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Abstract

Spectrum today is regulated based on fixed licensees. In the past radio
operators have been allocated a frequency band for exclusive use. This
has become problem for new users and the modern explosion in wireless
services that, having arrived late find there is a scarcity in the remaining
available spectrum.

Cognitive radio (CR) presents a solution. CRs combine intelligence,
spectrum sensing and software reconfigurable radio capabilities. This al-
lows them to opportunistically transmit among several licensed bands for
seamless communications, switching to another channel when a licensee
is sensed in the original band without causing interference. Enabling this
is an intelligent dynamic channel selection strategy capable of finding the
best quality channel to transmit on that suffers from the least licensee in-
terruption.

This thesis evaluates a Q-learning channel selection scheme using an
experimental approach. A cognitive radio deploying the scheme is imple-
mented on GNU Radio and its performance is measured among channels
with different utilizations in terms of its packet transmission success rate,
goodput and interference caused. We derive similar analytical expressions
in the general case of large-scale networks.

Our results show that using the Q-learning scheme for channel selec-
tion significantly improves the goodput and packet transmission success
rate of the system.
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Chapter 1

Introduction

1.1 Cognitive Radio

The area of radio technology has seen a recent rapid growth in wireless
service users. From being non-existent just two decades ago, services such
as GPS location based tracking, mobile telephony and broadband are to-
day part of everyday consumers’ lives. As advances occur and the cost of
existing technology decreases, the introduction of improved services and
now feasible services, such as wireless sensors, is also occurring.

For New Zealand 2009 was a watershed year, seeing the introduction
of the HDTV (High Definition Television) capable Freeview digital tele-
vision service alongside analogue broadcasting and Telecom’s XT Mobile
Network 3G mobile telephone network.

The result has been a proliferation in wireless services. The spectrum
these applications operate in is a finite resource and there are issues of
scarcity. The traditional static spectrum allocation policy has been for a
regulation authority (the Ministry of Economic Development (MED), Ra-
dio Spectrum Group (RSM) in New Zealand) to grant a service sole usage
rights to a spectrum band, which contributes to inefficient spectrum use.
Licensed service users or primary users (PUs) may be active only some of

the time or not even present in certain areas. A report from the NRNT
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Project reveals that the average spectrum usage rate of bands under 3GHz
is only 5.2% [53]. When the band is unoccupied, or usage of it will not in-
terfere unduly with licensed user communications, we say there is channel
whitespace.

Cognitive Radio (CR) is an emerging class of reconfigurable, spectrum
aware, intelligent radios, typically associated with being implemented on
software defined radio (SDR) which gives the capability to flexibly modify
physical transmission parameters in software. The technology has been
proposed to utilize whitespace for communications as part of a Dynamic
Spectrum Access Network (DSAN). Unlicensed CR devices, or secondary
users (SUs), are permitted to opportunistically use spectrum allocated to
licensed PUs when it is temporarily unoccupied. The use of whitespace
is conditional on the PU not being interfered with. CRs can detect where
there is whitespace and sense and adapt to the presence of a PU, by switch-
ing frequencies or modifying its transmission waveform, to ensure non-
interference, for a net gain in overall spectrum utilization. A CR in this

role is also known as a spectrum agile radio.

1.2 Thesis Scope and Contributions

The CR concept was first introduced by Joseph Mitola [57] in 1999 and
has many open research issues. One is spectrum management, which deals
with the problem of learning to exploit the high-quality whitespace by the
radio. Existing work in the literature takes a diverse approach, including
predicting when a channel is free [41] [93] of PU activity to having SUs
play a game to decide on the channel to use [60]. A survey of the liter-
ature however shows that most research is being done in simulators and
emphasize improvements in throughput, neglecting to mention PU inter-
ference.

Previous work at the Victoria University of Wellington (VUW) has fo-
cused on intelligent opportunistic spectrum access techniques and design
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of upper layer DSAN protocols [94] [96] [97], in particular the develop-
ment of a novel ad-hoc Dynamic Channel Selection (DCS) scheme using
Q-learning Reinforcement Learning (RL) to maximize the packet transmis-
sion success of the SU. The scheme has been found to give promising re-
sults in simulation [96] [97] but has yet to be trialled on a real system.

The thesis seeks to answer the research question, “what performance does
the Q-learning channel selection scheme achieve in a real deployment scenario?”
This is achieved by implementing the scheme on GNU Radio SDRs that are
then organized into a wireless network experiment to find out the practi-
cal performance. GNU Radio is a free open source software framework
for developing SDR. It is designed to operate with the Universal Software
Radio Peripheral (USRP), which lets a host PC running GNU Radio create
and process radio signals, with the actual RF transmission and reception
handled by the USRP. As is the nature with using real systems, equipment
and time limit the scale of the experimental scenario. An analytical model
is derived to generalize performance to the realistic large-scale network
case.

The contributions of this thesis are firstly the performance analysis of
the Q-learning channel selection scheme in a real wireless network exper-
iment. Second the development of a SU cognitive system in GNU Radio.
A flexible physical (PHY) layer, including spectrum sensing for detecting
PU activity, and an ad-hoc cognitive medium access control (MAC) layer
capable of managing opportunistic access between SUs need to be imple-
mented to support the DCS. These layers’ services have so far been taken
for granted in previous work. For instance, perfect sensing and PU avoid-
ance is commonly assumed. This is not physically possible if a transceiver
cannot detect other users when it itself is transmitting. The experience of
using GNU Radio adds a third contribution. This thesis is hoped to assist
future students as a familiarization guide to GNU Radio and USRP.
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1.3 Thesis Structure

This thesis is structured as follows. Chapter 2 contains background mate-
rial on CR. The description of our CR implementation on GNU Radio is
divided among Chapters 3 and 4. In Chapter 3, the design of the physi-
cal and MAC layers to support spectrum agility are discussed. The MAC
protocol mechanisms to co-ordinate access to different channels are de-
scribed and we explain the design decisions leading to the choice of spec-
trum sensing technique. The Q-learning channel scheme and its imple-
mentation in GNU Radio is described in Chapter 4, along with the moti-
vation for using this form of learning. Learning background material is
also discussed in this section. The test scenario is introduced in Chapter 5.
The performance metrics to be measured by the experiment and logging
and co-ordination tasks are detailed. A model of the scenario is derived
in Chapter 6 using Markov chain analysis that predicts the goodput and
packet transmission success rate of the SU using the scheme and the level
of PU interference in large-scale networks. The results of the wireless ex-
periment are the subject of Chapter 7. The performance of the scheme is
characterized and compared against what can be ideally expected and an-
alytical predictions. Chapter 8 sums up the key results of the research and

future work.



Chapter 2
Background

This chapter examines cognitive radio background material. CR is first in-
troduced in Sections 2.1-2.2 as the technology behind Dynamic Spectrum
Access Networks, a proposed solution to the spectrum allocation problem
and spectrum scarcity. CR is then defined in Section 2.3 in terms of pos-
sessing three key properties, adaptability (SDR), sensing and intelligence,
which are then separately discussed.

2.1 The Spectrum Allocation Problem

The wireless spectrum defines the span of electromagnetic frequencies that
can be used to transmit and receive signals for communications. Tradi-
tional spectrum assignment practise has been for regulation authorities,
such as the US Federal Communications Commission (FCC) and here in
New Zealand the Ministry of Economic Development (MED), to allocate
fixed spectrum bands for exclusive use to communications services. How-
ever with more wireless services being introduced, the remaining spec-
trum left to be allocated has been found to be limited. Referring to the
MED spectrum allocation chart [7] virtually all RF frequencies from 9kHz-
40GHz are already reserved. The regulatory bodies have tried to solve
this problem by converting some frequencies to dual use and opening up

5
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industrial, scientific and medical (ISM) bands, originally reserved for pur-
poses other than communication, for use, but these too are experiencing
overcrowding. For example Wi-Fi and Bluetooth both share the 2.4GHz
ISM band, with resulting interference.

At the same time this licensing model is inefficient. To use as an exam-
ple, a mobile telephone network will not have active calls all the time. Yet
because this service has exclusive rights to the band use is denied when
it is inactive, effectively wasting spectrum. According to a report by the
FCC the utilization of allocated spectrum ranges from 15% to 85% [14].

2.2 Dynamic Spectrum Access Networks

New radio technologies in the form of software defined radio and CR
promise a more efficient network paradigm, in the form of Dynamic Spec-
trum Access Networks (DSANs) [16], for allocating the spectrum. DSANs
contain CR users not holding a license to transmit on a portion of the spec-
trum, referred to as Secondary Users (SUs) in the literature. For commu-
nications SUs opportunistically exploit unused whitespace in the spectrum,
defined as spectrum bands that are temporarily unoccupied by licensed
users or where its use will not interfere with licensed user activities. SUs
may transmit on a channel medium that is part of the whitespace. In-
terference to licensed users, referred to as Primary Users (PUs), must be
avoided by having the SU stop transmitting on the channel when it is in
use by a PU. If PUs can tolerate some interference, the SU can adjust its
transmission waveform, for instance the power level, to fall within these
bounds rather than abandoning the channel. What constitutes an accept-
able level of interference is set by regulatory authorities as part of the SU’s
policy rules, defining what form of secondary access is legal. In DSAN:Ss, li-
censed user idle times do not represent wastage of the spectrum as it may
be reused.

The extra radio functionality required to implement a DSAN is sum-
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marized by [16]. Firstly, spectrum sensing is needed by SUs to detect and
classify whitespace and the presence of PUs. A decision must then be
made as to what channel will be used based on the user’s service require-
ments, the currently available whitespace, its quality, such as whether the
whitespace is consistent and the channel quality, for example in terms of
noise and waveform throughput, a task which is known as spectrum man-
agement. Should a PU be detected, the user is compelled to leave the chan-
nel to prevent interference, a function termed spectrum mobility. Like any
other network a MAC-like protocol is needed to co-ordinate access among
SUs, spectrum sharing, particularly to establish channel rendezvous in the
selected medium. The design of these features are a focus in the research
community. These primarilly physical and link (MAC) layers functions
have a significant bearing on network application performance at higher
levels. For instance, the spectrum management decision to switch to a bet-
ter channel needs to be balanced against the brief communications inter-
ruption it will cause, termed spectrum handoff. For this reason researchers
are considering a cross-layer approach to DSAN architecture design, par-
ticularly to supply a certain Quality of Service (QoS) [23] [94].

Work on the implementation of DSANSs is being carried out by the
NeXt Generation (xG) program and development of the IEEE 802.22 stan-
dard. The DARPA xG program aims to produce a radio system provid-
ing seamless unlicensed user communications across a diverse frequency
range. Multiagent field trials of working prototypes were successfully con-
ducted in August 2006 [54]. IEEE 802.22 is an in-progress Wireless Re-
gional Area Network (WRAN) standard using opportunistic access of TV

channels to communicate [26].

2.3 Cognitive Radio

Cognitive radio is an emerging class of reconfigurable, spectrum aware,
intelligent radios. CRs as SUs are the enabling technology for DSANS,
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having the required capability to autonomously adjust communications to
where there is whitespace. The concept of CR originates from a 1999 paper
by Joseph Mitola III and Gerald Q. Maguire, Jr. [57]. This paper envisaged
software radios that applied advanced reasoning on its current situation
and history to best satisfy the needs of the user. It would ”search out ways
to deliver the services the user wants even if the user does not know how
to obtain them.” [57] The "Mitola” CR is an ideal device that can perfectly
meet any user need, even inventing new protocols to advance its goals.

Current CR definitions emphasize the SU role, although in this re-
gard the term spectrum agile radio [16] is more appropriate. Yucek and Ar-
slan [98] define CR as “an SDR that is aware of its environment, internal
state, and location, and autonomously adjusts its operations to achieve
designated objectives.” The FCC classification [15] is a radio or system
that senses its operational electromagnetic environment and can dynam-
ically and autonomously adjust its radio operating parameters to modify
system operation, such as to maximize throughput, mitigate interference,
facilitate interoperability, access secondary markets.”

These definitions identify three critical CR capabilities: awareness, re-
configurability and intelligence. Rondeau [71] uses the analogy of the
knobs and meters on a regular stereo with the reconfigurable knobs stand-
ing in for radio parameters, such as transmission power and modulation,
and for meters sensed metrics such as bit error rate or quality of service.
A CR autonomously turns the reconfigurable knobs to achieve the meters,
which it senses. The essential awareness task is spectrum sensing to identify
spectrum whitespace. CRs are implemented on SDRs that provide recon-
figurability, since transceiver functionality such as waveform modulation
is shifted to be modifiable in software. The cognitive engine [71] describes
the intelligent decision making process of autonomously developing a pol-
icy of actions to meet desired performance.

All CRs operate by implementing a form of the cognition cycle, shown
in Figure 2.1, formulated in Mitola’s original paper. This is described in
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SU terms of intelligently deciding on the best whitespace channel to use.
In the observe stage of the cycle sensing describes the spectrum. The en-
vironment description, past learning and a record of the radio’s history
is fed into orient. The orient stage determines the priority the radio needs
to act, based on the information of what has occurred in the spectrum.
Immediate priority information provokes an instant change in radio be-
havior (direct transition to act). This corresponds to when a policy rule is
triggered, for instance if a PU is detected in the current channel communi-
cations must be halted as the action. Otherwise the cycle moves to plan or
decide. As no immediate action is required, the information can be consid-
ered for ways to improve performance over the current course of action,
such as switching to another channel if the quality has degraded. In plan
alternative behaviors are generated, one of which is selected by decide to
implement as seen to best meet the radio’s goals. Evaluation of previous
learned behavior is critical for the planning stage. The learn stage stores
the performance outcome of past actions and the environmental context.
If a similar state is occurring the engine can choose the same action that
led to a good outcome previously.

The rest of this chapter discusses the literature on SU awareness and
reconfigurability, as relevant to this thesis” goal of building a CR to physi-
cally test DSAN techniques. SDR architecture is considered first in Section
2.4, followed in Section 2.5 by a survey of spectrum sensing techniques.
Background material on intelligence is deferred till Chapter 4 where it
serves to introduce the Q-learning dynamic channel selection scheme.

2.4 Software Defined Radio

CR is implemented on software defined radio (SDR), known interchange-
ably as software radio. The term software radio was first coined by Joseph
Mitola III in 1992 as a “class of reprogrammable or reconfigurable ra-
dios.” [56] In an SDR radio components, traditionally implemented in
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Figure 2.1: The Cognition Cycle, from [57]

fixed hardware, are moved into the software domain. The result is that
protocols and waveforms are completely definable on-the-fly, which in a
CR is exploited by the cognitive engine. Software in this context denotes
algorithms, downloadable to a device, which can be changed during radio
operations.

SDRs are an evolution of digital radio designs. In a digital radio re-
ceiver, pictured in Figure 2.2 compared to an analogue receiver, fixed dig-
ital hardware performs signal processing. The digital systems are im-
plemented in nonprogrammable Application-Specific Integrated Circuit
(ASIC) hardware or fixed processing architecture Digital Signal Processors
(DSPs) designed to perform one operation quickly. The antenna signal is
analogue and is digitized by an Analogue to Digital Converter (ADC). The
ADC is not fast enough to directly sample the antenna signal at its radio
frequency (RF), for example a 101.3MHz FM radio signal. An analogue RF
frontend translates the RF frequencies to a lower intermediate frequency
(IF) range within the Nyquist frequency range of the ADC. The remain-
ing signal processing is executed in fixed digital hardware. The point at
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which the waveform is digitized is known as the digital access point [55].
The portion of the transceiver chain where the signal exists in analogue
format is termed the hardware-defined subsystem and, similarly, the portion
where the signal is in digital format is referred to as the software-defined
subsystem [85]. The receiver output is a bitstream of the signal centred at
baseband (0Hz).

Antenna

de- Baseband (a)
—
modulator output
Antenna . ,
Radio D.igital Information b
Frequency Signal > i (b)
Front-End Processor
RF 9‘ |< IF or >|
baseband

Figure 2.2: Analogue (a) and Digital (b) Hardware Receiver Chains, from
[85]

A typical RF frontend structure is shown in Figure 2.3. The low pass
filter cuts off frequencies above the RF signal of interest and the low noise
amplifier amplifies the signal. The local oscillator is used to generate a
sinusoidal wave with frequency RF-IF, which when multiplied with the
signal in the mixer reproduces the signal now centred at IF and 2*RF-IF.
The second low pass filter removes the higher frequency component, giv-
ing the translated signal at IF.

SDR is a digital radio where the digital hardware is reconfigurable
in software. This is achieved by using Field Programmable Gate Array
(FPGA), DSP and, slowest, power-hungry but most flexible, General Pur-
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Figure 2.3: RF Receive Front End, based off a description in [1]

pose Processor (GPP) technology (i.e. PCs). The difference is illustrated
in Figure 2.4, showing a block diagram of the SDR architecture. FPGAs
consist of an array of Configurable Logic Blocks (CLBs), logic gates that
are connected together. The interconnections are determined by RAM or
Flash switches which can be toggled on or off by writing a bit to them.
Digital radio subsystem algorithms can be mapped onto a direct logic gate
implementation in the FPGA. The procedure requires a design description
of the function written in a Hardware Description Language (HDL), e.g.
Verilog or VHDL. The file is compiled into a bitstream that configures the
switches to match the function logic. In DSPs and GPPs digital systems
are implemented as software programs running on top of fixed hardware
architectures, thus speed is inherently orders of magnitude slower than a
FPGA hardware implementation. FPGAs represent a fast reconfigurable
radio implementation platform. However, gate and interconnection con-
straints due to a finite number of gates limit the functionality that can be
loaded onto the FPGA at one time.

SDRs potentially allow the user to specify in software any waveform
to transmit or receive on the fly. Current applications are limited by its
greater cost and the slow speed of signal processing in software (~s)
when compared to hardware (~ns). For example, Gilmore [37] attempted
to implement an SDR HDTV receiver with a PC set up to perform frame
processing. Unfortunately, as it took 40 seconds of processing for 1 second

of data, realtime reception was not attainable.
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Hardware-based subsystem Software-based subsystem
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Radio
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Front-End
Receive signal path
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device(s)
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DAC
Front-End ﬁ
Transmit signal path Management
i Software

Figure 2.4: Block Diagram of a Typical SDR, from [85]

2.5 Spectrum Sensing

The role of spectrum sensing is to identify in which portions of the spec-
trum a PU is active and cannot be used (spectrum occupancy), and vice versa
where an absence of PU activity (spectrum hole) or whitespace exists. Spec-
trum sensing can also establish the quality of the whitespace for commu-
nications.

Whitespace exists across multiple dimensions. For example, if a fre-
quency is in use by a PU that is communicating with a certain code, the
SU can adopt an orthogonal code and transmit without causing inter-
ference. Consequently to allow the CR to fully exploit the whitespace,
spectrum sensing should “involve obtaining the spectrum usage charac-
teristics across multiple dimensions such as time, space, frequency and
code” [98]. Ideally, sensing should be able to classify the source of the sig-
nal. This is necessary to defend against a PU emulation (PUE) attack [22],
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where a selfish user mimics a PU to gain a channel advantage over other
SUs.

If PU receivers in the area are far enough from the SU not to be affected
unduly by its transmissions, their location (space) should be confirmed by
spectrum sensing so the band can be used. This idea is expressed in the
concept of interference temperature [13], denoting the power at a receiver
generated by other users and noise sources per unit bandwidth with units
Kelvin. Regulatory bodies may define an interference temperature limit
that unlicensed users in the area can use to transmit, as long as the tem-
perature at licensed receivers does not exceed this value [24].

Different sensing architectures and techniques have been proposed,
with those providing greater sensing capabilities, like signal classification,
doing so at the expense of complexity.

2.5.1 Spectrum Sensing Architectures

A distinction is made between organizational and hardware architectures
for spectrum sensing. Single-radio and dual-radio hardware architectures
exist for performing sensing [76]. Radio communications and sensing are
handled by the same device in single-radio architecture, with a time slot
reserved in between transmission for sensing. A separate radio is dedi-
cated for sensing in the dual-radio architecture so the two activities can
proceed simultaneously without lost communications efficiency. The dis-
advantage is extra hardware. Sensing requires high-speed high dynamic
range Analog-to-digital converters (ADCs) capable of observing a large
Nyquist spectrum bandwidth and high-speed signal processors.

In non-cooperative organizational architectures, each radio samples
the spectrum, processes the sensing results and independently arrives at a
decision as to whether the channel is in use or is free. Compare this to co-
operative sensing where spectrum sensing information is shared between

radio agents in the network and occupancy determined from the collec-
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tive data. This reduces the probability of misdetection, averts the hidden
PU problem (where one radio is not able to detect a transmitting PU due
to fading effects, but whose own communications will interfere with the
receiving PU) and PU and SU transceiver locations may be discovered (by
triangulation and advertising respectively).

Centralized cooperative sensing has all information relayed to a cen-
tral device or fusion center [98], which combines the sensing data, decides
which channels are free and builds up a spectrum map listing the fre-
quency bands. This process is known as decision fusion. The occupancy
map is then sent to the individual radios or, as is done in IEEE 802.22 [26],
commands determining which channel to use are sent. This centralized
architecture suffers from the common problems of a single point of failure
and limited scalability due to increased reporting overhead with a large
number of users.

In distributed schemes, radios still share sensing information but deci-
sion fusion is performed individually, reducing the messaging overhead.
Improving the reliability of individual decision fusion while minimizing
the data that needs to be transferred across has been a focus of research
in the literature. One-bit hard agent decisions (the channel is occupied,
or it is not) only are communicated in the scheme presented by Sun et
al [82] and, if more than M-out-of-N declare for occupancy, then the radio

decides the band is in use.

2.5.2 Spectrum Sensing Techniques

Various techniques have been explored for sensing licensed users. Meth-
ods in the literature can be categorized as energy/power detector based
sensing, cyclostationary feature detection and matched filter based sens-
ing, with techniques requiring a greater knowledge of a PU signal exploit-
ing it to identify the signal at higher noise levels.

Sensing involves a hypothesis test. The sensor measurement of the
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channel, o, is compared to a signal threshold 7 to decide between the hy-
potheses:

H,: o > v, the channel is occupied (a PU signal is present)

Hy: a < 7, the channel is free (a PU signal is absent)

The probability of detection, P, is defined as the probability the alterna-
tive hypothesis is selected when a PU signal is truly present. Noise, typ-
ically modeled in the literature as a zero-mean additive white Gaussian
noise (AWGN) random variable [98], will occasionally lead to a false posi-
tive. The probability that the hypothesis test incorrectly decides the chan-
nel is occupied when it is not is denoted as the probability of false alarm,
Py,, caused by setting the threshold too low. A plot of P; vs Py, for vary-
ing v is known as a receiver operating characteristic (ROC) curve and is used
to select the best threshold for the current spectrum environment. Increas-
ing the threshold to lower Pj, minimizes the frequency with which the SU
must abandon the channel even when no PU is present, thus improving
throughput, but increases the likelihood of interference to PUs by reducing
P,, in what is referred to as the sensing-throughput tradeoff problem [49].

2.5.3 Power Detection

The presence of a signal can be determined by an increase in power in the
channel medium. Power detection sensing measures the channel power
spectral density (PSD). This sensing technique is simple to implement and
has low computational complexity when using Welch’s method to esti-
mate the PSD.

The periodogram at frequency f is defined as
[ Xaln]?

N

where Xp[n] is the time-limited Discrete Fourier Transform (DFT) of the

channel, N is the number of frequency bins, 7" is the collection time and

w = 27 f is the angular frequency.
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In the limit as NV goes to infinity, the expected value of the periodogram
equals the PSD [21]
Sz(w) = E{lim Py(w)}. (2.2)
Welch’s method for estimating the PSD takes the average of several
periodograms. The PSD estimate is given by

Sa(w) = % > Py(w), (2.3)

where each periodogram is calculated over M time blocks. The computa-
tion of the FFT requires O(N log N') complex multiplications.

Detectors are usually designed for a constant false alarm rate (CFAR).
Assuming zero-mean AWGN noise, the PSD estimate threshold that will
obtain a given P, is

204 o2
N T (2.4)

where o2 is the variance of the assumed stationary channel noise PSD that

A= Q_I(Pfa)

can be estimated from long-term observations. A derivation of (2.4) ap-
pears in Appendix B. Energy/power detection depends on maintaining
up-to-date channel noise floor statistics since it is unlikely to be stationary.
Guard bands can be sensed for the noise level. After sensing, Lehtomaki
et al [46] assumes the I smallest bin samples in the N-size energy spectral
density (ESD) FFT result as the noise.

Disadvantages of this sensing method are poor performance under low
SNR conditions and vulnerability to producing false positives in response
to noise spikes. Baek et al [18] discusses coming to a sensing decision from
multiple ESD measurements. This was shown to improve the ROC char-
acteristics but with a tradeoff in increased sensing time. Energy/power
detection is unsuitable for detecting many novel signals that operate close
to the noise floor, such as ultra-wideband (UWB) which transmits a low-
power signal over a large bandwidth. Beyond trivial cases, power and
energy alone do not give enough information to classify different user sig-
nals, making it susceptible to PUE attacks.
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2.5.4 Cyclostationary Feature Detection

Signals differ in their power spectrum density and spectrum correlation
function distributions. Cyclostationary features like carrier wave period-
icity produce a response in the distributions. A sensor designed to look for
these features can detect the signal of interest with greater noise immunity
and in the presence of other transmissions.

In layman’s terms, a cyclostationary stochastic process possesses non-
obvious periodicity “hidden” in its statistical properties. A stochastic pro-
cess z(t) is defined to be first order cyclostationary with period 7" if [78]

P{a(t)} = P{a(t +nT)}, (2.5)

for arbitrary z, ¢ and arbitrary integer n, where P{xz(¢)} is the probability
density function. It follows that the mean of the signal is periodic with

Fourier series representation

E{x(t)} = Z mye 2T (2.6)
k=—o00
and coefficients .
my = %/ E{x(t)}e 72T g (2.7)
0

Similarly, the process is second order cyclostationary with period T if
its joint probability density satisfies

P{z(t1), x(t2)} = P{x(t1 + nT), x(t2 + nT)}, (2.8)

where n is an arbitrary integer and ¢, and ¢, are arbitrary times, with the
result that the autocorrelation function R,, of the signal is periodic

Ry(t,7) = E{x(t)z*(t + 7)} = Rpx(t + nT,T) (2.9)

and so likewise can be represented by a Fourier series expansion,

Roo(t,7) = Y R3(7)e™™, (2.10)

a=—00
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with coefficients originally derived by Gardner [34]

1 [T .
R3(7) = lim — / Ry, (t, 7)e 7%t gt (2.11)

T—o00 T —T/2

1 [T '
= lim — ot +7/2)x(t — 7/2)e 2 dt,

where T is the observation time.

R2 (1) is known as the cyclic autocorrelation function. The spectral corre-
lation function (SCF) is defined as the Fourier Transform of the cyclic au-
tocorrelation function and is a two-dimensional function in «, the cyclic

frequency, and f, the cross spectrum frequency

Se(f) = / R (1)e 7™t dr (2.12)
) . A2 q QL Q
- Th—glo Altlinoo_t —At)2 ;XT(t’f—i_ E)X‘r(tmf - 5) dta

where At is the length of the observation interval
t+7/2
X-(t, f) = lim — z(u)e 72 du, (2.13)
TOT Jir/2

is the short-term Fourier transform, the spectral component of x(t) at fre-
quency f observed over 7, and 7 is a dummy variable which can rep-
resent either At or the Fourier transform frequency resolution. The sec-
ond order cyclostationary process with period 7" has SCF components at
a = 2/T, f = 0 which are its cyclostationary features.

Analogous to the stationary definition, a process possessing both first
and second order cyclostationarity is said to be wide sense cyclostationary
(WSCS). WSCS is found in many common signal types including sine
wave carrier modulated signals and those that use cyclic prefixes or re-
peated spreading. Real life signal message data (bitstream) is found to
closely approximate a stationary random process [78] so modulation by
a repeating carrier, for instance amplitude modulation (AM), forms a cy-
clostationary random process with period that of the carrier and SCF re-

sponses at twice the carrier frequency:.
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Cyclostationary feature detectors operate by measuring the channel
SCFE. A WSCS signal s(t) with cyclic frequencies «; transmitted over a
channel h(k) with AWGN noise n(k) will be received as z(t) with spec-
tral components at [81]

i o * &\ qa
S2(f) = H(f + DH(f - 5)S2(f) 214)
Sa(f) = [H(HPSI(F) + Su(f).
The component at a = 0 is simply the signal power spectral density. Figure
2.5 shows the SCF of a binary phase shift keying (BPSK) modulated signal
s(t) = m(t)cos(w.t), where the carrier frequency f, = 125MHz, w, = 27 f,

and the modulated signal m(t) alternates between 1. Two peaks at o =
2f. = 250M Hz and two at a = 0 are clearly visible.

0
frequency f

150
cyclect 300 450

Figure 2.5: Spectrum Correlation Function distribution of a BPSK modu-
lated signal, from [72]. Carrier at 125MHz, bandwidth 20MHz, square root
raised cosine pulse shape with roll-off=0.25, sampling frequency 0.8GHz.

Depending on the cyclostationary features possessed, different WSCS
signals will show distinct SCF patters, which can be exploited for signal
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classification. If the PUs are known the sensing result can be filtered for
its distinctive cyclostationary features, in the process reducing the contri-
bution in the response from other signals. In [63], a-profiles, 2-D plots of
the SCF at different values of o, from different signals are used to train a
classifier block employing an artificial neural network. This raises the pos-
sibility for the radio to autonomously learn user signals it encounters. Also
greater robustness against noise is achieved if the cyclostationary features
are known, since white noise as a WSS process has no correlation and no
response at the features. The presence of a generic signal with no features
can still be detected by elevated levels at o = 0, equivalent to the PSD.

A signal processing block diagram for measuring the SCF is shown
in Figure 2.6. A disadvantage is that more computation is needed when
compared to energy/power detection.

x(t)

Correlate Average || Feature

AD X(f+a)X*(fa) [| overT detect

N pt. FFT |

X(k+m)

x(n
) N FFT

X(I+m)*

Figure 2.6: Cyclostationary Feature Detection Sensor Signal Processing
Block Diagram (Frequency Smoothing Method Architecture) for measur-
ing the Spectrum Correlation Function, from [72]. The interval —M /2, M /2
are the FFT bins of interest, 7" the collection time.

2.5.5 Matched Filter Based Sensing

For a known signal, the matched filter is a LTI (linear time-invariant) fil-

ter that maximizes the SNR, where the noise is assumed to be wide sense
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stationary (WSS) zero-mean additive noise. Implementation of this ap-
proach requires explicit knowledge of the PU signal to derive the filter
transfer function. However once this is obtained, the PU can be sensed
with greatest P; for given Py,. Different signals are rejected by the filter,
thus the approach is proof to misidentifying other PUs or malicious SUs.
A disadvantage is a significant memory cost to storing individual transfer
functions for every signal. If more than one signal uses the channel, an
efficient scheme is required to decide which matched filter to apply when
the channel is sensed. Generally, perfect knowledge of PU signals is not
obtainable and matched filtering is not used in practise, although it sets an

analytical benchmark.

2.5.6 Sensing Methods Summary

The various sensing techniques discussed have separate advantages and
disadvantages, making them suited to different tasks. Energy/power
detection is able to detect a generic set of signals operating above the
noise floor without requiring information on their transmission charac-
teristics. Cyclostationary feature and matched filter based detection are
implemented to distinguish and detect a specific known PU with superior
SNR.

2.5.7 Sensing Case Study: IEEE 802.22

Emerging CR protocols will often use a combination of sensing methods
and the IEEE 802.22 WRAN standard for opportunistic TV channel access
is presented as a case study. In the 802.22 architectures SUs, referred to as
Consumer Premise Equipments (CPEs), are organized into a co-operative
sensing network around a Base Station (BS). All users are required to reg-
ularly perform fast sensing employing energy/power detection or other
simple, very fast (~1ms) algorithm for general signal detection [26]. The
results of fast sensing are forwarded to the BS and if it suspects a signal
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is present, it commands the CPE using the affected band to perform fine
sensing. Fine sensing executes a longer (~25ms) algorithm, such as signal
classification, capable of verifying that indeed a licensed TV signal is us-
ing the band. IEEE 802.22 requires the SU to vacate the channel within 2
seconds of a PU appearing.

2.6 Summary

This chapter introduces background material on cognitive radio. Cogni-
tive radio is framed as being motivated by the spectrum scarcity problem,
which it is capable of addressing by combining adaptability, awareness
and intelligence to opportunistically access whitespace. Software defined
radio and spectrum sensing technologies are discussed as relevant to the
radio implementation task of this thesis. The design of a cognitive radio
for experimental validation of a Q-learning channel selection scheme on
the GNU Radio SDR forms the content of Chapter 3.



Chapter 3

Radio Design and
Implementation on GNU Radio

To answer the research question, the GNU Radio SDR platform is used
to implement a real CR system. This section considers the design and
implementation of spectrum sensing and spectrum agile functionality on
the radio. CRs need to be able to transmit across different channels, new
services which must be handled by the MAC and PHY layers.

This chapter is organized as follows. The different roles of the cognitive
MAC and PHY layer are first discussed in Section 3.1. The design of the
CR and the CSMA /CA-based cognitive MAC protocol are then described
in Section 3.2. Finally, Section 3.3 presents the GNU Radio implementa-
tion, with the frame transmitter and receiver treated in Section 3.4, power
detector in Section 3.5, and MAC layer implementation in Section 3.6.

3.1 Background

The Open System Interconnection (OSI) model for describing networks
separates network functionality into layers. As the lowest layer, the Phys-
ical or PHY layer is responsible for the bitwise transmission of data be-
tween nodes. The modulation implementation and other signal process-

24



CHAPTER 3. RADIO DESIGN AND IMPLEMENTATION ON GNU RADIO25

ing used, such as pulse shaping, to transmit bits across the physical link is
defined in this layer. Residing above the PHY layer is the link layer which
transfers data between adjacent nodes encapsulated in link-layer frames.
This layer is further subdivided into the Logical Link Control (LLC), pro-
viding flow and error control, and Media Access Control (MAC) sublay-
ers. Bit errors arising in the physical transmission are detected by the LLC
layer and, in a reliable service, retransmission or error correction is per-
formed to guarantee the original frame data is received.

In a shared medium, such as wireless, frames may be corrupted when
several nodes transmit concurrently and it becomes necessary to use a
MAC protocol in order to co-ordinate user access to prevent collisions.
This is typically achieved in existing MAC protocols like CSMA /CA us-
ing handshaking, i.e. RTS/CTS, to announce when the medium is in use.
DSAN networks require additional features from the MAC implementa-
tion. The protocol must handle the multichannel case and needs to dis-
tinguish in its response between other SUs, which can be co-ordinated
with, and PUs, which must result in the spectrum being immediately va-
cated. Additionally using reconfigurable CRs, collisions could be poten-
tially avoided by adjusting the physical transmission parameters, such as
reducing the power level, so a channel could be shared without interfering
with other users. Thus CRs usually see a close coupling of the PHY and
MAC layers as identified in [30].

The responsibilities of a cognitive MAC protocol are described in [16]:

1. Spectrum access: Spectrum access needs to be coordinated to prevent
collisions when multiple SUs select the same channel for communi-
cation. This constitutes the core function of classical MAC protocols
like CSMA/CA and CSMA/CD, but in DSAN networks is compli-
cated by SU access being spread across multiple channels. The pro-
tocol needs to arrange a synchronized period when all SUs meet at a
common control channel to arrange which channel to transmit on and

be aware of which other channels will be in use by SUs to avoid.
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As CRs operate in licensed bands, the common control channel must
be switchable since, when PU activity appears in the channel, SUs
must vacate it as part of spectrum mobility. The C-MAC [27] protocol
arranges a backup channel (BC) for nodes to switch to when a PU
appears in the existing rendezvous channel (RC). The channel with
the longest time between PU interruptions is selected for the RC. The
common control channel is also used to exchange sensing results in

co-operative sensing.

2. Spectrum sensing: The cognitive MAC protocol manages sensing for
the presence of PUs. The protocol needs to arrange for quiet periods,
when all SUs are silent, when sensing can be performed. The length
of the sensing period needs to be chosen to balance protocol over-
heads with the likelihood a PU is correctly detected and identified.
As discussed in Section 2.5.1 many architectural approaches to sens-
ing are possible. Cooperative sensing improves the accuracy of the
final PU spectrum occupancy map used for determining which chan-
nels are available for communications. Integration of results from
different users in decision fusion can take place in a single node or

distributed, with each user developing its own map.

3. Spectrum allocation: Spectrum allocation selects the channel for the
node to communicate on from those not currently occupied by PUs.
Intelligent/adaptive techniques are employed to select high-quality
channels to improve performance, such as predictive channel se-
lection as proposed in [41]. By selecting the data channel with the
longest remaining idle time before a PU transmission, a 43% reduc-
tion was measured in [41] in the number of forced channel switches
when compared to random channel selection for a SU operating
among eight channels with periodic PU traffic.

4. Transmitter-receiver handshake: Otherwise known as channel ren-

dezvous, a mechanism is needed to let the receiver know which data
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channel the transmitter has selected for communications. In the
CSMA-based MAC protocol proposed in [83], the channel is selected
by the receiver. The protocol uses RTS-CTS-CONFIRM-DATA-ACK
handshaking. RTS-CTS-CONFIRM is transmitted in the common
control channel. RTS, sent by the transmitter, lists the available chan-
nels. The receiver chooses a channel from the list and sends this in
the CTS. The sender broadcasts CONFIRM with the chosen channel
before both nodes switch to the data channel. The advantage of this
scheme is that PUs at both the transmitter and receiver ends are con-
sidered when arriving at the channel decision, averting the hidden

user problem.

5. Spectrum mobility: SUs are required to immediately cease communi-
cations when a PU requires use of the occupied portion of the spec-
trum. Spectrum mobility techniques need to be defined for resum-
ing communications in another channel with minimal interruption
during the handoff period. Worsening channel conditions will also

trigger spectrum mobility.

3.2 Radio Design

A single-radio CR is developed. Its logical architecture is depicted in Fig-
ure 3.1. Spectrum agile spectrum access is handled by the MAC protocol
which controls when a frame should be transmitted and when to sense
as part of the protocol. The Q-learning DCS scheme determines the data
channel to use. This is passed to the frame handler which sets the PHY
layer properties for the channel at the transmitter and receiver and breaks
the MAC layer frame into individual bits that are sent across the chan-
nel by the transmitter, with the reverse being done for the received bits.
A power detector is used for sensing. The distinction between single-

and dual-radio architectures is defined in Section 2.5.1. In single-radio ar-
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chitectures, data communications and sensing share one transceiver, thus

both cannot proceed simultaneously.

Intelligent Cognitive MAC Protocol

Channel Selection
Schemes

Frame Handling

Frame Frame
(Bitstream) (Bitstream) Power MAC Layer

Duration PHY Layer

*Frequency  |~Amplitude *Gain _ \rResolution

~Gain Modulation :
*Modulation : Power Detector

........

Transmitter | : I Receiver

Transceiver

i = Radio Interface I Modulated signal

teeesnnel

Figure 3.1: Single Transceiver Cognitive Radio Logical Architecture

3.21 MAC Layer Design

A single transceiver cognitive IEEE 802.11-based MAC protocol for ad hoc
networks is designed. The protocol assumes higher link-layer issues such
as neighbor discovery and address resolution have been handled and cov-
ers the interesting CR problem of transferring a data packet between a
transmitter and receiver aware of each other on a licensed band of the
transmitter’s choosing. The implementation of intelligent spectrum alloca-
tion is not discussed in this section but in Chapter 4 where the reinforce-
ment learning DCS scheme is introduced.

The protocol uses a modified form of CSMA /CA (carrier sense mul-
tiple access with collision avoidance). CSMA /CA is used by IEEE 802.11
and forms a natural starting point for a project of this type. Figure 3.2
shows the MAC frame format in the design. The IEEE 802.11 MAC frame

format is retained with unused features stripped away, originally to keep
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down the minimum transmission time during tests. Unfortunately as elab-
orated in Section 3.4 because of how the USRP USB interface works, pack-
ets are padded anyway to multiples of 512 bytes in excess of the frame
header size so they can be sent to the USRP without waiting. Addresses 3

MAC Layer Frame
Frame Duration Address 1 Address 2 Frame Body
Control /ID (Dest.) (Sender) Fragment #| Sequence # (Payload)
2 bytes 2 bytes 6 bytes 6 bytes 4 bits 12 bits 0-2312 bytes

Frame Control Field

Protocol Type | Subtype To From | More | Retry Pwr More | WEP | Order
Version DS DS Frag Mgt Data

Bits: 2 2 4 1 1 1 1 1 1 1 1

Figure 3.2: MAC Frame Format

and 4 have been removed, which in IEEE 802.11 are used for the base sta-
tion ID and other infrastructure addressing modes, as the system is only
used in ad-hoc mode. The frame fields are identical in purpose to IEEE
802.11 [20] and are summarized below:

e Frame Control: Broken up into subfields. The subfields type and sub-
type identify the frame’s type. For instance a type value of 0b01,
subtype 01011 indicates an RTS frame. A retransmitted frame sets
the retry bit. Data exceeding the payload size is fragmented and sent
in separate frame transmissions. Subfield More Frag is set to 1 when
there are more fragments belonging to the same frame following the
current fragment.

e Duration/ID: This field indicates the time remaining in the transmis-
sion and is used to calculate the Network Allocation Vector (NAV).

o Address 1/2: 6-byte MAC addresses of the frame sender and destina-
tion.

o Sequence Control: used to detect missing or duplicated frames and
fragments. The Fragment Number subfield is the number of fragments
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the payload has been split up in. Subfield Sequence Number is incre-

mented each time a frame is sent.

Our protocol uses a temporary common control channel (CCC) which all
users tune to when not actively sending or receiving packets. The CCC is
used to co-ordinate access between SUs to prevent collisions in the same
licensed band, otherwise known as the hidden multi-channel user problem
[95], and arrange channel rendezvous.

The CCC approach raises a number of issues. The DSA network
premise is to solve the spectrum scarcity challenge by exploiting already
allocated spectrum. A static CCC is unviable as the channel will be tem-
porarily out of communications whenever it is used by a PU and licensing
a dedicated CCC signifies the network is still dependent on free spectrum
being available. The alternative, which we use, is for the channel to be
temporary, with SUs dynamically switching to a different quiescent CC
whenever a licensed user appears in the original channel. Previous stud-
ies have shown that it is highly likely there will be a number of common
channels between neighbours [99], thus it is possible to find a new CC.
For instance in the C-MAC [27] cognitive MAC protocol this is achieved
by having nodes keep track of a backup channel to use if the CCC is oc-
cupied. The aim of the research presented in this thesis is to evaluate the
data channel selection performance of a Q-learning scheme. To fix the ef-
fect CCC availability has on experimental results, for the purposes of this
thesis the CC chosen is unused by licensed users in the timeframe of ex-
periments considered, thus the protocol does not define a CC switching
mechanism if a PU does appear in the channel.

The potential for the channel to be congested if there are too many
users has been raised [87]. However it has been shown that a CCC can
support 21 data channels with a high node density of 40 nodes [51]. Other
approaches such as split-phase or hopping eliminate the need for a com-
mon control channel but requires node synchronization, not suitable in a

completely ad hoc scenario. For these reasons, the cognitive MAC protocol
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adopts the CCC approach.

Our MAC protocol’s transmission timeline is shown in Figure 3.3. The
sender and destination exchange RTS-CTS in the CCC after the channel
has been free for a DIFS period. CCC transmissions use a common wave-
form known to all other users. The RTS payload contains the physical
layer waveform parameters to use for the transmission, such as the chan-
nel frequency or modulation picked intelligently by the sender with the
goal of maximizing performance and avoiding using a band currently oc-
cupied by PUs. The receiver echoes the waveform parameters in its CTS
payload. Both sides use the CTS parameters to set their physical layer.
Potentially the sender can pass a list of available channels and designed
waveforms. The receiver can select from its own record of channels re-
cently sensed unoccupied the best solution or propose a new one if it is
using incompatible hardware, avoiding the hidden PU problem [100] where
the transmitter selects a channel unaware of a PU at the receiver. Intel-
ligent waveform design after Rondeau [71] and transmitter and receiver
decision fusion are interesting topics for future work. In the initial pro-
tocol implementation set up for dynamic channel selection, the intelligent
sender selects a frequency channel and the destination simply repeats it in
its CTS.

Just as in IEEE 802.11, other SUs receiving the RTS or CTS, for hidden
users, set their NAV vectors and avoid using the data band specified in the
payload for the frame duration. Before this timer expires, they may still
arrange to transmit in other bands. Binary exponential backoff (BEB) is
retained from IEEE 802.11. After a successful transmission, a retransmis-
sion or if the CCC is sensed busy at the start of the transmission, the node
waits a number of Slot Time (ST) intervals chosen randomly from 0 to 2!
before transmitting. Initially 7 = 0 and is incremented every time there is
a collision until RTS is sent successfully. This prevents waiting users from
broadcasting simultaneous RTS. 1 Following CTS, the active pair tune to
the data channel they have agreed upon. The transmitter senses the band,
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Figure 3.3: MAC Protocol Transmission Timeline

a final check to see if a PU or other SU is present. This approach is known
as Listen-before-Tulking sensing. If a licensed user is sensed by the power
detector, the transmitter aborts, returns to the CCC and waits an MDTT
(Maximum Data Transmission Time) interval defined as the maximum
transmission cycle time and longer than the destination timeout before
reattempting transmission. If the channel is unoccupied, the transmitter
sends its DATA packet and receives an ACK packet signalling correct de-
livery. Both nodes then return to the CCC. A new transmission is not at-
tempted until the MDTT period elapses. Thus, if no RTS or CTS has been
received in MDTT, the node knows that when it can transmit again no
other SU is transmitting on a channel it may wish to send on. The over-
head ensuring this is a limitation of the CCC approach as found in other
work [58].

The MAC protocol has a responsibility to manage spectrum sensing.
Regular sensing needs to be arranged for when all SUs are not broad-
casting and PU activity can be determined. Sensing must be regular or
otherwise frequent and diversely spread across the licensed bands, so all
SUs have a recent picture of which channels are available. Sensing is time



CHAPTER 3. RADIO DESIGN AND IMPLEMENTATION ON GNU RADIO33

wasted that is not being spent transferring data and the overhead of any
such scheme needs to be weighed accordingly. In the literature, protocols
often assume the ability to synchronize users’ activities. In IEEE 802.22, a
Base Station (BS) instructs other users when and where to perform sensing
and ensures the channel is quiet when this takes place [26]. The Cognitive
MAC [27] (C-MAC) protocol has a split-phase setup. Time is split into a
Beacon Period (BP) and Data Transfer Period (DTP). Nodes tune to a com-
mon Rendezvous Channel (RC) at the start of the BP and announce which
channel they are going to transmit on. If no transmissions are planned
the nodes on that channel perform sensing and broadcast the results of it
during the next BP.

Our Listen-before-Talking sensing approach achieves a fully ad-hoc so-
lution without synchronization overheads or hardware. Prior to sensing
RTS-CTS reserve the channel, keeping it free of other SUs. Sensing occurs
in-band in the channel the node pair has selected for communications. The
protocol does not define a mechanism for regular sensing of all bands. This
is given over to the reinforcement learning DCS scheme in Chapter 4. As
part of its exploration policy, all channels are randomly selected for trans-
mission giving frequent sensing of all channels that can be used to build
up a PU occupancy map. Sensing of a channel can be explicitly requested
through the RTS mechanism, which will be required if one side does not
transmit often. Although transmission is aborted if a PU is detected, inter-
ference may still be caused if the user is hidden or appears after sensing.
The second is unavoidable with a single transceiver design.

An improvement to the MAC protocol would be to reduce the indi-
vidual sensing load by sending the ACK over the CCC. Waiting SUs can
determine from a successful transmission the channel is not occupied by
PUs and suitably extrapolate from a failed transmission, leading to shar-
ing of sensing results. This approach has other advantages. Licensed users
would not be interfered by the ACK, in particular, hidden users on the re-
ceiver side that are not detectable by Listen-before-Talking sensing. In this
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protocol, the ACK is transmitted in the data channel. Previous work by
Yau et al [96] uses data channel ACK and this feature has been adopted.

3.3 GNU Radio Implementation

The CR is implemented in GNU Radio. The GNU Radio software archi-
tecture for designing SDR lets high-performance PCs perform real-time
signal processing. Once a waveform has been designed in software, the
physical transmission of the signal is handled by a USRP RF frontend. A
general overview of the architectures is given in Appendix A and should
be referred to.

The CR software implementation is shown in Figure 3.4. Each radio
makes use of:

e One Linux PC host computer radio backend, that performs PHY
layer waveform processing and hosts the MAC layer protocol im-

plementation.
e One USRP1 with USB2.0 connection to the computer.

e One RFX2400 2.3-2.9 GHz capable transceiver daughterboard or
XCVR2450 2.4-25GHz and 4.9 to 5.85GHz dual-band transceiver
daughterboard.

e One VERT2450 dual band 2400-2480MHz and 4.9-5.9GHz vertical

antennas.

The USRP FPGA can be programmed, but developing this capability was
outside the scope of this thesis. The default FPGA image is used that
implements segments of four Digital Down Converters (DDCs) and Dig-
ital Up Converters (DUCs), as well as an IF (intermediate frequency)-
baseband conversion implementation. This entails the entirely userspace-
based implementation architecture with all remaining baseband signal

processing handled in host computer flowgraphs.
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Figure 3.4: Cognitive Radio System Architecture

The power detector, frame transmitter and receiver from the radio de-
sign in Figure 3.1 are implemented in separate python classes. Each class,
e.g. transmit_path, handles a GNU Radio flowgraph, performing the
appropriate signal processing task and provides an interface of methods
for modifying, sending and receiving flowgraph data. The MAC protocol
class rx2_simple mac_rtsctschannels_sensing creates an instance
of each class and controls the protocol operation by accessing the class
interfaces. Frame handling operations in Figure 3.1 are also handled by
transmit_path and receive_path.

MAC frame data is passed down to the transmit_path frame trans-
mitter class. The class encapsulates the frame with physical layer log-
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ical information used for decoding, such as a CRC-32 error detection
field. The encapsulated frame is then put on a flowgraph responsi-
ble for modulation and the resulting complex baseband signal is passed
over the USB to the USRP for transmission. The inverse operation
is performed by the rx2_receive_path frame receiver class. The
rx2_sensor_path_channel power detector class creates and manages
a flowgraph to measure the channel power. The python class then applies
a hypothesis test on the output to determine the presence of a PU is indi-
cated. The MAC protocol receives the boolean result.

3.4 Frame Handling

The role of the frame transmitter and receiver is to achieve bit-by-bit
physical transmission and reception of MAC frames. This is imple-
mented using the native GNU Radio packet transmitter and receiver ex-
amples, gnuradio-examples/python/digital/benchmark_tx.py
and benchmark_rx.py. The design can be improved, but the existing
contribution achieves what is required in terms of packet error rate for

instance.

3.4.1 Frame Transmitter

The frame transmission process as implemented is summarized in Fig-
ure 3.5. The MAC protocol calls transmit_path.send.pkt to send
payload, a MAC frame, which is passed in as a packed binary data string
(python struct . pack). The MAC frame data is encapsulated with phys-
ical layer logical information fields as depicted in Figure 3.6. The preamble
and access code are specifiable. The access code is shared between users
in the network and marks the beginning of the frame for the receiver. The
payload length field in fact consists of two duplicated two byte signed
shorts, each giving the actual payload length. The size of these fields al-
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lows for a payload between 0 and 4096 bytes. The CRC (cyclic redundancy
check) value of the payload is calculated and used to determine if it has

been correctly received.

MAC Protocol Frame Transmitter / transmit_path.py

Configure or Encapsulate frame with Frame Transmitter
reinitialise frame send pii(p a_yload,eof) physical layer logic needed Flowgraph
transmitter with [T>] Request frame with MAC frame [—>{ * tor recovery at receiver,

desired data payload (packed string) to e.g. CRC Modulate and transmit
transmission be transmitted. eof=True if frame using USRP
parameters flowgraph to shut down after
last frame.

USRP with
daughterboard
transceiver

X

Figure 3.5: Frame Transmitter Operation

As noted in Section A.4.2, a problem with the USRP USB interface is
that a packet is sent only after at least 512 bytes of data is available at the
buffer. To ensure the frame is sent immediately to the USRP for transmis-
sion, the frame is padded so the modulated frame comes to a multiple of

512 bytes or 128 complex samples in size.

Preamble Access Length of Payload (MAC Layer CRC 32
code payload Frame)
4 bytes 0-4096 bytes 4 bytes

Figure 3.6: Frame Format

The frame is next whitened or scrambled by being xor’ed with a pre-
arranged offset mask to prevent eavesdropping. The whitened frame is
added to the message queue at the source block of the frame transmitter
flowgraph, which is shown in Figure 3.7 and is responsible for modulat-
ing the frame and transmitting the physical layer signal over the USRP.
The pkt_input message source block dequeues and converts the frames
into a bitstream. This is modulated by the next block which outputs
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complex float 1&Q sample denoting the equivalent baseband signal no-
tation of the RF waveform. In the equivalent baseband signal notation,
Z(t) = I1(t)+jQ(t) corresponds to Re{Z (t)e?*'} = I(t)cos(wt)—Q(t)sin(wt)
at RF, where w is the carrier frequency in rad/s and I(t) and Q(t) are
known as the inphase and quadrature phase signals. The USRP block
sends data to the device. Before being sent to the USRP for transmission
the waveform values are scaled to a desired level (0-32768 max deflection
for complex floats).

The USRP sink and source blocks (GNU Radio library
usrp.source_c and usrp.sink_c blocks) transmit and receive
baseband signal data to and from the device and allow the USRP and its
daughterboards to be configured. The block creates a subdev object via
which device parameters can be set or read by the flowgraph program
such as the daughterboard to transmit or receive on, the daughterboard
gain, RF frequency, decimation, interpolation and other IF and RF
communication variables. The USRP source and sink decimation and
interpolation set the rate at which data is processed by the flowgraph,
hence the signal bandwidth.

hg?)isri%e - Modulator < Amplitude - USRP (u)
(_pkt_input) Bitstobe | (_modulator) | Scaling (amp) 7
transmitted -
Turns frames USRP Sink

into a bitstream

Figure 3.7: Frame Transmitter Flowgraph

A large number of modulator blocks have been written for GNU Radio
implementing a wide variety of modulation types. A full listing can be
found in the GNU Radio doxygen generated API [6]. Radio experiments
in this thesis use GMSK (Gaussian Minimum-Shift Keying) and DBPSK
(Differential Binary Phase Shift Keying) modulation, the implementation
of which is discussed below.
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In DPSK, bit patterns are represented by a change in the phase of the
carrier. A binary "1” in DBPSK is denoted by adding a phase of 180° to the
carrier, a ‘0" with no change in phase. More bits can be represented per
symbol by reducing the phase difference, such as DQPSK which encodes
4 values per symbol separated by 90°.

The DBPSK modulator flowgraph is illustrated in Figure 3.8 and the
structure is used for other m-ary DPSK modulation implementations.
The bytes2chunks block regroups the incoming bytes into k-bit vec-
tors, where £ = 1 for DBPSK is the number of bits per symbol. The
symbol_mapper block then Gray-codes each vector. A Gray code has
the property that successive values differ in only one bit. For instance
00,01,11,10 is an example of a 2-bit Gray code. For PSK modulation of
higher ordinality, e.g. 16-ary, symbol mapper reduces the overall bit er-
ror rate. The most likely case of interference results in the symbol being
mapped incorrectly to an adjacent PSK constellation point. This will only
lead to one bit in the sequence being in error since successive Gray coded
symbols differ in only one bit [32].

DBPSK Modulator

—> bytes2chunks [—>]

Bitstream

Symbol mapper
(symbol_mapper)

Differential
encoder

—>

(diffenc)

chunks2symbols

Root raised
cosine filter
(rrc_filter)

—>

Complex

Turns bytes
into symbol-
size vectors

Figure 3.8: DBPSK Modulator Flowgraph

Pulse shaping

The differential encoder block, di ffenc, carries out the following op-

eration:

Yi = Yi—1 D Ty,

(3.1)

where y; is the output bit to be actually transmitted, y;,_; the previous out-
put bit, z; the input Gray coded bit and @ is modulo-2 addition. The input
at chunk2symbols is mapped to the BPSK constellation and the modu-

samples at
baseband



CHAPTER 3. RADIO DESIGN AND IMPLEMENTATION ON GNU RADIOA40

lated complex sample is output. It can be seen then the differential encoder
uses the past bit to map a "1” to a change of phase from the previous sym-
bol of 180° and '0” to no change, in accordance with DBPSK modulation.

Finally, the symbol is filtered by a root-raised cosine (RRC) filter to
reduce intersymbol interference (ISI). Effects such as multi-path fading or
distortion in the channel can cause a symbol to be received with a delay or
spread out, leading to ISI if it overlaps with subsequent symbols. A second
matched RRC filter is implemented at the receiver, forming a raised-cosine
(RC) filter with impulse response [66]

. [t cos(T2)
h(t) = sin (T) ﬁ’
T2

where 0 < 8 < 1 is the roll-off factor and 7" the sampling period. The im-

(3.2)

pulse response is zero at all nT', n € Z/{0}, known as the zero-ISI property,
so if correctly sampled at the receiver, symbols are received without ISL

3.4.2 Frame Receiver

The frame receiver and flowgraphs are depicted in Figures 3.9, 3.10 and
3.11. The receiver demodulates and recovers the MAC layer frame pay-
load of the frames being transmitted. The receiver uses a callback arrange-
ment. The MAC layer control code specifies a function handler satisfying
the phy_rx_callback prototype to python class rx2_receive_path’s
constructor. This is called whenever a frame has been received and de-
coded. The receiver does not attempt error correction, but checks the CRC
physical logic field to determine if the MAC layer frame payload has been
correctly received. The GNU Radio library DBPSK demodulator, shown
in Figure 3.11, performs the inverse operation to the modulator. First,
complex samples received from the USRP are scaled by pre_scaler to fit
within the range [-1, 1]. The agc block applies a gain factor based on the
maximum magnitude of the past 16 samples so the range is fully exploited.
The signal is then filtered by rrc_filter implementing the matched re-
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the case of BPSK) in vector form. Finally, the Gray coded bits are mapped
tobinary by the symbol_mapper block and unpacker unpacks the vector
sequence into a bit stream.

It remains for the frame to be recovered from the bit stream. The flow-
graph correlator block scans for the access code. The Hamming dis-
tance between the bits and the known code is calculated, with the code
recognized as being present if the distance is within a threshold (default
12). For each input bit it outputs alongside a flag bit. The flag is set to 1
if the corresponding data bit is the first bit after the access code and thus
the start of the payload length field. The framer_sink block checks to
see if the next two bytes are duplicated for confirmation that it is the pay-
load length field. Recall from the physical layer packet logic, the field is
the short length repeated. If not, the packet is dropped. Otherwise the
whitened payload with the CRC is retrieved and put on a message queue
structure. A queue watcher thread that has been blocking on the queue re-
moves the frame, dewhitens it and checks the CRC against the MAC frame
data payload. The payload is passed to the callback with ok set to True
only if the CRC is correct.

3.4.3 Control Interface

The CR MAC layer requires access to a flexible PHY layer. It needs
to be able to change the per packet physical transmission parameters
to take advantage of new data channels. Enhancements are made to
the transmitter and receiver to support this. Block parameters are ex-
posed to the MAC protocol for control through accessor and mutator API
methods. For instance the amplitude of the transmitter scaler block
can be changed and the transmission/reception frequency is tuned using
transmit_path/rx2_receive_path.set_freqg() and get_freq().
This adjusts the setting in the GNU Radio library usrp.source_c or
usrp.sink_c block which transmits and receives to and from the USRP.
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The block configures the USRP and daughterboards via a subdev object
and the gain, decimation, interpolation and board status can be changed
as well at the request of the MAC layer. The source and sink set the rate at
which data is processed in the flowgraph and hence the transmitted signal
and received bandwidth, adjustable using the decimation and interpola-
tion settings. Blocks with different functionality, such as another modu-
lation technique, can be swapped out but this requires the flowgraph to
be temporarily stopped. The current solution is for the MAC protocol to
create a new transmitter or receiver. Python’s OptionParser is used to

pass in the many initialization settings.

3.5 Power Detector

The constant false alarm rate (CFAR) power detector calculates the aver-
age channel power spectral density and applies a hypothesis test to decide
if a signal is present. Welch’s method, as outlined in Section 2.5.3, is used
to obtain the PSD estimate.

The power detector flowgraph shown in Figure 3.12 computes the
squared magnitude FFT. The block s2v converts the stream of complex
baseband samples from the USRP into a stream of N-size vectors. Next,
block fft operates on each vector and computes the N-size FFT, the
squared magnitude of which is then calculated by c2mag. A Hanning
window is applied before the FFT to mitigate spectral leakage effects. Fi-
nally, stats computes

n=K/2

py=t y Al 34

n=—K/2

which is the average of all periodograms corresponding to frequency bins
n = [-K/2, K/2] which the channel spans. The FFT bandwidth is set by
the USRP decimation rate and this extra step allows a channel to be singled

out. The result is added to a message queue.
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Figure 3.12: Power Detector Flowgraph

The flowgraph runs in the background. The power spec-
tral density estimate is not calculated until the MAC pro-
tocol requests the channel be tested for a signal by calling
rx2_sensor_path_channel.is_pu_present (). This empties the
queue, blocks until M periodograms which are all up-to-date samples
have been received and averages them to give the channel average PSD

estimate .

S(w) = 77 %: Py. (3.5)
The estimate is compared to the decision threshold A main-
tained by python class rx2_sensor_path_channel. Calling
rx2_sensor_path_channel.is_pu_present () returns True to a

user signal being present in the channel if the PSD estimate exceeds the
threshold, otherwise False.

H,: S;(w) > A\ True, the channel is occupied
Hy: S:(w) < X False, the channel is free

The threshold value is set by rx2_sensor_path_channel-
.get_set_channel _statistics(notrials) to meet a constant
false alarm rate, specified on initialization, according to Equations (B.7)
and (B.8) derived in Appendix B. Number notrials S,(w)PSD estimates
are measured in an unoccupied channel and the mean x and standard
deviation o of the distribution derived. The CFAR threshold value is set
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to
A=t 0Q (Pr), (3.6)

where @ is the Q-function. The greater the number of periodograms av-
eraged, M, in Equation 3.5 the more closely the distribution approximates
the normal distribution according to the central limit theorem (CLT).

In our relatively short-term experiments, the common control channel
employed by only SUs is sampled at the start of the experiment, when no
users are transmitting, and the noise statistics are used for all data chan-
nels. This assumes the noise is stationary and there is no protocol for keep-

ing statistics up-to-date.

3.5.1 Control Interface

The same control interface design philosophy is used for the power detec-
tor. The MAC protocol is provided accessor and mutator functions to con-
trol the bandwidth sensed, the FFT resolution and the central frequency

sensed.

3.6 MAC Layer Implementation

Each radio implements the MAC layer defined in Section 3.2.1. An
overview of the implementation is depicted in Figure 3.13. The trans-
mission and reception of upper link layer packets using the MAC trans-
mission protocol in Figure 3.3 is handled by an instance of python class
rx2_simplemac_rtsctschannel_sensing.

On creation, the class sets up the radio physical layer. The frame
transmitter, receiver and power detector are instantiated and the flow-
graphs started. The initial layer settings can be specified as additional ar-
guments when rx2_simple mac_rtsctschannel_sensing is created,
which are read in using python’s OptionParser utility. Auto trans-
mit/receive (ATR) switching is enabled on the USRP daughterboards.
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Figure 3.13: Python GNU Radio MAC Layer Implementation

In this mode, the transceiver defaults to receive mode up till data is
present at the TX FIFO queue, referring to Figure A.4, at which point the
USRP toggles the transceiver to transmit operation until the data has been
sent. Since the design uses a single transceiver board, the frame receiver
and power detector share the same usrp.source_c block. As a result
rx2_simple mac_rtsctschannel_sensing must reconfigure the block
for Listen-before-Tnlking sensing and then restore it to the parameters used
for reception.

The class reserves an input buffer and output buffer. Link layer pack-
ets to be transmitted are placed at the input buffer, which are then pro-
cessed in order. Class rx2_simple mac_rtsctschannel_sensing co-
ordinates sensing, timing and the channel the physical layer is tuned to.
MAC frames are represented as a framed_packet object containing fields
for the sequence number, type and so on. The contribution of the ADROIT
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project [5] is acknowledged. ADROIT released code for a GNU Radio
implementation of an 802.11 receiver and our framed_packet class is
derived from the MAC frame structure class of the same name in their
802.11 receiver code. Class rx2_simple mac_rtsctschannel_sensing
generates control frames (RTS, CTS, ACK) and encapsulates the pay-
load at the buffer into a DATA frame. When in the protocol the frame
is to be physically transmitted, the framed_packet object is passed
to class c_ren_packet_sender. The class converts the frame to the
python.struct packet binary string format used by the frame transmit-
ter, which transmits it. The class c_ren_packet_sender also fragments
the frame if it exceeds the 802.11 2312 byte total payload length limit and
correctly sets the fragmentation number in the frame. Each fragment is
sent to and is transmitted separately by the frame transmitter.

The frame receiver listens to frame responses from other SUs.
Class c_ren_packet_receiver acts as the callback function for
the receiver and converts received binary string MAC frames
into framed packet format.  Further processing is handled by
rx2_simple mac_rtsctschannel_sensing. DATA packets ad-
dressed to the radio are decapsulated and added to the output buffer for
the link layer to read.

The class rx2_simplemac.rtsctschannel_sensing spawns a
handler thread for the ongoing transmission, which is responsible for
sending all frames the radio is required to by the MAC protocol. The trans-
mission involves a two-way handshaking exchange of control frames with
the node the radio is communicating with. Received frames are detected
by the frame receiver’s queue watcher thread (recall Section 3.4.2), which
triggers the callback function c_ren_packet_receiver. The packed bi-
nary string payload is converted to a framed_packet object if it was
not garbled (ok=False). If the frame has more fragments to follow,
c_ren_packet_receiver, suppresses its output and waits for the re-

maining fragments, which are reassembled into a single framed_packet
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object.

The queue watcher thread can be viewed as the source of frames pro-
duced by the node (other) with which the radio is communicating, while
the handler thread is responsible for generating all frames transmitted by
the radio (self) in the timeline. As frames are received are sent, each thread
progresses the handshaking process. After transmitting its frame the han-
dler thread waits on a python condition variable until protocol timeout
occurs. The time is established by the python time function. If a frame
is received before timeout this is put in a shared variable and the receiver
wakes the handler. The first act of the handler is to validate the frame and
if correct (e.g. type, sequence number), proceeds with the rest of the proto-
col. Timer expiration or reception of another or corrupt frame causes the
handler to terminate. Existence of an ongoing transmission is determined
by whether the reference to the handler thread is not null.

The procedures used in the implementation for receiving and transmis-
sion according the MAC protocol are described. The receiver, in between
responding to an ongoing transmission, is tuned to the CCC. On receiving
a frame, if it is not an RTS with this radio as the destination, the callback
updates the NAV timers describing how long data channels are occupied.
If it is, a handler thread for the upcoming transmission is spawned. The
handler generates a CTS frame confirming the channel and other trans-
mission parameters to be used and passes it to the transmitter for deliv-
ery. ATR automatically sets the transceiver into transmit operation, and re-
turns it to receive mode once the frame has been sent. The receiver is then
tuned by the handler to the data channel. The handler waits on a python
condition until either timeout occurs or the receiver wakes the condition
after receiving a frame. This frame is validated and if it is the DATA frame,
the handler replies with the ACK frame and the decapsulated upper layer
packet is added to rx2_simple mac_rtsctschannel_sensing’s out-
put buffer. If none, another or corrupt frame is received, the handler ter-

minates.
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Another thread is monitoring the input buffer for upper layer pack-
ets. Once there is no current ongoing transmission, a handler thread is
spawned to transmit the packet at the head of the list. The thread decides
on the channel to use. The strategy used for channel selection is the sub-
ject of the following chapter where a number are evaluated in a real-life
demonstration. RTS is sent after the channel has been idle for DIFS fol-
lowing the NAV time having elapsed. CTS, DATA and ACK are received
and transmitted using the condition handshaking model as demonstrated

previously.

3.7 Summary

In this chapter the implementation of the physical CR system used in this
thesis is recorded for reproducibility. The design of an ad hoc cognitive
MAC protocol supporting channel switching to avoid PUs is presented.
Its GNU Radio software implementation is then described with a basic
supporting PHY layer comprising a power detector for spectrum sensing
and transmission and DBPSK modulated data. The radio is used with
the Q-learning channel selection scheme, presented in Chapter 4, the ex-
perimentally evaluate the effect on performance the intelligence has. The
results in Chapter 7 form the research contribution of this thesis.



Chapter 4

Dynamic Channel Selection using

Q-Learning

This chapter presents the ad-hoc Q-learning DCS scheme for improving
the likelihood of successful packet transmission in CRs. In this chapter,
we first examine related work on dynamic channel selection in Section
4.1. After presenting background material on reinforcement learning in
Section 4.2, Q-learning is introduced in Sections 4.3 and 4.4 as an online
model-free learning approach that simplifies design issues. Finally the Q-
learning scheme and its implementation on our CR are described in Sec-
tions 4.5 and 4.6.

4.1 Dynamic Channel Selection

In Chapter 2, we described CR in terms of possessing reconfigurabil-
ity, awareness and intelligence. CRs are defined by the ability to au-
tonomously adapt transmissions to meet QoS performance requirements.
A current research focus is in applying intelligence to dynamic channel
selection so the SU is able to learn to transmit on the optimal channels
maximizing its performance. A number of schemes have been considered

in the literature with a common approach involving learning the perfor-
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mance of different channels through trial and error selection, from which
the estimated best behaviour is implemented.

In [60] learning is used so that the SU selects channels with reduced in-
terference. At the start of each transmission cycle, the SUs sense the signal
interference at each channel. The channels with the least cumulative inter-
ference over multiple cycles are selected with greater probability. Song et
al [79] uses a stochastic channel selection algorithm. The SU keeps a run-
ning record of the probability of successful packet transmission per chan-
nel. The selection probability of each channel is increased if its successful
transmission probability value is greater than the channel just used, oth-
erwise decreased, thus the overall probability a channel is selected with
a higher successful transmission probability increases. The algorithm is
defined for a stationary system where the number of SUs and number and
utilization of PUs are fixed. A simulation with one SU and five PUs shows
the scheme converges so the channel with least utilization is exclusively
selected. Song et al. [79] claim this is the optimal solution as any extra
channel switching adds delays and degrades performance when the least
used channel has already been found.

Instead of selecting the best quality channel per user, the scheme
may consider maximizing the total utilization among all SUs in the net-
work while minimizing potential interference to PUs, becoming a multi-
objective channel allocation problem. Game theoretic approaches to chan-
nel allocation are presented in [99] and [68]. Nie and Comaniciu [60] for-
mulate a game where the value placed on a channel is based on the sum
of the total interference at the channel and the interference the user will
cause to other SUs if it transmits on the channel. It is shown that the game
converges to a Nash equilibrium solution where channels are allocated
minimizing the total interference among SUs in the network. A protocol
is proposed for exchanging interference information among users so allo-
cation can proceed in a distributed manner.

The level of interference is enforced in policy based CRs [91]. A major
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example is the xG Radio [54]. Licensed users accept opportunistic use of
their bands and set hard bounds on the interruptions they will tolerate.
Transmission requests generated by a policy based CR are vetted against a
Policy Reasoner (PR) that checks policy conformance. Waveforms whose
frequency or power exceeds what is regulated are rejected as illegal. In
this thesis, we premise that the interference caused by the radio is man-
aged by the MAC protocol being used. For instance, the IEEE 802.22 [26]
protocol requires users to vacate a channel within 2s of a PU being de-
tected. Our CR uses CSMA/CA to prevent collisions between SUs and
performs sensing to avoid PUs before transmission, and creates a list of le-
gal unoccupied data channels. Improvements to this area are suitable for
future work, especially with respect to using co-operative sensing. Thus,
our CR’s dynamic channel selection task involves maximizing individual

SUs’” performance within the restrictions set by policy /protocol.

4.2 Reinforcement Learning

Any dynamic programming approach where the agent uses trial-and-error
to learn, such as those considered, can be classified as a reinforcement
learning problem. Reinforcement Learning (RL) is an online approach to
learning where the optimal course of action is found by evaluating the
scalar rewards, hence the name reinforcement learning, received in repeated
interactions with the environment. RL DCS schemes for CRs are presented
in [48] [42] [96] [97].

RL models the world as a Markovian finite-state discrete-time stochas-
tic dynamic system as shown in Figure 4.1. In the system, at discrete time
epoch ¢ the agent selects an action a; € A to execute while it is in one
of a finite set of states 2, € X. The action leads to the state of the sys-
tem changing, which transitions to a new state y = x,;, with probability
P,,(a),which is Markovian since it depends only on the present state. The

agent is able to perceive the results of its actions, receiving a scalar reward
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Environment

State, X

Reward, r

4

Action, a

Learner <

Figure 4.1: Finite-State Discrete-Time Stochastic Dynamical System Envi-

ronment, from [59]

The goal of RL is to discover an optimal policy 7 maximizing the long-

term sum of rewards it receives, expressed by the value function
V() = B{) _2'r(w, m(a)|zo = z}. (4.1)
=0

The policy 7(x) defines the action to be taken in state x, resulting in the re-
ward r(zy, 7(2;)). The value 0 < v < 1is known as the discount factor, thus
the value function represents the immediate reward plus the discounted
reward of all future actions using the policy. The discount factor is used
to tune the agent’s reliance on future uncertain rewards and prevent the
function from becoming infinitely equal.

This optimal policy is denoted 7* with value function

Vi(x) = max V™ (x). 4.2)
V7™ (z) can be rewritten as
V() = R, w(0)) +75 ) Pry(m(2)) V7 (v). (43)
yeX

In Equation 4.3, the expected discounted reward V7 (z) is expressed as the
sum of R(z,n(x)) = E[r(x,n(x))], the expected reward for taking policy
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action 7(z) in state z, and the expected discounted reward for following
the policy 7 in the state transitioned into. This recursive form is known as
a Bellman equation.

Rewriting the optimal policy equation in the same form produces

Vi(2) = V7 (1) = max(R(z.a) +9 Y Po(@V7(y)l (44
yeX
Equation 4.4 is referred to as the Bellman optimality equation. It follows that

the optimal policy’s choice of action in state z is given by

m"(x) = argmax[R(z,a) + 7 ) Pay(@)V7(y)]. (4.5)

yeX
The significance is that if the optimal policy functions are known, the agent
can maximize its cumulative discounted reward by selecting the action

given in Equation 4.5.

4.3 Q-learning

Q-learning is a model-free reinforcement learning method. In Q-learning
the optimal policy is learnt through a Q-value that is updated with the
rewards of actions as the agent performs them.

The Q-learning algorithm maintains a table of Q-values, Q,q)(t), re-
ferred to as a Q-table. ((,4)(t) is the Q-value associated with state-action
pair (z, a) at time ¢ and is updated according to the rule

Q) (t +1) = (1 = )Qua) (1) + afr +ymax Q) (1)] (4.6)

whenever the agent performs action a in state z. In Equation 4.6, r is the re-
ward received after the action was selected at time ¢, Q. )(t + 1) is the up-
dated Q-value and 0 < a < 1 is the learning rate. The parameter a defines
the emphasis the agent places on more recent reinforcement in learning

over previous information. When a = 1 the old Q-value is ignored in the
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result, leading to one-shot learning. A greater learning rate improves the
speed with which the agent is able to exploit changes in the environment
but increases its susceptibility to noise.

So long as all actions are repeatedly sampled in all states, the Q-values

will converge asymptotically to

Q*(z,a) = R(z,a) + 7Y _ Pry(a)V™ (y) (4.7)

yeX

and the optimal policy followed by selecting

7 (z) = argmax Q*(z, a) (4.8)

acA

which is equivalent to the definition in Equation 4.5. The proof of conver-
gence is derived by Watkins and Dayan [90].

The agent needs to balance between greedily selecting the maximum
Q-value, which is only its estimate for the optimal policy, and sampling
other actions to ensure Q-value convergence. The two processes are re-
spectively termed exploitation and exploration and form a bandit problem as
is known in game theory. It is necessary to choose actions which are not
the best so better ones may be discovered. Selecting the uncertain best
action all the time, exploitation, will not improve the estimates of other
actions.

Many ad-hoc exploration strategies have been proposed [96], such as
the softmax approach. In our Q-learning DCS scheme, we retain the e-
greedy exploration used in [96] [97] so our results which are obtained in a
real wireless test can be compared. In e-greedy exploration the estimated
optimal action(s), that is, possessing the highest Q-value, is chosen with
probability 7 + £ where n is the number of available actions and I the
number of best actions. 0 < € < 1 is a small constant probability. Other ac-
tions are picked with probability <. In some strategies e is slowly reduced
if the system is stationary. However this does not make sense in chan-
nel selection when PU traffic patterns and noise characteristics are apt to
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change, for instance in a mobile situation. Therefore in various CR situ-
ations we should not allow e to reduce, or perhaps allow it to reduce to
some preset limit or grow as the scenario changes.

A problem with the e-greedy strategy is it is as equally likely to select
a promising channel as it is to choose a channel with a track record of bad
performance. In Boltzmann exploration channels are chosen probabilisti-

cally according to the distribution [84],

- S eQwd/T

beA

P.(a) (4.9)

which increases with the channel’s Q-value estimate. P,(a) is the probabil-
ity action a is selected in state z. The temperature 7" modifies the amount

of exploration.

4.4 Evaluation of Q-Learning

Kaelbling et al [47] identifies three criteria for measuring the performance

of a learning algorithm:
e Eventual convergence to optimal
e Speed of convergence to optimality
e Regret

Regret is the expected reward lost in learning compared to choosing the op-
timal behavior from the start. Two no-regret measures are widely defined
in the literature [38]. The learning strategy is said to exhibit no-external-
regret if the cumulative expected reward achieved by the actions selected
by the learning algorithm is equal or superior to that obtained in the worst-
case by any other fixed sequence of actions. If the expected rewards ex-
ceeds or is equal to that of any other strategy, obtained by replacing the
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choice of action @ made by the learning algorithm with a’ for all actions a
and d/, the strategy shows no-internal-regret.

The advantage of Q-learning is that model-free online convergence to
the optimal policy is guaranteed. Policy, value iteration and genetic pro-
gramming require a model of the system with which to calculate the ex-
pected reward and fitness of potential behaviors. For instance based on
the SINR sensed, if the bit error rate is used for the reward the resulting
BER is established from an equation relating the two variables. This may
be impractical given the complexity of the wireless environment. Sensing
may be unable to capture all the data, such as fading and path loss effects,
needed by the model and keeping the model up-to-date introduces severe
sensing and computational overheads. Representing the model occupies
memory. In contrast, given a reward scheme, Q-learning will converge
to an optimal policy maximizing the expected reward within the actions
available to it, in the limit that all behaviors are infinitely sampled. Using
the current example, specifying BER as the cost metric, Q-learning will
develop a strategy to minimize the BER. The policy is derived from trial
and error association of the action with the BER at the time of sampling
without requiring knowledge of the system mechanics of how BER is ex-
plicitly defined by the channel conditions. Q-learning is an online process
and the individual Q-value update at the end of each action is not compu-
tationally complex. The algorithm does not need to keep a model of the
environment in memory, only a Q-table equal to the number of states and
actions.

Q-learning is known to converge unreliably when there are multiple
agents [64]. A co-adaptation effect can be set up where agents continu-
ously perceive a better strategy because of the effect of other agents’ poli-
cies, never achieving a stable solution. An example is shown in Gomes
and Kowalcyzk [70], where a game is set up with no Nash equilibrium.
The Q-values of the agents is found to oscillate with time. Li [48] proves Q-

learning will converge in the case of two non-communicating interfering
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SUs choosing from two channels with fixed rewards and suggests using
fictitious play to predict and compensate for other users’ strategies.

Performance can be further differentiated by the speed of convergence.
RL algorithms are slow to converge and in Q-learning Q-values converge
exponentially quickly to their true values [90]. Convergence depends on
all states and primitive actions being infinitely sampled. In MAC layer
channel selection the agent has a fixed number of channels to explore but
Q-learning does not scale well to waveform or packet design when every
waveform parameter could be seen as needing to be sampled and deci-
sions need to be made on continuous variables, such as the power set-
ting. In this scenario RL requires human knowledge to make the prob-
lem tractable, such as state clustering to reduce the number of state-action
pairs, or it may be necessary to model aspects of performance in place of
actual exploration.

Despite the issue of convergence speed, Q-learning has been found in
simulation to give significant performance improvements. Jiang et al [42]
discuss a Q-learning DCS scheme. A successful packet transmission re-
wards a Q-value associated with the channel, and the channel to be used
for the next transmission is selected based on the channel with the highest
Q-value. The scheme is tested in simulation in a fixed system consisting
only of SUs and the values learnt by the radios are retained from previous
experiments. The authors show that by doing this 93% of users have found

their optimal channel and do not need to move from it on next startup.

4.5 Q-Learning Dynamic Channel Selection

Scheme

The aim of this thesis is to experimentally evaluate the performance of the
Q-learning DCS scheme proposed by Yau et al [96] [97], which has only

been tested in simulation. In this section, we present our modification of
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the scheme for the experimental implementation. The Q-learning model
is described in Table 5.1. Its goal is to learn the channel quality, which at
the MAC layer is the proportion of packets that will be correctly received
when sent using the channel. The responsibility of the MAC layer is the
error-free adjacent-link transfer of frames. The scheme uses the learned
results to select the best channel with the objective of maximizing the SU’s

probability of successful packet transmission.

Q-Learning | Description Representation

Element

Action Action: data channel for packet | i € {1,2,..., N}
transmission

Reward Constant positive reward value | R = +RW (successful packet
awarded to channel on success- | transmission), —C7T (failed
ful packet transmission. Con- | packet transmission)
stant negative cost incurred on
failure

Table 4.1: Dynamic Channel Selection Scheme Q-Learning Model

The radio can choose from N data channels to transmit a packet us-
ing the cognitive MAC protocol defined in Figure 3.4. The data channels
are denoted numerically and comprise the actions the agent can carry out
The channel Q-value is updated at the end of the transmission attempt
and receives a positive constant value reward +RW on a successful packet
transmission. As there is only one state v = 0, thus the Q-value is updated
according to

Qi(t+1)=(1—a)Q;(t) + ar, (4.10)

where i € {1,2, ..., B} was the channel used for transmission. The radio’s
MAC protocol always returns to the CCC after transmission. If there is an

error in the data channel (interference causing either DATA or ACK to not
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be received correctly) and the transmission attempt fails, a negative rein-
forcement cost with constant value —C7T' is incurred. The aim is to learn
which out of many heterogeneous channels subject to varying noise levels
and PU utilizations is best suited for packet transmission, represented in
the Q-value. Collisions in the CCC are not the fault of the data channel
and do not receive any reinforcement.

CSMA /CA avoids interference between SUs in the data channel, hence
the data channel packet transmission success rate is unaffected by other
users’ strategies. The multiagent co-adaptation effect is avoided and, from
Equation 4.7, Q-value convergence is guaranteed to

Qf = R(z,a) = (1 — P(A;))CT + P(A)RW (4.11)

7

on the condition that all channels end up infinitely sampled. Assuming
fair link layer channel contention, the Q-learning convergence time should
scale linearly with the number of SUs in the network. The Q-value is
a weighted measure of P(A4;), the successful transmission probability in
channel 7.

A simple analysis shows that after convergence has been achieved, the
selection of the channel with the greatest Q-value estimate is a no-external-
regret and no-internal-regret solution. The expected reward for substituting
in a different channel or fixed selection of another channel is lower.

To ensure all channels are repeatedly visited, e-greedy exploration is
used as described in Section 4.3. The selection rule is as follows: the Q-
table is consulted by the transmitter when it makes its channel decision
prior to sending RTS. From the channels not currently in use by another
SU, one of the [ out of n overall channels with the greatest Q-value is se-
lected with constant probability 7 + £, 0 < e < 1. Other channels are
chosen with probability <, thus the learning algorithm is no longer no-
regret.

The scheme is selfish in the regard that the agent is seeking to maxi-

mize its packet transmission success rate and learning does not consider
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potential interference to other users. Our scheme is designed to optimize
SU performance within the collision management provided by the MAC
protocol. The study of policy enforcement, restricting behavior so that ef-
fects such as interference are within regulation limits in policy based CRs,
is a separate area of CR research and is an interesting problem for future
work. The level of PU interference that arises during our scheme is studied

in our experiments.

4.6 Cognitive Radio System Integration

This section describes the implementation of the Q-learning DCS scheme
in the CR system developed in Chapter 3. A channeltable python class
object, handling data structures involved with Q-learning, is instanced in
rx2_simple mac_rtsctschannels_sensing. The class contains fields
for the Q-table, learning rate o and rewards. The Q-table is implemented
as four arrays of the frequency and waveform parameters, Q-value and a
channel integer reference number that collectively define a channel. The
object is accessed through methods:

e channeltable.getMaxQvalueChannel (): returns the fre-
quency, waveform and integer reference of a channel with maxi-
mum Q-value selected pseudo-randomly from the Q-table, using the
python random. randint method.

e channeltable.getRandomQvalueChannel (): returns the fre-
quency, waveform and integer reference of a channel se-
lected pseudo-randomly from the Q-table, using the python
random.randint method.

e channeltable.increaseQvalue (channelId): updates the Q-
value of the channel with integer reference channelId with reward
RWin the case of a successful packet transmission according to the
Q-learning scheme update rule.
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e channeltable.decreaseQvalue (channelId): updates the Q-
value of the channel with integer reference channelId with cost
CT in the case of a failed packet transmission according to the Q-

learning scheme update rule.

Data channel selection occurs during the creation of the RTS frame
by the transmitter in rx2_simple mac_rtsctschannels_sensing.
First a pseudorandom float in the interval [0,1] is generated using
python random.uniform. If the float exceeds the exploration rate
e the protocol calls channeltable.getMaxQvalueChannel (), re-
trieving the channel with greatest Q-value, otherwise according to e-
greedy exploration channeltable.getRandomQvalueChannel () is
called to obtain a random channel. The returned channel defini-
tion is passed in the RTS and used by both radios to set their data
channels at the physical layer later in the protocol. At the end of
the transmission, rx2_simple_mac_rtsctschannels_sensing calls
channeltable.increaseQvalue (channelId) if it was successful or
channeltable.decreaseQvalue (channelId) if it failed to update
the Q-value.

4.7 Summary

This chapter has presented the Q-learning DCS scheme to be experimen-
tally evaluated in this thesis. Our implementation of the Q-learning DCS
has been shown to learn the channel expected proportion of packets that
will be correctly received, expressed as a weighted sum in the Q-value,
and selects the channel to maximize this. The advantages and disadvan-
tages of Q-learning have also been discussed. The model-free Q-learning
approach simplifies implementation, but only if performance is not im-
paired by the increased convergence time. We consider the evaluation of
the presented Q-learning scheme on a real radio system a vital contribu-

tion for understanding whether the Q-learning approach is viable for CR.
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If the performance impact of increased convergence time proves to be in-
significant, Q-learning represents a possible solution to a truly cognitive
CR capable of autonomously acting for itself without needing to specify

how to achieve a task.



Chapter 5
Experimental Methods

This chapter discusses the wireless experiment developed to evaluate the
Q-learning DCS scheme. A test scenario is formulated in Section 5.1,
in which the performance of the channel selection scheme is measured
through the progress of the CR in transferring data among licensed users.
The thesis implements an experiment attempting to replicate an instance
of the scenario, to within the capabilities of the GNU Radio and USRP
hardware. The task of implementing the physical experiment is described
in Section 5.2, which contains the design of GNU Radio PU nodes and nec-
essary administration systems. The logging methodology is established in
Section 5.2.4. Section 5.3 identifies the key performance metrics the exper-
iment aims to evaluate. These may be referred to if the experiment needs
to be reproduced and to determine how the results were obtained. Finally

the wireless experimental setup is presented in Section 5.5.

5.1 Test Scenario

The wireless test scenario is designed to evaluate the Q-learning scheme’s
performance selecting among multiple data channels with different PU
utilization. The scenario is summarized in Table 5.5, with experimental,
timing and Q-learning parameters collated in Tables 5.6 and 5.7.

64
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Category | Symbol Details Values
Scenario Number of SUs 2
n Number of data channels 3

Runtime Scenario-specific (s)
Interference model Binary

Secondary users
SU traffic Always backlogged

Size of SU packet (DATA pay-
load), lsys

Fixed, scenario-specific (bits)

Data chann

els

Primary PU traffic model Stochastic channels with ex-
users ponentially distributed ON
and OFF times

tru Packet duration Fixed, scenario-specific (s)

pi Utilization of each PU traffic | Scenario-specific
Channel PF Packet error rate Scenario-specific
quality
Q-learning

o Learning rate of Q-learning | 0.2

€ Trade-off between explo- | 0.1

ration and exploitation

¥ Discount factor 0

RW Reward 15

cT Cost 5

Table 5.1: Experiment Summary

The Q-learning scheme performance is measured by the progress of a

pair of SUs in sending across a file over the experiment runtime. The SUs

consist of the CRs we developed in Chapter 3, using the cognitive MAC

protocol to exchange frames and utilizing the Q-learning DCS to select
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from n = 3 channels in the system to transmit. The transmitting SU has
data to send at all time, i.e. is always backlogged. The DATA frames sent
each time are identical in size as link-layer considerations are beyond the
scope of what the experiment is attempting to measure. The recipient SU
has no packets to send. All channels are located in the 2.4-2.5GHz ISM
band.

Each data channel i is shared with a GNU Radio device designed to
represent a licensed user of the band. The packet-based PU traffic is mod-
eled simplistically as an M/D/1 queueing process. Fixed-size packets ar-
rive with exponentially distributed interarrival times, are enqueued for
transmission and take a constant time to transmit based on the PU bitrate.
The channel utilization is p; = tpy;\; where ), is the PU traffic arrival rate.
There is no co-ordination between the PUs or SUs. Neither user is able
to recognize each other’s frame transmission protocols. Hidden users are
avoided. All radios are located within one hop of each other and the signal
generated at any one user interferes with the signal received at any other
user, leading to both packets being lost according to this binary interfer-
ence model. As the MAC transmission protocol and sensing are not under
investigation and perfect sensing and an error free CCC are assumed, both
of which end up being achievable in the experiments. Changing the relia-
bility of the MAC protocol does not affect the relative performance of the
scheme when compared to other DCS strategies, such as random channel
selection.

The scenario thus consists of a stationary number of SUs and PUs,
whose traffic utilization is also stationary, similar to [79] and [96]. We use
the SU Q-learning parameters from [96] so that results can be compared.
The test is conducted in a busy environment with other WiFi transmis-
sions present. Each channel has an underlying packet error rate (PER) due
to noise and interference effects originating from users sharing the ISM
band, such as WLAN hotspots. All packets are sent without retransmis-

sions and the outcome of the transmission attempt is final.
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Experimental design involves balancing analytical tractability and re-
source availability with the generality of the result obtained given the
assumptions or simplifications made. CRs are an emerging technology
and the bands as well as licensed users with which they will be deployed
have yet to be decided. This experiment provides performance results in a
packet-based network, which are often modeled as Poisson processes [65]
as is done here. Packet traffic at the network core has been found to slowly
tend to Poisson [44], although the likely deployment scenario for CRs is
little utilized bands at the network edge. Poisson processes are a classical
approach for modeling voice networks and Kos and Bester [44] conclude
that real packet systems can be reasonably modeled by equivalent Poisson
packet traffic and improved by combining it with empirical traffic results.
For TV or emergency frequencies, which are two bands of interest in SU
network literature [26] [25], it is unclear how well this model applies. The
usage level of a police dispatch radio would on inspection be expected to
vary with the time of day and be prone to sudden bursts of activity. Wang
and Salous’ [88] analysis of the Global System for Mobile communications
(GSM) band found that the spectrum occupancy pattern of an emergency
radio band was best approximated by a seasonal autoregressive integrated
moving average (ARIMA) model. Nonetheless, Poisson traffic models are
widely used in CR spectrum management literature [89] [86].

A concern is whether the experimental results can provide any useful
contribution given the small-scale of the network. The number of users
makes maximum use of the restricted availability of GNU Radio devices
and host computers, if one PU is to be available for each data channel.
Generality is not lost by using a single agent. The multiagent case as
shown previously affects the learning convergence time but not the sta-
ble solution. Analytical performance when there are many channels is

derived in Chapter 6.
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5.2 Scenario Implementation

5.2.1 Secondary Users

The existence of only one SU pair removes the need for the CCC to man-
age collision avoidance. In the experiment, the CR MAC protocol mod-
ule rx2_simple mac_rtsctschannel_sensing (refer to Section 3.6) is
modified so RTS-CTS channel information is exchanged via sockets be-
tween transmitter and receiver processes. The DCS scheme performance
results, in selecting data channels, are made independent of the quality of
the CCC and particular MAC protocol used in the SDR implementation.
Likewise MDTT and DIFS become unnecessary and are set to ¢ = 0s to
reduce the transmission cycle time, shortening the time required by the
experiment.

The transmitting and receiving CRs run separate ver-
sions of rx2_simplemac_rtsctschannel_sensing. The
receiver is implemented by providing no packets at the
rx2_simplemac_rtsctschannel_sensing input buffer to send.
To give backlogged packet traffic, the transmitter is set to loop transmit-

ting a fixed link layer payload.

5.2.2 Primary Users

The PU is implemented in GNU Radio by making use of physical layer
elements from the CR, under a new top-level python class rx2_pu_tx in
place of rx2_simplemac_rtsctschannel_sensing handling Poisson
traffic generation. Class rx2_pu_tx initializes the existing frame receiver
when itis instanced. The sensor and received are not used. Each PU makes
use of a USRP mounting a single RFX2400 or XCVR2450 daughterboard
for its RF frontend.

Class rx2_pu_tx loops, sleeping for an exponentially distributed time

set by calling random.expovariate using the utilization interarrival
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time parameters, with p; = tpy,;\;, then generates a MAC layer DATA
packet which it adds to the frame transmitter input message queue. The
CR frame transmitter reads the queue for data, which it transmits. All
packets use a fixed payload and are generated as for a new MAC protocol
transmission, with unique (incremented) sequence number.

In order to record the level of PU interference caused by the SU, a pas-
sive receiver is set up in each channel. It logs the PU packets it receives cor-
rectly using the convention in Section 5.2.4. The receiver is implemented
in GNU Radio and uses a USRP frontend with either a single RFX2400 or
XCVR2450 daughterboard. The top-level python class controlling the ra-
dio backend, rx2_pu_rx, creates an instance of the CR frame receiver and
logs the received packets. So that PUs and SUs cannot recognize each
other the two types of users implement different modulation schemes,
with GMSK for PUs and DBPSK being used by the SUs. The simulta-
neous presence of a different user type appears as bit errors and signal

interference.

5.2.3 Process Administration

To co-ordinate the system and automate parts of the experiment,
a python program master_server was written. For convenience,
master_server enables a batch of individually described runs to be de-
scribed in code which it then automatically executes, for instance, to re-
peat the experiment with different SU utilizations or signal amplitude set-
tings. The program uses ssh network protocol calls to each host com-
puter address to start the SU and PU programs. The users do not begin
transmitting but initialize all necessary flowgraphs and variables imme-
diately up to this point. The user notifies master_server it is ready via
a network socket provided by the program. Once all users have done so,
master_server broadcasts a synchronized go order on all sockets. The

SU transmitter records the time elapsed and once runtime is exceeded,
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communicates this via socket exchange to master_server which then

broadcasts stop orders to all programs.

5.2.4 Logging Methodology

The per packet transmission attempt results are logged to the hard disk
by the SU transmitter and PU transmitter and receiver for experimental
analysis. The SU’s nth packet transmission attempt result is recorded in
the logfile as a new data line,

ti1(n), ty(n), outcome(n), chno(n), seg.num(n),

gval (n), bytes_transmitted(n)

for future offline MATLAB processing. The description of the entries is as
follows:

e t; (n): time at which the DATA frame was enqueued at the frame
transmitter.

e t, (n): time at which the ACK frame was received (applicable to
successful transmissions only)

e outcome (n): transmission outcome (0: unsuccessful because ACK
was not received, 1: successful, 2: unsuccessful because signal was
detected in Listen-before-Talking sensing).

e ch_no (n): Data channel number attempt was made on.
e seg._num (n): Sequence number of transmission.
e gval (n): Data channel Q-value at end of transmission.

e bytes_transmitted (n): Payload bytes if transmission was suc-

cessful, otherwise zero.



CHAPTER 5. EXPERIMENTAL METHODS 71

The host machines are synchronized using the ntpd NTP (Network Time
Protocol) client daemon. Additional metadata is generated at the head of
the logfile. An example is shown below,

SUTX
Transmit Path:
Using TX d’board A: XCVR2450 Tx

Tx amplitude 24000.0
modulation: gmsk_mod
bitrate: 250kb/s
samples/symbol: 2
interp: 256

Tx Frequency: 2.5G

Receive Path:

Using RX d’board A: XCVR2450 Rx

Rx gain: 0.0
modulation: gmsk_demod
bitrate: 250kb/s
samples/symbol: 2

decim: 128

Initial Rx Frequency: 2.5G

Sensor Path:

Using RX d’board A: XCVR2450 Rx

gain: 0.0

decim: 128

Initial Rx Frequency: 2.5G
Power Sensor (Channel):

Channel Freqg Width:

N: 384
FFT Size:

512

375k
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01_50_33__07_02_2010
1265460555.9897289

350

0, 1, 2

2425000000.0, 2450000000.0, 2475000000.0
-1, -1, -1

SUTX

Transmit Path:
Using TX d’board A: XCVR2450 Tx

Tx amplitude 24000.0
modulation: gmsk_mod
bitrate: 250kb/s
samples/symbol: 2
interp: 256

Tx Frequency: 2.5G

Receive Path:
Using RX d’board A: XCVR2450 Rx

Rx gain: 0.0
modulation: gmsk_demod
bitrate: 250kb/s
samples/symbol: 2

decim: 128

Initial Rx Frequency: 2.5G

Sensor Path:
Using RX d’board A: XCVR2450 Rx
gain: 0.0
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decim: 128
Initial Rx Frequency: 2.5G

Power Sensor (Channel):
Channel Freqg Width: 375k
N: 384

FFT Size: 512

In this first section, the physical layer transmission parameters in use are
listed.

01_50_33__07_02_2010
1265460555.9897289
350

The next two lines record the date the run was begun. The second
line is the UTC time since the Unix epoch, as generated by python
time.time (), and t; and t, are offset from this value so they can be
logged with higher precision. The third line comprises the run duration.

0o, 1, 2
2425000000.0, 2450000000.0, 2475000000.0
-1, -1, -1

The final section of metadata contains a description of the data channel
frequencies and the respective initial Q-values.

The logfile entries generated by the PUs follow the same format. Un-
like the SUs, there is no protocol to tell the transmitter if its packet was suc-
cessfully received. Instead, the transmitter logs when it sends its packet,
which is treated as always successful, while separately the receiver logs
the PU packets it correctly receives. The files are combined in MATLAB
postprocessing to follow the SU standard, using the packet transmission
and reception times for t; and t, and creating failed attempt entries for

those packets with sequence numbers not recorded by the receiver.
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5.3 Performance Metrics

This section defines the performance metrics used for analysis. In the Q-
learning DCS, the strategy or scheme used for channel selection involves
choosing the band with the greatest expected guarantee of packet trans-
mission success. The Q-learning approach is utilized to learn the expected
probability from experience. The analysis of the experiment results main-
tains the distinction.

5.3.1 Scheme Performance

The performance of the Q-learning scheme is measured by the SU packet
transmission success probability, goodput and level of PU interference

achieved in the experiment.

SU Packet Transmission Success Probability (P(A))

The Q-learning scheme selects the channel with the estimated maximum
expected probability any transmission attempt will be successful, unless
exploration is required. The achieved probability comprises a perfor-
mance metric, defined as the average SU packet transmission success
probability across the logged results.

The average probability over log entries [z, f] is calculated from the log-
file by computing

——  |{n €l flloutcome (n) = 1}|

Pld) = el 7]

The average SU packet error rate is of course 1 — P(A).

(5.1)

SU Goodput (G)

The goodput is defined as the useful payload bits correctly exchanged per
unit time. The achieved experimental SU goodput is measured as the av-
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erage goodput, computed from the logfile as

n=f
8* Z bytes_transmitted(n)

A0 ' 2

The results will be specific to physical channel bitrates in the experiment.

The Q-learning scheme considers only the MAC layer transmission suc-
cess probability and will poorly optimize the goodput when channel bi-
trate is heterogeneous, for instance if the channel with low loss rate has
lower bitrate. The metric is necessary to provide comparisons with DCS

schemes that wait before transmitting.

PU Interference (I;)

The PU interference caused by the SU is primarily determined not by the
DCS but the sensing and collision avoidance techniques in the radio imple-
mentation. Useful conclusions can be drawn when evaluating the relative
interference of other schemes.

We define /; as the PU packet error rate in channel j due to SU inter-
ference. While this is not directly given by the logged outcomes, if the
channel packet error rate due to noise P which is assumed to be inde-
pendent is known, the average interference is given by,

= _ (\{n € [i, f]loutcome(n) # 1}
7 [{n € [i, f1}]

~PP/A-PE) (53

from the PU logged data.

5.3.2 Q-Learning Performance

Kaelbling et al’s [47] metrics for evaluating the performance of learning
algorithms were stated in Section 4.4, where it was shown that Q-learning
eventually converges to the optimal no-regret strategy within the scheme.

The performance of the Q-learning algorithm is measured by the speed
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of convergence. The online performance of the scheme and the change
in scheme performance with time is analyzed to establish the speed of

convergence to the optimal policy.

5.4 Alternative Strategies

The Q-learning scheme is analyzed based on its relative performance com-
pared to other DCS schemes. Five alternative strategies are considered.
Random channel selection, a rule-based DCS scheme and a no-regret Q-
learning scheme are implemented on the radio by a simple modification
of the channeltable selection method. Performance results are obtained
by repeating the experiment with these algorithms. Two ideal strategies
are formulated and set analytical upper bounds for the goodput. Their
performance is inferred from the logged PU traffic.

5.4.1 Random Channel Selection

Random channel selection is used as a baseline DCS strategy. The trans-
mitter selects the data channel uniformly at random from the set of avail-
able channels to use for the next packet transfer.

5.4.2 Rule-based Channel Selection

This rule-based strategy was analyzed in simulation alongside the Q-
learning scheme in previous work [97] and was found to have significantly
improved throughput over random channel selection. Channel selection

in this scheme is determination by applications of the rules:

e The same data channel is used if the previous packet transfer is suc-

cessful.

e Otherwise a channel is selected uniformly at random out of the other

available channels.
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5.4.3 No-Regret Q-learning (Best Channel) Channel Selec-
tion

This strategy selects the channel with the least utilization for transmission.
The utilization is given to the scheme by the specification of the channel
utilization in the scenario. If there is more than one channel with the least
utilization either of these channels is selected uniformly at random. If the
channel PER is negligible, the channel with the least utilization has the
greatest expected successful transmission probability. The scheme gives
the no-regret converged Q-learning strategy, except as the utilizations are
known the Q-values can be derived from the start without requiring Q-

learning to learn them during runtime or exploration.

5.4.4 Non-Deferred Ideal Strategy

This strategy assumes perfect knowledge of PUs’ activities by the SU. If
in the next transmission no PU is active while the SU is transmitting in
the data channel, the scheme selects the first, ordered numerically, such
channel. Otherwise a data channel is selected uniformly at randomly and
the transmission attempt will fail due to the resulting interference. The
scheme successfully exploits any whitespace intersecting with the next
transmission.

The performance of this strategy is calculated based on the PU traf-
fic observed in the equivalent experimental trial when run with the Q-
learning DCS scheme. The traffic is reconstructed based on offline anal-
ysis of the PU logfiles, which give the time packets are enqueued at the
frame transmitter, thus the times when the PU is transmitting is found by
adding on an extra packet transmission time of activity starting from the
enqueue time. A MATLAB function was written to step through apply-
ing the ideal DCS strategy. The total number of SU packets successfully
transmitted is calculated from the sum of the number transmitted without
SU interference in each channels j corrected for the independent PER by
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multiplication with 1 — P/

5.4.5 Deferred Ideal Strategy

This strategy is an extension of the non-deferred ideal strategy. If no avail-
able channel is found, the scheme suspends the packet transfer until a data
channel is free from PU activity during the SU transmission time, rather
than transmitting futilely. Consequently no PU interference arises from
this strategy. Note that neither ideal strategy represents the theoretical
upper limit to the number of packets that can be transmitted, which can
be viewed as a packing problem to align the time packets are transmitted
with the occurring whitespace.

5.5 Experimental Setup

In this section we describe the physical setup of the wireless experiment.
The noise, SINR and physical layer parameters are recorded in enough
detail for the experiment to be reproduced.

5.5.1 Overview

The test setup consists of five host computers which run GNU Radio 3.2 on
NetBSD and are networked within the wider VUW ECS network. Com-
puter specifications consist of 3.00GHz Intel Core 2 Duo CPU E8400 pro-
cessors with 3.21GB RAM. The transmitting and receiving SUs are imple-
mented on separate workstations. Each of the remaining three computers
executes the PU receiver and transmitter processes for one of the three
data channels and can be identified by having attached two USRP Kkits.
Initial design work and testing was performed with the radios in the
setup arrangement connected over wireline. Signals were transmitted
via RG858C /U 5012 coaxial cable and two 1-8 2000-4200MHz ZB8PD-4-S+
power splitters were used to combine the user signals at the receivers.
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Figure 5.1: Wireless Experimental Setup

Scarcity of daughterboards was an issue. For consistency the SUs
and PU receiver USRPs mount XCVR2450 daughterboards, but because
there was an insufficient number of either type, the PU transmitters use
RFX2400 daughterboards. Even so there was an insufficient number of
daughterboards to implement PU receivers in all three channels as well
as implement the SUs and PUs, thus the 2.475GHz channel is not logged
by any PU receiver device. Each USRP transmits and receives via a 3dBi
VERT2450 dual band 2400-2480MHz and 4.9-5.9GHz vertical antenna.

5.5.2 Channel Setup

Three nominally 337.5kHz width data channels centred at 2.425GHz,
2.450GHz and 2.475GHz are arbitrarily chosen in the 2.4GHz ISM band.
The common control channel is established at 2.400GHz. The main sources

of wireless interference encountered in this band were 802.11 WLAN
and Bluetooth devices. Thirteen 22MHz width channels in the 2.4000-
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2.4835GHz band are defined for use by 802.11 Wi-Fi as illustrated in Figure
5.2. Channels {2,3,4,5}, {7,8,9,10} and {12,13} respectively overlap with
the 2.425GHz, 2.450GHz and 2.475GHz data channels. The level of usage

and channel allocation varies with the user.

1 2 3 4 5 6 7 8 9 10 n 12 13 14 Channel
2.412 2.417 2.422 2.427 2.432 2.437 2.442 2.447 2.452 2.457 2.462 2.467 2.472 2.484 Center Frequency
T (GHz)

22 MHz

Figure 5.2: 2.4GHz band 802.11 Wi-Fi Channels, from [35]

The 2.4GHz wireless noise was observed over an interval of 24 hours
using a Rohde&Schwarz FSL spectrum analyzer mounting a VERT2450
antenna. Figure 5.3 plots several traces including the average noise power.
The max hold and min hold traces record the maximum and minimum ob-
served power at each frequency over the time period. The max hold trace is
dominated by multiple signals’ profiles indicating there is significant band
usage. These signals’ SNR are in the order of 40dB as measured from peak
to the average noise floor. The single trace is an instantaneous capture of
the spectrum power and shows one WLAN channel in use. Using the spec-
trum analyzer’s spectrogram function it was empirically found that other
signals appeared as transient spikes, re-emerging within several hundred
milliseconds.

In our experimental setup, SUs and PUs transmit respectively GMSK
and DBPSK modulated packets with symbol rate Rg = 500kS/s and bi-
trate B = 250kbit/s, corresponding to a USRP receiver decimation of 128
and transmitter interpolation of 256. Figures 5.4 and 5.5 show plots of the
DBPSK and GMSK transmission in the 2.425GHz channel obtained off the
spectrum analyzer. The RRC pulse shaping filter is used with roll-off fac-
tor o = 0.35. This should theoretically give a signal baseband bandwidth
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Figure 5.3: Channel Noise, observed over a 24 hour interval

W of
1+«

2
In the introduction to GNU Radio it was stated that the maximum

W:

Rs = 337.5kHz. (5.4)

double-sided signal bandwidth that could be transmitted and received by
the USRP was 8MHz. It was found that using a higher bitrate would cause
frequent overruns in the PU, since the same computer must handle both
receiver and transmitter processes and the receipt of a packet triggers writ-
ing to a logfile, thus the USB limit was not approached. Receiver gain is
set to 0.

The XCVR2450 receiver sensitivity to XCVR2450 GMSK-modulated
(SU) and RFX2400 DBPSK-modulated (PU) signals was measured. One
thousand 944-byte packets were transmitted in the 2.425GHz channel and
the bit error rate calculated, where the receiver and transmitter are cabled
together to isolate the radios from outside interference. The transmit am-
plitude is varied across the full-scale range 0-32768 to adjust the SNR. Fig-
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Figure 5.4: DBPSK modulated signal spectrum plot

ure 5.6 plots bit error rate (BER) against SNR, defined as the difference in
the mean power of the signal in a 338kHz band centred around the chan-
nel frequency from that of the same band when the signal is absent, i.e.
the level of the noise floor. The power is computed as the mean of the
spectrum analyzer average power trace spanning the 338kHz band.
Referring to Figure 5.6, the PU signal bit error rate rises if the SNR is too
high, which occurs because at higher amplitudes the USRP DAC goes into
gain compression causing nonlinearities in the output signal reducing the
effective SNR for correct demodulation [29]. The experiment signal ampli-
tude values are chosen so the SNR inside the setup lies in the 30dB region
where bit error rate is negligible. The average noise floor was observed
to be flat and consistent. There was no significant difference in the noise
floor between data channels or, later at the time of the experiments, when

sampled at the beginning of separate runs. The SU transmit amplitude
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Figure 5.5: GMSK modulated signal spectrum plot
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is set throughout to 9000 and 24000 for the PU transmit amplitude, with
Table 5.2 showing the SNRs inside the setup and Table 5.3 the wireless bit

error rate due to noise.

Transmitter | Receiver | SNR(dBm)
SU (TX) SU (RX) | 33.6+1.5
SU (TX) PU (RX) | 29.8 + 1.6
SU (RX) PU (RX) | 29.3+0.5
PU (TX) PU (RX) | 33+2

PU (TX) SU (TX) | 34.0+0.7
PU (TX) SU (RX) | 31.9+0.5

Table 5.2: Wireless Setup SNR Settings
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Figure 5.6: 2.425GHz SUTX-SURX and PUTX-PURX BER against SNR

Transmitter | Channel (GHz) | BER(107?)
SU 2.400 20.81
SU 2.425 20.79
SsU 2.450 20.80
SU 2.475 20.82
PU 2.400 2.081
PU 2.425 2.080
PU 2.450 2.079
PU 2.475 2.083

Table 5.3: Wireless Setup BER Settings

Under these SNR conditions, it was found that perfect detection could
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be achieved simultaneously with negligible power detector false alarm
probability. The power detector settings in the setup are described in Table
5.4 and are expressed in terms of the variables in Section 3.5. These were
arrived iteratively. The value of Q~'(Py,) was increased until zero false
alarm results were received after 10,000 sensing operations when no user
signal was present. The values of N > 512, M were reduced while this
standard was maintained to minimize sensing time and complexity with-
out affecting performance. In this case the minimum values of M, N were
obtained without the false alarm rate increasing. The value of Q~'(P%,)
was then multiplied by a safety factor of 10. The probability of detection
is 10,000 positive readings after 10,000 sensing operations when each PU

signal was present.

Parameter Value
USRP Decimation 128
N 512
K 384
M 1

Q' (Pra) 99
Py, (0.04+0.5) x 107°
Py 1.0
Sensing time, tspns(ms) 23
FFT double-sided bandwidth (kHz) | 500
K-slice bandwidth (kHz) 375

Table 5.4: Wireless Setup Power Detector Settings

Regarding the notation in use when referring to channels by index,
such as the packet error in channel i, PF, the channels are numbered
so the data channel at 2.425GHz is referred to as data channel 1, the
data channel at 2.450GHz as data channel 2 and the data channel at
2.475GHz as data channel 3. This carries through when describing the
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settings in use for the wireless scenario. "The experimental trial was run
with PU channel utilizations [0.2,0.5,0.6]”, and similar, should be taken as

[p1/p2/p3]:[0'210'510'6]'

5.5.3 Timing Setup

Without programming the USRP FPGA, the userspace architecture used
by the CR is unable to replicate the strict timing requirements of common
wireless protocols such as IEEE 802.11. USB latency introduces a delay
when a block of signal data is transferred across the interface given by [75]

f (512, fusb_nblocks"fusb _block size)

sample size” f, ’ (5:5)

AUSBwai’c -

where f(z,y) is the size of data at the USB buffer before a packet is sent,
x being the least and y the most. The denominator gives the rate at which
data is being accumulated at the buffer, with f, the sampling frequency.
The USRP Cypress FX2 controller requires at least 512 bytes before it will
transmit a packet. The maximum is user specifiable. GNU Radio recom-
mends fusb_block_size=1024 and fusb_nblocks=16 for realtime op-
erations which we use. Further reductions produce unacceptable losses in
the achievable data rate due to increased USB protocol overhead. Sub-
stituting in the decimation rate of 128 in use and sample_size=2*16
bits=4 bytes for the size of a complex float gives a sampling frequency of
fs = (64MS/s)/(128) = 500kS/s. It follows the minimum USB latency in
the setup is 256us. Schmid et al [75] found that the latency tended towards
the maximum specified, in which case this would be 8.192ms. For compar-
ison 802.11 SIFS (Short Inter Frame Space) interval, at 28s, is two orders
of magnitude smaller. Interprocess scheduling also introduces significant
jitter. This matter is covered fully in the discussion on GNU Radio, Sec-
tion A.4.2 in particular. Useful comparative performance results can still
be obtained, even if the numerical goodput and other metrics achieved by
the Q-learning, rule-based and random channel selection schemes do not

reflect industry speeds.
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The packet transfer times in the setup, as defined in the revised MAC
protocol transmission timeline in Figure 5.7, are collated in Tables 5.5,5.6
and 5.7, which also provide a general summary of the experiment param-
eters. There is a significant delay, tsgns pata = 16ms, between when the
transmitter completes Listen-before-Tnlking sensing and when the start of
the DATA packet is physically transmitted by the radio. The time was
measured by logging when the transmitter finishes sensing and the re-
ceiver decodes the packet, then subtracting from the difference the DATA
packet transfer time. The delay is attributed to USRP latency and process-
ing delays at the host computer. Similarly {para ack is the time between
receipt of the DATA packet and start of the physical transmission of the
ACK packet by the receiving SU. The interval ¢para ack was found to be
26ms with SIFS set to 1ms. These latencies are not negligible mandating
their inclusion in Figure 5.7. The average delay observed over 3000 mea-

surements is quoted.

terscrs toens  tsens pata toatai toata_ack tacki tswircn

Switching! 1 1 1 1

DIFS Delay + SIFS' : :

Sender 1 1
1 1
Common : :
channel \Switchipg

1
1
1
1
1
1
T
1
1 Delay
1
- 1
Data Sensing DATA l
1
1
1
1
1
1
1
1
T
1
1

channel : Latency
| 1

Switching!

SIFS Delay;
Destination
CTS
Common

channel

Data
channel

SIFS Dela
1
ACK
1

Latency : |
1 1 1 1

Figure 5.7: Cognitive MAC Protocol Transmission Timeline in Channel 7
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Symbol | Details Values
Number of SUs 2

n Number of data channels | 3
Common control channel | 2.400GHz

Available data channels

[2.425GHz, 2.450GHz, 2.475GHz]

Runtime

350s

Interference model

Binary

Table 5.5: Experimental Setup
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Symbol Details Values
Secondary users

SU traffic Always backlogged
SIFS SIFS duration 1ms
tRTSCTS RTS-CTS exchange duration <1lms
tswiTCH Channel switching duration 12ms
tsENs Sensing duration 23ms
{SENS_DATA Latency 16ms
tDATA_ACK Latency 2.6ms
t ACK_EXP ACK expiration timer 10ms
tSENS_EXP Sensing abort expiration timer 35ms
B Bitrate 250kb/s
lsy Size of SU DATA packet 944 bytes
Size of SU ACK packet 40 bytes
IDATA i DATA packet duration 30.2ms
{DATA_PADDED, i Padded DATA packet duration | 33ms
tACK,i ACK packet duration 1.3ms
t ACK PADDED,i Padded ACK packet duration 16ms
ta; Successful transmission cycle | 110ms
duration
i, Failed (data transfer) transmis- | 191ms
sion cycle duration
1B, Failed (aborted sensing) trans- | 191ms

Primary users

PU traffic model

Stochastic channels with expo-
nentially distributed ON and
OFF times

Packet size 9376 bytes
tpu Packet duration 300.0ms
{PU_PADDED.,i Padded packet duration 311.3ms
Di Utilization of each PU traffic [0.1,0.9]
Data channels
PF(DATA) SU DATA PER 0.0016
PF(ACK) SU ACK PER 6.7 x 107°
PE(PU) PU PER 6.7 x 0.0016

Table 5.6: Experiment Notations, Parameters and Timing Values
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Symbol | Details Values
o' Learning rate 0.2

€ Exploration rate | 0.1

v Discount factor | 0

RW Reward 15

cT Cost 5

Table 5.7: Experimental Q-Learning Parameters

The experimental SU and PU data payloads are chosen to exaggerate
the transfer times so the proportion of time spent transmitting against time
wasted due to protocol overheads is realistic. An important distinction
needs to be noted. The frame transmitter pads the PLCP encapsulated
MAC frame to the nearest multiple of 512 bytes to avoid waiting at the
USB interface. Intervals tpara.i, tack; and tsy; are the times required to
transfer at B=250kbit/s the SU DATA, ACK and PU frames, of size 944, 40
and 9376 bytes. The maximum 802.11 MAC frame payload is 2312 bytes
and the PU frame is fragmented when it is transmitted. The frame data is
padded by the transmitter to a total size of 1024, 512 and 9728 bytes, from
before. Any other radios will suffer interference in the channels during
the time need to transfer the padded frame size ¢parta pADDED,i, tACK PADDED
and tsy pappep,i, although the receiver will already have obtained all of
the frame if interference occurs during the padded section after the end.
The PU packet transfer time is set an order magnitude greater than the SU
DATA frame transfer time to be consistent with CR literature, which em-
phasize that SU keep licensed band transmissions short in order to quickly
respond to the arrival of a PU.

The increased packet transfer times require longer run durations to ob-
serve the behavior of the DCS schemes. Various measures described were
implemented to lower the transmission time. As there is only one SU pair,
CCC co-ordination is redundant. MDTT and DIFS are dispensed with and
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RTS-CTS is carried out via reliable socket information exchange, with the
interval trrscrs corresponding to the time required. This improves the gen-
erality of the performance results obtained for the DCS schemes: it is in-
dependent of the quality of the CCC which is now perfect. The times re-
quired for the different SU transmission outcomes in the setup shown in
Table 5.6 are the median observed durations. The times exhibited a high
degree of variability suggestive of the effect of process scheduling, follow-
ing the delay measurement conclusions made by Nychis et al [61]. Table
5.8 gives the median, standard deviation, minimum and maximum trans-

mission time measurements observed over 3000 repetitions.

Outcome Median | Std Min | Max
dev
ta; | Transmission successful in | 110 52.0 78.35 | 4934
channel i (ms)
tp, | Transmission fails in channel | 191 5.0 179.4 | 208.3

i - DATA or ACK packet not
received correctly (ms)

tp,; | Transmission fails in channel | 190.8 5.7 179.0 | 210.1
i - aborts in sensing because a
PU is detected (ms)

Table 5.8: Transmission Outcome Duration Measurements

5.6 Summary

This chapter described the experimental setup used by this thesis to eval-
uate the Q-learning channel selection scheme. A wireless scenario repli-
cating a possible network deployment of SUs was developed and suitable
performance metrics defined. The logging methodology used to reliably
record the results and implementation of other support systems were ex-
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plained. Finally the specific timing and other experimental parameters
were stated for reproducibility.



Chapter 6
Experimental Model

The performance of the SU when employing Q-learning channel selection
in the wireless scenario, defined in Section 5.1, is derived analytically for
a general number of data channels of different PU utilizations.

After establishing various preliminary results in Section 6.1, Markov
chain analysis is used to find expressions for the SU’s performance us-
ing Q-learning channel selection in Section 6.2 in terms of the long term
packet transmission success rate and goodput. Although not necessary,
the level of PU interference caused by the SU is calculated. Markov chains
are a familiar tool in analysis and, while the present derivation is careful
to explain the terms being used, a useful online reference can be found
here [39]. In Section 6.2.4, we develop a discrete-time model of the SU’s
behavior and derive upper and lower bounds for the Q-learning conver-
gence time within the scenario. Using the same metrics, the performance
is derived for random channel selection in Section 6.3. Finally, in Section
6.4, setup implementation non-idealities are discussed that lead to the an-

alytical performance being different to what is observed experimentally.

93
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6.1 Preliminary Results

In this section, variables used in the analysis are defined and prelimi-
nary results for the SU packet transmission outcome in each data chan-
nel are derived. The scenario is defined in Section 5.1. We use the no-
tation in Figure 5.7 and Table 5.6 for the scenario parameters, such as
the MAC protocol SU packet transmission timeline. In the scenario, the
backlogged SU transmits fixed size DATA and ACK packets, with transfer
times tpata; and tack,; in data channel ¢ depending on the bitrate. Inter-
vals tsens pata and tpata ack represent small processing and timing delays
in between. The PUs also broadcast only fixed length packets, lasting du-
ration tpy,; in channel i, which arrive at the input queue with exponen-
tially distributed interarrival times. Our analysis assumes tpy; is longer
than both tsgns pata + fpata: and tpata ack + tack, which is adhered to
in the experiment, in order to simplify interference calculations. This is a
valid generalization since secondary usage policy is to keep communica-
tions short to be able to quickly cease activities once a PU moves into the
band.

In the scenario, the transmission attempt in channel ¢ can have three

possible outcomes with resulting durations:

e Transmission successful in channel i, A;: ta, = trrscrs + fsens +

tsens.DATA + tDATA,; + tDATA ACK + Tack,: + fswitcH + tMDTT

e Transmission fails in channel 7 - DATA or ACK packet not received
correctly, By ;: tp, , = trrscts + tsens + tseNs DATA + tpaTa + tack Exp +

tswitcH + tMDTT

e Transmission fails in channel 7 - aborts in sensing because a PU is

detected, By ;: tp,, = trrscts + tsens + tsens.Exp + tswitcH + tMDTT

The interval trrscts is constant since with only one SU transmitter no addi-
tional time beyond DIFS is incurred in carrier sensing the CCC. The data
channel is selected by the scheme and after RTS-CTS the radio senses the
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channel. If a PU is detected the transmission is aborted, leading to out-
come B,;. The radio waits sensing expiration timer tsgns gxp for the re-
ceiver to reset, switches back to the CCC and listens for typrr for all other
SU transmissions to finish before commencing another attempt. If both the
ACK and DATA packets are received correctly, the transmission is success-
ful (outcome A;) and the transmitter returns to the CCC and waits typrr.
Otherwise, in outcome B ; the transmitter waits expiration timer ¢ack exp
for the ACK packet that never arrives before returning again.

The probability of each outcome is derived assuming the SU and PU
states at the time of transmission are independent, i.e. there has been suf-
ficient time in between a prior attempt on the channel so that whether the
PU has a packet to send in its queue is unknown. This is more likely to
hold the greater the number of channels to select from. Binary interfer-
ence is assumed. Both SU and PU transmitting at the same time in the
same channel results in both users” packets being lost.

The probability the data channel is sensed as clear, P(s;), requires there
to be no ongoing PU packet transmissions prior to sensing. The PU is
an M/D/1 system and this is equivalent to the probability there are zero
packets in the system [40]

Foi=1—pi (6.1)

Following this no new SU packets must arrive within the sensing period
tsens. The probability there are no arrivals in time ¢ is easily found for a
Poisson process

Fi(0,t) = et (6.2)

Thus
P(si) = Po,iFi(0, tsens)- (6.3)

The SU’s DATA and ACK packet are sent on the condition sensing passes.
The probability both are correctly received depends on no new PU packet
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arriving and no independent packet errors occurring
P(p;|s;) = F;(0,tsens.pata + tpata,i + tpata Ack (6.4)
+tacki)(1 — P(DATA))(1 — PF(ACK)),

where PP(DATA) and PF(ACK) are the channel DATA and ACK packet
PERs.
The probability of each outcome is thus

P(A;) = P(pilsi) P(si) (6.5)
P(By;) = (1= P(pilsi))P(si) (6.6)
P(By;) = P(pilsi)(1 — P(s:)) (6.7)

6.2 Q-Learning Channel Selection Scheme

We proceed with the long term performance analysis of the Q-learning
DCS scheme. The selection of channels can be described by a Markov
chain with n x n transition matrix M, where entry m;; is the probability
channel j is selected for the current transmission that follows directly on
the previous attempt being in channel :.

The Q-value for channel ¢ converges to

O = R(z,a) = (1 — P(A,))CT + P(A;)RW. (6.8)

(2

The long term performance is derived assuming the average channel Q-

value is equal to the convergence goal, thus the performance models the

SUs as having steady-state Q-values equal to the converged Q-values. De-

note the set of [ channels with the greatest converged Q-value as K. The

transition matrix M of the SU is given by the rules for e-greedy exploration

1—e¢
l

+ (6.9)

Mik = Mk =

Sle

(ke K,i,jé¢K). (6.10)

€
m;; = —
J n
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The Markov chain is regular since the transition matrix has no zeroes,
meaning it is possible to move directly from one state to any another state.
The theory of regular Markov chains [39] states that the probability chan-
nel or state j is selected for transmission in the long-run approaches the
value wj, which is independent of the starting state. The unique 1 x n
vector
w = (wy, Wy, ..., Wy) (6.11)
is known as the common row of the limiting matrix of M and can be found
from the properties
w, +wy + ... +w, =1 (6.12)

wM = w, (6.13)

which give n + 1 equations in n unknowns.
For the Q-learning scheme Equation 6.13 gives

l—€ €\
( ; +5)2wp:wk,ke[( (6.14)
p=1
€ o=
= w, =w;,j ¢ K. (6.15)
n i
Thus )
wy, = W, (1+§ z_€> (6.16)
Substituting into (7.2) gives
1 1
wp,=1+¢€ (— — —) (6.17)
n

6.2.1 SU Packet Transmission Success Rate

The vector w gives the steady-state channel selection probabilities of the
scheme. It follows then in the steady-state that the general probability a

transmission attempt is successful is given by
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6.2.2 SU Goodput

The goodput is defined as the useful payload bits delivered per unit time.

The average transmission cycle time is

tcycle = Z P(AZ)tALwZ + Z P(Bl,i)tBuwi + Z P(BQ,i)thyiwi' (619)
i=1

=1 1=1
The analytical steady-state SU goodput in bits per second is thus

P(A)ZSU‘

Gsu =
tcycle

(6.20)

6.2.3 PU Interference (Packet Based)

The level of PU interference caused by the SU is derived. Define Bs ; as the
outcomes where a transmission in channel ¢ fails with the DATA or ACK
packet not being received correctly as a result of interference with the PU

P(Bs;) = P(s;)(P(d;) + P(as)), (6.21)

where
P(d;) = 1 — F;(0, tsens.DaTA + tDATA.i) (6.22)

is the probability the DATA packet is not received correctly due to PU
interference and the probability the ACK packet is not received correctly
due to PU interference is given by

P(a;) = (1 — P(d;))(1 — PF(DATA))(1 — F;(0, tpata_ack + tack.)), (6.23)

since the packet is not sent unless the DATA packet is correctly received.
The probability any SU transmission attempt interferes with the PU in
channel i is given by
w;P(Bs,). (6.24)

The attempt interferes with one PU packet, that being the earliest PU

packet arrival during tSENS,DATA + tDATA,i or tDATAACK + tACK,z' < tPU,i- The
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SU will abort during sensing if the PU is still transmitting in a subse-
quent attempt, thus each interfered packet counted by the equation is dis-
tinct. Without the inequality, the number of interfered and overlapping
PU packets is nontrivial since although he expected number of PU pack-

ets transmitted during any time interval ¢ in channel ¢ is

tp;
pi. (6.25)
tpu,i

the PU is known to have no packets to send at the beginning.

The steady-state proportion of PU packets in channel ¢ interfered with
is therefore the expected number of packets lost due to SU interference
in the channel per SU transmission cycle time, divided by the expected

number of PU packets transmitted in the attempt duration, lasting Zcycie,

w; P(Bs.,)tpu

(6.26)
tcyclepi

P(lipt) = (wiP(Bs))/ (tCYdepi) -

tpu,i

Note that Equations 6.18, 6.20 and 6.26 are general expressions and

only the steady-state vector w is specific to the scheme.

6.2.4 Speed of Convergence

The convergence speed is a prime concern when considering RL algo-
rithms, which have a reputation for being slow. In this section we de-
rive upper and lower bounds for the convergence time of the Q-learning
scheme.

The expected discrete-time behavior of Q-values can be modeled by
a system of difference equations according to Gomes et al [70]. The Q-

learning update rule
Qo (k+1) = (1 —a)Qu, (k) + ar; (6.27)
can be rewritten as

Qai(k + 1) - Qaz(k) = O‘(ri - Qm(k)) (628)
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The speed with which the Q-value for action a;, corresponding to channel
i, is updated depends on the frequency the channel is selected. Let x;(k)
be the probability channel i is selected for transmission attempt k. As e-
greedy exploration is followed, z;(k) is given by

2i(k) = (1= )+ = if Qu, (k) = max Qu (k) (6.29)

z;i(k) = %, otherwise. (6.30)

The expected change in Q-values is directly affected by x;(k), which deter-

mines the rate of update, and is given by
Qai(k + 1) - Qaz(k> = Il<k)a(E(rl) - Qai(k))7 (631)

where E(r;) = (1 — P(4;))CT + P(A;)RW is the expected constant re-
ward for the transmission attempt in channel i. The evolution in Q-values
will differ between individual scenario runs due to stochastic variation in
which particular action is selected per epoch. The trend observed over
many runs is modeled.

The expected behavior of the Q-values is therefore modeled by the sys-

tem of equations:

Qu;(k +1) = Qu, (k) + zi(k)a(E(r;) — Qu, (K)) (6.32)
E(r;) = (1= P(A))CT + P(A;)RW

~—~~ =

2i(k) = (1 =€) + —, if Qu, (k) = max Qu(k)
n a
z;i(k) = %, otherwise.
The probability z; = z;(k) is constant until a different channel emerges

with the highest Q-value. During this time Equation 6.32 is a first-order
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linear difference equation which as well known has explicit form,

Qa,(m) = (1 — 2;0)Qq,(m — 1) + ;0B (1) (6.33)
= (1 — 2;0)*Qq,(m — 2) + (1 — z;0) 330 E (1) + w30 B (1)

= (1 - 2,0)"Q,,(0) + m;aE(r;) (1 + (1 — z30) + (1 — m30)* + ... + (1 — 230)™ )

= (1 = 2:0)"Qu, (0) + w0 E(r;) 11__((11__”5;?‘02;
= A7Qu (0) + E(r)(1 — AT,
where A, =1 — 2,0 < 1, B; = z;c, SO
lim Qu (m) = E(r;)(1-0) = E(r:), (6.34)

i.e. the expected reward.

As shown by Equation 6.33 the Q-values converge in a piecewise expo-
nential fashion. The rate of exponential convergence, A, is constant until
points of intersection where the channel Q-value decreases or increases
past the Q-value of the channel with the largest Q-value. This causes the
value of z; to change between the channel selection probability for explo-
ration or exploitation, which determines A;. The limit of the new differ-
ence equation remains the expected reward.

Convergence time is set by A;. In the worst-case scenario Q) (k) is
never the highest and the channel is shunned outside of exploration, thus
x;(k) = £ is constant. In this case the expected number of action epochs
required for the contribution of the converged Q-value expected reward
term to rise to proportion p and conversely the contribution of the starting
Q-value to decay to proportion (1 — p) is

AmQaz<O) + E(’IQ)(l - Am) = (1 - p)Qaz(()) + pE(Tz) (635)

Qe
tconv,upp(p) In (1 — ;) = ln(l — p)

In(1 —p)
Lconv_upp (p) = M7
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which defines an upper bound for the convergence time.
In the best-case scenario, the channel Q-value is always the largest, in

which case the corresponding lower bound for the convergence time is

teony Jow (D) = Il = p) . (6.36)
ln(l—a(l—(”_Tl)e>>

The convergence time is shortened by increasing the learning rate, a.

However, this reduces the stability of the Q-value, visible as the jagged

sections in Figure 6.1, since the outcome of each individual action induces

a greater response. The convergence time should scale linearly with the

number of SUs assuming fair link layer channel contention.

Agent 1 Agent 2
Ql —— Ql —
Q2 Q2

J
20 40 60 80 1pO

20 40 60 80 1p0

o =~ b w
ISYO RTINS IATS BN
S T
ISYSENGINISIA BN

o
o

Figure 6.1: Example of the change in Q-values in an individual run apply-

ing Q-learning to the Prisoners Dilemma, from [70]

6.3 Random Channel Selection Scheme

The SU performance using the random DCS scheme is derived. In this
scheme, data channels are selected with equal preference, thus the transi-

tion matrix M is still regular and is now given by
1
mg; = 57(Z,j € {1,2,,71,}) (637)

The 1 x n common row of the limiting matrix of M, w, trivially evaluates
to
,(ie{l,2,..,n}) (6.38)

W; =

S|



CHAPTER 6. EXPERIMENTAL MODEL 103

and the packet transmission success probability, goodput and interference
found by substituting w into the general expressions given in Equations
6.18, 6.20 and 6.26.

6.4 Experimental Non-Idealities

The analytical model is derived for the scenario given in Section 5.1.
Benchmarking of the experimental setup showed however that it was not
able to perfectly realize the scenario. In particular at higher utilizations
the actual PU channel utilization was less than the desired value, e.g. 0.9,
and no longer approached a Poisson traffic distribution.

The traffic of the PUs was logged over 1000s at nominal set utilizations
of 0.1,0.2,...,0.9. Figures 6.2 and 6.3 plot the packet interarrival and wait-
ing time distributions in the 2.425GHz channel. The waiting time is the
time a packet spends in the queue before being transmitted, and is cal-
culated by subtracting the constant packet transfer time from the logged
reception and enqueue time. The theoretical M/D/1 system distributions
are plotted alongside, substituting in for the utilization value the actual
utilization calculated from the number of PU packets generated at the
transmitter during the 1000s interval. The value used is indicated in the
legend. The analytical waiting time distribution for an M/D/1 system is
given by Crommelin (1932) as

m _ _ k
PW<z)=PY (=A@ k|mD>} e emD) ;D < 2 < (m+1)D (6.39)
k=0 '

where is A the traffic arrival rate, = the waiting time, D the service time
(tpu, in our case) and F, = 1 — p the stationary probability of the system
containing no more than 0 customers.

While the interarrival time between packets is exponentially dis-
tributed as expected the waiting time deviates from the M/D/1 model.
In 6.3, the experimental waiting time is longer at higher utilizations. This
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Figure 6.2: CDF of observed and theoretical PU packet arrival times
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could not be corrected in our userspace radio implementation. As shown

in Table 5.8 inherent latency between packet transmissions is introduced



CHAPTER 6. EXPERIMENTAL MODEL 105

by the USB interface and interprocessing delays, which would contribute
to the waiting time distribution being non-ideal. An effort was made to re-
duce other delay sources. Various optimizations were made to the python
code controlling the MAC layer, such as removing error checking code in
the final version used in the experiment and use of more efficient library
data structures. However no significant change to the waiting time distri-
bution was observed.

This required changes to the analytical model. The M/D/1 system as-
sumption is used to develop the preliminary results in Section 6.1, where
a Poisson interarrival rate and fixed MAC protocol timing requirements
are employed to derive the SU transmission outcome probabilities in each
channel, P(A;), P(B1;), P(B,;). Otherwise the Q-learning channel selec-
tion scheme SU packet transmission success rate, goodput and interfer-
ence in Section 6.2 and dynamic model in Section 6.2.4 are found from a
pure Markov chain and discrete-time analysis. P(A4;), P(B;), P(By;) and
P(Bj;,;) are used as terms to populate the Markov chain and the equations,
such as the expected reward, in these sections without any underlying re-
quirement that the system is M/D/1.

The values of P(A4;), P(B;;) and P(B,;) for the setup were found ex-
perimentally. With the SU set to only being able to select from one data
channel, the scenario was run for 1000s. This was repeated for each chan-
nel, with the PU utilization of the channel raised in steps of 0.05 from 0
to 1.0. Figures 6.4, 6.5 and 6.6 plot the observed success (P(A4;)), failure
(P(By,;)) and abort (P(B,;)) probabilities in each channel against PU uti-
lization alongside what is expected analytically in Section 6.1. The exper-
imental results are graphed against the actual utilization during the run
based on the number of PU packets logged as being transmitted, rather
than that specified in python. Compared to an M/D/1 system the prob-
ability of failed transmissions is higher throughout compared, while the
successful transmission probability is less. Interestingly, the data channels
exhibit identical probabilities so the channel quality is homogeneous for
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SU packet transmission, which is confirmation of the measured channel
BERs in Table 5.3 and that PU-SU interference is binary in all channels.
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Figure 6.4: Per channel SU successful transmission probability, P(A;),
against PU channel utilization

The empirical probabilities are used to derive the analytical results in
Chapter 7. For instance the expected reward supplied to the Markov chain
for selecting channel 1 with utilization 0.1 is calculated using the plotted
probability of success in Figure ??, which is representative of the setup
implementation.

6.5 Summary

Two models have been derived in this chapter. The channel selection be-
haviour of the Q-learning scheme was represented as a Markov chain. Us-
ing this expressions for the long-term goodput and packet transmission
success rate of the SU were found for a general number of users in the ex-

perimental setup. A second discrete-time model of the change in Q-values
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Figure 6.5: Per channel SU failed (data) transmission probability, P(B;;),
against PU channel utilization
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Figure 6.6: Per channel SU aborted (sensing) transmission probability,
P(B,;), against PU channel utilization
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in the scheme over time is developed and which predicts the convergence
time of the scheme. Experimental results are used to validate the analytical

models in Chapter 7.



Chapter 7

Results

This chapter presents the results of the wireless experiments. This chap-
ter has two main goals. Firstly, the quality of learning of the Q-learning
DCS scheme is assessed. Based on Kaelbling’s [47] criteria given in Sec-
tion 5.3.1, the speed of convergence of the Q-learning algorithm and per-
formance within a given time is measured in experiment. Secondly, the
scheme is compared against ideal and alternative random and rule-based
DCS strategies in terms of packet transmission success probability, SU
goodput and PU interference, which are identified as the key testable per-
formance metrics in Chapter 4. The predictions of the analytical model are
tested against the experimental results, in order to verify its validity and
whether it can be used to estimate how the scheme behaves in a larger
realistic network scenario.

The Q-learning scheme performance is measured with the parameters
in Table 5.6 in use. The effect of changes in the Q-learning settings on the
performance of the DCS scheme is studied in [97] in simulation. Repeating
this examination here would not produce novel results, besides verifying
reproducibility on a physical system. Collecting performance when differ-
ent values of RW and CT and learning and exploration rates o and e are
used is quicker to achieve by adjusting the parameters in a simulation.

This chapter is structured as follows. Single runs with different utiliza-

109
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tions are used to evaluate the dynamic behavior of the Q-learning scheme
in Section 7.1 for the scenario with three data channels. The time for the
strategy to converge is found to be six transmissions based on the success-
ful packet transmission rise time, but this is long in comparison to the ex-
pected three transmissions required by rule-based selection to randomly
sample all channels for whitespace and if found, exploit it. A number
of results are found for the transmission success, goodput and interfer-
ence performance of the various schemes in Section 7.2. Taking the aver-
age result from running the scenario using all valid combinations of in-
dividual channel utilizations in the set {0.1,0.2,0.3,...,0.9}, averaging to
{0.1,0.2,0.3,...,0.9}, the Q-learning approach enhances the proportion of
SU successful packet transmissions by 39.9% and goodput by 56% com-
pared to random selection of channels. Performance is significantly infe-
rior to both ideal bounds and the rule-based scheme. Listen-before-Talking
sensing is unable to prevent packets being lost by the PU due to secondary
usage and up to a 39.09% loss rate is observed. In Section 7.3 the experi-
ence of working with the GNU Radio platform is recounted.

7.1 Q-Learning Performance

7.1.1 Speed of Convergence

The convergence behavior of Q-learning in the DCS scheme was exam-
ined. The wireless scenario was run with PU utilizations [0.9,0.7,0.2] and
the observed change in SU Q-values compared to analytical results. A
discrete-time model is derived in Chapter 6 for the expected behavior
of channel Q-values from initial starting Q-values, but lacks verification.
The experiment was repeated 50 times and the median Q-value per chan-
nel at each action epoch plotted. This is to reduce the effect of the ran-
dom selection of channels which varies between trials per epoch, or noise,

and observe the trend in the Q-values. The median is employed as it
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is less sensitive to outlier values in comparison to the mean for exam-
ple. The starting Q-values are initialized with distinct values so the initial
choice of channel is biased and not random which would require more re-
sults to be aggregated. Three combinations of initial Q-values are used,
Qo = [0,5,10], [0, 10, 5], [10, 5, 0] corresponding respectively to in, partially
and out of order of the ranking of the predicted final expected channel
Q-values, for a total of 150 wireless scenario runs each of 350s duration
summing to an execution time of 14.6 hours.

Figures 7.1,7.2 and 7.3 plot the 50-run median Q-values against the SU
transmission attempt, or action epoch, for each of the three cases. Graphed
alongside are the analytical expected Q-values found by solving for the
difference equation given in Equation 6.32. As predicted by the model,
the experimental Q-values converge exponentially and asymptotically to
constant final values. There is no significant difference within the noise
uncertainty between the experimental asymptotic Q-values and the ex-
pected reward for transmitting on the channel, E(r) = [—3.38, —0.08, 10.24]
according to Equation 6.8, which should analytically be the convergence
targets.

Figure 7.4 shows a typical example of the change in Q-values during
a single run using )y = [10,5,0]. The picture is radically different to the
expected asymptotic exponential convergence in the previous figures. In-
stead the Q-values fluctuate wildly. It appears though that the Q-values
end up oscillating about the expected reward, which is confirmed by the
median results, thus the frequency of positive Q-value changes due to
the rewards from successful transmissions and the frequency of negative
changes from failed transmissions reaches equilibrium based on the chan-
nel utilization. Smooth convergence to constant values could be achieved
by modulating the oscillations by steadily reducing the learning rate o
with time.

The channel the SU has selected at a certain action epoch, for the same
single run, is plotted alongside the channel Q-values in Figure 7.5. A point
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Figure 7.1: Median Q-values against the SU transmission attempt number,
for channel utilizations: [0.9,0.7,0.2], Qo = [0, 5, 10]
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Figure 7.2: Median Q-values against the SU transmission attempt number,
for channel utilizations: [0.9,0.7,0.2], Qy = [0, 10, 5]
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Figure 7.3: Median Q-values against the SU transmission attempt number,
for channel utilizations: [0.9,0.7,0.2], Qo = [10, 5, 0]

is marked at the predicted converged Q-value level of the channel, if the
SU selected the channel for the transmission attempt. The channel being
used can be indirectly found from the plot of the Q-values, in which case it
is indicated by the value corresponding to the channel changing after the
time it was selected. However by directly plotting the selected channel,
Figure 7.5 provides a clearer analysis. The Q-values of channels 2 and
3 are often constant for extended intervals since, having lower Q-values
their only opportunity to be selected is through random exploration with
probability 0.033.

Figure 7.5 indicates the Q-learning DCS scheme is not effective at ex-
ploiting correlation between transmission attempts. This is shown in the
figure at epoch 347 where the radio continues to use channel 1 for 7 consec-
utive attempts despite each try being unsuccessful as, although its Q-value
estimate is degraded at each epoch, it still exceeds the other channels’. The
scheme should recognize the channel is under sustained use by the PU, i.e.
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Figure 7.4: Single run Q-values against the SU transmission attempt num-
ber, using channel utilizations: [0.9,0.7,0.2], Qo = [10, 5, 0]

is transmitting a packet train, and that exploitation will be fruitless during
this time. Similarly, exploration of other channels sometimes produces a
successful result but the scheme makes no further attempts to exploit it
when the channel is now known to be free. Instead, the SU is most likely
to revert to channel 1 with probability 0.93. Increasing the learning rate
would reduce the time before the radio turns to an alternate channel if a
long period of interference is experienced. The greater the learning rate,
the more emphasis is placed on recent occupancy or quiescence within
the channel in the Q-value rather than the long-term average channel uti-
lization. Typically, in real packet based wireless system noise and activity
occur in busts, making this ability to react to local variations in channel
conditions essential.

The discrete time model is used to derive the convergence speed of the
Q-learning algorithm. This is determined by how often channels are se-

lected in e-greedy exploration giving two convergence time bounds, which
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Figure 7.5: Single run data channel selected by the SU against the SU
transmission attempt number, using channel utilizations: [0.9,0.7,0.2],
Qo = [10,5,0]

are given in Section 6.2.4. Substituting in the Q-learning parameters in
use, stated in Table 5.6, 95% convergence will occur in the best-case within
teonviow(0.95) = 14.5 transmission attempts if the channel is selected for
exploitation throughout, or equivalently has the highest Q-value through-
out. In the worst-case the channel is selected only randomly during explo-
ration and 95% convergence takes place after fcony upp(0.95) = 447 trans-
missions attempts and sets an upper convergence bound.

The channel selection policy is decided by the ranking of channels
by their Q-value estimates. The expected converged channel selection
policy is to exploit the channel with least average utilization, which is
learned as soon as its Q-value channel estimate exceeds the other chan-
nels’. In the scenario, Equation 6.33 predicts the Q-value of channel will
rise above those of the other channels after four transmission attempts
when @y = [0,10,5] and 14 attempts when @)y = [10,5,0]. The intersec-
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tion point where the Q-value of channel 1 exceeds the other channels’ is
observed after attempt numbers 7.5 and 27 respectively in the experimen-
tal median results. Its Q-value then quickly rises according to the lower
convergence bound. This indicates the performance of the scheme reaches
steady-state far faster than the 447-attempt worst-case learning conver-

gence bound suggests.

7.1.2 Online Performance

The speed of convergence of the Q-values affects the online performance
of the Q-learning DCS scheme. This is analyzed by measuring the perfor-
mance of the scheme within a given time after initialization. The SU me-
dian running successful transmission probability, P(A), is plotted against
action epoch (transmission attempt number) in Figure 7.6 for the same
data obtained in Section 7.1.1. Each data value is the aggregated median
successful transmission probability calculated from the record of all SU
transmission attempts up to the current number from the start of the runs.
As expected, the successful transmission probabilities converge to experi-
mentally identical values.

Table 7.1 records the settling time, overshoot and rise time of trans-
mission probability trend. The percentage overshoot is the amount the
performance exceeds the final value, expressed as percentage of the final
value. Whether the plot overshoots or not tends to be determined by the
initial Q-value estimates. The traces for )y = [10, 5, 0], [0, 10, 5] overshoot
since the successful transmission probability at the start most likely orig-
inate from sampling the greatest Q-value channel, with utilization 0.2 or
0.7, before the result is attenuated by later selection of the channel with
worst utilization, 0.9. The plot for Qy = [0, 5, 10] slowly rises, with the me-
dian performance initially being skewed by failed transmission exploiting
the worst utilization channel.

The settling time is defined as the time required for the running packet
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Figure 7.6: Median running successful transmission probability, for chan-
nel utilizations: [0.9,0.7,0.2] and different @y

transmission success probability to settle to within 5% of its final value.

The rise time in PID control theory is the time the success probability takes

to go from 10% to 90% of the steady-state value. If the channels” Q-values

begin undifferentiated, the initial selection policy will be random. Alter-

natively the rise time can be defined as the time for the success probability

to reach 95% of the difference between the Q-learning and random chan-

nel selection steady-state probability. The rise and settling times provide

measures for the performance convergence time.
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Initial Q- | Settling % Over- | Rise Rise Time
values (Q)) Time shoot Time (95% Random /

(Epochs) (Epochs)| Epochs)
[0,10,5] 31 12.192 3 13
[0,5,10] 42 27.084 3 4
[10,5,0] 125 0.317 70 164

Table 7.1: Median Successful Transmission Probability with Time, for
Channel Utilizations: [0.9,0.7,0.2]

The rise and settling times when (), = [0, 5, 10] are significantly slower
than in the other cases. A 26-point moving average of the median success-
ful transmission probability for this scenario is plotted in Figure 7.7. The
probability settles within the first 35 transmissions after an initial sharp
rise. This demonstrates the final probability value is achieved much faster,
with the delayed response in the running probability due to the contribu-
tion of the initial poor choice of channels when Q-values were biased to
the worst channel with utilization 0.7.

After 400 attempts the probability oscillates 0.224-0.02 peak-peak about
0.70. This is a concern if strict QoS requirements exist for a minimum
level of throughput. A possible approach is to use receiver buffering to
average the throughput. However, the oscillations show that, even af-
ter being smoothed with a 26-point moving average, significant variations
in the performance are still present from transmission interruptions due
to PU activity, which should be considered when it comes to setting the
buffer size. Figures 7.4 and7.5 already indicate the MAC protocol cannot
rely exclusively on the DCS strategy for spectrum handoff as the Q-learning
scheme is shown to retry transmitting on the same channel that is occu-
pied several times until it is free or its Q-value falls below that of other
channels.

The experiment is repeated to determine if these results are general.
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Figure 7.7: 26-term moving average of the successful transmission proba-
bility, for channel utilizations: [0.9,0.7,0.2] and @y = [10, 5, 0]

The wireless scenario was run for all PU channel utilization combinations
such that the overall utilization across all data channels averages to 0.5,
where each PU is able to select from an utilization in {0.1,0.2,0.3,,0.9}.
Figure 7.8 plots the SU median running successful transmission proba-
bility against action epoch. The initial Q-values used are so the rise and
settling times summarized in Table 7.2 are based on Q-learning having no
set preference for any particular channel at the start. The results are sim-
ilar to Figure 7.6 and Table 7.1. After an initial period of uncertainty, the
transmission success probability reaches a stable value. The median rise

time is four and six attempts, using the new definition.
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Figure 7.8: Median running successful transmission probability, for chan-

nel utilization combinations averaging to 0.5

Channel Uti- | Settling % Rise Rise Time
lization Com- | Time Over- Time (95% Random)
bination (Epochs) | shoot (Epochs)| / Epochs)
[0.5,0.5,0.5] 183 32.166 |5 6

[0.4,0.5,0.6] 58 7.808 4 5

[0.3,0.6,0.6] 107 3.598 3 14

[0.4,0.4,0.7] 512 49.716 |1 1

[0.3,0.5,0.7] 87 23973 |2 2

[0.2,0.6,0.7] 49 2.494 4 54

[0.3,0.4,0.8] 106 36.835 |1 1

[0.2,0.5,0.8] 68 6.128 8 9

[0.1,0.7,0.7] 40 1.371 5 44

[0.3,0.3,0.9] 34 11.545 |4 4

[0.2,0.4,0.9] 15 11.614 |4 5

[0.1,0.6,0.8] 18 0.202 5 16

[0.1,0.5,0.9] 55 1.594 3 13

Median: 58 7.808 4 6

Table 7.2: Median Successful Transmission Probability with Time for All

Channel Utilization Combinations averaging to 0.5
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The rise time is significantly faster than the 447-attempt worst-case
time bound for Q-learning convergence given in Section 7.1.1. This is ex-
plained by analysis of the Q-learning scheme. The expected converged
channel selection behavior rather than the Q-value behavior is set as soon
as the channel with least utilization is top ranked by Q-value. This channel
is then selected whenever outside of exploration and remains so as the Q-
value estimates converge to their final values. The current top-ranked Q-
value changes according to the best-case time bound for exploitation. For
95% convergence in the scenario this bound is 14.5 transmissions. Q-value
intersection with the least utilization channel varies inside this bound de-
pending on the initial Q-values and for the three cases in Section 7.1.1
occurs after 7.5 and 27 attempts. Based on the similarity we conclude fi-
nal performance is achieved by the time of the best-case convergence time
bound. Moreover this time is constant with the number of data channel as
defined in Equation 6.36 in the limit of large n.

The time in real terms is given. The timing in the scenario exaggerated
to handle excessive USRP latency. The maximum time for 6 transmission
attempts is 1.15s. Substituting in a typical network packet transfer time of
500us final performance is attained in real terms within only 3ms irrespec-
tive of the number of data channels. Assuming fair contention among SUs
the convergence time scales linearly with the number of CRs within the

network.

7.2 Q-Learning Channel Selection Scheme Per-

formance

Our second goal is to obtain experimental results on the performance of
the Q-learning DCS scheme, simulated in previous work [97]. The ex-
periment is designed to investigate the performance that the scheme will
achieve at different levels of PU utilization of the network, as measured
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by the SU packet transmission success probability, goodput and the inter-
ference caused to the PUs.

The experiment is run for every permutation of PU channel utiliza-
tions averaging to an overall utilization across all data channels in the
set {0.1,0.2,0.3,...,0.9}, where each individual PU utilization is selected
from the set {0.1,0.2,0.3,...,0.9}. For instance, utilizations of [0.7,0.7,0.7],
[0.5,0.7,0.9] and [0.7,0.5,0.9] are valid unique permutations for an over-
all utilization of 0.7. Channel Q-values are unset at the beginning, thus

o = [0,0,0]. Each run lasts 350 seconds, representing a minimum of 1860
SU transmissions occurring in the timeframe if all attempts fail with time
taken 191ms. Earlier, we showed final performance is reached within a
median of six epochs so the average packet transmission success rate and
other metrics obtained from the record reflect the long-term performance
of the DCS scheme. A full characterization involves 243 runs each of 350
seconds of the scenario giving a total of 24 hours execution time.

The analysis of the results is based on the comparative performance
of Q-learning with the other random, rule-based, no-regret, deferred ideal
and non-deferred ideal schemes, outlined in Section 5.4. The experiment
is repeated with the SU employing random channel selection, which sets a
baseline level of performance, then the rule-based and no-regret schemes.
The ideal performance determined as the deferred and non-deferred ideal
schemes is derived from the measurement of the PU queue found in the
Q-learning scheme PU logfiles.

The set of runs for each scheme is repeated to establish the uncertainty
and accuracy of the performance results at the different PU utilizations.
For statistical significance, it is generally desirable for measurements to be
repeated twenty times or more. Such time was not available with the labo-
ratory setup, but three repetitions of a full characterization of each scheme
were managed, totaling approximately 288 hours (12 days). Initially the
intention was to perform the experiment on the wired and wireless se-

tups. Eight repetitions of the wired setup were completed before wireless
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results were deemed more useful. The wired results are not included here
as they are of less interest. Figures are plotted against the observed uti-
lizations. The error bars used in figures indicate one standard deviation of

uncertainty either side of the reported value.

7.2.1 Packet Transmission Success Probability, P(A)

The goal of the Q-learning DCS scheme is to maximize the proportion of
SU packet transmissions that are successfully received. Figure 7.9 plots
the average SU packet transmission success probability, P(A), achieved in
the experiment against the average PU channel utilization. The value of
P(A) is calculated from the total number of successful transmissions di-
vided by the total number of transmissions that took place during the run.
Each point in the graph represents the mean of the probabilities of all runs
where the PU channel utilization permutation averages to the channel uti-
lization. Thus the point at utilization corresponding to 0.5, for example,
includes runs with data channel utilizations [0.5,0.5,0.5] and [0.1,0.7,0.7].
The individual Q-learning runs are plotted on the same graph to show the
real P(A), with points colored by the variance of the channel PU utiliza-
tions. The graph shows the non-idealities effect where the PU is not able to
keep up with the packets to be transmitted at higher utilizations, causing
the observed downward drift and increased spread in the actual overall
and individual utilizations.

The Q-learning scheme consistently outperforms random channel se-
lection. The observed transmission success rate is 1.60 times greater than
the random scheme at a nominal overall utilization of 0.6 and 1.58 times
at 0.8, but the improvement falls at lower utilizations to as little as 1.04
at a PU utilization of 0.1. The average improvement across all utiliza-
tions [0.1,0.2,,0.9] is 39.9%. The Q-learning scheme shows similar per-
formance to the no-regret best channel scheme. Performance is not signif-

icantly different for mean utilizations 0.2 to 0.6 but exceeds the success-
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Figure 7.9: SU successful transmission probability, P(A), against mean of
the PU channel utilizations

ful packet transmission proportion elsewhere. At the lower and upper
end of the utilizations where the channel utilizations are equal, namely
[0.1,0.1,0.1] and [0.9,0.9,0.9], the no-regret scheme behavior then becomes
identical to uniform random channel selection. Averaging all points, the
Q-learning scheme packet transmission success probability is greater by a
factor of 1.07. Performance is slightly worse but comparable to the rule-
based scheme, with the Q-learning scheme closely following its perfor-
mance. The probability P(A) on average across all utilizations is smaller
by a factor of 0.91.

Equation 4.11 shows the Q-learning scheme will exploit the channel
with the least utilization, which is confirmed by the experiment results.
Utilizations [0.1,0.7,0.7] and [0.3,0.3,0.9] exhibit similar performance to
when the channel utilizations are [0.1,0.1,0.1] and [0.3,0.3,0.3]. The pro-
portional improvement over the random DCS at higher utilizations is ex-

plained by the greater difference in whitespace between channels, since
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a 0.1 reduction in channel utilization 0.9 represents a larger fractional in-
crease in the exploitable whitespace than if the channel utilization was 0.2.
To illustrate, channel 1 in [0.6,0.9,0.9]=0.8 (mean) is free four times as of-
ten as the other channels, which are of greater utilization, compared to 1.5
times for channel 1 in [0.1,0.4,0.4]=0.3 (mean). Thus, selecting the chan-
nel with least utilization by the Q-learning scheme has a greater effect on
performance.

The analytical transmission success rate is plotted alongside the exper-
imental results in Figure 7.10. The predicted performance of the random
DCS is identical to that observed, to within measurement uncertainties.
While they follow a similar trend, the experimental successful transmis-
sion probability for the Q-learning scheme is higher. The R? correlation
is 0.9999 between analytical and observed random channel selection re-
sults and 0.9647 for the Q-learning scheme. This indicates the scheme suc-
cessfully exploits local variations in PU traffic (noise), whereas the Markov
chain analysis assumes steady-state converged Q-values for the system.
This is seen at utilizations [0.1,0.1,0.1]=0.1 and [0.9,0.9,0.9]=0.9 where the
experimental P(A) is found to be greater than in random channel selection
despite the fact the Q-value convergence rule should lead to uniform sam-
pling of each channel. The results show the analytical model is indicative
of the performance of the Q-learning scheme. The ability of the DCS to
add to the real success probability by learning and reacting, for instance
to a brief quiescent period in a channel, is influenced by the actual traffic,
exploration policy and learning rate.

The distribution of transmissions which were not successful is relevant.
The probability of transmission attempts ending in failure or aborting in
sensing is plotted in Figures 7.11 and 7.12. The channel packet error rate
in the scenario is negligible so failed transmissions correspond to losses
caused by PU interference.

At all points, the majority of unsuccessful transmissions experimen-
tally observed in the Q-learning channel selection scheme consist of those
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Figure 7.10: Mean SU successful transmission probability, P(A), against

mean of the PU channel utilizations

aborted without harming the transmitting PU in the channel. Failed trans-
missions are less frequent, up to a maximum at utilization 0.8 where fully
5.75% of SU transmissions cause interference. The proportion of interfer-
ing attempts against all unsuccessful transmissions increases the lower the
utilization on the plot is. At a utilization of 0.9 interfering attempts com-
prise 5.94% of all unsuccessful attempts but at 0.1 this rises to 29.1%.
Sensing is reliable so interference can only occur if a PU becomes ac-
tive during the SU transmission, as otherwise prior Listen-before-Talking
sensing will have aborted the transmission. Consecutive PU packets in a
packet train, which are more likely to arise at higher utilizations, are safe
from interference. We infer from the results that extra sensing mechanisms
are needed to prevent interference to burst traffic and isolated packets. A
solution would be for the CR to exploit upper network layer knowledge of
the PU’s behavior. If the licensed user network also co-ordinates multiple

access, the CR should have the capability to decode preambles being ex-
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changed, such as RTS, and use it to predict when the channel will become
occupied. The ability to autonomously develop network protocols to use
was originally envisaged by Mitola when he conceptualized CRs [57]. In-
terference can be avoided entirely if PUs preface all transmissions with
an initial redundant section and, as a commensurate measure, SUs reduce
the time taken to transmit to be inside this duration. However, current
licensees are unlikely to tolerate having this requested of them with the
necessary architectural changes. Future licensing agreements could man-
date the use of SU friendly control mechanisms to give greater spectrum

efficiency.
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Figure 7.11: Mean SU failed (data) transmission probability, P(B; ), against

mean of the PU channel utilizations

Similar results for the packet transmission success probability are
shown in Figure 7.13 where the experimental P(A) is plotted when the
first 225 transmission attempts are considered only. The time is limited
to half the Q-learning worst-case convergence time bound of 447 attempts

in order to investigate whether the level of performance during conver-
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Figure 7.12: Mean SU aborted (sensing) transmission probability, P(B,),

against mean of the PU channel utilizations

gence is different. The relative performance in terms of rankings of all
schemes is unchanged. The experimental packet transmission success rate
using the Q-learning DCS is on average across all utilizations is now 45.5%
greater than the analytical performance given for random channel selec-
tion, which is in fact higher than the 39.9% when previously consider-
ing the entirety of the runs. We conclude the Q-learning scheme adapts
rapidly, which is consistent with the findings in Section 7.1.2 that actual
performance settles far sooner than the time required for Q-value conver-
gence, within 6 attempts according to the results.

The results, especially at higher utilizations are more uncertain and it
would have been preferable if more repetitions had been carried out. The
rule-based scheme probability at mean utilization of 0.9 exhibits a stan-
dard deviation uncertainty equal to 53.6% of the mean value, indicating
its performance is highly dependent on short-term PU traffic pattern that

occurred.
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Figure 7.13: Mean SU successful transmission probability, P(A), against
mean of the PU channel utilizations, within the first 225 transmission at-

tempts

7.2.2 SU Goodput, ¢

The goodput measures the useful payload bits transmitted per unit time.
Figures 7.14 and 7.15 plot the average goodput in bits per second as mea-
sured during the entirety of each run using the same format as Figures 7.9
and 7.10 respectively.

The different schemes’ performances are similar in form to that ob-
served in the packet transmission success probability results, which is
expected since the goodput is directly related to how many packets are
transmitted correctly. The Q-learning DCS scheme outperforms random
channel selection at all points. The goodput is on average 56% greater
although again the factor of difference reduces at the lower utilizations.
The Q-learning scheme has slightly increased goodput compared to the
no-regret scheme, on average 9% greater, and is somewhat outperformed

by the rule-based scheme, by a factor of 11.6% on average.
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Figure 7.14: SU goodput against mean of the PU channel utilizations

Significantly, measuring the goodput allows the deferred ideal scheme
to be judged. This strategy’s successful transmission proportion is plotted
in Section 7.2.1 for completeness but the results are not comparable as the
scheme waits until it can transmit successfully in a channel, thereby guar-
anteeing perfect transmission, whereas all other schemes transmit imme-
diately. Despite idling the deferred ideal scheme is consistently capable
of greater goodput than the non-deferred ideal scheme, which is able to
predict the outcome of transmitting on each channel and will select the
first channel if it exists that results in the packet being received correctly.
The minimum, average and maximum improvement is 3.66%, 9.79% and
23.0%. Both ideal schemes significantly outperform the other realizable
schemes that do not require perfect foreknowledge of how PUs will trans-

mit.
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Figure 7.15: Mean SU goodput against mean of the PU channel utilizations

7.2.3 PU Interference, /;

The average analytical and experimental PU interference is plotted in Fig-
ure 7.16. Each point in the graph is the mean of the PU interference in
channels 1 and 2 during the experiment, plotted against the average PU
utilization across all data channels. The PU interference in channel 3 is not
included because, as mentioned in Section 5.5.1 due to equipment con-
straints no receiver could be implemented to log the PU. Since the results
comprise running the scenario for each channel utilization permutation
and as all channels and users are homogeneous, it is justified to interpret
the figures as also the average interference caused to each PU or all PUs.
Outside of a mean utilization of 0.1 the interference caused by Q-
learning channel selection is significantly greater than random channel se-
lection. The interference rate is on average 46% greater and the absolute
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value decreases with increased mean utilization for random, rule-based
and Q-learning channel selection. This is consistent with our interpreta-
tion of the results regarding Listen-before-Talking sensing in Section 7.2.1.
To repeat, Listen-before-Talking sensing cannot prevent the SU interfering
with a packet broadcast while it is transmitting. However, subsequent
packets in a packet train will be avoided which are more likely to occur at
higher utilizations. The Q-learning scheme preferentially selects channels
with a past history of guaranteeing successful packet transmission and is
more likely to use those channels with least utilization. Isolated packets
are more likely to be transmitted in this channel, resulting in the higher
interference observed when compared to random channel selection where

lower utilized channels are selected equally with other channels.
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Figure 7.16: Mean PU interference against mean of the PU channel utiliza-

tions

Figure 7.17 graphs the average experimental interference. Additionally
the interferences caused to each PU in each Q-learning run are plotted in-
dividually. Points are colored by the PU utilization and show interference
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is greater in channels with lower utilization, with the same conclusion as
for Figure 7.16. The interferences at points 0.1 and 0.9 on the x-axis, ag-
gregating the performance when the channel utilization is [0.1,0.1,0.1] and
[0.9,0.9,0.9], differs from interference elsewhere where the PU utilization
is identical but the utilization among all channels is heterogeneous. The
per channel interference when the utilization is [0.1,0.1,0.1] is 11.4+0.9%
but the interference to a channel with the same 0.1 utilization can reach
up to 39.09%, which occurs when the nominal mean utilization is 0.6 in
the figure. Similarly when the utilization is [0.9,0.9,0.9] the interference is
2.240.3%, but this drops to 0.10% for an identical channel with 0.9 utiliza-
tion at mean utilization 0.7. This shows Q-learning channel selection in-
creases interference to the channel with the least utilization in the network
but reduces harmful effects caused to other channels. This is expected
since Q-learning favors selection of the least utilization channels, thus in-
creasing the number of PU packets lost in the channel due to greater usage.
The maximum interference caused to a channel with utilization 0.1 is 343%
greater as compared to [0.1,0.1,0.1]. The top channel, ranked by Q-value, is
selected with probability 0.93, whereas if all channels have equal Q-values
this is 0.33 so there is a 280% increase in usage. Channels with lower Q-
values are selected for exploration with probability 0.033, thus there is less
SU interference.

The analytical results in Figure 7.16 significantly deviate from the ob-
served interference. The R? correlation between the analytical and ob-
served random channel selection results is 0.5381 while it is -0.1449 for
the Q-learning scheme. The R* values indicate the analysis does not fit
the experimental results. Theory correctly predicts that interference will
trend downwards with increased mean utilization and the Q-learning DCS
scheme will have raised interference over random, both trivial results.
However the analysis poorly models the trend shape and significantly
overestimates the packets that will be lost. The steady-state model can-

not account for the Q-learning scheme’s dynamic adaptation to local vari-
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Figure 7.17: PU interference against mean of the PU channel utilizations

ations in channel occupancy which would lessen the impact the SU has on
the PU, but this does not explain the discrepancy between random channel
selection analytical and experimental results.

The analytical goodput accurately models the downward shape of the
experimental goodput with utilization in Figure 7.15 but underestimates
the experimental values. The R? correlation between analytical and ob-
served random channel selection results is 0.9798 and 0.8935 for the Q-
learning scheme, which is lower than the values for packet transmission
success correlation in Figure 7.10.

The interference and goodput are derived from the analytical SU trans-
mission outcome probabilities. It is likely the increased discrepancy is due
to the propagated error in using the analytical result for the SU transmis-
sion outcome probability added to simplifications of the scenario made by
the model. As discussed in Section 6.4 the model’s assumptions that PU
traffic is perfectly M/D/1 and timing is distribution-less, which in partic-

ular is used in finding the goodput and interference, are not realizable in
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the GNU Radio implementation. The accurate fit in the successful trans-
mission probability in Figure 7.10 is achieved only after substituting into
the model the empirical channel transmission outcome probabilities mea-

sured at different PU utilizations.

7.2.4 Further Results

Thus far, in Figures 7.9-7.17, the performance of the different schemes has
been plotted as the mean performance against the average PU channel
utilization. This style is employed so the results can be cross-referenced
with previous work in simulation [97], which presents their results using
this manner. A problem is it is unclear from the graphs what the perfor-
mance of a single run is, for instance what the real goodput is when the
SU observes a channel with [0.9,0.3,0.3] utilization. Also the shape of the
graphs is highly influenced by the runs contributing to each point, which
are arbitrarily set to consist of all valid channel utilization combinations
of [0.1,0.2,.,0.9] averaging to the x-axis value. The distribution of channel
utilizations within all runs being averaged at a point and the number of
runs is inconsistent, affecting the uncertainty and statistical significance
of the result. Point 0.1 consists only of runs with the single utilization
[0.1,0.1,0.1]. For 0.5 the corresponding set is comprised of 61 permutations,
and because each run is average run [0.5,0.5,0.5] is considered equally to
[0.3,0.3,0.9] despite the variation in utilizations. For the Q-learning scheme
this issue is reduced by plotting the individual results identifiable by color,
such as in Figure 7.9. However the scheme is compared to the alternative
strategies by the averaged results, thus it is unclear if the SU goodput un-
der the rule-based scheme in Figure 7.15 is greater or only so because of the
distribution of utilization permutations in the averaged runs. The individ-
ual logfiles have been stored and are available as a resource for analysis.
Figures 7.18 and 7.19 plot a subset of the measurements used to gener-

ate Figures 7.10 and 7.15. The performance of the runs where the utiliza-
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tions of all PUs are equal is graphed. So points on the x-axis at 0.2 in Figure
7.19 correspond to the goodput when the scenario channel utilizations are
[0.2,0.2,0.2]. The performance trends are significantly different to what is
recorded in Figures 7.10 and 7.15, showing the effect altering the distribu-
tion of channel utilizations in the runs considered at each point has. The
performance of the no-regret scheme is identical to within uncertainties
to random channel selection, which is to be expected as the strategy se-
lects uniformly from all channels which are now of the same lowest equal

utilization.
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Figure 7.18: Mean SU successful transmission probability, P(A), against
the PU utilization in all channels

Again the rule-based scheme consistently outperforms the Q-learning
DCS. The Q-learning scheme outperforms random channel selection, thus
we conclude Q-learning is able to learn and respond to local decreases in
channel utilization even if the average utilization across channels is iden-
tical. The successful transmission probability and goodput are on average
16.7% and 20.0% greater respectively. The average SU successful trans-
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Figure 7.19: Mean SU goodput against the PU utilization in all channels

mission probability under the rule-based scheme is 19.80% greater than
the Q-learning scheme, compared to 9.89% in Figure 7.10. The average
goodput is increased by 24.88%. Since the improvement is less when all
runs are averaged this suggests the difference in performance is reduced
and the Q-learning scheme may outperform rule-based selection when the
channel utilization is heterogeneous. The deferred ideal scheme results
show that by employing a predictive approach to fully exploit the whites-
pace, significant usage can be obtained even when all channels are highly
utilized. When the average utilization occurring in all bands is 0.9 the SU
goodput has fallen only 46.47% from when the utilization is 0.1, despite the
utilization increasing by 0.8. Instead of performance falling linearly with
increasing utilization, as experienced by random channel selection, for the
ideal schemes the drop off is reduced between low utilizations. With more
data channels secondary usage should improve as it is more likely at least

one data channel will be temporarily free for the ideal schemes to exploit.
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The other extreme is plotted in Figures 7.20 and 7.21. At each point,
the runs with the maximum PU channel utilization variance from the sub-
set of all runs where the PU channel utilization averages to the utiliza-
tion at the point. The average performance is plotted at the point. For
example at utilization 0.8 the plotted performance is averaged from runs
[0.9,0.9,0.6],[0.6,0.9,0.9],[0.9,0.6,0.9]. The results show that when there is a
high spread in the channel utilization the performance of the Q-learning
channel selection improves relative to the ideal and rule-based schemes,
although both schemes still consistently outperform it. The average SU
successful transmission probability and goodput achieved by the rule-
based scheme is now only 4.04% and 5.48% greater. The no-regret scheme
goodput is superior to the rule-based scheme at utilizations 0.4-0.6 where
the channel utilization variance ranges from 0.16-0.19.
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Figure 7.20: Mean SU successful transmission probability, P(A), against

mean of the PU channel utilizations
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Figure 7.21: Mean SU goodput against mean of the PU channel utilizations

7.2.5 Discussion

The Q-learning DCS scheme has been found to significantly improve the
SU’s chance of success on transmission and goodput in the scenario over
undifferentiated random selection of channels. In the experiment, by
learning the channel with the least utilization, the Q-learning DCS pro-
vides an average 39.9% and 56% increase in the successful transmission
probability and goodput respectively over random channel selection cal-
culated across all mean utilizations. However performance falls well short
of the maximum limits formalized by the ideal strategies. From Fig-
ures 7.10 and 7.15 the average packet transmission success probability can
be improved by 23.4% and the goodput by 24.4% in following the non-
deferred ideal scheme. The figure for the increase in goodput using the
deferred ideal scheme is 37.6%. Performance is also reduced in compari-
son to the rule-based scheme, which exhibits 10.8% greater average proba-

bility of packet transmission success and 11.6% increased average goodput
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over the Q-learning DCS.

The issue lies in the speed of learning. The Q-learning scheme takes
a number of transmissions to respond to the appearance of whitespace
in a channel. In the discussion of Figure 7.3 it was observed Q-learning
does not switch to exploit this empty channel until the cumulative penalty
of repeated interfered unsuccessful channels in the current occupied top-
ranked by Q-value channel causes it to decrease below the Q-value esti-
mate of the unused channel. The difference closes according to Equation
6.31. The exact point of intersection depends on the initial Q-values how-
ever the number of transmissions needed for the exploited channel to fall
a certain percentage to its final Q-value of C'T’, for being occupied, is given
by the best-time convergence bound Equation 6.36. The required time for
the empty channel to rise a certain percentage to its final Q-value of RW is
given by the worst-time convergence bound Equation 6.35. The contribu-
tion of this term is small in comparison to the top-ranked Q-value channel,
which being sampled most frequently changes the most rapidly. Thus the
best-time convergence bound can be used as an approximate measure for
the transmission time required. Using the scenario Q-learning parameters
the best-case time bound for 95% convergence is 14.5 SU transmissions. In
physical terms this means the Q-learning scheme in the experiment is un-
able to take advantage of whitespace lasting less than 14.5 transmissions.
The speed of convergence is increased by raising the learning rate, ¢, to a
minimum 95% time of 1.1 transmissions when « is set to its maximal value
of 1.

The non-deferred ideal scheme demonstrates that significant perfor-
mance gains are possible if instant convergence were obtained. In the def-
inition of the scheme, channel selection is based on foreknowledge of the
outcome the choice will have. FEither the transmission will abort or fail
due to PU interference or the channel will be unoccupied during the du-
ration of the data transfer. If such a channel exists, the scheme selects the

first channel numerically. Otherwise a channel is selected at random for
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transmission with invariant failure due to PU interference. Rephrasing
this in terms of response time, the scheme requires zero transmissions to
learn and adapt to whitespace in other channels. Current whitespace is
always exploitable. The scheme could possibly be implemented if there
were some form of PU negotiation or capability to predict PU traffic.

The rule-based DCS results are notable since it shows the truly cogni-
tive approach to channel selection using Q-learning possesses inferior per-
formance to what is a merely an adaptive selection algorithm. Two simple
fixed rules decide which channel is to be used in this scheme. The scheme
selects only the extant channel being used if the previous transmission on
it proved successful. Otherwise a channel is selected uniformly at random
from the set of other channels. The scheme is said to be adaptive rather
than cognitive since no learning is involved. The results agree with the
earlier hypothesis that performance is improved by reducing the time for
whitespace to be located. When the scheme is randomly selecting among
channels § = 1.5 in this case is the expected delay in transmissions from
the time a channel becomes empty to being sampled, located and exploited
by the algorithm, compared to 14.5 derived as an approximate guide for
the Q-learning scheme.

It needs to be investigated whether this superiority in performance
holds when there are more channels such as will occur in a realistic
network-based scenario. The required time increases linearly with n, the
number of channels, for the rule-based scheme but Equation 6.36 states
that for the Q-learning scheme the time is constant in the limit of large
n >> ae. For the convergence time of the top-ranked Q-value, which is its
original definition, this is true but it is incorrect in this context. The time
until the channel where whitespace is occurring is top-ranked by Q-value
depends on the number of data channels and its ranking by Q-value. In the
worst case, if the channel has the lowest Q-value every other channel will
first need to be tried unsuccessfully until their Q-values are reduced below
that of the empty channel for this channel to be sampled, barring that it is
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selected through exploration, which is worse in time by at least a factor
of two compared to random selection to find the whitespace. The proba-
bility a channel is selected through random exploration also reduces with
increased number of channels. However the alternative channels have a
record of being less utilized and so are more likely to be ready for use than
those channels trialled via random channel selection.

Reducing the convergence time by increasing «, the learning rate, in
the limit to 1 produces almost identical behavior to the rule-based scheme.
This leads to one-shot learning where only the immediate packet trans-
mission outcome determines the Q-value. When o = 1 a success sets the
channel Q-value directly to the reward value, RW. A failure sets it to the
cost, CT. If there is no exploration the Q-value at all other channels out-
side the one currently being used is equal to this cost as either the last
transmission attempt in the channel was successful, in which case it will
most likely be selected for the next epoch as it has the highest Q-value with
RW, or the attempt failed and a channel is selected uniformly randomly
from all available data channels which now have equal Q-values CT'.

Figures 7.10 and 7.15 indicate the no-regret scheme achieves similar
performance compared to the Q-learning scheme. The successful packet
transmission proportion and SU goodput is smaller when the nominal
mean utilization is 0.1 or exceeds 0.7 but elsewhere is identical within un-
certainties. The average successful transmission proportion and goodput
is 6.78% and 6.55% less, and against the rule-based scheme 14.66% and
14.89% less respectively. The no-regret strategy selects equally between
the channels with the least scenario designated utilization. Consequently
it models the behavior of the Q-learning DCS when o — 0 in the limit
of infinite transmission epochs elapsing, guaranteeing that the Q-values
have eventually converged to Equation 6.8 and as a — 0 remain fixed
there unperturbed by stochastic variations in channel whitespace. Among
the converged Q-values, those belonging to the channels with the least av-
erage utilization will be the greatest, causing their exploitation for channel
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selection which is replicated by the no-regret strategy.

As stated, it is not within the scope of this thesis to determine exactly
how the Q-learning scheme will perform at all values of the Q-learning
variables, such as RW, CT or e. However, the results gathered give an
idea how varying the learning rate, «, will affect the scheme’s perfor-
mance. The no-regret scheme produces the steady-state behavior expected
of the scheme when o — 0 and has lower goodput or likelihood of trans-
missions being successful compared to the rule-based scheme, approxi-
mating the behavior at the other extreme when o = 1. Both schemes
ignore exploration so conclusions are independent of the particular ex-
ploration policy in use. The performance of the Q-learning scheme where
a = 0.2 lies in between these two extremes. The comparative performance
shows that spectrum agility and the ability to rapidly locate and relocate
to occurring whitespace in any channel is more valuable than selecting
the channel with the least utilization over time. The best goodput perfor-
mance achieved by varying the learning rate is by the rule-based scheme,
roughly equivalent to setting o = 1. Thus, in fact, knowledge of the past
utilizations is unnecessary since better performance is accomplished us-
ing one-shot learning which discards all but the previous result for use in
decision-making.

This is interesting as the opposite result is reported by [97] for the same
Q-learning and rule-based DCS schemes. A similar scenario is set up in
OMNET++ to the one described in this thesis, involving a backlogged SU
and 3 data channels occupied by PUs transmitting at exponentially dis-
tributed intervals. The Q-learning scheme simulation results are presented
in the manner of Figure 7.10 where the average performance is plotted
against the mean utilization of the channels and show it to consistently
outperform the SU goodput of the rule-based scheme at all utilizations.
The performance of the rule-based scheme used for the comparison is de-
rived analytically from Markov chain analysis. Markov chain analysis of
the Q-learning scheme presented here was unable to predict significant
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performance improvement would be obtained from local whitespace in
the experiments. It is possible this is neglected in [97] leading to the dis-
crepancy. Also different scenario timing parameters were employed, pre-
venting a true comparison to our results. Identical Q-learning parameters
are used but the interframe and packet transfer times are in line with those
expected of a network, for instance SIFS=10us rather than in the order of
milliseconds, This was not achievable by us in the real radio hardware
when compared to evaluating performance in simulation environment.

Most significantly in [97] the SU and PU packet data packet durations
are both 5.44ms. In this thesis the PU data packet duration is approx-
imately an order of magnitude longer at 311.3ms compared to the SU
DATA packet, which have a packet transfer time of 30.2ms. The cycle
time for the SU to complete a successful transmission is 110ms and 191ms
if the transmission fails, so there is a high correlation that using the same
channel to transfer a packet after the previous attempt has failed due to
PU interference will abort because the same PU packet is still being broad-
cast. If the past history of the channel was sufficiently underutilized the
Q-learning scheme will repeat the use of this channel regardless. However
the rule-based scheme will randomly select another channel where there
is a chance the band will be free.

The single-state model of the system used by Q-learning is too sim-
plistic to handle this dependency. A suggestion would be to represent the
choice of the same channel after the previous attempt was unsuccessful as
a separate action. This introduces n = 3 new states. The failed attempt
causes the agent to transition to one of these states. The allowable actions
consist of normal transmission on the other two channels and transmis-
sion, with the knowledge the last attempt failed, on the previous channel.
If the attempt is successful the agent returns to the state consisting of nor-
mal transmission on all channels. The Q-values for repeating the use of the
same channel become learnable and the action avoidable, which is com-

bined with the performance improvement of learning to select the channel
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with the least utilization. However, introducing new states lengthens the
Q-value convergence time. If all actions are treated as unique, the num-
ber of actions added, 9 in this scenario, needing to be sampled increases
exponentially with the number of channels.

Figures 7.20 and 7.21 show that if significant differences exist in the
channel utilizations, then above a threshold the converged learned so-
lution of selecting the channel with least utilization given by the no-
regret scheme will have superior goodput performance over the rule-
based scheme. This result is trivial since if transmission success is in the
limit of being guaranteed in the channel with least utilization, while in
other channels the high utilization prevents all transmissions being suc-
cessful, exploration of the other channels is wasted. The threshold is mea-
sured as a utilization variance of 0.12 in the scenario. Even so in the results
obtained with the maximum channel utilization variance of 0.19, corre-
sponding to PU utilization permutations of [0.9,0.1,0.8], the difference is
minimal, with goodput improved by 2.9%. When the channel utilizations
are similar reducing the convergence time to exploit local whitespace im-
proves performance as indicated by Figures 7.18 and 7.19, where the rule-
based scheme has 24.88% increased goodput over the Q-learning scheme.

Figure 7.16 shows that the Q-learning scheme causes significantly in-
creased interference to PUs over random channel selection or either ideal
strategies. The average proportion of PU packets lost is 46% greater than
the random scheme. The selection of the channel with the least utilization
is detrimental with Listen-before-Tnlking sensing in use, since it is unable to
prevent collisions with PU packets appearing mid-transmission but will
avert the transmission if the packet is in the middle of a packet train which
is more likely to occur in higher utilization traffic. The individual channel
interference can be high. A maximum figure of fully 39.09% of all PU pack-
ets transmitted being lost due to SU interference was recorded in Figure
7.17. Predictive and more sophisticated techniques for sensing are needed
for exponentially distributed traffic.



CHAPTER 7. RESULTS 146

This level of interference to licensees is unacceptable. However this
does not invalidate the concept of dynamic spectrum access networks and
spectrum agile radios for making best efficient use of spectral resources.
The deferred ideal scheme achieves superior goodput to all other strate-
gies trialled and shows that by fully exploiting the whitespace significant
unlicensed usage is obtainable in busy channels without hindering PU ac-
tivity at all.

The central aim of this thesis is to answer the research question, “what
performance does the Q-learning channel selection scheme achieve in a real de-
ployment scenario?” and although many new results have been discovered
regarding the performance of the Q-learning DCS scheme, as described in
this section, the experimental scenario does not reflect a real network en-
vironment. The scenario considers the performance obtained in the case
of only one pair of communicating SUs and three data channels, whereas
a realistic network could comprise dozens of SU and PU nodes and chan-
nels over multiple hops. For comparison, IEEE 802.11 uses 13 channels in
the 2.4000-2.4835GHz band.

It was recognized at the beginning that, due to equipment constraints,
the experiment would be limited to a small-scale. The intention was that
the research question would be answered by examining the performance
of the scheme in the setup and by deriving an analytical model to pre-
dict the performance in the large-scale multiagent case. The theoretical
analysis would be verified by comparing to the experimental results. The
results show a poor fit with the analytical predictions. The average exper-
imental successful transmission proportion is 8.72% higher than what the
analysis estimates in Figure 7.10, with a R? correlation of 0.9647. The dif-
ference is greater for the goodput and PU interference in Figures 7.15 and
7.16 where the R* match between the Q-learning experimental and ana-
lytical results is 0.8935 and -0.1449 respectively. The model is invalid in
assuming the average performance is given by the selection policy using
static converged Q-values. Figure 7.3 shows the median Q-values reach
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steady-state values but Figure 7.4 indicates the single-trial Q-values fluc-
tuate. The model does not account for the Q-learning scheme responding
to stochastic variations in the traffic, thus exploiting local whitespace lead-
ing to an increase in the actual obtained performance. In addition there are
non-idealities in the scenario implementation. Interprocessing delays lead
to significant distribution in timing which is modeled as exact. Modeling
the DCS scheme and scenario in a discrete event time network simulator
such as OMNeT++ or NS-2 would be able to reproduce the Q-learning

scheme’s dynamic behavior.

7.3 Experience Report

This section discusses the experiences of working with the GNU Radio
platform to implement a CR testbed. After working with GNU Radio, the
platform showed itself to be an effective environment for rapid prototyp-
ing. The open source license and strong contributor base were useful here.
The extensive library of physical layer block implementations meant that
different physical radio designs could be rapidly developed in this thesis
by assembling flowgraphs from existing blocks or, where new functional-
ity is needed, writing a new block that is inserted into the rest of the flow-
graph. Cognitive functionality at the MAC layer is then added as python
flowgraph control code. The CR in this thesis shows this legacy, making
use of modified versions of the existing GNU Radio frame modulator and
demodulator. This also means the design of the radio could be rapidly
reconfigured. GNU Radio also had a helpful and responsive user base.
Most questions could be resolved by asking on the GNU Radio mailing
list, discuss—-gnuradio@gnu.org, often through developer postings,
which was invaluable for a first-time user with nothing previously to go
on.

However shortcomings were found at the hardware and software lev-
els. The USRP RF frontend performance is suboptimal. With the USB the
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device can only transfer a maximum Nyquist bandwidth of 4MHz signal
data to the host computer for processing. This has implications for the
CR techniques that can be investigated using the system, effectively pre-
cluding realistic experiments on OFDM spectrum agile access or sensing
across multiple channels, as well as hampering the ability for GNU Radio
to be used for practical demonstrations, such as an 802.11 receiver which
employs 13MHz channels. The USB also adds unacceptable latency when
transmitting or receiving packets. Achieving strict timing was found to be
problematic. Interprocessing delays caused a large spread in the trans-
mission cycle times, shown in Table 5.8. The issue is the GNU Radio
flowgraph scheduler which operates by polling of every flowgraph block,
which if data is present at the input buffer and there is sufficient output
space processes the data. The time data will actually be transmitted to
the USRP is unpredictable and there is no support for priorities or explicit
scheduling of the time the data will be processed. This severely affected
the validity of the experimental results. It is unclear whether the large dis-
crepancy observed between the analytical and experimental goodput and
interference results is partly due to timing being modeled as exact in the
analysis and the PU traffic implementation deviating from M/D/1 due to
processing delays. The system developed in this thesis does not satisfy re-
producibility or repeatability requirements, since the results are peculiar
to the non-ideal implemented scenario, thus another experiment follow-
ing the same scenario may experience different results. Case in point [97]
which recreates the scenario in simulation comes to the opposite con-
clusion that the Q-learning scheme outperforms the rule-based selection
strategy. Thus our experience shows that a direct GNU Radio implemen-
tation of a CR is unsuitable as a testbed.
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74 Summary

The results of the experiment in Chapter 5 were presented in this chapter
and compared with the analysis in Chapter 6. From observations of the
SU Q-values, the Q-learning scheme converges reliably to the expected
utilization-based reward found analytically. The SU goodput and success-
ful transmission probability achieved under the Q-learning scheme is sig-
nificantly superior to random channel selection. On average the successful

transmission probability is 39.9



Chapter 8
Conclusions

The goal of this research is to answer the question, “what performance does
the Q-learning channel selection scheme achieve in a real deployment scenario?”
This study is important given the challenges of spectrum scarcity. Cogni-
tive spectrum agile radios open up the possibility of shared use of licensed
channels as long as PUs are not interfered with, allowing for a greater pro-
liferation of wireless services than the currently overcrowded ISM bands
support. Development of dynamic channel selection strategies to exploit
high-quality whitespace is critical for bringing about spectrum agile ra-
dio. In previous work a Q-learning DCS scheme was proposed that maxi-
mizes the MAC layer packet transmission success probability by learning
to transmit on the channel with least utilization. Initial simulation shows
it to give promising results. The purpose of this research is to determine
if the improved performance extends to real implementation in a realistic
scenario environment.

To accomplish this, the performance of the Q-learning DCS scheme was
studied empirically in a wireless network experiment. This involved the
implementation of a CR system in the GNU Radio platform and the de-
velopment of co-ordination tools and tools to log and analyze the experi-
mental results. The single-hop performance of the SU using the scheme
was considered among three channels occupied by PUs with exponen-
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tially distributed packet interarrival times, with results able to be gener-
alized to the multiagent SU case. The Poisson distribution was chosen as
it models packet-based networks. An analytical model was derived us-
ing steady-state Markov chain analysis to predict the realistic large-scale
network performance, which is not practicably achievable in the physical
setup.

The SU packet transmission success probability, goodput and PU in-
terference were measured across all stationary PU channel utilizations in
the set {0.1,0.2,...,0.9}. The Q-learning DCS scheme was found to sig-
nificantly outperform the baseline performance set by random channel
selection, with 39.9% and 56% increased successful transmission proba-
bility and goodput calculated over all utilizations. Performance improved
when the learning rate was increased and the results of previous learning
are less significant. A rule-based scheme similar to the one-shot learning
case, selecting the previous channel if the last transmission was successful
otherwise randomly transmitting on one of the other channels, resulted
in 10.8% and 11.6% increased packet transmission success probability and
goodput.

The Q-learning scheme convergence time was measured. The success-
ful transmission probability was observed to rise to within 95% of its final
running value by the time required for six transmission attempts, taking
the median across all utilizations. The time corresponds to the number
of attempts given by the analytical discrete-time model needed before up-
dates to the least utilization channel Q-value causes it to rise above the
others. Defined as the best-time convergence bound, this time is indepen-
dent of the number of channels and decreases with increasing learning
rate. After this point the final strategy has been reached, with conver-
gence of the remaining Q-values having a negligible effect on the selec-
tion policy. Using Q-learning an empty channel is not identified until af-
ter six transmissions, whereas random channel selection by the rule-based
scheme will begin exploiting the channel within an expected 1.5 attempts
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with three channels. However above a threshold, if the variance between
the channel utilizations is 0.12 or over, the Q-learning scheme outperforms
one-shot learning thus validating learning to select the channel with least
stationary utilization.

The channel Q-values responded to local variations in the utilization,
thus the analytical model assumption that performance with steady-state
converged Q-values could be used was invalid and the prediction results
proved to be inaccurate.

The conclusion of the work is that using the Q-learning DCS scheme,
SU goodput and MAC layer packet transmission success probability is in-
creased in the real scenario. The analysis show that in dynamic channel
selection, knowledge of the channel with least long-term utilization is less

useful than the speed transient whitespace is located.

8.1 Contributions

The key contributions of this thesis include:

1. Empirical performance analysis of the Q-learning DCS scheme in
a real system. The research significantly advances the knowledge
that the community has of the scheme’s behaviour, with a previous
evaluation in simulation only. Novel results for the PU interference
and time dynamic performance of the scheme have been obtained,
metrics not considered in previous work. A more comprehensive
comparitive approach is taken. The relative performance of the Q-
learning scheme with respect to the ideal and rule-based schemes in-
dicates shortcomings with the intelligent DCS not discernable when
comparing the scheme only to random channel selection.

2. Derivation of an analytical model using Markov chain theory for
the performance of the Q-learning scheme in the test scenario. The

model serves to generalize the expected results for larger networks,
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which is more likely in realistic deployments. The model has been
validated with experimental results, though not fully, and the ex-
istence of several discrepancies in the observed results need to be
investigated in future work.

3. In addition, ideal performance bounds were derived assuming the
CR had perfect knowledge of licensed band usage to fully exploit
the whitespace. The results give significant credence to the SU con-
cept. The non-deferred ideal scheme gives superior performance to
the Q-learning scheme is achieved while maintaining zero interfer-
ence to PUs. Performance is comparable to licensed usage when the
channels are low-medium utilized. In the experiment, the ideal SU
goodput in Figure 7.19 when the channel utilization in all three chan-
nels is 0.5 is only 13.9% less compared to when the utilizations are
0.1.

8.2 Accomplishments

Although not a research contribution, the implementation of a CR on the
GNU Radio platform was a substantial accomplishment. GNU Radio has
been widely used for prototyping CR techniques, such as in [63] [74] [71].
However the focus elsewhere has been on testing physical layer tech-
niques, such as signal classification, or demonstrating flexibility can be
achieved by toggling between empty channels. Thus far implementing a
cognition cycle at the MAC layer in GNU Radio to learn and select chan-
nels for transmission, which here we have done using Q-learning to learn
channel occupancy history, is a novel application.
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8.3 Future Work

Future work should take two main directions. Firstly, as identified in Sec-
tion 7.3, GNU Radio hardware and software limitations impose sever per-
formance penalties on the CR system as it stands now, which need re-
solving. Secondly, improvements to the Q-learning DCS scheme are sug-
gested.

8.3.1 Testbed Development

The CR system suffers from lack of control in packet timing, which is criti-
cal if it is used to evaluate CR MAC protocol techniques. Needed improve-

ments are discussed.

USB

The USB2.0 buffer adds latency to data being sent to or from the USRP.
As described in Section 5.5.3 a minimum and maximum delay of 256s
and 8.192ms is incurred in the experiment due to the USRP USB controller
requiring a multiple of 512 bytes of data to transfer across. This is small
in comparison to timing variation due to interprocess scheduling, which
in Table 5.8 leads to the same transmission operation being executed hun-
dreds of milliseconds later. The 32MB/s USB2.0 bandwidth is the major
problem which acts as a performance bottleneck. If complex float samples
are used it allows a maximum 4MHz Nyquist bandwidth to be observed
or broadcast, limiting the ability to test MIMO or OFDM applications for
example. The most direct solution would be to modify USRP to use a
different bus technology. For example, Ethernet supports a 1Gb/s trans-
fer rate while PCI-Express is capable of 8GB/s. However the increased
throughput must be considered against the latency of the bus protocol.

This could also necessitate a platform change.
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USRP-based Code

The USB bottleneck can be mitigated by transferring early stage host com-
puter signal processing code to the USRP FPGA. The SPAN project [80] is
a successful example of this. In their implementation of an 802.11 receiver
the FPGA is programmed to perform the Barker dispreading. The 2MHz
output of this, down from the 22MHz raw channel sample data, is passed
to the host computer. Implementing the task in hardware would also lead
it to be calculated more efficiently and eliminate interprocessing delays
compared to handling it in software on the host computer. This would

require familiarization with the Verilog HDL.

m-blocks

In Section A.4.1 we discussed message blocks or m-blocks, currently in
development for GNU Radio. m-blocks greatly enhance GNU Radio’s
packet timing control support that is lacking in the thesis’ CR implemen-
tation. Currently when a packet is processed in GNU Radio is left up to
the flowgraph scheduler, which uses a crude polling mechanism on data
streams. Hence interprocess scheduling leads to large variations in pro-
cessing times. Using m-blocks data is processed as packets containing the
signal data and metadata, which can be specified with a scheduler prior-
ity and timestamps for when the packet should be processed at each flow-
graph block. The priority-based quasi-real-time scheduler ensures these
times are met. Future work should look to porting over this design to use
m-blocks.

Future Experiments

Further analysis of the Q-learning DCS scheme is needed. Its behavior
needs to be modeled with more users and beyond the single-hop case.
More complex testbed systems will be required. In the multihop scenario

hidden user problems become an issue requiring co-operative sensing tech-
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niques. The Q-learning scheme could be extended to learn not just the
past history of PU activity per channel but the history of activity per PU.
This necessitates the ability to classify signals, thus future work could look
to implementing cyclostationary feature detection in place of the power
detector. Additionally assuming a fixed CCC is unrealistic and the proto-
col for moving between temporary rendezvous channels needs to be for-
malized. Such large-scale experiments may be better suited to simulation
which is cheaper, gives greater control to the designer and is less time-

consuming.

8.3.2 Algorithm Development

Possible improvements to the Q-learning DCS scheme are discussed. The
current reward strategy only measures whether a packet was successfully
transmitted or not. This gives good results when all channels are homo-
geneous but if the bitrate is heterogeneous then selecting an underutilized
but low capacity channel will give poor goodput. The scheme needs to be
reformulated to emphasize the time-wise performance.

Using Q-learning, the scheme accumulates knowledge of the channel
quality as expressed by the packet transmission success rate. The scheme
should seek not only to exploit high quality channels but also optimize its
transmissions within each channel, based on the learned characteristics.
For instance, if the packet transmission success probability is low because
of noise then the power level should be increased to compensate. In the
opposite case the SU could take advantage of the low PER by transmit-
ting larger size packets with greater protocol efficiency. This could be a
separate cognitive extension to the radio.

A problem with the e-greedy exploration policy in use is that, besides
the top-ranked by Q-value channel, all other channels are selected equally
during exploration even if a significant variation in channel utilization ex-

ists between them. An immediate improvement to the Q-learning scheme
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would be to implement a continuous exploration technique such as Boltz-
mann exploration (Equation 4.9) so a channel that has the next lowest uti-

lization should be selected more often than a fully utilized channel.



Appendix A

GNU Radio

This appendix serves as an introductory guide to GNU Radio and USRP.
The core architecture, concepts and capabilities of GNU Radio and USRP
are described in Sections A.1 and A.2, which may be safely skipped by
readers already familiar with the platforms. Platform limitations with im-
plications for this thesis implementation are then noted in Section A 4. Fi-
nally in Section A.5 related work using GNU Radio in CR research con-
cludes this appendix.

A.1 GNU Radio

GNU Radio' [4] is a free open source software framework for implement-
ing SDR on Linux systems. GNU Radio makes use of discrete signal pro-
cessing blocks written in C++ on a host PC. Taking advantage of its open
source license, over time enthusiasts have contributed hundreds of pre-
written blocks now bundled with GNU Radio, providing such functional-
ity as Phase Shift Keying (PSK) modulation and trellis encoding. Blocks
are defined by the number of input and output ports they possess and

the data stream data type accepted or produced at each port. The output

LGNU Radio v3.2, the current version as of June, 2009, was used for the work in this
thesis. The thesis text references this version when describing GNU Radio.
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port of a block can be connected to the input port of another block, if the
data types are compatible, leading to the second block processing the data
stream output by the first. A radio is created by wiring together differ-
ent C++ signal processing blocks into a GNU Radio flowgraph, analogous
to how hardware radios are built by cascading physical radio frequency
(RF) components. For example an FM receiver can be made by joining to-
gether an FIR filter followed by a demodulator, as depicted in Figure A.1.
A top-level python program is written to create the connections and han-
dles the running of the flowgraph, such as scheduling and data handling.
The signal processing blocks are written in C++ for high performance [19].
Python at the top-level simplifies modifying code since it is an interpre-
tive language that does not need to be compiled between changes, but this

causes it to run slower.

USRP Source Audio Sink

(equivalentto RF  [—> FIR Filter > D%lrj:géitll;:zr —> (Outputto Sound
Front End) Card)

Figure A.1: GNU Radio flowgraph for a simple FM receiver

A block with no outputs is known as a sink. In the example flowgraph
the FM signal terminates at an audio sink, which plays the waveform to
the computer sound card. Other sinks implemented include a spectrum
analyzer display sink. A source block has no inputs and generates the data
used, such as from a file. Figure A.1 shows the signal originates from a
USRP source.

GNU Radio is designed to work with the Universal Software Radio Pe-
ripheral (USRP) hardware peripheral manufactured and sold by Ettus Re-
search LCC [2]. The USRP, pictured in Figure A.2, handles up- and down-
conversion of signals from baseband to RF. The USRP is built around an
Altera Cyclone EP1C12 FPGA with high-speed ADCs/DACs perform-
ing digital up/down conversion and is capable of mounting up to four
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analogue RF frontend daughterboards. Various daughterboards exist to re-
ceive or transmit anywhere between 0-5.8GHz depending on the daugh-
terboard. This is part of the design philosophy behind GNU Radio, which
is to have the high speed general purpose operations like digital down
conversion done in hardware. The flowgraph signal processing only han-
dles the lower speed waveform specific processing, such as modulation,
thus the GNU Radio SDR architecture can be thought of as a USRP fron-
tend with a host computer backend. If speed is required some flowgraph
processing operations can be programmed on to the FPGA with Verilog,
the use of which is beyond the scope of this thesis. The USRP and USB
exchange baseband signal data via a USB2.0 interface. The USRP also rec-
ognizes control information to change, for instance, the RF frequency with
which the daughterboard is receiving. These are provided as methods for
the python program by the USRP sink and source blocks.
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Receive Channel Transmit Channel
RF Interface Altera FPGA RF Interface

DC Power USB 2.0 Analog Devices
Port Mixed Signal
Processor

Figure A.2: Universal Software Radio Peripheral (USRP) Board mounting
4 BasicRX/TX Daughterboards, from [33]

The layered GNU Radio framework architecture is depicted in Table
A.1l. The C++ signal processing blocks have been previously discussed
as has the role of the a top-level python program to connect together the
blocks into a flowgraph and during runtime provide data for processing,
act on received data and tune operation, such as change the USRP fre-
quency through the sink and source. Scheduling within the flowgraph is
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handled automatically by the GNU Radio scheduler, which is also writ-
ten in python but is separate from the top-level python program. The
SWIG [9] (the Simplified Wrapper and Interface Generator) tool interfaces
between python and C++. Each block is associated with a SWIG . i wrap-
per definition file. The python program can access non-private C++ block
methods or variables through this wrapper, although again doing this is
slow.

Python Flow Graph
SWIG
C++ Signal Processing Blocks
USB2.0 Connection
USRP

Table A.1: GNU Radio Framework Architecture

A.2 Universal Software Radio Peripheral
(USRP)

The USRP is a dedicated hardware frontend for handling the RF-IF and
IF-baseband communication stages for GNU Radio. The USRP interfaces
with the host computer backend over a USB2.0 link which it sends 16-bit
I/Q complex float samples of the baseband signal for software process-
ing. The USRP motherboard comprises an Altera Cyclone EP1C12 FPGA,
4 high-speed 12-bit 64MS/s (M sample/sec) ADCs and 14-bit 128MS/s
DACs implemented on the AD9862 CODEC chip and a Cypress RX2
USB2.0 controller. 20dB programmable gain amplifiers (PGAs) are present
before and after the ADCs and DACs respectively. Up to four daugh-
terboards, analogue RF frontends, can be mounted onto the USRP. Each
daughterboard slot is assigned two of the DACs or ADCs, which digi-
tize the daughterboard signals at IF. The default FPGA image implements
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multiplexed Digital Up Converters (DUCs) and Digital Down Converters
(DDCs) that take the digital signal to baseband format for transmission
over the USB link. Additionally, the USRP has auxiliary analog and digi-
tal I/O ports, some of which are used to control daughterboard operation.
The USRP is fully duplex, although individual daughterboards may not
be. The rate of data being simultaneously transmitted and received is lim-
ited by the USB interface.

A block diagram of the USRP is given in Figure A.3 and Figure A.4
shows the ADC/DAC and default FPGA image sections of the USRP.

16 Bit Digital-RX 0
f 16 Bit Digital-RX 110
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Figure A.3: USRP Block Diagram, from [3]
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Figure A.4: ADC/DAC and FPGA sections of the USRP, from [3]

A number of daughterboards have been made available by Ettus Re-
search LLC for working at different frequencies between 0-5.9GHz. In
common with the rest of the open source GNU Radio project, most boards
have schematics downloadable from the GNU Radio subversion reposi-
tory [11]. This thesis uses the RFX2400 and XCVR2450 transceiver boards
to work in the 2.4GHz Wi-Fi bands. The boards are:

e RFX2400: The RFX2400 transceiver has an operating frequency range
of 2.3 to 2.9GHz with maximum transmit power 50mW (17dBm).
The board can operate in full duplex mode as long as it is not trans-
mitting and receiving simultaneously on the same frequency. The
RFX2400 has a 20MHz TX/RX bandwidth, so concurrent transmis-
sion and reception can occur within any other two points inside this
width [10].

e XCVR2450: The XCVR2450 transceiver can transmit up to 100mW
(20dBm) and has a frequency range of 2.4 to 2.5GHz and 4.9 to
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5.9GHz. The XCVR2450 is single-duplex only.

Figure A.5 shows a USRP kit mounting a RFX2400 daughterboard. Daugh-
terboard inputs/outputs are brought out to SMA headers.

Figure A.5: USRP mounting RFX2400, LFTX and LFRX daughterboards

The received IF signals from the daughterboard are down converted to
baseband by the CORDIC numerically controlled oscillator (NCO) mixer
in the USRP DDC, which is fully implemented on the FPGA and depicted
in Figure A.6. The signal is digitized at 64MS/s by the ADC for a total data
rate of 256MB/s with 16-bit I& Q samples. The USB2.0 link has a speci-
fied data transfer rate of 480Mbit/s but in practice considering protocol
overheads can only sustain 32MB/s [11], giving a maximum observable
double-sided bandwidth of 8MHz. Even this cannot be achieved without
overruns when a less powerful computer is playing host. An important
role of the DDC is to decimate the signal to fit across the link. This is
achieved using a cascade integrator-comb (CIC) filter. The 31-tap half-
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band filters cascaded after are for out of band signal rejection. The DDC is
configurable from GNU Radio for decimation by a factor of [8, 256].

Divide by N ﬂ Divide by 2 ﬂ
jb)(c+jd
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\ 3
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ADC Or Zero &
5;—,- 4 Stage CIC Decimator 31 Tap HBF Q
NCO
froms USRP FPGA DDC

Figure A.6: USRP Digital Down Converter, from [3]

The DUCs, shown in Figure A.7, are implemented in the AD9862
ADC/DAC chips. Only CIC interpolators are programmed onto the FPGA
to upconvert the computer signal to 32MS/s before the remaining on-chip
stages take this up to the ADC 128MS/s. DUC interpolation by a factor of
[16, 512] can be set by GNU Radio.
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Figure A.7: USRP Digital Up Converter, from [3]

A.3 Further Reading

The purpose of this thesis is not to serve as a reference guide into the
USRP and GNU Radio platform, and this brief introduction will have to
suffice. A number of academic papers have been written going into the
technical details of the devices and how to install, code and run a basic
test program on GNU Radio. Manicka’s [52] “GNU Radio Testbed” and
Jones’ [43] ”“Channel Sounding with Software Defined Radio” are good ex-
amples. Plentiful learning resources exist online such as Shen’s [77] excel-
lent tutorial series, which covers everything from step by step installation
to writing custom GNU Radio blocks, and the official GNU Radio wiki [4]
is there to be consulted.

A.4 Limitations of GNU Radio

The GNU Radio platform offers many advantages for SDR and CR re-
search. It is open source and has a strong community base. Different

groups have added to a large library of blocks providing capabilities rang-
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ing from DBPSK modulation, FFT, FIR and Hilbert filters. Newcomers to
the platform have many implemented signal processing functions to work
from. The sheer number of blocks is daunting. The official website [4]
links to a doxygen-generated list of all bundled blocks but the best ap-
proach to understanding what each block does is still to read the source
code. If questions remain they can be posted on the GNU Radio mailing
list, which unhappily goes by the motto “we’re helpful people, and we
expect you to try to help yourself”, that is also to be found on the GNU
Radio homepage.

At the same time there are a number of issues with GNU Radio. DSA
using CRs is being proposed as a next step in wireless access. The ma-
jor DARPA xG CR project is working with an 802.16 modem [54], using
it to send out packets in free parts of the spectrum, and the IEEE 802.22
packet radio standard [26] is being authored for WRAN access of the TV
spectrum. A problem is that GNU Radio is not designed for packet radio
applications. The platform was originally created for processing of contin-
uous streams of signal data and has been used with success in such appli-
cations, for example FM and AM radios. There is only rudimentary packet
support. The limited bandwidth of the USRP is an additional concern and
is general to the entire class of SDRs.

A.4.1 Software Limitations

No packet concept exists within GNU Radio flowgraph block architecture.
In the flowgraph data is processed as streams of homogeneous items. Each
block declares a work () function that takes a fixed size input unit and pro-
cesses it to get the output. For instance, an N-size FFT block will require an
N-size array of complex float samples at its input. The GNU Radio sched-
uler, a python thread, handles the memory management and running of
the flowgraph. The scheduler iterates over the flowgraph blocks. If the in-

put item(s) are available and there is sufficient room at the output buffers,
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the scheduler invokes the block’s work () function. The operation of the

scheduler can be summarized by the pseudo-code algorithm in Figure A.8.

while enabled and nalive > 0 do
fori=1,2,..., blocks do
if sufficient room in output port buffers for block i
and data at input ports of block i
then invoke work() on block i
end if
end for

end while

Figure A.8: GNU Radio Scheduling Loop Algorithm, from [19]

GNU Radio defines message source and sink blocks for sending and
receiving discrete packets of data. The GNU Radio native implementation
of a packet transmitter, benchmark_tx.py, defines a packet of data at
the level of the top layer python program. This is inserted into a mes-
sage queue in a message source flowgraph block. This block converts
the packet into a stream of data samples which are carried on to mod-
ulation blocks and subsequently transmitted by the USRP. The receiver
implementation, benchmark_rx.py, demodulates a stream of complex
baseband samples from the USRP source block. A framer sink block looks
for a header containing the payload length. The identified length of bytes
are assembled with the header into a packet and inserted into a message
queue. A separate python queue watcher thread blocks on the queue,
waiting to take the receiver packet at the head and forward it to a call-
back function in the main python program for link layer processing.

Packets can be defined at the python top layer program, but flowgraph
blocks only recognize streams of simple types such as floats. There is no
interface for blocks to signal each other. The GNU Radio scheduler does
not support priorities and explicit scheduling of block tasks is not possible,
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rather it is handled automatically. Block input and output buffer sizes are
set automatically by the buffer based on the block data type and ratio of
input data items produced per output item, which is ill-suited to handling
frames of different sizes. The implication is that once a packet has been
queued on to the transmitter flowgraph it is impossible to know when it
will be actually transmitted or to apply different block signal processing
to a specific packet. Dhar et al [31] were unable to implement the MAC
protocol they required on GNU Radio for these reasons: the lack of timers
made it problematic recovering from errors and difficulty synchronizing
flowgraphs (cited was forcing a transmit immediately after a packet is re-
ceived). In response, the authors ported the GNU Radio blocks to Click, a
software architecture for building routers, to take advantage of its explicit
scheduling capabilities.

BBN Technologies Corp. has proposed a number of extensions to GNU
Radio for handling of packet-based data. Chief among these are a pri-
ority scheduler and message blocks or m-blocks [19]. In m-blocks data is
exchanged between blocks as arbitrarily sized messages consisting of two
sections, the sample data and associated metadata. The metadata defines
a message priority for the scheduler and a signal event name describing
if the data should be processed differently by other m-blocks, which is
useful in a MAC protocol where different behavior is required to handle
different types of packets. The metadata also lists block entry/exit times-
tamps controlling when the packet should be processed at other blocks
in the flowgraph. Signal metadata can be exchanged between blocks for
status reporting and passing control information. Development code can
be evaluated in the GNU Radio trunk and m-block features will be inte-
grated into the bundled block library for the next release of GNU Radio
(v3.3) [28]. The greater packet control possible comes too late for this the-
sis.
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A.4.2 Hardware Limitations

The USB2.0 connection between the USRP and host computer backed is
an important performance bottleneck. The USRP ADC and DAC process
4-byte complex float samples at 64MS/s and 128MS/s respectively, but
this cannot be fully exploited. Received signals must be decimated down
to fit across the USB2.0 link and subsampled versions of waveforms to be
transmitted must be sent across, that are then interpolated up. USB2.0 has
a raw data transfer rate of 480Mbit/s or 60MB/s. Cypress FX2 controller
signalling protocol overheads mean that 32MB/s is in practice the maxi-
mum sustainable rate. A received signal must be decimated by at least a
factor of 8 by the USRP FPGA DDC and a transmitted signal interpolated
by a factor of at least 16. The maximum Nyquist bandwidth observable
using the USRP is 32MB/s/(4*2B) = 4MHz set by the USB.

The restrictive bandwidth limits how GNU Radio can be used. For
example, the IEEE 802.11 WLAN standard uses a direct spread spectrum
signalling (DSSS) method at its physical layer with 22MHz Barker spread
channels [62], far in excess of the imposed USB bandwidth limit. BBN
Technologies Corp’s [19] implementation of a GNU Radio 802.11b receiver
as part of the DARPA ADROIT project subsamples the channel when it
reduces the signal bandwidth it receives to 4MHz. The resulting system
can receive from an 802.11 station but only at j1Mbps and with very low
SNR. Hamed Firooz [80] implementation reconfigured the Altera FPGA
to perform the Barker dispreading. Thus the full 22MHz signal could be
reduced to 2MHz when sent over the USB link and the full signal received
with improved performance.

Schmid et al [75] notes that using USB introduces significant latency in
addition to the slow data rate. A USB packet is sent to or from the USRP
only after a sufficient amount of data is collected at the buffer. The delay
introduced by the USB is given by

f (512, fusb_nblocks* fusb block size)
sample size” f,

AUSBwai’c = ) (A 1)
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where f(z,y) is the size of data at the buffer before a packet is sent, = being
the least and y the most with fusb_nblocks and fusb_block_size specifiable.
The smallest allowed packet is 512 bytes long. The denominator gives the
rate at which data is being accumulated at the buffer. f, is the sampling
frequency and for complex float samples sample_size = 2*16bits = 4bytes.
Setting fusb_nblocks*fusb_block_size to 512 bytes gives the least latency
but the larger it is the greater the achievable data rate as protocol over-
head is reduced. Schmid et al settled on values of fusb_nblocks = 8,
fusb_block_size = 2048 for a good tradeoff between USB protocol over-
head and package payload. They measured a USB latency of 1ms using
a sampling rate of 8MS/s up to 30ms when sampling at 250kS/s. The
USB tended to wait until the maximum payload size was reached before
transmitting. These latencies are too large to implement current wireless
protocol standards such as IEEE 802.11 where timing is needed in the mi-
croseconds. The 802.11 SIFS (Short Inter Frame Space) interval is 28s for
comparison [20].

Extensive GNU Radio delay measurements were conducted by Nychis
et al [61]. Table A.2 summarizes the round-trip time (RTT) of a ping re-
quest by GNU Radio to the USRP, broken up into stages. For the min-
imum fusb_nblocks*fusb_block size = 512bytes the average time for the
kernel user ping request to be sent across the USB to the USRP, and the
reply sent back to the kernel was measured at 148us. It was concluded
that there is a significant USB setup time since the 512-byte USB latency
should come out to as low as 16ys according to A.1. Process scheduling
introduced high jitter in the kernel to user process (GNU Radio) time. The

maximum observed time was 7000us with an average time of 27 us.
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Avg SDev Min Max
User->Kernel (us) 24 10 22 213
Kernel->User (us) 27 89 13 7000
4096 Kernel<->FPGA (us) | 291 62 204 360
512 Kernel<->FPGA (us) | 148 35 90 193
GNU Radio<->FPGA (us) | 612 789 289 9000

Table A.2: GNU Radio Kernel Level Delay Measurements, from [61]

The successor to the USRP, the USRP2 introduced 25 May, 2009, works
to overcome this issue. It replaces the USB with an Ethernet connec-
tion (1Gb/s) and can look at 50MHz of RF data [12]. Other SDR de-
signs are available on the market with superior transfer latency and band-
width characteristics. The flexComm SDR-2000 [8] uses a PCI interface
(500MB/s) with Direct Memory Access (DMA).

The issue of USB latency can be alleviated by moving functionality
away from the host and to the FPGA. This approach is studied by Nychis
et al [61]. In his host-PHY CSMA /CA MAC protocol architecture, matched
filters are implemented on the USRP for detecting a DATA packet. This
triggers the fast transmit of a premodulated ACK packet stored by the
FPGA.

In the process of compiling this thesis document in January it was dis-
covered Auras [17] had developed an optimization of the Cypress FX2
firmware raising the achievable receive only USB bandwidth to 45MB/s
and removing the restriction of being able to transfer only multiples of 512
bytes. This occurred too late to be taken advantage of in our work.

A.5 Related Work using GNU Radio

GNU Radio is a common platform used in the scientific literature for CR
research. Two centers of research employing GNU Radio are Carnegie
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Mellon University’s Departments of Computer Science and Electrical and
Computer Engineering co-developing the CogNet project and the Center
for Wireless Telecommunications, Virginia Tech. Work is also proceeding
at multiple other locations prototyping physical layer CR capabilities on
GNU Radio, for example spectrum sensing or demonstrations of SDRs
with basic cognitive capabilities. At the same time little work has been
published on implementing intelligence on the platform and exploring the
quantified benefits on learning in a practical system.

The Center for Wireless Telecommunications, Virginia Tech have de-
veloped a control architecture for implementing CR functionality named
"Cognitive Engine” (CE) [45]. The CE is built around a central cognitive
controller that calls methods on attached modules to execute the cogni-
tion cycle. Examples of modules include a decision maker module and
a knowledge base database. GNU Radio and USRP are being used for
the adaptive radio and sensing modules. Modular separation simplifies
research collaboration, updating and experimentation. A working Public
Safety Cognitive Radio, capable of finding and use of public safety radio
bands in the area without the user having to intervene, was implemented
on the CE by Ge et al [36]. Rondeau [71] developed an intelligent sec-
ondary usage waveform synthesizer on the CE. It employs a genetic al-
gorithm to design a transmission waveform optimizing performance met-
rics, such as bit error rate, depending on the spectrum environment. The
GNU Radio platform would then adapt to meet the waveform specifica-
tions, including tuning the modulation type, transmit power, symbol rate,
pulse shaping, frequency and packet size. Tests showed that a waveform
optimal for the environment could be found within 400 GA generations.

Carnegie Mellon, Rutger and the University of Kansas are working on
CogNet, a CR protocol stack. CogNet’s unique feature is that it will spec-
ify a cognitive network layer, incorporating concepts such as forwarding
incentives and cross-layer aware routing. Most current implementation

research focuses on physical- and link-layer issues such as co-operative
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spectrum sensing. At node-level the CogNet architecture is split into a
data plane and global control plane (GCP) [69]. The data plane contains
the physical layer radio elements for handling transmissions. The GCP
controls and adapts the data plane through an API and co-ordinates with
GCPs at other nodes. The protocol is being prototyped with GNU Radio
implementing PHY layer functionality and the project is expected to finish
late 2009.

Interest in prototyping with GNU Radio has led to academic publica-
tions evaluating the platform for this purpose and their experiences with
it. Already mentioned was Manicka’s thesis “GNU Radio Testbed” [52],
which explores testing MAC protocols on GNU Radio and is useful as an
introduction to the system. Platform latency is characterized by Schmid et
al [75]. Nychis et al [61] considers the implications of the high latency in
implementing a realistic MAC protocol and proposes FPGA workarounds.
Rachel Dhar et al [31] describes their team’s partially successful efforts get-
ting an 802.11-esque RTS-CTS MAC protocol working on GNU Radio and,
as a reaction to needing explicit scheduling, porting of the signal process-
ing blocks to the Click software router architecture. Another extension to
GNU Radio is added by Scaperoth [73] who wrote an XML interface over-
lay to store and pass physical layer configuration details to the platform.

O’Shea [63] explores spectrum sensing on GNU Radio. He imple-
mented a cyclostationary feature detector-based sensor with the capability
to distinguish between signals. In his design, a classifier block was trained
using an artificial neural network on the spectral correlation density alpha-
profiles of differently modulated signal received by a GNU Radio radio.
Tests showed that the classifier was able to correctly recognize signals of
each modulation type but when the signal frequency was changed the sys-
tem would misidentify signals due to different frequency offsets slightly
altering the SCD alpha-profile, which supplied the training data.

The implementation of cognitive dynamic spectrum access radios on
GNU Radio is explored by Crohas [74] and Yan et al [92]. Crohas imple-
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ments a GNU Radio transmitter and separate receiver to send and receive
music packets on unused channels. The transmitter has a power detector
for determining whether another user is present out of four IMHz chan-
nels to choose for communications. The receiver is not equipped with a
spectrum sensor. There is no explicit channel rendezvous protocol. In-
stead, when the transmitter vacates a channel because it is occupied, after
waiting a timeout period in which no packets are received the receiver
cycles between the four possible IMHz channels in search of the transmit-
ter. Data packets are sent at a greater bitrate than the music sampling rate
so playback is uninterrupted during the handoff period when switching
channels. The SUs implemented by Yan et al use OFDM transmissions, di-
vided into five subcarriers across 2448-2452MHz. Before transmission the
opportunistic user senses using energy detection and if a PU is detected,

the overlapping subcarriers are not used in the transmission.
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Power Detector Analysis

Results leading to the derivation of Equation 2.4, giving the design thresh-
old for a constant false alarm rate (CFAR) power detector, are presented in
this appendix.

A power detector measures the channel power spectral density. Using
Welch’s method, the PSD estimate is found as:

1
Sulw) = — 3 Py(w), (B.1)
M%: N
, where )
Py(w) = |Y][<,IH : (B.2)

is the periodogram, M the number of periodograms averaged, Y the DFT
(Discrete Fourier Transform) of the signal at the detector and NV the size of
the DFT taken.

The power detector needs to distinguish between when the channel is
free, which assuming an AWGN channel gives the signal at the sensor as

Y] = X[n), (B.3)
or occupied by a signal

Y[n] = X[n] + Wn], (B.4)
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where X is the transmitted PU signal and W noise. W is real zero-mean
AWGN noise with variance ¢2. The channel assumption is justified as in
the WLAN 2.4GHz frequency range the primary source of noise is thermal
noise generated at the receiver, to which the AWGN model applies [67]. In
non-coherent detection [50], X can be considered a real zero-mean Gaus-
sian random process with variance o7.

The PU signal is declared present if the PSD estimate exceeds a thresh-
old ~. If the signal is not present but the threshold is exceeded by noise
effects, this results in a false alarm. The probability the threshold test in-
correctly decides the channel is occupied when it is not is denoted Fj,, the
probability of false alarm. The probability of detection, F,, is defined as the
probability that the test detects a PU signal in the band when one truly is
present.

It is known that for a normally distributed variable L, such as W, with
mean 4 and variance o, L? has a non-central chi-square distribution with
mean o2 + p? and variance 20* + 4p?0?. Thus, when the channel is free
Py(w) = YI® has mean 02 /N and variance 202 + 44202, The variable

N
X [n]+ W {n] is also normally distributed with mean 0 and variance o2 + 2,

thus Py(w) = XRE — XREWRE - oiying the value of the periodogram
2 2)\2 2 2\4

when the channel is occupied, has mean % and variance 2“"}\,%:”)
If the number of periodograms averaged, M, is large enough, the PSD
estimate approaches a normal distribution according to the central limit

theorem (CLT)

S(f) ~ Normal (%, ]SIL]?;Q), channel free / PU signal absent

S (f) NNormal(("i}"gy,2("%}"23)4), channel occupied / PU signal

present.

The detection and false alarm probabilities are then given by

A\ \ (02,+02)2
— HMoccupied - %
P, _ Y A - B.5
4 Q( Ooccupied ) Q( 2(0%,+02)* ) (B.5)

MN?2
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), (B.6)

where () is the normal distribution Q-function.
Rewriting Equation B.6, the threshold required to achieve a given false
alarm probability is

204 o2
A= Q7 (Pra)y s + 22, ()
or simply
A=+ 0Q 7 (Pra), (B)

where i, o are the mean and standard deviation of the PSD estimate when
the PU signal is absent.
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