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Abstract 

 

Since the Great Exhibition of 1851, the exhibition industry has grown steadily in 

significance. As a result, this thesis argues that associated large environmental 

impacts have emerged invisibly. Because they are invisible, these impacts 

have not been paid adequate attention. Few relevant studies have attempted 

to investigate the consequence of the impacts of expositions and especially 

current “sustainable” expositions. 

 

This thesis investigates the whole life cycle energy use, carbon footprint and 

ecological footprint of large-scale exhibitions in terms of the contributing 

factors, including exhibition buildings, visitor-related transportation, and 

exhibition-related economic aspects. The aim of this research is to determine, 

within this scope, the environmental impact of large-scale exhibitions and 

define what a real sustainable exposition and sustainable exhibition building 

might be. More specially, it creates an appropriate and specific methodology 

for assessing the environmental impacts generated from exhibition-related 

factors. 

 

A mixed methods research approach through integration of Life Cycle Analysis 

and Ecological Footprint Analysis is used. This is to account for whole life cycle 

energy and resource use and the resulting environmental impacts generated 

from exhibition buildings (over the construction, operation, maintenance, and 

demolition phases), different transport modes for visitor travel, and the 

exhibition-related economic aspect of four case studies. These are the Great 

Exhibition of 1851 in London, the National Exhibition in Shanghai, Expo 2000 in 

Hannover, and Expo 2010 in Shanghai. 

 

The results of comparative analysis confirm that the total energy and resource 

consumption of large-scale exhibitions is increasing. The exhibition-related 
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economic aspects consumed most energy and resources, and these rise in 

relation to the number of visitors, especially visitors from outside the host city. 

For visitor travel, the choice of visitor transport modes can significantly affect 

the overall environmental impact. Foreign visitors going to expos by airplane 

lead to more energy usage than the average travel energy consumption for an 

expo. For local travelling, using public transport modes can effectively help to 

reduce energy and resource usage in host cities. For buildings, using the high-

tech approach currently does little to mitigate the energy and resource usage 

of large expo pavilions. Due to the short useful life, current sustainable 

exhibition buildings do not perform as well as their designers imagined. 

Therefore, the energy flow of sustainable exhibition buildings as influenced by 

actual useful life needs to be paid more attention in the process of 

environmental assessment. 

 

Furthermore, it is proposed that the assessment method developed in this 

research can be used to evaluate the impacts of large-scale events, similar to 

expositions, on the environment in terms of their energy and resource 

consumption. The results suggest that the analysis boundary for assessment 

of event-related environmental impacts needs to be the “whole life cycle” and 

it needs to be broadened for the environmental assessment of large-scale 

exhibitions to include not just exhibition buildings, but visitor travel (local and 

international travel), and event-related economic aspects. 

 

Key words: Sustainable exposition, Sustainable exhibition building, Visitor 

travel, Exhibition-related economic aspects, Energy consumption, Carbon 

Dioxide emissions, Ecological footprint 
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Chapter 1 Introduction  

 

1.1 Introduction  
 

The exhibition industry not only promotes the local tourism industry and economic 

development, but also speeds up development through the design and construction 

of cutting edge exhibition buildings. Much literature has demonstrated the remarkable 

exhibition-related economic growth generated by exhibition activities (Netzer, 1978; 

Kirkwood, 2002; Skinner, 2006; Kim et al, 2009). At the beginning of the 21st century 

the percentage of economic income from the modern exhibition industry accounted 

for 0.74~1.8% of total GDP in Hong Kong, the UK, and Canada (McCann et al, 2005; 

Joppe et al, 2006; HKECIA, 2007). In terms of exhibition space, 1,062 venues with a 

minimum size of 5,000 m2 have been identified and the total indoor exhibition space 

reached 27.6 million m2 in 2006 (UFI, 2007). 

 

However, exhibition-related environmental impacts have not been paid adequate 

attention. There is little relevant study found in terms of assessing specifically the 

impact of expositions and especially expositions promoted as sustainable. Although 

some assessments of the economic benefits and associated environmental impacts of 

large-scale events have been done (Hiller, 1998; Barker et al, 2002; Collins et al, 2007; 

Collins et al, 2009), the sustainability indicators created for these have not been 

applied for evaluation of expositions up to now. 

 

In the field of the sustainable design of exhibition buildings, much effort has been put 

into detailed aspects (for example materials choices, passive design, and the use of 

building-integrated renewable energy systems), thus attempting to make buildings 

more sustainable. However, this research has found the largest part of the 

environmental impact of expositions is related to the building’s location and 

exhibition-related economic aspects. There thus needs to be a greater understanding 

of the broader environmental assessment of expositions. 
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Based on this need, the aim of this research is to create an appropriate and specific 

methodology for assessing the environmental impacts generated from large-scale 

exhibitions; to define what is a real sustainable exposition and sustainable exhibition 

building; and to help policy-makers to measure the environmental impact in terms of 

sustainability of exposition activities and give them recommendations for the design 

principles of exhibitions and their associated buildings. 

 

To reach the aim, a study related to both the environmental and economic 

sustainability aspects of large-scale expositions was undertaken. How this study was 

accomplished is outlined in the following paragraphs. 

 

Chapter 2 reviews the existing practice and studies of whole life-cycle assessment for 

sustainable large-scale events such as the Olympic Games and World Expos in terms 

of the environmental impacts. These mainly focus on a working definition of 

sustainable development, sustainable expositions (or exhibitions), and assessment 

systems for sustainable expositions. It attempts to explore the gap between 

theoretical studies and practical achievements in the process of establishing 

sustainable expositions at both national and international levels. 

 

Chapter 3 defines the detailed problems involved in exposition activities and 

assessment of expositions and demonstrates the need to investigate the 

environmental impacts of expositions. The main issues are determined; these are the 

fact that “sustainable” expositions do not appear to have reached any real level of 

sustainability in recent years and the fact the environmental impact of expositions 

lacks attention from researchers and policy makers. The chapter finds there is a lack 

of study of the considerable environmental impacts generated from human-related 

exhibition activities; a lack of systemic assessment of the sustainability theme and 

technologies before these have been implemented for expositions; and a lack of 

indicators within appropriate boundaries for evaluation of exposition activities which 

are intended to be sustainable. 

 

Chapter 4 outlines the research questions, scope, and objectives of this study. The 

objects of this research are defined as world expositions and large-scale national 

exhibitions that are set up with a total number of visitors above 5,000,000 per year. 
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The spatial scale is limited to the main countries that hold most world expositions or 

have regular large-scale national exhibitions and the time scale is from 1851 to 2010. 

It is hypothesised that the exhibition industry does have large environmental impacts 

and requires concern in terms of infrastructure construction, transport modes, and 

exhibition-related economic aspects, the latter being the dominant factor. It is further 

hypothesised that the environmental impact of national and international exhibitions 

can be measured by a method which integrates Life Cycle Analysis and Ecological 

Footprint Analysis.  

 

Chapter 5 outlines the development of the mixed research methods (including Life 

Cycle Analysis and Ecological Footprint Analysis for measuring the environmental 

impacts of expositions activities over their whole life cycle) in order to overcome the 

limitations and systematic biases of using a single method. The system boundary and 

research phases for quantitative evaluation are described.  Four typical exhibition 

events, the Great Exhibition of 1851, Shanghai National Exhibitions, Expo 2000, and 

Expo 2010 are introduced for comparative study in the following chapters. 

 

Chapters 6~9 quantify and estimate the energy and resource consumption of four 

selected large-scale exhibitions over their whole life cycle in the UK, Germany, and 

China from 1851 to 2011 (Table 1.1). They are evaluated in terms of energy flows and 

resource consumption for exhibition buildings, visitor travel by different transport 

modes, nationally and internationally, and direct and indirect exhibition-related 

economic aspects. The results are given in the chapters and appendices.  

 

Chapter 10 brings the calculated results from the case studies together to provide a 

comparative analysis of large-scale exhibitions and the three related factors. The 

comparisons show that the total energy and resource consumption of large-scale 

exhibitions is increasing. The exhibition-related economic aspects consumed most 

energy and resources, which were much more than both the building consumption 

and visitor-related transportation. In detail, energy and resource consumption of 

buildings was greatest in their operating phase. The matter of short useful life resulted 

in the sustainable design buildings performing worse than normal exhibition buildings. 

The choice of visitor transport mode can affect the environment more than the factor 
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of building location. In addition, the ecological footprint of international exhibition 

activities is increasing together with the increase in number of visitors. 

 

Chapter 11 provides further discussions on how to make more sustainable expositions 

and how to measure appropriately large-scale expositions. The main finding for 

making a sustainable exposition is that using the high-tech approach does little to 

mitigate the energy and resource usage of a large expo pavilion, and that the 

sustainable design of large-scale exhibition buildings needs to focus more on 

reducing total energy consumption in the operating phase. In addition, international 

travel by flying is causing increasing energy and resource consumption and the 

number of visitors from outside the host city is one of the significant influential factors 

on exhibition-related economic aspects. A further issue for measuring expositions is 

that the analysis boundary for event-related environmental assessment needs to be 

broadened. By combining the factors of exhibition buildings, international visitor travel, 

and event-related economic aspects, an integrated and customised assessment tool 

is developed for measurement. 

 

Chapter 12 provides a review of how each chapter has contributed to achieving the 

aim of this study and makes the conclusions from this study on the basis of 

comparative analysis and related further considerations in Chapters 10 and 11. 

Limitations of the research and opportunities for further research are then discussed. 

 

Buildings Crystal Palace 
Shanghai Exhibition 

Centre 
Dutch Pavilion 

Theme Pavilion 

Useful life 
1 May-15 Oct 1851 
1854-1936 (rebuilt) 

1955-ongoing 1 June-31 Oct, 2000 
1 May-31 Oct, 2010   
March - Sept, 2011  

Floor area 
(m2) 

Hyde Crystal Place: 92,000 
Sydenham Crystal Palace: 

138,000 

Original: 54,108 
Extension: 25,892 

Total: 80,000 
6,144 

143,000 

Number 
of visitors 

6,039,195 
(1 May~15 Oct, 1851) 

7,500,000/year 
4,060,000 

(1 Jun~31 Oct, 2000) 
23,000,000 

(1 May-31 Oct, 2010) 
Number 
of floors 

Hyde Crystal Place: 3 
Sydenham Crystal Palace: 6 

5 6 
2 

Photo 
graphs 

  
Wikipedia, The Crystal Palace, 
from 
http://en.wikipedia.org/wiki/The_
Crystal_Palace  

 
 
 

 

 

 
Dutch Pavilion, from 
http://www.archreh.com/
ecotarium-research.html 

 

 

Table 1.1 Four Case Study Buildings  
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Chapter 2 Assessing the Sustainability of Expositions 

 

Many previous studies have explained the concept of sustainable development at 

both global and national level (WCED, 1987; LGMB, 1993; Wackernagel and Rees, 

1996; US Department of Energy, 2001) and have introduced assessment tools for 

measuring the environmental impacts of the building stock, for example LEED, 

BREEAM, GREEN STAR (Attmann, 2009, p.58-65; Roderick et al, 2009). Although the 

literature covers a wide variety of theories, this review focuses on existing research on 

whole life-cycle sustainability assessment for large-scale events such as the Olympic 

Games and World Expos. (The definition of a large-scale event is given in Section 2.2.) 

Three themes are the main concern of this part of the research: a working definition of 

sustainable development; sustainable expositions (or exhibitions); and assessment 

systems for sustainable expositions. Although the literature presents these themes in 

a variety of contexts, this research primarily focuses on the environmental impacts of 

large-scale expositions within the context of strong sustainability. A detailed 

explanation of the scope of this investigation is given in Chapter 4. 

 

The purpose of this chapter is to describe briefly the relevant research that has been 

reported in terms of the sustainability and environmental assessment of large-scale 

events. It aims to explore the gap between theoretical studies and practical 

achievements in the process of establishing sustainable expositions at both national 

and international levels. It also aims to identify the problems involved in estimating the 

sustainability of exhibition buildings, and exhibition-related transportation and 

economic impacts. The detailed reasons for selecting these three aspects are given in 

Chapter 5. This review helps to define the research scope and set out the central 

components of the research.  

 

2.1 Sustainability and sustainable development  
 

This section describes the concept of sustainable development and discusses the 

relationship between the environmental, social, and economic dimensions that have 

been thought to influence sustainability and sustainable development.  
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2.1.1 Defining sustainable development 
 

The concept of “development” basically means socio-economic development. Most 

economists are agreed that “development is closely bound up with the evolution of 

capitalism” (Sklair, 1994; Conteras, 1997). In fact, the concept of development mainly 

implies “economic growth”.  

 

As explained below, some experts have pointed out that classical economics, which 

only considers economic growth, will result in the collapse of natural systems. As early 

as 1798, Malthus (1798), an economist and a country pastor in England, set out the 

relationship between population growth and economic development in An Essay on 

the Principle of Population, which demonstrated that growing population rates 

would lead to a rise in consumption of natural resources (Rogers, 2008, p.20). 

Meadows et al (1972) developed a model for simulating the consequences of rapid 

population growth and finite resource supplies, in the book Limits to Growth, again 

showing that collapse was inevitable unless population growth was curbed. Later the 

World Watch Institute provided “much-appreciated summaries of the global use of 

natural resources and the environment, usually accompanied by warnings of imminent 

collapse” (Brown et al, 1992; Rogers, 2008, p.20). The concept of “sustainable 

development” as a new development model to avoid such collapse was thus the 

subject of attention for both economists and environmentalists from the 1970s 

onwards. 

 

After the 1970s energy crises and the environmental problems that emerged globally 

in the late 20th century (Carson, 1962; Meadows et al, 1972; Brown et al, 1984), the 

significance of sustainable development was gradually taken up as an idea, if not an 

outcome, by most stakeholders in Europe and the USA (Giddings et al, 2002). 

“Sustainable” as a major theme first appeared in “Blueprint for Survival” in the 

Ecologist, which was “an influential environmentalist text” that focused on 

environmental issues (Goldsmith et al, 1972; Kidd, 1992, p.12-13). 

 

Although there are many accepted or acceptable definitions of sustainable 

development (Mawhinney, 2002, p.2), the most widely quoted definition is that of the 
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World Commission on Environment and Development, which came from the 

Brundtland report in the 1980s. It is given below. 

 

Sustainable development is development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs 

(WCED, 1987; UNGA, 1987). 

 

The key sections of this definition that are related to the subject of this research are: 

development and needs, present and future. Development can be interpreted 

generally as economic growth, social progress, and environmental protection (Munier, 

2005, p. 10) and the concept of “needs” means the essential needs provided by 

development, particularly to the poor (WCED, 1987, p. 43). In addition, the present 

and future represents the time scale of sustainable development, which refers to the 

need to provide development in the present and also in the long-term future.  

 

However, to some extent, this definition is ambiguous and questionable when it 

comes to putting it into reality. Firstly, at present there is no definite answer to the 

question of whether economic growth and environmental protection can be integrated 

in terms of human development. There exist many related debates in the field of 

academia. For example, the debate about Malthusian limits (that rapid population 

growth will cause a crisis) has been raging over the centuries (Rogers et al, 2008, p.20) 

and the global population is still increasing. Secondly, whether the needs for future 

environmental, social, and economic development can be predicted completely or not 

is uncertain. Rogers et al (2008, p.21) have argued that “it is impossible for the present 

generation to foresee descendants’ needs, because of the advancement of science, 

and consequently, establishing a time-frame for the achievement is impossible”. 

 

In addition, there are many definitions proposed by other researchers, which are 

closely relevant to particular groups. For instance, the World Wildlife Fund stated that 

“Sustainable development means improving the quality of life while living within the 

carrying capacity of supporting systems” (IUCN et al, 1991). Wackernagel and Rees 

(1996) believed that sustainable development is “The need for humanity to live 

equitably within the means of nature”. More loosely, the US Department of Energy 

(2001) stated that “Sustainable development is a strategy by which communities seek 



 Chapter 2 Assessing the Sustainability of Expositions 

	
   8 

economic development approaches that also benefit the local environment and quality 

of life.” The accurate implication of what “Sustainable development” means, however, 

is difficult to define. This is because “Sustainable development” has been given a wide 

range of interpretation as it is defined by people from many different fields using their 

own criteria (Pearce et al, 1989). 

 

Even though sustainable development does not have a definition accepted by all, it 

can be seen that sustainable development is a process of change. Such changes are 

mainly linked with behaviour, consumption patterns, spending and purchasing habits 

and evaluation of the environment (Munier, 2005, p.13) and not just the development 

of sustainable technologies (the detailed reasons for this will be demonstrated in 

Chapters 6~9). The argument below perhaps best describes the main point in 

reaching sustainability, which is the view taken by this thesis: 

 

The challenge of sustainability is neither wholly technical nor rational. It is one of 

change in attitude and behaviour. Sustainability therefore must include the social 

discourse where the fundamental issues are explored collaboratively within the 

groups or community concerned. We do not do that very well, partly because of 

increasing populations, complexity, distractions, and mobility, but more because 

of certain characteristics of the dominant paradigm that are seen as desirable 

(Fricker, 1998). 

 

It is believed that changing the attitudes of human beings needs to be started by this 

generation. Reaching sustainability needs changes to actions. 

 

2.1.2 Environmental protection versus economic growth 
 

Sustainable development is perceived as a continuing process, which integrally 

consists of the three essential aspects of environment, economy, and society, named 

the “three pillars” of the 2005 World Summit (UNGA, 2005). This section discusses 

two different models in terms of the three pillars of development. These models are 

used to show the different relationships and connections between the environmental, 

social, and economic dimensions in the sustainable development model in detail.  
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• Triple Bottom Line model 

 

The “Triple Bottom Line” model was presented by the Brundtland Commission in Our 

Common Future in the 1980s (WCED, 1987). Vanclaren (2008) claims the triple 

bottom line approach has been in common use for the past several years. In the 

model, the dimensions of environment, society, and economy are formed by three 

overlapping circles (Figure 2.1), which have the same magnitude and equal 

relationships to each other. The model thus appears as three interconnected rings 

(ICLEI, 1996; Barton, 2000).  

 

The triple bottom line approach believes that environmental, societal, and economic 

dimensions can be developed and integrated, and are mutually influenced and 

reinforced in sustainable development. In addition, this model implies that the 

approach for reaching sustainable development is to explore how to keep a good 

balance between environment, society, and economy. In the triple bottom line 

approach it is essential to consider the three dimensions as interconnected and 

develop them as part of the same goal. This model is also called the ‘weak 

sustainability’ model, as will be discussed below. 

 

However, the triple bottom line approach does not truly solve current problems. There 

are major weaknesses and limitations to this model. Firstly, this model is difficult to 

demonstrate. Giddings et al (2002) indicated that there are no convincing reasons why 

the model should use equal sized rings in a symmetrical interconnection. The possible 

permutations when changing these variables are endless. Secondly, environment, 

society, and economy, as three different entities, can be established or developed 

separately, although the three dimensions are concerned integrally in the triple bottom 

line model. In fact, some theories for reaching sustainability, such as assessment 

indicators for each of these three factors, are being formed and applied independently 

at present.  For example, Life Cycle Analysis (LCA) for the environment (Mithraratne et 

al, 2007, p.34); Social Impact Assessment (SIA) for social sustainability (Hernandez et 

al, 2010, p. 189); and Global Reporting Initiative (GRI) G3 Core Indicators for economic 

sustainability (Philips, 2007). This means the three dimensions can be measured by 

different tools without an appropriate integration system.  Thirdly, at present the 

economic dimension is still a dominant factor in decision making. This skewed 
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relationship between environment, society, and economy can be clearly illustrated by 

the Mickey Mouse model (Figure 2.2). It shows the development of the three 

dimensions is not equal. The economy is the most important and social and 

environmental aspects are separated and minor. In addition, the idea of environmental 

protection is normally seen as an issue apart from the social lives of human beings.  

 

            

Figure 2.1 Triple Bottom Line model      Figure 2.2 Mickey Mouse model 

 

 

Figure 2.3 Three Concentric Circles model 
 
There is a further concern that regarding environment, society and economy as 

separate entities could lead to a narrow techno-scientific approach (Giddings et al, 

2002).  

 
• Three Concentric Circles model 

 

Although the economy has priority in the political reality, in the material reality the 

economy is, in fact, dependent on society and the environment (Daly, 1992; Rees, 

1995). Based on this consideration, the Three Concentric Circles model was 

established to present a different relationship between the three dimensions of 

sustainable development. It can be seen, perhaps, as the ideal development model of 

“Strong Sustainability” (its definition will be described in the next section), and this is 

the concept accepted and adopted by this research.  
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The Three Concentric Circles model is depicted in Figure 2.3 and shows the circle of 

the economy nested within that of society, and economy and society are both inside 

the circle of the environment. This approach highlights the fact that the existence of 

society and the economy are basically dependent on the environment, rather than 

being at the same level with it. 

 

Adopting this development model is a more sensible route to sustainable development 

for several reasons. Firstly, the environment as the fundament of material existence 

provides all the resources for human life such as energy and food. There is an 

important notion worth remembering, which is that human beings are a part of the 

biosphere, rather than separate from the whole ecosystem (Levins and Lewontin, 

1994). This notion is concealed by many modern monetary and social activities of 

people. Secondly, it cannot be denied that the economy is a subsystem of human 

society, which is a subset of the biosphere (Porritt, 2006). Economic growth cannot be 

continued if the natural environment has totally collapsed. The Three Concentric 

Circles model shows an understanding that the environmental dimension, as the 

biggest circle in the model of sustainable development, needs to be the first to be 

given consideration.  

 

Economic growth, therefore, is dependent on the environment. Sustainable 

development should be concerned with and assessed on the environmental impact 

generated by all human activities, including the associated societal and economic 

aspects.  

 

2.1.3 Weak and strong sustainability 
 

The sustainability debate has been divided into two different streams, known as 

“Weak Sustainability and Strong Sustainability”, and these derive from starkly 

contrasting assumptions about the sustainability of natural capital (Neumayer, 2010, 

p.20). This division shows the two different starting points for viewing sustainable 

development: the anthropocentric view and the physiocentric view. The 

anthropocentric view came from the notion that “human beings are at the centre of 

concerns for sustainable development” (NUCED, 1992). The physiocentric view is 
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focused on the conservation of the natural environment, rather than human beings 

(GACGC, 1999; Statistics New Zealand, 2008). 

 

Although some descriptions differ in detail, the most accepted descriptions of weak 

and strong sustainability are set out below. 

 

Weak sustainability is built upon the assumption that natural capital is either 

abundant or substitutable both as an input into the production of consumption 

goods and as provider of direct utility. It means that natural capital can be safely 

run down as long as enough man-made and human capital is built up in 

exchange (Neumayer, 2010, p.21-22). 

 

Strong sustainability sees sustainability as non-diminishing life opportunities (Daly 

and Cobb 1989, p. 72). This should be achieved by conserving the stock of 

human capital, technological capability, natural resources and environmental 

quality (Brekke, 1997, p. 91). 

 

Weak sustainability focuses on the rule of keeping total net investment, encompassing 

all relevant forms of capital above zero (Neumayer, 2010, p.21). The central point of 

weak sustainability asserts that both the economy and society have a value equal to 

that of the environment, as found in the Triple Bottom Line model and the Mickey 

Mouse model (Figures 2.1 and 2.2). In fact, weak sustainability does not take into 

account the fact that keeping monetary flow is fundamentally dependent on 

consuming natural resources. 

 

In contrast, strong sustainability believes that natural capital cannot be duplicated by 

manufactured capital. There is no need to describe the concept of strong 

sustainability in detail in this thesis, as many previous writings have explained and 

demonstrated it (Daly and Cobb 1989; Brekke, 1997; Neumayer, 2010).  

 

In addition, a further consideration of strong sustainability is that the environment and 

natural resources have already been overshot, as demonstrated by the Ecological 

Footprint method of analysis (Wackernagel and Rees, 1996). (Detailed information on 

this will be given in Chapter 5.) It shows the urgency for all human beings to pay more 
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attention to the consumption of natural capital rather than a rapid development of 

national economies. It should be noted that this research follows the concept of 

strong sustainability, using the Ecological Footprint (EF) as an indicator to assess the 

whole life cycle environmental impact of sustainable expositions.  

 

2.2 Sustainability of expositions  
 

This section aims to define the research subject in terms of exposition (exhibition) 

activities and their three associated aspects that lead to environmental impacts. The 

current practices with relation to “sustainable expositions” are reviewed and 

discussed.  Sections 2.2.1 and 2.2.2 describe the origin of present expositions and 

demonstrate both the constructive and the associated negative impacts generated by 

large-scale expositions at both international and national levels. Section 2.2.3 

discusses how world expositions are related to the concept of sustainability and how 

sustainable technologies have been used in expo-related infrastructure and 

transportation. From the review, the problems inherent in the present concept of 

“sustainable expositions” are propounded briefly at the end of this section. (The 

detailed description of the problems will be given in Chapter 3.) 

 

2.2.1 Expositions and world affairs 
 

The definition of an exposition (used equally with the word “exhibition”, when it 

appears as a name of an exposition throughout the whole thesis) used in this research 

is an interpretation given in the context of modern industry. Briefly, an exposition is 

defined as an event at which products and services are displayed (CIC, 2003).  

 

In the literature review, “exposition” (indicated as a World Fair or World Exposition) is 

mainly classified as a typical category of hallmark events (Ritchie, 1984) or mega-

events (Ley and Olds, 1988; Hall, 1989; Hall and Hodges, 1996; Shoval, 2002).  

Ritchie (1984) clarified “World fairs/Expositions” as one of seven categories of 

hallmark events, which are listed in Table 2.1. The definition of hallmark events was 

“Major one-time or recurring events of limited duration, developed primarily to 

enhance the awareness, appeal and profitability of a tourism destination in the short 
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and/or long term” (Ritchie, 1984). Ritchie (1984) stated that world fairs or expositions 

represent one of the first forms of events which are particularly focused on urban 

destinations by means of a theme having significance at a given point in time. 

 

Category Examples 
World fairs/ expositions Vancouver 86 
Unique carnivals and festivals Mardi Gras 
Major sports events Olympics; World Cup Soccer 
Significant cultural and religious events Papal Coronation 
Historical milestones Los Angeles Bicentennial 
Classical commercial and agricultural events Wine Purchasing 
Major political personage events Major political leadership conventions 

Table 2.1 Classification of hallmark events (Ritchie, 1984) 
 

After Ritchie’s definition, a series of modified definitions of events were given by 

different researchers (for example, Jafari, 1988; Marris, 1988; Hall, 1989; Hiller, 1990; 

Roche, 2000).  In their studies, expositions, together with the Olympics, were mostly 

classified into the category of “mega-events”, which is a component of “hallmark 

events” (The classification of events is shown in Figure 2.4). Law (1993) defined the 

term “mega-event” as the largest category of events and that the international profile 

is the distinguishing feature. The Olympics and the Expositions are seen as the two 

most important events in this category of mega-events because of their huge number 

of visitors and long lasting impacts upon the host cities and the environment (Shoval, 

2002).  

 

 
Figure 2.4 Classification of events (Hall, 1989) 

 
As “substantial difficulties in the definition of mega-events still remain” (Jafari, 1988; 

Hall, 1989), exposition is classified as one category of “large-scale events” that are 

held at the international level in this thesis, because relevant studies have tended to 

view hallmark events as major, large scale events (Hall, 1989). 
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Over the past 16 decades, world fairs, a form of international exposition exhibiting 

products from many participating countries, have become relatively common and 

large scale in the global community since the Great Exhibition of 1851. In the 21st 

century international expositions, and particularly the regular World Expos, continue to 

display an impressive power of attraction for both visitors and participating countries 

(Findling and Pelle, 2000, p.1). Comparing the number of visitors between the 2004 

Athens Olympic Games and Expo 2000 (Hannover), “ The athens welcomed more than 

20,000 journalists, 10,500 athletes and hundreds of thousands of officials and visitors” 

(Palli-Petralia, 2009), while 25 million visitors attended the World Exposition 

(EXPO2000, 2000). World Expos have had a tremendous impact on their host cities, 

and even on whole countries. 

 

For national exhibitions, the number of exhibitions, exhibition buildings and visitors are 

continuously increasing (UFI, 2007). The Global Association of the Exhibition Industry 

has demonstrated that the exhibition space of the entire world is expanding (UFI, 

2007). In 2006 there were 1,062 venues (with a minimum size of 5,000 m2) identified 

and the total indoor exhibition space reached 27.6 million m2 (UFI, 2007). Europe and 

North America had the highest number and capacity when it comes to exhibition 

spaces, being 44% and 34% of the total respectively. Asia was listed third, with 14% 

of total global indoor exhibition space. It is predicted that the total indoor exhibition 

space will reach 31.1 million m2 by 2010. The US, Germany and China are dominating 

the exhibition industry in the Americas, Europe and Asia. 

 

In this research, the defined scope of “exposition” (exhibition) includes international 

expositions (World Expositions) and large-scale national exhibitions that are set up in 

a specific place with a total number of visitors normally above 5,000,000 per year. The 

large scale of these activities suggests that the impacts generated from international 

and national exhibition activities are both significant and essential to consider in terms 

of the environmental degradation that they may cause. 

 

The origin and evolution of expositions has a long history related to the national 

political and economic development of some countries. Findling and Pelle (2000, p.1) 

have stated that no other human event has the same force of involvement and the 
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history of World Expos is longer than either the modern Olympic Games or the football 

World Cup.  

 

The origin of large-scale exhibitions developed from the first national industrial 

exhibition, the French National Exhibition in 1798, which included a ceremony of state 

(the main activity, together with a competition and exhibition) (Wesemael, 2001, p.63). 

The purpose of these activities was to “imprint both the population and the 

entrepreneurs with new ideas, values and morals regarding the economics and 

ordering of society” (Wesemael, 2001, p.64). The first French National Exhibition was 

held during the Second Coalition of the Revolutionary Wars. The country suffered both 

a financial crisis and economic devastation because of the wars. Prior to this, “Louis 

XVI ascended to the throne amidst a financial crisis; the nation was nearing 

bankruptcy and outlays outpaced income” (Frey, 2004, p.3). Thus, exhibitions as a 

policy instrument were used to stimulate economic development and increase 

technological and manufacturing experiment through communication of ideas.  

 

From 1798 to 1849, there were more than nine exhibitions held by France with the 

main exhibitions in 1798, 1801, 1802, 1806, 1819, 1823, 1824, 1834, and 1849 

(Wesemael, 2001, p.63-113). People gave more attention to the competitions and 

exhibition of products. The Industrial Exposition of 1806 reflected the new context of 

state inspired economic growth (Heller, 2006, p.136). As a result there was an 

“emphasis on the competition: it was a means of obtaining a representative statistical 

overview of the continental economy, of creating a continental trademark, and of 

stimulating technological progress” (Wesemael, 2001, p.69). From then on, the scale 

of exhibitions of products was greatly increased in French national exhibitions. 

 

In 1851 the first international exhibition was held by the UK government in London. 

The idea of organizing such an international exhibition resulted from the French 

national exhibitions. This new venture was to become the true meaning of an 

exhibition at the world scale. The scale of this international exhibition was much 

greater than that of the French national exhibitions. The organizers enlarged the scale 

of the whole enterprise and the exhibition layouts and in so doing produced a new 

sort of exhibition building (Wesemael, 2001, p.63-113). The government believed such 
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an exhibition would be likely to improve both the economy and industrial innovation, 

and thus help government to build a broader industrial policy (Wesemael, 2001, p.119). 

 

The aim of modern international expositions is to stimulate economies (Bachman, 

2003, p.246). As such, they have considerable influence on the development of the 

local economy where the exhibition occurs (Findling and Pelle, 2000, p.1-2). However, 

the booming development of the exhibition industry is also part of the environmental 

deterioration that has occurred during the last hundred years. For example, exhibition 

buildings, which tend to have large numbers of end-users, have not attracted the 

same attention as other building types when it comes to environmental matters, even 

though the construction industry is currently concerned with improving performance 

with regard to sustainability in most countries (Luff, 2008, p. 190; Neuhoff, 2009, p. 

456; Oritz, 2009).The detailed description of the problems will be given in Chapter 3. 

 

2.2.2 Positive and negative impacts of expositions 
 

The impact of expositions is firstly reviewed from the impact of general large scale 

events in this section. An analytical framework made by Ritchie in 1984 demonstrated 

the types of impact of hallmark events, which included economic, tourism/commercial, 

physical, socio-cultural, psychological, and political impacts.  

 

On a comprehensive basis, the boarder impact of events focused on by researchers at 

present consists of the impact of the following (Higher Education Academy, 2007). 

This list is accepted by this thesis and part is used to form the research scope:  

 

• Physical infrastructure;  

• Environmental impacts; 

• Economic impacts; 

• Tourism and image impacts; 

• Social impacts; 

• Cultural impacts; 

• Political impacts; 

• Urban renewal  

 



 Chapter 2 Assessing the Sustainability of Expositions 

	
   18 

It is commonly recognized that mega-events, for example International Expositions, 

have the potential to help transform a city (Hiller, 1990; Hiller and Moylan, 1999; 

Hughes, 1993) or a country (Bhardwaj, 1997) into a major, legitimate tourism 

destination (Ritchie, 2000). Current studies have focussed on and highlighted the 

potential economic effect of events, which is shown as a significant positive aspect 

(Crompton and McKay 1994; Jones, 2001; Barker et al, 2002; Chhabra et al, 2003). 

For instance, the total expenditure at the World Rowing Championships (20-27 August, 

2006, Eton) was £3,268,703 or £408,588 per day, which is much higher than the pre-

event forecast (£2,841,866 in total) (UK Sport, 2007).  

 

However, there is little systematic research found regarding impact assessment of 

large scale events (Faulkner et al, 2003). There is shortage of a comprehensive 

analysis system for assessing large-scale events (Hiller, 1998). Some previous studies 

(for example Hiller, 1998; Carlsen and Taylor, 2003; Fredline et al, 2003) 

recommended that the social, physical, environmental and tourism impacts of events 

and their interrelationships need to be taken into account in the research into events. 

This implies that the negative impacts generated from the development of the 

exhibition industry are currently being hidden.  

 

Positive and negative impacts of exhibitions are discussed below. 

 

• Positive impact 

 

It appears that the exhibition industry not only promotes the local tourism industry and 

economic development, but also speeds up development through the design and 

construction of cutting edge exhibition buildings. The exhibition-related economic 

benefit (direct or potential benefit), seen as the most significant positive impact, is 

discussed below. 

 

Much literature has reviewed and demonstrated the remarkable exhibition-related 

economic growth generated following exhibition activities. Netzer (1978) concludes 

that an exhibition (such as an art exhibition) has a positive impact on the local 

economy resulting in outcomes such as economic growth, growth in local tax 

revenues, and increased tourist-type revenues. Recent after the event econometric 
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studies using intervention analysis have demonstrated the short term increase in 

economic growth from exhibitions in Jackson, Mississippi (Skinner, 2006). Kirkwood 

(2002) illustrates the multiplier effect derived from the exhibition industry, which 

includes output, employment, income, value-added, tax and imports. The multiplier 

effect, sometimes seen as the indirect effect, is bigger than before imagined. 

According to Kim and Partners’ analysis for the Korean Exhibition Industry, the total 

exhibition receipts of US$645.7 million produced US$1.2 billion in output; 21692 full-

time equivalent jobs; US$260 million in personal income for residents; US$ 577.4 

million in value-added; US$ 54.2 million in indirect tax; and US$ 104.3 million in 

imports (Kim et al, 2009).  

 

In addition, as part of GDP, the percentage of income from the modern exhibition 

industry for different countries is significant. In 2004 and 2006 in Hong Kong, HK$19 

billion (US$ 2.4 billion) and HK$26.5 billion (US$3.38 billion) came from the exhibition 

industry, accounting for 1.5% and 1.8% of GDP (HKECIA, 2006; HKECIA, 2007). For 

the UK, £9.3 billion was generated by the exhibition industry in 2005 (McCann et al, 

2005), accounting for 0.74% of GDP. In Toronto (Canada), income from the exhibition 

industry in 2006 was C$ 1.1 billion, equivalent to 0.87% of the regional GDP (Joppe et 

al, 2006). 

 

World Expos, the biggest international exhibitions, have even more potential to 

stimulate local economic growth. Hahn (2006, p.30) states that the 1958 World Expo 

in Belgium was the first exposition held after World War II to promote economic 

growth. Another example is Expo 1970 held in Japan, which was the first world’s fair 

held in an Asian country. Expo 1970 had a great impact on the national economy, 

particularly on the transportation infrastructure. This event helped Japan to reach a 

peak of high-level economic growth in the 1970s (Lvy, 1995, p.36). 

 

Thus, the function of promoting national and international trade and potentially 

increasing national revenues makes expositions of more concern to policy-makers. 

The associated environmental problems resulting from exhibition activities, until now 

largely ignored, are considered in this research. 

 

• Negative impact 
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Although several negative impacts of events, such as social issues (drunkenness, and 

disorderly behaviour), have been mentioned in previous research (Beke and Elands, 

1995, p. 285-301; Hall et al, 1995; Allen, 1999), the environmental impact (Barker et al, 

2002), as the most significant effect, is reviewed in this section. Expositions as a type 

of large-scale event affect the natural environment invisibly, which brings large 

negative impacts to the planet, although the environmental impact of large-scale 

events is to a limited extent increasingly a concern for researchers and policy-makers 

(Hiller, 1998; Higher Education Academy, 2007). In addition, exhibitions increase 

resource consumption and carbon emissions are generated from infrastructure 

construction, visitor travel, food consumption and other relevant industries.  

 

The impact of environmental deterioration can be separated into two principal parts – 

one is the direct effect from the exhibition activities (e.g. building construction and 

visitor travel), the other part is the indirect impacts, which means the additional effect 

on the environment generated from the increasing production of manufacturers or the 

consumption of goods stimulated by exhibitions. The second part, which can have 

extremely large potential economic profits, can be assumed to be the much more 

significant factor in terms of consuming resources and reducing environmental quality. 

The indirect exhibition-related economic impact cannot be measured by one criterion, 

because the effect derived from exhibitions is integrated and compounded. The most 

significant function of holding an exhibition is to stimulate local and international 

consumption of products manufactured by exhibitors. It means the additional effect 

on the environment may be increased invisibly and sustained in the long run. 

 

It seems the economic benefit (positive impact) and the environmental impact 

(negative impact) generated by the exhibition industry cannot reach a balance point at 

present (the reason for this is discussed in Section 2.1). Since increasing economic 

and political benefits were obtained by the UK government through the Great 

Exhibition of 1851, the question of whether the exhibition-related economy degrades 

the environmental quality is actually a part of the larger question of whether national 

economic growth in general obstructs sustainable development of the environment. 
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In consideration of the above, this study focuses on three aspects of large-scale 

events (physical infrastructure, environment, and economy) by analysing and 

estimating the environmental impact of buildings, transportation, and the exhibition-

related economic aspect (the detailed research boundary will be given in Chapter 5). 

This research follows the concept of “strong sustainability”, which is based on the 

principle that the functions that the existing stocks of natural capital perform cannot 

be duplicated by manufactured capital (Brekke, 1997, p. 91). 

 

2.2.3 Sustainability of expositions 
 

This section explores the relationship between expositions and the concept of 

sustainable development. It reviews the theme of some world expositions (relevant to 

the concept of sustainability) and the related sustainable technologies used in 

“sustainable expositions”, such as sustainable exhibition halls and transportation. The 

review aims to discuss the question of whether modern sustainable expos truly reach 

sustainability by using modern technologies.  

 

• The theme of sustainability 

 

The concept of sustainability in terms of expositions is firstly shown by the number of 

world expositions taking it as a theme. They not only show technological innovations, 

but increasingly also show concern for the sustainable development of the human 

community (Findling and Pelle, 2000, p.2).  

 

The concept of “Sustainable development” has gradually become the main theme for 

recent World Expositions (see Table 2.2). Expo 1974 was the first exposition to have 

an environmental theme (Expo Museum, 2008), probably resulting from the 1970s 

energy crisis which drew attention to the whole issue of sustainable development. The 

themes of both Expo 1975 and Expo 1982 referred to the environmental issue. For 

Expo 2000 in Hannover it was stated, “technology and nature should be combined to 

be a whole ecosystem in a building” (McDonough et al, 1992). In Expo 2005 in Aichi, 

Japan, the theme of the exposition was “the use of cutting-edge science and 

technology for the future, along with new lifestyles and social systems” (EXPO2005, 

2005).  For Expo 2010, sustainability as the main theme was applied in many aspects 
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(e.g. in pavilions and the master plan of the whole exposition area) (EXPO2010, 2010). 

Expos can, therefore, be a platform on which to implement and enact sustainability 

measures (Findling and Pelle, 2000, p.2).  

 

Date Place Name Theme 
1974 Spokane, USA Expo’74-World’s Fair Celebrating Tomorrow’s 

Fresh Environment 
1975  Okinawa, Japan International Ocean 

Exposition Okinawa 
Ocean, the Future Hope 

1982 
 

Knoxville, USA 1982 Knoxville International 
Energy Exposition 

Energy Turns the World 

2000 Hannover, Germany  Universal Exhibition 
Hannover 2000 

Humankind, Nature, 
Technology 

2005 Aichi Prefecture, Japan Aichi World Exposition Nature's Wisdom 
2010 Shanghai, China Expo 2010 Shanghai Expo Better City, Better Life 

Table 2.2 Expos with the theme of sustainability (Expo Museum, 2010) 
 

However, at the start, as an exposition theme, the concept of sustainability was not 

given serious attention. In Expo 74 fair officials did not really take up the theme of 

ecology as most environmental groups were not encouraged into full-scale 

participation, while big companies, who invested money in the fair, were welcomed 

(CSPN, 2008). Currently, guidelines for sustainable expositions have been used as 

part of the process of their operation. For example, the guidelines for building World 

Expo 2000 in Germany set up by McDonough became known as the Hannover 

Principles. In the principles, sustainability as the main guideline informed the design 

theme of the expo (McDonough et al, 1992).  

 

• Application of sustainable technologies 

 

Many exhibition halls for World Expositions, especially in recent and current 

expositions, have been described as sustainable buildings. For instance, the Expo 

Centre in Expo 2010 reached an international standard (LEED Gold rating) for green 

buildings (EXPO2010, 2010). However, there is still no real measure of the 

environmental impact of large buildings over their whole useful life. Studies have 

shown that reduction in the operating energy for commercial buildings is more 

significant in terms of total environmental impact than a decrease in building 

embodied energy (Winther and Hestnes, 1999; Sartori and Hestnes, 2007). Much 

research has been focussed on optimising energy efficiency technologies and 
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exploring how to ensure the modelled results become a reality once the building is in 

use (Figueres and Philips 2007). The results from building modelling simulations show 

that energy efficiency improvement has helped offset energy demand from growth in 

the building sector (Dimoudi and Tompa, 2008; EECA, 2008; Kneifel, 2010). For 

example, Torcellini et al (2006) found that high-performance commercial buildings can 

help to decrease energy use by 25-70% below code. 

 

However, there are several factors relating to this conclusion that make it an uncertain 

measure of sustainability, such as the years of useful life, and the real performance of 

exhibition buildings when used by visitors and exhibiters. The Dutch Pavilion in Expo 

2000 (held in Hannover, Germany) is a typical example. Located in the south east area 

of the exposition, this building had six storeys. Each storey had a different character 

or theme, such as a grotto, agriculture, container gardens, forest, rain and ponds. The 

designer MVRDV stated that this building was “a mix of technology and nature, 

emphasizing nature’s make-ability and artificiality” (MVRDV, 2005, p.1120). MVRDV 

also suggested that this building showed that high population density could coexist 

with an increase in the quality of life because it demonstrated that a natural 

environment could be created along with the built environment. It also demonstrated 

that a natural environment could be made mutually with a building. MVRDV concluded 

that this building not only saved space, but also saved energy, time, water and 

infrastructure. The useful life of this building was just 5 months and it was not reused 

after the World Exposition. The reason for this is possibly because of the high 

maintenance cost and impractical design for function. MVRDV focused on saving the 

operating energy of the building, but without considering unseen energy consumption, 

such as the initial and recurring embodied energy, which were exaggerated by the 

very short life.  

 

As discussed above, the answer to the question of whether the modern “sustainable” 

expos truly reach sustainability by using modern technologies is uncertain. The 

problem embodied in the “sustainable buildings” of expositions is whether they are 

sustainable over their whole life cycle. Some misunderstanding of sustainable 

expositions is visibly generated through the economic development strategies made 

by exhibition sponsors. For instance, the implementation of environmental protection 

techniques for exhibition buildings, such as solar water heating and low energy 
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lighting, seems to be an attractive selling point for expositions in some countries, of 

which however the principal purpose is to attract more visitors and promote the 

products. However this invisible and potentially more significant factor (the economic 

aspect) can cause much more environmental damage. This will be discussed in later 

chapters. 

 

2.3 Assessment systems for sustainability of expositions  
 

The section briefly reviews the characteristics and categories of traditional indicators 

in general and sustainability indicators in particular, as many previous studies have 

covered this area in depth (Hart, 1999; Munier, 2005). The sustainability indicators for 

estimating sustainable expositions (represented by indicators for sustainable large-

scale events) are discussed in Section 2.3.3. This section points out some common 

problems in the existing indicators from the literature (the detailed problems will be 

discussed in Chapter 3).  

 

2.3.1 Indicators and traditional indicators 
 

The answer to the question of what an indicator is needs to be settled before 

deliberating over the suitability of traditional indicators. Munier (2005, p. 265) states 

that “Indicators are qualitative or quantitative measures signalling for some condition, 

for a decision to be taken, to give an early warning, and to show the results of a 

certain action or process”. The International Institute for Sustainable Development 

gives the more tangible definition that “An indicator quantifies and simplifies 

phenomena and helps us understand complex realities. Indicators are aggregates of 

raw and processed data but they can be further aggregated to form complex indices 

(IISD, 2008)”. This definition definitely indicates the physical function of an indicator. 

 

Indicators provide basic guidance for decision-making, and they translate physical 

and social science knowledge into manageable units of information that help to 

facilitate the decision-making process (SCOPE, 2006). It can be seen that an indicator 

as an assessment tool can assist users to make decisions by clarifying certain criteria 

at the global and national level. Good indicators need to be scientifically sound, 
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understandable, and sensitive to change (Custance and Hilary, 1998). The certain 

characteristics of effective indicators in general are listed below (Zachary, 1995, p.12-

13; Hart, 1999, p.26): 

 

• Relevant, which means effective indicators can show the part of the system 

that need to be known;  

• Easy to understand, even by people who are not experts; 

• Reliable, so the user can trust the information that the indicator is providing;  

• Accessible, so the information is timely; 

• Actionable, so as to measure conditions or activities that can be changed in a 

positive direction by local actions. 

 

As economy, society, and environment are seen as the three dominant dimensions in 

the process of development (discussed in Section 2.1.2), indicators are classified as 

economic indicators, social indicators, and environmental indicators by researchers 

(Hart, 1999, p.53; Vera and Langlois, 2007), and these are what are called traditional 

indicators. The detailed content of traditional indicators is shown in Table 2.3. 

 

Category Content 
Economic 
indicators 

General business (jobs and income); Industry (manufacturing, services, 
renewable and non-renewable extraction); Energy; Transportation 

Social indicators Education; Government, Participation, Volunteerism, Cooperation; 
Health; Housing; Public safety; Recreation, Culture 

Environmental 
indicators 

Ecosystem; Population; Land use; Resource use 

Table 2.3 Traditional indicators (Hart, 1999, p.53) 
 

Traditional indicators, consisting of economic, social, and environmental indicators, 

seem to involve comprehensively the three main dominant areas of development. 

However, the problem is that each traditional indicator is specifically focused on one 

dimension, without interconnection with the other areas (Atkinson, 1997; Munier, 2005, 

p.268). The traditional indicators can be seen as isolated indicators.  

 

For example, the profit of stockholders is a traditional economic indicator under the 

heading of “Industry” (see Table 2.1); quality of water is a traditional ecological 

indicator under the heading of “Ecosystem” (Golusin and Ivanovic´, 2009). If the 

economic and environmental aspects are assessed separately for the fresh water 
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fishing industry for instance, through the hunting of fish from rivers, the estimated 

result cannot show the true condition in terms of sustainable development. It is 

because the indicators measure the economic effect in terms of profits without 

considering the associated environmental impacts, such as over fishing which affects 

long term availability of product (and, incidentally, long term profits). 

 

2.3.2 Sustainability indicators 
 

In Chapter 40 of Agenda 21 (United Nations, 1992), the Earth Summit recognized that 

indicators can have an important role in helping countries to make informed decisions 

concerning sustainable development. A range of environmental, social and economic 

Sustainable Development Indicator (SDI) methodologies regarding human activities 

have been proposed (Bell and Morse, 2004; Heuting and Reijnders, 2004; Wilson et al, 

2007). In addition, it has been suggested sustainability indicators should be developed 

at both international and national levels (Daly and Cobb, 1989; Pearce and Atkinson, 

1992, 1993; Pearce, 1994). SCOPE (2006) stated that a first compilation of 134 

sustainability indicators in 1996 developed by the UN Commission on Sustainable 

Development (CSD) was tested by over 20 countries. A revised set of 58 core 

indicators was published in 2001. 

 

Noticing the problems of traditional indicators, discussed in 2.3.1, some time ago, 

Hart (1995, p.9) compared the traditional indicators to sustainability indicators in 

economic, social, and environmental aspects. Table 2.4 shows part of Hart’s 

assumptions about sustainability indicators. It can be seen that traditional indicators 

measure changes in one part of a community, while sustainability indicators reflect the 

tight interconnection between the three different areas (Hart, 1995, p.9).  
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 Traditional 
Indicators 

Sustainability Indicators 

Economic 
Indicators 

Unemployment 
rate; 
Number of 
companies; 
Number of jobs 

Diversity and vitality of local job base; Number and 
variability in size of companies; Number and 
variability of industry types; Variability of skill levels 
required for jobs 

Size of the 
economy as 
measured by 
GNP & GDP 

Wages paid in the local economy that are spent in 
the local economy; Dollars spent in the local 
economy which pay for local labour and local natural 
resources; Percent of local economy based on 
renewable local resources 

Social 
Indicators 

SAT and other 
standardized test 
scores 

Number of students trained for jobs that are 
available in the local economy; Number of students 
who go to college and come back to the community 

Number of 
registered voters 

Number of voters who vote in elections; Number of 
voters who attend town meetings 

Environmental 
Indicators 

Ambient levels of 
pollution in air 
and water 

Use and generation of toxic materials (both in 
production and by end user); Vehicle miles travelled 

Tons of solid 
waste generated 

Percent of products produced which are durable, 
repairable, or readily recyclable or compostable 

Table 2.4 Traditional versus sustainability indicators (Hart, 1995, p.9) 
 

It is essential to have integral indicators, which are as simple as possible but that give 

a value relating to all the areas from the point of view of sustainability (Munier, 2005, 

p.275). For example, social-economic sustainability indicators would not just measure 

the number of positions, but also consider the associated income with the living cost 

(Golusin and Ivanovic, 2009). The linkage between economy, society, and environment 

is necessary for an appropriate indicator of sustainability. The reason given for this is 

that all existing economic and ecological approaches have weaknesses (Rennings and 

Wiggering, 1997). 

 

Categories of sustainability indicators are classified as several different types by 

different researchers (Rennings and Wiggering, 1997; Hanley et al, 1999; Patterson, 

2002), according to their different viewpoints regarding the understanding of 

sustainable development, growth, and sustainability (Ramos and Caeiro, 2010). For 

example, Rennings and Wiggering (1997) categorised sustainability indicators into two 

types in the context of the concept of weak and strong sustainability. Patterson (2002) 

categorised sustainability indicators into five different types, which are “Ecological 

indicators, Policy Performance Indicators, Macro Economic Indicators, Eco-efficiency 

and Lifecycle Assessment Indicators, and Composite Index Indicators”. 
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Category Assumption Typical indicators 
Weak 
sustainability 
indicators 

Assume perfect 
substitutability between 
produced and natural capital 

Green GDP; Index of Sustainable Economic 
Welfare (ISEW) (Daly and Cobb, 1989); 
Sustainable income (Hueting and Bosch, 
1991) 

Strong 
sustainability 
indicators 

Assumes no substitutability AMOEBA; Pressure-state-Response;  
Ecological Footprint (Wackernagel and Rees, 
1996) 

Table 2.5 Weak and strong sustainability indicators (Rennings and Wiggering, 
1997; Ayres, 2008; Ramos and Caeiro, 2010) 

 

In this research, Rennings and Wiggering’s category, which defined sustainability 

measurement into two directions, weak and strong sustainability (detailed discussion 

in Section 2.1.3) is followed. The reason is that it well illustrates the integration of the 

three dimensions, and at the same time, it clearly distinguishes the two methods for 

measuring sustainability from its different interpretation.  Two categories of indicators 

were given under the different assumptions of sustainability as shown in Table 2.5. For 

this research, a strong sustainability indicator, the Ecological Footprint, has been 

selected to be the assessment tool following the bottom-up method, which aims to 

evaluate the impacts of sustainable expositions. The detailed explanation for selecting 

the theories and applying the methodology will be given in Chapter 5. 

 

Although the interpretation of the three areas of development (economy, society, and 

environment) has been given attention in the development of sustainability indicators, 

there is no clear best approach at present, because there has only been a little 

success in linking these concepts or drawing their boundaries (Rennings and 

Wiggering, 1997; Wilson et al, 2007). Heuting and Reijnders (2004) point out that 

economic measures and standard sustainability measures are unable to deal with 

global ecological problems. Wilson et al (2007) stated that since the concept first 

appeared sustainable development indicators have not yet fully matured. This means 

that there are still some problems in existing sustainability indicators, which aim to 

guide humanity to reach sustainability. The detailed explanation of the problems faced 

will be given in Chapter 3. 

 

2.3.3 Indicators for sustainable expositions 
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At present, there is little relevant study found in terms of assessing specifically the 

impact of expositions and sustainable expositions. This means that up to now existing 

sustainability indicators have not been applied for the evaluation of expositions. For 

this reason, the literature for this section mainly reviews the existing research related 

to the assessment and assessment tools for similar large-scale events, such as the 

Rugby World Cup and the Football World Cup. The condition and problems of 

indicators for the exhibition industry can be derived from the relevant studies. 

  

As the large economic benefits and associated environmental degradation of large-

scale events have been given attention (the detailed impacts have been discussed in 

Section 2.2), assessment of the impacts of large-scale events has been done by some 

researchers (Hiller, 1998; Barker et al, 2002; Collins et al, 2007; Collins et al, 2009). In 

the literature review, it is noticed that most research, although asserted to be impact 

assessment, has not been made in terms of quantitative measures.  

 

It has been found that the majority of impact estimation for large-scale events is 

focused on the economic benefits generated from the event-related activities. Most of 

the studies evaluated the events by the use of traditional indicators. For example, 

Kirkwood (2002) estimated the output, employment, income, value-added, tax and 

imports influenced by large-scale exhibitions. Thornton et al (2006) estimated the 

potential economic effects of the 2012 Olympic Games in London, by looking at the 

total receipts, income from tourism, number of jobs, etc. Kim (et al, 2009) analysed the 

Korean Exhibition Industry using traditional economic indicators, which meant mainly 

assessing the total exhibition receipts, the number of jobs exhibitions created, 

personal income for residents, the indirect tax, and amount of imports. Currently, 

there is little balance between these studies of economic assessment and 

environmental assessment. 

 

In terms of the impacts of a large-scale event, there have been a number of studies 

investigating the social impacts (for example Arcodia and Whitford, 2002; Fredline et 

al, 2002; Jago et al, 2002) and the economic impacts of events (Dwyer et al, 2000a, b; 

Lee and Taylor, 2005; Lee, 2006). Nevertheless, environmental impacts have been 

rarely explored (Carlsen et al, 2001; Dickson and Arcodia, 2010). 
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For the environmental assessment of large-scale events, the environmental 

consequences of sporting events have been the main focus of research. A typical 

example is from Collins et al (2007). They assessed the environmental impact of 

transport, food and drink consumption, stadium construction, and waste, for the FA 

Cup Final by using the methods of Environmental Input-Output Analysis and 

Ecological Footprint Analysis. Collins et al (2007) compared and analysed the results 

made by using the two different methods. However, the results from the quantitative 

study cannot be checked, as there is no relevant data provided.  

 

In the limited existing studies, the Ecological Footprint is used as a common method 

to assess the impacts of large events (examples from Collins et al, 2007 and Collins et 

al, 2009). In addition, as part of the lack of consideration of the impacts of large 

events, other problems are referred to by some researchers. Barker et al (2002) found 

a notable lack of available data that document the impacts of events. It is noted that 

“more research attention needs to be directed towards understanding the social, 

physical, and environmental impacts associated with hosting events in their local 

context” (Barker et al, 2002). 

 

Consideration of the above shows that how to assess the impacts of events has 

become an essential issue for analysis. These questions will be addressed in this 

research by analysis of several case studies in Chapters 6~9. 

 

2.4 Chapter conclusion  
 

This chapter reviews the existing investigation of whole life-cycle assessment for 

sustainable large-scale exhibitions in terms of their environmental impacts. Three 

aspects of a working definition of sustainable development, sustainable expositions 

(or exhibitions), and assessment systems for sustainable expositions have been its 

focus. The review begins to reveal the problems occurring in the current exhibition 

industry at both national and international levels.  

 

Based on this, Chapter 3 will discuss in more detailed the further problems of the 

issues of sustainable expositions. 
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Chapter 3 The problems  

 

This chapter defines and summarises the problems involved in exposition activities 

and the assessment of sustainable expositions. The purpose of this chapter is to 

explore further the need and motivation for this research which stemmed from two 

issues which are discussed below. The first is that recent “sustainable” expositions do 

not appear to reach any real level of sustainability and the second is that the 

environmental impact of expositions lacks attention from researchers and policy 

makers. The nature and urgency of this study are demonstrated through discussing 

the special problems from existing expositions, sustainable world expositions, and 

exposition assessment tools.  

 

3.1 The problems of conventional expositions  
 

3.1.1 Exposition-related environmental issues 
 

The booming development of expositions has become a significant factor which has 

affected the natural environment. Expositions increase resource consumption for 

infrastructure construction and operation, emit carbon dioxide generated from visitor 

travel, and increase local food consumption and waste.  

 

In some countries exhibition buildings currently have large operating energy 

consumptions. Teheran’s International Flower Building (TIFB) (9,500 m2) was an 

extreme example studied by Karbassi et al (2008). Karbassi et al (2008) calculated the 

energy consumption of this exhibition building using TABESH software. The overall 

cooling and heating loads of this building are 19.9 GJ/hour, and the annual energy 

consumption of the building is equal to 39,615GJ/year or 4,150 MJ/m2/year. The heat 

loss from the TIFB envelope is more than twice as high as the standard (Karbassi et al, 

2008). Another example is that the Perth Convention and Exhibition Centre (16,650 m2) 

had an operation energy consumption of 29,629 GJ/year, which was equal to 1,780 

MJ/m2/year (Australian Government, 2009). Pullen (2000) found that the average 

operating energy consumption of commercial buildings in Australia was around 500 to 



Chapter 3 The problems 

 
	
  

32 

1,000MJ/m2/year. The Queensland Government (2009) reported that operating energy 

of office buildings had a range from 630 ~ 1,100 MJ/m2/year. Comparing the operating 

energy between these exhibition building and a commercial or office building, they 

consumed more energy than the latter in their operating phase. This suggests that the 

sustainable consideration for the design of exhibition buildings is both essential and 

urgent. 

 

In addition, expositions create a large amount of waste after the activities are over. 

According to a survey in 2001, which formed part of the workshop of the Sustainable 

Exhibition Industries (SEXI) project (commissioned by the Association of Exhibition 

Organisers, the British Exhibition Contractors Association and the Exhibition Venues 

Association), the exhibition industry in the UK produces more than 60,000 tonnes of 

waste each year including brochures, show literature and carpets (Reynolds, 2002b). 

The solid waste generated by the Olympic Games, using the 2006 Torino Olympic 

Winter Games as an example, was 1,213 tonnes in total for the 16 days the games 

were held (12-28th February). This equates to 76 tonnes/day, and the waste included 

paper, plastic, organic material, glass and metal cans, wood, and waste that was 

burned to produce energy (Crawford, 2007). If the waste of the exhibition industry is 

compared to that of the Olympic Games, to some extent the environmental impact of 

expositions is likely to be more serious than the Olympics, because expositions are 

held over a longer period (6 months or more), and because, as explained in Section 

2.2.1, expositions typically attract many more visitors than the Olympic Games. 

 

In fact, there is little research that considers the environmental effect and 

environmental assessment of large-scale expositions or international exhibitions over 

their whole life cycle (the definition of whole life cycle assessment will be given in 

Chapter 5). To date most research regarding the environmental impact of the 

exhibition industry is just focused on the relatively narrow topic of reducing the waste 

generated by exhibitions (Reynolds, 2002a; Reynolds, 2002b). This former research 

cannot account for all the natural resources consumed by the exhibition industry in 

terms of a reasonable research boundary. 

 



Chapter 3 The problems 

 
	
  

33 

3.1.2 Imbalance between exhibition-related economic growth and 
environmental protection 
 

The question of whether exhibition-related economic growth degrades environmental 

quality, which is a part of the larger question of whether economic growth obstructs 

sustainable development of the environment, still remains unanswered at present.  

 

Some idealistic economists have argued that economic growth did not and will not 

damage the environment. Their reasoning is based on an econometric estimation 

using the method of “the inverted-U relation”, called an environmental Kuznets curve 

(EKC), which was hypothesised by Kuznets in the 1950s (Kuznets, 1955). The 

hypothesis states that: 

 

 At low levels of development both the quantity and intensity of environmental 

degradation is limited to the impacts of subsistence economic activity on the 

resource base and to limited quantities of biodegradable wastes. However, at 

higher levels of development, structural change towards information-intensive 

industries and services, coupled with increased environmental awareness, 

enforcement of environmental regulations, better technology and higher 

environmental expenditures, result in levelling off and gradual decline of 

environmental degradation (Panayotou, 1993; Stern et al, 1996).  

 

This hypothesis obviously implies that economic growth does not threaten the 

sustainability of the human community and that so-called advanced industrialization 

will be able to grow without facing environmental limits. The research of Grossman 

and Krueger (1991) estimated the environmental impacts of a North American Free 

Trade Agreement. It measured three air pollutants in urban areas of 42 countries. They 

finally found sulphur dioxide and “smoke” increased, together with the GDP per 

capita, at lower levels of national development, while they decreased at higher levels 

of national income. Panayotou (1993) also demonstrated the U-shape curve’s 

relationship between SO2 emissions per capita and income per capita. 

 

In contrast, an increasing relationship between economic growth and environmental 

damage is shown from current research (Arrow et al, 1995; Ekins, 1997; Gale and 
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Mendez, 1998). Gale and Mendez (1998) explore the idea that “Increases in economic 

activity have a negative effect on the environment separate from changes in per capita 

income, whose relation to the environment is now positive and linear not inverted U-

shaped.”  Arrow et al (1995) demonstrate that the inverted-U curve was just applied to 

a selected set of pollutants only, such as SO2, NOX, and CO and that it might not apply 

to all pollutants The reason that the two approaches have come to different 

conclusions is probably because while Grossman and Kruger looked at classic 

pollutants, in the sense of things that were toxic or physically harmful to health, the 

later studies have considered carbon dioxide, which in itself appears harmless, but 

which is now accepted as the main agent of widespread climate change. 

 

There are a large number of studies focusing on exhibition performance (Kerin and 

Cron, 1987, p.87; Gopalakrishna and Lilien, 1995; Hansen, 2004, p.1), such as 

individual selling and promotional objectives and the overall performance of the entire 

exhibition. In recent literature, the economic related environmental impact of these 

large-scale events (most literature has focused on the Olympics) is becoming a 

concern. Holden et al (2008) stress that the meaning of “Sustainable Olympic Games” 

can be interpreted in different ways, which is like playing language games, suiting the 

result to the scale of operation and the particular agenda.  In the Sydney Olympics 

2000, the concept of the “Green Games” was part of the promise (Cashman and 

Hughes, 1999, p.82). However, whether “sustainable events” are being “green washed” 

or whether they have truly achieved sustainability over their whole life cycle can be re-

considered.  

 

Many sustainable practices for expositions focus solely on the building construction 

and renewable materials (for example MVRDV, 2005, p.1120; Expo 2010, 2010), 

without considering the invisible and potentially more significant factors, such as the 

exhibition-related economic factor, which it seems could cause much more 

environmental damage (this statement will be demonstrated by several case studies in 

Chapter 6~9). 
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3.2 The problems of sustainable expositions 
 

3.2.1 Sustainability as a theme 
 

In the 1970s, the concept of sustainability was not given any serious attention by the 

global exposition industry (discussed in Section 2.2.3). The construction and utilisation 

of exposition pavilions in Expo 74, which was the first world exposition to use the 

theme of sustainability, were good examples. The main pavilions, such as the Energy 

Pavilion and the Agriculture Pavilion, were sponsored by high energy-consuming and 

highly polluting companies, including oil, electricity, nuclear power companies, and 

agribusiness, chemical, petroleum, and food-processing firms. In fact, these 

companies were seldom concerned about saving energy or the effect of modern 

agriculture on ecosystems and public health (CSPN, 2008). The Ford Motor Company 

stated that environmental protection must not raise the cost of living (CSPN, 2008). 

These findings reflect the fact that sponsors and policy makers did not truly realise the 

urgency of environmental issues and as a result it was not possible to truly implement 

the theme of sustainability in the operation of the exposition.  

 

In the 21st Century, some organisers of expositions have brought the sustainability 

concept into the exhibition design principles. For example, the guidelines for building 

World Expo 2000 in Germany set up by William McDonough became known as the 

Hannover Principles. In the principles, sustainability as the main guideline informed the 

design theme of the expo (McDonough et al, 1992). This principle was interpreted in 

various ways by designers based on their own understanding. In the Dutch Pavilion, 

the concept of sustainability was interpreted as a mix of technology and nature, 

mixing several natural elements (such as forest and rain) with high technology (wind 

turbines), by MVRDV (MVRDV, 2005, p.1120). Using renewable material (recycled 

paper) for constructing the Japan Pavilion (Davey, 2009, p.80) can be seen as another 

interpretation from Japanese designers. The Swiss Sound Box, the Swiss Pavilion in 

Expo 2000, was constructed with a timber structure as the solution to sustainability 

(Zumthor, 2000). The designer Peter Zumthor explained that “Taking the Expo theme 

of sustainability seriously, we constructed the pavilion out of 144 km of lumber with a 

cross-section of 20 × 10 cm, totalling 2,800 cubic metres of larch and Douglas pine 

from Swiss forests, assembled without glue, bolts or nails, only braced with steel 
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cables, and with each beam being pressed down on the one below” (Zumthor, 2000). 

The question of whether transporting the construction material from Switzerland to 

Germany is a sustainable way to proceed or not was uncertain. 

 

As the consideration above demonstrates, the theme of sustainability for expositions 

needs to be further explicitly defined and assessed. 

 

3.2.2 Sustainable technologies  
 

Sustainable technologies have been utilised in both the exhibition buildings and in 

exhibition-related transportation in some world expositions (discussed in Section 

2.2.3). Although some researchers have proposed that improving energy efficiency in 

commercial buildings (and exhibition buildings fall into this category) is one of the 

easiest and lowest cost ways to mitigate the environmental problems associated with 

buildings, and observing that lowering carbon footprint has become a key target 

globally (Figueres and Philips, 2007; Kneifel, 2010), some problems associated with 

the application of sustainable technologies in terms of reducing the embodied and 

operating energy of pavilions and the CO2 emissions of transportation still remain. The 

data in support of this statement will be demonstrated by the four case studies in 

Chapter 6~9.  

 

For buildings, although some studies show that reduction in the operating energy is 

more significant than an increase in building embodied energy (Winther and Hestnes, 

1999; Sartori and Hestnes, 2007), there are several factors relating to this conclusion 

that make it uncertain. Firstly, it is based on the assumption that buildings have a long 

and useful life (at least 50 years). However, the useful life of exhibition pavilions is 

often short, and this means that the even the supposedly sustainable building will end 

up consuming a large amount of embodied energy. The useful life of the Dutch 

Pavilion at Expo 2000 was just 5 months and it was not reused after the exposition. 

Most of the pavilions built for Expo 2010 in Shanghai have been demolished after the 

event (EXPO, 2010). This phenomenon raises the problem of the embodied energy in 

the “sustainable buildings” of expositions, which is whether “sustainable exhibition 

buildings” are truly creating a sustainable environment and saving natural resources 

over their whole life cycle. Although it is simplistic, unless a building has the useful life 
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for which it was designed, it will never be sustainable, and extending building life is 

one way to reduce total environmental impact. Sartori and Hestnes (2007) concluded 

that a solar house required an approximate doubling of embodied energy (in terms of 

the need for increased insulation etc.) to halve the total energy needed when the 

lifetime was 50 years (compared to an equivalent conventional building). The same 

authors also found that a slight increase in the embodied energy of the same passive 

solar house reduced total energy threefold when the lifetime was 80 years. Winther 

and Hestnes (1999) demonstrate that as the operating energy of buildings is reduced, 

the use of materials, especially of energy intensive materials, is increased. Much 

research shows that increasing the use of technical equipment contributes to an 

increase in the total energy used for construction and maintenance (Kohler, 1991; 

Feist, 1996; Adalberth, 1996). Secondly, there is a lack of data for the energy used in 

building demolition, especially in finding energy equivalents for the pollution produced. 

It is probable that the energy used for the demolition of buildings with a lot of high 

technology equipment might be significantly higher than that for low-tech buildings. 

The third uncertainty comes from real building performance. Analysis has shown that 

many low energy buildings have performed worse than predicted and that the 

designers are overly optimistic about the behaviour of the occupants (Torcellini et al, 

2004). Moreover, Newsham et al. (2009) have determined that 28~35% of monitored 

LEED certified buildings consume more unit energy than conventional buildings. 

Whether buildings designed to be sustainable remain so once the end users are in 

control is another uncertainty.  

 

For visitor travel, although much of the current research focuses on sustainability of 

transportation (Amekudzi et al, 2009; Shore, 2006; Federici et al, 2003), application of 

sustainable technologies for transportation is still an unsolved issue. A good example 

is the World Expo 2005 held in Japan (Expo2005, 2005). The concern for sustainability 

was demonstrated by the establishment of an advanced-technology eco-community, 

a recycling system, and sustainable transportation. For example, there were eight 

Toyota fuel cell hybrid vehicles (FCHV) (hybrid buses) used for on-site transportation 

at Expo 2005 (Büchi et al, 2009, p. 490-491). The FCHV is a hybrid with a fuel cell 

instead of an engine, using hydrogen as the fuel and emitting no CO2  (Friedrichs et al, 

2009, p.9). Friedrichs et al (2009, p.9-10) stated that there are a large number of 

issues, including the high cost (which must be reduced to approximately 1/1000 of the 
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current level), cruising distance, and energy consumption for the creation of a 

hydrogen supply infrastructure, that must be resolved before there is full-scale use of 

FCHVs in the market. 

 

Another problem is that the choice of transport modes of the visitors attending 

exhibitions is an important issue that needs to be considered. In Melbourne, every day 

14% of people take public transport and 82% use private automotive vehicles (Urban 

Planning Program, 2005). With this sort of transport mix the environmental impact 

(CO2 emissions) of private automotive transport for visitor travel to attend exhibitions 

is several times greater than that of public transport (Shen et al, 2009). This means 

that the types of transport infrastructure that are put in place when exposition venues 

are built may have a great effect on the overall impact of the exposition, depending on 

the types of transport they encourage visitors to use. 

 

3.3 The problems of sustainability indicators for expositions  
 

3.3.1 Assessment of large-scale events  
 

As existing sustainability indicators have not been used for the evaluation of 

expositions up to now (discussed in Chapter 2, Section 2.3), the issues from the use 

of assessment indicators for large-scale events are discussed in this section.   

 

Firstly, to date no single best measuring system for assessing sustainability has been 

evolved (Wilson et al, 2007). Because of the complex nature of ecosystems, it is 

difficult to measure sustainability at present and sustainable development varies 

according to needs, priorities, and values (Wilson et al, 2007). As a result, the 

definition of sustainability and the solution to what sustainable development means 

are still under debate (explained in Section 2.1). Under this situation, assessment 

indicators for large-scale events have not been completely established. 

 

Secondly, there has only been very little success in drawing appropriate evaluation 

boundaries. The analysis boundary is used to define the space and time scale for 

achieving the sustainability of a subject. Bell and Morse (2008, p.15) believed that the 
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spatial scale (a farm, village, town or city, region, country, or the whole planet) is 

important when putting sustainability into practice or when determining the level of 

sustainability of an existing system. “However, even if individuals can clearly define 

the boundary, there are problems in implementing sustainability.” This is because in a 

sustainable project, “project boundaries may well have to work within political borders, 

rather than with more reasonably formulated system boundaries” (Bell and Morse, 

2008, p.15). On the other hand, due to the difference of time scale, the system 

boundary varies, because “Different components of sustainability in the same system 

may best be measured in different time frames” (Bell and Morse, 2008, p.15). 

Uncertainty of spatial and time scales makes the evaluation boundaries ambiguous.  

 

In addition, the environmental measures become obscure, as all data are subject to 

errors and biases (Barnett and O’Hagan, 1997). Custance and Hillier (1998) explain 

that the reliability of assessment of impact on the environment mainly depends on 

what is being sampled, the sampling methods, and how to aggregate the results into 

the national scale. Some estimation is given by using complex models, which also 

depend on various assumptions and some degrees of uncertainty (Custance and 

Hillier, 1998), but a widely agreed standard definition of sustainability does not exist. 

 

As the discussion above makes clear, it seems that a sustainability indicator for large-

scale events, particularly for expositions, needs to be built on a carefully defined 

assessment scale, as certain measures may be more suitable for certain contexts 

(Wilson et al, 2007). 

 

3.3.2 Policy bias 
 

Both sustainable development indicators and economic indicators are used to monitor 

government policy - its making and its performance (Custance and Hillier, 1998). As 

mentioned in Section 3.3.1, in the implementation of sustainability, project boundaries 

have to work within political borders (Bell and Morse, 2008, p.15). This means that 

policy bias can sometimes influence the setting of assessment boundaries and the 

results from the estimation. 
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Some studies have used existing sustainability indicators to assess the environmental 

impact of large-scale events at the international level. For example, Collins et al (2007) 

state that policy-makers are increasingly concerned with the environmental impacts of 

major events in the regions. In their study, the result from the assessment of the FA 

Cup Final (2003-2004) shows that 3,051gha of resources was consumed by visitor-

related activities (including transport, food, and infrastructure) in a day, which was 

equivalent to the land usage for 3,800 people living in India in a year 

(0.8gha/person/year) (Vale and Vale, 2009, p.38). However, the environmental impact 

and associated environmental assessment systems for expositions are not something 

with which organisers bother or of which they are commonly aware. 

 

It is essential that policy makers have a comprehensive understanding of using 

different sustainable development indicator metrics, which are following the different 

conceptualizations and definitions of sustainability (Custance and Hillier, 1998). It is 

necessary that policy makers have some basic knowledge in terms of the philosophy, 

biases, and limitations of sustainability indicators. 

 

3.4 Summarising the problems 
 

This Chapter points out several issues arising from environmental degradation, 

modern sustainable expositions, and sustainability indicators for expositions. The 

problems are summarised as follows: 

 

(a) Development of the exhibition industry can lead to a number of typical 

environmental issues, such as resource consumption for building construction, 

carbon emissions for transportation, large amounts of waste generated from 

the activities, and the potential exhibition-related economic effect. However, 

there is a shortage of studies of the large potential environmental impacts 

generated from human-related exhibition activities. 

 

(b) Whether any “sustainable” world exposition at present has achieved 

sustainability is questionable. There is a lack of systemic assessment of the 
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sustainable theme or its principles, and sustainable technologies, utilised in the 

pavilions and transport systems, before these have been implemented. 

 

(c) To date there is a lack of indicators within reasonable analysis boundaries for 

evaluating the environmental impact of expositions. 
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Chapter 4 Research Focus 

 

The previous chapter presented some of the specific problems involved in the current 

form of sustainable expositions, development of the exhibition industry, and 

sustainability indicators for gauging the environmental impact of expositions. Although 

Chapter 2 reviews the concept of sustainability, impacts of expositions, and 

associated sustainability indicators in a variety of contexts, this research is primarily 

concerned with the environmental impact of large-scale exhibitions within the context 

of strong sustainability.  

 

The purpose of this chapter is to identify the tangible research questions and to 

delimit the scope of this research. This chapter determines the objectives and 

hypothesis of this study. It also further explores the need and motivation for this 

research which stemmed from the three issues summarised in Section 3.4. The careful 

definition of the research parameters is to help identify reliably the intended outputs of 

this thesis. 

 

4.1 Research questions 
 

This thesis attempts to seek the answer to the simplified question of how the 

environmental impact generated by the contemporary exhibition industry can be 

measured within certain research boundaries at national and international levels.  

 

Based on this fundamental question, two relevant questions are proposed for further 

analysis. These are “What is the environmental impact generated from a large-scale 

international exhibition or exposition over its whole life cycle?” and “Is it possible that 

this mixed methods approach can be developed as a framework for gauging the 

environmental impact of large-scale events at the international level?” 

 

The specific research questions are outlined below: 

 

The first main research question is: 
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How can the environmental impact generated by the contemporary exhibition industry 

be measured at both the national and international level?  

 

(a) How can the system boundaries of measurement be set up and appropriate 

methods for assessment applied? 

 

(b) Do the analysis boundaries of Life Cycle Assessment need to be broadened for the 

environmental assessment of expositions and if so what should these be? 

 

The second research question (based on the results from the assessment of the four 

selected case studies) is:  

 

What is the environmental impact (comprised of energy consumption, carbon footprint, 

and ecological footprint in this thesis, defined by the analysis boundary in Section 

5.1.1) generated by a large-scale international exhibition or exposition over its whole 

life cycle (considering exhibition buildings, transportation for visitor travel, and 

exhibition-related economic aspects)? 

 

(a) What is the average initial and recurring embodied energy and operating energy of 

an exhibition building? 

 

(b) Are buildings getting better? Given current improvements in energy efficiency is 

there a significant difference between modern and historic large single space 

exhibition buildings in terms of the embodied and operating energy in the construction 

and operating phases?  

 

(c) What is the energy consumption and associated CO2 emissions of visitor travel for 

attending expositions or exhibitions? 

 

(d) Has the environmental impact of visitor travel to exhibitions increased or decreased 

over time? Does the location of buildings influence the energy consumption and 

carbon emissions of visitor travel?  
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(e) What is the most significant factor in the process of exposition activities, in terms 

of the whole life cycle environmental assessment? 

 

4.2 Research scope  
 

It is important to identify the scope of this study prior to gathering initial information. 

The scope helps to form the analysis boundary of environmental assessment for the 

research objects. The objects of this research are defined as world expositions and 

large-scale national exhibitions that are set up at a specific place with a total number 

of visitors above 5,000,000 per year. Impacts generated from international and 

national exhibition activities are both significant and essential to consider regarding 

the environmental issues discussed in detail in Chapter 2. In addition, world 

expositions and large-scale national exhibitions are both typical activities in the 

general category of large-scale events (the definition of which is explained in Section 

2.2.1), which means that the research results may be applicable to this wider category.  

 

Before sustainability can be achieved, the three aspects of spatial scale, time scale, 

and interpretation of life quality have to be defined, because they provide the context 

within which the process takes place (Bell and Morse, 1999, p.14). Bell and Morse 

(1999, p.17) state that spatial and time scales are key components of achieving 

sustainability and that they need to be carefully selected.  

 

First of all, the spatial scale of this research is limited to two of the main continents 

that hold world expositions or have regular large-scale national exhibitions, these 

being Europe and Asia. This is because most national and international exhibitions 

and exhibition-related venues are organised and built in European and Asian cities 

(this has been reviewed in Section 2.2.1). This study was limited to places where data 

could be accessed. 

 

Figure 4.1 shows the percentage of exhibition venues distributed in different areas in 

the world. Europe has the highest number and capacity of exhibition spaces (44%), 

and 14% of total global indoor exhibition space is in Asia. For national exhibitions, 

Germany and China are both the largest countries and dominate the exhibition 
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industry in Europe and Asia (CEIR, 2009). For international exhibitions (which mainly 

means World Expos), five expos - 1851 (UK), 1925 (France), 2000 (Germany), 2005 

(Japan), 2010 (China) - are considered here as examples of the main significant expos 

in the history of World Expositions.  

 

As explained above, the study of national and international exhibitions in this research 

focuses primarily on three chosen countries, which are the UK, Germany, and China. 

The exhibition industry of these three countries is used to represent and reflect the 

developing condition of expositions, starting from the Great Exhibition in London in 

1851.  

 

Figure 4.1 Percentage of venues in different areas of the world (CEIR, 2009) 
 

Secondly, the time scale of this research is delimited from 1851 (the first World 

Exposition, the Great Exhibition in London) to 2010 (World Expo 2010 in Shanghai). 

 

A simplified diagram of the research scope of this thesis is given below in Figure 4.2. 

The output of this thesis research is reflected in the environmental index of 

sustainability (energy flow, CO2 emissions, and ecological footprint), and it is 

simultaneously considered both in exhibition-related environmental and economic 

aspects (e.g. income from exhibitions and exhibition-related industries). It is noted that 

the social or ‘quality of life’ assessment of the sustainability of exhibition activities is 

not included in this thesis, as its content is highly complex (Bell and Morse, 1999, 

p.17). This will be an area for further research as the meaning of quality of life as the 

main element of system quality is difficult to define, because this element as a key 

component of the concept of sustainability has many different definitions (Bell and 

Morse, 1999, p.17). From later considerations of sustainability, whether human quality 
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of life should be included as a component within system quality is questionable 

(Jeffrey, 1996; Bell and Morse, 1999, p.17; Phillipps, 2006).  

 

 

Figure 4.2 Diagram of the research scope 
 

The concept of strong, as opposed to weak, sustainability puts the environment first, 

as without a functioning environment there can be no human society and no economy 

(discussed in Chapter 2). Therefore, the analysis and discussion of this thesis is 

established under the concept of strong sustainability. It means that minimising 

resource consumption for expositions is the first goal for reaching sustainability in this 

thesis, rather than the quality of life condition.  

 

4.3 Objectives and hypothesis 
 

In order to provide a greater understanding of the motivation behind assessment 

activities, the overall objectives of this research are to:  

 

(a) Create an appropriate and specific methodology for assessing the 

environmental impacts generated from large-scale exhibitions at the national 

and international level, and fill the information gap found in environmental 

assessment study. 
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(b) Explore the real problems existing in the exhibition industry in terms of the 

environmental aspect and define what a real sustainable exposition and 

sustainable exhibition building are by comparing the environmental impact of 

different phases for building construction, different modes of transport, and 

exhibition-related industries. 

 

(c) Seek the possibility of devising a sustainability indicator for the sustainable 

development of the exhibition industry, based on LCA and Ecological Footprint 

analysis. Help policy-makers and sponsors to understand the sustainability of 

exposition activities and measure their environmental impact, and give them 

suggestions or recommendations for the design principles of exhibitions and 

their associated buildings, and for reduction of the impacts from exhibition 

activities. Advise users how their life habits and choices impact on the natural 

environment. 

 

More specifically, as discussed in the material reviewed and in previous chapters of 

this thesis, this research hypothesises that: 

 

(a) The environmental impact of national and international exhibitions can be 

measured by a method integrating Life Cycle Analysis and Ecological Footprint 

Analysis. 

 

(b) The exhibition industry does have large environmental impacts and these 

require concern in terms of infrastructure construction, transport modes, and 

exhibition-related economic benefits. The exhibition-related economic factor 

dominates, with the greatest impact on the environment, compared to the 

other factors. 
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4.4 Chapter conclusion 
  

This chapter describes the focus of this research in terms of the three main research 

questions, research scope, and objectives and hypotheses. According to the research 

questions and research scope, the relevant research methodology and analysis 

boundary for specific assessment are explained in the next chapter. The objectives 

and hypotheses are given in Section 4.3. They will be demonstrated through four case 

studies as described in Chapters 6, 7, 8 and 9. This thesis establishes an analysis of 

four specific exhibition activities in different countries. The first case study is the Great 

Exhibition held in London, the UK, in 1851 (case study 1); the second case study is  

Expo 2000 in Hannover, Germany (case study 2); the other two of these four case 

studies are national exhibitions and Expo 2010, both located in Shanghai, China (case 

studies 3 and 4). They will be introduced in detailed in Section 5.2.3. 

 

This thesis can be seen as the starting point for setting up a specific sustainability 

indicator and the conceptual system framework for sustainable exhibition 

management. It turns out that this sustainability indicator should be a simple and 

easily understood indicator to assess sustainability, which will have good acceptance 

from a wide range of stakeholders. This study makes a contribution as a reliable 

reference for setting up an indicator for events within reasonable boundaries. 
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Chapter 5 Methodology 

 

This chapter describes the research methodology in three parts. Firstly, the system 

boundary and research phases for quantifying and evaluating the environmental 

impact of expositions are described and delimited in Section 5.1. Section 5.2 explains 

a mixed methods research approach (including Life Cycle Analysis and Ecological 

Footprint Analysis for the environmental assessment), which is used for achieving the 

research objectives and overcoming the limitations and systematic biases of one 

single method. The strengths and inadequacies of Life Cycle Analysis and Ecological 

Footprint Analysis are identified in this section. Furthermore, four selected case 

studies are introduced for the quantitative research in Section 5.3. 

 

5.1 System boundary and research phases 
 

It is vital to explain the system boundary for evaluation in this chapter, as the results 

and conclusions of the environmental assessment of expositions must be reliably 

drawn within the specific boundary. In addition, the three phases of the study are 

briefly described in Section 5.1.2.  

 

5.1.1 System boundaries 
 

1. Need for setting up the system boundary 

 

A system boundary is usually applied to simplify the evaluation process, because all 

the inputs and outputs of an object to be assessed cannot be completely traced 

(Mithraratne et al, 2007, p. 24). This means that the system boundary of sustainability 

investigations serves to restrict the research content to what is relevant and significant 

and what is not, and the explicit system boundary can “tell us what is included and 

what is excluded and under what assumptions” (Maru and Woodford, 2007). 

 

For this thesis, the development of the global exhibition industry does have direct and 

indirect environmental impacts (identified in Chapter 2). As a result, the environmental 
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impact of expositions and international exhibitions needs to be accounted for within a 

reasonable research system boundary. The explicit boundary of this study provides an 

opportunity for exhibition organisers and a wider audience to judge or learn about the 

sustainability of expositions from specific perspectives. It can be seen that defining 

the boundaries for the collection of quantitative data is an important aspect in terms of 

whole life cycle environmental assessment. The reason for this is because the system 

boundary may influence data collection activities in all the categories. 

 

2. Boundary for assessing the impacts generated by expositions 

 

Although there are three dimensions of sustainability (environment, social, and 

economy), this thesis focuses on the environmental aspect in terms of the impact 

generated by expositions. This is partly because of the limited time for a PhD study, 

and more important is the fact the environmental dimension is the most significant and 

fundamental aspect among the three dimensions, as discussed in Chapter 2.  

 

From the literature review, the common impacts of large-scale events (and expositions 

fall into this category) currently being studied include the impact of physical 

infrastructure, environment, economy, tourism and image, society, culture, policy, and 

urban renewal (Higher Education Academy, 2007). However, it needs to be noted that 

the boundary of this study is formed with the specific aim of analysing the most 

significant aspects of impacts in order to simplify the quantitative and evaluation 

process. It is impossible to estimate all the impacts from the events, as impacts will be 

quite possibly generated by some factors which cannot be quantified directly.  

 

Generally, there are three main components which form the exhibition activities in 

expositions; these are physical infrastructure, visitors, and exhibitors (Figure 5.1). 

According to the characteristics of the three components, the impact on the 

environment from physical infrastructure comes particularly from energy and resource 

consumption, and the carbon footprint of the construction of exhibition buildings in 

their initial and recurring phases; the impact from visitors is mainly from resource 

usage of the exhibition including the buildings and the carbon emissions of people 

using these (operating energy for indoor heating, cooling, ventilating, and water usage), 

travel-related transportation, and waste; the environmental impact from exhibitors is 
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generated from exhibition-related waste and increased production manufacture 

stemming from attending the exhibition activities.  

 

 

Figure 5.1 Diagram of the three main components of expositions 
 

 

Figure 5.2 Diagram of system boundaries for the study in this thesis 
 

Based on these components, the impacts estimated in this study are those which are 

generated from exhibition buildings, visitor related transportation, and more 

importantly the effect of the exhibition-related economic activity. The explicit system 

boundaries are illustrated in Figure 5.2. The boundary is defined more broadly than in 

conventional research of environmental assessment in terms of building construction, 

transportation, or events. For buildings, the boundary limits research to estimates of 

the energy and resource consumption in the construction, maintenance, operation, 
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and demolition phases; for transportation, it means measure of the energy, carbon 

and ecological footprint generated from different modes of transportation used for 

visitor travel; the analysis of exhibition-related economic aspects is limited to the 

resource consumption of direct and indirect economic benefits from exhibition-related 

industries. Because of time limitations, the analysis of carbon footprint is just focused 

on visitor-related transportation to investigate and compare the effects of different 

transport modes using different types of fuel.   

 

It is noted that the assessment of water consumption and the environmental impact 

from human waste or other exhibition-related wastes are not included in this research, 

as these will be likely to have a fairly small effect in the whole environmental impact of 

exposition activities, compared to the other aspects. Collins et al (2007) found that the 

total ecological footprint of waste (including the waste collected from the event venue, 

food and drink businesses, licensed mobile food operators, coach and car parks) 

generated from the FA Cup Final 2003/04 was 146 global hectares or 0.02gha/visitor. 

It accounted for approximately 4.8% of the total footprint for the whole event. From 

their study, the majority of waste came from food waste and food and drink packaging. 

Because of the difficulty of data collection as identified by Collins et al (2007) and the 

small environmental effect of water consumption at a major event, visitor water usage 

is excluded from the quantitative study in this thesis, but would be a topic for further 

investigation. 

 

The system boundary of Life Cycle Analysis (its assessment method is introduced in 

detail in Section 5.2.1) has two possible scopes. One is “cradle to grave analysis”, 

which analyses the life cycle of a material or product from construction to disposal, 

including material extraction and processing, manufacture, transportation, product 

use, maintenance, disposal (Moore and Brunner, 1996; Mithraratne et al, 2007, p. 23). 

The other one is “cradle to cradle analysis”. This evaluates the whole life cycle impact 

of a material from construction to recycling process (as the source of a new product) 

(Mithraratne et al, 2007, p. 25). “Cradle to cradle analysis” is adopted in this research, 

as it covers most impacts. In particular it includes the process for the recycling of 

construction components, which is a necessary part of the investigation of the 

environmental impact of temporary exhibition buildings (McDonough and Braungart, 

2003). 
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5.1.2 Research phases  
 

The quantitative study for this thesis is divided into three phases (Table 5.1).  

 

Phase 1 is to set up a target for each impact category for environmental weighting 

and data collection. For the chosen case studies, some of the relevant parameters, 

such as the size or weight of building components and distances of visitor travel using 

different transport modes, are measured from drawings or maps; the other data are 

sourced from literature although some reasonable assumptions have to be made. 

Assumptions, and the reasons for using them, are always fully explained. 

 

Phase 2 is data classification, characterisation, and calculation. According to the 

inventory categories in terms of environmental implications, bills of quantity for 

building construction, transport modes, and exhibition-related industries are 

established and evaluated. The categories, data needed, and methods of calculation 

are shown in Table 5.1. 

 

Phase 3 is data analysis and comparison. The results from the calculations of the four 

case studies will be analysed and compared. For example, the percentage of 

embodied energy of different materials will be analysed to evaluate the environmental 

impact of choosing different building materials for exhibition buildings. The average 

embodied energy per square metre of an exhibition building will be compared with 

other commercial buildings and other historic exhibition buildings. Further 

comparisons will be made between CO2 emissions generated by visitor travel. Most 

importantly the calculation results will be compared to see which of the categories 

investigated has the largest environmental impact. 
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Three 
factors 

Assessment 
items 

Data needed Method of calculation 

Buildings 

Initial 
embodied 
energy/m2 

Volume or weight of 
construction materials 

Volume of different materials 
(m3) × Embodied energy 
coefficient (GJ/m3) Embodied energy coefficients 

Recurring 
embodied 
energy/m2 

Initial embodied energy Initial embodied energy (GJ) of 
different materials × number of 
replacements 

Durability of construction 
materials 

Operating 
energy/m2 

Total construction area Construction area (m2)  × 
Energy consumption/m2 
(kWh/m2) 

Energy consumption/m2 

Life-cycle 
energy/m2 

- 
Embodied energy (GJ) + 
Operating energy (GJ) 

Ecological 
Footprint 

Land energy conversion factor 
Land equivalent environmental 
impact 

Visitor 
travel 

Embodied 
energy of 
infrastructure 

Volume or weight of materials Volume of different materials 
(m3) × Embodied energy 
coefficient (GJ/m3) Embodied energy coefficients 

CO2 
emissions for 
travel/ visitor 

Number of visitors Number of visitors × Distance 
of travel (km) × CO2 emissions 
factor of various transport 
modes (t CO2/ km) 

Distance of travel 
CO2 emissions factor of 
various transport modes 

Ecological 
Footprint 

Land energy conversion factor 
Land equivalent environmental 
impact 

Economy 

Ecological 
Footprint of 
exhibits / 
visitor 

Ecological Footprint factors Types of exhibitors × 
Ecological Footprint factors Lists of exhibits, etc. 

Effects on 
local 
economy 

Local GDP growth, Housing 
growth, Infrastructure creation 

Converting monetary costs to 
Ecological Footprint 

Effects on 
international 
economy 

GDP 
Forecasts + projections 

Converting GDP growth to 
Ecological footprint 

Table 5.1 Data collection and calculation 
 

5.2 Mixed methods approach 
 

A large number of methods and tools for the environmental assessment of the built 

environment have been exploited (Forsberg and Malmborg, 2004), such as energy use 

labelling or construction materials selection. Reijnders and van Roekel (1999) classify 

the current assessment tools into two groups: one group is qualitative tools based on 

scores and criteria, for example, LEED, BREEAM, and GBTool; the other is 

quantitative tools based on a physical life cycle consideration within material and 

energy accounting techniques (life cycle inventories or production data based on 

material or energy flows), such as Life Cycle Analysis, Ecological Footprint Analysis, 

and Material Flux Analysis. 
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Qualitative tools, such as LEED, are currently the most widespread tools used for 

environmental assessment (Lutzkendorf and Lorenz, 2006; Cole, 2010, p. 274). The 

main reason for this is because their assessment results can be easily obtained and 

applied for marketing purposes (Lutzkendorf and Lorenz, 2006). However, results 

assessed by these tools do not necessarily reflect the real resource flows and the 

actual environmental outputs (Lutzkendorf and Lorenz, 2006). For this reason, 

quantitative assessment tools have been increasingly given attention, although they 

have not been extensively applied to various objects (Forsberg and Malmborg, 2004). 

These tools quantify and evaluate energy or material flows of a production or 

development process in terms of environmental impact (Moore and Brunner, 1996). 

Kohler (2007, p. 348) explained that values of material and energy flows in terms of 

environmental impacts that can be represented in physical units by the quantitative 

approach, for example, GJ is the unit for energy consumption.  

 

The quantitative method, therefore, is selected to evaluate the environmental impact 

of expositions in this thesis. This is because qualitatively based rating tools hide the 

real mass flows which have the greatest effect on the environment and “the specific 

environmental impact of one human being can enormously vary according to the 

society in which he lives” (Kohler, 1999). Kohler (1999) stressed that environmental 

assessment should be based on energy or material flows, so that the results assessed 

for buildings in different contexts can be compared during their life cycle.  

 

Furthermore, empirical analysis is adopted by applying a mixed quantitative methods 

approach, including Life Cycle Analysis and Ecological Footprint Analysis, to four case 

studies in the thesis. The reason for adopting a mixed methods approach is given in 

Section 5.2.3. The detailed explanation of these two methods appears in the sections 

below. 
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5.2.1 Life Cycle Analysis  
 

Life Cycle Analysis (LCA) (ISO 14040, 1997) is the quantitative assessment of 

materials, energy flows and waste discharges for every step of the life of a product, 

service or technology (Krozer and Vis, 1998, p.53; Chevalier and Le Teno, 1996, p. 

488; Mithraratne et al, 2007, p. 23; Jurasovich, 2003, p.279). LCA as one of the most 

developed material accounting techniques has been generally adopted for research 

and practice purposes (Moore and Brunner, 1996). Normally, it can be used to 

quantify and evaluate all material, energy and related impacts (including ecological, 

human health, resource depletion, and social and aesthetic issues) of a large range of 

products and activities (Moore and Brunner, 1996; Blair et al, 2003; Mithraratne et al, 

2007, p. 23).  

 

Hobbs (1996) and Jaques (1998) state the four main objectives of the Life Cycle 

Analysis method as listed below: 

 

• Compare alternative processes; 

• Assess environmental impact; 

• Improve resource efficiency and identify methods of reducing the impact; 

• Be a source of information on resource use and emissions into the 

environment. 

 

Life Cycle Analysis can identify the most significant aspects in the environmental 

impacts over the life cycle. In this research, LCA is applied to quantify and estimate 

the energy flows of exhibition buildings in case study events over their whole life cycle 

and compare the energy consumption of buildings in different phases of their lives. By 

these evaluations and comparisons, the most significant aspects of the impact 

generated from buildings can be identified and this can help policy-makers to reduce 

the related impacts. 

 

The methodology of Life Cycle Analysis is composed of four steps, which are 

definition of goal and scope, inventory, impact assessment, and interpretation 

(Jönsson et al, 1996). “Definition of goal and scope” is used to determine the 

objectives of the analysis and the system boundaries. For this research, the need is to 
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establish the simplified models of case study buildings by defining the system 

boundary, which is given in Section 5.1.2. In the “Inventory” step, the relevant data 

needs to be gathered, such as resource and energy use, so that the inputs and 

outputs of the research objects can be quantified and estimated over their life cycle. 

Relevant generic published data on materials and energy are used in this thesis. Even 

though generic data could change over time, using these data does not influence a 

comparative study (Mithraratne et al, 2007, p. 26). “Impact assessment” is the most 

complicated step, which consists of four stages, including classification, 

characterisation, weighting, and valuation. This step is to quantify the effects of the 

environmental burdens in terms of physical units, according to the built inventory. The 

last step of “Interpretation” tends to explain and evaluate assessment results for 

reducing the environmental impact. The diagram of the phases of Life Cycle Analysis 

is shown in Figure 5.3. 

 

 

Figure 5.3 Phases of Life Cycle Analysis 
 

The strength of Life Cycle Analysis is that it gives a comprehensive overview regarding 

the complex interactions between different processes within ecosystems and over 

extended timescales over the whole life cycle (Moore and Brunner, 1996; Blair et al, 

2003).  

 

In this thesis, Life Cycle Analysis is used to evaluate the energy consumption of 

exhibition buildings over their whole life cycle, which includes embodied energy, 

operating energy, and building demolition-related energy. Embodied energy is defined 
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as “the total energy used to create a product including all the processes involved in 

harvesting, production, transportation and construction” (Mithraratne and Vale, 2007).  

In detail, the embodied energy of the building includes the energy consumed by the 

initial and recurring building processes. The operating energy is defined as the energy 

usage for the case study building in its operation phase, such as the electricity 

consumption for lighting, cooling and ventilation. The energy consumption from 

building demolition is assumed to be negligible in this study. The reason is because 

the demolition-related energy resulting from general public buildings is too small to be 

of significance (Camilleri et al. 2001.p.41). Thus, demolition-related energy and 

resource consumption is calculated as zero in this comparative study. 

 

However, the results from LCA always involve data, model accuracy and 

completeness issues (Mithraratne et al, 2007, p. 28). These arise because of the often 

huge data collection requirements, possibly arbitrary methods for setting research 

scope, and because the ways of evaluating environmental impacts are frequently 

uncertain (Guinee et al, 1993). Although the results of LCA are not absolutely accurate 

because of the assumptions made, it is noted that this method, which performs as an 

assessment tool for quantifying the environmental impacts through the whole life cycle 

of objects based on comparative analysis, effectively helps in reducing the 

environmental burden and, by providing a tangible guideline, leads to more 

sustainable practices. 

 

5.2.2 Ecological Footprint Analysis 
 

Ecological Footprint Analysis is “an accounting tool that enables us to estimate the 

resource consumption and waste assimilation requirements of a defined human 

population or economy in terms of a corresponding productive land area” 

(Wackernagel and Rees, 1996, p.9). The method of Ecological Footprint Analysis 

originally proposed in the 1990s can be seen as a useful tool to assess the 

environmental impact of human behaviour and commercial events.  

 

The ecological footprint is an aggregated indicator, which is similar to the method of 

using GDP to present the financial dimensions of the economy (Collins et al, 2007). In 

addition, the ecological footprint as an area-based (land or water) indicator is used to 
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quantify the intensity of resource use and waste discharge activity related to 

ecological carrying capacity. In this thesis, the theory of Ecological Footprint Analysis 

is adopted to calculate the land area required for constructing and operating buildings, 

transportation, and exhibition-related economic aspects. The material accounting 

technique is applied to the calculations for different parts of the environmental impact 

of expositions. The energy value is converted to ecological footprint by using the 

factor of 100 GJ/gha (Vale and Vale, 2009). 

 

The bottom-up approach to data collection for ecological footprint calculation, which 

is also called the “Component Model method” (Simmons and Chamber, 1998; 

Simmons et al, 2000), is selected for use in this thesis. The first reason for this is that 

this approach has been commonly accepted by researchers (Barrett, 2001; Chi and 

Brain, 2005). The second reason is because “the bottom-up” approach demonstrates 

considerable flexibility in its application (Moore et al, 2007) and is relatively easily used 

for environmental assessment of expositions. 

 

The strength of Ecological Footprint Analysis is that it is conceptually related to the 

embodied energy analysis and corresponds closely to the definition of human impact 

on the environment (Blair et al, 2003, quoted in Rees, 2000). For this thesis, Ecological 

Footprint Analysis as a common assessment tool can simply and intuitively identify the 

impact of exhibition activities by means of quantifying land consumption. Ecological 

Footprint can also be seen as an excellent communication tool, because it is easily 

understood by different groups (Deutsch et al, 2000; Costanza, 2000; Blair et al, 2003). 

In addition, Ecological Footprint Analysis is useful in that it considers the principle of 

economics simultaneously with the carrying capacity (Rees, 2000). Although this land 

consumption method has received some criticisms, such as inaccurately 

demonstrating the impacts of human consumption (Ferng, 2002; Collins et al, 2007), it 

has become a common tool to help users understand the environmental impacts of 

human behaviour.  
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5.2.3 Mixed methods approach 
 

In order to account for resource use and the resulting environmental impacts 

generated from exhibition buildings (over the construction, use, and demolition 

phases), different transport modes for visitor travel, and the exhibition-related 

economic aspect, the assessment method is required to cover all these aspects over 

the whole life cycle and needs to be able to quantify various resource and energy uses 

at different times.  

 

Due to this consideration, a mixed methods approach is applied in this research. The 

mixed assessment methods approach includes the Life Cycle Analysis and the 

Ecological Footprint Analysis for evaluating energy consumption, carbon footprint and 

ecological footprint of buildings, visitor travel, and exhibition-related economic aspect. 

Use of the mixed methods approach is because single indicators lack a means of 

integration (discussed in Chapter 2). These two methods are chosen because the 

limitations inherent in each could be compensated by the other. For example, the 

Ecological Footprint indicator suffers from lack of a research scope for determining 

flows of specific products or processes (Ayres, 2001). This problem can be 

supplemented by Life Cycle Analysis. Secondly, the macro-economic effect generated 

from expositions cannot be directly measured by Life Cycle Analysis, but it can be 

done by using the Ecological Footprint indicator. These two methods also have 

compatibility in that they are both based on the concept of strong sustainability. The 

detailed benefits of using these two methods are described below. 

 

The LCA method is the broadest indicator, as it provides a comprehensive 

assessment over the whole life cycle of a product. The flows of energy and materials 

in Life Cycle Analysis are accounted for at each stage in the whole life cycle (IEA, 

2001). The IEA (2001) identified that “LCA as a rigorous accounting tool reconciles 

physical interactions between buildings and other elements of the environmental 

framework”. Life Cycle Analysis therefore helps to determine the importance of life 

cycle stages for buildings, transportation, and exhibition-related industries and may 

avoid unnecessary data collection activities.  
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Ecological Footprint Analysis does not require extensive data (Blair et al, 2003) and it 

is good at establishing a first approximation of the resource consumption of a product. 

The exhibition-related economic aspect can be measured as an approximate value by 

using generic data in a comparative analysis.  

 

 

Figure 5.4 Diagram of the method used in this thesis 
 

However, there are limitations with applying these two methods. The material 

evaluation accounting methods require huge data for their support (Blair et al, 2003). 

As a result, many assumptions or large scale surveys may be involved in the 

estimation. The need for a lot of data and hence assumptions is also the typical 

weakness in Life Cycle Analysis, which means “the result may be heavily dependent 

on particular assumptions used” (Mithraratne et al, 2007, p. 28). The evaluated results 

can be discussed however by using sensitivity analysis.  

 

5.3 Selection of case studies 
 

As the greatest number of exhibition activities are held in Germany, China, and 

European countries, four case study events and related exhibition buildings are 

selected from London (the UK), Hannover (Germany), and Shanghai (China). Appendix 

E lists some example exhibition buildings located in different countries from 1851 to 

2010. It shows the similarity of design concept, structure, and materials of exhibition 

building construction relative to the four selected case study buildings from 1851 to 

2010. It is impossible to put all examples studied to ensure the case studies are 

representative in this appendix. 
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The selected case studies are the Great Exhibition of 1851 (Crystal Palace, 

1851~1936), Shanghai National Exhibitions (Shanghai Exhibition Centre, 1955~2011), 

Expo 2000 (Dutch Pavilion, 2000), and Expo 2010 (Theme Pavilion, 2010~2011). The 

results from assessment will be analysed by comparative study and the reasons for 

selection of these case studies are explained below. 

 

These case studies, events and related buildings, are typical and representative (as 

described in sections 5.3.1~5.3.4). They are delimited by using the criteria of large-

scale exhibitions and the research boundary. In this section, the main similarities and 

differences of the chosen four case studies are summarised, in order to generalise the 

findings for designing sustainable expositions. The different aspects are used as 

points of comparison and to form the conclusions. 

 

First of all, these four events can be classified as large-scale exhibitions, because they 

have reached the two main factors of the criteria (Figure 5.5). One is the number of 

visitors attending was more than 5,000,000, and secondly, the floor areas of the main 

exhibition buildings were larger than 5,000 m2 (CAST, 2007). 

 

 

Figure 5.5 Diagram of main similarities of four case studies 
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Furthermore, the four case studies are selected in terms of buildings, visitor travel, 

and exhibition-related economic aspects, which are the main factors for environmental 

assessment focused on in this research.  

 

The four case study buildings were designed with a similar layout (large column-free 

spaces linked by service spaces). Although the detailed design of the layouts of these 

buildings were different, this will not obstruct comparative analysis, as the calculated 

results will be compared by the units of average energy and resource consumption. 

The four buildings were constructed at different times and with different structures 

(Table 5.2). This choice is to allow exploration of the development of energy efficient 

building construction and operation and the difference between a heavy weight 

building and a light weight one. The useful life of the four buildings is estimated both 

over their actual life and over an assumed useful life of 50 years. Two modern 

exhibition buildings were designed with the application of similar sustainable 

technologies (using renewable energy), and their results can be compared to the other 

two case study buildings without sustainable considerations. 

 

Case study 
buildings 

Construction 
(year) 

Useful life Structure 
Actual Assumed 

Crystal Palace 1851 82.5 years 50 years Metal  
Shanghai 
Exhibition Centre 

1955 56 years 50 years Concrete 

Dutch Pavilion 2000 5 months 50 years Hybrid (metal and concrete) 
Theme Pavilion 2010 13 months 50 years Metal 

Table 5.2 Case study buildings 
 

In terms of energy consumption as part of the building performance of the four 

selected cases, the heating and cooling degree days (at 18 degrees Celsius for 

heating degree days and 24 degrees Celsius for cooling degree days) for the three 

cities of London, Shanghai, and Hannover, in 2010, are shown in Table 5.3. This 

shows that the results of the energy analysis of these four exhibition buildings can be 

considered as comparable, because they were constructed and operated under 

roughly similar climatic conditions, assuming they were heated and cooled to achieve 

similar internal conditions. 
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2010 London Shanghai Hannover 
Heating degree days 2,710 1,807 3,340 
Cooling degree days        8    407     16 
Degree days 2,718 2,214 3,356 

Table 5.3 Heating and cooling degree days for three cities (BizEE, 2010) 
 

For visitor travel, three international events will be investigated. This is to compare the 

average energy and resource consumption of visitors from the local area to that of 

visitors from overseas. In addition, different levels of operating energy consumption 

generated from different transport modes, which is related to passenger travel 

opportunities in different cities and countries, will be the focus.  

 

For exhibition-related economic aspects, four case studies are investigated that have 

generated great economic benefits for the host cities. The average resource 

consumption per visitor of each case study will be compared. 

 

Thus, these case studies will be analysed in terms of energy flows and resource 

consumption for buildings, visitor travel, and exhibition-related economic effect. The 

following sections give a brief description of each selected case study and the 

reasons behind each selection. One important reason for all selections is the 

availability of appropriate data. 

 

5.3.1 Historic case study: the Great Exhibition, 1851~1936 
 

The Great Exhibition of 1851 is selected, as it was the first world exposition and had a 

great influence at the international level. From the end of the 18th Century, a series of 

Industrial Exhibitions at national level had become popular in France (Wesemael, 2001, 

p.63). The increasing economic and political profits generated from these exhibitions 

soon became the focus of attention for many other European countries. The UK 

government was aware of the phenomenon and was keen to take advantage of it. The 

government sponsored and organised the Great Exhibition in London in1851, drawing 

products from all over the world.  

 

The Crystal Palace was the first large glass and iron pre-fabricated building of 

‘modular’ form to be moved to a different site (Bird, 1976). The building process of the 
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Crystal Palace included conception, fabrication, shipment, assembly, dismantling, and 

reuse (McKean, 1994, p.22). The detailed environmental design of the Crystal Palace 

was considered by Joseph Paxton and the industrial designer Henry Cole (Bonython 

and Burton, 2003). For the 1851 building they considered lighting, solar control, 

ventilation, and cooling. Heating was only incorporated when the Crystal Palace was 

dismantled and moved to Sydenham following the closing of the Great Exhibition, 

which ran in summer only, in Hyde Park (Schoenefeldt, 2008b). This building 

effectively represented the earliest attempt to design an interior environment for a 

major exhibition building.  

 

For this case study, energy and resource consumption of the historic building, 

transportation modes, and exhibition-related economic effect will be quantified by 

their footprints during the whole of their life cycle. This is to see how they performed in 

terms of sustainable design and to estimate whether, in comparison with this 

nineteenth century example, modern technologies really achieve ecological 

improvement. 

 

5.3.2 Conventional case study: Exhibition activities at the Shanghai 
Exhibition Centre between 1955~2011 
 

The second case study, the Shanghai Exhibition Centre, is chosen as being typical of 

buildings for conventional exhibitions. The main reason for choosing this exhibition 

building is that it represents well the characteristics of an exhibition building which has 

been used continually for holding a series of popular national exhibitions.  

 

The Shanghai Exhibition Centre was built in 1955 to Russian design and renovated in 

2001. Although it was built half a century ago, its structure and materials can serve as 

a typical example representing this type of public building in a humid subtropical 

climate in Eastern Asia. On average, this building hosts 7,500,000 visitors annually 

(see section 7.1), which is more than for most other exhibition buildings in western 

countries. It can be assumed therefore that this case study building might consume 

more energy for visitor travel at the city scale than other examples with fewer visitors 

and this can help in investigating the environmental impact generated by human 

behaviour. The large-scale national exhibition activities have also potentially increased 
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total GDP in 2008 (detailed calculation in Chapter 7). The quantitative research will be 

given in terms of the building, visitor travel, and economic effect. 

 

5.3.3 Modern sustainable case study 1: Dutch participation at Expo 2000 
 

World Expo 2000 in Germany is selected as the first modern event case study in this 

thesis. Due to the lack of data for estimating energy and resource consumption of all 

the paticipating countries and visitors, The Netherlands, as a typical participating 

country, is selected for study in detail.  

 

The first reason for the selection is because the Dutch Pavilion, as one of the most 

popular pavilions in Expo 2000, was a showcase for its sustainable design and 

construction. It was designed as the exhibition hall of The Netherlands for World Expo 

2000 in Germany. The design concept followed the EXPO 2000 theme of Humanity – 

Nature – Technique. In addition, initial research undertaken for the thesis shows that 

the exhibition-related economic effect for The Netherlands from the Dutch Pavilion in 

Expo 2000 in Germany is extremely positive. It has been estimated there was € 350 

million in revenue for the Dutch economy generated from the Dutch Pavilion at Expo 

2000 (Walvis, 2009). Since the total revenue of The Netherlands in 2000 was €  173 

billion, the Expo revenue accounted for approximately 0.2% of total national revenue 

in 2000. This shows that The Netherlands gained significant economic profit from this 

exhibition. All this additional economic activity leads to national growth, which in turn 

impacts on the environment because of the resources consumed. 

 

This case study is mainly concerned with the energy intensity and ecological footprint 

of a sustainable exhibition building (the Dutch Pavilion), visitor travel, and exhibition-

related economic effect.  

 

5.3.4 Modern sustainable case study 2: The Theme Pavilion and Expo 2010 
in Shanghai 
 

For study of a modern sustainable event and exhibition building, World Exposition 

2010 and the Theme Pavilion, as the biggest and main exhibition hall in this exposition, 

are selected and quantified in this thesis in Chapter 9. This world exposition closed in 
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Shanghai, China, on October 31, 2010. It generated a very large number of visitors 

who travelled from local and international origins to the site of the exposition and who 

also potentially increased the income of exhibition-related industries.  

 

The theme pavilion was built as a permenent exhibition building in the central area of 

the exposition, using many high-tech sustainable technologies, such as solar panels. 

The western hall (Hall 1) of the Theme Pavilion is built as a column-free space of 

22,680 m2, which has been described as the biggest column-free hall in the Asian area 

built so far (BCSWE, 2011). For this case study, energy consumption and ecological 

footprint of the sustainable building, transportation, and exhibition-related economic 

aspect will be quantified and analysed, as shown in Chapter 9. 

 

5.4 Chapter conclusion 
 

This chapter describes the two assessment methods of Life Cycle Analysis and 

Ecological Footprint and the need in this study for mixing these methods in order to 

overcome the limitations of both. The system boundary and research phases for 

quantitative assessment and subsequent evaluation are described and together form 

the research scope. In addition, the chapter introduces the four selected exhibition 

events, the Great Exhibition of 1851, Shanghai National Exhibitions, Expo 2000, and 

Expo 2010 and explains the reasons for selection. 
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Chapter 6 Historic case study: the Great Exhibition; the 
Crystal Palace, 1851~1936 

 

6.1 Introduction 

 
The energy and resource consumption of the Great Exhibition of 1851, held in the 

Crystal Place, London, UK, are quantified as a historic case study in this chapter. 

Quantification includes the energy and resource consumption of the Crystal Palace, 

visitor travel to the Great Exhibition, and exhibition-related economic aspects (the 

research boundary has been explained in section 5.1). The reason for selecting this 

particular world exposition for investigation was provided in section 5.3.  

 

For the international activity of the Great Exhibition, an amazing and innovative glass 

and iron exhibition building, the Crystal Palace (Figure 6.1), was constructed in Hyde 

Park in 1851 and re-erected in Sydenham in 1854. The total usable floor area after the 

move was 138,000 square metres on three storeys. Transportation for visitor travel 

included walking, riding horses, taking streamships, and taking steam trains, so it was 

very different from modern travelling. Railways and steam trains were the new 

technologies that had been introduced into London and that were vital for holding the 

Great Exhibition. The railways were also one of the main factors that led to stimulation 

of the local economy in the 1850s (explained in detail in section 6.2.3). 

 

  

Figure 6.1 Crystal Palace at Hyde Park and Sydenham  
(Lienhard, 1997; Burck, 2010) 
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The method of quantitative work, results, and related analysis of this historic case 

study are described and demonstrated in the following sections.  

 

6.2 Method 

 
This section explains the detailed methods for quantifying the whole life cycle energy 

and resource consumption of the historic case study, consisting of the Crystal Palace 

itself (6.2.1), visitor travel (6.2.2), and exhibition-related economic aspects (6.2.3). 

 

6.2.1 Building 

 
Energy consumption of the Crystal Palace comprises the embodied energy (6.2.1.1), 

operating energy (6.2.1.2), and building demolition-related energy (6.2.1.3). The 

definition of these types of energy usage has been outlined in Chapter 5. 

 

6.2.1.1 Embodied energy 

 
The Hyde Park Crystal Palace was finished in 1851, and had a total usable floor area 

of 92,000 m2 on three storeys. After the Great Exhibition, it had to be moved from 

Hyde Park and was rebuilt in a modified form in Sydenham in 1852. Musgrave (1995, 

p.11) states that in the move “the simple three-storied building grew into a complex 

five-storied one with a total floor area of nearly half as much again as the original”, 

which means the total floor area of the Sydenham Crystal Palace was increased to 

138,000 m2 by 1854. The original building components were reused in the construction 

of the Sydenham Crystal Palace (Phillips et al, 1860).  

 

Furthermore, all the elements of this original building were produced using the four 

basic materials of glass, iron, wood and concrete (detailed information for the Hyde 

Park and the Sydenham Crystal Palace is shown in Table 6.1).  
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1. Glass 

 

Glass was used for the skin of the building. Information from 1851 and the Crystal 

Palace and The glass house show that Charles Fox and his subcontractors required 

900,000 ft2 (83,612 m2) of glass for the original building (Hobhouse, 1950, p39; Hix, 

1974, p135). The total weight of glass in the Hyde Park Crystal Palace was 408 t1.  

 

2. Iron 

 

Iron was used for columns, girders, underground pipes, roof trusses, metal louvres 

and the connection collars on each column. Hobhouse (1950, p 39) states that “There 

were 3,300 iron columns and 2,224 girders in all”. It has been assumed for this 

research that all the iron elements were reused in the Sydenham Crystal Palace. 

 

Each column was inserted into a “vase” as it was erected, which connected it with a 

pipe in the base. There were 1,060 columns in each tier, at intervals of 24 ft (7.5 m) 

each way (Hobhouse, 1950, p44). For this analysis, each column has been assumed to 

be 0.3m in diameter, with a wall thickness of 0.05 m, and to be 4.4 ~ 6 m in height. 

The total weight of the 3300 iron columns was 2,669 t. The micro-constituents present, 

the composition, and temperature determine the density values for the various types 

of cast iron. For example, the densities of gray iron castings are from 7.0 g/cm3 (high-

carbon irons) to 7.3 g/cm3 (low-carbon irons). Ductile iron’s density changes from 7.1 

g/cm3 to 7.4 g/cm3 according to its carbon content. Thus, it can be assumed that the 

average density of cast iron is 7.2g/cm3 (=7,200 kg/m3) (Davis, 1996). The 

underground pipes, with a total length of thirty-four miles (55 km), were to carry the 

rain-water away from the columns (Hobhouse, 1950, p43-44). The pipes were 6 inch 

(0.15 m) diameter (McKean, 1994, p23) with an assumed wall thickness of 0.01 m. 

Their total weight of 906 t can be calculated on the same basis as the assumptions for 

the density of cast iron. All the girders were prefabricated before delivery and 

installation. Girders were a standardized length because all the columns had the same 

outer diameter (Hix, 1974, p136). Hix (1974, p139) also states that the largest 24 ft 

girder weighed under a tonne. The depth of the majority of the spanning girders was a 

consistent 3 ft (0.9 m). However, the depth was increased to 6 ft (1.8 m) where they 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Metric tonnes have been used throughout the thesis. 
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crossed the nave (Hix, 1974, p137). The weights of the two types of girders are 

assumed here to be 500 kg and 1,000 kg (based on the assumptions of volume and 

density of iron). Furthermore, Hix (1974, p139) states that “A 3 ft (0.9 m) band of 

louvred ventilation ran around each tier at the top of the wall.” There are 5 separate 

louvres in one band (0.9 m height in all). Thus, it is assumed that the size of each 

louvre, which was made from galvanized sheet iron, is 0.2 m high, 2.4 m long and 

0.001 m thick. The total circumference over three levels is calculated as 4,104 m. 

Therefore, the total weight of these metal louvres running round the building at each of 

three levels is 30t. Moreover, there was also a band of louvred ventilation at ground 

level on the ground floor. The whole system on the ground floor level was operated by 

a series of wheels, rods and gears, enabling an operator to open or close a 108 ft (33 

m) length of metal louvres on each side of the mechanism (Hix, 1974, p139). Each item 

is assumed to be 0.2 m high and 0.001m wide giving a weight for the ground floor 

louvres of 10 t. The total weight of all the louvres is 40 t.  

 

Another metal element was the tension reinforcement of the composite roof trusses. 

Generally there were 3 such trusses installed in each bay. The assumed sizes for each 

principal truss tension member are 30mm diameter and 7.5m long. Based on this, the 

roof trusses contain 565 t of iron. The other main metal elements were the cast iron 

connection collars. A 3 ft (0.9 m) connection collar with its cast-iron connecting-lip 

was bolted on top of columns at each floor level and at roof level (Hix, 1974, p136). 

The number of connection collars is, therefore, 3,300 (the same as the number of 

columns) and the diameter and thickness of the collars are assumed to be the same 

as for the columns. Thus, the total weight of the connection collars is 469 t. 

 

3. Wood 

 

Wood was mainly utilised for interior walls, beams, floor, “Paxton gutter” and sash-

bars. Some of the timbers used in the beams and floors came from the site fencing 

during the construction phase (Hobhouse, 1950, p43). Hix (1974, p135) states that the 

building had 372 roof trusses, 24 miles (38.6 km) of Paxton gutter, 205 miles (330 km) 

of sash bar and 600,000 ft3 (16,990 m3) of timber in total. The total weight of timber 

used in the building is assumed as 8,495 t, which is calculated by multiplying the total 

volume by the average density of pine which is 500 kg/m3 (Simetric, 2009).  
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In detail, the timber used for the main elements, such as floors, interior walls, beams, 

roof trusses, Paxton gutters, sash-bars and barrel vault segments can be calculated in 

a different way. Each structural bay on the exterior walls uses 2 timber columns with 

light cast iron bases and 33 wooden floorboards for the floor. Each bay, therefore, 

consumed 2.86 m3 of timber which is equal to 1,430 kg. There are 1,256 bays in the 

ground level, 626 in the first floor level and 146 bays in the second level. The total 

weight of wood used, based on the bays, is, therefore, 2,900 t. Furthermore, each 

Paxton gutter is 5 inches (0.13 m) wide and 6 inches (0.15 m) high. Therefore, 24 miles 

(38.6 m) represents 449 t of timber. To calculate the volume of the sash bars, their 

assumed cross section is 0.01m2. This means the 205 miles (330 km) of sash bars 

amount to 1,650 t. The barrel vault segments made from laminated timber that sat 

over the nave are assumed to have had a height of 0.3 m and a thickness of 0.45m. 

These timber arches crossed a 72 ft column-free space giving them a diameter at the 

base of 22 m. Each arch is 900 mm deep and 450 mm thick. The total length of each 

arch is 35 m, (based on half a circle of 22 m diameter) so the volume of one arch is 35 

x 0.9 x .0.45 = 14.2 m3. If the density of timber is 500 kg/m3, the weight of one arch 

will be 7.1 tonnes. If there are 18 arches, total weight will be 128 tonnes. These known 

components add up to a combined weight of 5127 t, which is less than the first 

estimation. However, the rest of the timbers were used for making internal walls, roof 

trusses and enclosure, for which the size and weight of each element are unknown. In 

this study, the total weight (8,495 t) is, therefore, applied to the calculation of timber 

components, which accounts for timber lost during the machining of the components, 

and avoids an underestimate. 

 

Furthermore, the amount of wood used in the structure of the Sydenham Crystal 

Palace decreased (Hix, 1974, p142 -144). Most of the arches there were of lattice iron 

work, not of laminated wood, as at Hyde Park. Many of the wood infill panels had 

been replaced with glass on the lower floors. For simplification, here it is assumed all 

the original wooden elements were reused in the Sydenham Crystal Palace and the 

additional materials for the expanded building were of iron and glass.  
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4. Concrete 

 

Concrete was used for the foundations. The footing for each column has been taken 

as 3 ft (0.9 m) high, and 2 ft (0.6 m) square (Hix, 1974, p137). The volume of each 

footing was therefore 0.32 m3. There were 702 columns on the ground floor for the 

Crystal Palace in Hyde Park. The density of concrete is 2400 kg/m3 (Glenn, 1999). 

Thus, the total weight of concrete used was 539 t.  

 

For the Crystal Palace, its embodied energy (initial and recurring embodied energy) 

relates to the fuel used by the manufacturing industry of the time, such as the coal 

used in the process of manufacturing iron. The useful life of the Crystal Palace was 

from 1851-1852 and 1854-1936, making 82.5 years in total.  

 

To simplify the process of calculation, the total embodied energy of the Crystal Palace 

will not include the energy embodied in the interior and exterior decoration, except the 

painting of construction materials. Paint is a very high embodied energy material, and 

presumably the Crystal Palace structure had to be painted externally on a fairly regular 

basis (every five years) to keep corrosion away from the iron and to protect the wood. 

Therefore the embodied energy of the paint could be quite important over the life of 

the building. For example, the total volume of timber used in the Hyde Park Crystal 

Palace is 16,990 m3. It is assumed that the average volume of each element is 1 m3, 

and its surface area will be 6 m2, which means the total surface area for painting of 

timber elements is 101,940 m2. For the Sydenham Crystal Palace, the reused wooden 

elements from the Hyde Park Crystal Palace are assumed to be repainted 16 times 

(see Appendix A) in the 82 years of its useful life. The total lifetime equivalent area 

(inside and out) for painting of the timber elements of the Sydenham Crystal Palace is 

therefore 1,631,040 m2. The detailed surface areas for painting and repainting the 

reused and new iron elements in the two Crystal Palaces are shown in Table 6.23. 
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*This figure comes from two types of trusses 

Table 6.1 Generated quantities of materials in building from literature

Materials and 
Building elements 

Size 
(A=assumption) 

The Hyde Park Crystal Palace 
(1851) 

The Sydenham Crystal Palace (1854-1936) 
Total 
weight 
(t) Weight (t) Additional weight (t) 

G 
L 
A 
S 
S 

Main building  16 oz/piece 
 
408 
 

Partly 
reused 

21 oz/ piece (6.3 kg/ m2 
( Varghese, 2005, p.140)) 
New structure nearly 
doubled the glass area of 
the original 

527 935 

Colonnade  - 
From the end of the 
south wing to the 
Railway station 

- New 
30,000 superficial feet 
(Phillips et al, 1860). 

18 18 

I 
R 
O 
N 
 

Column 
Height: 4.4-6m, 
Diameter: 0.3m A 
Thickness: 0.05 m A  

(3,300 items) 

2,669 

Reused 

The total weight of iron 
used in the main building 
and wings amounts to 
9641 tonnes, 17 cwts., 1 
quarter ( Phillips et al, 
1860). 
 
The hot water systems 
combined with the special 
boilers for the plants had 
nearly fifty miles of pipe. 
This extra heating added 
greatly to the operational 
cost when compared to the 
unheated Hyde Park palace 
(Hix, 1974, p.142 -144).  
 
The boiler-houses erected 
in the basement story 
contain 22 boilers, each 
holding 11,000 gallons of 
water (Crystal Palace, 
2009). 

3,324 
 

9,641 
 

Girders 
Total height: 7.3 m 
Total length: 0.91 m 
Total width: 0.1 m 

 
(2,224 items) 

1,668 

Pipes 
(underground) 

Length: 54,718m 
Diameter: 0.15m 

A   
Thickness: 0.01m 

A    
 

906 

Connection 
collar 

Height: 1m  
Diameter: 0.3m 

A   
Thickness: 0.05m 

A 
 

      
(3,300 items) 

469 
 

Metal louvres 

Each louvre: 
Length: 2.4m 
Height: 0.2m 
Width: 0.001m 

A 

 

 
(15 items between two 

columns) 

40 

Tension 
reinforcement of 
composite roof 
trusses 

Length: 7.3m, 
Diameter: 30mm 

*  
(4,290 items) 

565 
 

Boilers - - - New 

Colonnade - - - New 

The quantity of iron 
employed in this covered 
passage is 60 tonnes 
(Phillips et al, 1860) 

60 60 

W 
O 
O 
D 
 

Floors, interior 
walls, beams, 
roof trusses, 
Paxton gutter, 
sash bars and 
barrel vault 
segments 

16,990 m3 

 

8,495 
 

Reused 

The amount of wood used 
in the structure had been 
decreased (Hix, 1974, 
p.142 -144).  Most of the 
arches were of lattice iron 
work, not of laminated 
wood, as at Hyde Park. 
Many of the wood infill 
panels had been replaced 
with glass on the lower 
floors. 

0  8,495 

C 
O 
N 
C 
R 
E 
T 
E 

Foundations 
(footing) 

Length, width: 0.6 m  
Height: 0.9 m 

 

539 
 

New 
15,391 cubic yards 
(Phillips et al, 1860) 

719 1,258 

B 
R 
I 
C 
K 

Foundations - - - New 

The amount of brick-work 
in the main building and 
wings is 15,391 cubic 
yards 
(= 11,767 m3) 
(Brick=1.3t/m3)  

15,297 15,297 
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The assessment of initial and recurring embodied energy for building materials is 

taken from the quantities of construction materials (the amount of volume or weight of 

materials discussed in the last section). Some relevant parameters, such as the size or 

weight of components, are sourced from literature. The total embodied energy is 

calculated by multiplying the embodied energy coefficients with the weight of 

materials respectively. The energy intensities used are UK data from Hammond and 

Jones’s research (Hammond et al., 2008). This was a meta study, and included all 

available data, so does not just represent the most modern coefficients. Although the 

embodied energy coefficients applied to the calculation of the case study building are 

from recent research in the UK, the factors have not changed very much, at least not 

recently, according to study and comparisons of the energy intensity from the UK and 

other countries in the last two decades (Table 6.2), despite the fact that the energy 

mix of the countries is different.  

 

 Australia (MJ/kg)  
(Lawson, 1996) 

New Zealand 
(MJ/kg) 
(Alcorn, 2003) 

UK(MJ/kg)  
(Hammond, 
2008) 

Germany 
(MJ/kg)  
(Anon, 1994) 

Kiln dried sawn 
softwood 

3.4 2.5 1.6 1.5 

Particleboard 8.0 8.0 9.5 5.7 
MDF 11.3 11.9 11 10.5 
Gypsum plaster 2.9 4.5 1.8 2.5 
Plasterboard 4.4 6.1 6.8 3.4~8.5 
Fibre cement 4.8 9.5 10.9 5.3 
Cement 5.6 7.8 4.6 4.4 
Precast steam-
cured concrete 

2.0 2.0 2.0 2.5 

Clay bricks 2.5 0.1 3.0  2.2 
Concrete blocks 1.5 0.9      0.6* 0.6~0.8 
Glass 12.7 15.9  15.0  15.0  
*8MPa concrete block 
Table 6.2 Embodied energy coefficients of selected materials in different 

countries 
 

For example New Zealand has a much higher percentage of renewable energy in total 

energy mix than the UK (see Table 7.2 in Chapter 7). The other reason for using 

modern embodied energy data is because many industrial goods were made by hand 

during the mid-nineteenth century meaning that energy consumption should be lower 

than now. However, much of the energy for most industries depended on coal at that 

time, which might result in higher values than those for modern manufacturing. These 
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factors are assumed to balance each other, meaning that the assumption of the 

energy coefficients for the case study building is reasonable as a starting point.   

 

6.2.1.2 Operating energy 
 

Operating energy for buildings normally includes the energy usage for lighting, 

heating, cooling, ventilation and air conditioning systems. However, the Hyde Park 

Crystal Palace achieved almost zero energy consumption in its operating phase. There 

was no artificial lighting, heating, cooling and ventilation in the building. The internal 

lighting entirely depended on the natural light through the wholly transparent external 

materials. The exhibition opened only during the hours of day light. Using glass was 

satisfactory for the main function of the building, and shows an alternative way to 

physically reduce energy usage through design and timetabling. Furthermore, the 

cooling and ventilation systems were elaborately designed to work on the natural 

buoyancy of air, and they were operated mechanically by hand. To reduce the 

anticipated high interior temperatures, Paxton designed a series of metal ventilation 

louvres, installed in every storey. Moreover, there were no heating appliances for the 

building, because the Great Exhibition was held during the warmer season from May 

to October. 

 

The Sydenham Crystal Palace was intended to be open all year round, so the 

designer, Paxton, added a heating system in the basement which was composed of 

pipes and coal-fired boilers. It was made up from 22 boilers and associated pipe 

work, each boiler holding 11,000 gallons (42m3) of water (Crystal Palace, 2009). This 

extra heating added greatly to the operational cost when compared to the unheated 

Hyde Park building (Hix, 1974, p142 ~ 144). To estimate the likely energy consumption 

the use of energy for heating commercial glasshouses was examined. Cock and 

Lierde (1997) report that the total primary energy usage (including electricity) of 

heating winter glasshouses was 22,990 PJ in Belgium in 1997, which equals 1.12 

GJ/m2/year. Another study shows that the average annual energy required to maintain 

20 degrees Celsius by day and 16 degrees Celsius by night for a glasshouse in 

London was 2.2 ~ 2.4 GJ GJ/m2/year from 1961 to 1980 (Wass and Barrie, 1984). In 

addition, Nederhoff and Houter (2007) reported that a glasshouse needs 1.077 

GJ/m2/year in the Auckland region of New Zealand, and 1.573 GJ/m2/year in 
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Christchurch for temperature control (20 degrees Celsius at day and 18 degrees 

Celsius at night). They also found adding additional energy for aspects such as 

humidity control, CO2 enrichment and a coal boiler, the total energy consumption 

would come to 1.3~1.4 GJ/m2/year for the greenhouse in Auckland, and 2.0 ~2.1 

GJ/m2/year for Christchurch. It is assumed that there was no energy used for humidity 

control, and CO2 enrichment at the Sydenham Crystal Palace. The selected unit 

energy usage is that of the Belgium study (1.12 GJ/m2/year) because of its wide scope 

and similar climate, and this is applied when calculating the operating energy of the 

case study building after its removal to Sydenham.  

 

6.2.1.3 Building demolition-related energy 
 

The assessment of energy usage for building demolition is commonly ignored, 

because it accounts for a very small percentage of the total energy consumption in a 

building’s whole life cycle (Camilleri and Jaques, 2001, p.41). For the case study 

building, the Hyde Park Crystal Palace was dismantled and reassembled by hand. The 

Sydenham Crystal Palace was lost in 1936. A fire destroyed all the elements. As a 

result the demolition phase has been ignored in this assessment. 

 

6.2.2 Visitor travel 
	
  
In this section, energy consumption and carbon emissions for visitor transportation to 

the Great Exhibition in 1851 were determined by the visitor numbers, the fuel 

consumed by the transport mode, the distance travelled and the relevant energy 

intensity and carbon emission coefficients. The details of these parameters are 

explained below. 

 

6.2.2.1 Number of visitors 
 

There were a total of 6,039,195 visitors to the Great Exhibition in 1851 (Bird, 1976, 

p.112) and 58,427 of these were from foreign countries (Moser, 2002 p.48). What is 

not known is where all these visitors came from in the UK, so some estimates have to 

be made. It is assumed here that half of all visitors from the UK (i.e. 2,990,384) were 

equally split between those from Inner and Outer London. There were a limited range 
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of available transport modes in 1851. It is assumed here that those coming from the 

Inner London Boroughs walked or used horse-powered transport, while those who 

lived in Outer London would, where possible, use the railway (i.e. steam trains) or else 

use horse powered transport. Table 6.3 shows the estimated number of visitors to the 

Crystal Palace in London in 1851 and their different transportation methods. They 

have been divided into three groups, those from London, those from other cities in the 

UK and those from other countries in the world. 

 

Assumptions have been made in order to perform the calculations. The possible 

transport modes are assumed to be walking, horses (riding), horses (cabs and horse 

buses), steam trains, steamships or sailing ships. Most of the visitors living in Inner 

London are assumed to have walked to the Great Exhibition and people from the 

Outer London Boroughs used steam trains as their transportation, then walked or took 

cabs (Hackney carriages) from the railway station to the Crystal Palace. Most of the 

visitors who came from other parts of the UK took steam trains from their main 

centres to London, then walked, or took cabs/horse buses to Hyde Park. Moreover, 

visitors from overseas had to take steam trains or horse transport to the main port 

cities in their own country, and then transfer to ships. It is assumed that most 

American customers started their travel from the port of New York and thence to 

Southampton in the UK and the majority of visitors from Oceania and Asia would be 

from Australia and India. However there were no trains in Australia in 1851 (the first 

railway was completed and opened in 1854 (NZETC, 1929)) and India’s first steam 

train was in December 1851 (IRFCA, 2009). At that time, African countries had not 

introduced steam trains and steamships. Thus, visitors from these countries might 

have ridden horses and used sailing ships driven by the wind to travel to the UK 

(Timeline of railway history, 2010; Lynn, 2002, p.105). 
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Visitors 
Number of 

people 
Area Transportation mode Number of people 

UK 
(5,980, 

768) 

From 
London 
(50%) 

2,990,384  

Inner London 
Boroughs 

(50%) (1,495,192) 

 
walking 

(50% of visitors living in Inner London 
Boroughs) 

 

747,596 

 
horse/ cab/ horse bus (50%) 

 
747,596 

Outer London Boroughs 
(50%) (1,495,192) 

 
horse/ cab/ horse bus (50%) (living in 

Outer London Boroughs) 
 

747,596 

 
steam trains (50%)à  

walking/ horse/ cab/ horse bus 
 

747,596 

From UK 
but living 

out of 
London 
(50%) 

2,990,384 

England (2,000,000) 

 
cab/horse bus 

(25% of visitors living in England) 
 

500,000 

 
steam trains (75%) à walking/ horse/ 

cab/ horse bus 
 

1,500,000 

Wales (330,128) 

 
steam trains à walking/ horse/ cab/ 

horse bus 
 

330,128 

Scotland (330,128) 

 
steam trains à 

walking/ horse/ cab/ horse bus 
 

330,128 

Ireland (330,128) 

 
steamships à steam trains à 
walking/ horse/ cab/ horse bus 

 

330,128 

From foreign 
countries  

(Moser, 2002, p.48) 
58,427 

 
Europe 

(Austria:672; Belgium:3,796; France:27,236; 
Germany:10,440; Greece:94; Holland:2952; 
Italy:1,489; Norway, Sweden, and 
Denmark:648; Prussia:1,489; Russia and 
Poland:854; Spain and Portugal:1,774; 
Switzerland:734; Turkey and Egypt:86) 
 

steam trains à steamshipsà steam 
trains à  

walking/ horse/ cab/ horse bus 
52,264 

Americas 
(5,048) 

 
steamshipsà steam trains à walking/ 

horse/ cab/ horse bus 
 

2,524  
 (from New York) 

 
steam trains à steamshipsà steam 

trains à  
walking/ horse/ cab/ horse bus 

 

2,524  

Oceania 

 
steamshipsà steam trains à walking/ 

horse/ cab/ horse bus 
 

1,115 

372 

Asia 

 
steamships à steam trains à 
walking/ horse/ cab/ horse bus 

 

372 
(China:8) 

Africa 

 
sailing ships à steam trains à  
walking/ horse/ cab/ horse bus 

 

371 

Total 6,039,195 - - - 

Table 6.3 Number of visitors from different areas and their transportation modes 
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6.2.2.2 Distances of visitor travel 
 

1. Visitor travel from London 

 

Visitors living in London probably took cabs (the London Hackney Carriage Act was 

passed in 1831 (BBC, 2002)), rode horses or in carriages or used horse buses or 

walked to the Crystal Palace. These modes of travel are assumed here to have no 

carbon-related environmental impact. However, they have a land related area for their 

food, and these areas have been included in the overall impact (see section 6.3.2). The 

method of accounting for the ecological footprint of horse-related visitor travel is 

explained in section 6.2.2.5. 

 

Some 747,596 people are assumed to have travelled within London to the exhibition 

by steam train. According to the London map of 1851 (Figure 6.2), there were seven 

railways into central London. They were the Great Western Railway (built in 1838 

(Great Western Railway, 2010), North Western Railway (Reed, 1996), Great Northern 

Railway (Simkin, 2003), Eastern Counties Railway (built in 1839), Blackwall Railway 

(Blackwall, 2002), London and Greenwich Railway (London and Greenwich Railway, 

2010) and South Western Railway (London and South Western Railway, 2010). In 2009 

London had the following surface railways, some of which use the track of the 

railways of 1851 (First Great Western, London Overground, Northern Line, National 

Express East Anglia, South Eastern and South West Trains and Docklands Light 

Railway) and some lines have been increased in length.  

 

The seven railway lines inside London today are as shown in Figure 6.3. The visitor 

distance has been measured from the middle station in each line to the central 

London terminus and back (Table 6.4). 

 

Thus, the assumed distances by railway for visitor travel are from the middle stations 

(by number rather than by distance, and only within the London area) to the terminus 

of each railway line. The driving distance (by car) between these two railway stations 

can be measured by using Google Maps. Putting the map into AutoCAD, the rail 

distances were measured by the relative proportions according to the known distance 

(car) from the map, and are shown in Table 6.4. The length of all the railways was 119 
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km and average half distance is 60 km. The average distance per passenger per line is 

defined to be the half distance divided by the seven lines (9 km). 

 

2. Visitors from other regions 

 

Apart from London, in 1851 there were visitors from the four countries of the UK 

(England, Wales, Scotland and Ireland). This section will analyse the different 

transportation modes visitors are assumed to have chosen and their travel distances 

from each of the regions.  

 

 

Figure 6.2 Map of London in 1851 (Redrawn from MAPCO. (2007). Map of London - Cross's 
London Guide 1851, Commercial Docks, Limehouse Hole, Isle Of Dogs, The Kings Dock Yard, & Deptford, 

from http://archivemaps.com/mapco/cross1851/cross24.htm) 
 

 

Figure 6.3 Stations of London railways in 1851 (Redrawn from Map of the London 
Boroughs. This map is based upon Ordnance Survey material with the permission of Ordnance Survey on 

behalf of the Controllor of Her Majesty’s Stationery Office. Unauthorised reproduction infringes Crown 
copyright and may lead to prosecution or civil proceedings. (ONS. GD272183. 2003)) 
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Name of 

Railway in 1851 
* 

Name of 
Railway in 2009 

Type in 
1851 

Route 
Terminus in 

London 

Total 
Distances 

(km) ** 

Average 
half 

distances 
(km) 

1 
Great Western 

Railway 
 (built in 1838) 

First Great 
Western 

National 
railway 

Londonà 
Bristol 

Paddingt
on 

23.89 11.9 

2 
North Western 

Railway  
(built in 1846) 

London 
Overground 

National 
railway 

- 
Euston 

 
20.56 10.3 

3 

Great 
Northern 
Railway 

 (built in 1846) 

Northern 
Line 

National 
railway 

- Euston 19.2 9.6 

4 

Eastern 
Counties 
Railway  

(built in 1839) 

National 
Express East 

Anglia 

National 
railway 

Londonà 
Colchester 

Liverpool 
Street 

21.9 11.0 

5 
Blackwall 
Railway 

 (built in 1836) 

Docklands 
Light Railway 

Local 
railway 

- 
Fenchurc
h Street 

7.22 3.6 

6 

London and 
Greenwich 

Railway (built 
in 1836-1838) 

South 
Eastern 

Local 
railway 

- 
London 
Bridge 

6 3.0 

7 
South Western 

Railway  
(built in 1838) 

South West 
Trains 

National 
railway 

Londonà 
Weymouth 

Waterloo 19.5 9.8 

Total distance of the seven railways 119 60 
Average distance per passenger per line (km) 9 
* Wikipedia. (2009). List of early British railway companies, retrieved 5th April 2009, from  
http://en.wikipedia.org/wiki/List_of_early_British_railway_companies 
** Google Map, retrieved 10th April 2009, from http://maps.google.co.nz/maps?hl=en&tab=wl 
Table 6.4 Average half distances of the railways in the outer London boroughs 
 

• People from England 

 

Within England, there are eight regions, the North East, North West, Yorkshire and 

Humberside, East Midlands, West Midlands, East of England, South West and the 

South East except London. The results for fuel consumption and CO2 emissions will 

be calculated from the emission factors for coal, the assumed number of visitors from 

the different regions and the distances from the different places to the Great Exhibition. 

This study will use the population density of main centres to represent the whole 

regions, because it was difficult to find accurate and detailed data about population 

distribution in the regions in the 1850s. The chosen main centres of each region are, 

respectively, Newcastle Upon Tyne, Manchester, Leeds, Nottingham, Birmingham, 

Cambridge, Bristol, and Canterbury (Table 6.5, Figure 6.4). Because it was not 

possible to find figures for the distance by train from each of these cities to the 
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appropriate London terminus, an average was taken of the straight-line distance, and 

the distance by road (calculated from Google Maps).   

 

 

Figure 6.4 Assumed railway lines and main centres in England, UK in the 1850s 
(Redrawn from 1998, United Kingdom: Government Office Regions, Produced by ONS 

Geography GIS & Mapping Unit (2003)) 
 

Visitors Regions Main centres 
The 

percentage 
of population 

Number of 
people 

visiting the 
Great 

Exhibition 

Distances from 
cities to 

London (km) 
(direct/car) 

Average 
distances 

from cities to 
London by 
train (km) 

From 
England 
(except 
London) 
(1,500,0

00) 

North 
East 

Newcastle 
Upon Tyne   6.0%   90,000 396/457 427 

North 
West 

Manchester 21.6% 324,000 264/323 294 

Yorkshire 
and the 
Humber 

Leeds 11.8% 177,000 273/315 294 

East 
Midlands 

Nottingham 20.2% 303,000 178/207 193 

West 
Midlands 

Birmingham 16.0% 240,000 155/194 175 

East of 
England 

Cambridge 13.1% 196,500 80/94.7   87 

South 
West 

Bristol    9.4% 141,000 172/196 184 

South 
East 

Canterbury   1.9%   28,500 84/95   90 

Number of people visiting the Great Exhibition was calculated by the percentage of population in each 
region in England. The population of cities in 1850s: 
Newcastle Upon Tyne: 87,784 ;Manchester: 316,213; Leeds: 172,270; Nottingham: 294,380; 
Birmingham: 232,84; Cambridge: 191,894; Bristol: 137,328; Canterbury: 28,000  

Table 6.5 Average distances from main centres to London by train 
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• People from Wales, Scotland and Ireland 

 

The assumed number of visitors from Wales was 330,128 (Table 6.1). The capital, 

Cardiff, was chosen as the main centre and the average distance from Cardiff to 

London is assumed to be 230 km (calculated the same way as above) (Table 6.6).  

 

Similarly, in Scotland, it was estimated that there were 330,128 visitors who 

participated in the Great Exhibition. As Glasgow was then the biggest city in Scotland, 

the distance used to calculate the energy consumption was Glasgow to London, 

which was 607 km. 

 

Visitor 
origins 

Number of 
passengers 

Distances  
(km) 

Average distance to London  
(km) 

Wales 330,128 212/247 (direct/car) 230 (train) 

Scotland 330,128 562/651 (direct/car) 607 (train) 

Ireland 330,128 

100  
(from Dublin to Holyhead) (ship) 

364/462   
(from Holyhead to London) 

(direct/car) 

100  
(from Dublin to Holyhead) (ship) 

413  
(from Holyhead to London) (train) 

Table 6.6 Average distances from Wales, Scotland and Ireland to London by 
train 

 

 

Figure 6.5 Assumed railway lines and main centres in Wales, Scotland and 
Ireland, UK in the 1850s 

 

Unlike visitors from England, Wales and Scotland, visitors from Ireland would have to 

take a steamship to cross the Irish Sea and then a steam train. Dublin was the biggest 

city in Ireland (Figure 6.5). The route assumed for visitors from Ireland is steamship 

from Dublin to Holyhead, and then steam train to London. The shipping line from 
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Dublin to Holyhead was 100 km (Portworld, 2010) and it is 413 km from Holyhead to 

London. 

 

3. Visitors from foreign counties 

 

Most of the foreign visitors are assumed to be from Europe, the Americas, Oceania, 

Asia and Africa. In Europe, the main countries close to the UK are Germany and 

France, and for the purposes of these calculations it is assumed that European visitors 

came from these two countries. 

 

In Germany, visitor travel was calculated on the basis that people took steam trains 

first, then steamships (from Germany to UK), and finally steam trains to London. One 

of the largest port cities in Germany is Hamburg. The distance of the shipping line 

from Hamburg (Germany) to Southampton (UK) was 926 km (Table 6.7). In respect of 

steam trains in Germany, there were more than 2,000 km of railway by 1845 (History 

of rail transport in Germany, 2010). It is assumed here that most visitors were starting 

their journey in Berlin. The distance by road from Berlin to Hamburg is 280 km, as 

shown in Figure 6.6 (The red line represents the route by road and the green one 

shows the railway line). It is seen that the railway line is longer than the road. Thus, the 

assumed distance of train travel is 290 km. However, when visitors arrived at 

Southampton, they would take trains again (from Southampton to London). The direct 

distance and road distances measured by Google Maps were 113 and 117 km 

respectively. Thus, the average travel distance for this journey by steam train is 115 

km.  

 

Compared with Germany, French railways developed more slowly, but France had 

well-developed canal systems. The first railway built in France, which was from Saint-

Étienne to Andrézieux, started operation in 1832. It is assumed that most visitors 

started their sea journey from Le Havre. It is likely that they took steam trains from 

Paris to Le Havre, which was a distance of 204 km (Figure 6.7, red line), then took 

ships from Le Havre to Southampton (202km), and finally went to London the same 

way as other European foreign visitors (115 km by steam trains). In order to simplify 

the calculation, the distances for steam trains and steamships will be taken as the 

average distance for France and Germany combined (Table 6.7). 
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Figure 6.6 Railway map of Germany in 1851(Redrawn from IEG-MAPS · Server für digitale 
historische Karten / Server for digital historical maps, retrieved 13rd April 2009, from http://www.ieg-

maps.uni-mainz.de/mapsp/mape851d.htm) 
 

 

Figure 6.7 French railways in 1856 (Redrawn from Wikipedia, Histoire des chemins de fer 
français, from http://fr.wikipedia.org/wiki/Histoire_des_chemins_de_fer_fran%C3%A7ais) 

 

For the Americas, the assumption was made that visitors were all from North America 

(Figure 6.8). One group of visitors was assumed to set out from New York by ship 

directly; others were from other east coast cities, taking trains from Boston or 

Washington, D.C. to New York (because the railways in the 1850s were mainly located 

in the coastal area of eastern America), then using ships. Total railroad mileage in the 

USA in 1850 was 9,021 km (Rail transport in the United States, 2010). The road 

distance from Boston to New York and from Washington, D.C. is 343 km and 365 km 

respectively. Thus, the average distance of railway travel is assumed to be 355 km. 

New York’s population was 3,097,394 in 1850 (New York, 2010) which accounted for 

13.36% of the total population of the USA (23,191,892 people (Haines and Steckel, 

2000)). It has therefore been assumed that 2,524 visitors from New York directly took 
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steamships to go to the Great Exhibition in London. After they arrived at Southampton, 

they took steam trains like the visitors from Europe. 

 

 

Figure 6.8 American railways in 1850 (Redrawn from Perry-Castañeda Library, Map Collection, 
from http://www.lib.utexas.edu/maps/historical/ward_1912/us_population_railways_1850.jpg) 

 

In Oceania, the first railway was completed and opened for traffic on 13th September, 

1854 in Australia (NZETC, 1929). Thus, there was no steam train during the Great 

Exhibition in London. Visitors might take ships from Australia to India first, then from 

India to the UK because of the long travelling distance. Then they took steam trains in 

the UK for attending the exhibition (travel distances are shown in Table 6.7). 

 

In Asia, railways were first introduced to India in December 1851 (IRFCA. 2009). 

However, the first steamship in Asia seems to have been the Nawab of Oude’s steam 

yacht. It was built at Lucknow in 1819, and equipped with an eight horse-power 

engine sent out from England (Blue, 2009). The first steamships in India operated on 

the Hoogly in the early 1820s, mainly as tug boats (Blue, 2009). Thus, it can be 

assumed most Asian visitors, the majority of whom were governmental officers and 

merchants, rode horses, took carriages or walked to Cochin (India), and then took 

steamships to Southampton. The measured distance of shipping was 19,070 km 

(Calculation results, 2009). They took steam trains in the UK after they arrived at 

Southampton. 

 

In Africa, the first railway was built in 1852 (Timeline of railway history, 2010). As there 

was no steamship service operating in 1851(during the Great Exhibition) in Africa 

(Lynn, 2002), visitors from Africa would have had to use sailing ships navigating the 

Atlantic Ocean with their luggage and products. They then took steam trains which 
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might be the first time they had seen and used steam trains. Sailing ships are 

assumed here to have no environmental impact, being powered by the wind. 

 

 

Figure 6.9 Shipping lines visitors took from overseas (Redrawn from Calculation results, 
Global Shipping Platform, from http://www.searates.com/reference/portdistance) 

 

Figure 6.9 shows the shipping lines used by ships (steam and sail) from Europe, the 

Americas, Oceania, Asia and Africa to the UK. Table 6.7 sets out the assumptions 

made about modes and distances of visitor travel from foreign counties. 

 

6.2.2.3 Energy intensity of the different transport modes 
 

The fuel consumption of the different visitor transportation modes in London in 1851 

was found by multiplying the fuel consumption per passenger-km for each mode with 

the number of passengers and the return distances from the original place where 

visitors lived to London.  
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Visitors Counties Transport 
Distance on  Steam train 

(km) 
Distance on  Steamships (km) * 

Distance on  Steam 
train (km) 

From 
foreign 

countries 

Europe 

steam trainsà 
steamshipsà 
steam trainsà 
walking/ horse/ 
cab/ horse bus 

290 
(Berlinà 

Hamburg) 
247 

(average 
distance) 

926 
(Hamburg, Germany) 564 

(average 
distance) 

115 
(direct distance =113; 

car=117) 
(Southamptonà 

London) 

204 
(Parisà  

Le Havre) 

202 
(Le Havre, France) 

Americas 

steam trainsà 
steamshipsà 
steam trainsà 
walking/ horse/ 
cab/ horse bus 

343 
(Bostonà 
New York) 355 

(average 
distance) 

5,700 
(New York, USA) 

115 
(direct distance =113; 

car=117) 
(Southamptonà 

London) 

365 
(Washington, 

D.C.à 
New York) 

Oceania 

steamshipsà 
steam trainsà 
walking/ horse/ 
cab/ horse bus 

- 

21,580 
(Melbourne, Australiaà Cape Town, 
South Africa: 10,580;  Cape Town, 
South Africa à Southampton, UK: 

11,000) 

115 
(direct distance =113; 

car=117) 
(Southamptonà 

London) 

Asia 

steamshipsà 
steam trainsà 
walking/ horse/ 
cab/ horse bus 

- 

19,070 
(Cochin, India à Cape Town, South 

Africa: 8,070; Cape Town, South Africa 
à Southampton, UK: 11,000) 

115 
(direct distance =113; 

car=117) 
(Southamptonà 

London) 
* Ship Voyage Distance Calculator, http://www.portworld.com/map/ 

Table 6.7 Assumptions made about visitor numbers and modes of travel from overseas
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At this stage this research has not included the footprint of food which people and 

horses need for the extra activity associated with travel. Normally these modes of 

travel are thought of as environmentally neutral (Lopez, 2008, p. 244). It is possible to 

show that in modern times the impact of the food consumption for “non-powered” 

forms of travel can be significant (Vale and Vale, 2009, p.29–71). However, in 1851 it is 

assumed that the input of non-renewable energy to the agriculture and food system 

was low, and that therefore this was not an important issue. The fuel consumption of 

steam trains and steamships is discussed below. The locomotives of steam trains in 

the UK used coal as the fuel, while in America engines burned both wood and coal 

(White, 1980, p.88). Steamships are assumed to use coal.  

 

1. Steam trains 

 

• Coal as the fuel 

 

In 1851, steam trains in the UK burned coal, and they continued to do so until the 

1960s. The total energy consumption for a steam hauled rail trip is estimated to be 

0.42 GJ per km (1.1 MJ/passenger-km) in the 1950s (Vale and Vale, 2009, p.117). 

However, in 1851 the locomotives of trains were probably less efficient than those of a 

hundred years later. An existing example of an “old” railway, which might be 

comparable with mid-nineteenth century technology, is the 2ft narrow gauge 

Darjeeling Himalayan Railway in India. Its B Class 0-4-0ST are small two-axle tank 

locomotives which carry their water tanks on the boiler (a saddle tank) and are fitted 

with large lateral coal bunkers (IRFCA, 2009b). The towed load, in view of the very 

severe profile of the line, which climbs up into the mountains, is only 28 tonnes. The 

oldest B Class working loco still climbing the mountains today was built in 1889 

(IRFCA, 2009b). The B Class 0-4-0ST was a development of the simple 0-4-0 type of 

wheel arrangement which was used in Richard Trevithick’s 1804 pioneering 

locomotive (0-4-0, 2009). In 1832 an 0-4-0 was built for the Baltimore and Ohio 

Railroad in the U.S. (0-4-0, 2009). Thus, it is possible to assume that locomotives 

roughly comparable to the B Class 0-4-0ST were built and used in the 1830s-1860s in 

the UK, albeit designed for standard gauge track. The average coal consumption per 

mile on the Darjeeling railway is 39 lbs (IRFCA, 2009b). The seating capacity of the 

coaches varies between 12 and 33 passengers (Singh, 2007), so a train on the 
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Darjeeling Himalayan line might have 78 passengers in total. Converted to SI units the 

coal consumption is 11 kg per km and the calorific value of coal is around 30 MJ/kg 

(Allen, 1953). So the train uses around 4.2 MJ/passenger-km (Table 6.8).  

 

Type of 
Locomotive 

Date Seats 
Average coal 
consumption  

Energy 
consumpti
on per km 
(MJ/km) 

Energy 
consumption per 

passenger km 
(fully occupied) 
(MJ/passenger-

km) 

Other 

British 
Railways 

passenger 
express  

1950s 384 
9 tonnes for 
400 mile trip 

420 1.1 
Standard 

gauge 
main line 

B Class 
 0-4-0ST 

Assume 
similar to 
1830s~ 
1860s 

78 39 lbs/mile 330 4.2 

Narrow 
gauge 

mountain 
railway 

Table 6.8 Comparison of two steam trains 
 

Therefore, if a 1950s steam express passenger train (better technology than in 1851) 

used 1.1 MJ/passenger-km, and a narrow-gauge steam mountain railway (similar 

technology to 1851, but a more demanding route) uses 4.2 MJ/passenger-km, it might 

be reasonable to assume that a train in 1851 might have a coal consumption of 3.0 

MJ/passenger-km. 

 

• Wood as the fuel  

 

Unlike the UK situation, the locomotives used in some parts of the USA consumed 

wood as their fuel, as the price of wood at that time was cheaper than that of coal 

(White, 1973, p. 84). As late as 1851 the Philadephia and Reading Railroad used more 

than 61,000 cords of wood, although it was also operating some coal-burning engines 

(White, 1973, p. 84). It can be assumed that in 1851, steam trains consumed both coal 

and wood on the US railways. In the nineteenth century one tonne of soft coal was 

considered equal to 1.75 cords of wood (wood: 3,000 pounds per cord, so 2,000 

pounds of coal equaled 5,250 pounds of wood) (White, 1973, p. 86). The cost of wood 

fuel for an American passenger locomotive in 1851 is given as 18 cents per mile, with 

the cost of wood being $4.50 per cord (Illinois Central Railway, 1857). These figures 

mean that the locomotive used 0.04 cords per mile, and if a cord is 3,000 lb, the 

locomotive consumed 120 lb of wood per mile, or roughly 34 kg of wood per km. The 
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energy content of wood fuel (air dry, 20% moisture) is about 15 GJ/t (BFIN, 2009), so 

34 kg of wood per km is 510 MJ per km. Although railways in Britain and Europe used 

four and six wheeled carriages until the 1860s, railroads in the United States began 

quite early in their development to use longer, eight-wheel cars riding on two four-

wheel trucks (Railroad track, 2007). Bianculli shows a number of eight-wheeled 

American passenger cars from the period 1840 – 1850, all with seats for about forty 

passengers (Bianculli, 2001, p. 18-20). Assuming a three to five car train, with forty 

passengers per car, the energy consumption of a wood-burning American passenger 

train would be between 4.3 and 2.6 MJ per passenger-km, giving an average of 3.5 

MJ/passenger-km. This is quite similar to the figure derived for coal-burning 

locomotives above. 

 

However, the performance of coal-fired locomotives in the USA appears to be 

different from that of the UK locomotive. The Illinois Central Railroad, as an example, 

began to experiment with coal-burning locomotives in 1855 due to the cheap price of 

coal from the southern Illinois coal fields. Wood fuel cost 18 cents per mile at that time 

while coal cost only 12 cents per mile (White, 1973, p.78) and by the mid-1850s coal 

was about $3.00 per tonne (White, 1973, p.87). If these figures are used the same way 

as above to calculate the coal consumption of the locomotive, it can be seen that it 

burned 0.04 tonnes of coal per mile, which was equal to 36.6kg per mile (22.7 kg/km). 

Depending on the type of coal used the energy content might lie between the better 

quality coal with an energy content of about 30 GJ/t and the poorest quality, black 

coal, whose energy content varies between 27 – 13 GJ/t (Australian Government, 

2008, p.2). The average figure of 20 GJ/t was chosen here. Thus, owing to the 

different type of coal and the likely number of passengers, the total coal consumption 

for a trip in terms of American steam trains in the 1850s was between 454 and 681 MJ 

per km, and the average coal consumption per passenger (fully occupied) was 4.1 MJ 

per passenger-km. These results are summarised in Table 6.9. 
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Country USA UK 
Fuel Wood Coal Coal 

Seats 120-200 120-200 78 - 384 
Energy content of 

fuel 
15 GJ/t 30 GJ/t 20 GJ/t 30 GJ/t 

Fuel consumption 
per km (MJ/km) 

510 681 454 330 - 420 

Fuel consumption 
per passenger 

(MJ/passenger-
km) 

3.5 
(4.3 and 2.6 MJ 
per passenger-

km) 

5.1 
(6.3 and 3.8 MJ 
per passenger-

km) 

3.1 
(3.8 and 2.3 

MJ per 
passenger-km) 

1.1 and 4.2 
MJ/passenger

-km 

Assumed average 
fuel consumption 

per passenger 

3.5 
MJ/passenger-

km 
4.1 MJ/passenger-km 

3.0 
MJ/passenger

-km 

Table 6.9 Assumed fuel consumptions of passenger trains in the 1850s 
 

 2. Steamships 

 

Craig mentions in his book published in 1980 that the steamship presented no real 

competition to the sailing vessel during the period 1815 to 1865 (Craig, 1980, p.3-4). 

However “She provided entirely new services on short-range high-density passenger 

routes…and as a heavily subsidized mail and passenger carrier on the Atlantic and 

eastern routes she provided a service which did not exist before” (Craig, 1980, p.3-4). 

In 1854, the Scottish engineers John Elder and Charles Randolph designed and built 

the first ocean-going compound engines for the steamship Brandon (764 tonnes gross) 

(Craig, 1980, p.11). So at the time of the Great Exhibition there were only the less 

efficient single-expansion steam engines in ships. 

 

The Brandon used 3.25 lbs of coal per HP per hour, whereas the previous most 

economical ships used between 4.0 and 4.50 lbs per HP per hour (Craig, 1980, p.11). 

The improvement over time, from 1850s to 1901, in performance of coal consumption 

of steam engines is shown in Table 6.10 below. 

 

Steam engines 1850s 1854 1872 1881 1891 1901 
Coal consumption 

(lbs per HP per hour) 
4.50 3.25 2.11 1.83 1.52 1.48 

Table 6.10 Coal consumption of steam engines for steamships from 1850-1901 
(Craig, 1980, p.14) 

 

Unfortunately, the engine size in HP and the duration of the voyage are not known and 

the overall fuel consumption of any ship from this period could not be found in Craig’s 
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book. However the ratio of the different fuel consumptions at different dates from 

Table 6.10 could be used to establish some idea of the fuel consumption for other 

dates. The steamer Oscar II, built in 1891, could carry 4600 tonnes deadweight of 

cargo at 9 knots using 14 tonnes of coal a day. This is 400 km a day on 14.22 tonnes 

of coal, with a cargo of 4674 tonnes or 1,869,600 tonne-km (Craig, 1980, p.14). This 

works out to 0.0076 kg of coal per tonne-km (0.274 MJ/tonne-km (NPL, 2008)). From 

the table above, the coal consumption of a ship in the 1890s was around 1.5 lbs per 

HP per hour and in the 1850s it was 4.5 lbs per HP per hour, three times greater, so it 

could be assumed that the energy consumption of a ship in the 1850s was three times 

that of the Oscar II, or around 0.82 MJ/tonne-km.  

 

However, all the ships in Table 6.10 are freighters. An example of a passenger ship is 

the steamship Atlantic (1851), which was built as the pioneer steamer of the American 

Collins Line (Robert and Thurston, 1878). The state-rooms were arranged on each side 

of the dining saloon, and accommodated 150 passengers (Robert and Thurston, 1878). 

Another example from the period is the Cunard Line’s America, built in 1847, which 

carried 140 first class passengers and 450 tons of cargo. This ship is stated to have 

had a coal consumption of one ton per 7.3 km, or roughly 0.14 tons per km (Cunard 

Steamship Fleet, 1849). At an energy density of 30 GJ/ton (steamships are presumed 

here to have used the best quality of coal, because they could carry only a fixed 

quantity in their bunkers, and they did not have anywhere en route from the USA to 

England where they could stop to refuel), this means the total coal consumption 

represented 0.14 tons x 30 = 4.2 GJ per km. This can then be divided by the 140 

passengers to give a figure of 30 MJ/passenger-km. If all the fuel consumption is 

assumed to relate to the transportation of the passengers, this figure is reasonable. 

However, the America carried 450 tons of cargo as well as her 140 passengers. Not 

knowing if the quoted figure is in US tons or Imperial tons, and taking an assumed 

cargo capacity of 420 tonnes, the ship’s coal consumption represents 10 MJ per 

tonne-km. 

 

The 140 passengers with their baggage will each weigh 120 kg, and of the 90 crew of 

the America, 70 are assumed to be there to look after the passengers, and they will 

also have baggage, making a total weight of 210 people x 120 kg = approx 25 tonnes. 
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Each of these people will need perhaps 3 kg of food and other supplies each day for a 

two week passage, making a further, say, 50 kg per person, or an additional 10 tonnes.  

 

The proportion of the fuel consumption attributable to the passenger-carrying aspect 

of the ship’s crossing of the Atlantic is therefore 35 tonnes of passengers, luggage, 

stores and crew divided by 420 tonnes of freight multiplied by the fuel consumption in 

tonne-kilometers; 35/420 x 10 = 0.8 MJ/passenger-km. To allow for the weight of the 

fit-out of the ship for passenger carrying (the state-rooms, dining saloon, and other 

luxuries) this figure will be increased to 1 MJ/passenger-km.  

 

Table 6.11 lists the assumed energy consumption for people taking steam trains and 

steamships in the 1850s. Using the available statistics, it has been possible to 

calculate how much coal was consumed and calculate the coal consumption per 

person in order to calculate the total usage of coal by people travelling to the Great 

Exhibition. 

 

 UK USA 

 
Coal consumption 

per person 
Coal consumption per 

person 
Wood consumption per 

person 
Walking - - - 
Horses - - - 

Carriages - - - 

Steam trains 
3.0 MJ/ 

passenger-km 
4.1 MJ/passenger-km 3.5 MJ/passenger-km 

Steamships 
1.0 MJ/ 

passenger-km 
1.0 MJ/passenger-km - 

Table 6.11 Assumed energy consumption in MJ per passenger-km for various 
transport modes  

 

6.2.2.4 CO2 emissions coefficients 
 

The total fuel consumption for steam trains and steamships can be calculated by 

multiplying the number of visitors, distance that people travelled and fuel consumption 

factor (per km per person). The CO2 emission factor of coal is 0.093 kg CO2/MJ (OEE, 

2008). Wood and wood waste’s emission coefficients are 195.0 Pounds CO2 per 

Million Btu (EIA, 2009). So the CO2 emission factor of wood is 0.08384 kg CO2/MJ 

(88.45kg CO2 /Million Btu ×10-3÷1.055), which is not much lower than the figure for 

coal. However, wood is a renewable resource. In the process of growing, trees absorb 
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CO2 and release oxygen as well. Whether wood can be considered to be a carbon 

neutral fuel depends on whether people continue to plant trees and the number of 

new trees. In Table 6.12 the CO2 emissions of wood-burning trains in the USA are 

assumed to be zero. In addition, this table does not include the CO2 emissions of 

horse transport or walking as these did not consume any fuel (although in a more 

detailed calculation, the non-renewable energy for producing, and particularly for 

transporting, food could be considered).  

 

 CO2 emission factor of coal CO2 emission factor of wood 
Steam trains 0.093 kg CO2/MJ 0 kg CO2/MJ  
Steamships 0.093 kg CO2/MJ  - 

Table 6.12 CO2 emission factors of coal and wood 
 

6.2.2.5 Horse-related visitor travel 
 

Although there was no carbon footprint of horse-related visitor travel, land-related 

consumption cannot be neglected. The evaluation of the ecological footprint 

generated from horse-related transport to go to the Crystal Palace includes visitors 

who travelled from local and foreign countries.  

 

1. Visitors from London 

Total number of local visitors from London taking horse-related transport to go to the 

Crystal Palace was 2,242,788 (2,990,384-747,596) (Table 6.3). 

 

In this study, the horse-related transport modes include riding a horse (single rider), 

taking cabs (2 passengers), and taking a horse bus (17~20 passengers) (Perdue, 2007) 

in 1851. Perdue (2007) stated that there were about 621 horse buses operating in 

1851. If they all were used for visitors travelling to the Crystal Palace (6 months), the 

total days of travelling by horse buses were 111,780 (621 horse buses ×180days). To 

make an estimate on the high side, to avoid underestimating the impact, it is assumed 

that the average horse made one trip in one day). This means the horse buses can 

carry about 1,117,800 visitors maximum during the Great Exhibition (111,780×10 

passengers/horse bus).  
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Table 6.13 shows the number of visitors who travelled by different horse-related 

transport modes in 1851. It is assumed that number of visitor taking cabs was twice 

the horse riders. The total journeys by horse were 973,552, which were 374,996 for 

riding horses, 374,996 for taking cabs, and 223,560 for horse buses, as shown in 

Table 6.13.  

 

Transportation mode Number of visitors Days of travel by a horse 
Horse (1visitor/horse)    374,996 374,996 
Cabs (2 visitors/horse)    749,992 374,996 
Horse bus (9~10 visitors/horse) 1,117,800 223,560 
Total 2,242,788 973,552 

Table 6.13 Number of visitors who travelled by horses to go to the Crystal Palace 
in 1851 

 

Vale and Vale (2009, p.86) give the average energy consumption of keeping a horse 

for moderate and intense work at 103~137 MJ/day (average 120 MJ/day). Therefore 

total energy consumption of visitors from London who travelled by horses was 

116,826 GJ, or 52 MJ/visitor. The ecological footprint of local visitors travelling by 

horse to the Crystal Palace was 1,168 gha, or 0.0005gha/visitor (Table 6.14). 

 

Transportation mode Energy consumption (GJ) Ecological footprint (gha) 
Riding horse    45,000    450 
Taking cab    45,000    450 
Taking horse bus    26,827    268 
Total 116,826 1,168 

Table 6.14 Energy consumption and ecological footprint of visitors from London 
who travelled by horses to go to the Crystal Palace in 1851 

 
Given that a horse may well have made more than one trip per day, the figures in 
Table 6.14 represent a likely maximum value. 
 

2. Visitors from outside of London 

The visitors from outside of London took steam trains or steamships to go to the 

Great Exhibition and the total number of these visitors was 3,048,811 (Table 6.3). As 

the average consumption of visitors who travelled by horse-related transport was 

accounted above (52 MJ/visitor), the total horse-related energy and resource 

consumption of visitors who travelled from other cities and other countries were 

158,538 GJ and 1,585 gha respectively. 
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3. Total energy and resource consumption of horse-related visitor travel 

Total energy and resource consumption of horse-related visitor travel was 275,364 GJ 

and 2,753 gha, as shown in Table 6.15. 

 

Visitors 
Energy consumption 

(GJ) 
Ecological footprint 

(gha) 
From London 116,826 1,168 
From UK (apart from London) 155,500 1,555 
From overseas     3,038     30 
Total 275,364 2,753 

Table 6.15 Total energy consumption and ecological footprint of visitors who 
travelled by horses to go to the Crystal Palace in 1851 

 

6.2.3 Exhibition-related economic aspects 
 

Resource consumption of exhibition-related economic aspects of this case study is 

converted from the monetary value of economic income from the events. The 

methods of quantifying economic income and related impacts are indicated in this 

section. 

 

6.2.3.1 Exhibition-related economic income 
 

The Great Exhibition contributed to the national economic growth of the UK during the 

1850s. The concept of exhibition-related economic benefit used in this study is 

considered differently from the conventional approach, which includes only the direct 

benefits from the income of exhibitions.  

 

To clarify, the exhibition-related economic contribution is split into two parts in this 

study; one is the direct effect; the other is the indirect effect. Direct economic benefit 

is defined as the immediate monetary income from the Great Exhibition in the UK in 

1851. The indirect economic benefit from the Great Exhibition is here defined as the 

part of economic growth stimulated by the Great Exhibition at a national level in the 

UK. It is reflected by the amount of GDP growth from the exhibition-related industries 

that are selected from the related categories of the exhibits displayed in the Great 

Exhibition in this study (the detailed categories are stated in the following section). The 

reason for analysing this is that, normally, the purpose of holding an exhibition is to 

increase the sale of products exhibited. In the Great Exhibition, many new 
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technologies and machines were displayed and introduced to the public (for example, 

the ice maker), which potentially enlarged the market of these new manufactures and 

consequently brought increased income.  

 

1. Direct economic benefit 

 

Direct economic benefit in this study includes the revenue input from the tickets, and 

food and drink sold to visitors during the 144 days of the Great Exhibition (the 

exhibition was open for six months, from Monday to Saturday). The calculations of 

direct economic benefits are based on the relevant written historical sources.   

 

• Income from tickets sold at the Great Exhibition of 1851 

 

Gibbs-Smith (1950, p.34) reported that receipts from the Great Exhibition were 

£522,179 in total, and the net profit was £186,437. If it is assumed that the total 

receipts were from the ticket sales and the total number of visitors was 6,039,195 

(Gold, 2005, p.67), the average cost of a ticket per visitor was £0.09 (1.7 shillings). The 

actual costs of a ticket were 1 shilling, half-a-crown and five shillings according to 

which days the visitors came (Gibbs-Smith, 1950, p.33). The average daily wage of a 

worker around this time was just over two shillings (Clark and Werf, 1998, p.832).  

 

• Income from food and drink sold at the Great Exhibition in 1851 

 

Peskett (2006) stated that Messrs Schweppes were contracted by the Commissioners 

for the Great Exhibition to undertake the catering arrangements. Schweppes paid the 

Commissioners £5,000 for this privilege and made a total profit of £45,000 from the 

refreshments sold (including 1,804,718 buns) (Peskett, 2006).  The breakdown of the 

refreshments and drink sold is sourced from Clowes (1852) and Peskett (2006) (Table 

6.16). It is noted that bath buns, milk, biscuits, potted meats, rough ice and 

Schweppes soda water, lemonade, and ginger beer sold well during the Great 

Exhibition. Interestingly, the ices, made on the spot by a patent freezing machine run 

by steam, sold more than other types of food (Peskett, 2006; Phillips and Phillips, 

1978, p.26). Attending the Great Exhibition thus was a good opportunity for Messrs 

Schweppes to create a fortune from marketing their new soft drinks in the 1850s 
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(Auerbach, 1999). In this they were helped by the fact that no alcoholic drinks were 

sold at the Great Exhibition (Gibbs-Smith, 1950, p.34). 

 

Types Amount of 
goods sold 

Types Amount of goods 
sold 

Bread, quarters 52,094 Savoury Patties 23,040 lbs  
Bread, Cottage loaves 60,698 Macaroons 1,500 lbs  
Bread, French rolls 7,617 Biscuits 37,300 lbs  
Pound cakes 68,428 Preserved fruits  4,840 lbs  
3d cakes 36,950 Savoury pies 33,456 lbs  
Savoury cakes 20,415 Rich cakes 2,280 lbs  
Italian cakes 11,797 Potted meats / tongues 36,130 lbs  
Victoria biscuits 73,280 Mustard 1,120 lbs  
Bath buns 934,691 Coffee 14,299 lbs  
Plain buns 870,027 Tea 1,015 lbs  
2d pastries 36,000 Chocolate 4,836 lbs  
School cakes 4,800 Meat 113 tonnes 
Banbury cakes 34,070 Potatoes 36 tonnes 
Pineapples 2,000 Rough Ice 363 tonnes 
Sausage rolls 28,046 Salt 37 tonnes 
Milk 33,432 quarts  Hams 33 tonnes 
Cream 32,049 quarts  Pear syrup 5,350 bottles 
Jelly 2,400 quarts Schweppes soda water, 

lemonade, and ginger beer 
1,092,337 bottles 

Pickles 1,046 gallons 

Table 6.16 Types of refreshment and amounts sold at the Great Exhibition of 
1851 

 

• Total direct economic benefit from the Great Exhibition in 1851 

 

Gibbs-Smith (1950, p.39) states that total expenditure for the Great Exhibition was 

£335,742, of which the building and fittings were approx. £170,000. The building was 

sold for £70,000 on moving to Sydenham after the event. The total net profit (direct 

income) from the Great Exhibition in 1851was £256,437, including the net income from 

tickets of £186,437 and profit from building sold of £70,000 (Gibbs-Smith, 1950, p.39; 

Gibbs-Smith and Victoria and Albert Museum, 1981, p.24). 

 

2.  Indirect economic benefit 

 

The indirect economic benefit defined as the economic (GDP) growth stimulated by 

the Great Exhibition, is quantified by the amount of GDP growth from the exhibition-

related industries. Hudson (2009) states the Great Exhibition of 1851 marked the peak 

of British economic dominance. The Great Exhibition of 1851 in London was 
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conceived to symbolize this industrial, military and economic superiority of Great 

Britain (Victorian Station, 2001). The “Great Exhibition of the Industry of All Nations” 

was described as a huge and monumental enterprise, of importance in art, science 

and technology, and of political, economic and social significance. It had involved not 

only a huge swathe of British society, but also the whole world (Davis, 2000).  

 

Although the macro-economic profit generated from the Great Exhibition cannot be 

assessed accurately, Fay (1951a, b, p. 91) asserts that in both large and small matters, 

the Great Exhibition has had its effect on British economic history, as on other aspects 

of British life. The Great Exhibition and the other twenty-three world fairs held in the 

19th century illustrate the social changes of an era and can be seen as showcases of 

the economic performance of the participating countries. Starting with the Great 

Exhibition, with the increasing economic growth of the nineteenth century, the fairs 

took on greater international significance (Dahmen-Ingenhoven and Feireiss, 2004, 

p.113). 

 

For the purpose of quantification and analysis of the exhibition-related economic 

effect, an average percentage increase in GDP is applied in this research. As part of 

GDP, the percentage of income from the modern exhibition industry for different 

countries is similar. In 2004 and 2006 in Hong Kong, HK$19 billion (US$ 2.4 billion) 

and HK$26.5 billion (US$3.38 billion) came from the exhibition industry, accounting for 

1.5% and 1.8% of GDP (HKECIA, 2006; HKECIA, 2007). For the UK, £9.3 billion was 

generated by the exhibition industry in 2005 (McCann et al, 2005), accounting for 

0.74% of GDP. In Toronto (Canada), income from the exhibition industry in 2006 was 

C$ 1.1 billion, equivalent to 0.87% of the regional GDP (Joppe et al, 2006). From the 

literature, the average proportion (0.8%) is used, as the data for the historic exhibition 

industry cannot be found. 

 

For an exposition, the economic effect is normally taken as having an effect over a 

period of ten years by most researchers. For example, the forecast of expenditure 

from tourists in Shanghai after Expo 2010 is made by the Expo Economic Research 

Institute based on 10 years (CREN, 2010). In the study of the economic impact of the 

Sunbelt Agricultural Exposition, the potential economic effect on the Moultrie region is 

estimated over the next ten years after the Exposition (Flanders et al, 2006). In this 
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study, the analysis of the potential economic effect after the Great Exhibition is 

estimated over a period of ten years. The average GDP of the UK from 1851 to 1860 

was £724,900,000/year (Chantrill, 2010). As a result, the annual income arising from 

the exhibition was £6,161,650 (£724,900,000×0.85%). By subtracting the direct 

economic profits, the total indirect economic benefit from the Great Exhibition from 

1851 to 1860 was £6,136,006/year.   

 

At the micro-economic level, the Great Exhibition appeared to affect the income of 

“local trade and transport” and “income from abroad” from 1851 to 1871 in the total 

national revenues, which are taken from Deane and Cole’s study (1962, p.106) (Table 

6.17). Extracting from the figures the percentage increase, it is apparent that the 

increase in rate of total national income (37.2%) in the UK reached a peak in the 

period 1801-1901.   

 

 1831 1841 1851 1861 1871 
Income 
(£m.) 

Income 
(£m.) 

Increase Income 
(£m.) 

Increase Income 
(£m.) 

Increase Income 
(£m.) 

Increase 

Agriculture, 
forestry, fishing  

79.5 99.9 25.7% 106.5 6.6% 118.8 11.5% 130.4 9.8% 

Manufacture 
mining, building  

117.1 155.5 32.8% 179.5 15.4% 243.6 35.7% 348.9 43.2% 

Trade and 
transport  

59.0 83.3 41.2% 97.8 17.4% 130.7 33.6% 201.6 54.2% 

Domestic and 
personal  

19.2 26.9 40.1% 27.4 1.8% 35.0 27.7% 45.5 30% 

Housing 22.0 37.0 68.2% 42.6 15.1% 50.3 18.1% 69.4 38.0% 
Income from 
abroad  

3.9 6.2 59.0% 10.4 67.7% 19.9 91.3% 39.5 98.5% 

Government, 
professional and 
all other  

39.3 43.6 10.9% 59.0 35.3% 69.7 18.1% 81.3 16.6% 

Total national 
income  

340.0 
 

452.3 33.0% 523.3 15.7% 668.0 27.7% 916.6 37.2% 

Table 6.17 The industrial distribution of the national income of Great Britain, 
1831-1871 (Deane and Cole, 1962, p.106) 

 

Looking at the period from 1851 to 1871, which could be considered the years most 

likely to be immediately affected by the Great Exhibition, the categories of “Trade and 

transport” and “Income from abroad” had higher rates of increase than most other 

categories, as show in Figure 6.10 (“Income from abroad” in orange, “Trade and 

transport” in green). The income from trade and transport in the UK increased 

significantly, going from £97.8 million to £201.6 million (an increase of 54.2% between 

the years of 1851-1871). However, the rate of increase from 1851 to 1871 was the 
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highest during the period studied. Meanwhile, income from abroad also experienced 

the highest rate of increase during these 20 years, 98.5% in 1851-1871, which shows 

that increase in goods for export reached a peak after the Great Exhibition.  

 

 

Figure 6.10 Distribution of national income of Great Britain between sectors, 
1841-1871 (Deane and Cole, 1962, p.106) 

 

Secondly, the other factor related to the potential economic benefit is the distribution 

of exhibits displayed in the Great Exhibition. Moser (2002, p.57) reported that 8,903 

exhibits from the UK (in 30 classes) were displayed in the Great Exhibition out of the 

total exhibits (13,876 items). The detailed categories of exhibits are listed in Table 6.18. 

It shows that the category of “Machines for direct use, including horse drawn 

carriages, railway and marine mechanism” accounted for the largest percentage 

(11.2%) of the total number of exhibits. The exhibition-related indirect economic 

benefit from this category of exhibits is assumed to be £687,233 (11.2% of total 

income) (6,136,006 × 11.2% = 687,233), because the contribution for economic 

growth from exhibitions can be said to be directly or indirectly affected by the 

categories and quantity of exhibits displayed to visitors. The income for different 

categories of industries is calculated following the corresponding percentage. 
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Sections No Different categories Number of 
exhibits 

Percen
tage 
(%) 

Income/ 
year  (£) 

Raw  
materials 

1 Mining and mineral products 531 6.0 368,160 
2 Chemical and pharmaceutical products 118 1.3 79,768 
3 Substances used as food 162 1.8 110,448 
4 Vegetable and animal substances used 

in manufactures 
138 1.6 98,176 

Machinery 5 Machines for direct use, including 
carriages, railway and marine 
mechanism 

998 11.2 687,233 

6 Manufacturing machines and tools 631 7.1 435,656 
7 Engineering, Architecture, and Building 

contrivances 
224 2.5 153,400 

8 Naval Architecture, military 
engineering, &c. 

337 3.8 233,168 

9 Agricultural and horticultural machines 
and implements 

291 3.3 202,488 

10 Philosophical, musical, horological, and 
surgical instruments 

739 8.3 509,289 

Manufactur
es 

11 Cotton 65 0.7 42,952 
12 
& 
15 

Woollen and Worsted   501 5.6 343,616 

13 Silk and Velvet   80 0.9 55,224 
14 Flax and Hemp 96 1.1 67,496 
16 Leather, Saddlery and Harness, Boots 

and Shoes, Skins, Fur, and Hair   
335 3.8 233,168 

17 Paper, Printing, and Bookbinding 212 2.4 147,264 
18 Woven, Felted, and Laid Fabrics, Dyed 

and Printed (including Designs) 
94 1.1 67,496 

19 Tapestry, Carpets, Floor-cloths, Lace, 
and Embroidery 

403 4.5 276,120 

20 Articles of Clothing for immediate, 
personal, or domestic use 

218 2.5 153,400 

21 Cutlery, Edge and Hand Tools 50 0.6 36,816 
22 General Hardware, including Locks and 

Grates 
810 9.1 558,377 

23 Works in Precious Metals, Jewellery, 
&c. 

140 1.6 98,176 

24 Glass 100 1.1 67,496 
25 China, Porcelain, Earthenware, &c. 61 0.7 42,952 
26 Furniture, Upholstery, Paper Hangings, 

Decorative Ceilings, Papier Mache, and 
Japanned Goods 

536 6.0 368,160 

27 Manufactures in Mineral Substances, 
for Building or Decoration 

145 1.6 98,176 

28 Manufactures from Animal and 
Vegetable Substances, not being 
Woven or Felted 

201 2.3 141,128 

29 Miscellaneous Manufactures and Small 
Wares 

320 3.6 220,896 

Fine Arts 30 Sculpture, Models, and Plastic Art, 
Mosaics, Enamels, &c 

367 4.1 251,576 

Total - - 8,903 100 6,136,006 

Table 6.18 Number of exhibits in different categories (Great Exhibition, 1851) 
 

Because this research focuses on the national economic benefit and relevant 

environmental impact from the Great Exhibition and there is great difficulty in 
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discovering exactly what these are, two factors in terms of the total number of exhibits 

and the number of patents are combined here, and the category of transport 

(represented by the railway industry, because it was the main energy-consuming 

industry for transportation in the 1850s), is selected to be representative of the 

exhibition-related effect for estimating economic and associated environmental impact 

(assessed by ecological footprint). Secondly, the railway was an important 

transportation means for visitor travel to the exhibition and also a necessary tool for 

helping the construction of the Crystal Palace (Moser, 2002. p.25). Trains brought the 

prefabricated parts from factories and brought the heavy exhibits and provincial 

people who would not otherwise have come (Moser, 2002. p.25). In addition, the 

technological development of the railway also played a major part in the industrial 

revolution for local economic development (Deane and Cole, 1962, p.182).  

 

6.2.3.2 Economic-related ecological footprint 
 

The economic-related environmental impact is quantified here using the Ecological 

Footprint (EF) method (Wackernagel and Rees, 1996). The direct and indirect 

environmental impact caused by the event is translated first into energy consumption 

(GJ) and then to land area (gha) and the results comprehensively demonstrate the 

potential impact generated by visitors, exhibits and exhibitors. 

 

In order to work out the ecological footprint of the indirect impacts of the Great 

Exhibition the money has to be turned into ‘land’. Currently this is usually done by 

using a dollar/energy unit value. For example, EPA Victoria (2005, p.11) produced an 

input-output calculation model by translating 1996-1997 economic tables provided by 

the Australian Bureau of Statistics to the environmental footprints, and then were able 

to get footprint values per dollar of expenditure. Plan Bleu (2011) discussed the 

question of what is the impact of human activities on the environment by comparing 

the ecological footprint per unit of GDP of the Mediterranean countries. No such units 

were available for 1851. Section 6.2.3.2 sets out in detail how a land value was 

calculated for the part of the indirect economic benefit related to all categories in 

Table 6.18 that could be said to come under the umbrella of manufacturing and 

manufactured products, termed ‘mineral’ (as opposed to ‘animal’ or ‘vegetable’). To 

simplify the process the assumption is made that the detailed calculations of land 



Chapter 6 Historic case study: the Great Exhibition, 1851~1936 

 
	
  

106 

footprint related to the railways under the heading ‘machinery’ can be applied to all 

other entries in the overall category ‘mineral’. A similar method is applied to the animal 

and vegetable categories where the land to money transfer is based on the ecological 

footprint of the food sold at the 1851 exhibition. 

 

1. Economic-related direct environmental impact 

 

• EF from tickets sold by the Great Exhibition in 1851 

 

The environmental impact from tickets sold was mainly attributed to visitor travel. The 

method of input-output analysis was applied to calculate its ecological footprint.  

 

• EF from food and drink sold at the Great Exhibition in 1851 

 

The total ecological footprint of food and drink is found by multiplying the total weight 

of food sold and the average EF of each type of food. The average ecological footprint 

of conventional food used for the calculation is from UK data based on research into 

the ecological footprint of Cardiff (Cardiff Council, 2005). Food produced in the 1850s 

can be seen as organic food as it was grown with minimal, or without, synthetic 

chemical fertilizers and pesticides. Organic crops tend to give lower yields, however, 

there was no reliable data available for this study in terms of land requirements for 

organic agriculture in the UK in 1851 (Barrett et al, 2005; Collins, 2007). In this study it 

is assumed that production of organic and conventional food has similar land 

requirements.  

 

2. Economic-related indirect environmental impact 

 

The potential exhibition-related environmental impact from the Great Exhibition was 

quantified by looking at the ecological footprint of the railway industry (the reason has 

been described in section 6.2.3.1). The total ecological footprint of the railway industry 

stimulated by the Great Exhibition in the UK (1851-1860) includes the EF of land, 

construction of trains and railway tracks, construction of railway stations and 

operation of the railways (the reason for selecting the railway industry as the main and 

representative calculated model is stated in section 6.2.3.1).  
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• Land 

 

By the end of 1851, there were 6,696 miles of railway line open to traffic and 10,201 

miles of railway were opened to the public by 1860 (Deane and Cole, 1962, p232-233). 

The increase in opened railway line in 10 years was 3,505 miles (5,641,000m). In 

addition, the absolute minimum width of land needed for an English double track 

railway line is 30 feet (9.14 metres) (Greenleaf and Tyers, 1948, p.23). The width for a 

double track railway line is assumed here to be 10 metres. Because the type of rail 

tracks (single or double) built between 1851 and 1860 has not been found, the width 

for all rail lines is assumed here to be 10 metres. 

 

The area occupied by all new railway lines in UK 1851-1860 was 56,410,000 m2 (5,641 

hectares). To change this into global hectares a calculation method from McLaren et 

al (1998, p.337) and Monfreda et al (2004) was used. 

 

• Construction of trains and railway tracks 

 

1) Construction of trains 

 

The ecological footprint of the construction of trains is found by converting the 

embodied energy of new trains built from 1851 to 1860 in the UK, including the 

embodied energy of locomotives and wagons into land (the embodied energy of new 

trains means the total energy consumed for manufacturing the trains). The embodied 

energy of locomotives and wagons is multiplied by the number of products, weight of 

different types of products, and average embodied energy per tonne. 

 

The dominant builders of locomotives during the ten years under consideration are 

sourced from literature. By 1850 the industry contained approximately 20 specialist 

builders with Stephensons, Sharp Brothers (Manchester), E.B. Wilson (Leeds), Bury, 

Curtis and Kennedy (Liverpool), R. and W. Hawthorn (Newcastle Upon Tyne), William 

Fairbairn (Manchester) and Rothwell & Co. (Bolton) as the market leaders (Kirby, 1988). 

In this research, these seven leading builders are studied as the representative 

companies for estimating the embodied energy and ecological footprint of 
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locomotives built from 1851 to 1860. The numbers and types of locomotives produced 

by these seven builders from 1851 to 1860 (Lowe, 1975) are listed in Table 6.19. The 

total number of locomotives manufactured in the 1850s was 1,190. According to the 

literature, the types of locomotive for passenger trains were 0-4-0, 0-4-2, 2-2-2, 2-4-0 

and 4-2-0; and the locomotive type for freight trains was 0-6-0 (Table 6.19). 

 

Company Number of 
locomotives produced 

Types of locomotive 

Robert Stephenson and 
Company 

   300 (assumed)  4-2-0 

Sharp and Brothers    300 (max) 2-2-2, 0-4-2 
E.B. Wilson and Company    350 (max) 2-2-2, 2-4-0, 0-6-0 
Bury, Curtis, and Kennedy        0 Closed down in 1851 
R and W Hawthorn      80 (assumed) 2-2-2, 0-4-0 
William Fairbairn & Sons      80 (min) 0-4-0, 2-2-2, 2-4-0, 0-4-2 
Rothwell and Company      80 (assumed) 2-2-2, 4-2-0 
Total 1,190 Passenger trains: 0-4-0, 0-4-2,  

2-2-2, 2-4-0, 4-2-0 
Freight trains: 0-6-0 

Table 6.19 Number of locomotives produced by leading companies from 1851 to 
1860 in the UK (Lowe, 1989) 

 

Although no literature shows the unit weight of the different types of locomotive 

produced by these seven companies in the 1850s, the relevant weights of typical 

types of locomotive are listed in Table 6.20. The average weights for different types of 

locomotive used in the study are shown in Table 6.21. 

 

The total weight of the different types of locomotive manufactured by the different 

companies is 25,020 tonnes (21,229 tonnes for passenger and 3,791 tonnes for freight 

locomotives) (Table 6.22). 
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Date Name Company Type Size Weight 
1837 Vulcan * Charles Tayleur & Co., 

Vulcan Foundry, 
Newton-le-Willows 

2-2-2 8ft (2.46 metre) driving wheels 
and 4ft 6ins (1.38 metre) carrying 
wheels 

18¼ 
tonnes 

1838 Thunderer 
* 

R & W Hawthorn & 
Co., Newcastle 

0-4-0 6ft (1.85 metre) coupled driving 
wheels 

12 or 
12½ 
tonnes 

1838 Hurricane 
* 

R & W Hawthorn & 
Co., Newcastle 

2-2-2 10ft (3.08 metre) driving wheels 
and (probably) 4ft 6ins (1.38 
metre) carrying wheels 

11 
tonnes 
10 cwt 

1848 largest 
Crampton 
type 
engine ** 

- - Two cylinders 18 in. diameter by 
24 in. stroke, and the driving 
wheels were 8 ft. diameter 

35 
tonnes 

1851 Folkstone 
*** 

Robert Stephenson 
and Company 

4-2-0 Wheels 3 feet 6 inches (1.07 m) 
diameter, driving wheels 6 feet 
(1.83 m) diameter. Cylinders 15"x 
22" (380mmx560mm) 

26¼ 
Tonnes 

1880 - 
**** 

Dubs & Co., Glasgow, 
Scotland, Neilson & 
Co., Glasgow, 
Scotland  

0-4-2 
ST 

Total Wheelbase: 13' 0" 
Cylinders HP:  Two - 9 x 18" 

15.7 
tonnes 

1870 I.E. 
James 
***** 

Baldwin 2-4-0 48 in.  55,000 
lbs 
= 25 
tonnes 

1875 J. W. 
Bowker 
***** 

Baldwin 2-4-0 48 1/4 in. 65,000 
lbs 
= 30 
tonnes 

1868 William 
Bouch 
****** 

North Road Works 0-6-0 4ft 11½in coupled wheels and 
the boiler was pressed to 130psi 

32 tons 8 
cwt 
(=32.4 
tonnes) 

* Marshall, R. (2004). A history of Britain's broad gauge railways, retrieved 18 July 2010, from 
http://laluciole.net/gwr/gwr01a-earlylocos.html 
** Mike. (2007). The Story Of The Locomotive – 2, The Development of the Railway Engine after the 
Rainhill Trials, from http://mikes.railhistory.railfan.net/r114.html 
*** Wikipedia. (2010). Crampton locomotive, retrieved 18 July 2010, from 
http://en.wikipedia.org/wiki/Crampton_locomotive 
**** CLASS C 0-4-2 ST. (2010). Locomotive Specifications, retrieved 18 July 2010, from 
http://www.trainweb.org/nzsteam/c_0-4-2.html 
***** Nevada State Railroad Museum. (2008). V & T Locomotive Roster. Retrieved 18 July 2010, from 
http://www.nsrm-friends.org/nsrm09.html 
****** MacLean, J.S. (1923). The locomotives of the North Eastern Railway, 1841-1922. Newcastle, R. 
Robinson & Co., p.50. from http://www.steamindex.com/locotype/nerloco.htm 
Table 6.20 Weight of different types of locomotive 
 
Train Type Weight (tonne/item) 
Passenger trains 2-2-2 15.0 

0-4-0 12.0 
0-4-2 15.7 
2-4-0 25.0 
4-2-0 26.3 

Freight trains 0-6-0 32.4 

Table 6.21 Unit weight of different types of locomotive used in the research 
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Company Number of 
locomotives 
produced 

Type of 
locomotives 

Number Weight  
(tonnes) 

Total 
weight 
(tonnes) 

Robert Stephenson 
and Company 

300 (assumed)  4-2-0 300 26.25 7,875 

Sharp and Brothers 300  (max) 2-2-2 150 15 2,250 
0-4-2 150 15.7 2,355 

E.B. Wilson and 
Company 

350 (max) 2-2-2 116 15 1,740 
2-4-0 117 25 2,925 
0-6-0 117 32.4 3,791 

Bury, Curtis, and 
Kennedy 

0 Closed down in 
1851 

- - - 

R and W Hawthorn 80 (assumed) 2-2-2 40 15 600 
0-4-0 40 12 480 

William Fairbairn & 
Sons 

80 (Min) 0-4-0 20 12 240 
2-2-2 20 15 300 
2-4-0 20 25 500 
0-4-2 20 15.7 314 

Rothwell and 
Company 

80 (assumed) 2-2-2 40 15 600 
4-2-0 40 26.25 1,050 

Total 1,190 - 1,190 - 25,020 
* Values in imperial tons (1,016 kg) have been taken as tonnes (1,000 kg) for the sake of 
simplifying calculations. 

Table 6.22 Total weight of locomotives produced in the UK from 1851 to 1860 
 

In addition, most passenger carriages were constructed of wood in the 19th century 

(Passenger car (rail), 2010). In 1836 in America it was reported that the weight of a 

double car for a train was 4.17 tonnes (2.1tonnes/car) (Minor and Schaeffer, 1836, p. 

149). The weight for wagons for freight is assumed to be 2 tonnes per wagon, as 

these are lighter than passenger carriages. A passenger train is assumed to have had 

four carriages and the seating capacity of the carriages might vary between 12 and 33 

passengers (Darjeeling Himalayan Railway, 2009). Eight wagons are assumed for 

freight trains.  

 

2) Construction of railway tracks 

 

For a traditional railway, the dominant railway track form worldwide consists of steel 

rails supported on timber or pre-stressed concrete sleepers (ties) (Rail tracks, 2010). In 

this study, the embodied energy of railway tracks thus includes the energy embodied 

in the steel rails and timber sleepers. This is multiplied by the weight of materials, the 

embodied energy coefficients of different materials and the total new mileage opened 

from 1851 to 1860.  
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In the nineteenth century bullhead rails were used in the UK. Typical weights per rail 

are 40 to 50 kg/m (Mike, 2007). The volume of a timber sleeper is assumed to be 0.04 

m3 (2.5 long, 0.2 wide and 0.08 high). As there are assumed to be 3 timber sleepers 

supporting the rail per metre (Greenleaf and Tyers, 1948, p.11), the volume of timber 

sleepers is 0.12 m3 per metre.  

 
• Construction of railway stations 

 
According to the statistics, 718 stations were opened from 1851 to 1860 all over the 

world (List of railway stations, 2010), and 282 railway stations opened in the UK during 

the decade (Railway stations opened in 1851, 2010). The figure of 282 railway stations 

opened is used to calculate the embodied energy of stations in this research. 

 
• Operation of the railways 

 
The ecological footprint of railways also relates to the operating energy of railways 

opened from 1851 to 1860 in the UK. The operating energy of the railways is found by 

multiplying the energy intensity, number of trains, average distance of each trip and 

the average number of trips during the ten years.  

 
The energy intensity of steam trains was about 4.2 MJ/passenger-km for the 

calculation (this has been discussed in section 6.2.2.3). 

 
The average number of trips for railways (1851~1860) is referenced from the railway 

timetable on 50 selected important routes in 1850 and 1870 (Leunig, 2005). The 

average number of trips for the 50 important routes is 16 trips/route/day. The average 

distance of each trip is 143 km (measured by using Google Maps). If an average train 

travels at 50 km/h, and can operate for twelve hours a day, allowing for maintenance 

and for taking on coal and water, each train can make two return trips, or four trips in 

a day. The total number of locomotives manufactured from 1851 to 1860 was 1,190. 

Because all locomotives are regularly maintained, it is assumed only 1,000 new 

locomotives are operating at any one time, which is an additional 100 in each year.  

 
• Ecological footprint of exhibition-related industries from 1851 to 1860 in the 

UK 
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Based on the results of the EF of the railway industry, the total ecological footprint of 

the exhibition-related industries can be estimated by using the percentage distribution 

of exhibits among the different industries in the Great Exhibition. To simplify the 

calculation, the 30 classes of exhibits classified by the committee of the Great 

Exhibition (listed in Table 6.18) are divided into two main categories, of 

“Animal/vegetable” and “Mineral”. The ecological footprint of each category is 

converted from monetary value (income) to land usage.  

 

6.3 Results and analysis 
 

6.3.1 Building 
 
The results of quantification of energy consumption of the Crystal Palace, in its 

construction, operating phases are demonstrated in the sections below. 

6.3.1.1 Embodied energy 
 
This section provides the detailed results of calculation through the whole life cycle 

(including the construction, maintenance, and operation phases) of the Crystal Palace 

and compares its unit energy intensity to those of modern buildings.  

 
The total embodied energy of the Crystal Palace from 1851 to 1936, including the 

initial and recurring embodied energy (both at Hyde Park and the revised Sydenham 

version), is estimated to be 348,189 GJ (31 MJ/m2/year).  

 

 
IA=Initial embodied energy of Hyde Park Crystal Palace 
IB=Initial embodied energy for new components of Sydenham Crystal Palace 
M= Recurring embodied energy over 82 years 

Figure 6.11 Schematic diagram showing the recycling of components from the 
Hyde Park Crystal Palace to Sydenham Crystal Palace 
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Materials Building elements 

Embodied 
energy of 
Original (1851) 
(GJ) 

Embodied energy of 
rebuild and 
maintenance (1854-
1936) (GJ) 

Glass Main building, Colonnade  6,120 8,175 

Iron 
Columns, Girders, Pipes, Connection 
collars, Metal louvres, Roof trusses, 
Boilers, Colonnade 

157,925 84,625 

Wood - 13,592 0 
Concrete Foundations (footing) 1,078 1,438 
Brickwork Foundations  - 38,243 

Paint 
(Durability: 
5 years) 

Columns, Girders, Pipes, Connection 
collars, Metal louvers, Roof trusses, New 
iron elements built for Sydenham Crystal 
Palace, Boilers, Colonnade, Wood 

5,416 31,577 

Total - 184,131 164,058 
In all 348,189 GJ  (31 MJ/m2/year) 
Table 6.23 Embodied energy of the Crystal Palace in Hyde Park and Sydenham 

(1851-1936) 
 

In this research, the energy used for manufacturing the building elements of the Hyde 

Park Crystal Palace is defined as the initial embodied energy. The energy for new 

building elements and maintenance of original elements, which were used to construct 

the enlarged Sydenham Crystal Palace, is defined as the recurring embodied energy 

(Figure 6.11). The respective total embodied energy figures for the Hyde Park Crystal 

Palace (1851) and the additional materials and their maintenance for the Sydenham 

Crystal Palace (1854-1936) are 184,131 GJ and 164,058 GJ (Table 6.23). The increase 

from the move to Sydenham was mainly generated by the additional metal elements 

and maintenance (painting) of the iron and timber elements.  

 

6.3.1.2 Operating energy 
 

The total operating energy, which was only from the boilers of the Sydenham Crystal 

Palace, is estimated by the floor area and energy intensity for heating a normal 

greenhouse, to give 12,673,920 GJ (1.12 GJ/m2/year) , as shown in Table 6.24. 

 

 Area Energy intensity 
(GJ/m2/year) 

Useful life 
(years) 

Operating 
energy (GJ) 

Total 

Hyde Park Crystal 
Palace 

92,000 0 <1 0 
12,673,920 

GJ Sydenham Crystal 
Palace 

138,000 1.12 82 12,673,920 

Table 6.24 Operating energy of the Crystal Palace in Hyde Park and Sydenham 
(1851-1936) 
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Visitors from Regions  
Number of 

visitors 
(thousand) 

Distances travelled (km) 

Coal consumption  
(3.0 MJ/Passenger/ km, UK) 

(4.1 MJ/passenger /km, 
USA) (GJ) 

Wood consumption  
(3.5 

MJ/passenger/km)  
(GJ) 

Outer London 
boroughs 

- 747.6 9 20,185 - 

England 
(Expect London) 

 

North East 90 427 115,290 - 
North West 324 294 285,768 - 

Yorkshire and the 
Humber 

177 294 156,114 - 

East Midlands 303 193 175,437 - 
West Midlands 240 175 126,000 - 
East of England 196.5 87 51,287 - 

South West 141 184 77,832 - 
South East 28.5 90 7,695 - 

Wales - 330 230 227,700 - 
Scotland - 330 607 600,930 - 
Ireland - 330 413 408,870 - 

Europe 

* 26 
247  

(BerlinàHamburg) 
(ParisàLe Havre) 

19,266 - 

** 26 
115 

(Southamptonà 
London) 

8,970 - 

Americas 
*** 

1.3 
355 (coal) 

(BostonàNY) 
(WashingtonàNY) 

1,892 - 

1.3 
355 (wood) 

((BostonàNY) 
(WashingtonàNY) 

- 1,615 

**** 5 
115 

(SouthamptonàLondon) 
1,725 - 

Oceania - 0.4 
115 

(SouthamptonàLondon) 
138 - 

Asia - 0.4 
115 

(SouthamptonàLondon) 
138 - 

Africa - 0.4 
115 

(SouthamptonàLondon) 
138 - 

Total - - - 2,285,375 1,615 

In all Fuel consumption of steam trains: 4,573,980 GJ (one way = 2,286,990 GJ)  

* European visitors took steam trains to the main ports. They are assumed to come from Germany and France. 
**European visitors took steam trains to go to London when they arrived in the UK. 
***American visitors who did not live in New York (assumed to come from Boston and Washington, D.C.) took steam trains (coal or wood as the fuel) 
to go to New York. 
**** All American visitors took steam trains to go to London, after arriving in the UK. 

Table 6.25 Energy consumption of visitors taking steam trains in 1851 
 

Visitors Number of visitors (thousand) Distances travelled (km) 
Coal consumption of steamships 

(1.0 MJ/passenger/km) (GJ) 
Ireland 330 100 33,000 
Europe   52 564 29,328 

Americas     5 5,700 28,500 
Oceania       0.4 21,580 8,632 

Asia       0.4 19,070 7,628 
Total - - 107,088 

In all Fuel consumption of steamships: 214,176 GJ (one way = 107,088 GJ) 

Table 6.26 Energy consumption of visitors taking steamships in 1851
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6.3.2 Visitor travel 
 

The total energy consumption as a result of using horses, steam trains and 

steamships was 5,063,520 GJ. The energy consumed by horse-related transport was 

275,364 GJ (see section 6.2.2.5). The total energy consumed by steam trains was 

4,573,980 GJ, as shown in Table 6.25. Furthermore, the energy used by steamships 

was 214,176 GJ (Table 6.26). 

 

In addition, their CO2 emissions were 425,080 tonnes for travel by steam trains and 

19,918 tonnes by steamships (Table 6.27).  

 

Visitors from 

Steam train Steamship 
CO2 emissions by 

burning coal 
(0.093 kg CO2/MJ) 

(tonnes) 

CO2 emissions 
by burning wood 

(0 kg CO2/MJ) 

CO2 emissions by burning 
coal 

(0.093 kg CO2/MJ) (tonnes) 

Outer London 
boroughs 

1,877 - - 

England 
(Expect London) 

92575 - - 

Wales 21,176 - - 
Scotland 55,886 - - 
Ireland 38,025 - 3,069 
Europe 2626 - 2,728 

Americas 336 0 2,651 
Oceania 13 -    803 

Asia 13 -    709 
Africa 13 - - 
Total 212,540 0 9,959 

In all 
CO2 emissions of steam trains: 425,080 
tonnes (one way= 212,540 tonnes) 

CO2 emissions of 
steamships: 19,918 tonnes 
(one way = 9,959 tonnes) 

Table 6.27 CO2 emissions of visitors taking steam trains and steamships in 1851 
 

The total energy consumption and CO2 emissions of visitor travel (return) were 

5,063,520 GJ and 444,998 tonnes during the six months of the exhibition (Table 6.28). 
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 Fuel 
consumption 
(GJ) 

CO2 emissions 
(tonnes) 

Average CO2 
emissions 
(g CO2/pass-km) 

Average CO2 
emissions 
(g CO2/passenger) 

Horse 275,364 0     0   0 
Steam trains 4,573,980 425,080  280 64 
Steamships 214,176 19,918     93* 51 
Total 5,063,520 444,998 - - 
* The emission per passenger-km for ships is low because it is assumed that they are also 
carrying cargo.  

Table 6.28 Energy consumption and average carbon emissions of transport in 
1851 

 

6.3.3 Exhibition-related economic aspects 
The direct economic benefits were £256,437 and the indirect benefits were 

£61,360,060 (£6,136,006/year over 10 years) (this has been discussed in section 

6.2.3.1). The total exhibition-related economic profits contributed by the Great 

Exhibition from 1851 to 1860, thus, were calculated as £61,616,497 

(£256,437+£61,360,060). The economic-related direct and indirect environmental 

impacts are demonstrated below. 

 

1. Economic-related direct environmental impact 

 

The ecological footprint from direct economic income (the food and drink sold in the 

Great Exhibition) is calculated as 1,221 gha from May to Oct 1851 (Table 6.29), as the 

environmental impact from tickets sold was attributed to visitor travel.  

 
Types EF (gha) Types EF(gha) 
Bread     5.3 Savoury Patties   10.2 
Cakes 291 Macaroons     0.7 
Victoria biscuits     4.7 Preserved fruits      1.0 
Sausage rolls     7.5 Savoury pies   24.1 
Milk   43.7 Rich cakes     1.6 
Cream 185 Mustard     0.3 
Jelly     3 Meat 287 
Pickles     2 Potatoes   10.8 
Pineapples     0.1 Rough Ice   36.3 
Biscuits   23.8 Salt   32.6 
Coffee   28.7 Hams   62 
Tea     1.6 Pear syrup     1.4 
Chocolate   12.1 Schweppes soda water, lemonade, 

and ginger beer 
144.2 

Total 1,221 gha (0.000202gha/visitor) 

Table 6.29 EF of refreshments sold (Peskett, 2006; Cardiff Council, 2005) 
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2. Economic-related indirect environmental impact 

 

• Land 

 

The area occupied by all new railway lines in UK 1851-1860 was 56,410,000 m2 (5,641 

hectares). The land area occupied by new railways 1851-1860 was 12,467gha (Table 

6.30).  

 

Total length of increase in opened railway line 
from 1850 to 1860 

3,505 miles (=5,641,000m) 

Assumed width 10 m (Greenleaf and Tyers, 1948, p.23) 
Land occupied by railway line 56,410,000m2 (5,641,000×10)  
Ecological footprint of railway line 12,467gha  

Table 6.30 Calculation of the ecological footprint of railway lines 
 

• Construction of trains and railway tracks 

 

1) Construction of trains 

 
The ecological footprint of the construction of trains is found by converting the 

embodied energy of new trains built from 1851 to 1860 in the UK, including the 

embodied energy of locomotives and wagons into land. Table 6.31 shows the total 

embodied energy and ecological footprint of passenger and freight trains produced 

from 1851 to 1860 (40,788gha). 

 
Passenger 
trains 

Embodied energy per tonne for train 
manufacture and service 

113,600MJ/t (CarbonNeutral, 2008) 

Weight of locomotives 21,229 tonnes (1,073 items) 
Weight of carriages  9,013 tonnes (2.1t/each×4 

carriages=8.4tonnes)  
Total weight of passenger trains 30,242 tonnes 
Total embodied energy  3,435,491,200 MJ 
Ecological footprint  34,355gha 

Freight 
trains 

Embodied energy per tonne for train 
manufacture and service 

113,600MJ (CarbonNeutral, 2008) 

Weight of locomotives  3,791 tonnes (117 items) 
Weight of wagons 1,872 tonnes (2t/each×8 

wagons=16tonnes) 
Total weight of freight trains 5,663 tonnes 
Embodied energy of wagons 643,316,800 MJ 
Ecological footprint  6,433gha 

Total Total ecological footprint 40,788gha 

Table 6.31 Calculation of embodied energy of trains 
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2) Construction of railway tracks 

 
The total embodied energy of new railway tracks opened from 1851 to 1860 is 

13,887,529 GJ (Table 6.32). The total ecological footprint of railway tracks is 

138,875gha. 

 

Element
s of 
railway 
tracks 

Volume/
m 

Weight/m Embodied 
energy 
coefficient 

Total 
embodied 
energy/m 

New 
mileage 
opened 

Total 
embodied 
energy 

Steel rails 0.01 
m3/m 

80 kg/m (two 
rails per m) 
(Density: 
7,700kg/m3)* 

 24.40 
MJ/kg** 

1,952 
MJ/m 

5,640,751
m 
(3,505 
miles) 

11,010,746 
GJ 

Timber 
sleepers 

0.12 
m3/m 

60 kg/m 
(average 
density of 
pine: 500 
kg/m3)*** 

8.50 
MJ/kg** 

510 MJ/m 5,640,751
m 
(3,505 
miles) 

  2,876,783          
GJ 

Total - - - 2,462 
MJ/m 

- 13,887,529 
GJ 

*Elert, G. (2005). Density of steel. The Physics FactbookTM. Retrieved August 2, 2010, from 
http://hypertextbook.com/facts/2004/KarenSutherland.shtml 
** Hammond, G., & Jones, C. (2008). Inventory of carbon & energy (ICE), Version 1.6a. Sustainable 
Energy Research Team (SERT), Department of Mechanical Engineering, University of Bath, UK. 
*** Simetric. (2009). Weight of various types of wood. Retrieved July 10, 2010, from 
http://www.simetric.co.uk/si_wood.htm 
Table 6.32 Embodied energy of new railway tracks opened from 1851 to 1860 
 

• Construction of railway stations 

 

Most of the railway stations built in the UK during the decade in question were 

constructed of wood or brick. The average floor area of the station buildings was 

around 470 m2 (135m2-810m2). If construction of railway stations was similar to 

conventional houses in the UK, the average embodied energy per square metre of 

railway stations could be assumed to be 5 GJ/m2 as the embodied energy of load-

bearing masonry houses ranges from 4.5GJ/m2 to 5.5 GJ/m2 (Balderstone, 2004). The 

total embodied energy for railway stations built from 1851 to 1860 in the UK is 

calculated as 11,750 GJ (5GJ/m2×470m2×282), giving an EF of 118 gha. 
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• Operation of the railways 

 

The total operating energy for new passenger railways in the UK from 1851 to 1860 

would be 39,100,000 GJ (4 trips/train/day × 365 days ×  143 km/train/trip ×  0.375 

GJ/km × 500 locomotives (average new available over ten years)). The freight trains 

are assumed to have run at night and assumed to consume the same energy for 

operation as the passenger trains, as although there are fewer locomotives, they are 

likely to be pulling much greater loads. The total operation energy for trains was 

78,300,000 GJ and the total EF for operation is 783,000 gha.  

 

The total ecological footprint generated from the railway industry during 10 years was 

975,248 gha, including the EF of land, construction of trains, railway tracks, stations, 

and operation of the railways, as shown in Table 6.33. Operating the railways 

consumed most of the energy and resources. 

 

Factor EF (gha) 
Land 12,467 
Construction of trains and railway tracks 179,663 
Construction of railway stations 118 
Operation of the railways 783,000 
Total for 10 years 975,248 

Table 6.33 Ecological footprint of exhibition-related railway industry from 1851 to 
1860 in the UK 

 

• Ecological footprint of exhibition-related industries from 1851 to 1860 in the 

UK 

 

The annual exhibition-related income of the railway industry from 1851 to 1860 was 

£687,233 (shown in Table 6.18) and the annual EF for railway industry was 97,525 gha 

(Table 6.33). This means 1gha resource consumption relates to £7.0 of income for the 

railway industry every year (Table 6.34). This railway footprint is used to represent the 

footprint of all “Mineral” exhibit categories. The income of the “Mineral” category was 

£4,043,627/year, which equates to an ecological footprint of 577,661gha per annum.  

 

For the category of “Animal/vegetable”, a similar method is used and the result is 

converted from the EF of refreshments sold at the Great Exhibition. The income from 

refreshments sold was £45,000 and their total EF was 1,221gha (Table 6.29), which 
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means 1gha of resource consumption generated £36.86 in income for food sold. The 

ecological footprint for the “Animal/ vegetable” category is, therefore, 57,098gha/year.  

 

Category Income Income/ EF EF/year Total EF 
(gha) 

Mineral* £4,043,627 
/year 

£7.0/gha/year 
(£687,233 /97,525gha) 

577,661gha/year 
(£4,043,627/7.0) 

5,776,610 

Animal/ 
vegetable** 

£2,104,648 
/year 

£36.86/gha/year 
(£45,000/1,221gha) 

57,098gha/year 
(£2,104,648/36.86) 

   570,980 

Total £5,905,213 
/year 

- - 6,347,590 

*Including classes of 1,2,5,6,7,8,9,10,21,22,23,24,25,27,29,30 (in Table 6.18) 
**Including classes of 3,4,11,12,13,14,15,16,17,18,19,20,26,28 (in Table 6.18) 

Table 6.34 Ecological footprint of exhibition-related industries from 1851 to 1860 
in the UK 

 

6.4 Whole life-cycle impact 
 

Total ecological footprint of this case study including three aspects was 686,973gha in 

a year. The average ecological footprint of each aspect is demonstrated in Table 6.35. 

 

 Total ecological 
footprint in a year 
(gha/year) 

Average ecological 
footprint 
(gha/visitor/year) 

Average ecological 
footprint 
(gha/m2/year) 

Crystal Palace 1,579 0.0003 0.01 
Visitor travel going to 
the building 

50,635 0.0084 0.37 

Exhibition-related 
economic aspects 

634,759 0.1051 4.60 

Total 686,973 0.1138 4.98 

Table 6.35 Total ecological footprint of the case study 
 

• Further comparisons 

 

The further comparison is made between the ecological footprint of the 1851 

international event and the 2003/04 FA Cup Final as studied by Collins et al (2007b) 

(Table 6.36). 
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Factors Great Exhibition (6 months) 
 (41,939 visitors/day)  
(Opened six days per week) 

2003/04 FA Cup Final (1 day) 
(Collins et al, 2007)  
(73,069 visitors) 

 Total EF (gha) Average  Total EF (gha) Average  
Food 1,221  

(6 months) 
0.0002 
 gha/visitor 

1,381 0.189  
gha/visitor 

Building 130,221 
 (82 years) 

0.0000008 
gha/visitor/day 

       0.10 0.00001 
gha/visitor/day 

Travel 50,635  
(6 months) 

0.0084  
gha/visitor 

1,670  0.228  
gha/visitor 

Event-related 
economy 

6,347,590  
(10 years) 

0.1051  
gha/visitor 

- - 

Table 6.36 Comparison of EF (four factors) between the Great Exhibition and 
2003/04 FA Cup Final 

 

Collins et al (2007b) calculated the ecological footprint of food consumption, 

infrastructure, visitor travel, and waste generated from the day of the FA Cup Final. 

The objective for the comparison here is to demonstrate whether the event-related 

environmental impact has been mitigated in the context of the development of 

sustainable technologies. Through the comparison, the results also assist researchers 

and policy-makers in exploring the problems embodied in the operation of large 

events.  

 

Food. Food consumption for the day of the FA Cup Final was calculated as 0.189gha 

per visitor, which was much higher by 945 times than the average for the food 

consumed daily by a visitor to the Great Exhibition in 1851 (0.0002 gha). Although it is 

not clear whether people in the 19th century needed less food than now or whether 

people living in modern society waste more food than before, one factor is the fact 

that no alcohol, with its high EF (Cardiff Council, 2005) was served at the Great 

Exhibition (Gibbs-Smith, 1950, p.34).  

 

Building. The average ecological footprints of the buildings for the Great Exhibition 

and the FA Cup Final are not directly comparable. The reason is that the average 

footprint of the stadium for the FA Cup Final was sourced from average data of 

general infrastructure in the UK, including schools and offices. Secondly, the FA Cup 

calculation is based on the assumption that the stadium has 100-year lifespan with an 

estimated 100 million visitors during that period (Collins et al, 2007). The assumption 

for this lifespan can be argued, because some buildings have not had the long useful 
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life predicted, for example the Dutch Pavilion at the Hannover Expo (Ivar hagendoorn, 

2000) was only used for 5 months. The Wembley Stadium was opened by King 

George on 23rd April 1924 (Wembley Stadium, 2010) and a new stadium was opened 

on the same site in 2007, an 82 year life. Stadia are also renovated during their lifetime, 

as has happened at Eden Park in New Zealand opened in 1914, which has been 

undergoing major renovation for the 2011 Rugby world Cup (EDEN PARK, 2010). 

 

Travel. An average ecological footprint for visitor travel to the Great Exhibition and the 

FA Cup Final is found in both studies, although the transport modes were different. 

The travel footprint was 0.0084gha/visitor for the former event and 0.228gha/visitor for 

the latter.  

 

Event-related economic stimulus. The average ecological footprint from economic 

factors was 0.11 gha per visitor for the Crystal Palace. However, there is no relevant 

study for the FA Cup Final because this was a different sort of event that did not set 

out to boost economic activity.  

 

Waste. Collins et al (2007) indicated that the waste for the FA Cup Final was 

calculated for separate categories, including glass, food, paper and card, plastic, 

metals, and miscellaneous. The waste from a historic event, such as the Great 

Exhibition, is difficult to discover, so the factor of waste is not compared here, 

although this could be a subject of further research. 

 

6.5 Chapter conclusion 
 

The study has indicted that the total energy consumption and ecological footprint of a 

major event over the whole cycle has increased from the 1850s to the present. In 

addition, the event-related economic factor has a significant impact, which is usually 

ignored because it is invisible. The consumption patterns of visitors, such as transport 

modes used or types of food consumed, do impact on the ecological environment. 

The results also show that operating a large scale event can generate a 

correspondingly large ecological footprint irrespective of when the event occurred.
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Chapter 7 Conventional case study: Exhibition activities 
at the Shanghai Exhibition Centre between 1955~2011 

 

7.1 Introduction  
 

This chapter looks at the energy and resource consumption of the national exhibitions 

held in the Shanghai Exhibition Centre, China, in a year, as a case study of a 

conventional exhibition venue. The energy and resource consumption of the Shanghai 

Exhibition Centre, visitor travel, and exhibition-related economic aspects will be 

quantified (the research boundary has been explained in section 5.1). The main reason 

for selection was explained in section 5.3. The method of quantitative work, results, 

and related analysis of this case study are described in the following sections.  

 
The Shanghai Exhibition Centre holds exhibitions regularly at the national level 

(7,500,000 visitors annually2). It was designed by architects from the Soviet Union and 

built in 1955. Some structural elements were reinforced, and it was renovated, with 

the main elevation redecorated and two more exhibition halls added, in 2001. The total 

floor area of this building is 80,000 square metres. There are four Exhibition Halls 

together with one Convention Hall providing space for both display and convention 

activities. Although it was built half a century ago, its structure and materials can serve 

as a typical example representing this type of public building in a humid subtropical 

climate in Eastern Asia. 

 

7.2 Method 
 

This section aims to explain the detailed methods for quantifying the whole life cycle 

energy and resource consumption of the conventional exhibition venue case study, 

based on the Shanghai Exhibition Centre itself (7.2.1), annual visitor travel (7.2.2), and 

annual exhibition-related economic aspects (7.2.3). 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 This data was calculated from the average number of visitors attending an exhibition 
in a year in China. 7,500,000 is the average number of visitors to a national exhibition 
in China. Source from http://shbbs.soufun.com/1210195822~-1~3919/37355969-
37355969.htm, retrieved on 5th November, 2008 (in Chinese). 
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7.2.1 The Building 
 

Energy consumption of the building comprises the embodied energy (7.2.1.1), 

operating energy (7.2.1.2), and building demolition-related energy (7.2.1.3). The 

definition of these sorts of energy usage has been explained in Chapter 5. 

 

7.2.1.1 Embodied energy 
 

The embodied energy of the building includes the energy consumed by the initial and 

recurring building processes. In terms of the case study building, the initial energy was 

embodied in the original construction of the Exhibition Centre in 1955, and the 

recurring energy was generated by replacement of materials through maintenance, 

renovation and construction of the new parts of the building from 1956 to 2011 (the 

useful life is thus defined as 56 years). 

 

The calculation of the initial embodied energy of the case study building uses the 

quantities of materials (volume, weight) and the relevant energy intensities. Relevant 

parameters, such as the size or weight of components, are sourced from literature and 

the official website of the Shanghai Exhibition Centre. The bills of quantity of 

construction materials and drawings of the detailed building plans were prepared and 

used for quantitative calculations in this research (SMTA, 2010). 

 

The materials quantified for the Shanghai Exhibition Centre are shown in Table 7.1. 

The main structure of the building (foundations, columns, beams, floors, walls, 

staircases, and roof) was built of concrete. Cement mortar, granite, and paint were 

used for the finishes. Glass, steel, timber, and copper were used for windows and 

doors and for decoration. Other construction materials, such as plywood and plaster, 

were used to form the ceilings. 

 

 

 

 

 



Chapter 7 Conventional case study: Exhibition activities at the Shanghai Exhibition Centre between 

1955~2011 

	
  

	
  
	
  

125 

Table 7.1 Material breakdown of the Shanghai Exhibition Centre (Appendix B) 
 

A main factor in the analysis, the energy intensities of materials used for the 

calculation of the embodied energy of the case study building, are taken from typical 

Australian data (from Treloar, 1994). Owing to the fact that establishment of the 

Chinese embodied energy database (Sino Centre) is ongoing, values for Chinese 

energy intensities are substituted with Australian data for energy consumption 

because of the similar proportions of fuel mix for electricity generation compared to 

other countries, as shown in Table 7.2. Research which has applied the Australian 

data to similar calculations has demonstrated appropriate results in terms of the 

embodied energy of case studies in China (Chen et al, 2001; Wang and Cai, 2006). 

 

In addition to the building fabric, the impact of the energy embodied in the building 

services needs to be considered in the calculation of this case study building. From a 

literature review, Cole concludes that the total initial embodied energy used in the 

building services for a general concrete office building (no underground parking) 

accounts for 24.5% of the total energy embodied in all the materials (Cole and Kernan, 

1996). However, in Treloar’s research (1996), the building services represent 19% of 

the embodied energy of a commercial building in Melbourne (Cole and Kernan, 1996). 

Pullen used 20% when calculating the embodied energy of building services for a 

campus building in Australia in 2000 (Pullen, 2000). Thus, in this study a proportion of 

20% of the total embodied energy of the building has been used for calculating the 

extra embodied energy of the building services.  

Materials Components Volume Weight 
Reinforced concrete Foundations,  Columns, Beams, 

Floors, Walls, Staircases, Roof 
43,010 m3 107,527 t 

Damp proof membrane Foundations 15,305 m2 214 t 
Cement mortar 1:3 Columns, Beams, Floors, Walls, Roof 1,813 m3 3,265 t 
Granite Columns 3726 m3 90 t 
Paint Columns, Walls, Ceiling, Roof 96,643 m2 20 t 
Terrazzo Staircases, Floors 653 m3 1502 t 
Rockwool Wall, Roof 726 m3 18 t 
Float glass Windows, Doors 3,563 m2 88 t 
Steel Windows 13.6 m3 106 t 
Timber Windows, Doors 85 m3 51 t 
Copper Doors 1.25 m3 11 t 
Plywood Ceiling 8221 m2 16 t 
Plasterboard Ceiling 4989 m2 80 t 
Plaster Ceiling 293 m3 381 t 
Asphalt Roof 18900 m2 189 t 
Stone Staircases 17 m3 44 t 
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China (2007) 
Fuel mix Coal Hydro Nuclear Others 
Percentage 87.38 7.11 1.72 3.79 
CO2 emissions 
factor  

1 kg/kWh 

UK (2005) (Mithraratne et al., 2007) 
Fuel mix Natural gas Coal Nuclear Renewables Others 
Percentage 39.3 33.4 20.6 3.8 2.9 
CO2 emissions 
factor  

0.46 kg/kWh 

Australia (2005) (Mithraratne et al., 2007) 
Fuel mix Black coal Brown coal Gas Hydro Oil Others 
Percentage 54.8 21.9 14.2 6.8 1.3 1.0 
CO2 emissions 
factor  

1.051 kg/kWh 

USA (2007) (EIA, 2009) 

Fuel mix Coal Nuclear 
Natural 
gas 

Hydro 
Other 
renewables 

Petrole
um 

Other 
gases 

Percentage 48.5 19.4 21.6 5.8 2.5 1.6 0.3 
CO2 emissions 
factor  

0.648  kg/kWh (EIA) 

NZ (2004) (Mithraratne et al., 2007) 
Fuel mix Hydro Gas Coal Wind Geothermal Others 
Percentage 63.9 16.1 9.7 1.1 6.4 2.7 
CO2 emissions 
factor  

0.1 kg/kWh 

Table 7.2 Fuel mix of electricity generation in different countries 
 

Secondly, recurring embodied energy is calculated in terms of the energy required for 

repairs, maintenance, and refurbishment. This study looks at the life-cycle of the 

building over 56 years (1955-2011). Energy consumption for maintenance and 

replacement of construction materials is quantified, according to the useful life of 

different construction materials. The method of calculation for recurring embodied 

energy is the same as that for initial embodied energy. 

 

7.2.1.2 Operating energy 
 

The energy consumption of the Shanghai Exhibition Centre is found by multiplying the 

construction area and the value for electricity usage per square metre. Electricity 

consumption for the building is not known, but in Shanghai public buildings consume 

150~300 DU (1DU=1000Wh) per square metre per year (Ren, 2007).  

 

From 1955 to 2001, the Shanghai Exhibition Centre used diesel boilers as the building 

heating system. After the building renovation in 2001, air-conditioning was installed for 
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heating and cooling. Figures are known for similar buildings, the Wu Han International 

Exhibition Centre, China; and the 21st Century Museum of Contemporary Art, 

Kanazawa, Japan. These are discussed below to allow comparison with the situation 

in Shanghai. 

 

The gross construction area of Wu Han International Exhibition Centre is 126,000 m2. 

According to published statistics, electricity consumption apart from air conditioning 

of this building is 36,280 kWh per day. If this building opens every day, its total 

consumption in a year will be 13,242,200 kWh (Zhang et al, 2004). This makes 

105kWh/m2/year for the electricity consumption apart from the air conditioning load.  

 

The total internal floor area of the 21st Century Museum of Contemporary Art is 17,093 

m2 and it is circular in form, with a diameter of 112.5 m (Kanazawa, 2004). Its average 

electricity consumption (per month) is about 300,000 kWh (2007). Therefore, the total 

electricity use is about 3,600,000 kWh a year. This is 210kWh/m2/year.  

 

In addition, according to a speech made by the Vice Minister of Construction of China 

(2004), the average electricity consumption of a government office located in the 

western area of China (per square metre per year) is 132 kWh. Furthermore, the 

average electricity consumption if it were located in the eastern area of China (per 

square metre per year) would be 139 kWh (Xing, 2007).  

 

Given the two values of 105kWh/m2/year and 210kWh/m2/year for two exhibition type 

buildings with and without air-conditioning, the figures quoted by the Vice Minister of 

Construction and an additional figure of 150kWh/m2/year for all public buildings in 

Beijing (buildings over 20,000 m2 with a centralized air-conditioning system) (Jiang and 

Xue, 2004), this research uses a average value of 124kWh/m2/year (446 MJ/m2/year) in 

the following calculations of energy use for the case study exhibition building ((105 × 

46 + 210 × 10) ÷56).  

 

The gross floor area of the Shanghai Exhibition Centre, which includes the first floor 

exhibition area and the outdoor exhibition venue, is 93,000 m2 and the constructed 

area which means the whole footprint area of the exhibition building is 80,000 m2. The 
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electricity consumption of the Shanghai Exhibition Centre is assumed to be 9,920,000 

kWh/year (35,712,000 MJ/year).  

 

7.2.1.3 Building demolition-related energy 
 

The energy consumption from building demolition is assumed to be negligible in this 

study. The reason for this has been explained in section 5.1. 

 

7.2.2 Visitor travel 
 

Both of the methods of calculating energy consumption and carbon emissions 

generated from transportation are described in this section. This was the case study 

for which the calculation method of visitor travel was first derived. The method was 

then used for the other case studies. 

 

The energy consumption of visitor travel (transportation) can be quantified and 

demonstrated by the number of users, the distances of travel, and the energy intensity 

of different transportation modes. 

 

7.2.2.1 Number of visitors 
 

In Shanghai, the public transport modes include underground, taxi and bus. The 

official reporting category ‘private automotive vehicles’ consists of cars and 

motorcycles; whereas ‘non-motorized transport’ means bicycle, electric bike and 

scooter even though a scooter uses oil as its energy source.  

 

According to an interview with the Party Committee Associate Secretary of Shanghai 

Transportation Bureau in 2007, transport usage in Shanghai shows 27% of people 

taking trips using public transport, and 4.86%, 6.21% and 15.93% of people choosing 

underground, taxi and bus respectively. Moreover, just over 17.5% of people use a 

private automotive vehicle, which includes 2.1% using a motorcycle (Wang, 2005) and 

1.78%, 11.06%, 2.56% in three sizes of cars based on the market share for different 

cars in 2007 (Zhang, 2008; Chen et al, 2009). The percentage of people in the ‘non-
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motorized vehicle’ category was 28.5%, the majority of which used bicycles (22.14%), 

with 5.53% using an electric bike and 0.83% a scooter (Liu et al, 2008). Finally, 27% 

opted to walk for their journey (Table 7.3).  

 

Mode Number of 
people per year 

Mode (detail) Percentage of people 
per year 

Average Number 
of people per 

year 
Public 

transport 
2,025,000 

 (27%) 
Underground      4.86% 364,500 

Taxi      6.21% 465,750 
Bus     15.93% 1,194,750 

Private 
automotive 

vehicle 

1,312,500  
(17.5%) 

Motorcycle       2.10% 157,500 
Car  1.78%(Small) 133,500 

  11.06% (Medium) 829,500 
2.56%(Large) 192,000 

Non-
motorized 

vehicle 

2,137,500 
(28.5%) 

Bike     22.14% 1,660,500 
Electric bike       5.53% 414,750 

Scooter       0.83% 62,250 
Walk 2,025,000 

(27%) 
- - 

2,025,000 

In all 7,500,000 people per year 
Small= Small petrol car (up to 1.4 litre engine) (Defra, 2007);  
Medium= Medium petrol car (1.4-2.0 litres) (Defra, 2007);  
Large= Large petrol car (above 2.0 litres) (Defra, 2007) 
The percentage of people using the underground accounted for 18% of public transport use in 2007. 
This figure is expected to increase to 40% in 2012 when 12 new underground lines will be completed 
(Zhang, 2007).  
Table 7.3 Average number of visitors going to Shanghai Exhibition Centre by 

different transport modes 
 

The average number of visitors going to the Shanghai exhibition centre is about 

7,500,000 each year. These numbers were generated from the number of visitors 

going to a major exhibition and the number of such exhibitions each year (Jiang, 2006). 

Assuming an average of 7.5 million visitors a year, the numbers of visitors using 

different modes of transport are shown in Table 7.3. 

 

7.2.2.2 Distances of visitor travel 
 

The number of visitors travelling with regard to taking different transport modes was 

recalculated from the percentage breakdown of the total Shanghai population living in 

different districts. There are 19 districts in Shanghai. However, the underground and 

bus routes are located in only 12 of the districts. Further data are shown in Tables 7.4, 

7.5. Note that where transport modes are unavailable no people have been assigned 

to these in the tables. It is also assumed that cost means that people will not use a 
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taxi if they live a long way from the centre in the outlying districts 13-19. Because of 

the number of different transport modes, these have been split between the two tables, 

starting with public transport and moving to private transport. 

 

Another variable that needed consideration was the distance from the Shanghai 

Exhibition Centre to every district. The average point at which visitors can take the 

underground or buses to reach the destination was chosen by using the mid-point of 

access to public transport. Twelve spots located on the mid-points of access to public 

transport routes in the twelve districts were selected. The visitors from other districts 

which do not have public transport were assumed to use cars and the average 

distances they travelled were assumed to be from the mid-points of each district to 

the Shanghai Exhibition Centre.  
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Area The percentage 
of population 

The number 
of visitors 
(thousand) 

The number of people taking various modes (thousand) 
Underground 

(4.86%) 
Taxi (6.21%) Bus (15.93%) Motorcycle 

(2.1%) 
Small petrol car 

(1.78%) 
1 6.3% 473 22.97 29.34 75.27 9.93 8.41 
2 5.1% 383 18.59 23.75 60.94 8.04 6.81 
3 5.7% 428 20.78 26.55 68.10 8.98 7.61 
4 7.8% 585 28.43 36.33 93.19 12.29 10.42 
5 4.4% 330 16.04 20.49 52.57 6.93 5.88 
6 2.3% 173 8.39 10.71 27.48 3.625 3.07 
7 4.4% 330 16.04 20.49 52.57 6.93 5.88 
8 13.9% 1043 50.67 64.74 166.07 21.89 18.56 
9 6.5% 488 23.69 30.28 77.66 10.24 8.68 

10 2.3% 173 8.39 10.71 27.48 3.625 3.07 
11 6% 450 21.87 27.95 71.69 9.45 8.01 
12 6.4% 480 23.33 29.81 76.47 10.08 8.55 
13 3.9% 293 - - - 35.10 (12.00%) 29.75 (10.17%) 
14 5.3% 398 - - - 47.70 (12.00%) 40.43 (10.17%) 
15 3.7% 278 - - - 33.30 (12.00%) 28.23 (10.17%) 
16 3.8% 285 - - - 34.20 (12.00%) 28.99 (10.17%) 
17 3.9% 293 - - - 35.10 (12.00%) 29.75 (10.17%) 
18 3.3% 248 - - - 29.70 (12.00%) 25.17 (10.17%) 
19 5.0% 375 - - - 45.00 (12.00%) 38.14 (10.17%) 

In all 100% 7500 235.84 301.34 773.00 372.09 315.36 

Table 7.4 The number of visitors taking different transport mode in 19 Districts (part 1) 
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Area 

The 
percentage 

of 
population 

The number 
of visitors 
(thousand) 

The number of people taking different transport modes (thousand) 

Medium petrol car 
(11.06%) 

Large petrol car 
(2.56%) 

Bike 
(22.14%) 

Electric bike 
(5.53%) 

Scooter 
(0.83%) 

Walk 
(27%) 

1 6.3% 473 52.26 12.10 104.61 26.13 0.39 127.58 
2 5.1% 383 42.31 9.79 84.69 21.15 0.32 103.28 
3 5.7% 428 47.29 10.95 94.65 23.64 0.36 115.43 
4 7.8% 585 64.70 14.98 129.52 32.35 0.49 157.95 
5 4.4% 330 36.50 8.45 73.06 18.25 0.28 89.10 
6 2.3% 173 19.08 4.42 38.19 9.54 0.14 46.58 
7 4.4% 330 36.50 8.45 73.06 18.25 0.28 89.10 
8 13.9% 1043 115.30 26.69 230.81 57.65 0.87 281.48 
9 6.5% 488 53.92 12.48 107.94 26.96 0.41 131.63 

10 2.3% 173 19.08 4.42 38.19 9.54 0.14 46.58 
11 6% 450 49.77 11.53 99.63 24.89 0.38 121.50 
12 6.4% 480 53.09 12.29 1074.34 26.55 0.4 1310.18 
13 3.9% 293 184.86 (63.2%) 42.79 (14.63%) - - - - 
14 5.3% 398 251.22 (63.2%) 58.16 (14.63%) - - - - 
15 3.7% 278 175.38 (63.2%) 40.60 (14.63%) - - - - 
16 3.8% 285 180.12 (63.2%) 41.70 (14.63%) - - - - 
17 3.9% 293 184.86 (63.2%) 42.79 (14.63%) - - - - 
18 3.3% 248 156.42 (63.2%) 36.21 (14.63%) - - - - 
19 5.0% 375 237 (63.2%) 54.86 (14.63%) - - - - 

In all 100% 7500 1959.64 453.64 2148.69 268.34 8.06 2620.35 

Table 7.5 The number of visitors taking different transport modes in 19 Districts (part 2) 
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7.2.2.3 Energy intensity of different transport modes 
 

The energy intensity of each different transport mode, including underground, taxi, car, 

bus, motorcycle, electric bike, and scooter, in China is sourced from available 

literature and listed in Table 7.6. 

 

Modes Fuel Energy intensity 
( MJ/passenger-
km) 

Reference 

Underground Electricity 0.071  Zhang, 2010, p.39 
Taxi Fossil fuel 2.494  Zhang, 2010, p.39 
Car Small Fossil fuel 1.467  

Zhang, 2010, p.39 Medium Fossil fuel 2.304  
Large Fossil fuel 3.133 

Bus Fossil fuel 0.648  Xie, Huang and Ma, 2010; 
Li and Wu, 2008 

Motorcycle Fossil fuel 1.000  IFEU, 2008, p.32 
Electric bike Electricity 0.036 Li, 2005 
Scooter Fossil fuel 0.086  IFEU, 2008, p.32 

Table 7.6 Energy intensity of different transport modes in China 
 

7.2.2.4 CO2 emissions coefficients 
 

Carbon emissions generated from visitors going to the Shanghai Exhibition Centre are 

also calculated by combining the number of visitors, distance of travelling, and 

average emissions of different transport modes. The number of visitors taking different 

transport modes to go to the Shanghai Exhibition Centre and the distances of 

travelling are the same as the figures provided in the last section. 

 

The CO2 coefficients of different transport modes in Shanghai are converted by energy 

value to carbon dioxide equivalent value. Using 1 kWh of grid electricity can generate 

0.839 kg CO2 in China (U.S. Department of Energy, 2007). Burning 1 kWh of petrol 

emits 0.24176 kg CO2 (Carbon Trust, 2011). The coefficients are listed in Table 7.7. 
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Modes Fuel CO2 emissions 
coefficients 
( g/passenger-
km) 

Calculation 

Underground Electricity   16.6 0.071× 0.2778 × 0.839 × 1000 
Taxi Fossil fuel 167.5 2.494 × 0.2778 × 0.24176 × 1000 
Car Small Fossil fuel   98.6 1.467× 0.2778 × 0.24176 × 1000 

Medium Fossil fuel 155.0 2.304× 0.2778 × 0.24176 × 1000 
Large Fossil fuel 210.0 3.133× 0.2778 × 0.24176 × 1000 

Bus Fossil fuel   43.5 0.648× 0.2778 × 0.24176 × 1000 
Motorcycle Fossil fuel   67.2 1.000 × 0.2778 × 0.24176 × 1000 
Electric bike Electricity     8.4 0.036× 0.2778 × 0.839 × 1000 
Scooter Fossil fuel     5.8 0.086 × 0.2778 × 0.24176 × 1000 

Table 7.7 CO2 emissions coefficients of different transport modes in China 
 

7.2.3 Exhibition-related economic aspects 
 

7.2.3.1 Exhibition-related economic income 
 

The exhibition industry, as a service industry, generally consumes fewer natural 

resources than manufacturing industries. However, the exhibition-related indirect 

effect, which has extremely large potential economic profits, can be assumed to be 

the much more significant factor in terms of consuming resources and reducing 

environmental quality.  

 

The exhibition-related economic impact and subsequent environmental deterioration 

of the Shanghai national exhibitions can be separated into two principal parts – one is 

the direct effect from the exhibition activities (e.g. the impact of exhibitions, such as 

the selling of tickets and related services), the other part is the indirect impacts, which 

means the additional effect on the environment generated from the increasing 

production of exhibiting manufacturers or the higher consumption of goods stimulated 

by the exhibitions. 

 

The direct environmental effect from the exhibition activities is estimated by the level 

of activity of the local exhibitions industry, population, and the national Ecological 

Footprint intensity of China. From the literature review, the monetary output of the 

Shanghai exhibition industry was 1,800,000,000 RMB in 2001, which accounted for 

about 0.4% of total GDP in Shanghai (OLGMEDIA, 2002). Additionally, the Shanghai 

Bureau of Statistics reported the population of Shanghai in 2001was about 16,800,000.  
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7.2.3.2 Economic-related ecological footprint 
 

In this section, resource consumption of exhibition-related economic aspects is 

quantified by the Ecological Footprint method. The Ecological Footprint intensity is 

defined as “the ratio of the EF and the real status of the economic output, which 

depicts the resource consumption intensity corresponding to unit economic output”. 

The ratio of GDP to EF per capita directly shows the close relationship between the 

‘land demand’ and economic output (Farber et al, 2002). For China, Qi (2008) 

concludes that the Ecological Footprint intensity decreased steadily over the period 

1981–2001, from 429 RMB/gha in 1981 to 5,139 RMB/gha in 2001 (Figure 7.1) 

 

 
Figure 7.1 Time series of ratio of GDP to Ecological Footprint in China from 1981 

to 2001(Qi, 2008) 
 
The indirect exhibition-related economic impact cannot be measured by one criterion, 

because the effect derived from exhibitions is integrated and compounded. The most 

significant function of holding an exhibition is to stimulate local and international 

consumption of products manufactured by exhibitors. It means the additional effect 

on the environment may be increased invisibly and the environmental impact 

sustained in the long term.  

 
In this research, the indirect economic impact is depicted and demonstrated by 

several typical categories of industries, which account for most exhibitions held in 

Shanghai. There were 167 and 211 exhibitions held in Shanghai in 2008 and 2009 

respectively. The main categories of exhibitions were Clothing, Leather, Textiles; 

Machinery, Industry, Process; and Chemicals, Energy, Environmental protection. 

Figure 7.2 shows the number of exhibitions in the main categories from 2008 to 2009. 
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It can be seen that the category of clothing and textiles was the major focus of 

exhibitions in Shanghai in these two years. 

 

 
Figure 7.2 Number of exhibitions in main categories in Shanghai  

from 2008 to 2009 
 

The ecological footprint of each category in 2008 is calculated from the Shanghai GDP 

of each industry, Shanghai population (19,000,000 people), and the 2001 national 

Ecological Footprint intensity of China (5,139 RMB/gha). The GDP of each category is 

found by multiplying the total GDP of Shanghai (1,370 billion RMB) in 2008 and the 

percentage of output of each industry.  

 

7.3 Results and analysis 
 

7.3.1 Building 
 

The results of quantification of the energy consumption of the case study building, the 

Shanghai Exhibition Centre, in its construction, and operating phases are shown 

below. 

7.3.1.1 Embodied energy 
 

For the embodied energy of the case study building, the initial embodied energy of the 

Shanghai Exhibition Centre is estimated at 439,884 GJ or 11.2 GJ/m2 (Table 7.8). The 

total recurring embodied energy (over a life of 56 years) of the Shanghai Exhibition 

Centre is estimated at 150,590 GJ or 3.8 GJ/m2. In the initial construction phase, 

building foundations, building services facilities and exterior walls of the case study 



Chapter 7 Conventional case study: Exhibition activities at the Shanghai Exhibition Centre between 

1955~2011 

	
  

	
  
	
  

137 

building account for a large proportion of the embodied energy (60%). For the 

recurring embodied energy, because the case study building received two new 

Exhibition Halls (around 40,000m2) in 2001, the average embodied energy of the 

building (11.2 GJ/m2) was used to calculate the embodied energy of these two 

Exhbition Halls. The recurring embodied energy for the extensions is 168,298 GJ. The 

total embodied energy is 758,772 GJ (Table 7.8). 

 

The other analysis is focused on the weight and choice of construction materials of 

the case study building. The total weight of the Shanghai Exhibition Centre (excluding 

building services, which are unlikely to add much to the weight), is 112,420t or 2.9t/m2 

(Table 7.10). 

 

Elements Initial embodied (GJ) Percentage (%) 
Foundations 110,638 25.2 

Columns 13,758 3.1 
Beams 14,244 3.2 
Floors 22,587 5.1 

External walls 73,439 16.7 
Internal walls 42,614 9.7 

Windows 9,853 2.2 
Doors 2,697 0.6 
Ceiling 11,084 2.5 

Staircases 2,926 0.7 
Roof 20,594 4.7 

Arch structure 5,022 1.1 
Galleries 22,446 5.1 
Services 87,977 20.0 

Total 439,884 100 

Table 7.8 Quantification of initial embodied energy of the Shanghai Exhibition 
Centre (Appendix B) 

 
 Energy use 
Initial embodied energy of the building (1955-2001) 439,884 GJ 
Recurring embodied energy for maintenance  (56 years) 150,590 GJ 
Recurring embodied energy for extension 168,298 GJ 
Total embodied energy 758,772 GJ 

Table 7.9 Total embodied energy of the Shanghai Exhibition Centre (1955-2011) 
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Elements Shanghai Exhibition Centre 
 Materials Total weight (t) Percentage (%) 

Foundations 
Reinforced concrete, Damp proof 
membrane 

39,344 35.0 

External 
walls 

Reinforced concrete, Rockwool, 
Cement mortar, Paint 

25,952 23.1 

Internal walls 
Reinforced concrete, Rockwool, 
Cement mortar, Paint 

14,981 13.3 

Floors 
Reinforced concrete, Cement 
mortar, Terrazzo 

9,191 8.2 

Roof 
Reinforced concrete, Rockwool, 
Asphalt, Cement mortar, Paint 

5,943 5.3 

Beams Reinforced concrete, Cement mortar 4,942 4.4 

Galleries 
Reinforced concrete, Asphalt, 
Cement mortar, Paint 

4,917 4.4 

Columns 
Reinforced concrete, Cement 
mortar, Granite, Paint 

4,660 4.2 

Arch 
structure 

Reinforced concrete, Cement 
mortar, Paint 

1,751 1.6 

Ceiling Plywood, Plaster, Plasterboard, Paint 484 0.4 
Windows Float glass, Steel, Timber 182 0.2 
Doors Timber, Glass, Copper 73 0.07 
Total - 112,420 (2.9t/m2) 100 

Table 7.10 Total weight of the Shanghai Exhibition Centre (1955-2001) (excluding 
services)  

 

It is obvious that the Shanghai Exhibition Centre is much heavier than the Crystal 

Palace. Compared to other metal structure buildings, the Crystal Palace was a 

lightweight building (the main structural elements were made from iron). If 

comparisons are made in terms of the weight of each type of building component 

between the Shanghai Exhibition Centre (1955-2001) and the Crystal Palace (1851-

1936), some new insights can be noted.  

 

Figure 7.3 shows the weight of each element of the two buildings as a percentage of 

the total. It is interesting to find that the heaviest components of the Shanghai 

Exhibition Centre are the foundations and walls, which are built of reinforced concrete, 

and account for about 71.4% of the total weight. For the Crystal Palace, the timber 

walls and floors are heavier than the other building elements, being around 51.1% of 

the total.  
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Figure 7.3 Comparison of the weight of the  two case study buildings  
(excluding services) 

 

It is worth noting that the average initial embodied energy (per square metre) of the 

conventional exhibition building is 4.1 times that of the historic building. It is evident 

that the old large single space building consumed much less energy than the 

Shanghai Exhibition Centre in the initial phase of building construction, although it was 

erected using a large amount of cast iron, which has a much higher embodied energy 

than concrete. The comparison regarding the initial embodied energy of elements of 

these two buildings is also revealing. For the conventional exhibition building, building 

foundations and exterior walls account for a large proportion of the embodied energy 

(52.3%); while in 1851 most initial embodied energy for the Crystal Palace was 

contained in the roof, beams, and columns (67%).  

 

Furthermore, if the Crystal Palace is viewed as a large public building with a steel 

structure, because the embodied energy coefficient for iron is similar to that of steel, 

this case study suggests that large public buildings with steel structures could have a 

lower embodied energy, but this may only be true because of the Crystal Palace’s 

greenhouse-like design.  

 

7.3.1.2 Operating energy 
 

The operating energy is determined by the electricity useage of the building per year. 

After calculation, the total operating energy of the Shanghai exhibition centre building 

was 1,999,872 GJ, or 35,712 GJ per year. This means the average operating energy 

consumption of this building is 5 MJ/visitor annually.  
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If this figure is compared with the average consumption of the ASB Showgrounds in 

Auckland, New Zealand, the issue of how energy was consumed becomes much more 

evident (Table 7.11). Owing to the lack of relevant data about the energy consumption 

of New Zealand exhibition buildings, consumption is assumed to be similar  to the 

energy usage of NZ buildings in general and office buildings in particular. The average 

energy usage per building occupied in 2006 was 107kWh/m2 per year in New Zealand 

(MED, 2007). However, for an office building, energy use was 269kWh/m2 per year 

(Pink Panther, 2006). So the average energy usage per square metre of an exhibition 

building is assumed here to be 200kWh/ m2 per year. Thus, the electricity consumption 

of the ASB Showgrounds building, 15,000 m2 (ASB SHOWGROUNDS, 2010), will be 

10,800 GJ/year. When this is translated to electricity use per visitor the figures 

become much closer in value (Table 7.11). 

 

Buildings Electricity consumption Average electricity 
consumption 

Shanghai Exhibition Centre 45,520 GJ/year 5 MJ/visitor/year 
ASB Showgrounds (Aucland) 10,800 GJ/year 9 MJ/visitor/year 

Table 7.11 Comparison between Shanghai Exhibition Centre and ASB 
Showgrounds 

 

7.3.2 Visitor travel 
 

Using the proportions in every district, the numbers of people choosing different 

transport modes in every district were calculated.   

 

The total energy consumption of visitors travelling by different transport modes is 

204,431 GJ, or 0.027GJ/visitor in a year. The energy usage of visitors taking different 

transport modes is listed in Table 7.12. The medium petrol car had the highest total 

consumption compared to the other transport modes (see Table 7.3). 

 

It is noted that these average numbers for different modes of transport do not give a 

very accurate basis for calculation of consumption as they do not take into account 

how easy it is to access the building for the different transport modes, or the distance 

travelled. To avoid complication, this study will not take account of visitors who do not 

come from Shanghai. It should be noted that visitors from outside Shanghai are likely 
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to have larger transport-related consumption because of their greater travel distance. 

This means that the figures given in this paper for transport consumption related to 

attending the exhibitions are likely to be a lowest possible estimate. 

 

The CO2 emissions of visitor travel by transport are given by multiplying the average 

distance from the Shanghai Exhibition Centre to the centre of every district in 

Shanghai by the number of people and appropriate CO2 emissions factor. The total 

CO2 emissions for each visitor to the exhibition, including the travel to the exhibition 

and back home, were twice this result. Therefore, the results for CO2 emissions of 

people’s travel are presented in Table 7.13, giving total emissions of 27,473 t per year.
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Area Average 
distance 
(km) 

Energy consumption that people taking different transport generate (GJ) 
Under 
Ground 
(0.071)  

Taxi (2.494) Bus (0.648) Motor 
cycle 
(1.000) 

Small 
petrol car 
(1.467) 

Medium 
petrol car 
(2.304) 

Large petrol 
car (3.133) 

Electric 
bike 
(0.036) 

Scooter 
(0.086) 

1 6.05 10 442 295 60 75 728 229 23 14 
2 7.20 9 426 284 58 72 701 221 22 13 
3 8.35 12 552 368 75 93 909 286 28 17 
4 11.31 23 1023 682 139 173 1683 530 53 31 
5 7.2 8 368 245 50 62 605 191 19 11 
6 0.79 0 21 14 3 4 35 11 1 1 
7 5.15 6 263 175 36 44 433 136 14 8 
8 11.2 40 1808 1205 245 305 2974 936 93 55 
9 6.17 10 466 311 63 79 767 241 24 14 

10 3.63 2 97 65 13 16 160 50 5 3 
11 6.29 10 438 292 59 74 721 227 23 13 
12 6.99 12 520 346 70 88 855 269 27 16 
13 24.92 - - - 876 1089 10632 3347 - - 
14 39.23 - - - 1874 2330 22736 7157 - - 
15 36.74 - - - 1226 1524 14873 4681 - - 
16 47.98 - - - 1641 2040 19912 6268 - - 
17 31.67 - - - 1114 1385 13512 4254 - - 
18 36.80 - - - 1095 1362 13290 4183 - - 
19 42.50 - - - 1913 2378 23207 7305 - - 

Total 143 6425 4282 10609 13190 128732 40522 331 197 
In all：204,431 GJ (0.027GJ/visitor) 

Table 7.12 Energy consumption of visitors who travelled by different transport modes 
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Area Average 
distance 
(km) 

CO2 emissions that people taking different transport generate (t) 
Under 
ground 
(0.0000166) 

Taxi 
(0.0001675) 

Bus 
(0.0000435) 

Motor 
cycle 
(0.0000672) 

Small 
petrol car 
(0.0000986) 

Medium 
petrol car 
(0.000155) 

Large 
petrol car 
(0.00021) 

Electric 
bike 
(0.0000084) 

Scooter 
(0.0000058) 

1 6.05 2 30 20 4 5 49 15 1 0.01 
2 7.20 2 29 19 4 5 47 15 1 0.01 
3 8.35 3 37 25 5 6 61 19 2 0.02 
4 11.31 5 69 46 9 12 113 36 3 0.03 
5 7.2 2 25 16 3 4 41 13 1 0.01 
6 0.79 0.11 1 1 0.19 0 2 1 0.06 0.00 
7 5.15 1 18 12 2 3 29 9 1 0.01 
8 11.2 9 121 81 16 20 200 63 5 0.06 
9 6.17 2 31 21 4 5 52 16 1 0.01 

10 3.63 0.51 7 4 1 1 11 3 0.29 0.00 
11 6.29 2 29 20 4 5 49 15 1 0.01 
12 6.99 3 35 23 5 6 58 18 2 0.02 
13 24.92 - - - 59 73 714 224 - - 
14 39.23 - - - 126 156 1528 479 - - 
15 36.74 - - - 82 102 999 313 - - 
16 47.98 - - - 110 137 1340 420 - - 
17 31.67 - - - 75 93 907 285 - - 
18 36.80 - - - 73 91 892 280 - - 
19 42.50 - - - 129 160 1561 490 - - 

 33 432 288 712 886 8652 2714 19 0.20 
In all：27,473 t  ( one way= 13,736 t) 

Table 7.13 Calculated CO2 emissions of peopleʼs travel 
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7.3.3 Exhibition-related economic aspects 
 

On the basis of the calculation method (explained in section 7.2.3), the total ecological 

footprint of exhibition-related industries of the selected five categories was 

181,360,000gha, or 2.0gha/capita. As exhibition-related economic income was around 

5% of total benefits (mentioned in section 7.2.3), the total ecological footprint of 

exhibition-related economic aspects was 9,068,000gha, or 1.21gha/capita (Table 7.14).  

 

Categories 

Percentage 
of output in 
GDP (%) 
(NBS, 2006) 

Output 
(thousand 
RMB) 

Total EF of 
exhibition-
related 
industries 
(thousand 
gha) 

Total EF of 
exhibition-
related 
economic 
aspects 
(thousand gha) 

Average EF of 
exhibition-
related 
economic 
aspects  
(gha/capita) 

Clothing / 
Leather / 
Textile 

7.03 
(A8M. 
2009) 

96,311,000 18,741 937 0.05 

Machinery / 
Industry / 
Process 

45.4 621,980,000 121,031 6052 0.32 

Food / 
Beverages / 
Wine 

1.9 26,030,000 5,065 253 0.01 

Real Estate / 
Construction 
/ Decoration 

7.3 100,010,000 19,461 973 0.05 

Car / 
transport 

6.4 87,680,000 17,062 853 0.05 

Total - 932,011,000 181,360 9,068 1.21  

Table 7.14 Ecological footprint of different categories of products held in 
Shanghai exhibitions in 2008 

 

7.4 Whole life-cycle impact 
 

The total ecological footprint of the case study building for holding Shanghai 

exhibitions for the three aspects considered was 9,070,537gha/year, or 1.2095 gha 

per visitor per year (Table 7.15). 
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 Total ecological 
footprint in a year 
(gha/year) 

Average 
ecological 
footprint 
(gha/visitor/year) 

Average 
ecological 
footprint 
(gha/m2/year) 

Shanghai Exhibition Centre 493 0.0001 0.01 
Visitor travel going to the 
building 

2,044 0.0003 0.03 

Exhibition-related economic 
aspects 

9,068,000 1.2091 113.35 

Total 9,070,537 1.2095 113.39 

Table 7.15 Total ecological footprint of the case study 
 

The fact that the environmental effect of transportation is worse than that of building 

construction is perhaps entering the awareness of researches and users (Jurasovich, 

2003). This study shows that the environmental impact of visitor travel has 4 times the 

effect than that of the building construction. (The results of the Ecological Footprint 

analysis for the Shanghai Exhibition Centre and Shanghai exhibition industry are 

shown in Table 7.15.) 

 

However, the invisible impact generated from the economic growth, stimulated by the 

exhibitions, is huge and not something of which people are aware. The analysis in this 

study shows that the average ecological footprint of exhibition-related economic 

impact is much more than the impact of visitor travel to attend the exhibitions every 

year. The exhibition-related economic factor is the most significant aspect compared 

to the other two impacts in this case study. The results indicate that environmental 

impact measurements cannot just be focused on the energy consumption of building 

construction or infrastructure.  

 

Comparing the ecological footprint of the exhibition industry and other exhibition-

related industries, it is interesting to find that the exhibition industry itself is generally 

one of the lowest resource-dependent industries and the input of the exhibition 

industry is much lower than that of other industries. Many national governments have 

held, and apply to hold, international exhibitions (World Expo) every year, although the 

direct profit of some international exhibitions is negative (e.g. EXPO 2000 in Germany). 

This phenomenon not only shows the close relationship between exhibitions and 

economic growth, but also reveals how economic benefits connect to government 

policy and public awareness.  
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On the other hand, people are not yet aware of the findings of environmental research. 

For example, the current global average footprint demand is 2.7 global hectares (WWF, 

2008). The average footprint of China was 2.1gha in 2008 and 2.5gha in 2010 (WWF, 

2008; WWF, 2010). Although this figure is nearly equal to the average demand, the 

ecological footprint is dramatically increasing every year in China corresponding to the 

increase in national GDP. The exhibition-related economic stimulus directly and 

indirectly enhances national input and may also lead to an overshoot in resource 

consumption, which will directly influence the living environment. It is possible for 

China to reduce the ecological footprint but perhaps only if there are no more 

exhibitions.  

 

7.5 Chapter conclusion 
 

This chapter describes the energy and resource consumption of the case study 

building and the events held there and demonstrates what the most significant factor 

is that directly and indirectly degrades environmental quality as a result of holding 

exhibitions in Shanghai. The case study shows that the environmental measurement 

boundaries should be broader and capable of considering the economic aspect, when 

exhibition activities are studied. At this moment, for some developing countries such 

as China and India, the percentage of exports (e.g. clothing and textile industry) in the 

total national GDP is dramatically increasing from year to year. The international 

exhibitions held in these countries give them good opportunities to enlarge the 

national trade and increase the rate of employment, resident income and revenue, but 

at the same time, it should be noticed that exhibitions indirectly increase the local 

resource consumption and bring more environmental pollution to the countries. The 

questions of how to measure accurately the real environmental impact and how to 

balance an increasing economic perspective for every country with less effect on the 

environment need to be considered further by environmental researchers and 

policymakers. On this can then be based the development of energy efficiency 

techniques and the design of sustainable buildings, as well as the planning of more 

sustainable societies. 
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Chapter 8 Modern sustainable exhibition case study 1: 
Dutch participation at Expo 2000 

 

8.1 Introduction 
 

This case study is mainly concerned with the energy intensity and ecological footprint 

of a sustainable exhibition building, specifically the Dutch Pavilion, visitor travel, and 

an element of the exhibition-related economic effect at Expo 2000 (the reason for the 

selection has been provided in section 5.3).  

 

The Dutch Pavilion (6,144 m2), as one of the most popular pavilions in Expo 2000, was 

attractive to visitors because of its sustainable design and construction. It was 

designed as the exhibition hall of The Netherlands for World Expo 2000 in Germany by 

MVRDV. It mixed natural elements (agriculture and flowers, container gardens, forest, 

rain and sand dunes) and exhibition activities in a six storey building. The actual useful 

life was 5 months, during the time of the expo.  

 

8.2 Method 
 

This section provides the detailed methods for quantifying the whole life cycle energy 

and resource consumption of the modern sustainable building case study, the Dutch 

Pavilion (8.2.1), visitor travel (8.2.2), and exhibition-related economic aspects (8.2.3). 

 

8.2.1 Building 
 

The quantification of construction materials and energy use generally includes an 

estimation of embodied energy (initial and recurring), operating energy and demolition-

related energy use. This study looks at both the energy and resource consumption of 

the Dutch Pavilion over its actual 5 month life and an assumed 50 year life. 
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8.2.1.1 Embodied energy 
 

The assessment of embodied energy in this case study building mainly includes the 

initial and recurring energy consumed by the building’s construction and maintenance. 

The recurring energy appears when a 50 year life is assumed for the Dutch Pavilion in 

order to look at the effect of short building life in a whole life-cycle assessment.  

 

1. Initial embodied energy 

 

The calculation of the initial embodied energy of the case study building uses the 

quantities of materials (volume, weight) and the relevant energy intensities as found in 

German data (explained below). Relevant parameters, such as the size or weight of 

components and structural elements, are sourced from the literature about the 

building (Martina, 2000; Cecilia and Levene, 2002; MVRDV, 2005). A list of the 

quantities of construction materials and drawings of building floor plans were 

prepared and used for the quantitative calculations in this research (see Appendix C).  

 

The energy intensities of materials used for the calculation of the embodied energy 

mainly come from German data (Anon, 1994; Eyerer et al, 2000; Pohlmann, 2002), 

because the construction of the Dutch Pavilion was based on local German building 

technology. In addition, owing to the lack of referenced energy intensities for some 

materials, UK data (Hammond and Jones, 2008) were also used in the quantification 

of energy used in making the case study building. The reason for using UK data is 

because the UK energy intensity factor is similar to that of Germany (Anon, 1994; 

Hammond and Jones, 2008) (see Table 6.2). It shows the match between UK and 

German data is reasonable. 

 

Moreover, as a result of the special sustainable design approach of the Dutch Pavilion, 

the impact of the energy embodied in the building services needs to be considered 

separately from the quantification of other building elements in the calculation. The 

detailed data for building services used in each floor is unknown. An average 

proportion (20%) of the embodied energy is applied to the six levels in this calculation 

due to the variety of service systems in the case study building. The reason for using 
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the average energy intensity to calculate the embodied energy of building services is 

because on the water and windmill floors, the application of technologies such as the 

water pond and water reclamation systems, involves a greater level of energy for 

producing the equipment. On the other hand, the other floors (the forest floor, dunes 

floor, pot floor and glass floor) have less energy embodied in the manufacture of the 

services systems, because of using natural ventilation. The average energy intensity is 

used for the calculation to balance the two levels of energy use. Some special aspects 

of the building have their embodied and recurring energies calculated separately, as 

detailed below. 

 

Special sustainable design features of the Dutch Pavilion were the installation of wind 

turbines on its top floor and its green roof. The types of materials utilised during the 

wind generator manufacturing are steel, cast iron, glass reinforced plastic, copper, 

paints, lubricant oils, aluminium, PVC, and bronze (Ardente et al, 2008). The initial 

embodied energy of wind turbines (six on the building) is quantified by using the 

weight and energy coefficients of the different materials (Table 8.1). In addition, 

detailed information on the green roof and roof pond are taken from the literature 

(Herbert et al, 2001; David, 2002; Pledge, 2005), and used to quantify their initial 

embodied energy (Table 8.2). 

 

Materials Weight  (kg)  
(Ardente et al, 
2008) 

Factors (MJ/kg)   
(Anon, 1994; Eyerer et al, 
2000; Pohlmann, 2002; 
Hammond and Jones, 2008) 

Embodied 
energy 
(MJ) 

Steel 6,643 15 99,645 
Cast iron 600 25 15,000 
Glass reinforced plastic (76% 
of glass fibres, 24% of epoxy 
resin) 

495 100 49,500 
 

Copper 92 50 4,600 
Paint 39 68 2,652 
Aluminium 9 155 1,395 
PVC 7 77.2     540 
Bronze   0.5 77       39 
Total initial embodied energy: 173,371 MJ 

Table 8.1 Initial embodied energy of six wind turbines  
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 Materials Weight 
(kg) 

Factors (MJ/kg)  
(Anon, 1994; Eyerer et 
al, 2000; Pohlmann, 
2002; Hammond and 
Jones, 2008) 

Embodied 
energy 
(MJ) 

Green 
roof 

Waterproofing PVC 138 77.2 10654 
Asphalt (Waterproofing layer)  25000 2.6 65000 
Mineral wool (Insulation) 50 5 250 
PVC (Drainage layer)  138 77.2 10653 
PVC (Substrate)  138 77.2 10653 

Roof 
pond 

Reinforced concrete (Structure)  512500 2.54 1301750 
Mineral wool  
(Thermal insulation layer)  

620 5 3100 

Asphalt  (Waterproof layer) 30000 2.6 78000 

Table 8.2 Initial embodied energy of green roof and roof pond 
 

2. Recurring embodied energy 

 

Recurring embodied energy is defined as the energy required for repairs, maintenance, 

and refurbishment of buildings in their useful life. The Dutch pavilion had a useful life 

of only 5 months although it was designed for a longer life. To reveal the impact of 

creating exhibition buildings that are not recycled a comparison is made here between 

the actual life of the building and an assumed life of 50 years (2000-2050) in the 

calculation of energy use for maintenance and replacement. The 50 year life was taken 

because the pavilion was comparable in structure and construction to a normal 

commercial building. Energy consumption for maintenance and replacement of 

construction materials is quantified according to the useful life of different 

construction materials in Germany. The method of calculation for recurring embodied 

energy is the same as that for initial embodied energy. 

 

The analysis shows the energy consumed by maintenance of the six wind turbines 

(Table 8.3) on the top floor is much more than for the other construction elements or 

materials. Ardente et al demonstrate that usually the useful life of a wind farm is 20 

years, which means most of the wind turbines will be replaced at the end of this 

period. In their investigation the electrical company concerned had specific scheduled 

maintenance and control cycles. These involved a daily inspection during the first 

operation period and, successively, one inspection every 2 ~ 3 weeks. If the 

inspection personnel choose to use diesel cars the overall energy consumption for 

related transportation would be about 7,000 kg of diesel during the 20 years of useful 
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life. Cycles of ordinary maintenance occur 2 ~ 3 times per year, and these involve 

lubrication, painting and substitution of necessary spare parts (Ardente et al, 2008).  

 

 Embodied energy (MJ) Useful life 
(years) 

Recurring embodied 
energy (MJ) 

Wind turbines 4,038,048 20 8,076,096 
Transportation of 
personnel undertaking 
inspection 

   317,100 
(45.3 MJ/kg) 

20 792,750 

Maintenance spare 
parts 

   605,707 
 (15% of embodied energy 
of wind turbines) 

20 1,514,268 

Total recurring embodied energy: 10,383,114 MJ 

Table 8.3 Recurring embodied energy of six wind turbines 
 

8.2.1.2 Operating energy 
 

The operating energy is defined as the energy used for a building in its operation 

phase, such as the electricity consumption for lighting, cooling and ventilation. As the 

case study building has a special construction and different functions for each floor, 

the operating energy (mainly electricity) is not as much as found in conventional 

commercial buildings. In addition the electricity consumption of the whole building is 

less because some electricity comes from the wind turbines on the roof. 

 

The steel tower of a wind turbine with nominal power rating of 660 kW as found in 

Ardente’s study was 55m high and the rotor diameter was about 50m (Ardente et al, 

2008). However, the output from the six windmills around 15m high and with a 5m 

rotor diameter as installed on the Dutch Pavilion will be small compared to the 

demands of the whole building. It can be assumed that the generation of a small 

windmill of this type (10 kW) is around 10,000kWh/year (Jimenez, 2010), making the 

total amount of energy generated 60,000kWh/year. The distance between two small 

turbines for maximum effectiveness is usually 20 ~ 30m (CANWEA, 2009; Migliore, 

2009). However, the distance between the small wind turbines installed on the Dutch 

Pavilion is less than 15m. This will reduce the generating capacity of the turbines 

(Herbert et al, 2001). Overall, the total maximum possible electricity production of the 

windmills of the Dutch Pavilion is 20,000 ~30,000 kWh per year, but this is assumed to 

be halved because of their less than optimal installation. In a UK study (Encraft, 2009) 

building mounted wind turbines were found to be far less effective than predicted. 
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The operating energy for each level is significantly different due to the different 

functions. The office level is assumed to be the level with the highest energy 

consumption. There are no heating, cooling and ventilation systems in some levels, 

such as the forest floor and dunes floor, which are built as covered external open 

space. Because of the complex operational performance and use of strategies such 

as natural ventilation, the case study building has been assumed to act overall as an 

efficient office building in terms of its energy use. Generally a conventional air-

conditioned office uses 200 ~ 400kWh/m2/year (IEA PVPS, 1999). In this study, the 

energy intensity of the office floor and windmill floor (VIP room), which have installed 

heating, cooling, ventilation and lighting systems, is assumed to be 300kWh/m2/year. 

Moreover, about 30kWh/m2/year is used for lighting for a typical German house 

(Gauzin-Müller, 2002). In the absence of better data, this value has been used for the 

lighting intensity of the floors without HVAC installed. The operating energy of each 

floor is found by multiplying the floor area and the appropriate value for electricity 

usage per square metre. 

 

8.2.1.3 Building demolition-related energy 
 

The energy consumption from building demolition is assumed to be negligible in this 

study. The reason for this assumption has been explained in Chapters 5 and 7. 

 

8.2.2 Visitor travel 
 

With the same methodology as used in the case studies presented in Chapters 6 and 

7, the energy consumption of visitor travel can be quantified and demonstrated by 

using the number of visitors, the distances of travel, and the energy intensity of 

different transportation modes. 

 

 

8.2.2.1 Number of visitors  
 
The average number of people who visited an independent pavilion at Expo 2000 was 

2.72 million over five months (Walvis, 2003). Walvis (2003) also reported that the 
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German Pavilion as the most visited pavilion received 5,400,000 visitors. Therefore, 

the total number of visitors going to the Dutch Pavilion (the second most popular 

pavilion) was assumed to be 4,060,000 ((5,400,000+2,720,000) ÷2).  

 
Althues and Maier (2002) stated that at Expo 2000, 93% visitors were from Germany, 

which means 3,775,800 visitors were German and the number of foreign visitors was 

284,200 (Table 8.4). 

 
Visitors Percentage Number of visitors 
From Germany   93% 3,775,800 
From foreign countries     7% 284,200 
Total 100% 4,060,000 
Table 8.4 Number of visitors from different countries (Althues and Maier, 2002) 
 
1. Visitors from Germany (3,775,800) 

 
• Visitors from Hannover (416,773) 

 

Some of the German visitors came from the host city, Hannover. The total population 

of Hannover is about 520,966. If it is assumed that 80% of the population visited the 

Expo, the number of visitors from Hannover would be 416,773. How the split was 

derived is shown in Figure 8.1 and Table 8.5. Table 8.5 shows the population of 33 

different districts in Hannover.  

 

 
Figure 8.1 Districts in Hannover, Germany 
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1 2 3 4 5 6 7 
Herrenhaus
en-Stöcken  
 

Nord Vahrenwal
d-List  

Bothfeld-
Vahrenheide  

Ahlem-
Badensted
t-
Davenstedt 

Linden-
Limmer  

Mitte 

34,664 16,501 67,620 47,534 31,626 43,164 332,919 
2.49% 1.18% 4.85% 3.41% 2.27% 3.10% 23.88% 
8 9 10 11 12 13 14 
Buchholz-
Kleefeld  

Misburg-
Anderten  

Ricklingen Südstadt-
Bult  

Döhren-
Wülfel  

Kirchrode-
Bemerode-
Wülferode  

Neustadt a. 
Rbge 

43,386 31,774 43,422 41,575 33,593 29,728 45,237 
3.11% 2.28% 3.12% 2.98% 2.41% 2.13% 3.25% 
15 16 17 18 19 20 21 
Wedemark Burgwedel Burgdorf Uetze Wunstorf Garbsen Langenhagen 
29,108 20,432 29,951 20,247 41,134 61,818 51,982 
2.09% 1.47% 2.15% 1.45% 2.95% 4.43% 3.73% 
22 23 24 25 26 27 28 
Isernhagen Seelze Lehrte Barsinghaus

en 
Gehrden Ronnenberg Hemmingen 

22,882 32,683 43,339 33,667 14,588 23,109 18,606 
1.64% 2.34% 3.11% 2.42% 1.05% 1.66% 1.33% 
29 30 31 32 33   
Laatzen Sehnde Wennigsen Pattensen Springe   
40,237 22,862 1,190 13,946 29,356   
2.89% 1.64% 0.09% 1.00% 2.10%   

Table 8.5 Percentage of population of different districts in Hannover, Germany 
 

Table 8.6 lists the number of visitors and their different transport modes. According to 

the population density, the proportional number of visitors from the different districts 

taking car, light rail, and bus can be derived as listed in Table 8.7. 

 

Modes  - Percentage Number of visitors 
Car (1.3 passengers/car) Car driver   30% 125,032 

Car passenger     9%   37,510 
Public transport (22%) Light rail   11% (assumed)   45.845 

bus   11% (assumed)   45.845 
Walking -   23%   95.858 
Bicycle -   16%   66.684 
Total - 100% 416,773 

Table 8.6 Percentage of using different transport modes in Hannover going to 
the Dutch pavilion (Johannsmeier et al, 2003) 
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 District Percentage 
of 
population 

Number of 
visitors 

Car 
(39%) 

Light 
rail 
(11%) 

Bus 
(11%) 

1 Herrenhausen-Stöcken  2.49% 10378 4047 1142 1142 
2 Nord 1.18% 4918 1918 541 541 
3 Vahrenwald-List 4.85% 20213 7883 2223 2223 
4 Bothfeld-Vahrenheide 3.41% 14212 5543 1563 1563 
5 Ahlem-Badenstedt-

Davenstedt 
2.27% 

9461 3690 1041 1041 
6 Linden-Limmer 3.10% 12920 5039 1421 1421 
7 Mitte 23.88% 99525 38815 10948 10948 
8 Buchholz-Kleefeld  3.11% 12962 5055 1426 1426 
9 Misburg-Anderten  2.28% 9502 3706 1045 1045 
10 Ricklingen 3.12% 13003 5071 1430 1430 
11 Südstadt-Bult  2.98% 12420 4844 1366 1366 
12 Döhren-Wülfel 2.41% 10044 3917 1105 1105 
13 Kirchrode-Bemerode-

Wülferode 2.13% 8877 3462 976 976 
14 Neustadt a. Rbge 3.25% 13545 5283 1490 1490 
15 Wedemark 2.09% 8711 3397 958 958 
16 Burgwedel 1.47% 6127 2389 674 674 
17 Burgdorf 2.15% 8961 3495 986 986 
18 Uetze 1.45% 6043 2357 665 665 
19 Wunstorf 2.95% 12295 4795 1352 1352 
20 Garbsen 4.43% 18463 7201 2031 2031 
21 Langenhagen 3.73% 15546 6063 1710 1710 
22 Isernhagen 1.64% 6835 2666 752 752 
23 Seelze 2.34% 9752 3803 1073 1073 
24 Lehrte 3.11% 12962 5055 1426 1426 
25 Barsinghausen 2.42% 10086 3934 1109 1109 
26 Gehrden 1.05% 4376 1707 481 481 
27 Ronnenberg 1.66% 6918 2698 761 761 
28 Hemmingen 1.33% 5543 2162 610 610 
29 Laatzen 2.89% 12045 4697 1325 1325 
30 Sehnde 1.64% 6835 2666 752 752 
31 Wennigsen 0.09% 375 146 41 41 
32 Pattensen 1.00% 4168 1625 458 458 
33 Springe 2.10% 8752 3413 963 963 
 Total - - 162541 45845 45845 

Table 8.7 Number of visitors from different districts in Hannover 
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 State Capital City 
population 

Percentage 
(%) 

1 Berlin Berlin 3,450,889 33.2 
2 Hamburg Hamburg 1,783,975 17.2 
3 Bavaria Munich 1,330,440 12.8 
4 Baden-Wurttemberg Stuttgart 601,646 5.8 
5 North Rhine-Westphalia Dusseldorf 586,217 5.6 
6 Bremen Bremen 547,535 5.3 
8 Saxony Dresden 517,052 5.0 
9 Hessen Wiesbaden 277,493 2.7 
10 Schleswig-Holstein Kiel 238,049 2.3 
11 Saxony-Anhalt Magdeburg 230,456 2.2 
12 Thuringia Erfurt 203,830 2.0 
13 Rhineland-Palatinate Mainz 197,778 1.9 
14 Saarland Saarbrucken 175,810 1.7 
15 Brandenburg Potsdam 154,606 1.5 
16 Mecklenburg-Western 

Pomerania 
Schwerin 

95,041 0.9 

Table 8.8 Population distribution of Germany 
 

 State Capital Percentage (%) Number of visitors 
1 Berlin Berlin 33.2 1115565 
2 Hamburg Hamburg 17.2 576704 
3 Bavaria Munich 12.8 430090 
4 Baden-Wurttemberg Stuttgart 5.8 194493 
5 North Rhine-Westphalia Dusseldorf 5.6 189506 
6 Bremen Bremen 5.3 177001 
8 Saxony Dresden 5.0 167147 
9 Hessen Wiesbaden 2.7 89705 
10 Schleswig-Holstein Kiel 2.3 76954 
11 Saxony-Anhalt Magdeburg 2.2 74499 
12 Thuringia Erfurt 2.0 65892 
13 Rhineland-Palatinate Mainz 1.9 63936 
14 Saarland Saarbrucken 1.7 56834 
15 Brandenburg Potsdam 1.5 49979 
16 Mecklenburg-Western 

Pomerania 
Schwerin 

0.9 30724 

 Total - - 3,359,027 

Table 8.9 Number of visitors from different States in Germany going to the Dutch 
Pavilion 

 

• Visitors from other cities in Germany (3,359,027) 

 

The total number of visitors from other cities in Germany going to the Dutch Pavilion at 

Expo 2000 was 3,359,027. Table 8.8 shows the population of 16 capital cities in 

Germany. Based on this population density, the number of visitors from cities can be 

calculated as a proportion (Table 8.9). 
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The percentage of visitors from other cities to Hannover taking different transport 

modes (figures from Kuhnimhof et al, 2009) is shown in Table 8.10. Thus, the number 

of visitors coming from other cities and taking different transport modes can be 

calculated (Table 8.11). 

 

Car Bus Train Air Ship 
71% 5% 12% 11% 1% 

Table 8.10 Main mode shares in German long distance travel (Kuhnimhof et al, 
2009) 

 

 Capital Number 
of 
visitors 

Car 
(71.25%) 

Bus (5.25%) Train 
(12.25%) 

Air 
(11.25%) 

1 Berlin 1115565 794840 58567 136657 125501 
2 Hamburg 576704 410902 30277 70646 64879 
3 Munich 430090 306439 22580 52686 48385 
4 Stuttgart 194493 138576 10211 23825 21880 
5 Dusseldorf 189506 135023 9949 23214 21319 
6 Bremen 177001 126113 9293 21683 19913 
8 Dresden 167147 119092 8775 20476 18804 
9 Wiesbaden 89705 63915 4710 10989 10092 
10 Kiel 76954 54830 4040 9427 8657 
11 Magdeburg 74499 53081 3911 9126 8381 
12 Erfurt 65892 46948 3459 8072 7413 
13 Mainz 63936 45554 3357 7832 7193 
14 Saarbrucken 56834 40494 2984 6962 6394 
15 Potsdam 49979 35610 2624 6122 5623 
16 Schwerin 30724 21891 1613 3764 3456 

Table 8.11 Number of visitors from other cities taking different transport modes 
 
2. Visitors from foreign countries (284,200) 

 

The number of foreign visitors accounted for 7% in the total, equal to 284,200. It is 

assumed that these visitors came from Europe (4%), America (1%), Asia (1%), and 

Oceania (1%). The number of visitors coming from these countries was thus 162,400, 

40,600, 40,600, and 40,600 respectively.  

 

8.2.2.2 Distance of visitor travel 
 

1. Visitors from Germany 
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• Visitors from Hannover 

 

Table 8.12 shows the distance for visitors from different districts in Hannover going to 

the Dutch Pavilion. The average point at which visitors can take different transport 

modes to reach the destination was chosen by using the mid-point of access.  

 

1 2 3 4 5 6 7 
Herrenhaus
en-Stöcken  
 

Nord Vahrenwald-
List  

Bothfeld-
Vahrenheide  

Ahlem-
Badenstedt-
Davenstedt 

Linden-
Limmer  

Mitte 

10.4km 9.0km 7.9km 8.8km 8.5km 7.4km 6.7km 
8 9 10 11 12 13 14 
Buchholz-
Kleefeld  

Misburg-
Anderten  

Ricklingen Südstadt-
Bult  

Döhren-
Wülfel  

Kirchrode-
Bemerode-
Wülferode  

Neustadt a. 
Rbge 

6.3km 5.9km 6.2km 5.4km 3.7km 2.8km 23.9km 
15 16 17 18 19 20 21 
Wedemark Burgwed

el 
Burgdorf Uetze Wunstorf Garbsen Langenhagen 

18.9 km 16.7 km 14.7 km 18.1 km 19.9 km 15.9 km 13.4 km 
22 23 24 25 26 27 28 
Isernhagen Seelze Lehrte Barsinghaus

en 
Gehrden Ronnenberg Hemmingen 

11.4 km 12.8 km 9.5 km 15.3 km 11.2 km 8.0 km 4.9 km 
29 30 31 32 33   
Laatzen Sehnde Wennigsen Pattensen Springe   
0.5 km 5.3 km 11.7 km 4.8 km 11.5 km   

Table 8.12 A straight line distance for visitors from different districts going to 
the Dutch Pavilion  

 

 

Figure 8.2 Distance from the Dutch Pavilion to districts in Hannover 
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• Visitors from other cities in Germany 

 

Table 8.13 shows the travel distances for visitors from other cities in Germany going 

to the Dutch Pavilion. The same method of measuring the travel distance as for the 

host city is adopted here. 

 

 Capital Car (km) Bus (km) Train (km) 
(200km/h) 

Air (km) 

1 Berlin 286 286 300 256 
2 Hamburg 257 257  266 128 
3 Munich 632 632 916 481 
4 Stuttgart 524 524 550 419 
5 Dusseldorf 277 277 291 239 
6 Bremen 125 125 131 143 
8 Dresden 367 367 385 307 
9 Wiesbaden 376 376 395 259 
10 Kiel 247 247 259 223 
11 Magdeburg 147 147 154 132 
12 Erfurt 219 219 230 177 
13 Mainz 373 373 391 264 
14 Saarbrucken 526 526 552 397 
15 Potsdam 257 257 270 157 
16 Schwerin 225 225 236 (Lubeck to Hannover) 

Table 8.13 Travel distances for visitors from other cities in Germany going to the 
Dutch Pavilion 

 

2. Visitors from foreign courtiers 

 

The travel distances of foreign visitors were measured by using a “place to place 

distance calculator” (Distancefromto, 2010). The average travel distances from 

different countries to the Dutch Pavilion are listed in Tables 8.14~8.16. 

 

 Airplane Distance 
Europe 100% See Table 8.15 
America 100% 7,806 km 
Asia 100% See Table 8.16 
Oceania 100% 14,648 km 

Table 8.14 Travel distances for visitors from foreign countries going to the Dutch 
pavilion 
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Area Direct distance from different countries 
to Germany (km) 

Average distance (km) 
(Distancefromto, 2010) 

Northern 
Europe 

Denmark   571 1306 
Faroe Islands 1591 
Estonia 1242 
Finland 1514 
Åland Islands 1163 
Iceland 2280 
Ireland 1293 
Latvia 1120 
Lithuania   998 
Norway 1043 
Svalbard and Jan Mayen 2989 
Sweden 1121 
United Kingdom 1034 
Guernsey   945 
Isle of Man 1066 
Jersey   922 

Western 
Europe 

Austria   503   535 
Belgium   429 
France   817 
Liechtenstein   450 
Luxembourg   341 
Monaco   857 
Netherlands   372 
Switzerland   510 

Central and 
Eastern 
Europe 

Belarus 1218 1472 
Bulgaria 1474 
Czech Republic   386 
Hungary   795 
Moldova 1363 
Poland   607 
Romania 1214 
Russia 5427 
Slovakia   718 
Ukraine 1516 

Southern 
Europe 

Albania 1341 1278 
Andorra 1171 
Bosnia and Herzegovina   972 
Croatia   761 
Gibraltar 2092 
Greece 1611 
Italy 1047 
Macedonia 1369 
Malta 1724 
Montenegro 1159 
Portugal 1953 
San Marino   818 
Serbia 1121 
Slovenia   650 
Spain 1617 
Vatican City 1042 

Table 8.15 Travel distances for visitors from European countries going to the 
Dutch pavilion 
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Area Direct distance from different countries 
to Germany (km) 

Average distance (km) 
(Distancefromto, 2010) 

Eastern Asia Japan 9059 8040 
Mongolia 6358 
North Korea 8163 
South Korea 8579 

Southern Asia Afghanistan 4926 6702 
Bangladesh 7299 
Bhutan 6994 
India 6760 
Maldives 7874 
Nepal 6490 
Pakistan 5307 
Sri Lanka 7969 

Western Asia Armenia 2928 3670 
Azerbaijan 3079 
Bahrain 4399 
Cyprus 2562 
Iraq 3345 
Iran 4069 
Israel 3006 
Jordan 3124 
Kuwait 3911 
Lebanon 2813 
Oman 5120 
Qatar  4483 
Saudi Arabia 4238 
Syria  2922 
United Arab 
Emirates 

4820 

Turkey 2357 
Yemen 5210 

Southeast 
Asia 

Brunei 10609 9813 
Burma   7831 
Cambodia   9245 
East Timor 12537 
Indonesia 11023 
Laos   8450 
Philippines 10329 
Malaysia   9760 
Singapore 10137 
Thailand   8687 
Vietnam   9339 

Central Asia Kazakhstan   3989 4388 
Kyrgyzstan   4914 
Tajikistan   4829 
Turkmenistan   4007 
Uzbekistan   4203 

Table 8.16 Travel distances for visitors from Asian countries going to the Dutch 
pavilion 
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8.2.2.3 Energy intensity of different transport modes 
 

The energy intensity of different transport modes in Germany, including bus, car, light 

rail, train, and airplane, was sourced from European literature (Table 8.17), because of 

lack of some specific parameters in German sources. It should be noted that the 

energy intensity of different transport modes varies considerably across a range of 

published research.   

 

Modes Fuel Energy intensity Country Reference 
Bus Fossil fuel 0.49–1.32 MJ/passenger-

km 
Western 
Europe 

Michaelis et al, 1998, 
p.689. 

Fossil fuel 0.71 MJ/passenger-km  
(Express bus) 

Norway Walnum, 2011 

Car Fossil fuel 2.1 MJ/passenger-km Germany ODYSSEE database, 2001 
Diesel 0.829 MJ/passenger-km Norway Walnum, 2011 
Gasoline 0.94 MJ/passenger-km Norway Walnum, 2011 

Light 
rail 

Electricity 0.79 MJ/passenger-km 46 global 
cities 

UNEP, 2011. p.9. 

Electricity 0.69 MJ/passenger-km Western 
Europe 

UNEP, 2011. p.11. 

Train Electricity
/Diesel 

0.75–2.8 MJ/passenger-km Western 
Europe 

Michaelis et al, 1998, 
p.689. 

Airplane Jet fuel 2.599 MJ/passenger-km  
(Boeing 737) (400km) 

Norway Walnum, 2011 

2.160 MJ/passenger-km  
(Boeing 737) (950km) 

Norway Walnum, 2011 

Jet fuel 1.5- 2.5 MJ/passenger-km UK ETSU, 1994 
Table 8.17 Energy intensity of different transport modes in Europe 
 

Table 8.18 shows the assumed energy intensity of different transport modes going to 

the Dutch Pavilion at Expo 2000.  

 

Modes Fuel Energy intensity Assumption 
Bus Fossil fuel 0.91 MJ/passenger-km Average value of Western 

European figure (as Germany in 
Western Europe) 

Car Fossil fuel 2.1 MJ/passenger-km German figure 
Light 
rail 

Electricity 0.69 MJ/passenger-km Western European figure  
(as Germany in Western Europe) 

Train Electricity/ 
Diesel 

1.78 MJ/passenger-km Average value of Western 
European figure (as Germany in 
Western Europe) 

Airplane Jet fuel 2.599 MJ/passenger-km(400 km);  
2.160 MJ/passenger-km(950 km) 

Norway figure (Short haul) 
Norway figure (Long haul) 

Table 8.18 Assumed energy intensity of different transport modes going to the 
Dutch Pavilion at Expo 2000, Hannover 
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8.2.2.4 CO2 emissions coefficients 
 

The associated CO2 emission of visitor travel to go the Dutch Pavilion in Hannover is 

estimated. CO2 emissions coefficients of different transport modes in Germany were 

sourced from Germany, Norway, UK, and European literature (Table 8.19). The 

emission coefficients for calculation in this research are selected from this range. 

 
Modes Fuel CO2 emissions 

coefficients 
Country Reference 

Bus Fossil fuel 40 g /passenger-km Europe EEA, 2011 
Diesel 576.98 g/km Germany Cox and Hickman, 1998 
Fossil fuel 52.2 g /passenger-km 

 (Express bus) 
Norway Walnum, 2011 

Diesel 118.1 g /passenger-km 46 Global 
cities 

UNEP, 2011. p.9. 

Car* Gasoline 118 g /passenger-km 
(165.01g/km) 

Germany Cox and Hickman, 1998 

Diesel 123 g /passenger-km  
(171.96 g/km) 

Germany Cox and Hickman, 1998 

Diesel 61.6 g /passenger-km Norway Walnum, 2011 
Gasoline 69.4 g /passenger-km Norway Walnum, 2011 

Light rail Electricity 4.7 – 327.1 g 
/passenger-km  

46 global 
cities 

UNEP, 2011. p.9. 

Electricity 78 g /passenger-km UK Defra, 2008, p.25 
Train Electricity/

Diesel 
66 g /passenger-km Germany Umweltbundesamt, 2003, 

p.12 
Airplane Jet fuel 191 g /passenger-km  

(Boeing 737) (400km) 
Norway Walnum, 2011 

g /passenger-km 
 (Boeing 737) (950km) 

Norway Walnum, 2011 

*Car occupancy rate of Germany in 2005 was about 1.4 (Lac d'Annecy et al, 2008) 

Table 8.19 CO2 emissions coefficients of different transport modes in Europe 
 
Table 8.20 shows the assumed CO2 emissions coefficients of different transport 

modes going to the Dutch Pavilion at Expo 2000.  
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Modes Fuel CO2 emissions 
coefficients 

Assumption 

Bus Fossil fuel   40 g /passenger-km European figure 
Car Gasoline 69.4g /passenger-km Norway figure 
Light rail Electricity   78 g /passenger-km UK figure 
Train Electricity/Diesel   66 g /passenger-km German figure 
Airplane Jet fuel 191 g /passenger-km 

(400km); 
158 g /passenger-km 
(950km) 

Norway figure (Short haul) 
 
Norway figure (Long haul) 

Table 8.20 Assumed CO2 emissions coefficients of different transport modes 
going to the Dutch Pavilion at Expo 2000, Hannover 

 

8.2.3 Exhibition-related economic aspects 
 

8.2.3.1 Exhibition-related economic income 
 

For Expo 2000, economists at Poland Berger estimated that the value of the direct 

and indirect macro-economic effects for Germany generated by the Expo reached 

€5.47 billion (Walvis, 2003). Klenk and Bentele (1999) stated that because of Expo 

2000 in Hannover, all the region’s key industries gained some benefit from the project 

(quoted in Kirchgeorg et al, 2005). The report from Canadian Heritage shows that 

“nearly all participants (94.1%) reported that participation in Expo 2000 was effective 

as a business strategy in enhancing their image, in promoting Canadian artists /culture 

(86.7%), and promoting tourism (80%)” (Canadian Heritage, 2002). 

 

Because The Netherlands’ pavilion was one of the first ranked locations for visitors to 

the Expo, this made it possible to get a better view of the potential economic value of 

participating in Expo 2000 (Walvis, 2003). Walvis (2003) demonstrated that the design 

of the Dutch Pavilion helped to change the thinking about Holland, by being “worth 

seeing, surprising, and undreamed-of”. A survey showed the Dutch Pavilion was one 

of the favourite pavilions (EXPO 2000 Hannover GmbH, 2000) (Figure 8.3). In a survey, 

85% of German visitors would like to have more contact with the Netherlands; 12% of 

them were thinking of starting up business relations (Walvis, 2003). More importantly, 

92% of visitors to the expo planned to visit Holland as a tourist.  
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Walvis (2003) estimated €350 million of potential revenue from tourism was generated 

for the Dutch economy from the presence of the Dutch Pavilion at Expo 2000. The 

amount of potential revenue was around 10 times the original cost of the pavilion (€35 

million). Since the total revenue of The Netherlands in 2002 was €173 billion (SWEM, 

2003), the Expo revenue accounted for approximately 0.2% of total national revenue. 

This can be compared with similar values in section 9.2.3. 

 

Figure 8.3 Top 10 results Expo 2000 (Walvis, 2003) 
 

8.2.3.2 Economic-related ecological footprint 
 

Research into the ecological footprint of tourism is a new field and as yet there are few 

comprehensive studies. Mahravan and Vale (2008) estimated the ecological footprint 

of a New Zealand tourist attraction, the Otago Central Rail Trail, in terms of the impact 

of the resource consumption for food, accommodation services, transportation, and 

water consumption. The results showed a monetary value of 480 NZD/gha for tourism 

impact which equals €260/gha. In the absence of any other data this value was used 

for this study.  

 

8.3 Results and analysis 
 

8.3.1 Building 
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8.3.1.1 Embodied energy 
 

The quantitative results of energy usage for the case study building, the Dutch Pavilion, 

in its construction and maintenance phases (over the actual life and an assumed 50 

year life) are shown in Tables 8.21 and 8.22. The total embodied energy of the Dutch 

Pavilion is 65,196 GJ for its actual five month life or 89,186 GJ over the assumed 50 

years. 

 

Floor Initial embodied 
energy (GJ) 

Recurring embodied 
energy (GJ) 

Offices floor (Ground floor) 14,508 

0 

Dunes floor (First floor) 15,451 
Glass floor (Second floor)   1,908 
Pots floor (Third floor)   3,719 
Forest floor (Fourth floor)   1,996 
Rain floor (Fifth floor)   5,422 
Windmill floor (Sixth floor)   2,869 
Vertical circulation   1,523 
Building services 13,763 
Wind turbines and relevant equipment    4,038 
Total  65,196 GJ (10.6 GJ/m2) 
Total embodied energy 65,196 GJ   (10.6 GJ/m2)  

Table 8.21 Quantification of initial and recurring embodied energy of the Dutch 
Pavilion (over the actual life, 5 months) (Appendix C) 

 

Floor Initial 
embodied 
energy (GJ) 

Percent
age (%) 

Recurring 
embodied 
energy (GJ) 

Percent
age (%) 

Offices floor (Ground floor) 14,508 22.3 5,746 24.0 
Dunes floor (First floor) 15,451 23.7         0.023 0 
Glass floor (Second floor)   1,908   2.9         1 0 
Pots floor (Third floor)   3,719   5.7       11   0.5 
Forest floor (Fourth floor)   1,996   3.1     318   1.3 
Rain floor (Fifth floor)   5,422   8.3        10   0.4 
Windmill floor (Sixth floor)   2,869   4.4      420   1.8 
Vertical circulation   1,523   2.3      220   0.9 
Building services 13,763 21.1   6,881 28.7 
Wind turbines and relevant equipment    4,038   6.2 10,383 43.3 
Total  65,196 GJ 

(10.6 GJ/m2) 
    100     23,990GJ 

(3.9 GJ/m2) 
    100 

Total embodied energy 89,186 GJ   (14.5 GJ/m2) 

Table 8.22 Quantification of initial and recurring embodied energy of the Dutch 
Pavilion (over the assumed 50 year life) (Appendix C) 

 

The initial embodied energy is estimated to be 65,196 GJ or 10.6 GJ/m2. In detail, the 

office floor (22.3%), dunes floor (23.7%) and building services (21.1%) of the case 

study building account for the main proportion of the total embodied energy (more 
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than 60%) because most of the energy is consumed in the production of the concrete 

(the main structural elements of the dunes floor are concrete).  

 

Because the building was only used for five months in fact its total recurring embodied 

energy was zero. If the building were to be used over a life of 50 years, the total 

recurring embodied energy is estimated at 23,990 GJ or 3.9 GJ/m2. The percentage of 

the energy used to maintain the wind turbines (43.4%), building services (28.7%) and 

office level (24%) makes 95% of the total. It seems that the main energy for 

maintenance is consumed by the turbines. 

 

8.3.1.2 Operating energy 
 

Over the actual life of five months the total operating energy of the Dutch Pavilion was 

620 GJ, made up of an energy consumption of 695 GJ and 75 GJ generated by wind 

turbines. 

 

If the operating energy is determined by the electricity usage of the building over the 

assumed 50 year life, the total operating energy of the Dutch Pavilion is 74,430 GJ, 

which is equal to 1.0 GJ/m2/year. The result includes the energy consumption of the 

building operation (83,430 GJ) and energy generation (9,000 GJ) by the wind turbines 

over 50 years. Table 8.23 shows the energy consumed by the building in its operation 

phase for the assumed 50 year life.  

 

Floor Building  
services 

Energy intensity 
(kWh/m2/year) 

Operating energy  
(50 year) (kWh) 

Offices floor (Ground floor) Heating, Cooling, 
Ventilation, Lighting 

300 15,360,000 

Dunes floor ( First floor) Lighting   30   1,536,000 
Glass floor (Second floor) Lighting   30   1,536,000 
Pots floor (Third floor) Lighting   30   1,536,000 
Forest floor (Fourth floor) Lighting   30   1,536,000 
Rain floor (Fifth floor) Lighting   30   1,536,000 
Windmill floor (Sixth floor ) Heating, Cooling, 

Ventilation, Lighting 
300      135,000 

Total 23,175,000 kWh (=83,430 GJ) 

Table 8.23 Quantification of operating energy for each floor of the Dutch Pavilion 
(assumed 50 year life) 
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8.3.2 Visitor travel 
 

Using the proportions in every district, the numbers of people choosing different 

transport modes in every district, city, and country were calculated.  The total average 

energy consumption of all visitors who travelled by different transport modes to go to 

the Dutch Pavilion was 10,460,190 GJ (there and back). The total CO2 emissions of 

visitor travel are 627,100 t (there and back). To avoid repetition of a similar process of 

calculation, the detailed quantitative work of visitor travel for this case study can be 

seen in Appendix C. 

 

As the exhibition area of Expo 2000 in Hannover covered around 1,600,000 m2, it was 

too large for a visitor to go to all pavilions in one day. Walvis (2003) reported that the 

average number of independent pavilions visited was only six to ten in a day (average 

eight). Total energy consumption and associated CO2 emissions of visitor travel to go 

to the Dutch Pavilion independently were therefore 1,307,524 GJ (10,460,190 ÷ 8) 

(Table 8.24) and 78,388 t (627,100 ÷ 8) (Table 8.25), as visiting the Dutch Pavilion 

would be only one of several visits made while attending the Expo. 

 

 Energy consumption 
Visitors from Hannover 991 GJ 
Visitors from other cities in Germany 570,567 GJ 
Visitors from other countries 735,936 GJ  
Total                     1,307,524 GJ  

Table 8.24 Total energy consumption of visitor travel going to the Dutch Pavilion 
at Expo 2000, Hannover, Germany 

 

 CO2 emissions 
Visitors from Hannover 40 t 
Visitors from other cities in Germany 21,900 t 
Visitors from other countries 56,448 t 
Total 78,388 t  

Table 8.25 Total energy consumption of visitor travel going to the Dutch Pavilion 
at Expo 2000, Hannover, Germany 

 

8.3.3 Exhibition-related economic aspects 
 

Applying the value of €260/gha, the total ecological footprint of the exhibition-related 

economic benefit related to tourism from the Dutch Pavilion is 1,346,154gha. 
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8.4 Whole life-cycle impact 
 

The total ecological footprint of the case study Dutch Pavilion was 1,359,887gha/year, 

or 0.335gha/visitor/year, as shown in Table 8.26. 

 

 Total ecological 
footprint in a year 
(gha/year) 

Average 
ecological 
footprint 
(gha/visitor/year) 

Average ecological 
footprint 
(gha/m2/year) 

Dutch Pavilion 658 0.0002 0.107 
Visitor travel going to the 
building 

13,075     0.003 2.128 

Exhibition-related 
economic aspects 

1,346,154     0.332 219.101 

Total 1,359,887     0.335 221.336 

Table 8.26 Total ecological footprint of the case study over the assumed useful 
life of 50 years 

 

The energy consumption of the Dutch Pavilion and the exhibition-related economic 

effect of tourism on The Netherlands are assessed. This reveals that the total energy 

consumed by the building is 36,440 MJ/m2/year for 5 months or 1,300 MJ/m2/year for 

50 years. In addition, the total ecological footprint of the economic benefit for The 

Netherlands obtained from Expo 2000 is approximately 1,346,154gha, or 134,615,400 

GJ, using the conversion of 100 GJ/ha (See Table 8.27). 

 

 Actual life: 5 months Assumed 50 years life 
Month 
(MJ/m2/month) 

Year 
(MJ/m2/year) 

Year (MJ/m2/year) 

Embodied energy 5,088  25,440        300  
Operating energy     200    1,000    1,000 
Energy impact of exhibition-
related economic effect  

4,382 21,910 21,910 

Table 8.27 Energy use of Dutch Pavilion and its economic impact over 5 months 
and 50 years  

 

For Expo 2000, 45 participating countries and companies built their own pavilion with 

an average budget of €13.3 million each, and these buildings were just run for five 

months (Walvis, 2003). As their useful life was so short, the sustainable technologies 

may not help to improve their energy efficiency over their whole life cycle. In addition, 

a previous study shows that the environmental impact of visitor travel broken down 

into different transport modes is much worse than that from the building operation 
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(Shen et al, 2009). However, if comparing this with the exhibition-related economic 

effects, the impacts from the buildings and visitor travel are extremely small. It is 

obvious that participants or sponsors are more focussed on the economic benefits 

generated from events, rather than their resource consumption.  

 

8.5 Chapter conclusion 
 

This chapter describes the energy, carbon and ecological footprint of the Dutch 

Pavilion, visitor travel for going to Expo 2000 in Hannover, and exhibition-related 

economic aspects. The results have been explained in section 8.4. It quantifies and 

estimates the real effect of the sustainable technologies used in this pavilion. It shows 

the significant direct and indirect environmental degradation aspects for the exhibition 

host city and the participating country. 
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Chapter 9 Modern sustainable exhibition case study 2: 
The Theme Pavilion and Expo 2010 in Shanghai 

 

9.1 Introduction 
 

This chapter explores the energy and resource consumption of Expo 2010 held in that 

year in Shanghai, China. The analysis includes the Theme Pavilion, visitor travel, and 

exhibition-related economic aspects. The main reasons for selection of this case study 

were explained in section 5.3. 

 

The Theme Pavilion was designed as one of four permanent exhibition pavilions for 

World Expo 2010 in Shanghai, China. This building has two storeys above the ground 

and one floor underground (with one mezzanine). Its total construction area is around 

143,000 m2, and the total area for display is approximately 80,000 m2. The building 

contains five different sizes of exhibition hall. The western hall (Hall 1) of the Theme 

Pavilion is built as a column-free space of 22,680 m2, and has been described as the 

biggest column-free hall in the Asian area so far (BCSWE, 2010). The Theme Pavilion, 

a general international exhibition building, is mainly constructed of steel and erected 

above a box foundation, because of the requirement for the huge uninterrupted 

interior space. Different sizes and shapes of aluminium panels and frames have been 

used for the external and internal façade decoration in this building. In addition, 

photovoltaic panels and green walls have been used as part of the sustainable design 

approach, and these are also of unusually large size. The basic information for the 

Theme Pavilion is shown in Table 9.1. 

 

 Floors Area Clear 
height 

Construction area Above ground 93,000 m2 21 m 
Underground 50,000 m2 9 m 
Total 143,000 m2 

Sustainable 
technologies used 

Photovoltaic panels (Roof) 30,000 m2 
Green eco-walls (Western and eastern walls) 4,860 m2 

Number of visitors 16,250,000 (125,000/day)  

Table 9.1 Basic information for the Theme Pavilion at Expo 2010 
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9.2 Method 
 

This section provides the detailed methods for quantifying the whole life cycle energy 

and resource consumption of the modern sustainable building and event case study, 

the Theme Pavilion (9.2.1), visitor travel (9.2.2), and exhibition-related economic 

aspects (9.2.3). 

 

9.2.1 Building 
 

The useful life of the Theme Pavilion for quantitative calculations in this paper is 

assumed to be 50 years, from 2010 to 2060. The 50 year life was taken because the 

pavilion was comparable in structure and construction to a normal permanent 

exhibition building. The whole life cycle study of energy analysis commonly consists of 

the energy consumption generated from the building construction, maintenance, 

operation, and demolition phases (Mithraratne et al, 2007), which are represented by 

initial and recurring embodied energy, operating energy, and energy for demolition. 

Embodied energy, operating energy, and building life are considered and discussed 

here. These factors have been accepted as the main influences on the whole life cycle 

assessment (Cole and Kernal, 1996; Fernandez, 2008; Energy Assessment, 2010). The 

energy usage for building demolition is not included in this study, as explained in 

previous chapters. 

 

9.2.1.1 Embodied energy 
 

The energy used for constructing and maintaining the condition of the Theme Pavilion 

is quantified as the initial embodied energy and recurring embodied energy over the 

assumed useful life of 50 years. This is so that the results derived from this building 

life assumption are comparable with energy data for the other case study buildings. 

 

1. Initial embodied energy 

 

The initial embodied energy of the case study building is quantified by measuring the 

volume, area, or weight of construction and finishing materials of different elements, 
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according to the published drawings in terms of the plans, elevations, and sections of 

the Theme Pavilion (EXPO 2010, 2010; TJADRI, 2010). The calculated results are then 

multiplied by the relevant embodied energy coefficients. A list of the quantities of 

construction materials and drawings of building floor plans made using AutoCAD were 

prepared and used for quantitative calculations in this research. 

 

The embodied energy coefficients of the construction materials used for the 

calculation though based on Australian data now partly come from Chinese data 

(Gong, 2004). This is because the Chinese database was more developed by the time 

this case study was started. Some European data also had to be used in the 

calculation for the case study building (Lawson, 1996; Hammond and Jones, 2008), 

owing to the lack of relevant research for other construction materials in China so far. 

Table 9.2 shows the list of embodied energy coefficients of different materials used in 

this research. The results will be reasonable, because the three main materials, 

reinforced concrete, steel, and glass, are calculated using the Chinese data. 

Furthermore, Table 9.3 compares the various embodied energy coefficients of 

different types of materials used for constructing and decorating the Theme Pavilion 

from Australian, New Zealand, and UK studies. Based on these findings, it seems that 

little difference can be found between the factors for a particular material produced in 

different countries. 

 

Construction materials Embodied energy 
coefficients 

References 

Reinforced concrete 3.2 GJ/t Gong, 2004 
Steel 31 GJ/t 
Glass (10mm) 24.5 GJ/t 
Cement 5.6 GJ/t Lawson, 1996 
Aluminium 170 GJ/t 
Sand 0.3 GJ/m3 
Plasterboard 4.4 GJ/t 
Fiber Reinforced Plastic (skylight roof panels) 90 GJ/t 
Paint (double coat) 0.02 GJ/m2 Hammond and Jones, 

2008 100mm Glass wool 28 GJ/t 
Damp proof membrane (0.25mm) 0.07 GJ/m2 Baird and Chan, 1983 
Ceramic tiles 0.78 GJ/m2 Stein et al, 1981 
Carpet 0.41GJ/m2 Treloar, 1994 
Photovoltaic panels (PVs) 1652.4MJ/m2 Vale and Vale, 2009 

Table 9.2 Embodied energy coefficients of different construction materials used 
in the analysis 
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Construction 
materials 

China (MJ/kg) 
(Gong, 2004) 

Australia (MJ/kg) 
(Lawson, 1996) 

New Zealand 
(MJ/kg)  (Alcorn, 
2003) 

UK (MJ/kg) 
(Hammond 
and Jones, 
2008) 

Concrete 2.3-3.6 1.5-2.0 0.9-2.0 0.6-2.0 
Steel 25-33 38 32 24.4 
Glass 24.5 (10mm) 12.7 15.9 15 
Cement - 5.6 7.8 4.6 
Aluminium - 170 191 155 
Plasterboard - 4.4 6.1 6.78 
Paint - 61.5 90.4 68 

Table 9.3 Embodied energy coefficients of the selected materials in different 
countries 

 

As the building is designed to be a “sustainable exhibition pavilion”, 30,000 m2 of 

photovoltaic panels are installed on top of the roof of the Theme Pavilion. It is 

necessary to account for the energy embodied in the huge array of PV panels. Vale 

and Vale (2009, p.141) compared the studies for average energy consumption for the 

manufacture of photovoltaic panels between Hammond and Jones (2008) and 

Fthenakis and Alsema (2006). The research from Fthenakis and Alsema shows that the 

manufacturing processes of PV panels have become more efficient (Vale and Vale, 

2009, p.141). It is therefore reasonable to use the modern figure of 459kWh/m2 (Vale 

and Vale, 2009, p.141), which is equal to 1652 MJ/m2, in the calculation of the 

embodied energy of PV panels for this study. The proportion of 20% of the total 

embodied energy is adopted for accounting for the energy embodied in the building 

services in this case study (the reason has been explained in section 7.2.1.1). 

 

2. Recurring embodied energy 

 

Recurring embodied energy is defined as the part of the energy required for building 

repairs, maintenance, and refurbishment over the useful life of the building 

(Mithraratne et al, 2007). The case study building, the Theme Pavilion, is assumed to 

have a useful life of 50 years from 2010 to 2060. 

 

Energy consumption for maintenance and replacement of construction materials is 

estimated based on their expected durability (assuming correct installation and 

maintenance). Table 4 lists the durability assumptions used in this research. For 

example, durability of paint is usually about 8~10 years, which means some elements 

of the case study building need to be repainted 4 times during 50 years. The 
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photovoltaic panels installed above the roof of the Theme Pavilion are seen as an 

integral building element in Table 9.4. They can be operated for at least 20 years with 

current manufacturing technologies, according to the research of Fthenakis and 

Alsema (Vale and Vale, 2009, p.140). The PV panels thus would probably be replaced 

once during the whole useful life of the sustainable building. The method of calculation 

for recurring embodied energy is the same as that for initial embodied energy. 

 

Materials Expected durability 
(assuming correct installation and maintenance) (years) 

Reinforced concrete 100 
Steel 50 
Cement 50 
Aluminium 50 
Paint (double coat) 8-10 
Glass (10mm) 50 
Damp proof membrane 100 
Sand 50 
Ceramic tiles 50 
Carpet 15-20 
100mm Glass wool 100 
Plasterboard 50 
Fiber Reinforced Plastic 
(skylight roof panels) 

50 

Photovoltaic panels (PVs) 25 

Table 9.4 Expected durability of different construction materials 
 

9.2.1.2 Operating energy 
 

The operating energy means the energy used for a building in its operation phase, 

such as that consumed by the lighting, heating and HVAC system. The figure for the 

total operating energy of the Theme Pavilion not only includes electricity consumption 

for building operation, but must also account for electricity generation from the roof 

mounted photovoltaic panels. The average electricity consumption of exhibition 

buildings in China is adopted for the calculation, owing to the lack of published data 

for the electricity usage of the pavilion. The amount of energy generated by the PV 

panels on the Theme Pavilion was announced by the official website of Expo 2010 

(http://www.expo2010.cn/). 

 

1. Energy consumption 
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Two relevant references are discussed for the calculation of the average electricity 

consumption of different types of buildings in China in the first decade of the 21st 

century, as listed in Table 9.5 and Table 9.6. 

 

The report of the Ministry of Housing and Urban-Rural Development of the People’s 

Republic of China (MHUDP, 2009) lists average electricity consumption of different 

types of building in China, as shown in Table 9.5. From this list, the average electricity 

consumption of an exhibition building is around 50-80W/m2. This figure represents the 

average consumption for a general exhibition building in 2009. 

 

Categories Electricity consumption (W/m2) 
Car park 8-15 
Primary school 12-20 
Tertiary institutes 20-40 
Apartment 30-50 
Office building 30-70 
Hotel 40-70 
Stadium 40-70 
Hospital 40-70 
Commercial building 40-80 (general); 60-120 (large) 
Theatre 50-80 
Exhibition building 50-80 

Table 9.5 Electricity consumption of different types of buildings in China 
(MHUDP, 2009) 

 

Scale Super large 
(>30,000m2) 

Large 
(15,000-
30,000m2) 

Medium 
(8,000-15,000 m2) 

Small 
(<5,000 m2) 

Energy load (VA/m2) 90-145 85-135 75-115 70-105 
Energy load (W/m2) 45-97 43-84 38-77 35-70 

Table 9.6 Electricity consumption of Science and Technology Museums in China 
(CAST, 2007) 

 

The other source published by the China Association for Science and Technology 

(CAST, 2007) reports that the average electricity consumption of Science and 

Technology Museums in the super large scale (>30,000m2) in China is around 45-

97W/m2 (Table 9.6). The Theme Pavilion (143,000 m2) falls into the category of super 

large scale public buildings. 

 

According to the report from MHUDP (2009), it can be assumed that the average 

electricity consumption of the Theme Pavilion at Expo 2010 in Shanghai is 65 W/m2 



Chapter 9 Modern sustainable exhibition case study 2: The theme Pavilion and Expo 2010 in Shanghai 
	
  

	
  
	
  

177 

[(50+80)/2]. If this exhibition building is used for 5 days per week (fully operated during 

the day time and partly operated during the night time), the average electricity 

consumption will be 270kWh/m2/year (Table 9.7). This figure is supported by data from 

the statistics of the government of Shanghai. Shanghai public buildings consumed 

150~300 kWh/m2/year in 2007 (Government of Shanghai, 2007). It is therefore 

reasonable to use 270kWh/m2/year for accounting for the operating energy of the 

Theme Pavilion. For the purposes of this study, it is assumed that the building only 

uses electricity. 

 

Time of usage Energy load Calculation 
Day 
time 

12 hours/day and 
5 days/week 

65 W/m2 65×12×5×52= 203 
kWh/m2/year 

Night 
time 

12 hours/day and 
5 days/week 

22 W/m2 (assuming that it consumes 
one third of day time energy usage) 

22×12×5×52= 67 
kWh/m2/year 

Total 270 kWh/m2/year 

Table 9.7 Assumed Energy consumption of the Theme Pavilion in a year 
 

2. Energy generation 

 

According to the statement on the solar energy technology published on the official 

website of Expo 2010 (BCSWE, 2010), the PV panels (total area 30,000 m2) can 

generate 2,560,000 kWh of electricity per year in Shanghai, which is equal to 85.3 

kWh/m2/year. 

 

Table 9.8 lists electricity generation from PV panels, comparing China (Shanghai), Italy, 

UK, and New Zealand (Vale and Vale, 2009, p.140; BCSWE, 2010). It needs to be 

noted that the figure of 85.3kWh/m2/year just represents the capability of power 

generation in Shanghai and the Yangtze River Delta. Although Shanghai is much 

nearer the equator than the UK, the fact there is a lot of pollution in the city means that 

the sun is often obscured, so the PVs do not generate as much electricity (Zhang, 

2010). 

 

 Shanghai Italy UK NZ 
Energy generation from PV panels (kWh/m2/year) 85.3 176 88 120 

Table 9.8 Comparison of electricity generation from PV panels between four 
different countries 
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9.2.1.3 Building demolition-related energy 
 

The energy consumption from building demolition is assumed to be negligible in this 

study. The reason for this has been explained in Chapters 5, 7, 8. 

 

9.2.2 Visitor travel 
 

By the same methodology as for the case studies presented in Chapters 6~8, the 

energy consumption of visitor travel can be quantified and demonstrated using the 

number of visitors, the distances of travel, and the energy intensity of different 

transportation modes. 

 

9.2.2.1 Number of visitors 
 

The total number of visitors going to the World Expo in Shanghai from 1 May to 31 

Oct 2010 is 73,080,000 (BCSWE, 2010b). The percentage of visitors from different 

cities and countries is listed in Table 9.9. 

 

Visitors Number of 
visitors 

Percentage Reference 

From Shanghai 9,950,000 13.6% - 
From Mainland China (apart from Shanghai) 58,880,000 80.6% Liu, 2010 
Overseas Hong Kong, Macao, Taiwan 1,500,000 2.1% SMSB, 2010c 

Asian countries 1,333,333 1.7% SMSB, 2010c 
European countries 708,333 1% Assumed 
America 708,333 1% Assumed 

Table 9.9 Percentage of visitors going to Expo 2010 in Shanghai 
 

Based on the report of BCSWE (2010), the total number of visitors going to the Theme 

Pavilion was 23,000,000 (125,000 visitors/day × 184 days). The percentage split 

according to journey origin of the number of tourists visiting Expo 2010 is applied to 

calculate the number of visitors going to the Theme Pavilion (Table 9.10). 
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 From 
Shanghai 

From 
Mainland 
China 
(apart from 
Shanghai) 

Hong 
Kong, 
Macao, 
Taiwan 

Asian 
countries 

European 
countries 

America 

Percentage 13.6% 80.6% 2.1% 1.7% 1% 1% 
Number of 
visitors 

3,128,000 18,538,000 483,000 391,000 230,000 230,000 

Table 9.10 Number of visitors going to the Theme Pavilion during the World 
Expo in Shanghai 

 

1. Number of visitors from Shanghai (total: 3,128,000) 

 

The total number of visitors from Shanghai going to the Theme Pavilion at Expo 2010 

was 3,128,000. Based on the percentage of passengers taking different transport 

modes in Shanghai (Table 9.11, repeated below and discussed in Chapter 7), the 

number of visitors from Shanghai taking various modes going to the Theme Pavilion 

was calculated and listed in Tables 9.12 and 9.13. 

 

Table 9.11 Percentage of passengers taking different transport modes in 
Shanghai

Mode Percentage Mode (detail) Percentage 
Public transport 27% 

 
Underground 4.86% 
Taxi 6.21% 
Bus 15.93% 

Private automotive 
vehicle 

17.5% 
 

Motorcycle 2.10% 
Car Small (1.78%) 

Medium (11.06%) 
Large (2.56%) 

Non-motorized 
vehicle 

28.5% 
 

Bike 22.14% 
Electric bike 5.53% 
Scooter 0.83% 

Walk 27% - - 
Small= Small petrol car (up to 1.4 litre engine) (Defra, 2007); Medium= Medium petrol car (1.4-
2.0 litres) (Defra, 2007); Large= Large petrol car (above 2.0 litres) (Defra, 2007) 
The percentage of people using the underground accounted for 18% of public transport use 
in 2007. This figure is expected to increase to 40% in 2012 when 12 new underground lines 
will be completed (Zhang, 2007). 
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Area The 
percentage of 
population 

The number of 
visitors 
 

The number of people taking various modes 
Underground 
(4.86%) 

Taxi  
(6.21%) 

Bus 
(15.93%) 

Motorcycle 
(2.1%) 

Small petrol car 
(1.78%) 

1 6.3% 197064 9577 12238 31392 4138 3508 
2 5.1% 159528 7753 9907 25413 3350 2840 
3 5.7% 178296 8665 11072 28403 3744 3174 
4 7.8% 243984 11858 15151 38867 5124 4343 
5 4.4% 137632 6689 8547 21925 2890 2450 
6 2.3% 71944 3496 4468 11461 1511 1281 
7 4.4% 137632 6689 8547 21925 2890 2450 
8 13.9% 434792 21131 27001 69262 9131 7739 
9 6.5% 203320 9881 12626 32389 4270 3619 
10 2.3% 71944 3496 4468 11461 1511 1281 
11 6% 187680 9121 11655 29897 3941 3341 
12 6.4% 200192 9729 12432 31891 4204 3563 
13 3.9% 121992 - - - 14639 (12.00%) 12407 (10.17%) 
14 5.3% 165784 - - - 19894 (12.00%) 16860 (10.17%) 
15 3.7% 115736 - - - 13888 (12.00%) 11770 (10.17%) 
16 3.8% 118864 - - - 14264 (12.00%) 12088 (10.17%) 
17 3.9% 121992 - - - 14639 (12.00%) 12407 (10.17%) 
18 3.3% 103224 - - - 12387 (12.00%) 10498 (10.17%) 
19 5.0% 156400 - - - 18768 (12.00%) 15906 (10.17%) 
In all 100% 3,128,000 108,087 138,111 354,285 155,183 131,523 

Table 9.12 Number of visitors (from Shanghai) taking various modes going to the Theme Pavilion at Expo 2010 
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Area 
The percentage 
of population 

The number of 
visitors 

The number of people taking different transport modes 

Medium petrol car 
(11.06%) 

Large petrol car 
(2.56%) 

Bike 
(22.14%) 

Electric 
bike 
(5.53%) 

Scooter 
(0.83%) 

Walk 
(27%) 

1 6.3% 197064 21795 5045 43630 10898 1636 53207 
2 5.1% 159528 17644 4084 35320 8822 1324 43073 
3 5.7% 178296 19720 4564 39475 9860 1480 48140 
4 7.8% 243984 26985 6246 54018 13492 2025 65876 
5 4.4% 137632 15222 3523 30472 7611 1142 37161 
6 2.3% 71944 7957 1842 15928 3979 597 19425 
7 4.4% 137632 15222 3523 30472 7611 1142 37161 
8 13.9% 434792 48088 11131 96263 24044 3609 117394 
9 6.5% 203320 22487 5205 45015 11244 1688 54896 
10 2.3% 71944 7957 1842 15928 3979 597 19425 
11 6.0% 187680 20757 4805 41552 10379 1558 50674 
12 6.4% 200192 22141 5125 44323 11071 1662 54052 
13 3.9% 121992 77099 (63.2%) 17847 (14.63%) - - - - 
14 5.3% 165784 104776 (63.2%) 24254 (14.63%) - - - - 
15 3.7% 115736 73145 (63.2%) 16932 (14.63%) - - - - 
16 3.8% 118864 75122 (63.2%) 17390 (14.63%) - - - - 
17 3.9% 121992 77099 (63.2%) 17847 (14.63%) - - - - 
18 3.3% 103224 65238 (63.2%) 15102 (14.63%) - - - - 
19 5.0% 156400 98845 (63.2%) 22881 (14.63%) - - - - 
In all 100% 3,128,000 817,298 189,189 492,395 122,988 18,459 600,482 

Table 9.13 Number of visitors (from Shanghai) taking various modes going to the Theme Pavilion at Expo 2010 
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2. Number of visitors (from Mainland China) (Total: 18,538,000) 

 

The percentage split according to population numbers in different provinces (Table 

9.14) is applied to calculate the number of visitors going to the Theme Pavilion from 

mainland China (Table 9.15). 

 

Beijing Tianjin Chongqing Guangdong 
Province 

Henan 
Province 

Shandong 
Province 

Sichuan 
Province 

Jiangsu 
Province 

16.95 11.76 28.39 95.44 94.29 94.17 81.38 76.76 
1.3% 0.9% 2.2% 7.4% 7.3% 7.2% 6.3% 5.9% 
Anhui 
Province 

Hubei 
Province 

Zhejiang 
Province 

Guangxi 
Province 

Yunnan 
Province 

Jiangxi 
Province 

Liaoning 
Province 

Heilongjia
ng 
Province 

61.35 57.11 51.20 50.49 45.43 44.00 43.15 38.25 
4.7% 4.4% 4.0% 3.9% 3.5% 3.4% 3.3% 3.0% 
Fujian 
Province 

Guangxi 
Province 

Jilin 
Province 

Gansu 
Province 

Neimeng
gu 
Province 

Xinjiang 
Province 

Hainan 
Province 

Ningxia 
Province 

36.04 34.11 27.34 26.28 24.14 21.31 8.54 6.18 
2.8% 2.6% 2.1% 2.0% 1.9% 1.6% 0.7% 0.5% 
Hebei 
Province 

Hunan 
Province 

Guizhou 
Province 

Shanxi 
Province 

Qinghai 
Province 

Xizang 
Province 

  

69.89 68.45 37.93 37.62 5.54 2.87   
5.4% 5.3% 2.9% 2.9% 0.4% 0.2%   
Table 9.14 Population density of different provinces and municipalities in China 

(millions) (NBSC, 2008) 
 

Beijing Tianjin Chongqing Guangdong 
Province 

Henan 
Province 

Shandong 
Province 

Sichuan 
Province 

Jiangsu 
Province 

1.3% 0.9% 2.2% 7.4% 7.3% 7.2% 6.3% 5.9% 
242848 168696 405982 1364397 1347713 1345859 1164186 1097450 
Anhui 
Province 

Hubei 
Province 

Zhejiang 
Province 

Guangxi 
Province 

Yunnan 
Province 

Jiangxi 
Province 

Liaoning 
Province 

Heilongjiang 
Province 

4.7% 4.4% 4.0% 3.9% 3.5% 3.4% 3.3% 3.0% 
871286 815672 741520 722982 648830 630292 611754 556140 
Fujian 
Province 

Guangxi 
Province 

Jilin 
Province 

Gansu 
Province 

Neimenggu 
Province 

Xinjiang 
Province 

Hainan 
Province 

Ningxia 
Province 

2.8% 2.6% 2.1% 2.0% 1.9% 1.6% 0.7% 0.5% 
519064 481988 389298 370760 352222 296608 129766 92690 
Hebei 
Province 

Hunan 
Province 

Guizhou 
Province 

Shanxi 
Province 

Qinghai 
Province 

Xizang 
Province   

5.4% 5.3% 2.9% 2.9% 0.4% 0.2%   
1001052 982514 537602 537602 74152 37076   

Table 9.15 Number of Chinese visitors from different provinces and 
municipalities outside of Shanghai visiting the Theme Pavilion 

 

Table 9.16 shows the split between transport modes for all travel in China. Because 

bus and car have been combined in Table 9.16, based on the percentage of 

passengers taking buses and cars in Shanghai (15.93% and 15.4%), it is assumed 
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that the percentage of passengers taking buses in Mainland China was same as that 

of cars, so the percentage taking bus and car was halved for allocation to each mode. 

 

It is assumed that no passengers going to Shanghai from other cities in mainland 

China were taking ships, because it is more convenient to use other transportation 

modes, and the total percentage of passengers taking ships in China is fairly small 

(0.26% (CEIN, 2008, p.7)). For this research, transportation modes chosen by visitors 

from mainland China going to the Theme Pavilion are limited to four: train, plane, bus, 

and car. The percentage of visitors who travelled by ships is split equally into four and 

added to the other transport modes. 

 

To check the assumptions, the original model which includes taking ships (Table 9.16) 

is calculated as well. It is used to make a comparison with the result of the calculation 

without ships (Table 9.17). This is a theoretical calculation since taking ships from 

inland provinces is not an option. However, the comparison shows a similar energy 

consumption for the two different models (Table 9.18 theoretical but with ships; Table 

9.19 more likely, without ships), but the version without ships (Tables 9.17 and 9.19) is 

more realistic in terms of likely transport modes chosen. 

 

Modes Train Plane Ship Bus and car 
Percentage 33.64% 12.90% 0.26% 53.19% (26.6% by bus, 26.6% by car) 

Table 9.16 Percentage of number of passengers taking different transport modes 
in China in 2007 (CEIN, 2008, p.7) 

 

Modes Train Plane Bus Car 
Percentage 33.71% 12.95% 26.67% 26.67% 

Table 9.17 Percentage of number of visitors taking different transport modes 
going to the Theme Pavilion in 2010 
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Location Number of visitors Train (33.64%) Car (26.6%) Bus (26.6%) Plane (12.9%) Ship (0.26%) 
Beijing 242848 81694 64598 64598 31327 631 
Tianjin 168696 56749 44873 44873 21762 439 
Chongqing 405982 136572 107991 107991 52372 1056 
Guangdong Province 1364397 458983 362930 362930 176007 3547 
Henan Province 1347713 453371 358492 358492 173855 3504 
Shandong Province 1345859 452747 357998 357998 173616 3499 
Sichuan Province 1164186 391632 309673 309673 150180 3027 
Jiangsu Province 1097450 369182 291922 291922 141571 2853 
Hebei Province 1001052 336754 266280 266280 129136 2603 
Hunan Province 982514 330518 261349 261349 126744 2555 
Anhui Province 871286 293101 231762 231762 112396 2265 
Hubei Province 815672 274392 216969 216969 105222 2121 
Zhejiang Province 741520 249447 197244 197244 95656 1928 
Guangxi Province 722982 243211 192313 192313 93265 1880 
Yunnan Province 648830 218266 172589 172589 83699 1687 
Jiangxi Province 630292 212030 167658 167658 81308 1639 
Liaoning Province 611754 205794 162727 162727 78916 1591 
Heilongjiang Province 556140 187085 147933 147933 71742 1446 
Guizhou Province 537602 180849 143002 143002 69351 1398 
Shanxi Province 537602 180849 143002 143002 69351 1398 
Fujian Province 519064 174613 138071 138071 66959 1350 
Guangxi Province 481988 162141 128209 128209 62176 1253 
Jilin Province 389298 130960 103553 103553 50219 1012 
Gansu Province 370760 124724 98622 98622 47828 964 
Neimenggu Province 352222 118487 93691 93691 45437 916 
Xinjiang Province 296608 99779 78898 78898 38262 771 
Hainan Province 129766 43653 34518 34518 16740 337 
Ningxia Province 92690 31181 24656 24656 11957 241 
Qinghai Province 74152 24945 19724 19724 9566 193 
Xizang Province 37076 12472 9862 9862 4783 96 
Total 18538000 6236183 4931108 4931108 2391402 48199 

Table 9.18 Number of Chinese tourists visiting the Theme Pavilion by different transport modes (theoretical ship travel included) 
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Location Number of visitors Train (33.71%) Car (26.67%) Bus (26.67%) Plane  (12.95%) 
Beijing 242848 81864 64768 64768 31449 
Tianjin 168696 56867 44991 44991 21846 
Chongqing 405982 136857 108275 108275 52575 
Guangdong Province 1364397 459938 363885 363885 176689 
Henan Province 1347713 454314 359435 359435 174529 
Shandong Province 1345859 453689 358941 358941 174289 
Sichuan Province 1164186 392447 310488 310488 150762 
Jiangsu Province 1097450 369950 292690 292690 142120 
Hebei Province 1001052 337455 266981 266981 129636 
Hunan Province 982514 331205 262036 262036 127236 
Anhui Province 871286 293711 232372 232372 112832 
Hubei Province 815672 274963 217540 217540 105630 
Zhejiang Province 741520 249966 197763 197763 96027 
Guangxi Province 722982 243717 192819 192819 93626 
Yunnan Province 648830 218721 173043 173043 84023 
Jiangxi Province 630292 212471 168099 168099 81623 
Liaoning Province 611754 206222 163155 163155 79222 
Heilongjiang Province 556140 187475 148323 148323 72020 
Guizhou Province 537602 181226 143378 143378 69619 
Shanxi Province 537602 181226 143378 143378 69619 
Fujian Province 519064 174976 138434 138434 67219 
Guangxi Province 481988 162478 128546 128546 62417 
Jilin Province 389298 131232 103826 103826 50414 
Gansu Province 370760 124983 98882 98882 48013 
Neimenggu Province 352222 118734 93938 93938 45613 
Xinjiang Province 296608 99987 79105 79105 38411 
Hainan Province 129766 43744 34609 34609 16805 
Ningxia Province 92690 31246 24720 24720 12003 
Qinghai Province 74152 24997 19776 19776 9603 
Xizang Province 37076 12498 9888 9888 4801 
Total 18538000 6249160 4944085 4944085 2400671 

Table 9.19 Number of Chinese tourists visiting the Theme Pavilion by different transport modes (likely mode selections) 



Chapter 9 Modern sustainable exhibition case study 2: The theme Pavilion and Expo 2010 in Shanghai 
	
  

	
  
	
  

186 

3. Number of visitors from Hong Kong, Macao, Taiwan (483,000) 

 

The total number of visitors from Hong Kong, Macao, and Taiwan was 483,000. CEIN 

(2008, p.3) reported the percentage of number of visitors coming from these three 

cities in 2007. Based on these proportions (87.4%, 3.3%, and 9.3%), the number of 

tourists visiting the Theme Pavilion from Hong Kong, Macao, and Taiwan can be 

calculated, as shown in Table 9.20. 

 

Furthermore, CEIN (2008, p.3) demonstrated the percentage of visitors from Hong 

Kong, Macao, and Taiwan taking different transport modes to go to mainland China, 

including airplane, train, bus, and car. Based on these figures, the number of visitors 

going to the Theme Pavilion from these three cities by different transport modes can 

be calculated (Table 9.21). 

 

 Hong Kong Macao Taiwan 
Percentage (CEIN, 2008, p.3) 87.4% 3.3% 9.3% 
Number of visitors 422142 15939 44919 
Transport modes Fly, Rail, Road Fly, Rail, Road Fly 

Table 9.20 Number of tourists visiting the Theme Pavilion from Hong Kong, 
Macao, Taiwan 

 

Location Plane Train Bus Car 
percen
tage 

Number 
of visitors 

percen
tage 

Number 
of 
visitors 

Percent 
age 

Number 
of 
visitors 

Percent 
age 

Number 
of 
visitors 

Hong 
Kong 

6.45% 422142 3.95% 16675 44.80% 189120 44.80% 189120 

Macao 5.03% 802 1.63% 260 46.67% 7439 46.67% 7439 
Taiwan 100% 44919 - - - - - - 
Total - 72949 - 16934 - 196558 - 196558 

Table 9.21 Number of visitor going to the Theme Pavilion from Hong Kong, 
Macao, Taiwan by different transport modes 

 

4. Number of visitors from other countries (851,000) 

 

The total number of foreign visitors was 851,000, of which 153,000 came from other 

Asian countries. The percentage of visitors from Asian countries taking ship, airplane, 

train, and car to go to Mainland China was 12.8%, 67.6%, 3.7%, and 15.9% (CEIN, 

2008, p.3). The number of Asian visitors using different transport modes to go to the 

Theme Pavilion is then calculated (Table 9.22). In addition, in this study, it is assumed 
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that all the visitors from European countries and America used air travel to go to 

Shanghai. 

 

Asian countries Ship Plane Train Car 
Percentage (CEIN, 2008, p.3) 12.8% 67.6% 3.7% 15.9% 
Number of visitors 50048 264316 14467 62169 

Table 9.22 Number of visitors from Asian countries taking different transport 
modes coming to the Theme Pavilion 

 

9.2.2.2 Distance of visitor travel 
 

1. Visitors from Shanghai 

 

The method of determining the travel distance from different districts to the Theme 

Pavilion was the same as the method for visitor travel to the Shanghai Exhibition 

Centre (explained in Chapter 7). The distances of travel from the 19 districts are listed 

in Table 9.23. 

 

Area Name of 
District 

Distance of 
travel (km) 

Area Name of 
District 

Distance of travel 
(km) 

1 Pu Tuo 11.84 11 Bao Shan 16.34 
2 Zha Bei 10.61 12 Min Hang 10.23 
3 Hong Kou 10.48 13 Jia Ding 26.30 
4 Yang Pu 11.50 14 Nan Hui 25.22 
5 Chang Ning 11.17 15 Feng Xian 24.83 
6 Jing An 7.23 16 Jin Shan 35.65 
7 Huang Pu 4.26 17 Song Jiang 27.79 
8 Pu Dong 6.75 18 Qing Pu 32.23 
9 Xu Hui 5.72 19 Chong Ming 33.96 
10 Lu Wan 3.26    

Table 9.23 Travel distance from different districts to the Theme Pavilion in 
Shanghai 

 

2. Visitors from mainland China and Hong Kong, Macao, and Taiwan 

 

The travel distance from each Chinese provincial capital city to Shanghai was 

calculated by the straight line distance, as listed in Tables 9.24 and 9.25. 
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No Name of Province Distance of 
travel (km) 

No Name of Province Distance of 
travel (km) 

1 Beijing 1088 16 Jiangxi Province 611 
2 Tianjin 963 17 Liaoning Province 1191 
3 Chongqing 1445 18 Heilongjiang Province 1675 
4 Guangdong Province 1213 19 Guizhou Province 1527 
5 Henan Province 827 20 Shanxi Province 1099 
6 Shandong Province 729 21 Fujian Province 611 
7 Sichuan Province 1659 22 Shanxi Province 1223 
8 Jiangsu Province 266 23 Jilin Province 1444 
9 Hebei Province 991 24 Gansu Province 1718 
10 Hunan Province 886 25 Neimenggu Province 1374 
11 Anhui Province 402 26 Xinjiang Province 3269 
12 Hubei Province 684 27 Hainan Province 1630 
13 Zhejiang Province 169 28 Ningxia Province 1595 
14 Guangxi Province 1603 29 Qinghai Province 1913 
15 Yunnan Province 1950 30 Xizang Province 2902 

Table 9.24 A straight line distance of visitors from the main cities of mainland 
China to Shanghai 

 

Hong Kong to Shanghai 1208 km 
Macao to Shanghai 1276 km 
Taipei to Shanghai km 

Table 9.25 Travel distance from Hong Kong, Macao, and Taiwan to Shanghai 
 

3. Visitors from Asian, European, and American countries 

 

The travel distances from foreign countries (Asia, Europe, and America) to China have 

been measured using the “place to place distance calculator” (Distancefromto, 2010). 

The average travel distance from the different countries has been adopted for the 

calculation. The detailed figures can be seen in Tables 9.26~9.28. 
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Area Direct distance from different countries to 
China (km) 

Average distance 
(km) 

Eastern Asia Japan 3050 2123 
Mongolia 1225 
North Korea 2096 
South Korea 2121 

Southern Asia Afghanistan 3319 2988 
Bangladesh 1900 
Bhutan 1598 
India 2987 
Maldives 4832 
Nepal 2062 
Pakistan 3288 
Sri Lanka 3921 

Western Asia Armenia 5117 5383 
 
 

Azerbaijan 4905 
Bahrain 5170 
Cyprus 6263 
Iraq 5467 
Iran 4618 
Israel 6327 
Jordan 6228 
Kuwait 5296 
Lebanon 6113 
Oman 4923 
Qatar 2610 
Saudi Arabia 5773 
Syria 5806 
United Arab Emirates 5007 
Turkey 5957 
Yemen 5936 

North Asia Russia 2858 2858 
Southeast 
Asia 

Brunei 3651 3149 
Burma 1746 
Cambodia 2595 
East Timor 5468 
Indonesia 4203 
Laos 1790 
Philippines 3106 
Malaysia 3531 
Singapore 3842 
Thailand 2248 
Vietnam 2461 

Central Asia Kazakhstan 3329 3251 
Kyrgyzstan 2617 
Tajikistan 2916 
Turkmenistan 3923 
Uzbekistan 3469 

Table 9.26 Travel distance from Asian countries to China (Distancefromto, 2010) 
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Area Direct distance from different countries to China (km) Average distance (km) 
Northern Europe Denmark 7039 7026 

Faroe Islands 7538 
Estonia 6078 
Finland 5968 
Åland Islands 6317 
Iceland 7786 
Ireland 8169 
Latvia 6145 
Lithuania 6237 
Norway 6899 
Svalbard and Jan Mayen 5908 
Sweden 6386 
United Kingdom 7788 
Guernsey 8121 
Isle of Man 7920 
Jersey 8111 

Western Europe Austria 7145 7561 
Belgium 7636 
France 8031 
Germany 7232 
Liechtenstein 7498 
Luxembourg 7573 
Monaco 7833 
Netherlands 7495 
Switzerland 7605 

Central and 
Eastern Europe 

Belarus 6023 6327 
Bulgaria 6575 
Czech Republic 6976 
Hungary 6822 
Moldova 6184 
Poland 6648 
Romania 6484 
Russia 4858 
Slovakia 6744 
Ukraine 5954 

Southern Europe Albania 7049 7640 
Andorra 8302 
Bosnia and Herzegovina 7100 
Croatia 7219 
Gibraltar 9209 
Greece 7022 
Italy 7575 
Macedonia 6908 
Malta 7766 
Montenegro 7034 
Portugal 9168 
San Marino 7472 
Serbia 6853 
Slovenia 7181 
Spain 8798 
Vatican City 7581 

Table 9.27 Travel distance from European countries to China (Distancefromto, 
2010) 
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Countries Distance of travel by airplane 
European countries See Table 9.27 
America (New York to Shanghai) 11,907km (Travelmath, 2011) 

Table 9.28 Travel distance from European countries and USA to China 
 

9.2.2.3 Energy intensity of different transport modes 
 

The energy intensity of different transport modes, including underground, taxi, car, 

bus, motorcycle, electric bike, scooter, train, airplane, and ship, in China are sourced 

from the literature and are listed in Table 9.29. 

 

Modes Fuel Energy intensity 
( MJ/passenger-km) 

Reference 

Underground Electricity 0.071 See Table 7.6 
Taxi Fossil fuel 2.494 See Table 7.6 
Car Small Fossil fuel 1.467 

See Table 7.6 Medium Fossil fuel 2.304 
Large Fossil fuel 3.133 

Bus Fossil fuel 0.648 See Table 7.6 
Motorcycle Fossil fuel 1.000 See Table 7.6 
Electric bike Electricity 0.036 See Table 7.6 
Scooter Fossil fuel 0.086 See Table 7.6 
Train Electricity/Fossil fuel 0.174 Xie et al, 2010 
Airplane Jet fuel 2.012 Xie et al, 2010 
Ship Fossil fuel 0.756 (SeaBus, Vancouver, 

Canada) 
David and 
MacKay, 2009 

Table 9.29 Energy intensity of different transport modes in China 
 

9.2.2.4 CO2 emissions coefficients 
 

The associated CO2 emissions of visitor travel to go the Theme Pavilion in Shanghai 

are estimated. CO2 emissions coefficients of different transport modes in China were 

mainly from Chinese literature, as shown in Table 9.30. 
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Modes Fuel CO2 emissions coefficients 
( g/passenger-km) 

Reference 

Underground Electricity 16.6 See Table 7.7 
Taxi Fossil fuel 167.5 See Table 7.7 
Car Small Fossil fuel 98.6 

See Table 7.7 Medium Fossil fuel 155.0 
Large Fossil fuel 210.0 

Bus Fossil fuel 43.5 See Table 7.7 
Motorcycle Fossil fuel 67.2 See Table 7.7 
Electric bike Electricity 8.4 See Table 7.7 
Scooter Fossil fuel 5.8 See Table 7.7 
Train Electricity/Fossil fuel 25 IFEU, 2008 
Airplane Jet fuel 145 IFEU, 2008 
Ship Fossil fuel 201 (Size of GT: 2,000-9,999, 

Cruise ship, Norway) 
Walnum, 2011 

Table 9.30 CO2 emissions coefficients of different transport modes in China 
 

9.2.3 Exhibition-related economic aspects 
 

The ecological footprint of the exhibition-related economic aspects of Expo 2010 in 

Shanghai was found by converting the monetary value of the economic income. In this 

way the economic benefits and ecological footprint generated by Expo 2010 can be 

investigated. 

 

9.2.3.1 Exhibition-related economic income 
 

Three parts of the economic benefits generated by Expo 2010 are investigated in this 

research: tickets sold, direct economic benefits generated during the Expo 2010, and 

potential benefits after Expo 2010. 

 

1. Tickets sold at Expo 2010 

 

The Bureau of Coordination of Shanghai World Expo (BCSWE, 2010b) announced that 

the total number of visitors going to Expo 2010 was 73,080,000 and the average price 

of a ticket for the expo was 160 RMB. Thus, the total economic income of tickets sold 

for Expo 2010 was 11,692,800,000 RMB (1,794,584,664 USD) (160 RMB × 

73,080,000). 
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2. Direct economic benefits generated during Expo 2010 

 
Direct economic benefits mainly come from commercial sales in and out of the Expo 

Park and exhibition-related tourism. 

 
Luo (2011) demonstrated the income from the commercial sales in the Expo Park was 

about 4,507,000,000 RMB (691,724,230 USD), including food sold (2,400,000,000 

RMB) and retail trade. Secondly, 30,958,000,000 RMB (4,751,364,261 USD) came 

from expo licensed products (Luo, 2011).   

 

In addition, based on the estimation of the China Tourism Academy, economic income 

from tourism resulting from the Expo was estimated to be around 55,040,000,000 

RMB (8,447,415,496 USD), apart from the income of transportation (24,960,000,000 

RMB) (Zheng, 2010). The detailed figures of income coming from these different 

categories are shown in Table 9.31. 

 
Visitors from Mainland China 
Main industries Percentage of income (Liu, 2010) Income (RMB) 
Accommodation 36.0% 28,800,000,000 
Retail 5.8% 4,640,000,000 
Restaurant 6.5% 5,200,000,000 
Visitors from Hong Kong, Macao, Taiwan, and other countries 
Main industries Percentage of income (Liu, 2010) Income (RMB) 
Accommodation 11.2% 8,960,000,000 
Retail 4.8% 3,840,000,000 
Restaurant 4.5% 3,600,000,000 
Total 55,040,000,000 RMB 

Table 9.31 Income generated from different income categories of Expo 2010 
 
The total direct economic benefits generated during Expo 2010 were 90,505,000,000 

(13,890,504,770 USD). 

 
3. Economic benefits generated after the Expo 2010 (Total: 12,980,779,024 USD ) 

 

Research has found 5% of local GDP was generated from Expo 2010 (Cai et al, 2009; 

Zheng, 2010). The GDP in Shanghai in 2010 was about 1,687,242,000,000 RMB 

(25,961,558,048 USD) (Wang, 2011). Thus 5% of GDP is 84,362,100,000 RMB 

(12,980,779,024 USD). For example, exhibition-related economic benefits after the 

Expo 2010 will be generated from land sales and related real estate (Li and Wu, 2010). 
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4. Total economic benefit 

 
The international event, Expo 2010, brought a total income of 186,559,900,000 RMB 

(28,665,867,675 USD), as shown in Table 9.32. 

 

Exhibition-related economic benefit RMB USD 
Tickets sold 11,692,800,000 1,794,584,664 
Commercial sale in the Expo Park 4,507,000,000 691,724,230 
Expo licensed products (Souvenir) 30,958,000,000 4,751,364,261 
Economic income from tourism 55,040,000,000 8,447,415,496 
Economic benefits generated after the Expo 2010 84,362,100,000 12,980,779,024 
Total economic income 186,559,900,000 28,665,867,675 

Table 9.32 Total economic benefit of Expo 2010 
 

9.2.3.2 Economic-related ecological footprint 
 

The national Ecological Footprint intensity of China was about 5,139 RMB/gha in 2001 

(Chen et al, 2006), which has been explained in Chapter 7. On this basis the ecological 

footprint of direct and indirect economic benefits is calculated. 

 

9.3 Results and analysis 
 

9.3.1 Building 
 

9.3.1.1 Embodied energy 
 

The calculated result of the total embodied energy of the Theme Pavilion is 1,284,266 

GJ (9.0 GJ/m2) for the assumed 50 year life. It includes 1,199,806 GJ (8.4 GJ/m2) of 

initial embodied energy and 84,460 GJ (0.6 GJ/m2) of recurring embodied energy. 
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Materials Initial embodied energy (GJ) Percentage (%) 
Reinforced concrete 421,219 35.1 
Damp proof membrane 3,199 0.3 
Steel 120,385 10.0 
Paint 6,340 0.5 
Aluminium 242,800 20.2 
Cement 15,843 1.3 
Sand 500 0.04 
Tiles 79,377 6.6 
Carpet 3,670 0.3 
Plasterboard 356 0.03 
Glass 9,918 0.8 
Glass wool 6,454 0.5 
PV panels 49,560 4.1 
FRP skylight roof panels 224 0.02 
Building services 239,961 20.0 
Total 1,199,806 GJ  (8.4 GJ/m2) 

Table 9.33 Quantitative breakdown of the initial embodied energy of different 
materials (Appendix D) 

 
The initial embodied energy, shown in Table 9.33, is 1,199,806 GJ or 8.4 GJ/m2. It can 

be seen that the building elements constructed of reinforced concrete, aluminium and 

steel in the Theme Pavilion have the highest initial embodied energy. The initial 

embodied energy of reinforced concrete and aluminium account for 35.1% and 20.2% 

respectively in the total. Aluminium panels and frames have been widely used for the 

inside and outside façades of the case study building, which means consuming more 

energy and resources than if other cladding materials had been chosen, because of 

their energy intensive and complex manufacturing process. 

 

Materials Recurring embodied energy (GJ) Percentage (%) 
Reinforced concrete 0 0 

Damp proof membrane 0 0 
Steel 0 0 
Paint 27,560 32.6 
Aluminium 0 0 
Cement 0 0 
Sand 0 0 
Tiles 0 0 
Carpet 7,340 8.7 
Plasterboard 0 0 
Glass 0 0 
Glass wool 0 0 
PV panels 49,560 58.7 
FRP skylight roof panels 0 0 
Building services 0 0 
Total 84,460 GJ (0.6 GJ/m2) 

Table 9.34 Quantitative breakdown of the recurring embodied energy of different 
materials (Appendix D) 
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The recurring embodied energy is calculated as 84,460 GJ or 0.6 GJ/m2 (Table 9.34). 

Three construction materials, including paint, carpet, and photovoltaic panels, have to 

be reapplied or replaced in the useful life of 50 years. It seems that photovoltaic 

panels have a large recurring energy (49,560 GJ), which accounts for 59% of the total 

recurring energy, although they have the ability to generate renewable energy. 

 

9.3.1.2 Operating energy 
 

Total energy consumption of the Theme Pavilion in its operating phase in a year is 

based on 270 kWh/m2/year and 143,000 m2 (total construction area). The total 

electricity consumption of the Theme Pavilion is 1,930,500,000 kWh in 50 years or 

38,610,000kWh/year. At the same time, the electricity produced by the PV panels will 

be about 128,000,000 kWh or 2,560,000kWh/year. Thus, the total operating energy of 

the building is equal to the consumption minus the electricity generation, and is 

approximately 36,050,000kWh/year or 252kWh/m2/year. 

 

9.3.2 Visitor travel 
 

Using the proportions in every district, the numbers of people choosing different 

transport modes in every district, city, and country were calculated.  The total energy 

consumption of visitors travelling by different transport modes to go to the Theme 

Pavilion is 67,609,950 GJ, or 2.94 GJ/visitor for the return trip. The total CO2 

emissions of visitor travel to go to the Theme Pavilion are 8,183,248 t (there and back). 

To avoid repetition of a similar process of calculation, the detailed quantitative work 

for the visitor travel of this case study can be seen in Appendix D. 

 

As the total exhibition area of Expo 2010 was too large to visit in one day, the number 

of independent pavilions visited was four to six pavilions in a day (average five) (CEAIR, 

2010). Total energy consumption and associated CO2 emissions of visitor travel to go 

to the Theme Pavilion as part of an Expo 2010 visit were 13,521,990 GJ (67,609,950 ÷ 

5) (Table 9.35) and 1,636,650 t (8,183,248 ÷ 5) (Table 9.36). 
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 Total energy consumption 
From Shanghai 28,632 GJ 
From mainland China 8,718,614 GJ 
From HK, Macao, Taiwan 311,643 GJ 
From Asian countries 941,208 GJ 
From other countries 3,521,894 GJ 
Total 13,521,990 GJ 

Table 9.35 Total energy consumption of visitor travel assuming five pavilions 
were visited 

 

 CO2 emissions 
From Shanghai 1,927 t 
From mainland China 644,161 t 
From HK, Macao, Taiwan 51,538 t 
From Asian countries 471,321 t 
From other countries 467,703 t 
Total 1,636,650  t 

Table 9.36 Total CO2 emissions of visitor travel assuming five pavilions were 
visited 

 

9.3.3 Exhibition-related economic aspects 
 

The total ecological footprint of the direct and indirect economic benefits of Expo 

2010 was 36,302,764 gha, or 0.50 gha/visitor, which was generated from the 

exhibition-related economic benefits of 186,559,900,000 RMB. Tables 9.37 and 9.38 

show the ecological footprint of each category of economic benefit. 

 

Exhibition-related economic benefit RMB EF (gha) 
Tickets sold 11,692,800,000 2,275,307 
Commercial sales in the Expo Park 4,507,000,000 877,019 
Expo licensed products (Souvenir) 30,958,000,000 6,024,129 
Economic income from tourism 55,040,000,000 10,710,255 
Economic benefits generated after the Expo 2010 84,362,100,000 16,416,054 
Total economic income 186,559,900,000 36,302,764 

Table 9.37 Ecological footprint of exhibition-related economic benefit 
 

Exhibition-related economic benefit Average EF (gha/visitor) 
Tickets sold 0.03 
Commercial sales in the Expo Park 0.01 
Expo licensed products (Souvenirs) 0.08 
Economic income from tourism 0.16 
Economic benefits generated after the Expo 2010 0.22 
Total economic income 0.50 

Table 9.38 Average ecological footprint of exhibition-related economic benefit 
 



Chapter 9 Modern sustainable exhibition case study 2: The theme Pavilion and Expo 2010 in Shanghai 
	
  

	
  
	
  

198 

9.4 Whole life-cycle impact 
 

The total ecological footprint of the case study building and event was 36,439,538 

gha/year, or 0.503 gha/visitor/year, as shown in Table 9.39. 

 

 Total 
ecological 
footprint in a 
year (gha/year) 

Average 
ecological 
footprint 
(gha/visitor/year) 

Average 
ecological 
footprint 
(gha/m2/year) 

Theme Pavilion 1,554 0.00006      0.011 
Visitor travel going to the building 135,220 0.00588      0.946 
Exhibition-related economic 
aspects 

36,302,764 0.497 253.866 

Total 36,439,538 0.503 254.823 

Table 9.39 Ecological footprint of the case study over the assumed useful life of 
50 years 

 

9.5 Chapter conclusion 
 

This chapter calculated the energy, carbon and ecological footprint of the Theme 

Pavilion at Expo 2010 in Shanghai, visitor travel going to the Expo, and exhibition-

related economic aspects. It demonstrated the current effect of the sustainable 

technologies (30,000 m2 of solar panels) used in this pavilion. In addition, energy and 

associated carbon emissions of visitor travel was examined at the international level, 

which is different from the Chapter 7 case study which only considered local travel. It 

also shows the significant direct and indirect environmental degradation to Shanghai, 

especially the exhibition-related economic aspects. 
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Chapter 10 Comparative analysis 

 

10.1 Introduction 
 

In some more recent world expositions sustainable technologies have been utilised in 

both exhibition buildings and in exhibition-related visitor travel (discussed in Sections 

2.2.3 and 3.2.2). Some researchers have proposed that improving energy efficiency in 

commercial buildings (and exhibition buildings fall into this category) is one of the 

easiest and lowest cost ways to mitigate environmental degradation (Figueres and 

Philips, 2007; Kneifel, 2010). However, there are still some problems with the 

application of sustainable technologies in terms of reducing the energy consumption 

of exhibition pavilions and expo transportation (discussed in Chapter 3). The other fact 

is that any reduction in the energy use of large-scale events has to be measured over 

their whole life, and this thesis claims, to be truly sustainable, this should include the 

life-time aspects of exhibition buildings, exhibition-related visitor travel and the 

economic effect of holding expos (the research scope has been explained in Section 

4.2).  

 

This chapter, therefore, will explore the relative impacts of the components of the 

research hypothesis: “the exhibition industry does have large environmental impacts 

and these require concern in terms of infrastructure construction, transport modes, 

and exhibition-related economic benefits. The exhibition-related economic factor 

dominates, with the greatest impact on the environment, compared to the other 

factors.” This exploration will be carried out by comparative analysis of the results 

from the four case studies in Chapters 6~9 (the Great Exhibition of 1851, Shanghai 

National Exhibitions, Expo 2000, and Expo 2010). It explores the real problems 

existing in the exhibition industry in terms of their environmental aspects and ends by 

attempting to define what a real sustainable exposition and sustainable exhibition 

building might be.  

 

The four case studies, all exhibition buildings with comparable functions (discussed in 

Chapter 5), are detailed and quantified and then compared in terms of their energy 

intensity from buildings usage, visitor travel, and exhibition-related economic aspects. 
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The methods of quantification and detailed processes of calculation of the energy and 

resource consumption of the four case studies have been explained in Chapters 5~9. 

As clarification, the discussions and conclusions in this chapter are made in the 

context of the environmental aspect of sustainability, this being the most significant 

aspect for energy flows in the triple bottom line of sustainability (environment, 

economy, and society). In addition, the conclusions of the comparative analysis are 

formed in terms of the most significant aspects derived from the calculated results. It 

is noted that the Shanghai National Exhibition, as a national event, cannot be directly 

compared in some aspects (this will be discussed in the following sections).  

 
Comparisons are made between the energy consumption of the four exhibition 

buildings (Section 10.2), related visitor travel (Section 10.3), and resource 

consumption in terms of the exhibition-related economic aspects (Section 10.4). 

Comparison is also made of the environmental impact of the four expositions over 

their whole life cycle (Section 10.5) (Figure 10.1).  

 

 

Figure 10.1 Diagram of comparisons made in the different sections  
in this chapter 

  

10.2 Comparison of energy consumption of exhibition buildings 
 

In this section, the energy consumptions of the four different case study buildings, the 

Crystal Palace, the Shanghai Exhibition Centre, the Dutch Pavilion, and the Theme 

Pavilion, are compared and discussed based on the average usage (for example 
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MJ/m2/month or MJ/m2/year). The energy consumption that is estimated and 

compared is covered by the categories depicted in Figure 10.2. The building 

demolition related energy is not discussed in this study (the reason for this has been 

explained in Chapter 5). 

 

 

Figure 10.2 Energy consumption estimated and compared in this research 
 
The energy consumptions of the four case study buildings in terms of both actual 

useful life and assumed useful life are estimated separately in sections 10.2.1 and 

10.2.2. The reason for this is that the former result (energy consumption based on 

actual useful life of buildings) explores the truth of the supposed sustainable design of 

exhibition buildings, and the latter result (energy consumption based on assumed 

useful life of buildings) is to provide a more normalised comparison. The useful life of 

the Dutch Pavilion and the Theme Pavilion is assumed to be 50 years, based on the 

useful life of general exhibition and commercial buildings (shown in Table 10.1). As the 

exhibition halls for world expos (e.g. Crystal Palace and Theme Pavilion) were used for 

operating national exhibitions after the original international expositions, the life cycle 

energy consumption of the Shanghai Exhibition Centre as a general exhibition building 

can be compared with the others. 

 

Exhibition buildings Period Actual useful 
life 

Assumed useful life 

Crystal Palace  1851-1936 82.5 years 50 years 
Shanghai Exhibition 
Centre  

1955-ongoing 56 years and 
more 

50 years 

Dutch Pavilion  June to October 2000 5 months 50 years 
Theme Pavilion  May to October 2010 and 

March 2011-ongoing 
13 months or 

more 
50 years 

Table 10.1 Two different useful periods of four case study buildings 
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10.2.1 Comparison of energy consumption of exhibition buildings over 
their actual useful life  
 

The first comparison is made between the energy consumption of the four case study 

buildings over their actual useful life. Energy consumption of exhibition buildings 

includes the initial and recurring embodied energy, and operating energy. In this study, 

the building demolition related energy is not discussed, as indicated above. The actual 

useful life of the four buildings for calculation is given in Table 10.2. 

 

Exhibition buildings Period Actual useful life 
Crystal Palace  1851-1936 82.5 years 
Shanghai Exhibition Centre  1955-2011 56 years 
Dutch Pavilion  June to October 2000 5 months 
Theme Pavilion  May to October 2010 and March to 

September 2011 
13 months 

Table 10.2 Actual useful life of four case study buildings for calculation 

10.2.1.1 Embodied energy over actual useful life 
 

Table 10.3 shows the comparison between the average embodied energy of the 

different case study buildings. The Dutch Pavilion had the highest embodied energy 

consumption. In its actual life, this was more than 700 times the embodied energy of 

the Crystal Palace, which was used in two different locations. The average embodied 

energy of the Theme Pavilion (built in 2010) is 100 times that of the Shanghai 

Exhibition Centre (built in 1955), although they were designed and constructed in the 

same city. However, these discrepancies are due largely to the very short actual lives 

of the Dutch pavilion and the Theme Pavilion to date. 

 

 Initial embodied 
energy 
(MJ/m2/month) 

Recurring 
embodied energy 
(MJ/m2/ month) 

Total 
embodied 
energy (MJ/m2/ 
month) 

Crystal Palace (82.5 years) 1.3 1 .2 2.5 
Shanghai Exhibition Centre 
(56 years) 

8 6  14 

Dutch Pavilion (5 months) 2,120 0 2,120 
Theme Pavilion (13 months) 1,400 0 1,400 

Table 10.3 Comparison of average embodied energy of four case study buildings 
based on actual life (note, figures are rounded) 

 

Table 10.4 compares the percentage of initial and recurring embodied energy in the 

total embodied energy consumption of the four exhibition buildings over their actual 
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useful life. There is no recurring embodied energy for the Dutch Pavilion and the 

Theme Pavilion, due to their short life, as shown in Table 10.4 and Figure 10.3.  

 

 Initial 
embodied 
energy (GJ/m2) 

Perce
ntage 

Recurring 
embodied 
energy (GJ/m2) 

Perce
ntage 

Total lifetime 
embodied 
energy 
(GJ/m2) 

Crystal Palace  
(82.5 years) 

  1.34    53% 1.19 47%   2.53 

Shanghai Exhibition 
Centre (56 years) 

  5.49   58% 4.00 
(extension and 
maintenance) 

42%   9.49 

Dutch Pavilion 
 (5 months) 

10.61 100% 0.00 0% 10.61 

Theme Pavilion 
 (13 months) 

  8.39 100% 0.00 0%   8.39 

Table 10.4 Comparison of percentage of initial and recurring embodied energy of 
four case study buildings over actual life 

 

 

 

Figure 10.3 Percentage of initial and recurring embodied energy of  
the four case study buildings based on actual life 
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10.2.1.2 Operating energy over actual useful life 
 

Table 10.5 shows that the average operating energy consumed for building services, 

such as lighting and heating or HVAC systems of the four different exhibition buildings 

with construction dates ranging from the 19th century to the 21st century, were close. It 

is noted that the average operating energy of the Shanghai Exhibition Centre seems 

much lower than the other buildings, as no air-conditioning was installed for heating 

and cooling from 1955 to 2001 (46 years) (discussed in section 7.2.1.2). This building 

would consume 63 MJ/m2/month in its operation phase if it had the air-conditioning 

system since 1955.  

 

 Average operating energy 
(MJ/m2/month) 

Crystal Palace (82.5 years) 93 
Shanghai Exhibition Centre (56 years) 37 
Dutch Pavilion (5 months) 83 
Theme Pavilion (13 months) 76 

Table 10.5 Comparison of average operating energy of four case study buildings 
over actual life 

 

The heating system in the Crystal Palace depended on burning coal and the other 

three case study buildings used electricity as the main energy source. Although the 

electricity of different countries is generated from different natural resources, the 

average operating energy values of the Dutch Pavilion, and the Theme Pavilion were 

similar.  

 

It needs to be noted that roughly 50 to 70 % of the thermal energy in the fuel can be 

supplied to a building from coal boilers by directly burning coal (Brown, 2006, p.24), 

the heating system of the Sydenham Crystal Palace. However, in the case of 

electricity, only 30% of thermal energy can be converted to electricity from burning 

coal in the process of electricity generation (Figure 10.4) (EurActiv, 2006). Modern 

buildings, such as the Shanghai Exhibition Centre, the Dutch Pavilion, and the Theme 

Pavilion are operated by electricity. Because of improvement in the technologies of 

energy efficiency, the average operating energy of modern exhibition buildings tends 

to be lower than that of the historic building. However, because the modern buildings 

use electricity their overall energy efficiency in terms of the primary energy used for 
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their operation may be worse than that of the Crystal Palace, because the latter used 

coal directly. 

 

 

Figure 10.4 Operating energy conversions of historic  
and modern exhibition buildings 

 

If the Dutch Pavilion and Theme Pavilion did not have PV panels and wind turbines 

installed, their operating energy consumptions would be even higher (Table 10.6). It is 

found that without its renewable energy contribution the average operating energy of 

the Dutch Pavilion is equal to that of the Crystal Palace using a coal-fired heating 

system in the 19th and early 20th Centuries. In fact the Shanghai Exhibition Centre 

designed in 1955 has a lower operating energy use than the Theme Pavilion at Expo 

2010 Shanghai with its PVs. Whether using PV panels and other sustainable 

technologies could help to mitigate the energy usage of exhibition buildings in their 

operating phase is arguable. Using renewable energy is a good approach to decrease 

CO2 emissions, but first it is essential to reduce energy demand significantly. The extra 

energy embodied in the manufacture of PV panels and wind turbines would also need 

to be calculated. 

 

 Average operating 
energy (with PV 
panels) (MJ/m2/month) 

Average operating energy  
(without PV panels) 
(MJ/m2/month) 

Crystal Palace (82.5 years) 93 93 
Shanghai Exhibition Centre  
(56 years) 

37 37 

Dutch Pavilion (5 months) 83 93 
Theme Pavilion (13 months) 76 81 

Table 10.6 Comparison of average operating energy of four case study buildings 
with and without PV panels/wind turbines over actual life 
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10.2.1.3 Total energy consumption over actual useful life 
 
The total energy consumption (embodied and operating energy) of the four case study 

buildings is compared in this section. Table 10.7 and Figure 10.5 together show the 

result of the comparison of the total energy consumption over actual useful life.  

 
The Dutch Pavilion had the highest average consumption compared to the other 

buildings, although it was partly supported by renewable energy (from six wind 

turbines installed on the roof top). Apparently, the Crystal Palace built in 1851 and 

reconstructed in 1854 consumed much less energy than the so-called sustainable 

buildings, the Dutch Pavilion and the Theme Pavilion, over their whole life cycles. The 

matter of short building useful life means that the sustainably designed buildings 

performed worse than normal exhibition buildings. Their short life has directly 

influenced the life cycle environmental impact of these exhibition buildings allegedly 

designed with sustainable principles. The real building performance over the actual 

useful life turns out to be completely opposite of what it was supposed to achieve. 

 
 Average embodied 

energy 
(MJ/m2/month) 

Average operating 
energy 
(MJ/m2/month) 

Average total 
energy consumption 
(MJ/m2/month) 

Crystal Palace (82.5 years) 2.5 93 96 
Shanghai Exhibition Centre  
(56 years) 

16 37 53 

Dutch Pavilion  (5 months) 2,120 83 2,203 
Theme Pavilion (13 months) 1,400 76 1,476 

Table 10.7 Comparison of total energy consumption of four case study buildings 
over actual life 

 

Figure 10.5 Comparison of total energy consumption of four case study 
buildings 
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In terms of the environmental analysis of a building, attention needs to be paid to the 

actual useful life of buildings both for and after World Expos (Table 10.8). This shows 

that a similar life period is found for the use of exhibition buildings during the events. 

The useful life after events, thus, has become one of the significant factors, 

dominating total energy consumption over the whole building life cycle.  

 

After the Great Exhibition the Crystal Palace was moved to Sydenham in 1854 and 

reused until it was destroyed by fire in 1936. The Theme Pavilion has been reused 

after Expo 2010 for the period March to September 2011. In this thesis, for 

comparison the useful life of the Theme Pavilion following Expo 2010 is limited to this 

March to September period.  

 

Exhibition buildings Useful life for 
events 

Useful life after events 

Crystal Palace  6 months 82 years 
Dutch Pavilion  5 months 0 year 
Theme Pavilion  6 months 7 months or more  

(March to September 2011) 

Table 10.8 Actual useful life of three buildings for and after events 
 

Another estimation has been made of the energy consumption of the three buildings 

just used for expos, including the Hyde Park Crystal Palace for the Great Exhibition of 

1851, the Dutch Pavilion for Expo 2000, and the Theme Pavilion for Expo 2010 (Table 

10.9 and Figure 10.6). The results demonstrate that the energy consumption of the 

Dutch Pavilion was 1.5 times that of the Theme Pavilion and 6.6 times that of the 

Crystal Palace, even though it was designed as a sustainable building. The Hyde Park 

Crystal Palace and the Theme Pavilion were mainly constructed of metal and glass. 

However, the Crystal Palace also consumed much less operating energy than the 

modern exhibition buildings. This suggests that the design strategy of modern 

exhibition buildings might be the main determinant of the total life time energy 

consumption, if the building has a longer life than just the time it is used for the initial 

exposition. 
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 Average 
embodied 
energy 
(MJ/m2/month) 

Average 
operating energy 
(MJ/m2/month) 

Average total 
energy 
consumption 
(MJ/m2/month) 

Hyde Park Crystal Palace  
(6 months) 

335 0 335 

Dutch Pavilion (5 months) 2,122 83 2,205 
Theme Pavilion (6 months) 1,398 76 1,474 

Table 10.9 Comparison of energy consumption of case study buildings used for 
Expos in 1851, 2000, and 2010 over actual expo life 

 

 

Figure 10.6 Comparison of energy consumption of  
case study buildings used for Expos in 1851, 2000, and 2010 

 

10.2.2 Comparison of energy consumption of exhibition buildings over 
their assumed useful expo life  
 

The assumed useful life of four case study buildings is listed in Table 10.10. This 

comparison of calculated results over each building’s assumed life aims to provide a 

reasonable comparative model to generalise the findings of this research.  

 
Exhibition buildings Assumed useful life 
Crystal Palace  50 years 
Shanghai Exhibition Centre  50 years 
Dutch Pavilion  50 years 
Theme Pavilion  50 years 

Table 10.10 Assumed useful life of four case study buildings for calculation 
 

10.2.2.1 Embodied energy over assumed useful life 
 

In the comparison between the average embodied energy of the different case study 

buildings over the assumed useful life, rather than the actual life, the Dutch Pavilion 
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and recurring embodied energy, as shown in Table 10.11 and Figure 10.7. It had 6 

times and about 1.6 times the embodied energy of the historic building, the Crystal 

Palace, and the modern exhibition building, the Theme Pavilion, respectively. Although 

moving all the elements of the Crystal Palace from Hyde Park to Sydenham consumed 

energy for transportation, it was both necessary and worth doing, because it meant 

that the building continued to be used for a long time until its accidental destruction 

by fire, which resulted in a much lower total life time embodied energy. It is also noted 

that the Crystal Palace and the Theme Pavilion were buildings with metal structures, 

and the Shanghai Exhibition Centre and Dutch Pavilion were mainly built of concrete. 

The weight of buildings is discussed in Chapter 11 (Section 11.1.1). 

 

 Initial 
embodied 
energy 
(MJ/m2/year) 

Recurring 
embodied 
energy 
(MJ/m2/year) 

Total embodied 
energy 
(MJ/m2/year) 

Crystal Palace (50 years) 26 23  49 
Shanghai Exhibition Centre (50 years) 110  80  190 
Dutch Pavilion  
(assumed to be used for 50 years) 

212 88 300 

Theme Pavilion 
 (assumed to be used for 50 years) 

168 12 180 

Table 10.11 Comparison of average embodied energy of four case study 
buildings over the assumed life 

 

 
Figure 10.7 Average embodied energy of the four case study buildings 
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(such as the Dutch Pavilion and Theme Pavilion) have higher durability than before. 

The energy consumed for the replacement of elements and general maintenance has 

been reduced, because most of the materials used in these two buildings can last for 

about 50 years. However, it is worth noting that Table 10.12 makes clear that the 

percentage of recurring embodied energy in the Crystal Palace is only high in relation 

to the very low initial embodied energy, not in per square metre terms, and the Crystal 

Palace has by far the lowest total value out of the four buildings. 

 
 Initial 

embodied 
energy 
(GJ/m2) 

Percen
tage 

Recurring 
embodied 
energy (GJ/m2) 

Percen
tage 

Total 
embodied 
energy 
(GJ/m2) 

Crystal Palace (50 years)   1.34 53% 1.19 47%   2.53 
Shanghai Exhibition Centre  
(50 years)   5.49 58% 

4.00 
(extension and 
maintenance) 

42%   9.49 

Dutch Pavilion (2000-2050, 
assumed to be used for 50 
years) 

10.61 73% 3.90 27% 14.52 

Theme Pavilion (2010-2060, 
assumed to be used for 50 
years) 

  8.39 93% 0.59 7%   8.98 

Table 10.12 Comparison of percentage of initial and recurring embodied energy 
of the four case study buildings over the assumed life 

 

 

 

Figure 10.8 Percentage of initial and recurring embodied energy  
of the four case study buildings 
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However, it seems that the years of useful life for exhibition halls in current expos have 

become much shorter than for the older case study exhibition buildings. For example, 

the Dutch Pavilion was not reused after Expo 2000. Most of the national pavilions 

were demolished after Expo 2010 (Expo 2010), which shows the average useful life of 

most of the exhibition halls in an international exposition would be just five to six 

months. However, sustainable such expo buildings are claimed to be, their short life 

means they can never be held up as examples of sustainable buildings. 

 

10.2.2.2 Operating energy over assumed useful life 
 

The average operating energy consumed for building services in the assumed useful 

life has been taken to be the same as that in actual building life. Installing wind 

turbines and PV panels helped the Dutch Pavilion and the Theme Pavilion to save just 

8%~12% of operating energy in total. 

 

 Average operating 
energy (MJ/m2/year) 

Average operating 
energy (MJ/m2/year) 

Crystal Palace (50 years) 1,110 1,110 
Shanghai Exhibition Centre (50 years) 446 446 
Dutch Pavilion  
(assumed to be used for 50 years) 

1,000 (with PVs) 1,121 (without PVs) 

Theme Pavilion  
(assumed to be used for 50 years) 

907 (with PVs) 972 (without PVs) 

Table 10.13 Comparison of average operating energy of the four case study 
buildings over assumed useful life 

 

10.2.2.3 Total energy consumption over assumed useful life 
 

Table 10.14 shows the comparison of the total energy consumption of the case study 

buildings over the assumed useful life, including average embodied energy and 

operating energy.  

 

The Dutch Pavilion still has the highest consumption (1,300 MJ/m2/year) compared to 

the other buildings, although it was assumed here to be used over a life of 50 years. It 

is also noticeable that the energy consumption of the exhibition buildings built in the 

same city (the Shanghai Exhibition Centre, built in 1955, and the Theme Pavilion, built 

in 2010) has increased during the intervening 55 years. Based on the energy figures, it 
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seems that the modern exhibition buildings (Dutch Pavilion and Theme Pavilion) are 

not getting better and are even consuming more energy than earlier buildings, even 

though they are designed as sustainable buildings. As the results discussed above 

demonstrate, a truly sustainable exhibition building might need to be local, flexible, 

and able to be used for the long term. 

 

 Average 
embodied 
energy 
(MJ/m2/year) 

Average 
operating 
energy 
(MJ/m2/year) 

Average total 
energy 
consumption 
(MJ/m2/year) 

Crystal Palace (50 years) 49 1,110 1,159 
Shanghai Exhibition Centre (50 years) 190 446 636 
Dutch Pavilion (2000-2050, assumed to 
be used for 50 years) 

300 1,000 1,300 

Theme Pavilion (2010-2060, assumed 
to be used for 50 years) 

180 907 1,087 

Table 10.14 Comparison of total energy consumption of the four case study 
buildings over assumed useful life 

 

10.2.3 Comparison of life cycle energy consumption of exhibition buildings 
over actual and assumed useful life  
 

Table 10.15 shows the comparison of life cycle energy usage between the four 

buildings over the actual and assumed useful life of each. The life cycle energy 

includes initial and recurring embodied energy and operating energy. The average unit 

of MJ/m2/month is used for this comparison. The Theme Pavilion would have a similar 

performance to the Crystal Palace, if its use is continued for 50 years. The Dutch 

Pavilion might need a somewhat longer useful life than this to reach a level of energy 

consumption similar to the other three buildings. 

 

 Over actual useful life 
(MJ/m2/month) 

Over assumed useful life 
(MJ/m2/month) 

Crystal Palace 96 97 
Shanghai Exhibition Centre  53 53 
Dutch Pavilion 2,203 108 
Theme Pavilion 1,476 91 

Table 10.15 Comparison of life cycle energy consumption of four case study 
buildings over actual and assumed useful life 
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10.3 Comparison of energy consumption and CO2 emissions of 
visitor travel (transportation) 
 

With the increase of scale of exhibition events, the total number of pavilions in a expo 

and the number of pavilions visited in one day were various (Table 10.16). For the 

Crystal Palace and the Shanghai Exhibition Centre, they were the only exhibition hall 

for the events. However, people who travelled to the Dutch Pavilion at Expo 2000 and 

the Theme Pavilion at Expo 2010 also visited other pavilions on the same day. For this 

reason, the value of energy and CO2 emissions of these case studies has been divided 

by the average number of pavilions visited in one day (this figure has been explained 

in Chapters 8 and 9). 

 
Event The pavilions estimated in 

this study 
Number of 
pavilions in 
the events 

Number of 
pavilions visited 

in a day 
Great Exhibition of 1851  Crystal Palace 1 1 
Shanghai National 
Exhibition 

Shanghai Exhibition Centre 1 1 

 Expo 2000 Dutch Pavilion 32 8 
 Expo 2010 Theme Pavilion 263 5 

Table 10.16 Number of pavilions visited in a day for the four case studies 
 

The comparison of the energy consumption and CO2 emissions of visitor travel of the 

four case studies is shown in Table 10.17. The total energy usage and CO2 emissions 

of visitor travel to go to the pavilion increases between the 1851 and 2010 expositions. 

It is noted that the energy consumption for visitor travel going to the Shanghai 

Exhibition Centre is not comparable, as it is estimated to be almost all local travel from 

the Shanghai region. The Dutch Pavilion figures are also low, partly because of the 

higher number of pavilions visits for each visitor to Expo 2000. 

 

Visitor travel to go to Energy consumption CO2 emissions 
Crystal Palace (1851) 5,063,520 GJ 444,998 t 
Shanghai Exhibition Centre 
(2005) 

204,431 GJ  27,473 t 

Dutch Pavilion (2000) 1,307,524 GJ 78,388 t 
Theme Pavilion (2010) 13,521,990 GJ   1,636,645 t 

Table 10.17 Comparison of visitor travel to go to the four case study buildings 
 

Comparing the energy consumption and CO2 emissions of visitor travel to go to the 

four case study buildings, travel to the Theme Pavilion showed the highest 
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consumption and CO2 emissions (13,521,990 GJ and 1,636,645 t) (Figure 10.9). One 

reason is because of the large number of visitors who consumed more energy for 

transportation, compared to other events.  

 

 

 

Figure 10.9 Comparison of energy consumption and CO2 emissions of visitor 
travel to go to the four case study buildings 
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1851. Visitors went to the Dutch Pavilion and seven other pavilions at Expo 2000 in 

one day. However, because the Great Exhibition put all the categories of exhibits in 

one building, it could be argued that this is an unfair comparison, since one visit to the 

Crystal Palace enabled the visitor to see as many exhibits as they could walk round in 

one day.  
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Visitor travel to go to Average energy 
consumption 

Average CO2 emissions 

Crystal Palace (1851) 838 MJ/visitor 74 kg/visitor 
Dutch Pavilion (2000) 322 MJ/visitor 19 kg/visitor 
Theme Pavilion (2010) 588 MJ/visitor   71 kg/visitor 

Table 10.18 Energy consumption and CO2 emissions of visitor travel to go to the 
four case study buildings 

 
Because of this another comparison is made for total daily travel energy consumption 

of visitors to go to an international event (Table 10.19).  

 
Visitor travel to go to Total energy consumption Average energy 

consumption 
Great Exhibition (1851) 28,130 GJ/day 838 MJ/visitor/day 
Expo 2000 (2000) 433,007 GJ/day 2,576 MJ/visitor/day 
Expo 2010 (2010) 1,193,463 GJ/day   2,940 MJ/visitor/day 

Table 10.19 Energy consumption of visitor travel to go to the events averaged 
over a day 

 
It is obvious that the average energy consumption of visitor travel to an international 

event is increasing. Visitor travel to go to the Great Exhibition was 838 MJ/visitor/day, 

while going to Expo 2010 in Shanghai was 2,940 MJ/visitor/day. This is because more 

foreign visitors attended this large-scale event and their travel used more energy by 

taking airplanes (more discussion of location and environmental effect generated from 

different transport modes will be given in section 11.1.2).  

 
It can be further pointed out that the analysis boundaries of an environmental 

assessment of transportation need to be considered carefully. It is essential to explore 

the environmental impact generated from the whole event-related visitor travel, rather 

than just focusing on the building-related travel consumption. 

 

10.4 Comparison of resource consumption of exhibition-related 
economic aspects 
 

The ecological footprint of exhibition-related economic aspects of the four case 

studies is converted using a monetary value per global hectare factor, using the 

methods explained in Chapters 6~9. 

 
The comparison is made in terms of four factors - economic benefit per square metre 

and per visitor and ecological footprint per square metre and per visitor (Table 10.20). 
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The results show that the total economic income of Expo 2010 (international expo) 

was much greater than for the Shanghai National Exhibition Centre (national 

exhibitions). At the same time, the environmental impact of the international exhibition 

generated from the exhibition-related economic aspects was more than for a national 

exhibition.  

 

The second comparison in Table 10.21 is used to explore the relationship between the 

size of buildings, the number of visitors, economic benefits, and the related 

environmental impact of expositions at the international level. The result shows that 

the exhibition-related economic benefit increases relative to the number of visitors. A 

large visitor flow at expo activities can bring or create more potential economic 

income for the host cities (more detailed discussion will be given in Chapter 11).  

 

In addition, the ecological footprint of the exhibition-related economic aspect is 

different in different countries (Table 10.21). For example, the EF of exhibitions held in 

China was about 0.50gha/visitor for the world expo. The calculation of ecological 

footprint is related to various exhibition-related industries in different countries (more 

detailed discussion will be given in Chapter 11).  

 

Events Floor area 
of exhibition 
hall (m2) 

Number of 
visitors 

Economic 
income (USD) 

EF (gha) 

Great Exhibition (6 months)  92,000  6,039,195 10,112,501   6,347,590  
Shanghai National Exhibition 
(12 months) 

 80,000  7,500,000 7,180,581   9,068,000  

Expo 2000 (5 months)    6,144   4,060,000 499,274,955   1,346,154  
Expo 2010 (6 months) 143,000  73,080,000 28,665,867,675 36,302,764 
Table 10.20 Exhibition-related information of the four case studies 
 

Events USD/visitor gha/m2 gha/visitor/year 
Great Exhibition (1851) 2 46 0.11 
Expo 2000 (2000) 123 219 0.33 
Expo 2010 (2010) 446 254 0.50 

Table 10.21 Comparison of annual economic benefit per square metre of four 
case study buildings 

 

A further comparison is made between the average ecological footprint generated by 

three of the case study events (international events). The average units of 

gha/visitor/year and gha/visitor/day are used for comparison in Table 10.22. Expo 
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2010 held in Shanghai had the highest ecological footprint (0.50gha/visitor/year or 

0.00271gha/visitor/day) of the three exhibitions compared. The first world expo, the 

Great Exhibition of 1851, consumed fewer resources than modern international events. 

The ecological footprint of international exhibition activities is increasing together with 

the increase in number of visitors. 

 

Events Average Ecological 
Footprint 

Average Ecological 
Footprint 

Great Exhibition (1851) 0.11 gha/visitor/year 0.00030 gha/visitor/day 
Expo 2000 (2000) 0.33 gha/visitor/year 0.00217 gha/visitor/day 
Expo 2010 (2010) 0.50 gha/visitor/year 0.00271 gha/visitor/day 

Table 10.22 Comparison of exhibition-related economic effect 
 

10.5 Comparison of energy and resource consumption of case 
study events over their whole life cycle 
 

Based on the calculated results, expos are generally having a greater impact, which is 

causing more environmental damage. Table 10.23 compares the total ecological 

footprint of the four case study events, including buildings, visitor travel, and 

exhibition-related economic aspects. Expo 2010 in Shanghai consumed the most 

natural resources overall. The total ecological footprint of the Shanghai National 

Exhibition is not comparable with the others, as it holds different national exhibitions 

every month. The figures show that the total ecological footprint of the historic 

exhibition was less than that of modern exhibitions. 

 

Event Year Total ecological 
footprint (gha/year) 

Great Exhibition of 1851 (visited the Crystal Palace) 1851 686,973 
Shanghai National Exhibition (visited the Shanghai 
Exhibition Centre) 

2005 9,070,537 

Expo 2000 (visited the Dutch Pavilion) 2000 1,359,887 
Expo 2010 (visited the Theme Pavilion) 2010 36,439,538 

Table 10.23 Total ecological footprint of four case study events 
 

A further comparison is made between the resource consumption related to three 

aspects (building, visitor travel, and economic aspects), as listed in Tables 10.24-

10.26. The results show that the exhibition-related economic aspects consumed most 

energy and resources, being significantly more than building related resource 
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consumption and visitor-related transportation. The impact of the buildings was the 

least significant parameter. The environmental impact from potential economic income 

is always ignored by planners and event organisers, even when they are making a so-

called sustainable exposition. The whole life cycle energy and resource consumption 

of large-scale expositions needs to be evaluated, if they are to be claimed as 

sustainable events. Whether the balance between exhibition-related economic income 

and resource consumption has been kept or not, needs to be evaluated in detail and 

clearly explored.  

 

Building Average ecological footprint  
Crystal Palace (82.5 year) 0.011 gha/m2/year 
Shanghai Exhibition Centre (56 years) 0.011 gha/m2/year 
Dutch Pavilion (assumed to be used for 50 years) 0.107 gha/m2/year 
Theme Pavilion (assumed to be used for 50 years) 0.011 gha/m2/year 

Table 10.24 Ecological footprint of four case study buildings 
 
Visitor travel to Average ecological footprint  
Crystal Palace 0.0084 gha/visitor/year 
Shanghai Exhibition Centre 0.0003 gha/visitor/year 
Dutch Pavilion  0.0032 gha/visitor/year 
Theme Pavilion 0.0059 gha/visitor/year 

Table 10.25 Ecological footprint of visitor travel going to the pavilion 
 
Event Average ecological footprint  
Great Exhibition of 1851 0.105 gha/visitor/year 
Shanghai National Exhibition 1.209 gha/visitor/year 
Expo 2000  0.332 gha/visitor/year 
Expo 2010 0.563 gha/visitor/year 

Table 10.26 Ecological footprint of exhibition-related economic aspects 
 

10.6 Chapter conclusion 
 

This chapter brings the calculated results from the four case studies together to 

provide a comparative analysis of large-scale exhibitions and the three related factors; 

building, visitor travel, and exhibition-related economic aspects. The main findings are 

summarised below. 

 

The comparisons show that the total energy and resource consumption of large-scale 

exhibitions is increasing (Table 10.27). The exhibition-related economic aspects 

consumed most energy and resources, which were much more than those for building 

consumption and visitor-related transportation.  
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 Building Travel Exhibition-related 
economic aspects 

Total 
Initial 
embodied 

Recurring 
embodied 

Operating 

Energy and 
resource 
consumption 

↑ ↓ ↑ ↑ ↑ ↑ 

Table 10.27 Tendency of energy and resource consumption of large-scale 
exhibitions  

 

• For exhibition buildings, energy and resources were consumed most in the 

building operating phase. The matter of short building useful life resulted in the 

sustainable design buildings performing worse than normal exhibition buildings. 

In addition, the useful life after events is one of the significant factors for the 

total energy and resource consumption of the building. 

 

• The total energy usage and CO2 emissions of visitor travel to go to the 

pavilions or the events increases from 1851 to 2010. The analysis boundaries 

of environmental assessment of transportation need to be considered 

comprehensively. 

 

• Exhibition-related economic benefit rises in relation to the number of visitors. 

The ecological footprint of international exhibition activities is increasing 

together with the increasing of number of visitors. 
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Chapter 11 Discussion 

 

Chapter 10 discussed the most significant factors in the process of exposition 

activities over the whole life cycle of a particular exposition building. It explored the 

real problems existing in the exhibition industry (infrastructure, transportation, and 

economic aspects) by means of comparative studies. This chapter will attempt to 

provide some further and deeper consideration of recent sustainable approaches for 

expositions (section 11.1) and assessment tools (section 11.2) in terms of 

environmental impact. 

 

11.1 Making expositions sustainable 
 

Three relevant aspects of large expositions are discussed here in terms of sustainable 

development; buildings (11.1.1), visitor travel (11.1.2), and exhibition-related economic 

aspects (11.1.3).  

 

11.1.1 Exhibition buildings 
 

Although many studies have investigated the life cycle energy use of public buildings 

(for example, studies of sustainable office buildings by Cole and Kernan, 1996; 

Schwarz, 2006; Wentz, 2007), there are few specific studies of sustainable exhibition 

buildings (see also Chapter 3). For this reason, studies of similar building types as 

references will be introduced in the following sections. It should be noted that the 

energy use of exhibition buildings as discussed in this section is broken down into the 

two components of operating and embodied energy. Demolition is not looked at here, 

as it is considered to be insignificant (Jurasovich, 2003, p.570; see also Chapter 5).  

 

Based on the comparative analysis in Chapter 10, the discussion in this section is 

firstly focused on the operating energy-related approach in terms of sustainable 

technologies. The question of whether “high technology” makes exhibition buildings 

sustainable is investigated. The discussion in the following section is related to 

embodied energy, which results from the question of whether construction materials 
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or building useful life can have any significant influence on the energy embodied in the 

construction elements. In this investigation, the figures used for each aspect have 

been justified in each of the relevant sections. 

 

11.1.1.1 Eco technology for building environmental control 
 

Since the mid-19th century industrialised technologies have become one of the 

elements of architectural design. The “high-tech” architecture movement emerged 

towards the end of modernism and was demonstrated by seminal buildings, for 

example Paris’s Pompidou Centre in 1977 and London’s Lloyd’s Building in 1986 

(Slessor, 1997). Gauzin-Müller and Favet (2002, p.16) state that “high-tech 

architecture is symbolised by the towering office buildings and dramatic steel and 

glass structures of today’s international ‘superstar’ architectures”.  

 

In recent years, “high” or advanced technologies have been used for making buildings 

that are claimed to be environmentally friendly. In these high-tech sustainable 

buildings, technologies for making use of renewable energies, such as photovoltaic 

panels and wind turbines, have been incorporated into building design by architects. 

The Commerzbank tower in Frankfurt and the dome of the remodelled Reichstag in 

Berlin, both designed by Norman Foster, are seen as eco-tech landmark buildings 

(Gauzin-Müller and Favet, 2002, p.16). In current world expos, many large-scale 

exhibition buildings have been designed as high-tech sustainable buildings (discussed 

in Chapter 2). This approach is not only to match expo themes, but also to advertise 

the new type of design, as one of the main functions of expos is to promote the notion 

of the new, including new technologies (the Theme Pavilion of Expo 2010 was such an 

example). However, whether high technology, for example combining active and 

passive environmental control systems, makes exhibition buildings sustainable in 

reality is uncertain. 

 

This section discusses whether the use of ecological technologies to reduce operating 

energy makes exhibition pavilions truly sustainable. The result of the comparative 

analysis of the four case studies in Chapters 6~9 shows that operating energy 

dominates the total energy consumption of both conventional and sustainable 

exhibition buildings, accounting for around 77~83% of the total over 50 years of useful 
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life. In related studies of other building types, results have confirmed the dominance of 

operational energy use in terms of building life time energy consumption (Cole and 

Kernan, 1996; Suzuki and Oka, 1998; Camilleri and Jaques, 2001), although the 

results vary, because of different climates and the different resources used for 

electricity generation.  

 

Installing PV panels as an active environmental control approach has been seen as 

one of the symbols for a sustainable exhibition building. However, the environmental 

sustainability of buildings cannot be achieved just by installing renewable energy 

technology to provide the energy needed for indoor temperature control in summer 

and winter (Gauzin-Müller and Favet, 2002, p.16). The approach of generating 

renewable energy by using high technologies to reduce the operating energy may not 

make buildings sustainable in the long term, usually because the building cannot 

provide sufficient surface area to support enough renewable energy generation.  

 

One case study building, the Theme Pavilion at Expo 2010, can serve as a 

representative example of this observation. The large scale cutting-edge renewable 

energy and energy saving applications installed in the Theme Pavilion (more than 

30,000 m2 of PV panels) initially seem to help the event and the city become more 

sustainable than before. Table 11.1 compares the life-cycle energy consumption of 

the Theme Pavilion with and without the photovoltaic panels.  

 

 Theme Pavilion 
 (2010-2060, with PV 
panels)  

Theme Pavilion  
(2010-2060, without PV 
panels) 

Reduction 

Operating energy 907 MJ/m2/year 972 MJ/m2/year 6.7% 

Table 11.1 Total energy consumption of the Theme Pavilion from 2010 to 2060 
 

However, the problem is that using the high-tech approach does little to mitigate the 

energy usage of the large expo pavilion. Ping (2010, p. 116) states that the data for the 

share of renewable energy in the total energy consumption of the Theme Pavilion have 

not so far been provided in a scientific and transparent way. Based on the calculated 

result of this case study, the PV panels produce enough energy to cover just 6.7% of 

the total energy consumption of the Theme Pavilion every year. It seems difficult to 

reduce significantly the environmental impact of large-scale exhibition buildings just 

by producing renewable energy from systems placed on the building, even when 
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these amount to a very large PV array. To enable the total building operating energy 

load to be met by the PV panels, the demand would have to be reduced from 972 to 

65 MJ/m2/year. In further research it might be interesting to explore how much the 

total energy demand of the building could have been reduced if the money for the PV 

panels had been spent on energy savings rather than on the PVs. 

 

The environmental design of modern buildings has probably raised the level of indoor 

comfort, but it has also contributed to increasing the operating energy consumption. 

However, exhibition buildings as a specific type of building for display may actually 

need to be treated by using different solutions from other commercial buildings in 

terms of sustainability. At Expo 2010 (May ~ October), visitors had to wait for 2 hours 

outdoors in order to enter some popular pavilions. It was not comfortable for visitors 

to suddenly enter a relatively cold environment, after being at 35o Celsius outside in 

the summer. The “sustainable” buildings at Expo 2010 consumed a large amount of 

electricity but were not necessarily as comfortable for the visitors as the designers 

thought, because they paid no attention to issues of acclimatisation.  

 

Compared to a conventional exhibition building, the Shanghai Exhibition Centre built 

in 1955, the average operating energy of the “sustainable” Theme Pavilion was higher 

(Table 11.2). The fact is that the modern exhibition building consumed more than the 

conventional building in total, although it had PV panels to produce renewable energy. 

In addition, in 1851, although the Crystal Palace, which was designed without 

environmental control systems, other than stack ventilation through the operation of 

the louvre systems, might be hot inside in summer, it still attracted more than 6 million 

local and foreign visitors to go to the Great Exhibition. Perhaps this demonstrates the 

feeling of comfort is never an absolute thing and may be influenced by development of 

technologies. 

 

 Average operating 
energy (MJ/m2/year) 

Comments 

Shanghai Exhibition Centre (56 years) 446 Without sustainable 
consideration 

Theme Pavilion (2010-2060, assumed to be 
used for 50 years) 

907 Using sustainable 
technologies 

Table 11.2 Comparison of operating energy of conventional and sustainable 
exhibition buildings in the same city, Shanghai 
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Secondly, compared to general office buildings, the operating energy of sustainable 

exhibition buildings does not reveal a high level of energy efficiency (Table 11.3). 

 

 Average 
operating 
energy 
(MJ/m2/year) 

Percentage of 
renewable 
energy in 
operating (%) 

Comments 

Crystal Palace (82.5 years) 1,114 0 Calculated by author 
Shanghai Exhibition Centre  
(56 years) 

446 0 Calculated by author 

Dutch Pavilion (2000-2050, 
assumed to be used for 50 years) 

1,000 10.8 Calculated by author 

Theme Pavilion (2010-2060, 
assumed to be used for 50 years) 

907 7.3 Calculated by author 

Office building in Vancouver  
(50 years) 

959 0 Cole and Kernan, 
1996 

Office building in Toronto  
(50 years) 

1,634 0 Cole and Kernan, 
1996 

Office building in UK (60 years) 839 0 Howard and 
Sutcliffe, 1994, p.48 

Office building in Japan  
(40 years) 

1,210 0 Suzuki and Oka, 
1998 

Table 11.3 Comparison of operating energy of exhibition buildings and office 
buildings 

 

This discussion suggests that the sustainable design of large-scale exhibition 

buildings needs to focus more on reducing total energy consumption in the operating 

phase, rather than relying on generation of renewable energy, which, from the case 

studies, appears to offer no more than a relatively token contribution.  

 

11.1.1.2 Construction materials and building actual useful life 
 

This section discusses the issue of construction materials, which is directly related to 

the initial and recurring embodied energy of exhibition buildings. In previous research, 

much study has been focused on choice of construction materials in terms of the 

influence this may have on sustainability (Howard and Sutcliffe, 1994, p.48; Cole and 

Kernan, 1996; Suzuki and Oka, 1998). The comparative analysis in the previous 

chapter suggests that there is a question to be resolved in terms of which factor has 

more influence on embodied energy consumption, choice of construction materials or 

building actual useful life. 
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Weight of buildings has been an issue for some architects. Norman Foster believes 

that “the model for architecture is a lightweight glider rather than a marble monument” 

(Sudjic, 2010). The same notion has been used for the design of sustainable public 

buildings. In Foster’s design for City Hall in London, the ‘green’ building has been 

constructed using lightweight materials (steel and glass). However, City Hall, which 

seemed in theory to be an exemplary sustainable building, not only consumed 50% 

more energy (1,354 MJ/m2) than it was designed to do (850 MJ/m2) in 2003/2004 

(Bennett, 2005), but even its target energy consumption was not significantly better 

than some of the conventional buildings in Table 11.3. 

 

Considering the weight of buildings, Thomas and Fordham (1996, p.51) introduced 

two different models of buildings, which they described with the metaphor of the 

butterfly and the elephant. Butterflies are lightweight and quickly respond to the 

environment. This means that butterfly-type buildings with highly responsive skins 

(glass) have a quick reaction to changes in solar radiation, light, and temperature. On 

the other hand, elephants react slowly when their environment changes. Elephant-

type buildings have fewer openings and more thermal mass.  

 

Currently, designs of modern sustainable exhibition buildings are much closer to 

butterfly-type buildings, with glass cladding and high-tech sustainable equipment. For 

example, the Theme Pavilion is a butterfly-type building. Its weight is about 1,005 

kg/m2, half that of the Shanghai Exhibition Centre, as shown in Table 11.4. 

Conventional exhibition buildings, largely constructed of concrete, are more like 

elephant buildings. They have more thermal mass, for example, the Shanghai 

Exhibition Centre weighs 2,100 kg/m2. The Crystal Palace can be seen as a passive 

butterfly-type building. It was a very lightweight exhibition building (194 kg/m2) 

designed without sustainable considerations. On the other hand, the Dutch Pavilion 

was more like an active elephant building with its wind turbines. As the results show, 

weight of buildings cannot serve as the sole criterion for the design principles of 

sustainable exhibition buildings, as both elephant and butterfly buildings can perform 

well or badly in overall energy terms. 
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Case study 
buildings 

Year of 
constructio

n 

Weight 
(t) 

Average weight 
(kg/m2) 

Main materials 

Crystal Palace 1851 17,847 194 Iron, Timber 
Shanghai 
Exhibition Centre  

1955 113,602 2,100 Reinforced concrete 

Dutch Pavilion  2000 15,724 2,559 Reinforced concrete, Timber 
Theme Pavilion  2010 143,769 1,005 Steel, Reinforced concrete 

Table 11.4 Weight of four case study buildings 
 

Secondly, many quantitative studies have made detailed analysis of the energy 

embodied in the construction and maintenance phases (Cole and Kernan, 1996; 

Schwarz, 2006). Some studies have encouraged designers to use specific 

construction materials, which have low embodied energy coefficients or have a good 

durability. Table 11.5 demonstrates the trend that the proportional initial embodied 

energy of exposition buildings is increasing (53% ~ 93%), while average recurring 

embodied energy has reduced (47% ~ 7%). This supports the idea that buildings are 

being constructed from more durable materials. 

 

 Percentage of initial 
embodied energy 

Percentage of recurring 
embodied energy 

Crystal Palace (50 years) 53% 47% 
Shanghai Exhibition Centre (50 years) 58% 42% 
Dutch Pavilion (2000-2050, assumed to 
be used for 50 years) 

73% 27% 

Theme Pavilion (2010-2060, assumed to 
be used for 50 years) 

93%   7% 

Table 11.5 Percentage of initial and recurring embodied energy of four case 
study buildings over their assumed useful life 

 

In the case of many design projects, it has been claimed that a large amount of the 

building elements they contain can be recycled after building demolition (Schwarz, 

2006; Wentz, 2007), which not only helps to reduce the initial embodied energy, but 

also conserves natural resources. 

  

However, the fact is there is no guarantee that these elements will be reused in other 

buildings in the future. Cellophane House is a five-story prefabricated dwelling, which 

was commissioned by the Museum of Modern Art's exhibition, Home Delivery: 

Fabricating the Modern Dwelling (Kieran, Timberlake and Timberlake, 2011). It was 

displayed from July to October, 2008 in New York. James Timberlake, the designer of 

Cellophane House, recognized that the building elements of Cellophane House were 
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not reused after the exhibition, even though most components were prefabricated 

before installation and in theory could have been reused (personal comm., 2011).  

 

 Total embodied energy 
(MJ/m2/ month) 

Actual useful life 

Crystal Palace  3 82.5 years 
Shanghai Exhibition Centre  16                   56 years 
Dutch Pavilion  2,120 5 months 
Theme Pavilion  1,400 13 months 

Table 11.6 Comparison of average embodied energy of four case study buildings 
based on actual life 

 

A similar issue occurs with modern exposition pavilions. For example, at Expo 2010, 

most of the pavilions were demolished after the event (BCSWE, 2010). The result of 

the analysis of embodied energy of the four exhibition buildings in Chapters 6-9 

shows that the Dutch Pavilion and the Theme Pavilion had the highest embodied 

energy over their actual life (5 months and 6 months), at 2,120 and 1,400 

MJ/m2/month respectively (Table 11.6). Compared to general office buildings, the 

average embodied energy of exhibition buildings used for 5 or 6 months was, not 

surprisingly, much higher than buildings used for a long time (Table 11.7). This 

demonstrates very clearly that the energy flow as influenced by actual useful life is 

very much larger than the aspects of design usually considered to be “sustainable”, 

such as choices of types of construction materials, process of manufacture, and use 

of different resources for electricity generation. 

 

 Average 
embodied 
energy 
(MJ/m2/year) 

Comments 

Crystal Palace (82.5 years) 36 Calculated by author 
Shanghai Exhibition Centre (56 years) 192 Calculated by author 
Dutch Pavilion (5 months) 10,600 Calculated by author 
Theme Pavilion (6 months) 8,400 Calculated by author 
Office building in Vancouver (50 years) 212 Cole and Kernan, 1996 
Office building in Toronto (50 years) 212 Cole and Kernan, 1996 
Office building in UK (60 years) 180 Howard and Sutcliffe, 1994, p.48 
Office building in Japan (40 years) 262 Suzuki and Oka, 1998 

Table 11.7 Comparison of average embodied energy of exhibition buildings and 
office buildings 

 

Thus, this research clearly suggests that it is not an effective approach to focus on the 

energy embodied in or related to every material, component or system in an exhibition 
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building. Similar recommendations for other types of commercial buildings are 

presented in Cole and Kernan, 1996 and Jurasovich, 2003, p.570. 

 

11.1.2 Visitor travel 
 

In this section, two main factors related to visitor travel form the focus. The factors 

include location of exhibition pavilions (section 11.1.2.1) and choice of transport 

modes (section 11.1.2.2). According to the comparative analysis in the previous 

chapter (section 10.3), the discussion starts from levels of influence generated by 

these two factors, and explores which factor is more significant for mitigating 

environmental degradation.  

 

11.1.2.1 Location of pavilions 
 

Site selection is usually discussed when design of sustainable buildings is an issue. In 

the United States, the National Institute of Building Science WBDG Sustainable 

Committee (2010) stated that “the location of a building affects a wide range of 

environmental factors, and energy consumption as well as the energy consumed by 

transportation needs of occupants for commuting”. They suggest buildings should be 

located in areas of existing development, in which infrastructure has already been 

constructed. Guthrie (2008) demonstrated that locating a building far away from public 

transport nodes leads to increased use of private transport and related energy 

consumption. 

 

As types of exhibition buildings are serviced at different levels, buildings used for 

national and international exhibitions are discussed separately in this section. This 

addresses the question of whether the location of national or international exhibition 

buildings significantly affects the energy consumption of visitor travel.   

 

• National exhibition buildings 
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For national exhibition buildings, visitor travel to the Shanghai Exhibition Centre is 

compared to that of the Theme Pavilion. Although the Theme Pavilion was built for 

Expo 2010, it has been reused for national exhibitions after the Expo closed.  

 

Table 11.8 shows the average energy consumption of visitors from Shanghai to go to 

the two exhibition buildings constructed in different locations in the same city. The 

average energy consumption of visitor travel to the Shanghai Exhibition Centre 

located in the central city area was 27 MJ/visitor in 2005. It is located in the centre of 

the city of Shanghai (Figure 11.1).  

 

The average travel energy consumption going to the Theme Pavilion was 9 MJ/visitor 

in 2010. The location of the Theme Pavilion is in the Pu Dong District, which is a 

suburb in the downtown area. If it is assumed that people only visited the Theme 

Pavilion in a day’s visit, rather than a number of pavilions, the average energy use 

would be 23 MJ/visitor at Expo 2010. It would be similar to the Shanghai National 

Exhibition.  

 

Visitors from Shanghai to Number of visitors Average energy use 
Shanghai Exhibition Centre (2005)  7,500,000 27MJ/visitor 
Theme Pavilion (2010)  3,128,000   9MJ/visitor 

Table 11.8 Average energy consumption of visitors from Shanghai to go to two 
exhibition buildings in different locations in Shanghai 

 

 

Figure 11.1 Location of Shanghai Exhibition Centre and Theme Pavilion in 
Shanghai 
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It is found that the average travel energy consumption of the Theme Pavilion was 

lower than that of the Shanghai Exhibition Centre (Table 11.8) because the location of 

the Theme Pavilion is more conveniently reached by public transport. This is because 

it is much closer to the underground railway stations than the Shanghai Exhibition 

Centre, even though not located in the centre of the city.  

 

Therefore, the location of the exhibition buildings in terms of energy consumption for 

travel needs to be examined case by case, as city density may not directly influence 

the total energy consumption of visitor travel for attending national exhibition activities, 

if events are held in high population density cities, especially in Asian countries. 

 

• International exhibition buildings 

 

For those buildings used to hold international expositions, the transport-related 

environmental impact of exhibition buildings relative to specific sites cannot be 

evaluated. The important point here is where most participants come from.  

 

Table 11.9 shows that a large number of visitors attending expos at a particular time 

have come from the host countries outside the host cities. These visitors accounted 

for 49.7% of all visitors to the Great Exhibition of 1851, 82.7% of those to Expo 2000, 

and also 82.7% of those to Expo 2010. As a result, these visitors caused a large 

transport energy consumption (92.6%, 43.6%, and 66.8% of the travel related energy 

consumption of all visitors respectively), as shown in Table 11.10. 

 

Visitors Great Exhibition of 
1851 

Expo 2000 
 (Dutch Pavilion) 

Expo 2010 
 (Theme Pavilion) 

Number of 
visitors 

Percen
tage 

Number of 
visitors 

Percen
tage 

Number of 
visitors 

Percen
tage 

From host cities 2,039,195 33.8% 416,773 10.3% 3,128,000 13.6% 
From host countries 
(apart from host 
cities) 

3,000,000 49.7% 3,359,027 82.7% 19,021,000 82.7% 

From foreign 
countries 

1,000,000 16.5% 284,200 7.0% 851,000 3.7% 

Table 11.9 Percentage of number of visitors from different cities and countries 
going to the pavilions 
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Visitors Great Exhibition of 
1851 

Expo 2000 
(Dutch Pavilion) 

Expo 2010 
(Theme Pavilion) 

Energy 
consumption 
(GJ) 

Percent
age 

Energy 
consumption 
(GJ) 

Percent
age 

Energy 
consumption 
(GJ) 

Percent
age 

From host cities 157,196 3.1% 991 0.1% 28,632 0.2% 
From host countries 
(apart from host 
cities) 

4,687,346 92.6% 570,567 43.6% 9,030,257 66.8% 

From foreign 
countries 

218,978 4.3% 735,936 56.3% 4,463,102 33.0% 

Table 11.10 Percentage of energy consumption of visitor travel to the pavilions 
 

However, it is also apparent that the energy consumption of foreign visitor travel was 

more than that of local visitor travel per visitor, although there were fewer foreign 

visitors, forming 16.5% of the Great Exhibition, 7.0% of Expo 2000, and 3.7% of Expo 

2010 in total visitor numbers.  

 

For international exhibition buildings, the location of the buildings was not the 

significant influencing factor of their environmental impacts. On the contrary, they are 

more affected by the different transport modes. Based on the detailed study of travel 

energy consumption in previous chapters, choice of transport modes will be 

discussed in detail in the next section. 

 

11.1.2.2 Transport modes of visitor travel 
 

Reducing environmental impact by creating sustainable modes of transport has been 

suggested by many researchers (for example Thakuriah, 2009; City of London, 2009). 

Cycling, walking and taking public transport are always recommended for local travel 

and public transport for regional travel. However, “sustainable transport modes” are 

seldom discussed for the international level, such as for reaching international events. 

This section discusses how the different transport modes of visitors from exhibition 

host cities, host countries, and foreign countries travelling to the case study pavilions 

influenced energy or resource consumption. It should be noted the energy intensity of 

different transport modes is not discussed in this thesis, as a huge variety of values 

exist in other studies (Vale and Vale, 2009, p.110). 
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• Visitors from host cities 

 

For visitors who come from host cities, Table 11.11 shows the energy consumption of 

visitors going to just one pavilion at the events.  

 

Visitor travel to go to Number of visitors 
from host cities 

Energy 
consumption 
(GJ) 

CO2 emission 
(t) 

Crystal Palace (1851) (London) 2,039,195 157,196 3,754 
Shanghai Exhibition Centre (2005) 
(Shanghai) 

7,500,000 204,431  27,473  

Dutch Pavilion (2000) (Hannover) 416,773 991 40 
Theme Pavilion (2010) (Shanghai) 3,128,000 28,632 1,927 
Table 11.11 Comparison of visitor travel to go to the four case study buildings 

(just from host cities) 
 

Visitor travel to go to the Shanghai Exhibition Centre had the highest fuel consumption 

(204,431 GJ) and CO2 emissions (27,473 t) compared to other events. Although visitor 

travel to the Crystal Palace accounted for 53MJ/visitor (157,196 ÷ 2,039,195), its 

average associated CO2 emissions (1.8 kg/visitor) were just half those for travelling to 

the Shanghai Exhibition Centre in 2005 (3.7 kg/visitor), as horse-related transport was 

the main mode used in the city area in 1851, and this generated zero greenhouse 

gases. Based on the local scale, Table 11.12 compares the average energy 

consumption and CO2 emissions per km2 of the four case studies.  

 

Visitor travel to go to Area of city (km2) Average energy 
consumption 
(KJ/visitor/km2) 

Average CO2 
emission  
(g/visitor/km2) 

Crystal Palace (1851) (London) 303 (Brown, 2004)   211.0  5.9 
Shanghai Exhibition Centre 
(2005) (Shanghai) 

7,037 3.8  0.5 

Dutch Pavilion (2000) 
(Hannover) 

2,290 0.9  0.04 

Theme Pavilion (2010) 
(Shanghai) 

7,037 1.3  0.08 

Table 11.12 Comparison of visitor travel to go to the four case study buildings 
(just from host cities) 

 

Shanghai is the biggest host city compared to Hannover and London. Based on the 

average square kilometres, the modern world expos in Hannover and Shanghai had 

roughly similar average carbon emission of visitor travel (0.04 and 0.08 g/visitor/km2). 

Although the Shanghai Exhibition Centre and the Theme Pavilion were located in the 
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same city, the energy usage and associated CO2 emissions varied, probably due to 

the different locations in the city and the scale of the expositions. 

 

However, the compared outcome would be different when looking at the average 

consumption and emissions of visitor travel to the whole events. Table 11.13 

demonstrates the average energy consumption for visitors going to the events, as 

visitors went to one or several pavilions at one exposition (see Table 10.15).  

 

Visitor from host cities to Host city Area of city 
(km2) 

Average 
(MJ/visitor) 

Great Exhibition (1851)  London, UK     303   7 
Shanghai National Exhibition 
(2005) 

Shanghai, China 7,037 27 

Expo 2000 (2000)  Hannover, Germany 2,290 10 
Expo 2010 (2010)  Shanghai, China 7,037 23 
Table 11.13 Energy consumption of visitors from host cities travelling to the four 

events  
 

The average energy for travelling to the Crystal Palace in London in 1851 was the 

lowest, as only around 25% of visitors used steam trains and visitors had relatively 

short travel distances compared to the other case studies. However, a modern 

equivalent for this figure could be even lower, if for example electric trains were used, 

because the energy efficiency of steam trains was quite low in the mid-nineteenth 

century. 

The result brings a need for further consideration in terms of the choice of transport 

modes (Table 11.14 and Figure 11.2). Comparing the modern exhibitions, in Shanghai 

more passengers used public transport or non-motor vehicles (e.g. bicycle). For 

example, 39% of visitors used cars in Hannover, but only 15.4% in Shanghai whereas 

more people rode bicycles, and took buses in Shanghai than in Hannover. It is 

interesting to find that walking, as a convenient transport mode, had similar preference 

levels for people going to expos in different cities and at different times (25% in 

London in 1851, 23% in Hannover in 2000, and 27% in Shanghai in 2010), although 

the figure for London is an estimate.  
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Modes  London (1851) Hannover (2000) Shanghai (2005, 2010) 
Walking 25% 23%              27.00% 
Horse 25% - - 
Carriage 25% - - 
Bicycle - 16% 22.14% 
Electric bike - -   5.53% 
Scooter - -   0.83% 
Motorcycle - -   2.10% 
Underground and light rail - 11%   4.86% 
Bus - 11% 15.93% 
Car - 39% 15.40% 
Taxi - -   6.21% 
Steam train 25% - - 

Table 11.14 Percentage of passengers using different transport modes in the 
host cities 

 

 

Figure 11.2 Percentage of passengers using different transport modes 
 in the host cities 

 

• Visitors from host countries and foreign countries 

 
Table 11.15 compares the energy usage for travel of visitors from different countries 

who travelled to the Crystal Palace, Dutch Pavilion, and Theme Pavilion. For 

comparison, figure 11.3 shows the average energy consumption of visitor travel from 

host countries and foreign countries.  
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Visitors Crystal Palace Dutch Pavilion  Theme Pavilion 
GJ MJ/visitor GJ MJ/visitor GJ MJ/visitor 

From host 
countries 

4,687,346  1,567  570,567  170  9,030,257  475  

From foreign 
countries 

218,978  3,748  735,936   2,590  4,463,102 5,245  

Total 4,906,342 5,315  1,306,503  2,760  13,493,359  5,720  

Table 11.15 Energy consumption of visitors from different countries going to the 
Pavilions  

 
 

 

Figure 11.3 Average energy consumption of visitor travel from host countries 
and foreign countries 

 

Travel from overseas to visit just the Theme Pavilion in Shanghai consumed more 

energy than the others. Comparing just the Dutch and Theme Pavilions, the average 

energy consumption for visitors travelling from both host countries and foreign 

countries has increased. This may be due, at least in part, to the fact that Expo 2010 

was held in China, which has a huge land area compared with Germany and England, 

the sites of the other two expos, so the average travel distances for host country 

visitors would be far larger for Expo 2010. Because of the increasing trend of 

globalisation, Shanghai Expositions probably also attract more foreign visitors as well. 

 

For visitors coming from the host countries and foreign counties, travelling to Expo 

2010 in China had greater energy consumption per visitor than for the Exppo 2000 

and Great Exhibition investigations (Table 11.16). Host visitor travel energy use to an 

event was similar for the Great Exhibition and Hannover 2000. However, this changes 

for foreign visitors (Table 11.17), which shows energy for foreign visitor travel is 
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increasing. However, comparing the internal transport modes between different 

countries (Germany and China), more visitors used trains and buses for long distance 

travel in China (Table 11.18), comprising 26.67% and 33.71% in China, compared to 

5% and 12% in Germany. 

 

Visitor from host 
countries to 

Host country Area of country 
(km2) 

Average 
(MJ/visitor) 

Great Exhibition 
(1851)  

UK (United Kingdom of Great 
Britain and Ireland) 

326,073 1,567 

Expo 2000 (2000)  Germany 357,050 1,360 
Expo 2010 (2010)  China 9,596,960 2,375 

Table 11.16 Energy consumption of visitors from host countries travelling to 
three events (apart from host cities) 

 

Visitors Great Exhibition of 
1851 

Expo 2000 
  

Expo 2010 
  

From host countries 
(apart from host cities) 

1,567 MJ/visitor 1,360 MJ/visitor 2,375 MJ/visitor 

From foreign countries 3,748 MJ/visitor 20,720 MJ/visitor 26,225 MJ/visitor 

Table 11.17 Average energy consumption of visitor travel from different 
countries going to the Expos 

 

Modes  UK (1851) Germany (2000) China (2010) 
Carriages 16.7% - - 
Bus -   5% 26.67% 
Car - 71% 26.67% 
Train - 12% 33.71% 
Steam trains 72.2% - - 
Ship -   1% - 
Steamships 11.1% - - 
Air - 11% 12.95% 

Table 11.18 Percentage of transport modes in different countries 
 

The long distance visitor travel in China would be much more sustainable if all visitors 

only took trains and buses to go to Shanghai, rather than flying. The result for the 

energy consumption of visitors to go to the Theme Pavilion, based on all visitors from 

China using land transport rather than air transport is shown in Table 11.19. It is 

assumed that 46.5% of visitors took buses and 53.5% took trains.  

 

 

 

 

 



Chapter 11 Discussion 

 
	
  

237 

Visitors Expo 2010 (Actual) Expo 2010 (Theoretical) 
Energy 
consumption (GJ) 

Percentage Energy 
consumption (GJ) 

Percentage 

From host city 28,632 0.2% 28,632 0.4% 
From host country 
(Apart from host 
cities) 

9,030,257 66.8% 3,445,879 43.4% 

From foreign 
countries 

4,463,102 33.0% 4,463,102 56.2% 

Table 11.19 Comparison of energy consumption between different actual 
transport modes and assumed modes 

 

For foreign visitors from overseas going to the expos, the average travel related visitor 

energy consumption was much more than for local travelling. It is most convenient for 

foreign visitors to fly to the host countries when attending the exhibition activities. 

However, the fact this travelling results in significant energy consumption has not 

been seriously considered by expo planners. Tables 11.20 and 11.21 demonstrate the 

fact that because more visitors now travel by aeroplane this probably accounts for the 

increase in travel energy consumption and emissions between the 19th century and 

modern times. 

 

Modes  Crystal Palace (1851) Dutch Pavilion 
(2000) 

Theme Pavilion 
(2010) 

Horse 0 - - 
Steam train 415,324 t - - 
Steam ship 6,138 t - - 
Car - 13,951 t 344,346 t 
Bus - 593 t 96,639 t 
Train - 2,609 t 67,398 t 
Airplane - 4,747 t 187,316 t 

Table 11.20 CO2 emissions of passengers from host countries using different 
transport modes  

 

Modes  Crystal Palace (1851) Dutch Pavilion 
(2000) 

Theme Pavilion 
(2010) 

Steam train 6,002 t - - 
Steam ship 13,782 t - - 
Car - - 76,134 t 
Ship - - 79,084 t 
Train - - 2,858 t 
Airplane - 56,448 t 780,949 t 

Table 11.21 CO2 emissions of passengers from foreign countries using different 
transport modes  
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To sum up, it is vital that local people are encouraged to take public transport to go to 

exhibitions. However, whether the environmental impact of long distance travel to go 

to exhibitions can be mitigated is still a question, and obviously air travel is not 

currently a sustainable transport mode.  

 

11.1.3 Exhibition-related economic aspects 
 

The discussion in this section focuses on the third aspect of sustainable expositions 

being considered in this thesis. Based on the calculated results in Chapters 6-9, the 

exhibition-related economic aspects account for the greatest level of energy and 

resource consumption over the whole life cycle of an exposition (discussed in Section 

10.5).   

 

In this section, several exhibition specific parameters and exhibition-related data (e.g. 

expenditure and tax income) are used to deepen the discussion of exposition activities 

in terms of direct and indirect economic benefits and impacts. Exhibition specific 

parameters comprise the size of exhibition buildings, number of visitors, and number 

of exhibitors. In Switzerland, the MCH Group Global Live Marketing developed an 

assessment tool to help exhibitors estimate the value of exhibition participation by 

means of specific parameters. These were expenditures of the exhibiting company, 

and the values of the exhibition participation in relation to various benefit segments 

(MCH Group, 2011). This research just looks at the two parameters of size of 

exhibition buildings and number of visitors, as they are the dominant factors.  

 

A comparison is made here between several parameters of the case study exhibitions 

and a number of other exhibitions (Table 11.22). It needs to be noted that these five 

exhibitions are comparable because they were large-scale exhibitions and all held 

over several months. Figure 11.2 shows the exhibition-related benefit of different 

exhibitions. The average income per visitor of Expo 2010 was the highest at 2,553 

RMB/visitor (392.3 USD/visitor, converted using the currency rate of 2010). 

 

Table 11.22 shows the total economic income of different exhibitions, along with an 

increase in the number of visitors who came from outside the host cities. The reason 

for this increase could be because the number of visitors coming from outside the 
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host city rose, and more food, transportation, and accommodation had to be 

consumed during the visit time. Thus, more expenditure and more tax resulted from 

those attending the exhibitions. This demonstrates that the number of visitors, 

especially visitors from outside the host city, is one of the significant influential factors 

for the exhibition-related economic aspect. 

 

Table 11.22 also shows that the sizes of exhibition buildings are broadly similar but 

with some increase over time. Based on figures of official statistics, the size of 

exhibition buildings has gradually increased (UFI, 2009) as exhibition organisers and 

exhibitors expect this (VCC, 2000; Yao and Xing, 2010). For example, a study in 2000 

reported that the demand for total square feet for shows held in the Vancouver 

Convention and Exhibition Centre would increase by 22% (VCC, 2000). Currently, the 

average square metre for occupancy of exhibition facilities per visitor is 0.42m2/visitor 

(UFI, 2009). It seems natural that the size of exhibition spaces will increase as the 

numbers of visitors increases.  

 

However, the Dutch Pavilion is a counter example to this trend. It had a very small size 

compared with other buildings (in the context of the floor area of the building), but it 

attracted more visitors than many other pavilions at Expo 2000. This example shows 

that visitors were much more interested in the context of the exhibition, and exhibition 

pavilions may not need to occupy a lot of land resources. The suggestion from this is 

that there might be no direct relationship between the sizes of exhibition halls and 

increase in economic income.  

 

Another comparison is made between the average monetary incomes of different 

national exhibitions (Table 11.23). These were about 1~3 USD/visitor, which was lower 

than for the international exhibitions. These venues hold regular exhibitions every 

month and have more local visitors attending. 
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Exhibition Place 
 

Size of 
building 
(m2) 

Number of 
visitors 

Visitors 
who live 
outside 
host 
city 

Total economic 
benefit for region  

USD/ 
visitor 

Reference 

Great 
Exhibition of 
1851 

Crystal 
Palace, 
London, UK  

92,000  6,039,195 66% £256,437 - Case study 
in this thesis 
(Chapter 6) 

Expo 2000 Dutch 
Pavilion, 
Hannover, 
Germany 

6,144 4,060,000 90% €350,000,000 
(=499,274,955 

USD)  

123.0 Case study 
in this thesis 
(Chapter 8) 

The 
Salvador 
Dali 
exhibition 
(2005)  

Philadelphia 
Museum of 
Art, 
Philadelphia, 
US 

107,000 370,000 63% 54,900,000 USD  148.4 Urban 
Partners, 
2005 

Metropolitan 
Museum 
Exhibitions 
(2009)  

Metropolitan 
Museum of 
Art, New 
York,  US  

130,000 - 74% 593,000,000 USD - Epoch 
Times Staff, 
2009 

Expo 2010 Theme 
Pavilion, 
Shanghai, 
China  

143,000 23,000,000 
(total: 

73,080,000) 

86% 186,559,900,000 
RMB 

(=28,665,867,675 
USD) 

392.3 Case study 
in this thesis 
(Chapter 9) 

Table 11.22 Comparison of economic benefit of different exhibitions 
 
Event Place 

(Population 
density of city) 

Size of 
building 
(m2) 

Number of 
visitors 

Total economic 
benefit for 
regional (USD) 

USD/ 
visitor 

Additional 
information 

National 
exhibitions 
(2000) 

Vancouver 
Convention and 
Exhibition Centre, 
Vancouver, 
Canada 
(578,041) 

31, 600 125,000,000  329,767,052 
(exhibitors 
expenditure 
and tax 
income) 

2.6 VCC, 2000 

National 
exhibitions 
(2005) 

Shanghai 
Exhibition Centre, 
Shanghai, China 
(23,019,148) 

80,000 7,500,000 7,180,581 1.0 Case study 
in this 
thesis 
(Chapter 7) 

National 
exhibitions 
(2009) 

The International 
Convention and 
Exhibition Centre, 
Auckland, NZ 
(1,354,900) 

27,000 222,000 70,694,087 
 (tourism-
related 
expenditure) 

- ACC, 2009 

Table 11.23 Comparison of average economic benefit of different national 
exhibitions 

 
The exhibition industry brings direct and indirect economic benefits and social 

benefits to a regional area, as it “…attracts large business affairs and tourists, and 

promotes the exploitation of production market, the intercommunion of technology 

and communication, foreign trade and travels” (Yao and Xing, 2010). For example, 

China has become the one of the biggest countries in the world in terms of holding 

exhibitions. In China, the conference and exhibition industry has developed at a rate of 

20% per year since the reform (Yao and Xing, 2010).   
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As a possessor of the “Three highs” (high growth potential, high added-values, and 

highly beneficial innovations), the expansion of the exhibition industry seems to be 

continuous (MEA, 2009). However, these exhibition activities are leading to the 

consumption of more natural resources (as demonstrated in Section 10.4).  

 

To make expositions more sustainable, the method of display might have to be 

gradually changed from physical attendance to an online platform. This could help to 

reduce the resource and energy consumption of exhibition buildings, transportation, 

and the impact emanating from visitor accommodation and other activities.  However, 

this would still not deal with the largest aspect of environmental degradation, the 

increased economic activity resulting from holding an exhibition. 

 

11.2 Measuring sustainable expositions (large-scale events) 
 

A range of Sustainable Development Indicators have been proposed in the fields of 

environment, society, and economy (see in Section 2.3.2). However, there is little 

relevant study for specifically assessing the environmental impact of large-scale 

events (expositions fall into this category) (explained in Section 2.3.3). 

 

In this research, Chapters 6~9 have demonstrated how two assessment methods (Life 

Cycle Analysis and Ecological Footprint Analysis) were combined and used to quantify 

and provide results for the environmental impacts related to event visitation under 

certain research boundaries as set out for the case studies. 

 

This section will discuss the further issues of measuring sustainable expositions, 

including assessment boundaries (11.2.1) and measurement tools (11.2.2) for 

environmental impacts. Compared to some related assessment methods of the 

environmental impacts of large-scale events (e.g. sport events), this study identifies 

the necessity of setting up appropriate and broader research boundaries, and 

selecting the right assessment tools for measuring large-scale expositions at both 

national and international levels. 
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11.2.1 Assessment boundary 
 

The assessment boundary is considered to be one of the significant factors in terms of 

quantitative measurement (discussed in section 5.1.1, Mithraratne et al, 2007, p.24; 

Maru and Woodford, 2007). It can have a large effect on the results of the 

environmental assessment of large-scale events, so that assessment results may 

influence related decision-making, for example, national policies for promoting 

sustainable exhibitions. 

 

Commonly, the analysis boundary for assessing the environmental degradation 

considered in previous studies has consisted solely of the energy and resource 

consumption of infrastructure, visitor travel to an event, and food consumption. These 

impacts were generated during the operational period of the event. The assessment of 

the economic and environmental impact of the 2003/2004 FA Cup Final from the 

research of Collins et al (2007) is such an example. The authors estimated the 

environmental consequences of this event using Ecological Footprint Analysis and 

Environmental Input-Output Analysis. The geographical boundary of the study was the 

host city of Cardiff and the period for which the visitor footprint was calculated was 

the one day the event was held. The primary aspects of assessment for environmental 

impact included the infrastructure (the Stadium), visitor travel to go to the event, food 

and drink sold, and waste. Detailed information on the analysis boundary is given in 

Table 11.24. 

 

Although both the economic and environmental impacts were explored in this study, 

the economic impact of this sporting event was evaluated by using monetary value. 

This means that the environmental impact of the event-related economic aspects, 

which potentially generated the largest effect (as has been discussed in Section 10.4), 

was not evaluated and not included in the whole environmental assessment. For the 

Cardiff research, the analysis boundary was just focused on the resource 

consumption of visitors in terms of their direct consumption patterns.  

 

Other problems also existed in the analysis boundaries regarding the transport modes 

of visitor travel. For example, energy consumption for domestic air travel was not 

included in the research. Based on a related study, more than 5% of visitors take 
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flights for long distance travel in the UK (Kuhnimhof et al, 2009). According to this 

figure, it could be that more than 3,600 visitors used air travel to go to the FA Cup 

Final in the UK. Whether the analysis boundary for the transportation in the study of 

Collins et al (2007) was appropriate in its exclusion of air travel or not is arguable. 

 

As the problems above demonstrate, this thesis study suggests that the analysis 

boundaries for assessment of event-related environmental impact need to be 

considered in terms of their “whole life cycle”. Although global environmental issues 

have attracted much research and some valuable results have ensued, there is at 

present no research considering the widely based “whole life-cycle” environmental 

impacts of expositions. This research shows that the broader boundaries of 

assessment for event-related environmental impact need to be considered. The 

“Whole life cycle” assessment in this thesis comprises whole life cycle consumption of 

buildings, visitor travel, and exhibition-related economic aspects. The economic 

aspects should not be isolated from the assessment of environmental impact. The 

whole life-cycle environmental impact in this study is different from conventional 

concerns as it is defined as the direct and indirect environmental effects of 

expositions during the whole process (before, during, and after the exhibition 

activities). Consideration of the whole life cycle of an exposition provides the most 

complete analysis of the associated material and energy flows, carbon dioxide 

emissions, and land usage. The analysis boundaries of these case studies have been 

delimited in detail in Section 5.1.1. 

 

A comparison of the analysis boundaries for the environmental assessment of large-

scale events is made below between the 2003/2004 FA Cup Final and one of the case 

studies in this thesis, Expo 2010 (Table 11.24). 
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 2003/2004 FA Cup Final Expo 2010 
Detail Additional  Detail Additional  

Geographical 
boundary 

The host city Cardiff, UK The host city Shanghai, China 

Study 
population 

All event 
visitors 

- All event 
visitors 

- 

Period One day  The day of the 
event 

6 months  

Analysis 
boundary 

Infrastructure 
of the event 
venue 

Stadium 
(calculated 
according to 
capital 
investment) 

Exhibition 
building LCA 

Theme Pavilion 

Visitor travel 
to the event 
 

Return journeys; 
only UK travel 
was counted; 
domestic air travel 
not included 

Visitor travel to 
the event 
 

Return journeys, 
domestic and 
international travel 
included;  main 
transport modes 
included 

Food and 
waste 

- Exhibition-
related 
economic 
aspects 
 

Commercial sales in 
and out of the Expo 
Park (food, tickets, 
retail, 
accommodation); 
Economic benefits 
generated after the 
Expo 2010 

Table 11.24 Comparison of the analysis boundary between the 2003/2004 FA Cup 
Final and the Expo 2010 

 

Table 11.24 demonstrates that the analysis boundaries of “whole life cycle” 

assessment need to be broadened to obtain a true picture of the environmental 

impacts of these types of events. 

 

11.2.2 Measurement tools 
 

Life Cycle Analysis and Ecological Footprint Analysis are the measurement tools 

selected for this research. These tools and the reason for selection have been 

introduced and explained in Section 5.2. Life Cycle Analysis is used to measure the 

total energy consumption of exhibition buildings. The energy and resource 

consumption of visitor travel and exhibition-related economic aspects are evaluated 

using Ecological Footprint Analysis. This section further discusses the strengths and 

weaknesses of the application of these two tools specifically for measuring large-scale 

events, based on the case studies. 
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11.2.2.1 Life Cycle Analysis 
  

Life Cycle Analysis has been used to quantify the energy consumption of exhibition 

buildings in this thesis. This method helps to assess the environmental impact of each 

construction component, and evaluate the energy consumption of buildings in every 

phase (construction, maintenance, operation, and demolition). The method also 

facilitates provision of a detailed description of the calculated results. For example, it 

can help to explore the environmental impact of the use of different construction 

materials by estimating their embodied energy consumption. 

 

Life Cycle Analysis is one of the most used tools when it comes to the environmental 

impact of buildings. However, there is little standardisation of how it is used 

(Chambers et al, 2001, p.26). It has to rely on assumptions when assessing indirect 

resource consumption and subsequent effects, such as the details of the complex 

process of the manufacture of a material, or how electricity is generated nationally. 

Providing these assumptions are consistent, then LCA is useful for comparative 

studies, even if it cannot be relied on for an accurate prediction. 

 

11.2.2.2 Ecological Footprint Analysis 
 

In this thesis Ecological Footprint Analysis is mainly adopted to assess the 

environmental effect of exhibition-related economic aspects. The footprint of 

economic aspects is converted from the direct and indirect economic benefits 

generated by the large-scale exposition activities. Furthermore, the energy 

consumption of buildings and visitor travel can also be converted into Ecological 

Footprint values. The results are then used for making comparisons between factors. 

 

Ecological Footprint Analysis as a measurement tool can be especially helpful in the 

context of an event (Collins et al, 2007). It not only provides an understanding of the 

environmental impacts of expositions at the national and international level (similar to 

the GDP indicator), but can also demonstrate the environmental effect of the direct 

and indirect consumption patterns of visitors when they attend exhibitions. Collins et 

al (2007) argued that “The Ecological Footprint Analysis is a sophisticated tool able to 

identify key environmental pressure-points”. In addition, it has the potential to be 
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adopted in many conditions and can reflect the relative impact of different 

consumption activities within a certain population. 

 

At the same time, Ecological Footprint Analysis has several weaknesses for the 

calculation of the impact of the case study events. The assessment results may not 

comprise all detailed visitor impacts from consumption at the expos. For example, it 

does not take account of the volume of water consumed during the activities, 

although other research into the ecological footprint of tourism has shown bottled 

water to be a very small component of the tourist EF (based on travel, accommodation, 

food and water) (Mahravan and Vale, 2010). The fact the ecological footprint method 

may not definitely accurately reflect the impacts because some things have to be left 

out to make the task manageable (Ferng, 2002; McGregor et al, 2004) has been widely 

criticised in the academic field (Dickson and Arcodia, 2010). 

 

Methods Strength Weakness 
Life Cycle 
Analysis 

• Assess impacts of each product or 
process over whole life cycle; 

• Provide detailed description of 
assessment results of environmental 
impact  

• Little standardisation of 
method; 

• Must rely on assumptions 
for assessing some indirect 
effects 

Ecological 
Footprint 
Analysis 

• Provides an understanding of the global 
environmental impacts; 

• Demonstrates the environmental effect 
of visitors’ direct and indirect 
consumption patterns; 

• Reflects the impact of consumption 
activities with a certain population 

• May not comprise all 
detailed visitor consumption 
categories at the expos; 

• May not accurately reflect 
the impacts 

Table 11.25 Strengths and weaknesses of the two methods adopted in the 
calculation for case study events in this thesis 

 

Table 11.25 summarises the strength and weakness of the two methods adopted in 

the calculation of the impact of the case study events in this thesis. 

 

11.2.2.3 Mixed methods approach  
 

A mixed methods approach, which is an integrated and customised assessment tool, 

is necessary for measuring large-scale events, based on the description in Table 11.24. 

The mixed methods approach can be used to assess different visitor scenarios. It 
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should, therefore, be able to assist organisers and promoters to demonstrate whether 

expos are organised as sustainable events. 

 

It is noted that many assumptions of data collection and calculation have been used in 

this study. This is because unavailabilty of data (e.g. for the historic case study in 1851) 

and some indirect resource consumption and effects cannot be captured. Sensitivity 

analysis can be used to explore the variations generated from a range of assumptions 

of the inputs.  

 

However, it is impossible to examine each assumption in this research. Therefore, a 

sensitivity analysis in the calculation of embodied energy consumption of case study 

buildings, Crystal Palace, Shanghai Exhibition Centre, and Dutch Pavilion, as a typical 

example, has been done. The embodied energy coefficients for different countries 

vary slightly because the energy mixes for manufacturing materials are different in 

each country. Between 1994 and 2008 embodied energy coefficients from different 

countries have not changed very much. As explained above, in the absence of 

relevant data, coefficients from the UK were used for the Crystal Palace, those from 

Australia for the Shanghai building and from Germany for the Dutch Pavilion. The data 

were checked by applying all three sets of coefficients to all three buildings. The 

detailed results of this sensitivity analysis are given in Appendix F. The result of the 

sensitivity analysis demonstrated that the overall differences were very small. The 

maximum coefficient of variation was 6% (from 2.1% to 5.7%), as shown in Table 

11.26. This justified the claim the calculated results are acceptable in terms of the 

confidence interval (detailed results, see Appendix F). 

 

Total embodied 
energy 

UK embodied 
energy 
coefficients 

Australian 
embodied energy 
coefficients 

German embodied 
energy coefficients 

Coefficient 
of variation 

Crystal Palace 348,189 GJ 346,379 GJ 379,027 GJ 4.2% 
Shanghai 
Exhibition Centre 

859,082 GJ 758,772 GJ 858,924 GJ 5.7% 

Dutch Pavilion 93,054 GJ 93,590 GJ 89,186 GJ 2.1% 

Table 11.26 Sensitivity analysis: embodied energy of buildings calculated using 
different embodied energy coefficients (Appendix F) 

 

11.3 Chapter conclusion 
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This chapter provides further thoughts on how to make sustainable expositions and 

how to appropriately measure the impact of large-scale expositions. The main 

considerations are summarised below. 

 

To make sustainable expositions: 

 

• For buildings, using the high-tech approach currently does little to mitigate the 

energy and resource usage of large expo pavilions. Exhibition buildings as a 

specific type of building for display may actually need to be treated by using 

different solutions from other commercial buildings in terms of sustainability. 

Sustainable design of large-scale exhibition buildings needs to focus more on 

reducing total energy consumption in the operating phase. At the same time, 

the energy flow influenced by actual useful life is very much larger than the 

aspects of design usually considered to be “sustainable”. 

• For visitor travel, using public transport modes can effectively help to reduce 

energy and resource usage in host cities. For foreign visitors from overseas 

going to the expos by airplane leads to more energy usage than the average 

energy consumption for local travelling. Overseas ‘visitors’ to expos need to 

use the technology of virtual visiting if the event is to be sustainable.  

• For exhibition-related economic aspects, the number of visitors, especially 

visitors from outside the host city, is one of the significant influential factors for 

environmental protection. Again, virtual visiting could help to reduce these 

impacts. 

 

To measure large-scale expositions: 

 

• The analysis boundary for assessment of event-related environmental impacts 

needs to be the “whole life cycle” and it needs to be broadened for the 

environmental assessment of these types of events to include not just 

exhibition buildings, but visitor travel (local and international travel), and event-

related economic aspects. 

• The mixed methods approach, which is an integrated and customised 

assessment tool, is necessary for measuring the environmental impact of 

large-scale events. 
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Chapter 12 Conclusions and Recommendations 

 

This chapter provides the answers to the research questions and draws conclusions 

for this study on the basis of the comparative analysis and related further 

considerations in Chapters 10 and 11. Limitations of the research and opportunities 

for further research are then discussed.  

 

12.1 Answers to research questions  
 

This research aims to create an appropriate and specific methodology for assessing 

the chief environmental impacts generated by holding large-scale exhibitions and to 

define what a real sustainable exposition and sustainable exhibition building might be. 

This section answers the research questions set out in section 4.1. 

 

The first main research question was: How can the environmental impact generated 

by the contemporary exhibition industry be measured at both the national and 

international level?  

 

This thesis has shown it is possible to measure the impacts of the modern exhibition 

industry using a modified form of Life Cycle Assessment. To limit the scope of the 

research this has meant identifying what might be the biggest impacts of the 

exhibition industry. Because this research is undertaken within the discipline of 

architecture exhibition buildings were examined, although research showed that their 

overall contribution to modern exhibitions is small when it comes to total 

environmental impact.  

 

There were two related subsidiary questions: 

 

(a) How can the system boundaries of measurement be set up and appropriate 

methods for assessment applied? 
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The system boundary was set up in Chapter 5 by focusing on what were perceived to 

be the three most significant factors of large-scale expositions with the potential for 

generating significant environment impacts. A mixed methods approach (including Life 

Cycle Analysis and Ecological Footprint Analysis) was adopted to establish the 

calculation models for quantifying and estimating the impacts of four typical case 

studies. The reason for doing this was to check that results obtained under different 

methods were comparable. This provided a justification for the research method and 

the results.  

 

(b) Do the analysis boundaries of Life Cycle Assessment need to be broadened for 

the environmental assessment of exposition? 

 

This thesis suggests it is vital that analysis boundaries be broadened to investigate the 

true sustainability of current actions, such as holding exhibitions. This is because the 

conventional assessment indicators for estimating the environmental impacts of large-

scale events have separated out the effects from provision and use of infrastructure 

(such as that for visitor travel) and the economic benefits that accrue from exhibitions. 

Both of the latter have been shown in this research to be much greater than the 

impacts of exhibition buildings. This suggests it is not the buildings that should be the 

focus of environmental research but the activities that occur within them. The broader 

analysis boundary of the environmental assessment (energy consumption, carbon 

emissions, and ecological footprint) of expositions used here comprises the impacts 

generated from exhibition buildings, visitor travel, and exhibition-related economic 

aspects. 

 

The second main research question was: What is the environmental impact generated 

by a large-scale international exhibition or exposition over its whole life cycle? 

 

Because of the way data is currently collected many assumptions have had to be 

made in this research to calculate the environmental impacts of exhibition buildings. 

This is why four case studies were undertaken so that their results could be compared 

to minimise the effect of making assumptions. For all case studies it was the 

economic impact that was the largest environmental impact over the assumed life-



Chapter 12 Conclusions and Recommendations 

 
	
  

251 

cycle of a large scale exposition, followed by that of visitor travel, and then that of the 

buildings examined.  

 

There were five related subsidiary questions: 

 

(a) What is the average initial and recurring embodied energy and operating energy of 

an exhibition building? 

 

The first problem in answering this question was defining the life of an exhibition 

building. In fact this study quantified the initial, recurring embodied energy, and 

operating energy of four case studies over their actual life and an assumed useful life. 

As a summary of the results, tables 12.1 and 12.2 show the average energy 

consumption of the case study buildings over their actual life and an assumed life of 

50 years, the latter to give a direct comparison. 

 

 Initial embodied 
energy 
(MJ/m2/month) 

Recurring 
embodied 
energy (MJ/m2/ 
month) 

Average 
operating energy 
(MJ/m2/month) 

Crystal Palace (82.5 years) 1 1  93 
Shanghai Exhibition Centre  
(56 years) 

8 6  37 

Dutch Pavilion (5 months) 
(with sustainable consideration) 

2,120 0 83 

Theme Pavilion (13 months) 
(with sustainable consideration) 

1,400 0 76 

Table 12.1 Average initial, recurring embodied energy, and operating energy of 
the four case study buildings based on actual life 

 

 Initial embodied 
energy 
(MJ/m2/year) 

Recurring 
embodied 
energy 
(MJ/m2/year) 

Average 
operating energy 
(MJ/m2/year) 

Crystal Palace (50 years) 26 23  1,110 
Shanghai Exhibition Centre  
(50 years) 

110  80  446 

Dutch Pavilion (assumed to be used 
for 50 years)  
(with sustainable consideration) 

212 88 1,000 

Theme Pavilion (assumed to be 
used for 50 years) 
(with sustainable consideration) 

168 12 907 

Table 12.2 Average initial, recurring embodied energy, and operating energy of 
the four case study buildings based on an assumed useful life of 
50 years 
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(b) Are buildings getting better? Given current improvements in energy efficiency is 

there a significant difference between modern and historic large single space 

exhibition buildings in terms of the embodied energy in the construction and energy 

use in the operating phases? 

 

The quantified results show that modern exhibition buildings consumed more energy 

for building construction and maintenance than the older buildings, even though both 

these have been upgraded in their lifetimes. For the building operating phase, using 

PV panels and other sustainable technologies has not helped to mitigate the energy 

usage of exhibition buildings to any significant point, noting that the more 

conventional Shanghai Exhibition Centre has the lowest operational energy use. 

Because the Sydenham Crystal Palace used coal for heating its operational energy is 

relatively high compared to that of a more modern building. However, as originally 

designed without heating, its energy use was zero (see chapter 6). 

 

(c) What is the total energy consumption and associated CO2 emissions of visitor 

travel for attending expositions or exhibitions? 

 

This study quantified the energy consumption and CO2 emissions of visitor travel 

going to the four exhibition buildings. Table 12.3 lists the energy consumption and 

CO2 emissions of visitor travel to go to the four case study buildings. Table 12.4 

shows the per capita energy consumption for each exposition. 

 
Visitor travel to go to Average energy 

consumption 
Average CO2 emissions 

Crystal Palace (1851) 838 MJ/visitor 74 kg/visitor 
Dutch Pavilion (2000) 322 MJ/visitor 19 kg/visitor 
Theme Pavilion (2010) 588 MJ/visitor   71 kg/visitor 

Table 12.3 Energy consumption and CO2 emissions of visitor travel to go to the 
four case study buildings 

 

Visitor travel to go to Total energy consumption Average energy 
consumption 

Great Exhibition (1851) 28,130 GJ/day 838 MJ/visitor/day 
Expo 2000 (2000) 433,007 GJ/day 2,576 MJ/visitor/day 
Expo 2010 (2010) 1,193,463 GJ/day   2,940 MJ/visitor/day 

Table 12.4 Energy consumption of visitor travel to go to the events averaged 
over a day 
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(d) Has the environmental impact of visitor travel to exhibitions increased or decreased 

over time? Does the location of buildings influence the energy consumption and 

carbon emissions of visitor travel?  

 

The total energy usage and CO2 emissions of visitor travel are increasing over the 

years based on visitor travel to an event rather than a pavilion. The location of 

exhibition buildings in relation to travel consumption still needs to be evaluated on a 

case by case basis, as it can be affected by different population densities in different 

cities. The choice of visitor transport modes also affects the environmental impact of 

visitor travel. This should be of concern for those organising large scale expositions.   

 

(e) What is the most significant factor in the process of exposition activities, in terms 

of the whole life cycle environmental assessment? 

 

Comparing the total energy and resource consumption of three factors, the exhibition-

related economic aspects consumed most energy and resources, which were much 

more than those for building consumption and visitor-related transportation taken 

together. 

 

12.2 Conclusions and recommendations 
 

12.2.1 Conclusions 
 

A whole life cycle assessment of the energy and resource usage of large-scale 

expositions (comprising exhibition buildings, visitor travel, and exhibition-related 

economic aspects) has been undertaken using the mixed methods approach 

developed in this thesis. The investigation examines the environmental consequences 

of the four expositions in London, Hannover, and Shanghai from 1851 to 2011 as 

listed below; 

 

• Great Exhibition of 1851 (Crystal Palace, 1851~1936); 

• Shanghai National Exhibitions (Shanghai Exhibition Centre, 1955~2011) 
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• Expo 2000 (Dutch Pavilion, 2000) 

• Expo 2010 (Theme Pavilion, 2010~2011). 

 

This research concludes that the environmental impacts of large-scale expositions can 

be measured by the mixed methods approach in terms of the three selected and 

related factors over their whole life cycle, and within an appropriate analysis boundary. 

The modified Life Cycle Assessment method has the potential to be developed as a 

generalised framework for gauging the environmental impact of large-scale events at 

the national and international level. 

 

The results of the assessment show that the total energy and resource consumption 

of large-scale exhibitions is increasing. Across the three factors, the exhibition-related 

economic aspects consume most energy and resources, this being considerably 

greater than both building energy consumption and visitor-related transportation 

energy consumption.  

 

For exhibition buildings, this study shows that modern exhibition buildings do have an 

impact on the environment and are not becoming more sustainable, whatever their 

promoters may claim. For a short period of useful life, it is impossible for exhibition 

building design to achieve the goal of sustainability. In detail, energy and resources 

are consumed most in the building operating phase. Using sustainable technologies, 

such as wind turbines or PV panels, for exhibition buildings does not seem the best 

approach for reducing their operating energy consumption. Exhibition buildings as a 

specific type of building for display may actually need to be treated by using different 

solutions from other commercial buildings in terms of sustainability. The Crystal 

Palace showed how operating an exhibition building in the summer and only during 

the hours of daylight made a huge reduction in its operating energy. This changed 

dramatically when the same building was heated all year round. This suggests 

exhibitions should be held for short period at the most climatically favourable times of 

year and day. However, these same buildings need to be reusable as the matter of 

short building useful life resulted in the sustainably designed buildings performing 

worse than normal buildings. 
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The choice of visitor transport modes can affect the environment. The location of the 

buildings in relation to choice of travel mode needs to be considered carefully. Choice 

of different transport modes has a large influence on the overall transport energy 

consumption and environmental impacts. Foreign visitors flying to expos involve more 

energy consumption than local travelling. 

 

The exhibition-related economic stimulus has by far the highest ecological footprint 

for a large-scale exhibition, when compared to the other relevant factors. Currently 

this important part is largely ignored by sponsors and politicians. For exhibition-

related economic aspects, the increase of the number of visitors, especially visitors 

from outside the host city, is one of the significant influential factors on the 

environmental impact. The influence of exhibitions raises a question about moving 

societies to a sustainable situation. It seems that the vicious circle between exhibition-

related economic growth and environmental deterioration cannot be collapsed at 

present. The more benefits the organizers achieved, the more significant environmental 

impact resulted.  The  contradiction  between  economic  growth  and  environmental 

protection cannot be easily removed, based on the present public understanding of 

sustainable development and the design principles for established sustainable 

expositions.  

 

12.2.2 Recommendations 
 

For sustainability assessment, the whole life cycle energy and resource consumption 

of large-scale expositions needs to be evaluated, if these are to be claimed as 

sustainable events. Such evaluation requires the boundaries of what needs to be dealt 

with to be set much wider than now. Furthermore, the boundaries of environmental 

analysis for a large-scale exhibition building need to be standardised and clarified. It 

might be better if the scope of the analysis went beyond pure energy accounting of 

buildings to look at the whole exhibition industry so as to fully understand its overall 

impact on the environment. 

 

Exhibition buildings will only reach the goal of sustainability if they are used 

continuously for a long time. Buildings for events like Expos need to be guaranteed a 

long and useful life. At the same time, making a building that is easy to disassemble 
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and move may be more important than having a building which incorporates 

sustainable technologies and gadgets. In addition, how to reduce the operating 

energy, such as for lighting or air conditioning systems, should be the primary focus. 

Furthermore, looking at how buildings were made in the past, when energy resources 

were harder to come by, may also provide useful lessons for how to design buildings 

with lower environmental impact now. For example the Crystal Palace made extensive 

use of wood in its construction, which has helped to lower its overall impact in spite of 

its structure being of iron.  

 

For visitor travel, using public transport modes can effectively help to reduce energy 

and resource usage in host cities, as the travel mode choices of visitors can have a 

dramatic effect on the total energy usage. At the same time, plans will also be needed 

to ensure that visitors can access exhibition buildings by the lowest energy consuming 

forms of public transport. 

 

Policy makers and event-organisers really need to consider how to develop a more 

sustainable exposition industry. The method of display might have to be gradually 

changed from physical attendance to an online expo platform. This could help to 

reduce the resource and energy consumption of exhibition buildings, transportation, 

and the impact emanating from visitor accommodation and other activities. Currently, 

some international expos have established their own virtual expo, for example, the 

Shanghai Expo 2010. However, it is not well designed and is particularly built for 

commercial purposes, rather than the consideration of the exhibition-generated 

environmental impacts. 

 

Moreover, not only architects, planners and officials, but also the general public need 

to cultivate much greater awareness of sustainability and their personal responsibility 

as determined by their behavioural choices, for effective environmental conservation.   

 

Finally, although the procurement and use of exhibition buildings has to be changed, 

buildings are the least of the problems of exposition-related environmental issues. 

Visitor travel has to be avoided where possible, as described above. However, holding 

an exhibition event with the intention of generating economic growth is the biggest 

environmental impact and, therefore, forms the biggest question for the future of the 
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industry and of moving towards sustainability. Whether these types of events should 

be reduced needs to be considered by policy markers.  

 

For example, the Hannover Principles (McDonough et al, 1992) determined the 

concept of sustainability as the guidelines for building World Expo 2000 in Germany.  

Nine principles were listed in this report, of which all are relevant to the sustainable 

construction of exhibition buildings. Meanwhile, it established the principles for 

transportation requirements with local,  bio-regional, and global imperatives 

(McDonough et al, 1992). Vehicles which used renewable energy, for example 

hydrogen power or solar energy were most encouraged. However, these high-tech 

equipements do not successfully help to mitigate the energy use and the resulting 

enviromental impacts of exhibition-realted buildings and transportation at present. For 

visitor travel, these principles attempted to provide detailed improvement approaches 

and practical restrictions to the local transport, rather than the whole transport system 

(including the international travel). The Hannover Principles did not contribute to 

reducing air travel to participate in the exposition. These principles did not truly deal 

with the environmental problem of large-scale events, as the current various 

interpretations of sustainability and their economic-orientation continue to 

demonstrate.  

 

12.3 Limitations and further research  
 

The assessment of the environmental impacts of large-scale expositions addressed in 

this investigation only covers a selection of effects connected with holding exhibitions, 

these being the energy and resource consumption of exhibition buildings, visitor travel, 

and exhibition-related economic aspects. Many other effects on the environment and 

other exhibition-related aspects need to be investigated in further research, as shown 

below.  

 

In detail, exploration of other human behaviour-related effects of expositions, such as 

waste creation and water consumption, is vital. For building environmental 

assessment, other environmental effects generated from HVAC leakage and building 

demolition need to be evaluated. For visitor travel, research into the national energy 
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usage of transport modes needs to be completed to define the extent of the 

environmental impacts of different modes visitors can choose for each proposed 

exposition site. 

 

Furthermore, a framework for measuring large-scale events over their whole life cycle 

needs to be established for study of their long term impacts. Having systematic 

methods with an updated database for quantification coefficients, such as reliable 

embodied energy coefficients for different countries, will significantly improve the 

accuracy of estimation of the overall impact of large-scale expositions.  

 

Further areas of investigation are to explore the potential for designing demountable 

components for exhibition infrastructure and to investigate how to establish an online 

platform for international exhibitions in the future. Only in this way will the energy and 

resource consumption of large-scale expositions be reduced in the long term.  

 

The purpose of holding expositions needs to be considered. Linking these to 

untrammelled economic growth will mean they can never contribute to sustainability. 

However, holding expositions that demonstrate how to live sustainably within a no-

growth economy could be of huge benefit to all.  
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Appendix A: Quantitative work on the Great Exhibition 
of 1851 

 
Table 1 Embodied energy of the Crystal Palace in Hyde Park and Sydenham (1851-1936) 

 Original (1851) Rebuild and maintenance (1854-
1936) 

Materials 
Building 
elements 

Embodied 
energy 
coefficient (GJ/t) 
* 

Weight/ 
Volume 

Embodied 
energy(GJ)  

Total weight 
Embodied 
energy(GJ) 

Glass 
Main building 

15 
408t  6,120 527t 7,905 

Colonnade  - - 18t 270 

Iron 

columns 

25 

2,669t 66,718 

3,325t 83,125 

Girders 1,668t 41,700 
Pipes 906t 22,653 
Connection 
collars 

469t 11,732 

Metal louvres 40t 1,000 

Roof trusses 565t 14,125 
Boilers - - 
Colonnade - - 60t 1,500 
Total 6,317t 157,925 3,385t 84,625 

Wood - 1.6 8,495t 13,592 0 t 0 

Concrete Foundations 
(footing) 

2 855t 1,710 719t 1,438 

Brickwork Foundations  2.5 - - 15,297 t 38,243 

Paint 
(Durability: 
5 years) 

Columns 

30.6 MJ/ m2 

(Triple coat for 
initial) 
 

10.2 MJ/m2 

(Single coat for 
recurring) 

18,661 m2 571 18,661 m2 3,046 

Girders 12,921 m2 395 12,921 m2 2,109 

Pipes 25,918 m2 793 25,918 m2 4,230 

Connection 
collars 

3,110 m2 95 3,110 m2 508 

Metal louvers 8,208 m2 251 8,208 m2 1,340 

Roof trusses 6,263 m2 192 6,263 m2 1,022 

New iron 
elements built 
for Sydenham 
Crystal Palace 

- - 
1800 m2 

(total: 300m3) 
(1m3/elements) 

55(first time) 
275(rest) 

Boilers - - 
Boilers: 138m2 
Pipes: 12,637 

m2 

391 
(first time) 
1955(rest) 

Colonnade - - 48 m2 
2 (first time) 

7 (rest) 

Wood 

30.6 MJ/ m2 

(Triple coat for 
initial) 
10.2 
MJ/m2(Single 
coat for 
recurring) 

101,940m2 3,119 101,940m2 16,637 

Total - - - 184,763 - 164,058 
In all 348,821 GJ  (31 MJ/m2/year) 
Hammond, G., & Jones, C. (2008). Inventory of Carbon and Energy (ICE), Version 1.6a, Sustainable Energy Research 
Team (SERT). Department of Mechanical Engineering, University of Bath, UK.  
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Appendix B: Quantitative work on National Exhibitions 
at Shanghai Exhibition Centre between 1955~2011 

 
 

• Initial embodied energy of Shanghai Exhibition Centre 
 
Table 1 Initial Embodied Energy of the Front Hall of the Shanghai Exhibition Centre 
Halls Elements Materials Volume Material energy intensities* Material 

quantities (MJ) 
Front 
Hall 
 
(excludi
ng the 
four 
small 
decorati
ng 
towers 
and 
external 
decorati
on) 
 

Box 
foundation 

Reinforced concrete 2628 m3 7.0 GJ/m3 18396000 
2578 m3 18046000 

Damp proof 
membrane 

2190 m2 0.07GJ/m2 ** 153000 

Columns Reinforced concrete 506 m3 7.0 GJ/m3 3542000 
Cement mortar 1:3 19.74 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
194700 

Granite  18.71 m3 

(=50.5t) 
5.86 GJ/t , 0.1-13.9 GJ/t ***  296000 

 

Paint 583 m2 0.02 GJ/m2** 12000 
Beams Reinforced concrete 274 m3 7.0 GJ/m3 1918000 

Cement mortar 1:3  11.92 m3 Cement: 11.4 GJ/t (=9.5 GJ/ 
m3)(1m3=1.2t), Sand: 0.3 GJ/m3 

115200 

Floors Reinforced concrete 605 m3 7.0 GJ/m3 4235000 
Cement mortar 1:3 30.4 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
298000 

Terrazzo 121 m3 1.4 GJ/t *** 
(=0.6GJ/ m3) (2.3 t/m3) 

73000 

External 
walls 

Reinforced concrete 2508 m3 7.0 GJ/m3 17556000 
Rockwool 2492 m2 0.14 GJ/ m3 ** 7000 
Cement mortar 1:3 21 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
206000 

Paint 4178 m2 0.02 GJ/m2** 84000 
Internal 
walls 

Reinforced concrete 1314 m3 7.0 GJ/m3 9198000 
Cement mortar 1:3 4.4 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
43000 

Paint 943 m2 0.02 GJ/m2** 19000 
Windows Float glass 300 m2 3.1 GJ/m2 930000 

Steel 0.78 m3 36.8 GJ/t (=30.7 GJ/ m3) 
(1.2-3.8t=1 m3) 

24000 

Doors Timber (hardwood) 15.2 m3 10.9 GJ/ m3 166000 
Copper 0.38 m3 45.9 GJ/t (=14 GJ/ m3) (3.25 t/ m3) 532000 

Ceiling Plywood 4501 m2 0.98 GJ/ m2 4411000 
Plaster 4501 m2 6.5 GJ/m3 ** 45000 
Paint 4501 m2 0.02 GJ/m2** 90000 

Staircases Reinforced concrete 16.8 m3 7.0 GJ/m3 118000 
Terrazzo 0.6 m3 1.4 GJ/t *** (=0.6GJ/ m3) (2.3 t/m3) 400 
Reinforced concrete 36.8 m3 7.0 GJ/m3 258000 
Terrazzo 4 m3 1.4 GJ/t *** (=0.6GJ/ m3) (2.3 t/m3) 2000 

Roof Reinforced concrete 349 m3 7.0 GJ/m3 2443000 
Rockwool  3483 m2 0.14GJ/ m3 ** 10000 
Asphalt 3483 m2 2.6 GJ/t *** (2.5 GJ/ m3) (1.02t/ m3) 87000 
Cement mortar 1:3 18.3 m3 

 
Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

174000 
5500 

Paint  3483 m2 0.02 GJ/m2** 70000 
Services 20% - - 20,940000 

Total 104,698000 MJ 
* Treloar, G. J. (1994). Energy analysis of the construction of office buildings. Masters thesis. Faculty of Science and 
Technology, Deakin University, pp 58-59 
** Baird, G., & Chan, S. A. (1983). Energy Cost of House and Light Construction Buildings and Remodelling of Existing 
Houses (Report No.76). New Zealand Energy Research and Development Committee, University of Auckland.  
*** Hammond, G., & Jones, C. (2008). Inventory of Carbon and Energy (ICE), Version 1.6a, Sustainable Energy 
Research Team (SERT). Department of Mechanical Engineering, University of Bath, UK.  
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Table 2 Initial Embodied Energy of the Central Hall of the Shanghai Exhibition Centre 
Halls Elements Materials Volume Material energy intensities* Material 

quantities (MJ) 
Central 
Hall 
 
(excludi
ng 
external 
decorati
on) 
 

Box 
foundation 

Reinforced concrete 2223 m3 7.0 GJ/m3 15561000 
3489 m3 24423000 

Damp proof 
membrane 

2190 m2 0.07 GJ/m2** 153000 

Columns Reinforced concrete 117 m3 7.0 GJ/m3 819000 
Cement mortar 1:3 0.6 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
4680 

Paint 1.27 m2 0.02 GJ/m2** 30 

Arch 
structure 
(internal) 

Reinforced concrete 690 m3 7.0 GJ/m3 4830000 
Cement mortar 1:3 13.8 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
131000 
4000 

Paint 2760 m2 0.02 GJ/m2** 55000 
Beams Reinforced concrete 299 m3 7.0 GJ/m3 2093000 

Cement mortar 1:3  7.44 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

38200 

Floors Reinforced concrete 150 m3 7.0 GJ/m3 1050000 
Cement mortar 1:3 7.6 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
74000 

Terrazzo 30 m3 1.4 GJ/t (UK) ***  
(=0.6GJ/ m3) (2.3 t/m3) 

18000 

External 
walls 

Reinforced concrete 824 m3 7.0 GJ/m3 5768000 
Rockwool 687 m2 0.14 GJ/ m3 ** 2000 
Cement mortar 1:3 3.4 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
33000 

Paint 687 m2 0.02 GJ/m2** 14000 

Internal 
walls 

Reinforced concrete 833 m3 7.0 GJ/m3 5831000 
Cement,  sand 21.1 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
204000 

Paint 4161 m2 0.02 GJ/m2** 83000 
Windows Float glass 224 m2 3.1 GJ/m2 694000 

Steel 1.12 m2 36.8 GJ/t (=30.7 GJ/ m3) 
(1.2-3.8t=1 m3) 

34000 

Doors Timber (hardwood) 12.8 m3 10.9 GJ/ m3 140000 
Glass 55 m2 3.1 GJ/m2 171000 
Copper 0.14 m3 45.9 GJ/t (=14 GJ/ m3) (3.25 t/ m3) 2000 

Ceiling Plywood, paint 2708 m2 
1012 m2 

0.98 GJ/ m2 
0.02 GJ/m2** 

3647000 
74000 

Staircases Reinforced concrete 28 m3 7.0 GJ/m3 196000 
Terrazzo 3 m3 1.4 GJ/t *** (=0.6GJ/ m3) (2.3 t/m3) 1800 

Roof Reinforced concrete 371 m3 7.0 GJ/m3 3597000 
Rockwool 3705 m2 0.14 GJ/ m3 ** 12000 

Asphalt 3705 m2 2.6 GJ/t *** (=2.5 GJ/ m3) (1.02t/ m3)  93000 
Cement mortar 1:3 18.5 m3 

 
Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

182000 
 

Paint  3705 m2 0.02 GJ/m2** 74000 
Services 20% - - 17,527000 

Total 87,634000 MJ  
 
Table 3 Initial Embodied Energy of the Eastern Hall of the Shanghai Exhibition Centre 
Halls Elements Materials Volume Material energy intensities [1] Material 

quantities (MJ) 
Eastern 
Hall 
 
(excludi
ng 
external 
decorati
on) 
 

Strip 
foundation 

Reinforced concrete 673 m3 7.0 GJ/m3 4711000 
Damp proof 
membrane 

4834 m2 0.07 [2] GJ/m2 338000 

Columns Reinforced concrete 424 m3 7.0 GJ/m3 3024000 
Cement mortar 1:3 18.84 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
186000 

Granite  3.1 m3 

(=8.4t) 
5.86 GJ/t,  0.1-13.9 GJ/t *** 50000 

Paint 3623 m2 0.02 GJ/m2** 73000 
Beams Reinforced concrete 560 m3 7.0 GJ/m3 3920000 

Cement mortar 1:3 30 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

294000 
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Floors Reinforced concrete 806 m3 7.0 GJ/m3 6342000 
Cement mortar 1:3 45 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
55000 

Terrazzo 182 m3 1.4 GJ/t *** (0.6GJ/ m3) (2.3 t/m3) 109000 
External 
walls 

Reinforced concrete 2856m3 7.0 GJ/m3 19992000 
Rockwool 4760 m2 0.14 GJ/ m3 ** 13000 
Cement mortar 1:3 23.8 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
233000 

Paint 4760 m2 0.02 GJ/m2** 95000 
Internal 
walls 

Reinforced concrete 1410 m3 7.0 GJ/m3 9870000 
Cement mortar 1:3 17.7 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
173000 

Paint 3525 m2 0.02 GJ/m2** 71000 
Windows Float glass 1138 m2 3.1 GJ/m2 3528000 

Steel 5.7 m3 36.8 GJ/t (=30.7 GJ/ m3) 
(1.2-3.8t=1 m3) 

175000 

Doors Timber (hardwood) 2.78 m3 10.9 GJ/ m3 30000 
Glass 184 m2 3.1 GJ/m2 570000 
Copper 0.43 m3 45.9 GJ/t (=14 GJ/ m3) (3.25 t/ m3) 6000 

Ceiling Plaster 9742 m2 6.5 GJ/m3 ** 633000 
Paint 9742 m2 0.02 GJ/m2** 195000 

Staircases Reinforced concrete 55.7 m3 7.0 GJ/m3 383000 
Terrazzo 4.9 m3 1.4 GJ/t*** (0.6GJ/ m3) (2.3 t/m3) 3000 
Reinforced concrete 76 m3 7.0 GJ/m3 532000 
Terrazzo 9.8 m3 1.4 GJ/t *** (0.6GJ/ m3) (2.3 t/m3) 5500 
Stone 8.4 m3 Local: 1.9 GJ/ m3** 16000 

Roof Reinforced concrete 487.5 m3 7.0 GJ/m3 3413 
Rockwool 4834 m2 0.14 GJ/ m3 ** 14000 
Asphalt 4834 m2 2.6 GJ/t*** (2.5 GJ/ m3) (1.02t/ m3) 121000 
Cement mortar 1:3 244.3 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
2394000 

Paint  4879 m2 0.02 GJ/m2** 98000 
Galleries Reinforced concrete 704 m3 7.0 GJ/m3 4928000 

Cement mortar 1:3 388.1 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

3803000 

Paint  1402m2  0.02 GJ/m2** 28000 
Services 20% - - 17,606000 

Total: 88,030000 MJ 
 
Table 4 Initial Embodied Energy of the Western Hall of the Shanghai Exhibition Centre 
Halls Elements Materials Volume Material energy intensities* Material 

quantities (MJ) 
Western 
Hall 
 
(excludi
ng 
external 
decorati
on) 
 

Strip 
foundation 

Reinforced concrete 673 m3 7.0 GJ/m3 4711000 
Damp proof 
membrane 

4834 m2 0.07 GJ/m2** 338000 

Columns Reinforced concrete 448 m3 7.0 GJ/m3 3136000 
Cement mortar 1:3 19.2 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
188000 

Granite  3.1 m3 

(=8.4t) 
5.86 GJ/t, 0.1-13.9 GJ/t *** 50000 

Paint 3693 m2  0.02 GJ/m2** 74000 
Beams Reinforced concrete 560 m3 7.0 GJ/m3 3920000 

Cement mortar 1:3  30 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

294000 

Floors Reinforced concrete 1009 m3 7.0 GJ/m3 7063000 
Cement mortar 1:3 50 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
490000 

Terrazzo 202 m3 1.4 GJ/t***(0.6GJ/ m3) (2.3 t/m3) 122000 
External 
walls 

Reinforced concrete 3097m3 7.0 GJ/m3 21679000 
Rockwool 5162 m2 0.14 GJ/ m3** 15000 
Cement mortar 1:3 25.8 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
253000 

Paint 5162 m2 0.02 GJ/m2** 103000 
Internal 
walls 

Reinforced concrete 2078 m3 7.0 GJ/m3 14546000 
Cement mortar 1:3 26 m2 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
274000 
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Paint 5196 m2 0.02 GJ/m2** 104000 
Windows Float glass 1192 m2 3.1 GJ/m2 3695000 

Steel 6 m3 36.8 GJ/t (=30.7 GJ/ m3) 
(1.2-3.8t=1 m3) 

184000 

Doors Timber (hardwood) 4.26 m3 10.9 GJ/ m3 46000 
Glass 171 m2 3.1 GJ/m2 530000 
Copper 0.3 m3 45.9 GJ/t(=14 GJ/ m3) (3.25 t/ m3) 4000 

Ceiling Plaster 10156 m2 6.5 GJ/m3** 660000 
Paint 10156 m2 0.02 GJ/m2** 203000 

Staircases Reinforced concrete 24.8 m3 7.0 GJ/m3 174000 
Terrazzo 1.3 m3 1.4 GJ/t *** (=0.6GJ/ m3)(2.3 t/m3) 800 
Reinforced concrete 76 m3 7.0 GJ/m3 532000 
Terrazzo 9.8 m3 1.4 GJ/t ***(=0.6GJ/ m3) (2.3 t/m3) 5500 
Stone 8.4 m3 Local: 1.9 GJ/ m3 ** 16000 

Roof Reinforced concrete 516.5 m3 7.0 GJ/m3 3616000 
Rockwool 5115 m2 0.14 GJ/ m3** 14000 
Asphalt 5115 m2 2.6 GJ/t ***(2.5 GJ/ m3) (1.02t/ m3) 128000 
Cement mortar 1:3 257.3 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
2521000 

Paint  5160 m2  0.02 GJ/m2** 103000 
Galleries Reinforced concrete 704 m3 7.0 GJ/m3 4928000 

Cement mortar 1:3 388.1 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

3803000 

Paint  1405 m2  0.02 GJ/m2** 4956000 
Services 20% - - 20,870000 

Total: 104,349000 MJ  
 
Table 5 Initial Embodied Energy of the Convention Hall of the Shanghai Exhibition Centre 
Halls Elements Materials Volume Material energy intensities [1] Material 

quantities (MJ) 
Conven
tion Hall 
 
(excludi
ng 
external 
decorati
on) 
 

Box 
foundation 

Reinforced concrete 3388 m3 7.0 GJ/m3 23716000 
Damp proof 
membrane 

1257 m2 0.07 GJ/m2** 88000 

Columns Reinforced concrete 276 m3 7.0 GJ/m3 1932000 
Cement mortar 1:3 8.12 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
79000 

Granite 8.5 m3 
(=23t) 

5.86 GJ/t 135000 

Paint 188 m2 0.02 GJ/m2** 4000 

Beams Reinforced concrete 218.6 m3 7.0 GJ/m3 1530000 
Cement mortar 1:3  12 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
118000 

Floors Reinforced concrete 338 m3 7.0 GJ/m3 2366000 
Cement mortar 1:3 24.9 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
251000 

Terrazzo 68 m3 1.4 GJ/t ***(=0.6GJ/ m3) (2.3 t/m3) 41000 
External 
walls 

Reinforced concrete 1028 m3 7.0 GJ/m3 7196000 

Rockwool 2569 m2 0.14 GJ/ m3 ** 7000 
Cement mortar 1:3 13 m3 

 
Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

128000 

Paint 2569 m2 0.02 GJ/m2** 51000 
Internal 
walls 

Reinforced concrete 302 m3 7.0 GJ/m3 2114000 
Cement mortar 1:3 5.8 m3 Cement: 11.4 GJ/t (=9.5 GJ/ m3) 

(1m3=1.2t), Sand: 0.3 GJ/m3 
57000 

Paint 1166 m2 0.02 GJ/m2** 23000 
Windows Float glass 185 m2 3.1 GJ/m2 574000 

Timber 1.02 m3 10.9 GJ/ m3 11000 
Doors Glass 114 m2 3.1 GJ/m2 353000 

Timber 13.08 m3 10.9 GJ/ m3 143000 
Ceiling Plasterboard 4989 m2 0.14 GJ/ m2 699000 

Plaster 4989 m2 6.5 GJ/m3  ** 324000 
Paint 4989 m2 0.02 GJ/m2** 100000 

Staircases Reinforced concrete 30.5 m3 7.0 GJ/m3 214000 
Terrazzo 3.2 m3 1.4 GJ/t  *** (0.6GJ/ m3) (2.3 t/m3) 17000 
Reinforced concrete 65.7 m3 7.0 GJ/m3 460000 
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Terrazzo 3.4 m3 1.4 GJ/t  ***(0.6GJ/ m3) (2.3 t/m3) 2000 
Roof Reinforced concrete 178 m3 7.0 GJ/m3 1246000 

Rockwool 1781 m2 0.14 GJ/ m3 ** 5000 
Asphalt 1781 m2 2.6 GJ/t ***(2.5 GJ/ m3) (1.02t/ m3) 45000 
Cement mortar 1:3 8.9 m3 

 
Cement: 11.4 GJ/t (=9.5 GJ/ m3) 
(1m3=1.2t), Sand: 0.3 GJ/m3 

88000 

Paint  1781 m2 0.02 GJ/m2** 36000 
Services 20% - - 11035000 

Total: 55,173000  MJ 
 

• Recurring embodied energy of Shanghai Exhibition Centre 
 
Table 6 Recurring Embodied Energy of the Front Hall of the Shanghai Exhibition Centre (1955~2011) 
Halls Elements Materials Material 

quantities (MJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (56 years) 

Front 
Hall 
 
(excludi
ng the 
four 
small 
decorati
ng 
towers 
and 
external 
decorati
on) 
 

Box 
foundation 

Reinforced concrete 36442000 100 0 
Damp proof membrane 153000 100 0 

Columns Reinforced concrete 3542000 100 0 
Cement mortar 1:3 194700 50 0 
Granite  296000 50 0 
Paint 12000 10 60000 

Beams Reinforced concrete 1918000 100 0 
Cement mortar 1:3  115200 50 0 

Floors Reinforced concrete 4235000 100 0 
Cement mortar 1:3 298000 50 0 
Terrazzo 73000 50 0 

External 
walls 

Reinforced concrete 17556000 100 0 
Rockwool 7000 100 0 
Cement mortar 1:3 206000 50 0 
Paint 84000 10 420000 

Internal 
walls 

Reinforced concrete 9198000 100 0 
Cement mortar 1:3 43000 50 0 
Paint 19000 10 95000 

Windows Float glass 930000 50 0 
Steel 24000 50 0 

Doors Timber (hardwood) 166000 30 166000 
Copper 532000 50 0 

Ceiling Plywood 4411000 50 0 
Plaster 45000 50 0 
Paint 90000 10 450000 

Staircases Reinforced concrete 118000 100 0 
Terrazzo 400 50 0 
Reinforced concrete 258000 100 0 
Terrazzo 2000 50 0 

Roof Reinforced concrete,  2443000 100 0 
Rockwool  10000 100 0 
Asphalt 87000 25 174000 
Cement mortar 1:3 239000 50 0 
Paint  70000 10 350000 

Services 20% 20,940000 - 10470000 
Total 12185000    
 
Table 7 Recurring Embodied Energy of the Central Hall of the Shanghai Exhibition Centre (1955~2011) 
Halls Elements Materials Material 

quantities (GJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (56 years) 

Central 
Hall 
 
(excludi
ng 
external 
decorati
on) 
 

Box 
foundation 

Reinforced concrete 39984000 100 0 
Damp proof membrane 153000 100 0 

Columns Reinforced concrete 819000 100 0 
Cement mortar 1:3 4680 50 0 
Paint 30 10 150 

Arch 
structure 
(internal) 

Reinforced concrete 4830000 100 0 
Cement mortar 1:3 135000 50 0 
Paint 55000 10 275000 

Beams Reinforced concrete  2093000 100 0 
Cement mortar 1:3  38200 50 0 

Floors Reinforced concrete  1050000 100 0 
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Cement mortar 1:3 74000 50 0 
Terrazzo 18000 50 0 

External 
walls 

Reinforced concrete  5768000 100 0 
Rockwool 2000 100 0 
Cement mortar 1:3 33000 50 0 
Paint 14000 10 60000 

Internal 
walls 

Reinforced concrete  5831000 100 0 
Cement,  sand 204000 50 0 
Paint 83000 10 415000 

Windows Float glass 694000 50 0 
Steel 34000 50 0 

Doors Timber(hardwood) 140000 30 140000 
Glass 171000 50 0 
Copper 2000 50 0 

Ceiling Plywood, paint 3721000 50 0 
Staircases Reinforced concrete  196000 100 0 

Terrazzo 1800 50 0 
Roof Reinforced concrete  3597000 100 0 

Rockwool 12000 100 0 
Asphalt  93000 25 186000 
Cement mortar 1:3 182000 50 0 
Paint  74000 10 370000 

Services 20% 17,527000 - 8763500 
Total 10209650    
 
Table 8 Recurring Embodied Energy of the Eastern Hall of the Shanghai Exhibition Centre (1955~2011) 
Halls Elements Materials Material 

quantities (GJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (56 years) 

Eastern 
Hall 
 
(excludi
ng 
external 
decorati
on) 
 

Strip 
foundation 

Reinforced concrete  4711000 100 0 
Damp proof membrane 338000 100 0 

Columns Reinforced concrete  3024000 100 0 
Cement mortar 1:3 185000 50 0 
Granite 50000 50 0 
Paint 73000 10 365000 

Beams Reinforced concrete  3920000 100 0 
Cement mortar 1:3 294000 50 0 

Floors Reinforced concrete  6342000 100 0 
Cement mortar 1:3 55000 50 0 
Terrazzo 109000 50 0 

External 
walls 

Reinforced concrete  19992000 100 0 
Rockwool 13000 100 0 
Cement mortar 1:3 233000 50 0 
Paint 95000 10 475000 

Internal 
walls 

Reinforced concrete  9870000 100 0 

Cement mortar 1:3 173000 50 0 
Paint 71000 10 355000 

Windows Float glass 3528000 50 0 
Steel 175000 50 0 

Doors Timber (hardwood) 30000 30 30000 
Glass 570000 50 0 
Copper 6000 50 0 

Ceiling Plaster 633000 50 0 
Paint 195000 10 975000 

Staircases Reinforced concrete  383000 100 0 
Terrazzo 3000 50 0 
Reinforced concrete  532000 100 0 
Terrazzo 5500 50 0 
Stone 16000 50 0 

Roof Reinforced concrete  3413 100 0 
Rockwool 14000 100 0 
Asphalt 121000 25 242000 
Cement mortar 1:3 2394000 50 0 
Paint  98000 10 490000 

Galleries Reinforced concrete  4928000 100 0 
Cement mortar 1:3 3803000 50 0 
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Paint  28000 10 140000 
Services 20% 17,606000  8803000 

Total: 11875000    
 
Table 9 Recurring Embodied Energy of the Western Hall of the Shanghai Exhibition Centre (1955~2011) 
Halls Elements Materials Material 

quantities (GJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (56 years) 

Western 
Hall 
 
(excludi
ng 
external 
decorati
on) 
 

Strip 
foundation 

Reinforced concrete  4711000 100 0 
Damp proof membrane 338000 100 0 

Columns Reinforced concrete  3136000 100 0 
Cement mortar 1:3 188000 50 0 
Granite  50000 50 0 
Paint 74000 10 370000 

Beams Reinforced concrete  3920000 100 0 
Cement mortar 1:3  294000 50 0 

Floors Reinforced concrete  7063000 100 0 
Cement mortar 1:3 490000 50 0 
Terrazzo 122000 50 0 

External 
walls 

Reinforced concrete  21679000 100 0 
Rockwool 15000 100 0 
Cement mortar 1:3 253000 50 0 
Paint 103000 10 515000 

Internal 
walls 

Reinforced concrete  14546000 100 0 
Cement mortar 1:3 274000 50 0 

Paint 104000 10 520000 
Windows Float glass 3695000 50 0 

Steel 184000 50 0 
Doors Timber (hardwood) 46000 30 46000 

Glass 530000 50 0 
Copper 4000 50 0 

Ceiling Plaster 660000 50 0 
Paint 203000 10 1015000 

Staircases Reinforced concrete  174000 100 0 
Terrazzo 800 50 0 
Reinforced concrete  532000 100 0 
Terrazzo 5500 50 0 
Stone 16000 50 0 

Roof Reinforced concrete  3616000 100 0 
Rockwool 14000 100 0 
Asphalt 128000 25 256000 

Cement mortar 1:3 2521000 50 0 
Paint  103000 10 515000 

Galleries Reinforced concrete  4928000 100 0 
Cement mortar 1:3 3803000 50 0 
Paint  4956000 10 24780000 

Services 20% 20,870000  10435000 
Total: 38452000    
 
Table 10 Recurring Embodied Energy of the Convention Hall of the Shanghai Exhibition Centre (1955~2011) 
Halls Elements Materials Material 

quantities (GJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (56 years) 

Conven
tion Hall 
 
(excludi
ng 
external 
decorati
on) 
 

Box 
foundation 

Reinforced concrete  23716000 100 0 
Damp proof membrane 88000 100 0 

Columns Reinforced concrete  1932000 100 0 
Cement mortar 1:3 79000 50 0 
Granite 135000 50 0 
Paint 4000 10 20000 

Beams Reinforced concrete  1530000 100 0 
Cement mortar 1:3  118000 50 0 

Floors Reinforced concrete  2366000 100 0 
Cement mortar 1:3 251000 50 0 
Terrazzo 41000 50 0 

External 
walls 

Reinforced concrete  7196000 100 0 
Rockwool 7000 100 0 
Cement mortar 1:3 128000 50 0 
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Paint 51000 10 255000 
Internal 
walls 

Reinforced concrete  2114000 100 0 
Cement mortar 1:3 57000 50 0 
Paint 23000 10 115000 

Windows Float glass 574000 50 0 
Timber 11000 30 11000 

Doors Glass 353000 50 0 

Timber 143000 30 143000 
Ceiling Plasterboard 699000 50 0 

Plaster 324000 50 0 
Paint 100000 10 500000 

Staircases Reinforced concrete  214000 100 0 
Terrazzo 17000 50 0 
Reinforced concrete  460000 100 0 
Terrazzo 2000 50 0 

Roof Reinforced concrete  1246000 100 0 
Rockwool 5000 100 0 
Asphalt 45000 25 90000 
Cement mortar 1:3 88000 50 0 
Paint  36000 10 180000 

Services 20% 11035000  5517500 
Total: 6831500    
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Appendix C: Quantitative work on Dutch participation 
at Expo 2000 

 
 

• Embodied energy of the Dutch Pavilion 
 
Table 1 Initial embodied energy of the offices floor (Ground floor) 
 Materials Volume Weight (kg) Factors (MJ/kg)  

*  **  *** 
Embodied energy 
(MJ) 

Pile 
foundations 

Reinforced concrete  77m3 192,500 2.54 488950 
307m3 767,500 1949450 

Damp proof membrane 10m3 14,000 134**** 1876000 
Columns Reinforced concrete  33 m3 82,500 2.54 209550 

Cement 1.4 m3 2,520 4.4 11088 
Sand 1.4 m3 1,722 0.017 29 
Paint  0.476 m3 0.1 68 **** 6.8 

Beams Reinforced concrete  136 m3 340,000 2.54 863600 
Cement  6 m3 10,800 4.4 47520 
Sand  6 m3 7,380 0.017 126 

Slabs Reinforced concrete  102 m3 255,000 2.54 647700 
Cement  10 m3 18,000 4.4 79200 
Sand  10 m3 12,300 0.017 209 
Timber 1,920 m3 980,352 5.56 5450757 
Carpet 10 m3 1,100 74.4 **** 81840 

External 
walls 

Reinforced concrete  205 m3 512,500 2.54 1301750 
Mineral wool (Insulation) 12.3 m3 246 5 1230 
Cement  4 m3 7,200 4.4 31680 
Sand  4 m3 4,920 0.017 84 
Brick (decoration)  5 m3 3,350 2.22 7437 
Paint 0.204 m3 0.04 68 **** 2.8 

Internal 
walls 

Reinforced concrete  186 m3 465,000 2.54 1181100 
Cement  9.3 m3 16,740 4.4 73656 
Sand  9.3 m3 11,439 0.017 195 
Paint  3.712 m3 0.8 68 **** 55 

Doors Timber 17.4 m3 8,884 5.56 49398 
Glass 0.84 m3 2,100 15 31500 
Paint 0.07 m3 0.014 68 **** 1 

Ceiling Steel 0.6 m3 4,680 15 70200 
Plaster 10 m3 9000 3.39 30510 

Internal stair Reinforced concrete  2.5 m3 6,250 2.54 15875 
Brick (pavement) 0.9 m3 603 2.22 1339 
Steel (handrail)  0.0003 m3 2.3 15 35 

Internal lift Reinforced concrete  0.68 m3 1700 2.54 4318 
Steel 0.008 m3 62 15 930 
Plastic (Decoration) 0.002 m3 5 80.5 **** 403 

Total 14,507,725 MJ 
* Anon. (1994). BEW Forschungsprojekt: Energie – und Stoffbilanzen von Gebauden. Schlussbericht: Universitat 
Karlsruhe. 
** Eyerer, P., Reinhardt, H., Kreissig, J., Kummel, J., Betz, M., Baitz, M., Hutter, V., Saur, K., & Schoech, H. (2000). 
Okologische Bilanzierung von Baustoffen und Gebauden, Wege zu einer ganzheitlichen Bilanzierung. Birkhauser 
Verlag Basel.  
*** Pohlmann, C. M. (2002). Okologische Betrachtung fur den Hausbau – Ganzheitliche Energie – und 
Kohlendioxidbilanzen fur zwei verschiedene Holzhauskonstruktionen. PhD thesis. zur Erlangung des Doktorgrades, an 
der Universitat Hamburg, Fachbereich Biologie.  
**** Hammond, G., & Jones, C. (2008). Inventory of Carbon and Energy (ICE), Version 1.6a, Sustainable Energy 
Research Team (SERT). Department of Mechanical Engineering, University of Bath, UK.  
 
Table 2 Initial embodied energy of the dunes floor (First floor) 
 Materials Volume Weight (kg) Factors(MJ/kg)  

*  **  *** 
Embodied energy 
(MJ) 

Wall Reinforced concrete  2,048 m3 5,120,000 2.54 13004800 
Cement 10 m3 18,000 4.4 79200 
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Sand 21 m3 25,830 0.017 439 
Slabs Reinforced concrete  102 m3 255,000 2.54 647700 

Cement  10 m3 18,000  4.4 79200 
Sand  10 m3 12,300 0.017 209 
Brick  31 m3 20,770 2.22 46109 

Ceiling Tile 5 m3 9,000 2.29 20610 
Connected 
bridge  

Steel 0.53 m3 4134 15 62010 
Timber 0.7 m3 4.2 5.56 23.4 

Internal 
staircases 

Reinforced concrete  235 m3 587,500 2.54 1492250 
Cement  1.2 m3 2,160 4.4 9504 
Sand  1.2 m3 1,476 0.017 25 

Maintenance 
structure 

Steel (handrail)  0.01 m3 78 15 1170 
Glass 0.2 m3 500 15 7500 

Total 15,450,750 MJ 
 
Table 3 Initial embodied energy of the glass floor (Second floor) 
 Materials Volume Weight 

(kg) 
Factors(MJ/kg)  
*  **  *** 

Embodied 
energy (MJ) 

Columns Reinforced concrete  123 m3 2623 2.54 6662 
Cement 2.5 m3 4500 4.4 19800 
Sand  2.5 m3 3075 0.017 53 
Paint 1 m3 0.2 68 **** 14 

Beams Reinforced concrete  136 m3 340,000 2.54 863600 
Cement  6 m3 10800 4.4 47520 
Sand  6 m3 7380 0.017 126 

Slabs Reinforced concrete  102 m3 255000 2.54 647700 
Cement 10 m3 18000 4.4 79200 
Sand 10 m3 12300 0.017 209 
Paint 2 m3 0.4 68 **** 27 

External maintenance structure Steel 0.42 m3 3276 15 52416 
Glass 2.05 m3 5125 15 76875  

Doors Timber 0.3 m3 153 5.56 852 
Glass 0.015 m3 38 15 570 
Paint 0.0012 m3 0.0003 68 **** 0.02 

Ceiling Plaster 10 m3 9000 3.39 30510 
Paint 2 m3 0.4 68 **** 27 

Shelves for flowers Steel 0.7 m3 5460 15 81900 
Total  1,908,061 MJ 
 
Table 4 Initial embodied energy of the pots floor (Third floor) 
 Materials Volume Weight (kg) Factors(MJ/kg)  

*  **  *** 
Embodied energy 
(MJ) 

Beams Reinforced concrete  136 m3 340000 2.54 863600 
Cement 6 m3 10800 4.4 47520 
Sand  6 m3 7380 0.017 126 

Slabs Reinforced concrete  102 m3 255000 2.54 647700 
Cement  10 m3 18000 4.4 79200 
Sand 10 m3 12300 0.017 209 
Paint  2 m3 0.4 68 **** 27 

External walls Plastic sheeting 0.819 m3 197 80.5 **** 15859 
Internal walls Reinforced concrete  299 m3 747500 2.54 1898650 

Cement 15 m3 27000 4.4 118800 
Sand  15 m3 18450 0.017 314 
Paint 4.3 m3 0.9 68 **** 61 

Doors Timber 3.6 m3 1838 5.56 10219 
Glass  0.17 m3 425 15 6375 
Paint 0.001 m3 0.0002 68 **** 0.01 

Ceiling Plaster 10 m3 9000 3.39 30510 
Paint 2 m3 0.4 68 **** 27 

Total 3,719,197 MJ 
 
Table 5 Initial embodied energy of the forest floor (Fourth floor) 
 Materials Volume Weight 

(kg) 
Factors(MJ/kg)  
*  **  *** 

Embodied energy 
(MJ) 

Columns Timber  112 m3 57187 5.56 317960 
Beams Reinforced concrete  136 m3 340000 2.54 863600 

Cement 6 m3 10800 4.4 47520 
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Sand 6 m3 7380 0.017 126 
Slabs Reinforced concrete  102 m3 255000 2.54 647700 

Cement  10 m3 18000 4.4 79200 
Sand  10 m3 12300 0.017 209 
Paint  2 m3 0.4 68 **** 27 

Ceiling Plaster  10 m3 9000 3.39 30510 
Paint  2 m3 0.4 68 **** 27 

Maintenance 
structure 

Steel (handrail) 0.01 m3 78 15 1170 
Glass 0.2 m3 500 15 7500 

Total 1,995,549 MJ 
 
Table 6 Initial embodied energy of the rain floor (Fifth floor) 

 Materials Volume Weight 
(kg) 

Factors(MJ/kg)  
*  **  *** 

Embodied energy 
(MJ) 

Columns Reinforced concrete  23 m3 57,500 2.54 146050 
Beams Reinforced concrete  136 m3 340,000 2.54 863600 

Cement  6 m3 10,800 4.4 47520 
Sand 6 m3 7,380 0.017 126 

Slabs Reinforced concrete  102 m3 255,000 2.54 647700 
Cement 10 m3 18,000 4.4 79200 
Sand  10 m3 12,300 0.017 209 
Paint  2 m3 0.4 68 **** 27 

Internal walls Reinforced concrete  153 m3 382,500 2.54 971550 
Cement  8 m3 14,400 4.4 63360 
Sand  8 m3 0.04 0.017 0.0007 
Steel (decoration) 2 m3 15,600 15 234000 

Door Timber 3.6 m3 1838 5.56 10219 
Glass 0.17 m3 425 15 6375 
Paint  0.001 m3 0.0002 68 **** 0.01 

Ceiling (internal) Plaster  4 m3 3600 3.39 12204 
Paint  0.8 m3 0.16 68 **** 11 

Maintenance 
structure 

Steel 20 m3 156000 15 2340000 

Total 5,422,151 MJ 
 
Table 7 Initial embodied energy of the windmills (Sixth floor) 

 Materials Volume Weight 
(kg) 

Factors(MJ/kg)  
*  **  *** 

Embodied 
energy (MJ) 

Green roof Waterproofing PVC 2.5 m3 138 77.2 **** 10654 
Asphalt (Waterproofing layer)  2.5 m3 25000 2.6 **** 65000 
Mineral wool (Insulation) 2.5 m3 50 5 250 
PVC (Drainage layer)  2.5 m3 138 77.2 **** 10653 
PVC (Substrate)  2.5 m3 138 77.2 **** 10653 
Vegetation 2.5 m3 - - - 

Water roof Reinforced concrete  (Structure) 205 m3 512500 2.54 1301750 
Mineral wool (Thermal insulation 
layer) 

31 m3 620 5 3100 

Asphalt (Waterproof layer) 3 m3 30000 2.6 **** 78000 
Slabs Reinforced concrete  102 m3 255000 2.54 647700 

Cement  10 m3 18000 4.4 79200 
Sand  10 m3 12300 0.017 209 
Paint 2 m3 0.4 68 **** 27 

Walls  
(VIP room) 

Reinforced concrete  (Structure)  75 m3 187500 2.54 476250 
Reinforced concrete  (Internal wall)  11 m3 27500 2.54 69850 
Cement 0.01 m3 18 4.4 79 
Sand 0.01 m3 12.3 0.017 0.2 
Paint  0.006 m3 0.001 68 **** 0.07 

Ceiling (VIP 
room) 

Plaster 0.1 m3 90 3.39 305 
Paint  0.02 m3 0.004 68 **** 0.3 

Bridge Timber 13.3 m3 6791 5.56 37758 
Steel (handrail) 0.66 m3 5148 15 77220 

Total 2,868,659 MJ 
 
Table 8 Initial embodied energy of vertical circulation 
 Materials Volume Weight 

(kg) 
Factors(MJ/kg) 
*  **  *** 

Embodied 
energy (MJ) 

External stair Steel (structure)  3.3 m3 25740 15 386100 



Appendix C: Quantitative work on Dutch participation at Expo 2000  

	
   294 

Steel (handrail) 0.7 m3 5460 15 81900 
Timber 77 m3 39316 5.56 218597 

External lift Reinforced concrete  (Structure)  40 m3 100000 2.54 254000 
Steel  4.8 m3 37440 15 561600 
Timber 0.3 m3 153 5.56 851 
Glass 0.54 m3 1350 15 20250 

Total 1,523,298 MJ 
 
Table 9 Initial embodied energy of building services 
Building Services Heating, cooling, ventilation, 

lighting (6 levels) 
6,144 m2 (total 
construction area) 

2,240 MJ/m2 

(Energy intensity) 
13,762,560 MJ 

 
Table 10 Initial embodied energy of wind turbines 

 Materials Weight  (kg) 
****** 

Factors (MJ/kg) *  
**  ***  ***** 

Embodied energy (MJ) 

Wind turbine Steel 6643 15 99645 1285421 
Cast iron 600 25 15000 193500 
Glass reinforced plastic 
(76% of glass fibres, 
24% of epoxy resin) 

495 100 49500 
 

638550 
 

Copper 92 50 4600 59340 
Paint 39 68 2652 34211 
Aluminium 9 155 1395 17996 
PVC 7 77.2 540.4 6971 
Bronze 0.5 77 39 503 

Total embodied energy 173,371 MJ 
Cable trench Soil 110595 0.45 49768 642007 

Stone 110595 1 110595 1426675 
PVC 1083 77.2 83608 1078543 
Sand 280228 0.017 4764 61456 
Concrete 768 2 1536 19814 

Cable Poly butadiene 514 83 42662 550340 
Aluminium 829 155 128495 1657586 
Copper 289 50 14450 186405 
PVC 761 77.2 58749 757862 

Main transformer room Steel 14 15 210 2709 
Concrete 2400 2 4800 61920 

Total embodied energy 499,637 MJ 
 In all (6 wind turbines) 4,038,048 MJ 
* Anon. (1994). BEW Forschungsprojekt: Energie – und Stoffbilanzen von Gebauden. Schlussbericht: Universitat 
Karlsruhe. 
** Eyerer, P., Reinhardt, H., Kreissig, J., Kummel, J., Betz, M., Baitz, M., Hutter, V., Saur, K., & Schoech, H. (2000). 
Okologische Bilanzierung von Baustoffen und Gebauden, Wege zu einer ganzheitlichen Bilanzierung. Birkhauser 
Verlag Basel.  
*** Pohlmann, C. M. (2002). Okologische Betrachtung fur den Hausbau – Ganzheitliche Energie – und 
Kohlendioxidbilanzen fur zwei verschiedene Holzhauskonstruktionen. PhD thesis. zur Erlangung des Doktorgrades, 
an der Universitat Hamburg, Fachbereich Biologie.  
**** Hammond, G., & Jones, C. (2008). Inventory of Carbon and Energy (ICE), Version 1.6a, Sustainable Energy 
Research Team (SERT). Department of Mechanical Engineering, University of Bath, UK.  
***** Ardente, F., Beccali, M., Cellura, M., & Brano, V. L. (2008). Energy Performances and Life Cycle Assessment of 
An Italian Wind Farm. Renewable and Sustainable Energy Reviews, 12: 200-217. 

 
Table 11 Recurring embodied energy of the offices floor (Ground floor) 
 Materials Embodied energy 

(MJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (50 years) 

Pile 
foundations 

Reinforced concrete  488950 100 0 

1949450 100 0 

Damp proof membrane 1876000 100 0 
Columns Reinforced concrete  209550 50 0 

Cement 11088 50 0 
Sand 29 8-10 145 
Paint  6.8 100 0 

Beams Reinforced concrete  863600 50 0 
Cement 47520 50 0 
Sand 126 100 0 

Slabs Reinforced concrete  647700 100 0 
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Cement  79200 50 0 
Sand  209 50 0 
Timber 5450757 30 5450757 
Carpet (carpet)  81840 15-20 245520 

External 
walls 

Reinforced concrete  1301750 100 0 
Mineral wool (Insulation) 1230 50 0 
Cement 31680 50 0 
Sand 84 50 0 
Brick  7437 50 0 
Paint  2.8 8-10 14 

Internal 
walls 

Reinforced concrete  1181100 100 0 
Cement 73656 50 0 
Sand 195 50 0 
Paint 55 8-10 275 

Doors Timber  49398 30 49398 
Glass  31500 50 0 
Paint  1 8-10 5 

Ceiling Steel  70200 50 0 
Plaster  30510 50 0 

Internal stair Reinforced concrete  15875 100 0 
Brick (pavement)  1339 50 0 
Steel (handrail)  35 50 0 

Internal lift Reinforced concrete  4318 100 0 
Steel  930 50 0 
Plastic (Decoration) 403 50 0 

Total 5,746,114 MJ 
 
Table 12 Recurring embodied energy of the dunes floor (First floor) 
 Materials Embodied 

energy (MJ) 
Useful life 
(years) 

Recurring embodied energy (MJ) (50 
years) 

Wall Reinforced concrete  13004800 100 0 
Cement 79200 50 0 
Sand 439 50 0 

Slabs Reinforced concrete  647700 100 0 
Cement 79200 50 0 
Sand 209 50 0 
Brick  46109 50 0 

Ceiling Tile  20610 60 0 
Connected bridge  Steel  62010 50 0 

Timber  23.4 30 23.4 
Internal staircases Reinforced concrete  1492250 100 0 

Cement 9504 50 0 
Sand 25 50 0 

Maintenance 
structure 

Steel (handrail)  1170 50 0 
Glass  7500 50 0 

Total 23 MJ 
 
Table 13 Recurring embodied energy of the glass floor (Second floor) 
 Materials Embodied 

energy (MJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (50 years) 

Columns Reinforced concrete  6662 100 0 
Cement  19800 50 0 
Sand 53 50 0 
Paint  14 8-10 70 

Beams Reinforced concrete  863600 100 0 
Cement 47520 50 0 
Sand 126 50 0 

Slabs Reinforced concrete  647700 100 0 
Cement 79200 50 0 
Sand 209 50 0 
Paint  27 8-10 135 

External maintenance 
structure 

Steel  52416 50 0 
Glass  76875  50 0 

Doors Timber  852 30 852 
Glass  570 50 0 
Paint  0.02 8-10 0.1 

Ceiling Plaster  30510 50 0 
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Paint  27 8-10 135 
Shelves for flowers Steel  81900 50 0 
Total 1,192 MJ 
 
Table 14 Recurring embodied energy of the pots floor (Third floor) 
 Materials Embodied 

energy (MJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (50 years) 

Beams Reinforced concrete  863600 100 0 
Cement  47520 50 0 
Sand  126 50 0 

Slabs Reinforced concrete  647700 100 0 
Cement  79200 50 0 
Sand  209 50 0 
Paint   27 8-10 135 

External walls Plastic sheeting  15859 50 0 
Internal walls Reinforced concrete  1898650 100 0 

Cement  118800 50 0 
Sand 314 50 0 
Paint  61 8-10 305 

Doors Timber  10219 30 10219 
Glass  6375 50 0 
Paint  0.01 8-10 0.05 

Ceiling Plaster  30510 50 0 
Paint  27 8-10 135 

Total 10,794 MJ 
 
Table 15 Recurring embodied energy of the forest floor (Fourth floor) 
 Materials Embodied 

energy (MJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (50 years) 

Columns Timber  317960 30 317960 
Beams Reinforced concrete  863600 100 0 

Cement 47520 50 0 
Sand  126 50 0 

Slabs Reinforced concrete  647700 100 0 
Cement 79200 50 0 
Sand 209 50 0 
Paint  27 8-10 135 

Ceiling Plaster  30510 50 0 
Paint  27 8-10 135 

Maintenance structure Steel (handrail)  1170 50 0 
Glass  7500 50 0 

Total 318,230 MJ 
 
Table 16 Recurring embodied energy of the rain floor (Fifth floor) 

 Materials Embodied 
energy (MJ) 

Useful life 
(years) 

Recurring embodied energy 
(MJ) (50 years) 

Columns Reinforced concrete  146050 100 0 
Beams Reinforced concrete  863600 100 0 

Cement 47520 50 0 
Sand 126 50 0 

Slabs Reinforced concrete  647700 100 0 
Cement 79200 50 0 
Sand 209 50 0 
Paint  27 8-10 135 

Internal walls Reinforced concrete  971550 100 0 
Cement 63360 50 0 
Sand 0.0007 50 0 
Steel (decoration) 234000 50 0 

Door Timber  10219 30 10219 
Glass  6375 50 0 
Paint  0.01 8-10 0.05 

Ceiling (internal) Plaster  12204 50 0 
Paint  11 8-10 55 

Maintenance structure Steel  2340000 50 0 
Total 10,409 MJ 

 
Table 17 Recurring embodied energy of the windmills (Sixth floor) 
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 Materials Embodied 
energy (MJ) 

Useful life 
(years) 

Recurring embodied 
energy (MJ) (50 years) 

Green roof Waterproofing PVC 10654 15-20 31962 
Asphalt (Waterproofing layer)  65000 20-25 130000 
Mineral wool (Insulation) 250 50 0 
PVC (Drainage layer)  10653 15-20 31959 
PVC (Substrate)  10653 15-20 31959 
Vegetation - - - 

Water roof Reinforced concrete  (Structure)  1301750 100 0 
Mineral wool (Thermal insulation layer)  3100 50 0 
Asphalt (Waterproof layer) 78000 20-25 156000 

Slabs Reinforced concrete  647700 100 0 
Cement  79200 50 0 
Sand  209 50 0 
Paint  27 8-10 135 

Walls (VIP 
room) 

Reinforced concrete  (Structure)  476250 100 0 
Reinforced concrete  (Internal wall)  69850 100 0 
Cement  79 50 0 
Sand 0.2 50 0 
Paint  0.07 8-10 0.35 

Ceiling (VIP 
room) 

Plaster  305 50 0 
Paint  0.3 8-10 1.5 

Bridge Timber  37758 30 37758 
Steel (handrail) 77220 50 0 

Total 419,774 MJ 
 
Table 18 Recurring embodied energy of vertical circulation 
 Materials Embodied 

energy (MJ) 
Useful life 
(years) 

Recurring embodied 
energy (MJ) (50 years) 

External stair Steel (structure) 386100 50 0 
Steel (handrail) 81900 50 0 
Timber  218597 30 218597 

External lift Reinforced concrete (Structure)  254000 100 0 
Steel  561600 50 0 
Timber  851 30 851 
Glass  20250 50 0 

Total 219,448 MJ 
 
Table 19 Recurring embodied energy of building services 
 Materials Embodied energy 

(MJ) 
Useful life 
(years) 

Recurring embodied energy 
(MJ) (50 years) 

Building Services Pump, pipe …. (50%) 6,881,280  25 6,881,280 

Steel… (50%) 6,881,280  50 0 

Total 6,881,280 MJ 

 
Table 18 Recurring embodied energy of wind turbines 
 Embodied energy (MJ) Useful life 

(years) 
Recurring embodied energy 
(MJ) 

Wind turbines 4,038,048 20 8,076,096 
Transportation of personnel 
inspection(7000kg of diesel) 

317100 (45.3 MJ/kg)  20 792,750 

Maintenance of space parts 605,707 (15% of embodied energy of 
wind turbines) 

20 1,514,268 

Total 10,383,114 MJ 
Note: The useful life of the wind farm is generally in 20 years long and the electrical company has scheduled 
maintenance and control cycles. It was supposed a daily inspection during the first operation period and, 
successively, one inspection every 2-3 weeks. The personnel is transported by diesel car. It was supposed an overall 
consumption of about 7000 kg of diesel during the 20 years of useful life. Ordinary maintenance cycles occur 2-3 
times per year. They mainly imply lubrication, painting and substitution of space parts. During the average useful life 
of a wind generator, it is supposed to substitute one blade and the 15% of generator’s components. (Source from 
Ardente, F., Beccali, M., Cellura, M., & Brano, V. L. (2008). Energy Performances and Life Cycle Assessment of An 
Italian Wind Farm. Renewable and Sustainable Energy Reviews, 12: 200-217.) 
 
 

• Visitor travel to go to the Dutch Pavilion 
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1. Energy consumption of different transport modes 
 
 
 
Table 19 Visitors from Hannover 
 District Distance(km) Car (2.1) Light rail (0.69) Bus (0.91) 
1 Herrenhausen-Stöcken  10.4 88386 8195 10808 
2 Nord 9.0 36250 3360 4431 
3 Vahrenwald-List 7.9 130779 12118 15981 
4 Bothfeld-Vahrenheide 8.8 102435 9491 12517 
5 Ahlem-Badenstedt-Davenstedt 8.5 65867 6105 8052 
6 Linden-Limmer 7.4 78306 7256 9569 
7 Mitte 6.7 546127 50613 66750 
8 Buchholz-Kleefeld  6.3 66878 6199 8175 
9 Misburg-Anderten  5.9 45917 4254 5611 
10 Ricklingen 6.2 66024 6118 8068 
11 Südstadt-Bult  5.4 54931 5090 6713 
12 Döhren-Wülfel 3.7 30435 2821 3721 
13 Kirchrode-Bemerode-Wülferode 2.8 20357 1886 2487 
14 Neustadt a. Rbge 23.9 265154 24572 32406 
15 Wedemark 18.9 134827 12493 16477 
16 Burgwedel 16.7 83782 7767 10243 
17 Burgdorf 14.7 107891 10001 13190 
18 Uetze 18.1 89590 8305 10953 
19 Wunstorf 19.9 200383 18564 24483 
20 Garbsen 15.9 240441 22282 29387 
21 Langenhagen 13.4 170613 15811 20852 
22 Isernhagen 11.4 63824 5915 7801 
23 Seelze 12.8 102225 9477 12498 
24 Lehrte 9.5 100847 9347 12328 
25 Barsinghausen 15.3 126399 11708 15441 
26 Gehrden 11.2 40149 3717 4902 
27 Ronnenberg 8.0 45326 4201 5540 
28 Hemmingen 4.9 22247 2062 2720 
29 Laatzen 0.5 4932 457 603 
30 Sehnde 5.3 29673 2750 3627 
31 Wennigsen 11.7 3587 331 437 
32 Pattensen 4.8 16380 1517 2001 
33 Springe 11.5 82424 7641 10078 
 Total - 3263385 302422 398846 
 In all  3,964,653 MJ 
 
 
Table 20 Visitors from other cities in Germany 
  Car (2.1) Bus (0.91) Train (1.78) Air (2.599) 
  Distan

ce 
(km) 

Energy (MJ) Distance 
(km) 

Energy 
(MJ) 

Distan
ce 
(km) 

Energy 
(MJ) 

Distan
ce 
(km) 

Energy 
(MJ) 

1 Berlin 286 477380904 286 15242647 300 72974838 256 83501337 
2 Hamburg 257 221763809 257  7080882 266 33449468 128 21583427 
3 Munich 632 406705841 632 12986210 916 85903469 481 60487008 
4 Stuttgart 524 152489030 524 4869013 550 23324675 419 23826904 
5 Dusseldorf 277 78542879 277 2507844 291 12024388 239 13242531 
6 Bremen 125 33104663 125 1057079 131 5056042 143 7400806 
8 Dresden 367 91784204 367 2930587 385 14032203 307 15003580 
9 Wiesbaden 376 50467284 376 1611574 395 7726366 259 6793339 
1
0 

Kiel 
247 28440321 247 908071 259 4346036 223 5017398 

1
1 

Magdeburg 
147 16386105 147 523174 154 2501619 132 2875253 

1
2 

Erfurt 
219 21591385 219 689344 230 3304677 177 3410150 

1
3 

Mainz 
373 35682448 373 1139467 391 5450915 264 4935376 

1
4 

Saarbrucken 
526 44729672 526 1428321 552 6840583 397 6597348 

1
5 

Potsdam 
257 19218717 257 613675 270 2942233 157 2294426 
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1
6 

Schwerin 
225 10343498 225 330262 236 1581181 157 1410197 

 Total - 1688630761 - 53918150 - 281458693 - 258379081 
 In all 2,282,386,684 MJ 
 
Table 21 Visitors from European and Asian countries 
Area Average distance (km) Air (2.160) 
Northern Europe 1306 114531 
Western Europe 535 46917 
Central and Eastern Europe 1472 129089 
Southern Europe 1278 112076 
Total 402612 GJ 
Eastern Asia 8040 141015 
Southern Asia 6702 117548 
Western Asia 3670 64369 
Southeast Asia 9813 172112 
Central Asia 4388 76962 
Total 572006 GJ 
 
Table 22 Visitors from other foreign countries 

 Energy consumption 
Europe 402612 GJ 
America 684555 GJ 
Asia 572006 GJ 
Oceania 1284571 GJ 
Total 2943744 GJ 
 

2. CO2 emissions of different transport modes 
 
Table 23 Visitors from Hannover 
 District Distance 

(km) 
Car (0.0000694 
t/passenger-km) 

Light rail (0.000078 
t/passenger-km) 

Bus (0.00004 
t/passenger-km) 

1 Herrenhausen-
Stöcken  10.4 2.92 0.93 0.48 

2 Nord 9.0 1.20 0.38 0.19 
3 Vahrenwald-List 7.9 4.32 1.37 0.70 
4 Bothfeld-Vahrenheide 8.8 3.39 1.07 0.55 
5 Ahlem-Badenstedt-

Davenstedt 
8.5 

2.18 0.69 0.35 
6 Linden-Limmer 7.4 2.59 0.82 0.42 
7 Mitte 6.7 18.05 5.72 2.93 
8 Buchholz-Kleefeld  6.3 2.21 0.70 0.36 
9 Misburg-Anderten  5.9 1.52 0.48 0.25 
10 Ricklingen 6.2 2.18 0.69 0.35 
11 Südstadt-Bult  5.4 1.82 0.58 0.30 
12 Döhren-Wülfel 3.7 1.01 0.32 0.16 
13 Kirchrode-Bemerode-

Wülferode 2.8 0.67 0.21 0.11 
14 Neustadt a. Rbge 23.9 8.76 2.78 1.42 
15 Wedemark 18.9 4.46 1.41 0.72 
16 Burgwedel 16.7 2.77 0.88 0.45 
17 Burgdorf 14.7 3.57 1.13 0.58 
18 Uetze 18.1 2.96 0.94 0.48 
19 Wunstorf 19.9 6.62 2.10 1.08 
20 Garbsen 15.9 7.95 2.52 1.29 
21 Langenhagen 13.4 5.64 1.79 0.92 
22 Isernhagen 11.4 2.11 0.67 0.34 
23 Seelze 12.8 3.38 1.07 0.55 
24 Lehrte 9.5 3.33 1.06 0.54 
25 Barsinghausen 15.3 4.18 1.32 0.68 
26 Gehrden 11.2 1.33 0.42 0.22 
27 Ronnenberg 8.0 1.50 0.47 0.24 
28 Hemmingen 4.9 0.74 0.23 0.12 
29 Laatzen 0.5 0.16 0.05 0.03 
30 Sehnde 5.3 0.98 0.31 0.16 
31 Wennigsen 11.7 0.12 0.04 0.02 
32 Pattensen 4.8 0.54 0.17 0.09 
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33 Springe 11.5 2.72 0.86 0.44 
 Total - 107.85 34.19 17.53 
 In all 159.57 t 
 
 
Table 24 Visitors from other cities in Germany 
  Car (0.0000694 

t/passenger-km) 
Bus (0.00004 
t/passenger-km) 

Train (0.000066 
t/passenger-km) 

Air (0.000191 
t/passenger-km) 

  Distance 
(km) 

CO
2
 

emissions 
Distance 
(km) 

CO
2
 

emissions 
Distance 
(km) 

CO
2
 

emissions 
Distance 
(km) 

CO
2
 

emissions 
1 Berlin 286 15776.30 286 670.01 300 2705.81 256 6136.50 
2 Hamburg 257 7328.77 257  311.25 266 1240.26 128 1586.16 
3 Munich 632 13440.66 632 570.82 916 3185.18 481 4445.18 
4 Stuttgart 524 5039.40 524 214.02 550 864.85 419 1751.03 
5 Dusseldorf 277 2595.66 277 110.23 291 445.85 239 973.19 
6 Bremen 125 1094.03 125 46.47 131 187.47 143 543.88 
8 Dresden 367 3033.25 367 128.82 385 520.30 307 1102.61 
9 Wiesbaden 376 1667.82 376 70.84 395 286.48 259 499.24 
1
0 

Kiel 
247 939.88 247 39.92 259 161.15 223 368.73 

1
1 

Magdeburg 
147 541.52 147 23.00 154 92.76 132 211.30 

1
2 

Erfurt 
219 713.54 219 30.30 230 122.53 177 250.61 

1
3 

Mainz 
373 1179.22 373 50.09 391 202.11 264 362.70 

1
4 

Saarbrucken 
526 1478.21 526 62.78 552 253.64 397 484.84 

1
5 

Potsdam 
257 635.13 257 26.97 270 109.09 157 168.62 

1
6 

Schwerin 
225 341.83 225 14.52 236 58.63 157 103.64 

 Total - 55805.23 - 2370.03 - 10436.11 - 18988.23 
 In all 87,599.6 t 
 
Table 25 Visitors from European and Asian countries 
Area Average distance (km) Air (0.000158 t/passenger-km) 
Northern Europe 1306 33510.92 
Western Europe 535 13727.67 
Central and Eastern Europe 1472 37770.34 
Southern Europe 1278 32792.46 
Total 117801.4t 
Eastern Asia 8040 51574.99 
Southern Asia 6702 42991.99 
Western Asia 3670 23542.32 
Southeast Asia 9813 62948.43 
Central Asia 4388 28148.14 
Total 209205.9t 
 
Table 26 Visitors from other foreign countries 

 CO2 emissions 
Europe 29450.4t 
America 50073.9t 
Asia 52301.5t 
Oceania 93964.0t 
Total 225789.8t 
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Appendix D: Quantitative work on Theme Pavilion at Expo 
2010 in Shanghai 

 
 

• Embodied energy of Theme Pavilion 
 
Table 1 Quantitative breakdown of the volume of different elements and materials 
Elements Materials Size (m) (L,W,H) Items Volume 
Box 
foundations 

Reinforced concrete Walls: H: 4.2m, L: 181.5m, W: 0.3m; 
           H: 4.2m, L: 105.5m, W: 0.3m; 
Columns: H: 4.2m, L: 1.5m, W: 1.5m; 
Floor: T: 0.3m, L: 181.5m, W: 251.5m 

4 
36 
154 
1 

915m3 
4,786m3 
1,455 m3 
13,694 m3 

Damp proof membrane L: 181.5m, W: 251.5m 1 45700 m2 
Columns Cylinder Steel H: 12m, Diameter: 1m, T: 0.01m 

H: 7.8m, D: 0.8m, T: 0.005m 
H: 4.5m, D: 0.6m, T: 0.005m 

58 
202 
259 

22 m3 

20 m3 
11 m3 

Paint H: 12m, Diameter: 1m,  
H: 7.8m, D: 0.8m, 
H: 4.5m, D: 0.6m 

58 
202 
259 

2,187 m2 

3,960 m2 
2,197 m2 

Square 
column 

Steel H: 19.8, L: 1m, W: 1m, T: 0.01m; 
H: 9m, L: 0.8m, W: 0.8m, T: 0.005m; 
H: 4.5m, L: 0.8m, W: 0.8m, T: 0.005m 

24 
41 
110 

19 m3 
6 m3 
8 m3 

Aluminium 
panels 

H: 19.8, L: 1m, T: 0.002m; 
H: 9m, L: 0.8m, T: 0.002m; 
H: 4.5m, L: 0.8m, T: 0.002m 

96 
164 
440 

4 m3 
2 m3 
3 m3 

Aluminium 
frames 

H: 2m, L: 1m, T: 0.002m; 
H: 2.3m, L: 0.8m, T: 0.002m; 
H: 1.5m, L: 0.8m, T: 0.002m 

960 
656 
1320 

0.11 m3 
0.08 m3 
0.12 m3 

External 
columns 

Steel H: 25.8m, D: 0.5m, T: 0.005m 36 7 m3 
Paint H: 25.8m, D: 0.5m 36 1,459 m2 

Beams Main beams Steel 
(Length is 
measured by 
AutoCAD) 

Hall 1 H: 0.8m, T: 0.01m, Length: 1,470m - 12 m3 
Hall 2 & 3 H: 0.8m, T: 0.01m, Length: 2,158 m - 17 m3 
Hall 4 H: 0.8m, T: 0.01m, Length: 2,700 m - 22 m3 
Hall 5 H: 0.8m, T: 0.01m, Length: 2,092 m - 17 m3 
Car park H: 0.8m, T: 0.01m, Length: 4,710.6 

m 
- 38 m3 

Atrium H: 0.8m, T: 0.01m, Length: 4,064.3 
m 

- 33 m3 

Paint Hall 1 H: 0.8m, L: 1,470m - 2352 m2 
Hall 2 & 3 H: 0.8m, L: 2,158 m - 3453 m2 
Hall 4 H: 0.8m, L: 2,700 m - 4320 m2 
Hall 5 H: 0.8m, L: 2,092 m - 3347 m2 
Car park H: 0.8m, L: 4,710.6 m - 7537 m2 
Atrium H: 0.8m, L: 4,064.3 m - 6503 m2 

Secondary 
beams 

Steel Hall 1 H: 0.5m, T: 0.01m, L: 11.8m 66 4 m3 
Hall 2 & 3 H: 0.5m, T: 0.01m, L: 18m 300 27 m3 
Hall 4 H: 0.5m, T: 0.01m, L: 18m 462 42 m3 
Hall 5 H: 0.5m, T: 0.01m, L: 14.7m 378 28 m3 
Car park H: 0.5m, T: 0.01m, L: 16.5m 

H: 0.5m, T: 0.01m, L: 14.7m 
480 
378 

40 m3 

28 m3 

Atrium H: 0.5m, T: 0.01m, L: 11.8m 
H: 0.5m, T: 0.01m, L: 12.6m 

378 
72 

22 m3 
5 m3 

Paint Hall 1 H: 0.5m, L: 11.8m 66 779 m2 
Hall 2 & 3 H: 0.5m, L: 18m 300 5400 m2 
Hall 4 H: 0.5m, L: 18m 462 8316 m2 
Hall 5 H: 0.5m, L: 14.7m 378 5557 m2 
Car park H: 0.5m, L: 16.5m 

H: 0.5m, L: 14.7m 
480 
378 

7920 m2 

5557 m2 
Atrium H: 0.5m, L: 11.8m 

H: 0.5m, L: 12.6m 
378 
72 

4460 m2 

907 m2 
Slabs Reinforced concrete Hall 1 Total area: 28,314m2, T: 0.1m - 2,831m3 

Hall 2 & 3 Total area: 36,702m2, T: 0.1m - 3,670 m3 
Hall 4 Total area: 20,508m2, T: 0.1m - 2,051 m3 
Hall 5 Total area: 11,670m2, T: 0.1m - 1,167 m3 
Car park Total area: 27,562m2, T: 0.1m - 2,756 m3 
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Atrium Total area: 13,348m2, T: 0.1m - 1,335 m3 
Cement (T: 0.005m) Hall 1  Total area: 28,314m2 - 141 m3 

Hall 2 & 3 Total area: 36,702m2 - 184 m3 
Hall 4 Total area: 20,508m2 - 103 m3 
Hall 5 Total area: 11,670m2 - 58 m3 
Car park Total area: 27,562m2 - 138 m3 
Atrium Total area: 13,348m2 - 67 m3 

Sand (T: 0.005m) Hall 1 Total area: 28,314m2 - 141 m3 
Hall 2 & 3 Total area: 36,702m2 - 184 m3 
Hall 4 Total area: 20,508m2 - 103 m3 
Hall 5 Total area: 11,670m2 - 58 m3 
Car park Total area: 27,562m2 - 138 m3 
Atrium Total area: 13,348m2 - 67 m3 

Tiles Hall 1 Total area: 24,066 m2 - 24,066 m2 
Hall 2 & 3 Total area: 35,172 m2 - 35,172 m2 
Hall 4 Total area: 17,334 m2 - 17,334 m2 
Hall 5 Total area: 11,670 m2 - 11,670 m2 
Car park - - - 
Atrium Total area: 13,348 m2 - 13,348 m2 

Carpet Hall 1 Total area: 4,248 m2 - 4,248 m2 
Hall 2 & 3 Total area: 1,530 m2 - 1,530 m2 
Hall 4 Total area: 3,172 m2 - 3,172 m2 
Hall 5 - - - 
Car park - - - 
Atrium - - - 

Paint Total area: 165,566 m2  165,566 m2 
Ceiling Plasterboard 

(T: 0.01m) 
Hall 1 Total area: 4,248 m2 - 42 m3 
Hall 2 & 3 Total area: 1,530 m2 - 15 m3 
Hall 4 Total area: 3,172 m2 - 32 m3 

Aluminium panels 
(T: 0.002m) 

Hall 1 Total area: 4,248 m2 - 9 m3 
Hall 2 & 3 Total area: 1,530 m2 - 3 m3 
Hall 4 Total area: 3,172 m2 - 6 m3 

Aluminium frames   
(H: 0.01m) 

Hall 1 L: 2m, W: 1m, T: 0.01m 2124 1.3 m3 
Hall 2 & 3 L: 2m, W: 1m, T: 0.01m 765 0.5 m3 
Hall 4 L: 2m, W: 1m, T: 0.01m 1086 0.6 m3 

Walls External 
northern 
and 
southern 
wall 

Glass H: 25.2m, W: 284m, T: 0.01m 2 143 m3 
Aluminium 
panels 

Total area: 121 m2, T: 0.002m 32 7.7 m3 

Aluminium 
frames 

L: 2m, W: 1m, T: 0.01m, H: 0.01m  
(0.000596 m3) 

128*
32 

2.4 m3 

External 
western 
and 
eastern 
wall 
(eco-wall) 

Reinforced 
concrete 

H: 27m, W: 180m, T: 0.3m 2 1,458 m3 

Cement H: 27m, W: 180m, T: 0.005m 2 48.6 m3 
Sand H: 27m, W: 180m, T: 0.005m 2 48.6 m3 
Glass wool H: 27m, W: 180m, T: 0.1m 2 972 m3 
Aluminium 
panels 

Area: 1.74 m2/panel, T: 0.002m 7820 27 m3 

Aluminium 
frames 

L: 1m, W: 0.01m, T: 0.01m (0.0004m3/frame) 7820 3 m3 

Paint H: 27m, W: 180m 2 9720 m2 
Soil and plant - - - 

Internal 
wall 

Reinforced 
concrete 

Hall 1 H: 5.8m, T: 0.2m, Length: 1654 m - 1919 m3 
Hall 2 & 3 H: 5.8m, T: 0.2m, Length: 1822 m - 2114 m3 
Hall 4 H: 4.5m, T: 0.2m, Length: 3228m - 2905 m3 
Hall 5 H: 4.5m, T: 0.2m, Length: 2054 m - 1849 m3 
Car park H: 4.5m, T: 0.2m, Length: 3178 m - 2860 m3 
Atrium H: 5.8m, T: 0.2m, Length: 5966m - 6921 m3 

Cement 
(T:0.005m) 

Hall 1 H: 5.8m, length: 1654 m - 95 m3 
Hall 2 & 3 H: 5.8m, length: 1822 m - 106 m3 
Hall 4 H: 4.5m, length: 3228m - 145 m3 
Hall 5 H: 4.5m, length: 2054 m - 92 m3 
Car park H: 4.5m, length: 3178 m - 143 m3 
Atrium H: 5.8m, length: 5966m - 346 m3 

Sand 
(T: 0.005m) 

Hall 1 H: 5.8m, length: 1654 m - 95 m3 
Hall 2 & 3 H: 5.8m, length: 1822 m - 106 m3 
Hall 4 H: 4.5m, length: 3228m - 145 m3 
Hall 5 H: 4.5m, length: 2054 m - 92 m3 
Car park H: 4.5m, length: 3178 m - 143 m3 
Atrium H: 5.8m, length: 5966m - 346 m3 
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Paint Hall 1 H: 5.8m, length: 1654 m - 9593 m2 
Hall 2 & 3 H: 5.8m, length: 1822 m - 10568 m2 
Hall 4 H: 4.5m, length: 3228m - 14526 m2 
Hall 5 H: 4.5m, length: 2054 m - 9243 m2 
Car park H: 4.5m, length: 3178 m - 14301 m2 
Atrium H: 5.8m, length: 5966m - 34603 m2 

Aluminium 
panels 
(T:0.002m) 

Hall 1 H: 5.8m, length: 1654 m - 19 m3 
Hall 2 & 3 H: 5.8m, length: 1822 m - 21 m3 
Hall 4 H: 4.5m, length: 3228m - 29 m3 
Hall 5 H: 4.5m, length: 2054 m - 18 m3 
Car park - - - 
Atrium H: 5.8m, length: 5966m - 69 m3 

Aluminium 
panels 
 

Hall 1 L: 2m, W: 1m, T: 0.01m, H: 0.01m 
(0.000596 m3) 

4796 3 m3 

Hall 2 & 3 L: 2m, W: 1m, T: 0.01m, H: 0.01m 
(0.000596 m3) 

3284 3 m3 

Hall 4 L: 2m, W: 1m, T: 0.01m, H: 0.01m 
(0.000596 m3) 

7263 4 m3 

Hall 5 L: 2m, W: 1m, T: 0.01m, H: 0.01m 
(0.000596 m3) 

4622 3 m3 

Car park - - - 
Atrium L: 2m, W: 1m, T: 0.01m, H: 0.01m 

(0.000596 m3) 
1730
0 

10 m3 

Doors Aluminium  
(frames and connection) 

L: 2m, W: 1m, T: 0.01m, H: 0.01m (0.000596 m3) 599 0.4 m3 

Glass L: 2m, W: 1m, T: 0.01m 599 12 m3 
Roof Structure Steel Main trusses: Length: 287m, volume: 0.013 m3/m 

Reinforced trusses for huge free column space: 
D: 0.1m, T: 0.01m, L: 556m 
Purlin: L: 18m, W: 0.1, T: 0.01m 

11 
9 
 
1350 

41 m3 

14.2 m3 
 
2.4 m3 

Aluminium 
panels 

L: 287, W: 18m, T: 0.002m 12 124 m3 

Thermal 
insulation 
layer 

Glass wool L: 287, W: 18m, T: 0.1m 12 6199 m3 

Facade Aluminium 
frames 

L: 3m, W: 1m, T: 0.01m, H: 0.01m 
(0.000796 m3) 

1728 1.4 m3 

Aluminium 
panels 

Main roof panels: L: 287, W: 18m, T: 0.002m 
Other roof panels: area: 295m2/group, T: 0.002m 

12 
16 

124 m3 

9.4 m3 
PV panels - - 30,000m2 
Polyethylene 
panels 

105m2/panel, T: 0.002m 36 7.6 m3 

Vertical 
circulation 

Staircases Steel  
 

Main stairs: Rise: 0.15m, Going: 0.3m, W: 3.9m, 
T: 0.005m (0.008775m3) 
Secondary stairs: Rise: 0.15m, Going: 0.3m, W: 
1.5m, T: 0.005m (0.003375 m3) 

300 
 
1612 

2.6 m3 
 
5.4 m3 
 

Glass H: 1m, T: 0.01m, L: 0.3m 1912 5.7 m3 
Internal lift Steel Rise: 0.15m, Going: 0.3m, W: 1.5m 304 1 m3 

Aluminium 
panels 

W: 1.5m, T: 0.002m, L: 26.8m 4 0.3 m3 

Internal 
bridge 

Reinforced 
concrete 

L: 22m, W: 4m, T: 0.1m 2 17.6 m3 

Cement L: 22m, W: 4m, T: 0.005 2 0.9 m3 
Sand L: 22m, W: 4m, T: 0.005 2 0.9 m3 
Paint L: 22m, W: 4m 2 176 m2 
Tile L: 22m, W: 4m 2 176 m2 
Aluminum  L: 22m, D: 0.05m, T: 0.005m 4 0.02 m3 
Glass L: 22m, H: 1.2m, T: 0.01m 4 1.1  m3 

Building 
Services 

Heating, cooling, ventilation, 
lighting (20%) 

－ - - 

 
Table 2 Embodied energy coefficients and durability of different construction materials 
Materials Factors References Expected durability 

(assuming correct 
installation and 
maintenance) (years) 

Reinforced concrete  3.2 (GJ/t) (= 7.7 GJ/m3) Gong (2004) 100 
Steel 31 (GJ/t) (= 243.4 GJ/ m3) Gong (2004) 50 
Cement 5.6 GJ/t (= 9.5 GJ/ m3) Lawson (1996) 50 
Aluminium 170 GJ/t (= 476 GJ/ m3) Lawson (1996) 50 
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Paint (double coat) 0.02 GJ/m2 Hammond and Jones (2004) 8-10 
Glass (10mm) 24.5 GJ/t  (= 61.3GJ/m3) Gong (2004) 50 
Damp proof membrane 0.07 GJ/m2 Baird and Chan (1983) 100 
Sand 0.3 GJ/m3 Lawson (1996) 50 
Ceramic tiles 0.78 GJ/m2 Stein et al (1981) 50 
Carpet 0.41 GJ/m2 Treloar (1994) 15-20 
100mm Glass wool 28 GJ/t (= 0.9 GJ/m3) Hammond and Jones (2008) 100 
Plasterboard  4.4 GJ/t  (=4.0 GJ/m3) Lawson (1996) 50 
Fiber Reinforced Plastic  
(skylight roof panels)  

90 GJ/t (= 29.5 GJ/m3) Lawson (1996) 50 

Photovoltaic panels (PVs) 1652.4MJ/m2 (459KWh/m2) Vale and Vale (2009, p.141) 15 
 
Table 3 Quantitative breakdown of the initial embodied energy of different materials 
Elements Materials Volume Factors Initial embodied 

energy (GJ) 
Box 
foundations 

Reinforced concrete 20850 m3 7.7 GJ/m3 160545 
Damp proof membrane 45700 m2 0.07 GJ/m2 3199 

Columns Cylinder Steel 53 m3 243.4 GJ/ m3 12900 
Paint 8344 m2 0.02 GJ/m2 167 

Square column Steel 33 m3 243.4 GJ/ m3 8032 
Aluminium panels 9 m3 476 GJ/ m3 4284 
Aluminium frames 0.31 m3 476 GJ/ m3 148 

External 
columns 

Steel 7 m3 243.4 GJ/ m3 1704 
Paint 1,459 m2 0.02 GJ/m2 29 

Beams Main beams Steel 139 m3 243.4 GJ/ m3 33833 
Paint 27512 m2 0.02 GJ/m2 550 

Secondary 
beams 

Steel 196 m3 243.4 GJ/ m3 47706 
Paint 38896 m2 0.02 GJ/m2 778 

Slabs Reinforced concrete 13810m3 7.7 GJ/m3 106337 
Cement  691 m3 9.5 GJ/ m3 6565 
Sand 691 m3 0.3 GJ/m3 207 
Tiles 101590 m2 0.78 GJ/m2 79240 
Carpet 8950 m2 0.41 GJ/m2 3670 
Paint 165,566 m2 0.02 GJ/m2 3311 

Ceiling Plasterboard 89 m3 4.0 GJ/m3 356 
Aluminium panels 18 m3 476 GJ/ m3 8568 
Aluminium frames   2.4 m3 476 GJ/ m3 1142 

Walls External 
northern and 
southern wall 

Glass 143 m3 61.3GJ/m3 8766 
Aluminium panels 7.7 m3 476 GJ/ m3 3665 
Aluminium frames 2.4 m3 476 GJ/ m3 1142 

External western 
and eastern wall 
(eco-wall) 

Reinforced concrete 1,458 m3 7.7 GJ/m3 11227 
Cement 48.6 m3 9.5 GJ/ m3 462 
Sand 48.6 m3 0.3 GJ/m3 15 
Glass wool 972 m3 0.9 GJ/m3 875 
Aluminium panels 27 m3 476 GJ/ m3 12852 
Aluminium frames 3 m3 476 GJ/ m3 1428 
Paint 9720 m2 0.02 GJ/m2 194 
Soil and plants - - - 

Internal wall Reinforced concrete 18568 m3 7.7 GJ/m3 142974 
Cement (T:0.005m) 927 m3 9.5 GJ/ m3 8807 
Sand 927 m3 0.3 GJ/m3 278 
Paint 92834 m2 0.02 GJ/m2 1857 
Aluminium panels 156 m3 476 GJ/ m3 74256 
Aluminium panels 23 m3 476 GJ/ m3 10948 

Doors Aluminium (frames and connection) 0.4 m3 476 GJ/ m3 190 
Glass 12 m3 61.3GJ/m3 736 

Roof Structure Steel 57.6 m3 243.4 GJ/ m3 14020 
Aluminium panels 124 m3 476 GJ/ m3 59024 

Thermal 
insulation 
layer 

Glass wool 6199 m3 0.9 GJ/m3 5579 

Facade Aluminium frames 1.4 m3 476 GJ/ m3 666 
Aluminium panels 134 m3 476 GJ/ m3 63784 
PV panels 30,000m2 1.652 GJ/m2 49560 
FRP skylight roof panels 7.6 m3 29.5 GJ/m3 224 

Vertical 
circulation 

Staircases Steel  8 m3 243.4 GJ/ m3 1947 
Glass 5.7 m3 61.3GJ/m3 349 

Internal lift Steel 1 m3 243.4 GJ/ m3 243 
Aluminium panels 0.3 m3 476 GJ/ m3 143 

Internal Reinforced concrete 17.6 m3 7.7 GJ/m3 136 
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bridge Cement 0.9 m3 9.5 GJ/ m3 9 
Sand 0.9 m3 0.3 GJ/m3 0.27 
Paint 176 m2 0.02 GJ/m2 4 
Tile 176 m2 0.78 GJ/m2 137 
Aluminum  0.02 m3 476 GJ/ m3 10 
Glass 1.1 m3 61.3GJ/m3 67 

Building 
Services 

Heating, cooling, ventilation, lighting 
(20%) 

- - 239,961 

Total 1,199,806 GJ (8.4 GJ/m2) 
 
Table 4 Quantitative breakdown of the recurring embodied energy of different materials (50 years) 
Elements Materials Initial embodied 

energy (GJ) 
Expected durability  
(years) 

Recurring embodied 
energy (GJ) 

Box 
foundations 

Reinforced concrete 160545 100 0 

Damp proof membrane 3199 100 0 
Columns Cylinder Steel 12900 50 0 

Paint 167 8-10 668 
Square column Steel 8032 50 0 

Aluminium panels 4284 50 0 
Aluminium frames 148 50 0 

External columns Steel 1704 50 0 
Paint 29 8-10 116 

Beams Main beams Steel 33833 50 0 
Paint 550 8-10 2200 

Secondary beams Steel 47706 50 0 
Paint 778 8-10 3112 

Slabs Reinforced concrete 106337 100 0 
Cement  6565 50 0 
Sand 207 50 0 
Tiles 79240 50 0 
Carpet 3670 15-20 7340 
Paint 3311 8-10 13244 

Ceiling Plasterboard 356 50 0 
Aluminium panels 8568 50 0 
Aluminium frames   1142 50 0 

Walls External 
northern and 
southern wall 

Glass 8766 50 0 
Aluminium panels 3665 50 0 
Aluminium frames 1142 50 0 

External western 
and eastern wall 
(eco-wall) 

Reinforced concrete 11227 100 0 
Cement 462 50 0 
Sand 15 50 0 
Glass wool 875 100 0 
Aluminium panels 12852 50 0 
Aluminium frames 1428 50 0 
Paint 194 8-10 776 
Soil and plants - - - 

Internal wall Reinforced concrete 142974 100 0 
Cement 8807 50 0 
Sand 278 50 0 
Paint 1857 8-10 7428 
Aluminium panels 74256 50 0 
Aluminium panels 10948 50 0 

Doors Aluminium (frames and connection) 190 50 0 
Glass 736 50 0 

Roof Structure Steel 14020 50 0 
Aluminium panels 59024 50 0 

Thermal 
insulation 
layer 

Glass wool 5579 100 0 

Facade Aluminium frames 666 50 0 
Aluminium panels 63784 50 0 
PV panels 49560 20 49560 
FRP skylight roof panels 224 50 0 

Vertical 
circulation 

Staircases Steel  1947 50 0 
Glass 349 50 0 

Internal lift Steel 243 50 0 
Aluminium panels 143 50 0 

Internal bridge Reinforced concrete 136 100 0 
Cement 9 50 0 
Sand 0.27 50 0 
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Paint 4 8-10 16 
Tile 137 50 0 
Aluminum  10 50 0 
Glass 67 50 0 

Building 
Services 

Heating, cooling, ventilation, lighting 
(20%) 

239,961 50 0 

Total 84,460 GJ (0.6 GJ/m2) 
 

• Visitor travel to go to the Theme Pavilion 
 

1. Energy consumption of visitor travel 
 
Table 5 Energy consumption of visitor travel going to the Theme Pavilion (from Shanghai) 
Area Distan

ce 
(km) 

Visitors taking various modes (GJ) 
Under 
groun

d  
(0.071) 

Taxi 
(2.494) 

Bus 
(0.648) 

Motor 
cycle 

(1) 

Small 
petrol 

car 
(1.467) 

Medium 
petrol car 

(2.304) 

Large 
petrol car 

(3.133) 

Electric 
bike 

(0.036) 

Scooter 
(0.086) 

1 11.84 8 361 241 49 61 595 187 19 11 
2 10.61 6 262 175 36 44 431 136 13 8 
3 10.48 6 289 193 39 49 476 150 15 9 
4 11.50 10 435 290 59 73 715 225 22 13 
5 11.17 5 238 159 32 40 392 123 12 7 
6 7.23 2 81 54 11 14 133 42 4 2 
7 4.26 2 91 61 12 15 149 47 5 3 
8 6.75 10 455 303 62 77 748 235 23 14 
9 5.72 4 180 120 24 30 296 93 9 6 

10 3.26 1 36 24 5 6 60 19 2 1 
11 16.34 11 475 317 64 80 781 246 24 15 
12 10.23 7 317 211 43 53 522 164 16 10 
13 26.30 - - - 385 479 4672 1471 - - 
14 25.22 - - - 502 624 6088 1916 - - 
15 24.83 - - - 345 429 4185 1317 - - 
16 35.65 - - - 509 632 6170 1942 - - 
17 27.79 - - - 407 506 4937 1554 - - 
18 32.23 - - - 399 496 4844 1525 - - 
19 33.96 - - - 637 792 7734 2434 - - 

In all - 72 3220 2146 3620 4501 43928 13827 166 99 
Total 71,579 GJ 

 
Table 6 Model1: Energy consumption of visitor travel going to the Theme Pavilion (from Mainland China) 
Area Distance 

(km) 
Visitors taking various modes (GJ) 

Train (0.17) Car (2.30) Bus (0.65) Plane (2.01) 
1 1088 15142 162075 45804 68775 
2 963 9049 96857 27373 41100 
3 1445 33619 359852 101697 152701 
4 1213 94844 1015203 286905 430791 
5 827 63872 683681 193214 290114 
6 729 56226 601836 170084 255384 
7 1659 110682 1184729 334815 502729 
8 266 16729 179068 50606 75986 
9 991 56851 608530 171976 258223 

10 886 49886 533977 150907 226590 
11 402 20072 214851 60719 91171 
12 684 31973 342234 96718 145224 
13 169 7182 76870 21724 32619 
14 1603 66415 710904 200908 301666 
15 1950 72506 776098 219332 329328 
16 611 22069 236230 66761 100242 
17 1191 41754 446930 126306 189650 
18 1675 53384 571414 161487 242473 
19 1527 2332 47044 503558 142310 
20 1099 33858 362417 102422 153788 
21 611 18175 194541 54979 82552 
22 1223 33781 361587 102188 153435 
23 1444 32215 344827 97451 146324 
24 1718 36503 390722 110422 165798 
25 1374 27734 296863 83896 125971 
26 3269 55566 594767 168086 252387 
27 1630 12121 129749 36668 55058 
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28 1595 8472 90685 25628 38481 
29 1913 8129 87012 24590 36925 
30 2902 6166 65998 18652 28004 

In all - 1097305 11767554 3815876 5115801 
Total 21,796,535 GJ 

 
Table 7 Model 2: Energy consumption of visitor travel going to the Theme Pavilion (from Mainland China) 
Area Distance 

(km) 
Visitors taking various modes (GJ) 

Train (0.17) Car (2.30) Bus (0.65) Plane (2.01) Ship (0.76) 
1 1088 15110 161650 45684 68508 522 
2 963 9290 99389 28088 42123 321 
3 1445 33549 358908 101431 152112 1160 
4 1213 94647 1012538 286152 429128 3270 
5 827 63739 681888 192707 288994 2202 
6 729 56109 600255 169637 254398 1939 
7 1659 110452 1181619 333936 500789 3817 
8 266 16694 178598 50473 75692 577 
9 991 56733 606932 171524 257227 1960 

10 886 49783 532577 150511 225713 1720 
11 402 20031 214287 60559 90818 692 
12 684 31906 341336 96464 144663 1103 
13 169 7167 76669 21667 32493 248 
14 1603 66277 709039 200381 300503 2290 
15 1950 72355 774062 218757 328058 2500 
16 611 22024 235610 66585 99855 761 
17 1191 41667 445758 125975 188918 1440 
18 1675 53272 569912 161062 241537 1841 
19 1527 46947 502237 141937 212857 1622 
20 1099 33788 361466 102153 153196 1168 
21 611 18137 194031 54835 82233 627 
22 1223 33711 360639 101920 152843 1165 
23 1444 32148 343920 97195 145758 1111 
24 1718 36427 389695 110131 165159 1259 
25 1374 27676 296082 83675 125485 957 
26 3269 55450 593210 167646 251408 1916 
27 1630 12096 129408 36572 54845 417 
28 1595 8455 90451 25562 38334 292 
29 1913 8112 86784 24526 36783 281 
30 2902 6153 65825 18603 27899 212 

In all - 1139906 12194775 3446350 5168329 39387 
Total 21,988,747 GJ 

 
Table 8 Energy consumption of visitor travel going to the Theme Pavilion (from Hong Kong, Macao, Taiwan) 
Location Distance (km) Plane (2.01) Train (0.17) Bus (0.65) Car (2.30) 
Hong Kong 1208 66112 3424 148497 525451 
Macao 1276 2057 56 6170 21832 
Taiwan 661 5508 - - - 
Total - 73676 3481 154667 547283 
In all 779,107 GJ 
 
Table 9 Energy consumption of visitor travel going to the Theme Pavilion (from Asian countries) 
Asian countries Distance (km) Ship (0.76) Plane (2.01) Train (0.17) Car (2.30) 
Eastern Asia 2123 13458 187984 870 50597 
Southern Asia 2988 18941 264577 1225 71212 
Western Asia 5383 34124 476646 2206 128291 
North Asia 2858 18117 253066 1171 68114 
Southeast Asia 3149 19962 278833 1291 75049 
Central Asia 3251 20609 287865 1333 77480 
 - 125211 1748971 8096 470742 
Total 2,353,019 GJ 
 
Table 10 Energy consumption of visitor travel going to the Theme Pavilion (from other countries) 
Countries Number of visitors Distance (km) Plane (2.01) 
European countries  230,000 See Table below 3,300,129 
America  230,000 12 5,504,606 
Total 8,804,735 GJ 
 
Table 11 Energy consumption of visitor travel going to the Theme Pavilion (from other countries) 
European countries Distance (km) Plane (2.01) 
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Northern Europe 7026 812030 
Western Europe 7561 873863 
Central and Eastern Europe 6327 731243 
Southern Europe 7640 882993 
Total 3,300,129 GJ 
 
Table 12 Total energy consumption of visitor travel 
From Shanghai 71,579 GJ 0.023 GJ/visitor (71,579/3128000) 
From mainland China 21,796,535 GJ 1.176 GJ/visitor 
From HK, Macao, Taiwan 779,107 GJ 1.613 GJ/visitor 
From Asian countries 2,353,019 GJ 6.018 GJ/visitor 
From other countries 8,804,735 GJ 19.141 GJ/visitor 
Total                          33,804,975 GJ (one way) 

                         67,609,950 GJ (return) 
 

2.940 GJ/visitor 
 

2. CO2 emissions 
 
Table 13 CO2 emissions of visitor travel going to the Theme Pavilion (from Shanghai) 
Area Distance 

(km) 
Visitors taking various modes (t) 

Under 
ground 
(0.0000166) 

Taxi 
(0.0001
675) 

Bus 
(0.0000
435) 

Motor 
cycle 
(0.0000672) 

Small petrol 
car 
(0.0000986) 

Medium 
petrol car 
(0.000155) 

Large 
petrol car 
(0.00021) 

Electric bike 
(0.0000084) 

Scooter 
(0.0000
058) 

1 11.84 1.88 24.27 16.17 3.29 4.10 40.00 12.54 1.08 0.11 
2 10.61 1.37 17.61 11.73 2.39 2.97 29.02 9.10 0.77 0.08 
3 10.48 1.51 19.44 12.95 2.64 3.28 32.03 10.04 0.87 0.09 
4 11.50 2.26 29.18 19.44 3.96 4.92 48.10 15.08 1.30 0.14 
5 11.17 1.24 15.99 10.65 2.17 2.70 26.35 8.26 0.71 0.07 
6 7.23 0.42 5.41 3.60 0.73 0.91 8.92 2.80 0.24 0.03 
7 4.26 0.47 6.10 4.06 0.83 1.03 10.05 3.15 0.27 0.03 
8 6.75 2.37 30.53 20.34 4.14 5.15 50.31 15.78 1.36 0.14 
9 5.72 0.94 12.10 8.06 1.64 2.04 19.94 6.25 0.54 0.06 

10 3.26 0.19 2.44 1.63 0.33 0.41 4.02 1.26 0.11 0.01 
11 16.34 2.47 31.90 21.25 4.33 5.38 52.57 16.49 1.42 0.15 
12 10.23 1.65 21.30 14.19 2.89 3.59 35.11 11.01 0.95 0.10 
13 26.30 - - - 25.87 32.17 314.29 98.57 - - 
14 25.22 - - - 33.72 41.93 409.58 128.45 - - 
15 24.83 - - - 23.17 28.82 281.51 88.29 - - 
16 35.65 - - - 34.17 42.49 415.11 130.19 - - 
17 27.79 - - - 27.34 34.00 332.10 104.15 - - 
18 32.23 - - - 26.83 33.36 325.91 102.21 - - 
19 33.96 - - - 42.83 53.26 520.30 163.18 - - 

In all - 17 216 144 243.27 302.52 2955.22 926.82 9.7 1.00 
Total 4816 t 

 
Table 14 CO2 emissions of visitor travel going to the Theme Pavilion (from Mainland China) 
Area Distance 

(km) 
Visitors taking various modes (t) 

Train (0.000025) Car (0.000155) Bus (0.0000435) Plane (0.00015) 
1 1088 2226.70 10922.48 3065.34 5132.48 
2 963 1369.07 6715.58 1884.70 3155.65 
3 1445 4943.96 24250.89 6805.90 11395.63 
4 1213 13947.62 68415.84 19200.57 32148.56 
5 827 9392.94 46074.18 12930.49 21650.32 
6 729 8268.48 40558.54 11382.56 19058.50 
7 1659 16276.74 79840.44 22406.83 37517.12 
8 266 2460.17 12067.61 3386.72 5670.59 
9 991 8360.45 41009.62 11509.15 19270.39 

10 886 7336.19 35985.40 10099.13 16909.66 
11 402 2951.80 14479.10 4063.49 6803.77 
12 684 4701.87 23063.59 6472.69 10837.64 
13 169 1056.11 5180.40 1453.85 2434.28 
14 1603 9766.96 47908.77 13445.37 22512.37 
15 1950 10662.65 52302.25 14678.37 24576.73 
16 611 3245.49 15919.82 4467.82 7480.75 
17 1191 6140.26 30119.23 8452.82 14153.01 
18 1675 7850.52 38508.36 10807.18 18095.03 
19 1527 6918.30 33935.42 9523.81 15946.23 
20 1099 4979.18 24423.73 6854.40 11476.69 
21 611 2672.76 13110.39 3679.37 6160.62 
22 1223 4967.76 24367.82 6838.71 11450.40 
23 1444 4737.48 23238.34 6521.73 10919.67 
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24 1718 5368.02 26331.29 7389.75 12372.95 
25 1374 4078.51 20005.98 5614.58 9400.84 
26 3269 8171.44 40082.11 11248.85 18834.83 
27 1630 1782.57 8743.96 2453.95 4108.82 
28 1595 1245.93 6111.40 1715.14 2871.72 
29 1913 1195.48 5863.88 1645.67 2755.58 
30 2902 906.73 4447.72 1248.23 2089.88 

In all - 167982.14 823,984.12 231,247.16 387190.73 
Total 1,610,404 t 

 
Table 15 CO2 emissions of visitor travel going to the Theme Pavilion (from Hong Kong, Macao, Taiwan) 
Location Distance (km) Plane  

(0.00015) 
Train  
(0.000025) 

Bus 
(0.0000435) 

Car (0.000155) 

Hong Kong 1208 76492.13 503.59 9938 35411 
Macao 1276 153.50 8.29 413 1471 
Taiwan 661 4453.72 - - - 
Total - 81099.35 511.88 10351 36882 
In all 128844 t 
 
Table 16 CO2 emissions of visitor travel going to the Theme Pavilion (from Asian countries) 
Asian countries Distance (km) Ship (0.0002) Plane (0.00015) Train (0.000025) Car  

(0.000155) 
Eastern Asia 2123 21250.38 84171.43 767.84 20457.64 
Southern Asia 2988 29908.68 118466.43 1080.68 28792.95 
Western Asia 5383 53881.68 213421.95 1946.90 51871.64 
North Asia 2858 28607.44 113312.27 1033.67 27540.25 
Southeast Asia 3149 31520.23 124849.66 1138.91 30344.38 
Central Asia 3251 32541.21 128893.70 1175.81 31327.27 
 - 197709.62 783115.44 7143.80 190334.12 
Total 1178303 t 
 
Table 17 CO2 emissions of visitor travel going to the Theme Pavilion (from other countries) 
Countries Number of visitors Distance (km) Plane (0.00015) 

European countries  230,000 See Table below 758465.27t 

America  230,000 11,907 km 410792 t 

Total 1169257 t 

 
Table 18 CO2 emissions of visitor travel going to the Theme Pavilion (from other countries) 
European countries Distance (km) Plane (0.00015) 
Northern Europe 7026 186628.04 
Western Europe 7561 200838.97 
Central and Eastern Europe 6327 168060.86 
Southern Europe 7640 202937.4 
Total 758465.27t 
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Appendix E: Selected exhibition buildings erected in 
different countries from 1851 to 2010 

Year Name Building Source 
1851 Crystal Palace, London 

 

Wikipedia, the free 
encyclopedia, The Crystal 
Palace, retrieved 24th Feb 2009, 
from 
http://en.wikipedia.org/wiki/The
_Crystal_Palace  
 

1870 Exhibition building, Prince 
Alfred Park, Sydney 

 

Intercolonial Exhibition Building, 
retrieved 20th Juan 2011, from 
http://www.dictionaryofsydney.o
rg/building/intercolonial_exhibiti
on_building 

1880 Royal Exhibition Building, 
Melbourne 

 

Wikipedia, the free 
encyclopedia.htm, Retrieved 
12th Oct 

1885 New Zealand Industrial 
Exhibition building, 
Wellington 

 

New Zealand Industrial 
Exhibition building, retrieved 
11th Oct 2008, from 
http://tpo.tepapa.govt.nz/ViewI
mageFileDetail.asp?ImageFileID
=TPO_WOO020&Language=Eng
lish&dumbyparam=search 

1935 All-Russian Exhibition 
Centre, Moscow 

 

All-Russian Exhibition Centre , 
retrieved on 20 Juan 2011, from 
http://www.v-like-
vintage.net/en/tags/Exhibition%
20Building/ 

1940 Centennial exhibition 
Centre, Wellington 

 

Centennial exhibition Centre , 
retrieved on 20th Juan 2011, 
from 
http://www.nzhistory.net.nz/cult
ure/centennial/centennial-
exhibition, Retrieved 11th Oct 
2008 
 

1955 Shanghai Exhibition Centre, 
Shanghai 

 

Shen, S.2009 

1992 Shanghai International 
Exhibition Centre, Shanghai 

 

Shanghai International 
Exhibition Centre, retrieved on 
28 Sept 2010, from 
http://www.expo-
china.com/web/hall/hall_detail.a
spx?id=37 
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1996 The Melbourne Exhibition 
Centre, Melbourne 

 

 A part of Melbourne Convention 
Exhibition Centre, retrieved 11th 
Oct 2010, from  
http://www.mcec.com.au/explor
e/flash.html#/explore/melbourne
.html 

1997 Hong Kong Convention and 
Exhibition Centre, Hong 
Kong 

 

Hong Kong Convention and 
Exhibition Centre, retrieved 13th 
Sept 2010, from 
http://scenery.cultural-
china.com/en/148Scenery6071.
html 

1999 Shanghai International 
Convention and Exhibition 
Centre, Shanghai 

 

Shen, S. 2009 

2000 ExCeL Exhibition Centre, 
London 

 

ExCeL Exhibition Centre, 
retrieved on 13th Sept 2010, 
from http://www.excel-
london.co.uk/module.php?obj=
gallery&act=gallery&gid=3 

2000 Dutch Pavilion, Hannover 

 

Dutch Pavilion, retrieved on 13th 
Sept 2010, from 
http://www.archreh.com/ecotari
um-research.html 

Beginni
ng of 
21st 
Century 

Frankfurt Messe, Frankfurt 

 

Frankfurt Messe, retrieved 25th 
Sept 2010, from 
http://www.waytostay.com/area
-info-Frankfurt-en-252.htm 

2000 Hannover Messe Hall 26, 
Hannover 

 

Hannover Messe Hall 26, 
retrieved 10th Mar 2010, from 
http://www.lock.de/gb_neu/anw
endungen/glasbau/original.php?
navid=19 

2003 Shanghai New International 
Exhibition Centre, Shanghai 

 

Shanghai New International 
Exhibition Centre, retrieved on 
23th Sept 2009, from 
http://www.expo-
china.com/web/hall/hall_detail.a
spx?id=2 

2005 the ASB Showgrounds, 
Auckland 

 

ASB Showgrounds, retrieved on 
23th Sept 2010, from 
http://www.asbshowgrounds.co
.nz/, Retrieved 2ed Oct 2008 
 

2010 Theme Pavilion, Shanghai 

 

Shen, S. 2010 
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