
Reputation Description and
Interpretation

by

Ryan Chard

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2012

Abstract

Reputation is an opinion held by others about a particular person, group,
organisation, or resource. As a tool, reputation can be used to forecast the
reliability of others based on their previous actions, moreover, in some do-
mains it can even be used to estimate trustworthiness. Due to the large
scale of virtual communities it is impossible to maintain a meaningful re-
lationship with every member. Reputation systems are designed explicitly
to manufacture trust within a virtual community by recording and sharing
information regarding past interactions. Reputation systems are becom-
ing increasingly popular and widespread, with the information generated
varying considerably between domains. Currently, no formal method to
exchange reputation information exists. However, the OpenRep frame-
work, currently under development, is designed to federate reputation in-
formation, enabling the transparent exchange of information between rep-
utation systems. This thesis presents a reputation description and inter-
pretation system, designed as a foundation for the OpenRep framework.
The description and interpretation system focuses on enabling the consis-
tent and reliable expression and interpretation of reputation information
across heterogeneous reputation systems. The description and interpre-
tation system includes a strongly typed language, a verification system
to validate usage of the language, and a XML based exchange protocol. In
addition to these contributions, three case studies are presented as a means
of generating requirements for the description and interpretation system,
and evaluating the use of the proposed system in a federated reputation
environment. The case studies include an electronic auction, virtual com-
munity and social network based relationship management service.

ii

Acknowledgments

I would like to thank my supervisor, Dr. Kris Bubendorfer, for his invalu-
able guidance and leadership, I am sincerely appreciative of all the time
and direction. I am deeply grateful for the assistance my co-supervisor, Dr.
Ian Welch, has provided. The opinions and feedback given by Dr. Lindsey
Groves were extremely helpful and identified areas that required further
work. I would also like to thank my examiners, Prof. John Hine and Dr.
Ian Warren, for their in depth feedback, leading to a higher quality the-
sis being produced. Finally, I extremely thankful of the time and support
given by my family and friends.

iii

iv

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Terminology . 4

1.3 Contributions . 5

1.4 Thesis Organisation . 6

2 OpenRep Background 9

2.1 OpenRep Architecture . 9

2.2 Environment . 11

2.3 OpenRep Stack . 13

3 Related Work 17

3.1 Trust and Reputation . 17

3.1.1 Reputation in Social Interactions 18

3.1.2 Reputation in Game Theory 18

3.1.3 Reputation in Computer Science 19

3.1.4 Reputation Systems 20

3.2 Identity . 24

3.3 Reputation Exchange . 25

3.4 Summary . 26

4 Design Strategy 29

4.1 Motivation . 29

v

vi CONTENTS

4.2 Case Studies . 30
4.2.1 Auction . 31
4.2.2 Virtual Community . 31
4.2.3 Social Network . 32

4.3 Requirements . 33
4.3.1 Reputation Description 33
4.3.2 Verification System . 34
4.3.3 Exchange Protocol . 35

4.4 Design Goals . 36
4.4.1 Reputation Language 37
4.4.2 Verification System . 38
4.4.3 Reputation Exchange Protocol 39

4.5 Conclusion . 40

5 Techniques and Tools 43
5.1 OpenRep Interoperability Standards 43
5.2 Integrating Humans and Machines 44
5.3 Reputation Contextual Expression 48
5.4 Parser Generator Tools . 49
5.5 Conclusion . 50

6 Reputation Language 53
6.1 Design . 54

6.1.1 Language Enforcement 54
6.1.2 Language Review . 55
6.1.3 Reputation Types . 55
6.1.4 Complex Types . 57
6.1.5 Functions . 58

6.2 Implementation . 59
6.2.1 Primitive Types . 61
6.2.2 Complex Types . 61
6.2.3 Social Types . 63

CONTENTS vii

6.2.4 Functions . 65
6.3 Conclusion . 66

7 Verification System 69
7.1 Design . 70

7.1.1 Interface . 70
7.1.2 Language Parsing . 71
7.1.3 Type Enforcement . 71
7.1.4 Type Errors . 72
7.1.5 Type Hierarchy . 72

7.2 Implementation . 73
7.2.1 Interface . 75
7.2.2 Language Parsing . 75
7.2.3 Type Enforcement . 76

7.3 Summary . 77

8 Case Study Implementation 79
8.1 Auction . 81

8.1.1 Implementation . 83
8.2 Social Network . 85

8.2.1 Implementation . 86
8.3 Virtual Community . 89

8.3.1 Implementation . 90
8.4 Summary . 91

9 Evaluation 93
9.1 Case Studies . 94

9.1.1 Auction . 94
9.1.2 Social Network . 95
9.1.3 Virtual Community . 95
9.1.4 Comparison . 96

9.2 Reputation Language . 98

viii CONTENTS

9.3 Verification System . 100
9.3.1 Usability . 101

9.4 Reputation Exchange Protocol 102
9.4.1 Protocol Metrics . 104

9.5 Test Cases . 106
9.5.1 Test Strategy . 107
9.5.2 Test Results . 108

9.6 Description and Interpretation System 111
9.7 Summary . 112

10 Conclusion 115
10.1 Review . 116

10.1.1 Humans and Machine Reputation 116
10.1.2 Exchange Protocol . 117
10.1.3 Reputation Language 117
10.1.4 Verification System . 118
10.1.5 Case Studies . 119

10.2 Contributions . 119
10.3 Future Work . 121

10.3.1 OpenRep Integration 121
10.3.2 Social Relationship Management Service 122
10.3.3 Reputation Sources . 122

A Reputation Language Grammar 123

B Reputation Container Schema 137

C Reputation Exchange Schema 141

Chapter 1

Introduction

1.1 Introduction

Reputation is a tool used to estimate the reliability of others by associating
historic actions to identities. The goal of reputation is to offer an indication
of trustworthiness and forecast the behaviour of an entity by evaluating
their actions. The basis for utilising reputation assumes that past actions
are indicative of future behaviour. A reputation to act honestly provides
confidence for others, suggesting an entity will perform honourably dur-
ing potential interactions.

Reputation systems bootstrap interactions between entities in electronic
communities, establishing a level of trust between unfamiliar users. A rep-
utation system functions by collecting, aggregating and distributing the
records of information regarding the actions of participants. Others within
a community can then review this information and base decisions on the
perceived reliability of an entity. Due to the population and vastness of
many online communities, the ability to build long term, meaningful re-
lationships with every member is not practical. The information supplied
by reputation systems emulates the characteristics of having a previous
relationship with other members. In essence, this approach mimics the in-
formal ”word-of-mouth” reputation aggregation mechanisms inherent in

1

2 CHAPTER 1. INTRODUCTION

social interactions.

Reputation systems have become prominent in virtual communities
and are essential to the success of many online environments. The vari-
ety of domains that utilise reputation systems range from network routing
applications [46] and spam filters [56], through to electronic auctions [61],
peer-to-peer systems [67] and product recommender applications [42]. The
diversity of domains is reflected in the variations of reputation systems
and the information they generate.

In almost all examples of reputation systems, reputation is established,
stored and utilised only within the domain. This creates reputation silos,
where there is very little interaction or interoperability between systems.

Exchanging reputation information between systems can be used to in-
crease the available perspective of entities within an open reputation en-
vironment. However, due to the proprietary nature of reputation systems,
the information that is collected and distributed is often highly individu-
alised to the domain in which it is generated. At a technical level there is
currently no mechanism available to standardise reputation information
and no protocols defined to transfer reputation between domains. This
thesis addresses these two limitations with the aim of contributing to the
development of a federated reputation system that can share reputation
information between domains. OpenRep [27] is a distributed reputation
framework designed to support the transparent exchange of global rep-
utation information between reputation systems. Figure 1.1 depicts an
environment in which OpenRep enables collaboration between distinct
reputation systems. OpenRep creates a single framework for reputation
systems to exchange information regarding entities within an open envi-
ronment. This thesis presents the design and development of a reputation
description and interpretation system that underpins the OpenRep frame-
work.

The proposed reputation description and interpretation system includes
the functionality to express diverse reputation information in a consistent

1.1. INTRODUCTION 3

Reputation
Source

Reputation
Source

Reputation
Source

OpenRep
Node

OpenRep
Node

OpenRep
Node

Figure 1.1: An open environment containing three unique reputation
sources. The sources are able to communicate and exchange reputation
information through their exposed OpenRep nodes.

manner. It defines a novel reputation language and accompanying veri-
fication architecture to ensure its correct use. Finally a unique reputation
exchange protocol is defined to support the standardised transportation of
reputation between systems. In order to demonstrate the functionality of
being able to describe an entities reputation within one environment and
transplant it, meaningfully, within another, case studies have been em-
ployed. Three diverse case studies have been defined and implemented,
these case studies are used to drive the development of the reputation de-
scription and interpretation systems and are referred to throughout the
thesis.

The remainder of this chapter defines common terminology used through-
out the thesis, highlights the contributions made and describes the struc-
ture of this thesis.

4 CHAPTER 1. INTRODUCTION

1.2 Terminology

There are multiple components involved in the description of a reputation
environment and its functionality. The following section briefly describes
the assumptions and vocabulary used in this thesis when discussing rep-
utation settings and the entities interacting with one another.

Within a reputation based environment, it is possible that many dis-
tinct reputation systems may coexist. Reputation systems are said to act
as either providers, the sources of reputation information, or consumers, the
recipients of information. In some cases a reputation system may be both
a provider and a consumer. Each system is expected to maintain a person-
alised store of entities and reputation information relating to them. The
reputation information is either collected through the monitoring of local
interactions, or is gathered from other providers within the environment.

In real world scenarios, entities often utilise pseudonyms in differ-
ent domains, for example individuals commonly use different aliases for
different online services. In a global reputation environment an entity’s
global identity must first be established in order to aggregate reputation
information from different domains. The focus of this thesis is the ex-
change and interpretation of diverse reputation information from differ-
ent domains, rather than the ability to globally identify individuals. For
this reason, establishing the global identity of an individual is considered
outside the scope of this work, common identities across domains are as-
sumed throughout the thesis.

The term entity can have many connotations within a reputation envi-
ronment. Typically an entity refers to either an individual user, a group
or an organisation. When describing the exchange of information, entities
are described as agents and targets. Agents are those entities that request
information, while a target is considered the entity for which reputation
information is being investigated.

1.3. CONTRIBUTIONS 5

1.3 Contributions

This thesis makes multiple contributions to the development of a feder-
ated reputation system. The expression and interpretation of reputation
information forms the basis of a framework to exchange information be-
tween reputation systems. The description of contextual information, dif-
ferences between human and machine entities within reputation environ-
ments and standards regarding interoperability between reputation sys-
tems are also investigated. Specifically the main contributions of this the-
sis are:

• The design and prototype implementation of a reputation descrip-
tion and interpretation system. The description and interpretation
system provides many features to facilitate the exchange of reputa-
tion information. The key elements of the system are:

– The development of a reputation language, used to express in-
formation and provide a common form of communication be-
tween reputation sources. The language supports the descrip-
tion of reputation values and operations.

– The definition of reputation types, capable of describing all iden-
tified forms of reputation information. The typing system in-
cludes the definition of domain specific types, such as the clas-
sification of interactions between users of a social network.

– The design and implementation of a verification system for the
reputation language. The verification system includes a static
type enforcement system to ensure correct use of the language.

– An exchange protocol, defined in XML Schema Definition schemas,
standardises the encoding and transfer of reputation informa-
tion. The protocol regulates the communication between rep-
utation sources and embodies multiple features to reduce the
overhead of communication.

6 CHAPTER 1. INTRODUCTION

– The consistent expression of contextual reputation information
allows reputation sources to encode information without loss
of detail. Through the formalisation of the environment with
regard to context, information can be interpreted with meaning.

• An investigation regarding the plausibility of integrating human and
machine based reputation systems. Seven phases of a reputation sys-
tem have been identified from the examination of a diverse set of
human and machine based reputation systems. In addition, investi-
gation of reputation systems with respect to the actions available to
users under each of the identified phases provides a unique insight
into the complexities associated with the integration of human and
machine generated information.

• The design and implementation of a reputation environment, con-
taining three uniquely constructed case studies. Each of the case
studies represents a potential reputation source within an open en-
vironment. The case studies provide a practical basis to drive the
development and evaluation of the description and interpretation
system. The case studies include an electronic auction, virtual com-
munity and social network based relationship management service.
The services are each independently implemented as a Jersey Web
service utilising a Derby database, a Drupal client with a built in fo-
rum module and a Facebook application hosted in the Google App
Engine.

1.4 Thesis Organisation

The thesis is organised as follows. Chapter 2 presents background in-
formation regarding the OpenRep architecture. Chapter 3 presents an
overview of related work in which the role of reputation within different
environments is discussed. Advancements in identity management and

1.4. THESIS ORGANISATION 7

existing reputation exchange frameworks are also considered. Chapter 4
provides the design strategy of the research, explaining the motivation
and role of case studies within the work before examining the require-
ments and design goals of the system. Questions raised in the design
strategy are addressed in Chapter 5. This chapter describes the process
of establishing solutions to these concerns, such as the definition of stan-
dards to facilitate interoperability between reputation systems, whether
machines and human based systems can be integrated, methods of ex-
pressing contextual information and the selection of an appropriate lan-
guage generation tool. Chapter 6 discusses the design and implementation
of the Reputation Language. The design and implementation of the Ver-
ification System is given in Chapter 7. Chapter 8 investigates the process
of implementing each of the case studies as functional services, capable of
simulating a reputation environment. An evaluation of the work is given
in Chapter 9, discussing and assessing the key aspects presented in the
thesis. Finally, a conclusion to the work is given in Chapter 10.

8 CHAPTER 1. INTRODUCTION

Chapter 2

OpenRep Background

OpenRep is a distributed reputation system designed to federate disparate
reputation systems in an open environment. OpenRep is designed to be
easily incorporated into existing systems, such that users and providers
can expose a node to capture, aggregate and consume reputation informa-
tion. The OpenRep model consists of a set of standard, service based, in-
terfaces and protocols that must be implemented by participating entities
in order to join the OpenRep ecosystem. OpenRep leverages OpenID to
authenticate users and associate diverse reputation information to a par-
ticular user. Through this extension of the OpenID architecture, reputation
information can be consistently discovered, aggregated and shared in an
open environment. This chapter presents the OpenRep architecture de-
fined by Hendrix et al. [27]. The chapter presents background information
relevant to the integration of the new components presented in this thesis
into the OpenRep architecture.

2.1 OpenRep Architecture

The OpenRep architecture is designed to provide the capability to collect
and distribute reputation information for participating entities. OpenRep
is a distributed service-based framework that uses OpenID to authenticate

9

10 CHAPTER 2. OPENREP BACKGROUND

users within their domain and provides an infrastructure to facilitate the
exchange of reputation information between domains. Reputation infor-
mation in OpenRep is distributed throughout the entities that compose the
network.

The OpenRep architecture extends the OpenID system to integrate rep-
utation information with a users digital address, this identifier uniquely
represents an entities global identity. OpenRep maintains a globally con-
sistent resource for each identity, providing a profile of reputation for each
entity and node within the environment. Enabling reputation to be stored
and retrieved from a predictable location establishes a foundation for the
aggregation of information from multiple platforms. Associating reputa-
tion information with a globally resolvable identity, rather than localised
pseudonyms, allows diverse reputation sources to contribute information
about a specific entity and thereby provide a thorough history of an enti-
ties actions.

Although a single identifier is used to represent an entity, reputation in-
formation is replicated and distributed throughout the environment using
a peer-to-peer network. The decentralised OpenRep architecture utilises
a Distributed Hash Table (DHT) overlay network, such as Chord [69] or
Tapestry [81], to establish supernodes. A supernode acts as a centralised
authoritative node for a subset of nodes, and a peer to other supernodes,
this model supports efficient routing of information through the overlay
network [80]. In the OpenRep model each provider node is represented
as a supernode. Supernodes are responsible for replicating reputation
profiles throughout the network. Due to node churn, where nodes join
and leave the network unexpectedly, information must be thoroughly dis-
tributed in order to improve reliability and fault tolerance. The DHT pro-
vides the ability to resolve the location of an entities reputation informa-
tion at different providers. Figure 2.1 demonstrates the process of locating
an entities reputation profile using hash functions on the OpenID address.

Applying a supernode architecture also increases the reliability of the

2.2. ENVIRONMENT 11

OpenRep
Provider

OpenRep
Provider

OpenRep
Provider

Target
Address

Hash f1()

Hash f2()

Hash f3()

OpenRep
Provider

Figure 2.1: A Distributed Hash Table being used to locate supernodes
which contain information regarding the target address. Hash functions
process the target’s identifier to determine nodes that store replicas of the
their reputation profile.

information being collected. Because individuals in a P2P network are ca-
pable of acting as their own provider, and therefore store their own reputa-
tion information, the integrity of the information cannot always be trusted.
Replicating reputation profiles over the network enables the use of thresh-
old trust metrics, whereby a set of m from n supernodes must agree to
verify a providers response.

2.2 Environment

OpenRep is composed of a collection of nodes that implement various
components of the OpenRep stack and perform particular roles. Nodes
can be categorised as providing three forms of functionality, acting as a
provider, source and agent. A single node can provide the functionality to
accomplish any combination of these roles. The flow of information be-
tween nodes can be seen in Figure 2.2. The figure shows reputation sys-
tems exposing an OpenRep node to participate within the environment.
The figure also contains the depiction of a reputation system acting as both

12 CHAPTER 2. OPENREP BACKGROUND

a source and agent at once. The following briefly describes the role of each
of the nodes in the environment.

Source Node

Provider
Node

Source +
Agent Node

Reputation
System (Source

+ Consumer)

Agent Node Agent Node

Reputation
System (Source)

Reputation
System

(Consumer)

Reputation
System

(Consumer)

Figure 2.2: The flow of information between reputation systems using
OpenRep. Reputation information is generated in reputation systems and
transferred to an OpenRep provider for distribution. Agent nodes operate
on behalf of reputation systems to retrieve information from providers.

• Provider: The provider nodes are OpenID identity providers ex-
tended with OpenRep to store and distribute reputation information.
Provider nodes supply both OpenID and OpenRep services which
act as an identity provider and a reputation provider respectively.
Within OpenID, providers allow users to join the environment and
act as authentication points. The primary role of the provider nodes,
with regard to OpenRep, is to store reputation profiles for the iden-
tities associated with the provider.

2.3. OPENREP STACK 13

• Source: A source node represents the reputation generating services
within an environment. Source nodes generally provide information
to provider nodes regarding entities within their domain. For Open-
Rep to act as a global reputation mechanism, individual reputation
generating services provide a source node to expose the collected in-
formation. Because nodes have accompanying reputation profiles,
the trustworthiness of sources can be evaluated when aggregating
information at the provider level.

• Agent: The agent nodes represent entities requesting reputation in-
formation from providers. Agent nodes act on behalf of individu-
als or reputation systems, with the goal of retrieving the reputation
value associated with a target identity. Agent nodes are also capable
of verifying information retrieved from a provider node by evalu-
ating the response against that from other providers in the environ-
ment.

2.3 OpenRep Stack

The OpenRep stack comprises of three distinct layers, as shown in Fig-
ure 2.3. Information flows up the stack, originating at reputation sources
and being expressed within the collection layer. Information is then inter-
preted at the composition layer and prepared for distribution throughout
the network. The highest level provides the ability to base decisions on
fine grained information. The following briefly describes the roles of each
of these layers:

• Collection: The lowest layer of the stack, collection, provides the
ability to receive information from heterogeneous reputation sources
through a standardised API. The role of the collection layer is to pro-
cess raw reputation information into a format that is interpretable by

14 CHAPTER 2. OPENREP BACKGROUND

Interpretation

Composition

Collection

Po
licy

Figure 2.3: The OpenRep Stack. Information is collected through the Col-
lection layer, from raw reputation sources, or through the Composition
layer, from other OpenRep nodes. Information flows up the stack and is
evaluated against policies at each level.

the composition layer. The reputation language, discussed in Chap-
ter 6 is an essential element of the collection layer. OpenRep provider
and source nodes are both required to implement the collection layer
as they are responsible for gathering information from individual
reputation sources.

• Composition: The composition layer is responsible for processing
and managing information at a higher level than the collection layer.
The role of translating the raw reputation from the collection layer
into usable information is key to the OpenRep infrastructure. The
verification system, presented in Chapter 7 defines a method to safely
and reliably interpret the information from the collection layer and
from other OpenRep nodes. Combining the composition and collec-
tion layers provides the ability to aggregate information. The com-
position layer also provides the functionality to communicate with
other OpenRep nodes. The protocol to exchange reputation infor-

2.3. OPENREP STACK 15

mation between OpenRep nodes, described in Chapter 5, is also sit-
uated within this layer. In order to participate in the OpenRep envi-
ronment, the composition layer must be integrated into the node.

• Interpretation: The interpretation layer contains the decision mak-
ing functionality of the system. Capabilities associated with the ex-
traction of specific information from a resource are included in this
level. Generally, the interpretation layer is implemented when a
node requires the ability to examine and base decisions on informa-
tion regarding individual entities.

When implementing the OpenRep model for an existing reputation
system, the functionality required by the node determines which layers
of the OpenRep stack must be implemented. For example, a reputation
provider node is generally responsible for storing, aggregating and dis-
tributing reputation information rather than collecting or consuming it. In
general, providers do not need the ability to interpret and act on the repu-
tation information they receive. Therefore, when integrating the OpenRep
stack into a provider node, only the lower two layers are necessary.

16 CHAPTER 2. OPENREP BACKGROUND

Chapter 3

Related Work

Reputation is evident in many domains, from implicit word of mouth sys-
tems found within social communities to explicit reputation facilitating
mechanisms in eBay. This chapter presents an overview of reputation in-
formation, from its conception in social settings through to its application
in computer science. Reputation systems and a set of defining character-
istics are then discussed. Finally the advancements of online identity and
the existing work regarding reputation exchange is given.

3.1 Trust and Reputation

Trust is defined as the extent to which one can become reliant on an-
other [22]. It is inherently difficult to responsibly trust others without a
priori knowledge of their historic behaviour under certain circumstances.
To advance online collaboration, a level of trust over another’s ability to
fulfil their obligations is required.

Reputation has been employed widely as a mechanism to institute trust
within a domain. Reputation is the general consensus about ones charac-
ter or standing [31]. Ones reputation can be used as a tool to bootstrap the
process of building trust within others, allowing confidence to be placed
on those of high repute. Reputation systems facilitate the ability to estab-

17

18 CHAPTER 3. RELATED WORK

lish and build trust within an environment, contributing to the practicality
of many online enterprises.

3.1.1 Reputation in Social Interactions

Through sociology, the study of human behaviour and society, it is ap-
parent that social organisation is a fundamental, age old concept within
human society. Instinctively, it is in the best interest of short term users
to cheat one another. Dellarocas [17] presents word of mouth systems and
their role in historic human societies. Word of mouth systems allow feed-
back and opinions to be propagated throughout an environment. Dellaro-
cas explains that word of mouth systems were originally employed due to
their ability to promote solidarity without the requirement of formal law
being defined and enforced.

Within a social community, reputation is defined as the characteristics
or standing associated with an individual by their peers. The foundation
of an individual’s reputation is established by comprehending previous
behaviour. Word of mouth systems enable others to be informed of historic
behaviour, effectively distributing opinions that represent ones reputation.

Raub and Wessie [58] state information collected through the examina-
tion of one’s interaction with a peer can later be used to predict behaviour
with other peers. The authors go on to explain that if one can anticipate
the consequences of their current performance on future peers behaviour,
they have an incentive for a trade-off between the short and long term ef-
fect of their decision. Raub and Wessie demonstrate that when present,
reputation encourages individuals to consider both short and long term
payoffs and promotes cooperation within the environment.

3.1.2 Reputation in Game Theory

Due to the significance of reputation in human society, the acts of gen-
erating and utilising reputation information have been comprehensively

3.1. TRUST AND REPUTATION 19

studied by economists using game theory. Wilson [75] describes reputa-
tion as a characteristic associated with players when there is doubt about
the type of a player in the mind of another. The predictive power of repu-
tation is based on the concept of past behaviour being indicative of future
behaviour. When players have access to historic game outcomes, they are
able to improve their long term gains by persuading others to believe they
are of a certain type that best suits their interests.

Dellarocas [17] explains the requirement of initial uncertainty in other
uninformed players is essential for reputation effects to take place. Con-
sider repeated games between a long run player and multiple short run
players. If no doubt over the long run player’s type exists, the short run
players will choose their Nash equilibrium [49] action. Dellarocas de-
scribes that building reputation enables the long run player to improve
their payoffs. A long run player with a record of playing a cooperative
action, is trusted by subsequent short run players to do so in the future.

Kreps and Wilson [35] and Milgrom and Roberts [47] describe the rea-
son behind this behaviour through the use of long run players with locked
behaviour. Locked behaviour implies a player is predestined to play a sin-
gle action throughout their lifetime. With the example of an auction, the
authors explain that when the advantages of having a reputation to per-
form well are sufficient, sellers overcome their temptation to cheat and try
to acquire a reputation to deliver high quality goods. Based on the sellers
past behaviour, buyers are able to place higher bids, increasing the long
term payoffs of the seller.

3.1.3 Reputation in Computer Science

Computer based applications often aim to incorporate the advantages of
trust that has been proven within social settings. Reputation systems have
become increasingly wide spread and are prominent features in many on-
line environments. The necessity of trust within pseudonymous online

20 CHAPTER 3. RELATED WORK

systems is evident when interactions have significance. The underlying
concept of trust facilitating mechanisms is to provide an indication of an
entities likelihood to act honestly. With the assumption of historic be-
haviour being indicative of future behaviour, entities are more likely to be-
have honestly due to the expectation that their current decision will have
future consequences.

Within online environments, trust can be seen as either implicit or ex-
plicit. Implicit trust is often found within established organisations, such
as online banking, where honesty is implied. Other settings, such as on-
line auctions, require the explicit definition of a mechanism to manufac-
ture trust. For reputation mechanisms to produce trust, entities need to
be uniquely identifiable and actions must be associated with an individ-
ual. Methods of collecting, aggregating and distributing the information
to others in the environment are necessary for the mechanism to function.
Others can then interpret the information as a suggestion of the targets de-
pendability. Along with the consideration of other quality of service met-
rics, reputation can be used to form opinions and enhance the accuracy of
the decision making process.

Reputation mechanisms provide a significant motivation for entities
to contribute beneficially to online environments. Resnick et al. [61] and
Quill [57] demonstrate the value of one’s reputation in eBay, showing that
maintaining an honest and reliable reputation leads to more bids, a higher
sale price and more sales in total.

3.1.4 Reputation Systems

Reputation systems are generally catered to best suit their target domain.
Due to the proprietary nature of many of these domains, from network
routing to peer-to-peer architectures, the differences between individual
reputation systems can vary drastically. Through our work defining a tax-
onomy of reputation systems [28] and the examination of many systems

3.1. TRUST AND REPUTATION 21

from both academic and industrial settings, a set of categorical features
have been identified. The following describes some of the categories pre-
sented in the taxonomy.

• Governance: The governance of a reputation system represents the
method of control. Reputation systems are volatile, where users and
information change frequently. The governance of a system relates
to the method of organisation. Centralised governance, such as that
utilised by Amazon and eBay, refers to systems with a focal point
of authority. Although the underlying fabric is almost certainly of a
distributed nature, the governance is managed by a singular body.
Distributed governance describes multiple entities working in uni-
son, often without an overseeing moderator, to establish a reputation
system that can operate over the environment dynamically.

• Entities: An entity is the target of a reputation system, typically rep-
resenting either people or resources [74]. Reputation systems can
be categorised by the targets they cater for, be they individuals or
groups. Individual entity based reputation systems are extremely
prominent in online environments, with a focus on specific users and
resources, such as books or films. Super node [77] utilising systems
can also be considered as individually based. Group based reputa-
tion systems focus on servicing collections of individuals, whether
they are long term alliances, or short term organisations. Reputa-
tion systems designed for groups allow new contexts of informa-
tion to be considered, for example; group size, rate of growth and
rate of churn [71]. Sabater and Sierra [64] introduced the concept of
neighbourhood reputation in ReGreT, focusing on the relationships
of neighbouring entities to the target.

• Motive: Reputation systems are often assumed to employ an in-
centive based motivational mechanism, in which trustworthy enti-
ties are rewarded and consequently, malicious entities are punished

22 CHAPTER 3. RELATED WORK

through a lack of reward. Rabahi et al. [59] with CONFIDANT and
Aberer et al. with P-Grid [3] both reverse this approach. Instead,
they each employ a disincentive based mechanism in which entities
are assumed to be cooperative until identified as malicious and are
in turn addressed.

• Collection: A reputation system’s collection method describes the
techniques used to capture information regarding an entities per-
formance. Reputation systems often rely on direct collection meth-
ods such as experience and observation. Direct collection requires
one entity to either interact with another entity, or monitor an in-
teraction between other entities to form a personalised opinion on
how well entities behaved [71]. Reputation systems will typically
employ some degree of indirect collection as well. An indirect ap-
proach involves information being obtained from other entities, be
they individuals, groups [40] or external repositories [41]. Sepandar
et al. [32] explain that utilising both personal experience and oth-
ers experience provides a better basis to form decisions. Reputation
systems can further be classified as to whether they incorporate de-
rived information gathering techniques, allowing information from
diverse sources, often not explicitly designed to be used as a reputa-
tion source, to be utilised during the decision making process.

• Context: Contextual information refers to the different types of trans-
actional information collected and distributed within reputation sys-
tems. Reputation information can be generated in a variety of ways,
each associated with contextual information that is often not col-
lected. Single context reputation systems focus on one concept of
the transactions being monitored. Typically these systems support
an encompassing review of an interaction, for instance, recording
whether it was a positive or negative experience. Information is
then aggregated and presented in a simplistic manner where rep-

3.1. TRUST AND REPUTATION 23

utations are often consumed as a single value. These systems sup-
port an individual perception of interactions and utilise the collected
information in a structured, predefined way. Other perspectives of
reputation are also important. When trading goods, not only the
price, but the quality, delivery time and after sales services all play
significant roles when assessing an item [65]. The degree in which
reputation systems support multiple contexts differs substantially.
PeerTrust [79] presents two innovative context factors for trading,
taking into account the value of transactions and the level of par-
ticipation within the community. The contextual factors provide a
greater understanding of the trade and measures the benefit of en-
tities to the environment. ReGreT [63] includes fine grained repu-
tation information representing the frequency of overcharging, late
delivery and quality of historic transactions. Sabater and Sierra [62]
have extended ReGreT to feature a social contextual factor, allowing
trust to be extracted from groups and communities associated with
the target.

• Representation: The format in which reputation information is de-
scribed, exchanged and interpreted varies between reputation sys-
tems. Through the investigation of existing reputation systems and
their symbolisation of information, a set of common types can been
determined. Binary types represent entities as either trustworthy or
untrustworthy, for example how P-Grid [4] defines global trust. Dis-
crete values are easily interpreted and are classified as either bounded
or unbounded. Bounded discrete values describe fixed scores, such
as a zero to five ratings, or Slashdot’s1 rated set of terrible to ex-
cellent. Unbounded discrete values show accumulative reputation
scores, for instance within eBay, allowing the score to reflect the grow-
ing amount of feedback received. Continuous information is shown
as a floating point number, ranging from zero to one, such as within

1http://slashdot.org/

24 CHAPTER 3. RELATED WORK

EigenTrust [32]. String based feedback allows the expression of in-
formation in much greater detail than an individual numerical value.
Text based feedback comments enable contextual information and
other factors describing the transaction to be exchanged. Due to
the complexity associated with autonomously processing text, com-
ments are typically intended for human consumption. Collections,
such as vectors, facilitate the description of multiple pieces of infor-
mation while maintaining relationships. PeerTrust [79] employs col-
lections to express separate values regarding individual contexts for
each transaction.

3.2 Identity

With advancements in identity management, reputation systems are ca-
pable of associating actions with entities across sessions. The proprietary
nature of most reputation environments has limited the ability to openly
exchange reputation information. Sources typically maintain a private set
of user identities and pseudonyms which is often incompatible with other
sources. The ability to effectively associate pseudonyms from various en-
vironments with a unique individual is a requirement for sharing infor-
mation between sources.

Single sign-on (SSO) solutions have been developed as a method of
reducing the authentication overhead for both services and users. SSO
allows users to authenticate once and then move seamlessly between par-
ticipating services without the need to log in at each. Services that provide
SSO simplify the log in process by allowing users to authenticate a global
identity.

Multiple SSO frameworks have been created to provide global identity
management systems, such as Microsoft Passport2, Shibboleth [9], Ker-
beros [50], Liberty Alliance [72] and OpenID [60].

2http://www.passport.net/

3.3. REPUTATION EXCHANGE 25

Liberty Alliance extends basic SSO by incorporating an identity map-
ping service. The service allows users to request identity tokens that allow
the distinction of users in a privacy preserving manner [72].

OpenID is a widely used standard for authentication and identity, sim-
plifying the authentication process across platforms by providing a dis-
tributed SSO framework. Users are able to authenticate themselves with
a third party by proving the ownership of an identifier. Identifiers are
resolvable digital addresses, either in the form of a URL or XRI. The lo-
cation of the identifier typically provides an XRDS document, describing
the identity provider. Third party services can then contact the provider,
prompting the provider to authenticate the user. Because the identity is
simply a resolvable address, the customisation of the content is possible.

3.3 Reputation Exchange

The exchange of reputation information is reliant on many factors. The
following section presents the existing work in the area along with the
OpenRep system currently being developed.

Pingel et al. [54] have investigated the concept of Cross-Community Rep-
utation, in which the advantages and issues of combining reputation infor-
mation from different communities are discussed. The authors have de-
signed and created a multilateral, secure, reputation system allowing rep-
utation to be exchanged between interoperable communities. The work
is demonstrated across communities using phpBB3, a bulletin board soft-
ware package.

Grinshpoun et al. [24] have focused on the issues regarding the ex-
change of reputation information. They discuss the advantages of sharing
information and present a set of problems and policies related to the ex-
change between environments. Further work examining the privacy con-
cerns and tradeoffs when sharing information has also been presented by

3http://www.phpbb.com/

26 CHAPTER 3. RELATED WORK

the group [21].
The Organization for the Advancement of Structured Information Stan-

dards4 (OASIS) are working to create an Open Reputation Management
System (ORMS). The goal of the ORMS Technical Committee is to cre-
ate a specification for representation, calculation and exchange of reputa-
tion information. Although not focused on the performance of calculation,
ORMS intends to describe the relevance of the result within a transaction.

OpenRep is designed to leverage the OpenID architecture to facilitate
reputation information. From the extendibility of the OpenID framework,
as discussed in Section 3.2, reputation information can be integrated into
the identifier’s documents. The ability to provide and associate reputation
values with a globally unique identifier, allows reputation information to
be openly described and exchanged. OpenRep is designed to extend the
functionality presented by Pingel et al. [54] and Gal-Oz et al. [21] by pro-
viding a solution to federate reputation systems from diverse domains and
without intrinsic compatibility.

3.4 Summary

A historic account of word of mouth and reputation systems has been pre-
sented with the advantages of reputation within social settings being evi-
dent. The concept of historic actions being indicative of future behaviour
is vital for cooperation within communities. Analysing reputation systems
through game theory demonstrates the potential reward of being consid-
ered reputable. The integration of reputation systems into the computer
science domain attempts to apply the benefits of reputation within func-
tional applications. Through the evaluation of many existing reputation
systems, a set of characteristics capable of describing reputation systems
has been constructed. Some of these features have been presented to pro-
vide insight into the potential variety of diverse systems. The advance-

4http://www.oasis-open.org/

3.4. SUMMARY 27

ments in online identity that provide the ability to globally identify enti-
ties have been discussed. With the unique identification of entities, sharing
reputation information is possible. Existing work regarding the exchange
of reputation has been given. This chapter has presented a review of rele-
vant related work, providing a basis to the work discussed in this thesis.

28 CHAPTER 3. RELATED WORK

Chapter 4

Design Strategy

Standardising the representation of reputation information is a crucial step
towards increasing the interoperability of diverse reputation systems. Open
reputation standards reduce the cost and complexity of sharing reputation
information, enabling new reputation based opportunities to be explored.

This chapter describes the requirements and design goals of an archi-
tecture that supports the exchange of reputation information in the Open-
Rep architecture. The chapter first discusses the motivation behind con-
structing a description and interpretation system to enable the exchange
of reputation information between OpenRep nodes. The requirements of
the system are then presented and supported with three case studies, used
to drive the research and demonstrate the capabilities of the system once
complete. Finally, a set of overall design goals are discussed with reason-
ing as to their significance.

4.1 Motivation

Reputation systems are becoming increasingly popular and more promi-
nent in a wide range of domains. Proprietary reputation systems have
been designed specifically to cater for the requirements of the domain in
which they are used. This is due, in part, to the fact that almost every

29

30 CHAPTER 4. DESIGN STRATEGY

aspect of a reputation system can be customised to better accommodate
their particular environment. However, the diversity of reputation sys-
tems limits the ability to share and utilise information collected in dis-
parate domains.

Reputation information can be generated with drastically different in-
tentions and significance, for example from reporting theft through to su-
perficial popularity measures. Generally, reputation systems cater for a
single type of entity, for example humans, machines, products or groups,
which therefore further complicates the process of sharing information
across communities. Because the information can differ semantically, con-
textually and with regard to information type, it is difficult to exchange
information in a meaningful way. With the proper description of infor-
mation, existing boundaries can be removed, allowing the integration of
information sources that would otherwise be divided. Establishing a stan-
dard method to describe reputation information will allow sources to ef-
fectively communicate and collaborate.

Integrating a description and interpretation system into the OpenRep
architecture establishes a common language amongst participating sources.
Through the typed sharing of information, individuals can be exposed to
diverse forms of information, providing greater insight into others and
increasing their ability to make informed decisions.

4.2 Case Studies

To effectively gather the requirements for the description and interpreta-
tion system, a thorough survey of reputation systems is necessary. The de-
scription and interpretation system is responsible for exchanging reputa-
tion information between reputation sources. A fundamental requirement
of the system is that it is capable of facilitating the exchange of information
from a wide range of reputation systems.

Domain analysis is one technique that can be used to emphasise fea-

4.2. CASE STUDIES 31

tures of reputation systems and focus the development of the description
and interpretation system. To accurately model each domain three dis-
tinct case studies have been defined to assist in the process of establish-
ing the requirements and design goals of the system. The case studies
also provide a practical application scenario that can be implemented to
demonstrate the capabilities of the system. The case studies have been
specifically chosen to best represent reputation systems in real world situ-
ations, demonstrating how information from different types and contexts
can be integrated. The three case studies described in this section cover an
electronic auction, a virtual community and a social network application.

4.2.1 Auction

The first case study is focused on the electronic auctioning industry. This
area has been selected as it represents a common example of reputation
systems in existing research and is exemplified by many real world appli-
cations. Through the examination of various electronic auction places in
active use, such as Amazon1, eBay2 and TradeMe3, requirements can be
generated for a well understood and practical use of reputation systems.
The auction case study is focused on users generating and reviewing in-
formation regarding other traders in the environment. There is a strong
requirement to aggregate reputation information over time to so that users
can analyse how other traders have performed historically during trans-
actions.

4.2.2 Virtual Community

A virtual community based case study represents a source of popular and
widely implemented reputation systems. The virtual community study

1http://www.amazon.com/
2http://www.ebay.com/
3http://www.trademe.co.nz/

32 CHAPTER 4. DESIGN STRATEGY

characterises commonly used online environments, such as Reddit4, Digg5,
Epinions 6, IMDb7 and various other domain specific forums. This case
study provides a platform to demonstrate how OpenRep can be beneficial
to a form of reputation system that is primarily used as a standalone ser-
vice without consideration for exchanging information. The prevalence of
both human and automated machine users in these communities presents
the question of should these categories be treated differently, and if so,
how can they be differentiated within the system.

4.2.3 Social Network

A social networking case study provides an alternative perspective from
the other case studies and allows the system to be tested in a highly in-
dividualised socially-oriented reputation setting. This case study demon-
strates the potential of the OpenRep system to support an extensive range
of information types and reputation systems. The case study focuses on a
human relationship management service, in which the interactions of par-
ticipants in a social network are monitored and evaluated as a measure
of trust. The service ranks acquaintances based on the level and type of
interactions between them and the user. This information can be used or
distributed as an indication of the strength of the relationship and there-
fore trust between the users. The case study also presents the requirement
of customisable policies to enable others to interpret such information, al-
lowing the allocation of specific weights to different domains and types.

4http://www.reddit.com/
5http://digg.com/
6http://www.epinions.com/
7http://www.imdb.com/

4.3. REQUIREMENTS 33

4.3 Requirements

The main goal of the description and interpretation system is to allow dif-
ferent reputation systems to share information meaningfully. To achieve
the level of integration desired between reputation systems, a method of
communicating effectively between systems is required. The system must
provide a suitable medium in which information can be expressed, ex-
changed and interpreted. The requirements of the system are:

Requirement 1 Description and Interpretation System

1.1 Standardise the expression of reputation information.

1.2 Enforce the correct use of the description mechanism.

1.3 Facilitate the exchange of reputation information between heterogonous sys-
tems.

1.4 Provide a mechanism to interpret the information.

4.3.1 Reputation Description

There are two mechanisms that are most appropriate to standardise the
description of reputation information, these are the creation of a Domain
Specific Language (DSL) or the definition of a typed schema such as XML [8].
The development of a DSL has been selected over the definition of a typed
schema for multiple reasons.

A DSL sacrifices generality for expressiveness in a particular domain [45].
The key requirement of the reputation medium is to allow the expression
of information without any loss of detail. A DSL provides the ability to
define a vast range of types, collections and constraints, allowing infor-
mation to be expressed in fine grained detail while maintaining the rela-
tionships between data types. Functions in particular are a valuable form

34 CHAPTER 4. DESIGN STRATEGY

of communication between reputation systems. A DSL enables direct de-
scription of functions and parameters. DSLs also offer a human readable
platform of communication, increasing maintainability and allowing users
to customise information. The primary disadvantages, in this context, of
using DSLs are the cost of learning a new language and the transformation
from a data structure, to a linear expression, then back to a data structure
for processing. Due to the diversity of reputation systems and the infor-
mation generated, the transformation of information is necessary whether
a language or schema is used. The cost of learning a new language can be
minimised by leveraging existing languages to increase the intuitiveness
of the reputation language.

The requirements of the reputation language are that it be powerful
enough to enable the description of any reputation information, includ-
ing collections of types and the relationships held between values. Com-
mon operations performed on reputation information should also be sup-
ported, demonstrating the ability to express requirements and other oper-
ations. The core requirements are therefore:

Requirement 2 Reputation Language

2.1 Include sufficient types in the language to express reputation information.

2.2 Support collections and data structures to represent relationships between
information types.

2.3 Provide an adequate set of operations and functions.

2.4 Cater for both human and machine based information.

4.3.2 Verification System

In order for the reputation language to function properly as a standard-
ised communication method, confidence in the use of the languages is
necessary. In particular, a mechanism to ensure syntactic and semantic

4.3. REQUIREMENTS 35

constraints are enforced is required. The correct expression of reputation
information, with regard to syntactical description and sound type use, is
a nontrivial property [10]. Before processing an instance of described in-
formation it must be shown to be valid, for example ensuring functions
are specified with compatible parameters and that types are used appro-
priately. Policies are necessary to describe type hierarchy and function
schematics. The requirements for the verification system are:

Requirement 3 Verification System

3.1 The use of the reputation language must be validated.

3.2 The definition of what constitutes a type error must be established.

3.3 Customisable policies are required.

4.3.3 Exchange Protocol

A standardised exchange protocol is required to share reputation informa-
tion between heterogonous reputation systems. This protocol must ensure
reputation information is packaged and exchanged in a generic structured
format such that consistent interpretation of the information can be per-
formed. The exchange protocol defines a means of encoding reputation
information when communicating between sources. The encoding must
allow the information to be packaged without loss of meaning, integrity
or contextual information. To accomplish this goal, a method of express-
ing contextual information must first be defined. The requirements for the
exchange protocol are:

Requirement 4 Exchange Protocol

4.1 Encode information without the loss of meaning.

4.2 Provide the ability to encode contextual information.

4.3 Ensure information integrity.

36 CHAPTER 4. DESIGN STRATEGY

4.4 Design Goals

The previous section outlined the core requirements that must be sup-
ported by the description and interpretation system. These requirements
each influence the design of the description and interpretation system, in-
corporating the language, verification system and encoding protocol to-
gether as a single useable service. The system is designed to fit within
the OpenRep framework, providing a standard method of communication
throughout the reputation environment.

The verification system must be abstracted from the end user to sim-
plify use when interpreting input. To accomplish the desired encapsula-
tion, an interface to the verification system must be defined. The inter-
face is responsible for marshalling information from the validator to the
semantic checking system and returning outcomes to the caller. The val-
idation process is an asynchronous process and therefore can be handled
using an event based architecture, allowing callers to subscribe to different
notifications and asynchronously invoke functionality as needed. Finally
the encoding of information into the exchange protocol must also be ad-
dressed. With these considerations in mind, the core design goals for the
description and interpretation system are:

Design Goal 1 Description and Interpretation System

1.1 Create a portable system that can be incorporated into the OpenRep stack.

1.2 Provide a simple interface to the system, reducing the complexity to process
reputation information.

1.3 Build an event based verification system, allowing users to asynchronously
invoke particular functionality depending on the result of the execution.

1.4 Provide a secure method to exchange reputation information.

4.4. DESIGN GOALS 37

The design of the system can be seen in Figure 4.1. The figure depicts
the components of the system. The verification system and validation unit
are abstracted away from the user, behind an interface. The parser and
lexer rules are utilised by the validation unit to parse information. The
exchange protocol is situated between the description system and other
OpenRep nodes, enabling information to be exchanged.

Interface

Verification
System

Validation
Unit

Parser Lexer

Reputation
Exchange

Reputation
Container

Figure 4.1: An overview of the description and interpretation system.

4.4.1 Reputation Language

A language can be defined as a grammar containing a set of lexer and
parser rules. The decision of which parser generator tool best meets the
stated requirements must be addressed before the expression of the lan-
guage can take place. A lexer is responsible for describing the fundamen-
tal elements of the language, for example key words, operators and what
constitutes an integer. Once the lexer rules are constructed, the parser

38 CHAPTER 4. DESIGN STRATEGY

rules can be defined as groupings of the lexer terminals. The parser is
responsible for a higher level role of the language, determining the com-
binations of lexer tokens that represents a valid description of reputation
information. Creating an intuitive language that leverages standards used
in prominent programming languages will reduce the overhead required
to learn the reputation language.

The reputation language requires a sufficient set of data types to de-
scribe reputation information. To ensure this requirement is met, many
reputation systems have been surveyed to compile a expansive set of types
to support. Through the examination of the identified set of types, the
language can be defined to accommodate the elemental features of those
identified, allowing the innovation of customised reputation types to con-
tinue being supported. The design goals for the reputation language are:

Design Goal 2 Reputation Language

2.1 Define an appropriate set of terminals and lexer rules.

2.2 Define a non-ambiguous set of parser rules that fulfil the requirements of the
language.

2.3 Have the language be syntactically intuitive and easy to use.

4.4.2 Verification System

For reputation systems participating in the OpenRep environment to have
confidence in the correct use of the reputation language, a system to verify
language instances prior to interpretation must be included in the descrip-
tion and interpretation system. Essentially, the verification system must
comprise of two distinct elements: a language validation mechanism and
a semantic constraint enforcement system.

The purpose of a type system is to prevent execution errors when exe-
cuting the input [10]. For the verification system to work as intended, po-
tential type errors must be identified. The verification system is designed

4.4. DESIGN GOALS 39

to work with the defined reputation language to provide a typed method
of describing reputation information. Before a semantic enforcement sys-
tem can be designed to identify and alleviate type errors, the definition of
a type error must be defined. The design goals for the verification system
are:

Design Goal 3 Verification System

3.1 Ensure the syntactical correctness of instances of the reputation language.

3.2 Establish a set of type errors and construct a static type enforcement system
to ensure potential type errors are identified.

3.3 Define and implement the functionality to validate type compatibility with
regard to type hierarchy.

4.4.3 Reputation Exchange Protocol

When designing a comprehensive solution to meet the requirements for
the exchange of reputation information between OpenRep nodes, promi-
nent encoding standards and languages must be investigated. Definition
languages, such as Web Service Definition Language [12], Interface de-
scription languages and exchange protocols such as SOAP [51] demon-
strate a successful method of encoding information. From these XML
based languages and protocols, attributes that could potentially be useful
for the reputation exchange protocol can be found.

The design of the reputation exchange protocol has been broken into
two distinct XML Schema Definition (XSD) [23] schemas, the Reputation
Exchange (RX) and Reputation Container (RC), to facilitate the transfer
of multiple pieces of reputation information at once. The goal of the RC
schema is to encompass reputation information elements and include the
security elements associated with data integrity. The RC schema is also
designed to ease the burden of processing the reputation information, by

40 CHAPTER 4. DESIGN STRATEGY

providing additional information identifying the number of items being
transferred and the role of the exchange, be it a request or function invo-
cation. The RC schema can be seen in Appendix B.

The RX schema is designed to fulfil the requirement of encoding in-
stances of reputation information without losing semantic meaning. The
RX must provide adequate encoding capabilities to allow reputation in-
formation to be explicitly described, along with any associated contextual
information and details of the source and target. The RX schema must also
facilitate an optional transaction element, used to exchange entire histories
of a users interactions, potentially providing reputation provenance. A
mandatory summary element is to be included for each piece set of in-
formation sent. The RX schema can be seen in Appendix C. Encoding
instances of reputation information as RX elements and then wrapping
RX elements within an RC schema provides a basis for information to be
exchanged through a standardised format.

The method of interaction between sources must also be established.
For reputation systems to work in a coordinated manner, key aspects re-
garding interoperability must be defined. Common interfaces and a spec-
ification regarding the requirements of interactions are concerns that must
be addressed before the exchange protocol can be instituted.

Design Goal 4 Exchange Protocol

4.1 Create a schema to encode reputation information without loss of semantic
meaning.

4.2 Create a schema to encase the reputation information, providing security
features and parsing advantages.

4.5 Conclusion

The proposed description and interpretation system is designed to enable
the OpenRep architecture to exchange reputation information between

4.5. CONCLUSION 41

reputation systems. This integration of reputation systems will enable ac-
cess to a greater amount of reputation information, from a variety of per-
spectives, which in turn will allow more informed decisions to be made.

Three case studies have been defined to generate requirements and
focus the implementation. The case studies have been selected for their
unique features and each provides an insight into a unique reputation sys-
tem that represents a real world scenario. The case studies have demon-
strated their value by identifying areas that may otherwise have been over-
looked, such as the complexity involved with integrating human and ma-
chine sources as well as the requirement to encode contextual information.

The requirements of the description and interpretation system have
been identified and discussed. From the requirements, the design goals
for each component of the system have been defined. The design goals
are utilised during the creation and implementation of the system as a
whole. This chapter has presented numerous concerns that must first be
addressed in the implementation of the description and interpretation sys-
tem.

42 CHAPTER 4. DESIGN STRATEGY

Chapter 5

Techniques and Tools

The questions raised in Chapter 4 are fundamental to the functionality of
the description and interpretation system. Concerns relating to OpenRep’s
interoperability standards, the integration of human and machine entities,
contextual representation and the selection of an appropriate parser gen-
erator are essential to the operation of the system. A discussion of the
assumptions and decisions made for each of these topics is given below.

5.1 OpenRep Interoperability Standards

For the reputation systems to interact, a common form of communication
is required. It has been decided that standardising the methods of commu-
nication will be enforced through three mechanisms. The communication
standards focus on the exposed interface, a set of standards and a protocol.

The interfaces exposed by reputation systems participating within Open-
Rep are required to conform to the Representational State Transfer (REST) [20]
style. REST utilises the HTTP protocol for communication, meaning a
RESTful interface supports HTTP requests, such as GET and POST. The
HTTP and HTTPS protocols also allow caching and proxies to be used to
assist in high load situations, increasing both the scalability and usability
of the service. Finally, REST encourages complex tasks to be organised

43

44 CHAPTER 5. TECHNIQUES AND TOOLS

into resources that operate through a standard interface.

The OpenRep specification provides a set of common parameters to
generalise the interactions between reputation systems. We have designed
the specification to establish a standard method of communicating be-
tween reputation systems within the OpenRep environment. The speci-
fication defines the structure and function of requests and responses.

In addition to the OpenRep specification, the protocol to exchange rep-
utation information must be defined. Through the use of a standard inter-
face, an open specification determining the requirements of interactions
and the development of an exchange protocol, interoperability between
reputation systems is possible.

5.2 Integrating Humans and Machines

Before OpenRep can operate as a federated reputation system, the plausi-
bility of integrating human and machine based sources must be addressed.
Until machines are able to pass a Turing test [73], there is an obvious dis-
crepancy between an automated machine entity and a human user inter-
acting. Reputation systems are designed to function for a specific set of
users. In most well known reputation systems, such as eBay, the user base
is primarily human. Through the investigation of various human and ma-
chine based reputation systems, a set of parallels and differences can be
established. From this set, the complexities and potential solutions as-
sociated with integrating human and machine based reputation systems
should be identifiable.

To accomplish the goal of identifying differences and challenges when
merging inconsistent user bases, a number of steps need to be taken. Firstly,
the key phases in a reputation system need to be recognised and cate-
gorised. By categorising primary functions and points of action in a rep-
utation system, behaviour can be collected and analysed. Example case
studies can then be investigated with relation to the reputation system

5.2. INTEGRATING HUMANS AND MACHINES 45

phases, allowing behavioural characteristics to be recognised. From the
characteristics, differences and similarities can be extracted and reviewed
to base the opinion of whether they should be integrated.

After investigating multiple reputation systems, seven reputation phases
have been identified as definitive. The following have been determined as
distinctive points in which users take action:

• Resource Detection: How an entity discovers resources to fulfil their
requirements. Human partners are typically found through searches.
Slashdot provides a mechanism in which other entities vote on con-
tent to establish a value, then if the value passes a threshold, the
information is displayed to users.

• Reputation Presentation: How reputation information is discovered
and viewed by entities. eBay and Epinions display a summary of a
users reputation along with their identity. CARE [78] utilises a rep-
utation flooding mechanism, where local repositories are frequently
updated and searched.

• Reputation Collection: The process in which information regard-
ing others is collected by an entity. While RATEWeb [40] primarily
supports the direct collection of information, when a service is iden-
tified, a list of prior partners is also provided. The historic partners
can be queried for their evaluation of interacting with an entity.

• Calculation: The steps taken with reputation to establish an indica-
tion of trust. Machine based entities are often extremely methodical
and precise when calculating whether an entities reputation meets a
threshold. Human users, for example in eBay, are often catered for
by being provided precalculated values to simplify the interpreta-
tion.

• Interpretation: The process of understanding the calculated infor-
mation. Machine based entities aim to employ precise threshold tests

46 CHAPTER 5. TECHNIQUES AND TOOLS

to determine trust. The weight given to various reviews changes
considerably between human users, resulting in inconsistent evalua-
tions. Where a machine may be programmed to calculate a negative
performance as being equivalent as a positive performance, humans
often assign larger weights to negative reviews.

• Resource Consumption: How an entity utilises a remote resource.
Typically this involves an entity interacting with the target or infor-
mation being displayed. CARE uses the reputation information to
determine which email is spam.

• Feedback Generation: The process in which reputation information
is generated. Generally, human users are reluctant to provide feed-
back and require motivating. Emotional responses can also prove
unreliable. Similarly, machine agents can have difficulty determin-
ing an accurate evaluation of an interaction if unforeseen circum-
stances arise.

Slashdot, eBay and Epinions have been selected as case studies to rep-
resent human based reputation systems. CARE and RATEWeb were cho-
sen as the most relevant machine based reputation systems that provided
sufficient detail to analyse with regard to the reputation phases.

Once the case studies were examined and compared, the similarities
and differences were apparent. With the assumption of honest entities, the
goal of each entity type in the reputation system is identical. Both aim to
be considered reputable and employ the system in a manner to incentivise
others to trade with them and alleviate the probability of interacting with
dishonest users.

Humans were found to not always perform the optimal action when
attempting to accomplish an exchange. Although human users are often
provided information from clinical reputation calculations; mistakes, bi-
ases and unfounded logic can heavily affect a decision being made. Ma-
chines are assumed to be programmed to act as effectively as possible.

5.2. INTEGRATING HUMANS AND MACHINES 47

It is also assumed decisions are based entirely on information collected
within the reputation environment. Both of these assumptions are inher-
ently false. Programmers are prone to mistakes and humans often have
external relationships that can be given precedence over reputation sys-
tems.

Human users motives are not strictly pure or specifically defined, mean-
ing they are subject to unforeseeable change. This makes interacting with
them unpredictable and potentially inefficient, which may cause further
trouble as machines struggle to adapt to unanticipated circumstances.

Other differences, such as fault tolerance, downtime or accounting for
new sources or contexts of information were also identified as potential
problems. Without an adequate resolution to these, machine entities would
gain a reputation for being inadequate and unreliable, potentially causing
them to be avoided by the human populace. Machines need to be able to
handle rare and possibly unforeseen circumstances, while maintaining the
ability to provide meaningful feedback to human users and fulfil transac-
tions without being interrupted by faults.

Although other differences have been identified as troublesome, the
key concern when integrating humans and machines is the ability to learn
and adapt. Although a reputation system itself is a tool to provide adap-
tion in partner selection, humans are able to probe other entities behaviour
to develop an understanding of their motives and heuristics. This leads
to the fact that a machines programming can be learnt by an observant
human user. Once learnt the user can exploit the machine to their own
advantage.

From the above work, the identification of a critically limiting factor,
demonstrating that human and machine reputation systems cannot be in-
tegrated was not found. Though ability to provide assurance of their ca-
pabilities to achieve tasks is key to their incorporation. Provided the ma-
chines are not able to be gamed to other users advantage, their integration
has been determined as possible.

48 CHAPTER 5. TECHNIQUES AND TOOLS

5.3 Reputation Contextual Expression

Reputation information is context dependent. Without an associated con-
text, reputation has very little value and is difficult to extract meaning
from. Contextual information is often taken for granted in reputation sys-
tems due to architectures typically being single domain oriented. Schlosser
et al. [65] demonstrate different forms of contextual information that is of-
ten overlooked through an example of goods being traded. They explain
that the price and quality of an item are important characteristics when
trading, but other aspects, such as delivery time and after sales services
are also significant to decision making.

In order to express contextual information, a layered approach has
been decided as the most appropriate mechanism. Throughout this re-
search, contextual information regarding reputation values is described in
layered context levels. Context levels allow reputation information to be
interpreted to different extents, dependent on such factors as the similar-
ity between the described context and the interpreters, or to the level at
which it loses significance.

For example, reputation information generated within an auction is
fundamentally associated with layers of contextual information describing
the environment. Online auctions branch from an online domain and are
refined to an electronic market based context. Further contextual layers
are then applicable, for example the role of the trader (buyer or seller),
the type of item being traded or the price of the item. The description
of context when trading reputation information is essential. Through the
association of appropriate contextual information with reputation values,
meaning can be conveyed.

5.4. PARSER GENERATOR TOOLS 49

5.4 Parser Generator Tools

When designing a language, a parser and lexer generator need to be se-
lected to establish the parser and lexer rules of the language. Before the
expression of the language can begin, the selection of an appropriate tool
to generate the parser and lexer is necessary.

Many parser generators and the generally associated lexers have been
investigated and compared. Lex and YACC [37], Flex and Bison [36],
Javacc [34] and ANTLR [52] were each reviewed as potential candidates
to generate the reputation language. When deciding on the appropriate
parser generator for the language, the main criteria was that it simplify
the definition of the language while being suitable to express it fully. After
comparing and evaluating each of the candidates, it was decided ANTLR
would be most suitable. ANTLR is both a parser and lexer generator used
to construct languages and automates the time consuming components
associated with creation. ANTLR takes as input a single context-free Ex-
tended Backus-Naur Form (EBNF) [66] grammar, capable of describing
both the parser and lexer rules.

ANTLR has a number of advantages over the other potential parser
generators that were considered. One of the most noticeable advantages is
that it could create a parser and lexer in Java, allowing fluent integration
into the description and interpretation system project. ANTLR is gener-
ally considered easy to use, providing a high degree of debugging capa-
bilities. The ability to include the abstract syntax tree structure into the
grammar was also an advantage and simplifies the parsing of the out-
put. ANTLR also provides an integrated development environment called
ANTLRWorks. ANTLRWorks facilitates a graphical representation of the
grammar rules and errors. ANTLRWorks also contains a debugging envi-
ronment, showing the generation of parse and abstract syntax trees when
processing input. ANTLR supplies less cryptic and easier to interpret error
messages than those often generated by YACC and Bison.

50 CHAPTER 5. TECHNIQUES AND TOOLS

The main disadvantages of using ANTLR are related to its complexity.
ANTLR has a steep learning curve as it is able to accomplish many things.
ANTLR is also considered to run slower than the YACC and Bison alter-
natives, it also requires a dependency to be added to the class path of a
project.

ANTLR uses LL(*) parsing, meaning it parses from left to right with ar-
bitrary lookahead with backtracking, rather than YACC and Bison’s LALR
parsing. The Java Virtual Machine [38] is used to generate the parser and
lexer.

A lexer defines of a set of rules applying to character sequences, made
to represent tokens. The lexer rules defined for the reputation language
consist of the definition of literals, operators, keywords and identifiers.
ANTLR also provides a mechanism for hiding input in a special chan-
nel, meaning is not processed or included as a token passed to the parser.
White space and comments have been directed to the hidden channel, pro-
viding a java like commenting mechanism.

The parser takes the sequence of tokens identified by the lexer and at-
tempts to map the tokens to rules defined in the parser grammar. The rules
defined for the parser describe the language. Rules are defined in a tree
structure, where input can be classified as a set of rules depending on the
branches the tokens match.

5.5 Conclusion

The chapter has examined areas of work that required consideration be-
fore proceeding with the work. The concerns identified in Chapter 4, re-
lating to fundamental features of the description and interpretation system
have been accommodated, allowing the system to function as required.

The OpenRep interoperability standards have been presented and dis-
cussed. Enforcing a REST interface, standardising communication tech-
niques and implementing an open exchange protocol enables the case stud-

5.5. CONCLUSION 51

ies being developed to communicate effectively.
The integration of human and machine based reputation systems is an

essential element of a federated reputation system. Through the study
of existing reputation systems it has been shown that humans and ma-
chines can effectively operate together, expanding the potential reach of
the OpenRep system.

To meaningfully exchange reputation information, the ability to ex-
press context is essential. The technique developed to encode contextual
information has been presented and reasoned, allowing it to be incorpo-
rated into the work.

Finally, the selection process of a suitable tool to generate a parser and
lexer for the reputation language has been discussed. The advantages of
ANTLR and the features it employs have been given to support the deci-
sion.

52 CHAPTER 5. TECHNIQUES AND TOOLS

Chapter 6

Reputation Language

To facilitate the sharing of reputation information the description and in-
terpretation system requires a common description mechanism. In this
architecture a reputation language has been selected to enhance the abil-
ity to express information with vastly different types and structures. A
discussion regarding the use of an XSD schema or reputation language is
presented in Chapter 4. The reputation language standardises the method
of expressing information throughout the entire OpenRep environment.
The language is a fundamental element of the description and interpre-
tation system and is necessary to achieve the meaningful exchange and
consistent interpretation of information between OpenRep nodes.

The primary goal of the language is to ensure reputation information
can accurately be expressed. Reputation information is often represented
using different types and typically contains relationships between data el-
ements when capturing and describing an interaction. For example, a col-
lection of enumerated ratings are associated with a textual comment when
providing feedback in eBay.

The requirements defined in Chapter 4 identified that the language
must be able to describe a range of information, from individual values
through to complex associations of types, without losing meaning. The
expression of contextual information and whether human or machine en-

53

54 CHAPTER 6. REPUTATION LANGUAGE

tities generated the information must also be addressed when federating
reputation systems. The language must not be ambiguous in order for oth-
ers to understand it, meaning a single input cannot be interpreted to have
more than one meaning. This chapter presents the design and implemen-
tation of the reputation language used in the reputation description and
interpretation system.

6.1 Design

The fundamental requirements of the reputation language are discussed
in Chapter 4, emphasising the need for sufficient type support. Having
defined the required functionality, this section describes the method used
to enforce valid use of the language, the syntax used to provide intuitive
use of the language, types of reputation information, the relationships be-
tween information and operations supported by the language.

6.1.1 Language Enforcement

To ensure compatibility and provide a sound medium to express and in-
terpret reputation information, misuse of the language is not acceptable.
In order to provide assurances that the language is used correctly, two po-
tentially dangerous conditions must be addressed, these are syntactic and
semantic errors. Syntactical errors refer to the incorrect expression of in-
formation, forming an invalid description that cannot be parsed. Semantic
errors imply incompatible type use, for example attempting to multiply
two strings.

The practice of enforcing semantic constraints within the language has
been extensively investigated. The reputation language is designed to be
statically typed, where instances of the language are checked for semantic
errors at compile time, before the program is interpreted [5]. Static typing
provides earlier type checking and better enforcement of styles than dy-

6.1. DESIGN 55

namic checking at run time [2]. Through the sound definition of a static
type system, a language is said to be strongly typed [76]. Because the
reputation language is a method of expressing reputation values and rela-
tionships, a dynamically typed language is not necessary.

6.1.2 Language Review

An investigation of domain specific languages and prominent program-
ming languages, such as Pascal [30], Java [38], C++ [70], C [26], Lisp [43]
and Haskell [1] to name a few, highlights many common traits. The repu-
tation language supports features from each of these prevalent languages
to form an intuitive and easy to use syntax. The language is created bot-
tom up, where primitive types are defined first and collections are built
over these primitive types. From the examination of existing languages, a
complete set of operators has been collected and included in the reputation
language. Key words regarding types, for instance ’char’, ’int’ and ’array’,
are leveraged from established languages to increase the intuitiveness of
the language, meeting the design goal specified in Chapter 4.

6.1.3 Reputation Types

The process of creating the reputation language requires the examination
of many reputation systems to identify common types and features. The
survey of reputation systems during the creation of the Taxonomy of Rep-
utation Systems [28] provided a basis of reputation types and methods
for expressing reputation information. As discussed in Chapter 3, it was
found that most reputation information is represented as binary, discrete
(bounded or unbounded), continuous, string or vector values.

In order to gain more perspective on the information types being used,
the case studies have been developed. One of the most crucial steps dur-
ing the reputation type discovery process has been the construction of do-
main ontologies for each of the case studies. Through the evaluation of the

56 CHAPTER 6. REPUTATION LANGUAGE

ontologies, the diversity of reputation information is apparent. The repu-
tation language supports an extensive set of primitive types, providing a
suitable foundation to express all forms of identifiable reputation informa-
tion.

Domain Ontologies

Domain ontologies have been defined for each of the case studies to as-
sist in the investigation of reputation types. An ontology is a group of
concepts and the relationships defined between them [68]. Domain on-
tologies represent a particular part of an environment, allowing the de-
tailed examination of specific elements. The domain ontologies for each
case study describe the potential sources of reputation information, and
the relationships between them, available within their respective environ-
ment. The relationships between reputation elements are vitally important
as they drastically influence the meaning of the information itself. The de-
velopment of ontologies enables the definition of information types and
presents situational functions for their respective domains. The ontologies
demonstrate that data type alone will not suffice to represent reputation
information. Instead, structures that represent and express the informa-
tion and relationships between types are able to describe the reputation’s
meaning in its entirety, providing greater detail to the consumer.

Figure 6.1 shows the domain ontology created for the auction case
study. The figure depicts the elements available within the auction do-
main. The key sources include Price, Reliability, Shipping, Communica-
tion, Feedback and details about Users. Relationships, for instance those
highlighted between Reliability, After Sales Services and Payment Method,
have been identified as holding between elements that influence one an-
other.

6.1. DESIGN 57

Description
Quality

Auction

Buyer

Role

Communication

InternationalTracked

Buy Now

Price

Machine

Human

User

Seller

Knowledge

Promptness

Politeness

Shipping
Item as

Described
Delivery Time

Reliability

Payment
Method

After Sales
Services

Shipping Cost

Third Party

Item Type

Historic Trades

Price

Total

Score

Feedback

Negative Positive

Figure 6.1: The domain ontology for the auction case study.

6.1.4 Complex Types

The examination of many reputation systems currently in use and the in-
vestigation of the case studies with domain ontologies, demonstrate that
simple values are not sufficient to express the complexity associated with
the majority of reputation information. Context and relationships between
data types play a significant role in giving reputation information mean-
ing. After investigating the methods users employ to evaluate reputation
values, it is evident that various collections are necessary. Structures, such
as arrays and customisable data sets are used to group information to-
gether, signifying a relationship between the values.

Complex data types allow the expression of information that contains
more implications than primitive types can provide. Reputation informa-
tion is often collected as multiple values that refer to particular aspects of
an interaction, rather than a single, all encompassing, value. With the sup-

58 CHAPTER 6. REPUTATION LANGUAGE

port of collections, reputation information can be expressed as a whole,
encoding relationships between information and their associated mean-
ing. Similarly, star ratings are often used to facilitate scaled reviews and
cannot be described with a single value. Instead, a data type that encodes
the value range as well as the value selected is necessary.

6.1.5 Functions

Users are often capable of performing operations on reputation informa-
tion in both human society and computer based reputation systems, for
instance filtering information for relevance or particular levels. To demon-
strate the capabilities of the reputation description and interpretation sys-
tem, a set of functions that have been identified as beneficial to users
within reputation systems are incorporated into the language. This also
meets the requirement specified in Chapter 4, accommodating an ade-
quate set of operations and functions.

Within human society it is often practical to leverage existing rela-
tionships to bootstrap others. A vouching mechanism has been included
within the language to perform this task between reputation systems. When
one reputation system does not have a priori knowledge of an entity, they
are able to send a vouch request to other reputation systems that have pre-
viously interacted with the target entity. A vouch request invites another,
informed, source to risk their own reputation by providing confidence in
the entity in question in return for further trust. Computer based reputa-
tion operations, such as filters and assertions, have been included to pro-
vide the functionality to manage reputation information and pass requests
between sources. With the inclusion of functions, the reputation language
supplies a rich medium in which reputation sources can communicate.

6.2. IMPLEMENTATION 59

6.2 Implementation

The reputation language is implemented as an ANTLR grammar. ANTLR,
as discussed in Chapter 5, is a powerful parser and lexer generator. The
language is expressed as a single, context-free, EBNF grammar, as is re-
quired by ANTLR. The syntax of the language is designed to be as intu-
itive as possible, leveraging prominent languages in use today. Operators,
such as not equal and and follow the generally accepted syntax provided
by languages such as C and Java, being defined as != and && respectively.

Parentheses are used to indicate various groups of definition. Round
brackets denote the beginning of a set of arguments for a function. Curly
brackets signify variables and collections, for instance when declaring a
list, this can be seen in Figure 6.2. Square brackets are reserved for value
descriptions, typically symbolizing the definition of a social identifier, for
example a users name. The following contains a brief schematic example
for each of these.

• Primitive Declarations: {type} {name} = {value}

• Star Declarations: star {name} = { {value} .. {value} : {value} }

• Collection Declarations: {type} {name} = { {value} {, {value} } }

• Social Value: {type} { [{Social Identifier}] , [{Social Identifier}] {,
{value} } }

• Functions: {type} ({value} {operator} {value})

ANTLR provides the ability to form Abstract Syntax Trees (AST) when
parsing values. The tree is customisable, allowing the definition of when
nodes are created and increases the ability to interpret content. The differ-
ence between an AST and Parse Trees can be seen in Figures 6.2 and 6.3,
where both the parse tree and AST are given for a List declaration.

60 CHAPTER 6. REPUTATION LANGUAGE

Root

User

ReputationInformation

Information

Input

EOF

ReputationStructures

ListDec

=List , ,

id

Name

‘bob’

Literal=

idValue

String

id

idType

Location

‘foo’

LiteralDec

Literal=

PrimitiveType

idValue

String

ListVal

id

Value

3

Literal=

idValue

Int

LiteralDec

ListVal

idType idType

PrimitiveType PrimitiveType

LiteralDec

ListVal{ }

Figure 6.2: The parse tree generated when parsing a list.

Due to the differences between human and machine entities, identified
in Chapter 5, the encoding of an entities type is necessary. The reputa-
tion language supports this feature at the highest level. Human or Machine
can prefix any information described within the language and can then
be interpreted during processing. This fulfils the requirement specified in
Chapter 4.

nil

User

List

Information

Literal Literal Literal

String String

Name

‘bob’ ‘foo’ Int

Value

3

Location

Figure 6.3: The abstract syntax tree generated when parsing a list.

6.2. IMPLEMENTATION 61

6.2.1 Primitive Types

A complete set of primitive types are provided in the reputation langauge.
Characters, strings, booleans, integers, floats, doubles, identifiers and null en-
able the language to support all forms of reputation information that have
been identified. Ranged values, such as star ratings, are also categorised
as primitive types and allow users to signify values within a range. The
primitive types can be assigned to a variable or built on to provide more
complex types.

Identifiers

Three forms of identifier are also included, an ID, SocialID and SocialName.
The basic ID is used to name variables and structures. The requirement
of this identifier is that it be prefixed with a character, then followed by
any number of letters, underscore characters or numbers. SocialID is in-
cluded to support the identifiers provided by Facebook. Facebook stores
user identities as nine digit numbers which do not conform to the require-
ments of an ID. Social identifiers are encapsulated within square brackets.
The SocialName identifier is used to identify individuals within the social
environment. Names are considered valid if they begin with a letter and
are followed by any number of letters, spaces, underscores, hyphens or
single quotes. Each identifier can optionally be prefixed with an idType,
further describing the identity with titles, for example Group or Role.

6.2.2 Complex Types

The complex types in the language focus on representing relationships
between reputation values. The complex types build upon the primitive
types, organising values to express reputation information in its entirety.
Each complex type is included for a specific purpose, allowing distinct
types of information to be expressed as fine grained values while main-
taining the affiliations between individual elements. The inclusion of data

62 CHAPTER 6. REPUTATION LANGUAGE

structures and collections meets Requirement 2.2, allowing groups of in-
formation to be specified as a singularity. The following provides details of
the complex types available within the reputation language with example
descriptions.

• Array: An array is a data structure that maintains information in
an organised manner. When describing an array of values, the type
must be specified. During the interpretation phase of the language,
the type is checked against the content to ensure valid use.

– array string users = {’bob’, ’alice’, ’sam’}

• List: Lists store a collection of primitive values in an organised struc-
ture. Unlike an array, lists do not require a collection type to be speci-
fied, instead, each individual information value stored within the list
is required to identify its own type. Lists allow information of differ-
ent types to be combined within a single structure, as can be seen in
Figure 6.3. Due to the nature of reputation information, feedback is
often provided and consumed as a combination of different types.

– list user = {string name = ’bob’, string location = ’foo’, int value = 3}

• Enumerated Type: An enumerated type provides a basis to create
and describe bounded discrete values. Reputation systems often en-
able reputation to be collected and consumed through a set of dis-
tinct state ranges, for example, Slashdots’ Terrible to Excellent range.
The enumerated values are specified as a set of Identifiers separated
by commas. A colon is used to denote the end of the enumerated val-
ues and is followed by an individual Identifier, signifying the selected
value. The verification system actively ensures the correct use of the
enumerated type, validating the selected value is included within
the set of enumerated values.

– enum rating = {a, b, c : a}

6.2. IMPLEMENTATION 63

• Star Rating: Many reputation systems use star ratings as a promi-
nent form of feedback. Rating mechanisms provide the capability to
evaluate an entities performance within a visual scale. Percentage
based techniques simplify both the generation and consumption of
reputation information for users. Due to the widespread popular-
ity of rating methods, a specific type is included in the reputation
language to represent them. Star ratings are represented in a simi-
lar way to enumerated types, where a range of values are defined,
followed by a colon to signify the selected value.

– star rating = {1 .. 5 : 3}

• Structure: The most extensive method of describing reputation in-
formation is to use structures. Structures can contain any well formed
type of reputation value within them. Due to the customisable na-
ture of structures, they are ideal to express reputation information
in its entirety. Structures can potentially be recursive, as information
types can be resolved to further structures.

– struct bob = { string name = ’bob’, int count = 3, array string content
= { ’one’, ’two’, ’three’}}

6.2.3 Social Types

Due to the highly individualised nature of the social networking scenario,
social specific types are required to express the information regarding the
interactions between users. In order to achieve the goal of creating a so-
cial network based friendship management service, the interactions and
associations between individuals must be typed.

Investigating the social networking domain and constructing a domain
ontology regarding potential interactions, identifies a subset of types to
demonstrate the potential for exchanging information collected within a

64 CHAPTER 6. REPUTATION LANGUAGE

social context. Although the case study focuses on Facebook1, similar con-
cepts from Google+2, LinkedIn3 and Twitter4 have also been considered.

The subset of Facebook interactions prove the concept of typing ex-
changes between users is viable. Types, such as those representing users
included in the same photo, enable this unique form of reputation infor-
mation to be expressed, exchanged and interpreted with meaning. The
four types of information selected are as follows.

• Like: A like symbolises the action of actively approving of another
party. In Facebook likes can be used to acknowledge other’s asser-
tions on message boards or within comments. For the purpose of
the social networking case study, likes are the action of endorsing a
third party entity, such as a sports club or musician. The type like
describes the level of similarity between two users by comparing the
sets of supported pages each user maintains.

• Tag: Most social networks support the concept of tagging users in
a photo. This social type records the identities of friends tagged in
photos with a user, representing a real world engagement of the
users. Being included in a photograph with one another demon-
strates a tangible relationship between two users. Policies describ-
ing the differences and weights associated with physical interactions
compared to either electronic communications or similarities must
be addressed.

• Comment: A comment provides an instance of electronic interaction
between individuals, although it is often indirect and asynchronous.
Through the collection of distinct interactions between users, a de-
gree of association can be derived.

1https://www.facebook.com/
2http://plus.google.com/
3http://linkedin.com/
4http://twitter.com/

6.2. IMPLEMENTATION 65

• Post: a post acts in a similar fashion to comments, though posts can
be used to express more direct communication. Posts are actively
created statements from one user to another.

6.2.4 Functions

In addition to the static types presented earlier in this section, the rep-
utation language also includes a number of utility functions and opera-
tions that support active behaviour. Functions support a higher degree of
flexibility and communication between sources than is otherwise possible
with only static constructs. The functions included in the language each
contribute to a system that exceeds the general purpose of exchanging in-
formation. Each function is capable of acting on statically defined values
and variables to increase usability. The following describes the goals and
functionality associated with each operation.

• Filter: Filter functions allow the selection of only desired informa-
tion while ignoring information that is not of interest. The first pa-
rameter of a filter function has the potential to be another filter state-
ment, providing a recursive nature to the expression, enabling com-
plex queries to be described.

– filter (bob > 10)

• Vouch: A vouch request enables reputation sources to leverage other’s
knowledge of an entity. Requests are made when one source does
not have experience with an entity and wishes to gain information
from another source. To enable the complete interaction required for
this filter, a potential response can be incorporated into the function
as a boolean value.

– vouch (bob for alice {: {response} })

66 CHAPTER 6. REPUTATION LANGUAGE

• Assert: An assert statement acts to ensure a requirement is true. The
goal of an assertion is to ensure a condition holds between reputation
sources.

– assert (bob in group trusted)

• Event: An event statement allows reputation sources to place a con-
dition on some information. With the incorporation of rules and poli-
cies, events provide the functionality to specify when a rule should
be executed. In this example, the consumer is expected to execute
the rule markUntrusted if the condition is met.

– event bobEvent = (bob < 10 : markUntrusted)

• Social: Social functions support the aggregation and filtering of so-
cial values. The majority of the functions accept two socialValues as
parameters. The social functions provide the necessary functionality
to implement the social network case study, allowing information to
be manipulated and queried within the service.

– add (tag {[bob], [alice]}, tag {[bob], [alice], 5]})

6.3 Conclusion

This chapter has presented the domain specific reputation language de-
signed to describe a diverse range of reputation information. A domain
specific language is used in the description and interpretation system rather
than a static schema to increase the usability, maintainability and descrip-
tiveness required when dealing with reputation information. After defin-
ing the fundamental aspects of the language, such as the syntax and type
enforcement methods, the specific types associated with reputation were
derived.

Reputation types have been identified through an extensive review of
existing reputation systems and the case studies. During the investigation

6.3. CONCLUSION 67

of the case studies, domain ontologies were created to identify common
reputation types and potential relationships. The construction of the lan-
guage uses ANTLR, a powerful tool used to generate parsers and lexers.
A discussion of necessary reputation types, including primitive, complex
and domain specific types, was presented as well as reasoning as to their
inclusion. A set of utility functions, designed to increase the usability of
the language and overcome the limitations of a strictly descriptive lan-
guage, are described.

The reputation language is a suitable mechanism to express reputa-
tion information that exceeds the requirements specified in Chapter 4.
Through the use of the described reputation language, reputation systems
will have a suitable medium to communicate with one another in a mean-
ingful way.

68 CHAPTER 6. REPUTATION LANGUAGE

Chapter 7

Verification System

The verification system is designed to interpret and ensure the language,
presented in Chapter 6, is used correctly across nodes in the OpenRep ar-
chitecture, in particular it enforces syntactic and semantic constraints. The
verification system is a component of the description and interpretation
system, designed to be included within the composition layer of the Open-
Rep stack. The verification system is composed of three key elements; the
interface, language parsing unit and type enforcement system. Combined,
these three modules create a functional solution to verify the language is
used correctly.

The language parsing aspect of the verification process relies on the
parser and lexer rules that have been generated from the development of
the language. The parser and lexer implementation allows arbitrary input
to be parsed into tree structures and processed for errors. Invalid input
that cannot be interpreted will result in program level exceptions and will
not be executed.

Type enforcement is responsible for ensuring semantic errors are iden-
tified. Invalid type use, such as performing an arithmetic operation on two
string types, is considered unsafe and must notify the verification system
of invalid input. The language is characterised as statically checked and
strongly typed, meaning type checking is performed during the compi-

69

70 CHAPTER 7. VERIFICATION SYSTEM

lation of the input. Static checking also provides some advantages over
dynamic checking, for example, it is possible to identify certain class er-
rors and improves the readability of instances of the language [39].

The design of the verification system, as stated in Chapter 4 focuses on
the internal requirements and utilisation of these two validation elements.
The major goals to meet these requirements are the suitable compatibility
checks, establishing what constitutes a type error and the definition of a
type hierarchy.

7.1 Design

The three design requirements for the verification system are that it 1) pro-
vides a functional mechanism to validate proper syntactical use of the lan-
guage, 2) enforces static type checks and 3) is capable of returning feed-
back to the caller through an event based interface. To meet these goals,
the verification system is designed as three distinct modules. These three
modules are packaged as a single usable verification service to simplify
distribution.

7.1.1 Interface

The interface is responsible for abstracting the complexity of the verifica-
tion system from the user. The interface encapsulates the invocation of
the verification mechanisms and handles the marshalling of information
between the underlying modules. The interface is also designed to pro-
vide the functionality for users to subscribe to notifications through listen-
ing lists, for example to retrieve output asynchronously. Due to the event
based nature of the language, the compilation and execution of the input
raises events based on the outcome. The outcome of the verification is
designed to be represented by a Java object to more easily integrate with
OpenRep, however, the representation could be adapted to any high level

7.1. DESIGN 71

programming language. The event carries the outcome of the verifica-
tion systems invocation as a payload, detailing either the errors that were
found, or describing the information that was encoded in the language.

7.1.2 Language Parsing

The validation module of the system establishes whether or not the input
is well formed and is a valid instance of the language. To accomplish this
task, the lexer is executed with the input text to generate a string of to-
kens. If phrases are found that cannot be tokenised, an exception is raised
to warn of potentially invalid input. The token stream can then be passed
to the parser to match tokens to rules. An AST is created to statically check
the types of input and their use. The language validation feature is also
designed to provide the utility functions on the AST. Functions regarding
the traversal of the tree, retrieving specific elements, function parameters
or establishing the types of input and their associated values are the re-
sponsibility of this module.

7.1.3 Type Enforcement

The static type enforcement module is designed to ensure type errors are
identified and the system is notified before execution. Many lessons can
be learned from other type systems in the design of the type enforcement
component. For example, The Xtext Type System [18] provides the func-
tionality to test a range of instances, such as the proper use of functions
and the compatibility of provided parameters. The evaluation of the Xtext
Type System and the type systems from languages such as Java and Pascal,
has identified the necessary capabilities of the verification system:

• Evaluating type equality.

• Determining type compatibility through hierarchical rules.

72 CHAPTER 7. VERIFICATION SYSTEM

• Ensuring type consistency in structures.

• Enforce correct function parameters.

• Manage correct operator use.

7.1.4 Type Errors

For the verification system to successfully identify type errors, the defini-
tion of a type error must first be established. In this context, a type error
is the invalid use of data types. With regard to the reputation language,
two forms of type error have been addressed. Both of these errors must be
identified by the verification system for it to validate input.

• Incompatible Values: The declaration of information must be checked
for compatible types. When describing primitive types, the keyword
prefix must be checked for compatibility with the following value.
Similarly, complex structures require the validation of declared types
with contained information. For example, an array with a specified
int type cannot contain information that is not compatible with an
integer.

• Incompatible Arguments: Invalid operator and function type com-
patibility, such as using a multiplication operator with string values
are required to be identified. Function signature compliance, where
the correct number and type of arguments are ensured, is also im-
portant when verifying the correct semantic use of the language.

7.1.5 Type Hierarchy

The reputation language supports a type hierarchy, in which information
types can be substituted with one another if they are determined to be

7.2. IMPLEMENTATION 73

compatible. Hierarchical rules provide a mechanism to incorporate inheri-
tance into the language without supporting class structures and customis-
able polymorphism. An example of the type hierarchy can be demon-
strated with the use of identification types within the language. Because
the language supports reputation information that not only represents in-
dividuals, but also groups and roles, an identifier type has been defined as
being compatible with each of these subtypes. When establishing whether
an input is valid, the verification system consults policy files to determine
the required signature of a function. Once the required types of a function
are identified, the types provided in the input are evaluated. If a match is
not found, a policy file of type hierarchy rules is recursively searched to es-
tablish compatibility. The following gives a brief example of the hierarchy
rules present in the reputation language.

• socialType: like, comment, post, tag, literal

• socialId: socialName

• id: user, group, role, socialId

• value: id, literal, null

• literal: char, int, float, double, string, bool

• string: char

• float: int

• double: int

7.2 Implementation

The verification system is implemented as a standalone Java service com-
posed of three distinct verification modules. The interface allows users to
invoke the functionality of the verification system and receive feedback

74 CHAPTER 7. VERIFICATION SYSTEM

by subscribing and listening for notifications and events. The language
validation unit incorporates the lexer and parser, defined in Chapter 6, to
process input instances of the language into ASTs. The static type enforce-
ment system checks the AST to ensure the correct use of the language.
Output is provided through the construction of a response object and is
returned through the interface. Figure 7.1 describes the process of parsing
an instance of the reputation language through the verification system.

User
Input

Interface

Validator

Lexer

Parser

Verification

Policy
Type

Hierarchy

Listening List

1

2
3

4

5

6 7 12

13

8 9 10 11

Figure 7.1: The flow of information when parsing input. Input originates
from a user and is passed to the interface. The interface uses the valida-
tion unit to process the lexer and parser rules. The resulting AST is then
verified to identify semantic errors.

7.2. IMPLEMENTATION 75

7.2.1 Interface

The interface allows users to subscribe to notifications and request verifi-
cation of input. The language provides an entry point to the verification
system and is responsible for marshalling information between the mod-
ules to perform the appropriate checks on the input. The input is first pro-
vided to the validation unit, constructing an AST if the language can be
properly tokenized and processed by the parser. The AST is then passed
to the validation system, where the static type checking rules are executed.
Depending on the output of the checks, an appropriate response object is
created. The response object can contain information representing differ-
ent error states, or, in the case of successful verification it represents the
parsed information. The response object is then packaged as a payload
with identification information and stored into an event object. The event
is then fired on the respective notification list.

7.2.2 Language Parsing

The language parsing unit employs the parser and lexer rules that have
been created with the definition of the reputation language. The valida-
tor is responsible for syntactically checking the instance of the reputation
language. If the lexer or parser fail to evaluate the input correctly, an error
message is returned to the user. The validator also provides support func-
tionality for processing the AST that is created. Because the AST structure
can be specified within the language grammar, the process of traversing
the tree to extract information must be customised. Functions supplying
the ability to identify types of information, retrieve parameters and evalu-
ate the operators being invoked, are defined within the validation unit.

76 CHAPTER 7. VERIFICATION SYSTEM

7.2.3 Type Enforcement

The core of the type enforcement system contains the functionality to ex-
amine ASTs and compare input against policies. Policy files specify the
capabilities of functions and determine what constitutes proper use. The
policy files also contain the type hierarchy, describing the order of types,
allowing the system to examine whether the target types are compatible
with the given input.

The fundamental task of the type enforcement system is the compari-
son of types. In order to identify the type errors presented in Section 7.1.4,
the ability to derive the compatibility of two types is essential. The veri-
fication system includes functions to evaluate equality, compatibility and
the subtype structure of types. This has been implemented in Java as string
based equality checks on type names and catching execution errors when
parsing values to the described type.

Verification of value assignment typically relies on analysis of the AST.
When the AST contains information about a type and value, the type en-
forcement system ensures the type and value are compatible. The verifica-
tion system includes assignment verification mechanisms to ensure each
of the complex information types defined in Chapter 6 are used correctly.
Enumerated values and Star ratings include additional policies to ensure
the selected value is contained within the set or range. Collections, such
as the Array, have their respective types stored and evaluated against the
data they contain. Operators and functions are included in a policy file
stating the highest level parameters they are applicable for. Through the
inclusion of the type hierarchy, input can be recursively checked for type
compatibility to verify the input is appropriate. Domain specific informa-
tion, regarding the social network based case study is also included in the
policy files.

7.3. SUMMARY 77

7.3 Summary

The verification system is designed to enforce the characteristics of a strongly
typed, statically checked language. It is designed as three individual mod-
ules and has been packaged into a portable system, capable of being inte-
grated within the OpenRep stack to meet the requirements.

The interface establishes the event based nature of processing the rep-
utation language, raising events dependent on the evaluation of the input.
The validation unit has the capability to ensure instances of the language
are syntactically correct. Using the parser and lexer, created during the ex-
pression of the reputation language, input is processed into abstract syntax
trees. The type enforcement system is capable of evaluating ASTs to iden-
tify type errors. Through the implementation of a variety of type compati-
bility checks and policy files that determine the usability of structures and
functions, the type enforcement system is capable of recognising semantic
errors and enforcing constraints.

The implementation of the verification system represents a usable sys-
tem, capable of processing the reputation language. Type errors are iden-
tified, providing the ability to reliably exchange reputation information.
The verification system is an effective mechanism to control the language
and ensure it is used correctly. The verification system is implemented
as a standalone service with an intuitive interface, capable of functioning
within the OpenRep composition layer.

78 CHAPTER 7. VERIFICATION SYSTEM

Chapter 8

Case Study Implementation

The three case studies, presented in Chapter 4, have been implemented
to represent a diverse range of potential scenarios and to also demon-
strate the capabilities of the description and interpretation system. The
case studies, electronic auction site, social network and virtual commu-
nity, each represent a functional reputation system within their respective
domain with the ability to distribute information through OpenRep’s stan-
dardised service-based interface. The case studies each provide a unique
perspective of reputation information, serving as an ideal test bed to demon-
strate the capabilities of the description and interpretation system to fed-
erate diverse reputation systems.

Each implementation is implemented as an OpenRep node and to-
gether form a federated reputation environment. Both the social network
and virtual community case studies represent source nodes within the net-
work, where the collection and composition layers of the OpenRep stack are
implemented. Source nodes provide the ability to collect information from
entities within their domain and distribute it to others in the environment.
The auction based implementation performs as a both a source and agent
node, requiring all three levels of the OpenRep stack. Because the auc-
tion case study includes the interpretation layer, it is capable of high level
decision making.

79

80 CHAPTER 8. CASE STUDY IMPLEMENTATION

Each case study exposes a standardised REST interface that is both in-
teroperable and modular to enable the distribution of the implementations
through the network. The implementation also contains a local set of data
regarding users and their associated reputation scores. The description
and interpretation system has been integrated in each implementation,
utilising the reputation language, verification system and exchange pro-
tocols.

To further demonstrate the federation of reputation information, the
auction study has been implemented as a manager to coordinate repu-
tation exchange between all case study nodes operating within the envi-
ronment. The auction implementation is capable of actively invoking all
forms of request upon other services within the environment as well as
responding to incoming requests.

Due to the fact that reputation information is highly context depen-
dent, policies regarding the interpretation of information and specifying
the relative weights associated with various types during aggregation are
required. In order for the auction case study to perform as an agent node,
capable of aggregating and making decisions on the information received,
an extensible policy architecture has been used to further test the frame-
work.

Figure 8.1 depicts a potential topology of a reputation environment. As
shown in the figure, multiple reputation sources can exist simultaneously
and interact with one another. Requests are made to different services
in the environment and are processed through the reputation description
and interpretation system. The reputation protocol is used to exchange
information between the services and policies are used to act upon this
information to base decisions.

8.1. AUCTION 81

Drupal Virtual
Community

Relationship
Management

Service

Auction Web
service

Auction Web
service

Request Response
Vouch
Request

Request

Response

RequestResponse

Vouch
Agreement

Figure 8.1: An example reputation environment with two auction services
deployed and interacting with the social and virtual community services.

8.1 Auction

The electronic auction case study is the primary resource in the reputation
environment. Rather than only servicing requests for information, and
acting as a standalone service, the auction service is capable of requesting
information from other services in the environment to form an aggregated
view. Multiple instances of the scenario can be deployed simultaneously,
creating a rich reputation environment with multiple requests being made
concurrently. Rather than using a complex universal identity model, users
are identified by their user name, this is sufficient to provide consistency
between reputation sources. In a production setting, a more complex uni-
versal identity model would be used, however the interactions between
entities, from the perspective of the reputation system, would be identical.
The auction service is unique in that it describes and supports the require-
ment regarding customisable policies for reputation consumers, described

82 CHAPTER 8. CASE STUDY IMPLEMENTATION

in Chapter 4. These policies provide the auction services with the ability
to process reputation information from external sources and appropriately
aggregate it with its own.

The auction case study also demonstrates the vouching scenario, that
is, reputation sources are able to vouch for users within the environment.
Figure 8.2 shows the simplified process involved in accomplishing a suc-
cessful vouch exchange, real world scenarios require a search for potential
vouchers and conditions to be checked before agreeing to vouch.

Reputation
System

1. Alice Contacts Bob to
trade

5. Bob trades with Alice

2. Bob checks Alice’s
reputation

6. Bob updates his local
repository for both

Alice and Sam

3. Bob asks Sam to
vouch for Alice

4. Sam vouches for
Alice

Figure 8.2: A vouch scenario. The users Bob and Alice have no prior
knowledge of one another. Bob asks Sam to vouch for Alice, then pro-
ceeds to trade with Alice, leveraging Sam’s trust.

8.1. AUCTION 83

8.1.1 Implementation

The auction scenario is designed to run a simulation of the different case
study implementations interacting.

The auction service is designed to operate as an electronic auction, sim-
ilar to eBay or TradeMe. The auction consists of a set of users with asso-
ciated trades between one another and feedback regarding transactions.
User and transaction information is stored in a service specific database.
In order to provide operations that filter potential traders based on pre-
vious feedback, information associated with item type and price is also
included.

The simulation runs by randomly generating a potential trade and send-
ing a request to one of the other services deployed in the environment.
The primary task of each service is to respond to requests using the ex-
change protocol defined in Chapter 5. With the interface and exchange
method predetermined, information associated with identity, mode, role
and transactions are specified through an HTTP GET request to a service.
Responses and more detailed requests can be sent through the HTTP POST
and PUT request structure.

The case study is implemented as a RESTful Jersey Web service. Jer-
sey [55] is an open source API for developing REST web services. The
service framework was created and managed using the java project man-
agement tool Maven [14]. Maven allows for the efficient creation, man-
agement and deployment of the service to a specified container. Through
the inclusion of the maven-jetty-jersey plug-in in the project object model,
Maven can be used to rapidly deploy the service to a local Jetty1 container.

Before determining the most suitable applications and frameworks for
this service several alternatives were considered. Restlet2, Axis2 [53] and
WSRF [16] are all potential frameworks in which to implement the ser-
vices. Jersey has been chosen as it provides a clean set of APIs and anno-

1http://jetty.codehaus.org/jetty/
2http://www.restlet.org/

84 CHAPTER 8. CASE STUDY IMPLEMENTATION

tations used with Java to create services. Jetty was selected over Apache
Tomcat [48] and Grizzly3 as it is a light weight servlet container that can
easily be integrated with Jersey through Maven. The combination of these
tools enables quick and easy creation of services.

To function as a reputation source, the reputation information regard-
ing users must be stored and persisted throughout the experiment. An
embedded Apache Derby4 database is used to store the necessary infor-
mation for the service. An embedded database was chosen over MySQL5

or PostgreSQL6 to ease the build up and tear down cost of deploying mul-
tiple services. Derby was selected over SQLite7 and Hibernate8 as it is a
lightweight database and has a small memory footprint. Derby proved
to be more than adequate for what was being created. It supports effi-
cient creation and population of a new database every time the service
is deployed and has been shown to perform well under all the scenarios
considered. In order to populate the database, the service is started with
a random seed value that allows the simulation to be repeatable for test-
ing purposes and yet enable distinct instances of the service to generate
unique data.

To generically exchange information, the reputation exchange proto-
col, presented in Chapter 5 is used. The exchange protocol encapsulates
each interaction between the services in the environment. In order to sim-
plify the creation and parsing of exchange protocol transactions, the Java
Architecture for XML Binding (JAXB) [19] is used. JAXB simplifies the
process of interacting with XML, or JSON [15], within Java. Rather than
requiring manual parsing through XML with DOM [29] or SAX [44], JAXB
automates the creation of Java objects to represent XML schema defini-

3http://grizzly.dev.java.net/
4http://db.apache.org/derby/
5http://www.mysql.com/
6http://www.postgresql.org/
7http://www.sqlite.org/
8http://www.hibernate.org/

8.2. SOCIAL NETWORK 85

tions, such as those created for the exchange protocol. Marshalling XML
to and from the Java classes is therefore automated and provides a fast
and effective mechanism to interpret and create XML representations of
the data.

Customisable policies are necessary to enable the interpretation of in-
formation both internally and also from external sources. After much in-
vestigation into different policy and rule languages, Drools [7] was iden-
tified as the best solution to provide a dynamic and extensible policy lan-
guage. Drools provides an integrated platform for rules, workflow and
event processing in Java. Drools rules are highly customisable while being
easy to understand and create. The rules defined for the auction scenario
allow the description of fine grained policy, enabling such functionality
as the aggregation of reputation information and vouching requests to be
processed. The rules currently determine the weights assigned to differ-
ent types of information for aggregation calculations. They also specify
the conditions under which it is acceptable for the system to vouch for
another user.

8.2 Social Network

The social network case study is designed to show the potential diversity
of the type system and reputation language. The prototype application
is a relationship management service, which categorises social network
friends into groups based on the level of interaction between them and
the user in question. This application is intended to collect different forms
of information from the environment, express the information and then
process it. The application also exposes a REST interface in line with the
OpenRep standard to facilitate interactions with other reputation systems
in the environment.

The relationship management application is implemented as a Face-
book application as Facebook is the predominant social network in use

86 CHAPTER 8. CASE STUDY IMPLEMENTATION

worldwide, with over 800 million active users9, it also provides a thor-
ough platform to collect information on social interactions between users.

The relationship management application is able to extract different
forms of information about users and their relationships, from the Face-
book Graph API10, interpret it against a set of policies and store it with re-
lation to a particular user. Currently, the information collected is based on
the direct interactions between the logged in user and the users contained
in their friends list, such as both being tagged in a photograph and posting
on each other’s walls. The application could be extended to monitor the
interactions between friends of friends as well, which would provide more
complex reputation information from which decisions could be made.

8.2.1 Implementation

The core of the relationship management application is responsible for au-
thenticating the Facebook application’s information, extracting user and
relationship information from the Graph API and processing the JSON re-
sponse. The inclusion of the description and interpretation system into the
application allows the information to be expressed and processed. Once
the information can be described in the reputation language, it can be
verified and used to make decisions. Different reputation types can be
assigned to the information, allowing the information to be processed,
stored and shared.

In order for the application to be accessible through Facebook it must
be hosted externally. While this can be done using any third party hosting
provider, we chose Google’s App Engine [13] as it provides a scalable and
highly available platform. Finally to provide transparent integration with
Facebook the case study application also includes a Facebook interface
which can be incorporated as a canvas for a Facebook application page.

9http://www.facebook.com/press/info.php?statistics
10https://developers.facebook.com/docs/reference/api/

8.2. SOCIAL NETWORK 87

This canvas interface provides a simple user abstraction of the applica-
tion functionality including buttons to load the information about a user
from the Graph API, sort it and facilitate sandbox tests. The canvas inter-
face is built upon the underlying REST interface that supports the Open-
Rep standard and enables other services to request information for specific
users.

The friendship management social application is hosted on Google’s
App Engine. The Google development tools support local development
and testing of the service on a standalone Jetty server and simplify de-
ployment to the cloud platform. The service is implemented as a Remote-
ServiceServlet, essentially an RPC servlet, that provides a full HTML user
interface to the application. The Servlet also allows HTTP request handlers
to be overwritten, such that it can support the standard REST interface that
has required for reputation exchange in our model.

The service was constructed with the use of the Google Widget Tools
(GWT)11 library. The GWT include a plug-in for Eclipse12, meaning the
service can be created, tested locally and deployed to the Google App En-
gine, through the GUI interface of Eclipse. GSON13 is used to efficiently
convert the JSON response from Facebook into a set of Java classes that
can be used to interpret information.

For the service to collect information from Facebook’s Graph API, the
application and user must first authenticate themselves. Facebook uses the
OAuth 2.0 protocol [25] for authentication and authorisation. The authen-
tication process requires a three step interaction between the application
service and Facebook. Before retrieving a valid access token, the user is
redirected to Facebook to enter their credentials and grant access to the
application.

The Facebook Graph API provides access to a large amount of infor-
mation regarding the authenticated user and their relationships to other

11http://code.google.com/webtoolkit/
12http://www.eclipse.org/
13http://code.google.com/p/google-gson/

88 CHAPTER 8. CASE STUDY IMPLEMENTATION

objects, for instance friends, photos, feeds, and posts. In order to perform
the request, the access token received from the OAuth authentication pro-
cess is attached to a GET request specifying the information required, such
as the feed and fields to return, to the Facebook Graph API. Once a JSON
object is returned to the service, GSON is used to create Java classes from
input.

The resulting GSON classes can then be expressed as reputation infor-
mation in the reputation language. The verification system is then used to
evaluate the input and determine how to process it. The response from the
verification system is extracted from the resulting event and processed.

Figure 8.3: The relationship management service user interface.

As shown in Figure 8.3, the user interface consists of five main buttons
and a text box. The first button, Load, performs the requests to the Graph
API. Once load has run, the other buttons become available, allowing the
user to access a list of users in each category. The trusted, neutral and un-

8.3. VIRTUAL COMMUNITY 89

trusted buttons each send a request to the service to perform a filter func-
tion, encoded in the reputation language, over the information. The test
button has been included to allow input to be sent directly to the service’s
verification system. Once the list box has been populated with informa-
tion from one of the above buttons, a friend can be selected to inspect. The
inspected users information is then shown in a dialog popup box. Any
error messages are prompted to the user in a window alert screen.

The design and implementation of this case study led to the identifica-
tion and definition of the set of social types presented in Chapter 6. For
example, information relating to users being tagged in photos together,
commenting on each other’s walls, the amount of times they have ’liked’
a post the user has made and the number of times posted on the users wall
are each collected and used to make reputation based decisions.

The service is publically available for installation and use within Face-
book to categorise their relationships. The service is currently hosted on
Google App Engine.

8.3 Virtual Community

The virtual community scenario is based on a common reputation con-
text domain, and represents a further analysis of the type of reputation
information currently available. The scenario represents a diverse range
of reputation systems from online communities, for example forums, chat
rooms, review based websites and news aggregators, such as Reddit, Digg,
Slashdot and Epinion. Virtual communities exist for a vast range of topics
and often support a mechanism to ”rate” comments and users. Although
there are wide variety of online communities available, they essentially
all provide similar functionalities, that is, a mechanism for users to share
information between one another. For this reason, this scenario is imple-
mented as the most generic case of virtual community: an online forum.
Online forums are a standard means of community interaction on the in-

90 CHAPTER 8. CASE STUDY IMPLEMENTATION

ternet and as such there are a large number of freely available forum im-
plementations that can be used to bootstrap the implementation of the
scenario and test the portability of the system.

8.3.1 Implementation

The existing service used in the virtual community implementation is a
Drupal14 content management system with an embedded forum module.
The forum module is capable of generating and storing reputation infor-
mation about users. The service also provides the capability to receive and
respond to requests through the OpenRep REST interface. However, the
initial Drupal module did not support the use of the exchange protocol or
reputation language developed in this thesis. For the existing service to
be integrated into the reputation environment, the description and inter-
pretation system must be present in conjunction with the service using the
exchange protocol.

The design of the service requires the packaging of the description sys-
tem and exchange protocol as a tool. To integrate the description system
and exchange protocol into the Drupal client, the client must invoke the
packaged tool before responding to a request. Once a request is made,
the client retrieves the user information, expresses it within the reputation
language and provides it to the packaged system. The packaged system
responds with an encoded XML file containing the verified expression of
the reputation information. Reponses from the packaged system should
be adequately tested for errors raised by the client.

To achieve this integration the description and interpretation java ap-
plication is invoked directly from the PHP [6] forum service before send-
ing the response to a request. The implementation processes requests
made to the service for reputation information regarding users.

For this scenario the description and interpretation system is packaged

14http://drupal.org/

8.4. SUMMARY 91

with the exchange protocol as a standalone Java application. A handler
interface automates the process of marshalling information from the de-
scription system to the exchange protocol wrappers. To use the packaged
system, the Java program must be called with a complete set of parame-
ters describing each of the description systems’ and exchange protocols’
required information. The package includes and utilises all of the de-
scription system and exchange protocol, employing JAXB to encode the
response. The packaged application returns an XML response in which
the reputation information is encoded, provided it was verified correctly.

The service is capable of responding to requests for information only
about users. Through the invocation of the Java program, a full set of
parameters enable the expression, verification and encoding of the repu-
tation information. The result is supplied as a valid instance of the reputa-
tion exchange protocol, enabling others to request information and inter-
pret it. The information reflects the interactions between users within the
Drupal forum client.

This virtual community case study has motivated the examination of
many reputation systems currently in use throughout the Internet. The
inclusion of this case study shows the potential reach of a federated repu-
tation system.

8.4 Summary

The three case studies have each been implemented as a service, represent-
ing an OpenRep node, and deployed in each domain in order to demon-
strate the capabilities of the reputation architecture. The case studies have
each provided invaluable insight and direction throughout the investiga-
tion, design and implementation of the reputation language, verification
system, and exchange protocol. Each of the case studies is uniquely im-
plemented to test the potential of such a description and interpretation
system to be used across various domains.

92 CHAPTER 8. CASE STUDY IMPLEMENTATION

In order to evaluate the exchange architecture a reputation simulation
environment has been created that is able to communicate with imple-
mentations of each of the scenarios and perform complex actions, such as
vouching for users that were previously unknown to a particular reputa-
tion system. Reputation information can be generated by, and exchanged
between, individual services in the environment. Through the use of these
diverse scenarios, the viability of the reputation description and interpre-
tation system can be demonstrated. The language is able to express repu-
tation information from a variety of sources and contexts, and the verifi-
cation system enforces static type checks over the expressed information,
raising errors when necessary. The case studies have also proven the effec-
tiveness of the reputation exchange protocol and the standardised Open-
Rep interface, allowing a new level of interoperability between diverse
reputation sources.

The implementation of the case studies illustrates the potential of a
federated reputation system. The diversity of the case studies considered
exemplifies the possibility of sharing reputation information from many
different domains. Through the combination of a global identity manage-
ment system and the participation of potential reputation systems, a sea
of reputation information could be made available to users and reputation
systems alike.

Chapter 9

Evaluation

The research presented in this thesis covers a broad range of areas which
each require individual evaluation. This chapter presents analysis of each
section of the work individually before reviewing the language, verifica-
tion system and exchange protocol as a whole. Section 9.1 reviews the
criteria and reasoning behind each of the core case studies with regard to
the benefit they have provided and their capability to perform as Open-
Rep nodes. The language is then examined in Section 9.2, in particular
this section evaluates how well the system meets the stated requirements
and design goals presented in Chapter 4. Section 9.3 presents a evaluation
of the verification system with respect to its ability to enforce the syntactic
and semantic constraints of the language. The exchange protocol is em-
pirically evaluated in Section 9.4, as part of this evaluation the exchange
protocol is compared with existing protocols. The testing procedure is dis-
cussed in Section 9.5, explaining the testing strategy and results for each
of the components of the system. Finally, Section 9.6 reviews the entire
project to determine how well it enables the expression and interpretation
of reputation information in the OpenRep architecture. Throughout this
chapter components are analyzed with respect to the requirements pre-
sented in Chapter 4 and existing solutions for similar problems.

93

94 CHAPTER 9. EVALUATION

9.1 Case Studies

The three case studies described in Chapter 4 represent a diverse set of rep-
utation environments derived from extensive analysis of both commercial
and academic reputation systems. The case studies were designed to best
complement each other by presenting three unique views of reputation in-
formation based on reputation systems in use today. The goal of defining
and implementing these case studies was threefold: derive requirements
for each component, direct the design and implementation of the reputa-
tion services with real world use cases, and to act as a tool against which
the different components can be evaluated. The three case studies have
each been implemented as services that are independently accessible as
well as interoperable within the wider reputation environment.

9.1.1 Auction

The auction case study was selected for its ability to relate to leading repu-
tation systems in real world applications, such as eBay and TradeMe. The
online auction domain is arguably the most common use of reputation in
real world activities, and therefore it is easy to relate to and provides a
degree of familiarity for readers interpreting this research. Through an
investigation of electronic auction sites, the concept of collections of rep-
utation types was evident. Primarily, electronic markets keep relatively
similar forms of reputation information regarding traders and their inter-
actions. Typically, the information is stored in numerical form, for example
counting the number of trades that were successful and unsuccessful. The
development of ontologies have proven to be a necessity when establish-
ing the requirements of the terms that must be expressed. The action on-
tology identified the clear relationships between information, for example
boolean or enumerated star values that are often associated with textual
information in the form of comments.

9.1. CASE STUDIES 95

9.1.2 Social Network

The goal of the social network based case study was to create a functional
social service and extract reputation information from a social context.
This case study represents a novel use of reputation in the ever expanding
world of social networking. The implementation of the case study focuses
on the design and creation of a friendship management service in which
interactions between users in a social network and categorises the set of
participants into groups based on their derived trustworthiness.

The social network case study gives a unique perspective on what con-
stitutes reputation information and how it can be expressed. From more
common reputation sources, such as auctions and news aggregation web
sites, reputation types are often expressed in generic forms, such as nu-
merical or textual information. The inclusion and typing of various inter-
actions between users, such as being included in the same photograph,
increases the robustness of the system and provides an insight into future
possibilities for reputation collection while also demonstrating the exten-
sibility of the reputation description system and its potential to be applied
to sources that may otherwise have been excluded. The case study high-
lights the wide variety of information that can be used to derive reputation
information and ensures a level of future proofing for this work

9.1.3 Virtual Community

The virtual community case study was developed based on investigation
of many main stream reputation sources, such as discussion boards and
social news websites. The virtual community example represents a sig-
nificant portion of reputation systems currently in use. Many web sites
utilise reputation systems in order to prioritise information for their users.
Through the inclusion of the virtual community study, a wide range of
reputation systems can be examined in detail. The concept of including
reputation information from sources that often feature reputation systems

96 CHAPTER 9. EVALUATION

as an unessential measure of popularity, contrasts the general perception
of reputation. Creating a federated reputation system, such as OpenRep,
would therefore enable a vast number of such sources to contribute infor-
mation that is otherwise redundant.

9.1.4 Comparison

Each of the case studies provides a unique view of potential reputation
systems and generates requirements for the development of the descrip-
tion and interpretation system. They have also facilitated the development
of the first three distinct services to act as OpenRep nodes, allowing eval-
uation of the performance of the system under different circumstances.
The vastly different methods of implementation, using a Jetty WebApp,
Cloud based Facebook application and CMS plugin, demonstrate the abil-
ity of the description system to be implemented over a range of potential
sources.

Overhead

Each of the implementations demonstrate a real world environment in
which a reputation system operates. Figure 9.1 shows the overhead of
using the verification system within each case study when various forms
of input are processed. The measurements are taken before invoking the
verification system and after the notification is returned to the caller. Each
of the systems is invoked with the same set of language instances and the
processing time is measured. The figure shows the Google app engine per-
forms well until it is required to load and process policy files, this is due to
the bandwidth and latency limitations. The difference between the remote
service based auction implementation and the locally packaged commu-
nity system highlights the additional overhead associated with service ex-
ecution. The figure demonstrates that the overhead of invoking the verifi-
cation system to process and interpret instances of the reputation language

9.1. CASE STUDIES 97

is minimal compared to that of parsing a file. From this observation, the
overhead of verification system can be given context and considered to be
light weight and having little effect on an OpenRep node’s performance.

0

0.5

1

1.5

2

2.5

3

3.5

Integer List Social Function Filter Function

Ti
m

e
 (

m
s)

Service

Google

Drupal

Figure 9.1: The overhead of the verification system processing an integer
declaration, list structure, social addition function and a filter function un-
der the three case study implementations.

Each of the services functions with data specific to their environment.
In order to demonstrate the capability of the OpenRep system to scale, fil-
ter functions have been tested with datasets relating to each case study
domain. Figure 9.2 shows the time taken to filter a particular number of
reputation entries from a set of 5000. The test uses integer values to rep-
resent auction information, textual information corresponding to the data
ranges utilised by Slashdot and social structures with associated integer
values. Tests have been run locally to remove the effect of latency. As
shown in the figure, the filtering functions scale linearly, with little differ-
ence between the form of filtering. This demonstrates the capability of the
system to perform reliably as a datasets size increases.

98 CHAPTER 9. EVALUATION

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000

Ti
m

e
 (

m
s)

Instances

Integer
String
Social Structure

Figure 9.2: The time taken to filter reputation information. Types of infor-
mation relating to each case study are filtered for particular ranges.

9.2 Reputation Language

The core requirements for the reputation language are to be able to accu-
rately express a wide range of reputation information and to also provide
a standard method of communication. The process of defining a domain
specific language for reputation was selected over the definition of reputa-
tion specific XML structures to enhance the maintainability and portability
of information. Due to the expressive requirements of describing and en-
forcing the typed communication of reputation information and actions, a
language was the best suited solution.

Evaluation of a domain specific language is a difficult task as it can be
conducted in many dimensions. In order to evaluate the effectiveness of
the proposed reputation language a range of metrics such as expressive-
ness, readability, portability and consistency have been derived from the
design principles described in Chapter 4. The following section explores
these metrics and their relation to the construction of the language.

• Expressiveness: The language supports a standard set of primitive
types, such as integers, booleans, characters, strings and floating
point numbers. Reputation information is rarely displayed and con-

9.2. REPUTATION LANGUAGE 99

sumed in its primitive state, rather collections of information are pro-
vided to users. Collections, such as lists or enumerated types, are
used to represent a set of discrete values, such as trust levels rang-
ing from terrible to excellent. Through the use of primitive types
and collections, all forms of reputation information can be described,
meaning that the language is able to express reputation information
in the domains considered in this thesis.

• Readability: The syntax of the language is based on a combination
of existing programming languages. The primary goal regarding the
syntax was to allow the language to be intuitive to use and interpret.
Through the use of common syntactic features and key words from
many prominent languages and a well defined set of operators, the
reputation language is neither verbose nor is it complicated, for these
reasons the language is considered easy to read and understand.

• Writability: The cost associated with learning a language is often
considered the biggest limitations of a domain specific language.
However, leveraging common syntax and structure from other lan-
guages reduces the burden to learn how to use the reputation lan-
guage. In addition the simplistic nature of the language allows even
non-technical users the ability to quickly express reputation infor-
mation.

• Consistency: The language has been revised multiple times through-
out development to ensure consistency between expressing reputa-
tion information of different types. Reviewing the use of different
parentheses and key words has established a distinctive syntax for
the language, while being consistent with commonly used notation.
The syntax is regular throughout the language, allowing function
and type definition to be intuitive.

• Operation Support: The reputation language includes a full set of

100 CHAPTER 9. EVALUATION

functions that support typical reputation operations performed by
users, such as filtering. The functions provide the ability to invoke
operations on information contained by other reputation sources and
request specific content regarding users. Interactions, such as vouch-
ing, have not previously been supported in reputation architectures
and as such the development of this language represents a novel con-
tribution. The ability to perform these actions has extended the us-
ability of the language and demonstrates a new area of potential for
reputation system cooperation.

• Cost: The cost associated with expressing, maintaining and execut-
ing the language is closely related to that of the verification sys-
tem. Once the cost of learning the language has been achieved, the
time required to maintain information described with the language
is minimal. The overhead of using the language is discussed further
in Section 9.3.

• Portability: The portability of the language was paramount during
its creation. Due to the nature of the description and interpretation
system, the language must be consistently used and interpreted in a
variety of domains. A large element of the portability of the language
is reliant on a standard interpretation unit. This has been achieved
through the definition of a verification system, capable of consistent
interpretation across reputation systems.

9.3 Verification System

The fundamental requirements of the verification system are to impose
semantic and syntactic validation checks over the language to identify er-
rors and invalid instances. Customisable policies regarding the execution
errors are also necessary.

The design goals of the verification system relate to the functionality

9.3. VERIFICATION SYSTEM 101

required to enforce static type checks. The verification system has been im-
plemented as a Java program, responsible for enforcing the correct use of
the reputation language. A type hierarchy has been integrated within the
language to enable compatible types to operate transparently. The static
type checking process incorporates policy files to determine the hierarchy
of types when verifying the language. The language parsing feature man-
ages to properly identify and deal with invalid instances of input. The type
errors identified in Chapter 8 are correctly recognized as being invalid and
appropriate exceptions are raised.

During the implementation of the component, the requirement to pro-
vide asynchronous notifications through an event based feedback mecha-
nism was explored. To create an event based system, both an interface that
could facilitate the interactions and the events themselves was designed
and implemented. The interface provides the ability to register for a vari-
ety of notifications and define listeners that will be alerted. The feedback
itself is contained as the payload of the event.

9.3.1 Usability

The usability of the verification system has been considered extensively
during the development process. The system can be invoked in two ways,
either through individualised calls to the separate functions, openly pro-
vided through each of the elements, or through the interpreters ReST API.
The interface simplifies the procedure of utilising the verification system
by automating the marshalling of information between verification steps.

Error messages regarding unsafe instances are returned to the user
with a status code and message. Errors range in severity from warning
level messages to critical problems. Warnings typically notify the user of
type mismatches, for example if two different types of numerical value are
being used together, though the type checker established they were com-
patible. Critical errors result from invalid types of information being used

102 CHAPTER 9. EVALUATION

together when there is no supporting policy stating their compatibility.

9.4 Reputation Exchange Protocol

The reputation exchange protocol is designed to facilitate the transfer of
reputation information between reputation sources. The protocol is com-
posed of two separate parts expressed as XML schema definitions. The
Reputation Exchange (RX) schema encodes reputation elements specific to
a single identity. The Reputation Container (RC) schema maintains data
integrity, encapsulates RX information and serves as an envelope describ-
ing the payload.

The protocol is designed to meet the requirements presented in Chap-
ter 4. The ability to encode information without loss, data integrity and
being able to describe associated information for the source and target are
necessary. The following section investigates the creation of the protocols
and evaluates their ability to meet these requirements. Metrics associated
with these conditions, as well as parsability and cost are considered. The
protocol has also been reviewed with regard to existing protocols and def-
inition languages.

To include the XML schemas into the scenarios and test them practi-
cally, the process associated with creating and parsing XML elements with
DOM or SAX would be tedious. Instead, JAXB has been used to provide
a streamlined mechanism for use. JAXB generates Java class files from an
XML schema that can be created and used within Java as common objects.
Rather than creating a DOM element and adding a child element to it, us-
ing the JAXB generated classes, an instance of a container can be created.
An instance of a security class can also be created and have the nonce set
with an automatically generated Java function, the container can then in-
corperate the security element by invoking another generated function.
JAXB greatly increased the usability of the schemas and allows users to
interact and parse the XML packages more efficiently.

9.4. REPUTATION EXCHANGE PROTOCOL 103

1

10

100

1000

10000

100000

1000000

1 10 100

Lo
g

 T
im

e
 (

m
s)

Instances

Transmission
Interpretation
Expression

Figure 9.3: Individual reputation response. The time taken to express,
interpret and transmit a single exchange protocol for each individual in-
stance of integer based reputation values.

The exchange protocol enables multiple instances of reputation infor-
mation to be packaged as a single batch response. As the overhead of
interpreting different forms of information has already been addressed,
instances of integer values have been used during these tests to highlight
the overhead of expression. Figure 9.3 shows the time taken to construct a
reputation exchange object for each individual instance of the reputation
language. The service then transmits the information to the relationship
management service, executing on the Google App Engine, for interpreta-
tion. The scale is logarithmic as the transmission time is relatively consis-
tent and grows linearly with the number of instances. The figure depicts
the rapid increase in time to express and interpret information as the num-
ber of instances grows. Figure 9.4 demonstrates the advantage of utilising
the batch response functionality. This figure shows the time to express and
interpret information is comparatively, far less expensive once the number
of instances increases, due to a single exchange object being used to encode
the information.

104 CHAPTER 9. EVALUATION

1

10

100

1000

10000

1 10 100

Lo
g

Ti
m

e
 (

m
s)

Instances

Transmission
Interpretation
Expression

Figure 9.4: Batch reputation response. The time taken to express, interpret
and transmit a single exchange protocol containing multiple instances of
integer based reputation values.

9.4.1 Protocol Metrics

The following section analyzes the exchange protocol with regard to a
set of metrics and evaluates the methods of addressing the requirements.
Prominent definition languages and protocols have also been considered
to ensure commercial development standards are met.

• Encoding: The RX schema is designed to encode reputation informa-
tion and enable it’s transportation. The RX schema includes security,
target, provider, information and statement elements. Reputation
information is expressible in detail with associated contextual layers
under the information element. To give the information meaning,
elements regarding the entities involved are encoded as target and
provider. The RC schema also supports the transfer of statements
and functions. The reputation standards that have been established,
specify that the exchange protocol is able to fully describe the ac-
tion that is being performed. The RC operation element contains
elements to specify the mode, be it a response to a request or an in-
vocation of an action, and statues, describing the condition of the re-
sponse or action. Combining these schemas together provides a pro-

9.4. REPUTATION EXCHANGE PROTOCOL 105

tocol capable of fully expressing the reputation information without
loss of semantics.

• Entity Information: The RX schema contains target and provider el-
ements, both derived from a common entity type. The entity type
includes identification of the user, group or potentially organisation.
The provider element includes an optional attribute for specifying
whether the information is sourced from a human or machine envi-
ronment, as entailed in the design goals.

• Integrity: The security associated with the exchange protocol is pro-
vided at two levels, first at the RX level, then more thoroughly at the
RC level. The RX security element is a simplified version of the RC
security element, which does not include a checksum to reduce over-
head. Rather, the security element contains a timestamp and nonce,
to provide a level of security for the individual reputation informa-
tion package. The RC security element encases a timestamp, nonce
and checksum. The proper use of the security element can ensure
the integrity of the information with a high probability [33]. When
compared with other transport protocols and encoding languages,
such as the Web Service Definition Language (WSDL) and the SOAP
protocol, the RC security element provides a similar standard of data
safety. SSL encryption can also easily be enabled between OpenRep
nodes, further increasing the reliability of the reputation informa-
tion.

• Contextual Expression: The concept of layering reputation contex-
tual information, as discussed in Chapter 5, has been implemented
via the inclusion of a recursive information element in the RX schema.
Each level of context includes a summary of the level, allowing users
to parse to a particular level of confidence that is appropriate to them
and then act on the information without descending further. The po-
tential to provide a users reputation provenance as a list containing

106 CHAPTER 9. EVALUATION

each transaction is also incorporated into the schema. This supports
the functionality to encode a users entire history, comprised of in-
dividual interactions, rather than transmit a single, summarised, el-
ement of information. Consumers are then capable of performing
their own filters and operations over the information.

• Parsability: The concept of reducing the cost to parse the reputation
information encoded in these schemas is clearly important. The de-
sign goals described in Chapter 4 established the necessity of parsabil-
ity prior to development. To increase the intuitive nature of the
protocol, consistent element structure and a standard naming sys-
tem has been employed across both schemas. Elements expressing
the number of items being transferred have been included wherever
practical. Summary fields have also been included within the infor-
mation type to ease the burden of processing. The summary fields
allow information to be interpreted as a single element, rather than
having to calculate a result from a set of information. The schemas
also include the option of batching a list of transactions in a single
message, thus removing the overhead of requesting, receiving, and
parsing multiple messages.

9.5 Test Cases

To evaluate the capability of the language, verification system and ex-
change protocol, a collection of test cases have been defined. The tests
have been designed specifically to assess whether each of the components
effectively perform their designated task, evaluating whether they can re-
liably be incorporated into the OpenRep system. The following section
discusses the strategy employed and the results collected from the testing
procedure.

9.5. TEST CASES 107

9.5.1 Test Strategy

The testing process is two-fold. The first set of tests are manually con-
structed with the specific purpose of testing the functionality of the system
and ensuring it behaves as intended under particular circumstances. The
second set of tests utilise anonymised, real world, information collected
from prominent web sites that are relevant to each of the case studies.

The first set of tests establish whether each of the components performs
as expected with various input ranges. The test cases have been defined to
represent a variety of information that could be generated and processed,
this information range is based on analysis of the case studies. Due to the
control over these tests, edge cases and invalid input can be constructed
purposefully to examine the performance of each module to enforce con-
straints.

The testing process is designed to first determine whether the reputa-
tion language is capable of expressing reputation information adequately.
To investigate this aspect, a range of textual descriptions of reputation in-
formation are expressed within the language. Once the capability of the
language is established, instances of the language are generated to test
the other components. Many test cases representing an extensive range of
potential input, including edge conditions and invalid input, have been
defined. The tests range in complexity from individual values to complex
user defining structures, containing numerous embedded values and col-
lections. Tests specifically defined to utilise the type hierarchy, described
in Chapter 7, ensure policy files are consulted during interpretation. Sim-
ilarly, a full set of function descriptions, such as vouching scenarios, are
included to appropriately test the functionality of the Drools rules and
policies.

The second set of tests are employed to demonstrate the capability of
the components to process real world information. Publically available
data has been collected and anonymised from eBay, TradeMe, Slashdot,
Digg, Reddit and Facebook for testing purposes. The real world informa-

108 CHAPTER 9. EVALUATION

tion best simulates the input the components are designed to process and
provides a real world basis for this evaluation.

9.5.2 Test Results

The initial test cases focus on the capability of the reputation language to
describe information. To do this descriptions of typical information gen-
erated within the case study domains are expressed in the reputation lan-
guage. The descriptions differ substantially in type, complexity and struc-
ture. The tests show that the language is capable of expressing various
forms of reputation information, ranging from primitive type declarations
to complex collections.

Having established that the language is capable of expressing the re-
quired information, the exchange protocol can also be tested. The ex-
change protocol tests examine three specific cases; encoding information
and context, encoding sets of information and describing functions. To test
the ability of the protocol to encode information, instances of the language
must be described. The contextual information associated with the input
provides a basis to test the capacity to describe context. Various degrees
of context, representing the domains of the case studies, are describable,
as is discussed in Section 9.4.1. To investigate the ability to exchange mul-
tiple instances of information, a set of numerous information inputs has
been encoded. The tests demonstrate the ability to describe reputation
provenance within a single transmission. Functions and their responses
are also tested to ensure they are expressed in the language and encoded
in the protocol, utilising the features of the RC schema to specify the type
of input.

Extensive testing is required to demonstrate the verification system
performs as intended. The interpretation of information must be consis-
tent and conform to syntactic and semantic constraints. The testing of the
verification system involves processing numerous instances of simple and

9.5. TEST CASES 109

complex forms of information with an emphasis on edge cases and invalid
input. The tests incorporate instances requiring hierarchical evaluation, in
which policies must be consulted to determine compatibility, and ensuring
that warning level error messages are successfully raised. Errors regard-
ing syntactic misuse of the language are identified as the lexer or parser
rules fail to build valid parse trees, raising exceptions to be returned to
the caller as critical errors. Semantic constraints are enforced through typ-
ing, multiple test cases over various different types and structures demon-
strate that valid instances of the language are successfully parsed and that
invalid instances raise appropriate error messages. Table 9.1 shows a brief
example of the tests that have been executed. The different levels of re-
sult are evident. Input is deemed to either pass, raise a warning or cause
an error. Warnings are raised when type compatibility is not immediately
obvious and the type hierarchy must be consulted. Critical errors imply
either syntactic or semantic constraints have been broken. Functions are
also thoroughly tested through a test suite containing a combination of
input data and language functions, these tests include the invocation of
Drools rules when necessary.

Instances of social information have been generated to test the perfor-
mance of the components with this unique form of information. The test
cases show invalid social specific types are identified when type errors are
present. Social functions behave as intended, providing the ability to per-
form operations on social types, such as adding and filtering information.
As these capabilities are currently deployed they can be performed over
live information provided by Facebook.

To demonstrate the real world application of the description and inter-
pretation system, information has been collected from a number of promi-
nent online environments. Various instances of information that are typ-
ically consumed by users in eBay and TradeMe are used in the tests to
ensure the information is accurately expressed within the reputation lan-
guage as structures with embedded values. The information is also en-

110 CHAPTER 9. EVALUATION

Case Syntactic Semantic Result
int i = 1 pass pass pass
int i = 1.1 pass warning warning
int i = ’x’ pass fail critical error
int i = abc fail - critical error
machine int i = 1 pass pass pass
star rating = {1 .. 5 : 2 } pass pass pass
star rating = {1 .. 5 : ’a’} fail - critical error
star rating = {1 .. 5 : 7} pass fail critical error
array string arr {’one’, ’two’, ’three’} pass pass pass
array string arr {1, ’two’, ’three’} pass fail critical error
tag { [bob] , [alice], 2 } pass pass pass
tag { ’bob’ , ’alice’ } fail - critical error

Table 9.1: A subset of the test cases and their results.

coded in the exchange protocol with contextual information similar to that
used in the auction case study. The information can successfully be inter-
preted by the verification system and processed by the recipient service.
To test the virtual community case study, information from Reddit, Digg
and Slashdot has also been described in the language. Finally, to evaluate
the social case study against real world information, the service has been
deployed and run against the Facebook Graph API with valid user cre-
dentials. Friends of the logged in user are processed and segregated into
trust groups following the defined policies.

The testing proves empirically that each of the components of the de-
scription and interpretation system perform as required. Numerous in-
stances of reputation information have been expressed within the lan-
guage, encoded in the exchange protocol and interpreted by the verifi-
cation system. The verification system has been tested extensively to en-
sure the syntactic and semantic constraints of the language are enforced.
Finally, real world information has also been tested within the system to

9.6. DESCRIPTION AND INTERPRETATION SYSTEM 111

enable the evaluation of the system.

9.6 Description and Interpretation System

From the evaluation of the language, verification system and exchange
protocol, the entire description and interpretation system can be assessed.
The key requirements of the system are that it can adequately describe rep-
utation information and allow standard interpretation when exchanged
between OpenRep nodes. The design goals derived portability, such that
the module can be included or excluded from an existing reputation sys-
tem with minimal effort.

The design of the reputation description and interpretation system fo-
cused on providing a system that while meeting the overarching require-
ments, is capable of being integrated within the OpenRep architecture.
The system is implemented with a single point of entry to utilise the entire
reputation verification system, with tedious tasks being automated. The
system relies on an asynchronous event based system, allowing the user’s
program functionality to be associated with specific events and perform
tasks only when appropriate input is given.

The implementation of the system has achieved all that was specified
in the design and requirements. The system provides an Interpreter class
which users can initiate and assign listeners for various events. The in-
terpreter also provides a function called process, that accepts a string con-
taining an instance of the language. The process function verifies the in-
put through the verification system and the result is returned to the user
through a customized event.

The verification successfully employs the developed lexer and parser,
allowing the language to be checked for badly formed input and type
checked to identify errors before execution.

The case studies have demonstrated the portability and capabilities of
the system. The system has been shown to work under different circum-

112 CHAPTER 9. EVALUATION

stances and within different environments, with overhead being shown to
be of little significance. The exchange protocol enables reputation infor-
mation to be exchanged safely without the loss of meaning.

The simulation has enabled the description and interpretation system
to be tested extensively in different situations. Information regarding users
reputation within one domain has successfully been transported to an-
other with the invocation of user defined policies determining the aggre-
gation process. Complex operations, such as filters and vouching have
been shown to be effective uses of the reputation information and illus-
trate the potential of such a system to be employed in OpenRep.

9.7 Summary

This chapter has examined many aspects of the development and testing
of the reputation description and interpretation system. The case studies
have been shown to be an invaluable resource for the design and devel-
opment process while creating the system. These case studies have given
an insight into the use of reputation information in a number of domains
and provided a real-world perspective to this work. The reputation lan-
guage in particular has evolved to meet the diverse requirements of these
case studies. The language therefore meets the stated requirements of the
description system and provides a common language to enable commu-
nication between OpenRep nodes. The type system has been shown to be
an effective way of detecting error states and therefore allows users and
providers to have confidence that the language is used correctly by oth-
ers. The exchange protocols have been discussed and shown to fulfil the
needs of the overall system. The protocol allows information to be ex-
changed safely and in a standard way between domains without losing
meaning. The combination of these components realises the vision of the
interpretation system required for the collection and composition layers
of the OpenRep architecture and enables the exchange of reputation in-

9.7. SUMMARY 113

formation across a federated heterogeneous reputation environment. This
has been effectively demonstrated through the implementation of the case
studies as scenarios which show the ability to use these resources to ac-
complish the goals initially set out.

114 CHAPTER 9. EVALUATION

Chapter 10

Conclusion

This thesis presented the design, implementation and evaluation of a rep-
utation description and interpretation system, capable of exchanging in-
formation between heterogeneous reputation systems. Reputation can be
a powerful tool used to provide an indication of trustworthiness in others.
For example, an honest reputation allows others to have confidence that
one will perform honourably during an interaction.

Reputation information is increasingly common in many environments,
albeit with differing intentions. The ability to exchange reputation infor-
mation across domains increases the potential pool from which to gather
reputation information which in turn could lead to more accurate per-
spectives of entities’ behaviour. Because reputation is generally collected
within proprietary systems, the reputation information is generally het-
erogeneous and incomprehensible between domains. The OpenRep fed-
erated reputation system aims to enable collaboration between individual
reputation systems by providing mechanisms for standardised reputation
exchange. This thesis presents a core underlying component of the Open-
Rep system, describing a method to express, exchange and interpret repu-
tation information across domains. The major requirements of this system,
as presented in Chapter 4 are:

• The definition of a language to express reputation information.

115

116 CHAPTER 10. CONCLUSION

• A mechanism to ensure the syntactic and semantic correctness of lan-
guage instances.

• The design and implementation of an exchange protocol to transfer
reputation information between individual reputation systems.

This chapter reviews the process of meeting these goals, discusses the
contributions made in this thesis and presents future research possibilities.

10.1 Review

The description and interpretation system is designed to enable the ex-
change of reputation information between OpenRep nodes. The system
involves a number of different modules relating to the expression, ex-
change and interpretation of information. Each of the modules are de-
signed to be integrated into the OpenRep stack, as shown in Chapter 2.
The following sections discuss the core modules and concepts presented
in the thesis, summarising their contribution to the exchange of reputation
information.

10.1.1 Humans and Machine Reputation

The integration of human and machine entities in the context of OpenRep
was identified as a potential issue in Chapter 4. To establish whether hu-
mans and machines should be integrated, Chapter 5 examined the differ-
ences between human and machine users by studying actions taken dur-
ing the definitive phases of a reputation system. Through the investiga-
tion of multiple reputation systems, seven phases of induced reputation
action were established: resource detection, search, collection, calculation,
interpretation, consumption, and the generation process. Having studied
a number of reputation systems, specifically designed for either human or

10.1. REVIEW 117

machine users, the primary difficulty limiting the integration of humans
and machines was found to be the ability to learn and adapt.

Although a task of a reputation system is to provide insight into entity
selection, human entities are capable of probing others to develop an un-
derstanding of their motives. In the case of a machine based entity there
is potential for its programmed behaviour to be learnt and exploited by
observant human users. Due to the realisation that there is a difference
between human and machine based entities, the process of describing the
entities generating information was identified as a necessity for the repu-
tation language.

10.1.2 Exchange Protocol

The exchange protocol enables reputation information to be encoded in a
standard way without loss of semantic meaning. Integrating the contex-
tual expression features, discussed in Chapter 5, provided a foundation
to express reputation information in full, permitting standardised trans-
portation. The exchange protocol consists of two distinct XML schemas,
the Reputation Exchange (RX) and Reputation Container (RC). The RX
schema allows reputation information regarding an individual entity to
be encoded securely. The RC is capable of encompassing multiple RX ele-
ments in order to encode detailed reputation messages. Together, the RX
and RC modules form the exchange protocol and enable OpenRep nodes
to communicate with one another.

10.1.3 Reputation Language

The requirement to express reputation is fundamental to OpenRep’s abil-
ity to exchange reputation information. The main goal of the reputation
language, described in Chapter 6, is to accurately describe reputation in-
formation without losing semantic meaning. Various design goals for the
language were identified in Chapter 4, including providing an appropri-

118 CHAPTER 10. CONCLUSION

ate set of terminal types, complex structures and creating an intuitive syn-
tax. The language incorporates a complete set of primitive and complex
types. Reputation information can be described in full, without the loss
of relationships between data types. The syntax of the language leverages
existing languages, such as Java and Pascal, which enables intuitive use.
The language also supports the expression of reputation based functions.
Filtering information, asserting statements, applying events and perform-
ing vouch exchanges are each expressible in the language. The language
has been evaluated against metrics regarding expressiveness, readability,
writability, consistency, operation support, cost and portability. The lan-
guage provides a comprehensive platform to demonstrate the potential for
OpenRep nodes to communicate, exchange reputation information and in-
voke operations between one another.

10.1.4 Verification System

The verification system, presented in Chapter 7, is designed to interpret
and verify use of the reputation language. The system performs checks,
enforcing syntactical and semantic constraints over the language. The in-
clusion of a verification system standardises the method by which Open-
Rep nodes interpret reputation information. When information is exchanged
between either the collection and composition layers, or between OpenRep
nodes, the information is processed by the verification system. The ver-
ification system is comprised of three elements; the interface, language
parser unit and type enforcement system. The interface provides an asyn-
chronous method of processing information, where users are capable of
listening for various notifications depending on the output of the inter-
preter. The language parser processes the language instance against the
parser and lexer rules generated during the construction of the reputa-
tion language. The type enforcement system is responsible for ensuring
semantic errors are identified. The language is designed to be statically

10.2. CONTRIBUTIONS 119

checked and strongly typed, meaning checks regarding type use are per-
formed during the compilation of the language.

A type hierarchy, described in Chapter 7, enables the compatibility of
types to be taken into account during interpretation. The verification sys-
tem is capable of identifying type errors regarding incompatible values
and incompatible arguments. Combining each of the verification system
modules creates a usable service to verify instances of the reputation lan-
guage. The verification system can be integrated into the composition layer
of the OpenRep stack to facilitate the interpretation of information.

10.1.5 Case Studies

The three case studies, discussed in Chapter 8, represent a diverse range
of reputation systems. The case studies were selected to best demonstrate
the capabilities of the OpenRep system to be incorporated into existing
reputation systems. An electronic auction site, social network and virtual
community have been used to focus the development and assess require-
ments of the system throughout this thesis. The three case studies are
each implemented as OpenRep node services, exposing a REST interface
in line with the OpenRep standards discussed in Chapter 5. The auction
service provides a higher degree of functionality than the other case study
implementations, capable of requesting information from the other im-
plemented OpenRep services. The social friendship management service
and virtual community forum provide the functionality to collect informa-
tion from a Facebook application and a Drupal forum module respectively.
This reputation information is then distributed throughout the network.

10.2 Contributions

This thesis makes multiple contributions to the development of a feder-
ated reputation system. The expression and interpretation of reputation

120 CHAPTER 10. CONCLUSION

information forms the basis of a framework to exchange information be-
tween reputation systems. The description of contextual information, dif-
ferences between human and machine entities within reputation environ-
ments and standards regarding interoperability between reputation sys-
tems have also been presented. Specifically the main contributions of this
thesis are:

• The design, prototype implementation and evaluation of a reputa-
tion description and interpretation system. The description and in-
terpretation system provides many features to facilitate the exchange
of reputation information. The key elements of the system are:

– The development of a reputation language, used to express rep-
utation information and provide a common form of communi-
cation between reputation sources. The language supports the
description of reputation values and operations.

– The definition of reputation types, capable of describing all iden-
tified forms of reputation information. The typing system in-
cludes the definition of domain specific types, such as the clas-
sification of interactions between users of a social network.

– The design and implementation of a verification system for the
reputation language. The verification system includes a static
type enforcement system to ensure correct use of the language.

– An exchange protocol, defined in XML schemas, standardises
the encoding and transfer of reputation information. The pro-
tocol regulates communication between reputation sources and
embodies multiple features to reduce the overhead of commu-
nication.

– The consistent expression of contextual reputation information
allows reputation sources to encode information without loss
of detail. Through the formalisation of the environment with
regard to context, information can be interpreted with meaning.

10.3. FUTURE WORK 121

• An investigation regarding the plausibility of integrating human and
machine based reputation systems. Seven phases of a reputation sys-
tem have been identified from the examination of a diverse set of
human and machine based reputation systems. In addition, investi-
gation of reputation systems with respect to the actions available to
users under each of the identified phases provides a unique insight
into the complexities associated with the integration of human and
machine generated reputation information.

• The design and implementation of a reputation environment, con-
taining three uniquely constructed case studies. Each of the case
studies represents a potential reputation source within an open en-
vironment. The case studies provide a practical basis to drive the
development and evaluation of the description and interpretation
system. The case studies include an electronic auction, virtual com-
munity and social network based relationship management service.
The services are each independently implemented as a Jersey Web
service utilising a Derby database, a Drupal client with a built in fo-
rum module and a Facebook application hosted in the Google app
engine.

10.3 Future Work

This thesis has identified a number of areas of future work, possible exten-
sions, and potential research areas.

10.3.1 OpenRep Integration

The primary direction of future work is to fully integrate the description
and interpretation system into the OpenRep architecture. When complete,
OpenRep will establish a federated reputation system in an open envi-
ronment, using the modules presented in this thesis as core components.

122 CHAPTER 10. CONCLUSION

The exchange protocol will be supported by the composition layer of the
OpenRep stack in order to enable reputation systems to communicate in a
standardised way. The verification system will also be integrated into the
composition layer to interpret and validate information from the collec-
tion layer and communications from the other OpenRep nodes. The rep-
utation language will be used in OpenRep to provide a standard medium
in which to express reputation information, allowing it to be exchanged
across disparate domains and retain meaning.

10.3.2 Social Relationship Management Service

The implementation of the social network based case study could be ex-
tended in multiple ways. For example, utilising Google’s available cloud
based data management for user information would increase the applica-
tions usability by other resources, improve availability, and increase scal-
ability. The implementation also highlighted the use of novel social infor-
mation as a means of forming reputation, a similar architecture could be
applied in many other social applications, for example, the social relation-
ship management service could be applied within the Social Cloud [11]
architecture to provide an explicit trust measurement.

10.3.3 Reputation Sources

The ability to derive reputation information from sources that have not
been explicitly designed to generate reputation information should be in-
vestigated. In conjunction with global identification, the inclusion of cita-
tion indexing websites, for example CiteSeerX1, and search engines would
allow a vast amount of reputation information to be collected. An inves-
tigation to identify other potential reputation sources, such as these, and
an evaluation of the value of their information with regard to the level of
trust that can be extracted, is an exciting area of future work.

1http://citeseer.ist.psu.edu

Appendix A

Reputation Language Grammar

grammar ReputationLanguage;

//---

// Parser

//---

options { output=AST;}

@header { package nz.ac.vuw.ecs.chard.ryan.reputation; }

input : userType? information EOF -> ˆ(INFORMATION (userType)?

information)

;

userType: HUMAN -> ˆ(HUMAN)

| MACHINE -> ˆ(MACHINE)

;

information

123

124 APPENDIX A. REPUTATION LANGUAGE GRAMMAR

: socialInformation -> ˆ(SOCIAL socialInformation)

| reputationInformation

| statement

;

//Social information

socialInformation

: socialValue -> socialValue

| socialFunction -> ˆ(FUNCTION socialFunction)

;

//Social values: tag { [one] , [two] , 3 }

socialValue

: socialTypeIdentifier LCURL idValue COMMA idValue (COMMA

INT_LITERAL)? RCURL -> ˆ(socialTypeIdentifier idValue idValue

(INT_LITERAL)?)

;

//Social functions: add ([one] , [two]) | filter (tag > 10)

socialFunction

: SOCIALADD LPAREN socialValue COMMA socialValue RPAREN

-> ˆ(SOCIALADD socialValue socialValue)

| SOCIALSUB LPAREN socialValue COMMA socialValue RPAREN

-> ˆ(SOCIALSUB socialValue socialValue)

| FILTER LPAREN socialTypeIdentifier operator socialValue RPAREN

-> ˆ(FILTER socialTypeIdentifier operator socialValue)

;

//Reputation statements

statement

125

: filterStatement

| ASSERT LPAREN ID operator statementParam RPAREN

-> ˆ(ASSERT ID operator statementParam)

| VOUCH LPAREN id FOR id (COLON bool)? RPAREN

-> ˆ(VOUCH id id bool?)

| EVENT ID EQUALS LPAREN ID operator statementParam

COLON rule RPAREN -> ˆ(EVENT ID operator statementParam rule)

;

//Rules

rule : (RULE ID | ID operator statementParam) -> ˆ(RULE ID

operator statementParam)

;

//Parameters for the statements

statementParam

: idValue -> ˆ(ID idValue)

| literal -> ˆ(LITERAL literal)

;

//Filter type for recursive feature

filterStatement

: FILTER LPAREN filterValue operator statementParam RPAREN

-> ˆ(FILTER filterValue operator statementParam)

;

filterValue

: id -> id

| filterStatement -> filterStatement

;

//Reputation based information

reputationInformation

126 APPENDIX A. REPUTATION LANGUAGE GRAMMAR

: literalDec -> literalDec

| reputationStructures

;

//Literals

literalDec

: id EQUALS literal -> ˆ(LITERAL id literal)

;

//Structures

reputationStructures

: enumDec

| listDec

| arrayDec

| structDec

| starDec

;

//Enumeration type: enum nums = {a1 , a2, a3 : a3}

enumDec : ENUM ID EQUALS LCURL enumVals (COMMA enumVals)*

COLON enumVals RCURL -> ˆ(ENUM ID enumVals (enumVals)*)

;

enumVals: ID -> ˆ(ID)

;

//List type: list user = {string name = ’one’, string location

= ’two, int val = 3}

listDec : LIST ID EQUALS LCURL listVal (COMMA listVal)* RCURL

-> ˆ(LIST ID listVal (listVal)*)

;

listVal: literalDec -> literalDec

127

;

//Array type: array string arr {’one’, ’two’, ’three’}

arrayDec: ARRAY idType ID EQUALS LCURL arrayVals RCURL ->

ˆ(ARRAY idType ID arrayVals)

;

arrayVals

: literal (COMMA literal)* -> ˆ(VALUES literal (literal)*)

;

//Struct type: struct strct = { string name = ’bob’, int count = 3,

array string content = { ’one’, ’two’, ’three’ } }

structDec

: STRUCT ID EQUALS LCURL information

(COMMA information)* RCURL -> ˆ(STRUCT ID

information (information)*)

;

//Star type: star rating = {1 .. 5 : 3}

starDec : STAR ID EQUALS LCURL subrangeType

COLON INT_LITERAL RCURL -> ˆ(STAR ID subrangeType INT_LITERAL)

;

//ID types

id : idValue -> ˆ(ID idValue)

| idType idValue -> ˆ(idType idValue)

;

idType : USER

| GROUP

| ROLE

128 APPENDIX A. REPUTATION LANGUAGE GRAMMAR

| primitiveType -> primitiveType

| ID

;

idValue : ID

| SOCIALID

| SOCIALNAME

;

//Social type identifiers

socialTypeIdentifier

: SOCIALLIKE

| SOCIALPOST

| SOCIALCOMMENT

| SOCIALTAG

;

//Value types

subrangeType

: INT_LITERAL DOTDOT INT_LITERAL ->

ˆ(RANGE INT_LITERAL DOTDOT INT_LITERAL)

;

primitiveType

: BOOLEAN

| CHAR

| STRING

| INT

| FLOAT

;

129

literal

: bool

| CHAR_LITERAL

| INT_LITERAL

| FLOAT_LITERAL

| STRING_LITERAL

| NULL

;

bool : TRUE

| FALSE

;

//Operators

operator: NOT_EQUALS

| LT

| LTE

| GT

| GTE

| PLUS

| MINUS

| TIMES

| DIV

| IN

;

//---

130 APPENDIX A. REPUTATION LANGUAGE GRAMMAR

// Lexer

//---

//Number literals

INT_LITERAL

: DIGITS+

;

FLOAT_LITERAL

: DIGITS ’.’ (DIGITS)?

| ’.’ DIGITS

;

fragment

DIGITS

: (’0’..’9’)+

;

//Character and String Literal

CHAR_LITERAL

: ’\’’ LITERAL_CHAR ’\’’

;

STRING_LITERAL

: ’\’’ LITERAL_CHAR LITERAL_CHAR* ’\’’

;

fragment

LITERAL_CHAR

: ESC

131

| ˜(’\’’|’\\’)

;

fragment

ESC : ’\\’

(’n’

| ’r’

| ’t’

| ’b’

| ’f’

| ’"’

| ’\’’

| ’\\’

| ’>’

| ’u’ XDIGIT XDIGIT XDIGIT XDIGIT

)

;

fragment

XDIGIT : ’0’ .. ’9’

| ’a’ .. ’f’

| ’A’ .. ’F’

;

//Comments

COMMENT : ’//’(˜(’\n’|’\r’))* {$channel=HIDDEN;}

;

//White space

WS : (’ ’

132 APPENDIX A. REPUTATION LANGUAGE GRAMMAR

| ’\t’

| ’\f’

| (’\r\n’

| ’\r’

| ’\n’

)

)

{$channel=HIDDEN;}

;

//Key words

CHAR : ’char’;

STRING : ’string’;

BOOLEAN : ’boolean’;

INT : ’int’;

FLOAT : ’float’;

DOUBLE : ’double’;

TRUE : ’true’;

FALSE : ’false’;

NULL : ’null’;

STRUCT : ’struct’;

FILTER : ’filter’;

ASSERT : ’assert’;

VOUCH : ’vouch’;

ENUM : ’enum’;

RANGE : ’range’;

LIST : ’list’;

ARRAY : ’array’;

STAR : ’star’;

133

GROUP : ’group’;

ROLE : ’role’;

USER : ’user’;

FOR : ’for’;

RULE : ’rule’;

EVENT : ’event’;

ITEM : ’item’;

VALUE : ’value’;

VALUES : ’values’;

FUNCTION: ’function’;

HUMAN : ’human’;

MACHINE : ’machine’;

//Social key words

LITERAL : ’literal’;

SOCIAL : ’social’;

SOCIALPOST : ’post’;

SOCIALTAG : ’tag’;

SOCIALLIKE : ’like’;

SOCIALCOMMENT

: ’comment’;

SOCIALADD

: ’add’;

SOCIALSUB

: ’sub’;

INFORMATION

: ’information’;

//Operators

LCURL : ’{’;

RCURL : ’}’;

134 APPENDIX A. REPUTATION LANGUAGE GRAMMAR

LPAREN : ’(’;

RPAREN : ’)’;

LSQR : ’[’;

RSQR : ’]’;

COMMA : ’,’;

DOT : ’.’;

DOTDOT : ’..’;

COLON : ’:’;

NOT : ’!’;

NOT_EQUALS

: ’!=’;

EQUALS : ’=’;

LT : ’<’;

LTE : ’<=’;

GT : ’>’;

GTE : ’>=’;

PLUS : ’+’;

MINUS : ’-’;

TIMES : ’*’;

DIV : ’/’;

AND : ’&&’;

OR : ’||’;

IN : ’in’;

//An identifier

ID

//options {testLiterals=true;}

: (’a’..’z’)(’a’..’z’|’0’..’9’|’_’)*

;

135

//social identifiers

SOCIALNAME

: LSQR (’a’..’z’)(’a’..’z’ | ’ ’ | ’_’ | ’-’ | ’\’’)* RSQR

;

SOCIALID

: LSQR INT_LITERAL RSQR

;

136 APPENDIX A. REPUTATION LANGUAGE GRAMMAR

Appendix B

Reputation Container Schema

<?xml version=” 1 . 0 ” ?>
<xs:schema xmlns:xs=” h t t p : //www. w3 . org /2001/XMLSchema”
xmlns :rc=” h t t p : //specs . open−rep . net/rc /1.0 ”
xmlns:rx=” h t t p : //specs . open−rep . net/rx /1.0 ”
elementFormDefault=” q u a l i f i e d ”>
< !−− t h e c o n t a i n e r o b j e c t −−>
<xs :e lement name=” c on ta in er ”>
<xs:complexType>
<xs :sequence>
< !−− s e c u r i t y −−>
<xs :e lement name=” s e c u r i t y ” type=” secureType ”/>
< !−− o p e r a t i o n −−>
<xs :e lement name=” operat ion ” type=”opType”/>
< !−− s t a t e s m e n t s −−>
<xs :e lement name=” statements ” type=” statementsType ”

minOccurs=”0”/>
</xs :sequence>

</xs:complexType>
</xs :e lement>
< !−− s e c u r i t y t y p e −−>

137

138 APPENDIX B. REPUTATION CONTAINER SCHEMA

<xs:complexType name=” secureType ”>
<xs :sequence>
<xs :e lement name=”timestamp” type=” x s : d a t e ”/>
<xs :e lement name=”nonce” minOccurs=”0”>
<xs:simpleType>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”/>

</xs:simpleType>
</xs :e lement>
<xs :e lement name=”checksum” minOccurs=”0”>
<xs:simpleType>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”/>
</xs:simpleType>

</xs :e lement>
</xs :sequence>

</xs:complexType>
< !−− o p e r t i o n t y p e −−>
<xs:complexType name=”opType”>
<xs :sequence>
<xs :e lement name=”mode”>
<xs:simpleType>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”/>
</xs:simpleType>

</xs :e lement>
<xs :e lement name=” s t a t u s ” minOccurs=”0”>
<xs:complexType>
<xs :s impleContent>
<x s : e x t e n s i o n base=” x s : s t r i n g ”>
<x s : a t t r i b u t e name=”code” type=” x s : i n t e g e r ” use=” required ”/>

</ x s : e x t e n s i o n>
</xs :s impleContent>

</xs:complexType>

139

</xs :e lement>
</xs :sequence>

</xs:complexType>
< !−− s t a t e m e n t t y p e −−>
<xs:complexType name=” statementsType ”>
<xs :sequence>
<xs :any/>
</xs :sequence>

<x s : a t t r i b u t e name=” count ” type=” x s : i n t e g e r ” use=” required ”/>
</xs:complexType>

</xs:schema>

140 APPENDIX B. REPUTATION CONTAINER SCHEMA

Appendix C

Reputation Exchange Schema

<?xml version=” 1 . 0 ” ?>
<xs:schema xmlns:xs=” h t t p : //www. w3 . org /2001/XMLSchema”
xmlns :rc=” h t t p : //specs . open−rep . net/rc /1.0 ”

xmlns:rx=” h t t p : //specs . open−rep . net/rx /1.0 ”
elementFormDefault=” q u a l i f i e d ”>

< !−− t h e r e p u t a t i o n o b j e c t −−>
<xs :e lement name=” reputa t ion ”>
<xs:complexType>
<xs :sequence>

<xs :e lement name=” s e c u r i t y ” type=” secureType ”/>
<xs :e lement name=” t a r g e t ” type=” targetType ”/>
<xs :e lement name=” provider ” type=” providerType ”/>
<xs :e lement name=” information ” type=” informationType ”/>
<xs :e lement name=” statement ” type=” statementType ”

minOccurs=”0”/>
</xs :sequence>

</xs:complexType>
</xs :e lement>
< !−− s e c u r i t y t y p e −−>
<xs:complexType name=” secureType ”>

141

142 APPENDIX C. REPUTATION EXCHANGE SCHEMA

<xs :sequence>
<xs :e lement name=”timestamp” type=” x s : d a t e ”/>
<xs :e lement name=”nonce” id=” token ”>
<xs:simpleType>
<x s : r e s t r i c t i o n base=” xs :normal izedStr ing ”>
<xs :whiteSpace value=” c o l l a p s e ”/>

</ x s : r e s t r i c t i o n>
</xs:simpleType>

</xs :e lement>
</xs :sequence>

</xs:complexType>
< !−− e n t i t y t y p e −−>
<xs:complexType name=” enti tyType ”>
<xs :sequence>
<xs :e lement name=” i d e n t i t y ” minOccurs=”0”>
<xs:complexType>
<x s : a t t r i b u t e name=” type ” type=” x s : s t r i n g ”/>

</xs:complexType>
</xs :e lement>
<xs :e lement name=”group” minOccurs=”0”>
<xs:complexType>
<x s : a t t r i b u t e name=” type ” type=” x s : s t r i n g ”/>
</xs:complexType>

</xs :e lement>
</xs :sequence>

</xs:complexType>
< !−− t a r g e t t y p e −−>
<xs:complexType name=” targetType ”>
<xs:complexContent>
<x s : e x t e n s i o n base=” enti tyType ”>
<xs :sequence>

143

<xs :e lement name=” value ” type=” x s : s t r i n g ” minOccurs=”0”/>
</xs :sequence>
<x s : a t t r i b u t e name=” type ” type=” x s : s t r i n g ”/>

</ x s : e x t e n s i o n>
</xs:complexContent>

</xs:complexType>
< !−− p r o v i d e r t y p e −−>
<xs:complexType name=” providerType ”>
<xs:complexContent>
<x s : e x t e n s i o n base=” enti tyType ”>
<x s : a t t r i b u t e name=” type ” type=” x s : s t r i n g ”/>
<x s : a t t r i b u t e name=” source ” type=” sourceType ”/>

</ x s : e x t e n s i o n>
</xs:complexContent>

</xs:complexType>
< !−− s o u r c e t y p e −−>
<xs:simpleType name=” sourceType ”>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>
<xs:enumeration value=”human”/>
<xs:enumeration value=”machine”/>

</ x s : r e s t r i c t i o n>
</xs:simpleType>
< !−− i n f o r m a i t o n t y p e −−>
<xs:complexType name=” informationType ”>
<xs :sequence>
<xs :e lement name=” contex t ” type=” informationType ”

minOccurs=”0” maxOccurs=”unbounded”/>
<xs :e lement name=” t r a n s a c t i o n s ” type=” transact ionType ”

minOccurs=”0” maxOccurs=”unbounded”/>
<xs :e lement name=”summary” type=”summaryType”/>

</xs :sequence>

144 APPENDIX C. REPUTATION EXCHANGE SCHEMA

<x s : a t t r i b u t e name=” type ” type=” x s : s t r i n g ” use=” required ”/>
<x s : a t t r i b u t e name=” r o l e ” type=” x s : s t r i n g ”/>

</xs:complexType>
< !−− summary t y p e −−>
<xs:complexType name=”summaryType”>
<xs :sequence>
<xs :e lement name=” value ” type=” reputationType ”/>
<xs :e lement name=” count ” type=” x s : i n t e g e r ” minOccurs=”0”/>

</xs :sequence>
</xs:complexType>
< !−− t r a n s a c t i o n t y p e −−>
<xs:complexType name=” transact ionType ”>
<xs :sequence>
<xs :e lement name=” date ” type=” x s : d a t e ”/>
<xs :e lement name=” r o l e ” type=” x s : s t r i n g ”/>
<xs :e lement name=” value ” type=” reputationType ”/>
<xs :any minOccurs=”0”/>
</xs :sequence>

</xs:complexType>
< !−− r e p u t a t i o n i n f o r m a t i o n t y p e −−>
<xs:complexType name=” reputationType ”>
<xs :sequence>
<xs :e lement name=” value ” type=” x s : s t r i n g ”/>
<xs :any minOccurs=”0”/>
</xs :sequence>

<x s : a t t r i b u t e name=” type ” type=” x s : s t r i n g ”/>
</xs:complexType>
< !−− s t a t e m e n t t y p e −−>
<xs:complexType name=” statementType ”>
<xs :sequence>
<xs :e lement name=” value ” type=” x s : s t r i n g ”/>

145

</xs :sequence>
<x s : a t t r i b u t e name=” type ”>
<xs:simpleType>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>
<xs:enumeration value=” f i l t e r ”/>
<xs:enumeration value=” a s s e r t ”/>
<xs:enumeration value=”vouch”/>
<xs:enumeration value=” event ”/>

</ x s : r e s t r i c t i o n>
</xs:simpleType>

</ x s : a t t r i b u t e>
</xs:complexType>

</xs:schema>

146 APPENDIX C. REPUTATION EXCHANGE SCHEMA

Bibliography

[1] Haskell 98 Language and Libraries: The Revised Report. Cambridge Uni-
versity Press, May 2003.

[2] ABADI, M., CARDELLI, L., PIERCE, B., AND PLOTKIN, G. Dynamic
typing in a statically-typed language. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(New York, NY, USA, 1989), POPL ’89, ACM, pp. 213–227.

[3] ABERER, K., DATTA, A., DESPOTOVIC, Z., HAUSWIRTH, M.,
PUNCEVA, M., AND SCHMIDT, R. P-grid: A self-organizing struc-
tured p2p system, July 28 2003.

[4] ABERER, K., AND DESPOTOVIC, Z. Managing trust in a peer-2-peer
information system. In CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge management (New York, NY,
USA, 2001), ACM, pp. 310–317.

[5] BAARS, A. I., AND SWIERSTRA, S. D. Typing dynamic typing. SIG-
PLAN Not. 37 (September 2002), 157–166.

[6] BAKKEN, S. S., AULBACH, A., SCHMID, E., WINSTEAD, J., WILSON,
L. T., LERDORF, R., ZMIEVSKI, A., AND AHTO, J. PHP manual.

[7] BALI, M. Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing,
2009.

147

148 BIBLIOGRAPHY

[8] BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., EVE, AND

YERGEAU, F., Eds. Extensible Markup Language (XML) 1.0, fourth ed.
W3C Recommendation. W3C, Aug. 2003.

[9] CANTOR, S. Shibboleth architecture protocols and profiles.
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-arch-
protocols-latest.pdf, September 2005.

[10] CARDELLI, L. Type systems. In The Computer Science and Engineering
Handbook, A. B. Tucker, Ed. CRC Press, 1997, ch. 103, pp. 2208–2236.

[11] CHARD, K., BUBENDORFER, K., CATON, S., AND RANA, O. Social
Cloud Computing: A Vision for Socially Motivated Resource Sharing.
IEEE Transactions on Services Computing 99, PrePrints (2011).

[12] CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEER-
AWARANA, S. Web service definition language (wsdl). Tech. rep.,
Mar. 2001.

[13] CIURANA, E. Developing with Google App Engine. Springer, 2009.

[14] COMPANY, S. Maven: The Definitive Guide, 1 ed. O’Reilly Media, Inc.,
Oct. 2008.

[15] CROCKFORD, D. The application/json media type for javascript ob-
ject notation (json). RFC 4627, July 2006.

[16] CZAJKOWSKI, K., FERGUSON, D. F., FOSTER, I., FREY, J., GRA-
HAM, S., SEDUKHIN, I., SNELLING, D., TUECKE, S., AND VAM-
BENEPE, W. The ws-resource framework. Tech. rep., Globus,
2004. http://www.globus.org/wsrf/specs/ws-wsrf.pdf [Accessed
Nov 2011].

[17] DELLAROCAS, C. The digitization of word of mouth: Promise and
challenges of online feedback mechanisms. Management Science 49
(2003), 1407–1424.

BIBLIOGRAPHY 149

[18] EYSHOLDT, M., AND BEHRENS, H. Xtext: implement your lan-
guage faster than the quick and dirty way. In Proceedings of the ACM
international conference companion on Object oriented programming sys-
tems languages and applications companion (New York, NY, USA, 2010),
SPLASH ’10, ACM, pp. 307–309.

[19] FIALLI, J., AND VAJJHALA, S. Java architecture for xml binding (jaxb)
2.0. Java Specification Request (JSR) 222, October 2005.

[20] FIELDING, R. T. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000.
AAI9980887.

[21] GAL-OZ, N., GRINSHPOUN, T., AND GUDES, E. Privacy issues with
sharing reputation across virtual communities. In Proceedings of the
4th International Workshop on Privacy and Anonymity in the Information
Society (New York, NY, USA, 2011), PAIS ’11, ACM, pp. 3:1–3:5.

[22] GAMBETTA, D. Trust: Making and Breaking Cooperative Relations.
Blackwell Publishers, February 1990.

[23] GAO, S., SPERBERG-MCQUEEN, C. M., THOMPSON, H. S., MENDEL-
SOHN, N., BEECH, D., MALONEY, M., PETERSON, D., MALHOTRA,
A., AND BIRON, P. V. XML Schema Definition Language (XSD) 1.1,
2008.

[24] GRINSHPOUN, T., GAL-OZ, N., MEISELS, A., AND GUDES, E. Ccr: A
model for sharing reputation knowledge across virtual communities.
In Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT ’09.
IEEE/WIC/ACM International Joint Conferences on (sept. 2009), vol. 1,
pp. 34 –41.

[25] HAMMER-LAHAV, E. The oauth 2.0 authorization protocol. Tech.
rep., Sept. 2011.

150 BIBLIOGRAPHY

[26] HARBISON, S. P., AND STEELE, G. L. C, a Reference Manual. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[27] HENDRIX, F., AND BUBENDORFER, K. Openrep: A distributed repu-
tation system architecture. 2011.

[28] HENDRIX, F., CHARD, R., AND BUBENDORFER, K. A taxonomy of
reputation systems. 2011.

[29] HORS, A. L., HGARET, P. L., WOOD, L., NICOL, G., ROBIE, J.,
CHAMPION, M., AND BYRVE, S. Document object model (dom) level
3 core specification. W3C Recommendation, April 2004.

[30] JENSEN, K., WIRTH, N., MICKEL, A. B., AND MINER, J. F. Pascal
User Manual and Report: ISO Pascal Standard. Springer, Sept. 1991.

[31] JØSANG, A., ISMAIL, R., AND BOYD, C. A survey of trust and repu-
tation systems for online service provision. Decision Support Systems
43, 2 (2007), 618–644.

[32] KAMVAR, S. D., SCHLOSSER, M. T., AND GARCIA-MOLINA, H. The
eigentrust algorithm for reputation management in p2p networks. In
Proceedings of the 12th International World Wide Web Conference (New
York, NY, USA, 2003), ACM, pp. 640–651.

[33] KEHNE, A., SCHÖNWÄLDER, J., AND LANGENDÖRFER, H. A nonce-
based protocol for multiple authentications. SIGOPS Oper. Syst. Rev.
26 (October 1992), 84–89.

[34] KODAGANALLUR, V. Incorporating language processing into java
applications: A javacc tutorial. IEEE Softw. 21 (July 2004), 70–77.

[35] KREPS, D. M., AND WILSON, R. Reputation and imperfect informa-
tion. Journal of Economic Theory 27 (1982), 253–279.

[36] LEVINE, J. Flex & Bison: Text Processing Tools. O’Reilly, Aug. 2009.

BIBLIOGRAPHY 151

[37] LEVINE, J., MASON, T., AND BROWN, D. lex & yacc, 2nd Edition (A
Nutshell Handbook). O’Reilly, Oct. 1992.

[38] LINDHOLM, T., AND YELLIN, F. Java Virtual Machine Specification,
2nd ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[39] MADSEN, O. L., MAGNUSSON, B., AND MØLIER-PEDERSEN, B.
Strong typing of object-oriented languages revisited. In Proceedings of
the European conference on object-oriented programming on Object-oriented
programming systems, languages, and applications (New York, NY, USA,
1990), OOPSLA/ECOOP ’90, ACM, pp. 140–150.

[40] MALIK, Z., AND BOUGUETTAYA, A. Rateweb: Reputation assess-
ment for trust establishment among web services. VLDB J. 18, 4
(2009), 885–911.

[41] MARTI, S., GANESAN, P., AND GARCIA-MOLINA, H. Sprout: P2p
routing with social networks. In Volume 3268 of Lecture Notes in Com-
puter Science (2004).

[42] MASSA, P., AND BHATTACHARJEE, B. Using trust in recommender
systems: An experimental analysis. In In Proceedings of iTrust2004
International Conference (2004), pp. 221–235.

[43] MCCARTHY, J. LISP 1.5 Programmer’s Manual. The MIT Press, 1962.

[44] MEGGINSON, D. Simple API for XML (SAX 2.0).
http://sax.sourceforge.net/, 2004.

[45] MERNIK, M., HEERING, J., AND SLOANE, A. M. When and how to
develop domain-specific languages. ACM Comput. Surv. 37 (Decem-
ber 2005), 316–344.

152 BIBLIOGRAPHY

[46] MICHIARDI, P., AND MOLVA, R. Core: A collaborative reputation
mechanism to enforce node cooperation. In in Mobile Ad Hoc Net-
works. Communication and Multimedia Security (2002).

[47] MILGROM, P., AND ROBERTS, J. Predation, reputation, and entry
deterrence. Journal of Economic Theory 27, 2 (Aug. 1982), 280–312.

[48] MOODIE, M. Pro Apache Tomcat 6, 1 ed. Apress, 2007.

[49] NASH, J. F. Equilibrium points in n-person games. Proceedings of
the National Academy of Sciences of the United States of America 36, 1
(January 1950), 48–49.

[50] NEUMAN, C., KOHL, J., YU, T., HARTMAN, S., AND RAEBURN, K.
The kerberos network authentication service (v5). Tech. rep., 1993.

[51] NIELSEN, H. F., MENDELSOHN, N., MOREAU, J. J., GUDGIN, M.,
AND HADLEY, M. Soap version 1.2 part 1: Messaging framework.
W3c recommendation, W3C, June 2003.

[52] PARR, T., AND FISHER, K. Ll(*): the foundation of the antlr parser
generator. SIGPLAN Not. 46 (June 2011), 425–436.

[53] PERERA, S., HERATH, C., EKANAYAKE, J., CHINTHAKA, E., RAN-
ABAHU, A., JAYASINGHE, D., WEERAWARANA, S., AND DANIELS,
G. Axis2, middleware for next generation web services. In Proceed-
ings of the IEEE International Conference on Web Services (Washington,
DC, USA, 2006), IEEE Computer Society, pp. 833–840.

[54] PINGEL, F., AND STEINBRECHER, S. Multilateral secure cross-
community reputation systems for internet communities. In Trust,
Privacy and Security in Digital Business, S. Furnell, S. Katsikas, and
A. Lioy, Eds., vol. 5185 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, pp. 69–78.

BIBLIOGRAPHY 153

[55] POTOCIAR, M. Jsr 311: Jax-rs: The java api for restful web services.
Tech. rep., Oracle, 2009.

[56] PRAKASH, V. V., AND O’DONNELL, A. Fighting spam with reputa-
tion systems. Queue 3 (November 2005), 36–41.

[57] QUILL, A. The role of reputation in online markets for small-ticket
goods, 2007. MEA Conferent - Energy and Environmetnal Economics
2007.

[58] RAUB, W., AND WEESIE, J. Reputation and efficiency in social in-
teractions: An example of network effects. The American Journal of
Sociology 96, 3 (1990), 626–654.

[59] REBAHI, Y., MUJICA, V., AND SISALEM, D. A reputation-based trust
mechanism for ad hoc networks. In ISCC ’05: Proceedings of the 10th
IEEE Symposium on Computers and Communications (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 37–42.

[60] RECORDON, D., AND REED, D. Openid 2.0: a platform for user-
centric identity management. In Proceedings of the second ACM work-
shop on Digital identity management (New York, NY, USA, 2006), DIM
’06, ACM, pp. 11–16.

[61] RESNICK, P., ZECKHAUSER, R., SWANSON, J., AND LOCKWOOD, K.
The value of reputation on ebay: A controlled experiment. Experi-
mental Economics 9 (2003), 79–101.

[62] SABATER, J., AND SIERRA, C. Regret: reputation in gregarious soci-
eties. In AGENTS ’01: Proceedings of the fifth international conference on
Autonomous agents (New York, NY, USA, 2001), ACM, pp. 194–195.

[63] SABATER, J., AND SIERRA, C. Social regret, a reputation model based
on social relations. SIGecom Exch. 3 (December 2001), 44–56.

154 BIBLIOGRAPHY

[64] SABATER, J., AND SIERRA, C. Social regret, a reputation model based
on social relations. SIGecom Exch. 3, 1 (2002), 44–56.

[65] SCHLOSSER, A., VOSS, M., AND BRÜCKNER, L. On the simulation
of global reputation systems. Journal of Artificial Societies and Social
Simulation 9 (2005), 1.

[66] SCOWEN, R. S. Extended bnf - a generic base standard. In Proceedings
of the 1993 Software Engineering Standards Symposium (SESS’93) (Aug.
1993).

[67] SELCUK, A., UZUN, E., AND PARIENTE, M. A reputation-based trust
management system for p2p networks. In Cluster Computing and the
Grid, 2004. CCGrid 2004. IEEE International Symposium on (april 2004),
pp. 251 – 258.

[68] SQUICCIARINI, A. C., BERTINO, E., FERRARI, E., AND RAY, I.
Achieving privacy in trust negotiations with an ontology-based ap-
proach. IEEE Trans. Dependable Secur. Comput. 3 (January 2006), 13–.

[69] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BAL-
AKRISHNAN, H. Chord: A scalable peer-to-peer lookup service for
internet applications. ACM SIGCOMM Computer Communication Re-
view 31, 4 (2001), 149–160.

[70] STROUSTRUP, B. C++. In Encyclopedia of Computer Science. John Wiley
and Sons Ltd., Chichester, UK, pp. 174–176.

[71] TONG, X., AND ZHANG, W. Group trust and group reputation. In
ICNC ’09: Proceedings of the 2009 Fifth International Conference on Nat-
ural Computation (Washington, DC, USA, 2009), IEEE Computer Soci-
ety, pp. 561–565.

[72] TOURZAN, J., AND KOGA, Y. Liberty
id-wsff architecture overview, version 2.0.

BIBLIOGRAPHY 155

http://projectliberty.org/liberty/content/download/2207/14681/file/liberty-
id-wsf-2.0-mrd-v1.0.pdf, Accessed 2009., 2006.

[73] TURING, A. M. Computing machinery and intelligence. Mind LIX
(1950), 433–460.

[74] WANG, Y., AND VASSILEVA, J. Toward trust and reputation based
web service selection: A survey. International Transactions on Systems
Science and Applications 3 (2007), 118–132.

[75] WILSON, R. Reputations in games and markets. In Game-theoretic
models of bargaining, A. E. Roth, Ed. Cambridge University Press,
Cambridge, 1985, pp. 27–62.

[76] WRIGHT, A. K., AND FELLEISEN, M. A syntactic approach to type
soundness. Information and Computation 115 (1992), 38–94.

[77] WU, X., HE, J., AND XU, F. A group-based reputation mechanism
for mobile p2p networks. In GPC ’09: Proceedings of the 4th Interna-
tional Conference on Advances in Grid and Pervasive Computing (Berlin,
Heidelberg, 2009), Springer-Verlag, pp. 410–421.

[78] XIE, M., AND WANG, H. A collaboration-based autonomous rep-
utation system for email services. In Proceedings of the 29th confer-
ence on Information communications (Piscataway, NJ, USA, 2010), IN-
FOCOM’10, IEEE Press, pp. 992–1000.

[79] XIONG, L., AND LIU, L. Peertrust: supporting reputation-based trust
for peer-to-peer electronic communities. Knowledge and Data Engineer-
ing, IEEE Transactions on 16, 7 (2004), 843–857.

[80] YANG, B., AND GARCIA-MOLINA, H. Designing a super-peer net-
work.

[81] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH, A. D.,
AND KUBIATOWICZ, J. D. Tapestry: A resilient global-scale overlay

156 BIBLIOGRAPHY

for service deployment. IEEE Journal on Selected Areas in Communica-
tions 22 (2004), 41–53.

