The independence of the parallels postulate,

verified in Isabelle 2009-2

T. J. M. Makarios
February 29, 2012

Contents

1 Metric spaces

2 Miscellaneous results

3 Tarski’s geometry

3.1
3.2
3.3
34
3.5
3.6

Theaxioms L
Semimetric spaces satisfy the first three axioms
Some consequences of the first three axioms
Some consequences of the first five axioms
Simple theorems about betweenness
Simple theorems about congruence and betweenness

4 Real Euclidean space and Tarski’s axioms

4.1
4.2
4.3
44
4.5

Real Euclidean space satisfies the first five axioms
Real Euclidean space also satisfies axioms 6, 7, and 11

Real Euclidean space satisfies the Euclidean axiom
The real Euclidean plane
Special cases of theorems of Tarski’s geometry

5 Linear Algebra

51

Matrices e

6 Group Actions

7 Projective Geometry

7.1
7.2
73
74

Proportionality on non-zero vectors
Points of the real projective plane
Lines of the real projective plane
Collineations of the real projective plane
741 Asagroup.
742 Asagroupaction.

15
15
16
16
20
22
24

24
24
29
34
35
39

41
46

51

7.4.3 Parts of some Statements from [1] 90

75 Crossratios e 98
7.6 Cartesian subspace of the real projective plane 106
8 Roots of real quadratics 115
9 The hyperbolic plane and Tarski’s axioms 118
9.1 Characterizing a specific conic in the projective plane 119
9.2 Some specific points and lines of the projective plane 127
9.3 Definition of the Klein-Beltrami model of the hyperbolic plane133
9.4 K-isometries map the interior of the conic to itself 138
9.5 The K-isometries form a group action 154
9.6 The Klein—Beltrami model satisfies Tarski’s first three axioms 155
9.7 Some lemmas about betweenness 168
9.8 The Klein—Beltrami model satisfies axiom4 175
9.9 More betweenness theorems 181
9.10 Perpendicularity 190
9.11 Functionsofdistance 203
9.11.1 A formula for a cross ratio involving a perpendicular
foot 220
9.12 The Klein—-Beltrami model satisfies axiom 5 223
9.13 The Klein—Beltrami model satisfies axioms 6,7, and 11 . . . 230
9.14 The Klein-Beltrami model satisfies the dimension-specific
AXIOMS . v v v e e e e e e e e e e 232
9.15 The Klein—-Beltrami model violates the Euclidean axiom . . 235

1 Maetric spaces

theory Metric
imports Euclidean-Space

begin

locale semimetric =
fixes dist :: 'p = 'p = real
assumes nonneg [simp]: dist x y > 0
and eq-0 [simp]: distxy =0+—x =y
and symm: dist x y = dist y x

begin

lemma refl [simp]: dist x x = 0
by simp

end

locale metric =
fixes dist :: 'p = 'p = real
assumes [simp|: distxy =0<+—x =y
and triangle: dist x z < dist y x + dist y z

sublocale metric < semimetric
proof
{fixw
have dist w w = 0 by simp }
note [simp| = this
fix x y
show 0 < dist x y
proof —
from triangle [of y y x| show 0 < dist x y by simp
qed
show dist x y = 0 <— x = y by simp
show dist x y = dist y x
proof —
{fixwz
have dist w z < dist z w
proof —
from triangle [of w z z] show dist w z < dist z w by simp
qed }
hence dist x y < dist y x and dist y x < dist x y by simp+
thus dist x y = dist y x by simp
qed
qed

definition norm-dist :: (‘a::real-normed-vector) = 'a = real where
[simp]: norm-dist x y = norm (x — y)

interpretation norm-metric: metric norm-dist
proof
fix x y
show norm-dist x y = 0 <— x = y by simp
fix z
from norm-triangle-ineq [of x — y y — z| have
norm (x — z) < norm (x — y) + norm (y — z) by (simp add: diff-minus)
with norm-minus-commute [of x y] show
norm-dist x z < norm-dist y x 4+ norm-dist y z by simp
qed

end

2 Miscellaneous results

theory Miscellany
imports Complex-Main
Metric
Vecl
begin

lemma unordered-pair-element-equality:
assumes {p, g} = {r,s}andp =7
shows g =s
proof cases
assume p = g
with ({p, q} = {r, s}) have {r, s} = {q} by simp
thus g = s by simp
next
assume p # g
with {p, q} = {r, s} have {r,s} — {p} = {q} by auto
moreover
from (p = r have {r, s} — {p} C {s} by auto
ultimately have {q} C {s} by simp
thus g = s by simp
qed

lemma unordered-pair-equality: {p, q} = {q, p}
by auto

lemma square-expand: (x::real)?> = x * x
proof —

have 2 = Suc 1 by simp

with power-Suc [of x 1] and power-one-right [of x] show ?thesis by arith
qed

lemma cosine-rule:

fixes a b ¢ :: real”('n:finite)

shows (norm-dist a c)> =

(norm-dist a b)? + (norm-dist b c)> +2 % ((a — b) - (b — ¢))
proof —

have (2 — b) + (b — ¢) =a — ¢ by simp

with dot-norm [ofa — b b —]

have (a —b) - (b—c¢) =
((norm (a — ¢))? — (norm (a — b))?> — (norm (b — c))?) / 2
by simp

thus ?thesis by simp

qed

lemma scalar-equiv: v xs x = r g x
by vector

lemma norm-dist-dot: (norm-dist x y)? = (x — y) - (x — y)
by (simp add: power2-norm-eq-inner)

definition dep?2 :: 'a::real-vector = ‘a = bool where
dep2 uv = Jwrs.u=r*g WAV =5%g W

lemma real2-eq:

fixes u v :: real”2

assumes u$1 = v$1 and u$2 = v$2
shows u = v

by (simp add: Cart-eq [of u v] forall-2 assms)

definition rotate? :: real”2 = real’2 where
rotate2 x = vector [—x$2, x$1]

declare vector-2 [simp]

lemma rotate2 [simp|:
(rotate2 x)$1 = —x$2
(rotate2 x)$2 = x$1
by (simp add: rotate2-def)+

lemma rotate2-rotate2 [simp): rotate2 (rotate2 x) = —x
proof —
have (rotate2 (rotate2 x))$1 = —x$1 and (rotate2 (rotate2 x))$2 = —x$2
by simp+
with real2-eq show rotate2 (rotate2 x) = —x by simp
qed

lemma rotate2-dot [simp): (rotate2 u) - (rotate2 v) = u - v
unfolding inner-vector-def
by (simp add: setsum-2)

lemma rotate2-scaleR [simp]: rotate2 (k xg x) = k *g (rotate2 x)
proof —
have (rotate2 (k g x))$1 = (k xg (rotate2 x))$1 and
(rotate2 (k xg x))$2 = (k xR (rotate2 x))$2 by simp+
with real2-eq show ?thesis by simp

qed
lemma rotate2-uminus [simp|: rotate2 (—x) = —(rotate2 x)
proof —
from scaleR-minus-left [of 1] have
—1%g x = —x and —1 *g (rotate2 x) = —(rotate2 x) by auto
with rotate2-scaleR [of —1 x| show ?thesis by simp
qed

lemma rotate2-eq [iff]: rotate2 x = rotate2 y <— x =y
proof
assume x =y
thus rotate2 x = rotate2 y by simp
next
assume rotate? x = rotate2 y
hence rotate2 (rotate2 x) = rotate2 (rotate2 y) by simp
hence —(—x) = —(—y) by simp
thus x = y by simp

qed

lemma dot2-rearrange-1:
fixes u x :: real”2
assumes u - x = 0 and x$1 # 0
shows u = (u$2 / x$1) g (rotate2 x) (is u = ?u’)
proof —
from @ - x = 0) have u$1 * x$1 = —(u$2) * (x$2)
unfolding inner-vector-def
by (simp add: setsum-2)
hence u$1 * x$1 / x$1 = —u$2 / x$1 * x$2 by simp
with (x$1 # 0) have u$1 = ?u’$1 by simp
from (x$1 # 0) have u$2 = ?u’$2 by simp
with w$1 = ?u’$1) and real2-eq show u = ?u’ by simp
qed

lemma dot2-rearrange-2:
fixes u x :: real”2
assumes u - x = 0 and x$2 # 0
shows u = —(u$1 / x$2) =g (rotate2 x) (is u = ?u’)
proof —
from assms and dot2-rearrange-1 [of rotate2 u rotate2 x| have
rotate2 u = rotate2 ?u’ by simp
thus u = ?u’ by blast
qed

lemma dot2-rearrange:

fixes u x :: real”2

assumes u - x = 0 and x # 0

shows Jk. u = k xg (rotate2 x)
proof cases

assume x$1 = 0

with real2-eq [of x 0] and (x # 0) have x$2 # 0 by auto

with dot2-rearrange-2 and w - x = 0) show ?thesis by blast
next

assume x$1 # 0

with dot2-rearrange-1 and (u - x = 0) show ?thesis by blast
qed

lemma real2-orthogonal-dep2:
fixes u v x :: real2
assumes x #0andu-x=0andv-x =0
shows dep2 u v

proof —
let ?w = rotate2? x
from dot2-rearrange and assms have

drs.u=rx*g 2w A v =sx*g ?wby simp

with dep2-def show ?thesis by auto

qed

lemma dot-left-diff-distrib:
fixes u v x :: real”('n::finite)
shows (u —v) - x=(u-x) — (v-x)
proof —
have (u - x) — (v - x) = (Li€UNIV. u$i x x$i) — (L i€UNIV. v$i * x$i)
unfolding inner-vector-def
by simp
also from setsum-subtractf [of A i. u$i x x$i A i. v$i * x$i] have
... = (L i€UNIV. u$i x x$i — v$i * x$i) by simp
also from left-diff-distrib [where 'a = real] have
...= (L i€UNIV. (u$i — v$i) * x$i) by simp
also have
o= —9v)-x
unfolding inner-vector-def
by simp
finally show ?thesis ..
qed

lemma dot-right-diff-distrib:
fixes u v x :: real”('n::finite)
showsx - (u —v)=(x-u) — (x-0)
proof —
from inner-commute have x - (u — v) = (u — v) - x by auto
also from dot-left-diff-distrib [of u v x] have
.= UCX VX,
also from inner-commute [of x| have
...=Xx-+u—x-vbysimp
finally show ?thesis .
qed

lemma am-gm?2:
fixes a b :: real
assumesa > Oand b > 0
shows sqrt (a xb) < (a+b) /2
and sqrt (axb) =(a+b)/2+—a="D
proof —
have 0 < (a —b) % (a—b)and 0 = (a — b) x (a — b) <— a = b by simp+
with right-diff-distrib [of a — b a b] and left-diff-distrib [of a b] have
0<axa—2xaxb+bxb
and0=ax*xa—2*xaxb+bxb<—a=>bbyauto
hence4 xaxb<axa-+2*xaxb+bxb
and4xaxb=axa+2%axb+bxb<—a=>0Dbyauto
with right-distrib [of a + b a b] and left-distrib [of a b] have
4xaxb<(a+b)x(a+b)
and 4 xaxb= (a+Db)x (a+b) +— a=>bbysimp+
with real-sqrt-le-mono [of 4 x a x b (a + b) * (a +)]
and real-sqrt-eq-iff [of 4 * a x b (a + b) % (a + b)] have
sqrt (4 xaxb) <sgrt ((a+b) * (a + b))

and sqrt (4 xa xb) = sqrt ((a +b) x (a + b)) «— a = b by simp+
with @ > 0) and (b > 0) have sqrt (4 xaxb) <a+Db
and sqrt (4 a xb) =a + b <— a = b by simp+
with real-sqrt-abs2 [of 2] and real-sqrt-mult [of 4 a = b] show
sqrt (axb) < (a+10b) /2
and sqrt (a x b) = (a + b) / 2 <— a = b by (simp add: mult-ac)+
qed

lemma refl-on-allrel: refl-on A (A x A)
unfolding refl-on-def
by simp

lemma refl-on-restrict:
assumes refl-on A r
shows refl-on (AN B) (rN B x B)
proof —
from (refl-on A r) and refl-on-allrel [of B] and refl-on-Int
show ?thesis by auto
qed

lemma sym-allrel: sym (A x A)
unfolding sym-def
by simp

lemma sym-restrict:
assumes sym r
shows sym (r N A x A)
proof —
from (sym 1) and sym-allrel and sym-Int
show ?thesis by auto
qed

lemma trans-allrel: trans (A x A)
unfolding frans-def
by simp

lemma trans-restrict:
assumes frans r
shows trans (rN A x A)
proof —
from (trans r) and trans-allrel and trans-Int
show ?thesis by auto
qed

lemma equiv-Int:
assumes equiv A v and equiv B s
shows equiv (AN B) (rNs)
proof —
from assms and refl-on-Int [of A r B s| and sym-Int and trans-Int

show ?thesis
unfolding equiv-def
by auto
qed

lemma equiv-allrel: equiv A (A x A)
unfolding equiv-def
by (simp add: refl-on-allrel sym-allrel trans-allrel)

lemma equiv-restrict:
assumes equiv A v
shows equiv (AN B) (rN B x B)
proof —
from (equiv A r) and equiv-allrel [of B] and equiv-Int
show ?thesis by auto
qed

lemma scalar-vector-matrix-assoc:
fixes k :: real and x :: real’('n::finite) and A :: real”('m::finite)"'n
shows (k g x) vx A =k *g (x vx A)
proof —
{ fix i
from setsum-right-distrib [of k Aj. x$j * A$j$i UNIV|
have (Y jeUNIV. k * (x$j x A$j$i)) =k = (L jeUNIV. x$j * Aji) .. }
thus (k g x) v A =k xg (x vx A)
unfolding vector-matrix-mult-def
by (simp add: Cart-eq algebra-simps)
qed

lemma vector-scalar-matrix-ac:
fixes k :: real and x :: real’('n::finite) and A :: real”('m::finite)"'n
shows x v (kg A) =k *g (x vx A)
proof —
have x vk (k g A) = (k *g x) vx A
unfolding vector-matrix-mult-def
by (simp add: algebra-simps)
with scalar-vector-matrix-assoc
show x vx (k *g A) =k xg (x vx A)
by auto
qed

lemma vector-matrix-left-distrib:
fixes x y :: real”('n::finite) and A :: real”('m::finite)"'n
shows (x + y) vx A=xvx A+ yovx A
unfolding vector-matrix-mult-def
by (simp add: algebra-simps setsum-addf Cart-eq)

lemma times-zero-vector [simp]: A xv 0 = 0
unfolding matrix-vector-mult-def

by (simp add: Cart-eq)

lemma invertible-times-eq-zero:
fixes x :: real’('n:finite) and A :: real”'n"'n
assumes invertible A and A xv x = 0
shows x =0
proof —
from (invertible A)
and somel-ex [of AA". A xx A’ =mat 1 N A’ xx A = mat 1]
have matrix-inv A *x A = mat 1
unfolding invertible-def matrix-inv-def

by simp
hence x = (matrix-inv A xx A) v x by (simp add: matrix-vector-mul-lid)
also have ... = matrix-inv A *v (A *v x)
by (simp add: matrix-vector-mul-assoc)
also from (A *xv x = 0) have ... = 0 by simp
finally show x = 0.
qed

lemma vector-transpose-matrix [simp]: x vx transpose A = A v x
unfolding transpose-def vector-matrix-mult-def matrix-vector-mult-def
by simp

lemma transpose-matrix-vector [simp]: transpose A xv x = x v¥ A
unfolding transpose-def vector-matrix-mult-def matrix-vector-mult-def
by simp

lemma transpose-invertible:
fixes A :: real”('n:finite)"'n
assumes invertible A
shows invertible (transpose A)
proof —
from (invertible A) obtain A’ where A xx A’ = mat 1 and A’ xx A = mat 1
unfolding invertible-def
by auto
with matrix-transpose-mul [of A A’] and matrix-transpose-mul [of A’ A]
have transpose A’ xx transpose A = mat 1 and transpose A *x transpose A’ = mat 1
by (simp add: transpose-mat)+
thus invertible (transpose A)
unfolding invertible-def
by auto
qed

lemma times-invertible-eq-zero:
fixes x :: real’('n:finite) and A :: real*'n*'n
assumes invertible A and x vx A = 0
shows x = 0
proof —
from transpose-invertible and (invertible A) have invertible (transpose A) by auto

10

with invertible-times-eq-zero [of transpose A x| and (x vx A = 0)
show x = 0 by simp
qed

lemma matrix-id-invertible:
invertible (mat 1 :: ('a::semiring-1)"("n::finite)"'n)
proof —
from matrix-mul-lid [of mat 1 :: 'a*'n"'n]
show invertible (mat 1 :: 'a*'n"'n)
unfolding invertible-def
by auto

qed

lemma Image-refl-on-nonempty:
assumes refl-on Arand x € A
shows x € r“{x}
proof
from (refl-on A r) and (x € A) show (x, x) € r
unfolding refl-on-def
by simp
qed

lemma quotient-element-nonempty:
assumes equiv Arand X € A/ /r
shows 3 x. x € X
proof —
from (X € A/ /1) obtain x where x € A and X = r"“{x}
unfolding quotient-def
by auto
with equiv-class-self [of A r x] and (equiv A r) show 3 x. x € X by auto
qed

lemma zero-3: (3::3) = 0
by simp

lemma card-suc-ge-insert:
fixes A and x
shows card A + 1 > card (insert x A)
proof cases
assume finite A
with card-insert-if [of A x] show card A + 1 > card (insert x A) by simp
next
assume infinite A
thus card A + 1 > card (insert x A) by simp
qed

lemma card-le-UNIV:

fixes A :: ('n:finite) set
shows card A < CARD('n)

11

by (simp add: card-mono)

lemma setsum-forall-cong:

assumes V x€A. fx=gx

shows () x€A. fx) = (L x€A. g x)
proof —

from V x€A. fx=gx have A\x.xc A= fx=gx..

with setsum-cong show () x€A. fx) = (¥ x€A. g x) by simp
qed

lemma partition-Image-element:
assumes equiv Arand X € A//rand x € X
shows r“{x} = X
proof —
from Union-quotient and assms have x € A by auto
with quotient] [of x A r] have r’{x} € A/ /r by simp

from equiv-class-self and (equiv A r) and (x € A) have x € r“{x} by simp

from (equiv A v) and (x € A) have (x, x) € r
unfolding equiv-def and refl-on-def
by simp

with quotient-eql [of Ar X r"{x} x x]
and assms and (Image r {x} € A/ /1) and (x € Image r {x})
show r"“{x} = X by simp
qed

lemma card-insert-ge: card (insert x A) > card A
proof cases
assume finite A
with card-insert-le [of A x| show card (insert x A) > card A by simp
next
assume infinite A
hence card A = 0 by simp
thus card (insert x A) > card A by simp
qed

lemma choose-1:
assumes card S =1
shows 3 x. S = {x}
using (card S = 1) and card-eq-SucD [of S 0]
by simp

lemma choose-2:
assumes card S = 2
shows 3 xy. S = {xy}
proof —
from (card S = 2) and card-eq-SucD [of S 1]

12

obtain x and T where S = insert x T and card T = 1 by auto
from (card T = 1) and choose-1 obtain y where T = {y} by auto
with (S = insert x T) have S = {x,y} by simp
thus 3 xy. S = {x,y} by auto

qed

lemma choose-3:
assumes card S = 3
shows 3 xyz. S = {xy,z}
proof —
from (card S = 3) and card-eq-SucD [of S 2]
obtain x and T where S = insert x T and card T = 2 by auto
from (card T = 2) and choose-2 [of T| obtain y and z where T = {y,z} by auto
with (S = insert x T) have S = {x,y,z} by simp
thus 3 xy z. S = {x,y,z} by auto
qed

lemma card-gt-O-diff-singleton:

assumes card S > Oandx € S

shows card (S — {x}) =card S — 1
proof —

from (card S > 0) have finite S by (rule card-ge-0-finite)

with x € 5)

show card (S — {x}) = card S — 1 by (simp add: card-Diff-singleton)
qed

lemma eg-3-or-of-3:

fixes j :: 4

shows j = 3V (3 j:3.j = of-int (Rep-bitl j'))
proof (induct j)

fix j-int :: int

assume 0 < j-int

assume j-int < int CARD(4)

hence j-int < 3 by simp

show of-int j-int = (3::4) V (3 j":3. of-int j-int = of-int (Rep-bit1 j'))
proof cases
assume j-int = 3
thus
of-int j-int = (3:4) V (3 j':3. of-int j-int = of-int (Rep-bitl j'))
by simp
next
assume j-int # 3
with (-int < 3) have j-int < 3 by simp
with (0 < j-int) have j-int € {0..<3} by simp
hence Rep-bitl (Abs-bitl j-int :: 3) = j-int
by (simp add: bit1.Abs-inverse)
hence of-int j-int = of-int (Rep-bitl (Abs-bit1 j-int :: 3)) by simp
thus

13

of-int j-int = (3::4) V (3 j":3. of-int j-int = of-int (Rep-bit1 j'))
by auto
qed
qed

lemma sgn-plus:
fixes x y :: ‘az:linordered-idom
assumes sgn X = sgn y
shows sgn (x +y) =sgn x
proof cases
assume x = 0
with (sgn x = sgn y) have y = 0 by (simp add: sgn-0-0)
with (x = 0) show sgn (x + y) = sgn x by (simp add: sgn-0-0)
next
assume x # 0
show sgn (x + y) =sgn x
proof cases
assume x > 0
with (sgn x = sgn i) and sgn-1-pos [where ?'a = 'a] have y > 0 by simp
with (x > 0) and sgn-1-pos [where ?'a = a]
show sgn (x + y) = sgn x by simp
next
assume — x > 0
with x # 0) have x < 0 by simp
with (sgn x = sgn i) and sgn-1-neg (where ?'a = 'a] have y < 0 by auto
with (x < 0) and sgn-1-neg [where ?'a = 'a]
show sgn (x + y) = sgn x by simp
qed
qed

lemma sgn-div:
fixes x y = ‘a:linordered-field-inverse-zero
assumes y # 0 and sgn x = sgn y
showsx /vy >0
proof cases
assume y > 0
with (sgn x = sgn 1) and sgn-1-pos [where ?'a = a] have x > 0 by simp
with (y > 0) show x / y > 0 by (simp add: zero-less-divide-iff)
next
assume —y > 0
with y # 0) have y < 0 by simp
with (sgn x = sgn y) and sgn-1-neg [where ?'a = a] have x < 0 by simp
with (y < 0) show x / y > 0 by (simp add: zero-less-divide-iff)
qed

lemma abs-plus:
fixes x y :: ‘a:linordered-idom
assumes sgn X = sgn y
shows |x +y| = [x[+ [y|

14

proof —
from (sgn x = sgn i) have sgn (x + y) = sgn x by (rule sgn-plus)
hence |x + y| = (x + y) * sgn x by (simp add: abs-sgn)
also from (sgn x = sgn y)
have ... = x x sgn x + y * sgn y by (simp add: algebra-simps)
finally show |x + y| = |x| + |y| by (simp add: abs-sgn)

qed

lemma sgn-plus-abs:

fixes x y :: ‘a::linordered-idom

assumes |x| > |y|

shows sgn (x + y) = sgn x
proof cases

assume x > 0

with (x| > |y| have x + y > 0 by simp

with (x > 0) show sgn (x + y) = sgn x by simp
next

assume — x > 0

from (|x| > |y|) have x # 0 by simp

with (= x > 0) have x < 0 by simp

with (|x| > |y| have x + y < 0 by simp

with (x < 0) show sgn (x + y) = sgn x by simp
qed

lemma sqrt-4 [simp]: sqrt 4 = 2
proof —

have sqrt 4 = sqrt (2 % 2) by simp

thus sqrt 4 = 2 by (unfold real-sqrt-abs2) simp
qed

end

3 Tarski’s geometry

theory Tarski
imports Complex-Main Miscellany Euclidean-Space Metric
begin

3.1 The axioms

locale tarski-first3 =

fixesC:'p="p="p='p=bool (--=--1[99,99,99,99] 50)
assumes Al:Vab.ab=ba

and A2:Vabpgrs.ab=pqANab=rs—pqg=rs

and A3:Vabc.ab=cc—a=0b

15

locale tarski-firsts = tarski-first3 +
fixes B:: 'p = 'p = 'p = bool
assumes A4: Vgabc. dx. BgaxNax=bc
and A5:Vabcda'b'c’d . a%bANBabcANBa'b'c’
Nab=a'b'ANbc=b'c'Nad=a"d' Nbd=0b"d’
—cd=c'd’

locale tarski-absolute-space = tarski-firsts +
assumes A6:Vab.Baba —a=b
and A7:Vabcpg.BapcANBbgc— (3x.BpxbABgxa)
and A11: VX Y. (3a.Vxy.xe XANyeY —Baxy)
— (3b.Vxy.xe X ANyeY —Bxby)

locale tarski-absolute = tarski-absolute-space +

assumes A8: dabc. - BabcAN—-BbcaAN—-Bcab

and A9:VpgabcpF#qghap=aqANbp=bgAcp=cq
—BabcVBbcaVBcab

locale tarski-space = tarski-absolute-space +
assumes A10:Vabcdt. Badt N\BbdcNhNa#d
— (3xy.Babx ANBacy ANBxty)

locale tarski = tarski-absolute + tarski-space

3.2 Semimetric spaces satisfy the first three axioms

context semimetric
begin
definition smC :: 'p = 'p = 'p = 'p = bool (- - =sm - - [99,99,99,99] 50)
where [simp]: a b =gy cd = dist a b = dist c d
end

sublocale semimetric < tarski-first3 smC

proof
from symm show Va b. a b =gy b a by simp
showVabpgrs.ab=smpqgNab=smtrs — pq=smtsbysimp
show Vabc.ab =gy cc— a=>bbysimp

qed

3.3 Some consequences of the first three axioms

context tarski-first3
begin
lemma Al ab=ba
by (simp add: A1)

16

lemma A2 [ab=pgab=rs| = pqg=rs
proof —

assumeab=pgandab=rs

with A2 show ?thesis by blast
qed

lemma A3 ab=cc=a=0»
by (simp add: A3)

theorem th2-1:ab=ab
proof —

from A2’ [of baa bab] and A1’ [of b a] show ?thesis by simp
qed

theorem th2-2:ab=cd = cd=ab
proof —

assumea b =cd

with A2 [ofa b cd a b] and th2-1 [of a b] show ?thesis by simp
qed

theorem th2-3: [ab=cd;cd=ef]| = ab=ef
proof —

assumeab=cd

with th2-2 [of a b c d] have c d = a b by simp

assumecd =ef

with A2 [of cdabef] and (c d = a b) show ?thesis by simp
qed

theorem th2-4:ab=cd = ba=cd
proof —

assumeab=cd

with th2-3 [of baa b c d] and A1’ [of b a] show ?thesis by simp
qed

theorem th2-5:ab=cd = ab=dc
proof —

assumeab=cd

with th2-3 [of ab c d d c] and A1’ [of ¢ d] show ?thesis by simp
qed

definition is-segment :: 'p set = bool where
is-segment X £ Ixy. X = {x,y}

definition segments :: 'p set set where
segments = {X. is-segment X}

definition SC :: 'p set = 'p set = bool where
SCXY23Jwxyz X={w,x} ANY={y,z} A\wx=yz

17

/

definition SC-rel :

: ('p set x p set) set where
SC-rel = {(X,Y) | X

p
Y.SCX Y}

lemma left-segment-congruence:
assumes {4, b} ={p,q} andpg=cd
showsab=cd
proof cases
assume a4 = p
with unordered-pair-element-equality [of a b p q] and {a, b} = {p, g}
have b = g by simp
with (p g = c d) and @ = p) show ?thesis by simp
next
assume a # p
with {a, b} = {p, g} have a = g by auto
with unordered-pair-element-equality [of a b q p] and {a, b} = {p, g}
have b = p by auto
with (p g =cd and @ = ¢) have ba = c d by simp
with th2-4 [of b a c d] show ?thesis by simp
qed

lemma right-segment-congruence:
assumes {¢,d} = {p,q} andab=pq
showsab=cd
proof —
from th2-2 [ofabp q| and @ b = p q) have p g = a b by simp
with left-segment-congruence [of cd p g a b] and {c,d} = {p, q}
have c d = a b by simp
with th2-2 [of c d a b] show ?thesis by simp
qed

lemma C-SC-equiv: ab = cd = SC {a, b} {c, d}
proof
assumea b =cd
with SC-def [of {a, b} {c, d}] show SC {a, b} {c, d} by auto
next
assume SC {a, b} {c, d}
with SC-def [of {a, b} {c, d}]
obtain w x y z where {4, b} = {w, x} and {c, d} = {y,z} andwx =y z
by blast
from left-segment-congruence [of a b w x y z] and
{a, b} = {w, x}> and
wx=y2z
have a b = y z by simp
with right-segment-congruence [of cd y z a b] and ({c, d} = {y, z}
show a b = ¢ d by simp
qed

lemmas SC-refl = th2-1 [simplified]

18

lemma SC-rel-refl: refl-on segments SC-rel
proof —
note refl-on-def [of segments SC-rel]
moreover
{fixZ
assume Z € S5C-rel
with SC-rel-def obtain X Y where Z = (X, Y) and SC X Y by auto
from (SC X Y) and SC-def [of X Y]
have 3w x. X = {w, x} and Jy z. Y = {y, z} by auto
with is-segment-def [of X| and is-segment-def [of Y]
have is-segment X and is-segment Y by auto
with segments-def have X € segments and Y € segments by auto
with (Z = (X, Y)) have Z € segments x segments by simp }
hence SC-rel C segments x segments by auto
moreover
{ fix X
assume X € segments
with segments-def have is-segment X by auto
with is-segment-def [of X] obtain x y where X = {x, y} by auto
with SC-def [of X X]| and SC-refl have SC X X by (simp add: C-SC-equiv)
with SC-rel-def have (X, X) € SC-rel by simp }
hence V X. X € segments — (X, X) € SC-rel by simp
ultimately show ?thesis by simp
qed

lemma SC-sym:
assumes SC X Y
shows SC Y X
proof —
from SC-def [of X Y] and (SC X V)
obtain w x y z where X = {w, x} and Y = {y,z} andwx =y z
by auto
from th2-2 [of w x y z] and (w x = y 2 have y z = w x by simp
with SC-def [of Y X] and (X = {w, x}) and (Y = {y, z})
show SC Y X by (simp add: C-SC-equiv)
qed

lemma SC-sym” SCXY =SCY X
proof

assume SC XY

with SC-sym [of X Y] show SC Y X by simp
next

assume SC Y X

with SC-sym [of Y X] show SC X Y by simp
qed

lemma SC-rel-sym: sym SC-rel
proof —

19

{fixXY
assume (X, Y) € SC-rel
with SC-rel-def have SC X Y by simp
with SC-sym’ have SC Y X by simp
with SC-rel-def have (Y, X) € SC-rel by simp }
with sym-def [of SC-rel] show ?thesis by blast
qed

lemma SC-trans:
assumes SC X Yand SCY Z
shows SC X Z
proof —
from SC-def [of X Y] and (SC X Y)
obtain w x y z where X = {w, x} and Y = {y,z} andwx =y z
by auto
from SC-def [of Y Z] and (SC Y Z)
obtainp grswhere Y = {p,q} and Z = {r, s} and p g = r s by auto
from (Y ={y,zp and Y ={p,q} and pg=rs
have y z = r s by (simp add: C-SC-equiv)
with th2-3 [of w x y z r s] and w x = y 2 have w x = r s by simp
with SC-def [of X Z] and (X = {w, x}) and (Z = {r, s}
show SC X Z by (simp add: C-SC-equiv)
qed

lemma SC-rel-trans: trans SC-rel
proof —
{fixXYZ
assume (X, Y) € SC-rel and (Y, Z) € SC-rel
with SC-rel-def have SC X Y and SC Y Z by auto
with SC-trans [of X Y Z] have SC X Z by simp
with SC-rel-def have (X, Z) € SC-rel by simp }
with trans-def [of SC-rel| show ?thesis by blast
qed

lemma A3-reversed:
assumesaa=bc
shows b = ¢

proof —
from @ a = b c) have b ¢ = a a by (rule th2-2)
thus b = c by (rule A3)

qed

end

sublocale farski-first3 C equiv segments SC-rel
by (simp add: equiv-def SC-rel-refl SC-rel-sym SC-rel-trans)

3.4 Some consequences of the first five axioms

context tarski-first5

20

begin
lemma A4 3x.BgaxNax=bc
by (simp add: A4 [simplified])

theorem th2-8:aa =00

proof —
from A4’ [of - a b b] obtain x where a x = b b by auto
with A3’ [of a x b] have x = a by simp
with @ x = b b) show ?thesis by simp

qed

definition OFS :: ['p,'n,’p,’n,'p,'p,’p,'p] = bool where
OFSabcda'b'c'd =
BabcABa'b'c’Nab=a'b!ANbc=b'c'Nad=a'"d Nbd=b"d’

lemma A5": [OFSabcda’b'c'da #b] = cd=c'd’
proof —

assume OFSabcda’b'c’'d’anda # b

with A5 and OFS-def show ?thesis by blast
qed

theorem th2-11:
assumes hiypotheses:
Babc
Ba'b'c’
ab=a'b’
be=b'c’
showsac=a'c’
proof cases
assumea =b
with @ b = a’ b’ have a’ = b’ by (simp add: A3-reversed)
with (b ¢ = b’ ¢ and @ = b) show ?thesis by simp
next
assume g #= b
moreover
note A5’ [ofabcaa’b’c’a’] and
unordered-pair-equality [of a c| and
unordered-pair-equality [of a’ ¢']
moreover
from OFS-def [ofabcaa’b'c’a’] and
hypotheses and
th2-8 [of a a'] and
unordered-pair-equality [of a b] and
unordered-pair-equality [of a’ b’]
have OFSabcaa'b’c'a’ by (simp add: C-SC-equiv)
ultimately show ?thesis by (simp add: C-SC-equiv)
qed

lemma A4-unique:

21

assumes g #aand Bgaxandax=bc
and Bgax'andax'=bc
shows x = x’
proof —
from SC-sym’ and SC-trans and C-SC-equivand @ x’'=bcand ax=bo
have a x = a x’ by blast
with th2-11 [of gax ga x'] and (B ga x) and B g a x") and SC-refl
have g x = g x' by simp
with OFS-def [of ga x x ga x x'] and
(Bgax and
SC-refl and
ax=axh
have OFS g a x x g a x x" by simp
with A5’ [of gax x gax x'] and (g # @ have x x = x x' by simp
thus x = x’ by (rule A3-reversed)
qed

theorem th2-12:
assumes g # a
shows dIx. Bgax Nax=bc
using (g # a) and A4’ and A4-unique
by blast
end

3.5 Simple theorems about betweenness

theorem (in tarski-first5) th3-1: Ba b b

proof —
from A4 [rule-format, of a b b b] obtain x where Ba b x and b x = b b by auto
from A3 [rule-format, of b x b] and (b x = b b) have b = x by simp
with (B a b x) show B a b b by simp

qed

context tarski-absolute-space
begin
lemma A6":
assumes Baba
showsa =0
proof —
from A6 and (B a b @) show a = b by simp
qed

lemma A7":

assumes Bapcand Bbgc

shows 3x. BpxbABgxa
proof —

from A7 and (Ba p ¢ and (B b g ¢) show ?thesis by blast
qed

22

lemma A11"

assumesV xy.xc XAycY —Baxy

shows 3 b.Vxyxe XANyeY —Bxby

proof —

from assms have 3 0.V xy.x e X Ay € Y — Bax y by (rule exI)
thus 3 0.V xy.x e XAy €Y — Bxbyby (rule A11 [rule-format])
qed

theorem th3-2:
assumes Ba b c
shows Bcba
proof —
from th3-1 have B b c c by simp
with A7’ and (B a b ¢) obtain x where B b x b and B ¢ x a by blast
from A6’ and (B b x b) have x = b by auto
with (B ¢ x @ show B ¢ b a by simp
qed

theorem th3-4:
assumes Babcand Bbac
showsa =10

proof —
from Babc and Bbac and A7 [ofabcbal
obtain x where B b x b and B a x a by auto
hence b = x and a = x by (simp-all add: A6’)
thus a = b by simp

qed

theorem th3-5-1:
assumes Babdand Bbcd
shows Babc
proof —
from Babd and Bbcd and A7’ [ofabd b c]
obtain x where B b x b and B ¢ x a by auto
from (B b x b) have b = x by (rule A6)
with (B ¢ x @ have B ¢ b a by simp
thus B a b ¢ by (rule th3-2)
qed

theorem th3-6-1:
assumes Babcand Bacd
shows Bbcd
proof —
from (Bacd and (Ba b ¢ and th3-2 have B d ca and B ¢ b a by fast+
hence B d c b by (rule th3-5-1)
thus B b ¢ d by (rule th3-2)
qed

23

theorem th3-7-1:
assumes b #cand Babcand Bbcd
shows Bacd

proof —
from A4’ obtain x where B a ¢ x and ¢ x = c d by fast
from (Ba b c) and (B a c x) have B b c x by (rule th3-6-1)
have c d = c d by (rule th2-1)
with b #c0and Bbcx and cx=cd)and (Bbcd
have x = d by (rule A4-unique)
with (B a ¢ x) show B a c d by simp

qed

theorem th3-7-2:
assumes b #cand Babcand Bbcd
shows Babd

proof —
from (Bbcd and (Ba b c) and th3-2 have Bd c b and B c b a by fast+
with (b # ¢ and th3-7-1 [of ¢ b d a] have B d b a by simp
thus B a b d by (rule th3-2)

qed

end

3.6 Simple theorems about congruence and betweenness

definition (in farski-first5) Col :: 'p = 'p = 'p = bool where
Colabc=BabcVBbcaVBcab

end

4 Real Euclidean space and Tarski’s axioms

theory Euclid-Tarski
imports Tarski Suplnf
begin

4.1 Real Euclidean space satisfies the first five axioms

abbreviation
real-euclid-C :: [real”('n::finite), real”('n), real”('n), real('n)] = bool
(-- =R - - [99,99,99,99] 50) where
real-euclid-C £ norm-metric.smC

definition real-euclid-B :: [real”('n::finite), real”('n), real”('n)] = bool
(BRr - - - [99,99,99] 50) where
BRabc23L0<IANI<IAb—a=1I1x%g(c—a)

interpretation real-euclid: tarski-first5 real-euclid-C real-euclid-B

24

proof

By virtue of being a semimetric space, real Euclidean space is already known to
satisfy the first three axioms.

{fixgabc
have 3x. BrqaxNax=rbc
proof cases
assume g =a
let’x=a+c—»b
have Br qa ?x
proof —
let 71 =0 :: real
note real-euclid-B-def [of q a ?x]
moreover
have ?] > 0 and ?I < 1 by auto
moreover
from (g = @ have a — g = 0 by simp
hence a — g = ?1 g (?x — g) by simp
ultimately show ?thesis by auto
qed
moreover
havea — ?x =b — c by simp
hence a ?x =g b c by simp
ultimately show ?thesis by blast
next
assume g # a
hence norm-dist g a > 0 by simp
let ?k = norm-dist b ¢ / norm-dist q a
from (norm-dist g a > 0)
and divide-nonneg-pos [of norm-dist b ¢ norm-dist q a
have ?k > 0 by simp
let?x =a+ ?k xg (a — q)
have Br g a ?x
proof —
let?2l =1/ (1+ ?k)
from (?k > 0) have ?] > 0 by simp
note real-euclid-B-def [of q a ?x]
moreover
from (?k > 0) have ?] > 0 and ?I < 1 by auto
moreover
from scaleR-left-distrib [of 1 ?k a — q]
have (1 + ?k) xg (a — q) = ?x — g by simp
hence ?1 xg ((1 + ?k) *g (a — q)) = ?1 xg (?x — q) by simp
with (?] > 0) and scaleR-right-diff-distrib [of ?1 ?x q]
havea — g = ?1 xg (?x — q) by simp
ultimately show Br g a ?x by blast
qed
moreover
havea ?x =g b ¢

25

proof —
from norm-scaleR [of ?k a — q] have
norm-dist a ?x = |?k| x norm (a — q) by simp
also from (?k > 0) have
... = ?k x norm (a — q) by arith
also from norm-metric.symm [of q a] have
... = ?k * norm-dist q a by simp
finally have
norm-dist a ?x = norm-dist b ¢ / norm-dist g a x norm-dist q a .
with (morm-dist g a > 0) show a ?x =R b c by auto
qed
ultimately show ?thesis by blast
qed }
thus Vgabc. 3x. B ga x A ax =R b c by auto
{fixabcda'b'c'd’
assume a # b and
Br abcand
Bra'b’c"and
ab=ra'b’ and
bc=rb'c’and
ad=ra’d and

bd =R bld,
havecd =g c¢’d’
proof —

{ fixm

fix p q r :: real”('n::finite)
assume 0 < m and
m < 1 and

p # qand
q—p=mx*g(r—p)
from (p # ¢ and (g — p = m xg (r — p)) have m # 0
proof —
{ assume m =0
with (— p = m xg (r — p)) have g — p = 0 by simp
with (p # ¢ have False by simp }
thus ?thesis ..
qed
with m > 0) have m > 0 by simp
from (g — p = m xg (r — p)’ and
scaleR-right-diff-distrib [of m r p|
have g — p =m xg v — m xg p by simp
henceq—p—qg+p—mx*gr=
M*RT —M*gp —q+p—mMxgr
by simp
with scaleR-left-diff-distrib [of 1 m p] and
scaleR-left-diff-distrib [of 1 m q]
have (1 — m) g p — (1 — m) g g = m *g q — m *g v by auto
with scaleR-right-diff-distrib [of 1 — m p q] and
scaleR-right-diff-distrib [of m q r]

26

have (1 — m) xg (p — q) = m xg (g — r) by simp
with norm-scaleR [of 1 — m p — q| and norm-scaleR [of m q — 7]
have |1 — m| x norm (p — q) = |m| * norm (q — r) by simp
with imm > 0)and m < 1)
have norm (q —r) = (1 —m) / m = norm (p — q) by simp
moreover from (p # ¢ have norm (p — q) # 0 by simp
ultimately
have norm (q — r) / norm (p — q) = (1 — m) / m by simp
with tn # 0) have
norm-dist q v / norm-dist p g = (1 — m) / m and m # 0 by auto }
note linelemma = this
from real-euclid-B-def [of a b c] and (Br a b ¢)
obtain where 0 <land ! <1and b —a=1x%g (c — a) by auto
from real-euclid-B-def [of a’ b’ ¢ and (Bg a’ b’ ¢/)

obtain /' where0 < !’and I’ < 1and b’ —a’=1"xg (¢/ — a’) by auto

from @ # b) and @ b =g a’ b have a’ # b’ by auto
from linelemma [of 1 a b ¢] and
(I > 0)and
(1 <1 and
@ # b and
b—a=Ixg(c—a)
have ! # 0 and (1 —) / | = norm-dist b ¢ / norm-dist a b by auto
from (1 — 1) / 1 = norm-dist b ¢ / norm-dist a b) and
{@ab=ra’b"and
bc=Rrb ch
have (1 — 1) / I = norm-dist b’ ¢’ / norm-dist a’ b’ by simp
with linelemma [of I"a’ b’ ¢/| and
q'> 0y and
(1'< 1 and
@' # b’ and
b"—a'=1"xg (¢ —a’)
havel’#0and (1 —1) /1= (1-1') / I'by auto
from(1—-1)/1=(1-1)/1
have (1 —1) /1x1x1'=(1—-1")/1I"x1x1"bysimp
with ({ # 0)and (' # 0) have (1 — 1) xI'= (1 — 1) x I by simp
with left-diff-distrib [of 1 11'] and left-diff-distrib [of 11" I]
have | = I’ by simp
{ fixm
fix p q r s :: real”('n::finite)
assume m # 0 and
q—p=mxg (r—p)
with scaleR-scaleR have r — p = (1/m) g (g — p) by simp
with cosine-rule [of r s p]
have (norm-dist r s)> = (norm-dist r p)% + (norm-dist p s)* +
2% ((1/m) xg (g —p)) - (p =)
by simp
also from inner.scaleR-left [of 1/m q — pp — s]
have ... =
(norm-dist r p)? + (norm-dist ps)® +2/m* ((g — p) - (p — s))

27

by simp
also from (m # 0) and cosine-rule [of g s p]

have ... = (norm-dist r p)® + (norm-dist p s)? +
1/m x ((norm-dist q s)> — (norm-dist q p)> — (norm-dist p s)?)
by simp

finally have (norm-dist r s)> = (norm-dist r p)> + (norm-dist p s)> +
1/m x ((norm-dist q s)> — (norm-dist q p)> — (norm-dist p s)?) .
moreover
{ from norm-dist-dot [of r p] and (r — p = (1/m) *g (g — p))
have (orm-dist r p)? — ((1/m) & (0 — p)) - ((1/m) & (q — p))
by simp
also from inner.scaleR-left [of 1/m q — p] and
inner.scaleR-right [of - 1/m g — p]
have ... =1/m? x ((9 —p) - (9 - p))
by (simp add: square-expand)
also from norm-dist-dot [of q p] have ... = 1/m? % (norm-dist q p)?
by simp
finally have (norm-dist r p)> = 1/m? (norm-dist q p)> . }
ultimately have
(norm-dist r s)? = 1/m? x (norm-dist q p)> + (norm-dist p s)* +
1/m * ((norm-dist q s)> — (norm-dist q p)*> — (norm-dist p s)?)
by simp
with norm-metric.symm [of q p]
have (norm-dist r s)? = 1/m? x (norm-dist p q)*> + (norm-dist p s)? +
1/m x ((norm-dist q s)> — (norm-dist p q)> — (norm-dist p s)?)
by simp }
note fiveseglemma = this
from fiveseglemma [of Ibacd) and { # 00 and b — a =1 *g (c — a))
have (norm-dist c d)> = 1/1? x (norm-dist a b)> + (norm-dist a d)> +
1/1 % ((norm-dist b d)> — (norm-dist a b)*> — (norm-dist a d)?)
by simp
also from (= I’ and
{ab=ra’b"and
ad =ra’d) and

bd=gbdh

have ... = 1/1? x (norm-dist a’ b")?> + (norm-dist a’ d")*> +

1/1" ((norm-dist b’ d")> — (norm-dist a’ b")?> — (norm-dist a’ d")?)
by simp
also from fiveseglemma [of I' b’ a’ ¢’ d’] and

(" # 0) and
b"'—a'=1"xg (¢ —a’)

have ... = (norm-dist ¢’ d")? by simp

finally have (norm-dist c d)? = (norm-dist ¢’ d’)* .
hence sqrt ((norm-dist ¢ d)?) = sqrt ((norm-dist ¢’ d')?) by simp
with real-sqrt-abs show ¢ d =g ¢’ d' by simp
qed }
thusVabceda'b'c'd'.
a#bANBrabcABra'b'c' A
ab=Rpa'b'’ANbc=Rb'c’'Nad=ga’d' Nbd=grb'd —

28

cd=rc’'d
by blast
qed

4.2 Real Euclidean space also satisfies axioms 6, 7, and 11

lemma rearrange-real-euclid-B:
fixes w y z :: real”('n) and h
showsy —w=hxg (z—w)+—y=hxgz+ (1 —h)*xgw
proof
assume y — w = h *g (z — w)
hencey — w + w = h xR (z — w) + w by simp
hence y = h xg (z — w) + w by simp
with scaleR-right-diff-distrib [of h z w]
have y = h g z + w — h xg w by simp
with scaleR-left-diff-distrib [of 1 h w]
show y = h g z + (1 — h) g w by simp
next
assumey =hs*gz+ (1 —h) *xgw
with scaleR-left-diff-distrib [of 1 h w]
have y = h g z + w — h *g w by simp
with scaleR-right-diff-distrib [of h z w]
have y = I xg (z — w) + w by simp
hencey — w + w = h *g (z — w) + w by simp
thus y — w = h g (z — w) by simp
qed

interpretation real-euclid: tarski-absolute-space real-euclid-C real-euclid-B
proof
{fixab
assume Braba
with real-euclid-B-def [of a b a]
obtain | where b — a = [xg (a — a) by auto
hence a = b by simp }
thus Va b. BR aba — a = b by auto
{fixabcpgq
assume BRrapcand BR bgc
from real-euclid-B-def [of a p c] and Brap ¢
obtain i wherei > 0andi < 1and p — a =i g (c — a) by auto
have 3x. BRpxb ABrgxa
proof cases
assume i = (
with (p —a =i xg (c — a)) have p = a by simp
hence p — a = 0 xg (b — p) by simp
moreover have (0::real) > 0 and (0::real) < 1 by auto
moreover note real-euclid-B-def [of p a]
ultimately have Bg p a b by auto
moreover
{havea — g =1 g (a — q) by simp

29

moreover have (1::real) > 0 and (1::real) < 1 by auto
moreover note real-euclid-B-def [of q a a
ultimately have BR q a a by blast }
ultimately have Bg p a b A BR q a a by simp
thus 3x. BR p x b A\ Br q x a by auto
next
assume i # 0
from real-euclid-B-def [of b g ¢] and (Br b g ¢
obtain j wherej > 0andj < 1and g — b =j*g (¢ — b) by auto
fromi@>0and G <1)
havel —i>0and 1 — i <1 by auto
from (> 0) and (I — i > 0) and mult-nonneg-nonneg
have j x (1 — i) > 0 by auto
with (i > 0) and G # 0) have i + j x (1 — i) > 0 by simp
hence i + j * (1 — i) # 0 by simp
let?l=j*(1—1i)/ (i+j*(1-1i))
from diff-divide-distrib [of i +j* (1 — i) j* (1 —i)i+j=* (1 —i)] and
i+j*x(1—-10)#0
havel —?1 =i/ (i+j* (1 —1i)) by simp
let?k=ix(1—j)/ (j+ix(1—7j))
from right-diff-distrib [of i 1 j| and
right-diff-distrib [of j 1 i] and
mult-commute [of i j] and
add-commute [of i j]
havej+ix* (1 —j) =i+ jx (1— i) bysimp
with (4 j* (1 — i) # 0 havej +i* (1 —j) # 0 by simp
with diff-divide-distrib [of j + i % (1 —j) i* (1 —j)j+i* (1 —J)]
havel —?k=j/ (j+ix* (1 —j)) bysimp
with @ — 21 =i/ (i+j*(1— i) and
j4+ix(1—j)=i+j=*(1—1i)and
times-divide-eq-left [of - i + j * (1 — i)] and
mult-commute [of i |
have (1 — ?I) xj = (1 — ?k) = i by simp
moreover
{from 1 —?k=j/(j+ix(1—7)) and
jHix(1—j)=i+jx(1—1i)
have ?] = (1 — ?k) * (1 — i) by simp }
moreover
{from (1 —?1=i/(i+j*(1—1i)) and
Gix(1—j)=i+jx(1—1i)
have (1 — ?1) % (1 — j) = ?k by simp }
ultimately
have ?l sga+ ((1 —?) xj) *grc+ ((1 — ?I)
2k g b+ ((1 — ?k) x i) xg c + ((1 — ?k) *
by simp
with scaleR-scaleR
have ?lxga+ (1 —?l) xgj*gc+ (1 —?1) *g (1 —j) *g b=
2k *g b+ (1 — ?k) *gi*grc+ (1 —?k) *g (1 —i) *ga
by simp

(1 —1))*ga

30

with scaleR-right-distrib [of (1 — ?1)j g c (1 — j) *g b] and
scaleR-right-distrib [of (1 — ?k) i*g c (1 — i) *g a] and
add-assoc [of ?1 xg a (1 — ?1) *g jxg c (1 — ?I) *g (1 —j) *g b] and
add-assoc [of ?k *g b (1 — ?k) g i g ¢ (1 — ?k) *g (1 — i) *g 4]
have ?l xga+ (1 — ?) xg (j*grc+ (1 —j) *g b) =
2k kg b+ (1 —?k) *g (i*gc+ (1 —1i) *ga)
by arith
from ?lxga+ (1 —?1) *g (j*grc+ (1 —j) *gb) =
2k xg b+ (1 — ?k) xg (i *gr ¢ + (1 — i) *g a)) and
p—a=ixg (c—a) and
(g —b=jx*g (c—Db) and
rearrange-real-euclid-B [of p a i c] and
rearrange-real-euclid-B [of q b j c]
have ?l g a + (1 — ?) xg g = ?k g b+ (1 — ?k) *g p by simp
let?x =?lsga+ (1 —7?1) xrq
from rearrange-real-euclid-B [of ?x q ?1 a]
have ?x — g = ?] xg (a — q) by simp
from (?x = ?k *g b + (1 — ?k) *g p) and
rearrange-real-euclid-B [of ?x p ?k b]
have ?x — p = ?k xg (b — p) by simp
from (i +jx (1 — i) > 0) and
j*(1—1i)>0 and
zero-le-divide-iff [of j* (1 — i) i+ j* (1 — i)]
have ?I > 0 by simp
from (i +j* (1 —i) > 0) and
>0 and
zero-le-divide-iff [of i i+ j* (1 —i)] and
1—-?1=i/(i+j*x(1—-14))
have 1 — ?I > 0 by simp
hence ?I <1 by simp
with (?] > 0) and
(?x —gq=7?l*g (a —q) and
real-euclid-B-def [of g ?x a]
have BRr q ?x a by auto
from (j < 1) have 1 — j > 0 by simp
with (I — ?] > 0) and
(1—=720)%(1—j)="?k and
zero-le-mult-iff [of 1 — ?11 — j]
have ?k > 0 by simp
from (j > 0) have 1 — j <1 by simp
from (?] > 0) have 1 — ?I < 1 by simp
with (1 —j < 1) and
(1—-j>0 and
mult-mono [of 1 —?111 — j 1] and
(1-=?D)*(1—j)=7hk
have ?k < 1 by simp
with (?k > 0) and
(?>x —p ="k xg (b—p) and
real-euclid-B-def [of p ?x b]

31

have Br p ?x b by auto
with (B g ?x @) show ?thesis by auto
qed }
thusVabcpg.Brapc ABrbgc— (3x. BR pxb A Br q x a) by auto

{fixXY

assume Ja. Vxy. x€e XANye€Y — Braxy

then obtain s where Vxy.x € X Ay € Y — Br a x y by auto
have 3b.Vxy.x € XAye€Y — Brxby

proof cases
assume X C {a} VY = {}
let?b=a
{fixxy
assumex € Xandy €Y
with X C {a} VY = {}) have x = a by auto
from Vxy.xc XAyceY —Braxyandxec X andyc Y
have BR a x y by simp
with (x = a) have BR x ?b y by simp }
hence Vxy.x € XAy €Y — Br x ?by by simp
thus ?thesis by auto
next
assume (X C {a} VY = {})

hence X — {a} # {} and Y # {} by auto
from (X — {a} # {} obtain c where ¢ € X and ¢ # a by auto
from (c # a) have ¢ — a # 0 by simp
{ fixy
assumey € Y
with Vxy.x e XAye€Y — Braxy and c € X
have BR a c y by simp
with real-euclid-B-def [of a c y]
obtain / where/ > 0Oand ! < 1and c —a =1xg (y — a) by auto
from (c —a=1x%g (y —a)) and (¢ — a # 0) have | # 0 by simp
with (> 0) have [> 0 by simp
with ¢ —a=1x%g (y —a) havey —a = (1/1) g (c — a) by simp
from «(> () and (< 1) have 1/I > 1 by simp
with (y —a = (1/1) xg (c — a))
have 3j>1.y — a =j *g (c — a) by auto }
note ylemma = this
from (Y # {}) obtain d where d € Y by auto
with ylemma [of d]
obtain jd where jd > 1 and d — a = jd xg (c — a) by auto
{ fix x
assume x € X
with Vxy.x e X Aye€Y — BraxyanddcY)
have BR a x d by simp
with real-euclid-B-def [of a x d]
obtain / where ! > 0 and x — a = [*g (d — a) by auto

32

from (x —a=1xg (d — a)) and
d—a=jdxg (c—a) and
scaleR-scaleR
have x —a = (I * jd) *g (c — a) by simp
hence 3i. x — a =i g (c — a) by auto }
note xlemma = this
let?S={j.j>1AN3yeY.y—a=js*p (c—a))}
from d € Y)and (jd > 1) and d — a = jd *g (c — a))
have ?S # {} by auto
let 72k = Inf 7S
let ?b = ?k *g c + (1 — ?k) g a
from rearrange-real-euclid-B [of ?b a ?k c]
have ?b — a = ?k xg (c — a) by simp
{fixxy
assumex € Xandy €Y
from xlemma [of x| and (x € X)
obtain i where x — a =i g (c — a) by auto
from ylemma [of y] and (y € V)
obtain j where j > 1 and y — a = j *g (c — a) by auto
with (y € Y) have j € ?S by auto
with Inf-lower have ?k < j by auto
{ fixh
assume /1 € 75
hence i > 1 by simp
from (h € ?5)
obtain z where z € Y and z — a = h *g (c — a) by auto
from Vxy.xc XAycY —Braxyandxc X)andzc Y
have BR a x z by simp
with real-euclid-B-def [of a x z]
obtain / where | < 1and x — a = g (z — a) by auto
with z — a = h xg (¢ — a)) and scaleR-scaleR
have x —a = (I * h) xg (c — a) by simp
with x —a =ix*g (c —a))
have i xg (c —a) = (I x h) xg (c — a) by auto
with scaleR-cancel-right and (¢ — a # 0) have i = | = h by blast
with ¢ < D) and (h > 1) have i < h by simp }
with (?S # {}) and Inf-greatest [of ?S] have i < ?k by simp
havey — x = (y — a) — (x — a) by simp
with(y —a=jxg (c—a) and x —a=1ixg (c —a)
have y — x =j *g (c —a) — i xg (c — a) by simp
with scaleR-left-diff-distrib [of j i ¢ — a]
have y — x = (j — i) *g (¢ — a) by simp
have ?b — x = (?b — a) — (x — a) by simp
with ?b —a="7?k*g (c —a) and x —a =ix*g (c —a)
have ?b — x = ?k xg (c — a) — i xg (c — a) by simp
with scaleR-left-diff-distrib [of ?k i ¢ — a]
have ?b — x = (?k — i) xg (c — a) by simp
have Br x ?b y
proof cases

33

assume i = j

with ¢ < ?k) and (?k < j) have ?k = i by simp

with ?b — x = (?k — i) *g (¢ — a)) have ?b — x = 0 by simp

hence ?b — x = 0 g (y — x) by simp

with real-euclid-B-def [of x ?b y] show Bg x ?b y by auto

next

assume i # j

with ¢ < ?k) and (?k < j) have j — i > 0 by simp

with (y — x = (j — i) *g (c — a)) and scaleR-scaleR
havec —a=(1/ (j —i)) *r (y — x) by simp

with (?b — x = (?k — i) *g (¢ — a)) and scaleR-scaleR
have ?b — x = ((?k — i) / (j — i)) *r (y — x) by simp

let 21 = (?k — i) / (j — i)

from (?k < j) have ?k — i <j — i by simp

with (j — i > 0) have ?] < 1 by simp

from (i < ?k) and (j — i > 0) and pos-le-divide-eq [of j — i 0 7k —]
have ?I > 0 by simp

with real-euclid-B-def [of x ?b y] and

(?1 < 1) and
b —x="?lxg (y — x))
show BR x ?b y by auto
qed }
thus 3b.Vxy.x € X Ay € Y — Br x by by auto
qed }
thus VX Y. (3a.Vxy.xe XANyeY —Braxy) —
(3b.Vxy.xe XANyeY — Brxby)
by auto
qed

4.3 Real Euclidean space satisfies the Euclidean axiom

lemma rearrange-real-euclid-B-2:
fixes a b ¢ :: real”('n::finite)
assumes | # 0
showsb —a=1xg (c—a)«—c=(1/1)*xgb+ (1 —1/1)*ga
proof
from scaleR-right-diff-distrib [of 1/1 b a]
have (1/1) xg (b —a) =c—a<+— (1/1) xg b — (1/1) *g a + a = ¢ by auto
also with scaleR-left-diff-distrib [of 1 1/1 a]
have ... +— ¢ = (1/1) xg b+ (1 — 1/1) *g a by auto
finally have eqg:
(1/)sg(b—a)=c—a+—c=(1/1)*xgb+ (1 —-1/])*ga.
{assume b —a=1x%g (c —a)
with (I # 0) have (1/1) xg (b — a) = c — a by simp
with eg show ¢ = (1/1) g b+ (1 —1/1) xga.. }
{assumec= (1/]) xg b+ (1 — 1/1) xga
with eq have (1/1) *g (b —a)=c—a ..
hence I xg (1/1) *g (b —a) =1xg (c — a) by simp
with (# 0) show b — a =1 g (c — a) by simp }

34

qed

interpretation real-euclid: tarski-space real-euclid-C real-euclid-B
proof
{fixabcdt
assume BRadtand BR bdcand a # d
from real-euclid-B-def [of ad t] and Brad b
obtain j wherej > 0andj < 1andd —a = *g (t — a) by auto
from d —a =j g (t —a)) and @ # d) have j # 0 by auto
with d — a = j xg (t — a)) and rearrange-real-euclid-B-2
have t = (1/j) g d + (1 — 1/j) *r a by auto
let ?2x = (1/j) #r b+ (1 — 1/]) #g a
let?y = (1/j) *rc+ (1 —1/j) *g a
from (j # 0) and rearrange-real-euclid-B-2 have
b—a=j*g (?x —a)and ¢ —a =j g (?y — a) by auto
with real-euclid-B-def and (j > 0) and (< 1) have
Brab ?x and Br a ¢ ?y by auto
from real-euclid-B-def and (BR b d ¢) obtain k where
k>0andk <1andd — b=kx*g (c —b) by blast
from ¢t = (1/j) xr d + (1 — 1/j) *g @ have
t—?2x=(1/j) *xg d — (1/]) *gr b by simp
also from scaleR-right-diff-distrib [of 1/j d b] have
...=(1/j) *g (d — b) by simp
also from d — b =k *g (¢ — b)) have
...=kx*g (1/]) *g (c — b) by simp
also from scaleR-right-diff-distrib [of 1/j c b] have
... =k xg (?y — ?x) by simp
finally have t — ?x =k xg (?y — ?x) .
with real-euclid-B-def and k > 0) and (k < 1) have Br ?x t ?y by blast
with (Bgr a b ?x) and (BR a ¢ ?y) have
dxy.Brabx ABracy A Brxtybyauto}
thusVabcdt.BRadt N\BrbdcNa#d—
(3xy.BRabx ABracy ABrxty)
by auto
qed

4.4 The real Euclidean plane

lemma Col-dep2:
real-euclid.Col a b ¢ <— dep2 (b — a) (¢ — a)
proof —
from real-euclid.Col-def have
real-euclid.Col abc <— BrabcV Br bca V Br cab by auto
moreover from dep2-def have
dep2 (b—a) (c—a)«— (Jwrs.b—a=r*xgwAc—a=s%*gw)
by auto
moreover
{assume BRabcV BrbcaV Brcab
moreover

35

{ assume Brabc
with real-euclid-B-def obtain | where b — a = [xg (c — a) by blast
moreover have c —a = 1 *g (c — a) by simp
ultimately have Jwrs.b —a=r g w A c —a =s xg w by blast }
moreover
{ assume BRr bca
with real-euclid-B-def obtain | where c — b =1 xg (a — b) by blast
moreover have c —a = (¢ — b) — (a — b) by simp
ultimately have c —a =1 xg (a — b) — (a — b) by simp
with scaleR-left-diff-distrib [of | 1 a — b] have
c—a=(1—-1)x*g (a—Db)bysimp
moreover from scaleR-minus-left [of 1 a — b] have
b—a= (1) xg (a — b) by simp
ultimately have Jwrs.b —a=r*g w A c —a =s *g w by blast }
moreover
{ assume Br cab
with real-euclid-B-def obtain | where a — ¢ =1 xg (b — c) by blast
moreover have c —a = —(a — ¢) by simp
ultimately have c — a = —(I g (b — ¢)) by simp
with scaleR-minus-left have ¢ — a = (—I) xg (b — c) by simp
moreover have b —a = (b — ¢) + (¢ — a) by simp
ultimately have b —a =1 *g (b — ¢) + (=I) *g (b — c) by simp
with scaleR-left-distrib [of 1 —1 b — c] have
b—a=(1+ (1)) g (b —c) by simp
with ¢ —a = (=) xg (b — ¢)) have
Jwrs.b—a=r*xgwAc—a=sx*gwby blast }
ultimately have Jwrs.b —a=r*gw Ac —a=s*g wbyauto }
moreover
{assume Jwrs.b—a=r*gwWAc—a=5*gw
then obtain w r s where b —a =r *g w and ¢ — a = s *g w by auto
have BabcV BrbcaV Brcab
proof cases
assume s = (
with (¢ — a = s *g w) have a = c by simp
with real-euclid.th3-1 have B b ¢ a by simp
thus ?thesis by simp
next
assume s # 0
with (¢ — a = s xg w) have w = (1/s) *g (c — a) by simp
with 0 —a =7 *g w) have b — a = (r/s) *g (c — a) by simp
haver/s <0V (r/s > 0ANr/s<1)Vr/s>1Dbyarith
moreover
{assumer/s>0Ar/s<1
with real-euclid-B-def and & — a = (r/s) g (¢ — a)) have Brabc
by auto
hence ?thesis by simp }
moreover
{ assume r/s > 1
with 0 —a = (r/s) *g (c —a)) havec —a = (s/r) xg (b — a) by auto

36

from (r/s > 1) and le-imp-inverse-le [of 1 r/s] have
s/r <1 by simp
from (r/s > 1) and inverse-positive-iff-positive [of r/s] have
s/r > 0 by simp
with real-euclid-B-def
and c —a= (s/r) *xg (b —a)
and s/r <1)
have BR a ¢ b by auto
with real-euclid.th3-2 have B b ¢ a by auto
hence ?thesis by simp }
moreover
{ assume r/s < 0
have b —c = (b —a) + (a — c) by simp
with b — a = (r/s) xg (c — a)) have
b—c=(r/s)*gr (c —a) + (a — c) by simp
have ¢ —a = —(a — ¢) by simp
with scaleR-minus-right [of r/s a — c] have
(r/s) g (c —a) = —((r/s) g (a — ¢)) by arith
with b — ¢ = (r/s) g (¢ — a) + (a — ¢)) have
b—c=—(r/s) xg (a —¢) + (a — c¢) by simp
with scaleR-left-distrib [of —(r/s) 1a — c] have
b—c=(—(r/s) +1)*g (a — c) by simp
moreover from (r/s < 0) have —(r/s) + 1 > 1 by simp
ultimately havea — c = (1 / (—(r/s) + 1)) xg (b — c) by simp
let?2l=1/(—(r/s)+1)
from (—(r/s) +1 > 1) and le-imp-inverse-le [of 1 —(r/s) + 1] have
?1 <1 by simp
from (—(r/s) +1> 1
and inverse-positive-iff-positive [of —(r/s) + 1]
have
21 > 0 by simp
with real-euclid-B-def and (?1 < 1) and @ — ¢ = ?I xg (b — c)) have
BRr c a b by blast
hence ?thesis by simp }
ultimately show ?thesis by auto
qed }
ultimately show ?thesis by blast
qed

lemma non-Col-example:
= (real-euclid.Col 0 (vector [1/2,0] :: real’2) (vector [0,1/2]))
(is — (real-euclid.Col ?a ?b ?c))
proof —
{ assume dep2 (?b — ?a) (?c — ?a)
with dep2-def [of ?b — ?a ?c — ?a] obtain w r s where
?b — ?2a=rxgwand ?c — ?a = s xg w by auto
have ?b$1 = 1/2 by simp
with (?b — ?a = r xg w) have r x (w$1) = 1/2 by simp
hence w$1 # 0 by auto

37

have ?c$1 = 0 by simp
with (?c — ?a = s xg w) have s x (w$1) = 0 by simp
with w$1 # 0) have s = 0 by simp
have ?c$2 = 1/2 by simp
with (?c — ?a = s xg w) have s x (w$2) = 1/2 by simp
with (s = 0) have False by simp }

hence —(dep2 (?b — ?a) (?c — ?a)) by auto

with Col-dep2 show —(real-euclid.Col ?a ?b ?c) by blast

qed

interpretation real-euclid:
tarski real-euclid-C::([real 2, real 2, real"2, real"2] = bool) real-euclid-B
proof
{let?a =0 : real2
let ?b = vector [1/2, 0] :: real™2
let ?c = wvector [0, 1/2] :: real”2
from non-Col-example and real-euclid.Col-def have
—Br?a?b? AN—-Br?b?c?a A BR?c?a?bbyauto}
thus dabc::real’2. - BrabcAN—-BrbcaAN—-Brcab
by auto
{fixpgabc:real?2
assumep #gandap =R aqandbp=rbgandcp=rcqg
let ?m = (1/2) *g (p + q)
from scaleR-right-distrib [of 1/2 p q] and
scaleR-right-diff-distrib [of 1/2 q p] and
scaleR-left-diff-distrib [of 1/2 1 p]
have ?m — p = (1/2) *g (9 — p) by simp
with (p # ¢ have ?m — p # 0 by simp
from scaleR-right-distrib [of 1/2 p q] and
scaleR-right-diff-distrib [of 1/2 p q] and
scaleR-left-diff-distrib [of 1/2 1 q]
have ?m — q = (1/2) *r (p — q) by simp
with ?m — p = (1/2) g (9 — p)
and scaleR-minus-right [of 1/2 q — p]
have ?m — q = —(?m — p) by simp
with norm-minus-cancel [of ?m — p| have
(norm (?m — q))* = (norm (?m — p))? by simp
{ fixd
assume d p =R d g
hence (norm (d — p))? = (norm (d — q))? by simp
have (d — ?m) - (?m —p) =0
proof —
have d + (—q) = d — q by simp
have d + (—p) =d — p by simp
with dot-norm [of d — ?m ?m — p] have
(d — 7m) - (2m — p) =
((norm (d — p))? — (norm (d — ?m))? — (norm(?m — p))?) / 2
by simp
also from (norm (d — p))? = (norm (d — q))?

38

and (norm (?m — q))? = (norm (?m — p))?
have
... = ((norm (d — q))* — (norm (d — ?m))? — (norm(?m — q))?) / 2
by simp
also from dot-norm [of d — ?m ?m — q]
and d + (—q) =d — ¢
have
co.=(d—=?m) - (?m — q) by simp
also from inner.minus-right [of d — ?m ?m — p]
and ?m — g = —(?m — p))
have
co.=—((d—=?m) - (?m — p)) by simp
finally have (d — ?m) - (?m —p) = —((d — ?m) - (?m — p)) .
thus (d — ?m) - (?m — p) = 0 by arith
qed }
note m-lemma = this
with @ p =g a ¢ have (a — ?m) - (?m — p) = 0 by simp
{ fixd
assume dp =R d g
with m-lemma have (d — ?m) - (?m — p) = 0 by simp
with dot-left-diff-distrib [of d — ?m a — ?m ?m — p|
and (a — ?m) - (?m —p) =0
have (d —a) - (?m — p) = 0 by simp }
with b p =R b ¢ and (¢ p =R c g have
(b—a)-(?m—p)=0and (c —a) - (?m — p) = 0 by simp+
with real2-orthogonal-dep2 and (?m — p # 0) have dep2 (b — a) (c — a)
by blast
with Col-dep2 have real-euclid.Col a b ¢ by auto
with real-euclid.Col-def have B abcV Br bca VvV Br ca b by auto }
thus Vpgabc:: real2.
pEqhap=RraqANbp=RrbgAcp=rcq—
BrabcVBrbcaV Bgrcab
by blast
qed

4.5 Special cases of theorems of Tarski’s geometry

lemma real-euclid-B-disjunction:
assumes ! > O0and b —a=1xg (c — a)
shows BrabcV Brach

proof cases
assume [< 1
with (¢ >0 and 0 —a=1xg (c —a)
have By a b ¢ by (unfold real-euclid-B-def) (simp add: exI [of - 1])
thus BRabcV Brach..

next
assume — (I < 1)
hence 1/1 <1 by simp

39

from «(> 0) have 1/1 > 0 by simp

from b —a=1x%g (c —a)
have (1/1) xg (b —a) = (1/1) *g (I *r (c — a)) by simp
with (= (I < 1) havec —a = (1/1) *g (b — a) by simp
with 1/ >0 and 1/1 < 1)
have Bg a ¢ b by (unfold real-euclid-B-def) (simp add: exI [of - 1/1])
thus BRabcV Brach..
qed

The following are true in Tarski’s geometry, but to prove this would re-
quire much more development of it, so only the Euclidean case is proven
here.

theorem real-euclid-th5-1:
assumes a = band BRabcand Brabd
shows BracdV Bradc
proof —
from Brabc and Brabd
obtain / and m where ! > 0and b —a =1 xg (c — a)
andm>0andb —a=mxg (d —a)
by (unfold real-euclid-B-def) auto
from b —a = m xg (d — a)) and @ # b) have m # 0 by auto

from (> 0) and (m > 0) have I/m > 0 by (simp add: zero-le-divide-iff)

fromb—a=Ixg(c—a)and b —a=mx*g (d —a)
have m *g (d — a) =1 xg (c — a) by simp
hence (1/m) xg (m *g (d —a)) = (1/m) xg (I *g (c — a)) by simp
with im # 0) have d — a = (I/m) *g (c — a) by simp
with (/m > 0) and real-euclid-B-disjunction
show Br a cd V Br a d ¢ by auto
qed

theorem real-euclid-th5-3:
assumes Brabdand Bgracd
shows BRabcV Brach
proof —
from Brabd) and (Bracd
obtain [and m where! > 0and b —a =1 xg (d — a)
andm>0andc—a=mx*g (d —a)
by (unfold real-euclid-B-def) auto

show BRabcV Brach

proof cases
assume | =0
with b —a=1x%g (d —a) haveb —a =1 xg (c — a) by simp
with { =0
have Bg a b ¢ by (unfold real-euclid-B-def) (simp add: exI [of - 1)
thus B abcV Brach..

40

next
assume | # 0

from (> 0) and (m > 0) have m/1 > 0 by (simp add: zero-le-divide-iff)

from b —a=1xg (d —a)
have (1/1) xg (b —a) = (1/1) g (I *g (d — a)) by simp
with (# 0) haved — a = (1/1) xg (b — a) by simp
with ¢ —a=m *g (d — a)) have c —a = (m/l) xg (b — a) by simp
with (m /1 > 0) and real-euclid-B-disjunction
show Br a b c V Br a c b by auto
qed
qed

end

5 Linear Algebra

theory Linear-Algebra
imports Miscellany
begin

lemma exhaust-4:
fixes x :: 4
showsx=1Vx=2Vx=3Vx=4

proof (induct x)
case (of-int z)
hence 0 < z and z < 4 by simp-all
hencez=0Vz=1Vz=2Vz=3byarith
thus ?case by auto

qed

lemma forall-4: (V i::4.Pi) «<—P1ANP2ANP3ANP4
by (metis exhaust-4)

lemma UNIV-4: (UNIV::(4 set)) = {1, 2, 3, 4}
using exhaust-4
by auto

lemma vector-4:
fixes w :: 'a::zero
shows (vector [w, x,y, z] : 'a™4)$1 = w
and (vector [w, x,y, z] :: '0°4)$2 = x
and (vector [w, x,y,z] :: '0°4)$3 =y
and (vector [w, x,y, z] : '0°4)$4 = z
unfolding vector-def
by simp-all

41

definition
is-basis :: (real('n::finite)) set = bool where
is-basis S £ independent S A span S = UNIV

lemma card-finite:
assumes card S = CARD('n: finite)
shows finite S
proof —
from (card S = CARD('n)) have card S # 0 by simp
with card-eq-0-iff [of S| show finite S by simp
qed

lemma independent-is-basis:
fixes B :: (real('n::finite)) set
shows independent B A card B = CARD('n) <— is-basis B
proof
assume independent B A card B= CARD('n)
hence independent B and card B = CARD('n) by simp+
from card-finite [of B, where 'n = 'n] and (card B = CARD('n))
have finite B by simp
from dim-univ [where 'n = 'n| and (card B = CARD('n))
have card B = dim (UNIV :: ((real'n) set))
by simp
with card-eq-dim [of B UNIV| and (finite B) and (independent B)
have span B = UNIV by auto
with (ndependent B) show is-basis B unfolding is-basis-def ..
next
assume is-basis B
hence independent B unfolding is-basis-def ..
moreover have card B = CARD('n)
proof —
have B C UNIV by simp
moreover
{ from (is-basis B) have UNIV C span B and independent B
unfolding is-basis-def
by simp+ }
ultimately have card B = dim (UNIV::((real"'n) set))
using basis-card-eq-dim [of B UNIV|
by simp
with dim-univ [where 'n = 'n] show card B = CARD('n) by simp
qed
ultimately show independent B A card B = CARD('n) ..
qed

lemma basis-finite:
fixes B :: (real('n::finite)) set
assumes is-basis B
shows finite B

42

proof —
from independent-is-basis [of B] and (s-basis B) have card B = CARD('n)
by simp
with card-finite [of B, where 'n = 'n] show finite B by simp
qed

lemma basis-expand:
assumes is-basis B
shows Jc. v = (Y weB. (c w) g w)
proof —
from (is-basis B) have v € span B unfolding is-basis-def by simp
from basis-finite [of B] and (is-basis B) have finite B by simp
with span-finite [of B] and (v € span B)
show Jc. v = (Y weB. (c w) *xg w) by (simp add: scalar-equiv) auto
qed

lemma not-span-independent-insert:
fixes v :: (‘a::real-vector)™'n
assumes independent S and v & span S
shows independent (insert v S)
proof —
from span-superset and (v ¢ span S) have v € S by auto
with independent-insert [of v S| and (independent S) and (v ¢ span S)
show independent (insert v S) by simp
qed

lemma in-span-eq:
fixes v :: (a::real-vector)™'b
assumes v € span S
shows span (insert v S) = span S
proof
{ fixw
assume w € span (insert v S)
with (v € span S) have w € span S by (rule span-trans) }
thus span (insert v S) C span S ..

have S C insert v S by (rule subset-insertI)
thus span S C span (insert v S) by (rule span-mono)
qed

lemma dot-setsum-right-distrib:
fixes v :: real’'n
shows v - () jeS.wj) = (L jeS.v- (wj)))
proof —
have v - (Y jeS. wj) = (¥ i€UNIV. v$i * (Y jeS. (wj)$i))
unfolding inner-vector-def
by simp
also from setsum-right-distrib [where ?A = S and ?'b = reul|
have ... = () i€UNIV. Y jeS. v$i * (w j)$i) by simp

43

also from setsum-commute [of A ij. v$i x (wj)$i S UNIV|
have ... = (¥ jeS. Y icUNIV. v$i * (w j)$i) by simp
finally show v - (Y jeS. wj) = (¥ jeS.v - (w]))
unfolding inner-vector-def
by simp
qed

lemma orthogonal-setsum:
fixes v :: real”'n
assumes V weS. orthogonal v w
shows orthogonal v (). wES. c w *s w)
proof —
from dot-setsum-right-distrib [of v]
have v - (Y weS.cw xsw) = (L weS.v - (cw xs w)) by auto
with inner.scaleR-right [of v]
have v - (Y weS.cw xsw) = (¥ weS.cw * (v - w))
by (simp add: scalar-equiv)
with (V weS. orthogonal v w) show orthogonal v (Y weS. ¢ w *s w)
unfolding orthogonal-def
by simp
qed

lemma orthogonal-self-eq-0:
fixes v :: (‘a::real-inner)”('n::finite)
assumes orthogonal v v
shows v =0
using inner-eq-zero-iff [of v] and assms
unfolding orthogonal-def
by simp

lemma orthogonal-in-span-eq-0:
fixes v :: real”('n: finite)
assumes v € span S and V weS. orthogonal v w
shows v =0

proof —
from span-explicit [of S] and (v € span S)
obtain T and u where T C S and v = (Y weT. u w xg w) by auto
from V weS. orthogonal v w) and (T C S) have V weT. orthogonal v w by auto
with orthogonal-setsum [of T v u] and v = (¥, weT. u w *g w))
have orthogonal v v by (auto simp add: scalar-equiv)
with orthogonal-self-eq-0 show v = 0 by auto

qed

lemma orthogonal-independent:
fixes v :: real’('n: finite)
assumes independent S and v # 0 and V weS. orthogonal v w
shows independent (insert v S)
proof —
from orthogonal-in-span-eq-0 and (v # 0) and vV w€S. orthogonal v w)

44

have v & span S by auto
with not-span-independent-insert and (independent S)
show independent (insert v S) by auto

qed

lemma card-ge-dim:
fixes S :: (real”('n::finite)) set
assumes finite S
shows card S > dim S
proof —
from span-inc have S C span S by auto
with span-card-ge-dim [of S span S| and (finite S)
have card S > dim (span S) by simp
with dim-span [of S] show card S > dim S by simp
qed

lemma dot-scaleR-mult:
shows (kxga)-b=kx (a-b)anda- (k+gb) =kx* (a-Db)
unfolding inner-vector-def
by (simp-all add: algebra-simps setsum-right-distrib)

lemma dependent-explicit-finite:
fixes S :: (('a::{real-vector field})"'n) set
assumes finite S
shows dependent S <— (3 u. (3 v€S.uv #0) A (L v€S. uv *xg v) =0)
proof
assume dependent S
with dependent-explicit [of S|
obtain S’ and u where
S'CSand 3 veS’. uv #0and (Y veS" . uv*gv) =0
by auto
let 7u’ = A v.ifv e S then uvelse 0
from (S’ C S) and (3 veS’. u v # 0) have 3 vES. ?u’ v # 0 by auto
moreover from setsum-mono-zero-cong-right [of S S’ A v. 2u’ v xg v]
and (S’ C S and (Y v€S’. u v xg v) = 0) and (finite S
have () v€S. ?u’ v *g v) = 0 by simp
ultimately show (3 u. (3 v€S. uv #0) A (¥ vE€S. u v *g v) = 0) by auto
next
assume (3 u. (3 veS.uv #0) A (L ve€ES.uv*gv)=0)
with dependent-explicit [of S] and (finite S)
show dependent S by auto
qed

lemma dependent-explicit-2:

fixes v w :: (‘a::{field,real-vector})"'n

assumes v # w

shows dependent {v, w} «— (3 ij. (i #0Vj#0) Ni*gv+j*gw=0)
proof

let ?S = {v, w}

45

have finite ?S by simp

{ assume dependent ?S
with dependent-explicit-finite [of ?S] and (finite ?S) and (v # w)
show 3 ij. (i#0Vj#0) Nixgv+j*gw=0Dbyauto }

{assume 3 ij. (i #0Vj#0) Ni*rv+j*gw =0
then obtain i and j where i # 0V j # O and i xg v + j *g w = 0 by auto
let 7u = A x. if x = v then i else |
from (i # 0V j # 0) and (@ # w) have 3 x€?S. ?u x # 0 by simp
from (i xg v 4 j *g w = 0) and (@ # w)
have () x€?S. ?u x g x) = 0 by simp
with dependent-explicit-finite [of ?S]
and (finite ?S) and (3 x€?S. 2u x # 0)
show dependent ?S by best }
qed

5.1 Matrices

lemma zero-times:
0 *x A = (0::real”('n::finite)'n)
unfolding matrix-matrix-mult-def and vector-zero-def
by simp

lemma zero-not-invertible:
= (invertible (0::real”('n::finite)"'n))
proof —
let ?A = O::real”'n"'n
let ?I = mat 1::real”'n™'n
let ?k = undefined :: 'n
have 21 $ 7k $?k # ?A $?k $ 2k
unfolding mat-def
by simp
hence ?A # ?I by auto
from zero-times have V. A. ?A xx A = ? A by auto
with (?A # ?I) show — (invertible ? \)
unfolding invertible-def
by simp
qed

Based on matrix-vector-column in HOL /Multivariate_Analysis/Euclidean_Space.thy
in Isabelle 2009-1:

lemma vector-matrix-row:
fixes x :: (‘a::comm-semiring-1)"'m and A :: ('a*'n"'m)
shows x vx A = () i€UNIV. (x$i) xs (A$i))
unfolding vector-matrix-mult-def
by (simp add: Cart-eq mult-commute)

lemma invertible-mult:

46

fixes A B :: real”('n::finite)"'n
assumes invertible A and invertible B
shows invertible (A ** B)
proof —
from (invertible A) and (invertible B)
obtain A’ and B’ where A xx A’ =mat 1 and A’ xx A = mat 1
and B xx B’ = mat 1 and B’ xx B = mat 1
unfolding invertible-def
by auto
have (A xx B) xx (B xx A’) = A xx (B *x B') xx A’
by (simp add: matrix-mul-assoc)
with (A *x A’ = mat 1) and B ** B’ = mat 1)
have (A *x B) #* (B’ #x A') = mat 1 by (auto simp add: matrix-mul-rid)
with matrix-left-right-inverse have (B’ xx A') xx (A xx B) = mat 1 by auto
with ((A *x B) xx (B xx A') = mat 1)
show invertible (A xx B)
unfolding invertible-def
by auto
qed

lemma scalar-matrix-assoc:
fixes A :: real”'m"'n
shows k xg (A #* B) = (k xg A) *xx B
proof —
have V ij. (k *g (A *x B))ij = ((k *gr A) *x B)ij
proof default+
fix ij
have (k xg (A *x B))ij = k * (3 I€UNIV. Ail x BI))
unfolding matrix-matrix-mult-def
by simp
also from scaleR-right.setsum [of k A 1. Ail = BIj UNIV|
have ... = (Y I€UNIV. k = Ail = BIj) by (simp add: algebra-simps)
finally show (k *g (A *x B))ij = ((k xg A) *x B)ij
unfolding matrix-matrix-mult-def
by simp
qed
thus k xg (A ** B) = (k g A) *x B by (simp add: Cart-eq)
qed

lemma transpose-scalar: transpose (k xg A) = k g transpose A
unfolding franspose-def
by (simp add: Cart-eq)

lemma transpose-iff [iff]: transpose A = transpose B <— A = B

proof
assume transpose A = transpose B
with transpose-transpose [of A] have A = transpose (transpose B) by simp
with transpose-transpose [of B] show A = B by simp

next

47

assume A = B
thus transpose A = transpose B by simp
qed

lemma matrix-scalar-ac:
fixes A :: real”'m"'n
shows A xx (k *g B) = k xg A *x B

proof —
from matrix-transpose-mul [of A k xg B] and transpose-scalar [of k B]
have transpose (A *x (k xg B)) = k *g transpose B xx transpose A

by simp

also from matrix-transpose-mul [of A B] and transpose-scalar [of k A +x B]
have ... = transpose (k xg A ** B) by (simp add: scalar-matrix-assoc)
finally show A xx (k xg B) = k xg A xx B by simp

qed

lemma scalar-invertible:
fixes A :: real”'m"'n
assumes k # 0 and invertible A
shows invertible (k xg A)
proof —
from (invertible A)
obtain A’ where A xx A’ = mat 1 and A’ xx A = mat 1
unfolding invertible-def
by auto
with k £ 0)
have (k xg A) xx ((1/k) xg A") = mat 1
and ((l/k) *R A/) * %k (k *R A) = mat 1
by (simp-all add: matrix-scalar-ac)
thus invertible (k xg A)
unfolding invertible-def
by auto
qed

lemma matrix-inv:
assumes invertible M
shows matrix-inv M +x M = mat 1
and M sx matrix-inv M = mat 1
using (invertible M) and somel-ex [of A N. M xx N = mat 1 A N xx M = mat 1]
unfolding invertible-def and matrix-inv-def
by simp-all

lemma matrix-inv-invertible:
assumes invertible M
shows invertible (matrix-inv M)
using (invertible M) and matrix-inv
unfolding invertible-def [of matrix-inv M]
by auto

48

lemma vector-matrix-mul-rid:

fixes v :: (‘a:semiring-1)"('n::finite)

shows v vx mat 1 =v
proof —

have v v mat 1 = transpose (mat 1) v v by simp

thus v vx mat 1 = v by (simp only: transpose-mat matrix-vector-mul-lid)
qed

lemma vector-matrix-mul-assoc:

fixes v :: (‘a::comm-semiring-1)"'n

shows (v vx M) vx N = v vx (M *x N)
proof —

from matrix-vector-mul-assoc

have transpose N *v (transpose M xv v) = (transpose N *x transpose M) v v by
fast

thus (v vx M) v% N = v vx (M %% N)

by (simp add: matrix-transpose-mul [symmetric])

qed

lemma matrix-scalar-vector-ac:
fixes A :: real”('m::finite)"('n:finite)
shows A v (kg v) =k *g A %0 v
proof —
have A v (k xg v) = k *g (v v* transpose A)
by (subst scalar-vector-matrix-assoc [symmetric|) simp

also have ... = v vx k xR transpose A
by (subst vector-scalar-matrix-ac) simp
also have ... = v vx transpose (k xg A) by (subst transpose-scalar) simp
also have ... =k xg A *xv v by simp
finally show A v (k g v) =k *g A*vv.
qed

lemma scalar-matrix-vector-assoc:
fixes A :: real”('m::finite)"('n::finite)
shows k xg (A*vv) =k *g A *v v

proof —
have k g (A *v v) = k *g (v vx transpose A) by simp
also have ... = v vx k g transpose A
by (rule vector-scalar-matrix-ac [symmetric|)
also have ... = v v« transpose (k xg A) apply (subst transpose-scalar) ..
finally show k xg (A *v v) = k *g A *v v by simp
qed

lemma invertible-times-non-zero:
fixes M :: real”'n"('n::finite)
assumes invertible M and v # 0
shows M xv v # 0
using (invertible M) and (v # 0) and invertible-times-eg-zero [of M v
by auto

49

lemma matrix-right-invertible-ker:
fixes M :: real”('m::finite)"('n::finite)
shows (3 M. M sx M'=mat 1) +— (V x.xvx M =0 — x =0)
proof
assume 3 M'. M s« M' = mat 1
then obtain M’ where M xx M’ = mat 1 ..
have transpose (M xx M') = transpose (mat 1) apply (subst (M #x M' = mat 1)) ..
hence transpose M’ xx transpose M = mat 1
by (simp add: matrix-transpose-mul transpose-mat)
hence 3 M"". M xx transpose M = mat 1 ..
with matrix-left-invertible-ker [of transpose M]
have V x. transpose M v x = 0 — x = 0 by simp
thus V x. x vx M = 0 — x = 0 by simp
next
assumeV x. xvx M =0— x=10
hence V x. transpose M v x = 0 — x = 0 by simp
with matrix-left-invertible-ker [of transpose M]
obtain M'' where M’ xx transpose M = mat 1 by auto
hence transpose (M'' xx transpose M) = transpose (mat 1) by simp
hence M «x transpose M" = mat 1
by (simp add: matrix-transpose-mul transpose-transpose transpose-mat)
thus 3 M. M *x M’ = mat 1 ..
qed

lemma left-invertible-iff-invertible:
fixes M :: real”('n::finite)"'n
shows (3 N. N xx M = mat 1) «— invertible M
using matrix-left-right-inverse
unfolding invertible-def
by auto

lemma right-invertible-iff-invertible:
fixes M :: real”('n::finite)"'n
shows (3 N. M xx N = mat 1) <+— invertible M
using left-invertible-iff-invertible
by (subst matrix-left-right-inverse) auto
definition symmatrix :: 'a*'n*'n = bool where
symmatrix M = transpose M = M

lemma symmatrix-preserve:
fixes M N :: (‘a::comm-semiring-1)"'n"'n
assumes symmatrix M
shows symmatrix (N sx M x transpose N)

proof —
have transpose (N s M sx transpose N) = N x transpose M s transpose N

by (simp add: matrix-transpose-mul transpose-transpose matrix-mul-assoc)

with (symmatrix M)

50

show symmatrix (N sx M xx transpose N)
unfolding symmatrix-def
by simp
qed

lemma matrix-vector-right-distrib:
fixes v w :: real”('n::finite) and M :: real”'n”("m::finite)
shows M xv (v + w) =M *v v + M *0v w

proof —
have M xv (v + w) = (v + w) v« transpose M by simp
also have ... = v vx transpose M + w v* transpose M

by (rule vector-matrix-left-distrib [of v w transpose M])
finally show M *v (v + w) = M xv v + M *v w by simp
qed

lemma non-zero-mult-invertible-non-zero:
fixes M :: real"'n"'n
assumes v # 0 and invertible M
shows v v« M # 0
using (v # 0) and (invertible M) and times-invertible-eq-zero
by auto

end

6 Group Actions

theory Action
imports Group
begin

locale action = group +

fixes act :: 'b = 'a = 'b (infixl <o 69)

assumes id-act [simp]: b <o1=1b

and act-act”:

g € carrier G N h € carrier G — (b <0g) <oh=1b <o (g ® h)
begin

lemma act-act:
assumes g € carrier G and h € carrier G
shows (b <0g) <oh=b<o(g®h)
proof —
from (g € carrier G) and & € carrier G) and act-act’
show (b <0 g) <oh=0b <o (g ® h) by simp
qed

lemma act-act-inv [simp]:
assumes g € carrier G

51

shows b <o g <oinvg=1"=
proof —
from (g € carrier G) have inv g € carrier G by (rule inv-closed)
with (¢ € carrier G) have b <o ¢ <o inv g = b <o ¢ ® inv g by (rule act-act)
with (¢ € carrier G) show b <o g <o inv g = b by simp
qed

lemma act-inv-act [simp]:
assumes g € carrier G
shows b <oinv g <og=1">
using (g € carrier G) and act-act-inv [of inv g]
by simp

lemma act-inv-iff:
assumes g € carrier G
shows b <oinvg=c+—b=c<og
proof
assume b <oinv g =c
hence b <o inv g <o g = ¢ <o g by simp
with (g € carrier G) show b = c <o g by simp
next
assume b =c<og
hence b <o inv g = ¢ <o g <o inv g by simp
with (g € carrier G) show b <o inv g = c by simp
qed

end

end

7 Projective Geometry

theory Projective
imports Linear-Algebra
Euclid-Tarski
Group
Action

begin

7.1 Proportionality on non-zero vectors

context vector-space
begin

definition proportionality :: ('b x 'b) set where
proportionality = {(x,y). x #0 Ay # 0 A (k. x = scale k y)}

definition non-zero-vectors :: 'b set where

52

non-zero-vectors = {x. x # 0}

lemma proportionality-refl-on: refl-on non-zero-vectors proportionality
proof —
have proportionality C non-zero-vectors X non-zero-vectors
unfolding proportionality-def non-zero-vectors-def
by auto
moreover have YV xenon-zero-vectors. (x, x) € proportionality
proof
fix x
assume x € non-zero-vectors
hence x # 0 unfolding non-zero-vectors-def ..
moreover have x = scale 1 x by simp
ultimately show (x, x) € proportionality
unfolding proportionality-def
by blast
qed
ultimately show refl-on non-zero-vectors proportionality
unfolding refl-on-def ..
qed

lemma proportionality-sym: sym proportionality
proof —
{fixxy
assume (x, y) € proportionality
hence x # 0 and y # 0 and Jk. x = scale k y
unfolding proportionality-def
by simp+
from (Jk. x = scale k y) obtain k where x = scale k y by auto
with x # 0) have k # 0 by simp
with (x = scale k i) have y = scale (1/k) x by simp
with (x # 0) and (y # 0) have (y, x) € proportionality
unfolding proportionality-def
by auto
}
thus sym proportionality
unfolding sym-def
by blast
qed

lemma proportionality-trans: trans proportionality
proof —
{fixxyz
assume (x, y) € proportionality and (y, z) € proportionality
hence x # 0 and z # 0 and 3j. x = scale j y and k. y = scale k z
unfolding proportionality-def
by simp+
from (3j. x = scale j y) and (k. y = scale k z)
obtain j and k where x = scale j y and y = scale k z by auto+
hence x = scale (j * k) z by simp

53

with (x # 0) and {z # 0) have (x, z) € proportionality
unfolding proportionality-def
by auto
}
thus trans proportionality
unfolding trans-def
by blast
qed

theorem proportionality-equiv: equiv non-zero-vectors proportionality
unfolding equiv-def
by (simp add:
proportionality-refl-on
proportionality-sym
proportionality-trans)

end

sublocale vector-space < equiv non-zero-vectors proportionality
using proportionality-equiv .

definition invertible-proportionality ::
((real*('n::finite)*'n) x (real”’n"'n)) set where
invertible-proportionality =
real-vector.proportionality N (Collect invertible x Collect invertible)

lemma invertible-proportionality-equiv:
equiv (Collect invertible :: (real”('n::finite)"'n) set)
invertible-proportionality
(is equiv ?invs -)
proof —
from zero-not-invertible
have real-vector .non-zero-vectors N ?invs = 2invs
unfolding real-vector.non-zero-vectors-def
by auto
from equiv-restrict and real-vector.proportionality-equiv
have equiv (real-vector.non-zero-vectors N ?invs) invertible-proportionality
unfolding invertible-proportionality-def
by auto
with (real-vector.non-zero-vectors N ?invs = ?invs)
show equiv ?invs invertible-proportionality
by simp
qed

7.2 Points of the real projective plane
typedef proj2 =

(real-vector.non-zero-vectors :: (real3) set)/ / real-vector.proportionality
proof

54

from basis-nonzero

have (basis 1 :: real3) € real-vector.non-zero-vectors
unfolding real-vector.non-zero-vectors-def ..

thus real-vector.proportionality ** {basis 1} €
(real-vector.non-zero-vectors :: (real3) set)/ / real-vector.proportionality
unfolding quotient-def
by auto

qed

definition proj2-rep :: proj2 = real”3 where
proj2-rep x £ € v. v € Rep-proj2 x

definition proj2-abs :: real”3 = proj2 where
proj2-abs v & Abs-proj2 (real-vector.proportionality * {v})

lemma proj2-rep-in: proj2-rep x € Rep-proj2 x
proof —
let ?v = proj2-rep x
from quotient-element-nonempty and
real-vector.proportionality-equiv and
Rep-proj2 [of x|
have 3 w. w € Rep-proj2 x
unfolding proj2-def
by auto
with somel-ex [of A z. z € Rep-proj2 x]
show ?v € Rep-proj2 x
unfolding proj2-rep-def
by simp
qed

lemma proj2-rep-non-zero: proj2-rep x # 0
proof —
from
Union-quotient [of real-vector.non-zero-vectors real-vector.proportionality|
and real-vector.proportionality-equiv
and Rep-proj2 [of x| and proj2-rep-in [of x|
have proj2-rep x € real-vector.non-zero-vectors
unfolding quotient-def and proj2-def
by auto
thus proj2-rep x # 0
unfolding real-vector.non-zero-vectors-def
by simp
qed

lemma proj2-rep-abs:

fixes v :: real’3

assumes v € real-vector.non-zero-vectors

shows (v, proj2-rep (proj2-abs v)) € real-vector.proportionality
proof —

55

from (v € real-vector.non-zero-vectors
have real-vector.proportionality ** {v} € proj2
unfolding proj2-def
and quotient-def
by auto
with Abs-proj2-inverse
have Rep-proj2 (proj2-abs v) = real-vector.proportionality ** {v}
unfolding proj2-abs-def
by simp
with proj2-rep-in
have proj2-rep (proj2-abs v) € real-vector.proportionality ** {v} by auto
thus (v, proj2-rep (proj2-abs v)) € real-vector.proportionality by simp
qed

lemma proj2-abs-rep: proj2-abs (proj2-rep x) = x
proof —
from partition-Image-element
[of real-vector.non-zero-vectors
real-vector.proportionality
Rep-proj2 x
proj2-rep x|
and real-vector.proportionality-equiv
and Rep-proj2 [of x| and proj2-rep-in [of x|
have real-vector.proportionality * {proj2-rep x} = Rep-proj2 x
unfolding proj2-def
by simp
with Rep-proj2-inverse show proj2-abs (proj2-rep x) = x
unfolding proj2-abs-def
by simp
qed

lemma proj2-abs-mult:
assumes ¢ # 0
shows proj2-abs (¢ *g v) = proj2-abs v
proof cases
assume v = (0
thus proj2-abs (¢ xg v) = proj2-abs v by simp
next
assume v # 0
with ¢ # 0)
have (¢ *g v, v) € real-vector.proportionality
and ¢ xg v € real-vector.non-zero-vectors
and v € real-vector.non-zero-vectors
unfolding real-vector.proportionality-def
and real-vector.non-zero-vectors-def
by simp-all
with eg-equiv-class-iff
[of real-vector.non-zero-vectors
real-vector.proportionality
C ¥R 0

56

o
and real-vector proportionality-equiv

have real-vector.proportionality “* {c *g v} =
real-vector.proportionality ** {v}
by simp

thus proj2-abs (c g v) = proj2-abs v
unfolding proj2-abs-def
by simp

qed

lemma proj2-abs-mult-rep:
assumes ¢ # 0
shows proj2-abs (c *g proj2-rep x) = x
using proj2-abs-mult and proj2-abs-rep and assms
by simp

lemma proj2-rep-inj: inj proj2-rep
by (simp add: inj-on-inversel [of UNIV proj2-abs proj2-rep| proj2-abs-rep)

lemma proj2-rep-abs2:
assumes v #~ 0
shows 3 k. k # 0 A proj2-rep (proj2-abs v) =k xg v
proof —
from proj2-rep-abs [of v] and @ # 0)
have (v, proj2-rep (proj2-abs v)) € real-vector.proportionality
unfolding real-vector.non-zero-vectors-def
by simp
then obtain ¢ where v = ¢ xg proj2-rep (proj2-abs v)
unfolding real-vector.proportionality-def
by auto
with (v # 0) have ¢ # 0 by auto
hence 1/c # 0 by simp

from (v = ¢ *g proj2-rep (proj2-abs v))
have (1/c) xg v = (1/c) xR c *g proj2-rep (proj2-abs v)
by simp
with (¢ # 0) have proj2-rep (proj2-abs v) = (1/c) *r v by simp

with (I/c # 0) show 3 k. k # 0 A proj2-rep (proj2-abs v) =k *g v
by blast
qed

lemma proj2-abs-abs-mult:
assumes proj2-abs v = proj2-abs w and w # 0
shows d c.o=cx*gw
proof cases
assume v = (0
hence v = 0 *g w by simp
thusd c.co=cxgrw..

57

next
assume v # 0
from (proj2-abs v = proj2-abs w
have proj2-rep (proj2-abs v) = proj2-rep (proj2-abs w) by simp
with proj2-rep-abs2 and w # 0)
obtain k where proj2-rep (proj2-abs v) = k g w by auto
with proj2-rep-abs2 [of v] and @ # 0)
obtain j where j # 0 and j xg v = k *g w by auto
hence (1/]) *g j *r v = (1/]) *r k *g w by simp
with (j # 0) have v = (k/j) *g w by simp
thusd c.o=cx*gw..
qed

lemma dependent-proj2-abs:
assumesp #Oandg# O0andi #0Vj#0andi*gp+j*gqg=10
shows proj2-abs p = proj2-abs q
proof —
havei # 0
proof
assume i = (
with (i # 0 V j # 0) have j # 0 by simp
with G xg p +j *g g = 0) and (g # 0) have i xg p # 0 by auto
with (= 0) show False by simp
qed
with (p # 0) and G g p + j *r ¢ = 0) have j # 0 by auto

from (i #~ 0)
have proj2-abs p = proj2-abs (i xg p) by (rule proj2-abs-mult [symmetric|)
also from (i xg p + j xg ¢ = 0) and proj2-abs-mult [of —1] xR q]
have ... = proj2-abs (j *g q) by (simp add: algebra-simps [symmetric])
also from (j # 0) have ... = proj2-abs q by (rule proj2-abs-mult)
finally show proj2-abs p = proj2-abs q .

qed

lemma proj2-rep-dependent:
assumes i xg proj2-rep v + j *g proj2-rep w = 0
(isi*g ?p +j*g 29 =0)
andi #0Vj#0
shows v = w

proof —
have ?p # 0 and ?g # 0 by (rule proj2-rep-non-zero)+
with(i#0Vj# O and Gxg ?p+j*r 79 =0
have proj2-abs ?p = proj2-abs ?q by (simp add: dependent-proj2-abs)
thus v = w by (simp add: proj2-abs-rep)

qed

lemma proj2-rep-independent:

assumes p # g
shows independent {proj2-rep p, proj2-rep q}

58

proof
let ?p’ = proj2-rep p
let 7q’ = proj2-rep q
let 7S = {?p/, 2q'}
assume dependent ?S
from proj2-rep-inj and (p # ¢ have ?p’ # ?q’
unfolding inj-on-def
by auto
with dependent-explicit-2 [of ?p’ ?q'] and (dependent ?S)
obtain i and j where i xg ?p' + j*xg ?2¢'=0and i 0V j# 0
by (simp add: scalar-equiv) auto
with proj2-rep-dependent have p = q by simp
with (p #) show False ..
qed

7.3 Lines of the real projective plane

definition proj2-Col :: [proj2, proj2, proj2] = bool where
proj2-Col p g r £
(3 ij k. ixg proj2-rep p + j xg proj2-rep g + k =g proj2-rep r = 0
A (i#0 V j#0 V k#0))

lemma proj2-Col-abs:
assumesp #Oandg# Oandr #0andi #0Vj#0Vk#0
andisgp+j*rg+k*gr=0
shows proj2-Col (proj2-abs p) (proj2-abs q) (proj2-abs r)
(is proj2-Col ?pp ?pq ?pr)
proof —
from (p # 0) and proj2-rep-abs2
obtain i’ where i’ # 0 and proj2-rep ?pp = i’ xR p (is ?rp = -) by auto
from (g # 0) and proj2-rep-abs2
obtain j' where j' # 0 and proj2-rep ?pq = j’ xg g (is ?rq = -) by auto
from (r # 0) and proj2-rep-abs2
obtain k' where k' # 0 and proj2-rep ?pr = k' xg r (is ?rr = -) by auto
with i xgp+j*rq+kxgr=20
and (' # 0) and (proj2-rep ?pp =i’ xg p)
and (' # 0) and (proj2-rep ?pg = j' *g @
have (i/i’) xg ?rp + (j/j') *r ?rq + (k/k’) xg ?rr = 0 by simp

from (i’ # 0)and (' # 0 and k' # 0 and i A0V j# 0OV k#0
have i/i' #0V j/j'# 0V k/k’ # 0 by simp
with ((i/1) xg ?rp + (j/j') *r ?rq + (k/K') g 2rr =0
show proj2-Col ?pp ?pq ?pr by (unfold proj2-Col-def , best)
qed

lemma proj2-Col-permute:
assumes proj2-Col a b c
shows proj2-Col a c b
and proj2-Col bac

59

proof —

let ?a’ = proj2-rep a

let ?b’ = proj2-rep b

let ?¢’ = proj2-rep ¢

from (proj2-Col a b ¢)

obtain i and j and k where
ixg?a’ +j*r 7'+ kxg ?2c'=0
andi#0Vj#0Vk#0
unfolding proj2-Col-def
by auto

from G xg 2a’ +j xg ?b' + k xg ?¢' = 0)
have i g ?a’ + kg 2¢' +j*g 2’ =0
and j g ?b’ +ixg ?a’ +kxg ?¢'=0
by (simp-all add: add-ac)
moreover from G £ 0V j# 0V k #0)
havei #0Vk#0Vj#0Oandj# 0V i# 0V k # 0 by auto
ultimately show proj2-Col a ¢ b and proj2-Col b a c
unfolding proj2-Col-def
by auto
qed

lemma proj2-Col-coincide: proj2-Col a a c
proof —
have 1 xg proj2-rep a + (—1) xg proj2-rep a + 0 xg proj2-rep ¢ = 0
by simp
moreover have (1::real) # 0 by simp
ultimately show proj2-Col aa c
unfolding proj2-Col-def
by blast
qed

lemma proj2-Col-iff:

assumes a # r

shows proj2-Col art <—

t=aV (3 i.t=proj2-abs (i xg (proj2-rep a) + (proj2-repr)))
proof

let ?a’ = proj2-rep a

let 71’ = proj2-rep r

let ?t' = proj2-rep t

{ assume proj2-Col a r t
then obtain /1 and j and k where
h *R ?ﬂ/+j *R ?7’/—|—k*R ?t/: 0
andh #0Vj#0Vk#0
unfolding proj2-Col-def
by auto

show t = a V (3 i. t = proj2-abs (i xg ?a’ + ?1'))

60

proof cases
assume j =0
withh A0V j# 0V k#0 haveh # 0V k # 0 by simp
with proj2-rep-dependent
and (hxg ?a’ + jxg ?2r' + kxg ?2t' =0
and (=0
have t = a by auto
thust =a V (3 i. t = proj2-abs (i xg ?a’ + ?1')) ..
next
assume j # 0
have k # 0
proof (rule ccontr)
assume — k # 0
with proj2-rep-dependent
and hxg 2a’ +j*g 21’ + kxg 7' =0
and j # 0
have a = r by simp
with @ # r show False ..
qed

from (h xg 2a’ + j*xg 7'+ kxg ?2t' =0
have hh xg ?2a’ + j *g ?r' + k xg ?t' — k *g ?t' = —k =g ?t' by simp
hence h g ?a’ + j xg ?r' = —k xg ?t' by simp
with proj2-abs-mult-rep [of —k] and k # 0)
have proj2-abs (h g 2a’ + j xg ?r’) = t by simp
with proj2-abs-mult [of 1/j h xg ?a’ + j *g ?r'| and # 0)
have proj2-abs ((h/j) *g ?a’ + ?r') =t
by (simp add: scaleR-right-distrib)
hence 3 i. t = proj2-abs (i *g ?a’ + ?r’) by auto
thust =a V (3 i. t = proj2-abs (i xg ?a’ + ?1')) ..
qed
}

{assume t = a V (3 i. t = proj2-abs (i xg ?a’ + ?1’))

show proj2-Col a r t

proof cases
assume f =a
with proj2-Col-coincide and proj2-Col-permute
show proj2-Col a r t by blast

next
assume f # a
with ¢t = a V (3 i. t = proj2-abs (i xg ?a’ + ?1')))
obtain i where t = proj2-abs (i xg ?a’ + ?r') by auto
from proj2-rep-dependent [of ia 1] and @ # 1)
have i xg ?2a’ + ?r’ # 0 by auto
with proj2-rep-abs2 and (t = proj2-abs (i xg ?a’ + ?r'))
obtain j where ?t' = j xg (i g ?a’ + ?r') by auto
hence ?t' — ?2t' = (jx i) *g 2a’ + j xg 7r' + (—1) xg 2t

by (simp add: scaleR-right-distrib)

61

hence (j x i) *g ?a’ 4+ j g ?r' + (=1) g ?t' = 0 by simp

have 3 hjk hxg ?2a’ +jxg ?2r' + kxg 2t/ =0
ANh#0Vj#0Vk#D0)

proof default+
from ((j « i) *g 2a’ + jxg ?r' + (=1) xg 2t' =0
show (j i) xg ?a’ +jxg ?2r'+ (=1) *g ?7t'=0.
show j*i#0Vj+#O0V (—1:real) # 0 by simp

qed

thus proj2-Col a r t
unfolding proj2-Col-def .

qed

}
qed

definition proj2-Col-coeff :: proj2 = proj2 = proj2 = real where
proj2-Col-coeffa r t = € i.t = proj2-abs (i g proj2-rep a + proj2-rep r)

lemma proj2-Col-coeff :

assumes proj2-Colartand a # rand t # a

shows t = proj2-abs ((proj2-Col-coeff a r t) xg proj2-rep a + proj2-rep r)
proof —

from @ # 1) and (proj2-Col a r t) and # a) and proj2-Col-iff

have 3 i. t = proj2-abs (i *g proj2-rep a + proj2-rep r) by simp

thus t = proj2-abs ((proj2-Col-coeff a r t) xg proj2-rep a + proj2-rep r)

by (unfold proj2-Col-coeff-def) (rule somel-ex)

qed

lemma proj2-Col-coeff-unique’:
assumes a # 0 and r # 0 and proj2-abs a # proj2-abs r
and proj2-abs (i *g a + r) = proj2-abs (j *g a + r)
shows i = j
proof —
from @ # 0) and r # 0) and (proj2-abs a # proj2-abs r)
and dependent-proj2-abs [of a r - 1]
haveixga+r# 0andj *g a + r # 0 by auto
with proj2-rep-abs2 [of i xg a + 7]
and proj2-rep-abs2 [of j *g a + 7]
obtain k and | where k # 0
and proj2-rep (proj2-abs (i xg a + 1)) =k g (i *g a + 1)
and proj2-rep (proj2-abs (j xg a + 1)) =1%g (j*gra +r)
by auto
with (proj2-abs (i xg a + r) = proj2-abs (j xg a + r))
have (k * i) xga +kxgr=(I*j)xga+1l*gr
by (simp add: scaleR-right-distrib)
hence (kxi—1I*j)*ga+ (k—1)*gr=20
by (simp add: algebra-simps Cart-eq)
with @ # 0) and (r # 0) and (proj2-abs a # proj2-abs)
and dependent-proj2-abs [of ark i — 1 % jk —]
havek xi — [xj=0and k — | = 0 by auto

62

from <k — [= 0) have k = [by simp

with k i — [% j = 0) have k x i = k * j by simp
with k # 0) show i = j by simp

qed

lemma proj2-Col-coeff-unique:
assumes a # r
and proj2-abs (i xg proj2-rep a + proj2-rep r)
= proj2-abs (j g proj2-rep a + proj2-rep r)
shows i = j
proof —
let ?a’ = proj2-rep a
let ?r' = proj2-rep r
have ?a’ # 0 and ?r’ # 0 by (rule proj2-rep-non-zero)+

from (@ # r have proj2-abs ?a’ # proj2-abs ?r' by (simp add: proj2-abs-rep)
with (?a’ # 0) and ?r' #£ 0
and (proj2-abs (i xg ?a’ + ?r') = proj2-abs (j xg ?a’ + ?r'))
and proj2-Col-coeff-unique’
show i = j by simp
qed

datatype proj2-line = P2L proj2

definition L2P :: proj2-line = proj2 where
L2P 1 £ caselof P2Lp = p

lemma L2P-P2L [simp]: L2P (P2Lp) = p
unfolding L2P-def
by simp

lemma P2L-L2P [simp|: P2L (L2P 1) =1
by (induct 1) simp

lemma L2P-inj [simp]:
assumes L2P [= L2P m
shows | = m
using P2L-L2P [of I] and assms
by simp

lemma P2L-to-L2P: P2Lp =1 +— p = L2P
proof
assume P2L p =
hence L2P (P2L p) = L2P | by simp
thus p = L2P [by simp
next
assume p = L2P |
thus P2L p = [by simp
qed

63

definition proj2-line-abs :: real"3 = proj2-line where
proj2-line-abs v £ P2L (proj2-abs v)

definition proj2-line-rep :: proj2-line = real"3 where
proj2-line-rep | = proj2-rep (L2P 1)

lemma proj2-line-rep-abs:
assumes v # 0
shows 3 k. k # 0 A proj2-line-rep (proj2-line-abs v) = k *g v
unfolding proj2-line-rep-def and proj2-line-abs-def
using proj2-rep-abs2 and @ # 0)
by simp

lemma proj2-line-abs-rep [simp): proj2-line-abs (proj2-line-rep 1) =1
unfolding proj2-line-abs-def and proj2-line-rep-def
by (simp add: proj2-abs-rep)

lemma proj2-line-rep-non-zero: proj2-line-rep | # 0
unfolding proj2-line-rep-def
using proj2-rep-non-zero
by simp

lemma proj2-line-rep-dependent:
assumes i xg proj2-line-rep | + j xg proj2-line-rep m = 0
andi #0Vj#0
shows | =m
using proj2-rep-dependent [of i L2P 1 j L2P m| and assms
unfolding proj2-line-rep-def
by simp

lemma proj2-line-abs-mult:
assumes k # 0
shows proj2-line-abs (k g v) = proj2-line-abs v
unfolding proj2-line-abs-def
using k # 0)
by (subst proj2-abs-mult) simp-all

lemma proj2-line-abs-abs-mult:
assumes proj2-line-abs v = proj2-line-abs w and w # 0
shows Jd k.v =k g w
using assms
by (unfold proj2-line-abs-def) (simp add: proj2-abs-abs-mult)

definition proj2-incident :: proj2 = proj2-line = bool where
proj2-incident p | = (proj2-rep p) - (proj2-line-rep 1) = 0

lemma proj2-points-define-line:

shows 3 [. proj2-incident p | A proj2-incident q |
proof —

64

let ?p’ = proj2-rep p

let 2q" = proj2-rep q

let 7B = {?p’, 2q'}

from card-suc-ge-insert [of ?p’ {?q'}] have card ?B < 2 by simp
with card-ge-dim [of ?B] have dim ?B < 3 by simp

with lowdim-subset-hyperplane [of ?B]

obtain |’ where I’ # 0 and span ?B C {x.1"- x = 0} by auto
let ?1 = proj2-line-abs I

let 71" = proj2-line-rep ?1

from proj2-line-rep-abs and (' # 0)

obtain k where ?!"" = k xg I’ by auto

have ?p’ € ?B and ?q’ € ?B by simp-all
with span-inc [of ?B] and (span ?B C {x.1’- x =0}
have!’- ?p’=0and !’ - ?q' = 0 by auto
hence ?p’-1'=0and ?q’ - I’ = 0 by (simp-all add: inner-commute)
with dot-scaleR-mult(2) [of - k1] and (21" =k xg 1"
have proj2-incident p ?I A\ proj2-incident q ?1
unfolding proj2-incident-def
by simp
thus 3 [. proj2-incident p | A proj2-incident q | by auto
qed

definition proj2-line-through :: proj2 = proj2 = proj2-line where
proj2-line-through p q = € L. proj2-incident p I A proj2-incident q |

lemma proj2-line-through-incident:
shows proj2-incident p (proj2-line-through p q)
and proj2-incident q (proj2-line-through p q)
unfolding proj2-line-through-def
using proj2-points-define-line
and somel-ex [of A . proj2-incident p I N\ proj2-incident q ||
by simp-all

lemma proj2-line-through-unique:
assumes p # q and proj2-incident p | and proj2-incident q |
shows [= proj2-line-through p q
proof —
let ?1' = proj2-line-rep 1
let ?m = proj2-line-through p q
let ?m’ = proj2-line-rep ?m
let ?p’ = proj2-rep p
let 7q’ = proj2-rep q
let 7A = {?p’, 29"}
let ?B = insert ?m' ?A
from proj2-line-through-incident
have proj2-incident p ?m and proj2-incident q ?m by simp-all
with (proj2-incident p I) and (proj2-incident q)
have V we?A. orthogonal ?m’ w and V we?A. orthogonal ?1" w

65

unfolding proj2-incident-def and orthogonal-def
by (simp-all add: inner-commute)
from proj2-rep-independent and (p # q) have independent ? A by simp
from proj2-line-rep-non-zero have ?m’ # 0 by simp
with orthogonal-independent
and (independent ?A) and v we?A. orthogonal ?m’ w)
have independent ?B by auto

from proj2-rep-inj and (p # ¢ have ?p’ # ?q’
unfolding inj-on-def
by auto
hence card ?A = 2 by simp
moreover have ?m’ ¢ ?A
proof
assume ?m’ € ?A
with span-inc [of ?A] have ?m’ € span ? A by auto
with orthogonal-in-span-eq-0 and vV we?A. orthogonal ?m’ w)
have ?m’ = 0 by auto
with (?m’ # 0) show False ..
qed
ultimately have card ?B = 3 by simp
with independent-is-basis [of ?B] and (independent ?B)
have is-basis ?B by simp
with basis-expand obtain c where ?!" = (Y vE€?B. ¢ v *g v) by auto
let 21" = 21" — c ?m’ xg ?m’
from ?I' = (Y v€?B.cv *g v)) and ?m’ ¢ ?A)
have ?!" = (Y ve?A. c v xg v) by simp
with orthogonal-setsum [of ?A]
and vV we?A. orthogonal ?1’ w) and vV we?A. orthogonal ?m’ w)
have orthogonal ?1' 71" and orthogonal ?m’ 21"
by (simp-all add: scalar-equiv)
from (orthogonal ?m’ ?1")
have orthogonal (c ?m’ xg ?m’) 21" by (simp add: orthogonal-clauses)
with (orthogonal 21’ 21"
have orthogonal ?1"' 21" by (simp add: orthogonal-clauses)
with orthogonal-self-eq-0 [of ?1''] have ?1"" = 0 by simp
with proj2-line-rep-dependent [of 11 — ¢ ?m’ ?m] show | = ?m by simp
qed

lemma proj2-incident-unique:
assumes proj2-incident p |
and proj2-incident q |
and proj2-incident p m
and proj2-incident q m
showsp=gVIi=m
proof cases
assume p = g
thusp=qVvi=m..
next

66

assume p # g
with (proj2-incident p I) and (proj2-incident q I)
and proj2-line-through-unique
have [= proj2-line-through p q by simp
moreover from (p # q) and (proj2-incident p m) and (proj2-incident q m)
have m = proj2-line-through p q by (rule proj2-line-through-unique)
ultimately show p = q V [= m by simp
qed

lemma proj2-lines-define-point: 3 p. proj2-incident p I \ proj2-incident p m
proof —
let ?I'=L2P1
let ?m’' = L2P m
from proj2-points-define-line [of 21’ ?m’]
obtain p’ where proj2-incident ?1' p’ A proj2-incident ?m’ p’ by auto
hence proj2-incident (L2P p') I A proj2-incident (L2P p') m
unfolding proj2-incident-def and proj2-line-rep-def
by (simp add: inner-commute)
thus 3 p. proj2-incident p I A\ proj2-incident p m by auto
qed

definition proj2-intersection :: proj2-line = proj2-line = proj2 where
proj2-intersection | m = L2P (proj2-line-through (L2P 1) (L2P m))

lemma proj2-incident-switch:
assumes proj2-incident p |
shows proj2-incident (L2P 1) (P2L p)
using assms
unfolding proj2-incident-def and proj2-line-rep-def
by (simp add: inner-commute)

lemma proj2-intersection-incident:

shows proj2-incident (proj2-intersection | m) |

and proj2-incident (proj2-intersection | m) m

using proj2-line-through-incident(1) [of L2P I L2P m]
and proj2-line-through-incident(2) [of L2P m L2P I]
and proj2-incident-switch [of L2P I]
and proj2-incident-switch [of L2P m]

unfolding proj2-intersection-def

by simp-all

lemma proj2-intersection-unique:
assumes | # m and proj2-incident p | and proj2-incident p m
shows p = proj2-intersection | m
proof —
from « # m) have L2P | # L2P m by auto
from (proj2-incident p I} and (proj2-incident p m)
and proj2-incident-switch
have proj2-incident (L2P 1) (P2L p) and proj2-incident (L2P m) (P2L p)

67

by simp-all
with (L2P [# L2P m) and proj2-line-through-unique
have P2L p = proj2-line-through (L2P 1) (L2P m) by simp
thus p = proj2-intersection I m
unfolding proj2-intersection-def
by (simp add: P2L-to-L2P)
qed

lemma proj2-not-self-incident:
= (proj2-incident p (P2L p))
unfolding proj2-incident-def and proj2-line-rep-def
using proj2-rep-non-zero and inner-eq-zero-iff [of proj2-rep p]
by simp

lemma proj2-another-point-on-line:
3 q.q # p A proj2-incident q |
proof —
let ?m = P2Lp
let ?q = proj2-intersection | ?m
from proj2-intersection-incident
have proj2-incident ?q | and proj2-incident ?q ?m by simp-all
from (proj2-incident ?q ?m) and proj2-not-self-incident have ?q # p by auto
with (proj2-incident ?q I) show 3 q. g # p A proj2-incident q | by auto
qed

lemma proj2-another-line-through-point:
3 m. m # 1 N\ proj2-incident p m
proof —
from proj2-another-point-on-line
obtain g where q # L2P I A proj2-incident q (P2L p) by auto
with proj2-incident-switch [of g P2L p]
have P2L q # | A proj2-incident p (P2L q) by auto
thus 3 m. m # I A\ proj2-incident p m ..
qed

lemma proj2-incident-abs:

assumes v # 0 and w # 0

shows proj2-incident (proj2-abs v) (proj2-line-abs w) <— v - w =0
proof —

from @ # 0) and proj2-rep-abs2

obtain j where j # 0 and proj2-rep (proj2-abs v) = j xg v by auto

from w # 0) and proj2-line-rep-abs

obtain k where k # 0
and proj2-line-rep (proj2-line-abs w) = k g w
by auto

with (j # 0) and (proj2-rep (proj2-abs v) = j *g v)

show proj2-incident (proj2-abs v) (proj2-line-abs w) <— v - w = 0
unfolding proj2-incident-def

68

by (simp add: dot-scaleR-mult)
qed

lemma proj2-incident-left-abs:

assumes v # 0

shows proj2-incident (proj2-abs v) | <— v - (proj2-line-rep I) = 0
proof —

have proj2-line-rep | # 0 by (rule proj2-line-rep-non-zero)

with (@ # 0) and proj2-incident-abs [of v proj2-line-rep ||

show proj2-incident (proj2-abs v) 1 <— v - (proj2-line-rep 1) = 0 by simp
qed

lemma proj2-incident-right-abs:

assumes v # (0

shows proj2-incident p (proj2-line-abs v) «— (proj2-rep p) - v =0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

with (v # 0) and proj2-incident-abs [of proj2-rep p v]

show proj2-incident p (proj2-line-abs v) <— (proj2-rep p) - v =10

by (simp add: proj2-abs-rep)

qed

definition proj2-set-Col :: proj2 set = bool where
proj2-set-Col S £ 3 1.V p€S. proj2-incident p |

lemma proj2-subset-Col:
assumes T C S and proj2-set-Col S
shows proj2-set-Col T
using (I' C S) and (proj2-set-Col S)
by (unfold proj2-set-Col-def) auto

definition proj2-no-3-Col :: proj2 set = bool where
proj2-no-3-Col S = card S = 4 A\ (¥ p€S. — proj2-set-Col (S — {p}))

lemma proj2-Col-iff-not-invertible:
proj2-Col p q r
«— — invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r| :: real’3"3)
(is - «— — invertible (vector [?u, ?v, ?w]))
proof —
let ?M = vector [?u,?v,?w] :: real"3"3
have proj2-Colp g r <+— (I x. x # 0 A x vx 2M = 0)
proof
assume proj2-Col p q r
then obtain i and j and k
wherei #0Vj#O0Vk#Oandi*g ?2u+j*gr 20+ k*xg ?2w=20
unfolding proj2-Col-def
by auto
let ?x = vector [i,j k] :: real’3
from G #0Vji#0Vk#O0

69

have ?x # 0
unfolding vector-def
by (simp add: Cart-eq forall-3)
moreover {
from <i*R u +]*R ?U+k*R 2w =0
have ?x vx M =0
unfolding vector-def and vector-matrix-mult-def
by (simp add: setsum-3 Cart-eq algebra-simps) }
ultimately show 3 x. x # 0 A x v ?M = 0 by auto
next
assume d x. x Z0 A xvx ?M =0
then obtain x where x # 0 and x v+ ?M = 0 by auto
let ?i = x$1
let 7j = x$2
let ?k = x$3
from (x # 0) have ?i # 0 V ?j # 0 V ?k # 0 by (simp add: Cart-eq forall-3)
moreover {
from x vx ?M = 0)
have ?i g ?u + ?j xg 70 + Pk +g 2w =0
unfolding vector-matrix-mult-def and setsum-3 and vector-def
by (simp add: Cart-eq algebra-simps) }
ultimately show proj2-Col p q v
unfolding proj2-Col-def
by auto
qed
also from matrix-right-invertible-ker [of ?M]
have ... <— = (3 M. ?M xx M’ = mat 1) by auto
also from matrix-left-right-inverse
have ... «+— - invertible ?’M
unfolding invertible-def
by auto
finally show proj2-Col p q r <— — invertible ?M .
qed

lemma not-invertible-iff-proj2-set-Col:
— invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r| :: real"3"3)
«— proj2-set-Col {p,q,r}
(is — invertible ?M <— -)
proof —
from left-invertible-iff-invertible
have — invertible ?M <+— — (3 M'. M/ xx ?M = mat 1) by auto
also from matrix-left-invertible-ker [of ?M]
have ... +— (3 y.y #0 A ?M xv y = 0) by auto
also have ... «— (3 .V se{p,q,r}. proj2-incident s I)
proof
assume 3 y.y F0A?M*vy =0
then obtain y where y # 0 and ?M xv y = 0 by auto
let 7] = proj2-line-abs y
from CM vy = 0)

70

have V se{p,q,r}. proj2-reps - y =0
unfolding vector-def
and matrix-vector-mult-def
and inner-vector-def
and setsum-3
by (simp add: Cart-eq forall-3)
with (y # 0) and proj2-incident-right-abs
have V se{p,q,r}. proj2-incident s ?1 by simp
thus 3 1.V se{p,q,r}. proj2-incident s I ..
next
assume 3 1.V se{p,q,r}. proj2-incident s |
then obtain [where V se{p,q,r}. proj2-incident s I ..
let ?y = proj2-line-rep |
have ?y # 0 by (rule proj2-line-rep-non-zero)
moreover {
from v se{p,q,r}. proj2-incident s I)
have ?M *v 7y =0
unfolding vector-def
and matrix-vector-mult-def
and inner-vector-def
and setsum-3
and proj2-incident-def
by (simp add: Cart-eq) }
ultimately show 3 y. y # 0 A ?M v y = 0 by auto
qed
finally show — invertible ?M <— proj2-set-Col {p,q,r}
unfolding proj2-set-Col-def .
qed

lemma proj2-Col-iff-set-Col:
proj2-Col p q v <— proj2-set-Col {p,q,r}
by (simp add: proj2-Col-iff-not-invertible
not-invertible-iff-proj2-set-Col)

lemma proj2-incident-Col:
assumes proj2-incident p | and proj2-incident q | and proj2-incident r |
shows proj2-Col p q r

proof —
from (proj2-incident p I} and (proj2-incident q I) and (proj2-incident r)
have proj2-set-Col {p,q,r} by (unfold proj2-set-Col-def) auto
thus proj2-Col p q r by (subst proj2-Col-iff-set-Col)

qed

lemma proj2-incident-iff-Col:
assumes p # q and proj2-incident p | and proj2-incident q |
shows proj2-incident r | <— proj2-Col p q r
proof
assume proj2-incident r |
with (proj2-incident p I) and (proj2-incident q)

71

show proj2-Col p q r by (rule proj2-incident-Col)
next
assume proj2-Col p q r
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
then obtain m where V sc{p,q,r}. proj2-incident s m
unfolding proj2-set-Col-def ..
hence proj2-incident p m and proj2-incident q m and proj2-incident r m
by simp-all
from (p # @ and (proj2-incident p I) and (proj2-incident q |)
and (proj2-incident p m) and (proj2-incident q m)
and proj2-incident-unique
have m = [by auto
with (proj2-incident r m) show proj2-incident r | by simp
qed

lemma proj2-incident-iff:
assumes p # q and proj2-incident p | and proj2-incident q |
shows proj2-incident r |
«— r=pV (3 k. r = proj2-abs (k g proj2-rep p + proj2-rep q))
proof —
from (p # ¢ and (proj2-incident p I) and (proj2-incident q)
have proj2-incident r | <— proj2-Col p q r by (rule proj2-incident-iff-Col)
with (p # ¢ and proj2-Col-iff
show proj2-incident r |
«—r=pV (3 k.r = proj2-abs (k g proj2-rep p + proj2-rep q))
by simp
qed

lemma not-proj2-set-Col-iff-span:

assumes card S = 3

shows — proj2-set-Col S <— span (proj2-rep ' S) = UNIV
proof —

from (card S = 3) and choose-3 [of S|

obtain p and g and r where S = {p,q,r} by auto

let ?u = proj2-rep p

let ?v = proj2-rep q

let 7w = proj2-rep r

let ?M = vector [?u, ?v, ?w) :: real”3"3

from (S = {p,q,r}) and not-invertible-iff-proj2-set-Col [of p q 7]

have — proj2-set-Col S <— invertible ?M by auto

also from left-invertible-iff-invertible

have ... +— (I N.N s« ?M =mat 1) ..

also from matrix-left-invertible-span-rows

have ... «— span (rows ?M) = UNIV by auto

finally have — proj2-set-Col S <— span (rows ?M) = UNIV .

have rows ?M = {?u, ?v, 2w}

proof
{ fix x

72

assume x € rows ?M
then obtaini:: 3 wherex =?M $ i
unfolding rows-def and row-def
by (auto simp add: Cart-nth-inverse)
with exhaust-3have x = ?u Vx =70V x = 7w
unfolding vector-def
by auto
hence x € {?u, ?v, 2w} by simp }
thus rows ?M C {?u, 70, ?w} ..
{ fix x
assume x € {?u, ?v, ?w}
hence x = ?u V x = ?v V x = ?w by simp
hencex=?M$1Vx=?M$2Vvx=?M$3
unfolding vector-def
by simp
hence x € rows ?M
unfolding rows-def and row-def
by (auto simp add: Cart-nth-inverse) }
thus {?u, ?v, 2w} C rows ?M ..
qed
with S = {p,q,r}
have rows ?M = proj2-rep * S
unfolding image-def
by auto
with (- proj2-set-Col S <— span (rows ?M) = UNIV)
show — proj2-set-Col S <— span (proj2-rep * S) = UNIV by simp
qed

lemma proj2-no-3-Col-span:
assumes proj2-no-3-Col Sand p € S
shows span (proj2-rep ' (S — {p})) = UNIV
proof —
from (proj2-no-3-Col S) have card S = 4 unfolding proj2-no-3-Col-def ..
with (p € S) and (card S = 4 and card-gt-0-diff-singleton [of S p]
have card (S — {p}) = 3 by simp

from (proj2-no-3-Col S) and (p € S)
have — proj2-set-Col (S — {p})
unfolding proj2-no-3-Col-def
by simp
with (card (S — {p}) = 3) and not-proj2-set-Col-iff-span
show span (proj2-rep * (S — {p})) = UNIV by simp
qed

lemma fourth-proj2-no-3-Col:
assumes — proj2-Col p g r
shows 3 s. proj2-no-3-Col {s,r,p,q}
proof —
from (- proj2-Col p q r) and proj2-Col-coincide have p # q by auto

73

hence card {p,q} = 2 by simp

from (- proj2-Col p g r) and proj2-Col-coincide and proj2-Col-permute
have r ¢ {p,q} by fast
with (card {p,q} = 2 have card {r,p,q} = 3 by simp

have finite {r,p,q} by simp

let ?s = proj2-abs () te{r,p.q}. proj2-rep t)
have 3 j. (¥ te{r,p,q}. proj2-rep t) = j *g proj2-rep ?s
proof cases
assume () te{r,p,q}. proj2-rep t) =0
hence (Y te{r,p,q}. proj2-rep t) = 0 =g proj2-rep ?s by simp
thus 3 j. (¥ te{rpq}. proj2-rep t) = j xg proj2-rep ?s ..
next
assume (). te{r,p,q}. proj2-rep t) # 0
with proj2-rep-abs2
obtain k where k # 0
and proj2-rep ?s = k g (¥ t€{r,p.q}. proj2-rep t)
by auto
hence (1/k) *g proj2-rep ?s = (3 te{r,p,q}. proj2-rep t) by simp
from this [symmetric]
show 3 j. (X te{rp.q}. proj2-rep t) = j xg proj2-rep ?s ..
qed
then obtain j where (Y te{r,p,q}. proj2-rep t) = j xg proj2-rep ?s ..
let 7c = At ift =?sthen1 — jelse 1
from (p # q have ?c p # 0 V ?c g # 0 by simp

let ?d = A t.if t = ?s then j else —1
let ?S = {?s,r,pq}

have ?s ¢ {r,p,q}
proof
assume ?s € {r,p,q}

from r ¢ {p,q}) and p # ¢
have ?c v xg proj2-rep r + ?c p xR proj2-rep p + ?c q *g proj2-rep q
= (L te{rpq}. 2c t *g proj2-rep t)
by (simp add: setsum-insert [of - - A t. ?c t g proj2-rep t])
also from (finite {r,p,q}) and (?s € {r,p,q}
have ... = ?c ?s xg proj2-rep ?s + (3 te{r,p,q}—{?s}. 2c t *g proj2-rep t)
by (simp only:
setsum-diffl’ [of {r,p.q} ?s A t. ?c t xR proj2-rep t])
also have . ..
= —j *g proj2-rep ?s + (proj2-rep ?s + (¥ te{r,p,q}—{?s}. proj2-rep t))
by (simp add: algebra-simps)
also from (finite {r,p,q}) and ?s € {r,p,q}
have ... = —j xg proj2-rep ?s + (L te{r,p,q}. proj2-rep t)

74

by (simp only:
setsum-diffl’ [of {r,p.q} ?s A t. proj2-rep t,symmetric])
also from () te{r,p,q}. proj2-rep t) = j g proj2-rep ?s)
have ... = 0 by simp
finally
have ?c v xg proj2-rep r + ?c p xg proj2-rep p + ?c q *g proj2-rep q =0

with Pcp#£0V ?2cqg # 0
have proj2-Col p q v
by (unfold proj2-Col-def) (auto simp add: algebra-simps)
with (- proj2-Col p q r) show False ..
qed
with (card {r,p,q} = 3) have card ?S = 4 by simp

from (- proj2-Col p q r» and proj2-Col-permute
have — proj2-Col r p q by fast
hence — proj2-set-Col {r,p,q} by (subst proj2-Col-iff-set-Col [symmetric|)

have V u€?S. — proj2-set-Col (?S — {u})
proof
fix u
assume u € ?S
with (card ?S = 4) have card (?S — {u}) = 3 by simp
show — proj2-set-Col (?S — {u})
proof cases
assume u = ’s
with (?s ¢ {r,p,q} have ?S — {u} = {r,p,q} by simp
with (- proj2-set-Col {r,p,q}) show — proj2-set-Col (?S — {u}) by simp
next
assume u # 7s
hence insert ?s ({r,p,q} — {u}) = ?S — {u} by auto

from (finite {r,p,q} have finite ({r,p,q} — {u}) by simp

from (?s ¢ {r,p,q} have ?s ¢ {rp,q} — {u} by simp
hence V te{rp,q}—{u}. ?d t = —1 by auto

from (1 # ?s) and (u € ?S) have u € {r,p,q} by simp
hence (Y te{rpq}. proj2-rep t)
= proj2-rep u + (¥ te{r,p.q}—{u}. proj2-rep t)
by (simp add: setsum-diff1’)
with (Y te{r,p,q}. proj2-rep t) = j xg proj2-rep ?s)
have proj2-rep u
= j *g proj2-rep ?s — (Y te{r,p,q}—{u}. proj2-rep t)
by simp
also from v te{rp,g}—{u}. 2dt = -1
have ... =j xg proj2-rep ?s + (¥ te{r,pq}—{u}. 2d t g proj2-rep t)
by (simp add: setsum-negf)
also from (finite ({r,p,q} — {u}) and s ¢ {r,p,q} — {u}p

75

have ... = (Y teinsert ?s ({r,p,q}—{u}). ?d t xg proj2-rep t)
by (simp add: setsum-insert)
also from (nsert ?s ({r,p,q} — {u}) = 7?5 — {u}p
have ... = (Y t€?S—{u}. ?d t xg proj2-rep t) by simp
finally have proj2-rep u = () t€?S—{u}. 2d t xg proj2-rep t) .
moreover
have V te?S—{u}. ?d t xg proj2-rep t € span (proj2-rep * (?S — {u}))
by (simp add: span-clauses)
ultimately have proj2-rep u € span (proj2-rep * (?S — {u}))
by (simp add: span-setsum)

have V te{rp,q}. proj2-rep t € span (proj2-rep * (?S — {u}))
proof
fix t
assume t € {r,p,q}
show proj2-rep t € span (proj2-rep * (?S — {u}))
proof cases
assume { = u
from (proj2-rep u € span (image proj2-rep (?S — {u}))
show proj2-rep t € span (proj2-rep * (?S — {u}))
by (subst t = w))
next
assume | # u
with (¢t € {rp,q}
have proj2-rep t € proj2-rep * (?S — {u}) by simp
with span-inc [of proj2-rep * (?S — {u})]
show proj2-rep t € span (proj2-rep * (?S — {u})) by fast
qed
qed
hence proj2-rep * {r,p,q} C span (proj2-rep * (?S — {u}))
by (simp only: image-subset-iff)
hence
span (proj2-rep * {r.p,q}) < span (span (proj2-rep * (75 — {u})))
by (simp only: span-mono)
hence span (proj2-rep * {r,p,q}) C span (proj2-rep (?S — {u}))
by (simp only: span-span)
moreover
from (- proj2-set-Col {r,p,q})
and (card {r,p,q} =3
and not-proj2-set-Col-iff-span
have span (proj2-rep ' {r,p,q}) = UNIV by simp
ultimately have span (proj2-rep (?S — {u})) = UNIV by auto
with (card (?S — {u}) = 3) and not-proj2-set-Col-iff-span
show — proj2-set-Col (?S — {u}) by simp
qed
qed
with (card 7S = 4)
have proj2-no-3-Col ?S by (unfold proj2-no-3-Col-def) fast
thus 3 s. proj2-no-3-Col {s,r,p.q} ..

76

qed

lemma proj2-set-Col-expand:
assumes proj2-set-Col S and {p,q,r} C Sandp #qandr #p
shows 3 k. r = proj2-abs (k xg proj2-rep p + proj2-rep q)

proof —
from (proj2-set-Col S)
obtain | where V t€S. proj2-incident t | unfolding proj2-set-Col-def ..
with {p,q,r} C S and (p # ¢ and # p) and proj2-incident-iff [of p q 1 1]
show 3 k. r = proj2-abs (k xR proj2-rep p + proj2-rep q) by simp

qed

7.4 Collineations of the real projective plane

typedef cltn2 =
(Collect invertible :: (real”3°3) set)/ / invertible-proportionality
proof
from matrix-id-invertible have (mat 1 :: real"3"3) € Collect invertible
by simp

thus invertible-proportionality " {mat 1} €
(Collect invertible :: (real”3°3) set)/ / invertible-proportionality
unfolding quotient-def
by auto
qed

definition cltn2-rep :: cltn2 = real"3"3 where
cltn2-rep A = € B. B € Rep-cltn2 A

definition cltn2-abs :: real’3’3 = cltn2 where
cltn2-abs B £ Abs-cltn2 (invertible-proportionality ** {B})

definition cltn2-independent :: cltn2 set = bool where
cltn2-independent X = independent {cltn2-rep A | A. A € X}

definition apply-cltn2 :: proj2 = cltn2 = proj2 where
apply-cltn2 x A = proj2-abs (proj2-rep x vk cltn2-rep A)

lemma cltn2-rep-in: cltn2-rep B € Rep-cltn2 B
proof —
let ?A = cltn2-rep B
from quotient-element-nonempty and
invertible-proportionality-equiv and
Rep-cltn2 [of B]
have 3 C. C € Rep-cltn2 B
unfolding cltn2-def
by auto
with somel-ex [of A C. C € Rep-cltn2 B]
show ?A € Rep-cltn2 B
unfolding cltn2-rep-def

77

by simp
qed

lemma cltn2-rep-invertible: invertible (clin2-rep A)
proof —
from
Union-quotient [of Collect invertible invertible-proportionality]
and invertible-proportionality-equiv
and Rep-cltn2 [of A] and cltn2-rep-in [of A]
have cltn2-rep A € Collect invertible
unfolding quotient-def and cltn2-def
by auto
thus invertible (clin2-rep A)
unfolding invertible-proportionality-def
by simp
qed

lemma cltn2-rep-abs:
fixes A :: real"3"3
assumes invertible A
shows (A, cltn2-rep (cltn2-abs A)) € invertible-proportionality
proof —
from (invertible A)
have invertible-proportionality ” {A} € cltn2
unfolding cltn2-def
and quotient-def
by auto
with Abs-cltn2-inverse
have Rep-cltn2 (cltn2-abs A) = invertible-proportionality “* {A}
unfolding cltn2-abs-def
by simp
with cltn2-rep-in
have cltn2-rep (cltn2-abs A) € invertible-proportionality “ {A} by auto
thus (A, cltn2-rep (cltn2-abs A)) € invertible-proportionality by simp
qed

lemma cltn2-rep-abs2:
assumes invertible A
shows 3 k. k # 0 A cltn2-rep (clin2-abs A) =k xg A
proof —
from (invertible A) and cltn2-rep-abs
have (A, cltn2-rep (cltn2-abs A)) € invertible-proportionality by simp
then obtain c where A = ¢ xg cltn2-rep (cltn2-abs A)
unfolding invertible-proportionality-def and real-vector.proportionality-def
by auto
with (nvertible A) and zero-not-invertible have ¢ # 0 by auto
hence 1/c # 0 by simp

let?k=1/c

78

from (A = ¢ *g cltn2-rep (cltn2-abs A))

have ?k xg A = ?k *g ¢ *g clin2-rep (cltn2-abs A) by simp

with (¢ # 0) have cltn2-rep (cltn2-abs A) = ?k *g A by simp

with 2k # 0)

show 3 k. k # 0 A cltn2-rep (cltn2-abs A) = k xg A by blast
qed

lemma cltn2-abs-rep: clin2-abs (cltn2-rep A) = A
proof —
from partition-Image-element
[of Collect invertible
invertible-proportionality
Rep-cltn2 A
cltn2-rep A]
and invertible-proportionality-equiv
and Rep-cltn2 [of A] and cltn2-rep-in [of A]
have invertible-proportionality ** {cltn2-rep A} = Rep-cltn2 A
unfolding cltn2-def
by simp
with Rep-cltn2-inverse
show cltn2-abs (cltn2-rep A) = A
unfolding cltn2-abs-def
by simp
qed

lemma cltn2-abs-mult:
assumes k # 0 and invertible A
shows cltn2-abs (k xg A) = clin2-abs A
proof —
from &k # 0) and (invertible A) and scalar-invertible
have invertible (k xg A) by auto
with (invertible A)
have (k xg A, A) € invertible-proportionality
unfolding invertible-proportionality-def
and real-vector.proportionality-def
by (auto simp add: zero-not-invertible)
with eg-equiv-class-iff
[of Collect invertible invertible-proportionality k g A A]
and invertible-proportionality-equiv
and (invertible A) and (nvertible (k xg A))
have invertible-proportionality " {k xg A}
= invertible-proportionality * {A}
by simp
thus cltn2-abs (k xg A) = cltn2-abs A
unfolding cltn2-abs-def
by simp
qed

lemma cltn2-abs-mult-rep:

79

assumes k # 0

shows cltn2-abs (k xg clin2-rep A) = A

using clin2-rep-invertible and cltn2-abs-mult and cltn2-abs-rep and assms
by simp

lemma apply-cltn2-abs:

assumes x # 0 and invertible A

shows apply-cltn2 (proj2-abs x) (cltn2-abs A) = proj2-abs (x vx A)
proof —

from proj2-rep-abs2 and (x # 0)

obtain k where k # 0 and proj2-rep (proj2-abs x) = k g x by auto

from cltn2-rep-abs2 and (invertible A)
obtain ¢ where ¢ # 0 and cltn2-rep (cltn2-abs A) = ¢ *g A by auto

from k # 0> and (¢ # 0) have k * ¢ # 0 by simp

from (proj2-rep (proj2-abs x) = k g x) and (cltn2-rep (cltn2-abs A) = c xg A)

have proj2-rep (proj2-abs x) vx clin2-rep (clin2-abs A) = (kxc) *g (x v A)
by (simp add: scalar-vector-matrix-assoc vector-scalar-matrix-ac)

with & % ¢ # 0)

show apply-cltn2 (proj2-abs x) (cltn2-abs A) = proj2-abs (x vx A)
unfolding apply-cltn2-def
by (simp add: proj2-abs-mult)

qed

lemma apply-cltn2-left-abs:
assumes v # 0
shows apply-cltn2 (proj2-abs v) C = proj2-abs (v v cltn2-rep C)
proof —
have cltn2-abs (cltn2-rep C) = C by (rule cltn2-abs-rep)
with @ # 0) and cltn2-rep-invertible and apply-cltn2-abs [of v cltn2-rep C]
show apply-cltn2 (proj2-abs v) C = proj2-abs (v v« cltn2-rep C)
by simp
qed

lemma apply-cltn2-right-abs:
assumes invertible M
shows apply-cltn2 p (cltn2-abs M) = proj2-abs (proj2-rep p v« M)
proof —
from proj2-rep-non-zero and (invertible M) and apply-cltn2-abs
have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs M)
= proj2-abs (proj2-rep p v« M)
by simp
thus apply-cltn2 p (cltn2-abs M) = proj2-abs (proj2-rep p vx M)
by (simp add: proj2-abs-rep)
qed

lemma non-zero-mult-rep-non-zero:

80

assumes v # 0

shows v v« cltn2-rep C # 0

using (v # 0) and cltn2-rep-invertible and times-invertible-eq-zero
by auto

lemma rep-mult-rep-non-zero: proj2-rep p v+ cltn2-rep A # 0
using proj2-rep-non-zero
by (rule non-zero-mult-rep-non-zero)

definition cltn2-image :: proj2 set = cltn2 = proj2 set where
cltn2-image P A £ {apply-cltn2 p A | p. p € P}

74.1 As agroup

definition cltn2-id :: cltn2 where
cltn2-id = cltn2-abs (mat 1)

definition cltn2-compose :: cltn2 = cltn2 = cltn2 where
cltn2-compose A B £ cltn2-abs (cltn2-rep A *x cltn2-rep B)

definition cltn2-inverse :: cltn2 = cltn2 where
cltn2-inverse A = cltn2-abs (matrix-inv (cltn2-rep A))

lemma cltn2-compose-abs:

assumes invertible M and invertible N

shows cltn2-compose (cltn2-abs M) (cltn2-abs N) = cltn2-abs (M *x N)
proof —

from (invertible M) and (invertible N) and invertible-mult

have invertible (M *x N) by auto

from (invertible M) and (invertible N> and cltn2-rep-abs2
obtain j and k where j # 0 and k # 0

and clin2-rep (clin2-abs M) = j xg M

and clin2-rep (cltn2-abs N) = k xg N

by blast

from (j # 0) and ¢k # 0) have j * k # 0 by simp

from (cltn2-rep (cltn2-abs M) = j xg M) and (cltn2-rep (cltn2-abs N) =k *g N)
have cltn2-rep (cltn2-abs M) *x cltn2-rep (cltn2-abs N)
= (j* k) xg (M *x N)
by (simp add: matrix-scalar-ac scalar-matrix-assoc [symmetric|)
with (x k # 0) and (invertible (M ** N))
show cltn2-compose (clin2-abs M) (cltn2-abs N) = cltn2-abs (M *x N)
unfolding cltn2-compose-def
by (simp add: cltn2-abs-mult)
qed

lemma cltn2-compose-left-abs:

81

assumes invertible M
shows cltn2-compose (cltn2-abs M) A = cltn2-abs (M xx cltn2-rep A)
proof —
from (invertible M) and cltn2-rep-invertible and cltn2-compose-abs
have cltn2-compose (cltn2-abs M) (cltn2-abs (cltn2-rep A))
= cltn2-abs (M xx cltn2-rep A)
by simp
thus cltn2-compose (cltn2-abs M) A = cltn2-abs (M xx cltn2-rep A)
by (simp add: cltn2-abs-rep)
qed

lemma cltn2-compose-right-abs:
assumes invertible M
shows cltn2-compose A (cltn2-abs M) = cltn2-abs (cltn2-rep A xx M)
proof —
from (invertible M) and cltn2-rep-invertible and cltn2-compose-abs
have cltn2-compose (cltn2-abs (cltn2-rep A)) (cltn2-abs M)
= cltn2-abs (cltn2-rep A xx M)
by simp
thus cltn2-compose A (cltn2-abs M) = cltn2-abs (cltn2-rep A xx M)
by (simp add: cltn2-abs-rep)
qed

lemma cltn2-abs-rep-abs-mult:

assumes invertible M and invertible N

shows cltn2-abs (cltn2-rep (cltn2-abs M) s* N) = cltn2-abs (M *x N)
proof —

from (invertible M) and (invertible N)

have invertible (M xx N) by (simp add: invertible-mult)

from (invertible M) and cltn2-rep-abs2
obtain k where k # 0 and cltn2-rep (cltn2-abs M) = k xgr M by auto
from (cltn2-rep (cltn2-abs M) = k xg M)
have cltn2-rep (cltn2-abs M) xx N = k xg M *x N by simp
with k # 0) and (invertible (M x* N)) and cltn2-abs-mult
show cltn2-abs (cltn2-rep (cltn2-abs M) x* N) = cltn2-abs (M ** N)
by (simp add: scalar-matrix-assoc [symmetric|)
qed

lemma cltn2-assoc:

cltn2-compose (cltn2-compose A B) C = cltn2-compose A (cltn2-compose B C)
proof —

let ?A’ = cltn2-rep A

let ?B’ = cltn2-rep B

let ?C’ = cltn2-rep C

from cltn2-rep-invertible

have invertible ?A’ and invertible ?B" and invertible ?C' by simp-all

with invertible-mult

have invertible (?A’ xx ?B’) and invertible (?B’ xx ?C’)

82

and invertible (?A’ xx ?B’ xx ?C’)

by auto
from (invertible (?A’ xx ?B’)) and (invertible ?C" and cltn2-abs-rep-abs-mult
have cltn2-abs (cltn2-rep (cltn2-abs (?A’ xx ?B’)) #x ?C)

= cltn2-abs (?A’ % ?B’ xx ?C’)

by simp

from (invertible (?B’ x* ?C")) and cltn2-rep-abs2 [of ?B’ xx ?C’]

obtain k where k #£ 0
and cltn2-rep (cltn2-abs (?B’ xx ?C")) =k *g (?B’ xx 2C)
by auto

from (cltn2-rep (cltn2-abs (?B’ xx ?C')) = k *g (?B’ xx 2C'))

have ?A’ xx cltn2-rep (cltn2-abs (?B’ xx ?2C')) = k *g (?A” %% ?B’ xx 2C’)
by (simp add: matrix-scalar-ac matrix-mul-assoc scalar-matrix-assoc)

with (k # 0) and (nvertible (?A’ % ?B’ xx ?C’))
and cltn2-abs-mult [of k A" sx ?B’ sx 2C/]

have cltn2-abs (?A’ xx clin2-rep (cltn2-abs (?B’ xx ?C')))
= cltn2-abs (?A" % ?B’ xx ?C’)
by simp

with (cltn2-abs (cltn2-rep (cltn2-abs (?A’ xx ?B’)) *x 2C)
= cltn2-abs (?A’ xx ?B’ xx ?C’))

show
cltn2-compose (cltn2-compose A B) C = cltn2-compose A (cltn2-compose B C)
unfolding cltn2-compose-def
by simp

qed

lemma cltn2-left-id: cltn2-compose cltn2-id A = A
proof —
let ?A’ = cltn2-rep A
from cltn2-rep-invertible have invertible ?A’ by simp
with matrix-id-invertible and cltn2-abs-rep-abs-mult [of mat 1 ?A]
have cltn2-compose cltn2-id A = cltn2-abs (cltn2-rep A)
unfolding cltn2-compose-def and cltn2-id-def
by (auto simp add: matrix-mul-lid)
with cltn2-abs-rep show cltn2-compose cltn2-id A = A by simp
qed

lemma cltn2-left-inverse: cltn2-compose (cltn2-inverse A) A = cltn2-id
proof —
let ?M = cltn2-rep A
let ?M’ = matrix-inv ?M
from cltn2-rep-invertible have invertible ?M by simp
with matrix-inv-invertible have invertible ?M' by auto
with (nvertible ?M) and cltn2-abs-rep-abs-mult
have cltn2-compose (cltn2-inverse A) A = cltn2-abs (?M’ xx ?M)
unfolding cltn2-compose-def and cltn2-inverse-def
by simp
with (nvertible ?M)

83

show cltn2-compose (cltn2-inverse A) A = cltn2-id
unfolding cltn2-id-def
by (simp add: matrix-inv)
qed

lemma cltn2-left-inverse-ex:
3 B. cltn2-compose B A = cltn2-id
using cltn2-left-inverse ..

interpretation cltn2:
group (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
using cltn2-assoc and cltn2-left-id and cltn2-left-inverse-ex
and groupl [of (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)]
by simp-all

lemma cltn2-inverse-inv [simp]:
MO (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|) A

= cltn2-inverse A

using cltn2-left-inverse [of A] and cltn2.inv-equality

by simp

lemmas cltn2-inverse-id [simp] = cltn2.inv-one [simplified]
and cltn2-inverse-compose = cltn2.inv-mult-group [simplified)

7.4.2 As a group action

lemma apply-cltn2-id [simp|: apply-clin2 p clin2-id = p
proof —
from matrix-id-invertible and apply-cltn2-right-abs
have apply-clin2 p cltn2-id = proj2-abs (proj2-rep p v+ mat 1)
unfolding cltn2-id-def
by auto
thus apply-cltn2 p cltn2-id = p
by (simp add: vector-matrix-mul-rid proj2-abs-rep)
qed

lemma apply-cltn2-compose:
apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (cltn2-compose A B)
proof —
from rep-mult-rep-non-zero and cltn2-rep-invertible and apply-clin2-abs
have apply-clin2 (apply-clin2 p A) (cltn2-abs (cltn2-rep B))
= proj2-abs ((proj2-rep p vx clin2-rep A) vx cltn2-rep B)
unfolding apply-cltn2-def [of p A]
by simp
hence apply-cltn2 (apply-cltn2 p A) B
= proj2-abs (proj2-rep p vx (cltn2-rep A *x cltn2-rep B))
by (simp add: cltn2-abs-rep vector-matrix-mul-assoc)

from cltn2-rep-invertible and invertible-mult

84

have invertible (cltn2-rep A xx cltn2-rep B) by auto

with apply-cltn2-right-abs

have apply-cltn2 p (cltn2-compose A B)
= proj2-abs (proj2-rep p vx (cltn2-rep A *x cltn2-rep B))
unfolding cltn2-compose-def
by simp

with apply-cltn2 (apply-cltn2 p A) B
= proj2-abs (proj2-rep p vx (cltn2-rep A *x cltn2-rep B)))

show apply-cltn2 (apply-cltn2 p A) B = apply-clin2 p (clin2-compose A B)
by simp

qed

interpretation cltn2:
action (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|) apply-clin2
proof
let ?G = (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
fix p
show apply-cltn2 p 1,5 = p by simp
fix A B
have apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (A ®,g B)
by simp (rule apply-cltn2-compose)
thus A € carrier G A B € carrier ?G
— apply-clin2 (apply-cltn2 p A) B = apply-clin2 p (A ®,g B)

qed

definition cltn2-transpose :: cltn2 = cltn2 where
cltn2-transpose A = cltn2-abs (transpose (cltn2-rep A))

definition apply-cltn2-line :: proj2-line = cltn2 = proj2-line where
apply-cltn2-line | A
£ P2L (apply-cltn2 (L2P 1) (cltn2-transpose (cltn2-inverse A)))

lemma cltn2-transpose-abs:
assumes invertible M
shows cltn2-transpose (cltn2-abs M) = cltn2-abs (transpose M)
proof —
from (invertible M) and transpose-invertible have invertible (transpose M) by auto

from (invertible M) and cltn2-rep-abs2
obtain k where k # 0 and cltn2-rep (cltn2-abs M) = k xgr M by auto

from (cltn2-rep (cltn2-abs M) = k xg M)

have transpose (clin2-rep (cltn2-abs M)) = k *g transpose M
by (simp add: transpose-scalar)

with (k # 0) and (invertible (transpose M))

show clin2-transpose (clin2-abs M) = cltn2-abs (transpose M)
unfolding cltn2-transpose-def
by (simp add: clin2-abs-mult)

qed

85

lemma cltn2-transpose-compose:
cltn2-transpose (cltn2-compose A B)
= cltn2-compose (cltn2-transpose B) (cltn2-transpose A)
proof —
from cltn2-rep-invertible
have invertible (cltn2-rep A) and invertible (cltn2-rep B)
by simp-all
with transpose-invertible
have invertible (transpose (cltn2-rep A))
and invertible (transpose (cltn2-rep B))
by auto

from (invertible (cltn2-rep A)) and (invertible (cltn2-rep B))
and invertible-mult
have invertible (cltn2-rep A *x cltn2-rep B) by auto
with (invertible (clin2-rep A xx clin2-rep B)) and cltn2-transpose-abs
have cltn2-transpose (cltn2-compose A B)
= cltn2-abs (transpose (cltn2-rep A xx cltn2-rep B))
unfolding cltn2-compose-def
by simp
also have ... = cltn2-abs (transpose (cltn2-rep B) xx transpose (cltn2-rep A))
by (simp add: matrix-transpose-mul)
also from (invertible (transpose (clin2-rep B)))
and (invertible (transpose (clin2-rep A)))
and cltn2-compose-abs
have ... = clin2-compose (clin2-transpose B) (clin2-transpose A)
unfolding cltn2-transpose-def
by simp
finally show cltn2-transpose (cltn2-compose A B)
= cltn2-compose (cltn2-transpose B) (cltn2-transpose A) .
qed

lemma cltn2-transpose-transpose: cltn2-transpose (cltn2-transpose A) = A
proof —
from cltn2-rep-invertible have invertible (cltn2-rep A) by simp
with transpose-invertible have invertible (transpose (cltn2-rep A)) by auto
with cltn2-transpose-abs [of transpose (cltn2-rep A)]
have
cltn2-transpose (cltn2-transpose A) = clin2-abs (transpose (transpose (clin2-rep A)))
unfolding cltn2-transpose-def [of A]
by simp
with cltn2-abs-rep and transpose-transpose [of cltn2-rep Al
show cltn2-transpose (cltn2-transpose A) = A by simp
qed

lemma cltn2-transpose-id [simp)]: cltn2-transpose cltn2-id = cltn2-id

using cltn2-transpose-abs
unfolding cltn2-id-def

86

by (simp add: transpose-mat matrix-id-invertible)

lemma apply-cltn2-line-id [simp]: apply-cltn2-line I clin2-id = |
unfolding apply-cltn2-line-def
by simp

lemma apply-cltn2-line-compose:
apply-cltn2-line (apply-cltn2-line | A) B
= apply-cltn2-line | (cltn2-compose A B)
proof —
have cltn2-compose
(cltn2-transpose (clin2-inverse A)) (cltn2-transpose (cltn2-inverse B))
= cltn2-transpose (cltn2-inverse (cltn2-compose A B))
by (simp add: cltn2-transpose-compose cltn2-inverse-compose)
thus apply-cltn2-line (apply-cltn2-linel A) B
= apply-cltn2-line | (cltn2-compose A B)
unfolding apply-cltn2-line-def
by (simp add: apply-cltn2-compose)
qed

interpretation cltn2-line:
action
(|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
apply-cltn2-line
proof
let ?G = (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
fix |
show apply-cltn2-line I 1,5 = | by simp
fix AB
have apply-clin2-line (apply-cltn2-line | A) B
= apply-cltn2-line | (A ®,5 B)
by simp (rule apply-cltn2-line-compose)
thus A € carrier G A B € carrier ?G
— apply-cltn2-line (apply-clin2-line | A) B
= apply-cltn2-line | (A @, B)

qed
lemmas apply-cltn2-inv [simp] = cltn2.act-act-inv [simplified)
lemmas apply-cltn2-line-inv [simp| = cltn2-line.act-act-inv [simplified|

lemma apply-cltn2-line-alt-def:
apply-cltn2-line I A
= proj2-line-abs (cltn2-rep (clin2-inverse A) xv proj2-line-rep 1)
proof —
have invertible (cltn2-rep (clin2-inverse A)) by (rule clin2-rep-invertible)
hence invertible (transpose (cltn2-rep (cltn2-inverse A)))
by (rule transpose-invertible)
hence

87

apply-clin2 (L2P 1) (clin2-transpose (clin2-inverse A))
= proj2-abs (proj2-rep (L2P 1) vx transpose (cltn2-rep (cltn2-inverse A)))
unfolding cltn2-transpose-def
by (rule apply-cltn2-right-abs)

hence apply-cltn2 (L2P 1) (cltn2-transpose (cltn2-inverse A))
= proj2-abs (cltn2-rep (cltn2-inverse A) xv proj2-line-rep I)
unfolding proj2-line-rep-def
by simp

thus apply-cltn2-line [A
= proj2-line-abs (cltn2-rep (cltn2-inverse A) *v proj2-line-rep)
unfolding apply-cltn2-line-def and proj2-line-abs-def ..

qed

lemma rep-mult-line-rep-non-zero: clin2-rep A xv proj2-line-rep | # 0
using proj2-line-rep-non-zero and cltn2-rep-invertible
and invertible-times-eq-zero
by auto

lemma apply-cltn2-incident:
proj2-incident p (apply-cltn2-line | A)
«— proj2-incident (apply-cltn2 p (cltn2-inverse A)) 1
proof —
have proj2-rep p v cltn2-rep (cltn2-inverse A) # 0
by (rule rep-mult-rep-non-zero)
with proj2-rep-abs2
obtain j where j # 0
and proj2-rep (proj2-abs (proj2-rep p vx cltn2-rep (cltn2-inverse A)))
= j *g (proj2-rep p vx clin2-rep (cltn2-inverse A))
by auto

let ?v = cltn2-rep (cltn2-inverse A) xv proj2-line-rep
have ?v # 0 by (rule rep-mult-line-rep-non-zero)
with proj2-line-rep-abs [of ?v]
obtain k where k # 0
and proj2-line-rep (proj2-line-abs ?v) = k g ?v
by auto
hence proj2-incident p (apply-cltn2-line | A)
> proj2-rep p - (cltn2-rep (cltn2-inverse A) v proj2-line-rep 1) = 0
unfolding proj2-incident-def and apply-cltn2-line-alt-def
by (simp add: dot-scaleR-mult)
also from dot-Imul-matrix [of proj2-rep p cltn2-rep (cltn2-inverse A)]
have
... < (proj2-rep p vx cltn2-rep (cltn2-inverse A)) -« proj2-line-rep | = 0
by simp
also from ¢ # 0)
and (proj2-rep (proj2-abs (proj2-rep p v cltn2-rep (cltn2-inverse A)))
= j xR (proj2-rep p vx cltn2-rep (cltn2-inverse A)))
have ... «— proj2-incident (apply-cltn2 p (cltn2-inverse A)) 1
unfolding proj2-incident-def and apply-cltn2-def

88

by (simp add: dot-scaleR-mult)
finally show ?thesis .
qed

lemma apply-cltn2-preserve-incident [iff]:
proj2-incident (apply-cltn2 p A) (apply-clin2-line | A)
+— proj2-incident p |
by (simp add: apply-cltn2-incident)

lemma apply-cltn2-preserve-set-Col:
assumes proj2-set-Col S
shows proj2-set-Col {apply-cltn2 p C | p.p € S}
proof —
from (proj2-set-Col S)
obtain | where V p€S. proj2-incident p I unfolding proj2-set-Col-def ..
hence V g € {apply-cltn2 p C | p.p € S}.
proj2-incident q (apply-cltn2-line | C)
by auto
thus proj2-set-Col {apply-cltn2 p C | p.p € S}
unfolding proj2-set-Col-def ..
qed

lemma apply-cltn2-injective:
assumes apply-cltn2 p C = apply-clin2 q C
shows p =g
proof —
from (apply-cltn2 p C = apply-cltn2 q C)
have apply-cltn2 (apply-cltn2 p C) (cltn2-inverse C)
= apply-cltn2 (apply-cltn2 q C) (cltn2-inverse C)
by simp
thus p = q by simp
qed

lemma apply-cltn2-line-injective:
assumes apply-clin2-line | C = apply-cltn2-line m C
shows | = m
proof —
from (apply-cltn2-line | C = apply-cltn2-line m C)
have apply-cltn2-line (apply-cltn2-line | C) (cltn2-inverse C)
= apply-cltn2-line (apply-cltn2-line m C) (cltn2-inverse C)
by simp
thus | = m by simp
qed

lemma apply-cltn2-line-unique:
assumes p # g and proj2-incident p | and proj2-incident q |
and proj2-incident (apply-cltn2 p C) m
and proj2-incident (apply-cltn2 q C) m
shows apply-cltn2-line | C =m

89

proof —
from (proj2-incident p)
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line | C) by simp

from (proj2-incident q |)
have proj2-incident (apply-cltn2 q C) (apply-cltn2-line | C) by simp

from (p # ¢ and apply-cltn2-injective [of p C g]

have apply-clin2 p C # apply-cltn2 q C by auto

with (proj2-incident (apply-cltn2 p C) (apply-cltn2-line 1 C))
and (proj2-incident (apply-cltn2 q C) (apply-cltn2-line | C))
and (proj2-incident (apply-cltn2 p C)
and (proj2-incident (apply-cltn2 q C)
and proj2-incident-unique

show apply-cltn2-line I C = m by fast

qed

m)
m)

lemma apply-cltn2-unigue:
assumes | # m and proj2-incident p | and proj2-incident p m
and proj2-incident q (apply-cltn2-line I C)
and proj2-incident q (apply-cltn2-line m C)
shows apply-cltn2 p C = q
proof —
from (proj2-incident p)
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line | C) by simp

from (proj2-incident p m)
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C) by simp

from (# m) and apply-cltn2-line-injective [of | C m]

have apply-cltn2-line | C # apply-cltn2-line m C by auto

with (proj2-incident (apply-cltn2 p C) (apply-cltn2-line I C))
and (proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C))
and (proj2-incident q (apply-cltn2-line | C))
and (proj2-incident q (apply-clin2-line m C))
and proj2-incident-unique

show apply-cltn2 p C = q by fast

qed

7.4.3 Parts of some Statements from [1]

lemma statement52-existence:
fixes a :: proj2°3 and a3 :: proj2
assumes proj2-no-3-Col (insert a3 (range (op $ a)))
shows 3 A. apply-cltn2 (proj2-abs (vector [1,1,1])) A = a3 A
(V j. apply-cltn2 (proj2-abs (basis j)) A = a$j)
proof —
let ?v = proj2-rep a3
let ?B = proj2-rep “ range (op $ a)

90

from (proj2-no-3-Col (insert a3 (range (op $ a)))
have card (insert a3 (range (op $ a))) = 4 unfolding proj2-no-3-Col-def ..

from card-image-le [of UNIV op $ a|
have card (range (op $ a)) < 3 by simp
with card-insert-if [of range (op $ a) a3]
and (card (insert a3 (range (op $a))) = 4
have a3 ¢ range (op $ a) by auto
hence (insert a3 (range (op $ a))) — {a3} = range (op $ a) by simp
with (proj2-no-3-Col (insert a3 (range (op $ a))))
and proj2-no-3-Col-span [of insert a3 (range (op $ a)) a3]
have span ?B = UNIV by simp

from card-suc-ge-insert [of a3 range (op $ a)]

and (card (insert a3 (range (op $a))) = 4

and (card (range (op $a)) < 3)
have card (range (op $ a)) = 3 by simp
with card-image [of proj2-rep range (op $ a)]

and proj2-rep-inj

and subset-inj-on
have card ?B = 3 by auto
hence finite ?B by simp
with (span ?B = UNIV) and span-finite [of ?B]
obtain ¢ where () w € ?B. (c w) *g w) = ?v by (auto simp add: scalar-equiv)
let ?C = yx i. ¢ (proj2-rep (a$i)) g (proj2-rep (a$i))
let ?A = cltn2-abs 2C

from proj2-rep-inj and @3 ¢ range (op $ a)) have ?v ¢ ?B
unfolding inj-on-def
by auto

have V i. ¢ (proj2-rep (a$i)) # 0
proof
fix i
let ?Bi = proj2-rep * (range (op $ a) — {a$i})

have a$i € insert a3 (range (op $ a)) by simp
have proj2-rep (a$i) € ?B by auto

from image-set-diff [of proj2-rep] and proj2-rep-inj
have ?Bi = ?B — {proj2-rep (a$i)} by simp
with setsum-diffl [of ?B A w. (c w) *g w)
and (finite ?B)
and (proj2-rep (a$i) € ?B)
have () w € ?Bi. (c w) xg w) =
(X w e ?B. (cw) *g w) — c (proj2-rep (a$i)) xgr proj2-rep (a$i)
by simp

91

from @3 ¢ range (op $ a)) have a3 # a$i by auto

hence insert a3 (range (op $ a)) — {a$i} =
insert a3 (range (op $ a) — {a$i}) by auto

hence proj2-rep * (insert a3 (range (op $ a)) — {a$i}) = insert 2v ?Bi
by simp

moreover from (proj2-no-3-Col (insert a3 (range (op $ a))))
and a$i € insert a3 (range (op $ a)))

have span (proj2-rep * (insert a3 (range (op $ a)) — {a$i})) = UNIV
by (rule proj2-no-3-Col-span)

ultimately have span (insert ?v ?Bi) = UNIV by simp

from (?Bi = ?B — {proj2-rep (a$i)})
and (proj2-rep (a$i) € ?B)
and (card ?B = 3)
have card ?Bi = 2 by (simp add: card-gt-0-diff-singleton)
hence finite ?Bi by simp
with (card ?Bi = 2) and card-ge-dim [of ?Bi] have dim ?Bi < 2 by simp
hence dim (span ?Bi) < 2 by (subst dim-span)
with dim-univ [where 'n = 3] have span ?Bi # UNIV by auto
with (span (insert ?v ?Bi) = UNIV) and in-span-eq
have ?v & span ?Bi by auto

{ assume c (proj2-rep (a$i)) =0
with (Y w € ?Bi. (cw) *g w) =
(Y w e ?B. (cw) *g w) — c (proj2-rep (a$i)) *r proj2-rep (a$i))
and (Y w € ?B. (cw) xg w) = ?0)
have ?v = (Y w € ?Bi. (c w) *g w)
by simp
with span-finite [of ?Bi] and (finite ?Bi)
have ?v € span ?Bi by (simp add: scalar-equiv) auto
with (?v ¢ span ?Bi) have False .. }
thus ¢ (proj2-rep (a$i)) # 0 ..
qed
hence V we?B.cw # 0
unfolding image-def
by auto

from Cart-nth-inverse
have rows ?C = (A w. (cw) *g w) * ?B
unfolding rows-def
and row-def
and image-def
by auto

have V x. x € span (rows ?C)
proof
fix x :: real”3
from (finite ?B) and span-finite [of ?B| and (span ?B = UNIV)

92

obtain ub where (Y we?B. (ub w) xg w) = x by (auto simp add: scalar-equiv)
have V we?B. (ub w) xg w € span (rows ?C)
proof
fix w
assume w € 7B
with span-inc [of rows ?C] and (rows ?C = image (A w. (c w) *g w) ?B)
have (c w) *g w € span (rows ?C) by auto
with span-mul [of (¢ w) xg w rows ?C (ub w)/(c w)]
have ((ubw)/(cw)) *g ((c w) *xg w) € span (rows ?C)
by (simp add: scalar-equiv)
with vV we?B.cw # 0) and (w € ?B)
show (ub w) g w € span (rows ?C) by auto
qed
with span-setsum [of ?B A w. (ub w) xg w| and (finite ?B)
have (Y we?B. (ub w) xg w) € span (rows ?C) by simp
with () we?B. (ub w) *g w) = x) show x € span (rows ?C) by simp
qed
hence span (rows ?C) = UNIV by auto
with matrix-left-invertible-span-rows [of ?C|
have 3 C’. C'#x ?C = mat 1 ..
with left-invertible-iff-invertible
have invertible ?C ..

have (vector [1,1,1] :: real’3) # 0
unfolding vector-def
by (simp add: Cart-eq forall-3)
with apply-cltn2-abs and (invertible ?C)
have apply-cltn2 (proj2-abs (vector [1,1,1])) ?A =
proj2-abs (vector [1,1,1] vx ?C)
by simp
from inj-on-iff-eq-card [of UNIV op $ a] and (card (range (op $ a)) = 3)
have inj (op $ a) by simp
from exhaust-3 have V i::3. (vector [1::real,1,1])$i = 1
unfolding vector-def
by auto
with vector-matrix-row [of vector [1,1,1] ?C]
have (vector [1,1,1]) v« ?C =
(Y ieUNIV. (c (proj2-rep (a$i))) *r (proj2-rep (a$i)))
by simp
also from setsum-reindex
[of op $ a UNIV A x. (c (proj2-rep x)) =g (proj2-rep x)]
and (nj (op $ a))
have ... = () x&(range (op $ a)). (c (proj2-rep x)) *r (proj2-rep x))
by simp
also from setsum-reindex
[of proj2-rep range (op $ a) A w. (c w) *g w]
and proj2-rep-inj and subset-inj-on [of proj2-rep UNIV range (op $ a)]
have ... = (Y we?B. (c w) *g w) by simp
also from (Y w € ?B. (c w) *g w) = ?v) have ... = ?v by simp

93

finally have (vector [1,1,1]) v+ ?C = ?v.
with (apply-cltn2 (proj2-abs (vector [1,1,1])) ?A =
proj2-abs (vector [1,1,1] v ?C))
have apply-cltn2 (proj2-abs (vector [1,1,1])) ?A = proj2-abs ?v by simp
with proj2-abs-rep have apply-cltn2 (proj2-abs (vector [1,1,1])) ?A = a3
by simp
have V j. apply-cltn2 (proj2-abs (basis j)) ?A = a$j
proof
fix j
have ((basis j)::real"3) # 0 by (simp add: Cart-eq)
with apply-cltn2-abs and (invertible ?C)
have apply-clin2 (proj2-abs (basis j)) ?A = proj2-abs (basis j vx ?C)
by simp

have V ic(UNIV—{j}).
((basis j)$i * c (proj2-rep (a$i))) *r (proj2-rep (a$i)) = 0
by simp
with setsum-mono-zero-left [of UNIV {j}
A i. ((basis j)$i * ¢ (proj2-rep (a$i))) xgr (proj2-rep (a$i))]
and vector-matrix-row [of basis j ?C]
have (basis j) v« ?C = ?C$j by (simp add: scalar-equiv)
hence (basis j) v« ?C = ¢ (proj2-rep (a$j)) *r (proj2-rep (a$j)) by simp
with proj2-abs-mult-rep and v i. ¢ (proj2-rep (a$i)) # 0)
and apply-cltn2 (proj2-abs (basis j)) ?A = proj2-abs (basis j vx ?C))
show apply-cltn2 (proj2-abs (basis j)) ?A = a$j
by simp
qed
with (@apply-cltn2 (proj2-abs (vector [1,1,1])) ?A = a3)
show 3 A. apply-clin2 (proj2-abs (vector [1,1,1])) A = a3 A
(V j. apply-cltn2 (proj2-abs (basis j)) A = a$j)
by auto
qed

lemma statement53-existence:
fixes p :: proj2°4"2
assumes V i. proj2-no-3-Col (range (op $ (p$i)))
shows 3 C.V j. apply-cltn2 (p0j) C = p1j
proof —
let ?q = x i. x j::3. p$i $ (of-int (Rep-bitl j))
let ?D = x i. € D. apply-cltn2 (proj2-abs (vector [1,1,1])) D = pi3
A (V j. apply-cltn2 (proj2-abs (basis j')) D = ?q%i$;’)
have V i. apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$i) = p$i$3
A (V j. apply-cltn2 (proj2-abs (basis j')) (?D$i) = 2q$i%j’)
proof
fix i
have range (op $ (p$i)) = insert (p$i$3) (range (op $ (79%i)))
proof
show range (op $ (p$i)) D insert (p$i$3) (range (op $ (?q%i))) by auto
show range (op $ (p$i)) C insert (p$i$3) (range (op $ (?9%i)))

94

proof
fix r
assume r € range (op $ (p$i))
then obtain j where r = pij by auto
with eg-3-or-0f-3 [of J]
show r € insert (pi3) (range (op $ (?9%i))) by auto
qed
qed
moreover from (Y i. proj2-no-3-Col (range (op $ (p$i)))
have proj2-no-3-Col (range (op $ (p$i))) ..
ultimately have proj2-no-3-Col (insert (pi3) (range (op $ (?9%i))))
by simp
hence 3 D. apply-cltn2 (proj2-abs (vector [1,1,1])) D = pi3
A (V j'. apply-cltn2 (proj2-abs (basis j')) D = ?q%i$;’)
by (rule statement52-existence)
with somel-ex [of A D. apply-cltn2 (proj2-abs (vector [1,1,1])) D = pi3
A (V j. apply-cltn2 (proj2-abs (basis j')) D = 2q%i$;j’)]
show apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$i) = p$i$3
A (V j. apply-cltn2 (proj2-abs (basis j')) (?D$i) = ?q$i%j’)
by simp
qed
hence apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$0) = p$0$3
and apply-clin2 (proj2-abs (vector [1,1,1])) (?D$1) = p$1$3
and V j'. apply-cltn2 (proj2-abs (basis j')) (?D$0) = ?2q$0$;’
and V j'. apply-clin2 (proj2-abs (basis j')) (?D$1) = ?q$1$j’
by simp-all

let ?C = cltn2-compose (cltn2-inverse (?D$0)) (?D$1)
have V j. apply-cltn2 (p0%j) ?C = p1j
proof
fix j
show apply-cltn2 (p0j) ?C = p19j
proof cases
assume j = 3
with apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$0) = p$0$3)
and cltn2.act-inv-iff
have
apply-cltn2 (p0j) (cltn2-inverse (?D$0)) = proj2-abs (vector [1,1,1])
by simp
with apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$1) = p$1$3)
and (j =3
and cltn2.act-act [of cltn2-inverse (?D$0) ?D$1 p$0%j]
show apply-cltn2 (p$0%j) ?C = p$1$j by simp
next
assume j # 3
with eg-3-or-0f-3 obtain j’ :: 3 where j = of-int (Rep-bit1 j') by auto
with (V j. apply-cltn2 (proj2-abs (basis j')) (?D$0) = ?9$0%j"
and (Y j. apply-cltn2 (proj2-abs (basis j')) (?D$1) = ?q$1$j"
have p0j = apply-clin2 (proj2-abs (basis j')) (?D$0)

95

and p1j = apply-clin2 (proj2-abs (basis j')) (?D$1)
by simp-all
from (p0j = apply-clin2 (proj2-abs (basis j')) (?D$0))
and cltn2.act-inv-iff
have apply-clin2 (p0j) (cltn2-inverse (?D$0)) = proj2-abs (basis j’)
by simp
with (p1j = apply-cltn2 (proj2-abs (basis j')) (?D$1))
and cltn2.act-act [of cltn2-inverse (?D$0) ?D$1 p$0%j]
show apply-cltn2 (p$03j) ?C = p$1$;j by simp
qed
qed
thus 3 C.V j. apply-cltn2 (p$0%j) C = p$19j by (rule exI [of - 2C])
qed

lemma apply-cltn2-linear:
assumes j g v + k *g w # 0
shows j g (v v cltn2-rep C) + k xg (w v* cltn2-rep C) # 0
(is 2u #0)
and apply-clin2 (proj2-abs (j xg v + k *xg w)) C
= proj2-abs (j g (v v cltn2-rep C) + k *g (w v cltn2-rep C))
proof —
have ?u = (j *g v + k *g w) v* cltn2-rep C
by (simp only: vector-matrix-left-distrib scalar-vector-matrix-assoc)
with (g v 4+ k *xg w # 0) and non-zero-mult-rep-non-zero
show ?u # 0 by simp

from (?u = (j *g v + k *g w) v* cltn2-rep C
and(j*Rv—l—k*Rw;éO)
and apply-cltn2-left-abs
show apply-cltn2 (proj2-abs (j *g v + k *g w)) C = proj2-abs ?u
by simp
qed

lemma apply-cltn2-imp-mult:

assumes apply-clin2 p C =g

shows 3 k. k # 0 A proj2-rep p vx cltn2-rep C = k *g proj2-rep q
proof —

have proj2-rep p v cltn2-rep C # 0 by (rule rep-mult-rep-non-zero)

from @apply-cltn2 p C = ¢
have proj2-abs (proj2-rep p vx clin2-rep C) = g by (unfold apply-cltn2-def)
hence proj2-rep (proj2-abs (proj2-rep p vx cltn2-rep C)) = proj2-rep q
by simp
with (proj2-rep p v cltn2-rep C # 0) and proj2-rep-abs2 [of proj2-rep p v cltn2-rep
C]
have 3 j. j # 0 A proj2-rep q = j *g (proj2-rep p vx cltn2-rep C) by simp
then obtain j where j # 0
and proj2-rep q = j *g (proj2-rep p vx cltn2-rep C) by auto
hence proj2-rep p vx cltn2-rep C = (1/j) *g proj2-rep q

96

by (simp add: field-simps)
with § # 0)
show 3 k. k # 0 A proj2-rep p v* cltn2-rep C = k *g proj2-rep q
by (simp add: exI [of - 1/]])
qed

lemma statement55:
assumes p # g
and apply-clin2 p C =g
and apply-cltn2 qC =p
and proj2-incident p |
and proj2-incident q |
and proj2-incident r |
shows apply-cltn2 (apply-clin2 r C) C =r
proof cases
assume r = p
with @apply-cltn2 p C = q) and @apply-cltn2 g C = p)
show apply-cltn2 (apply-cltn2 r C) C = r by simp
next
assume r # p

from @apply-cltn2 p C = ¢) and apply-cltn2-imp-mult [of p C g]
obtain i where i # 0 and proj2-rep p v cltn2-rep C = i *g proj2-rep q
by auto

from @apply-cltn2 q C = p) and apply-cltn2-imp-mult [of q C p]
obtain j where j # 0 and proj2-rep q v* cltn2-rep C = j xg proj2-rep p
by auto

from (p # @
and (proj2-incident p)
and (proj2-incident q I)
and (proj2-incident r I)
and proj2-incident-iff
have r = p V (3 k. r = proj2-abs (k xg proj2-rep p + proj2-rep q))
by fast
with (v # p)
obtain k where r = proj2-abs (k xg proj2-rep p + proj2-rep q) by auto

from (p # ¢ and proj2-rep-dependent [of k p 1 q]
have k *g proj2-rep p + proj2-rep q # 0 by auto
with (r = proj2-abs (k xg proj2-rep p + proj2-rep q))
and apply-cltn2-linear [of k proj2-rep p 1 proj2-rep q]
have k xg (proj2-rep p vx cltn2-rep C) + proj2-rep q v cltn2-rep C # 0
and apply-cltn2 r C
= proj2-abs
(k xr (proj2-rep p vx cltn2-rep C) + proj2-rep q vx cltn2-rep C)
by simp-all
with (proj2-rep p vx cltn2-rep C = i xg proj2-rep q)

97

and (proj2-rep q vx cltn2-rep C = j g proj2-rep p)
have (k i) xg proj2-rep q + j *g proj2-rep p # 0
and apply-clin2 v C
= proj2-abs ((k = i) *g proj2-rep q + j xg proj2-rep p)
by simp-all
with apply-cltn2-linear
have apply-cltn2 (apply-cltn2 r C) C
= proj2-abs
((k i) *g (proj2-rep q v cltn2-rep C)
+ j xR (proj2-rep p vx cltn2-rep C))
by simp
with (proj2-rep p vx cltn2-rep C = i xg proj2-rep q)
and (proj2-rep q vx cltn2-rep C = j xg proj2-rep p)
have apply-clin2 (apply-clin2 r C) C
= proj2-abs ((k = i j) g proj2-rep p + (j * i) xg proj2-rep q)
by simp
also have ... = proj2-abs ((i * j) xg (k *g proj2-rep p + proj2-rep q))
by (simp add: algebra-simps)
also from (# 0) and (j # 0) and proj2-abs-mult
have ... = proj2-abs (k xg proj2-rep p + proj2-rep q) by simp
also from (r = proj2-abs (k xg proj2-rep p + proj2-rep q))
have ... =r by simp
finally show apply-cltn2 (apply-cltn2 rC) C =r.
qed

7.5 Cross ratios

definition cross-ratio :: proj2 = proj2 = proj2 = proj2 = real where
cross-ratio p q r s = proj2-Col-coeff p q s / proj2-Col-coeff p q r

definition cross-ratio-correct :: proj2 = proj2 = proj2 = proj2 = bool where
cross-ratio-correct p g r s =
proj2-set-Col {p,q,r,s} N\p#£qANr#£pANsFpAr#q

lemma proj2-Col-coeff-abs:
assumes p # gandj # 0
shows proj2-Col-coeff p q (proj2-abs (i g proj2-rep p + j *g proj2-rep q))
(is proj2-Col-coeffp q ?r = i/j)
proof —
from (# 0)
and proj2-abs-mult [of 1/ i *g proj2-rep p + j *g proj2-rep g
have ?r = proj2-abs ((i/]) *r proj2-rep p + proj2-rep q)
by (simp add: scaleR-right-distrib)

from (p # ¢ and proj2-rep-dependent [of - p 1 q|

have (i/j) *g proj2-rep p + proj2-rep q # 0 by auto

with (?r = proj2-abs ((i/j) *gr proj2-rep p + proj2-rep q))
and proj2-rep-abs2

98

obtain k where k # 0
and proj2-rep ?r = k xg ((i/]) *gr proj2-rep p + proj2-rep q)
by auto
hence (kxi/j) *g proj2-rep p + k =g proj2-rep q — proj2-rep ?r = 0
by (simp add: scaleR-right-distrib)
hence 3 [. (kxi/j) xg proj2-rep p + k g proj2-rep q + 1 *g proj2-rep ?r = 0
A (kxi/j #0Vk#0VI#0)
by (simp add: exI [of - —1])
hence proj2-Col p q ?r by (unfold proj2-Col-def) auto

have ?r # p

proof
assume ’r =p
with ((kxi/j) g proj2-rep p + k xg proj2-rep q — proj2-rep ?r = 0)
have (kxi/j — 1) xg proj2-rep p + k g proj2-rep g = 0

by (simp add: algebra-simps)

with & # 0) and proj2-rep-dependent have p = g by simp
with (p # g show False ..

qed

with (proj2-Col p q ?r and p # q)

have ?r = proj2-abs (proj2-Col-coeff p q ?r xR proj2-rep p + proj2-rep q)
by (rule proj2-Col-coeff)

with (p # ¢ and (?r = proj2-abs ((i/]) *g proj2-rep p + proj2-rep q))
and proj2-Col-coeff-unique

show proj2-Col-coeff p q ?r = i/j by simp

qed

lemma proj2-set-Col-coeff:
assumes proj2-set-Col S and {p,q,r} C Sandp #gandr #p
shows r = proj2-abs (proj2-Col-coeff p q v *g proj2-rep p + proj2-rep q)
(is r = proj2-abs (?i *g ?u + ?v))
proof —
from {p,q,r} C S and (proj2-set-Col S)
have proj2-set-Col {p,q,r} by (rule proj2-subset-Col)
hence proj2-Col p q r by (subst proj2-Col-iff-set-Col)
with (p # ¢ and # p) and proj2-Col-coeff
show r = proj2-abs (?i *xg ?u + ?v) by simp
qed

lemma cross-ratio-abs:
fixes u v :: real’3 and i j kI :: real
assumes u# # 0 and v # 0 and proj2-abs u # proj2-abs v
andj # Oand [# 0
shows cross-ratio (proj2-abs u) (proj2-abs v)
(proj2-abs (i xg u + j *xg v))
(proj2-abs (k xg u + 1 *g v))
=jxk/ (ix])
(is cross-ratio ?p ?q ?r ?s = -)
proof —

99

from (u # 0) and proj2-rep-abs2
obtain ¢ where g # 0 and proj2-rep ?p = g *g u by auto

from (@ # 0) and proj2-rep-abs2

obtain /s where I # 0 and proj2-rep ?q = h xg v by auto

with (¢ # 0) and (proj2-rep ?p = g *g w)

have ?r = proj2-abs ((i/g) *g proj2-rep ?p + (j/h) *g proj2-rep ?q)
and ?s = proj2-abs ((k/g) *g proj2-rep ?p + (1/h) *g proj2-rep ?q)
by (simp-all add: field-simps)

with (?p # ?¢) and (h # 0) and (j # 0) and « # 0> and proj2-Col-coeff-abs

have proj2-Col-coeff ?p ?q ?r = hxi/ (gx))
and proj2-Col-coeff ?p ?q ?s = hxk/ (g*])
by simp-all

with (¢ # 0) and h # 0)

show cross-ratio ?p ?q ?r ?s = jxk/ (ix])
by (unfold cross-ratio-def) (simp add: field-simps)

qed

lemma cross-ratio-abs2:
assumes p # g
shows cross-ratio p g
(proj2-abs (i g proj2-rep p + proj2-rep q))
(proj2-abs (j *g proj2-rep p + proj2-rep q))
=]/1
(is cross-ratiop q ?r ?2s = -)
proof —
let ?u = proj2-rep p
let ?v = proj2-rep q
have ?u # 0 and ?v # 0 by (rule proj2-rep-non-zero)+

have proj2-abs ?u = p and proj2-abs ?v = q by (rule proj2-abs-rep)+
with (?u # 0) and (?v # 0) and (p # ¢ and cross-ratio-abs [of ?u ?v 111 j]
show cross-ratio p q ?r ?s = j/i by simp

qed

lemma cross-ratio-correct-cltn2:
assumes cross-ratio-correct p q r s
shows cross-ratio-correct (apply-cltn2 p C) (apply-clin2 g C)
(apply-cltn2 r C) (apply-cltn2 s C)
(is cross-ratio-correct ?pC ?qC ?rC ?sC)
proof —
from (cross-ratio-correct p q 1 s)
have proj2-set-Col {p,q,r,5}
andp #gandr#pands #pandr # g

by (unfold cross-ratio-correct-def) simp-all
have {apply-cltn2 t C | t. t € {p,q,r,s}} = {?pC,2qC,2rC,?sC} by auto

with (proj2-set-Col {p,q,r,s})
and apply-cltn2-preserve-set-Col [of {p,q,r,5} C]

100

have proj2-set-Col {?pC,?qC,?rC,?sC} by simp

from (p # ¢ and (r # p) and (s # p) and # @ and apply-cltn2-injective
have ?pC # ?qC and ?rC # ?pC and ?sC # ?pC and ?rC # ?qC by fast+
with (proj2-set-Col {?pC,?qC,?rC,?sC})
show cross-ratio-correct ?pC ?2qC ?rC ?sC
by (unfold cross-ratio-correct-def) simp
qed

lemma cross-ratio-cltn2:
assumes proj2-set-Col {p,q,r;s} andp # gand r #p and s # p
shows cross-ratio (apply-clin2 p C) (apply-clin2 q C)
(apply-cltn2 r C) (apply-cltn2 s C)
= cross-ratiop q r s
(is cross-ratio ?pC ?qC ?rC ?sC = -)
proof —
let ?u = proj2-rep p
let ?v = proj2-rep q
let ?i = proj2-Col-coeffp q r
let ?j = proj2-Col-coeff p q s
from (proj2-set-Col {p,q,1,s}) and (p # @) and (r # p) and (s # p)
and proj2-set-Col-coeff
have r = proj2-abs (?i xg 2u + ?v) and s = proj2-abs (?j *g ?u + ?v)
by simp-all

let ?uC = ?u vx cltn2-rep C
let ?0C = ?v v cltn2-rep C
have ?uC # 0 and ?vC # 0 by (rule rep-mult-rep-non-zero)+

have proj2-abs ?uC = ?pC and proj2-abs ?vC = ?qC
by (unfold apply-cltn2-def) simp-all

from (p # ¢ and apply-cltn2-injective have ?pC # ?qC by fast

from (p # ¢ and proj2-rep-dependent [of - p 1 4]

have ?i xg ?u 4+ ?v # 0 and ?j *g ?u + ?v # 0 by auto

with (r = proj2-abs (?i *g ?u + ?v)) and (s = proj2-abs (?j *g ?u + ?v))
and apply-cltn2-linear [of ?i 2u 1 ?v)
and apply-cltn2-linear [of ?j 2u 1 ?0]

have ?rC = proj2-abs (?i xg ?uC + ?vC)
and ?sC = proj2-abs (?j xg ?uC + ?vC)
by simp-all

with (?uC # 0) and (?vC # 0) and (proj2-abs ?2uC = ?pC)
and (proj2-abs ?vC = ?qC) and (?pC # 290
and cross-ratio-abs [of ?uC ?vC 11 ?i ?j]

have cross-ratio ?pC ?qC ?rC ?sC = ?j/?i by simp

thus cross-ratio ?pC ?qC ?rC ?sC = cross-ratiop q v s
unfolding cross-ratio-def [of pqrs] .

qed

101

lemma cross-ratio-unique:
assumes cross-ratio-correct p q r s and cross-ratio-correct p q r t
and cross-ratio p q r s = cross-ratiop q r t
shows s =t
proof —
from (cross-ratio-correct p q r s) and (cross-ratio-correct p q r t)
have proj2-set-Col {p,q,r,s} and proj2-set-Col {p,q,r,t}
andp #gandr#pandr#gands#pandt#p
by (unfold cross-ratio-correct-def) simp-all

let ?u = proj2-rep p
let ?v = proj2-rep q
let ?i = proj2-Col-coeffp q r
let ?j = proj2-Col-coeff p q s
let 7k = proj2-Col-coeff p q t
from (proj2-set-Col {p,q,r,5}) and (proj2-set-Col {p,q,1,t})
and (p # ¢ and r # p) and (s # p) and (¢ # p) and proj2-set-Col-coeff
have r = proj2-abs (?i xg 2u + ?v)
and s = proj2-abs (?j g 2u + ?0v)
and t = proj2-abs (?k xg 2u + ?v)
by simp-all

from (r # ¢) and «r = proj2-abs (?i xg ?u + ?v))
have ?i # 0 by (auto simp add: proj2-abs-rep)
with (cross-ratio p q r s = cross-ratiop q r t)
have ?j = ?k by (unfold cross-ratio-def) simp
with (s = proj2-abs (?j *g ?u + ?v)) and (¢ = proj2-abs (?k *g ?u + ?v))
show s = t by simp
qed

lemma cltn2-three-point-line:
assumes p #gandr #pandr # g
and proj2-incident p | and proj2-incident q | and proj2-incident r |
and apply-clin2 p C = p and apply-cltn2 q C = q and apply-clin2 r C =r
and proj2-incident s |
shows apply-cltn2 s C = s (is ?sC = s)
proof cases
assume s = p
with apply-cltn2 p C = p) show ?sC = s by simp
next
assume s # p

let ?pC = apply-citn2 p C

let ?qC = apply-cltn2 q C

let ?rC = apply-cltn2 v C

from (proj2-incident p I} and (proj2-incident q I) and (proj2-incident r)
and (proj2-incident s I)

102

have proj2-set-Col {p,q,r,s} by (unfold proj2-set-Col-def) auto
with (pp # ¢ and r # p) and (s # p) and v # ¢
have cross-ratio-correct p q r s by (unfold cross-ratio-correct-def) simp
hence cross-ratio-correct ?2pC ?qC ?rC ?sC
by (rule cross-ratio-correct-clin2)
with (?pC = p) and (?qC = g) and ?rC =1
have cross-ratio-correct p q r ?sC by simp

from (proj2-set-Col {p,q,r,s}) and (p # @) and (r # p) and (s # p)
have cross-ratio ?pC ?qC ?rC ?sC = cross-ratiop q v s
by (rule cross-ratio-clin2)
with (?pC = p) and (?qC = q) and ?rC =1
have cross-ratio p q v ?sC = cross-ratio p q v s by simp
with (cross-ratio-correct p q r 7sC) and (cross-ratio-correct p q v s)
show ?sC = s by (rule cross-ratio-unique)
qed

lemma cross-ratio-equal-clin2:
assumes cross-ratio-correct p q v s
and cross-ratio-correct (apply-cltn2 p C) (apply-clin2 q C)
(apply-cltn2 r C) t
(is cross-ratio-correct ?pC ?2qC ?rC t)
and cross-ratio (apply-cltn2 p C) (apply-cltn2 q C) (apply-cltn2 r C) t
= cross-ratiop q r s
shows t = apply-cltn2 s C (is t = ?sC)
proof —
from (cross-ratio-correct p q r s)
have cross-ratio-correct ?pC ?2qC ?rC ?sC by (rule cross-ratio-correct-cltn2)

from (cross-ratio-correct p q r s)

have proj2-set-Col {p,q,r,s} and p # gand r # p and s # p
by (unfold cross-ratio-correct-def) simp-all

hence cross-ratio ?pC ?qC ?rC ?sC = cross-ratiop q r s
by (rule cross-ratio-cltn2)

with (cross-ratio ?pC ?qC ?rC t = cross-ratiop q r s)

have cross-ratio ?pC ?2qC ?rC t = cross-ratio ?pC ?qC ?rC ?sC by simp

with (cross-ratio-correct ?pC ?2qC ?rC t)
and (cross-ratio-correct ?pC ?qC ?rC ?sC)

show t = ?sC by (rule cross-ratio-unique)

qed

lemma proj2-Col-distinct-coeff-non-zero:
assumes proj2-Colpgrand p #qandr #pand r # g
shows proj2-Col-coeff p q v # 0

proof
assume proj2-Col-coeffp g r =0

from (proj2-Col p q) and (p # ¢ and # p)
have r = proj2-abs ((proj2-Col-coeff p q r) *g proj2-rep p + proj2-rep q)

103

by (rule proj2-Col-coeff)
with (proj2-Col-coeff p q v = 0) have r = q by (simp add: proj2-abs-rep)
with v # ¢ show Fulse ..
qed

lemma cross-ratio-product:
assumes proj2-Col pgsand p #gand s # p and s # g
shows cross-ratio p q r s * cross-ratio p q s t = cross-ratiop q r t
proof —
from (proj2-Col p g s) and (p #) and (s # p) and (s # ¢)
have proj2-Col-coeff p q s # 0 by (rule proj2-Col-distinct-coeff-non-zero)
thus cross-ratio p q r s * cross-ratio p q s t = cross-ratiop q r t
by (unfold cross-ratio-def) simp
qed

lemma cross-ratio-equal-1:
assumes proj2-Colpgrandp #qgandr #pand r # g
shows cross-ratiop grv =1
proof —
from (proj2-Col p g) and (p # ¢ and « # p) and r # ¢
have proj2-Col-coeff p q r # 0 by (rule proj2-Col-distinct-coeff-non-zero)
thus cross-ratio p q r v = 1 by (unfold cross-ratio-def) simp
qed

lemma cross-ratio-1-equal:
assumes cross-ratio-correct p q v s and cross-ratiop qrs = 1
shows r =s
proof —
from (cross-ratio-correct p g r s)
have proj2-set-Col {p,q,r,s} andp # qandr #pandr # g
by (unfold cross-ratio-correct-def) simp-all

from (proj2-set-Col {p,q,r,5})
have proj2-set-Col {p,q,r}
by (simp add: proj2-subset-Col [of {p,q,r} {p.9.7.5}])
with (p # ¢ and r # p) and (v # @
have cross-ratio-correct p q r r by (unfold cross-ratio-correct-def) simp

from (proj2-set-Col {p,q,r})
have proj2-Col p q r by (subst proj2-Col-iff-set-Col)
with (p # ¢ and v # p) and * #
have cross-ratio p q v r = 1 by (simp add: cross-ratio-equal-1)
with (cross-ratiop grs =1
have cross-ratio p q v r = cross-ratio p q r s by simp
with (cross-ratio-correct p q r r) and (cross-ratio-correct p q 1 s)
show r = s by (rule cross-ratio-unique)
qed

lemma cross-ratio-swap-34:

104

shows cross-ratiop qs v =1 / (cross-ratiop q r s)
by (unfold cross-ratio-def) simp

lemma cross-ratio-swap-13-24:
assumes cross-ratio-correct p q s and r # s
shows cross-ratio ¥ s p g = cross-ratiop q r s
proof —
from (cross-ratio-correct p q r s)
have proj2-set-Col {p,q,r,;s} andp # gandr #pands #pandr # g
by (unfold cross-ratio-correct-def, simp-all)

have proj2-rep p # 0 (is ?u # 0) and proj2-rep q # 0 (is ?v # 0)
by (rule proj2-rep-non-zero)+

have p = proj2-abs ?u and q = proj2-abs ?v
by (simp-all add: proj2-abs-rep)
with (p # ¢ have proj2-abs ?u # proj2-abs ?v by simp

let ?i = proj2-Col-coeffp q r
let ?j = proj2-Col-coeff p q s
from (proj2-set-Col {p,q,1,s}) and (p # @) and (r # p) and (s # p)
have r = proj2-abs (?i xg 2u + ?v) (is r = proj2-abs ?w)
and s = proj2-abs (?j g 2u + ?v) (is s = proj2-abs ?x)
by (simp-all add: proj2-set-Col-coeff)
with v # s) have ?i # ?j by auto

from (?u # 0) and (?v # 0) and (proj2-abs ?u # proj2-abs ?v)
and dependent-proj2-abs [of ?u ?v - 1]
have ?w # 0 and ?x # 0 by auto

from (r = proj2-abs (?i *g ?u + ?v)) and r # @
have ?i # 0 by (auto simp add: proj2-abs-rep)

have ?w — ?x = (?i — ?j) *g ?u by (simp add: algebra-simps)
with i #£ 7))
have p = proj2-abs (?w — ?x) by (simp add: proj2-abs-mult-rep)

have ?j xg 7w — ?i xg ?x = (?j — ?2i) *g ?v by (simp add: algebra-simps)
with (77 # 7))
have g = proj2-abs (?j xg ?w — ?i xg ?x) by (simp add: proj2-abs-mult-rep)
with ?w # 0) and (?x # 0) and r # s) and (?i # 0) and (v = proj2-abs ?w)
and (s = proj2-abs ?x) and (p = proj2-abs (?w — ?x))
and cross-ratio-abs [of 2w ?x —1 —2i 1 ?j]
have cross-ratio rs p q = ?j / ?i by (simp add: algebra-simps)
thus cross-ratio r s p q = cross-ratiop q r s
by (unfold cross-ratio-def [of p q 5], simp)
qed

lemma cross-ratio-swap-12:

105

assumes cross-ratio-correct p q r s and cross-ratio-correct g p r s
shows cross-ratio qprs =1/ (cross-ratiop q rs)

proof cases
assume r = s

from (cross-ratio-correct p q v s)
have proj2-set-Col {p,q,r,s} andp # qandr #p and r # q
by (unfold cross-ratio-correct-def) simp-all

from (proj2-set-Col {p,q,7,s}) and (r = s)
have proj2-Col p q r by (simp-all add: proj2-Col-iff-set-Col)
hence proj2-Col q p r by (rule proj2-Col-permute)
with (proj2-Col p g vy and (p # ¢) and (r # p) and (r # ¢ and r = s)
have cross-ratiop g rs = 1 and cross-ratioqp rs =1
by (simp-all add: cross-ratio-equal-1)
thus cross-ratio g pr s =1 / (cross-ratio p q r s) by simp
next
assume r # s
with (cross-ratio-correct g p r s
have cross-ratio q p r s = cross-ratior s q p
by (simp add: cross-ratio-swap-13-24)
also have ... =1 / (cross-ratio r s p q) by (rule cross-ratio-swap-34)
also from (cross-ratio-correct p q r s) and (r # s)
have ... =1 / (cross-ratio p q r s) by (simp add: cross-ratio-swap-13-24)
finally show cross-ratio gprs =1/ (cross-ratiop q rs) .
qed

7.6 Cartesian subspace of the real projective plane

definition vector2-append1 :: real’2 = real’3 where
vector2-appendl v = vector [v$1, v$2, 1]

lemma vector2-appendl-non-zero: vector2-appendl v # 0
proof —
have (vector2-appendl v)$3 # 0$3
unfolding vector2-appendl-def and vector-def
by simp
thus vector2-appendl v # 0 by auto
qed

definition proj2-pt :: real”2 = proj2 where
proj2-pt v £ proj2-abs (vector2-appendl v)
lemma proj2-pt-scalar:
3 c. ¢ # 0 A proj2-rep (proj2-pt v) = c xR vector2-appendl v
unfolding proj2-pt-def
by (simp add: proj2-rep-abs2 vector2-append1-non-zero)

abbreviation z-non-zero :: proj2 = bool where

106

z-non-zero p = (proj2-rep p)$3 # 0

definition cart2-pt :: proj2 = real"2 where
cart2-pt p =
vector [(proj2-rep p)$1 / (proj2-rep p)$3, (proj2-rep p)$2 / (proj2-rep p)$3]

definition cart2-append1 :: proj2 = real’3 where
cart2-appendl p = (1 / ((proj2-rep p)$3)) *g proj2-rep p

lemma cart2-appendl-z:
assumes z-1on-zero p
shows (cart2-appendl p)$3 =1
using (z-non-zero p)
by (unfold cart2-appendl-def) simp

lemma cart2-appendl-non-zero:
assumes z-101-zero p
shows cart2-appendl p # 0
proof —
from (z-non-zero p) have (cart2-appendl p)$3 = 1 by (rule cart2-append1-z)
thus cart2-append1 p # 0 by (simp add: Cart-eq exI [of - 3])
qed

lemma proj2-rep-cart2-append1:
assumes z-101-zero p
shows proj2-rep p = ((proj2-rep p)$3) g cart2-appendl p
using (z-non-zero p)
by (unfold cart2-append1-def) simp

lemma proj2-abs-cart2-appendl:

assumes z-101-zero p

shows proj2-abs (cart2-appendl p) = p
proof —

from (z-non-zero p)

have proj2-abs (cart2-appendl p) = proj2-abs (proj2-rep p)

by (unfold cart2-appendl-def) (simp add: proj2-abs-mult)

thus proj2-abs (cart2-appendl p) = p by (simp add: proj2-abs-rep)

qed

lemma cart2-appendl-inj:
assumes z-non-zero p and cart2-appendl p = cart2-appendl q
shows p =g
proof —
from (z-non-zero p) have (cart2-append1 p)$3 = 1 by (rule cart2-appendl1-z)
with (cart2-appendl p = cart2-appendl ¢
have (cart2-appendl q)$3 = 1 by simp
hence z-non-zero q by (unfold cart2-append1-def) auto

from (cart2-append]l p = cart2-appendl q)
have proj2-abs (cart2-appendl p) = proj2-abs (cart2-appendl q) by simp

107

with (z-non-zero p) and (z-non-zero q)
show p = q by (simp add: proj2-abs-cart2-append1)
qed

lemma cart2-append1:
assumes z-101-zero p
shows vector2-append1 (cart2-pt p) = cart2-append] p
using (z-non-zero p)
unfolding vector2-appendl-def
and cart2-appendl-def
and cart2-pt-def
and vector-def
by (simp add: Cart-eq forall-3)

lemma cart2-proj2: cart2-pt (proj2-pt v) = v
proof —
let ?v’ = vector2-appendl v
let ?p = proj2-pt v
from proj2-pt-scalar
obtain c where ¢ # 0 and proj2-rep ?p = ¢ g ?v’ by auto
hence (cart2-pt ?p)$1 = v$1 and (cart2-pt ?p)$2 = v$2
unfolding cart2-pt-def and vector2-appendl-def and vector-def
by simp+
thus cart2-pt ?p = v by (simp add: Cart-eq forall-2)
qed

lemma z-non-zero-proj2-pt: z-non-zero (proj2-pt v)
proof —
from proj2-pt-scalar
obtain ¢ where ¢ # 0 and proj2-rep (proj2-pt v) = ¢ xg (vector2-appendl v)
by auto
from (proj2-rep (proj2-pt v) = ¢ *g (vector2-appendl v))
have (proj2-rep (proj2-pt v))$3 = c
unfolding vector2-append1-def and vector-def
by simp
with (¢ # 0) show z-non-zero (proj2-pt v) by simp
qed

lemma cart2-append1-proj2: cart2-appendl (proj2-pt v) = vector2-appendl v
proof —
from z-non-zero-proj2-pt
have cart2-appendl (proj2-pt v) = vector2-append] (cart2-pt (proj2-pt v))
by (simp add: cart2-appendl)
thus cart2-append] (proj2-pt v) = vector2-appendl v
by (simp add: cart2-proj2)
qed

lemma proj2-pt-inj: inj proj2-pt
by (simp add: inj-on-inversel [of UNIV cart2-pt proj2-pt| cart2-proj2)

108

lemma proj2-cart2:
assumes z-101-zero p
shows proj2-pt (cart2-ptp) = p

proof —
from (z-non-zero p)
have (proj2-rep p)$3 g vector2-append1 (cart2-pt p) = proj2-rep p
unfolding vector2-appendl-def and cart2-pt-def and vector-def
by (simp add: Cart-eq forall-3)
with (z-non-zero p)
and proj2-abs-mult [of (proj2-rep p)$3 vector2-appendl (cart2-pt p)]
have proj2-abs (vector2-appendl (cart2-pt p)) = proj2-abs (proj2-rep p)
by simp
thus proj2-pt (cart2-ptp) =p
by (unfold proj2-pt-def) (simp add: proj2-abs-rep)
qed

lemma cart2-injective:
assumes z-non-zero p and z-non-zero q and cart2-pt p = cart2-pt q
shows p =g
proof —
from (z-non-zero p) and (z-non-zero q)
have proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) = q
by (simp-all add: proj2-cart2)

from (proj2-pt (cart2-pt p) = p) and (cart2-pt p = cart2-pt q)
have proj2-pt (cart2-pt q) = p by simp
with (proj2-pt (cart2-pt q) = g show p = q by simp

qed

lemma proj2-Col-iff-euclid:
proj2-Col (proj2-pt a) (proj2-pt b) (proj2-pt c¢) <— real-euclid.Col a b c
(is proj2-Col ?p ?2q ?r <— -)
proof
let ?a’ = vector2-append1 a
let ?b" = vector2-append1 b
let ?¢’ = vector2-append1 c
let 2a’ = proj2-rep ?p
let ?b"" = proj2-rep ?q
let ?¢"' = proj2-rep ?r
from proj2-pt-scalar obtain i and j and k where
i#0and ?a" =i xg ?2a’
andj # 0 and ?b"" =j xg ?b’
and k # 0 and ?c” = k xg ?¢’
by metis
hence ?a’ = (1/i) *g ?a"’
and ?b’ = (1/j) *g ?b”
and ?c¢’ = (1/k) =g ?c”
by simp-all

109

{ assume proj2-Col ?p ?q ?r
then obtain i’ and j’ and k' where
i"xg ?2a" +j' xg 20" + k' xg ?2¢"" = 0and i'£0 V j'#0 V k'#£0
unfolding proj2-Col-def
by auto

let 2i"" =i %1’

let 2j = j * |/

let ?k"' =k « k'

from (i#0) and (#0) and (k#0) and @'#0 V j'#0 V k'#0)
have ?i"'#0 Vv ?j"'#0 Vv ?k"'#0 by simp

from (' xg ?a” + ' xg 20" + k' xg 2¢"" = 0)
and (?a’ =i *g ?a’
and ?b"' =j xg ?b"
and (?c" =k xg ?c"

have ?i" xg ?2a’ + ?j'" xg ?b’ + ?k"' xg ?2¢' =0
by (simp add: mult-ac)

hence (?i"' g ?2a’ + ?j"" xg ?b" + ?k"" xR 72¢")$3 =0
by simp

hence ?i" + ?j" + ?2k" =0
unfolding vector2-appendl-def and vector-def
by simp

have (?i"' g ?2a’ + ?j"" xg ?b" + ?k"" xg 7¢")$1 =
(?i" xg a + ?j"" xg b + 2k xg)$1
and (?i" xg ?2a’ + ?j"" xg 70’ + ?k"" xR ?¢")$2 =
(?i” *R a -+ ?j// *R b —+ ?k” *R C)$2
unfolding vector2-appendl-def and vector-def
by simp+
with (21" g 2a’ + ?j" xg ?b’ + 2k xg ¢ =0
have ?i" xga + ?j" xg b+ ?k" xg c =0
by (simp add: Cart-eq forall-2)

have dep2 (b — a) (c — a)
proof cases
assume 7k’ =0
with (?i"" + ?j" + 2k = 0) have ?j" = —?i" by simp
with (21”0 v ?j"'#£0 V ?k"#0) and ?k"' = 0) have ?i"' # 0 by simp

from (71" xga+ ?j" xg b+ ?k" *xg c = 0)
and ?k" = 0) and ?j" = —?i"))
have ?i"" xg a + (—?i"" xg b) = 0 by simp
with (?i"' # 0) have a = b by (simp add: algebra-simps)
hence b — a = 0 xg (¢ — a) by simp
moreover have c —a = 1 *g (c — a) by simp
ultimately have 3 xfs.b —a=t*gx Ac —a=s*gx
by blast
thus dep2 (b — a) (¢ — a) unfolding dep2-def .

110

next
assume ?k’' £ 0
from (71" + ?j"" + ?k'" = 0) have ?i"" = —(?j"' + ?k"") by simp
with ?i"" xga + ?j"" *g b+ ?k" xg c = 0)
have —(?j" + ?k"") xg a + ?j"" %g b + ?k" xg ¢ = 0 by simp
hence 7k xg (c —a) = — ?j"" «g (b —a)
by (simp add: scaleR-left-distrib
scaleR-right-diff-distrib
scaleR-left-diff-distrib
algebra-simps)
hence (1/7k") xg ?k"" xg (c —a) = (=?j""/ ?k"") g (b — a)
by simp
with (?k”" £ 0) have c — a = (=?j"" / ?k”") xg (b — a) by simp
moreover have b — a =1 xg (b — a) by simp
ultimately have 3 xfs.b —a =1 *g x A ¢ —a =s *g x by blast
thus dep2 (b — a) (¢ — a) unfolding dep2-def .
qed
with Col-dep2 show real-euclid.Col a b ¢ by auto
}

{ assume real-euclid.Col a b ¢
with Col-dep2 have dep2 (b — a) (c — a) by auto
then obtain x and t and s whereb —a =t *gxandc —a=s*g x
unfolding dep2-def
by auto

show proj2-Col ?p ?7q ?r
proof cases

assume t = 0

with (b — a =t *g x) have a = b by simp

with proj2-Col-coincide show proj2-Col ?p ?q ?r by simp
next

assume | # 0

from b —a=txgx and (c —a=s*g x)
have s xg (b —a) =t xg (c — a) by simp
hence (s —t) xga + (—s) g b +t*gc=0
by (simp add: scaleR-right-diff-distrib
scaleR-left-diff-distrib
algebra-simps)
hence ((s — t) g ?a’ + (—s) *g ?b' + t xg 72¢")$1 =10
and ((s —t) *g ?a’+ (—s) *g 2b' + t xg ?¢")$2 =10
unfolding vector2-appendl-def and vector-def
by (simp-all add: Cart-eq)
moreover have ((s — t) *g 2a’ 4+ (—s) *g 2b' + t xg 2¢/)$3 =0
unfolding vector2-appendl-def and vector-def
by simp
ultimately have (s — t) g ?a’ + (—s) *g ?b' + t %g 2¢' =0
by (simp add: Cart-eq forall-3)

111

with ?a’ = (1/1) xg ?2a”)
and ?b' = (1/j) =g ?b")
and (¢’ = (1/k) =g 2c¢")

have ((s — t)/i) xg ?a’’ + (—s/j) *g ?b"" + (t/k) *g 2¢"" =0
by simp

moreover from (¢ # 0) and k # 0) have t/k # 0 by simp

ultimately show proj2-Col ?p ?7q ?r
unfolding proj2-Col-def
by blast

qed
}
ged

lemma proj2-Col-iff-euclid-cart2:
assumes z-non-zero p and z-non-zero q and z-non-zero r
shows
proj2-Col p q r <— real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is - «— real-euclid.Col ?a ?b ?c)
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
have proj2-pt ?a = p and proj2-pt ?b = q and proj2-pt 7c =r
by (simp-all add: proj2-cart2)
with proj2-Col-iff-euclid [of ?a ?b 2c]
show proj2-Col p q v <— real-euclid.Col ?a ?b ?c by simp
qed

lemma euclid-Col-cart2-incident:
assumes z-non-zero p and z-non-zero q and z-non-zero r and p # g
and proj2-incident p | and proj2-incident q |
and real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is real-euclid.Col ?cp ?cq ?cr)
shows proj2-incident r |
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
and (real-euclid.Col ?cp ?cq ?cr)
have proj2-Col p q r by (subst proj2-Col-iff-euclid-cart2, simp-all)
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
then obtain m where
proj2-incident p m and proj2-incident g m and proj2-incident v m
by (unfold proj2-set-Col-def, auto)

from (p # ¢ and (proj2-incident p I) and (proj2-incident q |)
and (proj2-incident p m) and (proj2-incident q m) and proj2-incident-unique
have [= m by auto
with (proj2-incident r m) show proj2-incident r | by simp
qed

lemma euclid-B-cart2-common-line:
assumes z-non-zero p and z-non-zero g and z-non-zero r

112

and B (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is BR ?cp ?cq ?cr)
shows 3 [. proj2-incident p I \ proj2-incident q I \ proj2-incident v |
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero 1)
and (BR ?cp ?cq ?cr) and proj2-Col-iff-euclid-cart2
have proj2-Col p q r by (unfold real-euclid.Col-def) simp
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
thus 3 [. proj2-incident p I A proj2-incident q | A proj2-incident r |
by (unfold proj2-set-Col-def) simp
qed

lemma cart2-append1-between:
assumes z-non-zero p and z-non-zero q and z-non-zero r
shows B (cart2-pt p) (cart2-pt q) (cart2-pt r)
+—— (3 k>0.k<1
A cart2-appendl q = k xg cart2-appendl v + (1 — k) *g cart2-appendl p)
proof —
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?cpl = vector2-appendl ?cp
let ?cql = vector2-appendl ?cq
let ?cr]l = vector2-appendl ?cr
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
have ?cpl = cart2-append1 p
and ?cql = cart2-appendl q
and ?crl = cart2-appendl r
by (simp-all add: cart2-append1)

have V k. 7cq — ?cp = k xg (?cr — 2cp) <— ?cq =k xg ?cr + (1 — k) *g 2cp
by (simp add: algebra-simps)

hence V k. ?cq — ?cp = k xg (Pcr — 2cp)
> 2cql =k xg 2cr]l + (1 — k) =g 2cpl
unfolding vector2-appendl-def and vector-def
by (simp add: Cart-eq forall-2 forall-3)

with (?cpl = cart2-appendl p)
and (?cql = cart2-appendl ¢
and (?crl = cart2-append1 r)

have V k. ?cq — ?cp = k xg (?cr — ?cp)
< cart2-appendl q = k xg cart2-appendl r + (1 — k) =g cart2-appendl p
by simp

thus Bg (cart2-pt p) (cart2-pt q) (cart2-pt r)
+— (Fk>0.k<1
A cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-append1 p)
by (unfold real-euclid-B-def) simp

qed

lemma cart2-append1-between-right-strict:

113

assumes z-non-zero p and z-non-zero q and z-non-zero r
and Bg (cart2-pt p) (cart2-pt q) (cart2-ptr) and q # r
shows 3 k>0. k< 1
A cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
and (Bg (cart2-pt p) (cart2-pt q) (cart2-pt r)) and cart2-append1-between
obtain k wherek > 0and k <1
and cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
by auto

have k # 1
proof
assume k = 1
with (cart2-appendl q = k *g cart2-appendl r + (1 — k) *g cart2-append1 p)
have cart2-appendl q = cart2-append1 r by simp
with (z-non-zero q) have q = r by (rule cart2-appendl1-inj)
with (g #) show False ..
qed
with &k < 1) have k < 1 by simp
with &« > 0)
and (cart2-appendl q = k g cart2-appendl r + (1 — k) *g cart2-appendl p)
show 3 k>0.k < 1
A cart2-appendl q = k *g cart2-appendl r + (1 — k) *g cart2-appendl p
by (simp add: exI [of - k])
qed

lemma cart2-append1-between-strict:
assumes z-non-zero p and z-non-zero q and z-non-zero r
and B (cart2-pt p) (cart2-pt q) (cart2-pt r) and q # p and g # r
shows 3 k>0.k < 1
A cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
proof —
from (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
and (B (cart2-pt p) (cart2-pt q) (cart2-pt r)) and (g # 1)
and cart2-append1-between-right-strict [of p q 7]
obtain k wherek > 0Oand k < 1
and cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
by auto

have k £ 0
proof
assume k = 0
with (cart2-appendl q = k g cart2-appendl r + (1 — k) =g cart2-append] p)
have cart2-appendl q = cart2-appendl p by simp
with (z-non-zero q) have q = p by (rule cart2-appendl1-inj)
with (g # p) show False ..
qed
with > 0) have k > 0 by simp

114

with &k < 1)
and (cart2-appendl q = k g cart2-appendl r + (1 — k) g cart2-appendl p)
show 3 k>0.k < 1
A cart2-appendl q = k xg cart2-appendl r + (1 — k) *g cart2-appendl p
by (simp add: exI [of - k|)
qed

end

8 Roots of real quadratics

theory Quadratic-Discriminant
imports Miscellany
begin

definition discrim :: [real real real] = real where
discrimabc=b> —4xaxc

lemma complete-square:
fixes a b ¢ x :: real
assumes a 7 0
showsa* x> +b*xx+c=0+— (2xaxx+b)? =discrimabc
proof —
have 4 xa? x x> +4d+xaxbxx +4dxaxc=4*xax (axx>+b*xx+c)
by (simp add: algebra-simps square-expand)
with @ # 0)
havea x x> + bsxx+c=0+—4dxa?+x> +4*xaxbxx+4xaxc=0
by simp
thusa x> +b*xx+c=0<+— (2%ax*x+b)>=discrimabc
unfolding discrim-def
by (simp add: square-expand algebra-simps)
qed

lemma discriminant-negative:
fixes a b c x :: real
assumes a # 0
and discrima bc < 0
showsa x> +bsxx+c#0
proof —
have (2 * a * x + b)?> > 0 by simp
with Wiscrima b c < 0) have (2 x a x x + b)? # discrim a b ¢ by arith
with complete-square and @ # 0) show a * x2 + b * x + ¢ # 0 by simp
qed

lemma plus-or-minus-sqrt:

fixes x y :: real
assumes iy > 0

115

shows x? =y<—x=sqrtyVx=—sqrty
proof
assume x> =y
hence sqrt (x*) = sqrt y by simp
hence sqrt y = |x| by simp
thus x = sqrt y V x = — sqrt y by auto
next
assume x = sqrty V. x = —sqrty
hence x> = (sqrt y)? V x> = (— sqrt y)? by auto
with (y > 0) show x> = y by simp
qed

lemma divide-non-zero:

fixes x y z :: real

assumes x #= 0

showsxxy=z<+—y=z/x
proof

assume X x | =z

with (x # 0) show y = z / x by (simp add: field-simps)
next

assumey =z / x

with (x # 0) show x * y = z by simp
qed

lemma discriminant-nonneg:
fixes a b c x :: real
assumes a 7% 0
and discrimabc > 0
showsa x> +bxx +c=0+—
x = (=b+ sqrt (discrimabc)) / (2xa)V
x = (—b — sqrt (discrimabc)) / (2 x a)
proof —
from complete-square and plus-or-minus-sqrt and assms
havea x x> + b* x +c=0<+—
(2 % a) x x + b =sqrt (discrimabc) V
(2xa) xx+ b= — sqrt (discrima b c)
by simp
also have ... «— (2% a) x x = (=b + sqrt (discrimabc)) V
(2%a)*xx=(—b—sqrt (discrimabc))
by auto
also from @ # 0) and divide-non-zero [of 2 * a x|
have ... «— x = (=b + sqrt (discrimabc)) / (2% a) V
x = (=b — sqrt (discrimabc)) / (2 % a)
by simp
finally show a * x> + b * x + ¢ = 0 +—
x = (=b+ sqrt (discrimabc)) / (2xa)V
x = (—b — sqrt (discrimabc)) / (2xa).
qed

116

lemma discriminant-zero:
fixes a b c x :: real
assumes a # 0
and discrimabc =0
showsa x> +bxx +c=0+—x=—b/ (2%a)
using discriminant-nonneg and assms
by simp

theorem discriminant-iff:
fixes a b c x :: real
assumes a # 0
showsa x> +bxx +c=0+—
discrimabc >0 A
(x = (=b + sqrt (discrimabc)) / (2xa) V
x = (—b — sqrt (discrimabc)) / (2 xa))
proof
assumea x x> +b*xx+c=0
with discriminant-negative and @ # 0) have —(discrim a b ¢ < 0) by auto
hence discrim a b ¢ > 0 by simp
with discriminant-nonneg and @ * x> + b * x + ¢ = 0) and (@ # 0)
have x = (—b + sqrt (discrimabc)) / (2 xa) V
x = (=b — sqrt (discrimabc)) / (2 % a)
by simp
with iscrima b ¢ > 0
show discrimabc > 0 A
(x = (—b + sqrt (discrimabc)) / (2%a) V
x = (=b —sqrt (discrimabc)) / (2 xa)) ..
next
assume discrimabc > 0 A
(x = (=b + sqrt (discrimabc)) / (2 xa) V
x = (—b — sqrt (discrimabc)) / (2 xa))
hence discrima b ¢ > 0 and
x = (=b+ sqrt (discrimabc)) / (2%a)V
x = (=b — sqrt (discrimabc)) / (2 xa)
by simp-all
with discriminant-nonneg and @ # 0) show a * x2 4+ b * x + ¢ = 0 by simp
qed

lemma discriminant-nonneg-ex:
fixes a b c :: real
assumes a # 0
and discrimabc > 0
shows I x.axx> +bxx+c=0
using discriminant-nonneg and assms
by auto

lemma discriminant-pos-ex:

fixes a b c :: real
assumes a 7 0

117

and discrimabc > 0
shows I xy.x#yAaxx>+bxx+c=0Na*xy>* +bxy+c=0
proof —
let ?x = (—b + sqrt (discrimabc)) / (2 * a)
let 7y = (—b — sqrt (discrimabc)) / (2 * a)
from (discrim a b ¢ > 0) have sqrt (discrim a b ¢) # 0 by simp
hence sqrt (discrim a b ¢) # — sqrt (discrim a b ¢) by arith
with @ # 0) have ?x # ?y by simp
moreover
from discriminant-nonneg [of a b ¢ ?x|
and discriminant-nonneg [of a b ¢ ?y|
and assms
have a x ?x> + b x ?x + c = 0 and a * ?y?> + b * ?y + ¢ = 0 by simp-all
ultimately
show I xy.x#yAaxx>+bxx+c=0Aaxy*>+bxy+c=0Dby blast
qed

lemma discriminant-pos-distinct:
fixes a b c x :: real
assumes a # 0 and discrima b ¢ > 0
shows 3 y.x#yAaxy> +bxy+c=0
proof —
from discriminant-pos-ex and @ # 0) and discrima b c > 0)
obtain w and z where w # z
anda*xw? +bxw+c=0anda*xz>+bxz+c=0
by blast
show 3 y.x#yAaxy> +bxy+c=0
proof cases
assume X = w
with (w # z) have x # z by simp
with @22 + bxz+c=0)
show 3 y.x #y Aaxy?> +bxy+c=0byauto
next
assume x # w
with @ xw? +bxw+c =0
show 3 y.x £y Aaxy*> +bxy+ c=0byauto
qed
qed

end

9 The hyperbolic plane and Tarski’s axioms

theory Hyperbolic-Tarski

imports Euclid-Tarski
Projective
Quadratic-Discriminant

118

begin

9.1 Characterizing a specific conic in the projective plane

definition M :: real’3"3 where
M = vector |
vector [1, 0, 0],
vector [0, 1, 0],
vector [0, 0, —1]]

lemma M-symmatrix: symmatrix M
unfolding symmatrix-def and transpose-def and M-def
by (simp add: Cart-eq forall-3 vector-3)

lemma M-self-inverse: M xx M = mat 1
unfolding M-def and matrix-matrix-mult-def and mat-def and vector-def
by (simp add: setsum-3 Cart-eq forall-3)

lemma M-invertible: invertible M
unfolding invertible-def
using M-self-inverse
by auto

definition polar :: proj2 = proj2-line where
polar p = proj2-line-abs (M v proj2-rep p)

definition pole :: proj2-line = proj2 where
pole | £ proj2-abs (M *v proj2-line-rep 1)

lemma polar-abs:
assumes v # 0
shows polar (proj2-abs v) = proj2-line-abs (M v v)
proof —
from w # 0) and proj2-rep-abs2
obtain k where k # 0 and proj2-rep (proj2-abs v) = k xg v by auto
from (proj2-rep (proj2-abs v) = k *g v)
have polar (proj2-abs v) = proj2-line-abs (k xg (M *v v))
unfolding polar-def
by (simp add: matrix-scalar-vector-ac scalar-matrix-vector-assoc)
with & # 0) and proj2-line-abs-mult
show polar (proj2-abs v) = proj2-line-abs (M *v v) by simp
qed

lemma pole-abs:
assumes v #~ 0
shows pole (proj2-line-abs v) = proj2-abs (M *v v)
proof —
from (v # 0) and proj2-line-rep-abs
obtain k where k # 0 and proj2-line-rep (proj2-line-abs v) =k *g v

119

by auto

from (proj2-line-rep (proj2-line-abs v) = k *g v)

have pole (proj2-line-abs v) = proj2-abs (k xg (M *v v))
unfolding pole-def
by (simp add: matrix-scalar-vector-ac scalar-matrix-vector-assoc)

with k # 0) and proj2-abs-mult

show pole (proj2-line-abs v) = proj2-abs (M xv v) by simp

qed

lemma polar-rep-non-zero: M xv proj2-rep p # 0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

with M-invertible

show M xv proj2-rep p # 0 by (rule invertible-times-non-zero)
qed

lemma pole-polar: pole (polar p) = p
proof —
from polar-rep-non-zero
have pole (polar p) = proj2-abs (M xv (M *v proj2-rep p))
unfolding polar-def
by (rule pole-abs)
with M-self-inverse
show pole (polar p) = p
by (simp add: matrix-vector-mul-assoc proj2-abs-rep matrix-vector-mul-lid)
qed

lemma pole-rep-non-zero: M *v proj2-line-rep I # 0
proof —

have proj2-line-rep | # 0 by (rule proj2-line-rep-non-zero)

with M-invertible

show M xv proj2-line-rep | # 0 by (rule invertible-times-non-zero)
qed

lemma polar-pole: polar (pole l) =1
proof —
from pole-rep-non-zero
have polar (pole I) = proj2-line-abs (M *v (M v proj2-line-rep I))
unfolding pole-def
by (rule polar-abs)
with M-self-inverse
show polar (pole 1) =1
by (simp add: matrix-vector-mul-assoc proj2-line-abs-rep
matrix-vector-mul-lid)
qed

lemma polar-inj:

assumes polar p = polar q
shows p =g

120

proof —
from (polar p = polar q) have pole (polar p) = pole (polar q) by simp
thus p = g by (simp add: pole-polar)

qed

definition conic-sgn :: proj2 = real where
conic-sgn p = sgn (proj2-rep p - (M *v proj2-rep p))

lemma conic-sgn-abs:
assumes v # 0
shows conic-sgn (proj2-abs v) = sgn (v - (M *v v))
proof —
from (v # 0) and proj2-rep-abs2
obtain j where j # 0 and proj2-rep (proj2-abs v) = j xg v by auto
from (j # 0) have j2 > 0 by simp

from (proj2-rep (proj2-abs v) = j xR v)
have conic-sgn (proj2-abs v) = sgn (j2 * (v - (M %v v)))
unfolding conic-sgn-def
by (simp add:
matrix-scalar-vector-ac
scalar-matrix-vector-assoc [symmetric|
dot-scaleR-mult
square-expand
algebra-simps)
also have ... = sgn (j2) * sgn (v - (M xv v)) by (rule sgn-times)
also from (> > 0) have ... = sgn (v - (M *v v)) by simp
finally show conic-sgn (proj2-abs v) = sgn (v - (M *v v)) .
qed

lemma sgn-conic-sgn: sgn (conic-sgn p) = conic-sgn p
by (unfold conic-sgn-def) simp

definition S :: proj2 set where
S £ {p. conic-sgn p = 0}

definition K2 :: proj2 set where
K2 £ {p. conic-sgn p < 0}

lemma S-K2-empty: SN K2 = {}
unfolding S-def and K2-def
by auto

lemma K2-abs:
assumes v %~ 0
shows proj2-abs v € K2 +— v - (M v v) < 0
proof —
have proj2-abs v € K2 <— conic-sgn (proj2-abs v) < 0
by (simp add: K2-def)

121

with @ # 0) and conic-sgn-abs
show proj2-abs v € K2 <— v - (M v v) < 0 by simp
qed

definition K2-centre = proj2-abs (vector [0,0,1])

lemma K2-centre-non-zero: vector [0,0,1] # (0 :: real’3)
by (unfold vector-def) (simp add: Cart-eq forall-3)

lemma K2-centre-in-K2: K2-centre € K2
proof —
from K2-centre-non-zero and proj2-rep-abs2
obtain k where k # 0 and proj2-rep K2-centre = k xg vector [0,0,1]
by (unfold K2-centre-def) auto
from k # 0) have 0 < k? by simp
with (proj2-rep K2-centre = k xg vector [0,0,1])
show K2-centre € K2
unfolding K2-def
and conic-sgn-def
and M-def
and matrix-vector-mult-def
and inner-vector-def
and vector-def
by (simp add: Cart-eq setsum-3 square-expand)
qed

lemma K2-imp-M-neg:
assumes v # 0 and proj2-abs v € K2
shows v - (M *xv0v) <0
using assms
by (simp add: K2-abs)

lemma M-neg-imp-z-squared-big:
assumes v - (M xvv) < 0
shows (v$3)% > (v$1)? + (v$2)?
using @ « (M v v) < 0)
unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vector-def setsum-3 square-expand)

lemma M-neg-imp-z-non-zero:
assumes v - (M v v) < 0
shows v$3 # 0
proof —
have (v$1)? + (v$2)? > 0 by simp
with M-neg-imp-z-squared-big [of v] and @ - (M *v v) < 0)
have (v$3)? > 0 by arith
thus v$3 # 0 by simp
qed

122

lemma M-neg-imp-K2:
assumes v - (M xvv) < 0
shows proj2-abs v € K2
proof —
from @ - (M xv v) < 0) have v$3 # 0 by (rule M-neg-imp-z-non-zero)
hence v # 0 by auto
with @« (M xv v) < 0) and K2-abs show proj2-abs v € K2 by simp
qed

lemma M-reverse: a - (M xv b) =b - (M xv a)
unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vector-def setsum-3)

lemma S-abs:
assumes v #~ 0
shows proj2-absv € S «— v+ (M *vv) =0
proof —
have proj2-abs v € S «— conic-sgn (proj2-abs v) = 0
unfolding S-def
by simp
also from @ # 0 and conic-sgn-abs
have ... +— sgn (v - (M *v v)) = 0 by simp
finally show proj2-abs v € S «— v + (M *v v) = 0 by (simp add: sgn-0-0)
qed

lemma S-alt-def: p € S <— proj2-rep p - (M *v proj2-rep p) = 0
proof —
have proj2-rep p # 0 by (rule proj2-rep-non-zero)
hence proj2-abs (proj2-rep p) € S <— proj2-rep p - (M *v proj2-rep p) = 0
by (rule S-abs)
thus p € S <— proj2-rep p - (M *v proj2-rep p) = 0
by (simp add: proj2-abs-rep)
qed

lemma incident-polar:
proj2-incident p (polar q) <— proj2-rep p - (M *v proj2-rep q) = 0
using polar-rep-non-zero
unfolding polar-def
by (rule proj2-incident-right-abs)

lemma incident-own-polar-in-S: proj2-incident p (polar p) <—p € S
using incident-polar and S-alt-def
by simp

lemma incident-polar-swap:
assumes proj2-incident p (polar q)
shows proj2-incident q (polar p)
proof —
from (proj2-incident p (polar q))

123

have proj2-rep p + (M *v proj2-rep q) = 0 by (unfold incident-polar)
hence proj2-rep q - (M *v proj2-rep p) = 0 by (simp add: M-reverse)
thus proj2-incident q (polar p) by (unfold incident-polar)

qed

lemma incident-pole-polar:

assumes proj2-incident p |

shows proj2-incident (pole) (polar p)
proof —

from (proj2-incident p I)

have proj2-incident p (polar (pole I)) by (subst polar-pole)

thus proj2-incident (pole I) (polar p) by (rule incident-polar-swap)
qed

definition z-zero :: proj2-line where
z-zero = proj2-line-abs (vector [0,0,1])

lemma z-zero:
assumes (proj2-rep p)$3 =0
shows proj2-incident p z-zero
proof —
from K2-centre-non-zero and proj2-line-rep-abs
obtain k where proj2-line-rep z-zero = k g vector [0,0,1]
by (unfold z-zero-def) auto
with (proj2-rep p)$3 = 0)
show proj2-incident p z-zero
unfolding proj2-incident-def and inner-vector-def and vector-def
by (simp add: setsum-3)
qed

lemma z-zero-conic-sgn-1:
assumes proj2-incident p z-zero
shows conic-sgn p =1
proof —
let ?v = proj2-rep p
have (vector [0,0,1] :: real’3) # 0
unfolding vector-def
by (simp add: Cart-eq)
with (proj2-incident p z-zero)
have ?v - vector [0,0,1] =0
unfolding z-zero-def
by (simp add: proj2-incident-right-abs)
hence ?v$3 = 0
unfolding inner-vector-def and vector-def
by (simp add: setsum-3)
hence ?0 - (M v ?0) = (?0$1)% + (?v$2)?
unfolding inner-vector-def
and square-expand
and matrix-vector-mult-def

124

and M-def

and vector-def

and setsum-3
by simp

have ?v # 0 by (rule proj2-rep-non-zero)
with (?0$3 = 0) have ?v$1 # 0 V ?0$2 # 0 by (simp add: Cart-eq forall-3)
hence (?0$1)% > 0 V (?0$2)? > 0 by simp
with add-sign-intros [of (?0$1)? (?0$2)?]
have (?0$1)% + (?0$2)? > 0 by auto
with (?0 - (M %0 ?0) = (?0$1)? + (?0$2)%
have ?v - (M *v ?v) > 0 by simp
thus conic-sgnp =1

unfolding conic-sgn-def

by simp

qed

lemma conic-sgn-not-1-z-non-zero:
assumes conic-sgn p # 1
shows z-non-zero p
proof —
from (conic-sgn p # 1)
have — proj2-incident p z-zero by (auto simp add: z-zero-conic-sgn-1)
thus z-non-zero p by (auto simp add: z-zero)
qed

lemma z-zero-not-in-S:
assumes proj2-incident p z-zero
showsp & S
proof —
from (proj2-incident p z-zero) have conic-sgn p = 1
by (rule z-zero-conic-sgn-1)
thusp ¢ S
unfolding S-def
by simp
qed

lemma line-incident-point-not-in-S: 3 p. p € S A proj2-incident p |
proof —

let ?p = proj2-intersection | z-zero

have proj2-incident ?p | and proj2-incident ?p z-zero

by (rule proj2-intersection-incident)+

from (proj2-incident ?p z-zero) have ?p ¢ S by (rule z-zero-not-in-S)

with (proj2-incident ?p)

show 3 p.p & S A proj2-incident p I by auto
qed

lemma apply-cltn2-abs-abs-in-S:
assumes v # 0 and invertible |

125

shows apply-clin2 (proj2-abs v) (cltn2-absJ) € S
v+ (] xx M % transpose | xv v) =0
proof —
from (v # 0) and (invertible |)
have v v« | # 0 by (rule non-zero-muli-invertible-non-zero)

from (v # 0) and (invertible])
have apply-clin2 (proj2-abs v) (cltn2-abs J) = proj2-abs (v vx])
by (rule apply-cltn2-abs)
also from @ vx | # 0)
have... € S<+— (vovx]) - (M xv (vovx])) = 0 by (rule S-abs)
finally show apply-cltn2 (proj2-abs v) (cltn2-abs J) € S
< v - (] %% M s transpose | v v) = 0
by (simp add: dot-lmul-matrix matrix-vector-mul-assoc [symmetric])
qed

lemma apply-cltn2-right-abs-in-S:
assumes invertible |
shows apply-cltn2 p (cltn2-abs |) € S
< (proj2-rep p) - (J x* M *x transpose | xv (proj2-rep p)) = 0
proof —
have proj2-rep p # 0 by (rule proj2-rep-non-zero)
with (invertible |)
have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs J) € S
< proj2-rep p - (] *x M sx transpose | xv proj2-rep p) = 0
by (simp add: apply-clin2-abs-abs-in-S)
thus apply-cltn2 p (cltn2-abs J) € S
> proj2-rep p - (] *x M xx transpose | xv proj2-rep p) = 0
by (simp add: proj2-abs-rep)
qed

lemma apply-cltn2-abs-in-S:
assumes v # 0
shows apply-cltn2 (proj2-abs v) C € S
< v - (cltn2-rep C s M *x transpose (cltn2-rep C) xv v) = 0
proof —
have invertible (cltn2-rep C) by (rule cltn2-rep-invertible)
with (© # 0)
have apply-clin2 (proj2-abs v) (cltn2-abs (cltn2-rep C)) € S
< v - (cltn2-rep C sxx M *x transpose (cltn2-rep C) xv v) = 0
by (rule apply-cltn2-abs-abs-in-S)
thus apply-cltn2 (proj2-abs v) C € S
> v - (cltn2-rep C s M sx transpose (cltn2-rep C) xv v) = 0
by (simp add: cltn2-abs-rep)
qed

lemma apply-clin2-in-S:

apply-cltn2p C € S
> proj2-rep p - (cltn2-rep C xx M *x transpose (cltn2-rep C) xv proj2-rep p)

126

=0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

hence apply-cltn2 (proj2-abs (proj2-repp)) C € S
> proj2-rep p - (cltn2-rep C s M *x transpose (cltn2-rep C) xv proj2-rep p)
by (rule apply-cltn2-abs-in-S)

thus apply-cltn2pC € S
< proj2-rep p - (cltn2-rep C s M *x transpose (cltn2-rep C) xv proj2-rep p)

by (simp add: proj2-abs-rep)
qed

lemma norm-M: (vector2-appendl v) - (M *v vector2-appendl v) = (norm v)? — 1
proof —
have (norm v)? = (v$1)? + (v$2)?
unfolding norm-vector-def
and setL2-def
by (simp add: setsum-2)
thus (vector2-append1 v) - (M xv vector2-appendl v) = (norm v)? — 1
unfolding vector2-appendl-def
and inner-vector-def
and matrix-vector-mult-def
and vector-def
and M-def
and power2-norm-eg-inner
by (simp add: setsum-3 square-expand)
qed

9.2 Some specific points and lines of the projective plane

definition east = proj2-abs (vector [1,0,1])
definition west = proj2-abs (vector [—1,0,1])
definition north = proj2-abs (vector [0,1,1])
definition south = proj2-abs (vector [0,—1,1])
definition far-north = proj2-abs (vector [0,1,0])

lemmas compass-defs = east-def west-def north-def south-def

lemma compass-non-zero:
shows vector [1,0,1] # (0 :: real3)
and vector [—1,0,1] # (0 :: real"3)
and vector [0,1,1] # (0 :: real’3)
and vector [0,—1,1] # (0 :: real"3)
and vector [0,1,0] # (0 :: real”3)
and vector [1,0,0] # (0 :: real”3)
unfolding vector-def
by (simp-all add: Cart-eq forall-3)

127

lemma east-west-distinct: east # west
proof
assume east = west
with compass-non-zero
and proj2-abs-abs-mult [of vector [1,0,1] vector [—1,0,1]]
obtain k where (vector [1,0,1] :: real’3) = k *g vector [—1,0,1]
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (auto simp add: Cart-eq forall-3)
qed

lemma north-south-distinct: north # south
proof
assume north = south
with compass-non-zero
and proj2-abs-abs-mult [of vector [0,1,1] vector [0,—1,1]]
obtain k where (vector [0,1,1] :: real’3) = k xg vector [0,—1,1]
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (auto simp add: Cart-eq forall-3)
qed

lemma north-not-east-or-west: north ¢ {east, west}
proof
assume north € {east, west}
hence east = north V west = north by auto
with compass-non-zero
and proj2-abs-abs-mult [of - vector [0,1,1]]
obtain k where (vector [1,0,1] :: real’3) = k *g vector [0,1,1]
V (vector [—1,0,1] :: real”3) = k xg vector [0,1,1]
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (simp add: Cart-eq forall-3)
qed

lemma compass-in-S:
shows east € S and west € S and north € S and south € S
using compass-non-zero and S-abs
unfolding compass-defs
and M-def
and inner-vector-def
and matrix-vector-mult-def
and vector-def

128

by (simp-all add: setsum-3)

lemma east-west-tangents:
shows polar east = proj2-line-abs (vector [—1,0,1])
and polar west = proj2-line-abs (vector [1,0,1])
proof —
have M v vector [1,0,1] = (—1) *g vector [—1,0,1]
and M v vector [—1,0,1] = (—1) *g vector [1,0,1]
unfolding M-def and matrix-vector-mult-def and vector-def
by (simp-all add: Cart-eq setsum-3)
with compass-non-zero and polar-abs
have polar east = proj2-line-abs ((—1) *g vector [—1,0,1])
and polar west = proj2-line-abs ((—1) =g vector [1,0,1])
unfolding compass-defs
by simp-all
with proj2-line-abs-mult [of —1]
show polar east = proj2-line-abs (vector [—1,0,1])
and polar west = proj2-line-abs (vector [1,0,1])
by simp-all
qed

lemma east-west-tangents-distinct: polar east # polar west
proof

assume polar east = polar west

hence east = west by (rule polar-inj)

with east-west-distinct show False ..
qed

lemma east-west-tangents-incident-far-north:
shows proj2-incident far-north (polar east)
and proj2-incident far-north (polar west)
using compass-non-zero and proj2-incident-abs
unfolding far-north-def and east-west-tangents and inner-vector-def
by (simp-all add: setsum-3 vector-3)

lemma east-west-tangents-far-north:
proj2-intersection (polar east) (polar west) = far-north
using east-west-tangents-distinct and east-west-tangents-incident-far-north
by (rule proj2-intersection-unique [symmetric])

instantiation proj2 :: zero

begin

definition proj2-zero-def: 0 = proj2-pt 0
instance ..

end

definition equator = proj2-line-abs (vector [0,1,0])
definition meridian = proj2-line-abs (vector [1,0,0])

129

lemma equator-meridian-distinct: equator # meridian
proof
assume equator = meridian
with compass-non-zero
and proj2-line-abs-abs-mult [of vector [0,1,0] vector [1,0,0]]
obtain k where (vector [0,1,0] :: real”3) = k g vector [1,0,0]
by (unfold equator-def meridian-def) auto
thus False by (unfold vector-def) (auto simp add: Cart-eq forall-3)
qed

lemma east-west-on-equator:
shows proj2-incident east equator and proj2-incident west equator
unfolding east-def and west-def and equator-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vector-def vector-def setsum-3)

lemma north-far-north-distinct: north # far-north
proof
assume north = far-north
with compass-non-zero
and proj2-abs-abs-mult [of vector [0,1,1] vector [0,1,0]]
obtain k where (vector [0,1,1] :: real"3) = k *g vector [0,1,0]
by (unfold north-def far-north-def) auto
thus False
unfolding vector-def
by (auto simp add: Cart-eq forall-3)
qed

lemma north-south-far-north-on-meridian:
shows proj2-incident north meridian and proj2-incident south meridian
and proj2-incident far-north meridian
unfolding compass-defs and far-north-def and meridian-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vector-def vector-def setsum-3)

lemma K2-centre-on-equator-meridian:
shows proj2-incident K2-centre equator
and proj2-incident K2-centre meridian
unfolding K2-centre-def and equator-def and meridian-def
using K2-centre-non-zero and compass-non-zero
by (simp-all add: proj2-incident-abs inner-vector-def vector-def setsum-3)

lemma on-equator-meridian-is-K2-centre:
assumes proj2-incident a equator and proj2-incident a meridian
shows a = K2-centre
using assms and K2-centre-on-equator-meridian and equator-meridian-distinct
and proj2-incident-unique
by auto

130

definition rep-equator-reflect = vector |
vector [1, 0,0],
vector [0,—1,0],
vector [0, 0,1]] :: real’3"3
definition rep-meridian-reflect = vector |
vector [—1,0,0],
vector [0,1,0],
vector [0,0,1]] :: real’3"3
definition equator-reflect = cltn2-abs rep-equator-reflect
definition meridian-reflect = cltn2-abs rep-meridian-reflect

lemmas compass-reflect-defs = equator-reflect-def meridian-reflect-def
rep-equator-reflect-def rep-meridian-reflect-def

lemma compass-reflect-self-inverse:
shows rep-equator-reflect xx rep-equator-reflect = mat 1
and rep-meridian-reflect ** rep-meridian-reflect = mat 1
unfolding compass-reflect-defs matrix-matrix-mult-def mat-def
by (simp-all add: Cart-eq forall-3 setsum-3 vector-3)

lemma compass-reflect-invertible:
shows invertible rep-equator-reflect and invertible rep-meridian-reflect
unfolding invertible-def
using compass-reflect-self-inverse
by auto

lemma compass-reflect-compass:

shows apply-cltn2 east meridian-reflect = west

and apply-cltn2 west meridian-reflect = east

and apply-cltn2 north meridian-reflect = north

and apply-cltn2 south meridian-reflect = south

and apply-cltn2 K2-centre meridian-reflect = K2-centre

and apply-cltn2 east equator-reflect = east

and apply-cltn2 west equator-reflect = west

and apply-cltn2 north equator-reflect = south

and apply-cltn2 south equator-reflect = north

and apply-cltn2 K2-centre equator-reflect = K2-centre
proof —

have (vector [1,0,1] :: real’3) vx rep-meridian-reflect = vector [—1,0,1]

and (vector [0,1,1] :: real’3) vx rep-equator-reflect = vector [0,—1,1]
and (vector [0,—1,1] :: real’3) vx rep-equator-reflect = vector [0,1,1]
and (vector [0,0,1] :: real’3) vx rep-equator-reflect = vector [0,0,1]
unfolding rep-meridian-reflect-def and rep-equator-reflect-def

and (vector [—1,0,1] :: real’3) vx rep-meridian-reflect = vector [1,0,1]
and (vector [0,1,1] :: real’3) vx rep-meridian-reflect = vector [0,1,1]
and (vector [0,—1,1] :: real’3) vx rep-meridian-reflect = vector [0,—1,1]
and (vector [0,0,1] :: real’3) vx rep-meridian-reflect = vector [0,0,1]
and (vector [1,0,1] :: real’3) vx rep-equator-reflect = vector [1,0,1]
and (vector [—1,0,1] :: real’3) vx rep-equator-reflect = vector [—1,0,1]
([
([

131

and vector-matrix-mult-def
by (simp-all add: Cart-eq forall-3 vector-3 setsum-3)
with compass-reflect-invertible and compass-non-zero and K2-centre-non-zero
show apply-cltn2 east meridian-reflect = west
and apply-clin2 west meridian-reflect = east
and apply-cltn2 north meridian-reflect = north
and apply-cltn2 south meridian-reflect = south
and apply-cltn2 K2-centre meridian-reflect = K2-centre
and apply-cltn2 east equator-reflect = east
and apply-cltn2 west equator-reflect = west
and apply-cltn2 north equator-reflect = south
and apply-cltn2 south equator-reflect = north
and apply-cltn2 K2-centre equator-reflect = K2-centre
unfolding compass-defs and K2-centre-def
and meridian-reflect-def and equator-reflect-def
by (simp-all add: apply-cltn2-abs)
qed

lemma on-equator-rep:
assumes z-non-zero a and proj2-incident a equator
shows 3 x. a = proj2-abs (vector [x,0,1])
proof —
let ?ra = proj2-rep a
let ?cal = cart2-append] a
let ?x = ?cal$l
from compass-non-zero and (proj2-incident a equator)
have ?ra - vector [0,1,0] = 0
by (unfold equator-def) (simp add: proj2-incident-right-abs)
hence ?ra$2 = 0 by (unfold inner-vector-def vector-def) (simp add: setsum-3)
hence ?cal$2 = 0 by (unfold cart2-append1-def) simp
moreover
from (z-non-zero a) have ?cal$3 = 1 by (rule cart2-append1-z)
ultimately
have ?cal = vector [?x,0,1]
by (unfold vector-def) (simp add: Cart-eq forall-3)
with (z-non-zero a)
have proj2-abs (vector [?x,0,1]) = a by (simp add: proj2-abs-cart2-append1)
thus 3 x. a = proj2-abs (vector [x,0,1]) by (simp add: exI [of - ?x])
qed

lemma on-meridian-rep:
assumes z-non-zero a and proj2-incident a meridian
shows 3 y. a = proj2-abs (vector [0,y,1])
proof —
let ?ra = proj2-rep a
let ?cal = cart2-append] a
let 7y = ?cal$2
from compass-non-zero and (proj2-incident a meridian)
have ?ra - vector [1,0,0] = 0

132

by (unfold meridian-def) (simp add: proj2-incident-right-abs)
hence ?ra$1 = 0 by (unfold inner-vector-def vector-def) (simp add: setsum-3)
hence ?cal$1 = 0 by (unfold cart2-append1-def) simp
moreover
from (z-non-zero a) have ?cal$3 = 1 by (rule cart2-append1-z)
ultimately
have ?cal = vector [0,7y,1]
by (unfold vector-def) (simp add: Cart-eq forall-3)
with (z-non-zero a)
have proj2-abs (vector [0,?y,1]) = a by (simp add: proj2-abs-cart2-append1)
thus 3 y. a = proj2-abs (vector [0,y,1]) by (simp add: exI [of - ?y])
qed

9.3 Definition of the Klein—-Beltrami model of the hyperbolic
plane

typedef hyp2 = K2
using K2-centre-in-K2
by auto

definition hyp2-rep :: hyp2 = real”2 where
hyp2-rep p = cart2-pt (Rep-hyp2 p)

definition hyp2-abs :: real”2 = hyp2 where
hyp2-abs v = Abs-hyp2 (proj2-pt v)

lemma norm-It-1-iff-in-hyp2:

shows norm v < 1 <— proj2-pt v € hyp2
proof —

let ?v’ = vector2-appendl v

have ?v’ # 0 by (rule vector2-append1-non-zero)

from real-less-rsqrt [of norm v 1]
and less-one-imp-sqr-less-one [of norm v
have norm v < 1 +— (norm v)? < 1 by auto
hence normv < 1 +— ?v’ - (M xv ?v’) < 0 by (simp add: norm-M)
with (70’ # 0) have norm v < 1 <— proj2-abs ?v’ € K2 by (subst K2-abs)
thus norm v < 1 <— proj2-pt v € hyp2 by (unfold proj2-pt-def hyp2-def)
qed

lemma norm-eq-1-iff-in-S:
shows norm v =1 <— proj2-ptv € S
proof —
let 70’ = vector2-appendl v
have ?v’ # 0 by (rule vector2-append1-non-zero)

from real-sqrt-unique [of norm v 1]

have norm v = 1 +— (norm v)? = 1 by auto
hence normv =1 +— ?v’ - (M *v ?0’) = 0 by (simp add: norm-M)

133

with (?0” # 0) have norm v = 1 <— proj2-abs ?v’ € S by (subst S-abs)
thus norm v =1 <— proj2-pt v € S by (unfold proj2-pt-def)
qed

lemma norm-le-1-iff-in-hyp2-S:
normv <1 <— proj2-ptv € hyp2 U S
using norm-It-1-iff-in-hyp2 [of v| and norm-eq-1-iff-in-S [of v]
by auto

lemma proj2-pt-hyp2-rep: proj2-pt (hyp2-rep p) = Rep-hyp2 p
proof —

let ?p’ = Rep-hyp2 p

let ?v = proj2-rep ?p’

have ?v # 0 by (rule proj2-rep-non-zero)

have proj2-abs ?v = ?p’ by (rule proj2-abs-rep)

have ?p’ € hyp2 by (rule Rep-hyp2)

hence ?p’ € K2 by (unfold hyp2-def)

with (?v # 0) and (proj2-abs ?v = ?p’)

have ?v - (M *v ?v) < 0 by (simp add: K2-imp-M-neg)

hence ?v$3 # 0 by (rule M-neg-imp-z-non-zero)

hence proj2-pt (cart2-pt ?p’) = ?p’ by (rule proj2-cart2)

thus proj2-pt (hyp2-rep p) = ?p’ by (unfold hyp2-rep-def)
qed

lemma hyp2-rep-abs:
assumes norm v < 1
shows hyp2-rep (hyp2-abs v) = v
proof —
from (normv < 1)
have proj2-pt v € hyp2 by (simp add: norm-It-1-iff-in-hyp2)
hence Rep-hyp2 (Abs-hyp2 (proj2-pt v)) = proj2-pt v
by (simp add: Abs-hyp2-inverse)
hence hyp2-rep (hyp2-abs v) = cart2-pt (proj2-pt v)
by (unfold hyp2-rep-def hyp2-abs-def) simp
thus hyp2-rep (hyp2-abs v) = v by (simp add: cart2-proj2)
qed

lemma hyp2-abs-rep: hyp2-abs (hyp2-rep p) = p
by (unfold hyp2-abs-def) (simp add: proj2-pt-hyp2-rep Rep-hyp2-inverse)

lemma norm-hyp2-rep-It-1: norm (hyp2-rep p) < 1
proof —
have proj2-pt (hyp2-rep p) = Rep-hyp2 p by (rule proj2-pt-hyp2-rep)
hence proj2-pt (hyp2-rep p) € hyp2 by (simp add: Rep-hyp2)
thus norm (hyp2-rep p) < 1 by (simp add: norm-It-1-iff-in-hyp2)
qed

134

lemma hyp2-S-z-non-zero:
assumes p € hyp2 U S
shows z-non-zero p
proof —
from (p € hyp2 U S)
have conic-sgn p < 0 by (unfold hyp2-def K2-def S-def) auto
hence conic-sgn p # 1 by simp
thus z-non-zero p by (rule conic-sgn-not-1-z-non-zero)
qed

lemma hyp2-S-not-equal:
assumes a € hyp2 andp € S
shows a # p
using assms and S-K2-empty
by (unfold hyp2-def) auto

lemma hyp2-S-cart2-inj:
assumes p € hyp2 U S and g € hyp2 U S and cart2-pt p = cart2-pt q
shows p =g
proof —
from (p € hyp2 U S) and (g € hyp2 U S)
have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) = q
by (simp-all add: proj2-cart2)

from (cart2-pt p = cart2-pt q
have proj2-pt (cart2-pt p) = proj2-pt (cart2-pt q) by simp
with (proj2-pt (cart2-pt p) = p) [symmetric| and (proj2-pt (cart2-pt q) = q)
show p = g by simp
qed

lemma on-equator-in-hyp2-rep:
assumes a € hyp2 and proj2-incident a equator
shows 3 x. |x| < 1 A a = proj2-abs (vector [x,0,1])
proof —
from (@ € hyp2) have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with (proj2-incident a equator) and on-equator-rep
obtain x where a = proj2-abs (vector [x,0,1]) (is a = proj2-abs ?v)
by auto

have ?v # 0 by (simp add: Cart-eq forall-3 vector-3)
with @ € hyp2) and @ = proj2-abs ?v)
have ?v - (M *v ?v) < 0 by (unfold hyp2-def) (simp add: K2-abs)
hence x? < 1
unfolding M-def matrix-vector-mult-def inner-vector-def
by (simp add: setsum-3 vector-3 square-expand)
with real-sqrt-abs [of x] and real-sqrt-less-iff [of x> 1]
have |x| < 1 by simp
with @ = proj2-abs ?v)

135

show 3 x. |x| <1 A a = proj2-abs (vector [x,0,1])
by (simp add: exI [of - x])
qed

lemma on-meridian-in-hyp2-rep:
assumes a € hyp2 and proj2-incident a meridian
shows 3 y. |y| <1 A a = proj2-abs (vector [0,y,1])
proof —
from (@ € hyp2) have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with (proj2-incident a meridian) and on-meridian-rep
obtain y where a = proj2-abs (vector [0,y,1]) (is a = proj2-abs ?v)
by auto

have ?v # 0 by (simp add: Cart-eq forall-3 vector-3)
with @ € hyp2) and @ = proj2-abs ?v)
have ?v - (M *v ?v) < 0 by (unfold hyp2-def) (simp add: K2-abs)
hence y? < 1
unfolding M-def matrix-vector-mult-def inner-vector-def
by (simp add: setsum-3 vector-3 square-expand)
with real-sqrt-abs [of y] and real-sqrt-less-iff [of y* 1]
have |y| < 1 by simp
with @ = proj2-abs ?v)
show 3 . |y| <1 A a = proj2-abs (vector [0,y,1])
by (simp add: exI [of - y])
qed

definition hyp2-cltn2 :: hyp2 = cltn2 = hyp2 where
hyp2-cltn2 p A = Abs-hyp2 (apply-cltn2 (Rep-hyp2 p) A)

definition is-K2-isometry :: cltn2 = bool where
is-K2-isometry | = (¥ p. apply-cltn2p] €S +—p € S)

lemma cltn2-id-is-K2-isometry: is-K2-isometry cltn2-id
unfolding is-K2-isometry-def
by simp

lemma J-M-J-transpose-K2-isometry:
assumes k # 0
and rep] s M xx transpose rep] =k xg M (is ?N = -)
shows is-K2-isometry (cltn2-abs rep]) (is is-K2-isometry ?])
proof —
from (?N =k xg M)
have ?N xx ((1/k) *g M) = mat 1
by (simp add: matrix-scalar-ac k # 0) M-self-inverse)
with right-invertible-iff-invertible [of rep]]
have invertible rep]
by (simp add: matrix-mul-assoc
exI [of - M xx transpose rep] «x ((1/k) xg M)])

136

have V t. apply-cltn2t?2] € S+—t €S
proof
fix t :: proj2
have proj2-rep t « ((k xg M) *v proj2-rep t)
=k * (proj2-rep t - (M xv proj2-rep t))
by (simp add: scalar-matrix-vector-assoc [symmetric| dot-scaleR-mult)
with N = k g M)
have proj2-rep t -+ (?N *v proj2-rep t)
= k * (proj2-rep t - (M xv proj2-rep t))
by simp
hence proj2-rep t - (?N *v proj2-rep t) = 0
> k x (proj2-rep t - (M *v proj2-rep t)) = 0
by simp
with & # 0)
have proj2-rep t + (?N *v proj2-rep t) =
< proj2-rep t -+ (M *v proj2-rep t)
by simp
with (nvertible rep])
have apply-cltn2 t ?] € S <— proj2-rep t - (M *v proj2-rep t) = 0
by (simp add: apply-clin2-right-abs-in-S)
thus apply-cltn2 t 2] € S <— t € S by (unfold S-alt-def)
qed
thus is-K2-isometry ?] by (unfold is-K2-isometry-def)
qed

S S

lemma equator-reflect-K2-isometry:
shows is-K2-isometry equator-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])
(simp-all add: M-def matrix-matrix-mult-def transpose-def
Cart-eq forall-3 setsum-3 vector-3)

lemma meridian-reflect-K2-isometry:
shows is-K2-isometry meridian-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])
(simp-all add: M-def matrix-matrix-mult-def transpose-def
Cart-eq forall-3 setsum-3 vector-3)

lemma cltn2-compose-is-K2-isometry:
assumes is-K2-isometry H and is-K2-isometry |
shows is-K2-isometry (cltn2-compose H |)
using (is-K2-isometry H) and (is-K2-isometry |)
unfolding is-K2-isometry-def
by (simp add: cltn2.act-act [simplified, symmetric])

lemma cltn2-inverse-is-K2-isometry:

assumes is-K2-isometry |
shows is-K2-isometry (cltn2-inverse J)

137

proof —
{ fix p
from (is-K2-isometry |)
have apply-cltn2 p (cltn2-inverse) € S
> apply-cltn2 (apply-clin2 p (cltn2-inverse J))] € S
unfolding is-K2-isometry-def
by simp
hence apply-clin2 p (cltn2-inverse]) € S <—p € S
by (simp add: cltn2.act-inv-act [simplified]) }
thus is-K2-isometry (cltn2-inverse])
unfolding is-K2-isometry-def ..
qed

interpretation K2-isometry-subgroup: subgroup

Collect is-K2-isometry

(|carrier = UNIV, mult = cltn2-compose, one = clin2-id|)

unfolding subgroup-def

by (simp add:
cltn2-id-is-K2-isometry
cltn2-compose-is-K2-isometry
cltn2-inverse-is-K2-isometry)

interpretation K2-isometry: group
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
using cltn2.is-group and K2-isometry-subgroup.subgroup-is-group
by simp

lemma K2-isometry-inverse-inv [simp]:
assumes is-K2-isometry |
shows MO (|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|) J
= cltn2-inverse |
using cltn2-left-inverse
and (is-K2-isometry |)
and cltn2-inverse-is-K2-isometry
and K2-isometry.inv-equality
by simp

definition real-hyp2-C :: [hyp2, hyp2, hyp2, hyp2| = bool
(- - =k - - [99,99,99,99] 50) where

AN
pq=Kkrs=
(3 A. is-K2-isometry A A\ hyp2-cltn2 p A = r A\ hyp2-cltn2 g A = s)

definition real-hyp2-B :: [hyp2, hyp2, hyp2] = bool
(Bk - --199,99,99] 50) where
B p q 1= Br (hyp2-rep p) (hyp2-rep q) (hyp2-rep r)

9.4 K-isometries map the interior of the conic to itself

lemma collinear-quadratic:

138

assumes t =i*xga—+r
shows t - (M xvt) =
(a- Mxva))*i2+2%(a- (M*vr))*i+r-(Mx*vr)
proof —
from M-reverse have i * (a - (M xvr)) =ix* (r- (M *va)) by simp
with(t =ixga+ 7
showt - (M v t) =
(a-Mxva))*i2+2%(a- (M*vr))*i+r-(Mx*vr)
by (simp add:
inner.add-left
matrix-vector-right-distrib
inner.add-right
matrix-scalar-vector-ac
inner.scaleR-right
scalar-matrix-vector-assoc [symmetric|
M-reverse
square-expand
algebra-simps)
qed

lemma S-quadratic”:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q
shows proj2-abs (kg p +q) €S
——p-(M*vp)xk2+p-(M*vq)*2+k+qg-(M*vq)=0
proof —
let 7r=kxgp+9q
from (p # 0) and (g # 0) and (proj2-abs p # proj2-abs q)
and dependent-proj2-abs [of p q k 1]
have ?r # 0 by auto
hence proj2-abs ?r € S <— ?r - (M v ?r) = 0 by (rule S-abs)
with collinear-quadratic [of ?r k p q|
show proj2-abs 7r € S
= p-(M*vp)xk2+p-(M*vq)+«2+k+qg-(M*vq)=0
by (simp add: dot-lmul-matrix [symmetric| algebra-simps)
qed

lemma S-quadratic:
assumes p # q and r = proj2-abs (k g proj2-rep p + proj2-rep q)
showsrc S
< proj2-rep p - (M v proj2-rep p) * k>
+ proj2-rep p - (M *v proj2-rep q) * 2 x k
+ proj2-rep q - (M *v proj2-rep q)
=0

proof —
let ?u = proj2-rep p
let ?v = proj2-rep q
let 2w =k *g 2u + ?v
have ?u # 0 and ?v # 0 by (rule proj2-rep-non-zero)+

139

from (p # ¢ have proj2-abs ?u # proj2-abs ?v by (simp add: proj2-abs-rep)
with (?u # 0) and (?v # 0) and (r = proj2-abs ?w)
showr € S
= 2u- (M*02u) k2 + 2u - (M0 ?20) 2 xk + 20+ (M %0 ?0) = 0
by (simp add: S-quadratic’)
qed

definition quarter-discrim :: real’3 = real”3 = real where
quarter-discrimp g = (p - (M xv q))> —p - (M *vp) * (q+ (M xvq))

lemma quarter-discrim-invariant:
assumes t =i *ga+r
shows quarter-discrim a t = quarter-discrim a r
proof —
from ¢t =i*xga+rn
havea - (M xvt)=ix*(a- (Mx*va))+a-(Mx*vr)
by (simp add:
matrix-vector-right-distrib
inner.add-right
matrix-scalar-vector-ac
scalar-matrix-vector-assoc [symmetric|)
hence (a - (M xvt))? =
(a- (Mx*va))?«i> +
2% (a-(M=x*va))*(a-(Mxvr))*i+
(a- (M x*vr))?
by (simp add: square-expand algebra-simps)
moreover from collinear-quadratic and t =i *ga + 1)
havea - (M xva) * (t - (M xvt)) =
(a- (Mxva))?«i>+
2% (a- (M=x*va))*(a-(Mxvr))*i+
a-(M=xva)x(r- (M=xvr))
by (simp add: square-expand algebra-simps)
ultimately show quarter-discrim a t = quarter-discrim a r
by (unfold quarter-discrim-def, simp)
qed

lemma quarter-discrim-positive:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2
shows quarter-discrimp q > 0
proof —
let 7i = —q%3/p$3
let?t="7i*xrp+gq

from (p # 0) and (?pp € K2)

have p - (M *v p) < 0 by (subst K2-abs [symmetric])
hence p$3 # 0 by (rule M-neg-imp-z-non-zero)
hence ?t$3 = 0 by simp

hence ?t - (M *v ?t) = (?t$1)% + (?t$2)?

140

unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vector-def setsum-3 square-expand)

from (p$3 # 0) have p # 0 by auto
with (g # 00 and (?pp # ?pq) and dependent-proj2-abs [of p q ?i 1]
have ?t # 0 by auto
with (?t$3 = 0) have ?t$1 # 0 V ?t$2 # 0 by (simp add: Cart-eq forall-3)
hence (?t$1)2 > 0V (?t$2)? > 0 by simp
moreover have (?t$2)2 > 0 and (?t$1)? > 0 by simp-all
ultimately have (?t$1)% + (?t$2)2 > 0 by arith
with (7t -+ (M v ?t) = (?t$1)% + (?t$2)%) have ?t - (M xv ?t) > 0 by simp
with mult-neg-pos [of p - (M xv p)] and (p - (M xv p) < 0)
have p - (M *v p) % (?t - (M *v ?t)) < 0 by simp
moreover have (p - (M xv ?t))? > 0 by simp
ultimately
have (p - (M *v ?t))2 — p - (M *v p) * (?t - (M *v ?t)) > 0 by arith
with quarter-discrim-invariant [of 7t ?i p q
show quarter-discrim p q > 0 by (unfold quarter-discrim-def, simp)
qed

lemma quarter-discrim-self-zero:
assumes proj2-abs a = proj2-abs b
shows quarter-discrima b = 0
proof cases
assume b =0
thus quarter-discrim a b = 0 by (unfold quarter-discrim-def, simp)
next
assume b # 0
with (proj2-abs a = proj2-abs b) and proj2-abs-abs-mult
obtain k where a = k xg b by auto
thus quarter-discrima b = 0
unfolding quarter-discrim-def
by (simp add: square-expand
matrix-scalar-vector-ac
scalar-matrix-vector-assoc [symmetric|)
qed

definition S-intersection-coeffl :: real"3 = real’3 => real where
S-intersection-coeffl p q

£ (—p - (M xvq) + sqrt (quarter-discrim p q)) / (p - (M *v p))

definition S-intersection-coeff2 :: real’3 = real’3 = real where
S-intersection-coeff2 p q

A

£ (—p - (M *v q) — sqrt (quarter-discrimp q)) / (p - (M xv p))

definition S-intersectionl-rep :: real’3 = real"3 = real”3 where
S-intersectionl-rep p q = (S-intersection-coeffl p q) *r p + q

definition S-intersection2-rep :: real’3 = real’3 = real"3 where

141

S-intersection2-rep p q = (S-intersection-coef2 p q) *r p + q

definition S-intersectionl :: real"3 = real’3 = proj2 where
S-intersectionl p q = proj2-abs (S-intersectionl-rep p q)

definition S-intersection2 :: real"3 = real’3 = proj2 where
S-intersection2 p q £ proj2-abs (S-intersection2-rep p q)

lemmas S-intersection-coeffs-defs =
S-intersection-coeff1-def S-intersection-coeff2-def

lemmas S-intersections-defs =
S-intersection1-def S-intersection2-def
S-intersection1-rep-def S-intersection2-rep-def

lemma S-intersection-coeffs-distinct:

assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2

shows S-intersection-coeffl p q # S-intersection-coeff2 p q

proof —

from (p # 0) and (?pp € K2)

have p - (M *v p) < 0 by (subst K2-abs [symmetric|)

from assms have quarter-discrim p q > 0 by (rule quarter-discrim-positive)
with (p - (M xvp) < 0)
show S-intersection-coeffl p q # S-intersection-coeff2 p q
by (unfold S-intersection-coeffs-defs, simp)
qed

lemma S-intersections-distinct:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2
shows S-intersectionl p q # S-intersection2 p q
proof—
from (p # 0) and (g # 0) and (Ppp # ?pq and (Ppp € K2)
have S-intersection-coeffl p q # S-intersection-coeff2 p q
by (rule S-intersection-coeffs-distinct)
with (p # 0) and (g # 0> and (?pp # ?pq) and proj2-Col-coeff-unique’
show S-intersectionl p q # S-intersection2 p q
by (unfold S-intersections-defs, auto)
qed

lemma S-intersections-in-S:

assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2

shows S-intersectionl p q € S and S-intersection2 p g € S

proof —

let ?j = S-intersection-coeffl p q

let 2k = S-intersection-coeff2 p q

142

let?2a=p- (Mx*vp)
let?b=2x (p- (M x*vq))
let?2c=gq- (M xvq)

from (p # 0) and (?pp € K2) have ?a < 0 by (subst K2-abs [symmetric])

have gd: discrim ?a ?b ?c = 4 x quarter-discrim p q
unfolding discrim-def quarter-discrim-def
by (simp add: square-expand)

with times-divide-times-eq [of
2 2 sqrt (quarter-discrimp q) — p - (M v q) ?a]
and times-divide-times-eq [of
22 —p - (M=x*vq) — sqrt (quarter-discrim p q) ?a]
and real-sqrt-mult and real-sqrt-abs [of 2]

have ?j = (—?b + sqrt (discrim ?a ?b ?c)) / (2 * ?a)
and ?k = (—?b — sqrt (discrim 2a ?b 2c)) / (2 x ?a)
by (unfold S-intersection-coeffs-defs, simp-all add: algebra-simps)

from assms have quarter-discrim p q > 0 by (rule quarter-discrim-positive)

with gd

have discrim (p + (M *xvp)) (2% (p- (M=*vq))) (g (M=*vq)) >0
by simp

with (?j = (=2b + sqrt (discrim 2a ?b ?c)) / (2 x ?a))
and (?k = (—?b — sqrt (discrim ?a ?b ?c)) / (2 * ?a))
and (?a < 0) and discriminant-nonneg [of ?a ?b ?c ?j]
and discriminant-nonneg [of ?a ?b ?c ?k]

havep - (M *xvp) 2> + 2% (p- (M*0vq)) *?j +q- (Mx*vgqg) =0
andp - (M*vp)* 2k + 2% (p- (M*vq)) *?k+q- (M*vq) =0
by (unfold S-intersection-coeffs-defs, auto)

with (p # 0) and (g # 0) and (?pp # ?pg) and S-quadratic’

show S-intersectionl p q € S and S-intersection2 pq € S
by (unfold S-intersections-defs, simp-all)

qed

lemma S-intersections-Col:
assumes p # 0 and g # 0
shows proj2-Col (proj2-abs p) (proj2-abs q) (S-intersectionl p q)
(is proj2-Col ?pp ?pq ?pr)
and proj2-Col (proj2-abs p) (proj2-abs q) (S-intersection2 p q)
(is proj2-Col ?pp ?pq ?ps)
proof —
{ assume ?pp = ?pq
hence proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (simp-all add: proj2-Col-coincide) }
moreover
{ assume ?pp # ?pq
with (p # 0) and (¢ # 0) and dependent-proj2-abs [of p q - 1]
have S-intersectionl-rep p g # 0 (is ?r # 0)
and S-intersection2-rep p q # 0 (is ?s # 0)

143

by (unfold S-intersectionl-rep-def S-intersection2-rep-def, auto)

with (p # 0) and (g # 0
and proj2-Col-abs [of p q ?r S-intersection-coeffl p q 1 —1]
and proj2-Col-abs [of p q ?s S-intersection-coeff2 p q 1 —1]

have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (unfold S-intersections-defs, simp-all) }

ultimately show proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps by fast+
qed

lemma S-intersections-incident:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-incident (proj2-abs p) | and proj2-incident (proj2-abs q)
shows proj2-incident (S-intersection1 p q) 1 (is proj2-incident ?pr 1)
and proj2-incident (S-intersection2 p q) 1 (is proj2-incident ?ps)
proof —
from (p # 0) and (g # 0)
have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (rule S-intersections-Col)+
with (?pp # ?pq> and (proj2-incident ?pp) and (proj2-incident ?pq |
and proj2-incident-iff-Col
show proj2-incident ?pr | and proj2-incident ?ps [by fast+
qed

lemma K2-line-intersect-twice:

assumes g € K2 and a # r

shows d su.s #uANseSAueSAproj2-Colars A proj2-Col ar u
proof —

let ?a’ = proj2-rep a

let ?r' = proj2-rep r

from proj2-rep-non-zero have ?a’ # 0 and ?r’ # 0 by simp-all

from (?a’ # 0) and K2-imp-M-neg and proj2-abs-rep and (@ € K2)
have ?a’ - (M *v ?a’) < 0 by simp

from (@ # r) have proj2-abs ?a’ # proj2-abs ?r' by (simp add: proj2-abs-rep)

from (@ € K2) have proj2-abs ?a’ € K2 by (simp add: proj2-abs-rep)

with (?a’ £ 0) and (?r' # 0) and (proj2-abs ?a’ # proj2-abs ?r"

have S-intersectionl ?a’ ?r’ # S-intersection2 ?a’ ?r' (is ?s # ?u)
by (rule S-intersections-distinct)

from (?a’ # 0) and (?r" # 0) and (proj2-abs ?a’ # proj2-abs 21"
and (proj2-abs ?a’ € K2)
have ?s € S and ?u € S by (rule S-intersections-in-S)+

from (?a’ # 0) and (?r' # 0)

have proj2-Col (proj2-abs ?a’) (proj2-abs ?r') ?s
and proj2-Col (proj2-abs ?a’) (proj2-abs ?r') 2u
by (rule S-intersections-Col)+

144

hence proj2-Col a r ?s and proj2-Col a r 7u
by (simp-all add: proj2-abs-rep)
with (?s # 7w and (?s € S) and Pu € S
show 3 su.s #uANsecSANuecSANproj2-Colars A proj2-Col aru
by auto
qed

lemma point-in-S-polar-is-tangent:
assumes p € S and g € S and proj2-incident g (polar p)
shows g =p
proof —
from (p € S) have proj2-incident p (polar p)
by (subst incident-own-polar-in-S)

from line-incident-point-not-in-S
obtain r where r ¢ S and proj2-incident r (polar p) by auto
let ?u = proj2-rep r
let ?v = proj2-rep p
from (r ¢ S) and (p € S) and (g € S) have r # p and g # r by auto
with (proj2-incident p (polar p))
and (proj2-incident q (polar p))
and (proj2-incident r (polar p))
and proj2-incident-iff [of r p polar p q]
obtain k where q = proj2-abs (k xg ?u + ?v) by auto
with (# # p) and (g € S) and S-quadratic
have ?u - (M %0 ?2u) x k2 + 2u - (M %0 20) * 2 x k + 20 - (M %0 ?0) = 0
by simp
moreover from (p € S) have ?v - (M xv ?v) = 0 by (unfold S-alt-def)
moreover from (proj2-incident r (polar p))
have ?u - (M v ?v) = 0 by (unfold incident-polar)
moreover from (r ¢ S) have ?u - (M *v ?u) # 0 by (unfold S-alt-def)
ultimately have k = 0 by simp
with (g = proj2-abs (k xg 2u + ?v))
show q = p by (simp add: proj2-abs-rep)
qed

lemma line-through-K2-intersect-S-twice:
assumes p € K2 and proj2-incident p |
shows 3 gr.g#rAqeSAreS A proj2-incident q I A proj2-incident r |
proof —
from proj2-another-point-on-line
obtain s where s # p and proj2-incident s I by auto
from (p € K2) and (s # p) and K2-line-intersect-twice [of p s|
obtain g and r whereg #randg € Sandr € S
and proj2-Col p s q and proj2-Col p s r
by auto
with (s # p) and (proj2-incident p I) and (proj2-incident s)
and proj2-incident-iff-Col [of p s|
have proj2-incident q | and proj2-incident r I by fast+

145

with (g #r and g € S)and (r € S)
show 3 qr.q#rANqeSAreS A proj2-incident q 1 A proj2-incident r |
by auto
qed

lemma line-through-K2-intersect-S-again:
assumes p € K2 and proj2-incident p |
shows 3 r.v £ q A r € S A proj2-incident r |
proof —
from (p € K2) and (proj2-incident p I)
and line-through-K2-intersect-S-twice [of p I]
obtain s and f wheres # fands € Sand t € S
and proj2-incident s | and proj2-incident t |
by auto
show 3 r.r # q A r € S A\ proj2-incident r |
proof cases
assume t = g
with (s #) and (s € S) and (proj2-incident s I)
have s # g A\ s € S A proj2-incident s | by simp
thus 3 r.r g Ar €S A proj2-incident v [..
next
assume f # g
with t € S) and (proj2-incident t)
have t #q At € S A proj2-incident t | by simp
thus 3 r.r £g A r €S A proj2-incident r [..
qed
qed

lemma line-through-K2-intersect-S:
assumes p € K2 and proj2-incident p |
shows 3 r. v € S A proj2-incident r |
proof —
from assms
have 3 7.7 # p AN r € S A proj2-incident r |
by (rule line-through-K2-intersect-S-again)
thus 3 r.r € S A proj2-incident r | by auto
qed

lemma line-intersect-S-at-most-twice:

3 pq.V reS. proj2-incidentrl — r=pVr=gq
proof —

from line-incident-point-not-in-S

obtain s where s ¢ S and proj2-incident s | by auto

let ?v = proj2-rep s

from proj2-another-point-on-line

obtain t where t # s and proj2-incident t I by auto

let ?w = proj2-rep t

have ?v # 0 and ?w # 0 by (rule proj2-rep-non-zero)+

146

let ?a = ?2v - (M *v ?v)
let ?2b =2 % (?v - (M %0 ?w))
let ?c = ?w - (M *v ?w)
from (s ¢ S) have ?a # 0
unfolding S-def and conic-sgn-def
by auto
let ?j = (—?b + sqrt (discrim ?2a ?b ?c)) / (2 * ?a)
let ?k = (—?b — sqrt (discrim ?a ?b ?c)) / (2 x ?a)
let ?p = proj2-abs (?j *g ?v + ?w)
let ?q = proj2-abs (?k xg ?v + ?w)
have V reS. proj2-incident r | — r=?pVr=72q
proof
fix r
assumer € S
with (s ¢ S) have r # s by auto
{ assume proj2-incident r |
with (t # s) and (v # s) and (proj2-incident s I) and (proj2-incident t
and proj2-incident-iff [of s t 1 1]
obtain i where r = proj2-abs (i xg ?v + ?w) by auto
with (r € S) and (¢ # s) and S-quadratic
have ?a * 2 4+ ?b i + ?c = 0 by simp
with (?a # 0) and discriminant-iff have i = ?j V i = ?k by simp
with r = proj2-abs (i g ?v + ?w)) have r = ?p V r = ?q by auto }
thus proj2-incident r | — r=?pVr=7q..
qed
thus 3 p gq. vV reS. proj2-incident r | — v = p V r = q by auto
qed

lemma card-line-intersect-S:
assumes T C S and proj2-set-Col T
shows card T < 2
proof —
from (proj2-set-Col T)
obtain | where V peT. proj2-incident p | unfolding proj2-set-Col-def ..
from line-intersect-S-at-most-twice [of]
obtain b and c where V a€S. proj2-incident al — a = b V a = c by auto
with v peT. proj2-incident p) and (T C S)
have T C {b,c} by auto
hence card T < card {b,c} by (simp add: card-mono)
also from card-suc-ge-insert [of b {c}] have ... < 2 by simp
finally show card T < 2.
qed

lemma line-S-two-intersections-only:
assumesp Zqandpc Sandgc Sandrec S
and proj2-incident p | and proj2-incident q I and proj2-incident r |
showsr=pVr=gqg
proof —
from (p # ¢ have card {p,q} = 2 by simp

147

from (p € S) and (g € S) and (r € S) have {r,p,q} C S by simp-all

from (proj2-incident p I} and (proj2-incident q I) and (proj2-incident r)
have proj2-set-Col {r,p,q}

by (unfold proj2-set-Col-def) (simp add: exI [of - I])
with ({r,p,q} C S) have card {r,p,q} < 2 by (rule card-line-intersect-S)

showr=pVr=qg

proof (rule ccontr)
assume — (r=pVr =)
hence r ¢ {p,q} by simp
with (card {p,q} = 2) and card-insert-disjoint [of {p,q} 7]
have card {r,p,q} = 3 by simp
with (card {r,p,q} < 2) show False by simp

qed

qed

lemma line-through-K2-intersect-S-exactly-twice:
assumes p € K2 and proj2-incident p |
shows 3 gr.q #r ANq €S ANr &S Aproj2-incident q I A\ proj2-incident r |
A (Y s€S. proj2-incident s — s =q Vs =r)
proof —
from (p € K2) and (proj2-incident p I)
and line-through-K2-intersect-S-twice [of p I]
obtain g and r whereg #randg € Sandr € S
and proj2-incident g | and proj2-incident v |
by auto
with [ine-S-two-intersections-only
show 3 qr.q#rANq€SANreS A proj2-incident q 1 A proj2-incident v |
A (V s€S. proj2-incident s — s =q Vs =r)
by blast
qed

lemma fangent-not-through-K2:
assumes p € S and g € K2
shows — proj2-incident q (polar p)
proof
assume proj2-incident q (polar p)
with (g € K2) and line-through-K2-intersect-S-again [of q polar p p]
obtain r where r # p and r € S and proj2-incident r (polar p) by auto
from (p € S) and (r € S) and (proj2-incident r (polar p))
have r = p by (rule point-in-S-polar-is-tangent)
with (v # p) show False ..
qed

lemma outside-exists-line-not-intersect-S:

assumes conic-sgn p = 1
shows 3 [. proj2-incident p I A (V¥ q. proj2-incident q1 — q ¢ S)

148

proof —

let ?r = proj2-intersection (polar p) z-zero

have proj2-incident ?r (polar p) and proj2-incident ?r z-zero
by (rule proj2-intersection-incident)+

from (proj2-incident ?r z-zero)

have conic-sgn ?r = 1 by (rule z-zero-conic-sgn-1)

with (conic-sgnp = 1)

have proj2-rep p - (M *v proj2-rep p) > 0
and proj2-rep ?r - (M *v proj2-rep ?r) > 0
by (unfold conic-sgn-def) (simp-all add: sgn-1-pos)

from (proj2-incident ?r (polar p))
have proj2-incident p (polar ?r) by (rule incident-polar-swap)
hence proj2-rep p - (M *v proj2-rep ?r) = 0 by (simp add: incident-polar)

have p # ?r

proof
assume p = ?r
with (proj2-incident ?r (polar p)) have proj2-incident p (polar p) by simp
hence proj2-rep p - (M *v proj2-rep p) = 0 by (simp add: incident-polar)
with (proj2-rep p - (M v proj2-rep p) > 0) show False by simp

qed

let ?I = proj2-line-through p ?r
have proj2-incident p ?l and proj2-incident ?r ?1
by (rule proj2-line-through-incident)+

have V q. proj2-incident g ?l — q & S
proof
fix g
show proj2-incident g 21 — q & S
proof
assume proj2-incident q ?1
with (p # ?r) and (proj2-incident p ?I) and (proj2-incident ?r ?])
have g = p V (3 k. g = proj2-abs (k xg proj2-rep p + proj2-rep ?r))
by (simp add: proj2-incident-iff [of p ?r ?1 q])

show g ¢ S
proof cases
assume g = p
with (conic-sgn p = 1) show g ¢ S by (unfold S-def) simp
next
assume q # p
with (g = p V (3 k. g = proj2-abs (k xg proj2-rep p + proj2-rep ?r)))
obtain k where q = proj2-abs (k xg proj2-rep p + proj2-rep ?r)
by auto
from (proj2-rep p - (M *v proj2-rep p) > 0
have proj2-rep p - (M v proj2-rep p) * k* > 0
by (simp add: mult-nonneg-nonneg)

149

with (proj2-rep p - (M *v proj2-rep ?r) = 0)
and (proj2-rep ?r - (M *v proj2-rep ?r) > 0)
have proj2-rep p - (M v proj2-rep p) * k>
+ proj2-rep p - (M *v proj2-rep ?r) % 2 x k
+ proj2-rep ?r - (M *v proj2-rep ?r)
>0
by simp
with (p # ?r) and (g = proj2-abs (k *g proj2-rep p + proj2-rep ?r))
show g ¢ S by (simp add: S-quadratic)
qed
qed
qed
with (proj2-incident p ?I)
show 3 1. proj2-incident p I A (Y q. proj2-incident g1 — q ¢ S)
by (simp add: exI [of - ?1])
qed

lemma lines-through-intersect-S-twice-in-K2:
assumes V [. proj2-incident p |
— (3 qr.q#rNqeSAreS A proj2-incident q 1 A proj2-incident r I)
shows p € K2
proof (rule ccontr)
assume p ¢ K2
hence conic-sgn p > 0 by (unfold K2-def) simp

have — (V 1. proj2-incident p 1 — (3 g r.
gq#rANqgeSNreS A proj2-incident g 1 A proj2-incident r 1))
proof cases
assume conic-sgn p = 0
hence p € S unfolding S-def ..
hence proj2-incident p (polar p) by (simp add: incident-own-polar-in-S)
let 7] = polar p
have = (3 g .
g#rANqgeSNAreS A proj2-incident q ?1 \ proj2-incident r ?1)
proof
assume 3 g 7.
g#rANqeSAreSAproj2-incident q ?1 A proj2-incident r ?1
then obtain g and » where g # rand g€ Sandr € S
and proj2-incident q ?I and proj2-incident r ?1
by auto
from (p € S) and (g € S) and (proj2-incident q ?D
and (r € S) and (proj2-incident r ?1)
have g = p and r = p by (simp add: point-in-S-polar-is-tangent)+
with (g # r show False by simp
qed
with (proj2-incident p ?I)
show — (Y [. proj2-incident p 1 — (3 q .
g#rANqgeSNreS A proj2-incident g1 A proj2-incident r 1))
by auto

150

next
assume conic-sgn p # 0
with (conic-sgn p > 0) have conic-sgn p > 0 by simp
hence sgn (conic-sgn p) = 1 by simp
hence conic-sgn p = 1 by (simp add: sgn-conic-sgn)
with outside-exists-line-not-intersect-S
obtain [where proj2-incident p l and V q. proj2-incident g1 — q & S
by auto
have = (3 g .
gq#rANqgeSNAreS A proj2-incident q 1 A proj2-incident r 1)
proof
assume 3 g 7.
g#rANqeSAreSAproj2-incident q I N\ proj2-incident r |
then obtain g where g € S and proj2-incident q | by auto
from (proj2-incident q I) and (¥ q. proj2-incident g1 — q ¢ S)
have g ¢ S by simp
with (g € S) show False by simp
qed
with (proj2-incident p I)
show — (Y . proj2-incident p 1 — (3 q .
g#rANqgeSNreS A proj2-incident g 1 A proj2-incident r 1))
by auto
qed
with (¥ I proj2-incident p I — (3 q r.
gq#rANqeSNreSAproj2-incident q 1 \ proj2-incident r 1))
show False by simp
qed

lemma line-through-hyp2-pole-not-in-hyp2:

assumes a € hyp2 and proj2-incident a |

shows pole | ¢ hyp2

proof —

from assms and line-through-K2-intersect-S

obtain p where p € S and proj2-incident p | by (unfold hyp2-def) auto

from (proj2-incident p I)
have proj2-incident (pole) (polar p) by (rule incident-pole-polar)
with (p € S)
show pole | ¢ hyp2
by (unfold hyp2-def) (auto simp add: tangent-not-through-K2)

qed

lemma statement60-one-way:

assumes is-K2-isometry | and p € K2
shows apply-cltn2 p] € K2 (is ?p’ € K2)
proof —

let ?]" = cltn2-inverse |

have V I'. proj2-incident ?p’1" — (3 q'r".

151

g’ #r'Nq' € S Ar' €S A proj2-incident q" 1" \ proj2-incident r'17)
proof
fix I
let ?1 = apply-cltn2-line 1’ 7]’
show proj2-incident ?p'1’ — (3 q'r".
g’ #r'Nq' € SAr' €S A proj2-incident q" 1" A proj2-incident r'17)
proof
assume proj2-incident ?p’1’
hence proj2-incident p ?1
by (simp add: apply-cltn2-incident [of p I’ ?]]
cltn2.inv-inv [simplified))
with (p € K2) and line-through-K2-intersect-S-twice [of p ?]
obtain g and r whereg #rand g € Sandr € S
and proj2-incident q ?1 and proj2-incident r ?1
by auto
let 7q’ = apply-cltn2 q |
let ?r' = apply-clin2 r |
from (g # r and apply-cltn2-injective [of q | r] have ?q’ # ?r' by auto

from (g € S) and r € S) and (is-K2-isometry |)
have ?q’ € S and ?r’ € S by (unfold is-K2-isometry-def) simp-all

from (proj2-incident q ?I) and (proj2-incident r ?])
have proj2-incident ?q’ 1’ and proj2-incident ?r'1’
by (simp-all add: apply-clin2-incident [of - I ?]]
cltn2.inv-inv [simplified))
with (?q' # ?r)) and (?q" € S) and ?r' € S)
show 3 ¢’ r".
q'#r'Nqg' € SNt €S A proj2-incident q" 1" A proj2-incident v I’
by auto
qed
qed
thus ?p’ € K2 by (rule lines-through-intersect-S-twice-in-K2)
qed

lemma is-K2-isometry-hyp2-S:
assumes p € hyp2 U S and is-K2-isometry |
shows apply-cltn2 p | € hyp2 U S
proof cases
assume p € hyp2
hence p € K2 by (unfold hyp2-def)
with (is-K2-isometry |)
have apply-cltn2 p | € hyp2 by (unfold hyp2-def) (rule statement60-one-way)
thus apply-cltn2 p] € hyp2 U S ..
next
assume p ¢ hyp2
with (p € hyp2 U S) have p € S by simp
with (is-K2-isometry |)
have apply-cltn2 p | € S by (unfold is-K2-isometry-def) simp

152

thus apply-cltn2 p] € hyp2 U S ..
qed

lemma is-K2-isometry-z-non-zero:
assumes p € hyp2 U S and is-K2-isometry |
shows z-non-zero (apply-clin2 p J)
proof —
from (¢ € hyp2 U S) and (is-K2-isometry)
have apply-cltn2 p | € hyp2 U S by (rule is-K2-isometry-hyp2-S)
thus z-non-zero (apply-cltn2 p J) by (rule hyp2-S-z-non-zero)
qed

lemma cart2-appendl-apply-clin2:
assumes p € hyp2 U S and is-K2-isometry |
shows 3 k. k # 0
A cart2-appendl p vk cltn2-rep | = k xg cart2-append] (apply-cltn2 p])
proof —
have cart2-append1 p v cltn2-rep |
= (1 / (proj2-rep p)$3) *r (proj2-rep p vx cltn2-rep])
by (unfold cart2-appendl-def) (simp add: scalar-vector-matrix-assoc)

from (p € hyp2 U S) have (proj2-rep p)$3 # 0 by (rule hyp2-S-z-non-zero)

from apply-cltn2-imp-mult [of p]|

obtain j where j # 0
and proj2-rep p vx cltn2-rep | = j xg proj2-rep (apply-cltn2 p J)
by auto

from (p € hyp2 U S) and (is-K2-isometry J)
have z-non-zero (apply-clin2 p J) by (rule is-K2-isometry-z-non-zero)
hence proj2-rep (apply-cltn2 p J)
= (proj2-rep (apply-cltn2 p J))$3 *g cart2-appendl (apply-cltn2 p])
by (rule proj2-rep-cart2-appendl)

let 2k =1 / (proj2-rep p)$3 = j * (proj2-rep (apply-clin2 p J))$3
from ((proj2-rep p)$3 # 0) and (j # 0)

and (proj2-rep (apply-cltn2 p]))$3 # 0)
have ?k # 0 by simp

from (cart2-appendl p vx clin2-rep |

= (1 / (proj2-rep p)$3) *r (proj2-rep p vx cltn2-rep J))

and (proj2-rep p vx clin2-rep | = j xg proj2-rep (apply-clin2 p J))
have cart2-appendl p vx cltn2-rep |

= (1 / (proj2-rep p)$ 3 * j) *g proj2-rep (apply-cltn2 p J)

by simp

from (proj2-rep (apply-cltn2 p J)

= (proj2-rep (apply-cltn2 p J))$3 *g cart2-append] (apply-cltn2 p]))
have (1 / (proj2-rep p)$3 * j) *g proj2-rep (apply-cltn2 p J)

153

= (1 / (proj2-rep p)$3 * j) xr ((proj2-rep (apply-cltn2 p]))$3
xR cart2-appendl (apply-clin2 p]))
by simp

with (cart2-append] p vx cltn2-rep |
= (1 / (proj2-rep p)$ 3 * j) =g proj2-rep (apply-cltn2 p J))

have cart2-append] p vx cltn2-rep | = ?k g cart2-append] (apply-clin2 p])
by simp

with ?k # 0

show 3 k. k # 0
A cart2-appendl p vk cltn2-rep | = k xg cart2-append] (apply-cltn2 p])
by (simp add: exI [of - ?k])

qed

9.5 The K-isometries form a group action

lemma hyp2-clin2-id [simp|: hyp2-clin2 p cltn2-id = p
by (unfold hyp2-cltn2-def) (simp add: Rep-hyp2-inverse)

lemma apply-clin2-Rep-hyp2:
assumes is-K2-isometry |
shows apply-clin2 (Rep-hyp2 p)] € hyp2

proof —
from Rep-hyp2 [of p] have Rep-hyp2 p € K2 by (unfold hyp2-def)
with (is-K2-isometry |
have apply-cltn2 (Rep-hyp2 p) | € K2 by (rule statement60-one-way)
thus apply-cltn2 (Rep-hyp2 p)] € hyp2 by (unfold hyp2-def)

qed

lemma Rep-hyp2-cltn2:
assumes is-K2-isometry |
shows Rep-hyp2 (hyp2-cltn2 p]) = apply-cltn2 (Rep-hyp2 p) |
proof —
from (is-K2-isometry)
have apply-cltn2 (Rep-hyp2 p)] € hyp2 by (rule apply-cltn2-Rep-hyp2)
thus Rep-hyp2 (hyp2-cltn2 p]) = apply-clin2 (Rep-hyp2 p) |
by (unfold hyp2-cltn2-def) (rule Abs-hyp2-inverse)
qed

lemma hyp2-cltn2-compose:

assumes is-K2-isometry H

shows hyp2-cltn2 (hyp2-cltn2 p H) | = hyp2-cltn2 p (cltn2-compose H |)
proof —

from (is-K2-isometry H)

have apply-cltn2 (Rep-hyp2 p) H € hyp2 by (rule apply-cltn2-Rep-hyp2)

thus hyp2-cltn2 (hyp2-cltn2 p H) | = hyp2-cltn2 p (cltn2-compose H |)

by (unfold hyp2-cltn2-def) (simp add: Abs-hyp2-inverse apply-cltn2-compose)

qed

interpretation K2-isometry: action

154

(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
hyp2-cltn2
proof
let G =
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
fix p
show hyp2-cltn2 p 1,5 =p
by (unfold hyp2-cltn2-def) (simp add: Rep-hyp2-inverse)
fixH]J
show H € carrier 2G A | € carrier ?G
— hyp2-cltn2 (hyp2-cltn2 p H) | = hyp2-cltin2 p (H ®,5])
by (simp add: hyp2-cltn2-compose)
qed

9.6 The Klein-Beltrami model satisfies Tarski’s first three axioms

lemma three-in-S-tangent-intersection-no-3-Col:
assumesp c Sandgc Sandre S
and p # q and r ¢ {p.q}
shows proj2-no-3-Col {proj2-intersection (polar p) (polar q),r,p,q}
(is proj2-no-3-Col {?s,r,p,q})

proof —
let 2T = {?s,r,p.9}

from (p # ¢ have card {p,q} = 2 by simp
with r ¢ {p,q}) have card {r,p,q} = 3 by simp

from (p € S) and (g € S) and « € S) have {r,p,q} C S by simp

have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
by (rule proj2-intersection-incident)+

have ?s ¢ S
proof
assume s € S
with (p € S) and (proj2-incident ?s (polar p))
and (q € S) and (proj2-incident ?s (polar q))
have ?s = p and ?s = q by (simp-all add: point-in-S-polar-is-tangent)
hence p = q by simp
with (p # g show False ..
qed
with {rp,q} C S have ?s ¢ {r,p,q} by auto
with (card {r,p,q} = 3 have card {?s,r,p,q} = 4 by simp

have V t€?T. = proj2-set-Col (?T — {t})
proof default+

fix t

assume t € ?T

assume proj2-set-Col (?T — {t})

155

then obtain [where V a € (?T — {t}). proj2-incident a |
unfolding proj2-set-Col-def ..

from (proj2-set-Col (?T — {t}))
have proj2-set-Col (S N (?T — {t}))

by (simp add: proj2-subset-Col [of (SN (?T — {t})) ?T — {t}])
hence card (S N (?T — {t})) < 2 by (simp add: card-line-intersect-S)

show False
proof cases

assume t = ?s

with ?s ¢ {r,p,q}) have ?T — {t} = {r,p,q} by simp

with ({r,p,q} C S have SN (?T — {t}) = {r,p.q} by simp

with «card {r,p,q} = 3 and (card (SN (?T — {t})) < 2) show False by simp
next

assume { #~ ?s

hence ?s € ?T — {t} by simp

with (V a € (?T — {t}). proj2-incident a I) have proj2-incident ?s I ..

from (p # ¢ have {p,q} N ?T — {t} # {} by auto
then obtain d where d € {p,q} and d € ?T — {t} by auto

from d € ?T — {t}) and «V a € (?T — {t}). proj2-incident a I)
have proj2-incident d | by simp

from « € {pq}
and (proj2-incident ?s (polar p))
and (proj2-incident ?s (polar q))
have proj2-incident ?s (polar d) by auto

from € {p,q}) and {rp,q} C S haved € S by auto
hence proj2-incident d (polar d) by (unfold incident-own-polar-in-S)

from € S) and (?s ¢ S) have d # ?s by auto
with (proj2-incident ?s)
and (proj2-incident d)
and (proj2-incident ?s (polar d))
and (proj2-incident d (polar d))
and proj2-incident-unique
have [= polar d by auto
with d € S) and point-in-S-polar-is-tangent
have V a€S. proj2-incident a | — a = d by simp
with V a € (?T — {t}). proj2-incident a)
have SN (?T — {t}) C {d} by auto
with card-mono [of {d}] have card (SN (?T — {t})) < 1 by simp
hence card ((SN ?T) — {t}) < 1 by (simp add: Int-Diff)

have SN ?T Cinsert t (SN ?T) — {t}) by auto

with card-suc-ge-insert [of t (S N ?T) — {t}]
and card-mono [of insert t ((S N ?T) — {t}) SN ?T]

156

have card (SN ?T) < card (SN ?T) — {t}) + 1 by simp
with (card (SN ?T) — {t}) < D have card (SN ?T) < 2 by simp

from {rp,q} C S have {rpq} C SN ?T by simp
with «card {r,p,q} = 3) and card-mono [of S N ?T {r,p,q}]
have card (S N ?T) > 3 by simp
with (card (SN ?T) < 2) show False by simp
qed
qed
with (card ?T = 4) show proj2-no-3-Col ?T unfolding proj2-no-3-Col-def ..
qed

lemma statement65-special-case:
assumesp € Sandg € Sandre€ Sandp #qgandr ¢ {pq}
shows 3 . is-K2-isometry |
A apply-cltn2 east | = p
A apply-cltn2 west | = q
A apply-cltn2 north | = r
A apply-clin2 far-north | = proj2-intersection (polar p) (polar q)
proof —
let ?s = proj2-intersection (polar p) (polar q)
let ?t = vector [vector [?s,r,p,q], vector [far-north, north, east, west]]
1 proj2°472
have range (op $ (?t$1)) = {?s,1,p, q}
unfolding image-def
by (auto simp add: UNIV-4 vector-4)
with p € S)and (g€ S and (r € S) and (p # ¢) and * & {p,q}
have proj2-no-3-Col (range (op $ (?t$1)))
by (simp add: three-in-S-tangent-intersection-no-3-Col)
moreover have range (op $ (?t$2)) = {far-north, north, east, west }
unfolding image-def
by (auto simp add: UNIV-4 vector-4)
with compass-in-S and east-west-distinct and north-not-east-or-west
and east-west-tangents-far-north
and three-in-S-tangent-intersection-no-3-Col [of east west north]
have proj2-no-3-Col (range (op $ (?t$2))) by simp
ultimately have V i. proj2-no-3-Col (range (op $ (?t$i)))
by (simp add: forall-2)
hence 3 .V j. apply-cltn2 (?t$0%)) | = ?t$1$j
by (rule statement53-existence)
moreover have 0 = (2::2) by simp
ultimately obtain | where V j. apply-cltn2 (?t$2%)) | = ?t$19j by auto
hence apply-clin2 (?t$2$1) | = ?t$1$1
and apply-cltn2 (?t$2$2) | = ?t$1$2
and apply-clin2 (?t$2$3) | = ?t$1$3
and apply-cltn2 (?t$2$4) | = ?t$1$4
by simp-all
hence apply-cltn2 east | = p
and apply-clin2 west | = q

157

and apply-cltn2 north | = r
and apply-clin2 far-north | = ?s
by (simp-all add: vector-2 vector-4)

with compass-non-zero

have p = proj2-abs (vector [1,0,1] v cltn2-rep J)
and g = proj2-abs (vector [—1,0,1] v cltn2-rep |)
and r = proj2-abs (vector [0,1,1] vx cltn2-rep)
and ?s = proj2-abs (vector [0,1,0] v cltn2-rep)
unfolding compass-defs and far-north-def
by (simp-all add: apply-cltn2-left-abs)

let ?N = cltn2-rep | *x M sx transpose (cltn2-rep J)
from M-symmatrix have symmatrix ?N by (rule symmatrix-preserve)
hence ?N$2$1 = ?N$1$2 and ?N$3$1 = ?N$1$3 and ?N$3$2 = ?N$2$3
unfolding symmatrix-def and transpose-def
by (simp-all add: Cart-eq)

from compass-non-zero and (apply-cltn2 east | = p) and (p € S)
and apply-clin2-abs-in-S [of vector [1,0,1] J]
have (vector [1,0,1] :: real”3) - (?N *v vector [1,0,1]) = 0
unfolding east-def
by simp
hence ?N$1$1 + ?N$1$3 + ?N$3%$1 + ?N$3$3 = 0
unfolding inner-vector-def and matrix-vector-mult-def
by (simp add: setsum-3 vector-3)
with (?N$3$1 = ?N$1$3) have ?N$1$1 + 2 * (?N$1$3) + ?N$3$3 = 0 by simp

from compass-non-zero and (apply-cltn2 west | = ¢> and (g € S)
and apply-cltn2-abs-in-S [of vector [—1,0,1] J]
have (vector [—1,0,1] :: real”3) - (?N *v vector [—1,0,1]) = 0
unfolding west-def
by simp
hence ?N$1$1 — ?N$1$3 — ?N$3$1 + ?N$3$3 =0
unfolding inner-vector-def and matrix-vector-mult-def
by (simp add: setsum-3 vector-3)
with (?N$3$1 = ?N$1$3) have ?N$1$1 — 2 « (?N$1$3) + ?N$3$3 = 0 by simp
with ?N$1$1 + 2 + (?N$1$3) + ?N$3$3 = 0
have ?N$1$1 + 2 = (?N$1$3) + ?N$3$3 = ?N$1$1 — 2 « (?N$1$3) + ?N$3$3
by simp
hence ?N$1$3 = 0 by simp
with ?N$I1$1 + 2 = (?N$1$3) + ?N$3%$3 = 0) have ?N$3$3 = — (?N$1$1) by
simp

from compass-non-zero and (apply-cltn2 north | = r» and r € S)
and apply-cltn2-abs-in-S [of vector [0,1,1] J]

have (vector [0,1,1] :: real’3) - (?N *v vector [0,1,1]) = 0
unfolding north-def
by simp

hence ?N$2$2 + ?N$2$3 4 ?N$3%2 + ?N$3$3 = 0

158

unfolding inner-vector-def and matrix-vector-mult-def
by (simp add: setsum-3 vector-3)
with (?N$3$2 = ?N$2$3) have ?N$2$2 + 2 x (?N$2$3) + ?N$3$3 = 0 by simp

have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
by (rule proj2-intersection-incident)+

from compass-non-zero
have vector [1,0,1] vx cltn2-rep | # 0
and vector [—1,0,1] v« cltn2-rep | # 0
and vector [0,1,0] vx cltn2-rep | # 0
by (simp-all add: non-zero-mult-rep-non-zero)
from (vector [1,0,1] v cltn2-rep | # 0)
and (vector [—1,0,1] vk cltn2-rep | # 0)
and (p = proj2-abs (vector [1,0,1] v« cltn2-rep J))
and (q = proj2-abs (vector [—1,0,1] vk cltn2-rep]))
have polar p = proj2-line-abs (M *v (vector [1,0,1] vx cltn2-rep]))
and polar q = proj2-line-abs (M xv (vector [—1,0,1] vx clin2-rep]))
by (simp-all add: polar-abs)

from (wector [1,0,1] v cltn2-rep | # 0)
and (vector [—1,0,1] vk cltn2-rep | # 0)
and M-invertible
have M v (vector [1,0,1] v« cltn2-rep J) # 0
and M xv (vector [—1,0,1] vk cltn2-rep) # 0
by (simp-all add: invertible-times-non-zero)
with (ector [0,1,0] v cltn2-rep | # 0)
and (polar p = proj2-line-abs (M xv (vector [1,0,1] vx cltn2-rep J)))
and (polar g = proj2-line-abs (M v (vector [—1,0,1] vx cltn2-rep])))
and (?s = proj2-abs (vector [0,1,0] vx cltn2-rep]))
have proj2-incident ?s (polar p)
<« (vector [0,1,0] vx cltn2-rep])
- (M v (vector [1,0,1] vx cltn2-rep J)) = 0
and proj2-incident ?s (polar q)
<« (vector [0,1,0] vx cltn2-rep])
- (M *v (vector [—1,0,1] vx cltn2-rep J)) = 0
by (simp-all add: proj2-incident-abs)
with (proj2-incident ?s (polar p)) and (proj2-incident ?s (polar q))
have (vector [0,1,0] vx cltn2-rep])
- (M v (vector [1,0,1] vx cltn2-rep J)) = 0
and (vector [0,1,0] v cltn2-rep J)
- (M *v (vector [—1,0,1] vx cltn2-rep J)) = 0
by simp-all
hence vector [0,1,0] - (?N *v vector [1,0,1]) =0
and vector [0,1,0] - (?N *v vector [—1,0,1]) =0
by (simp-all add: dot-lmul-matrix matrix-vector-mul-assoc [symmetric|)
hence ?N$2$1 + ?N$2$3 = 0 and —(?N$2$1) + ?N$2$3 = 0
unfolding inner-vector-def and matrix-vector-mult-def
by (simp-all add: setsum-3 vector-3)

159

hence ?N$2$1 + ?N$2$3 = —(?N$2$1) + ?N$2$3 by simp
hence ?N$2$1 = 0 by simp
with (?N$2$1 + ?N$2$3 = 0) have ?N$2$3 = 0 by simp
with (?N$2$2 + 2 % (?N$2$3) + ?N$383 = 0) and (?N$3$3 = — (?N$1$1))
have ?N$2$2 = ?N$1$1 by simp
with (?N$1$3 = 0) and (?N$2$1 = ?N$1$2) and (?N$1$3 = 0)
and (?N$2$1 = 0) and (?N$2$2 = ?N$1$1) and (?N$2$3 = 0)
and (?N$3$1 = ?N$1%3) and (?N$3%$2 = ?N$2$3) and (?N$3$3 = —(?N$1$1))
have ?N = (?N$1$1) xg M
unfolding M-def
by (simp add: Cart-eq vector-3 forall-3)

have invertible (clin2-rep J) by (rule cltn2-rep-invertible)
with M-invertible
have invertible ?N by (simp add: invertible-mult transpose-invertible)
hence ?N # 0 by (auto simp add: zero-not-invertible)
with ?N = (?N$1$1) xgr M) have ?N$1$1 # 0 by auto
with ?N = (?N$1$1) g M
have is-K2-isometry (cltn2-abs (cltn2-rep]))

by (simp add: J-M-]-transpose-K2-isometry)
hence is-K2-isometry | by (simp add: cltn2-abs-rep)
with apply-cltn2 east | = p)

and (apply-cltn2 west | = q)

and apply-cltn2 north | = 1)

and apply-cltn2 far-north | = ?s)
show 3 J. is-K2-isometry |

A apply-cltn2 east | = p

A apply-cltn2 west | = q

A apply-cltn2 north | = r

A apply-cltn2 far-north | = ?s

by auto

qed

lemma statement66-existence:

assumes gl € K2and a2 € K2Zandpl € Sandp2 € S

shows 3 . is-K2-isometry | N apply-cltn2 al | = a2 A apply-clin2 p1 | = p2
proof —

let ?a = vector [al,a2] :: proj2°2

from @l € K2) and @2 € K2 have V i. ?a$i € K2 by (simp add: forall-2)

let ?p = vector [p1,p2] :: proj2°2
from (p1 € S) and (p2 € S) have V i. ?p$i € S by (simp add: forall-2)

let ?1 = x i. proj2-line-through (?a$i) (?p$i)

have V i. proj2-incident (?a$i) (?1$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?a$1) (?1$1) and proj2-incident (?a$2) (?1$2)
by fast+

160

have V i. proj2-incident (?p$i) (?1$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?p$1) (?1$1) and proj2-incident (?p$2) (?1$2)
by fast+

let ?q = x i. € qi. qi # ?p$i A qi € S N proj2-incident qi (?1$i)
have V i. 2q$i # ?p$i A ?q$i € S A proj2-incident (?q$i) (?1$i)
proof

fix i

from (V i. 2a$i € K2) have ?a$i € K2 ..

from (Y i. proj2-incident (?a$i) (?1$i))

have proj2-incident (?a$i) (?1$i) ..

with (?a$i € K2)

have 3 gi. gi # ?p$i A qi € S A proj2-incident gi (?1$i)

by (rule line-through-K2-intersect-S-again)

with somel-ex [of A qi. qi # ?p$i A qi € S N proj2-incident gi (?1$i)]

show ?2g%i # ?p$i A 2q$i € S A proj2-incident (?q$i) (?1$i) by simp
qed
hence ?g$1 # ?p$1 and proj2-incident (?q$1) (?1$1)

and proj2-incident (?q$2) (?1$2)

by fast+

let ?r = x i. proj2-intersection (polar (?q%$i)) (polar (?p$i))

let ?m = yx i. proj2-line-through (?a$i) (?r$i)

have V i. proj2-incident (?a$i) (?m$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?a$1) (?m$1) and proj2-incident (?a$2) (?m$2)
by fast+

have V i. proj2-incident (?r$i) (?m$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?r$1) (?m$1) and proj2-incident (?r$2) (?m$2)
by fast+

let ?s = x i. € si.si # ?r$i A si € S A proj2-incident si (?m$i)
have V i. ?s$i # ?r$i A ?s$i € S A proj2-incident (?s$i) (?m$i)
proof

fix i

from (V i. 2a$i € K2) have ?a$i € K2 ..

from (Y i. proj2-incident (?a$i) (?m$i))

have proj2-incident (?a$i) (?m$i) ..

with (?a$i € K2)

have 3 si. si # ?r$i A\ si € S A proj2-incident si (?m$i)

by (rule line-through-K2-intersect-S-again)

with somel-ex [of A si. si # ?r$i A si € S A proj2-incident si (?m$i)]

show ?s$i # ?r$i A ?s$i € S A proj2-incident (?s$i) (?m$i) by simp
qed

161

hence ?s$1 # ?r$1 and proj2-incident (?s$1) (?m$1)
and proj2-incident (?s$2) (?m$2)
by fast+

have V i .V u. proj2-incident u (?m$i) — — (u = ?p$i V u = ?q$i)
proof default+

fixi:2

fix u :: proj2

assume proj2-incident u (?m$i)

assume u = ?p$i V u = ?q%i

from (V i. ?p$i € S) have ?p$i € S ..

from i. 2q%i # ?p$i A ?q$i € S A proj2-incident (?q$i) (?1$i))
have ?7q$i # ?p$i and 7q%i € S
by simp-all

from (?p$i € S) and (?q%i € S and (= ?p$i V u = ?q%0)
have u € S by auto
hence proj2-incident u (polar u)

by (simp add: incident-own-polar-in-S)

have proj2-incident (?r$i) (polar (?p$i))

and proj2-incident (?r$i) (polar (?q%i))

by (simp-all add: proj2-intersection-incident)
with w = ?p$i V u = ?g$i
have proj2-incident (?r$i) (polar u) by auto

from (Y i. proj2-incident (?r$i) (?m$i))
have proj2-incident (?r$i) (?m$i) ..

from (Y i. proj2-incident (?a$i) (?m$i))
have proj2-incident (?a$i) (?m$i) ..

from (V i. 2a$i € K2) have ?a%$i € K2 ..

have u # ?r$i
proof
assume u = ?r$i
with (proj2-incident (?r$i) (polar (?p$i)))
and (proj2-incident (?r$i) (polar (?q$i)))
have proj2-incident u (polar (?p$i))
and proj2-incident u (polar (?q%$i))
by simp-all
with i € S and (?p$i € S) and (7q$i € S)
have u = ?p$i and u = 7q%i
by (simp-all add: point-in-S-polar-is-tangent)
with (?q$i # ?p$i) show False by simp
qed

162

with (proj2-incident (1) (polar u))
and (proj2-incident (?r$i) (polar u))
and (proj2-incident u (?m$i))
and (proj2-incident (?r$i) (?m$i))
and proj2-incident-unique
have ?m$i = polar u by auto
with (proj2-incident (?a$i) (?m$i))
have proj2-incident (?a$i) (polar u) by simp
with w € S) and (?a$i € K2) and tangent-not-through-K2
show False by simp
qed

let ’H =) i. € Hi. is-K2-isometry Hi

A apply-clin2 east Hi = ?2q$i

A apply-cltn2 west Hi = ?p$i

A apply-cltn2 north Hi = ?s$i

N apply-cltn2 far-north Hi = ?r$i
have V i. is-K2-isometry (?H$i)

A apply-clin2 east (?HS$i) = ?q$i

A apply-clin2 west (?H$i) = ?p$i

A apply-cltn2 north (?H$i) = ?s$i

A apply-cltn2 far-north (?H$i) = ?r$i
proof

fixi:2

from (v i. ?p$i € S) have ?p$i € S ..

from (Y i. 2q$i # ?p$i A 2q$i € S A proj2-incident (?q$i) (?1$i))
have ?7q%$i # ?p$i and 7q%i € S
by simp-all

from (V i. 2s$i # ?r$i A ?s$i € S A proj2-incident (?s$i) (?m$i))
have ?s$i € S and proj2-incident (?s$i) (?m$i) by simp-all
from (proj2-incident (?s$i) (?m$i))

and (V i. ¥ wu. proj2-incident u (?m$i) — — (u = ?p$i V u = 2q%i))
have ?s$i ¢ {?q$i, ?p$i} by fast
with (?g$i € S) and (?p$i € S) and (?s$i € S) and (?q$i # ?p$i)
have 3 Hi. is-K2-isometry Hi

N apply-cltn2 east Hi = ?q$i

A apply-cltn2 west Hi = ?p$i

A apply-cltn2 north Hi = ?s$i

A apply-cltn2 far-north Hi = ?r$i

by (simp add: statement65-special-case)
with somel-ex [of A Hi. is-K2-isometry Hi

A apply-cltn2 east Hi = ?q%i

A apply-cltn2 west Hi = ?p$i

A apply-cltn2 north Hi = ?s$i

A apply-clin2 far-north Hi = ?r$i]
show is-K2-isometry (?H$i)

N apply-cltn2 east (?H$i) = ?q$i

163

N apply-cltn2 west (?H$i) = ?p$i
A apply-cltn2 north (?H$i) = ?s$i
A apply-clin2 far-north (?H$i) = ?r$i
by simp
qed
hence is-K2-isometry (?H$1)
and apply-cltn2 east (?H$1) = ?q$1
and apply-clin2 west (?H$1) = ?p$1
and apply-clin2 north (?H$1) = ?s$1
and apply-cltn2 far-north (?H$1) = ?r$1
and is-K2-isometry (?H$2)
and apply-cltn2 east (?H$2) = ?9$2
and apply-cltn2 west (?H$2) = ?p$2
and apply-cltn2 north (?H$2) = ?s$2
and apply-clin2 far-north (?H$2) = ?r$2
by fast+

let ?] = cltn2-compose (cltn2-inverse (?H$1)) (?H$2)
from (is-K2-isometry (?H$1)) and (is-K2-isometry (?H$2))
have is-K2-isometry ?]
by (simp only: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)

from apply-cltn2 west (?H$1) = ?p$1)

have apply-clin2 p1 (cltn2-inverse (?H$1)) = west
by (simp add: cltn2.act-inv-iff [simplified])

with apply-cltn2 west (?H$2) = ?p$2)

have apply-cltn2 p1 ?] = p2
by (simp add: cltn2.act-act [simplified, symmetric])

from apply-cltn2 east (?H$1) = ?q$1)
have apply-cltn2 (?2q$1) (cltn2-inverse (?H$1)) = east
by (simp add: cltn2.act-inv-iff [simplified))
with apply-cltn2 east (?H$2) = ?q$2)
have apply-cltn2 (7q$1) ?] = 2q$2
by (simp add: cltn2.act-act [simplified, symmetric])
with (?q$1 # ?p$1) and @apply-cltn2 p1 ?] = p2)
and (proj2-incident (?p$1) (?1$1))
and (proj2-incident (?q$1) (?1$1)
and (proj2-incident (?p$2) (?1$2))
and (proj2-incident (?q$2) (?1$2))
have apply-cltn2-line (?1$1) ?] = (?1$2)
by (simp add: apply-clin2-line-unique)
moreover from (proj2-incident (?a$1) (?1$1))
have proj2-incident (apply-cltn2 (?a$1) ?]) (apply-cltn2-line (?1$1) ?])
by simp
ultimately have proj2-incident (apply-cltn2 (?a$1) ?]) (?1$2) by simp

from apply-cltn2 north (?H$1) = ?s$1)
have apply-cltn2 (?s$1) (cltn2-inverse (?H$1)) = north

164

by (simp add: cltn2.act-inv-iff [simplified])
with (@apply-cltn2 north (?H$2) = ?5$2)
have apply-cltn2 (?s$1) ?] = ?s$2
by (simp add: cltn2.act-act [simplified, symmetric])

from apply-cltn2 far-north (?H$1) = ?r$1)
have apply-cltn2 (?r$1) (cltn2-inverse (?H$1)) = far-north
by (simp add: clin2.act-inv-iff [simplified))
with apply-cltn2 far-north (?H$2) = ?r$2)
have apply-cltn2 (?r$1) ?] = ?r$2
by (simp add: cltn2.act-act [simplified, symmetric|)
with (?s$1 # ?r$1) and @apply-cltn2 (?s$1) ?] = (?s$2))
and (proj2-incident (?r$1) (?m$1))
and (proj2-incident (?s$1) (?m$1))
and (proj2-incident (?r$2) (?m$2))
and (proj2-incident (?s$2) (?m$2))
have apply-cltn2-line (?m$1) ?] = (?m$2)
by (simp add: apply-cltn2-line-unique)
moreover from (proj2-incident (?a$1) (?m$1))
have proj2-incident (apply-cltn2 (?a$1) ?]) (apply-cltn2-line (?m$1) ?])
by simp
ultimately have proj2-incident (apply-cltn2 (?a$1) ?]) (?m$2) by simp

from (Y i.V u. proj2-incident u (?m$i) — — (u = ?p$i V u = ?2q%i))
have — proj2-incident (?p$2) (?m$2) by fast
with (proj2-incident (?p$2) (?1$2)) have ?m$2 # ?1$2 by auto
with (proj2-incident (?a$2) (?1$2))
and (proj2-incident (?a$2) (?m$2))
and (proj2-incident (apply-clin2 (?a$1) ?]) (?1$2))
and (proj2-incident (apply-clin2 (?a$1) ?]) (?m$2))
and proj2-incident-unique
have apply-cltn2 al ?] = a2 by auto
with (is-K2-isometry ?]) and apply-cltn2 p1 ?] = p2)
show 3 J. is-K2-isometry | A apply-clin2 al | = a2 N apply-cltn2 p1 | = p2
by auto
qed

lemma K2-isometry-swap:

assumes a € hyp2 and b € hyp2

shows 3]. is-K2-isometry | A apply-cltn2 a] = b A apply-clin2 b | =a
proof —

from @ € hyp2) and b € hyp2)

have a € K2 and b € K2 by (unfold hyp2-def) simp-all

let ?I = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident)+
from @ € K2) and (proj2-incident a ?])
and line-through-K2-intersect-S-exactly-twice [of a ?1|

165

obtain p and g where p # g
andpe Sandg eSS
and proj2-incident p ?1 and proj2-incident q ?1
and V r€S. proj2-incident r 2l — r=pVr=gq
by auto
from @ € K2) and b € K2)and (p € S)and (g € S
and statement66-existence [of a b p q]
obtain | where is-K2-isometry | and apply-cltn2a] =b
and apply-cltn2 p | = q
by auto
from (apply-cltn2 a | = b) and @apply-cltn2 p | = ¢
and (proj2-incident b ?1) and (proj2-incident q ?])
have proj2-incident (apply-cltn2 a J) ?1
and proj2-incident (apply-cltn2 p J) ?1
by simp-all

from (@ € K2) and (p € S) havea # p

unfolding S-def and K2-def

by auto
with (proj2-incident a ?])

and (proj2-incident p ?1)

and (proj2-incident (apply-cltn2 a J) ?)

and (proj2-incident (apply-cltn2 p) ?D)
have apply-clin2-line ?1 | = ?1 by (simp add: apply-cltn2-line-unique)
with (proj2-incident q ?1) and apply-cltn2-preserve-incident [of g | ?1]
have proj2-incident (apply-cltn2 q]) ?1 by simp

from (g € S) and (is-K2-isometry |
have apply-cltn2 q] € S by (unfold is-K2-isometry-def) simp
with (proj2-incident (apply-clin2 q J) ?1)
and (V reS. proj2-incident r 2l — r=pVr=¢q
have apply-cltn2 q] = p V apply-cltn2 q | = q by simp

have apply-clin2 q] # q
proof

assume apply-cltn2 q | = g
with apply-cltn2 p | = ¢
have apply-cltn2 p | = apply-cltn2 q] by simp
hence p = q by (rule apply-cltn2-injective [of p] q])
with (p # g show False ..
qed
with apply-cltn2 q | = p V apply-cltn2 q | = ¢
have apply-cltn2 q | = p by simp
with (p # ¢
and apply-cltn2 p | = ¢
and (proj2-incident p ?I)
and (proj2-incident q ?])
and (proj2-incident a ?])
and statement55

166

have apply-cltn2 (apply-cltn2 a J) | = a by simp
with @apply-cltn2 a | = b) have apply-cltn2 b | = a by simp
with (is-K2-isometry |) and (apply-cltn2 a | = b)
show 3 |. is-K2-isometry | A apply-cltn2 a | = b A apply-cltn2 b | =a
by (simp add: exI [of -]])
qed

theorem hyp2-axiom1: ¥ ab.ab=gba
proof default+
fixab
let ?a’ = Rep-hyp2 a
let ?b" = Rep-hyp2 b
from Rep-hyp2 and K2-isometry-swap [of ?a’ ?b’]
obtain | where is-K2-isometry | and apply-cltn2 ?a’] = ?b’
and apply-cltn2 ?b' [= ?a’
by auto

from @pply-cltn2 ?a’ | = ?b" and (apply-clin2 ?b'] = ?a’)
have hyp2-cltn2 a | = b and hyp2-cltn2 b | = a
unfolding hyp2-cltn2-def by (simp-all add: Rep-hyp2-inverse)
with (is-K2-isometry |)
showab=gba
by (unfold real-hyp2-C-def) (simp add: exI [of -]])
qed

theorem hyp2-axiom2: ¥ abpqrs.ab=xpqANab=xrs —pq=grs
proof default+
fixabpqrs
assumeab=gpgAhab=grs
then obtain G and H where is-K2-isometry G and is-K2-isometry H
and hyp2-cltn2 a G = p and hyp2-cltn2 b G = q
and hyp2-cltn2 a H = r and hyp2-cltn2 b H = s
by (unfold real-hyp2-C-def) auto
let ?] = cltn2-compose (cltn2-inverse G) H
from (is-K2-isometry G) have is-K2-isometry (cltn2-inverse G)
by (rule cltn2-inverse-is-K2-isometry)
with (is-K2-isometry H)
have is-K2-isometry ?] by (simp only: cltn2-compose-is-K2-isometry)

from (is-K2-isometry G and (hyp2-cltn2 a G = p) and hyp2-cltn2 b G = q)
and K2-isometry.act-inv-iff
have hyp2-cltn2 p (cltn2-inverse G) = a
and hyp2-cltn2 q (cltn2-inverse G) = b
by simp-all
with (hyp2-cltn2 a H = v and thyp2-cltin2 b H = s)
and (is-K2-isometry (clin2-inverse G)) and (is-K2-isometry H)
and K2-isometry.act-act [symmetric]
have hyp2-cltn2 p ?] = r and hyp2-cltn2 q ?] = s by simp-all
with (is-K2-isometry ?])

167

showpg=grs
by (unfold real-hyp2-C-def) (simp add: exI [of - ?]])
qed

theorem hyp2-axiom3:¥Y abc.ab=xcc—a=b
proof default+
fixabc
assumeab =g cc
then obtain | where is-K2-isometry |
and hyp2-cltn2 a | = c and hyp2-cltn2 b | = ¢
by (unfold real-hyp2-C-def) auto
from (hyp2-cltn2 a | = ¢ and thyp2-cltn2 b | = o
have hyp2-cltn2 a | = hyp2-cltn2 b | by simp

from (is-K2-isometry)
have apply-cltn2 (Rep-hyp2 a) | € hyp2
and apply-clin2 (Rep-hyp2 b) | € hyp2
by (rule apply-cltn2-Rep-hyp2)+
with (hyp2-cltn2 a | = hyp2-clin2 b |)
have apply-cltn2 (Rep-hyp2 a) | = apply-cltn2 (Rep-hyp2 b) |
by (unfold hyp2-cltn2-def) (simp add: Abs-hyp2-inject)
hence Rep-hyp2 a = Rep-hyp2 b by (rule apply-cltn2-injective)
thus a = b by (simp add: Rep-hyp2-inject)
qed

interpretation hyp2: tarski-first3 real-hyp2-C
using hyp2-axiom1 and hyp2-axiom2 and hyp2-axiom3
by unfold-locales

9.7 Some lemmas about betweenness

lemma S-at-edge:
assumes p € Sand g € hyp2 U Sand r € hyp2 U S and proj2-Col p g r
shows B (cart2-pt p) (cart2-pt q) (cart2-pt r)
V BR (cart2-pt p) (cart2-pt r) (cart2-pt q)
(is BR 2cp ?cq 2cr V -)
proof —
from (p € S)and (g € hyp2 U S) and + € hyp2 U S)
have z-non-zero p and z-non-zero q and z-non-zero r
by (simp-all add: hyp2-S-z-non-zero)
with (proj2-Col p g 1)
have real-euclid.Col ?cp ?cq ?cr by (simp add: proj2-Col-iff-euclid-cart2)

with (z-non-zero p) and (z-non-zero q) and (z-non-zero r)

have proj2-pt ?cp = p and proj2-pt ?cq = q and proj2-pt ?cr =r
by (simp-all add: proj2-cart2)

from (proj2-pt ?cp = p) and (p € S)

have norm ?cp = 1 by (simp add: norm-eq-1-iff-in-S)

168

from (proj2-pt ?cq = q) and (proj2-pt 2cr = 1)
and (q € hyp2 U S) and (r € hyp2 U S)
have norm ?cq < 1 and norm ?cr <1
by (simp-all add: norm-le-1-iff-in-hyp2-S)

show BR ?cp ?cq ?cr V Br ?cp ?cr ?cq
proof cases
assume BR ?cr ?cp ?cq
then obtain k where k > 0and k < 1
and ?cp — ?cr = k xg (?cq — ?cr)
by (unfold real-euclid-B-def) auto
from (?cp — ?cr =k xg (Pcq — ?cr))
have ?cp = k xg ?cq + (1 — k) *g ?cr by (simp add: algebra-simps)
with (morm ?cp = 1) have norm (k g ?cq + (1 — k) *g ?cr) = 1 by simp
with norm-triangle-ineq [of k g ?cq (1 — k) *g ?cr]
have norm (k xg ?cq) + norm ((1 — k) g ?cr) > 1 by simp

from <k > 0) and k < 1)
have norm (k xg ?cq) + norm ((1 — k) *g ?cr)
=k * norm ?cq + (1 — k) * norm ?cr
by simp
with morm (k xg ?cq) + norm ((1 — k) xg 2cr) > 1)
have k x norm ?cq + (1 — k) % norm ?cr > 1 by simp

from (norm ?cq < 1) and & > 0) and mult-mono [of k k norm ?cq 1]
have k * norm ?cq < k by simp

from morm ?cr < 1) and ¢k < 1)
and mult-mono [of 1 — k 1 — k norm ?cr 1]
have (1 — k) * norm ?cr <1 — k by simp
with &k x norm ?cq < k)
have k x norm ?cq + (1 — k) % norm ?cr < 1 by simp
with & % norm ?cq + (1 — k) * norm ?cr > 1)
have k % norm ?cq + (1 — k) % norm ?cr = 1 by simp
with k x norm ?cq < k) have (1 — k) x norm ?cr > 1 — k by simp
with (1 — k) % norm ?cr <1 — k have (1 — k) % norm ?cr = 1 — k by simp
with & * norm ?cq + (1 — k) = norm ?cr = 1) have k * norm ?cq = k by simp

have ?cp = ?cq V ?cq = ?cr V ?cr = Zcp
proof cases
assume k =0V k=1
with (?cp =k *g ?2cq + (1 — k) *g 2cr)
show ?cp = ?cq V ?2cq = ?cr V ?cr = ?cp by auto
next
assume - (k=0Vk=1)
hence k # 0 and k # 1 by simp-all
with (k x norm ?cq = k) and (1 — k) x norm ?cr =1 — k)
have norm ?cq = 1 and norm ?cr = 1 by simp-all
with (proj2-pt ?cq = q) and (proj2-pt ?cr = 1)

169

have g € S and r € S by (simp-all add: norm-eq-1-iff-in-S)
with (p € S) have {p,q,r} C S by simp

from (proj2-Col p q 1
have proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
with {p,q,r} C S have card {p,q,r} < 2 by (rule card-line-intersect-S)

havep=qVg=rVr=p
proof (rule ccontr)
assume = (p=qVqg=rVr=p)
hence p # q and q # r and r # p by simp-all
from (g # r) have card {q,r} = 2 by simp
with (p # ¢ and (v # p) have card {p,q,r} = 3 by simp
with (card {p,q,r} < 2) show False by simp
qed
thus ?cp = ?cq V ?2cq = ?cr V ?cr = 2cp by auto
qed
thus Br ?cp ?cq ?cr V BRr ?cp ?cr ?2cq
by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
next
assume — BR ?cr ?cp 7cq
with (real-euclid.Col ?cp ?cq ?cr)
show Br ?cp ?cq ?cr V Br ?cp ?cr ?cq
unfolding real-euclid.Col-def
by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
qed
qed

lemma hyp2-in-middle:

assumesp € Sand g € Sand r € hyp2 U S and proj2-Col p g r

and p # q

shows B (cart2-pt p) (cart2-pt r) (cart2-pt q) (is Br ?cp ?cr ?cq)
proof (rule ccontr)

assume — BR ?cp ?cr 2cq

hence — BR ?cq ?cr ?cp

by (auto simp add: real-euclid.th3-2 [of ?cq ?cr ?cp])

from (p € S) and (g € S) and (r € hyp2 U S) and (proj2-Col p q 1)
have BR ?cp ?cq ?cr V BR ?cp ?cr ?2cq by (simp add: S-at-edge)
with (= BR ?cp ?cr ?cq) have Br ?cp ?cq ?cr by simp

from (proj2-Col p q r) and proj2-Col-permute have proj2-Col q p v by fast
with g€ S and (p € S) and r € hyp2 U S)

have BR ?cq ?cp ?cr V Br ?cq ?cr ?cp by (simp add: S-at-edge)

with (= BRr ?cq ?cr ?cp) have BR ?cq ?cp ?cr by simp

with (Bg ?cp ?cq ?cr) have ?cp = ?cq by (rule real-euclid.th3-4)

hence proj2-pt ?cp = proj2-pt ?cq by simp

from (p € S) and (g € S)

170

have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cq = q by (simp-all add: proj2-cart2)
with (proj2-pt ?cp = proj2-pt ?cq) have p = q by simp
with (p # g show False ..

qed

lemma hyp2-incident-in-middle:
assumesp Zgandp e Sandge Sandaec hyp2 U S
and proj2-incident p | and proj2-incident q | and proj2-incident a |
shows B (cart2-pt p) (cart2-pt a) (cart2-pt q)
proof —
from (proj2-incident p I) and (proj2-incident q I) and (proj2-incident a |)
have proj2-Col p q a by (rule proj2-incident-Col)
from (p € S) and (g € S) and @ € hyp2 U S) and this and (p # ¢
show BR (cart2-pt p) (cart2-pt a) (cart2-pt q)
by (rule hyp2-in-middle)
qed

lemma extend-to-S:
assumes p € hyp2 U Sand g € hyp2 U S
shows 3 reS. B (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is 3 reS. BR 2cp ?cq (cart2-pt r))
proof cases
assume g € S

have BR ?cp ?cq ?cq by (rule real-euclid.th3-1)

with (g € S) show 3 re€S. B ?cp ?cq (cart2-pt r) by auto
next

assume g ¢ S

with (g € hyp2 U S) have q € K2 by (unfold hyp2-def) simp

let 7] = proj2-line-through p q

have proj2-incident p ?l and proj2-incident q ?1
by (rule proj2-line-through-incident)+

from (g € K2) and (proj2-incident q ?I)
and line-through-K2-intersect-S-twice [of q ?1]

obtain s and t wheres Ztands € Sandt € S
and proj2-incident s ?1 and proj2-incident t ?1
by auto

let ?cs = cart2-pt s

let ?ct = cart2-pt t

from (proj2-incident s ?I)
and (proj2-incident t ?I)
and (proj2-incident p ?1)
and (proj2-incident q ?])
have proj2-Col s p q and proj2-Col t p g and proj2-Col s t g
by (simp-all add: proj2-incident-Col)
from (proj2-Col s p q) and (proj2-Col t p q)

171

and s € S)and (¢t € S) and (p € hyp2 U S) and (q € hyp2 U S)

have BR ?cs ?cp ?cq V BRr ?cs 7cq ?cp and BR ?ct ?cp ?cq V BR ?ct ?cq ?cp
by (simp-all add: S-at-edge)

with real-euclid.th3-2

have BR ?cq ?cp ?cs V Br ?cp ?cq ?cs and BR ?cq ?cp ?ct V BRr ?cp ?cq ?ct
by fast+

from (s € S) and (¢t € S) and (g € hyp2 U S) and (proj2-Col s t ¢) and (s # t)
have BR ?cs ?cq ?ct by (rule hyp2-in-middle)
hence BR ?ct ?cq ?cs by (rule real-euclid.th3-2)

have BR ?cp ?cq ?cs V BR ?cp ?cq ?ct
proof (rule ccontr)
assume — (BR ?cp ?cq ?cs V B ?cp ?cq ?ct)
hence — BR ?cp ?cq ?cs and — BR ?cp ?cq ?ct by simp-all
with (Br ?cq ?cp ?cs V Br ?cp ?cq ?cs)
and (BR ?cq ?cp ?ct V BRr ?cp ?cq ?ct)
have BR ?cq ?cp ?cs and BRr ?cq ?cp ?ct by simp-all
from (- BR ?cp ?cq ?cs) and (Br ?cq ?cp ?cs) have ?cp # ?cq by auto
with (BRr ?cq ?cp ?cs) and (BRr ?cq ?cp ?ct)
have B ?cq ?cs ?ct V BR ?cq ?ct ?cs
by (simp add: real-euclid-th5-1 [of ?cq ?cp ?cs ?ct])
with (Br ?cs ?cq ?ct) and (BR ?ct ?cq ?cs)
have ?cqg = ?cs V ?cq = ?ct by (auto simp add: real-euclid.th3-4)
with (g € hyp2 U S) and s € S) and (¢ € S)
have g = s \V q = t by (auto simp add: hyp2-S-cart2-inj)
with (s € 5) and ¢ € S) have g € S by auto
with (g € S show False ..
qed
with (s € S) and (t € S) show 3 reS. Bg ?cp ?cq (cart2-pt r) by auto
qed

definition endpoint-in-S :: proj2 = proj2 = proj2 where
endpoint-in-S a b
£ € p. pES A BR (cart2-pt a) (cart2-pt b) (cart2-pt p)

lemma endpoint-in-S:
assumes a € hyp2 U Sand b € hyp2 U S
shows endpoint-in-Sab € S (is ?p € S)
and B (cart2-pt a) (cart2-pt b) (cart2-pt (endpoint-in-S a b))
(is BR ?ca ?cb ?cp)
proof —
from @ € hyp2 U S) and b € hyp2 U S) and extend-to-S
have 3 p.p € S A Br ?ca ?cb (cart2-pt p) by auto
hence ?p € S A BRr ?ca ?cb ?cp
by (unfold endpoint-in-S-def) (rule somel-ex)
thus ?p € S and BR ?ca ?cb ?cp by simp-all
qed

172

lemma endpoint-in-S-swap:

assumesa # banda € hyp2 USand b € hyp2 U S

shows endpoint-in-S a b # endpoint-in-S b a (is ?p # ?q)
proof

let 7ca = cart2-pta

let ?cb = cart2-pt b

let ?cp = cart2-pt ?p

let ?cq = cart2-pt ?q

from (@ # b) and @ € hyp2 U S) and b € hyp2 U S)

have BR ?ca ?cb ?cp and Br ?cb ?ca ?cq

by (simp-all add: endpoint-in-S)

assume ?’p = 7q
with (Br ?cb ?ca ?cq> have BR ?cb ?ca ?cp by simp
with (Bg ?ca ?cb ?cp) have ?ca = ?cb by (rule real-euclid.th3-4)
with @ € hyp2 U S) and & € hyp2 U S) have a = b by (rule hyp2-S-cart2-inj)
with @ # b) show False ..
qed

lemma endpoint-in-S-incident:
assumes a2 # banda € hyp2 U Sand b € hyp2 U S
and proj2-incident a | and proj2-incident b |
shows proj2-incident (endpoint-in-S a b) | (is proj2-incident ?p 1)
proof —
from @ € hyp2 U S) and b € hyp2 U S)
have ?p € S and By (cart2-pt a) (cart2-pt b) (cart2-pt ?p)
(is Br ?ca ?cb ?cp)
by (rule endpoint-in-S)+

from @ € hyp2 U S and b € hyp2 U S) and (?p € S)
have z-non-zero a and z-non-zero b and z-non-zero ?p
by (simp-all add: hyp2-S-z-non-zero)

from (BR ?ca ?cb ?cp)
have real-euclid.Col ?ca ?cb ?cp unfolding real-euclid.Col-def ..
with (z-non-zero a) and (z-non-zero b) and (z-non-zero ?p) and (a # b
and (proj2-incident a I) and (proj2-incident b)
show proj2-incident ?p | by (rule euclid-Col-cart2-incident)
qed

lemma endpoints-in-S-incident-unique:
assumesa # banda € hyp2 USand b € hyp2 U Sandp € S
and proj2-incident a | and proj2-incident b | and proj2-incident p |
shows p = endpoint-in-S a bV p = endpoint-in-S b a
(isp=?2qVp="7r)

proof —
from @ # b) and @ € hyp2 U S) and & € hyp2 U S)
have ?q # ?r by (rule endpoint-in-S-swap)

173

from @ € hyp2 U S) and b € hyp2 U S)
have ?q € S and ?r € S by (simp-all add: endpoint-in-S)

from (@ # b) and @ € hyp2 U S) and b € hyp2 U S)
and (proj2-incident a) and (proj2-incident b)
have proj2-incident ?q | and proj2-incident ?r
by (simp-all add: endpoint-in-S-incident)
with (?q # ?ryand (?g € S) and (?r € S) and (p € S) and (proj2-incident p)
show p = ?q V p = ?r by (simp add: line-S-two-intersections-only)
qed

lemma endpoint-in-S-unique:
assumesa # band a € hyp2 USand b € hyp2 USandp € S
and B (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br ?ca ?cb ?cp)
shows p = endpoint-in-Sa b (is p = ?q)
proof (rule ccontr)
from @ € hyp2 U S) and b € hyp2 U S)and (p € S)
have z-non-zero a and z-non-zero b and z-non-zero p
by (simp-all add: hyp2-S-z-non-zero)
with (Bg ?ca ?cb ?cp) and euclid-B-cart2-common-line [of a b p]
obtain / where
proj2-incident a | and proj2-incident b I and proj2-incident p |
by auto
with @ # b)and @ € hyp2 U S) and b € hyp2 U S) and (p € S)
have p = ?q V p = endpoint-in-Sba (isp = ?2q V p = ?r)
by (rule endpoints-in-S-incident-unique)

assume p # ?q
with (p = ?q V p = ?r) have p = ?r by simp
with & € hyp2 U S) and @ € hyp2 U S)
have BR ?cb ?ca ?cp by (simp add: endpoint-in-S)
with (Bg ?ca ?cb ?cp) have ?ca = ?cb by (rule real-euclid.th3-4)
with @ € hyp2 U S) and & € hyp2 U S) have a = b by (rule hyp2-S-cart2-inj)
with @ # b) show False ..
qed

lemma between-hyp2-S:
assumes p € hyp2 USandr € hyp2 USand k> 0and k < 1
shows proj2-pt (k *g (cart2-pt r) + (1 — k) g (cart2-pt p)) € hyp2 U S
(is proj2-pt ?cq € -)
proof —
let ?cp = cart2-pt p
let ?cr = cart2-pt r
let ?q = proj2-pt ?2cq
from (p € hyp2 U S) and (r € hyp2 U S)
have z-non-zero p and z-non-zero r by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cr = r by (simp-all add: proj2-cart2)
with (p € hyp2 U S) and (r € hyp2 U S)
have norm ?cp < 1 and norm ?cr <1

174

by (simp-all add: norm-le-1-iff-in-hyp2-S)

from &k > 0)and k < 1)
and norm-triangle-ineq [of k g ?cr (1 — k) *gr ?cp]
have norm ?cq < k x norm ?cr + (1 — k) * norm ?cp by simp

from k > 0) and (norm ?cr < 1) and mult-mono [of k k norm ?cr 1]
have k * norm ?cr < k by simp

from <k < 1) and (morm ?cp < D)
and mult-mono [of 1 — k1 — k norm ?cp 1]
have (1 — k) * norm ?cp < 1 — k by simp
with (morm ?cq < k * norm ?cr + (1 — k) % norm ?cp) and k * norm ?cr < k)
have norm ?cq < 1 by simp
thus ?g € hyp2 U S by (simp add: norm-le-1-iff-in-hyp2-S)
qed

9.8 The Klein-Beltrami model satisfies axiom 4

definition expansion-factor :: proj2 = cltn2 => real where
expansion-factor p | = (cart2-appendl p vk cltn2-rep J)$3

lemma expansion-factor:
assumes p € hyp2 U S and is-K2-isometry |
shows expansion-factor p | # 0
and cart2-appendl p vx cltn2-rep |
= expansion-factor p | xg cart2-appendl (apply-cltn2 p])
proof —
from (p € hyp2 U S) and (is-K2-isometry |)
have z-non-zero (apply-clin2 p J) by (rule is-K2-isometry-z-non-zero)

from (p € hyp2 U S) and (is-K2-isometry J)
and cart2-appendl-apply-clin2
obtain k where k # 0
and cart2-appendl p vx clin2-rep | = k *g cart2-appendl (apply-clin2 p J)
by auto
from (cart2-append1 p vx cltn2-rep | = k *g cart2-append] (apply-clin2 p J))
and (z-non-zero (apply-cltn2 p J))
have expansion-factor p | = k
by (unfold expansion-factor-def) (simp add: cart2-append1-z)
with &k # 0
and (cart2-appendl p vx cltn2-rep | = k *g cart2-append] (apply-clin2 p J))
show expansion-factor p | # 0
and cart2-appendl p vx cltn2-rep |
= expansion-factor p | xg cart2-append1 (apply-clin2 p J)
by simp-all
qed

lemma expansion-factor-linear-apply-cltn2:

175

assumes p € hyp2 U Sand g € hyp2 U Sand r € hyp2 U S
and is-K2-isometry |
and cart2-pt r = k *g cart2-pt p + (1 — k) *g cart2-pt q
shows expansion-factor r | g cart2-appendl (apply-cltn2 r])
= (k * expansion-factor p J) xg cart2-appendl (apply-cltn2 p])
+ ((1 — k) * expansion-factor q J) g cart2-append1 (apply-cltn2 q)
(is ?er xg - = (k * ?ep) *g - + ((1 — k) * ?eq) g -)

proof —
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?cpl = cart2-appendl p
let ?cql = cart2-appendl q
let ?cr]l = cart2-appendl r
let ?rep] = cltn2-rep |
from (p € hyp2 U S) and (g € hyp2 U S) and (r € hyp2 U S)
have z-non-zero p and z-non-zero q and z-non-zero r

by (simp-all add: hyp2-S-z-non-zero)

from (?cr =k xg 2cp + (1 — k) *g ?cq)
have vector2-append1 ?cr
= k *g vector2-appendl ?cp + (1 — k) g vector2-appendl ?cq
by (unfold vector2-append1-def vector-def) (simp add: Cart-eq)
with (z-non-zero p) and (z-non-zero q) and (z-non-zero r)
have ?crl =k *g ?cpl + (1 — k) *g ?cql by (simp add: cart2-append1)
hence ?cr1 vx ?rep] =k xg (?cpl v ?rep]) + (1 — k) *g (?cql vx ?rep])
by (simp add: vector-matrix-left-distrib
scalar-vector-matrix-assoc [symmetric|)
with (pp € hyp2 U S) and (g € hyp2 U S) and & € hyp2 U S)
and (is-K2-isometry |
show ?er xg cart2-appendl (apply-cltn2 r)
= (k * ?ep) *g cart2-append] (apply-clin2 p])
+ ((1 — k) = ?eq) xg cart2-append] (apply-clin2 q)
by (simp add: expansion-factor)
qed

lemma expansion-factor-linear:
assumes p € hyp2 U Sand g € hyp2 U Sand r € hyp2 U S
and is-K2-isometry |
and cart2-pt r = k *g cart2-pt p + (1 — k) *g cart2-pt q
shows expansion-factor r |
= k x expansion-factor p | + (1 — k) * expansion-factor q |
(is 2er =k = ?ep + (1 — k) * ?eq)
proof —
from (p € hyp2 U S) and (g € hyp2 U S) and € hyp2 U S)
and (is-K2-isometry |
have z-non-zero (apply-clin2 p J)
and z-non-zero (apply-clin2 q])
and z-non-zero (apply-cltn2 r])

176

by (simp-all add: is-K2-isometry-z-non-zero)

from (p € hyp2 U S) and (g € hyp2 U S) and € hyp2 U S)
and (is-K2-isometry |
and (cart2-pt r = k *g cart2-pt p + (1 — k) *g cart2-pt q)
have ?er xg cart2-appendl (apply-cltn2 r)
= (k * ?ep) *g cart2-appendl (apply-clin2 p])
+ ((1 — k) * ?eq) *g cart2-appendl (apply-clin2 q])
by (rule expansion-factor-linear-apply-cltn2)
hence (?er *g cart2-appendl (apply-cltn2 r]))$3
= ((k * ?ep) *g cart2-append] (apply-clin2 p])
+ ((1 — k) = ?eq) *g cart2-appendl (apply-clin2 q]))$3
by simp
with (z-non-zero (apply-cltn2 p J))
and (z-non-zero (apply-cltn2 qJ)
and (z-non-zero (apply-cltn2 r J))
show ?er =k x ?ep + (1 — k) ?eq by (simp add: cart2-append]1-z)
qed

—~T

lemma expansion-factor-sgn-invariant:
assumes p € hyp2 U S and g € hyp2 U S and is-K2-isometry |
shows sqgn (expansion-factor p J) = sgn (expansion-factor q J)
(is sgn ?ep = sgn ?eq)

proof (rule ccontr)
assume sgn ?ep # sgn ?eq

from (p € hyp2 U S) and (g € hyp2 U S) and (is-K2-isometry |)
have ?ep # 0 and ?eq # 0 by (simp-all add: expansion-factor)
hence sgn ?ep € {—1,1} and sgn ?eq € {—1,1}
by (simp-all add: real-sgn-def)
with (sgn ?ep # sgn ?eq) have sgn ?ep = — sgn ?eq by auto
hence sgn ?ep = sgn (—?eq) by (subst sgn-minus)
with sgn-plus [of 2ep —?eq]
have sgn (?ep — ?eq) = sgn ?ep by (simp add: algebra-simps)
with (sgn ?ep € {—1,1}) have ?ep — ?eq # 0 by (auto simp add: real-sgn-def)

let 2k = —?eq / (?ep — ?eq)

from (sgn (?ep — ?eq) = sgn ?ep) and (sgn ?ep = sgn (—?eq))
have sgn (?ep — ?eq) = sgn (—?eq) by simp

with (?ep — ?eq # 0) and sgn-div [of 2ep — ?eq —?eq]

have 7k > 0 by simp

from (?ep — ?eq # 0)

have 1 — ?k = ?ep / (?ep — ?eq) by (simp add: field-simps)
with (sgn (?ep — ?eq) = sgn ?ep) and (Pep — ?eq # 0)
have 1 — ?k > 0 by (simp add: sgn-div)

hence ?k < 1 by simp

let ?cp = cart2-pt p

177

let ?cq = cart2-pt q

let ?cr = ?k g ?cp + (1 — ?k) *g ?cq

let ?r = proj2-pt ?cr

let ?er = expansion-factor ?r |

have cart2-pt ?r = ?cr by (rule cart2-proj2)

from (p € hyp2 U S) and (g € hyp2 U S) and (?k > 0) and (?k < 1)
and between-hyp2-S [of g p ?k]

have ?r € hyp2 U S by simp

with (p € hyp2 U S) and (g € hyp2 U S) and (is-K2-isometry |)
and (cart2-pt ?r = ?cr)
and expansion-factor-linear [of p q ?r J k]

have ?er = ?k * ?ep + (1 — ?k) * ?eq by simp

with (?ep — ?eq # 0) have ?er = 0 by (simp add: field-simps)

with (?r € hyp2 U S) and (is-K2-isometry |)

show Fualse by (simp add: expansion-factor)

qed

lemma statement-63:
assumes p € hyp2 USand g € hyp2 U Sandr € hyp2 U S
and is-K2-isometry | and B (cart2-pt p) (cart2-pt q) (cart2-pt r)
shows B
(cart2-pt (apply-cltn2 p]))
(cart2-pt (apply-clin2 g]))
(cart2-pt (apply-clin2 v]))
proof —
let 7cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?ep = expansion-factor p |
let 7eq = expansion-factor q |
let ?er = expansion-factor r |
from (q € hyp2 U S) and (is-K2-isometry])
have ?¢q # 0 by (rule expansion-factor)

from (p € hyp2 U S) and (g € hyp2 U S) and r € hyp2 U S)
and (is-K2-isometry |) and expansion-factor-sgn-invariant
have sgn ?ep = sgn ?eq and sgn ?er = sgn ?eq by fast+
with (?eq # 0)
have ?ep / ?eq > 0 and ?er / ?eq > 0 by (simp-all add: sgn-div)

from (B ?cp ?cq ?cr
obtain k where k > 0 and k < 1 and ?cq =k *g ?cr + (1 — k) *g 2cp
by (unfold real-euclid-B-def) (auto simp add: algebra-simps)

let 2c =k = ?er / ?eq

from k > 0) and (?er / ?eq > 0) and mult-nonneg-nonneg [of k ?er / ?eq]
have ?c > 0 by simp

178

from r € hyp2 U S) and (p € hyp2 U S) and (g € hyp2 U S)
and (is-K2-isometry) and (?cq = k *g ?cr + (1 — k) xg 2cp)
have ?eq = k * ?er 4+ (1 — k) * ?ep by (rule expansion-factor-linear)
with (?eq # 0) have 1 — ?c = (1 — k) * ?ep / ?eq by (simp add: field-simps)
with ¢« < 1) and (?ep / ?7eq > 0)
and mult-nonneg-nonneg [of 1 — k ?ep / ?eq|
have ?c <1 by simp

let ?p] = apply-clin2 p |

let 7q] = apply-cltn2 q |

let ?r] = apply-cltn2 r |

let ?cp] = cart2-pt ?p]

let ?cq] = cart2-pt ?q]

let ?cr] = cart2-pt ?1]

let 7cp]1 = cart2-appendl ?p]

let ?2cq]1 = cart2-appendl ?q]

let ?cr]1 = cart2-appendl ?r|

from (p € hyp2 U S) and (g € hyp2 U S) and ¢ € hyp2 U S)
and (is-K2-isometry |

have z-non-zero ?p] and z-non-zero ?qJ and z-non-zero ?r|
by (simp-all add: is-K2-isometry-z-non-zero)

from r € hyp2 U S) and (p € hyp2 U S) and (g € hyp2 U S)
and (is-K2-isometry) and (?cq = k *g ?cr + (1 — k) *g 2cp)
have ?eq *g ?cq]1 = (k * ?er) xg ?cr]1 + ((1 — k) * ?ep) *g ?cp]1
by (rule expansion-factor-linear-apply-cltn2)
hence (1 / ?eq) g (?eq *g ?cqJ1)
= (1/ ?eq) *g ((k * 2er) xg 2crJ1 + ((1 — k) * ?ep) *g ?cpJ1) by simp
with (1 — ?c = (1 — k) x ?ep / ?eq and (?eq # 0)
have ?cqJ1 = ?c xg ?cr]1 + (1 — ?¢) xg ?cp]1
by (simp add: scaleR-right-distrib)
with (z-non-zero ?pJ) and (z-non-zero ?qJ) and (z-non-zero ?rJ)
have vector2-appendl ?cq]
= 2c xR vector2-append] ?cr] + (1 — ?c) g vector2-appendl ?cp]
by (simp add: cart2-append1)
hence ?cq] = ?c xg ?cr] + (1 — ?c) *g ?cp]
unfolding vector2-appendl-def and vector-def
by (simp add: Cart-eq forall-2 forall-3)
with ?c > 0)and (?c < 1)
show BR ?cp] ?cq] ?cr]
by (unfold real-euclid-B-def) (simp add: algebra-simps exI [of - ?c])
qed

theorem hyp2-axiom4:¥ qabc. 3 x. BxqaxNax=gbc
proof (rule alll)+

fixgabc:: hyp2

let ?pq = Rep-hyp2 q

let ?pa = Rep-hyp2 a

let ?pb = Rep-hyp2 b

179

let ?pc = Rep-hyp2 c

have ?pq € hyp2 and ?pa € hyp2 and ?pb € hyp2 and ?pc € hyp2
by (rule Rep-hyp2)+

let ?cq = cart2-pt ?pq

let ?ca = cart2-pt ?pa

let ?cb = cart2-pt ?pb

let ?cc = cart2-pt ?pc

let ?pp =€ p.p € S A BR ?cb ?cc (cart2-pt p)

let ?cp = cart2-pt ?pp

from (?pb € hyp2) and (?pc € hyp2) and extend-to-S [of ?pb ?pc]
and somel-ex [of A p.p € S A Bgr ?cb ?cc (cart2-pt p)]

have ?pp € S and BRr ?cb ?cc ?cp by auto

let ?pr =€ r.v € S A BR ?cq ?ca (cart2-pt r)

let ?cr = cart2-pt ?pr

from (?pg € hyp2) and (?pa € hyp2) and extend-to-S [of ?pq ?pa]
and somel-ex [of Ar.r € S A Br 2cq ?ca (cart2-pt r)]

have ?pr € S and BR ?cq ?ca ?cr by auto

from (?pb € hyp2) and (?pa € hyp2) and (?pp € S) and (Ppr € S
and statement66-existence [of ?pb ?pa ?pp ?pr|
obtain | where is-K2-isometry |
and apply-cltn2 ?pb | = ?pa and apply-cltn2 ?pp | = ?pr
by (unfold hyp2-def) auto
let ?px = apply-cltn2 ?pc |
let ?cx = cart2-pt ?px
let ?x = Abs-hyp2 ?px
from (is-K2-isometry |) and (?pc € hyp2)
have ?px € hyp2 by (unfold hyp2-def) (rule statement60-one-way)
hence Rep-hyp2 ?x = ?px by (rule Abs-hyp2-inverse)

from (?pb € hyp2) and (?pc € hyp2) and ?pp € S) and (is-K2-isometry |
and (BR ?cb ?cc ?cp) and statement-63

have Bg (cart2-pt (apply-cltn2 ?pb])) ?cx (cart2-pt (apply-cltn2 ?pp J))
by simp

with @apply-cltn2 ?pb | = ?pa) and @apply-cltn2 ?pp | = ?pr

have BR ?ca ?cx ?cr by simp

with (BR ?cq ?ca ?cr) have B ?cq ?ca ?cx by (rule real-euclid.th3-5-1)

with (Rep-hyp2 ?x = ?px)

have Bx ga ?x
unfolding real-hyp2-B-def and hyp2-rep-def
by simp

have Abs-hyp2 ?pa = a by (rule Rep-hyp2-inverse)
with apply-cltn2 ?pb | = ?pa)
have hyp2-cltn2 b | = a by (unfold hyp2-cltn2-def) simp

have hyp2-cltn2 ¢ | = ?x unfolding hyp2-cltn2-def ..
with (is-K2-isometry |) and (hyp2-cltn2 b] = @)

180

havebc =g a ?x
by (unfold real-hyp2-C-def) (simp add: exI [of -]])
hence a ?x =g b ¢ by (rule hyp2.th2-2)
with (Bx ga ?x
show 3 x. Bx ga x A ax =g bc by (simp add: exI [of - ?x])
qed

9.9 More betweenness theorems

lemma hyp2-S-points-fix-line:
assumes a € hyp2 and p € S and is-K2-isometry |
and apply-cltn2 a | = a (is ?a] = a)
and apply-cltn2 p] = p (is ?p] = p)
and proj2-incident a | and proj2-incident p | and proj2-incident b |
shows apply-cltn2 b | = b (is ?b] = b)
proof —
let ?I] = apply-clin2-line | |
from (proj2-incident a) and (proj2-incident p)
have proj2-incident ?aJ ?1] and proj2-incident ?p] ?I] by simp-all
with (?af = a) and ?p] = p)
have proj2-incident a ?If and proj2-incident p ?1] by simp-all

from @ € hyp2) have a € K2 by (unfold hyp2-def)

with (proj2-incident a I) and line-through-K2-intersect-S-again [of a I]
obtain g where q # p and g € S and proj2-incident q | by auto

let 7q] = apply-cltn2 q |

from @ € hyp2) and (p € S and (g € S)
have a # p and a # g by (simp-all add: hyp2-S-not-equal)

from (a # p) and (proj2-incident a I) and (proj2-incident p)
and (proj2-incident a ?1]) and (proj2-incident p ?IJ)
and proj2-incident-unique

have ?I] = [by auto

from (proj2-incident q I) have proj2-incident ?q] ?I] by simp
with (?[] =) have proj2-incident ?q] I by simp

from (g € S) and (is-K2-isometry |)

have ?g] € S by (unfold is-K2-isometry-def) simp

with (g # p) and (p € S and (q € S) and (proj2-incident p)
and (proj2-incident q I) and (proj2-incident ?qJ)
and line-S-two-intersections-only

have ?q] = p V ?q] = q by simp

have 7q] =g
proof (rule ccontr)
assume ?q] # g
with (?q] = p V ?q] = ¢ have ?gq] = p by simp

181

with (?p] = p) have ?gq] = ?p] by simp
with apply-cltn2-injective have q = p by fast
with (g # p) show False ..

qed

with (g # p) and @ # p) and (@ # q) and (proj2-incident p I)
and (proj2-incident q I) and (proj2-incident a)
and (?p] = p) and (?a] = a) and (proj2-incident b)
and cltn2-three-point-line [of p ga 1 | b]

show ?b] = b by simp

qed

lemma K2-isometry-endpoint-in-S:
assumes a # band a € hyp2 U S and b € hyp2 U S and is-K2-isometry |
shows apply-cltn2 (endpoint-in-S a b) |
= endpoint-in-S (apply-cltn2 a J) (apply-clin2 b])
(is ?p] = endpoint-in-S ?aj ?b])
proof —
let ?p = endpoint-in-S a b

from @ # b) and apply-clin2-injective have ?a] # ?bJ by fast

from @ € hyp2 U S) and b € hyp2 U S) and (is-K2-isometry |)
and is-K2-isometry-hyp2-S
have ?a] € hyp2 U S and ?b] € hyp2 U S by simp-all

let ?ca = cart2-pt a

let ?cb = cart2-pt b

let ?cp = cart2-pt ?p

from @ € hyp2 U S) and b € hyp2 U S)

have ?p € S and BR ?ca ?cb ?cp by (rule endpoint-in-S)+

from (?p € S) and (is-K2-isometry)
have ?p] € S by (unfold is-K2-isometry-def) simp

let ?ca] = cart2-pt ?af
let 7cb] = cart2-pt ?b]
let ?cp] = cart2-pt ?p]
from @ € hyp2 U S) and &b € hyp2 U S) and (?p € S) and (is-K2-isometry]
and (BR ?ca ?cb ?cp) and statement-63

have Br ?caf ?cb] ?cp] by simp

with (?aJ # ?b]) and (?a] € hyp2 U S) and (?b] € hyp2 U S) and (?p] € S)
show ?p] = endpoint-in-S ?a] ?b] by (rule endpoint-in-S-unique)

qed

lemma between-endpoint-in-S:
assumes a # band b # ¢
anda € hyp2U Sand b € hyp2 USandc € hyp2 U S
and By (cart2-pt a) (cart2-pt b) (cart2-pt c) (is Br ?ca ?cb ?cc)
shows endpoint-in-S a b = endpoint-in-S b ¢ (is ?p = ?q)

182

proof —
from (b # ¢ and & € hyp2 U S) and (¢ € hyp2 U S) and hyp2-5S-cart2-inj
have ?cb # ?cc by auto

let 7cq = cart2-pt ?2q
from b € hyp2 U S) and (c € hyp2 U S)
have ?g € S and BR ?cb ?cc ?cq by (rule endpoint-in-S)+

from (?cb # ?cc) and (BR ?ca ?cb ?cc) and (Br ?cb ?cc ?cq)
have BR ?ca ?cb ?cq by (rule real-euclid.th3-7-2)
with @ # b) and @ € hyp2 U S and b € hyp2 U S) and (?g € S)
have ?q = ?p by (rule endpoint-in-S-unique)
thus 7p=7g ..
qed

lemma hyp2-extend-segment-unique:
assumes a # band Bxabcand Bxabdandbc=x bd
shows ¢ =d
proof cases
assume b = ¢
with b ¢ =g b d) show ¢ = d by (simp add: hyp2.A3-reversed)
next
assume b # ¢

have b # d

proof (rule ccontr)
assume — b £ d
hence b = d by simp
with (b ¢ =g b d) have b ¢ =g b b by simp
hence b = ¢ by (rule hyp2.A3’)
with b # ¢) show False ..

qed

with @ # b) and b # ©

have Rep-hyp2 a # Rep-hyp2 b (is ?pa # ?pb)
and Rep-hyp2 b # Rep-hyp2 c (is ?pb # ?pc)
and Rep-hyp2 b # Rep-hyp2 d (is ?pb # ?pd)
by (simp-all add: Rep-hyp2-inject)

have ?pa € hyp2 and ?pb € hyp2 and ?pc € hyp2 and ?pd € hyp2
by (rule Rep-hyp2)+

let ?pp = endpoint-in-S ?pb ?pc

let ?ca = cart2-pt ?pa

let ?cb = cart2-pt ?pb

let ?cc = cart2-pt ?pc

let ?cd = cart2-pt ?pd

let ?cp = cart2-pt ?pp

from (?pb € hyp2) and (?pc € hyp2)

have ?pp € S and BR ?cb ?cc ?cp by (simp-all add: endpoint-in-S)

183

from bc=x bd

obtain | where is-K2-isometry |
and hyp2-cltn2 b | = b and hyp2-cltn2 ¢ | = d
by (unfold real-hyp2-C-def) auto

from (hyp2-cltn2 b | = b) and thyp2-cltn2 c | = d)

have Rep-hyp2 (hyp2-cltn2 b J) = ?pb
and Rep-hyp2 (hyp2-cltn2 ¢) = ?pd
by simp-all

with (is-K2-isometry |)

have apply-cltn2 ?pb | = ?pb and apply-cltn2 ?pc | = ?pd
by (simp-all add: Rep-hyp2-clin2)

from Bxabc and (B a b d)
have BR ?ca ?cb ?cc and BR ?ca ?cb ?cd
unfolding real-hyp2-B-def and hyp2-rep-def .

from (?pb # ?pc) and (?pb € hyp2) and (?pc € hyp2) and (s-K2-isometry |)
have apply-clin2 ?pp |

= endpoint-in-S (apply-cltn2 ?pb]) (apply-cltn2 ?pc)

by (simp add: K2-isometry-endpoint-in-S)
also from apply-cltn2 ?pb | = ?pb) and @apply-cltn2 ?pc | = ?pd)
have ... = endpoint-in-S ?pb ?pd by simp
also from (?pa # ?pb) and (?pb # ?pd)

and (?pa € hyp2) and (?pb € hyp2) and (?pd € hyp2) and (Br ?ca ?cb ?cd)
have ... = endpoint-in-S ?pa ?pb by (simp add: between-endpoint-in-S)
also from (?pa # ?pb) and (?pb # ?pc)

and (?pa € hyp2) and (?pb € hyp2) and (?pc € hyp2) and (Br ?ca ?cb ?cc)
have ... = endpoint-in-S ?pb ?pc by (simp add: between-endpoint-in-S)
finally have apply-cltn2 ?pp | = ?pp .

from (?pb € hyp2) and (?pc € hyp2) and (?pp € S)
have z-non-zero ?pb and z-non-zero ?pc and z-non-zero ?pp
by (simp-all add: hyp2-S-z-non-zero)
with (Bg ?cb ?cc ?cp) and euclid-B-cart2-common-line [of ?pb ?pc ?pp]
obtain [where proj2-incident ?pb | and proj2-incident ?pp |
and proj2-incident ?pc |
by auto
with (?pb € hyp2) and (?pp € S) and (is-K2-isometry |
and @apply-cltn2 ?pb | = ?pb) and (apply-cltn2 ?pp | = ?pp)
have apply-cltn2 ?pc | = ?pc by (rule hyp2-S-points-fix-line)
with @apply-cltn2 ?pc | = ?pd) have ?pc = ?pd by simp
thus ¢ = d by (subst Rep-hyp2-inject [symmetric])
qed

lemma line-S-match-intersections:

assumesp #Zqandr#sandpc Sandge Sandr e Sands e S
and proj2-set-Col {p,q,r,s}

184

shows (p=rAg=s)V(g=rAp=s)
proof —
from (proj2-set-Col {p,q,r,5})
obtain [where proj2-incident p I and proj2-incident q |
and proj2-incident r | and proj2-incident s [
by (unfold proj2-set-Col-def) auto
withr #s)and p € S and (g€ S'and r € S'and s € S
havep=rVp=sandg=rVvVg=s
by (simp-all add: line-S-two-intersections-only)

show (p=rANg=s)V(g=rAp=s)
proof cases
assume p =71
withp#gpandig=rVg=s
show (p=rANqg=s)V (g=rAp=s)bysimp
next
assume p # r
with (p =r V p = s) have p = s by simp
withp#gpandig=rVvVg=s
show (p=rANqg=s)V (g=rAp=s)bysimp
qed
qed

definition are-endpoints-in-S :: [proj2, proj2, proj2, proj2] = bool where
are-endpoints-in-Spqab
Ep#£qApESNGESNachyp2 Ab € hyp2 A proj2-set-Col {p,q,a,b}

lemma are-endpoints-in-S’:
assumesp #Zqganda #bandp € Sandgec Sanda € hyp2 U S
and b € hyp2 U S and proj2-set-Col {p,q,a,b}
shows (p = endpoint-in-S a b N\ q = endpoint-in-S b a)
V (g = endpoint-in-S a b \ p = endpoint-in-S b a)
(is(p=?rAng=2s)V(g=?rAp=7s))
proof —
from @ # b) and @ € hyp2 U S) and b € hyp2 U S)
have ?r # ?s by (simp add: endpoint-in-S-swap)

from @ € hyp2 U S) and b € hyp2 U S)
have ?r € S and ?s € S by (simp-all add: endpoint-in-S)

from (proj2-set-Col {p,q,a,b})

obtain | where proj2-incident p | and proj2-incident q |
and proj2-incident a | and proj2-incident b |
by (unfold proj2-set-Col-def) auto

from @ # b) and @ € hyp2 U S) and & € hyp2 U S) and (proj2-incident a I)
and (proj2-incident b)

have proj2-incident ?r | and proj2-incident ?s |
by (simp-all add: endpoint-in-S-incident)

185

with (proj2-incident p I) and (proj2-incident q)
have proj2-set-Col {p,q,71,2s}
by (unfold proj2-set-Col-def) (simp add: exI [of - I])
with (p # @ and (?r # ?s)and (p € S)and (g € S) and (?r € S) and (?s € S)
show (p=?2rAq=25)V (q=2rANp=7s)
by (rule line-S-match-intersections)
qed

lemma are-endpoints-in-S:
assumes a # b and are-endpoints-in-Sp qa b
shows (p = endpoint-in-S a b N\ q = endpoint-in-S b a)
V (g = endpoint-in-S a b A\ p = endpoint-in-S b a)
using assms
by (unfold are-endpoints-in-S-def) (simp add: are-endpoints-in-S’)

lemma S-intersections-endpoints-in-S:
assumes a2 # 0 and b # 0 and proj2-abs a # proj2-abs b (is ?pa # ?pb)
and proj2-abs a € hyp2 and proj2-abs b € hyp2 U S
shows (S-intersectionl a b = endpoint-in-S ?pa ?pb
A S-intersection2 a b = endpoint-in-S ?pb ?pa)
V (S-intersection2 a b = endpoint-in-S ?pa ?pb
A S-intersectionl a b = endpoint-in-S ?pb ?pa)
(is (?pp = ?pr A ?pq = ?ps) V (?pq = ?pr A ?pp = ?ps))
proof —
from @ # 0) and & # 0) and (?pa # ?pb) and (?pa € hyp2)
have ?pp # ?pq by (unfold hyp2-def, simp add: S-intersections-distinct)

from @ # 0> and & # 0) and (?pa # ?pb) and (proj2-abs a € hyp2)
have ?pp € Sand ?pg € S
by (unfold hyp2-def, simp-all add: S-intersections-in-S)

let ?I = proj2-line-through ?pa ?pb

have proj2-incident ?pa ?1 and proj2-incident ?pb ?1
by (rule proj2-line-through-incident)+

with @ # 0) and b # 0) and (?pa # ?pb)

have proj2-incident ?pp ?1 and proj2-incident ?pq ?1
by (rule S-intersections-incident)+

with (proj2-incident ?pa ?1) and (proj2-incident ?pb ?I)

have proj2-set-Col {?pp,?pq,?pa,?pb}
by (unfold proj2-set-Col-def) (simp add: exI [of - ?1])

with (?pp # ?pg) and (?pa # ?pb) and (?pp € S) and (?pg € S) and (?pa € hyp2)
and (?pb € hyp2 U S)

show (?pp = ?pr A ?pq = ?ps) V (?pq = ?pr A ?pp = ?ps)
by (simp add: are-endpoints-in-S’)

qed

lemma between-endpoints-in-S:

assumes 2 # banda € hyp2 U Sand b € hyp2 U S
shows B

186

(cart2-pt (endpoint-in-S a b)) (cart2-pt a) (cart2-pt (endpoint-in-S b a))
(is BR ?cp ?ca ?cq)
proof —
let 7cb = cart2-pt b
from b € hyp2 U S) and @ € hyp2 U S) and @ # b)
have ?cb # ?ca by (auto simp add: hyp2-S-cart2-inj)

from @ € hyp2 U S) and (b € hyp2 U S)
have BR ?ca ?cb ?cp and B ?cb ?ca ?cq by (simp-all add: endpoint-in-S)

from (BR ?ca ?cb ?cp) have BR ?cp ?cb ?ca by (rule real-euclid.th3-2)
with (?cb # ?ca) and (Br ?cb ?ca ?cq)
show B ?cp ?ca ?cq by (simp add: real-euclid.th3-7-1)

qed

lemma S-hyp2-S-cart2-appendl:

assumes p #qandp € Sand g € S and a € hyp2

and proj2-incident p | and proj2-incident q | and proj2-incident a [

shows 3 k. k>0Ak <1

A cart2-appendl a = k *g cart2-appendl q + (1 — k) g cart2-appendl p
proof —

from (p € S) and (g € S) and @ € hyp2)

have z-non-zero p and z-non-zero q and z-non-zero a

by (simp-all add: hyp2-S-z-non-zero)

from assms
have BR (cart2-pt p) (cart2-pt a) (cart2-pt q) (is Br ?cp ?ca ?cq)
by (simp add: hyp2-incident-in-middle)

from (p € S) and (g € S) and @ € hyp2)
have a # p and a # g by (simp-all add: hyp2-S-not-equal)

with (z-non-zero p) and (z-non-zero a) and (z-non-zero q)
and (BR ?cp ?ca ?cq)
show 3 k.k>0ANk<1
A cart2-appendl a = k *g cart2-appendl q + (1 — k) g cart2-appendl p
by (rule cart2-appendl-between-strict)
qed

lemma are-endpoints-in-S-swap-34:

assumes are-endpoints-in-S p qa b

shows are-endpoints-in-Sp qba
proof —

have {p,q,b,a} = {p,qa,b} by auto

with (are-endpoints-in-S p q a b)

show are-endpoints-in-S p q b a by (unfold are-endpoints-in-S-def) simp
qed

lemma proj2-set-Col-endpoints-in-S:

187

assumesa # banda € hyp2 USand b € hyp2 U S
shows proj2-set-Col {endpoint-in-S a b, endpoint-in-S b a, a, b}
(is proj2-set-Col {?p,?q,a,b})
proof —
let 7] = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident)+
with @ # b) and @ € hyp2 U S) and & € hyp2 U S)
have proj2-incident ?p ?1 and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident)
with (proj2-incident a ?I) and (proj2-incident b ?1)
show proj2-set-Col {?p,?q,a,b}
by (unfold proj2-set-Col-def) (simp add: exI [of - ?1])
qed

lemma endpoints-in-S-are-endpoints-in-S:
assumes a # b and a € hyp2 and b € hyp2
shows are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-Sba) a b
(is are-endpoints-in-S ?p ?q a b)
proof —
from @ # b) and @ € hyp2) and b € hyp2)
have ?p # ?q by (simp add: endpoint-in-S-swap)

from (@ € hyp2) and & € hyp2)
have ?p € S and ?g € S by (simp-all add: endpoint-in-S)

from assms

have proj2-set-Col {?p,?q,a,b} by (simp add: proj2-set-Col-endpoints-in-S)

with (?p # ?¢) and (?p € S) and (?q € S) and @ € hyp2) and & € hyp2)

show are-endpoints-in-S ?p ?q a b by (unfold are-endpoints-in-S-def) simp
qed

lemma endpoint-in-S-S-hyp2-distinct:
assumes p € Sanda € hyp2 U Sand p #a
shows endpoint-in-S p a # p
proof
from (p #a and p € S and @ € hyp2 U S)
have BR (cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a))
by (simp add: endpoint-in-S)

assume endpoint-in-Spa =p
with (Bg (cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a)))
have cart2-pt p = cart2-pt a by (simp add: real-euclid. A6”)
with (p € S) and @ € hyp2 U S) have p = a by (simp add: hyp2-S-cart2-inj)
with (p # a) show False ..
qed

lemma endpoint-in-S-S-strict-hyp2-distinct:
assumes p € S and a € hyp2

188

shows endpoint-in-Sp a # p
proof —

from @ € hyp2) and p € S

have p # a by (rule hyp2-S-not-equal [symmetric])

with assms

show endpoint-in-S p a # p by (simp add: endpoint-in-S-S-hyp2-distinct)
qed

lemma end-and-opposite-are-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and p € S
and proj2-incident a I and proj2-incident b | and proj2-incident p
shows are-endpoints-in-S p (endpoint-in-S p b) a b
(is are-endpoints-in-S p ?q a b)
proof —
from (p € S) and b € hyp2)
have p # ?q by (rule endpoint-in-S-S-strict-hyp2-distinct [symmetric|)

from (p € S) and b € hyp2) have ?q € S by (simp add: endpoint-in-S)

from b € hyp2) and p € S)

have p # b by (rule hyp2-S-not-equal [symmetric])

with (p € S) and b € hyp2) and (proj2-incident p) and (proj2-incident b)

have proj2-incident ?q | by (simp add: endpoint-in-S-incident)

with (proj2-incident p I) and (proj2-incident a I) and (proj2-incident b)

have proj2-set-Col {p,?q,a,b}

by (unfold proj2-set-Col-def) (simp add: exI [of - I])

with (p # ?q) and (p € S) and (?q € S) and @ € hyp2) and b € hyp2)

show are-endpoints-in-S p ?q a b by (unfold are-endpoints-in-S-def) simp
qed

lemma real-hyp2-B-hyp2-cltn2:
assumes is-K2-isometry | and Bx a b ¢
shows Bx (hyp2-cltn2 a J) (hyp2-cltn2 b]) (hyp2-cltn2 c)
(is Bx ?a] ?b] ?c])
proof —
from (Bx abo
have Bg (hyp2-rep a) (hyp2-rep b) (hyp2-rep c) by (unfold real-hyp2-B-def)
with (is-K2-isometry |
have Bg (cart2-pt (apply-cltn2 (Rep-hyp2 a) J))
(cart2-pt (apply-clin2 (Rep-hyp2 b)]))
(cart2-pt (apply-clin2 (Rep-hyp2 c) J))
by (unfold hyp2-rep-def) (simp add: Rep-hyp2 statement-63)
moreover from (is-K2-isometry |)
have apply-clin2 (Rep-hyp2 a) | € hyp2
and apply-clin2 (Rep-hyp2 b) | € hyp2
and apply-cltn2 (Rep-hyp2 c) | € hyp2
by (rule apply-cltn2-Rep-hyp2)+
ultimately show Bx (hyp2-cltn2 a J) (hyp2-cltin2 b]) (hyp2-cltn2 c J)
unfolding hyp2-cltn2-def and real-hyp2-B-def and hyp2-rep-def

189

by (simp add: Abs-hyp2-inverse)
qed

lemma real-hyp2-C-hyp2-clin2:
assumes is-K2-isometry |
shows a b =g (hyp2-cltn2 a]) (hyp2-cltn2 b]) (isa b =k ?a] ?b])
using assms by (unfold real-hyp2-C-def) (simp add: exI [of -]])

9.10 Perpendicularity

definition M-perp :: proj2-line = proj2-line = bool where
M-perp | m £ proj2-incident (pole 1) m

lemma M-perp-sym:
assumes M-perp [m
shows M-perp m |

proof —
from (M-perp | m) have proj2-incident (pole) m by (unfold M-perp-def)
hence proj2-incident (pole m) (polar (pole 1)) by (rule incident-pole-polar)
hence proj2-incident (pole m) 1 by (simp add: polar-pole)
thus M-perp m | by (unfold M-perp-def)

qed

lemma M-perp-to-compass:
assumes M-perp | m and a € hyp2 and proj2-incident a |
and b € hyp2 and proj2-incident b m
shows 3 . is-K2-isometry |
N apply-cltn2-line equator | = I A apply-cltn2-line meridian | = m
proof —
from (@ € hyp2) and (b € hyp2) have a € K2 and b € K2 by (unfold hyp2-def)

from (1 € K2) and (proj2-incident a I)
and line-through-K2-intersect-S-twice [of a I]
obtain p and g wherep #gandp € Sandg € S
and proj2-incident p | and proj2-incident q |
by auto

have 3 r.v € S A r & {pq} A proj2-incident r m
proof cases
assume proj2-incident p m

from (b € K2) and (proj2-incident b m)
and line-through-K2-intersect-S-again [of b m]
obtain r where r € S and r # p and proj2-incident r m by auto

have r ¢ {p,q}
proof
assume r € {p,q}
with r # p) have r = q by simp

190

with (proj2-incident r m) have proj2-incident q m by simp
with (proj2-incident p I) and (proj2-incident q I)
and (proj2-incident p m) and (proj2-incident ¢ m) and (p # ¢
and proj2-incident-unique [of p | q m]
have [= m by simp
with (M-perp | m) have M-perp | I by simp
hence proj2-incident (pole 1) 1 (is proj2-incident ?s)
by (unfold M-perp-def)
hence proj2-incident ?s (polar ?s) by (subst polar-pole)
hence ?s € S by (simp add: incident-own-polar-in-S)
with (p € S) and (g € S) and (proj2-incident p I) and (proj2-incident q |
and point-in-S-polar-is-tangent [of ?s]
have p = ?s and q = ?s by (auto simp add: polar-pole)
with (p # ¢ show False by simp
qed
with € S) and (proj2-incident r m)
show 3 r.r € SAr ¢ {pq} A proj2-incident r m
by (simp add: exI [of - r])
next
assume — proj2-incident p m

from b € K2) and (proj2-incident b m)
and line-through-K2-intersect-S-again [of b m]
obtain r where r € S and r # g and proj2-incident r m by auto

from (- proj2-incident p m) and (proj2-incident r m) have r # p by auto
with (r € S) and (v # ¢) and (proj2-incident v m)
show 3 r.r € SAr ¢ {pq} N proj2-incident r m
by (simp add: exI [of - 1])
qed
then obtain r where r € S and r ¢ {p,q} and proj2-incident r m by auto

from (p € S)and (g € S)and (r € S)and (p #) and « & {p,q})
and statement65-special-case [of p q 1]

obtain | where is-K2-isometry | and apply-cltn2 east | = p
and apply-cltn2 west | = g and apply-cltn2 north | = r
and apply-cltn2 far-north | = proj2-intersection (polar p) (polar q)
by auto

from apply-cltn2 east | = p) and (apply-clin2 west | = q)
and (proj2-incident p I) and (proj2-incident q)
have proj2-incident (apply-cltn2 east J) 1
and proj2-incident (apply-cltn2 west J) |
by simp-all
with east-west-distinct and east-west-on-equator
have apply-cltn2-line equator | = | by (rule apply-clin2-line-unique)

from (apply-cltn2 north | = r) and (proj2-incident r m)
have proj2-incident (apply-cltn2 north J) m by simp

191

from (p # g and polar-inj have polar p # polar q by fast

from (proj2-incident p) and (proj2-incident q I)
have proj2-incident (pole) (polar p)
and proj2-incident (pole I) (polar q)
by (simp-all add: incident-pole-polar)
with (polar p # polar q)
have pole | = proj2-intersection (polar p) (polar q)
by (rule proj2-intersection-unique)
with apply-cltn2 far-north | = proj2-intersection (polar p) (polar q))
have apply-clin2 far-north | = pole | by simp
with (M-perp [m)
have proj2-incident (apply-cltn2 far-north J) m by (unfold M-perp-def) simp
with north-far-north-distinct and north-south-far-north-on-meridian
and (proj2-incident (apply-cltn2 north J) m)
have apply-cltn2-line meridian | = m by (simp add: apply-cltn2-line-unique)
with (is-K2-isometry |) and apply-cltn2-line equator | = I)
show 3 |. is-K2-isometry |
A apply-cltn2-line equator | = I A apply-cltn2-line meridian | = m
by (simp add: exI [of -]])
qed

definition drop-perp :: proj2 = proj2-line = proj2-line where
drop-perp p | = proj2-line-through p (pole 1)

lemma drop-perp-incident: proj2-incident p (drop-perp p)
by (unfold drop-perp-def) (rule proj2-line-through-incident)

lemma drop-perp-perp: M-perp | (drop-perp p 1)
by (unfold drop-perp-def M-perp-def) (rule proj2-line-through-incident)

definition perp-foot :: proj2 = proj2-line = proj2 where
perp-foot p | £ proj2-intersection | (drop-perp p 1)

lemma perp-foot-incident:
shows proj2-incident (perp-foot p 1) 1
and proj2-incident (perp-foot p 1) (drop-perp p 1)
by (unfold perp-foot-def) (rule proj2-intersection-incident)+

lemma M-perp-hyp2:
assumes M-perp [m and a € hyp2 and proj2-incident a | and b € hyp2
and proj2-incident b m and proj2-incident ¢ I and proj2-incident ¢ m
shows ¢ € hyp2
proof —
from (M-perp I m) and (a € hyp2) and (proj2-incident a) and (b € hyp2)
and (proj2-incident b m) and M-perp-to-compass [of | m a b|
obtain | where is-K2-isometry | and apply-cltn2-line equator | = |
and apply-cltn2-line meridian | = m

192

by auto

from (is-K2-isometry]) and K2-centre-in-K2
have apply-cltn2 K2-centre | € hyp2
by (unfold hyp2-def) (rule statement60-one-way)

from (proj2-incident ¢) and (apply-cltn2-line equator | = I)

and (proj2-incident ¢ m) and (apply-cltn2-line meridian | = m)
have proj2-incident ¢ (apply-clin2-line equator)

and proj2-incident ¢ (apply-clin2-line meridian |)

by simp-all
with equator-meridian-distinct and K2-centre-on-equator-meridian
have apply-clin2 K2-centre | = ¢ by (rule apply-cltn2-unique)
with @apply-cltn2 K2-centre | € hyp2) show c € hyp2 by simp

qed

lemma perp-foot-hyp2:
assumes a € hyp2 and proj2-incident a l and b € hyp?2
shows perp-foot b | € hyp2
using drop-perp-perp [of | b] and (@ € hyp2) and (proj2-incident a I)
and & € hyp2) and drop-perp-incident [of b]
and perp-foot-incident [of b]
by (rule M-perp-hyp2)

definition perp-up :: proj2 = proj2-line = proj2 where
perp-up a l
£ if proj2-incident a | then € p. p € S A proj2-incident p (drop-perp a l)
else endpoint-in-S (perp-foot a l) a

lemma perp-up-degenerate-in-S-incident:
assumes a € hyp2 and proj2-incident a |
shows perp-upal e S (is ?p € S)
and proj2-incident (perp-up a l) (drop-perp al)
proof —
from (proj2-incident a I)
have ?p = (e p. p € S A proj2-incident p (drop-perp al))
by (unfold perp-up-def) simp

from @ € hyp2) and drop-perp-incident [of a I]

have 3 p. p € S A proj2-incident p (drop-perp a l)
by (unfold hyp2-def) (rule line-through-K2-intersect-S)

hence ?p € S A proj2-incident ?p (drop-perp al)
unfolding (?p = (e p. p € S A proj2-incident p (drop-perp al)))
by (rule somel-ex)

thus ?p € S and proj2-incident ?p (drop-perp a 1) by simp-all

qed

lemma perp-up-non-degenerate-in-S-at-end:
assumes a € hyp2 and b € hyp2 and proj2-incident b

193

and — proj2-incident a |
shows perp-upal € S
and B (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up al))
proof —
from (— proj2-incident a |)
have perp-up a | = endpoint-in-S (perp-foot al) a
by (unfold perp-up-def) simp

from (b € hyp2) and (proj2-incident b |) and @ € hyp2)

have perp-foot a 1 € hyp2 by (rule perp-foot-hyp2)

with @ € hyp2)

show perp-upal e S
and B (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up al))
unfolding (perp-up a | = endpoint-in-S (perp-foot a 1) a)
by (simp-all add: endpoint-in-S)

qed

lemma perp-up-in-S:

assumes a € hyp2 and b € hyp2 and proj2-incident b

shows perp-upal € S
proof cases

assume proj2-incident a |

with @ € hyp2)

show perp-up al € S by (rule perp-up-degenerate-in-S-incident)
next

assume — proj2-incident a |

with assms

show perp-up a l € S by (rule perp-up-non-degenerate-in-S-at-end)
qed

lemma perp-up-incident:

assumes a € hyp2 and b € hyp2 and proj2-incident b |

shows proj2-incident (perp-up a 1) (drop-perp al)

(is proj2-incident ?p ?m)
proof cases

assume proj2-incident a |

with @ € hyp2)

show proj2-incident ?p ?m by (rule perp-up-degenerate-in-S-incident)
next

assume — proj2-incident a |

hence ?p = endpoint-in-S (perp-foot a l) a (is ?p = endpoint-in-S ?c a)

by (unfold perp-up-def) simp

from perp-foot-incident [of a I| and (— proj2-incident a)
have ?c # a by auto

from (b € hyp2) and (proj2-incident b) and @ € hyp2)

have ?c € hyp2 by (rule perp-foot-hyp2)
with (?c # a) and @ € hyp2) and drop-perp-incident [of a I]

194

and perp-foot-incident [of a ||
show proj2-incident ?p ?m
by (unfold (?p = endpoint-in-S ?c @) (simp add: endpoint-in-S-incident)
qed

lemma drop-perp-same-line-pole-in-S:
assumes drop-perp p | =1
shows pole] € S
proof —
from (drop-perpp 1 = 1)
have [= proj2-line-through p (pole 1) by (unfold drop-perp-def) simp
with proj2-line-through-incident [of pole | p]
have proj2-incident (pole 1) 1 by simp
hence proj2-incident (pole 1) (polar (pole 1)) by (subst polar-pole)
thus pole | € S by (unfold incident-own-polar-in-S)
qed

lemma hyp2-drop-perp-not-same-line:
assumes a € hyp2
shows drop-perpal # 1
proof
assume drop-perpal =1
hence pole | € S by (rule drop-perp-same-line-pole-in-S)
with @ € hyp2)
have — proj2-incident a (polar (pole 1))
by (unfold hyp2-def) (simp add: tangent-not-through-K2)
with drop-perpal =1
have — proj2-incident a (drop-perp a 1) by (simp add: polar-pole)
with drop-perp-incident [of a || show False by simp
qed

lemma hyp2-incident-perp-foot-same-point:
assumes a € hyp2 and proj2-incident a |
shows perp-foot al = a
proof —
from (@ € hyp2)
have drop-perp a 1 # 1 by (rule hyp2-drop-perp-not-same-line)
with perp-foot-incident [of a | and (proj2-incident a)
and drop-perp-incident [of a I| and proj2-incident-unique
show perp-foot a | = a by fast
qed

lemma perp-up-at-end:

assumes a € hyp2 and b € hyp2 and proj2-incident b |

shows B (cart2-pt (perp-foot al)) (cart2-pt a) (cart2-pt (perp-up al))
proof cases

assume proj2-incident a |

with @ € hyp2)

have perp-foot a | = a by (rule hyp2-incident-perp-foot-same-point)

195

thus BR (cart2-pt (perp-foot al)) (cart2-pt a) (cart2-pt (perp-up al))
by (simp add: real-euclid.th3-1 real-euclid.th3-2)
next
assume — proj2-incident a |
with assms
show B (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up al))
by (rule perp-up-non-degenerate-in-S-at-end)
qed

definition perp-down :: proj2 = proj2-line = proj2 where
perp-down a | = endpoint-in-S (perp-up al) a

lemma perp-down-in-S:

assumes a € hyp2 and b € hyp2 and proj2-incident b |

shows perp-dounal e S
proof —

from assms have perp-up al € S by (rule perp-up-in-S)

with @ € hyp2)

show perp-down a | € S by (unfold perp-down-def) (simp add: endpoint-in-S)
qed

lemma perp-down-incident:
assumes a € hyp2 and b € hyp2 and proj2-incident b |
shows proj2-incident (perp-down a I) (drop-perp al)
proof —
from assms have perp-up al € S by (rule perp-up-in-S)
with @ € hyp2) have perp-up a | # a by (rule hyp2-S-not-equal [symmetric])

from assms
have proj2-incident (perp-up a l) (drop-perp a 1) by (rule perp-up-incident)
with (perp-up al # @) and (perp-up al € S) and @ € hyp2)
and drop-perp-incident [of a]
show proj2-incident (perp-down a 1) (drop-perp al)
by (unfold perp-down-def) (simp add: endpoint-in-S-incident)
qed

lemma perp-up-down-distinct:
assumes a € hyp2 and b € hyp2 and proj2-incident b
shows perp-up a | # perp-down a |
proof —
from assms have perp-up a | € S by (rule perp-up-in-S)
with @ € hyp2)
show perp-up a | # perp-down a |
unfolding perp-down-def
by (simp add: endpoint-in-S-S-strict-hyp2-distinct [symmetric|)
qed

lemma perp-up-down-foot-are-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and proj2-incident b

196

shows are-endpoints-in-S (perp-up a) (perp-down a 1) (perp-foot al) a
proof —

from (b € hyp2) and (proj2-incident b) and @ € hyp2)

have perp-foot a | € hyp2 by (rule perp-foot-hyp2)

from assms have perp-up a | € S by (rule perp-up-in-S)

from assms
have proj2-incident (perp-up a l) (drop-perp a 1) by (rule perp-up-incident)
with (perp-foot a | € hyp2) and @ € hyp2) and (perp-upal € S)
and perp-foot-incident(2) [of a I| and drop-perp-incident [of a |
show are-endpoints-in-S (perp-up a l) (perp-down a 1) (perp-foot al) a
by (unfold perp-down-def) (rule end-and-opposite-are-endpoints-in-S)
qed

lemma perp-foot-opposite-endpoint-in-S:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
shows
endpoint-in-S (endpoint-in-S a b) (perp-foot ¢ (proj2-line-through a b))
= endpoint-in-S b a
(is endpoint-in-S ?p ?d = endpoint-in-S b a)
proof —
let ?q = endpoint-in-S ?p ?d

from @ € hyp2) and (b € hyp2) have ?p € S by (simp add: endpoint-in-S)

let 7] = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident)+
with @ # b) and @ € hyp2) and b € hyp2)
have proj2-incident ?p ?1
by (simp-all add: endpoint-in-S-incident)

from (@ € hyp2) and (proj2-incident a ?1) and (¢ € hyp2)
have ?d € hyp2 by (rule perp-foot-hyp2)
with (?p € S) have ?q # ?p by (rule endpoint-in-S-S-strict-hyp2-distinct)

from (?p € S) and (?d € hyp2) have ?q € S by (simp add: endpoint-in-S)

from (?d € hyp2) and (?p € S)
have ?p # ?d by (rule hyp2-S-not-equal [symmetric])
with (?p € S) and (?d € hyp2) and (proj2-incident ?p ?])
and perp-foot-incident (1) [of ¢ ?I]
have proj2-incident ?q ?1 by (simp add: endpoint-in-S-incident)
with @ # b) and @ € hyp2) and & € hyp2) and (?q € S)
and (proj2-incident a ?I) and (proj2-incident b ?I)
have ?q = ?p V ?q = endpoint-in-S b a
by (simp add: endpoints-in-S-incident-unique)
with (?q # ?p) show ?q = endpoint-in-S b a by simp

197

qed

lemma endpoints-in-S-perp-foot-are-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
and proj2-incident a | and proj2-incident b |
shows are-endpoints-in-S
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c 1)
proof —
def p £ endpoint-in-S a b
and g £ endpoint-in-S b a
and d = perp-foot c |

from @ # b) and @ € hyp2) and b € hyp2)
have p # q by (unfold p-def q-def) (simp add: endpoint-in-S-swap)

from @ € hyp2) and b € hyp2)
have p € S and g € S by (unfold p-def g-def) (simp-all add: endpoint-in-S)

from @ € hyp2) and (proj2-incident a I and (c € hyp2)
have d € hyp2 by (unfold d-def) (rule perp-foot-hyp2)

from (@ # b) and (@ € hyp2) and & € hyp2) and (proj2-incident a I)
and (proj2-incident b |)
have proj2-incident p | and proj2-incident q [
by (unfold p-def q-def) (simp-all add: endpoint-in-S-incident)
with (proj2-incident a 1) and perp-foot-incident (1) [of ¢ I]
have proj2-set-Col {p,q,a,d}
by (unfold d-def proj2-set-Col-def) (simp add: exI [of - I])
with (p # ¢ and (p € S) and (g € S) and @ € hyp2) and d € hyp2)
show are-endpoints-in-S p q a d by (unfold are-endpoints-in-S-def) simp
qed

definition right-angle :: proj2 = proj2 = proj2 = bool where
right-angle p a q
£peSAqESAachyp?
A M-perp (proj2-line-through p a) (proj2-line-through a q)

lemma perp-foot-up-right-angle:
assumes p € S and a € hyp2 and b € hyp2 and proj2-incident p |
and proj2-incident b |
shows right-angle p (perp-foot a l) (perp-up al)
proof —
def ¢ £ perp-foot a |
def g = perp-up a |
from @ € hyp2) and (b € hyp2) and (proj2-incident b)
have g € S by (unfold g-def) (rule perp-up-in-S)

from (b € hyp2) and (proj2-incident b]) and @ € hyp2)
have c € hyp2 by (unfold c-def) (rule perp-foot-hyp2)

198

with (p € S) and (g € S) have c # pand c # g
by (simp-all add: hyp2-S-not-equal)

from (¢ # p) [symmetric] and (proj2-incident p)
and perp-foot-incident(1) [of a ||

have [= proj2-line-through p ¢
by (unfold c-def) (rule proj2-line-through-unique)

def m = drop-perp al

from (a € hyp2) and &b € hyp2) and (proj2-incident b I)

have proj2-incident q m by (unfold g-def m-def) (rule perp-up-incident)

with (¢ # ¢ and perp-foot-incident(2) [of a I]

have m = proj2-line-through c q
by (unfold c-def m-def) (rule proj2-line-through-unique)

with (p € S) and (g € S) and (c € hyp2) and drop-perp-perp [of | a]
and (= proj2-line-through p ¢

show right-angle p (perp-foot a 1) (perp-up a l)
by (unfold right-angle-def q-def c-def m-def) simp

qed

lemma M-perp-unique:
assumes a € hyp2 and b € hyp2 and proj2-incident a
and proj2-incident b m and proj2-incident b n and M-perp [m
and M-perp I n
shows m = n
proof —
from @ € hyp2) and (proj2-incident a I)
have pole | ¢ hyp2 by (rule line-through-hyp2-pole-not-in-hyp2)
with & € hyp2) have b # pole [by auto
with (proj2-incident b m) and (M-perp | m) and (proj2-incident b n)
and (M-perp | n) and proj2-incident-unique
show m = n by (unfold M-perp-def) auto
qed

lemma perp-foot-eg-implies-drop-perp-eq:
assumes a € hyp2 and b € hyp2 and proj2-incident a |
and perp-foot b | = perp-foot c |
shows drop-perp b 1 = drop-perp c |

proof —
from (1 € hyp2) and (proj2-incident a) and & € hyp2)
have perp-foot b I € hyp2 by (rule perp-foot-hyp2)

from (perp-foot b | = perp-foot c I)
have proj2-incident (perp-foot b 1) (drop-perp c)
by (simp add: perp-foot-incident)
with @ € hyp2) and (perp-foot b | € hyp2) and (proj2-incident a I)
and perp-foot-incident(2) [of b 1] and drop-perp-perp [of 1]
show drop-perp b 1 = drop-perp c | by (simp add: M-perp-unique)
qed

199

lemma right-angle-to-compass:
assumes right-angle p a q
shows 3 . is-K2-isometry | A apply-cltn2 p | = east
A apply-cltn2 a | = K2-centre N\ apply-cltn2 q | = north
proof —
from (right-angle p a q)
havep € Sand g € Sand a € hyp2
and M-perp (proj2-line-through p a) (proj2-line-through a q)
(is M-perp ?1 ?m)
by (unfold right-angle-def) simp-all

have proj2-incident p ? and proj2-incident a ?1
and proj2-incident q ?m and proj2-incident a ?m
by (rule proj2-line-through-incident)+

from (M-perp ?I ?m> and (@ € hyp2) and (proj2-incident a ?I)
and (proj2-incident a ?m) and M-perp-to-compass [of ?1 ?m a a]
obtain |'/i where is-K2-isometry |"'i
and apply-cltn2-line equator J''i = ?1
and apply-clin2-line meridian J'i = ?m
by auto
let ?]"" = cltn2-inverse |''i

from (apply-cltn2-line equator J'i = ?D)
and (apply-cltn2-line meridian [''i = ?m)
and (proj2-incident p ?I) and (proj2-incident a ?])
and (proj2-incident q ?m) and (proj2-incident a ?m)
have proj2-incident (apply-cltn2 p ?]"") equator
and proj2-incident (apply-cltn2 a ?]'') equator
and proj2-incident (apply-cltn2 q ?]'"") meridian
and proj2-incident (apply-cltn2 a ?]'"") meridian
by (simp-all add: apply-clin2-incident [symmetric])

from (proj2-incident (apply-cltn2 a ?]'"") equator)
and (proj2-incident (apply-cltn2 a ?]"") meridian)
have apply-clin2 a ?]"" = K2-centre
by (rule on-equator-meridian-is-K2-centre)

from (is-K2-isometry J''

have is-K2-isometry ?]" by (rule cltn2-inverse-is-K2-isometry)

with p € Sland (g € S

have apply-cltn2 p ?]"" € S and apply-cltn2 q ?]" € S
by (unfold is-K2-isometry-def) simp-all

with east-west-distinct and north-south-distinct and compass-in-S
and east-west-on-equator and north-south-far-north-on-meridian
and (proj2-incident (apply-cltn2 p ?]'') equator)
and (proj2-incident (apply-cltn2 q ?]"") meridian)

have apply-cltn2 p ?]"' = east V apply-cltn2 p ?]"" = west

200

and apply-clin2 q ?]" = north V apply-cltn2 q ?]"" = south
by (simp-all add: line-S-two-intersections-only)

have 3 J'. is-K2-isometry J' A apply-cltn2 p J' = east
A apply-cltn2 a [= K2-centre
A (apply-cltn2 q [= north \ apply-cltn2 q |’ = south)
proof cases
assume apply-cltn2 p ?]'"' = east
with (is-K2-isometry ?]'") and @apply-clin2 a ?]"" = K2-centre)
and (apply-cltn2 q ?]"" = north \/ apply-clin2 q ?]"" = south
show 3 J'. is-K2-isometry J' A apply-cltn2 p J' = east
A apply-cltn2 a ' = K2-centre
A (apply-cltn2 q J' = north \/ apply-cltn2 q J' = south)
by (simp add: exI [of - ?]""])
next
assume apply-cltn2 p ?]" # east
with (@apply-cltn2 p ?]"" = east \/ apply-cltn2 p ?]"" = west)
have apply-cltn2 p ?]"" = west by simp

let 7]’ = cltn2-compose ?]"' meridian-reflect

from (is-K2-isometry ?]'") and meridian-reflect-K2-isometry

have is-K2-isometry ?]' by (rule cltn2-compose-is-K2-isometry)

moreover

from (apply-clin2 p ?]"" = west) and (apply-cltn2 a ?]"" = K2-centre)
and (apply-cltn2 q ?]"" = north \ apply-cltn2 q ?]"" = south
and compass-reflect-compass

have apply-clin2 p ?]' = east and apply-clin2 a ?]' = K2-centre
and apply-clin2 q ?]' = north \V apply-cltn2 q ?]’ = south
by (auto simp add: cltn2.act-act [simplified, symmetric])

ultimately

show 3 J'. is-K2-isometry |’ A apply-cltn2 p J' = east
A apply-cltn2 a [= K2-centre
A (apply-cltn2 q] = north \V apply-cltn2 q]’ = south)
by (simp add: exI [of - ?]"])

qed
then obtain | where is-K2-isometry |’ and apply-cltn2 p [’ = east

and apply-clin2 a J' = K2-centre

and apply-clin2 q J' = north \/ apply-clin2 q J' = south

by auto

show 3 |. is-K2-isometry | A apply-clin2 p | = east
A apply-cltn2 a | = K2-centre N\ apply-cltn2 q | = north
proof cases
assume apply-cltn2 q J' = north
with (is-K2-isometry]’ and (@apply-clin2 p ' = east)
and (apply-cltn2 a [= K2-centre)
show 3 |. is-K2-isometry | A apply-clin2 p | = east
A apply-cltn2 a | = K2-centre N\ apply-cltn2 q] = north
by (simp add: exI [of - J'])

201

next
assume apply-cltn2 q J' # north
with apply-cltn2 q J' = north \/ apply-cltn2 q J' = south
have apply-clin2 q J' = south by simp

let ?] = cltn2-compose]’ equator-reflect
from (is-K2-isometry]’ and equator-reflect-K2-isometry
have is-K2-isometry ?] by (rule cltn2-compose-is-K2-isometry)
moreover
from (apply-cltn2 p]’ = east) and @apply-cltn2 a]’ = K2-centre)
and (apply-cltn2 q]’ = south) and compass-reflect-compass
have apply-cltn2 p ?] = east and apply-cltn2 a ?] = K2-centre
and apply-clin2 q ?] = north
by (auto simp add: cltn2.act-act [simplified, symmetric])
ultimately
show 3 |. is-K2-isometry | A apply-cltn2 p | = east
A apply-cltn2 a | = K2-centre N\ apply-cltn2 q] = north
by (simp add: exI [of - ?]])
qed
qed

lemma right-angle-to-right-angle:
assumes right-angle p a q and right-angle r b s
shows 3 J. is-K2-isometry |
A apply-cltn2 p | = r A apply-cltn2 a | = b A apply-clin2 q | = s
proof —
from (right-angle p a q) and right-angle-to-compass [of p a q]
obtain H where is-K2-isometry H and apply-cltn2 p H = east
and apply-clin2 a H = K2-centre and apply-cltn2 q H = north
by auto

from (right-angle r b s) and right-angle-to-compass [of 1 b s

obtain K where is-K2-isometry K and apply-cltn2 r K = east
and apply-cltn2 b K = K2-centre and apply-clin2 s K = north
by auto

let ?Ki = cltn2-inverse K
let ?] = cltn2-compose H ?Ki
from (is-K2-isometry H) and (is-K2-isometry K
have is-K2-isometry ?]
by (simp add: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)

from (apply-cltn2 r K = east) and (apply-cltn2 b K = K2-centre)
and @apply-cltn2 s K = north)

have apply-clin2 east ?Ki = r and apply-cltn2 K2-centre ?Ki = b
and apply-cltn2 north ?Ki = s
by (simp-all add: cltn2.act-inv-iff [simplified))

with apply-cltn2 p H = east) and (apply-cltn2 a H = K2-centre)
and @apply-cltn2 q H = north)

202

have apply-cltn2 p ?] = r and apply-cltn2 a ?] = b
and apply-cltn2 q ?] = s
by (simp-all add: cltn2.act-act [simplified,symmetric])

with (is-K2-isometry ?])

show 3 J. is-K2-isometry |
N apply-cltn2 p | = r A apply-cltn2 a] = b A apply-cltn2 q] = s
by (simp add: exI [of - ?]])

qed

9.11 Functions of distance

definition exp-2dist :: proj2 = proj2 = real where
exp-2dist a b
Lifa="b
then 1
else cross-ratio (endpoint-in-S a b) (endpoint-in-Sba) a b

definition cosh-dist :: proj2 = proj2 = real where
cosh-dist a b = (sqrt (exp-2dist a b) + sqrt (1 / (exp-2distab))) / 2

lemma exp-2dist-formula:
assumes a # 0 and b # 0 and proj2-abs a € hyp2 (is ?pa € hyp2)
and proj2-abs b € hyp2 (is ?pb € hyp2)
shows exp-2dist (proj2-abs a) (proj2-abs b)
= (a - (M *v b) + sqrt (quarter-discrim a b))
/ (a - (M v b) — sqrt (quarter-discrim a b))
V exp-2dist (proj2-abs a) (proj2-abs b)
= (a - (M *v b) — sqrt (quarter-discrim a b))
/ (a+ (M v b) + sqrt (quarter-discrim a b))
(is ?e2d = (?aMb + ?sqd) / (?2aMb — ?sqd)
V ?e2d = (?aMb — ?sqd) / (?aMb + ?sqd))
proof cases
assume ?pa = ?pb
hence ?e2d = 1 by (unfold exp-2dist-def, simp)

from (?pa = ?pb)
have quarter-discrim a b = 0 by (rule quarter-discrim-self-zero)
hence ?sqd = 0 by simp

from (proj2-abs a = proj2-abs b) and (b # 0) and proj2-abs-abs-mult
obtain k where a = k xg b by auto

from b # 0) and (proj2-abs b € hyp2)
have b - (M xv b) < 0 by (unfold hyp2-def, subst K2-abs [symmetric])
with (@ # 0) and @ = k *g b) have ?2aMb # 0 by simp
with (?e2d = 1) and (?sqd = 0)
show ?e2d = (?2aMb + ?sqd) / (?aMb — ?sqd)
V ?e2d = (?aMb — ?sqd) / (?aMb + ?sqd)
by simp

203

next

assume ?pa # ?pb

let ?I = proj2-line-through ?pa ?pb

have proj2-incident ?pa ?I and proj2-incident ?pb ?1
by (rule proj2-line-through-incident)+

with @ # 0) and b # 0) and (?pa # ?pb)

have proj2-incident (S-intersectionl a b) ?1 (is proj2-incident ?Sil ?I)
and proj2-incident (S-intersection2 a b) ?1 (is proj2-incident ?Si2 ?1)
by (rule S-intersections-incident)+

with (proj2-incident ?pa ?1) and (proj2-incident ?pb ?I)

have proj2-set-Col {?pa,?pb,?Si1,?Si2} by (unfold proj2-set-Col-def, auto)

have {?pa,?pb,?Si2,25i1} = {?pa,?pb,?Si1,?Si2} by auto

from @ # 0) and &b # 0) and (?pa # ?pb) and (?pa € hyp2)
have ?Si1 € Sand ?Si2 € S
by (unfold hyp2-def, simp-all add: S-intersections-in-S)
with (?pa € hyp2) and (?pb € hyp2)
have ?5i1 # ?pa and ?Si2 # ?pa and ?5i1 # ?pb and ?Si2 # ?pb
by (simp-all add: hyp2-S-not-equal [symmetric])
with (proj2-set-Col {?pa,?pb,?Si1,?Si2}) and (?pa # ?pb)
have cross-ratio-correct ?pa ?pb ?5il ?5i2
and cross-ratio-correct ?pa ?pb ?5i2 ?5il
unfolding cross-ratio-correct-def
by (simp-all add: ({?pa,?pb,?Si2,?Si1} = {?pa,?pb,?Si1,2Si2}))

from @ # 0) and & # 0) and (?pa # ?pb) and (?pa € hyp2)
have ?Si1 # ?5i2 by (unfold hyp2-def, simp add: S-intersections-distinct)
with (cross-ratio-correct ?pa ?pb ?Sil ?Si2)
and (cross-ratio-correct ?pa ?pb ?Si2 ?Sil)
have cross-ratio ?Si1 ?Si2 ?pa ?pb = cross-ratio ?pa ?pb ?Sil ?S5i2
and cross-ratio ?Si2 ?Sil ?pa ?pb = cross-ratio ?pa ?pb ?5i2 ?Sil
by (simp-all add: cross-ratio-swap-13-24)

from (@ # 0) and (proj2-abs a € hyp2)
have a - (M xv a) < 0 by (unfold hyp2-def, subst K2-abs [symmetric])
with @ # 0) and & # 0) and (?pa # ?pb) and cross-ratio-abs [of a b 1 1]
have cross-ratio ?pa ?pb ?Sil ?Si2 = (—?aMb — ?sqd) / (—?aMb + ?sqd)
by (unfold S-intersections-defs S-intersection-coeffs-defs, simp)
with times-divide-times-eq [of —1 —1 —?aMb — ?sqd —?aMb + ?sqd)|
have cross-ratio ?pa ?pb ?Sil ?5i2 = (?aMb + ?sqd) / (?aMb — ?sqd) by simp
with (cross-ratio ?Sil ?Si2 ?pa ?pb = cross-ratio ?pa ?pb ?Sil ?Si2)
have cross-ratio ?Sil ?Si2 ?pa ?pb = (?aMb + ?sqd) / (?aMb — ?sqd) by simp

from (cross-ratio ?pa ?pb ?Sil ?Si2 = (?aMb + ?sqd) / (?aMb — ?sqd))
and cross-ratio-swap-34 [of ?pa ?pb ?Si2 ?Sil]
have cross-ratio ?pa ?pb ?Si2 ?Sil = (?aMb — ?sqd) / (?aMb + ?sqd) by simp
with (cross-ratio ?Si2 ?Sil ?pa ?pb = cross-ratio ?pa ?pb ?Si2 ?Sil)
have cross-ratio ?5i2 ?Sil ?pa ?pb = (?aMb — ?sqd) / (?aMb + ?sqd) by simp

204

from @ # 0> and & # 0) and (?pa # ?pb) and (?pa € hyp2) and (?pb € hyp2)

have (?Si1 = endpoint-in-S ?pa ?pb A ?Si2 = endpoint-in-S ?pb ?pa)
V (?Si2 = endpoint-in-S ?pa ?pb A ?Sil = endpoint-in-S ?pb ?pa)
by (simp add: S-intersections-endpoints-in-S)

with (cross-ratio ?Sil ?Si2 ?pa ?pb = (?aMb + ?sqd)
and (cross-ratio ?Si2 ?Sil ?pa ?pb = (2aMb — ?sqd)
and (?pa # ?pb)

show ?e2d = (?2aMb + ?sqd) / (?aMb — ?sqd)
V ?e2d = (?aMb — ?sqd) / (?aMb + ?sqd)
by (unfold exp-2dist-def, auto)

qed

(?2aMb — ?sqd))

/
/ (?aMb + ?sqd))

lemma cosh-dist-formula:
assumes a # 0 and b # 0 and proj2-abs a € hyp2 (is ?pa € hyp2)
and proj2-abs b € hyp2 (is ?pb € hyp2)
shows cosh-dist (proj2-abs a) (proj2-abs b)
=la-(M=xvb)| /sqrt (a- (Mx*va)x (b-(M=xvb)))
(is cosh-dist ?pa ?pb = |?aMb| / sqrt (?aMa x ?bMD))
proof —
let 7qd = quarter-discrim a b
let ?sqd = sqrt ?2qd
let ?e2d = exp-2dist ?pa ?pb
from assms
have ?e2d = (?aMb + ?sqd) / (?aMb — ?sqd)
V ?e2d = (?aMb — ?sqd) / (?aMb + ?sqd)
by (rule exp-2dist-formula)
hence cosh-dist ?pa ?pb
= (sgrt ((?aMb + ?sqd) / (?aMb — ?sqd))
+ sqrt ((?2aMb — ?sqd) / (?aMb + ?sqd)))
/2
by (unfold cosh-dist-def, auto)

have ?qd > 0
proof cases
assume ’pa = ?pb
thus ?qd > 0 by (simp add: quarter-discrim-self-zero)
next
assume ?pa # ?pb
with @ # 0) and & # 0) and (?pa € hyp2)
have ?gd > 0 by (unfold hyp2-def, simp add: quarter-discrim-positive)
thus ?qd > 0 by simp
qed
with real-sqrt-pow? [of ?qd] have ?sqd?> = ?qd by simp
hence (?aMb + ?sqd) = (?7aMb — ?sqd) = ?aMa x ?bMb
by (unfold quarter-discrim-def, simp add: algebra-simps square-expand)

from times-divide-times-eq [of
2aMb + ?sqd ?2aMb + ?sqd ?aMb + ?sqd ?aMb — ?sqd|

205

have (?aMb + ?sqd) / (?aMb — ?sqd)
= (?aMb + ?sqd)? / ((?aMb + ?sqd) * (?aMb — ?sqd))
by (simp add: square-expand)
with (?aMb + ?sqd) x (?aMb — ?sqd) = ?aMa x ?bMb)
have (?aMb + ?sqd) / (?aMb — ?sqd) = (?aMb + ?sqd)? / (?aMa x ?bMb) by
simp
hence sqrt ((?2aMb + ?sqd) / (?aMb — ?sqd))
= |2aMb + ?sqd| / sqrt (?aMa % ?bMb)
by (simp add: real-sqrt-divide)

from times-divide-times-eq [of
2aMb + ?sqd 2aMb — ?sqd ?2aMb — ?sqd ?aMb — ?sqd]
have (?aMb — ?sqd) / (?aMb + ?sqd)
= (?2aMb — ?sqd)? / ((?aMb + ?sqd) = (?7aMb — ?sqd))
by (simp add: square-expand)
with (?aMb + ?sqd) * (?7aMb — ?sqd) = ?aMa * ?bMb)
have (?aMb — ?sqd) / (?aMb + ?sqd) = (?aMb — ?sqd)? / (?aMa x ?bMb) by
simp
hence sqrt ((?2aMb — ?sqd) / (?aMb + ?sqd))
= |2aMb — ?sqd| / sqrt (?aMa % ?bMb)
by (simp add: real-sqrt-divide)

from @ # 0) and & # 0) and (?pa € hyp2) and (?pb € hyp2)

have ?aMa < 0 and ?bMb < 0
by (unfold hyp2-def, simp-all add: K2-imp-M-neg)

with (?aMb + ?sqd) x (?7aMb — ?sqd) = ?aMa x ?bMb)

have (?aMb + ?sqd) * (?aMb — ?sqd) > 0 by (simp add: mult-neg-neg)

hence ?aMb + ?sqd # 0 and ?aMb — ?sqd # 0 by auto

hence sgn (?aMb + ?sqd) € {—1,1} and sgn (?7aMb — ?sqd) € {—1,1}
by (simp-all add: real-sgn-def)

from (?aMb + ?sqd) x (?7aMb — ?sqd) > 0)
have sgn ((?aMb + ?sqd) * (?2aMb — ?sqd)) = 1 by simp
hence sgn (?aMb + ?sqd) * sgn (?aMb — ?sqd) = 1 by (simp add: sgn-mult)
with sgn (?2aMb + ?sqd) € {—1,1}) and (sgn (?aMb — ?sqd) € {—-1,1})
have sgn (?aMb + ?sqd) = sgn (?7aMb — ?sqd) by auto
with abs-plus [of ?aMb + ?sqd ?aMb — ?sqd]
have |?aMb + ?sqd| + |?2aMb — ?sqd| = 2 % |2aMb| by simp
with (sqrt ((?aMb + ?sqd) / (?aMb — ?sqd))
= |2aMb + ?sqd| / sqrt (?aMa % ?bMb))
and (sgrt ((?aMb — ?sqd) / (?aMb + ?sqd))
= |2aMb — ?sqd| / sqrt (?aMa % ?bMb))
and add-divide-distrib [of
|?7aMb + ?sqd| |?2aMb — ?sqd| sqrt (?aMa x ?bMD))
have sqrt ((?aMb + ?sqd) / (?2aMb — ?sqd))
+ sqrt ((?2aMb — ?sqd) / (?aMb + ?sqd))
= 2 % |?aMb| / sqrt (?aMa * ?2bMDb)
by simp
with (cosh-dist ?pa ?pb

206

= (sqrt ((?aMb + ?sqd) / (?aMb — ?sqd))
+ sqrt ((?2aMb — ?sqd) / (?aMb + ?sqd)))
/2
show cosh-dist ?pa ?pb = |?2aMb| / sqrt (?2aMa * ?bMb) by simp
qed

lemma cosh-dist-perp-special-case:
assumes |x| < 1and |y| <1
shows cosh-dist (proj2-abs (vector [x,0,1])) (proj2-abs (vector [0,y,1]))
= (cosh-dist K2-centre (proj2-abs (vector [x,0,1])))
% (cosh-dist K2-centre (proj2-abs (vector [0,y,1])))
(is cosh-dist ?pa ?pb = (cosh-dist ?po ?pa) * (cosh-dist ?po ?pb))
proof —
have vector [x,0,1] # (0::real”3) (is ?a # 0)
and vector [0,y,1] # (0::real’3) (is ?b # 0)
by (unfold vector-def, simp-all add: Cart-eq forall-3)

have ?a - (M *v ?a) = x> — 1 (is 2aMa = x> — 1)
and ?b - (M xv ?b) = y* — 1 (is ?2bMb = y?> — 1)
unfolding vector-def and M-def and inner-vector-def
and matrix-vector-mult-def
by (simp-all add: setsum-3 square-expand)
with (x| < D and (Jy| <D
have ?aMa < 0 and ?bMb < 0 by (simp-all add: less-one-imp-sqr-less-one)
hence ?pa € hyp2 and ?pb € hyp2
by (unfold hyp2-def, simp-all add: M-neg-imp-K2)
with (?a # 0) and (?b # 0)
have cosh-dist ?pa ?pb = |?a - (M *v ?b)| / sqrt (?7aMa * ?2bMb)
(is cosh-dist ?pa ?pb = |?2aMb| / sqrt (?aMa = ?bMDb))
by (rule cosh-dist-formula)
also from (?aMa = x> — 1) and (?bMb = y*> — 1)
have ... = |?aMb| / sqrt ((x*> — 1) * (y*> — 1)) by simp
finally have cosh-dist ?pa ?pb =1 / sqrt ((1 — x*) * (1 — y?))
unfolding vector-def and M-def and inner-vector-def
and matrix-vector-mult-def
by (simp add: setsum-3 algebra-simps)

let 20 = vector [0,0,1]

let 20Ma = ?0 - (M v ?a)

let 20Mb = ?0 - (M xv ?b)

let 20Mo = ?0 - (M v ?0)

from K2-centre-non-zero and (?a # 0) and (?b # 0)
and K2-centre-in-K2 and (?pa € hyp2) and ?pb € hyp2)
and cosh-dist-formula [of ?0]

have cosh-dist ?po ?pa = |?oMa| / sqrt (?0Mo * ?aMa)
and cosh-dist ?po ?pb = |?0Mb| / sqrt (?0Mo * ?bMD)
by (unfold hyp2-def K2-centre-def, simp-all)

hence cosh-dist ?po ?pa =1 / sqrt (1 — x?)
and cosh-dist ?po ?pb =1 / sqrt (1 — y?)

207

unfolding vector-def and M-def and inner-vector-def
and matrix-vector-mult-def
by (simp-all add: setsum-3 square-expand)
with (cosh-dist ?pa ?pb =1 / sqrt (1 — x?) x (1 — y?)))
show cosh-dist ?pa ?pb = cosh-dist ?po ?pa * cosh-dist ?po ?pb
by (simp add: real-sqrt-mult)
qed

lemma K2-isometry-cross-ratio-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and is-K2-isometry | and a # b
shows cross-ratio (apply-clin2 (endpoint-in-S a b) J)
(apply-cltn2 (endpoint-in-S b a) J) (apply-cltn2 a J) (apply-cltn2 b])
= cross-ratio (endpoint-in-S a b) (endpoint-in-Sba) a b
(is cross-ratio ?p] ?q] ?a] ?b] = cross-ratio ?p ?q a b)
proof —
let 7] = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident)+
with @ # b) and @ € hyp2) and b € hyp2)
have proj2-incident ?p ?1 and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident)
with (proj2-incident a ?) and (proj2-incident b ?I)
have proj2-set-Col {?p,?q,a,b}
by (unfold proj2-set-Col-def) (simp add: exI [of - ?1])

from @ # b) and @ € hyp2) and b € hyp2)
have ?p # ?q by (simp add: endpoint-in-S-swap)

from (@ € hyp2) and (b € hyp2) have ?p € S by (simp add: endpoint-in-S)
with @ € hyp2) and b € hyp2)
have a # ?p and b # ?p by (simp-all add: hyp2-S-not-equal)
with (proj2-set-Col {?p,?q,a,b}) and ?p # ?q)
show cross-ratio ?p] ?q] ?a] ?b] = cross-ratio ?p ?qa b
by (rule cross-ratio-cltn2)
qed

lemma K2-isometry-exp-2dist:
assumes a € hyp2 and b € hyp2 and is-K2-isometry |
shows exp-2dist (apply-cltn2 a]) (apply-cltn2 b J) = exp-2dist a b
(is exp-2dist ?a] ?b] = -)
proof cases
assume a = b
thus exp-2dist ?aJ ?b] = exp-2dist a b by (unfold exp-2dist-def) simp
next
assume a # b
with apply-clin2-injective have ?aj # ?b] by fast

let ?p = endpoint-in-S a b
let ?q = endpoint-in-S b a

208

let ?a] = apply-cltn2 a]
and ?b] = apply-cltn2 b |
and ?p] = apply-cltn2 ?p |
and ?q] = apply-clin2 ?q |
from @ # b) and @ € hyp2) and b € hyp2) and (is-K2-isometry]
have endpoint-in-S ?a] ?b] = ?p] and endpoint-in-S ?b] ?a] = ?q]
by (simp-all add: K2-isometry-endpoint-in-S)

from assms and @ # b)
have cross-ratio ?pJ ?qJ ?a] ?b] = cross-ratio ?p ?qa b
by (rule K2-isometry-cross-ratio-endpoints-in-S)
with (endpoint-in-S ?a] ?b] = ?p]> and (endpoint-in-S ?b] ?a] = ?q]
and @ # b) and (?a] # ?b))
show exp-2dist ?a] ?b] = exp-2dist a b by (unfold exp-2dist-def) simp
qed

lemma K2-isometry-cosh-dist:
assumes a € hyp2 and b € hyp2 and is-K2-isometry |
shows cosh-dist (apply-cltn2 a J) (apply-clin2 b) = cosh-dist a b
using assms
by (unfold cosh-dist-def) (simp add: K2-isometry-exp-2dist)

lemma cosh-dist-perp:
assumes M-perp I m and a € hyp2 and b € hyp2 and c € hyp2
and proj2-incident a | and proj2-incident b |
and proj2-incident b m and proj2-incident ¢ m
shows cosh-dist a ¢ = cosh-dist b a x cosh-dist b ¢
proof —
from (M-perp | m) and b € hyp2) and (proj2-incident b)
and (proj2-incident b m) and M-perp-to-compass [of I m b b]
obtain | where is-K2-isometry | and apply-cltn2-line equator | = |
and apply-cltn2-line meridian | = m
by auto

let ?Ji = cltn2-inverse |
let ?afi = apply-clin2 a ?]i
let ?bJi = apply-cltn2 b ?]i
let ?cJi = apply-cltn2 ¢ ?]i
from (apply-cltn2-line equator | = I) and (apply-cltn2-line meridian | = m)
and (proj2-incident a I) and (proj2-incident b)
and (proj2-incident b m) and (proj2-incident ¢ m)
have proj2-incident ?aJi equator and proj2-incident ?bjJi equator
and proj2-incident ?bJi meridian and proj2-incident ?cfi meridian
by (auto simp add: apply-cltn2-incident)

from (is-K2-isometry |)

have is-K2-isometry ?Ji by (rule cltn2-inverse-is-K2-isometry)
with @ € hyp2) and (¢ € hyp2)

have ?afi € hyp2 and ?cJi € hyp2

209

by (unfold hyp2-def) (simp-all add: statement60-one-way)

from (?afi € hyp2) and (proj2-incident ?aji equator)

and on-equator-in-hyp2-rep
obtain x where |x| < 1 and ?aJi = proj2-abs (vector [x,0,1]) by auto
moreover
from (?ci € hyp2) and (proj2-incident ?c]i meridian)

and on-meridian-in-hyp2-rep
obtain y where |y| < 1 and ?cJi = proj2-abs (vector [0,y,1]) by auto
moreover
from (proj2-incident ?b]i equator) and (proj2-incident ?bJi meridian)
have ?bJi = K2-centre by (rule on-equator-meridian-is-K2-centre)
ultimately
have cosh-dist ?aji ?cJi = cosh-dist ?bJi ?aJi x cosh-dist ?bJi ?c]i

by (simp add: cosh-dist-perp-special-case)
with @ € hyp2) and & € hyp2) and (c € hyp2) and (is-K2-isometry ?]i)
show cosh-dist a ¢ = cosh-dist b a * cosh-dist b c

by (simp add: K2-isometry-cosh-dist)

qed

lemma are-endpoints-in-S-ordered-cross-ratio:
assumes are-endpoints-in-S p qa b
and By (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br ?ca ?cb ?cp)
shows cross-ratiop ga b > 1
proof —
from (are-endpoints-in-S p q a b)
havep #gandp € Sand g € Sand a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from (@ € hyp2) and b € hyp2) and (p € S) and (g € S)
have z-non-zero a and z-non-zero b and z-non-zero p and z-non-zero g
by (simp-all add: hyp2-S-z-non-zero)
hence proj2-abs (cart2-appendl p) = p (is proj2-abs ?cpl = p)
and proj2-abs (cart2-appendl q) = q (is proj2-abs ?cql = q)
and proj2-abs (cart2-appendl a) = a (is proj2-abs ?cal = a)
and proj2-abs (cart2-appendl b) = b (is proj2-abs ?cbl = b)
by (simp-all add: proj2-abs-cart2-append1)

from (b € hyp2) and (p € S) have b # p by (rule hyp2-S-not-equal)
with (z-non-zero a) and (z-non-zero b) and {z-non-zero p)
and (BR ?ca ?cb ?cp) and cart2-append1-between-right-strict [of a b p]
obtain j where j > 0 and j < 1 and ?cb1 = j xg ?2cpl + (1—j) *g ?cal
by auto

from (proj2-set-Col {p,q,a,b})

obtain [where proj2-incident q | and proj2-incident p |
and proj2-incident a |
by (unfold proj2-set-Col-def) auto

210

with (p # g and (g € S) and (p € S) and @ € hyp2)
and S-hyp2-S-cart2-append1 [of g p a]

obtain k where k > 0 and k < 1 and ?cal = k g ?cpl + (1—k) *g ?cql
by auto

from (z-non-zero p) and (z-non-zero q)
have ?cpl # 0 and ?cq1 # 0 by (simp-all add: cart2-appendl-non-zero)

from (p # ¢ and (proj2-abs ?cpl = p) and (proj2-abs ?cql = q)
have proj2-abs ?cpl # proj2-abs ?cql by simp

from k < 1) have 1—k # 0 by simp
with (< 1) have (1—j)*(1—k) # 0 by simp

from (j < 1) and k > 0) have (1—j)*k > 0 by (simp add: mult-pos-pos)

from (?cb1 = j xR ?cpl + (1—j) *g ?cal
have ?cb1 = (j+(1—j)*k) xg ?cpl + ((1—j)*(1—k)) *gr ?cql
by (unfold (?cal = k *g ?cpl + (1—k) *g ?cq])) (simp add: algebra-simps)
with (?cal = k xg ?cpl + (1—k) *g ?cqD)
have proj2-abs ?cal = proj2-abs (k g ?cpl + (1—k) *g ?cq1)
and proj2-abs ?cbl
= proj2-abs ((j4+(1—j)*k) *g ?cpl + ((1—j)*(1—k)) *g ?cq1)
by simp-all
with (proj2-abs ?cal = a) and (proj2-abs ?cbl = b)
have a = proj2-abs (k g ?cpl + (1—k) *g ?cql)
and b = proj2-abs ((j+(1—j)*k) *g ?cpl + ((1—j)*(1—k)) *g ?cq1)
by simp-all
with (proj2-abs ?cpl = p) and (proj2-abs ?cql = ¢
have cross-ratiop qa b
= cross-ratio (proj2-abs ?cpl) (proj2-abs ?cql)
(proj2-abs (k xg ?2cpl 4+ (1—k) =g 2cql))
(proj2-abs ((j-+(1—]) k) + 2ap1 + ((1—)+(1-K)) g 2cq1))
by simp
also from (?cpl # 0) and (?cq1 # 0) and (proj2-abs ?cpl # proj2-abs ?cql)
and (1—k # 0) and (1—j)*(1—k) # 0
have ... = (1—k)x(j+(1—j)*k) / (kx((1—j)x(1—k))) by (rule cross-ratio-abs)
also from (I—k # 0) have ... = (j+(1—j)*k) / ((1—j)=k) by simp
also from (> 0) and ((1—j)«k > 0) have ... > 1 by simp
finally show cross-ratiopga b > 1.
qed

lemma cross-ratio-S-S-hyp2-hyp2-positive:
assumes are-endpoints-in-S p qa b
shows cross-ratiop ga b > 0
proof cases
assume By (cart2-pt p) (cart2-pt b) (cart2-pt a)
hence BR (cart2-pt a) (cart2-pt b) (cart2-pt p)
by (rule real-euclid.th3-2)

211

with assms have cross-ratiop ga b > 1
by (rule are-endpoints-in-S-ordered-cross-ratio)
thus cross-ratio p g a b > 0 by simp
next
assume — BR (cart2-pt p) (cart2-pt b) (cart2-pt a) (is -~ Br ?cp ?cb ?ca)

from (are-endpoints-in-S p q a b)
have are-endpoints-in-S p q b a by (rule are-endpoints-in-S-swap-34)

from (are-endpoints-in-S p q a b)
have p € S and a € hyp2 and b € hyp2 and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from (proj2-set-Col {p,q,a,b})
have proj2-set-Col {p,a,b}
by (simp add: proj2-subset-Col [of {p,a,b} {p.q.a,b}])
hence proj2-Col p a b by (subst proj2-Col-iff-set-Col)
with (p € S) and @ € hyp2) and & € hyp2)
have B ?cp ?ca 2cb V B ?cp ?cb ?ca by (simp add: S-at-edge)
with (= Br ?cp ?cb ?ca) have B ?cp ?ca ?cb by simp
hence BR ?cb ?ca ?cp by (rule real-euclid.th3-2)
with are-endpoints-in-Sp q b @
have cross-ratiopqba > 1
by (rule are-endpoints-in-S-ordered-cross-ratio)
thus cross-ratio p g a b > 0 by (subst cross-ratio-swap-34) simp
qed

lemma cosh-dist-general:
assumes are-endpoints-in-Sp qa b
shows cosh-dist a b
= (sqrt (cross-ratiop g a b) + 1 / sqrt (cross-ratiop qa b)) / 2
proof —
from are-endpoints-in-S p q a b)
havep #gandp € Sand g € Sand a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from @ € hyp2) and (b € hyp2) and (p € S) and (7 € S)
havea #panda#gandb #pandb # g
by (simp-all add: hyp2-S-not-equal)

show cosh-dist a b

= (sqrt (cross-ratiop qa b) + 1 / sqrt (cross-ratiop ga b)) / 2
proof cases

assumea =b

hence cosh-dist a b = 1 by (unfold cosh-dist-def exp-2dist-def) simp

from (proj2-set-Col {p,q,a,b})
have proj2-Col p q a by (unfold @ = b)) (simp add: proj2-Col-iff-set-Col)

212

with (p # ¢ and @ # p) and @ # g
have cross-ratio p g a b = 1 by (simp add: (@ = b) cross-ratio-equal-1)
hence (sqrt (cross-ratiop qab) 4+ 1 / sqrt (cross-ratiop qa b)) / 2

by simp
with (cosh-distab = 1)
show cosh-dist a b
= (sqrt (cross-ratiop ga b) + 1 / sqrt (cross-ratiop qa b)) / 2
by simp
next
assume g # b

let ?r = endpoint-in-S a b

let ?s = endpoint-in-S b a

from @ # b

have exp-2dist a b = cross-ratio ?r ?s a b by (unfold exp-2dist-def) simp

from (1 # b) and (are-endpoints-in-Sp qa b)
have (p = ?r AN q=72s) V (q = ?r A\ p = ?s) by (rule are-endpoints-in-S)

show cosh-dist a b
= (sqrt (cross-ratiop qa b) + 1 / sqrt (cross-ratiop ga b)) / 2
proof cases
assumep =?rAg=7s
with (exp-2dist a b = cross-ratio ?r ?s a b)
have exp-2dist a b = cross-ratio p q a b by simp
thus cosh-dist a b
= (sqrt (cross-ratiop qa b) + 1 / sqrt (cross-ratiop qa b)) / 2
by (unfold cosh-dist-def) (simp add: real-sqrt-divide)
next
assume — (p =?r A g =7s)
with (p=?rAgq=25)V(g=?rAp=7s)
have g = ?r and p = ?s by simp-all
with (exp-2dist a b = cross-ratio ?r ?s a b)
have exp-2dist a b = cross-ratio q p a b by simp

have {g,p,ab} = {p,qab} by auto

with (proj2-set-Col {p,q,a,b}) and (p # q) and @ # p) and b #* p)
and @ # q) and b # g

have cross-ratio-correct p q a b and cross-ratio-correct qp a b
by (unfold cross-ratio-correct-def) simp-all

hence cross-ratio qpab =1 / (cross-ratiop g a b)
by (rule cross-ratio-swap-12)

with (exp-2dist a b = cross-ratio q p a b)

have exp-2dist ab =1 / (cross-ratio p q a b) by simp

thus cosh-dist a b
= (sqrt (cross-ratiop ga b) + 1 / sqrt (cross-ratiop qa b)) / 2
by (unfold cosh-dist-def) (simp add: real-sqrt-divide)

qed

213

qed
qed

lemma exp-2dist-positive:

assumes a € hyp2 and b € hyp2

shows exp-2dista b > 0
proof cases

assume a =b

thus exp-2dist a b > 0 by (unfold exp-2dist-def) simp
next

assume a4 # b

let ?p = endpoint-in-Sa b
let ?q = endpoint-in-S b a
from @ # b) and @ € hyp2) and b € hyp2)
have are-endpoints-in-S ?p ?qa b
by (rule endpoints-in-S-are-endpoints-in-S)
hence cross-ratio ?p ?q a b > 0 by (rule cross-ratio-S-S-hyp2-hyp2-positive)
with @ # b) show exp-2dist a b > 0 by (unfold exp-2dist-def) simp
qed

lemma cosh-dist-at-least-1:
assumes a € hyp2 and b € hyp2
shows cosh-dist ab > 1
proof —
from assms have exp-2dist a b > 0 by (rule exp-2dist-positive)
with am-gm2(1) [of sqrt (exp-2dist a b) sqrt (1 / exp-2dist a b)]
show cosh-distab > 1
by (unfold cosh-dist-def) (simp add: real-sqrt-mult [symmetric])
qed

lemma cosh-dist-positive:
assumes a € hyp2 and b € hyp2
shows cosh-dist a b > 0
proof —
from assms have cosh-dist a b > 1 by (rule cosh-dist-at-least-1)
thus cosh-dist a b > 0 by simp
qed

lemma cosh-dist-perp-divide:
assumes M-perp I m and a € hyp2 and b € hyp2 and c € hyp2
and proj2-incident a | and proj2-incident b | and proj2-incident b m
and proj2-incident c m
shows cosh-dist b ¢ = cosh-dist a ¢ / cosh-dist b a

proof —
from (b € hyp2) and @ € hyp2)
have cosh-dist b a > 0 by (rule cosh-dist-positive)

from assms

214

have cosh-dist a ¢ = cosh-dist b a x cosh-dist b ¢ by (rule cosh-dist-perp)
with (cosh-dist ba > 0)
show cosh-dist b ¢ = cosh-dist a c / cosh-dist b a by simp

qed

lemma real-hyp2-C-cross-ratio-endpoints-in-S:
assumesa Zbandab=gcd
shows cross-ratio (endpoint-in-S (Rep-hyp2 a) (Rep-hyp2 b))
(endpoint-in-S (Rep-hyp2 b) (Rep-hyp2 a)) (Rep-hyp2 a) (Rep-hyp2 b)
= cross-ratio (endpoint-in-S (Rep-hyp2 c) (Rep-hyp2 d))
(endpoint-in-S (Rep-hyp2 d) (Rep-hyp2 c)) (Rep-hyp2 c) (Rep-hyp2 d)
(is cross-ratio ?p ?q ?a’ ?b’ = cross-ratio ?r ?s ?¢' ?d’)

proof —
from @ # b) and @ b =g ¢ d) have ¢ # d by (auto simp add: hyp2.A3")
with @ # b) have ?a’ # ?b"and ?c’ # ?d’ by (unfold Rep-hyp2-inject)

fromwab=gcd

obtain | where is-K2-isometry | and hyp2-cltn2 a | = ¢
and hyp2-cltn2 b | = d
by (unfold real-hyp2-C-def) auto

hence apply-clin2 ?a’ | = ?¢’ and apply-cltn2 ?2b'] = ?d’
by (simp-all add: Rep-hyp2-cltn2 [symmetric))

with (?a’ # ?b" and (is-K2-isometry |

have apply-cltn2 ?p | = ?r and apply-cltn2 ?q | = ?s
by (simp-all add: Rep-hyp2 K2-isometry-endpoint-in-S)

from (?a’ # ?b%
have proj2-set-Col {?p,?q,?a’,?b"}
by (simp add: Rep-hyp2 proj2-set-Col-endpoints-in-S)

from (?a’ # ?b’) have ?p # ?q by (simp add: Rep-hyp2 endpoint-in-S-swap)

have ?p € S by (simp add: Rep-hyp2 endpoint-in-S)
hence ?a’ # ?p and ?b’ # ?p by (simp-all add: Rep-hyp2 hyp2-S-not-equal)
with (proj2-set-Col {?p,?q,?a’,2b'}) and (?p # ?¢
have cross-ratio ?p ?q ?a’ ?b’

= cross-ratio (apply-cltn2 ?p J) (apply-cltn2 ?q J)

(apply-cltn2 ?a’]) (apply-cltn2 ?b'])

by (rule cross-ratio-cltn2 [symmetric])
with apply-cltn2 ?p | = ?r) and (apply-cltn2 ?2q] = ?s)

and (apply-cltn2 ?a’] = ?¢)) and @apply-cltn2 ?b'] = 2d"
show cross-ratio ?p ?q ?2a’ ?b’ = cross-ratio ?r ?s ?¢’ 2d’ by simp

qed

lemma real-hyp2-C-exp-2dist:
assumesab =g cd
shows exp-2dist (Rep-hyp2 a) (Rep-hyp2 b)
= exp-2dist (Rep-hyp2 c) (Rep-hyp2 d)
(is exp-2dist ?a’ ?b’ = exp-2dist ?c’ ?d’)

215

proof —
fromwab=gcd
obtain | where is-K2-isometry | and hyp2-cltn2 a | = c
and hyp2-cltn2 b | = d
by (unfold real-hyp2-C-def) auto
hence apply-clin2 ?a’ | = ?¢’ and apply-cltn2 ?2b'] = ?d’
by (simp-all add: Rep-hyp2-cltn2 [symmetric])

from Rep-hyp2 [of a] and Rep-hyp2 [of b] and (is-K2-isometry |)
have exp-2dist (apply-cltn2 ?a’]) (apply-cltn2 ?b’J) = exp-2dist ?a’ 2b’
by (rule K2-isometry-exp-2dist)
with apply-cltn2 ?a’] = ?¢’) and @apply-cltn2 ?b'] = ?d"
show exp-2dist ?a’ ?b’ = exp-2dist ?¢’ ?2d’ by simp
qed

lemma real-hyp2-C-cosh-dist:
assumesab =g cd
shows cosh-dist (Rep-hyp2 a) (Rep-hyp2 b)
= cosh-dist (Rep-hyp2 c) (Rep-hyp2 d)
using assms
by (unfold cosh-dist-def) (simp add: real-hyp2-C-exp-2dist)

lemma cross-ratio-in-terms-of-cosh-dist:
assumes are-endpoints-in-S p qa b
and B (cart2-pt a) (cart2-pt b) (cart2-pt p)
shows cross-ratiop qa b
= 2 x (cosh-dist a b)? + 2 * cosh-dist a b * sqrt ((cosh-dist a b)?> — 1) — 1
(is ?pgab = 2 * ?ab® + 2 * ?ab * sqrt (2ab®> — 1) — 1)
proof —
from (are-endpoints-in-S p q a b)
have ?ab = (sqrt ?pqab + 1 / sqrt ?pqab) / 2 by (rule cosh-dist-general)
hence sqrt ?pgab — 2 x 7ab + 1 / sqrt ?pqab = 0 by simp
hence sqrt ?pqab x (sqrt ?pgab — 2 % ?ab + 1 / sqrt ?pgab) = 0 by simp
moreover from assms
have ?pgab > 1 by (rule are-endpoints-in-S-ordered-cross-ratio)
ultimately have ?pgab — 2 % ?ab * (sqrt ?pgab) + 1 =0
by (simp add: algebra-simps real-sqrt-mult [symmetric])
with (?pgab > 1) and discriminant-iff [of 1 sqrt ?pqab — 2 % ?ab 1]
have sqrt ?pqab = (2 * 2ab + sqrt (4 x 2ab®> — 4)) / 2
V sqrt ?pgqab = (2 x 2ab — sqrt (4 * ?ab®> — 4)) / 2
unfolding discrim-def
by (simp add: real-sqrt-mult [symmetric| square-expand minus-mult-left)
moreover have sqrt (4 * 2ab®> — 4) = sqrt (4 x (?ab> — 1)) by simp
hence sqrt (4 * 2ab®> — 4) = 2 x sqrt (?ab® — 1)
by (unfold real-sqrt-mult) simp
ultimately have sqrt ?pgab = 2 * (?ab + sqrt (?ab®> — 1)) / 2
V sqrt ?pgqab = 2 x (2ab — sqrt (2ab® — 1)) / 2
by simp
hence sqrt ?pqab = ?ab + sqrt (?ab® — 1)

216

V sqrt ?pgab = ?ab — sqrt (?ab® — 1)
by (simp only: nonzero-mult-divide-cancel-left [of 2])

from (are-endpoints-in-S p q a b)
have a € hyp2 and b € hyp2 by (unfold are-endpoints-in-S-def) simp-all
hence ?ab > 1 by (rule cosh-dist-at-least-1)
hence ?ab? > 1 by simp
hence sqrt (?ab> — 1) > 0 by simp
hence sqrt (?ab®> — 1) x sqrt (2ab> — 1) = 2ab® — 1
by (simp add: real-sqrt-mult [symmetric])
hence (?ab + sqrt (?ab> — 1)) * (?ab — sqrt (?ab®> — 1)) =1
by (simp add: algebra-simps square-expand)

have ?ab — sqrt (2ab> — 1) < 1
proof (rule ccontr)
assume — (?ab — sqrt (2ab®> — 1) < 1)
hence 1 < ?ab — sqrt (?ab*> — 1) by simp
also from (sqrt (?ab®> — 1) > 0)
have ... < ?ab + sqrt (?ab*> — 1) by simp
finally have 1 < ?ab + sqrt (?ab® — 1) by simp
with (1 < ?ab — sqrt (?ab® — 1))
and mult-strict-mono’ [of
1 2ab + sqrt (?ab® — 1) 1 2ab — sqrt (?ab® — 1))
have 1 < (?ab + sqrt (?ab®> — 1)) * (2ab — sqrt (?ab®> — 1)) by simp
with ((?ab + sqrt (?ab® — 1)) * (?ab — sqrt (?ab®> — 1)) = 1)
show False by simp
qed

have sqrt ?pqab = ?ab + sqrt (?ab®> — 1)
proof (rule ccontr)
assume sqrt ?pqab # ?ab + sqrt (7ab* — 1)
with (sqrt ?pqab = ?ab + sqrt (?ab> — 1)
V sqrt ?pgab = ?ab — sqrt (?ab* — 1))
have sqrt ?pqab = ?ab — sqrt (?ab®> — 1) by simp
with (?ab — sqrt (?ab?> — 1) < 1) have sqrt ?pgab < 1 by simp
with (?pgab > 1) have sqrt ?pgab = 1 by simp
with (sqrt ?pqab = ?ab — sqrt (2ab*> — 1))
and ((?ab + sqrt (2ab®* — 1)) * (?ab — sqrt (2ab®> — 1)) = D
have ?ab + sqrt (?ab® — 1) = 1 by simp
with (sgrt ?pgab = 1) have sqrt ?pgab = ?ab + sqrt (?ab®> — 1) by simp
with (sqrt ?pqab # ?ab + sqrt (?ab* — 1)) show False ..
qed
moreover from (?pgab > 1) have ?pgab = (sqrt ?pqab)? by simp
ultimately have ?pqab = (?ab + sqrt (?ab®* — 1))? by simp
with (sgrt (?ab®> — 1) * sqrt (?ab®> — 1) = 2ab*> — 1)
show ?pgab = 2 x 2ab® + 2 * 2ab * sqrt (?ab®> — 1) — 1
by (simp add: square-expand algebra-simps)
qed

217

lemma are-endpoints-in-S-cross-ratio-correct:
assumes are-endpoints-in-Sp qa b
shows cross-ratio-correct p qa b
proof —
from are-endpoints-in-S p q a b)
havep #gandp € Sand g € Sand a € hyp2? and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from @ € hyp2) and b € hyp2) and (p € S) and (g € S)

have a # p and b # p and a # q by (simp-all add: hyp2-S-not-equal)

with (proj2-set-Col {p,q,a,b}) and (p # ¢

show cross-ratio-correct p q a b by (unfold cross-ratio-correct-def) simp
qed

lemma endpoints-in-S-cross-ratio-correct:
assumes a # b and a € hyp2 and b € hyp2
shows cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b
proof —
from assms
have are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-S b a) a b
by (rule endpoints-in-S-are-endpoints-in-S)
thus cross-ratio-correct (endpoint-in-S a b) (endpoint-in-Sba) ab
by (rule are-endpoints-in-S-cross-ratio-correct)
qed

lemma endpoints-in-S-perp-foot-cross-ratio-correct:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
and proj2-incident a | and proj2-incident b |
shows cross-ratio-correct
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c 1)
(is cross-ratio-correct ?p ?q a ?d)
proof —
from assms
have are-endpoints-in-S ?p ?q a ?2d
by (rule endpoints-in-S-perp-foot-are-endpoints-in-S)
thus cross-ratio-correct ?p 2q a ?d
by (rule are-endpoints-in-S-cross-ratio-correct)
qed

lemma cosh-dist-unique:
assumes a € hyp2 and b € hyp2 and c € hyp2 andp € S
and By (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br ?ca ?cb ?cp)
and By (cart2-pt a) (cart2-pt c) (cart2-pt p) (is Br ?ca ?cc ?cp)
and cosh-dist a b = cosh-dist a c (is ?ab = ?ac)
shows b = ¢

proof —
let ?q = endpoint-in-S p a

218

from @ € hyp2) and (b € hyp2) and (¢ € hyp2) and p € S)

have z-non-zero a and z-non-zero b and z-non-zero ¢ and z-non-zero p
by (simp-all add: hyp2-S-z-non-zero)

with (Br ?ca ?cb ?cp) and (BR ?ca ?cc ?cp)

have 3 [. proj2-incident a | A proj2-incident b I A proj2-incident p |
and 3 m. proj2-incident a m A proj2-incident ¢ m A proj2-incident p m
by (simp-all add: euclid-B-cart2-common-line)

then obtain / and m where
proj2-incident a | and proj2-incident b I and proj2-incident p |
and proj2-incident a m and proj2-incident c m and proj2-incident p m
by auto

from @ € hyp2) and (p € S) have a # p by (rule hyp2-S-not-equal)
with (proj2-incident a I) and (proj2-incident p |)
and (proj2-incident a m) and (proj2-incident p m) and proj2-incident-unique
have [= m by fast
with (proj2-incident ¢ m) have proj2-incident c | by simp
with @ € hyp2) and b € hyp2) and (¢ € hyp2) and p € S)
and (proj2-incident a) and (proj2-incident b I) and (proj2-incident p D)
have are-endpoints-in-S p ?q b a and are-endpoints-in-S p ?q c a
by (simp-all add: end-and-opposite-are-endpoints-in-S)
with are-endpoints-in-S-swap-34
have are-endpoints-in-S p ?q a b and are-endpoints-in-S p ?q a c by fast+
hence cross-ratio-correct p ?q a b and cross-ratio-correct p ?q a c
by (simp-all add: are-endpoints-in-S-cross-ratio-correct)
moreover
from (are-endpoints-in-S p ?q a by and (are-endpoints-in-S p ?q a c)
and (BR ?ca ?cb ?cp) and (BR ?ca ?cc ?cp)
have cross-ratio p ?qa b = 2 x 2ab> + 2 * 2ab * sqrt (7ab®> — 1) — 1
and cross-ratiop ?q a c = 2 x ?ac® + 2 * 2ac * sqrt (?ac®> — 1) — 1
by (simp-all add: cross-ratio-in-terms-of-cosh-dist)
with (?ab = ?ac) have cross-ratio p ?q a b = cross-ratio p ?q a c by simp
ultimately show b = ¢ by (rule cross-ratio-unique)
qed

lemma cosh-dist-swap:
assumes a € hyp2 and b € hyp2
shows cosh-dist a b = cosh-dist b a
proof —
from assms and K2-isometry-swap
obtain | where is-K2-isometry | and apply-cltn2a] =b
and apply-cltn2 b | =a
by auto

from (b € hyp2) and @ € hyp2) and (is-K2-isometry |)

have cosh-dist (apply-clin2 b]) (apply-cltn2 a J) = cosh-dist b a
by (rule K2-isometry-cosh-dist)

with «apply-cltn2 a | = b) and apply-cltn2 b | = a)

show cosh-dist a b = cosh-dist b a by simp

219

qed

lemma exp-2dist-1-equal:
assumes a € hyp2 and b € hyp2 and exp-2dista b =1
showsa =10
proof (rule ccontr)
assume a # b
with @ € hyp2) and b € hyp2)
have cross-ratio-correct (endpoint-in-S a b) (endpoint-in-Sba) a b
(is cross-ratio-correct ?p ?2q a b)
by (simp add: endpoints-in-S-cross-ratio-correct)
moreover
from @ # b
have exp-2dist a b = cross-ratio ?p ?q a b by (unfold exp-2dist-def) simp
with (exp-2dist a b = 1) have cross-ratio ?p ?qa b = 1 by simp
ultimately have a = b by (rule cross-ratio-1-equal)
with @ # b) show False ..
qed

9.11.1 A formula for a cross ratio involving a perpendicular foot

lemma described-perp-foot-cross-ratio-formula:

assumes a # b and c € hyp2 and are-endpoints-in-Sp ga b

and proj2-incident p | and proj2-incident q | and M-perp [m

and proj2-incident d | and proj2-incident d m and proj2-incident ¢ m

shows cross-ratiop g d a

= (cosh-dist b ¢ * sqrt (cross-ratio p g a b) — cosh-dist a c)
/ (cosh-dist a c cross-ratiop qa b
— cosh-dist b ¢ x sqrt (cross-ratiop qa b))

(is ?pgda = (?bc * sqrt ?pqab — ?ac) / (?ac x ?pgab — ?bc * sqrt ?pqab))
proof —

let ?da = cosh-dist d a

let ?db = cosh-dist d b

let ?dc = cosh-dist d c

let ?pqdb = cross-ratiop g d b

from (are-endpoints-in-S p q a b)

havep #gandp € Sand g € Sand a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from (proj2-set-Col {p,q,a,b})

obtain I’ where proj2-incident p 1’ and proj2-incident g 1’
and proj2-incident a 1" and proj2-incident b 1’
by (unfold proj2-set-Col-def) auto

from (p # ¢ and (proj2-incident p 1’y and (proj2-incident g 1

and (proj2-incident p I) and (proj2-incident q I) and proj2-incident-unique
have I’ = I by fast

220

with (proj2-incident a 1’y and (proj2-incident b 1)
have proj2-incident a I and proj2-incident b [by simp-all

from (M-perp | m) and (a € hyp2) and (proj2-incident a I) and (¢ € hyp2)
and (proj2-incident ¢ m) and (proj2-incident d I} and (proj2-incident d m)
have d € hyp2 by (rule M-perp-hyp2)
with @ € hyp2) and & € hyp2) and (c € hyp2)
have ?bc > 0 and ?da > 0 and ?ac > 0
by (simp-all add: cosh-dist-positive)

from (proj2-incident p I) and (proj2-incident q I) and (proj2-incident d)
and (proj2-incident a I) and (proj2-incident b)
have proj2-set-Col {p,q,d,a} and proj2-set-Col {p,q,d,b}
and proj2-set-Col {p,q,a,b}
by (unfold proj2-set-Col-def) (simp-all add: exI [of - 1])
with (p # ¢ and (p € S) and (g € S) and d € hyp2) and @ € hyp2)
and &b € hyp2)
have are-endpoints-in-S p q d a and are-endpoints-in-Sp qd b
and are-endpoints-in-Sp qa b
by (unfold are-endpoints-in-S-def) simp-all
hence ?pgda > 0 and ?pgdb > 0 and ?pqab > 0
by (simp-all add: cross-ratio-S-S-hyp2-hyp2-positive)

from (proj2-incident p I) and (proj2-incident q I) and (proj2-incident a I)
have proj2-Col p q a by (rule proj2-incident-Col)

from @ € hyp2) and b € hyp2) and (p € S) and (g € S)
have a # p and a # g and b # p by (simp-all add: hyp2-S-not-equal)

from (proj2-Col p g @) and (p # ¢ and @ # p) and @ # g
have ?pqdb = ?pgda * ?pqab by (rule cross-ratio-product [symmetric])

from (M-perp I m) and (a € hyp2) and b € hyp2) and (c € hyp2) and d € hyp2)
and (proj2-incident a I) and (proj2-incident b I and (proj2-incident d)
and (proj2-incident d m) and (proj2-incident ¢ m)
and cosh-dist-perp-divide [of I m - d c]
have ?dc = ?ac / ?da and ?dc = ?bc / ?db by fast+
hence ?ac / ?da = ?bc / ?db by simp
with (?bc > 0) and ?da > 0)
have ?ac / ?bc = ?da / ?db by (simp add: field-simps)
also from (are-endpoints-in-S p q d a) and (are-endpoints-in-S p q d b)
have ...
=2 x (sqrt ?pgda + 1 / (sqrt ?pqda))
/ (2 % (sqrt ?pqdb + 1 / (sqrt ?pqdb)))
by (simp add: cosh-dist-general)
also
have ... = (sqrt ?pqda + 1 / (sqrt ?pgda)) / (sqrt ?pqdb + 1 / (sqrt ?pqdb))
by (simp only: mult-divide-mult-cancel-left-if) simp
also have ...

221

= sqrt ?pqdb * (sqrt ?pgda + 1 / (sqrt ?pqda))
/ (sqrt ?pqdb x (sqrt ?pgdb + 1 / (sqrt ?pqdb)))
by simp
also from (?pgdb > 0)
have ... = (sqrt (?pqdb * ?pqda) + sqrt (?pqdb / ?pqda)) / (?pqdb + 1)
by (simp add: real-sqrt-mult [symmetric| real-sqrt-divide algebra-simps)
also from (?pqdb = ?pqda * ?pqab) and (?pqda > 0) and real-sqrt-pow?2
have ... = (?pgda * sqrt ?pqab + sqrt ?pqab) / (?pqda * ?pqab + 1)
by (simp add: real-sqrt-mult square-expand)
finally
have ?ac / ?bc = (?pqda * sqrt ?pqab + sqrt ?pqab) / (?pqda * ?pqab + 1) .

from (?pgda > 0> and (?pgab > 0

have ?pgda x ?pgab + 1 > 0 by (simp add: mult-pos-pos add-pos-pos)

with (?bc > 0)
and (?ac / ?bc = (?pqda = sqrt ?pqab + sqrt ?pgab) / (?pqda * ?pgab + 1))

have ?ac x (?pgda * ?pgqab + 1) = ?bc * (?pqda * sqrt ?pgab + sqrt ?pqab)
by (simp add: field-simps)

hence ?pgda * (?ac x ?pgab — ?bc * sqrt ?pqab) = ?bc * sqrt ?pgab — ?ac
by (simp add: algebra-simps)

from (proj2-set-Col {p,q,a,b}) and (p # q) and @ # p) and @ # ¢
and &b # p)
have cross-ratio-correct p q a b by (unfold cross-ratio-correct-def) simp

have ?ac x ?pgab — ?bc * sqrt ?pqab # 0
proof
assume ’ac x ?pgab — ?bc x sqrt ?pqab = 0
with (?pgda * (?ac = ?pgab — ?bc * sqrt ?pqab) = ?bc * sqrt ?pqab — ?ac)
have ?bc * sqrt ?pgab — ?ac = 0 by simp
with (?ac x ?pgab — ?bc * sqrt ?pqab = 0) and (?ac > 0)
have ?pgab = 1 by simp
with (cross-ratio-correct p q a b)
have a = b by (rule cross-ratio-1-equal)
with @ # b) show False ..
qed
with (?pgda = (?ac = ?pgab — ?bc * sqrt ?pqab) = ?bc * sqrt ?pqab — ?ac)
show ?pgda = (?bc * sqrt ?pgab — ?ac) / (?ac x ?pgab — ?bc * sqrt ?pqab)
by (simp add: field-simps)
qed

lemma perp-foot-cross-ratio-formula:
assumes 2 € hyp2 and b € hyp2 and c € hyp2 and a # b
shows cross-ratio (endpoint-in-S a b) (endpoint-in-S b a)
(perp-foot ¢ (proj2-line-through a b)) a
= (cosh-dist b ¢ x sqrt (exp-2dist a b) — cosh-dist a c)
/ (cosh-dist a ¢ exp-2dist a b — cosh-dist b ¢ * sqrt (exp-2dist a b))
(is cross-ratio ?p ?q ?d a
= (?bc sqrt ?pgab — ?ac) / (?ac = ?pgab — ?bc * sqrt ?pgab))

222

proof —
from @ # b) and @ € hyp2) and b € hyp2)
have are-endpoints-in-S ?p ?qa b
by (rule endpoints-in-S-are-endpoints-in-S)

let ?I = proj2-line-through a b

have proj2-incident a ?I and proj2-incident b ?1
by (rule proj2-line-through-incident)+

with @ # b) and @ € hyp2) and b € hyp2)

have proj2-incident ?p ?1 and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident)

let ?m = drop-perp c ?1
have M-perp ?1 ?m by (rule drop-perp-perp)

have proj2-incident ?d ?I and proj2-incident ?d ?m
by (rule perp-foot-incident)+

have proj2-incident ¢ ?m by (rule drop-perp-incident)

with @ # b) and (c € hyp2) and (are-endpoints-in-S ?p ?q a b)
and (proj2-incident ?p ?) and (proj2-incident ?q ?) and (M-perp ?1 ?m)
and (proj2-incident ?d ?1) and (proj2-incident ?d ?m)

have cross-ratio ?p ?q ?d a
= (?bc * sqrt (cross-ratio ?p ?2q a b) — ?ac)
/ (?ac x (cross-ratio ?p ?q a b) — ?bc * sqrt (cross-ratio ?p ?q a b))
by (rule described-perp-foot-cross-ratio-formula)

with @ # b

show cross-ratio ?p 7q ?d a
= (?bc * sqrt ?pqab — ?ac) / (?ac x ?pqab — ?bc * sqrt ?pqab)
by (unfold exp-2dist-def) simp

qed

9.12 The Klein—-Beltrami model satisfies axiom 5

lemma statement69:
assumesab=ga’'b’andbc=gb'c’andac=ga’c’
shows 3 J. is-K2-isometry |
A hyp2-cltn2 a | = a’ A\ hyp2-clin2 b] = b’ A hyp2-clin2 ¢] = ¢’
proof cases
assume a =b
with @ b =g a’ b’ have a’ = b’ by (simp add: hyp2.A3-reversed)
with @ =b and bc=g b'ch
show 3 |. is-K2-isometry |
A hyp2-cltn2 a] = a’ A\ hyp2-clin2 b] = b’ A hyp2-clin2 ¢] = ¢’
by (unfold real-hyp2-C-def) simp
next
assume g # b
with a b =g a’ b’
have a’ # b’ by (auto simp add: hyp2.A3)

223

let ?pa = Rep-hyp2 a
and ?pb = Rep-hyp2 b
and ?pc = Rep-hyp2 c
and ?pa’ = Rep-hyp2 a’
and ?pb’ = Rep-hyp2 b’
and ?pc’ = Rep-hyp2 ¢’
def pp = endpoint-in-S ?pa ?pb
and pq = endpoint-in-S ?pb ?pa
and | £ proj2-line-through ?pa ?pb
and pp’ £ endpoint-in-S ?pa’ ?pb’
and pq’ £ endpoint-in-S ?pb’ ?pa’
and I’ £ proj2-line-through ?pa’ ?pb’
def pd = perp-foot ?pc
and ps = perp-up ?pc |
and m = drop-perp ?pc |
and pd’ £ perp-foot ?pc’ I’
and ps’ = perp-up ?pc’ 1’
and m' £ drop-perp ?pc’ 1’

havepp € Sandpp’ € Sand pg € Sand pg’' € S
unfolding pp-def and pp’-def and pg-def and pq'-def
by (simp-all add: Rep-hyp2 endpoint-in-S)

from @ # b) and @’ # b
have ?pa # ?pb and ?pa’ # ?pb’ by (unfold Rep-hyp2-inject)
moreover
have proj2-incident ?pa I and proj2-incident ?pb |
and proj2-incident ?pa’ 1" and proj2-incident ?pb’ 1’
by (unfold I-def I'-def) (rule proj2-line-through-incident)+
ultimately have proj2-incident pp | and proj2-incident pp’ I’
and proj2-incident pq | and proj2-incident pq’ 1’
unfolding pp-def and pp’-def and pg-def and pq'-def
by (simp-all add: Rep-hyp2 endpoint-in-S-incident)

from (pp € S) and (pp’ € S) and (proj2-incident pp I)
and (proj2-incident pp’ 1’y and (proj2-incident ?pa |
and (proj2-incident ?pa’l’)

have right-angle pp pd ps and right-angle pp’ pd’ ps’
unfolding pd-def and ps-def and pd’-def and ps’-def
by (simp-all add: Rep-hyp2

perp-foot-up-right-angle [of pp ?pc ?pa l]
perp-foot-up-right-angle [of pp’ ?pc’ ?pa’ 1))

with right-angle-to-right-angle [of pp pd ps pp’ pd’ ps’|

obtain | where is-K2-isometry | and apply-cltn2 pp | = pp’
and apply-cltn2 pd | = pd’ and apply-clin2 ps | = ps’
by auto

224

let ?pa] = apply-cltn2 ?pa |

and ?pb] = apply-cltn2 ?pb |
and ?pc] = apply-cltn2 ?pc |
and ?pd] = apply-cltn2 pd |
and ?pp] = apply-cltn2 pp |
and ?pq] = apply-cltn2 pq |
and ?ps] = apply-cltn2 ps |
and ?I] = apply-cltn2-line] |
and ?m] = apply-clin2-line m |

have proj2-incident pd | and proj2-incident pd’ 1’
and proj2-incident pd m and proj2-incident pd’ m’
by (unfold pd-def pd’-def m-def m'-def) (rule perp-foot-incident)+

from (proj2-incident pp I) and (proj2-incident pq)
and (proj2-incident pd I) and (proj2-incident ?pa |)
and (proj2-incident ?pb |)

have proj2-set-Col {pp,pq,pd,?pa} and proj2-set-Col {pp,pq,2pa,?pb}
by (unfold pd-def proj2-set-Col-def) (simp-all add: exI [of - 1])

from (?pa # ?pb) and (?pa’ # ?pb"

have pp # pq and pp' # pq’
unfolding pp-def and pg-def and pp’-def and pq'-def
by (simp-all add: Rep-hyp2 endpoint-in-S-swap)

from (proj2-incident ?pa) and (proj2-incident ?pa’ 1"
have pd € hyp2 and pd’ € hyp2
unfolding pd-def and pd’-def
by (simp-all add: Rep-hyp2 perp-foot-hyp2 [of ?pa | ?pc]
perp-foot-hyp2 [of ?pa’ 1’ ?pc’])

from (proj2-incident ?pa) and (proj2-incident ?pa’ 1"
have ps € Sand ps’ € S
unfolding ps-def and ps’-def
by (simp-all add: Rep-hyp2 perp-up-in-S [of ?pc ?pa l]
perp-up-in-S [of ?pc’ ?pa’l'])

from (pd € hyp2) and (pp € S) and (ps € S)

have pd # pp and ?pa # pp and ?pb # pp and pd # ps
by (simp-all add: Rep-hyp2 hyp2-S-not-equal)

from (is-K2-isometry]) and (pg € S)
have ?pq] € S by (unfold is-K2-isometry-def) simp

from (pd # pp) and (proj2-incident pd I) and (proj2-incident pp I)
and (proj2-incident pd’ 1’y and (proj2-incident pp' 1"

have ?I] =1’
unfolding (?pd] = pd") [symmetric] and ?pp] = pp” [symmetric]
by (rule apply-cltn2-line-unique)

225

from (proj2-incident pq I) and (proj2-incident ?pa)
and (proj2-incident ?pb |)

have proj2-incident ?pq] 1’ and proj2-incident ?paJ I’
and proj2-incident ?pbJ I’
by (unfold ?1] = 1" [symmetric|) simp-all

from (?pa’ % ?pb’ and (?pq] € S) and (proj2-incident ?pa’ ')
and (proj2-incident ?pb’ 1) and (proj2-incident ?pq] 1"
have ?pq] = pp' Vv ?pq] = pq’
unfolding pp'-def and pq’-def
by (simp add: Rep-hyp2 endpoints-in-S-incident-unique)
moreover
from (pp # pqg and apply-cltn2-injective
have pp’ # ?pq] by (unfold ?pp] = pp" [symmetric]) fast
ultimately have ?pg] = pq’ by simp

from (?pa’ # ?pb”
have cross-ratio pp’ pq’ pd’ ?pa’
= (cosh-dist ?pb’ ?pc’ x sqrt (exp-2dist ?pa’ ?pb’) — cosh-dist ?pa’ ?pc’)
/ (cosh-dist ?pa’ ?pc’ * exp-2dist ?pa’ ?pb’
— cosh-dist ?pb’ ?pc’ sqrt (exp-2dist ?pa’ ?pb))
unfolding pp'-def and pq’-def and pd’-def and I"-def
by (simp add: Rep-hyp2 perp-foot-cross-ratio-formula)
also from assms
have ... = (cosh-dist ?pb ?pc * sqrt (exp-2dist ?pa ?pb) — cosh-dist ?pa ?pc)
/ (cosh-dist ?pa ?pc * exp-2dist ?pa ?pb
— cosh-dist ?pb ?pc x sqrt (exp-2dist ?pa ?pb))
by (simp add: real-hyp2-C-exp-2dist real-hyp2-C-cosh-dist)
also from (?pa # ?pb)
have ... = cross-ratio pp pq pd ?pa
unfolding pp-def and pg-def and pd-def and [-def
by (simp add: Rep-hyp2 perp-foot-cross-ratio-formula)
also from (proj2-set-Col {pp,pq,pd,?pa}) and (pp # pq) and (pd # pp)
and (?pa # pp)
have ... = cross-ratio ?pp] ?pq] ?pd] ?pa] by (simp add: cross-ratio-clin2)
also from (?pp] = pp) and (?pq] = pq" and ?pd] = pd"
have ... = cross-ratio pp' pq’ pd’ ?pa] by simp
finally
have cross-ratio pp’ pq’ pd’ ?pa] = cross-ratio pp’ pq’ pd’ ?pa’ by simp

from (is-K2-isometry |)
have ?pa] € hyp2 and ?pb] € hyp2 and ?pc] € hyp2
by (rule apply-cltn2-Rep-hyp2)+

from (proj2-incident pp’ 1) and (proj2-incident pq’ 1"
and (proj2-incident pd’ 1) and (proj2-incident ?pa] 1)
and (proj2-incident ?pa’ 1’y and (proj2-incident ?pb] 1)
and (proj2-incident ?pb’ 1)
have proj2-set-Col {pp',pq’,pd’,?pal } and proj2-set-Col {pp’,pq’pd’,?pa’}

226

and proj2-set-Col {pp',pq’,2pa’,?pbJ }

and proj2-set-Col {pp’pq’,?pa’,?pb'}

by (unfold proj2-set-Col-def) (simp-all add: exI [of - 1'])
with (pp’ # pq’) and pp’ € S and (pq’ € S) and (pd’ € hyp2)

and (?paJ € hyp2) and (?pb] € hyp2)
have are-endpoints-in-S pp’ pq’ pd’ ?paJ

and are-endpoints-in-S pp’ pq’ pd’ ?pa’

and are-endpoints-in-S pp’ pq’ ?pa’ ?pb]

and are-endpoints-in-S pp’ pq’ ?pa’ ?pb’

by (unfold are-endpoints-in-S-def) (simp-all add: Rep-hyp2)
hence cross-ratio-correct pp’ pq’ pd’ ?paJ

and cross-ratio-correct pp’ pq’ pd’ ?pa’

and cross-ratio-correct pp’ pq’ ?pa’ ?pb]

and cross-ratio-correct pp' pq’ ?pa’ ?pb’

by (simp-all add: are-endpoints-in-S-cross-ratio-correct)

from (cross-ratio-correct pp’ pq’ pd’ ?pa])
and (cross-ratio-correct pp’ pq’ pd' ?pa’)
and (cross-ratio pp’ pq’ pd’ ?pa] = cross-ratio pp’ pq’ pd’ ?pa’)
have ?paJ = ?pa’ by (simp add: cross-ratio-unique)
with (?pp] = pp’ and ?pg] = pq"
have cross-ratio pp’ pq’ ?pa’ ?pb] = cross-ratio ?pp] ?pq] ?paJ ?pb] by simp
also from (proj2-set-Col {pp,pq,?pa,?pb}) and (pp # pq) and (?pa # pp)
and (?pb # pp)

have ... = cross-ratio pp pq ?pa ?pb by (rule cross-ratio-cltn2)
also from @ # b) and a b =g a’ b’
have ... = cross-ratio pp' pq’ ?pa’ ?pb’

unfolding pp-def pg-def pp'-def pq'-def

by (rule real-hyp2-C-cross-ratio-endpoints-in-S)
finally have cross-ratio pp’ pq’ ?pa’ ?pb] = cross-ratio pp’ pq’ ?pa’ ?pb’ .
with (cross-ratio-correct pp’ pq’ ?pa’ ?pb])

and (cross-ratio-correct pp’ pq’ ?pa’ 2pb’)
have ?pb] = ?pb’ by (rule cross-ratio-unique)

let ?cc = cart2-pt ?pc

and ?cd = cart2-pt pd
and ?cs = cart2-pt ps
and ?cc’ = cart2-pt ?pc’
and ?cd’ = cart2-pt pd’
and ?cs’ = cart2-pt ps’
and ?cc] = cart2-pt ?pc]
and ?cd] = cart2-pt ?pd]
and ?cs] = cart2-pt ?ps|

from (proj2-incident ?pa I and (proj2-incident ?pa’ 1)
have BR ?cd ?cc ?cs and B ?cd’ ?cc’ ?cs’
unfolding pd-def and ps-def and pd’-def and ps’-def
by (simp-all add: Rep-hyp2 perp-up-at-end [of ?pc ?pa]
perp-up-at-end [of ?pc’ ?pa’l'])

227

from (pd € hyp2) and (ps € S) and (is-K2-isometry |)

and (BR ?cd ?cc ?cs)
have BR ?cd] ?cc] ?cs] by (simp add: Rep-hyp2 statement-63)
hence Br ?cd’ ?cc] ?cs’ by (unfold (?pd] = pd") (?ps] = ps")

from (?pa] = ?pa’) have cosh-dist ?pa’ ?pc] = cosh-dist ?pa] ?pc] by simp
also from (is-K2-isometry])

have ... = cosh-dist ?pa ?pc by (simp add: Rep-hyp2 K2-isometry-cosh-dist)
also from ac =g a’c’

have ... = cosh-dist ?pa’ ?pc’ by (rule real-hyp2-C-cosh-dist)

finally have cosh-dist ?pa’ ?pc] = cosh-dist ?pa’ ?pc’ .

have M-perp ' m' by (unfold m'-def) (rule drop-perp-perp)

have proj2-incident ?pc m and proj2-incident ?pc’ m’
by (unfold m-def m'-def) (rule drop-perp-incident)+

from (proj2-incident ?pa |) and (proj2-incident ?pa’ 1"

have proj2-incident ps m and proj2-incident ps’ m’
unfolding ps-def and m-def and ps’-def and m'-def
by (simp-all add: Rep-hyp2 perp-up-incident [of ?pc ?pa I]

perp-up-incident [of ?pc’ ?pa’ ')

with (pd # ps) and (proj2-incident pd m) and (proj2-incident pd’ m’)

have ?m] = m’
unfolding (?pd] = pd") [symmetric] and (?ps] = ps" [symmetric]
by (simp add: apply-cltn2-line-unique)

from (proj2-incident ?pc m)

have proj2-incident ?pc] m' by (unfold (?m] = m”) [symmetric]) simp

with (M-perp I’ m") and Rep-hyp2 [of a’] and (pd’ € hyp2) and (?pc] € hyp2)
and Rep-hyp2 [of ¢’] and (proj2-incident ?pa’ 1"
and (proj2-incident pd’ 1) and (proj2-incident pd’ m’)
and (proj2-incident ?pc’ m’)

have cosh-dist pd’ ?pc] = cosh-dist ?pa’ ?pc] / cosh-dist pd’ ?pa’
and cosh-dist pd' ?pc’ = cosh-dist ?pa’ ?pc’ / cosh-dist pd’ ?pa’
by (simp-all add: cosh-dist-perp-divide)

with (cosh-dist ?pa’ ?pc] = cosh-dist ?pa’ ?pc’)

have cosh-dist pd' ?pc] = cosh-dist pd’ ?pc’ by simp

with (pd’ € hyp2) and (?pc] € hyp2) and (?pc’ € hyp2) and (ps’ € S)
and (BR ?cd’ ?cc] ?cs’y and (BR ?cd’ 2cc’ ?cs’)

have ?pc] = ?pc’ by (rule cosh-dist-unique)

with (?pa] = ?pa’) and (?pb] = ?pb"

have hyp2-cltn2 a | = a’ and hyp2-cltn2 b | = b’ and hyp2-cltn2 ¢] = ¢’
by (unfold hyp2-cltn2-def) (simp-all add: Rep-hyp2-inverse)

with (is-K2-isometry |)

show 3 J. is-K2-isometry |
A hyp2-cltn2 a] = a’ A hyp2-cltn2 b] = b’ A hyp2-cltn2 ¢ [= ¢’
by (simp add: exI [of -]])

qed

228

theorem hyp2-axiomb:

Yabcda'b'c'd'
a#bANBgabcABga'b'c’Nab=ga'b’ANbc=xb'c’
Nad=xa'd' Nbd=xb'd'

—cd=gc'd

proof default+

fixabcda'b'c'd’

assumea b ABxabcABga'b'c’Nab=ga'b’Nbc=gb'c’
Nad=gxa'd' Nbd=xb'd'

hencea #band Bxabcand Bxa’'b'c’andab =g a’b’
andbc=gb'c’andad=ga’d andbd =x b'd’
by simp-all

from @b =ga'b")and bd =g b'd) and ad =g a’d" and statement69 [of a b a’ b’
dd’
obtain | where is-K2-isometry | and hyp2-cltn2 a | = a’
and hyp2-clin2 b] = b’ and hyp2-clin2 d] = d’
by auto

let ?a] = hyp2-cltn2 a |
and ?b] = hyp2-cltn2 b |
and ?c] = hyp2-cltn2 c |
and ?d] = hyp2-cltn2 d |

from @ # b and a b =g a’ b’
have a’ # b’ by (auto simp add: hyp2.A3)

from (is-K2-isometry |) and (Bg a b)
have Bk ?a] ?b] ?c] by (rule real-hyp2-B-hyp2-cltn2)
hence By a’ b’ ?c] by (unfold (?a] = a’) (?b] = b")

from (is-K2-isometry J)

have b ¢ =g ?b] ?c] by (rule real-hyp2-C-hyp2-cltn2)

hence b ¢ =g b’ ?c] by (unfold (?b] = b")

from this and (b c =g b’ ¢/ have b’ ?c] =g b’ ¢’ by (rule hyp2.A2’)

with @’ # b’ and (Bg a’ b’ ?c]) and Bx a’ b’ ¢’

have ?c] = ¢’ by (rule hyp2-extend-segment-unique)

from (is-K2-isometry])

show cd =x ¢'d’
unfolding (?c] = ¢/} [symmetric] and ?d] = d') [symmetric]
by (rule real-hyp2-C-hyp2-clin2)

qed

interpretation hyp2: tarski-first5 real-hyp2-C real-hyp2-B

using hyp2-axiom4 and hyp2-axiom5
by unfold-locales

229

9.13 The Klein—-Beltrami model satisfies axioms 6, 7, and 11

theorem hyp2-axiom6:V ab.Bxaba —a=b
proof default+
fixa b
let ?ca = cart2-pt (Rep-hyp2 a)
and ?cb = cart2-pt (Rep-hyp2 b)
assume Bxaba
hence BR ?ca ?cb ?ca by (unfold real-hyp2-B-def hyp2-rep-def)
hence ?ca = ?cb by (rule real-euclid.A6")
hence Rep-hyp2 a = Rep-hyp2 b by (simp add: Rep-hyp2 hyp2-S-cart2-inj)
thus a = b by (unfold Rep-hyp2-inject)
qed

lemma between-inverse:
assumes B (hyp2-rep p) v (hyp2-rep q)
shows hyp2-rep (hyp2-abs v) = v
proof —
let ?u = hyp2-rep p
let 7w = hyp2-rep q
have norm ?u < 1 and norm ?w < 1 by (rule norm-hyp2-rep-It-1)+

from (B ?u v ?w)
obtain [where! > 0and ! < 1andv — ?u = xg (Pw — ?u)
by (unfold real-euclid-B-def) auto
from w — ?u =1 *g (?w — ?u)
have v = [xg ?w + (1 — 1) *g ?u by (simp add: algebra-simps)
hence norm v < norm (I xg ?w) + norm ((1 — 1) *g ?u)
by (simp only: norm-triangle-ineq [of | g ?w (1 — 1) *g ?u])
withd >0 and I < 1)
have norm v <1 xg norm ?w + (1 — 1) xg norm ?u by simp

have norm v < 1
proof cases
assume [=0
have v = ?u by simp
with (morm ?u < 1) show norm v < 1 by simp
next
assume [# 0
with (norm ?w < 1) and { > 0) have | xg norm ?w < I by simp

with morm?u< D and (< 1)
and mult-mono [of 1 — 11 — I norm ?u 1]
have (1 — 1) xg norm ?u <1 — I by simp
with ([xg norm ?w <D
have [xg norm ?w + (1 — 1) xg norm 2u < 1 by simp
with morm v <1 xg norm ?w + (1 — 1) xg norm ?2u)
show norm v < 1 by simp
qed

230

thus hyp2-rep (hyp2-abs v) = v by (rule hyp2-rep-abs)
qed

lemma between-switch:
assumes B (hyp2-rep p) v (hyp2-rep q)
shows Bk p (hyp2-abs v) q
proof —
from assms have hyp2-rep (hyp2-abs v) = v by (rule between-inverse)
with assms show By p (hyp2-abs v) g by (unfold real-hyp2-B-def) simp
qed

theorem hyp2-axiom7:
Vabcpg.BxkapcABgbgc— (3 x.BxkpxbABgqgxa)
proof auto
fixabcpgq
let 7ca = hyp2-rep a
and ?cb = hyp2-rep b
and ?cc = hyp2-rep ¢
and ?cp = hyp2-rep p
and ?cq = hyp2-rep q
assume Bxapcand Bk bgc
hence B ?ca ?cp ?cc and Bg ?cb ?cq ?cc by (unfold real-hyp2-B-def)
with real-euclid A7’ [of ?ca ?cp ?cc ?cb ?cq]
obtain cx where B ?cp cx ?cb and BR ?cq cx ?ca by auto
hence Bg p (hyp2-abs cx) b and Bk g (hyp2-abs cx) a
by (simp-all add: between-switch)
thus 3 x. Bx p x b A Bg q x a by (simp add: exI [of - hyp2-abs cx])
qed

theorem hyp2-axiom11:
VXY (3aVyxyxeXANyeY —Bgaxy)
— (3bVxyxeXANyeY —Bgxby)
proof (rule alll)+
fix XY :: hyp2 set
show (3 aVxyxeXAyeY —Bgaxy)
— (b VxyxeXANyeY —Bgxby)
proof cases
assume X = {} VY = {}
thus (3 aVxyxeXANyeY —Bgaxy)
— (3 b.VxyxeXANyeY — Bxxby) by auto
next
assume - (X ={}vY={})
hence X # {} and Y # {} by simp-all
then obtain w and z where w € X and z € Y by auto

show (3 aVxyxeXANyeY —Bgaxy)
— (b VxyxeXANyeY —Bgxby)
proof

assume 3 a.Vxy.xceXAyeY — Bxaxy

231

then obtain s whereV xy. x € XAy €Y — Bxaxy..

let ?cX = hyp2-rep * X
and ?cY = hyp2-rep ' Y
and ?ca = hyp2-rep a
and ?cw = hyp2-rep w
and ?cz = hyp2-rep z

from Vv xy.x € XAy€Y — Bxaxy
have V cxcy.cx € ?2cX Acy € ?cY — BR ?cacx cy
by (unfold real-hyp2-B-def) auto
with real-euclid A11' [of 7cX ?cY ?ca]
obtain cb where V cx cy. cx € ?cX A cy € ?cY — BR cx cb cy by auto
with w € X) and z € Y) have Br ?cw cb ?cz by simp
hence hyp2-rep (hyp2-abs cb) = cb (is hyp2-rep ?b = cb)
by (rule between-inverse)
with V cxcy.cx € ?2cX Acy € ?cY — Br cx cb cy)
haveV xy.xe XAyeY —Bgx?by
by (unfold real-hyp2-B-def) simp
thus 3 b.V xy.x e XAy €Y — Bg x by by (rule exI)
qed
qed
qed

interpretation farski-absolute-space real-hyp2-C real-hyp2-B
using hyp2-axiom6 and hyp2-axiom7 and hyp2-axiom11
by unfold-locales

9.14 The Klein-Beltrami model satisfies the dimension-specific
axioms

lemma hyp2-rep-abs-examples:
shows hyp2-rep (hyp2-abs 0) = 0 (is hyp2-rep ?a = ?ca)
and hyp2-rep (hyp2-abs (vector [1/2,0])) = vector [1/2,0]
(is hyp2-rep ?b = ?cb)
and hyp2-rep (hyp2-abs (vector [0,1/2])) = vector [0,1/2]
(is hyp2-rep ?c = ?cc)
and hyp2-rep (hyp2-abs (vector [1/4,1/4])) = vector [1/4,1/4]
(is hyp2-rep ?d = ?cd)
and hyp2-rep (hyp2-abs (vector [1/2,1/2])) = vector [1/2,1/2]
(is hyp2-rep 2t = ?ct)
proof —
have norm ?ca < 1 and norm ?cb < 1 and norm ?cc < 1 and norm ?cd < 1
and norm ?ct < 1
by (unfold norm-vector-def setL2-def) (simp-all add: setsum-2 square-expand)
thus hyp2-rep ?a = ?ca and hyp2-rep ?b = ?cb and hyp2-rep ?c = ?cc
and hyp2-rep ?d = ?cd and hyp2-rep ?t = ?ct
by (simp-all add: hyp2-rep-abs)
qed

232

theorem hyp2-axiom8: 3 abc. " Bxabc AN - BxbcaA-Bgcab
proof —
let 2ca = 0 :: real”2
and ?cb = vector [1/2,0] :: real"2
and ?cc = vector [0,1/2] :: real”2
let ?a = hyp2-abs ?ca
and ?b = hyp2-abs ?cb
and ?c = hyp2-abs ?cc
from hyp2-rep-abs-examples and non-Col-example
have — (hyp2.Col ?a ?b ?c)
by (unfold hyp2.Col-def real-euclid.Col-def real-hyp2-B-def) simp
thus3abc. -~ BgabcAN—-BxgbcaAN—-Bgcab
unfolding hyp2.Col-def
by simp (rule exI)+
qed

theorem hyp2-axiom9:
Vpgabep#qhap=xagqANbp=xbgAcp=kcq
—> BxabcVBxkbcaVvVBgcab
proof (rule alll)+
fixpgabc
showp #gAhap=xaqANbp=xbgAhcp=xcq
—> BxabcVBxkbcaVBgcab
proof
assumep AqAap=gaqAbp=xbgAcp=xcq
hencep #qandap =gaqgand bp =g b g and c p =g c q by simp-all

let ?pp = Rep-hyp2 p
and ?pg = Rep-hyp2 q
and ?pa = Rep-hyp2 a
and ?pb = Rep-hyp2 b
and ?pc = Rep-hyp2 c
def [£ proj2-line-through ?pp ?pq
def m = drop-perp ?pa |
and ps £ endpoint-in-S ?pp ?pq
and pt £ endpoint-in-S ?pq ?pp
and stpq = exp-2dist ?pp ?pq

from (p # ¢ have ?pp # ?pq by (simp add: Rep-hyp2-inject)
from Rep-hyp?2
have stpg > 0 by (unfold stpq-def) (simp add: exp-2dist-positive)
hence sqrt stpg * sqrt stpq = stpq

by (simp add: real-sqrt-mult [symmetric|)

from Rep-hyp2 and (?pp # ?pq)
have stpq # 1 by (unfold stpg-def) (auto simp add: exp-2dist-1-equal)

233

have z-non-zero ?pa and z-non-zero ?pb and z-non-zero ?pc
by (simp-all add: Rep-hyp2 hyp2-S-z-non-zero)

have V pd € {?pa,?pb,?pc}.

cross-ratio ps pt (perp-foot pd 1) ?pp =1 / (sqrt stpq)
proof

fix pd

assume pd € {?pa,?pb,?pc}

with Rep-hyp2 have pd € hyp2 by auto

def pe = perp-foot pd |
and x £ cosh-dist ?pp pd

from (pd € {?pa,?pb,?pc}) and @ p =g aq and bp =k b g
and cp =g cq
have cosh-dist pd ?pp = cosh-dist pd ?pq
by (auto simp add: real-hyp2-C-cosh-dist)
with (pd € hyp2) and Rep-hyp2
have x = cosh-dist ?pq pd by (unfold x-def) (simp add: cosh-dist-swap)

from Rep-hyp2 [of p] and (pd € hyp2) and cosh-dist-positive [of ?pp pd]
have x # 0 by (unfold x-def) simp

from Rep-hyp2 and (pd € hyp2) and ?pp # ?pq)

have cross-ratio ps pt pe ?pp
= (cosh-dist ?pq pd * sqrt stpq — cosh-dist ?pp pd)
/ (cosh-dist ?pp pd * stpq — cosh-dist ?pq pd * sqrt stpq)
unfolding ps-def and pt-def and pe-def and I-def and stpg-def
by (simp add: perp-foot-cross-ratio-formula)

also from x-def and (x = cosh-dist ?pq pd)

have ... = (x x sqrt stpg — x) / (x % stpq — x * sqrt stpq) by simp

also from (sqrt stpq * sqrt stpq = stpq)

have ... = (x % sqrt stpqg — x) / ((x % sqrt stpq — x) * sqrt stpq)
by (simp add: algebra-simps)

also from (x # 0) and (stpg # 1) have ... =1 / sqrt stpq by simp
finally show cross-ratio ps pt pe ?pp =1 / sqrt stpq .
qed

hence cross-ratio ps pt (perp-foot ?pal) ?pp =1 / sqrt stpq by simp

have V pd € {?pa,?pb,?pc}. proj2-incident pd m
proof
fix pd
assume pd € {?pa,?pb,?pc}
with Rep-hyp2 have pd € hyp2 by auto
with Rep-hyp2 and (?pp # ?pq and proj2-line-through-incident
have cross-ratio-correct ps pt ?pp (perp-foot pd 1)
and cross-ratio-correct ps pt ?pp (perp-foot ?pa l)
unfolding ps-def and pt-def and I-def
by (simp-all add: endpoints-in-S-perp-foot-cross-ratio-correct)

234

from (pd € {?pa,?pb,?pc})
and (v pd € {?pa,?pb,?pc}.
cross-ratio ps pt (perp-foot pd) ?pp =1 / (sqrt stpq))
have cross-ratio ps pt (perp-foot pd) ?pp = 1 / sqrt stpq by auto
with (cross-ratio ps pt (perp-foot ?pal) ?pp =1 / sqrt stpg)
have cross-ratio ps pt (perp-foot pd) ?pp
= cross-ratio ps pt (perp-foot ?pal) ?pp
by simp
hence cross-ratio ps pt ?pp (perp-foot pd I)
= cross-ratio ps pt ?pp (perp-foot ?pa l)
by (simp add: cross-ratio-swap-34 [of ps pt - ?pp])
with (cross-ratio-correct ps pt ?pp (perp-foot pd 1))
and (cross-ratio-correct ps pt ?pp (perp-foot ?pa 1))
have perp-foot pd | = perp-foot ?pa 1 by (rule cross-ratio-unique)
with Rep-hyp2 [of p] and (pd € hyp2)
and proj2-line-through-incident [of ?pp ?pq]
and perp-foot-eq-implies-drop-perp-eq [of ?pp pd | ?pa]
have drop-perp pd | = m by (unfold m-def I-def) simp
with drop-perp-incident [of pd 1] show proj2-incident pd m by simp
qed
hence proj2-set-Col {?pa,?pb,?pc}
by (unfold proj2-set-Col-def) (simp add: exI [of - m])
hence proj2-Col ?pa ?pb ?pc by (simp add: proj2-Col-iff-set-Col)
with (z-non-zero ?pa) and (z-non-zero ?pb) and (z-non-zero ?pc)
have real-euclid.Col (hyp2-rep a) (hyp2-rep b) (hyp2-rep c)
by (unfold hyp2-rep-def) (simp add: proj2-Col-iff-euclid-cart2)
thus BxabcV BgkbcaV Bgcab
by (unfold real-hyp2-B-def real-euclid.Col-def)
qed
qed

interpretation hyp2: tarski-absolute real-hyp2-C real-hyp2-B
using hyp2-axiom8 and hyp2-axiom9
by unfold-locales

lemma True ..

9.15 The Klein—-Beltrami model violates the Euclidean axiom

theorem hyp2-axiom10-false:

shows = (Vabcdt.Bxkadt ABxbdcANa#d
— (I xy.Bxabx ANBxacy ANBgxty))

proof

assumeV abcdt.Bxadt NBgbdcNha#d
— (I xy.Bxabx ANBxacy ABgxty)

let ?ca = 0 :: real2

and ?cb = vector [1/2,0] :: real”2
and ?cc = vector [0,1/2] :: real™2

235

and ?cd = vector [1/4,1/4] :: real 2

and ?ct = vector [1/2,1/2] :: real 2
let ?a = hyp2-abs ?ca

and ?b = hyp2-abs ?cb

and ?c = hyp2-abs ?cc

and ?d = hyp2-abs ?cd

and ?t = hyp2-abs ?ct

have ?cd = (1/2) #g ?ct and ?cd — ?cb = (1/2) *g (?cc — ?cb)
by (unfold vector-def) (simp-all add: Cart-eq)

hence BR ?ca ?cd ?ct and B ?cb ?cd ?cc
by (unfold real-euclid-B-def) (simp-all add: exI [of - 1/2])

hence Bx ?a ?d ?t and Bx ?b ?d ?c
by (unfold real-hyp2-B-def) (simp-all add: hyp2-rep-abs-examples)

have ?a # ?d
proof
assume ?q = ?d
hence hyp2-rep ?a = hyp2-rep ?d by simp
hence ?ca = ?cd by (simp add: hyp2-rep-abs-examples)
thus False by (simp add: Cart-eq forall-2)
qed
with (Bg ?a ?d ?t) and (Bg ?b ?d ?¢)
and Vabcdt. Bgadt ANBxbdcNa+#d
— (I xy.Bxabx ANBxacy ABgxty)
obtain x and y where Bg ?a ?b x and Bg ?a ?cy and Bx x ?t y
by blast

let ?cx = hyp2-rep x
and ?cy = hyp2-rep y
from Bk ?a ?b x) and Bk ?a ?c y) and (Bg x 7t y)
have BR ?ca ?cb ?cx and B ?ca ?cc ?cy and Br ?cx ?ct ?cy
by (unfold real-hyp2-B-def) (simp-all add: hyp2-rep-abs-examples)

from (BR ?ca ?cb ?cx) and (BR ?ca ?cc ?cy) and (Br ?cx ?ct ?cy)
obtain j and k and where ?cb — ?ca = j xg (?cx — ?ca)

and ?cc — ?ca =k xg (Pcy — ?ca)

and/ > 0and! <1and ?ct — ?cx = g (?cy — ?cx)

by (unfold real-euclid-B-def) fast

from (?cb — ?ca = j xg (?cx — ?ca)) and (?cc — ?ca =k xg (?cy — ?ca))
have j # 0 and k # 0 by (auto simp add: Cart-eq forall-2)

with (?cb — ?ca = j *g (?cx — ?ca)) and (?cc — ?ca =k xg (Pcy — ?ca))
have ?cx = (1/j) *g ?cb and ?cy = (1/k) *g ?cc by simp-all

hence ?cx$2 = 0 and ?cy$1 = 0 by simp-all

from (?ct — ?cx =1 xg (?cy — 2cx))

have ?ct = (1 — 1) xg ?cx + [xg ?cy by (simp add: algebra-simps)
with (?cx$2 = 0) and (?cy$1 = 0)

236

have ?ct$1 = (1 — 1) x (?cx$1) and ?ct$2 = [* (?cy$2) by simp-all
hence | * (?cy$2) =1/2 and (1 — 1) * (?cx$1) = 1/2 by simp-all

have ?cx$1 < |?cx$1| by simp

also have ... < norm ?cx by (rule component-le-norm)
also have ... < 1 by (rule norm-hyp2-rep-It-1)

finally have ?cx$1 < 1.

with (< 1) and mult-less-cancel-left [of 1 — | 2cx$1 1]
have (1 — 1) % ?cx$1 < 1 — I by auto

with (1 — 1) % (?cx$1) = 1/2) have | < 1/2 by simp

have ?cy$2 < |?cy$2| by simp
also have ... < norm ?cy by (rule component-le-norm)
also have ... < 1 by (rule norm-hyp2-rep-It-1)
finally have ?cy$2 < 1.
with (> 0) and mult-less-cancel-left [of | ?cy$2 1]
have | x ?cy$2 < [by auto
with (% (?cy$2) = 1/2) have |l > 1/2 by simp
with (< 1/2) havel =1/2 by simp
with (% (?cy$2) = 1/2) have ?cy$2 = 1 by simp
with (?cy$2 < 1) show False by simp

qed

theorem hyp2-not-tarski: — (tarski real-hyp2-C real-hyp2-B)
using hyp2-axiom10-false
by (unfold tarski-def tarski-space-def tarski-space-axioms-def) simp

Therefore axiom 10 is independent.

For some reason, because I extract the IXTEX source for the above theorem, I
must write the following before the end, in order for the outline to typeset.

lemma True ..

end

References

[1] Borsuk, K., AND SzmrieLew, W. Foundations of Geometry: Euclidean and
Bolyai-Lobachevskian Geometry; Projective Geometry. North-Holland Pub-
lishing Company, 1960. Translated from Polish by Erwin Marquit.

[2] ScawaBHAUSER, W., SZMIELEW, W., AND TARSKI, A. Metamathematische
Methoden in der Geometrie. Springer-Verlag, 1983.

237

	Metric spaces
	Miscellaneous results
	Tarski's geometry
	The axioms
	Semimetric spaces satisfy the first three axioms
	Some consequences of the first three axioms
	Some consequences of the first five axioms
	Simple theorems about betweenness
	Simple theorems about congruence and betweenness

	Real Euclidean space and Tarski's axioms
	Real Euclidean space satisfies the first five axioms
	Real Euclidean space also satisfies axioms 6, 7, and 11
	Real Euclidean space satisfies the Euclidean axiom
	The real Euclidean plane
	Special cases of theorems of Tarski's geometry

	Linear Algebra
	Matrices

	Group Actions
	Projective Geometry
	Proportionality on non-zero vectors
	Points of the real projective plane
	Lines of the real projective plane
	Collineations of the real projective plane
	As a group
	As a group action
	Parts of some Statements from borsuk

	Cross ratios
	Cartesian subspace of the real projective plane

	Roots of real quadratics
	The hyperbolic plane and Tarski's axioms
	Characterizing a specific conic in the projective plane
	Some specific points and lines of the projective plane
	Definition of the Klein–Beltrami model of the hyperbolic plane
	K-isometries map the interior of the conic to itself
	The K-isometries form a group action
	The Klein–Beltrami model satisfies Tarski's first three axioms
	Some lemmas about betweenness
	The Klein–Beltrami model satisfies axiom 4
	More betweenness theorems
	Perpendicularity
	Functions of distance
	A formula for a cross ratio involving a perpendicular foot

	The Klein–Beltrami model satisfies axiom 5
	The Klein–Beltrami model satisfies axioms 6, 7, and 11
	The Klein–Beltrami model satisfies the dimension-specific axioms
	The Klein–Beltrami model violates the Euclidean axiom

