p (cltn2-compose H |)

by (unfold hyp2-cltn2-def ) (simp add: Abs-hyp2-inverse apply-cltn2-compose)

qed

interpretation K2-isometry: action
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(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
hyp2-cltn2
proof
let G =
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
fix p
show hyp2-cltn2 p 1,5 =p
by (unfold hyp2-cltn2-def) (simp add: Rep-hyp2-inverse)
fixH]J
show H € carrier 2G A | € carrier ?G
— hyp2-cltn2 (hyp2-cltn2 p H) | = hyp2-cltin2 p (H ®,5 ])
by (simp add: hyp2-cltn2-compose)
qed

9.6 The Klein-Beltrami model satisfies Tarski’s first three axioms

lemma three-in-S-tangent-intersection-no-3-Col:
assumesp c Sandgc Sandre S
and p # q and r ¢ {p.q}
shows proj2-no-3-Col {proj2-intersection (polar p) (polar q),r,p,q}
(is proj2-no-3-Col {?s,r,p,q})

proof —
let 2T = {?s,r,p.9}

from (p # ¢ have card {p,q} = 2 by simp
with r ¢ {p,q}) have card {r,p,q} = 3 by simp

from (p € S) and (g € S) and « € S) have {r,p,q} C S by simp

have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
by (rule proj2-intersection-incident )+

have ?s ¢ S
proof
assume s € S
with (p € S) and (proj2-incident ?s (polar p))
and (q € S) and (proj2-incident ?s (polar q))
have ?s = p and ?s = q by (simp-all add: point-in-S-polar-is-tangent )
hence p = q by simp
with (p # g show False ..
qed
with {rp,q} C S have ?s ¢ {r,p,q} by auto
with (card {r,p,q} = 3 have card {?s,r,p,q} = 4 by simp

have V t€?T. = proj2-set-Col (?T — {t})
proof default+

fix t

assume t € ?T

assume proj2-set-Col (?T — {t})
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then obtain [ where V a € (?T — {t}). proj2-incident a |
unfolding proj2-set-Col-def ..

from (proj2-set-Col (?T — {t}))
have proj2-set-Col (S N (?T — {t}))

by (simp add: proj2-subset-Col [of (SN (?T — {t})) ?T — {t}])
hence card (S N (?T — {t})) < 2 by (simp add: card-line-intersect-S)

show False
proof cases

assume t = ?s

with ?s ¢ {r,p,q}) have ?T — {t} = {r,p,q} by simp

with ({r,p,q} C S have SN (?T — {t}) = {r,p.q} by simp

with «card {r,p,q} = 3 and (card (SN (?T — {t})) < 2) show False by simp
next

assume { #~ ?s

hence ?s € ?T — {t} by simp

with (V a € (?T — {t}). proj2-incident a I) have proj2-incident ?s I ..

from (p # ¢ have {p,q} N ?T — {t} # {} by auto
then obtain d where d € {p,q} and d € ?T — {t} by auto

from d € ?T — {t}) and «V a € (?T — {t}). proj2-incident a I)
have proj2-incident d | by simp

from « € {pq}
and (proj2-incident ?s (polar p))
and (proj2-incident ?s (polar q))
have proj2-incident ?s (polar d) by auto

from € {p,q}) and {rp,q} C S haved € S by auto
hence proj2-incident d (polar d) by (unfold incident-own-polar-in-S)

from € S) and (?s ¢ S) have d # ?s by auto
with (proj2-incident ?s )
and (proj2-incident d )
and (proj2-incident ?s (polar d))
and (proj2-incident d (polar d))
and proj2-incident-unique
have [ = polar d by auto
with d € S) and point-in-S-polar-is-tangent
have V a€S. proj2-incident a | — a = d by simp
with V a € (?T — {t}). proj2-incident a )
have SN (?T — {t}) C {d} by auto
with card-mono [of {d}] have card (SN (?T — {t})) < 1 by simp
hence card ((SN ?T) — {t}) < 1 by (simp add: Int-Diff)

have SN ?T Cinsert t (SN ?T) — {t}) by auto

with card-suc-ge-insert [of t (S N ?T) — {t}]
and card-mono [of insert t ((S N ?T) — {t}) SN ?T]
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have card (SN ?T) < card (SN ?T) — {t}) + 1 by simp
with (card (SN ?T) — {t}) < D have card (SN ?T) < 2 by simp

from {rp,q} C S have {rpq} C SN ?T by simp
with «card {r,p,q} = 3) and card-mono [of S N ?T {r,p,q}]
have card (S N ?T) > 3 by simp
with (card (SN ?T) < 2) show False by simp
qed
qed
with (card ?T = 4) show proj2-no-3-Col ?T unfolding proj2-no-3-Col-def ..
qed

lemma statement65-special-case:
assumesp € Sandg € Sandre€ Sandp #qgandr ¢ {pq}
shows 3 . is-K2-isometry |
A apply-cltn2 east | = p
A apply-cltn2 west | = q
A apply-cltn2 north | = r
A apply-clin2 far-north | = proj2-intersection (polar p) (polar q)
proof —
let ?s = proj2-intersection (polar p) (polar q)
let ?t = vector [vector [?s,r,p,q], vector [far-north, north, east, west]]
1 proj2°472
have range (op $ (?t$1)) = {?s,1,p, q}
unfolding image-def
by (auto simp add: UNIV-4 vector-4)
with p € S)and (g€ S and (r € S) and (p # ¢) and * & {p,q}
have proj2-no-3-Col (range (op $ (?t$1)))
by (simp add: three-in-S-tangent-intersection-no-3-Col)
moreover have range (op $ (?t$2)) = {far-north, north, east, west }
unfolding image-def
by (auto simp add: UNIV-4 vector-4)
with compass-in-S and east-west-distinct and north-not-east-or-west
and east-west-tangents-far-north
and three-in-S-tangent-intersection-no-3-Col [of east west north]
have proj2-no-3-Col (range (op $ (?t$2))) by simp
ultimately have V i. proj2-no-3-Col (range (op $ (?t$i)))
by (simp add: forall-2)
hence 3 .V j. apply-cltn2 (?t$0%)) | = ?t$1$j
by (rule statement53-existence)
moreover have 0 = (2::2) by simp
ultimately obtain | where V j. apply-cltn2 (?t$2%)) | = ?t$19j by auto
hence apply-clin2 (?t$2$1) | = ?t$1$1
and apply-cltn2 (?t$2$2) | = ?t$1$2
and apply-clin2 (?t$2$3) | = ?t$1$3
and apply-cltn2 (?t$2$4) | = ?t$1$4
by simp-all
hence apply-cltn2 east | = p
and apply-clin2 west | = q
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and apply-cltn2 north | = r
and apply-clin2 far-north | = ?s
by (simp-all add: vector-2 vector-4)

with compass-non-zero

have p = proj2-abs (vector [1,0,1] v cltn2-rep J)
and g = proj2-abs (vector [—1,0,1] v cltn2-rep |)
and r = proj2-abs (vector [0,1,1] vx cltn2-rep )
and ?s = proj2-abs (vector [0,1,0] v cltn2-rep )
unfolding compass-defs and far-north-def
by (simp-all add: apply-cltn2-left-abs)

let ?N = cltn2-rep | *x M sx transpose (cltn2-rep J)
from M-symmatrix have symmatrix ?N by (rule symmatrix-preserve)
hence ?N$2$1 = ?N$1$2 and ?N$3$1 = ?N$1$3 and ?N$3$2 = ?N$2$3
unfolding symmatrix-def and transpose-def
by (simp-all add: Cart-eq)

from compass-non-zero and (apply-cltn2 east | = p) and (p € S)
and apply-clin2-abs-in-S [of vector [1,0,1] J]
have (vector [1,0,1] :: real”3) - (?N *v vector [1,0,1]) = 0
unfolding east-def
by simp
hence ?N$1$1 + ?N$1$3 + ?N$3%$1 + ?N$3$3 = 0
unfolding inner-vector-def and matrix-vector-mult-def
by (simp add: setsum-3 vector-3)
with (?N$3$1 = ?N$1$3) have ?N$1$1 + 2 * (?N$1$3) + ?N$3$3 = 0 by simp

from compass-non-zero and (apply-cltn2 west | = ¢> and (g € S)
and apply-cltn2-abs-in-S [of vector [—1,0,1] J]
have (vector [—1,0,1] :: real”3) - (?N *v vector [—1,0,1]) = 0
unfolding west-def
by simp
hence ?N$1$1 — ?N$1$3 — ?N$3$1 + ?N$3$3 =0
unfolding inner-vector-def and matrix-vector-mult-def
by (simp add: setsum-3 vector-3)
with (?N$3$1 = ?N$1$3) have ?N$1$1 — 2 « (?N$1$3) + ?N$3$3 = 0 by simp
with ?N$1$1 + 2 + (?N$1$3) + ?N$3$3 = 0
have ?N$1$1 + 2 = (?N$1$3) + ?N$3$3 = ?N$1$1 — 2 « (?N$1$3) + ?N$3$3
by simp
hence ?N$1$3 = 0 by simp
with ?N$I1$1 + 2 = (?N$1$3) + ?N$3%$3 = 0) have ?N$3$3 = — (?N$1$1) by
simp

from compass-non-zero and (apply-cltn2 north | = r» and r € S)
and apply-cltn2-abs-in-S [of vector [0,1,1] J]

have (vector [0,1,1] :: real’3) - (?N *v vector [0,1,1]) = 0
unfolding north-def
by simp

hence ?N$2$2 + ?N$2$3 4 ?N$3%2 + ?N$3$3 = 0
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unfolding inner-vector-def and matrix-vector-mult-def
by (simp add: setsum-3 vector-3)
with (?N$3$2 = ?N$2$3) have ?N$2$2 + 2 x (?N$2$3) + ?N$3$3 = 0 by simp

have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
by (rule proj2-intersection-incident )+

from compass-non-zero
have vector [1,0,1] vx cltn2-rep | # 0
and vector [—1,0,1] v« cltn2-rep | # 0
and vector [0,1,0] vx cltn2-rep | # 0
by (simp-all add: non-zero-mult-rep-non-zero)
from (vector [1,0,1] v cltn2-rep | # 0)
and (vector [—1,0,1] vk cltn2-rep | # 0)
and (p = proj2-abs (vector [1,0,1] v« cltn2-rep J))
and (q = proj2-abs (vector [—1,0,1] vk cltn2-rep ]))
have polar p = proj2-line-abs (M *v (vector [1,0,1] vx cltn2-rep ]))
and polar q = proj2-line-abs (M xv (vector [—1,0,1] vx clin2-rep ]))
by (simp-all add: polar-abs)

from (wector [1,0,1] v cltn2-rep | # 0)
and (vector [—1,0,1] vk cltn2-rep | # 0)
and M-invertible
have M v (vector [1,0,1] v« cltn2-rep J) # 0
and M xv (vector [—1,0,1] vk cltn2-rep ) # 0
by (simp-all add: invertible-times-non-zero)
with (ector [0,1,0] v cltn2-rep | # 0)
and (polar p = proj2-line-abs (M xv (vector [1,0,1] vx cltn2-rep J)))
and (polar g = proj2-line-abs (M v (vector [—1,0,1] vx cltn2-rep ])))
and (?s = proj2-abs (vector [0,1,0] vx cltn2-rep ]))
have proj2-incident ?s (polar p)
<« (vector [0,1,0] vx cltn2-rep ])
- (M v (vector [1,0,1] vx cltn2-rep J)) = 0
and proj2-incident ?s (polar q)
<« (vector [0,1,0] vx cltn2-rep ])
- (M *v (vector [—1,0,1] vx cltn2-rep J)) = 0
by (simp-all add: proj2-incident-abs)
with (proj2-incident ?s (polar p)) and (proj2-incident ?s (polar q))
have (vector [0,1,0] vx cltn2-rep ])
- (M v (vector [1,0,1] vx cltn2-rep J)) = 0
and (vector [0,1,0] v cltn2-rep J)
- (M *v (vector [—1,0,1] vx cltn2-rep J)) = 0
by simp-all
hence vector [0,1,0] - (?N *v vector [1,0,1]) =0
and vector [0,1,0] - (?N *v vector [—1,0,1]) =0
by (simp-all add: dot-lmul-matrix matrix-vector-mul-assoc [symmetric|)
hence ?N$2$1 + ?N$2$3 = 0 and —(?N$2$1) + ?N$2$3 = 0
unfolding inner-vector-def and matrix-vector-mult-def
by (simp-all add: setsum-3 vector-3)
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hence ?N$2$1 + ?N$2$3 = —(?N$2$1) + ?N$2$3 by simp
hence ?N$2$1 = 0 by simp
with (?N$2$1 + ?N$2$3 = 0) have ?N$2$3 = 0 by simp
with (?N$2$2 + 2 % (?N$2$3) + ?N$383 = 0) and (?N$3$3 = — (?N$1$1))
have ?N$2$2 = ?N$1$1 by simp
with (?N$1$3 = 0) and (?N$2$1 = ?N$1$2) and (?N$1$3 = 0)
and (?N$2$1 = 0) and (?N$2$2 = ?N$1$1) and (?N$2$3 = 0)
and (?N$3$1 = ?N$1%3) and (?N$3%$2 = ?N$2$3) and (?N$3$3 = —(?N$1$1))
have ?N = (?N$1$1) xg M
unfolding M-def
by (simp add: Cart-eq vector-3 forall-3)

have invertible (clin2-rep J) by (rule cltn2-rep-invertible)
with M-invertible
have invertible ?N by (simp add: invertible-mult transpose-invertible)
hence ?N # 0 by (auto simp add: zero-not-invertible)
with ?N = (?N$1$1) xgr M) have ?N$1$1 # 0 by auto
with ?N = (?N$1$1) g M
have is-K2-isometry (cltn2-abs (cltn2-rep ]))

by (simp add: J-M-]-transpose-K2-isometry)
hence is-K2-isometry | by (simp add: cltn2-abs-rep)
with apply-cltn2 east | = p)

and (apply-cltn2 west | = q)

and apply-cltn2 north | = 1)

and apply-cltn2 far-north | = ?s)
show 3 J. is-K2-isometry |

A apply-cltn2 east | = p

A apply-cltn2 west | = q

A apply-cltn2 north | = r

A apply-cltn2 far-north | = ?s

by auto

qed

lemma statement66-existence:

assumes gl € K2and a2 € K2Zandpl € Sandp2 € S

shows 3 . is-K2-isometry | N apply-cltn2 al | = a2 A apply-clin2 p1 | = p2
proof —

let ?a = vector [al,a2] :: proj2°2

from @l € K2) and @2 € K2 have V i. ?a$i € K2 by (simp add: forall-2)

let ?p = vector [p1,p2] :: proj2°2
from (p1 € S) and (p2 € S) have V i. ?p$i € S by (simp add: forall-2)

let ?1 = x i. proj2-line-through (?a$i) (?p$i)

have V i. proj2-incident (?a$i) (?1$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?a$1) (?1$1) and proj2-incident (?a$2) (?1$2)
by fast+
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have V i. proj2-incident (?p$i) (?1$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?p$1) (?1$1) and proj2-incident (?p$2) (?1$2)
by fast+

let ?q = x i. € qi. qi # ?p$i A qi € S N proj2-incident qi (?1$i)
have V i. 2q$i # ?p$i A ?q$i € S A proj2-incident (?q$i) (?1$i)
proof

fix i

from (V i. 2a$i € K2) have ?a$i € K2 ..

from (Y i. proj2-incident (?a$i) (?1$i))

have proj2-incident (?a$i) (?1$i) ..

with (?a$i € K2)

have 3 gi. gi # ?p$i A qi € S A proj2-incident gi (?1$i)

by (rule line-through-K2-intersect-S-again)

with somel-ex [of A qi. qi # ?p$i A qi € S N proj2-incident gi (?1$i)]

show ?2g%i # ?p$i A 2q$i € S A proj2-incident (?q$i) (?1$i) by simp
qed
hence ?g$1 # ?p$1 and proj2-incident (?q$1) (?1$1)

and proj2-incident (?q$2) (?1$2)

by fast+

let ?r = x i. proj2-intersection (polar (?q%$i)) (polar (?p$i))

let ?m = yx i. proj2-line-through (?a$i) (?r$i)

have V i. proj2-incident (?a$i) (?m$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?a$1) (?m$1) and proj2-incident (?a$2) (?m$2)
by fast+

have V i. proj2-incident (?r$i) (?m$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?r$1) (?m$1) and proj2-incident (?r$2) (?m$2)
by fast+

let ?s = x i. € si.si # ?r$i A si € S A proj2-incident si (?m$i)
have V i. ?s$i # ?r$i A ?s$i € S A proj2-incident (?s$i) (?m$i)
proof

fix i

from (V i. 2a$i € K2) have ?a$i € K2 ..

from (Y i. proj2-incident (?a$i) (?m$i))

have proj2-incident (?a$i) (?m$i) ..

with (?a$i € K2)

have 3 si. si # ?r$i A\ si € S A proj2-incident si (?m$i)

by (rule line-through-K2-intersect-S-again)

with somel-ex [of A si. si # ?r$i A si € S A proj2-incident si (?m$i)]

show ?s$i # ?r$i A ?s$i € S A proj2-incident (?s$i) (?m$i) by simp
qed
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hence ?s$1 # ?r$1 and proj2-incident (?s$1) (?m$1)
and proj2-incident (?s$2) (?m$2)
by fast+

have V i .V u. proj2-incident u (?m$i) — — (u = ?p$i V u = ?q$i)
proof default+

fixi:2

fix u :: proj2

assume proj2-incident u (?m$i)

assume u = ?p$i V u = ?q%i

from (V i. ?p$i € S) have ?p$i € S ..

from  i. 2q%i # ?p$i A ?q$i € S A proj2-incident (?q$i) (?1$i))
have ?7q$i # ?p$i and 7q%i € S
by simp-all

from (?p$i € S) and (?q%i € S and (= ?p$i V u = ?q%0)
have u € S by auto
hence proj2-incident u (polar u)

by (simp add: incident-own-polar-in-S)

have proj2-incident (?r$i) (polar (?p$i))

and proj2-incident (?r$i) (polar (?q%i))

by (simp-all add: proj2-intersection-incident)
with w = ?p$i V u = ?g$i
have proj2-incident (?r$i) (polar u) by auto

from (Y i. proj2-incident (?r$i) (?m$i))
have proj2-incident (?r$i) (?m$i) ..

from (Y i. proj2-incident (?a$i) (?m$i))
have proj2-incident (?a$i) (?m$i) ..

from (V i. 2a$i € K2) have ?a%$i € K2 ..

have u # ?r$i
proof
assume u = ?r$i
with (proj2-incident (?r$i) (polar (?p$i)))
and (proj2-incident (?r$i) (polar (?q$i)))
have proj2-incident u (polar (?p$i))
and proj2-incident u (polar (?q%$i))
by simp-all
with i € S and (?p$i € S) and (7q$i € S)
have u = ?p$i and u = 7q%i
by (simp-all add: point-in-S-polar-is-tangent )
with (?q$i # ?p$i) show False by simp
qed
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with (proj2-incident (1) (polar u))
and (proj2-incident (?r$i) (polar u))
and (proj2-incident u (?m$i))
and (proj2-incident (?r$i) (?m$i))
and proj2-incident-unique
have ?m$i = polar u by auto
with (proj2-incident (?a$i) (?m$i))
have proj2-incident (?a$i) (polar u) by simp
with w € S) and (?a$i € K2) and tangent-not-through-K2
show False by simp
qed

let ’H = ) i. € Hi. is-K2-isometry Hi

A apply-clin2 east Hi = ?2q$i

A apply-cltn2 west Hi = ?p$i

A apply-cltn2 north Hi = ?s$i

N apply-cltn2 far-north Hi = ?r$i
have V i. is-K2-isometry (?H$i)

A apply-clin2 east (?HS$i) = ?q$i

A apply-clin2 west (?H$i) = ?p$i

A apply-cltn2 north (?H$i) = ?s$i

A apply-cltn2 far-north (?H$i) = ?r$i
proof

fixi:2

from (v i. ?p$i € S) have ?p$i € S ..

from (Y i. 2q$i # ?p$i A 2q$i € S A proj2-incident (?q$i) (?1$i))
have ?7q%$i # ?p$i and 7q%i € S
by simp-all

from (V i. 2s$i # ?r$i A ?s$i € S A proj2-incident (?s$i) (?m$i))
have ?s$i € S and proj2-incident (?s$i) (?m$i) by simp-all
from (proj2-incident (?s$i) (?m$i))

and (V i. ¥ wu. proj2-incident u (?m$i) — — (u = ?p$i V u = 2q%i))
have ?s$i ¢ {?q$i, ?p$i} by fast
with (?g$i € S) and (?p$i € S) and (?s$i € S) and (?q$i # ?p$i)
have 3 Hi. is-K2-isometry Hi

N apply-cltn2 east Hi = ?q$i

A apply-cltn2 west Hi = ?p$i

A apply-cltn2 north Hi = ?s$i

A apply-cltn2 far-north Hi = ?r$i

by (simp add: statement65-special-case)
with somel-ex [of A Hi. is-K2-isometry Hi

A apply-cltn2 east Hi = ?q%i

A apply-cltn2 west Hi = ?p$i

A apply-cltn2 north Hi = ?s$i

A apply-clin2 far-north Hi = ?r$i]
show is-K2-isometry (?H$i)

N apply-cltn2 east (?H$i) = ?q$i
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N apply-cltn2 west (?H$i) = ?p$i
A apply-cltn2 north (?H$i) = ?s$i
A apply-clin2 far-north (?H$i) = ?r$i
by simp
qed
hence is-K2-isometry (?H$1)
and apply-cltn2 east (?H$1) = ?q$1
and apply-clin2 west (?H$1) = ?p$1
and apply-clin2 north (?H$1) = ?s$1
and apply-cltn2 far-north (?H$1) = ?r$1
and is-K2-isometry (?H$2)
and apply-cltn2 east (?H$2) = ?9$2
and apply-cltn2 west (?H$2) = ?p$2
and apply-cltn2 north (?H$2) = ?s$2
and apply-clin2 far-north (?H$2) = ?r$2
by fast+

let ?] = cltn2-compose (cltn2-inverse (?H$1)) (?H$2)
from (is-K2-isometry (?H$1)) and (is-K2-isometry (?H$2))
have is-K2-isometry ?]
by (simp only: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)

from apply-cltn2 west (?H$1) = ?p$1)

have apply-clin2 p1 (cltn2-inverse (?H$1)) = west
by (simp add: cltn2.act-inv-iff [simplified])

with apply-cltn2 west (?H$2) = ?p$2)

have apply-cltn2 p1 ?] = p2
by (simp add: cltn2.act-act [simplified, symmetric])

from apply-cltn2 east (?H$1) = ?q$1)
have apply-cltn2 (?2q$1) (cltn2-inverse (?H$1)) = east
by (simp add: cltn2.act-inv-iff [simplified))
with apply-cltn2 east (?H$2) = ?q$2)
have apply-cltn2 (7q$1) ?] = 2q$2
by (simp add: cltn2.act-act [simplified, symmetric])
with (?q$1 # ?p$1) and @apply-cltn2 p1 ?] = p2)
and (proj2-incident (?p$1) (?1$1))
and (proj2-incident (?q$1) (?1$1)
and (proj2-incident (?p$2) (?1$2))
and (proj2-incident (?q$2) (?1$2))
have apply-cltn2-line (?1$1) ?] = (?1$2)
by (simp add: apply-clin2-line-unique)
moreover from (proj2-incident (?a$1) (?1$1))
have proj2-incident (apply-cltn2 (?a$1) ?]) (apply-cltn2-line (?1$1) ?])
by simp
ultimately have proj2-incident (apply-cltn2 (?a$1) ?]) (?1$2) by simp

from apply-cltn2 north (?H$1) = ?s$1)
have apply-cltn2 (?s$1) (cltn2-inverse (?H$1)) = north
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by (simp add: cltn2.act-inv-iff [simplified])
with (@apply-cltn2 north (?H$2) = ?5$2)
have apply-cltn2 (?s$1) ?] = ?s$2
by (simp add: cltn2.act-act [simplified, symmetric])

from apply-cltn2 far-north (?H$1) = ?r$1)
have apply-cltn2 (?r$1) (cltn2-inverse (?H$1)) = far-north
by (simp add: clin2.act-inv-iff [simplified))
with apply-cltn2 far-north (?H$2) = ?r$2)
have apply-cltn2 (?r$1) ?] = ?r$2
by (simp add: cltn2.act-act [simplified, symmetric|)
with (?s$1 # ?r$1) and @apply-cltn2 (?s$1) ?] = (?s$2))
and (proj2-incident (?r$1) (?m$1))
and (proj2-incident (?s$1) (?m$1))
and (proj2-incident (?r$2) (?m$2))
and (proj2-incident (?s$2) (?m$2))
have apply-cltn2-line (?m$1) ?] = (?m$2)
by (simp add: apply-cltn2-line-unique)
moreover from (proj2-incident (?a$1) (?m$1))
have proj2-incident (apply-cltn2 (?a$1) ?]) (apply-cltn2-line (?m$1) ?])
by simp
ultimately have proj2-incident (apply-cltn2 (?a$1) ?]) (?m$2) by simp

from (Y i.V u. proj2-incident u (?m$i) — — (u = ?p$i V u = ?2q%i))
have — proj2-incident (?p$2) (?m$2) by fast
with (proj2-incident (?p$2) (?1$2)) have ?m$2 # ?1$2 by auto
with (proj2-incident (?a$2) (?1$2))
and (proj2-incident (?a$2) (?m$2))
and (proj2-incident (apply-clin2 (?a$1) ?]) (?1$2))
and (proj2-incident (apply-clin2 (?a$1) ?]) (?m$2))
and proj2-incident-unique
have apply-cltn2 al ?] = a2 by auto
with (is-K2-isometry ?]) and apply-cltn2 p1 ?] = p2)
show 3 J. is-K2-isometry | A apply-clin2 al | = a2 N apply-cltn2 p1 | = p2
by auto
qed

lemma K2-isometry-swap:

assumes a € hyp2 and b € hyp2

shows 3 ]. is-K2-isometry | A apply-cltn2 a ] = b A apply-clin2 b | =a
proof —

from @ € hyp2) and b € hyp2)

have a € K2 and b € K2 by (unfold hyp2-def) simp-all

let ?I = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident)+
from @ € K2) and (proj2-incident a ?])
and line-through-K2-intersect-S-exactly-twice [of a ?1|
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obtain p and g where p # g
andpe Sandg eSS
and proj2-incident p ?1 and proj2-incident q ?1
and V r€S. proj2-incident r 2l — r=pVr=gq
by auto
from @ € K2) and b € K2)and (p € S)and (g € S
and statement66-existence [of a b p q]
obtain | where is-K2-isometry | and apply-cltn2a ] =b
and apply-cltn2 p | = q
by auto
from (apply-cltn2 a | = b) and @apply-cltn2 p | = ¢
and (proj2-incident b ?1) and (proj2-incident q ?])
have proj2-incident (apply-cltn2 a J) ?1
and proj2-incident (apply-cltn2 p J) ?1
by simp-all

from (@ € K2) and (p € S) havea # p

unfolding S-def and K2-def

by auto
with (proj2-incident a ?])

and (proj2-incident p ?1)

and (proj2-incident (apply-cltn2 a J) ?)

and (proj2-incident (apply-cltn2 p ) ?D)
have apply-clin2-line ?1 | = ?1 by (simp add: apply-cltn2-line-unique)
with (proj2-incident q ?1) and apply-cltn2-preserve-incident [of g | ?1]
have proj2-incident (apply-cltn2 q ]) ?1 by simp

from (g € S) and (is-K2-isometry |
have apply-cltn2 q ] € S by (unfold is-K2-isometry-def ) simp
with (proj2-incident (apply-clin2 q J) ?1)
and (V reS. proj2-incident r 2l — r=pVr=¢q
have apply-cltn2 q ] = p V apply-cltn2 q | = q by simp

have apply-clin2 q ] # q
proof

assume apply-cltn2 q | = g
with apply-cltn2 p | = ¢
have apply-cltn2 p | = apply-cltn2 q ] by simp
hence p = q by (rule apply-cltn2-injective [of p ] q])
with (p # g show False ..
qed
with apply-cltn2 q | = p V apply-cltn2 q | = ¢
have apply-cltn2 q | = p by simp
with (p # ¢
and apply-cltn2 p | = ¢
and (proj2-incident p ?I)
and (proj2-incident q ?])
and (proj2-incident a ?])
and statement55
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have apply-cltn2 (apply-cltn2 a J) | = a by simp
with @apply-cltn2 a | = b) have apply-cltn2 b | = a by simp
with (is-K2-isometry |) and (apply-cltn2 a | = b)
show 3 |. is-K2-isometry | A apply-cltn2 a | = b A apply-cltn2 b | =a
by (simp add: exI [of - ]])
qed

theorem hyp2-axiom1: ¥ ab.ab=gba
proof default+
fixab
let ?a’ = Rep-hyp2 a
let ?b" = Rep-hyp2 b
from Rep-hyp2 and K2-isometry-swap [of ?a’ ?b’]
obtain | where is-K2-isometry | and apply-cltn2 ?a’ ] = ?b’
and apply-cltn2 ?b' [ = ?a’
by auto

from @pply-cltn2 ?a’ | = ?b" and (apply-clin2 ?b' ] = ?a’)
have hyp2-cltn2 a | = b and hyp2-cltn2 b | = a
unfolding hyp2-cltn2-def by (simp-all add: Rep-hyp2-inverse)
with (is-K2-isometry |)
showab=gba
by (unfold real-hyp2-C-def ) (simp add: exI [of - ]])
qed

theorem hyp2-axiom2: ¥ abpqrs.ab=xpqANab=xrs —pq=grs
proof default+
fixabpqrs
assumeab=gpgAhab=grs
then obtain G and H where is-K2-isometry G and is-K2-isometry H
and hyp2-cltn2 a G = p and hyp2-cltn2 b G = q
and hyp2-cltn2 a H = r and hyp2-cltn2 b H = s
by (unfold real-hyp2-C-def ) auto
let ?] = cltn2-compose (cltn2-inverse G) H
from (is-K2-isometry G) have is-K2-isometry (cltn2-inverse G)
by (rule cltn2-inverse-is-K2-isometry)
with (is-K2-isometry H)
have is-K2-isometry ?] by (simp only: cltn2-compose-is-K2-isometry)

from (is-K2-isometry G and (hyp2-cltn2 a G = p) and hyp2-cltn2 b G = q)
and K2-isometry.act-inv-iff
have hyp2-cltn2 p (cltn2-inverse G) = a
and hyp2-cltn2 q (cltn2-inverse G) = b
by simp-all
with (hyp2-cltn2 a H = v and thyp2-cltin2 b H = s)
and (is-K2-isometry (clin2-inverse G)) and (is-K2-isometry H)
and K2-isometry.act-act [symmetric]
have hyp2-cltn2 p ?] = r and hyp2-cltn2 q ?] = s by simp-all
with (is-K2-isometry ?])
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showpg=grs
by (unfold real-hyp2-C-def ) (simp add: exI [of - ?]])
qed

theorem hyp2-axiom3:¥Y abc.ab=xcc—a=b
proof default+
fixabc
assumeab =g cc
then obtain | where is-K2-isometry |
and hyp2-cltn2 a | = c and hyp2-cltn2 b | = ¢
by (unfold real-hyp2-C-def ) auto
from (hyp2-cltn2 a | = ¢ and thyp2-cltn2 b | = o
have hyp2-cltn2 a | = hyp2-cltn2 b | by simp

from (is-K2-isometry )
have apply-cltn2 (Rep-hyp2 a) | € hyp2
and apply-clin2 (Rep-hyp2 b) | € hyp2
by (rule apply-cltn2-Rep-hyp2)+
with (hyp2-cltn2 a | = hyp2-clin2 b |)
have apply-cltn2 (Rep-hyp2 a) | = apply-cltn2 (Rep-hyp2 b) |
by (unfold hyp2-cltn2-def) (simp add: Abs-hyp2-inject)
hence Rep-hyp2 a = Rep-hyp2 b by (rule apply-cltn2-injective)
thus a = b by (simp add: Rep-hyp2-inject)
qed

interpretation hyp2: tarski-first3 real-hyp2-C
using hyp2-axiom1 and hyp2-axiom2 and hyp2-axiom3
by unfold-locales

9.7 Some lemmas about betweenness

lemma S-at-edge:
assumes p € Sand g € hyp2 U Sand r € hyp2 U S and proj2-Col p g r
shows B (cart2-pt p) (cart2-pt q) (cart2-pt r)
V BR (cart2-pt p) (cart2-pt r) (cart2-pt q)
(is BR 2cp ?cq 2cr V -)
proof —
from (p € S)and (g € hyp2 U S) and + € hyp2 U S)
have z-non-zero p and z-non-zero q and z-non-zero r
by (simp-all add: hyp2-S-z-non-zero)
with (proj2-Col p g 1)
have real-euclid.Col ?cp ?cq ?cr by (simp add: proj2-Col-iff-euclid-cart2)

with (z-non-zero p) and (z-non-zero q) and (z-non-zero r)

have proj2-pt ?cp = p and proj2-pt ?cq = q and proj2-pt ?cr =r
by (simp-all add: proj2-cart2)

from (proj2-pt ?cp = p) and (p € S)

have norm ?cp = 1 by (simp add: norm-eq-1-iff-in-S)
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from (proj2-pt ?cq = q) and (proj2-pt 2cr = 1)
and (q € hyp2 U S) and (r € hyp2 U S)
have norm ?cq < 1 and norm ?cr <1
by (simp-all add: norm-le-1-iff-in-hyp2-S)

show BR ?cp ?cq ?cr V Br ?cp ?cr ?cq
proof cases
assume BR ?cr ?cp ?cq
then obtain k where k > 0and k < 1
and ?cp — ?cr = k xg (?cq — ?cr)
by (unfold real-euclid-B-def ) auto
from (?cp — ?cr =k xg (Pcq — ?cr))
have ?cp = k xg ?cq + (1 — k) *g ?cr by (simp add: algebra-simps)
with (morm ?cp = 1) have norm (k g ?cq + (1 — k) *g ?cr) = 1 by simp
with norm-triangle-ineq [of k g ?cq (1 — k) *g ?cr]
have norm (k xg ?cq) + norm ((1 — k) g ?cr) > 1 by simp

from <k > 0) and k < 1)
have norm (k xg ?cq) + norm ((1 — k) *g ?cr)
=k * norm ?cq + (1 — k) * norm ?cr
by simp
with morm (k xg ?cq) + norm ((1 — k) xg 2cr) > 1)
have k x norm ?cq + (1 — k) % norm ?cr > 1 by simp

from (norm ?cq < 1) and & > 0) and mult-mono [of k k norm ?cq 1]
have k * norm ?cq < k by simp

from morm ?cr < 1) and ¢k < 1)
and mult-mono [of 1 — k 1 — k norm ?cr 1]
have (1 — k) * norm ?cr <1 — k by simp
with &k x norm ?cq < k)
have k x norm ?cq + (1 — k) % norm ?cr < 1 by simp
with & % norm ?cq + (1 — k) * norm ?cr > 1)
have k % norm ?cq + (1 — k) % norm ?cr = 1 by simp
with k x norm ?cq < k) have (1 — k) x norm ?cr > 1 — k by simp
with (1 — k) % norm ?cr <1 — k have (1 — k) % norm ?cr = 1 — k by simp
with & * norm ?cq + (1 — k) = norm ?cr = 1) have k * norm ?cq = k by simp

have ?cp = ?cq V ?cq = ?cr V ?cr = Zcp
proof cases
assume k =0V k=1
with (?cp =k *g ?2cq + (1 — k) *g 2cr)
show ?cp = ?cq V ?2cq = ?cr V ?cr = ?cp by auto
next
assume - (k=0Vk=1)
hence k # 0 and k # 1 by simp-all
with (k x norm ?cq = k) and (1 — k) x norm ?cr =1 — k)
have norm ?cq = 1 and norm ?cr = 1 by simp-all
with (proj2-pt ?cq = q) and (proj2-pt ?cr = 1)
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have g € S and r € S by (simp-all add: norm-eq-1-iff-in-S)
with (p € S) have {p,q,r} C S by simp

from (proj2-Col p q 1
have proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
with {p,q,r} C S have card {p,q,r} < 2 by (rule card-line-intersect-S)

havep=qVg=rVr=p
proof (rule ccontr)
assume = (p=qVqg=rVr=p)
hence p # q and q # r and r # p by simp-all
from (g # r) have card {q,r} = 2 by simp
with (p # ¢ and (v # p) have card {p,q,r} = 3 by simp
with (card {p,q,r} < 2) show False by simp
qed
thus ?cp = ?cq V ?2cq = ?cr V ?cr = 2cp by auto
qed
thus Br ?cp ?cq ?cr V BRr ?cp ?cr ?2cq
by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
next
assume — BR ?cr ?cp 7cq
with (real-euclid.Col ?cp ?cq ?cr)
show Br ?cp ?cq ?cr V Br ?cp ?cr ?cq
unfolding real-euclid.Col-def
by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
qed
qed

lemma hyp2-in-middle:

assumesp € Sand g € Sand r € hyp2 U S and proj2-Col p g r

and p # q

shows B (cart2-pt p) (cart2-pt r) (cart2-pt q) (is Br ?cp ?cr ?cq)
proof (rule ccontr)

assume — BR ?cp ?cr 2cq

hence — BR ?cq ?cr ?cp

by (auto simp add: real-euclid.th3-2 [of ?cq ?cr ?cp])

from (p € S) and (g € S) and (r € hyp2 U S) and (proj2-Col p q 1)
have BR ?cp ?cq ?cr V BR ?cp ?cr ?2cq by (simp add: S-at-edge)
with (= BR ?cp ?cr ?cq) have Br ?cp ?cq ?cr by simp

from (proj2-Col p q r) and proj2-Col-permute have proj2-Col q p v by fast
with g€ S and (p € S) and r € hyp2 U S)

have BR ?cq ?cp ?cr V Br ?cq ?cr ?cp by (simp add: S-at-edge)

with (= BRr ?cq ?cr ?cp) have BR ?cq ?cp ?cr by simp

with (Bg ?cp ?cq ?cr) have ?cp = ?cq by (rule real-euclid.th3-4)

hence proj2-pt ?cp = proj2-pt ?cq by simp

from (p € S) and (g € S)
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have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cq = q by (simp-all add: proj2-cart2)
with (proj2-pt ?cp = proj2-pt ?cq) have p = q by simp
with (p # g show False ..

qed

lemma hyp2-incident-in-middle:
assumesp Zgandp e Sandge Sandaec hyp2 U S
and proj2-incident p | and proj2-incident q | and proj2-incident a |
shows B (cart2-pt p) (cart2-pt a) (cart2-pt q)
proof —
from (proj2-incident p I) and (proj2-incident q I) and (proj2-incident a |)
have proj2-Col p q a by (rule proj2-incident-Col)
from (p € S) and (g € S) and @ € hyp2 U S) and this and (p # ¢
show BR (cart2-pt p) (cart2-pt a) (cart2-pt q)
by (rule hyp2-in-middle)
qed

lemma extend-to-S:
assumes p € hyp2 U Sand g € hyp2 U S
shows 3 reS. B (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is 3 reS. BR 2cp ?cq (cart2-pt r))
proof cases
assume g € S

have BR ?cp ?cq ?cq by (rule real-euclid.th3-1)

with (g € S) show 3 re€S. B ?cp ?cq (cart2-pt r) by auto
next

assume g ¢ S

with (g € hyp2 U S) have q € K2 by (unfold hyp2-def) simp

let 7] = proj2-line-through p q

have proj2-incident p ?l and proj2-incident q ?1
by (rule proj2-line-through-incident )+

from (g € K2) and (proj2-incident q ?I)
and line-through-K2-intersect-S-twice [of q ?1]

obtain s and t wheres Ztands € Sandt € S
and proj2-incident s ?1 and proj2-incident t ?1
by auto

let ?cs = cart2-pt s

let ?ct = cart2-pt t

from (proj2-incident s ?I)
and (proj2-incident t ?I)
and (proj2-incident p ?1)
and (proj2-incident q ?])
have proj2-Col s p q and proj2-Col t p g and proj2-Col s t g
by (simp-all add: proj2-incident-Col)
from (proj2-Col s p q) and (proj2-Col t p q)
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and s € S)and (¢t € S) and (p € hyp2 U S) and (q € hyp2 U S)

have BR ?cs ?cp ?cq V BRr ?cs 7cq ?cp and BR ?ct ?cp ?cq V BR ?ct ?cq ?cp
by (simp-all add: S-at-edge)

with real-euclid.th3-2

have BR ?cq ?cp ?cs V Br ?cp ?cq ?cs and BR ?cq ?cp ?ct V BRr ?cp ?cq ?ct
by fast+

from (s € S) and (¢t € S) and (g € hyp2 U S) and (proj2-Col s t ¢) and (s # t)
have BR ?cs ?cq ?ct by (rule hyp2-in-middle)
hence BR ?ct ?cq ?cs by (rule real-euclid.th3-2)

have BR ?cp ?cq ?cs V BR ?cp ?cq ?ct
proof (rule ccontr)
assume — (BR ?cp ?cq ?cs V B ?cp ?cq ?ct)
hence — BR ?cp ?cq ?cs and — BR ?cp ?cq ?ct by simp-all
with (Br ?cq ?cp ?cs V Br ?cp ?cq ?cs)
and (BR ?cq ?cp ?ct V BRr ?cp ?cq ?ct)
have BR ?cq ?cp ?cs and BRr ?cq ?cp ?ct by simp-all
from (- BR ?cp ?cq ?cs) and (Br ?cq ?cp ?cs) have ?cp # ?cq by auto
with (BRr ?cq ?cp ?cs) and (BRr ?cq ?cp ?ct)
have B ?cq ?cs ?ct V BR ?cq ?ct ?cs
by (simp add: real-euclid-th5-1 [of ?cq ?cp ?cs ?ct])
with (Br ?cs ?cq ?ct) and (BR ?ct ?cq ?cs)
have ?cqg = ?cs V ?cq = ?ct by (auto simp add: real-euclid.th3-4)
with (g € hyp2 U S) and s € S) and (¢ € S)
have g = s \V q = t by (auto simp add: hyp2-S-cart2-inj)
with (s € 5) and ¢ € S) have g € S by auto
with (g € S show False ..
qed
with (s € S) and (t € S) show 3 reS. Bg ?cp ?cq (cart2-pt r) by auto
qed

definition endpoint-in-S :: proj2 = proj2 = proj2 where
endpoint-in-S a b
£ € p. pES A BR (cart2-pt a) (cart2-pt b) (cart2-pt p)

lemma endpoint-in-S:
assumes a € hyp2 U Sand b € hyp2 U S
shows endpoint-in-Sab € S (is ?p € S)
and B (cart2-pt a) (cart2-pt b) (cart2-pt (endpoint-in-S a b))
(is BR ?ca ?cb ?cp)
proof —
from @ € hyp2 U S) and b € hyp2 U S) and extend-to-S
have 3 p.p € S A Br ?ca ?cb (cart2-pt p) by auto
hence ?p € S A BRr ?ca ?cb ?cp
by (unfold endpoint-in-S-def) (rule somel-ex)
thus ?p € S and BR ?ca ?cb ?cp by simp-all
qed
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lemma endpoint-in-S-swap:

assumesa # banda € hyp2 USand b € hyp2 U S

shows endpoint-in-S a b # endpoint-in-S b a (is ?p # ?q)
proof

let 7ca = cart2-pta

let ?cb = cart2-pt b

let ?cp = cart2-pt ?p

let ?cq = cart2-pt ?q

from (@ # b) and @ € hyp2 U S) and b € hyp2 U S)

have BR ?ca ?cb ?cp and Br ?cb ?ca ?cq

by (simp-all add: endpoint-in-S)

assume ?’p = 7q
with (Br ?cb ?ca ?cq> have BR ?cb ?ca ?cp by simp
with (Bg ?ca ?cb ?cp) have ?ca = ?cb by (rule real-euclid.th3-4)
with @ € hyp2 U S) and & € hyp2 U S) have a = b by (rule hyp2-S-cart2-inj)
with @ # b) show False ..
qed

lemma endpoint-in-S-incident:
assumes a2 # banda € hyp2 U Sand b € hyp2 U S
and proj2-incident a | and proj2-incident b |
shows proj2-incident (endpoint-in-S a b) | (is proj2-incident ?p 1)
proof —
from @ € hyp2 U S) and b € hyp2 U S)
have ?p € S and By (cart2-pt a) (cart2-pt b) (cart2-pt ?p)
(is Br ?ca ?cb ?cp)
by (rule endpoint-in-S)+

from @ € hyp2 U S and b € hyp2 U S) and (?p € S)
have z-non-zero a and z-non-zero b and z-non-zero ?p
by (simp-all add: hyp2-S-z-non-zero)

from (BR ?ca ?cb ?cp)
have real-euclid.Col ?ca ?cb ?cp unfolding real-euclid.Col-def ..
with (z-non-zero a) and (z-non-zero b) and (z-non-zero ?p) and (a # b
and (proj2-incident a I) and (proj2-incident b )
show proj2-incident ?p | by (rule euclid-Col-cart2-incident)
qed

lemma endpoints-in-S-incident-unique:
assumesa # banda € hyp2 USand b € hyp2 U Sandp € S
and proj2-incident a | and proj2-incident b | and proj2-incident p |
shows p = endpoint-in-S a bV p = endpoint-in-S b a
(isp=?2qVp="7r)

proof —
from @ # b) and @ € hyp2 U S) and & € hyp2 U S)
have ?q # ?r by (rule endpoint-in-S-swap)
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from @ € hyp2 U S) and b € hyp2 U S)
have ?q € S and ?r € S by (simp-all add: endpoint-in-S)

from (@ # b) and @ € hyp2 U S) and b € hyp2 U S)
and (proj2-incident a ) and (proj2-incident b )
have proj2-incident ?q | and proj2-incident ?r
by (simp-all add: endpoint-in-S-incident)
with (?q # ?ryand (?g € S) and (?r € S) and (p € S) and (proj2-incident p )
show p = ?q V p = ?r by (simp add: line-S-two-intersections-only)
qed

lemma endpoint-in-S-unique:
assumesa # band a € hyp2 USand b € hyp2 USandp € S
and B (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br ?ca ?cb ?cp)
shows p = endpoint-in-Sa b (is p = ?q)
proof (rule ccontr)
from @ € hyp2 U S) and b € hyp2 U S)and (p € S)
have z-non-zero a and z-non-zero b and z-non-zero p
by (simp-all add: hyp2-S-z-non-zero)
with (Bg ?ca ?cb ?cp) and euclid-B-cart2-common-line [of a b p]
obtain / where
proj2-incident a | and proj2-incident b I and proj2-incident p |
by auto
with @ # b)and @ € hyp2 U S) and b € hyp2 U S) and (p € S)
have p = ?q V p = endpoint-in-Sba (isp = ?2q V p = ?r)
by (rule endpoints-in-S-incident-unique)

assume p # ?q
with (p = ?q V p = ?r) have p = ?r by simp
with & € hyp2 U S) and @ € hyp2 U S)
have BR ?cb ?ca ?cp by (simp add: endpoint-in-S)
with (Bg ?ca ?cb ?cp) have ?ca = ?cb by (rule real-euclid.th3-4)
with @ € hyp2 U S) and & € hyp2 U S) have a = b by (rule hyp2-S-cart2-inj)
with @ # b) show False ..
qed

lemma between-hyp2-S:
assumes p € hyp2 USandr € hyp2 USand k> 0and k < 1
shows proj2-pt (k *g (cart2-pt r) + (1 — k) g (cart2-pt p)) € hyp2 U S
(is proj2-pt ?cq € -)
proof —
let ?cp = cart2-pt p
let ?cr = cart2-pt r
let ?q = proj2-pt ?2cq
from (p € hyp2 U S) and (r € hyp2 U S)
have z-non-zero p and z-non-zero r by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cr = r by (simp-all add: proj2-cart2)
with (p € hyp2 U S) and (r € hyp2 U S)
have norm ?cp < 1 and norm ?cr <1
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by (simp-all add: norm-le-1-iff-in-hyp2-S)

from &k > 0)and k < 1)
and norm-triangle-ineq [of k g ?cr (1 — k) *gr ?cp]
have norm ?cq < k x norm ?cr + (1 — k) * norm ?cp by simp

from k > 0) and (norm ?cr < 1) and mult-mono [of k k norm ?cr 1]
have k * norm ?cr < k by simp

from <k < 1) and (morm ?cp < D)
and mult-mono [of 1 — k1 — k norm ?cp 1]
have (1 — k) * norm ?cp < 1 — k by simp
with (morm ?cq < k * norm ?cr + (1 — k) % norm ?cp) and k * norm ?cr < k)
have norm ?cq < 1 by simp
thus ?g € hyp2 U S by (simp add: norm-le-1-iff-in-hyp2-S)
qed

9.8 The Klein-Beltrami model satisfies axiom 4

definition expansion-factor :: proj2 = cltn2 => real where
expansion-factor p | = (cart2-appendl p vk cltn2-rep J)$3

lemma expansion-factor:
assumes p € hyp2 U S and is-K2-isometry |
shows expansion-factor p | # 0
and cart2-appendl p vx cltn2-rep |
= expansion-factor p | xg cart2-appendl (apply-cltn2 p ])
proof —
from (p € hyp2 U S) and (is-K2-isometry |)
have z-non-zero (apply-clin2 p J) by (rule is-K2-isometry-z-non-zero)

from (p € hyp2 U S) and (is-K2-isometry J)
and cart2-appendl-apply-clin2
obtain k where k # 0
and cart2-appendl p vx clin2-rep | = k *g cart2-appendl (apply-clin2 p J)
by auto
from (cart2-append1 p vx cltn2-rep | = k *g cart2-append] (apply-clin2 p J))
and (z-non-zero (apply-cltn2 p J))
have expansion-factor p | = k
by (unfold expansion-factor-def) (simp add: cart2-append1-z)
with &k # 0
and (cart2-appendl p vx cltn2-rep | = k *g cart2-append] (apply-clin2 p J))
show expansion-factor p | # 0
and cart2-appendl p vx cltn2-rep |
= expansion-factor p | xg cart2-append1 (apply-clin2 p J)
by simp-all
qed

lemma expansion-factor-linear-apply-cltn2:
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assumes p € hyp2 U Sand g € hyp2 U Sand r € hyp2 U S
and is-K2-isometry |
and cart2-pt r = k *g cart2-pt p + (1 — k) *g cart2-pt q
shows expansion-factor r | g cart2-appendl (apply-cltn2 r ])
= (k * expansion-factor p J) xg cart2-appendl (apply-cltn2 p ])
+ ((1 — k) * expansion-factor q J) g cart2-append1 (apply-cltn2 q )
(is ?er xg - = (k * ?ep) *g - + ((1 — k) * ?eq) g -)

proof —
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?cpl = cart2-appendl p
let ?cql = cart2-appendl q
let ?cr]l = cart2-appendl r
let ?rep] = cltn2-rep |
from (p € hyp2 U S) and (g € hyp2 U S) and (r € hyp2 U S)
have z-non-zero p and z-non-zero q and z-non-zero r

by (simp-all add: hyp2-S-z-non-zero)

from (?cr =k xg 2cp + (1 — k) *g ?cq)
have vector2-append1 ?cr
= k *g vector2-appendl ?cp + (1 — k) g vector2-appendl ?cq
by (unfold vector2-append1-def vector-def ) (simp add: Cart-eq)
with (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
have ?crl =k *g ?cpl + (1 — k) *g ?cql by (simp add: cart2-append1)
hence ?cr1 vx ?rep] =k xg (?cpl v ?rep]) + (1 — k) *g (?cql vx ?rep])
by (simp add: vector-matrix-left-distrib
scalar-vector-matrix-assoc [symmetric|)
with (pp € hyp2 U S) and (g € hyp2 U S) and & € hyp2 U S)
and (is-K2-isometry |
show ?er xg cart2-appendl (apply-cltn2 r )
= (k * ?ep) *g cart2-append] (apply-clin2 p ])
+ ((1 — k) = ?eq) xg cart2-append] (apply-clin2 q )
by (simp add: expansion-factor)
qed

lemma expansion-factor-linear:
assumes p € hyp2 U Sand g € hyp2 U Sand r € hyp2 U S
and is-K2-isometry |
and cart2-pt r = k *g cart2-pt p + (1 — k) *g cart2-pt q
shows expansion-factor r |
= k x expansion-factor p | + (1 — k) * expansion-factor q |
(is 2er =k = ?ep + (1 — k) * ?eq)
proof —
from (p € hyp2 U S) and (g € hyp2 U S) and € hyp2 U S)
and (is-K2-isometry |
have z-non-zero (apply-clin2 p J)
and z-non-zero (apply-clin2 q ])
and z-non-zero (apply-cltn2 r ])
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by (simp-all add: is-K2-isometry-z-non-zero)

from (p € hyp2 U S) and (g € hyp2 U S) and € hyp2 U S)
and (is-K2-isometry |
and (cart2-pt r = k *g cart2-pt p + (1 — k) *g cart2-pt q)
have ?er xg cart2-appendl (apply-cltn2 r )
= (k * ?ep) *g cart2-appendl (apply-clin2 p ])
+ ((1 — k) * ?eq) *g cart2-appendl (apply-clin2 q])
by (rule expansion-factor-linear-apply-cltn2)
hence (?er *g cart2-appendl (apply-cltn2 r ]))$3
= ((k * ?ep) *g cart2-append] (apply-clin2 p ])
+ ((1 — k) = ?eq) *g cart2-appendl (apply-clin2 q ]))$3
by simp
with (z-non-zero (apply-cltn2 p J))
and (z-non-zero (apply-cltn2 qJ)
and (z-non-zero (apply-cltn2 r J))
show ?er =k x ?ep + (1 — k)  ?eq by (simp add: cart2-append]1-z)
qed

—~T

lemma expansion-factor-sgn-invariant:
assumes p € hyp2 U S and g € hyp2 U S and is-K2-isometry |
shows sqgn (expansion-factor p J) = sgn (expansion-factor q J)
(is sgn ?ep = sgn ?eq)

proof (rule ccontr)
assume sgn ?ep # sgn ?eq

from (p € hyp2 U S) and (g € hyp2 U S) and (is-K2-isometry |)
have ?ep # 0 and ?eq # 0 by (simp-all add: expansion-factor)
hence sgn ?ep € {—1,1} and sgn ?eq € {—1,1}
by (simp-all add: real-sgn-def)
with (sgn ?ep # sgn ?eq) have sgn ?ep = — sgn ?eq by auto
hence sgn ?ep = sgn (—?eq) by (subst sgn-minus)
with sgn-plus [of 2ep —?eq]
have sgn (?ep — ?eq) = sgn ?ep by (simp add: algebra-simps)
with (sgn ?ep € {—1,1}) have ?ep — ?eq # 0 by (auto simp add: real-sgn-def )

let 2k = —?eq / (?ep — ?eq)

from (sgn (?ep — ?eq) = sgn ?ep) and (sgn ?ep = sgn (—?eq))
have sgn (?ep — ?eq) = sgn (—?eq) by simp

with (?ep — ?eq # 0) and sgn-div [of 2ep — ?eq —?eq]

have 7k > 0 by simp

from (?ep — ?eq # 0)

have 1 — ?k = ?ep / (?ep — ?eq) by (simp add: field-simps)
with (sgn (?ep — ?eq) = sgn ?ep) and (Pep — ?eq # 0)
have 1 — ?k > 0 by (simp add: sgn-div)

hence ?k < 1 by simp

let ?cp = cart2-pt p
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let ?cq = cart2-pt q

let ?cr = ?k g ?cp + (1 — ?k) *g ?cq

let ?r = proj2-pt ?cr

let ?er = expansion-factor ?r |

have cart2-pt ?r = ?cr by (rule cart2-proj2)

from (p € hyp2 U S) and (g € hyp2 U S) and (?k > 0) and (?k < 1)
and between-hyp2-S [of g p ?k]

have ?r € hyp2 U S by simp

with (p € hyp2 U S) and (g € hyp2 U S) and (is-K2-isometry |)
and (cart2-pt ?r = ?cr)
and expansion-factor-linear [of p q ?r J k]

have ?er = ?k * ?ep + (1 — ?k) * ?eq by simp

with (?ep — ?eq # 0) have ?er = 0 by (simp add: field-simps)

with (?r € hyp2 U S) and (is-K2-isometry |)

show Fualse by (simp add: expansion-factor)

qed

lemma statement-63:
assumes p € hyp2 USand g € hyp2 U Sandr € hyp2 U S
and is-K2-isometry | and B (cart2-pt p) (cart2-pt q) (cart2-pt r)
shows B
(cart2-pt (apply-cltn2 p ]))
(cart2-pt (apply-clin2 g ]))
(cart2-pt (apply-clin2 v ]))
proof —
let 7cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?ep = expansion-factor p |
let 7eq = expansion-factor q |
let ?er = expansion-factor r |
from (q € hyp2 U S) and (is-K2-isometry ])
have ?¢q # 0 by (rule expansion-factor)

from (p € hyp2 U S) and (g € hyp2 U S) and r € hyp2 U S)
and (is-K2-isometry |) and expansion-factor-sgn-invariant
have sgn ?ep = sgn ?eq and sgn ?er = sgn ?eq by fast+
with (?eq # 0)
have ?ep / ?eq > 0 and ?er / ?eq > 0 by (simp-all add: sgn-div)

from (B ?cp ?cq ?cr
obtain k where k > 0 and k < 1 and ?cq =k *g ?cr + (1 — k) *g 2cp
by (unfold real-euclid-B-def) (auto simp add: algebra-simps)

let 2c =k = ?er / ?eq

from k > 0) and (?er / ?eq > 0) and mult-nonneg-nonneg [of k ?er / ?eq]
have ?c > 0 by simp
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from r € hyp2 U S) and (p € hyp2 U S) and (g € hyp2 U S)
and (is-K2-isometry ) and (?cq = k *g ?cr + (1 — k) xg 2cp)
have ?eq = k * ?er 4+ (1 — k) * ?ep by (rule expansion-factor-linear)
with (?eq # 0) have 1 — ?c = (1 — k) * ?ep / ?eq by (simp add: field-simps)
with ¢« < 1) and (?ep / ?7eq > 0)
and mult-nonneg-nonneg [of 1 — k ?ep / ?eq|
have ?c <1 by simp

let ?p] = apply-clin2 p |

let 7q] = apply-cltn2 q |

let ?r] = apply-cltn2 r |

let ?cp] = cart2-pt ?p]

let ?cq] = cart2-pt ?q]

let ?cr] = cart2-pt ?1]

let 7cp]1 = cart2-appendl ?p]

let ?2cq]1 = cart2-appendl ?q]

let ?cr]1 = cart2-appendl ?r|

from (p € hyp2 U S) and (g € hyp2 U S) and ¢ € hyp2 U S)
and (is-K2-isometry |

have z-non-zero ?p] and z-non-zero ?qJ and z-non-zero ?r|
by (simp-all add: is-K2-isometry-z-non-zero)

from r € hyp2 U S) and (p € hyp2 U S) and (g € hyp2 U S)
and (is-K2-isometry ) and (?cq = k *g ?cr + (1 — k) *g 2cp)
have ?eq *g ?cq]1 = (k * ?er) xg ?cr]1 + ((1 — k) * ?ep) *g ?cp]1
by (rule expansion-factor-linear-apply-cltn2)
hence (1 / ?eq) g (?eq *g ?cqJ1)
= (1/ ?eq) *g ((k * 2er) xg 2crJ1 + ((1 — k) * ?ep) *g ?cpJ1) by simp
with (1 — ?c = (1 — k) x ?ep / ?eq and (?eq # 0)
have ?cqJ1 = ?c xg ?cr]1 + (1 — ?¢) xg ?cp]1
by (simp add: scaleR-right-distrib)
with (z-non-zero ?pJ) and (z-non-zero ?qJ) and (z-non-zero ?rJ)
have vector2-appendl ?cq]
= 2c xR vector2-append] ?cr] + (1 — ?c) g vector2-appendl ?cp]
by (simp add: cart2-append1)
hence ?cq] = ?c xg ?cr] + (1 — ?c) *g ?cp]
unfolding vector2-appendl-def and vector-def
by (simp add: Cart-eq forall-2 forall-3)
with ?c > 0)and (?c < 1)
show BR ?cp] ?cq] ?cr]
by (unfold real-euclid-B-def) (simp add: algebra-simps exI [of - ?c])
qed

theorem hyp2-axiom4:¥ qabc. 3 x. BxqaxNax=gbc
proof (rule alll)+

fixgabc:: hyp2

let ?pq = Rep-hyp2 q

let ?pa = Rep-hyp2 a

let ?pb = Rep-hyp2 b
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let ?pc = Rep-hyp2 c

have ?pq € hyp2 and ?pa € hyp2 and ?pb € hyp2 and ?pc € hyp2
by (rule Rep-hyp2)+

let ?cq = cart2-pt ?pq

let ?ca = cart2-pt ?pa

let ?cb = cart2-pt ?pb

let ?cc = cart2-pt ?pc

let ?pp =€ p.p € S A BR ?cb ?cc (cart2-pt p)

let ?cp = cart2-pt ?pp

from (?pb € hyp2) and (?pc € hyp2) and extend-to-S [of ?pb ?pc]
and somel-ex [of A p.p € S A Bgr ?cb ?cc (cart2-pt p)]

have ?pp € S and BRr ?cb ?cc ?cp by auto

let ?pr =€ r.v € S A BR ?cq ?ca (cart2-pt r)

let ?cr = cart2-pt ?pr

from (?pg € hyp2) and (?pa € hyp2) and extend-to-S [of ?pq ?pa]
and somel-ex [of Ar.r € S A Br 2cq ?ca (cart2-pt r)]

have ?pr € S and BR ?cq ?ca ?cr by auto

from (?pb € hyp2) and (?pa € hyp2) and (?pp € S) and (Ppr € S
and statement66-existence [of ?pb ?pa ?pp ?pr|
obtain | where is-K2-isometry |
and apply-cltn2 ?pb | = ?pa and apply-cltn2 ?pp | = ?pr
by (unfold hyp2-def ) auto
let ?px = apply-cltn2 ?pc |
let ?cx = cart2-pt ?px
let ?x = Abs-hyp2 ?px
from (is-K2-isometry |) and (?pc € hyp2)
have ?px € hyp2 by (unfold hyp2-def) (rule statement60-one-way)
hence Rep-hyp2 ?x = ?px by (rule Abs-hyp2-inverse)

from (?pb € hyp2) and (?pc € hyp2) and ?pp € S) and (is-K2-isometry |
and (BR ?cb ?cc ?cp) and statement-63

have Bg (cart2-pt (apply-cltn2 ?pb ])) ?cx (cart2-pt (apply-cltn2 ?pp J))
by simp

with @apply-cltn2 ?pb | = ?pa) and @apply-cltn2 ?pp | = ?pr

have BR ?ca ?cx ?cr by simp

with (BR ?cq ?ca ?cr) have B ?cq ?ca ?cx by (rule real-euclid.th3-5-1)

with (Rep-hyp2 ?x = ?px)

have Bx ga ?x
unfolding real-hyp2-B-def and hyp2-rep-def
by simp

have Abs-hyp2 ?pa = a by (rule Rep-hyp2-inverse)
with apply-cltn2 ?pb | = ?pa)
have hyp2-cltn2 b | = a by (unfold hyp2-cltn2-def) simp

have hyp2-cltn2 ¢ | = ?x unfolding hyp2-cltn2-def ..
with (is-K2-isometry |) and (hyp2-cltn2 b ] = @)
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havebc =g a ?x
by (unfold real-hyp2-C-def ) (simp add: exI [of - ]])
hence a ?x =g b ¢ by (rule hyp2.th2-2)
with (Bx ga ?x
show 3 x. Bx ga x A ax =g bc by (simp add: exI [of - ?x])
qed

9.9 More betweenness theorems

lemma hyp2-S-points-fix-line:
assumes a € hyp2 and p € S and is-K2-isometry |
and apply-cltn2 a | = a (is ?a] = a)
and apply-cltn2 p ] = p (is ?p] = p)
and proj2-incident a | and proj2-incident p | and proj2-incident b |
shows apply-cltn2 b | = b (is ?b] = b)
proof —
let ?I] = apply-clin2-line | |
from (proj2-incident a ) and (proj2-incident p )
have proj2-incident ?aJ ?1] and proj2-incident ?p] ?I] by simp-all
with (?af = a) and ?p] = p)
have proj2-incident a ?If and proj2-incident p ?1] by simp-all

from @ € hyp2) have a € K2 by (unfold hyp2-def)

with (proj2-incident a I) and line-through-K2-intersect-S-again [of a I]
obtain g where q # p and g € S and proj2-incident q | by auto

let 7q] = apply-cltn2 q |

from @ € hyp2) and (p € S and (g € S)
have a # p and a # g by (simp-all add: hyp2-S-not-equal )

from (a # p) and (proj2-incident a I) and (proj2-incident p )
and (proj2-incident a ?1]) and (proj2-incident p ?IJ)
and proj2-incident-unique

have ?I] = [ by auto

from (proj2-incident q I) have proj2-incident ?q] ?I] by simp
with (?[] = ) have proj2-incident ?q] I by simp

from (g € S) and (is-K2-isometry |)

have ?g] € S by (unfold is-K2-isometry-def) simp

with (g # p) and (p € S and (q € S) and (proj2-incident p )
and (proj2-incident q I) and (proj2-incident ?qJ )
and line-S-two-intersections-only

have ?q] = p V ?q] = q by simp

have 7q] =g
proof (rule ccontr)
assume ?q] # g
with (?q] = p V ?q] = ¢ have ?gq] = p by simp

181



with (?p] = p) have ?gq] = ?p] by simp
with apply-cltn2-injective have q = p by fast
with (g # p) show False ..

qed

with (g # p) and @ # p) and (@ # q) and (proj2-incident p I)
and (proj2-incident q I) and (proj2-incident a )
and (?p] = p) and (?a] = a) and (proj2-incident b )
and cltn2-three-point-line [of p ga 1 | b]

show ?b] = b by simp

qed

lemma K2-isometry-endpoint-in-S:
assumes a # band a € hyp2 U S and b € hyp2 U S and is-K2-isometry |
shows apply-cltn2 (endpoint-in-S a b) |
= endpoint-in-S (apply-cltn2 a J) (apply-clin2 b ])
(is ?p] = endpoint-in-S ?aj ?b])
proof —
let ?p = endpoint-in-S a b

from @ # b) and apply-clin2-injective have ?a] # ?bJ by fast

from @ € hyp2 U S) and b € hyp2 U S) and (is-K2-isometry |)
and is-K2-isometry-hyp2-S
have ?a] € hyp2 U S and ?b] € hyp2 U S by simp-all

let ?ca = cart2-pt a

let ?cb = cart2-pt b

let ?cp = cart2-pt ?p

from @ € hyp2 U S) and b € hyp2 U S)

have ?p € S and BR ?ca ?cb ?cp by (rule endpoint-in-S)+

from (?p € S) and (is-K2-isometry )
have ?p] € S by (unfold is-K2-isometry-def ) simp

let ?ca] = cart2-pt ?af
let 7cb] = cart2-pt ?b]
let ?cp] = cart2-pt ?p]
from @ € hyp2 U S) and &b € hyp2 U S) and (?p € S) and (is-K2-isometry ]
and (BR ?ca ?cb ?cp) and statement-63

have Br ?caf ?cb] ?cp] by simp

with (?aJ # ?b]) and (?a] € hyp2 U S) and (?b] € hyp2 U S) and (?p] € S)
show ?p] = endpoint-in-S ?a] ?b] by (rule endpoint-in-S-unique)

qed

lemma between-endpoint-in-S:
assumes a # band b # ¢
anda € hyp2U Sand b € hyp2 USandc € hyp2 U S
and By (cart2-pt a) (cart2-pt b) (cart2-pt c) (is Br ?ca ?cb ?cc)
shows endpoint-in-S a b = endpoint-in-S b ¢ (is ?p = ?q)
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proof —
from (b # ¢ and & € hyp2 U S) and (¢ € hyp2 U S) and hyp2-5S-cart2-inj
have ?cb # ?cc by auto

let 7cq = cart2-pt ?2q
from b € hyp2 U S) and (c € hyp2 U S)
have ?g € S and BR ?cb ?cc ?cq by (rule endpoint-in-S)+

from (?cb # ?cc) and (BR ?ca ?cb ?cc) and (Br ?cb ?cc ?cq)
have BR ?ca ?cb ?cq by (rule real-euclid.th3-7-2)
with @ # b) and @ € hyp2 U S and b € hyp2 U S) and (?g € S)
have ?q = ?p by (rule endpoint-in-S-unique)
thus 7p=7g ..
qed

lemma hyp2-extend-segment-unique:
assumes a # band Bxabcand Bxabdandbc=x bd
shows ¢ =d
proof cases
assume b = ¢
with b ¢ =g b d) show ¢ = d by (simp add: hyp2.A3-reversed)
next
assume b # ¢

have b # d

proof (rule ccontr)
assume — b £ d
hence b = d by simp
with (b ¢ =g b d) have b ¢ =g b b by simp
hence b = ¢ by (rule hyp2.A3’)
with b # ¢) show False ..

qed

with @ # b) and b # ©

have Rep-hyp2 a # Rep-hyp2 b (is ?pa # ?pb)
and Rep-hyp2 b # Rep-hyp2 c (is ?pb # ?pc)
and Rep-hyp2 b # Rep-hyp2 d (is ?pb # ?pd)
by (simp-all add: Rep-hyp2-inject)

have ?pa € hyp2 and ?pb € hyp2 and ?pc € hyp2 and ?pd € hyp2
by (rule Rep-hyp2)+

let ?pp = endpoint-in-S ?pb ?pc

let ?ca = cart2-pt ?pa

let ?cb = cart2-pt ?pb

let ?cc = cart2-pt ?pc

let ?cd = cart2-pt ?pd

let ?cp = cart2-pt ?pp

from (?pb € hyp2) and (?pc € hyp2)

have ?pp € S and BR ?cb ?cc ?cp by (simp-all add: endpoint-in-S)
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from bc=x bd

obtain | where is-K2-isometry |
and hyp2-cltn2 b | = b and hyp2-cltn2 ¢ | = d
by (unfold real-hyp2-C-def ) auto

from (hyp2-cltn2 b | = b) and thyp2-cltn2 c | = d)

have Rep-hyp2 (hyp2-cltn2 b J) = ?pb
and Rep-hyp2 (hyp2-cltn2 ¢ ) = ?pd
by simp-all

with (is-K2-isometry |)

have apply-cltn2 ?pb | = ?pb and apply-cltn2 ?pc | = ?pd
by (simp-all add: Rep-hyp2-clin2)

from Bxabc and (B a b d)
have BR ?ca ?cb ?cc and BR ?ca ?cb ?cd
unfolding real-hyp2-B-def and hyp2-rep-def .

from (?pb # ?pc) and (?pb € hyp2) and (?pc € hyp2) and (s-K2-isometry |)
have apply-clin2 ?pp |

= endpoint-in-S (apply-cltn2 ?pb ]) (apply-cltn2 ?pc )

by (simp add: K2-isometry-endpoint-in-S)
also from apply-cltn2 ?pb | = ?pb) and @apply-cltn2 ?pc | = ?pd)
have ... = endpoint-in-S ?pb ?pd by simp
also from (?pa # ?pb) and (?pb # ?pd)

and (?pa € hyp2) and (?pb € hyp2) and (?pd € hyp2) and (Br ?ca ?cb ?cd)
have ... = endpoint-in-S ?pa ?pb by (simp add: between-endpoint-in-S)
also from (?pa # ?pb) and (?pb # ?pc)

and (?pa € hyp2) and (?pb € hyp2) and (?pc € hyp2) and (Br ?ca ?cb ?cc)
have ... = endpoint-in-S ?pb ?pc by (simp add: between-endpoint-in-S)
finally have apply-cltn2 ?pp | = ?pp .

from (?pb € hyp2) and (?pc € hyp2) and (?pp € S)
have z-non-zero ?pb and z-non-zero ?pc and z-non-zero ?pp
by (simp-all add: hyp2-S-z-non-zero)
with (Bg ?cb ?cc ?cp) and euclid-B-cart2-common-line [of ?pb ?pc ?pp]
obtain [ where proj2-incident ?pb | and proj2-incident ?pp |
and proj2-incident ?pc |
by auto
with (?pb € hyp2) and (?pp € S) and (is-K2-isometry |
and @apply-cltn2 ?pb | = ?pb) and (apply-cltn2 ?pp | = ?pp)
have apply-cltn2 ?pc | = ?pc by (rule hyp2-S-points-fix-line)
with @apply-cltn2 ?pc | = ?pd) have ?pc = ?pd by simp
thus ¢ = d by (subst Rep-hyp2-inject [symmetric])
qed

lemma line-S-match-intersections:

assumesp #Zqandr#sandpc Sandge Sandr e Sands e S
and proj2-set-Col {p,q,r,s}
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shows (p=rAg=s)V(g=rAp=s)
proof —
from (proj2-set-Col {p,q,r,5})
obtain [ where proj2-incident p I and proj2-incident q |
and proj2-incident r | and proj2-incident s [
by (unfold proj2-set-Col-def ) auto
withr #s)and p € S and (g€ S'and r € S'and s € S
havep=rVp=sandg=rVvVg=s
by (simp-all add: line-S-two-intersections-only)

show (p=rANg=s)V(g=rAp=s)
proof cases
assume p =71
withp#gpandig=rVg=s
show (p=rANqg=s)V (g=rAp=s)bysimp
next
assume p # r
with (p =r V p = s) have p = s by simp
withp#gpandig=rVvVg=s
show (p=rANqg=s)V (g=rAp=s)bysimp
qed
qed

definition are-endpoints-in-S :: [proj2, proj2, proj2, proj2] = bool where
are-endpoints-in-Spqab
Ep#£qApESNGESNachyp2 Ab € hyp2 A proj2-set-Col {p,q,a,b}

lemma are-endpoints-in-S’:
assumesp #Zqganda #bandp € Sandgec Sanda € hyp2 U S
and b € hyp2 U S and proj2-set-Col {p,q,a,b}
shows (p = endpoint-in-S a b N\ q = endpoint-in-S b a)
V (g = endpoint-in-S a b \ p = endpoint-in-S b a)
(is(p=?rAng=2s)V(g=?rAp=7s))
proof —
from @ # b) and @ € hyp2 U S) and b € hyp2 U S)
have ?r # ?s by (simp add: endpoint-in-S-swap)

from @ € hyp2 U S) and b € hyp2 U S)
have ?r € S and ?s € S by (simp-all add: endpoint-in-S)

from (proj2-set-Col {p,q,a,b})

obtain | where proj2-incident p | and proj2-incident q |
and proj2-incident a | and proj2-incident b |
by (unfold proj2-set-Col-def ) auto

from @ # b) and @ € hyp2 U S) and & € hyp2 U S) and (proj2-incident a I)
and (proj2-incident b )

have proj2-incident ?r | and proj2-incident ?s |
by (simp-all add: endpoint-in-S-incident )
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with (proj2-incident p I) and (proj2-incident q )
have proj2-set-Col {p,q,71,2s}
by (unfold proj2-set-Col-def ) (simp add: exI [of - I])
with (p # @ and (?r # ?s)and (p € S)and (g € S) and (?r € S) and (?s € S)
show (p=?2rAq=25)V (q=2rANp=7s)
by (rule line-S-match-intersections)
qed

lemma are-endpoints-in-S:
assumes a # b and are-endpoints-in-Sp qa b
shows (p = endpoint-in-S a b N\ q = endpoint-in-S b a)
V (g = endpoint-in-S a b A\ p = endpoint-in-S b a)
using assms
by (unfold are-endpoints-in-S-def ) (simp add: are-endpoints-in-S’)

lemma S-intersections-endpoints-in-S:
assumes a2 # 0 and b # 0 and proj2-abs a # proj2-abs b (is ?pa # ?pb)
and proj2-abs a € hyp2 and proj2-abs b € hyp2 U S
shows (S-intersectionl a b = endpoint-in-S ?pa ?pb
A S-intersection2 a b = endpoint-in-S ?pb ?pa)
V (S-intersection2 a b = endpoint-in-S ?pa ?pb
A S-intersectionl a b = endpoint-in-S ?pb ?pa)
(is (?pp = ?pr A ?pq = ?ps) V (?pq = ?pr A ?pp = ?ps))
proof —
from @ # 0) and & # 0) and (?pa # ?pb) and (?pa € hyp2)
have ?pp # ?pq by (unfold hyp2-def, simp add: S-intersections-distinct)

from @ # 0> and & # 0) and (?pa # ?pb) and (proj2-abs a € hyp2)
have ?pp € Sand ?pg € S
by (unfold hyp2-def, simp-all add: S-intersections-in-S)

let ?I = proj2-line-through ?pa ?pb

have proj2-incident ?pa ?1 and proj2-incident ?pb ?1
by (rule proj2-line-through-incident )+

with @ # 0) and b # 0) and (?pa # ?pb)

have proj2-incident ?pp ?1 and proj2-incident ?pq ?1
by (rule S-intersections-incident)+

with (proj2-incident ?pa ?1) and (proj2-incident ?pb ?I)

have proj2-set-Col {?pp,?pq,?pa,?pb}
by (unfold proj2-set-Col-def ) (simp add: exI [of - ?1])

with (?pp # ?pg) and (?pa # ?pb) and (?pp € S) and (?pg € S) and (?pa € hyp2)
and (?pb € hyp2 U S)

show (?pp = ?pr A ?pq = ?ps) V (?pq = ?pr A ?pp = ?ps)
by (simp add: are-endpoints-in-S’)

qed

lemma between-endpoints-in-S:

assumes 2 # banda € hyp2 U Sand b € hyp2 U S
shows B
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(cart2-pt (endpoint-in-S a b)) (cart2-pt a) (cart2-pt (endpoint-in-S b a))
(is BR ?cp ?ca ?cq)
proof —
let 7cb = cart2-pt b
from b € hyp2 U S) and @ € hyp2 U S) and @ # b)
have ?cb # ?ca by (auto simp add: hyp2-S-cart2-inj)

from @ € hyp2 U S) and (b € hyp2 U S)
have BR ?ca ?cb ?cp and B ?cb ?ca ?cq by (simp-all add: endpoint-in-S)

from (BR ?ca ?cb ?cp) have BR ?cp ?cb ?ca by (rule real-euclid.th3-2)
with (?cb # ?ca) and (Br ?cb ?ca ?cq)
show B ?cp ?ca ?cq by (simp add: real-euclid.th3-7-1)

qed

lemma S-hyp2-S-cart2-appendl:

assumes p #qandp € Sand g € S and a € hyp2

and proj2-incident p | and proj2-incident q | and proj2-incident a [

shows 3 k. k>0Ak <1

A cart2-appendl a = k *g cart2-appendl q + (1 — k) g cart2-appendl p
proof —

from (p € S) and (g € S) and @ € hyp2)

have z-non-zero p and z-non-zero q and z-non-zero a

by (simp-all add: hyp2-S-z-non-zero)

from assms
have BR (cart2-pt p) (cart2-pt a) (cart2-pt q) (is Br ?cp ?ca ?cq)
by (simp add: hyp2-incident-in-middle)

from (p € S) and (g € S) and @ € hyp2)
have a # p and a # g by (simp-all add: hyp2-S-not-equal )

with (z-non-zero p) and (z-non-zero a) and (z-non-zero q)
and (BR ?cp ?ca ?cq)
show 3 k.k>0ANk<1
A cart2-appendl a = k *g cart2-appendl q + (1 — k) g cart2-appendl p
by (rule cart2-appendl-between-strict)
qed

lemma are-endpoints-in-S-swap-34:

assumes are-endpoints-in-S p qa b

shows are-endpoints-in-Sp qba
proof —

have {p,q,b,a} = {p,qa,b} by auto

with (are-endpoints-in-S p q a b)

show are-endpoints-in-S p q b a by (unfold are-endpoints-in-S-def ) simp
qed

lemma proj2-set-Col-endpoints-in-S:
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assumesa # banda € hyp2 USand b € hyp2 U S
shows proj2-set-Col {endpoint-in-S a b, endpoint-in-S b a, a, b}
(is proj2-set-Col {?p,?q,a,b})
proof —
let 7] = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident )+
with @ # b) and @ € hyp2 U S) and & € hyp2 U S)
have proj2-incident ?p ?1 and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident )
with (proj2-incident a ?I) and (proj2-incident b ?1)
show proj2-set-Col {?p,?q,a,b}
by (unfold proj2-set-Col-def ) (simp add: exI [of - ?1])
qed

lemma endpoints-in-S-are-endpoints-in-S:
assumes a # b and a € hyp2 and b € hyp2
shows are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-Sba) a b
(is are-endpoints-in-S ?p ?q a b)
proof —
from @ # b) and @ € hyp2) and b € hyp2)
have ?p # ?q by (simp add: endpoint-in-S-swap)

from (@ € hyp2) and & € hyp2)
have ?p € S and ?g € S by (simp-all add: endpoint-in-S)

from assms

have proj2-set-Col {?p,?q,a,b} by (simp add: proj2-set-Col-endpoints-in-S)

with (?p # ?¢) and (?p € S) and (?q € S) and @ € hyp2) and & € hyp2)

show are-endpoints-in-S ?p ?q a b by (unfold are-endpoints-in-S-def ) simp
qed

lemma endpoint-in-S-S-hyp2-distinct:
assumes p € Sanda € hyp2 U Sand p #a
shows endpoint-in-S p a # p
proof
from (p #a and p € S and @ € hyp2 U S)
have BR (cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a))
by (simp add: endpoint-in-S)

assume endpoint-in-Spa =p
with (Bg (cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a)))
have cart2-pt p = cart2-pt a by (simp add: real-euclid. A6”)
with (p € S) and @ € hyp2 U S) have p = a by (simp add: hyp2-S-cart2-inj)
with (p # a) show False ..
qed

lemma endpoint-in-S-S-strict-hyp2-distinct:
assumes p € S and a € hyp2

188



shows endpoint-in-Sp a # p
proof —

from @ € hyp2) and p € S

have p # a by (rule hyp2-S-not-equal [symmetric])

with assms

show endpoint-in-S p a # p by (simp add: endpoint-in-S-S-hyp2-distinct)
qed

lemma end-and-opposite-are-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and p € S
and proj2-incident a I and proj2-incident b | and proj2-incident p
shows are-endpoints-in-S p (endpoint-in-S p b) a b
(is are-endpoints-in-S p ?q a b)
proof —
from (p € S) and b € hyp2)
have p # ?q by (rule endpoint-in-S-S-strict-hyp2-distinct [symmetric|)

from (p € S) and b € hyp2) have ?q € S by (simp add: endpoint-in-S)

from b € hyp2) and p € S)

have p # b by (rule hyp2-S-not-equal [symmetric])

with (p € S) and b € hyp2) and (proj2-incident p ) and (proj2-incident b )

have proj2-incident ?q | by (simp add: endpoint-in-S-incident )

with (proj2-incident p I) and (proj2-incident a I) and (proj2-incident b )

have proj2-set-Col {p,?q,a,b}

by (unfold proj2-set-Col-def ) (simp add: exI [of - I])

with (p # ?q) and (p € S) and (?q € S) and @ € hyp2) and b € hyp2)

show are-endpoints-in-S p ?q a b by (unfold are-endpoints-in-S-def ) simp
qed

lemma real-hyp2-B-hyp2-cltn2:
assumes is-K2-isometry | and Bx a b ¢
shows Bx (hyp2-cltn2 a J) (hyp2-cltn2 b ]) (hyp2-cltn2 c )
(is Bx ?a] ?b] ?c])
proof —
from (Bx abo
have Bg (hyp2-rep a) (hyp2-rep b) (hyp2-rep c) by (unfold real-hyp2-B-def)
with (is-K2-isometry |
have Bg (cart2-pt (apply-cltn2 (Rep-hyp2 a) J))
(cart2-pt (apply-clin2 (Rep-hyp2 b) ]))
(cart2-pt (apply-clin2 (Rep-hyp2 c) J))
by (unfold hyp2-rep-def) (simp add: Rep-hyp2 statement-63)
moreover from (is-K2-isometry |)
have apply-clin2 (Rep-hyp2 a) | € hyp2
and apply-clin2 (Rep-hyp2 b) | € hyp2
and apply-cltn2 (Rep-hyp2 c) | € hyp2
by (rule apply-cltn2-Rep-hyp2)+
ultimately show Bx (hyp2-cltn2 a J) (hyp2-cltin2 b ]) (hyp2-cltn2 c J)
unfolding hyp2-cltn2-def and real-hyp2-B-def and hyp2-rep-def
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by (simp add: Abs-hyp2-inverse)
qed

lemma real-hyp2-C-hyp2-clin2:
assumes is-K2-isometry |
shows a b =g (hyp2-cltn2 a ]) (hyp2-cltn2 b ]) (isa b =k ?a] ?b])
using assms by (unfold real-hyp2-C-def ) (simp add: exI [of - ]])

9.10 Perpendicularity

definition M-perp :: proj2-line = proj2-line = bool where
M-perp | m £ proj2-incident (pole 1) m

lemma M-perp-sym:
assumes M-perp [ m
shows M-perp m |

proof —
from (M-perp | m) have proj2-incident (pole ) m by (unfold M-perp-def)
hence proj2-incident (pole m) (polar (pole 1)) by (rule incident-pole-polar)
hence proj2-incident (pole m) 1 by (simp add: polar-pole)
thus M-perp m | by (unfold M-perp-def )

qed

lemma M-perp-to-compass:
assumes M-perp | m and a € hyp2 and proj2-incident a |
and b € hyp2 and proj2-incident b m
shows 3 . is-K2-isometry |
N apply-cltn2-line equator | = I A apply-cltn2-line meridian | = m
proof —
from (@ € hyp2) and (b € hyp2) have a € K2 and b € K2 by (unfold hyp2-def)

from (1 € K2) and (proj2-incident a I)
and line-through-K2-intersect-S-twice [of a I]
obtain p and g wherep #gandp € Sandg € S
and proj2-incident p | and proj2-incident q |
by auto

have 3 r.v € S A r & {pq} A proj2-incident r m
proof cases
assume proj2-incident p m

from (b € K2) and (proj2-incident b m)
and line-through-K2-intersect-S-again [of b m]
obtain r where r € S and r # p and proj2-incident r m by auto

have r ¢ {p,q}
proof
assume r € {p,q}
with r # p) have r = q by simp
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with (proj2-incident r m) have proj2-incident q m by simp
with (proj2-incident p I) and (proj2-incident q I)
and (proj2-incident p m) and (proj2-incident ¢ m) and (p # ¢
and proj2-incident-unique [of p | q m]
have [ = m by simp
with (M-perp | m) have M-perp | I by simp
hence proj2-incident (pole 1) 1 (is proj2-incident ?s )
by (unfold M-perp-def )
hence proj2-incident ?s (polar ?s) by (subst polar-pole)
hence ?s € S by (simp add: incident-own-polar-in-S)
with (p € S) and (g € S) and (proj2-incident p I) and (proj2-incident q |
and point-in-S-polar-is-tangent [of ?s]
have p = ?s and q = ?s by (auto simp add: polar-pole)
with (p # ¢ show False by simp
qed
with € S) and (proj2-incident r m)
show 3 r.r € SAr ¢ {pq} A proj2-incident r m
by (simp add: exI [of - r])
next
assume — proj2-incident p m

from b € K2) and (proj2-incident b m)
and line-through-K2-intersect-S-again [of b m]
obtain r where r € S and r # g and proj2-incident r m by auto

from (- proj2-incident p m) and (proj2-incident r m) have r # p by auto
with (r € S) and (v # ¢) and (proj2-incident v m)
show 3 r.r € SAr ¢ {pq} N proj2-incident r m
by (simp add: exI [of - 1])
qed
then obtain r where r € S and r ¢ {p,q} and proj2-incident r m by auto

from (p € S)and (g € S)and (r € S)and (p # ) and « & {p,q})
and statement65-special-case [of p q 1]

obtain | where is-K2-isometry | and apply-cltn2 east | = p
and apply-cltn2 west | = g and apply-cltn2 north | = r
and apply-cltn2 far-north | = proj2-intersection (polar p) (polar q)
by auto

from apply-cltn2 east | = p) and (apply-clin2 west | = q)
and (proj2-incident p I) and (proj2-incident q )
have proj2-incident (apply-cltn2 east J) 1
and proj2-incident (apply-cltn2 west J) |
by simp-all
with east-west-distinct and east-west-on-equator
have apply-cltn2-line equator | = | by (rule apply-clin2-line-unique)

from (apply-cltn2 north | = r) and (proj2-incident r m)
have proj2-incident (apply-cltn2 north J) m by simp
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from (p # g and polar-inj have polar p # polar q by fast

from (proj2-incident p ) and (proj2-incident q I)
have proj2-incident (pole ) (polar p)
and proj2-incident (pole I) (polar q)
by (simp-all add: incident-pole-polar)
with (polar p # polar q)
have pole | = proj2-intersection (polar p) (polar q)
by (rule proj2-intersection-unique)
with apply-cltn2 far-north | = proj2-intersection (polar p) (polar q))
have apply-clin2 far-north | = pole | by simp
with (M-perp [ m)
have proj2-incident (apply-cltn2 far-north J) m by (unfold M-perp-def) simp
with north-far-north-distinct and north-south-far-north-on-meridian
and (proj2-incident (apply-cltn2 north J) m)
have apply-cltn2-line meridian | = m by (simp add: apply-cltn2-line-unique)
with (is-K2-isometry |) and apply-cltn2-line equator | = I)
show 3 |. is-K2-isometry |
A apply-cltn2-line equator | = I A apply-cltn2-line meridian | = m
by (simp add: exI [of - ]])
qed

definition drop-perp :: proj2 = proj2-line = proj2-line where
drop-perp p | = proj2-line-through p (pole 1)

lemma drop-perp-incident: proj2-incident p (drop-perp p )
by (unfold drop-perp-def) (rule proj2-line-through-incident)

lemma drop-perp-perp: M-perp | (drop-perp p 1)
by (unfold drop-perp-def M-perp-def) (rule proj2-line-through-incident)

definition perp-foot :: proj2 = proj2-line = proj2 where
perp-foot p | £ proj2-intersection | (drop-perp p 1)

lemma perp-foot-incident:
shows proj2-incident (perp-foot p 1) 1
and proj2-incident (perp-foot p 1) (drop-perp p 1)
by (unfold perp-foot-def) (rule proj2-intersection-incident)+

lemma M-perp-hyp2:
assumes M-perp [ m and a € hyp2 and proj2-incident a | and b € hyp2
and proj2-incident b m and proj2-incident ¢ I and proj2-incident ¢ m
shows ¢ € hyp2
proof —
from (M-perp I m) and (a € hyp2) and (proj2-incident a ) and (b € hyp2)
and (proj2-incident b m) and M-perp-to-compass [of | m a b|
obtain | where is-K2-isometry | and apply-cltn2-line equator | = |
and apply-cltn2-line meridian | = m
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by auto

from (is-K2-isometry ]) and K2-centre-in-K2
have apply-cltn2 K2-centre | € hyp2
by (unfold hyp2-def) (rule statement60-one-way)

from (proj2-incident ¢ ) and (apply-cltn2-line equator | = I)

and (proj2-incident ¢ m) and (apply-cltn2-line meridian | = m)
have proj2-incident ¢ (apply-clin2-line equator )

and proj2-incident ¢ (apply-clin2-line meridian |)

by simp-all
with equator-meridian-distinct and K2-centre-on-equator-meridian
have apply-clin2 K2-centre | = ¢ by (rule apply-cltn2-unique)
with @apply-cltn2 K2-centre | € hyp2) show c € hyp2 by simp

qed

lemma perp-foot-hyp2:
assumes a € hyp2 and proj2-incident a l and b € hyp?2
shows perp-foot b | € hyp2
using drop-perp-perp [of | b] and (@ € hyp2) and (proj2-incident a I)
and & € hyp2) and drop-perp-incident [of b ]
and perp-foot-incident [of b ]
by (rule M-perp-hyp2)

definition perp-up :: proj2 = proj2-line = proj2 where
perp-up a l
£ if proj2-incident a | then € p. p € S A proj2-incident p (drop-perp a l)
else endpoint-in-S (perp-foot a l) a

lemma perp-up-degenerate-in-S-incident:
assumes a € hyp2 and proj2-incident a |
shows perp-upal e S (is ?p € S)
and proj2-incident (perp-up a l) (drop-perp al)
proof —
from (proj2-incident a I)
have ?p = (e p. p € S A proj2-incident p (drop-perp al))
by (unfold perp-up-def) simp

from @ € hyp2) and drop-perp-incident [of a I]

have 3 p. p € S A proj2-incident p (drop-perp a l)
by (unfold hyp2-def) (rule line-through-K2-intersect-S)

hence ?p € S A proj2-incident ?p (drop-perp al)
unfolding (?p = (e p. p € S A proj2-incident p (drop-perp al)))
by (rule somel-ex)

thus ?p € S and proj2-incident ?p (drop-perp a 1) by simp-all

qed

lemma perp-up-non-degenerate-in-S-at-end:
assumes a € hyp2 and b € hyp2 and proj2-incident b
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and — proj2-incident a |
shows perp-upal € S
and B (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up al))
proof —
from (— proj2-incident a |)
have perp-up a | = endpoint-in-S (perp-foot al) a
by (unfold perp-up-def ) simp

from (b € hyp2) and (proj2-incident b |) and @ € hyp2)

have perp-foot a 1 € hyp2 by (rule perp-foot-hyp2)

with @ € hyp2)

show perp-upal e S
and B (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up al))
unfolding (perp-up a | = endpoint-in-S (perp-foot a 1) a)
by (simp-all add: endpoint-in-S)

qed

lemma perp-up-in-S:

assumes a € hyp2 and b € hyp2 and proj2-incident b

shows perp-upal € S
proof cases

assume proj2-incident a |

with @ € hyp2)

show perp-up al € S by (rule perp-up-degenerate-in-S-incident )
next

assume — proj2-incident a |

with assms

show perp-up a l € S by (rule perp-up-non-degenerate-in-S-at-end)
qed

lemma perp-up-incident:

assumes a € hyp2 and b € hyp2 and proj2-incident b |

shows proj2-incident (perp-up a 1) (drop-perp al)

(is proj2-incident ?p ?m)
proof cases

assume proj2-incident a |

with @ € hyp2)

show proj2-incident ?p ?m by (rule perp-up-degenerate-in-S-incident)
next

assume — proj2-incident a |

hence ?p = endpoint-in-S (perp-foot a l) a (is ?p = endpoint-in-S ?c a)

by (unfold perp-up-def ) simp

from perp-foot-incident [of a I| and (— proj2-incident a )
have ?c # a by auto

from (b € hyp2) and (proj2-incident b ) and @ € hyp2)

have ?c € hyp2 by (rule perp-foot-hyp2)
with (?c # a) and @ € hyp2) and drop-perp-incident [of a I]
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and perp-foot-incident [of a ||
show proj2-incident ?p ?m
by (unfold (?p = endpoint-in-S ?c @) (simp add: endpoint-in-S-incident)
qed

lemma drop-perp-same-line-pole-in-S:
assumes drop-perp p | =1
shows pole ] € S
proof —
from (drop-perpp 1 = 1)
have [ = proj2-line-through p (pole 1) by (unfold drop-perp-def) simp
with proj2-line-through-incident [of pole | p]
have proj2-incident (pole 1) 1 by simp
hence proj2-incident (pole 1) (polar (pole 1)) by (subst polar-pole)
thus pole | € S by (unfold incident-own-polar-in-S)
qed

lemma hyp2-drop-perp-not-same-line:
assumes a € hyp2
shows drop-perpal # 1
proof
assume drop-perpal =1
hence pole | € S by (rule drop-perp-same-line-pole-in-S)
with @ € hyp2)
have — proj2-incident a (polar (pole 1))
by (unfold hyp2-def) (simp add: tangent-not-through-K2)
with drop-perpal =1
have — proj2-incident a (drop-perp a 1) by (simp add: polar-pole)
with drop-perp-incident [of a || show False by simp
qed

lemma hyp2-incident-perp-foot-same-point:
assumes a € hyp2 and proj2-incident a |
shows perp-foot al = a
proof —
from (@ € hyp2)
have drop-perp a 1 # 1 by (rule hyp2-drop-perp-not-same-line)
with perp-foot-incident [of a | and (proj2-incident a )
and drop-perp-incident [of a I| and proj2-incident-unique
show perp-foot a | = a by fast
qed

lemma perp-up-at-end:

assumes a € hyp2 and b € hyp2 and proj2-incident b |

shows B (cart2-pt (perp-foot al)) (cart2-pt a) (cart2-pt (perp-up al))
proof cases

assume proj2-incident a |

with @ € hyp2)

have perp-foot a | = a by (rule hyp2-incident-perp-foot-same-point )
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thus BR (cart2-pt (perp-foot al)) (cart2-pt a) (cart2-pt (perp-up al))
by (simp add: real-euclid.th3-1 real-euclid.th3-2)
next
assume — proj2-incident a |
with assms
show B (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up al))
by (rule perp-up-non-degenerate-in-S-at-end)
qed

definition perp-down :: proj2 = proj2-line = proj2 where
perp-down a | = endpoint-in-S (perp-up al) a

lemma perp-down-in-S:

assumes a € hyp2 and b € hyp2 and proj2-incident b |

shows perp-dounal e S
proof —

from assms have perp-up al € S by (rule perp-up-in-S)

with @ € hyp2)

show perp-down a | € S by (unfold perp-down-def) (simp add: endpoint-in-S)
qed

lemma perp-down-incident:
assumes a € hyp2 and b € hyp2 and proj2-incident b |
shows proj2-incident (perp-down a I) (drop-perp al)
proof —
from assms have perp-up al € S by (rule perp-up-in-S)
with @ € hyp2) have perp-up a | # a by (rule hyp2-S-not-equal [symmetric])

from assms
have proj2-incident (perp-up a l) (drop-perp a 1) by (rule perp-up-incident)
with (perp-up al # @) and (perp-up al € S) and @ € hyp2)
and drop-perp-incident [of a ]
show proj2-incident (perp-down a 1) (drop-perp al)
by (unfold perp-down-def) (simp add: endpoint-in-S-incident)
qed

lemma perp-up-down-distinct:
assumes a € hyp2 and b € hyp2 and proj2-incident b
shows perp-up a | # perp-down a |
proof —
from assms have perp-up a | € S by (rule perp-up-in-S)
with @ € hyp2)
show perp-up a | # perp-down a |
unfolding perp-down-def
by (simp add: endpoint-in-S-S-strict-hyp2-distinct [symmetric|)
qed

lemma perp-up-down-foot-are-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and proj2-incident b
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shows are-endpoints-in-S (perp-up a ) (perp-down a 1) (perp-foot al) a
proof —

from (b € hyp2) and (proj2-incident b ) and @ € hyp2)

have perp-foot a | € hyp2 by (rule perp-foot-hyp2)

from assms have perp-up a | € S by (rule perp-up-in-S)

from assms
have proj2-incident (perp-up a l) (drop-perp a 1) by (rule perp-up-incident)
with (perp-foot a | € hyp2) and @ € hyp2) and (perp-upal € S)
and perp-foot-incident(2) [of a I| and drop-perp-incident [of a |
show are-endpoints-in-S (perp-up a l) (perp-down a 1) (perp-foot al) a
by (unfold perp-down-def) (rule end-and-opposite-are-endpoints-in-S)
qed

lemma perp-foot-opposite-endpoint-in-S:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
shows
endpoint-in-S (endpoint-in-S a b) (perp-foot ¢ (proj2-line-through a b))
= endpoint-in-S b a
(is endpoint-in-S ?p ?d = endpoint-in-S b a)
proof —
let ?q = endpoint-in-S ?p ?d

from @ € hyp2) and (b € hyp2) have ?p € S by (simp add: endpoint-in-S)

let 7] = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident )+
with @ # b) and @ € hyp2) and b € hyp2)
have proj2-incident ?p ?1
by (simp-all add: endpoint-in-S-incident)

from (@ € hyp2) and (proj2-incident a ?1) and (¢ € hyp2)
have ?d € hyp2 by (rule perp-foot-hyp2)
with (?p € S) have ?q # ?p by (rule endpoint-in-S-S-strict-hyp2-distinct)

from (?p € S) and (?d € hyp2) have ?q € S by (simp add: endpoint-in-S)

from (?d € hyp2) and (?p € S)
have ?p # ?d by (rule hyp2-S-not-equal [symmetric])
with (?p € S) and (?d € hyp2) and (proj2-incident ?p ?])
and perp-foot-incident (1) [of ¢ ?I]
have proj2-incident ?q ?1 by (simp add: endpoint-in-S-incident)
with @ # b) and @ € hyp2) and & € hyp2) and (?q € S)
and (proj2-incident a ?I) and (proj2-incident b ?I)
have ?q = ?p V ?q = endpoint-in-S b a
by (simp add: endpoints-in-S-incident-unique)
with (?q # ?p) show ?q = endpoint-in-S b a by simp
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qed

lemma endpoints-in-S-perp-foot-are-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
and proj2-incident a | and proj2-incident b |
shows are-endpoints-in-S
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c 1)
proof —
def p £ endpoint-in-S a b
and g £ endpoint-in-S b a
and d = perp-foot c |

from @ # b) and @ € hyp2) and b € hyp2)
have p # q by (unfold p-def q-def) (simp add: endpoint-in-S-swap)

from @ € hyp2) and b € hyp2)
have p € S and g € S by (unfold p-def g-def ) (simp-all add: endpoint-in-S)

from @ € hyp2) and (proj2-incident a I and (c € hyp2)
have d € hyp2 by (unfold d-def) (rule perp-foot-hyp2)

from (@ # b) and (@ € hyp2) and & € hyp2) and (proj2-incident a I)
and (proj2-incident b |)
have proj2-incident p | and proj2-incident q [
by (unfold p-def q-def ) (simp-all add: endpoint-in-S-incident)
with (proj2-incident a 1) and perp-foot-incident (1) [of ¢ I]
have proj2-set-Col {p,q,a,d}
by (unfold d-def proj2-set-Col-def ) (simp add: exI [of - I])
with (p # ¢ and (p € S) and (g € S) and @ € hyp2) and d € hyp2)
show are-endpoints-in-S p q a d by (unfold are-endpoints-in-S-def ) simp
qed

definition right-angle :: proj2 = proj2 = proj2 = bool where
right-angle p a q
£peSAqESAachyp?
A M-perp (proj2-line-through p a) (proj2-line-through a q)

lemma perp-foot-up-right-angle:
assumes p € S and a € hyp2 and b € hyp2 and proj2-incident p |
and proj2-incident b |
shows right-angle p (perp-foot a l) (perp-up al)
proof —
def ¢ £ perp-foot a |
def g = perp-up a |
from @ € hyp2) and (b € hyp2) and (proj2-incident b )
have g € S by (unfold g-def) (rule perp-up-in-S)

from (b € hyp2) and (proj2-incident b ]) and @ € hyp2)
have c € hyp2 by (unfold c-def) (rule perp-foot-hyp2)
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with (p € S) and (g € S) have c # pand c # g
by (simp-all add: hyp2-S-not-equal)

from (¢ # p) [symmetric] and (proj2-incident p )
and perp-foot-incident(1) [of a ||

have [ = proj2-line-through p ¢
by (unfold c-def) (rule proj2-line-through-unique)

def m = drop-perp al

from (a € hyp2) and &b € hyp2) and (proj2-incident b I)

have proj2-incident q m by (unfold g-def m-def ) (rule perp-up-incident)

with (¢ # ¢ and perp-foot-incident(2) [of a I]

have m = proj2-line-through c q
by (unfold c-def m-def) (rule proj2-line-through-unique)

with (p € S) and (g € S) and (c € hyp2) and drop-perp-perp [of | a]
and ( = proj2-line-through p ¢

show right-angle p (perp-foot a 1) (perp-up a l)
by (unfold right-angle-def q-def c-def m-def) simp

qed

lemma M-perp-unique:
assumes a € hyp2 and b € hyp2 and proj2-incident a
and proj2-incident b m and proj2-incident b n and M-perp [ m
and M-perp I n
shows m = n
proof —
from @ € hyp2) and (proj2-incident a I)
have pole | ¢ hyp2 by (rule line-through-hyp2-pole-not-in-hyp2)
with & € hyp2) have b # pole [ by auto
with (proj2-incident b m) and (M-perp | m) and (proj2-incident b n)
and (M-perp | n) and proj2-incident-unique
show m = n by (unfold M-perp-def) auto
qed

lemma perp-foot-eg-implies-drop-perp-eq:
assumes a € hyp2 and b € hyp2 and proj2-incident a |
and perp-foot b | = perp-foot c |
shows drop-perp b 1 = drop-perp c |

proof —
from (1 € hyp2) and (proj2-incident a ) and & € hyp2)
have perp-foot b I € hyp2 by (rule perp-foot-hyp2)

from (perp-foot b | = perp-foot c I)
have proj2-incident (perp-foot b 1) (drop-perp c )
by (simp add: perp-foot-incident)
with @ € hyp2) and (perp-foot b | € hyp2) and (proj2-incident a I)
and perp-foot-incident(2) [of b 1] and drop-perp-perp [of 1]
show drop-perp b 1 = drop-perp c | by (simp add: M-perp-unique)
qed
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lemma right-angle-to-compass:
assumes right-angle p a q
shows 3 . is-K2-isometry | A apply-cltn2 p | = east
A apply-cltn2 a | = K2-centre N\ apply-cltn2 q | = north
proof —
from (right-angle p a q)
havep € Sand g € Sand a € hyp2
and M-perp (proj2-line-through p a) (proj2-line-through a q)
(is M-perp ?1 ?m)
by (unfold right-angle-def ) simp-all

have proj2-incident p ? and proj2-incident a ?1
and proj2-incident q ?m and proj2-incident a ?m
by (rule proj2-line-through-incident)+

from (M-perp ?I ?m> and (@ € hyp2) and (proj2-incident a ?I)
and (proj2-incident a ?m) and M-perp-to-compass [of ?1 ?m a a]
obtain |'/i where is-K2-isometry |"'i
and apply-cltn2-line equator J''i = ?1
and apply-clin2-line meridian J'i = ?m
by auto
let ?]"" = cltn2-inverse |''i

from (apply-cltn2-line equator J'i = ?D)
and (apply-cltn2-line meridian [''i = ?m)
and (proj2-incident p ?I) and (proj2-incident a ?])
and (proj2-incident q ?m) and (proj2-incident a ?m)
have proj2-incident (apply-cltn2 p ?]"") equator
and proj2-incident (apply-cltn2 a ?]'') equator
and proj2-incident (apply-cltn2 q ?]'"") meridian
and proj2-incident (apply-cltn2 a ?]'"") meridian
by (simp-all add: apply-clin2-incident [symmetric])

from (proj2-incident (apply-cltn2 a ?]'"") equator)
and (proj2-incident (apply-cltn2 a ?]"") meridian)
have apply-clin2 a ?]"" = K2-centre
by (rule on-equator-meridian-is-K2-centre)

from (is-K2-isometry J''

have is-K2-isometry ?]" by (rule cltn2-inverse-is-K2-isometry)

with p € Sland (g € S

have apply-cltn2 p ?]"" € S and apply-cltn2 q ?]" € S
by (unfold is-K2-isometry-def ) simp-all

with east-west-distinct and north-south-distinct and compass-in-S
and east-west-on-equator and north-south-far-north-on-meridian
and (proj2-incident (apply-cltn2 p ?]'') equator)
and (proj2-incident (apply-cltn2 q ?]"") meridian)

have apply-cltn2 p ?]"' = east V apply-cltn2 p ?]"" = west
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and apply-clin2 q ?]" = north V apply-cltn2 q ?]"" = south
by (simp-all add: line-S-two-intersections-only)

have 3 J'. is-K2-isometry J' A apply-cltn2 p J' = east
A apply-cltn2 a [ = K2-centre
A (apply-cltn2 q [ = north \ apply-cltn2 q |’ = south)
proof cases
assume apply-cltn2 p ?]'"' = east
with (is-K2-isometry ?]'") and @apply-clin2 a ?]"" = K2-centre)
and (apply-cltn2 q ?]"" = north \/ apply-clin2 q ?]"" = south
show 3 J'. is-K2-isometry J' A apply-cltn2 p J' = east
A apply-cltn2 a ' = K2-centre
A (apply-cltn2 q J' = north \/ apply-cltn2 q J' = south)
by (simp add: exI [of - ?]""])
next
assume apply-cltn2 p ?]" # east
with (@apply-cltn2 p ?]"" = east \/ apply-cltn2 p ?]"" = west)
have apply-cltn2 p ?]"" = west by simp

let 7]’ = cltn2-compose ?]"' meridian-reflect

from (is-K2-isometry ?]'") and meridian-reflect-K2-isometry

have is-K2-isometry ?]' by (rule cltn2-compose-is-K2-isometry)

moreover

from (apply-clin2 p ?]"" = west) and (apply-cltn2 a ?]"" = K2-centre)
and (apply-cltn2 q ?]"" = north \ apply-cltn2 q ?]"" = south
and compass-reflect-compass

have apply-clin2 p ?]' = east and apply-clin2 a ?]' = K2-centre
and apply-clin2 q ?]' = north \V apply-cltn2 q ?]’ = south
by (auto simp add: cltn2.act-act [simplified, symmetric])

ultimately

show 3 J'. is-K2-isometry |’ A apply-cltn2 p J' = east
A apply-cltn2 a [ = K2-centre
A (apply-cltn2 q ] = north \V apply-cltn2 q ]’ = south)
by (simp add: exI [of - ?]"])

qed
then obtain | where is-K2-isometry |’ and apply-cltn2 p [’ = east

and apply-clin2 a J' = K2-centre

and apply-clin2 q J' = north \/ apply-clin2 q J' = south

by auto

show 3 |. is-K2-isometry | A apply-clin2 p | = east
A apply-cltn2 a | = K2-centre N\ apply-cltn2 q | = north
proof cases
assume apply-cltn2 q J' = north
with (is-K2-isometry ]’ and (@apply-clin2 p ' = east)
and (apply-cltn2 a [ = K2-centre)
show 3 |. is-K2-isometry | A apply-clin2 p | = east
A apply-cltn2 a | = K2-centre N\ apply-cltn2 q ] = north
by (simp add: exI [of - J'])

201



next
assume apply-cltn2 q J' # north
with apply-cltn2 q J' = north \/ apply-cltn2 q J' = south
have apply-clin2 q J' = south by simp

let ?] = cltn2-compose ]’ equator-reflect
from (is-K2-isometry ]’ and equator-reflect-K2-isometry
have is-K2-isometry ?] by (rule cltn2-compose-is-K2-isometry)
moreover
from (apply-cltn2 p ]’ = east) and @apply-cltn2 a ]’ = K2-centre)
and (apply-cltn2 q ]’ = south) and compass-reflect-compass
have apply-cltn2 p ?] = east and apply-cltn2 a ?] = K2-centre
and apply-clin2 q ?] = north
by (auto simp add: cltn2.act-act [simplified, symmetric])
ultimately
show 3 |. is-K2-isometry | A apply-cltn2 p | = east
A apply-cltn2 a | = K2-centre N\ apply-cltn2 q ] = north
by (simp add: exI [of - ?]])
qed
qed

lemma right-angle-to-right-angle:
assumes right-angle p a q and right-angle r b s
shows 3 J. is-K2-isometry |
A apply-cltn2 p | = r A apply-cltn2 a | = b A apply-clin2 q | = s
proof —
from (right-angle p a q) and right-angle-to-compass [of p a q]
obtain H where is-K2-isometry H and apply-cltn2 p H = east
and apply-clin2 a H = K2-centre and apply-cltn2 q H = north
by auto

from (right-angle r b s) and right-angle-to-compass [of 1 b s

obtain K where is-K2-isometry K and apply-cltn2 r K = east
and apply-cltn2 b K = K2-centre and apply-clin2 s K = north
by auto

let ?Ki = cltn2-inverse K
let ?] = cltn2-compose H ?Ki
from (is-K2-isometry H) and (is-K2-isometry K
have is-K2-isometry ?]
by (simp add: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)

from (apply-cltn2 r K = east) and (apply-cltn2 b K = K2-centre)
and @apply-cltn2 s K = north)

have apply-clin2 east ?Ki = r and apply-cltn2 K2-centre ?Ki = b
and apply-cltn2 north ?Ki = s
by (simp-all add: cltn2.act-inv-iff [simplified))

with apply-cltn2 p H = east) and (apply-cltn2 a H = K2-centre)
and @apply-cltn2 q H = north)
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have apply-cltn2 p ?] = r and apply-cltn2 a ?] = b
and apply-cltn2 q ?] = s
by (simp-all add: cltn2.act-act [simplified,symmetric])

with (is-K2-isometry ?])

show 3 J. is-K2-isometry |
N apply-cltn2 p | = r A apply-cltn2 a ] = b A apply-cltn2 q ] = s
by (simp add: exI [of - ?]])

qed

9.11 Functions of distance

definition exp-2dist :: proj2 = proj2 = real where
exp-2dist a b
Lifa="b
then 1
else cross-ratio (endpoint-in-S a b) (endpoint-in-Sba) a b

definition cosh-dist :: proj2 = proj2 = real where
cosh-dist a b = (sqrt (exp-2dist a b) + sqrt (1 / (exp-2distab))) / 2

lemma exp-2dist-formula:
assumes a # 0 and b # 0 and proj2-abs a € hyp2 (is ?pa € hyp2)
and proj2-abs b € hyp2 (is ?pb € hyp2)
shows exp-2dist (proj2-abs a) (proj2-abs b)
= (a - (M *v b) + sqrt (quarter-discrim a b))
/ (a - (M v b) — sqrt (quarter-discrim a b))
V exp-2dist (proj2-abs a) (proj2-abs b)
= (a - (M *v b) — sqrt (quarter-discrim a b))
/ (a+ (M v b) + sqrt (quarter-discrim a b))
(is ?e2d = (?aMb + ?sqd) / (?2aMb — ?sqd)
V ?e2d = (?aMb — ?sqd) / (?aMb + ?sqd))
proof cases
assume ?pa = ?pb
hence ?e2d = 1 by (unfold exp-2dist-def, simp)

from (?pa = ?pb)
have quarter-discrim a b = 0 by (rule quarter-discrim-self-zero)
hence ?sqd = 0 by simp

from (proj2-abs a = proj2-abs b) and (b # 0) and proj2-abs-abs-mult
obtain k where a = k xg b by auto

from b # 0) and (proj2-abs b € hyp2)
have b - (M xv b) < 0 by (unfold hyp2-def, subst K2-abs [symmetric])
with (@ # 0) and @ = k *g b) have ?2aMb # 0 by simp
with (?e2d = 1) and (?sqd = 0)
show ?e2d = (?2aMb + ?sqd) / (?aMb — ?sqd)
V ?e2d = (?aMb — ?sqd) / (?aMb + ?sqd)
by simp
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next

assume ?pa # ?pb

let ?I = proj2-line-through ?pa ?pb

have proj2-incident ?pa ?I and proj2-incident ?pb ?1
by (rule proj2-line-through-incident)+

with @ # 0) and b # 0) and (?pa # ?pb)

have proj2-incident (S-intersectionl a b) ?1 (is proj2-incident ?Sil ?I)
and proj2-incident (S-intersection2 a b) ?1 (is proj2-incident ?Si2 ?1)
by (rule S-intersections-incident )+

with (proj2-incident ?pa ?1) and (proj2-incident ?pb ?I)

have proj2-set-Col {?pa,?pb,?Si1,?Si2} by (unfold proj2-set-Col-def, auto)

have {?pa,?pb,?Si2,25i1} = {?pa,?pb,?Si1,?Si2} by auto

from @ # 0) and &b # 0) and (?pa # ?pb) and (?pa € hyp2)
have ?Si1 € Sand ?Si2 € S
by (unfold hyp2-def, simp-all add: S-intersections-in-S)
with (?pa € hyp2) and (?pb € hyp2)
have ?5i1 # ?pa and ?Si2 # ?pa and ?5i1 # ?pb and ?Si2 # ?pb
by (simp-all add: hyp2-S-not-equal [symmetric])
with (proj2-set-Col {?pa,?pb,?Si1,?Si2}) and (?pa # ?pb)
have cross-ratio-correct ?pa ?pb ?5il ?5i2
and cross-ratio-correct ?pa ?pb ?5i2 ?5il
unfolding cross-ratio-correct-def
by (simp-all add: ({?pa,?pb,?Si2,?Si1} = {?pa,?pb,?Si1,2Si2}))

from @ # 0) and & # 0) and (?pa # ?pb) and (?pa € hyp2)
have ?Si1 # ?5i2 by (unfold hyp2-def, simp add: S-intersections-distinct )
with (cross-ratio-correct ?pa ?pb ?Sil ?Si2)
and (cross-ratio-correct ?pa ?pb ?Si2 ?Sil)
have cross-ratio ?Si1 ?Si2 ?pa ?pb = cross-ratio ?pa ?pb ?Sil ?S5i2
and cross-ratio ?Si2 ?Sil ?pa ?pb = cross-ratio ?pa ?pb ?5i2 ?Sil
by (simp-all add: cross-ratio-swap-13-24)

from (@ # 0) and (proj2-abs a € hyp2)
have a - (M xv a) < 0 by (unfold hyp2-def, subst K2-abs [symmetric])
with @ # 0) and & # 0) and (?pa # ?pb) and cross-ratio-abs [of a b 1 1]
have cross-ratio ?pa ?pb ?Sil ?Si2 = (—?aMb — ?sqd) / (—?aMb + ?sqd)
by (unfold S-intersections-defs S-intersection-coeffs-defs, simp)
with times-divide-times-eq [of —1 —1 —?aMb — ?sqd —?aMb + ?sqd)|
have cross-ratio ?pa ?pb ?Sil ?5i2 = (?aMb + ?sqd) / (?aMb — ?sqd) by simp
with (cross-ratio ?Sil ?Si2 ?pa ?pb = cross-ratio ?pa ?pb ?Sil ?Si2)
have cross-ratio ?Sil ?Si2 ?pa ?pb = (?aMb + ?sqd) / (?aMb — ?sqd) by simp

from (cross-ratio ?pa ?pb ?Sil ?Si2 = (?aMb + ?sqd) / (?aMb — ?sqd))
and cross-ratio-swap-34 [of ?pa ?pb ?Si2 ?Sil]
have cross-ratio ?pa ?pb ?Si2 ?Sil = (?aMb — ?sqd) / (?aMb + ?sqd) by simp
with (cross-ratio ?Si2 ?Sil ?pa ?pb = cross-ratio ?pa ?pb ?Si2 ?Sil)
have cross-ratio ?5i2 ?Sil ?pa ?pb = (?aMb — ?sqd) / (?aMb + ?sqd) by simp
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from @ # 0> and & # 0) and (?pa # ?pb) and (?pa € hyp2) and (?pb € hyp2)

have (?Si1 = endpoint-in-S ?pa ?pb A ?Si2 = endpoint-in-S ?pb ?pa)
V (?Si2 = endpoint-in-S ?pa ?pb A ?Sil = endpoint-in-S ?pb ?pa)
by (simp add: S-intersections-endpoints-in-S)

with (cross-ratio ?Sil ?Si2 ?pa ?pb = (?aMb + ?sqd)
and (cross-ratio ?Si2 ?Sil ?pa ?pb = (2aMb — ?sqd)
and (?pa # ?pb)

show ?e2d = (?2aMb + ?sqd) / (?aMb — ?sqd)
V ?e2d = (?aMb — ?sqd) / (?aMb + ?sqd)
by (unfold exp-2dist-def, auto)

qed

(?2aMb — ?sqd))

/
/ (?aMb + ?sqd))

lemma cosh-dist-formula:
assumes a # 0 and b # 0 and proj2-abs a € hyp2 (is ?pa € hyp2)
and proj2-abs b € hyp2 (is ?pb € hyp2)
shows cosh-dist (proj2-abs a) (proj2-abs b)
=la-(M=xvb)| /sqrt (a- (Mx*va)x (b-(M=xvb)))
(is cosh-dist ?pa ?pb = |?aMb| / sqrt (?aMa x ?bMD))
proof —
let 7qd = quarter-discrim a b
let ?sqd = sqrt ?2qd
let ?e2d = exp-2dist ?pa ?pb
from assms
have ?e2d = (?aMb + ?sqd) / (?aMb — ?sqd)
V ?e2d = (?aMb — ?sqd) / (?aMb + ?sqd)
by (rule exp-2dist-formula)
hence cosh-dist ?pa ?pb
= (sgrt ((?aMb + ?sqd) / (?aMb — ?sqd))
+ sqrt ((?2aMb — ?sqd) / (?aMb + ?sqd)))
/2
by (unfold cosh-dist-def, auto)

have ?qd > 0
proof cases
assume ’pa = ?pb
thus ?qd > 0 by (simp add: quarter-discrim-self-zero)
next
assume ?pa # ?pb
with @ # 0) and & # 0) and (?pa € hyp2)
have ?gd > 0 by (unfold hyp2-def, simp add: quarter-discrim-positive)
thus ?qd > 0 by simp
qed
with real-sqrt-pow? [of ?qd] have ?sqd?> = ?qd by simp
hence (?aMb + ?sqd) = (?7aMb — ?sqd) = ?aMa x ?bMb
by (unfold quarter-discrim-def, simp add: algebra-simps square-expand)

from times-divide-times-eq [of
2aMb + ?sqd ?2aMb + ?sqd ?aMb + ?sqd ?aMb — ?sqd|
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have (?aMb + ?sqd) / (?aMb — ?sqd)
= (?aMb + ?sqd)? / ((?aMb + ?sqd) * (?aMb — ?sqd))
by (simp add: square-expand)
with (?aMb + ?sqd) x (?aMb — ?sqd) = ?aMa x ?bMb)
have (?aMb + ?sqd) / (?aMb — ?sqd) = (?aMb + ?sqd)? / (?aMa x ?bMb) by
simp
hence sqrt ((?2aMb + ?sqd) / (?aMb — ?sqd))
= |2aMb + ?sqd| / sqrt (?aMa % ?bMb)
by (simp add: real-sqrt-divide)

from times-divide-times-eq [of
2aMb + ?sqd 2aMb — ?sqd ?2aMb — ?sqd ?aMb — ?sqd]
have (?aMb — ?sqd) / (?aMb + ?sqd)
= (?2aMb — ?sqd)? / ((?aMb + ?sqd) = (?7aMb — ?sqd))
by (simp add: square-expand)
with (?aMb + ?sqd) * (?7aMb — ?sqd) = ?aMa * ?bMb)
have (?aMb — ?sqd) / (?aMb + ?sqd) = (?aMb — ?sqd)? / (?aMa x ?bMb) by
simp
hence sqrt ((?2aMb — ?sqd) / (?aMb + ?sqd))
= |2aMb — ?sqd| / sqrt (?aMa % ?bMb)
by (simp add: real-sqrt-divide)

from @ # 0) and & # 0) and (?pa € hyp2) and (?pb € hyp2)

have ?aMa < 0 and ?bMb < 0
by (unfold hyp2-def, simp-all add: K2-imp-M-neg)

with (?aMb + ?sqd) x (?7aMb — ?sqd) = ?aMa x ?bMb)

have (?aMb + ?sqd) * (?aMb — ?sqd) > 0 by (simp add: mult-neg-neg)

hence ?aMb + ?sqd # 0 and ?aMb — ?sqd # 0 by auto

hence sgn (?aMb + ?sqd) € {—1,1} and sgn (?7aMb — ?sqd) € {—1,1}
by (simp-all add: real-sgn-def)

from (?aMb + ?sqd) x (?7aMb — ?sqd) > 0)
have sgn ((?aMb + ?sqd) * (?2aMb — ?sqd)) = 1 by simp
hence sgn (?aMb + ?sqd) * sgn (?aMb — ?sqd) = 1 by (simp add: sgn-mult)
with sgn (?2aMb + ?sqd) € {—1,1}) and (sgn (?aMb — ?sqd) € {—-1,1})
have sgn (?aMb + ?sqd) = sgn (?7aMb — ?sqd) by auto
with abs-plus [of ?aMb + ?sqd ?aMb — ?sqd]
have |?aMb + ?sqd| + |?2aMb — ?sqd| = 2 % |2aMb| by simp
with (sqrt ((?aMb + ?sqd) / (?aMb — ?sqd))
= |2aMb + ?sqd| / sqrt (?aMa % ?bMb))
and (sgrt ((?aMb — ?sqd) / (?aMb + ?sqd))
= |2aMb — ?sqd| / sqrt (?aMa % ?bMb))
and add-divide-distrib [of
|?7aMb + ?sqd| |?2aMb — ?sqd| sqrt (?aMa x ?bMD))
have sqrt ((?aMb + ?sqd) / (?2aMb — ?sqd))
+ sqrt ((?2aMb — ?sqd) / (?aMb + ?sqd))
= 2 % |?aMb| / sqrt (?aMa * ?2bMDb)
by simp
with (cosh-dist ?pa ?pb
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= (sqrt ((?aMb + ?sqd) / (?aMb — ?sqd))
+ sqrt ((?2aMb — ?sqd) / (?aMb + ?sqd)))
/2
show cosh-dist ?pa ?pb = |?2aMb| / sqrt (?2aMa * ?bMb) by simp
qed

lemma cosh-dist-perp-special-case:
assumes |x| < 1and |y| <1
shows cosh-dist (proj2-abs (vector [x,0,1])) (proj2-abs (vector [0,y,1]))
= (cosh-dist K2-centre (proj2-abs (vector [x,0,1])))
% (cosh-dist K2-centre (proj2-abs (vector [0,y,1])))
(is cosh-dist ?pa ?pb = (cosh-dist ?po ?pa) * (cosh-dist ?po ?pb))
proof —
have vector [x,0,1] # (0::real”3) (is ?a # 0)
and vector [0,y,1] # (0::real’3) (is ?b # 0)
by (unfold vector-def, simp-all add: Cart-eq forall-3)

have ?a - (M *v ?a) = x> — 1 (is 2aMa = x> — 1)
and ?b - (M xv ?b) = y* — 1 (is ?2bMb = y?> — 1)
unfolding vector-def and M-def and inner-vector-def
and matrix-vector-mult-def
by (simp-all add: setsum-3 square-expand)
with (x| < D and (Jy| <D
have ?aMa < 0 and ?bMb < 0 by (simp-all add: less-one-imp-sqr-less-one)
hence ?pa € hyp2 and ?pb € hyp2
by (unfold hyp2-def, simp-all add: M-neg-imp-K2)
with (?a # 0) and (?b # 0)
have cosh-dist ?pa ?pb = |?a - (M *v ?b)| / sqrt (?7aMa * ?2bMb)
(is cosh-dist ?pa ?pb = |?2aMb| / sqrt (?aMa = ?bMDb))
by (rule cosh-dist-formula)
also from (?aMa = x> — 1) and (?bMb = y*> — 1)
have ... = |?aMb| / sqrt ((x*> — 1) * (y*> — 1)) by simp
finally have cosh-dist ?pa ?pb =1 / sqrt ((1 — x*) * (1 — y?))
unfolding vector-def and M-def and inner-vector-def
and matrix-vector-mult-def
by (simp add: setsum-3 algebra-simps)

let 20 = vector [0,0,1]

let 20Ma = ?0 - (M v ?a)

let 20Mb = ?0 - (M xv ?b)

let 20Mo = ?0 - (M v ?0)

from K2-centre-non-zero and (?a # 0) and (?b # 0)
and K2-centre-in-K2 and (?pa € hyp2) and ?pb € hyp2)
and cosh-dist-formula [of ?0]

have cosh-dist ?po ?pa = |?oMa| / sqrt (?0Mo * ?aMa)
and cosh-dist ?po ?pb = |?0Mb| / sqrt (?0Mo * ?bMD)
by (unfold hyp2-def K2-centre-def, simp-all)

hence cosh-dist ?po ?pa =1 / sqrt (1 — x?)
and cosh-dist ?po ?pb =1 / sqrt (1 — y?)
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unfolding vector-def and M-def and inner-vector-def
and matrix-vector-mult-def
by (simp-all add: setsum-3 square-expand)
with (cosh-dist ?pa ?pb =1 / sqrt (1 — x?) x (1 — y?)))
show cosh-dist ?pa ?pb = cosh-dist ?po ?pa * cosh-dist ?po ?pb
by (simp add: real-sqrt-mult)
qed

lemma K2-isometry-cross-ratio-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and is-K2-isometry | and a # b
shows cross-ratio (apply-clin2 (endpoint-in-S a b) J)
(apply-cltn2 (endpoint-in-S b a) J) (apply-cltn2 a J) (apply-cltn2 b ])
= cross-ratio (endpoint-in-S a b) (endpoint-in-Sba) a b
(is cross-ratio ?p] ?q] ?a] ?b] = cross-ratio ?p ?q a b)
proof —
let 7] = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident )+
with @ # b) and @ € hyp2) and b € hyp2)
have proj2-incident ?p ?1 and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident )
with (proj2-incident a ?) and (proj2-incident b ?I)
have proj2-set-Col {?p,?q,a,b}
by (unfold proj2-set-Col-def ) (simp add: exI [of - ?1])

from @ # b) and @ € hyp2) and b € hyp2)
have ?p # ?q by (simp add: endpoint-in-S-swap)

from (@ € hyp2) and (b € hyp2) have ?p € S by (simp add: endpoint-in-S)
with @ € hyp2) and b € hyp2)
have a # ?p and b # ?p by (simp-all add: hyp2-S-not-equal )
with (proj2-set-Col {?p,?q,a,b}) and ?p # ?q)
show cross-ratio ?p] ?q] ?a] ?b] = cross-ratio ?p ?qa b
by (rule cross-ratio-cltn2)
qed

lemma K2-isometry-exp-2dist:
assumes a € hyp2 and b € hyp2 and is-K2-isometry |
shows exp-2dist (apply-cltn2 a ]) (apply-cltn2 b J) = exp-2dist a b
(is exp-2dist ?a] ?b] = -)
proof cases
assume a = b
thus exp-2dist ?aJ ?b] = exp-2dist a b by (unfold exp-2dist-def) simp
next
assume a # b
with apply-clin2-injective have ?aj # ?b] by fast

let ?p = endpoint-in-S a b
let ?q = endpoint-in-S b a
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let ?a] = apply-cltn2 a ]
and ?b] = apply-cltn2 b |
and ?p] = apply-cltn2 ?p |
and ?q] = apply-clin2 ?q |
from @ # b) and @ € hyp2) and b € hyp2) and (is-K2-isometry ]
have endpoint-in-S ?a] ?b] = ?p] and endpoint-in-S ?b] ?a] = ?q]
by (simp-all add: K2-isometry-endpoint-in-S)

from assms and @ # b)
have cross-ratio ?pJ ?qJ ?a] ?b] = cross-ratio ?p ?qa b
by (rule K2-isometry-cross-ratio-endpoints-in-S)
with (endpoint-in-S ?a] ?b] = ?p]> and (endpoint-in-S ?b] ?a] = ?q]
and @ # b) and (?a] # ?b))
show exp-2dist ?a] ?b] = exp-2dist a b by (unfold exp-2dist-def) simp
qed

lemma K2-isometry-cosh-dist:
assumes a € hyp2 and b € hyp2 and is-K2-isometry |
shows cosh-dist (apply-cltn2 a J) (apply-clin2 b ) = cosh-dist a b
using assms
by (unfold cosh-dist-def ) (simp add: K2-isometry-exp-2dist )

lemma cosh-dist-perp:
assumes M-perp I m and a € hyp2 and b € hyp2 and c € hyp2
and proj2-incident a | and proj2-incident b |
and proj2-incident b m and proj2-incident ¢ m
shows cosh-dist a ¢ = cosh-dist b a x cosh-dist b ¢
proof —
from (M-perp | m) and b € hyp2) and (proj2-incident b )
and (proj2-incident b m) and M-perp-to-compass [of I m b b]
obtain | where is-K2-isometry | and apply-cltn2-line equator | = |
and apply-cltn2-line meridian | = m
by auto

let ?Ji = cltn2-inverse |
let ?afi = apply-clin2 a ?]i
let ?bJi = apply-cltn2 b ?]i
let ?cJi = apply-cltn2 ¢ ?]i
from (apply-cltn2-line equator | = I) and (apply-cltn2-line meridian | = m)
and (proj2-incident a I) and (proj2-incident b )
and (proj2-incident b m) and (proj2-incident ¢ m)
have proj2-incident ?aJi equator and proj2-incident ?bjJi equator
and proj2-incident ?bJi meridian and proj2-incident ?cfi meridian
by (auto simp add: apply-cltn2-incident)

from (is-K2-isometry |)

have is-K2-isometry ?Ji by (rule cltn2-inverse-is-K2-isometry)
with @ € hyp2) and (¢ € hyp2)

have ?afi € hyp2 and ?cJi € hyp2
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by (unfold hyp2-def) (simp-all add: statement60-one-way )

from (?afi € hyp2) and (proj2-incident ?aji equator)

and on-equator-in-hyp2-rep
obtain x where |x| < 1 and ?aJi = proj2-abs (vector [x,0,1]) by auto
moreover
from (?ci € hyp2) and (proj2-incident ?c]i meridian)

and on-meridian-in-hyp2-rep
obtain y where |y| < 1 and ?cJi = proj2-abs (vector [0,y,1]) by auto
moreover
from (proj2-incident ?b]i equator) and (proj2-incident ?bJi meridian)
have ?bJi = K2-centre by (rule on-equator-meridian-is-K2-centre)
ultimately
have cosh-dist ?aji ?cJi = cosh-dist ?bJi ?aJi x cosh-dist ?bJi ?c]i

by (simp add: cosh-dist-perp-special-case)
with @ € hyp2) and & € hyp2) and (c € hyp2) and (is-K2-isometry ?]i)
show cosh-dist a ¢ = cosh-dist b a * cosh-dist b c

by (simp add: K2-isometry-cosh-dist)

qed

lemma are-endpoints-in-S-ordered-cross-ratio:
assumes are-endpoints-in-S p qa b
and By (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br ?ca ?cb ?cp)
shows cross-ratiop ga b > 1
proof —
from (are-endpoints-in-S p q a b)
havep #gandp € Sand g € Sand a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def ) simp-all

from (@ € hyp2) and b € hyp2) and (p € S) and (g € S)
have z-non-zero a and z-non-zero b and z-non-zero p and z-non-zero g
by (simp-all add: hyp2-S-z-non-zero)
hence proj2-abs (cart2-appendl p) = p (is proj2-abs ?cpl = p)
and proj2-abs (cart2-appendl q) = q (is proj2-abs ?cql = q)
and proj2-abs (cart2-appendl a) = a (is proj2-abs ?cal = a)
and proj2-abs (cart2-appendl b) = b (is proj2-abs ?cbl = b)
by (simp-all add: proj2-abs-cart2-append1)

from (b € hyp2) and (p € S) have b # p by (rule hyp2-S-not-equal)
with (z-non-zero a) and (z-non-zero b) and {z-non-zero p)
and (BR ?ca ?cb ?cp) and cart2-append1-between-right-strict [of a b p]
obtain j where j > 0 and j < 1 and ?cb1 = j xg ?2cpl + (1—j) *g ?cal
by auto

from (proj2-set-Col {p,q,a,b})

obtain [ where proj2-incident q | and proj2-incident p |
and proj2-incident a |
by (unfold proj2-set-Col-def ) auto

210



with (p # g and (g € S) and (p € S) and @ € hyp2)
and S-hyp2-S-cart2-append1 [of g p a ]

obtain k where k > 0 and k < 1 and ?cal = k g ?cpl + (1—k) *g ?cql
by auto

from (z-non-zero p) and (z-non-zero q)
have ?cpl # 0 and ?cq1 # 0 by (simp-all add: cart2-appendl-non-zero)

from (p # ¢ and (proj2-abs ?cpl = p) and (proj2-abs ?cql = q)
have proj2-abs ?cpl # proj2-abs ?cql by simp

from k < 1) have 1—k # 0 by simp
with ( < 1) have (1—j)*(1—k) # 0 by simp

from (j < 1) and k > 0) have (1—j)*k > 0 by (simp add: mult-pos-pos)

from (?cb1 = j xR ?cpl + (1—j) *g ?cal
have ?cb1 = (j+(1—j)*k) xg ?cpl + ((1—j)*(1—k)) *gr ?cql
by (unfold (?cal = k *g ?cpl + (1—k) *g ?cq])) (simp add: algebra-simps)
with (?cal = k xg ?cpl + (1—k) *g ?cqD)
have proj2-abs ?cal = proj2-abs (k g ?cpl + (1—k) *g ?cq1)
and proj2-abs ?cbl
= proj2-abs ((j4+(1—j)*k) *g ?cpl + ((1—j)*(1—k)) *g ?cq1)
by simp-all
with (proj2-abs ?cal = a) and (proj2-abs ?cbl = b)
have a = proj2-abs (k g ?cpl + (1—k) *g ?cql)
and b = proj2-abs ((j+(1—j)*k) *g ?cpl + ((1—j)*(1—k)) *g ?cq1)
by simp-all
with (proj2-abs ?cpl = p) and (proj2-abs ?cql = ¢
have cross-ratiop qa b
= cross-ratio (proj2-abs ?cpl) (proj2-abs ?cql)
(proj2-abs (k xg ?2cpl 4+ (1—k) =g 2cql))
(proj2-abs ((j-+(1—]) k) + 2ap1 + ((1—)+(1-K)) g 2cq1))
by simp
also from (?cpl # 0) and (?cq1 # 0) and (proj2-abs ?cpl # proj2-abs ?cql)
and (1—k # 0) and (1—j)*(1—k) # 0
have ... = (1—k)x(j+(1—j)*k) / (kx((1—j)x(1—k))) by (rule cross-ratio-abs)
also from (I—k # 0) have ... = (j+(1—j)*k) / ((1—j)=k) by simp
also from ( > 0) and ((1—j)«k > 0) have ... > 1 by simp
finally show cross-ratiopga b > 1.
qed

lemma cross-ratio-S-S-hyp2-hyp2-positive:
assumes are-endpoints-in-S p qa b
shows cross-ratiop ga b > 0
proof cases
assume By (cart2-pt p) (cart2-pt b) (cart2-pt a)
hence BR (cart2-pt a) (cart2-pt b) (cart2-pt p)
by (rule real-euclid.th3-2)
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with assms have cross-ratiop ga b > 1
by (rule are-endpoints-in-S-ordered-cross-ratio)
thus cross-ratio p g a b > 0 by simp
next
assume — BR (cart2-pt p) (cart2-pt b) (cart2-pt a) (is -~ Br ?cp ?cb ?ca)

from (are-endpoints-in-S p q a b)
have are-endpoints-in-S p q b a by (rule are-endpoints-in-S-swap-34)

from (are-endpoints-in-S p q a b)
have p € S and a € hyp2 and b € hyp2 and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def ) simp-all

from (proj2-set-Col {p,q,a,b})
have proj2-set-Col {p,a,b}
by (simp add: proj2-subset-Col [of {p,a,b} {p.q.a,b}])
hence proj2-Col p a b by (subst proj2-Col-iff-set-Col)
with (p € S) and @ € hyp2) and & € hyp2)
have B ?cp ?ca 2cb V B ?cp ?cb ?ca by (simp add: S-at-edge)
with (= Br ?cp ?cb ?ca) have B ?cp ?ca ?cb by simp
hence BR ?cb ?ca ?cp by (rule real-euclid.th3-2)
with are-endpoints-in-Sp q b @
have cross-ratiopqba > 1
by (rule are-endpoints-in-S-ordered-cross-ratio)
thus cross-ratio p g a b > 0 by (subst cross-ratio-swap-34) simp
qed

lemma cosh-dist-general:
assumes are-endpoints-in-Sp qa b
shows cosh-dist a b
= (sqrt (cross-ratiop g a b) + 1 / sqrt (cross-ratiop qa b)) / 2
proof —
from are-endpoints-in-S p q a b)
havep #gandp € Sand g € Sand a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def ) simp-all

from @ € hyp2) and (b € hyp2) and (p € S) and (7 € S)
havea #panda#gandb #pandb # g
by (simp-all add: hyp2-S-not-equal )

show cosh-dist a b

= (sqrt (cross-ratiop qa b) + 1 / sqrt (cross-ratiop ga b)) / 2
proof cases

assumea =b

hence cosh-dist a b = 1 by (unfold cosh-dist-def exp-2dist-def ) simp

from (proj2-set-Col {p,q,a,b})
have proj2-Col p q a by (unfold @ = b)) (simp add: proj2-Col-iff-set-Col )
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with (p # ¢ and @ # p) and @ # g
have cross-ratio p g a b = 1 by (simp add: (@ = b) cross-ratio-equal-1)
hence (sqrt (cross-ratiop qab) 4+ 1 / sqrt (cross-ratiop qa b)) / 2

by simp
with (cosh-distab = 1)
show cosh-dist a b
= (sqrt (cross-ratiop ga b) + 1 / sqrt (cross-ratiop qa b)) / 2
by simp
next
assume g # b

let ?r = endpoint-in-S a b

let ?s = endpoint-in-S b a

from @ # b

have exp-2dist a b = cross-ratio ?r ?s a b by (unfold exp-2dist-def ) simp

from (1 # b) and (are-endpoints-in-Sp qa b)
have (p = ?r AN q=72s) V (q = ?r A\ p = ?s) by (rule are-endpoints-in-S)

show cosh-dist a b
= (sqrt (cross-ratiop qa b) + 1 / sqrt (cross-ratiop ga b)) / 2
proof cases
assumep =?rAg=7s
with (exp-2dist a b = cross-ratio ?r ?s a b)
have exp-2dist a b = cross-ratio p q a b by simp
thus cosh-dist a b
= (sqrt (cross-ratiop qa b) + 1 / sqrt (cross-ratiop qa b)) / 2
by (unfold cosh-dist-def ) (simp add: real-sqrt-divide)
next
assume — (p =?r A g =7s)
with (p=?rAgq=25)V(g=?rAp=7s)
have g = ?r and p = ?s by simp-all
with (exp-2dist a b = cross-ratio ?r ?s a b)
have exp-2dist a b = cross-ratio q p a b by simp

have {g,p,ab} = {p,qab} by auto

with (proj2-set-Col {p,q,a,b}) and (p # q) and @ # p) and b #* p)
and @ # q) and b # g

have cross-ratio-correct p q a b and cross-ratio-correct qp a b
by (unfold cross-ratio-correct-def) simp-all

hence cross-ratio qpab =1 / (cross-ratiop g a b)
by (rule cross-ratio-swap-12)

with (exp-2dist a b = cross-ratio q p a b)

have exp-2dist ab =1 / (cross-ratio p q a b) by simp

thus cosh-dist a b
= (sqrt (cross-ratiop ga b) + 1 / sqrt (cross-ratiop qa b)) / 2
by (unfold cosh-dist-def ) (simp add: real-sqrt-divide)

qed
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qed
qed

lemma exp-2dist-positive:

assumes a € hyp2 and b € hyp2

shows exp-2dista b > 0
proof cases

assume a =b

thus exp-2dist a b > 0 by (unfold exp-2dist-def ) simp
next

assume a4 # b

let ?p = endpoint-in-Sa b
let ?q = endpoint-in-S b a
from @ # b) and @ € hyp2) and b € hyp2)
have are-endpoints-in-S ?p ?qa b
by (rule endpoints-in-S-are-endpoints-in-S)
hence cross-ratio ?p ?q a b > 0 by (rule cross-ratio-S-S-hyp2-hyp2-positive)
with @ # b) show exp-2dist a b > 0 by (unfold exp-2dist-def) simp
qed

lemma cosh-dist-at-least-1:
assumes a € hyp2 and b € hyp2
shows cosh-dist ab > 1
proof —
from assms have exp-2dist a b > 0 by (rule exp-2dist-positive)
with am-gm2(1) [of sqrt (exp-2dist a b) sqrt (1 / exp-2dist a b)]
show cosh-distab > 1
by (unfold cosh-dist-def ) (simp add: real-sqrt-mult [symmetric])
qed

lemma cosh-dist-positive:
assumes a € hyp2 and b € hyp2
shows cosh-dist a b > 0
proof —
from assms have cosh-dist a b > 1 by (rule cosh-dist-at-least-1)
thus cosh-dist a b > 0 by simp
qed

lemma cosh-dist-perp-divide:
assumes M-perp I m and a € hyp2 and b € hyp2 and c € hyp2
and proj2-incident a | and proj2-incident b | and proj2-incident b m
and proj2-incident c m
shows cosh-dist b ¢ = cosh-dist a ¢ / cosh-dist b a

proof —
from (b € hyp2) and @ € hyp2)
have cosh-dist b a > 0 by (rule cosh-dist-positive)

from assms
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have cosh-dist a ¢ = cosh-dist b a x cosh-dist b ¢ by (rule cosh-dist-perp)
with (cosh-dist ba > 0)
show cosh-dist b ¢ = cosh-dist a c / cosh-dist b a by simp

qed

lemma real-hyp2-C-cross-ratio-endpoints-in-S:
assumesa Zbandab=gcd
shows cross-ratio (endpoint-in-S (Rep-hyp2 a) (Rep-hyp2 b))
(endpoint-in-S (Rep-hyp2 b) (Rep-hyp2 a)) (Rep-hyp2 a) (Rep-hyp2 b)
= cross-ratio (endpoint-in-S (Rep-hyp2 c) (Rep-hyp2 d))
(endpoint-in-S (Rep-hyp2 d) (Rep-hyp2 c)) (Rep-hyp2 c) (Rep-hyp2 d)
(is cross-ratio ?p ?q ?a’ ?b’ = cross-ratio ?r ?s ?¢' ?d’)

proof —
from @ # b) and @ b =g ¢ d) have ¢ # d by (auto simp add: hyp2.A3")
with @ # b) have ?a’ # ?b"and ?c’ # ?d’ by (unfold Rep-hyp2-inject)

fromwab=gcd

obtain | where is-K2-isometry | and hyp2-cltn2 a | = ¢
and hyp2-cltn2 b | = d
by (unfold real-hyp2-C-def ) auto

hence apply-clin2 ?a’ | = ?¢’ and apply-cltn2 ?2b' ] = ?d’
by (simp-all add: Rep-hyp2-cltn2 [symmetric))

with (?a’ # ?b" and (is-K2-isometry |

have apply-cltn2 ?p | = ?r and apply-cltn2 ?q | = ?s
by (simp-all add: Rep-hyp2 K2-isometry-endpoint-in-S)

from (?a’ # ?b%
have proj2-set-Col {?p,?q,?a’,?b"}
by (simp add: Rep-hyp2 proj2-set-Col-endpoints-in-S)

from (?a’ # ?b’) have ?p # ?q by (simp add: Rep-hyp2 endpoint-in-S-swap)

have ?p € S by (simp add: Rep-hyp2 endpoint-in-S)
hence ?a’ # ?p and ?b’ # ?p by (simp-all add: Rep-hyp2 hyp2-S-not-equal)
with (proj2-set-Col {?p,?q,?a’,2b'}) and (?p # ?¢
have cross-ratio ?p ?q ?a’ ?b’

= cross-ratio (apply-cltn2 ?p J) (apply-cltn2 ?q J)

(apply-cltn2 ?a’]) (apply-cltn2 ?b'])

by (rule cross-ratio-cltn2 [symmetric])
with apply-cltn2 ?p | = ?r) and (apply-cltn2 ?2q ] = ?s)

and (apply-cltn2 ?a’ ] = ?¢)) and @apply-cltn2 ?b' ] = 2d"
show cross-ratio ?p ?q ?2a’ ?b’ = cross-ratio ?r ?s ?¢’ 2d’ by simp

qed

lemma real-hyp2-C-exp-2dist:
assumesab =g cd
shows exp-2dist (Rep-hyp2 a) (Rep-hyp2 b)
= exp-2dist (Rep-hyp2 c) (Rep-hyp2 d)
(is exp-2dist ?a’ ?b’ = exp-2dist ?c’ ?d’)
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proof —
fromwab=gcd
obtain | where is-K2-isometry | and hyp2-cltn2 a | = c
and hyp2-cltn2 b | = d
by (unfold real-hyp2-C-def ) auto
hence apply-clin2 ?a’ | = ?¢’ and apply-cltn2 ?2b' ] = ?d’
by (simp-all add: Rep-hyp2-cltn2 [symmetric])

from Rep-hyp2 [of a] and Rep-hyp2 [of b] and (is-K2-isometry |)
have exp-2dist (apply-cltn2 ?a’]) (apply-cltn2 ?b’J) = exp-2dist ?a’ 2b’
by (rule K2-isometry-exp-2dist)
with apply-cltn2 ?a’ ] = ?¢’) and @apply-cltn2 ?b' ] = ?d"
show exp-2dist ?a’ ?b’ = exp-2dist ?¢’ ?2d’ by simp
qed

lemma real-hyp2-C-cosh-dist:
assumesab =g cd
shows cosh-dist (Rep-hyp2 a) (Rep-hyp2 b)
= cosh-dist (Rep-hyp2 c) (Rep-hyp2 d)
using assms
by (unfold cosh-dist-def ) (simp add: real-hyp2-C-exp-2dist)

lemma cross-ratio-in-terms-of-cosh-dist:
assumes are-endpoints-in-S p qa b
and B (cart2-pt a) (cart2-pt b) (cart2-pt p)
shows cross-ratiop qa b
= 2 x (cosh-dist a b)? + 2 * cosh-dist a b * sqrt ((cosh-dist a b)?> — 1) — 1
(is ?pgab = 2 * ?ab® + 2 * ?ab * sqrt (2ab®> — 1) — 1)
proof —
from (are-endpoints-in-S p q a b)
have ?ab = (sqrt ?pqab + 1 / sqrt ?pqab) / 2 by (rule cosh-dist-general)
hence sqrt ?pgab — 2 x 7ab + 1 / sqrt ?pqab = 0 by simp
hence sqrt ?pqab x (sqrt ?pgab — 2 % ?ab + 1 / sqrt ?pgab) = 0 by simp
moreover from assms
have ?pgab > 1 by (rule are-endpoints-in-S-ordered-cross-ratio)
ultimately have ?pgab — 2 % ?ab * (sqrt ?pgab) + 1 =0
by (simp add: algebra-simps real-sqrt-mult [symmetric])
with (?pgab > 1) and discriminant-iff [of 1 sqrt ?pqab — 2 % ?ab 1]
have sqrt ?pqab = (2 * 2ab + sqrt (4 x 2ab®> — 4)) / 2
V sqrt ?pgqab = (2 x 2ab — sqrt (4 * ?ab®> — 4)) / 2
unfolding discrim-def
by (simp add: real-sqrt-mult [symmetric| square-expand minus-mult-left)
moreover have sqrt (4 * 2ab®> — 4) = sqrt (4 x (?ab> — 1)) by simp
hence sqrt (4 * 2ab®> — 4) = 2 x sqrt (?ab® — 1)
by (unfold real-sqrt-mult) simp
ultimately have sqrt ?pgab = 2 * (?ab + sqrt (?ab®> — 1)) / 2
V sqrt ?pgqab = 2 x (2ab — sqrt (2ab® — 1)) / 2
by simp
hence sqrt ?pqab = ?ab + sqrt (?ab® — 1)
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V sqrt ?pgab = ?ab — sqrt (?ab® — 1)
by (simp only: nonzero-mult-divide-cancel-left [of 2])

from (are-endpoints-in-S p q a b)
have a € hyp2 and b € hyp2 by (unfold are-endpoints-in-S-def ) simp-all
hence ?ab > 1 by (rule cosh-dist-at-least-1)
hence ?ab? > 1 by simp
hence sqrt (?ab> — 1) > 0 by simp
hence sqrt (?ab®> — 1) x sqrt (2ab> — 1) = 2ab® — 1
by (simp add: real-sqrt-mult [symmetric])
hence (?ab + sqrt (?ab> — 1)) * (?ab — sqrt (?ab®> — 1)) =1
by (simp add: algebra-simps square-expand)

have ?ab — sqrt (2ab> — 1) < 1
proof (rule ccontr)
assume — (?ab — sqrt (2ab®> — 1) < 1)
hence 1 < ?ab — sqrt (?ab*> — 1) by simp
also from (sqrt (?ab®> — 1) > 0)
have ... < ?ab + sqrt (?ab*> — 1) by simp
finally have 1 < ?ab + sqrt (?ab® — 1) by simp
with (1 < ?ab — sqrt (?ab® — 1))
and mult-strict-mono’ [of
1 2ab + sqrt (?ab® — 1) 1 2ab — sqrt (?ab® — 1))
have 1 < (?ab + sqrt (?ab®> — 1)) * (2ab — sqrt (?ab®> — 1)) by simp
with ((?ab + sqrt (?ab® — 1)) * (?ab — sqrt (?ab®> — 1)) = 1)
show False by simp
qed

have sqrt ?pqab = ?ab + sqrt (?ab®> — 1)
proof (rule ccontr)
assume sqrt ?pqab # ?ab + sqrt (7ab* — 1)
with (sqrt ?pqab = ?ab + sqrt (?ab> — 1)
V sqrt ?pgab = ?ab — sqrt (?ab* — 1))
have sqrt ?pqab = ?ab — sqrt (?ab®> — 1) by simp
with (?ab — sqrt (?ab?> — 1) < 1) have sqrt ?pgab < 1 by simp
with (?pgab > 1) have sqrt ?pgab = 1 by simp
with (sqrt ?pqab = ?ab — sqrt (2ab*> — 1))
and ((?ab + sqrt (2ab®* — 1)) * (?ab — sqrt (2ab®> — 1)) = D
have ?ab + sqrt (?ab® — 1) = 1 by simp
with (sgrt ?pgab = 1) have sqrt ?pgab = ?ab + sqrt (?ab®> — 1) by simp
with (sqrt ?pqab # ?ab + sqrt (?ab* — 1)) show False ..
qed
moreover from (?pgab > 1) have ?pgab = (sqrt ?pqab)? by simp
ultimately have ?pqab = (?ab + sqrt (?ab®* — 1))? by simp
with (sgrt (?ab®> — 1) * sqrt (?ab®> — 1) = 2ab*> — 1)
show ?pgab = 2 x 2ab® + 2 * 2ab * sqrt (?ab®> — 1) — 1
by (simp add: square-expand algebra-simps)
qed
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lemma are-endpoints-in-S-cross-ratio-correct:
assumes are-endpoints-in-Sp qa b
shows cross-ratio-correct p qa b
proof —
from are-endpoints-in-S p q a b)
havep #gandp € Sand g € Sand a € hyp2? and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def ) simp-all

from @ € hyp2) and b € hyp2) and (p € S) and (g € S)

have a # p and b # p and a # q by (simp-all add: hyp2-S-not-equal)

with (proj2-set-Col {p,q,a,b}) and (p # ¢

show cross-ratio-correct p q a b by (unfold cross-ratio-correct-def ) simp
qed

lemma endpoints-in-S-cross-ratio-correct:
assumes a # b and a € hyp2 and b € hyp2
shows cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b
proof —
from assms
have are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-S b a) a b
by (rule endpoints-in-S-are-endpoints-in-S)
thus cross-ratio-correct (endpoint-in-S a b) (endpoint-in-Sba) ab
by (rule are-endpoints-in-S-cross-ratio-correct )
qed

lemma endpoints-in-S-perp-foot-cross-ratio-correct:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
and proj2-incident a | and proj2-incident b |
shows cross-ratio-correct
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c 1)
(is cross-ratio-correct ?p ?q a ?d)
proof —
from assms
have are-endpoints-in-S ?p ?q a ?2d
by (rule endpoints-in-S-perp-foot-are-endpoints-in-S)
thus cross-ratio-correct ?p 2q a ?d
by (rule are-endpoints-in-S-cross-ratio-correct)
qed

lemma cosh-dist-unique:
assumes a € hyp2 and b € hyp2 and c € hyp2 andp € S
and By (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br ?ca ?cb ?cp)
and By (cart2-pt a) (cart2-pt c) (cart2-pt p) (is Br ?ca ?cc ?cp)
and cosh-dist a b = cosh-dist a c (is ?ab = ?ac)
shows b = ¢

proof —
let ?q = endpoint-in-S p a
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from @ € hyp2) and (b € hyp2) and (¢ € hyp2) and p € S)

have z-non-zero a and z-non-zero b and z-non-zero ¢ and z-non-zero p
by (simp-all add: hyp2-S-z-non-zero)

with (Br ?ca ?cb ?cp) and (BR ?ca ?cc ?cp)

have 3 [. proj2-incident a | A proj2-incident b I A proj2-incident p |
and 3 m. proj2-incident a m A proj2-incident ¢ m A proj2-incident p m
by (simp-all add: euclid-B-cart2-common-line)

then obtain / and m where
proj2-incident a | and proj2-incident b I and proj2-incident p |
and proj2-incident a m and proj2-incident c m and proj2-incident p m
by auto

from @ € hyp2) and (p € S) have a # p by (rule hyp2-S-not-equal)
with (proj2-incident a I) and (proj2-incident p |)
and (proj2-incident a m) and (proj2-incident p m) and proj2-incident-unique
have [ = m by fast
with (proj2-incident ¢ m) have proj2-incident c | by simp
with @ € hyp2) and b € hyp2) and (¢ € hyp2) and p € S)
and (proj2-incident a ) and (proj2-incident b I) and (proj2-incident p D)
have are-endpoints-in-S p ?q b a and are-endpoints-in-S p ?q c a
by (simp-all add: end-and-opposite-are-endpoints-in-S)
with are-endpoints-in-S-swap-34
have are-endpoints-in-S p ?q a b and are-endpoints-in-S p ?q a c by fast+
hence cross-ratio-correct p ?q a b and cross-ratio-correct p ?q a c
by (simp-all add: are-endpoints-in-S-cross-ratio-correct )
moreover
from (are-endpoints-in-S p ?q a by and (are-endpoints-in-S p ?q a c)
and (BR ?ca ?cb ?cp) and (BR ?ca ?cc ?cp)
have cross-ratio p ?qa b = 2 x 2ab> + 2 * 2ab * sqrt (7ab®> — 1) — 1
and cross-ratiop ?q a c = 2 x ?ac® + 2 * 2ac * sqrt (?ac®> — 1) — 1
by (simp-all add: cross-ratio-in-terms-of-cosh-dist)
with (?ab = ?ac) have cross-ratio p ?q a b = cross-ratio p ?q a c by simp
ultimately show b = ¢ by (rule cross-ratio-unique)
qed

lemma cosh-dist-swap:
assumes a € hyp2 and b € hyp2
shows cosh-dist a b = cosh-dist b a
proof —
from assms and K2-isometry-swap
obtain | where is-K2-isometry | and apply-cltn2a ] =b
and apply-cltn2 b | =a
by auto

from (b € hyp2) and @ € hyp2) and (is-K2-isometry |)

have cosh-dist (apply-clin2 b ]) (apply-cltn2 a J) = cosh-dist b a
by (rule K2-isometry-cosh-dist)

with «apply-cltn2 a | = b) and apply-cltn2 b | = a)

show cosh-dist a b = cosh-dist b a by simp
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qed

lemma exp-2dist-1-equal:
assumes a € hyp2 and b € hyp2 and exp-2dista b =1
showsa =10
proof (rule ccontr)
assume a # b
with @ € hyp2) and b € hyp2)
have cross-ratio-correct (endpoint-in-S a b) (endpoint-in-Sba) a b
(is cross-ratio-correct ?p ?2q a b)
by (simp add: endpoints-in-S-cross-ratio-correct)
moreover
from @ # b
have exp-2dist a b = cross-ratio ?p ?q a b by (unfold exp-2dist-def ) simp
with (exp-2dist a b = 1) have cross-ratio ?p ?qa b = 1 by simp
ultimately have a = b by (rule cross-ratio-1-equal)
with @ # b) show False ..
qed

9.11.1 A formula for a cross ratio involving a perpendicular foot

lemma described-perp-foot-cross-ratio-formula:

assumes a # b and c € hyp2 and are-endpoints-in-Sp ga b

and proj2-incident p | and proj2-incident q | and M-perp [ m

and proj2-incident d | and proj2-incident d m and proj2-incident ¢ m

shows cross-ratiop g d a

= (cosh-dist b ¢ * sqrt (cross-ratio p g a b) — cosh-dist a c)
/ (cosh-dist a c  cross-ratiop qa b
— cosh-dist b ¢ x sqrt (cross-ratiop qa b))

(is ?pgda = (?bc * sqrt ?pqab — ?ac) / (?ac x ?pgab — ?bc * sqrt ?pqab))
proof —

let ?da = cosh-dist d a

let ?db = cosh-dist d b

let ?dc = cosh-dist d c

let ?pqdb = cross-ratiop g d b

from (are-endpoints-in-S p q a b)

havep #gandp € Sand g € Sand a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def ) simp-all

from (proj2-set-Col {p,q,a,b})

obtain I’ where proj2-incident p 1’ and proj2-incident g 1’
and proj2-incident a 1" and proj2-incident b 1’
by (unfold proj2-set-Col-def ) auto

from (p # ¢ and (proj2-incident p 1’y and (proj2-incident g 1

and (proj2-incident p I) and (proj2-incident q I) and proj2-incident-unique
have I’ = I by fast
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with (proj2-incident a 1’y and (proj2-incident b 1)
have proj2-incident a I and proj2-incident b [ by simp-all

from (M-perp | m) and (a € hyp2) and (proj2-incident a I) and (¢ € hyp2)
and (proj2-incident ¢ m) and (proj2-incident d I} and (proj2-incident d m)
have d € hyp2 by (rule M-perp-hyp2)
with @ € hyp2) and & € hyp2) and (c € hyp2)
have ?bc > 0 and ?da > 0 and ?ac > 0
by (simp-all add: cosh-dist-positive)

from (proj2-incident p I) and (proj2-incident q I) and (proj2-incident d )
and (proj2-incident a I) and (proj2-incident b )
have proj2-set-Col {p,q,d,a} and proj2-set-Col {p,q,d,b}
and proj2-set-Col {p,q,a,b}
by (unfold proj2-set-Col-def ) (simp-all add: exI [of - 1])
with (p # ¢ and (p € S) and (g € S) and d € hyp2) and @ € hyp2)
and &b € hyp2)
have are-endpoints-in-S p q d a and are-endpoints-in-Sp qd b
and are-endpoints-in-Sp qa b
by (unfold are-endpoints-in-S-def ) simp-all
hence ?pgda > 0 and ?pgdb > 0 and ?pqab > 0
by (simp-all add: cross-ratio-S-S-hyp2-hyp2-positive)

from (proj2-incident p I) and (proj2-incident q I) and (proj2-incident a I)
have proj2-Col p q a by (rule proj2-incident-Col)

from @ € hyp2) and b € hyp2) and (p € S) and (g € S)
have a # p and a # g and b # p by (simp-all add: hyp2-S-not-equal)

from (proj2-Col p g @) and (p # ¢ and @ # p) and @ # g
have ?pqdb = ?pgda * ?pqab by (rule cross-ratio-product [symmetric])

from (M-perp I m) and (a € hyp2) and b € hyp2) and (c € hyp2) and d € hyp2)
and (proj2-incident a I) and (proj2-incident b I and (proj2-incident d )
and (proj2-incident d m) and (proj2-incident ¢ m)
and cosh-dist-perp-divide [of I m - d c]
have ?dc = ?ac / ?da and ?dc = ?bc / ?db by fast+
hence ?ac / ?da = ?bc / ?db by simp
with (?bc > 0) and ?da > 0)
have ?ac / ?bc = ?da / ?db by (simp add: field-simps)
also from (are-endpoints-in-S p q d a) and (are-endpoints-in-S p q d b)
have ...
=2 x (sqrt ?pgda + 1 / (sqrt ?pqda))
/ (2 % (sqrt ?pqdb + 1 / (sqrt ?pqdb)))
by (simp add: cosh-dist-general)
also
have ... = (sqrt ?pqda + 1 / (sqrt ?pgda)) / (sqrt ?pqdb + 1 / (sqrt ?pqdb))
by (simp only: mult-divide-mult-cancel-left-if ) simp
also have ...
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= sqrt ?pqdb * (sqrt ?pgda + 1 / (sqrt ?pqda))
/ (sqrt ?pqdb x (sqrt ?pgdb + 1 / (sqrt ?pqdb)))
by simp
also from (?pgdb > 0)
have ... = (sqrt (?pqdb * ?pqda) + sqrt (?pqdb / ?pqda)) / (?pqdb + 1)
by (simp add: real-sqrt-mult [symmetric| real-sqrt-divide algebra-simps)
also from (?pqdb = ?pqda * ?pqab) and (?pqda > 0) and real-sqrt-pow?2
have ... = (?pgda * sqrt ?pqab + sqrt ?pqab) / (?pqda * ?pqab + 1)
by (simp add: real-sqrt-mult square-expand)
finally
have ?ac / ?bc = (?pqda * sqrt ?pqab + sqrt ?pqab) / (?pqda * ?pqab + 1) .

from (?pgda > 0> and (?pgab > 0

have ?pgda x ?pgab + 1 > 0 by (simp add: mult-pos-pos add-pos-pos)

with (?bc > 0)
and (?ac / ?bc = (?pqda = sqrt ?pqab + sqrt ?pgab) / (?pqda * ?pgab + 1))

have ?ac x (?pgda * ?pgqab + 1) = ?bc * (?pqda * sqrt ?pgab + sqrt ?pqab)
by (simp add: field-simps)

hence ?pgda * (?ac x ?pgab — ?bc * sqrt ?pqab) = ?bc * sqrt ?pgab — ?ac
by (simp add: algebra-simps)

from (proj2-set-Col {p,q,a,b}) and (p # q) and @ # p) and @ # ¢
and &b # p)
have cross-ratio-correct p q a b by (unfold cross-ratio-correct-def) simp

have ?ac x ?pgab — ?bc * sqrt ?pqab # 0
proof
assume ’ac x ?pgab — ?bc x sqrt ?pqab = 0
with (?pgda * (?ac = ?pgab — ?bc * sqrt ?pqab) = ?bc * sqrt ?pqab — ?ac)
have ?bc * sqrt ?pgab — ?ac = 0 by simp
with (?ac x ?pgab — ?bc * sqrt ?pqab = 0) and (?ac > 0)
have ?pgab = 1 by simp
with (cross-ratio-correct p q a b)
have a = b by (rule cross-ratio-1-equal )
with @ # b) show False ..
qed
with (?pgda = (?ac = ?pgab — ?bc * sqrt ?pqab) = ?bc * sqrt ?pqab — ?ac)
show ?pgda = (?bc * sqrt ?pgab — ?ac) / (?ac x ?pgab — ?bc * sqrt ?pqab)
by (simp add: field-simps)
qed

lemma perp-foot-cross-ratio-formula:
assumes 2 € hyp2 and b € hyp2 and c € hyp2 and a # b
shows cross-ratio (endpoint-in-S a b) (endpoint-in-S b a)
(perp-foot ¢ (proj2-line-through a b)) a
= (cosh-dist b ¢ x sqrt (exp-2dist a b) — cosh-dist a c)
/ (cosh-dist a ¢  exp-2dist a b — cosh-dist b ¢ * sqrt (exp-2dist a b))
(is cross-ratio ?p ?q ?d a
= (?bc  sqrt ?pgab — ?ac) / (?ac = ?pgab — ?bc * sqrt ?pgab))
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proof —
from @ # b) and @ € hyp2) and b € hyp2)
have are-endpoints-in-S ?p ?qa b
by (rule endpoints-in-S-are-endpoints-in-S)

let ?I = proj2-line-through a b

have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident )+

with @ # b) and @ € hyp2) and b € hyp2)

have proj2-incident ?p ?1 and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident)

let ?m = drop-perp c ?1
have M-perp ?1 ?m by (rule drop-perp-perp)

have proj2-incident ?d ?I and proj2-incident ?d ?m
by (rule perp-foot-incident )+

have proj2-incident ¢ ?m by (rule drop-perp-incident)

with @ # b) and (c € hyp2) and (are-endpoints-in-S ?p ?q a b)
and (proj2-incident ?p ?) and (proj2-incident ?q ?) and (M-perp ?1 ?m)
and (proj2-incident ?d ?1) and (proj2-incident ?d ?m)

have cross-ratio ?p ?q ?d a
= (?bc * sqrt (cross-ratio ?p ?2q a b) — ?ac)
/ (?ac x (cross-ratio ?p ?q a b) — ?bc * sqrt (cross-ratio ?p ?q a b))
by (rule described-perp-foot-cross-ratio-formula)

with @ # b

show cross-ratio ?p 7q ?d a
= (?bc * sqrt ?pqab — ?ac) / (?ac x ?pqab — ?bc * sqrt ?pqab)
by (unfold exp-2dist-def) simp

qed

9.12 The Klein—-Beltrami model satisfies axiom 5

lemma statement69:
assumesab=ga’'b’andbc=gb'c’andac=ga’c’
shows 3 J. is-K2-isometry |
A hyp2-cltn2 a | = a’ A\ hyp2-clin2 b ] = b’ A hyp2-clin2 ¢ ] = ¢’
proof cases
assume a =b
with @ b =g a’ b’ have a’ = b’ by (simp add: hyp2.A3-reversed)
with @ =b and bc=g b'ch
show 3 |. is-K2-isometry |
A hyp2-cltn2 a ] = a’ A\ hyp2-clin2 b ] = b’ A hyp2-clin2 ¢ ] = ¢’
by (unfold real-hyp2-C-def ) simp
next
assume g # b
with a b =g a’ b’
have a’ # b’ by (auto simp add: hyp2.A3)
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let ?pa = Rep-hyp2 a
and ?pb = Rep-hyp2 b
and ?pc = Rep-hyp2 c
and ?pa’ = Rep-hyp2 a’
and ?pb’ = Rep-hyp2 b’
and ?pc’ = Rep-hyp2 ¢’
def pp = endpoint-in-S ?pa ?pb
and pq = endpoint-in-S ?pb ?pa
and | £ proj2-line-through ?pa ?pb
and pp’ £ endpoint-in-S ?pa’ ?pb’
and pq’ £ endpoint-in-S ?pb’ ?pa’
and I’ £ proj2-line-through ?pa’ ?pb’
def pd = perp-foot ?pc
and ps = perp-up ?pc |
and m = drop-perp ?pc |
and pd’ £ perp-foot ?pc’ I’
and ps’ = perp-up ?pc’ 1’
and m' £ drop-perp ?pc’ 1’

havepp € Sandpp’ € Sand pg € Sand pg’' € S
unfolding pp-def and pp’-def and pg-def and pq'-def
by (simp-all add: Rep-hyp2 endpoint-in-S)

from @ # b) and @’ # b
have ?pa # ?pb and ?pa’ # ?pb’ by (unfold Rep-hyp2-inject)
moreover
have proj2-incident ?pa I and proj2-incident ?pb |
and proj2-incident ?pa’ 1" and proj2-incident ?pb’ 1’
by (unfold I-def I'-def) (rule proj2-line-through-incident )+
ultimately have proj2-incident pp | and proj2-incident pp’ I’
and proj2-incident pq | and proj2-incident pq’ 1’
unfolding pp-def and pp’-def and pg-def and pq'-def
by (simp-all add: Rep-hyp2 endpoint-in-S-incident)

from (pp € S) and (pp’ € S) and (proj2-incident pp I)
and (proj2-incident pp’ 1’y and (proj2-incident ?pa |
and (proj2-incident ?pa’l’)

have right-angle pp pd ps and right-angle pp’ pd’ ps’
unfolding pd-def and ps-def and pd’-def and ps’-def
by (simp-all add: Rep-hyp2

perp-foot-up-right-angle [of pp ?pc ?pa l]
perp-foot-up-right-angle [of pp’ ?pc’ ?pa’ 1))

with right-angle-to-right-angle [of pp pd ps pp’ pd’ ps’|

obtain | where is-K2-isometry | and apply-cltn2 pp | = pp’
and apply-cltn2 pd | = pd’ and apply-clin2 ps | = ps’
by auto
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let ?pa] = apply-cltn2 ?pa |

and ?pb] = apply-cltn2 ?pb |
and ?pc] = apply-cltn2 ?pc |
and ?pd] = apply-cltn2 pd |
and ?pp] = apply-cltn2 pp |
and ?pq] = apply-cltn2 pq |
and ?ps] = apply-cltn2 ps |
and ?I] = apply-cltn2-line ] |
and ?m] = apply-clin2-line m |

have proj2-incident pd | and proj2-incident pd’ 1’
and proj2-incident pd m and proj2-incident pd’ m’
by (unfold pd-def pd’-def m-def m'-def) (rule perp-foot-incident )+

from (proj2-incident pp I) and (proj2-incident pq )
and (proj2-incident pd I) and (proj2-incident ?pa |)
and (proj2-incident ?pb |)

have proj2-set-Col {pp,pq,pd,?pa} and proj2-set-Col {pp,pq,2pa,?pb}
by (unfold pd-def proj2-set-Col-def ) (simp-all add: exI [of - 1])

from (?pa # ?pb) and (?pa’ # ?pb"

have pp # pq and pp' # pq’
unfolding pp-def and pg-def and pp’-def and pq'-def
by (simp-all add: Rep-hyp2 endpoint-in-S-swap)

from (proj2-incident ?pa ) and (proj2-incident ?pa’ 1"
have pd € hyp2 and pd’ € hyp2
unfolding pd-def and pd’-def
by (simp-all add: Rep-hyp2 perp-foot-hyp2 [of ?pa | ?pc]
perp-foot-hyp2 [of ?pa’ 1’ ?pc’])

from (proj2-incident ?pa ) and (proj2-incident ?pa’ 1"
have ps € Sand ps’ € S
unfolding ps-def and ps’-def
by (simp-all add: Rep-hyp2 perp-up-in-S [of ?pc ?pa l]
perp-up-in-S [of ?pc’ ?pa’l'])

from (pd € hyp2) and (pp € S) and (ps € S)

have pd # pp and ?pa # pp and ?pb # pp and pd # ps
by (simp-all add: Rep-hyp2 hyp2-S-not-equal )

from (is-K2-isometry ]) and (pg € S)
have ?pq] € S by (unfold is-K2-isometry-def ) simp

from (pd # pp) and (proj2-incident pd I) and (proj2-incident pp I)
and (proj2-incident pd’ 1’y and (proj2-incident pp' 1"

have ?I] =1’
unfolding (?pd] = pd") [symmetric] and ?pp] = pp” [symmetric]
by (rule apply-cltn2-line-unique)
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from (proj2-incident pq I) and (proj2-incident ?pa )
and (proj2-incident ?pb |)

have proj2-incident ?pq] 1’ and proj2-incident ?paJ I’
and proj2-incident ?pbJ I’
by (unfold ?1] = 1" [symmetric|) simp-all

from (?pa’ % ?pb’ and (?pq] € S) and (proj2-incident ?pa’ ')
and (proj2-incident ?pb’ 1) and (proj2-incident ?pq] 1"
have ?pq] = pp' Vv ?pq] = pq’
unfolding pp'-def and pq’-def
by (simp add: Rep-hyp2 endpoints-in-S-incident-unique)
moreover
from (pp # pqg and apply-cltn2-injective
have pp’ # ?pq] by (unfold ?pp] = pp" [symmetric]) fast
ultimately have ?pg] = pq’ by simp

from (?pa’ # ?pb”
have cross-ratio pp’ pq’ pd’ ?pa’
= (cosh-dist ?pb’ ?pc’ x sqrt (exp-2dist ?pa’ ?pb’) — cosh-dist ?pa’ ?pc’)
/ (cosh-dist ?pa’ ?pc’ * exp-2dist ?pa’ ?pb’
— cosh-dist ?pb’ ?pc’  sqrt (exp-2dist ?pa’ ?pb))
unfolding pp'-def and pq’-def and pd’-def and I"-def
by (simp add: Rep-hyp2 perp-foot-cross-ratio-formula)
also from assms
have ... = (cosh-dist ?pb ?pc * sqrt (exp-2dist ?pa ?pb) — cosh-dist ?pa ?pc)
/ (cosh-dist ?pa ?pc * exp-2dist ?pa ?pb
— cosh-dist ?pb ?pc x sqrt (exp-2dist ?pa ?pb))
by (simp add: real-hyp2-C-exp-2dist real-hyp2-C-cosh-dist)
also from (?pa # ?pb)
have ... = cross-ratio pp pq pd ?pa
unfolding pp-def and pg-def and pd-def and [-def
by (simp add: Rep-hyp2 perp-foot-cross-ratio-formula)
also from (proj2-set-Col {pp,pq,pd,?pa}) and (pp # pq) and (pd # pp)
and (?pa # pp)
have ... = cross-ratio ?pp] ?pq] ?pd] ?pa] by (simp add: cross-ratio-clin2)
also from (?pp] = pp) and (?pq] = pq" and ?pd] = pd"
have ... = cross-ratio pp' pq’ pd’ ?pa] by simp
finally
have cross-ratio pp’ pq’ pd’ ?pa] = cross-ratio pp’ pq’ pd’ ?pa’ by simp

from (is-K2-isometry |)
have ?pa] € hyp2 and ?pb] € hyp2 and ?pc] € hyp2
by (rule apply-cltn2-Rep-hyp2)+

from (proj2-incident pp’ 1) and (proj2-incident pq’ 1"
and (proj2-incident pd’ 1) and (proj2-incident ?pa] 1)
and (proj2-incident ?pa’ 1’y and (proj2-incident ?pb] 1)
and (proj2-incident ?pb’ 1)
have proj2-set-Col {pp',pq’,pd’,?pal } and proj2-set-Col {pp’,pq’pd’,?pa’}
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and proj2-set-Col {pp',pq’,2pa’,?pbJ }

and proj2-set-Col {pp’pq’,?pa’,?pb'}

by (unfold proj2-set-Col-def ) (simp-all add: exI [of - 1'])
with (pp’ # pq’) and pp’ € S and (pq’ € S) and (pd’ € hyp2)

and (?paJ € hyp2) and (?pb] € hyp2)
have are-endpoints-in-S pp’ pq’ pd’ ?paJ

and are-endpoints-in-S pp’ pq’ pd’ ?pa’

and are-endpoints-in-S pp’ pq’ ?pa’ ?pb]

and are-endpoints-in-S pp’ pq’ ?pa’ ?pb’

by (unfold are-endpoints-in-S-def ) (simp-all add: Rep-hyp2)
hence cross-ratio-correct pp’ pq’ pd’ ?paJ

and cross-ratio-correct pp’ pq’ pd’ ?pa’

and cross-ratio-correct pp’ pq’ ?pa’ ?pb]

and cross-ratio-correct pp' pq’ ?pa’ ?pb’

by (simp-all add: are-endpoints-in-S-cross-ratio-correct )

from (cross-ratio-correct pp’ pq’ pd’ ?pa])
and (cross-ratio-correct pp’ pq’ pd' ?pa’)
and (cross-ratio pp’ pq’ pd’ ?pa] = cross-ratio pp’ pq’ pd’ ?pa’)
have ?paJ = ?pa’ by (simp add: cross-ratio-unique)
with (?pp] = pp’ and ?pg] = pq"
have cross-ratio pp’ pq’ ?pa’ ?pb] = cross-ratio ?pp] ?pq] ?paJ ?pb] by simp
also from (proj2-set-Col {pp,pq,?pa,?pb}) and (pp # pq) and (?pa # pp)
and (?pb # pp)

have ... = cross-ratio pp pq ?pa ?pb by (rule cross-ratio-cltn2)
also from @ # b) and a b =g a’ b’
have ... = cross-ratio pp' pq’ ?pa’ ?pb’

unfolding pp-def pg-def pp'-def pq'-def

by (rule real-hyp2-C-cross-ratio-endpoints-in-S)
finally have cross-ratio pp’ pq’ ?pa’ ?pb] = cross-ratio pp’ pq’ ?pa’ ?pb’ .
with (cross-ratio-correct pp’ pq’ ?pa’ ?pb])

and (cross-ratio-correct pp’ pq’ ?pa’ 2pb’)
have ?pb] = ?pb’ by (rule cross-ratio-unique)

let ?cc = cart2-pt ?pc

and ?cd = cart2-pt pd
and ?cs = cart2-pt ps
and ?cc’ = cart2-pt ?pc’
and ?cd’ = cart2-pt pd’
and ?cs’ = cart2-pt ps’
and ?cc] = cart2-pt ?pc]
and ?cd] = cart2-pt ?pd]
and ?cs] = cart2-pt ?ps|

from (proj2-incident ?pa I and (proj2-incident ?pa’ 1)
have BR ?cd ?cc ?cs and B ?cd’ ?cc’ ?cs’
unfolding pd-def and ps-def and pd’-def and ps’-def
by (simp-all add: Rep-hyp2 perp-up-at-end [of ?pc ?pa ]
perp-up-at-end [of ?pc’ ?pa’l'])
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from (pd € hyp2) and (ps € S) and (is-K2-isometry |)

and (BR ?cd ?cc ?cs)
have BR ?cd] ?cc] ?cs] by (simp add: Rep-hyp2 statement-63)
hence Br ?cd’ ?cc] ?cs’ by (unfold (?pd] = pd") (?ps] = ps")

from (?pa] = ?pa’) have cosh-dist ?pa’ ?pc] = cosh-dist ?pa] ?pc] by simp
also from (is-K2-isometry ])

have ... = cosh-dist ?pa ?pc by (simp add: Rep-hyp2 K2-isometry-cosh-dist)
also from ac =g a’c’

have ... = cosh-dist ?pa’ ?pc’ by (rule real-hyp2-C-cosh-dist)

finally have cosh-dist ?pa’ ?pc] = cosh-dist ?pa’ ?pc’ .

have M-perp ' m' by (unfold m'-def) (rule drop-perp-perp)

have proj2-incident ?pc m and proj2-incident ?pc’ m’
by (unfold m-def m'-def) (rule drop-perp-incident )+

from (proj2-incident ?pa |) and (proj2-incident ?pa’ 1"

have proj2-incident ps m and proj2-incident ps’ m’
unfolding ps-def and m-def and ps’-def and m'-def
by (simp-all add: Rep-hyp2 perp-up-incident [of ?pc ?pa I]

perp-up-incident [of ?pc’ ?pa’ ')

with (pd # ps) and (proj2-incident pd m) and (proj2-incident pd’ m’)

have ?m] = m’
unfolding (?pd] = pd") [symmetric] and (?ps] = ps" [symmetric]
by (simp add: apply-cltn2-line-unique)

from (proj2-incident ?pc m)

have proj2-incident ?pc] m' by (unfold (?m] = m”) [symmetric]) simp

with (M-perp I’ m") and Rep-hyp2 [of a’] and (pd’ € hyp2) and (?pc] € hyp2)
and Rep-hyp2 [of ¢’] and (proj2-incident ?pa’ 1"
and (proj2-incident pd’ 1) and (proj2-incident pd’ m’)
and (proj2-incident ?pc’ m’)

have cosh-dist pd’ ?pc] = cosh-dist ?pa’ ?pc] / cosh-dist pd’ ?pa’
and cosh-dist pd' ?pc’ = cosh-dist ?pa’ ?pc’ / cosh-dist pd’ ?pa’
by (simp-all add: cosh-dist-perp-divide)

with (cosh-dist ?pa’ ?pc] = cosh-dist ?pa’ ?pc’)

have cosh-dist pd' ?pc] = cosh-dist pd’ ?pc’ by simp

with (pd’ € hyp2) and (?pc] € hyp2) and (?pc’ € hyp2) and (ps’ € S)
and (BR ?cd’ ?cc] ?cs’y and (BR ?cd’ 2cc’ ?cs’)

have ?pc] = ?pc’ by (rule cosh-dist-unique)

with (?pa] = ?pa’) and (?pb] = ?pb"

have hyp2-cltn2 a | = a’ and hyp2-cltn2 b | = b’ and hyp2-cltn2 ¢ ] = ¢’
by (unfold hyp2-cltn2-def) (simp-all add: Rep-hyp2-inverse)

with (is-K2-isometry |)

show 3 J. is-K2-isometry |
A hyp2-cltn2 a ] = a’ A hyp2-cltn2 b ] = b’ A hyp2-cltn2 ¢ [ = ¢’
by (simp add: exI [of - ]])

qed
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theorem hyp2-axiomb:

Yabcda'b'c'd'
a#bANBgabcABga'b'c’Nab=ga'b’ANbc=xb'c’
Nad=xa'd' Nbd=xb'd'

—cd=gc'd

proof default+

fixabcda'b'c'd’

assumea b ABxabcABga'b'c’Nab=ga'b’Nbc=gb'c’
Nad=gxa'd' Nbd=xb'd'

hencea #band Bxabcand Bxa’'b'c’andab =g a’b’
andbc=gb'c’andad=ga’d andbd =x b'd’
by simp-all

from @b =ga'b")and bd =g b'd) and ad =g a’d" and statement69 [of a b a’ b’
dd’
obtain | where is-K2-isometry | and hyp2-cltn2 a | = a’
and hyp2-clin2 b ] = b’ and hyp2-clin2 d ] = d’
by auto

let ?a] = hyp2-cltn2 a |
and ?b] = hyp2-cltn2 b |
and ?c] = hyp2-cltn2 c |
and ?d] = hyp2-cltn2 d |

from @ # b and a b =g a’ b’
have a’ # b’ by (auto simp add: hyp2.A3)

from (is-K2-isometry |) and (Bg a b )
have Bk ?a] ?b] ?c] by (rule real-hyp2-B-hyp2-cltn2)
hence By a’ b’ ?c] by (unfold (?a] = a’) (?b] = b")

from (is-K2-isometry J)

have b ¢ =g ?b] ?c] by (rule real-hyp2-C-hyp2-cltn2)

hence b ¢ =g b’ ?c] by (unfold (?b] = b")

from this and (b c =g b’ ¢/ have b’ ?c] =g b’ ¢’ by (rule hyp2.A2’)

with @’ # b’ and (Bg a’ b’ ?c]) and Bx a’ b’ ¢’

have ?c] = ¢’ by (rule hyp2-extend-segment-unique)

from (is-K2-isometry ])

show cd =x ¢'d’
unfolding (?c] = ¢/} [symmetric] and ?d] = d') [symmetric]
by (rule real-hyp2-C-hyp2-clin2)

qed

interpretation hyp2: tarski-first5 real-hyp2-C real-hyp2-B

using hyp2-axiom4 and hyp2-axiom5
by unfold-locales
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9.13 The Klein—-Beltrami model satisfies axioms 6, 7, and 11

theorem hyp2-axiom6:V ab.Bxaba —a=b
proof default+
fixa b
let ?ca = cart2-pt (Rep-hyp2 a)
and ?cb = cart2-pt (Rep-hyp2 b)
assume Bxaba
hence BR ?ca ?cb ?ca by (unfold real-hyp2-B-def hyp2-rep-def)
hence ?ca = ?cb by (rule real-euclid.A6")
hence Rep-hyp2 a = Rep-hyp2 b by (simp add: Rep-hyp2 hyp2-S-cart2-inj)
thus a = b by (unfold Rep-hyp2-inject)
qed

lemma between-inverse:
assumes B (hyp2-rep p) v (hyp2-rep q)
shows hyp2-rep (hyp2-abs v) = v
proof —
let ?u = hyp2-rep p
let 7w = hyp2-rep q
have norm ?u < 1 and norm ?w < 1 by (rule norm-hyp2-rep-It-1)+

from (B ?u v ?w)
obtain [ where! > 0and ! < 1andv — ?u = xg (Pw — ?u)
by (unfold real-euclid-B-def ) auto
from w — ?u =1 *g (?w — ?u)
have v = [ xg ?w + (1 — 1) *g ?u by (simp add: algebra-simps)
hence norm v < norm (I xg ?w) + norm ((1 — 1) *g ?u)
by (simp only: norm-triangle-ineq [of | g ?w (1 — 1) *g ?u])
withd >0 and I < 1)
have norm v <1 xg norm ?w + (1 — 1) xg norm ?u by simp

have norm v < 1
proof cases
assume [ =0
have v = ?u by simp
with (morm ?u < 1) show norm v < 1 by simp
next
assume [ # 0
with (norm ?w < 1) and { > 0) have | xg norm ?w < I by simp

with morm?u< D and ( < 1)
and mult-mono [of 1 — 11 — I norm ?u 1]
have (1 — 1) xg norm ?u <1 — I by simp
with ([ xg norm ?w <D
have [ xg norm ?w + (1 — 1) xg norm 2u < 1 by simp
with morm v <1 xg norm ?w + (1 — 1) xg norm ?2u)
show norm v < 1 by simp
qed
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thus hyp2-rep (hyp2-abs v) = v by (rule hyp2-rep-abs)
qed

lemma between-switch:
assumes B (hyp2-rep p) v (hyp2-rep q)
shows Bk p (hyp2-abs v) q
proof —
from assms have hyp2-rep (hyp2-abs v) = v by (rule between-inverse)
with assms show By p (hyp2-abs v) g by (unfold real-hyp2-B-def ) simp
qed

theorem hyp2-axiom7:
Vabcpg.BxkapcABgbgc— (3 x.BxkpxbABgqgxa)
proof auto
fixabcpgq
let 7ca = hyp2-rep a
and ?cb = hyp2-rep b
and ?cc = hyp2-rep ¢
and ?cp = hyp2-rep p
and ?cq = hyp2-rep q
assume Bxapcand Bk bgc
hence B ?ca ?cp ?cc and Bg ?cb ?cq ?cc by (unfold real-hyp2-B-def )
with real-euclid A7’ [of ?ca ?cp ?cc ?cb ?cq]
obtain cx where B ?cp cx ?cb and BR ?cq cx ?ca by auto
hence Bg p (hyp2-abs cx) b and Bk g (hyp2-abs cx) a
by (simp-all add: between-switch)
thus 3 x. Bx p x b A Bg q x a by (simp add: exI [of - hyp2-abs cx])
qed

theorem hyp2-axiom11:
VXY (3aVyxyxeXANyeY —Bgaxy)
— (3bVxyxeXANyeY —Bgxby)
proof (rule alll)+
fix XY :: hyp2 set
show (3 aVxyxeXAyeY —Bgaxy)
— (b VxyxeXANyeY —Bgxby)
proof cases
assume X = {} VY = {}
thus (3 aVxyxeXANyeY —Bgaxy)
— (3 b.VxyxeXANyeY — Bxxby) by auto
next
assume - (X ={}vY={})
hence X # {} and Y # {} by simp-all
then obtain w and z where w € X and z € Y by auto

show (3 aVxyxeXANyeY —Bgaxy)
— (b VxyxeXANyeY —Bgxby)
proof

assume 3 a.Vxy.xceXAyeY — Bxaxy
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then obtain s whereV xy. x € XAy €Y — Bxaxy..

let ?cX = hyp2-rep * X
and ?cY = hyp2-rep ' Y
and ?ca = hyp2-rep a
and ?cw = hyp2-rep w
and ?cz = hyp2-rep z

from Vv xy.x € XAy€Y — Bxaxy
have V cxcy.cx € ?2cX Acy € ?cY — BR ?cacx cy
by (unfold real-hyp2-B-def ) auto
with real-euclid A11' [of 7cX ?cY ?ca]
obtain cb where V cx cy. cx € ?cX A cy € ?cY — BR cx cb cy by auto
with w € X) and z € Y) have Br ?cw cb ?cz by simp
hence hyp2-rep (hyp2-abs cb) = cb (is hyp2-rep ?b = cb)
by (rule between-inverse)
with V cxcy.cx € ?2cX Acy € ?cY — Br cx cb cy)
haveV xy.xe XAyeY —Bgx?by
by (unfold real-hyp2-B-def) simp
thus 3 b.V xy.x e XAy €Y — Bg x by by (rule exI)
qed
qed
qed

interpretation farski-absolute-space real-hyp2-C real-hyp2-B
using hyp2-axiom6 and hyp2-axiom7 and hyp2-axiom11
by unfold-locales

9.14 The Klein-Beltrami model satisfies the dimension-specific
axioms

lemma hyp2-rep-abs-examples:
shows hyp2-rep (hyp2-abs 0) = 0 (is hyp2-rep ?a = ?ca)
and hyp2-rep (hyp2-abs (vector [1/2,0])) = vector [1/2,0]
(is hyp2-rep ?b = ?cb)
and hyp2-rep (hyp2-abs (vector [0,1/2])) = vector [0,1/2]
(is hyp2-rep ?c = ?cc)
and hyp2-rep (hyp2-abs (vector [1/4,1/4])) = vector [1/4,1/4]
(is hyp2-rep ?d = ?cd)
and hyp2-rep (hyp2-abs (vector [1/2,1/2])) = vector [1/2,1/2]
(is hyp2-rep 2t = ?ct)
proof —
have norm ?ca < 1 and norm ?cb < 1 and norm ?cc < 1 and norm ?cd < 1
and norm ?ct < 1
by (unfold norm-vector-def setL2-def ) (simp-all add: setsum-2 square-expand)
thus hyp2-rep ?a = ?ca and hyp2-rep ?b = ?cb and hyp2-rep ?c = ?cc
and hyp2-rep ?d = ?cd and hyp2-rep ?t = ?ct
by (simp-all add: hyp2-rep-abs)
qed
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theorem hyp2-axiom8: 3 abc. " Bxabc AN - BxbcaA-Bgcab
proof —
let 2ca = 0 :: real”2
and ?cb = vector [1/2,0] :: real"2
and ?cc = vector [0,1/2] :: real”2
let ?a = hyp2-abs ?ca
and ?b = hyp2-abs ?cb
and ?c = hyp2-abs ?cc
from hyp2-rep-abs-examples and non-Col-example
have — (hyp2.Col ?a ?b ?c)
by (unfold hyp2.Col-def real-euclid.Col-def real-hyp2-B-def ) simp
thus3abc. -~ BgabcAN—-BxgbcaAN—-Bgcab
unfolding hyp2.Col-def
by simp (rule exI)+
qed

theorem hyp2-axiom9:
Vpgabep#qhap=xagqANbp=xbgAcp=kcq
—> BxabcVBxkbcaVvVBgcab
proof (rule alll)+
fixpgabc
showp #gAhap=xaqANbp=xbgAhcp=xcq
—> BxabcVBxkbcaVBgcab
proof
assumep AqAap=gaqAbp=xbgAcp=xcq
hencep #qandap =gaqgand bp =g b g and c p =g c q by simp-all

let ?pp = Rep-hyp2 p
and ?pg = Rep-hyp2 q
and ?pa = Rep-hyp2 a
and ?pb = Rep-hyp2 b
and ?pc = Rep-hyp2 c
def [ £ proj2-line-through ?pp ?pq
def m = drop-perp ?pa |
and ps £ endpoint-in-S ?pp ?pq
and pt £ endpoint-in-S ?pq ?pp
and stpq = exp-2dist ?pp ?pq

from (p # ¢ have ?pp # ?pq by (simp add: Rep-hyp2-inject)
from Rep-hyp?2
have stpg > 0 by (unfold stpq-def ) (simp add: exp-2dist-positive)
hence sqrt stpg * sqrt stpq = stpq

by (simp add: real-sqrt-mult [symmetric|)

from Rep-hyp2 and (?pp # ?pq)
have stpq # 1 by (unfold stpg-def ) (auto simp add: exp-2dist-1-equal )
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have z-non-zero ?pa and z-non-zero ?pb and z-non-zero ?pc
by (simp-all add: Rep-hyp2 hyp2-S-z-non-zero)

have V pd € {?pa,?pb,?pc}.

cross-ratio ps pt (perp-foot pd 1) ?pp =1 / (sqrt stpq)
proof

fix pd

assume pd € {?pa,?pb,?pc}

with Rep-hyp2 have pd € hyp2 by auto

def pe = perp-foot pd |
and x £ cosh-dist ?pp pd

from (pd € {?pa,?pb,?pc}) and @ p =g aq and bp =k b g
and cp =g cq
have cosh-dist pd ?pp = cosh-dist pd ?pq
by (auto simp add: real-hyp2-C-cosh-dist)
with (pd € hyp2) and Rep-hyp2
have x = cosh-dist ?pq pd by (unfold x-def) (simp add: cosh-dist-swap)

from Rep-hyp2 [of p] and (pd € hyp2) and cosh-dist-positive [of ?pp pd]
have x # 0 by (unfold x-def) simp

from Rep-hyp2 and (pd € hyp2) and ?pp # ?pq)

have cross-ratio ps pt pe ?pp
= (cosh-dist ?pq pd * sqrt stpq — cosh-dist ?pp pd)
/ (cosh-dist ?pp pd * stpq — cosh-dist ?pq pd * sqrt stpq)
unfolding ps-def and pt-def and pe-def and I-def and stpg-def
by (simp add: perp-foot-cross-ratio-formula)

also from x-def and (x = cosh-dist ?pq pd)

have ... = (x x sqrt stpg — x) / (x % stpq — x * sqrt stpq) by simp

also from (sqrt stpq * sqrt stpq = stpq)

have ... = (x % sqrt stpqg — x) / ((x % sqrt stpq — x) * sqrt stpq)
by (simp add: algebra-simps)

also from (x # 0) and (stpg # 1) have ... =1 / sqrt stpq by simp
finally show cross-ratio ps pt pe ?pp =1 / sqrt stpq .
qed

hence cross-ratio ps pt (perp-foot ?pal) ?pp =1 / sqrt stpq by simp

have V pd € {?pa,?pb,?pc}. proj2-incident pd m
proof
fix pd
assume pd € {?pa,?pb,?pc}
with Rep-hyp2 have pd € hyp2 by auto
with Rep-hyp2 and (?pp # ?pq and proj2-line-through-incident
have cross-ratio-correct ps pt ?pp (perp-foot pd 1)
and cross-ratio-correct ps pt ?pp (perp-foot ?pa l)
unfolding ps-def and pt-def and I-def
by (simp-all add: endpoints-in-S-perp-foot-cross-ratio-correct)
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from (pd € {?pa,?pb,?pc})
and (v pd € {?pa,?pb,?pc}.
cross-ratio ps pt (perp-foot pd ) ?pp =1 / (sqrt stpq))
have cross-ratio ps pt (perp-foot pd ) ?pp = 1 / sqrt stpq by auto
with (cross-ratio ps pt (perp-foot ?pal) ?pp =1 / sqrt stpg)
have cross-ratio ps pt (perp-foot pd ) ?pp
= cross-ratio ps pt (perp-foot ?pal) ?pp
by simp
hence cross-ratio ps pt ?pp (perp-foot pd I)
= cross-ratio ps pt ?pp (perp-foot ?pa l)
by (simp add: cross-ratio-swap-34 [of ps pt - ?pp])
with (cross-ratio-correct ps pt ?pp (perp-foot pd 1))
and (cross-ratio-correct ps pt ?pp (perp-foot ?pa 1))
have perp-foot pd | = perp-foot ?pa 1 by (rule cross-ratio-unique)
with Rep-hyp2 [of p] and (pd € hyp2)
and proj2-line-through-incident [of ?pp ?pq]
and perp-foot-eq-implies-drop-perp-eq [of ?pp pd | ?pa]
have drop-perp pd | = m by (unfold m-def I-def ) simp
with drop-perp-incident [of pd 1] show proj2-incident pd m by simp
qed
hence proj2-set-Col {?pa,?pb,?pc}
by (unfold proj2-set-Col-def ) (simp add: exI [of - m])
hence proj2-Col ?pa ?pb ?pc by (simp add: proj2-Col-iff-set-Col)
with (z-non-zero ?pa) and (z-non-zero ?pb) and (z-non-zero ?pc)
have real-euclid.Col (hyp2-rep a) (hyp2-rep b) (hyp2-rep c)
by (unfold hyp2-rep-def) (simp add: proj2-Col-iff-euclid-cart2)
thus BxabcV BgkbcaV Bgcab
by (unfold real-hyp2-B-def real-euclid.Col-def )
qed
qed

interpretation hyp2: tarski-absolute real-hyp2-C real-hyp2-B
using hyp2-axiom8 and hyp2-axiom9
by unfold-locales

lemma True ..

9.15 The Klein—-Beltrami model violates the Euclidean axiom

theorem hyp2-axiom10-false:

shows = (Vabcdt.Bxkadt ABxbdcANa#d
— (I xy.Bxabx ANBxacy ANBgxty))

proof

assumeV abcdt.Bxadt NBgbdcNha#d
— (I xy.Bxabx ANBxacy ABgxty)

let ?ca = 0 :: real2

and ?cb = vector [1/2,0] :: real”2
and ?cc = vector [0,1/2] :: real™2
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and ?cd = vector [1/4,1/4] :: real 2

and ?ct = vector [1/2,1/2] :: real 2
let ?a = hyp2-abs ?ca

and ?b = hyp2-abs ?cb

and ?c = hyp2-abs ?cc

and ?d = hyp2-abs ?cd

and ?t = hyp2-abs ?ct

have ?cd = (1/2) #g ?ct and ?cd — ?cb = (1/2) *g (?cc — ?cb)
by (unfold vector-def) (simp-all add: Cart-eq)

hence BR ?ca ?cd ?ct and B ?cb ?cd ?cc
by (unfold real-euclid-B-def ) (simp-all add: exI [of - 1/2])

hence Bx ?a ?d ?t and Bx ?b ?d ?c
by (unfold real-hyp2-B-def) (simp-all add: hyp2-rep-abs-examples)

have ?a # ?d
proof
assume ?q = ?d
hence hyp2-rep ?a = hyp2-rep ?d by simp
hence ?ca = ?cd by (simp add: hyp2-rep-abs-examples)
thus False by (simp add: Cart-eq forall-2)
qed
with (Bg ?a ?d ?t) and (Bg ?b ?d ?¢)
and Vabcdt. Bgadt ANBxbdcNa+#d
— (I xy.Bxabx ANBxacy ABgxty)
obtain x and y where Bg ?a ?b x and Bg ?a ?cy and Bx x ?t y
by blast

let ?cx = hyp2-rep x
and ?cy = hyp2-rep y
from Bk ?a ?b x) and Bk ?a ?c y) and (Bg x 7t y)
have BR ?ca ?cb ?cx and B ?ca ?cc ?cy and Br ?cx ?ct ?cy
by (unfold real-hyp2-B-def) (simp-all add: hyp2-rep-abs-examples)

from (BR ?ca ?cb ?cx) and (BR ?ca ?cc ?cy) and (Br ?cx ?ct ?cy)
obtain j and k and  where ?cb — ?ca = j xg (?cx — ?ca)

and ?cc — ?ca =k xg (Pcy — ?ca)

and/ > 0and! <1and ?ct — ?cx = g (?cy — ?cx)

by (unfold real-euclid-B-def) fast

from (?cb — ?ca = j xg (?cx — ?ca)) and (?cc — ?ca =k xg (?cy — ?ca))
have j # 0 and k # 0 by (auto simp add: Cart-eq forall-2)

with (?cb — ?ca = j *g (?cx — ?ca)) and (?cc — ?ca =k xg (Pcy — ?ca))
have ?cx = (1/j) *g ?cb and ?cy = (1/k) *g ?cc by simp-all

hence ?cx$2 = 0 and ?cy$1 = 0 by simp-all

from (?ct — ?cx =1 xg (?cy — 2cx))

have ?ct = (1 — 1) xg ?cx + [ xg ?cy by (simp add: algebra-simps)
with (?cx$2 = 0) and (?cy$1 = 0)
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have ?ct$1 = (1 — 1) x (?cx$1) and ?ct$2 = [ * (?cy$2) by simp-all
hence | * (?cy$2) =1/2 and (1 — 1) * (?cx$1) = 1/2 by simp-all

have ?cx$1 < |?cx$1| by simp

also have ... < norm ?cx by (rule component-le-norm)
also have ... < 1 by (rule norm-hyp2-rep-It-1)

finally have ?cx$1 < 1.

with ( < 1) and mult-less-cancel-left [of 1 — | 2cx$1 1]
have (1 — 1) % ?cx$1 < 1 — I by auto

with (1 — 1) % (?cx$1) = 1/2) have | < 1/2 by simp

have ?cy$2 < |?cy$2| by simp
also have ... < norm ?cy by (rule component-le-norm)
also have ... < 1 by (rule norm-hyp2-rep-It-1)
finally have ?cy$2 < 1.
with ( > 0) and mult-less-cancel-left [of | ?cy$2 1]
have | x ?cy$2 < [ by auto
with ( % (?cy$2) = 1/2) have |l > 1/2 by simp
with ( < 1/2) havel =1/2 by simp
with ( % (?cy$2) = 1/2) have ?cy$2 = 1 by simp
with (?cy$2 < 1) show False by simp

qed

theorem hyp2-not-tarski: — (tarski real-hyp2-C real-hyp2-B)
using hyp2-axiom10-false
by (unfold tarski-def tarski-space-def tarski-space-axioms-def ) simp

Therefore axiom 10 is independent.

For some reason, because I extract the IXTEX source for the above theorem, I
must write the following before the end, in order for the outline to typeset.

lemma True ..

end
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