Representing Qualitative
Action Models for Learning
in Complex Virtual Worlds

Adam Clarke

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Master of Science

in Computer Science.

Victoria University of Wellington
2011

Abstract

This thesis addresses the problem of representing and learning qualitative
models of behaviour in complex virtual worlds. It presents a novel repre-
sentation, ‘Q-Systems’, that integrates two existing representation frame-
works: qualitative process models and action description languages. Q-
Systems combines the expressive power of both frameworks to allow ac-
tions and world dynamics to be modelled in a common way using a rep-
resentation based on non-deterministic and probabilistic finite state ma-
chines. The representation supports learning and planning by using a
modular approach that partitions world behaviour into ‘systems’ of ob-
jects with specific contexts and a related behaviour.

Q-Systems was developed and tested using an agent in a rich simu-
lated world that was created as part of the thesis. The simulation uses
a rigid body physics engine to produce complex realistic interactions be-
tween objects. An action system and a qualitative vision system were also
developed to allow the agent to observe and act in the simulated world.

The thesis includes a proposed two stage learning process comprising
an initial stage in which ‘histories” (contextually and temporally restricted
sequences of observations) are extracted from interactions with the simu-
lation, and a second stage in which the histories are generalised to create a
knowledge base of system models. An algorithm for generating histories
is presented and a number of heuristics are implemented and compared.
A system for learning generalised models is presented and it is used to
assess the suitability of Q-Systems with respect to learning in complex en-
vironments.

Planning with Q-Systems is demonstrated in an agent which reasons

with generalised models to work out how to achieve goals in the simu-
lated world. A simple planning algorithm is described and a variety of
issues are explored. Planning with a single system is shown to be rela-
tively straightforward due to the modular nature of Q-Systems.

This thesis demonstrates that Q-Systems successfully integrate two dif-
ferent representation frameworks and that they can be used in learning
and planning in complex environments. The initial results are promis-
ing, but further investigation is required to fully understand the advan-
tages and disadvantages of the Q-System approach compared with exist-
ing learning systems. This would involve the development of benchmark

problems (currently there are none for this particular domain).

Acknowledgments

Many thanks to my supervisor Dr Peter Andreae for his support, ideas,

feedback, and enthusiasm.

111

iv

Contents

1 Introduction 1
11 Goals 2
1.2 Further Chapters 4

2 Related Work 7
2.1 Representing Actions 7

2.1.1 Actions as Discrete State Change 8

2.1.2 Hierarchies of Actions 12

213 Actions with Duration 13

214 ConcurrentActions 16

21.5 Delayed and Hidden Effects of Actions 18

2.1.6 Probabilities in Actions 18

21.7 Modular Actions oL 21

2.2 Learning Actions 22

2.2.1 Probabilistic outcomes in a simulated 3D world . . . 24

2.2.2 SLAF: learning in a partially observable world 26

2.2.3 MSDD: probabilistic outcomes with exogenous events 28

224 EXPO: detecting and refining incomplete actions . . . 30

2.2.5 OBSERVER: learning from plans and experiments . . 31

2.2.6 LIVE: integrating learning and problem solving . . . 32
22.7 ARMS: learning from plans with incomplete obser-

vations oL 34

2.3 Representing Qualitative Behaviour 35

v

vi

CONTENTS

2.3.1 Quantities, Constraints and Processes 38

2.3.2 Spatial Representation 41

2.3.3 Actions in Qualitative Systems 43

2.4 Learning Qualitative Models 45

24.1 Robotic arm control in a 3D simulated world 45

2.4.2 Predicting qualitative physical interactions 47

243 QUIN: inducing a qualitative decision tree 48

244 INTHELEX: learning naive physics 50

Q-Systems 53

31 Goals e 54

3.2 The Q-System Representation 57

321 Objects 57

322 States e 59

3.2.3 State Transitions 60

324 Systems o 61

33 Notation e 65

3.4 Design Considerations 66

Simulation, Vision System & Skill System 71

41 ExperimentalSetup 75

4.1.1 Software Architecture 77

42 Simulation 80

421 RigidBodies. 82

422 Liquids. 84

423 Devices. e 85

43 VisionSystem 85
43.1 Implementing Observables to Support the Q-System

Representation 88

43.2 Observing Qualitative Shape 91

43.3 Observing Qualitative Liquids 93

43.4 Observing Qualitative Kinetics 95

CONTENTS vii

44 SkillSystem oL 96
441 Example Action Implementation 98

45 TestEnvironments, 100
451 KitchenWorld 101

452 ToyWorld o L. 102

5 Histories 105
51 WhatisaHistory 105
52 ExampleHistories 107
5.3 History Generating Algorithm 113
53.1 History Generation Heuristics 115

5.4 Effect of Heuristics on History Construction 120
541 Generating Datasets 121

542 Results o o o 122

543 Analysis 0L 125

6 Using Q-Systems in Learning & Planning 131
6.1 Matching 132
6.1.1 System Matching Algorithm 133

6.2 Generalising L. 135
6.2.1 Model Refinement Algorithm 136

6.2.2 Model Selection Algorithm 137

63 APlanner o 139
6.4 Learning & Planning in the Simulated World 141
6.4.1 Agent Implementation & Performance. 142

6.5 Limitationsofthe Agent 145

7 Conclusion 149

71 FutureWork 156

viii CONTENTS

List of Figures

21
2.2

2.3

24

2.5

2.6

2.7

2.8

29

2.10
2.11

3.1

State transition diagram for a simple STRIPS like action.
State transition diagram illustrating conditional (top) and
ambiguous actioneffects.o L0000
State transition diagram showing a hierarchy of sequential
compositeactions.o oo
A durative action modelled as two ‘instantaneous’ start and
stopactions. Lo oo
A durative action modelled with a fixed duration and inter-
mediateeffects. Lo Lo oo
State transition diagram illustrating probabilistic action out-
COMES. © o v vt i ettt e e
A quantity space with 3 landmarks and 5 legal values.
The ‘U-tube’ system.
Example spatial relations used in the rectangle calculus. . . .
Bayesian network for qualitative state changes.

Example learned qualitative tree.

Part of Behaviour Graph for Simple Sink System. The val-
ues for H, F, and P correspond to the variables water-height,
flow-rate and plug-in respectively. The sink is empty in
states a and c; the sink contains water in states d and ¢; the
sink is filling in states f and /; the sink is overflowing in

states ¢ and i; and the sink is draining in stateb.

iX

11

15

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10
411
4.12
4.13

51

52

6.1

6.2

LIST OF FIGURES

Conceptual Architecture 75
Software Architecture. Lo Lo 78
A Simulated Kitchen Environment 81
Approximating Liquid Flow with Particles 84
ObservationInterval 86
Multiple Transitions Between Snapshots 87
Hierarchy of Observables 89
Qualitative Observations of a Simulated Variable 91
Hierarchy of Shape Classes 93
Incorrect Calculation of Liquid-Height Derivative 95
Simultaneous Observation of Dynamic Transition and Action 98
Kitchen Environment Tap and Sink System 101
Interactive Toy World Simulation 103

Behaviour Graph of System Generated from Observing and
Interacting with a Rolling Ball. The system has three states:
a. the ball is stationary; b. the ball is moving but its effective
speed is zero; c. the ball is moving with non-zero speed (see
text for explanation). o 0 oL 108
Observed Tap and Sink Behaviour 111

Behaviour Graph of a Generalised 2 Block System. The sys-
tem has four states: a. block ?A is falling; b. block ?A is
partially on block ?B but teetering on the edge; c. block ?A
is on block ?B, forming a group ?G; d. blocks ?A and ?B are
onthefloor. 0. 143
Behaviour Graph of a Generalised 3 Block System. 145

List of Algorithms

Ol == W N P~

GenerateHistories L. 114
MatchSystems(src, tgt) o 0oL 134
RefineModel(model, history, match) 137
LearnSystems(weights, threshold) 138
AchieveGoal(goal, knowledgeBase) 140

xi

xii

LIST OF ALGORITHMS

Chapter 1
Introduction

This thesis addresses the problem of enabling autonomous agents to learn
symbolic causal models in complex environments. In particular it presents
anew knowledge representation scheme, called ‘Q-Systems’, which builds
on existing work in action and qualitative process representation. The
representation is intended to allow agents to model and learn about com-
plex real world behaviours. The thesis presents an implementation of Q-
Systems in an agent that learns and plans in a richly simulated virtual
world.

Creating an autonomous agent that can operate in complex and arbi-
trary environments is a longstanding goal of artificial intelligence research.
Such an agent would be able to learn about its surroundings and use what
is has learned to achieve complex goals. This project builds on existing
research in this area that focuses on the problems of symbolic knowledge
representation and symbolic knowledge learning.! An underpinning as-
sumption in these areas of research is that the agent can operate at an ab-
stract level; i.e. the agent observes its world in terms of objects and can
manipulate them using a set of pre-learned skills. This is in contrast to
approaches using a ‘low-level’ agent, which might observe the world in

terms of light sensor readings and manipulating the world via impulses to

10r ’knowledge discovery’ as it is sometimes called.

1

2 CHAPTER 1. INTRODUCTION

motors. This assumption is pragmatic when researching high-level learn-
ing because there are many difficult low-level issues which are yet to be
resolved.

Realistic problem domains exhibit many phenomena that make rep-
resenting and learning models difficult. These include: the presence of
hidden state, inaccurate sensors and actuators, unbounded numbers of
objects and varieties of interactions between them, uncertainty in the out-
come of actions, and many others. Each of these types of problems have
been addressed to some extent by existing action description languages
and/or qualitative process representation frameworks. However, there
has been very little research into how these representations might be com-
bined and their individual strengths exploited. This project aims to ex-
plore how an integrated action description language and qualitative pro-
cess framework can improve an agent’s ability to model complex phenom-
ena and in a way that will enhance an agent’s ability to learn such models.

A key part of this work will be to create a simulated world in which
the representation will be demonstrated and assessed. Ongoing improve-
ments in computational throughput and new software (e.g. rigid body
physics engines) has made the real-time simulation of ever more complex
behaviour possible. This project aims to take advantage of these devel-
opments to investigate worlds with richer behaviour than those used in

earlier investigations.

1.1 Goals

This work has five main goals:

1. Examine the existing action description and qualitative process rep-
resentational frameworks to determine the strengths and weaknesses

of each.

1.1. GOALS 3

2. Identify the issues and phenomena that make learning in realistic
complex worlds difficult.

3. Develop a new integrated representation that expresses both actions

and qualitative dynamics yet is also amenable to learning.

4. Create an interactive simulated world that exhibits the kinds of phe-
nomena identified, and a simulated vision system that generates qual-
itative observations.

5. Implement a learning agent that uses the integrated representation
and use it to assess the representation’s strengths and weaknesses.

The initial goal of the research is to establish what types of action de-
scription and qualitative process representations exist. Some key ques-
tions to answer are: “What are the limitations of the types of world be-
haviour they can express?’, “‘What are the trade-offs between learnability
and expressibility?’, and finally, ‘'How are the representational ideas as-
sessed and evaluated?’. There is a rich history of research in both these
domains on which to draw.

The second goal of the research is to identify the issues and environ-
mental phenomena which make learning difficult. There are many fea-
tures of realistic environments which make learning difficult. A number
of these have been addressed in existing learning systems, however, no
single learning system is able to handle them all.

The central goal of the research is to develop a new representation that
can express both action effects and qualitative processes. This will build
on the existing representations and re-use representational components as
well as introducing new ones.

The aim of the representation is to allow an agent to construct gener-
alised models of world behaviour that can be used to achieve goals in an
environment which is observed in qualitative terms. It is desirable that the

agent can do this in arbitrary and realistic environments. Because learning

4 CHAPTER 1. INTRODUCTION

in realistic environments is difficult the representation should aim to find
ways in which the burden of the learning system can be reduced.

The fourth goal of the research is to create a simulated environment
which exhibits a rich and complex variety of behaviours. The simulation
should allow an agent and a human teacher to interact with it in real-time,
facilitating supervised learning. A skill system will provide the agent with
a selection of high-level executable actions (e.g. pick up an object). The
simulation should be able to implement the types of phenomena that were
identified as making learning difficult.

A key component of the simulation will be the agent’s vision system,
which will provide a high-level qualitative description of the world in
terms of objects and their properties and relationships. Determining the
types of observations that the agent can perceive is non-trivial. For exam-
ple, one difficult problem is that of describing the shape of an object in
qualitative terms. This project will not attempt to resolve all these types
of issues but the vision system should provide sufficient observation types
such that interesting complex behaviour can be described non-trivially.

The final goal of the research is to implement a learning agent which
uses the integrated representation. The agent should be able to learn gen-
eralised models from a few examples of observed action executions and
qualitative object interactions. The agent should able to be given goals
to achieve and use simple plans to achieve them (note that although the
agent should be able to use the representation for planning, a detailed in-
vestigation into planning itself is not a goal of this project). The resulting
performance of the agent will be used to assess the strengths and weak-
nesses of the new representation with regard to its applicability to learning
in realistic environments.

1.2 Further Chapters

This section summarises the remaining chapters of the thesis.

1.2. FURTHER CHAPTERS 5

Chapter 2: (Related Work) examines existing work in two representa-
tional frameworks: action description languages and qualitative process
modelling. A variety of action representations are described in detail, in-
cluding simple STRIPS actions, probabilistic actions, modular actions and
others. These are followed by a description of qualitative process mod-
elling and how it is used in qualitative simulation.

The chapter also describes a number of learning systems that have been
built using the representations.

Chapter 3: (Q-Systems) describes the Q-System representation, a novel
modular representation which integrates aspects of action models and qual-
itative processes. The ontological components of the representation are de-
scribed, a simple notation is presented, and finally, the important design
considerations are reviewed and discussed.

Chapter4: (Simulation, Vision System & Skill System) describes the sim-
ulation that was developed in order to demonstrate Q-Systems. It de-
scribes a software architecture for the simulation, including the vision and
skill systems which are used for real-time interaction. The simulation uses
game engine software for calculating physical interactions and for render-
ing a 3-dimensional view of the simulated world.

Two different simulated worlds are presented: a toy world and a kitchen
world. The chapter discusses the types of objects in the worlds, how they
are observed and the types of interactions and behaviour that they can
exhibit.

Chapter 5: (Histories) describes ‘histories’ - temporally and contextually
restricted sequences of observation snapshots. Generation of histories is
the first stage of a two stage learning process. An algorithm for generating
histories from real-time observations is presented. The chapter describes
various heuristics that can be used by the generator to control the types

6 CHAPTER 1. INTRODUCTION

of histories that are output. The chapter concludes with an experiment in
which various different combinations of heuristics are tested. The results
are analyzed in order to find out which heuristics generate the types of
histories that will be appropriate for generalisation.

Chapter 6: (Learning & Planning) describes generalising and planning
algorithms that were used to test the Q-Systems representation. Three
key components of the generaliser are described: a matching algorithm,
a model refinement algorithm, and a model selection algorithm.

An agent that implements the learning and planning algorithms is also
presented. The agent is run using the simulation, demonstrating its ability
to learn generalised models and to plan with them to achieve simple tasks.
The chapter concludes with a discussion of the limitations of the system.

Chapter 7: (Conclusion) summarises the contributions of the thesis with
respect to the project’s goals. It also draws together several insights re-
garding the issues of creating and learning the representation that were
discovered during the project. The chapter finishes with a discussion of
possible next steps in the development and evaluation of an integrated

action and qualitative system learning.

Chapter 2

Related Work

2.1 Representing Actions

Actions are intentional, teleological changes to the world state. An agent
that learns about the world must have an internal representation for de-
scribing when such actions are applicable, and the effects they will have
on the world. This enables the agent to reach its goals by predicting how
the world changes according to the actions it takes. Modelling actions
is non-trivial, and this has resulted in the invention of a variety of sym-
bolic action representations. The representations have varying levels of
expressiveness, each one aimed at solving a different subset of the repre-
sentational problems associated with action phenomena. Although each
representation is different they share a common structure based on the
simple notion of discrete state change, i.e. a symbolic action is a discrete
event that causes the world to transition to a new state.

Action representations come in two main types: action logics and ac-
tion description languages. Action logics use predicate logic to express
both world states and world dynamics (where world dynamics are nor-
mally the effects of actions). Action description languages also use logic
(or at least some restricted form) to express world states, however, action
description languages differ in that world dynamics are expressed proce-

7

8 CHAPTER 2. RELATED WORK

durally as state transition rules. This means that action description lan-
guages must specify their own rules for determining how the current state
is updated to reflect the consequences of actions (and are interpreted ac-
cording to the semantics of the action description language). Action log-
ics on the other hand, use the rules of predicate calculus to specify and
calculate the consequences of actions (which are interpreted according to
the particular semantics of the action logic). Although the difference is
subtle in terms of what can be expressed, there are advantages and dis-
advantages to both approaches. In particular, action logics have the ad-
vantage that consequences of actions can be calculated using logical infer-
ence (but consequently have the dis-advantage that actions must be care-
fully constructed to correctly express world dynamics). These issues are
discussed in more detail in the following sections for relevant representa-
tions.

The remainder of this section begins with a description of two influen-
tial early papers that specify discrete state change type action representa-
tions. These are the Situation Calculus (an action logic) and STRIPS (an
action description language). This is followed by descriptions of various
extensions to the basic action representation and how they have been im-
plemented. The strengths and weaknesses of each are assessed with re-
spect to the task of learning in complex domains.

2.1.1 Actions as Discrete State Change

Actions in symbolic domains are modelled as discrete events that change
the state of the world. An influential early attempt to model such actions
is the Situation Calculus [26]. The Situation Calculus is an action logic
in which an action is defined in terms of a pre-condition (a ‘situation” in
which the action may be carried out), and effect (the ‘situation” after the
action has been executed). The meaning of these attributes is intuitive: if

the pre-conditions are true then the action may be executed; if the action is

2.1. REPRESENTING ACTIONS 9

executed then the world will be in the new state specified. The following
is a simple example describing the action of dropping an object. It states
that the object can only be dropped if it is being carried and, if the object
is fragile, it will break when dropped:

Poss(drop(o), s) < is_carrying(o, s)
Poss(drop(o),s) A fragile(o) — broken(o, do(drop(o), s))

Note how the situation variable ‘s’ in conjunction with the ‘do” predicate
are used to define new situations inductively as a succession of action ex-
ecutions.

The Situation Calculus has difficulty specifying the non-effects of ac-
tions (i.e. the things that don’t change), this is known as the ‘frame prob-
lem’. The frame problem arises because a situation defines a precise and
full state of the world according to the definition of the action that led to it.
If a situation were to correctly capture the non-effects of an action, the ac-
tion would require additional rules for every fluent that does not change.
Intuitively we can avoid this problem by assuming that any fluents not
specifically mentioned are unchanged, the so called ‘common sense law
of inertia’. There are a number of techniques that capture this intuition
within the constraints of a formal logic (Default Logic [34] for example).
Action description languages have the advantage of avoiding the frame
problem. This is because new states are calculated according to the arbi-
trary rules of the language itself (rather than formal logic), and therefore
the language can simply state that fluents that are not explicitly changed
by an action remain unchanged in the subsequent state.

The STRIPS planning system [13] was published shortly after the Sit-
uation Calculus. The planner uses an action description language which
has become known as the ‘STRIPS’ language. STRIPS actions, like the Sit-
uation Calculus, are represented as discrete state change, but rather than
calculate action effects using the logic inference, they are instead calcu-
lated according to STRIPS own rules. STRIPS actions are represented as a

precondition (a conjunction of assertions that must be true for the action

10 CHAPTER 2. RELATED WORK

to be executed), an add list (the assertions that are added to the current
state when the action is executed) and a delete list (the assertions that are
removed from the current state when the action is executed). The add and
delete list together make up the effects of the action. States are defined
as conjunctions of assertions. The following action schema defines a drop
action, in which a held object “X’, that is above another object “Y’, will be
on the lower object and no longer held, after it is had been dropped:

action: DROP(X)
precondition: HOLDING(X), ABOVE(X.Y)

add list: ON(X)Y)
delete list: HOLDING(X), ABOVE(X,Y)

STRIPS is computationally efficient in the sense that determining the
consequences of an action is simply a case of adding and deleting from
a list of assertions. However, the STRIPS representation has a number of
limitations. Certain action phenomena cannot be expressed in STRIPS, for
example there is no way to define an action with duration. Also, it makes
the ‘closed world assumption’, meaning that there can be no unknown flu-
ents in the world state. Despite such limitations, the STRIPS representa-
tion has been used as a template for the majority of action representations
used in subsequently published planning systems.

Fig 2.1 shows a generalized view of a STRIPS like action as a state tran-
sition diagram. Action a is a discrete state change action with parameters
p. State s is a state in which the precondition of the action is true. State s’
is the new state subsequent to execution of the action with effects applied.

ADL![32, 33] is an extended form of STRIPS. It is designed to be more
expressive than STRIPS for the purpose of representing more realistic plan-
ning problems. ADL actions are similar to STRIPS but allow for condi-

tional effects, ambiguous effects and negative literals within effects. ADL

IShort for ‘Action Description Language’, from which action description languages

get their name.

2.1. REPRESENTING ACTIONS 11

@ a(p) @

Figure 2.1: State transition diagram for a simple STRIPS like action.

also removes the closed world assumption (i.e. there may be unknown

literals in states). The following is an example of an ADL action:

Action(Drop(x : Object)
Precondition: holding(x)
Effect: —holding(x)
when fragile(z) : broken(x) V cracked(z))

This version of the drop action states that an object must be held before
it can be dropped and that the object will not be held after it is dropped. It
also defines an effect that is both conditional and ambiguous: if the object
is fragile then it will be broken or at least cracked when dropped. This
particular effect could not be expressed in STRIPS.

Fig2.2 shows transition diagrams for the additional action phenomena
that can be expressed using ADL. Conditional effects can be viewed as
a set of transitions where each state pair s;, — s, represents a different
conditional outcome. Ambiguous effects are shown as two or more non-
deterministic transitions.

A further extension to the STRIPS family, the ‘Planning Domain Def-
inition Language” or PDDL [27], was developed to allow planning re-
searchers to exchange benchmark problems using a standard notation.
PDDL supports both STRIPS and ADL action operators. Later revisions
of PDDL introduce a number of extended action effects that are discussed
in the following sections.

12 CHAPTER 2. RELATED WORK

Figure 2.2: State transition diagram illustrating conditional (top) and am-

biguous action effects.

2.1.2 Hierarchies of Actions

Actions can be used to represent arbitrarily complex activities. For ex-
ample the action fly plane to destination x is vastly more complex than the
action press cabin light switch. Action representations do not generally dis-
tinguish between complex and simple actions. However, it is sometimes
useful to define complex actions as a composite of simpler actions. Action
composition naturally leads to hierarchies of actions such as those used in
hierarchical task networks (HTNs) [11].

The action language used in PDDL supports HTN like action hierar-
chies. The effect of executing a PDDL hierarchical action is defined as the
combined effect of executing each sub-action, either in series or parallel.
For example, the complex fly plane action can be decomposed into sim-
pler take off, cruise, and land actions (each of which could also be further

2.1. REPRESENTING ACTIONS 13

decomposed).

Fig 2.3 illustrates a hierarchy of composite actions as a state transition
diagram. The composite action comp; is a sequential composition of ac-
tions a; and a;. Composite action comp, is a composition of actions in-
cluding comp; and a,,. The hierarchy has n simple actions when fully de-
composed.

compo

/\

comp

/\

Figure 2.3: State transition diagram showing a hierarchy of sequential

composite actions.

Note that it is only the lowest level ‘atomic” actions in a hierarchy that
specify effects, the effects of composite actions must be inferred from the
effects of their children. It is generally the case in most planning domains
that atomic actions cannot be interrupted, this is not true of composite
actions where special consideration must be given to pre-conditions being

invalidated during execution.

2.1.3 Actions with Duration

Actions are not instantaneous, even simple actions such as pressing a switch

have some duration. The action representations considered so far, do not

14 CHAPTER 2. RELATED WORK

account for actions taking different lengths of time to execute. This is rea-
sonable so long as the intermediate effects of a long action are not impor-
tant (i.e. only the start and end state of the action are important), and also
if there is no requirement to compare the lengths of different actions. How-
ever there are many problem domains where some form of representation

of duration is required in order to usefully model actions.

The ‘action” of pouring liquid from one container to another can be
considered a durative action in which the effects during execution are im-
portant. For example, we may wish to know the amount of liquid re-
maining at a given point during the action, this information could be used
calculate when the action will end. One way of modelling this type of ac-
tion is to represent the durative action in terms of non-durative start and
stop actions. E.g. the durative action pour liquid becomes start pouring and
stop pouring. The start and stop actions are short enough to be consid-
ered instantaneous. The start action adds the intermediate effects of the
action and the stop action removes them. In the previous example, start
pouring would add the effect that liquid is currently flowing from the first
container. Modelling durative actions in this manner avoids the need for
any additional representation but with the drawback a that ‘durative ac-
tion” must be inferred from the combination of two related start and stop
actions. Fig 2.4 illustrates a durative action modelled as complimentary
start and stop actions. Action a,, starts the action and adds appropriate
effects, a.,q finishes the action some time later. Other actions/transitions
may occur between the start and end actions (in fact there is no constraint
that the end action must ever occur). Since no additional representation is
used, any action representation may adopt this convention to model du-

rative actions.

An alternative way of representing durative actions is to use an ex-
tended action schema. Extensions allow specification of a durative action
in terms of: its start and stop actions; pre-conditions that must apply at dif-
ferent points during the action; effects that are applied at different points

2.1. REPRESENTING ACTIONS 15

‘durative’ action

C Qstart C . Aend .

Figure 2.4: A durative action modelled as two ‘instantaneous’ start and

stop actions.

during the action; and finally, the amount of time its takes to execute the
action. This type of schema is used in the PDDL 2.1 [17] planning lan-
guage, it allows for conditions and effects to specified at the beginning
and end of the action. Intermediate effects are calculated using the start
state and time elapsed. A durative fly action can be expressed in PDDL

using the following schema:

(:durative—action fly

:parameters (?p — airplane ?a ?b — airport)
:duration (= ?duration (flight—time ?a ?b))
:condition (and (at start (at ?p ?a))

(over all (inflight ?p))

(over all (>= (fuel-level ?p) 0)))
ceffect (and (at start (not (at ?p ?a)))

(at start (inflight ?p))

(at end (not (inflight ?p)))

(at end (at ?p ?b))

(decrease (fuel—level ?p)

(x #t (fuel—consumption—rate ?p)))))

16 CHAPTER 2. RELATED WORK

The schema specifies the duration of the action as the flight time of
plane 7p travelling from location 7a to ?b. The ‘over all’ operator is used to
specify invariant conditions that must be true during the action, e.g. the
plane has not run out of fuel. Unlike simple actions, effects are specified
for both the start and end of the action. The intermediate effects of the
action are specified in the bottom line which states that the amount of fuel
on the plane, at any given point during the action, is equal to the time
elapsed since the action started, multiplied by the fuel consumption rate
of the aircraft.

Specifying actions in this way can lead to complicated interactions be-
tween actions. At any given point in time a number of different actions
may be executing concurrently and all their intermediate effects must be
combined to give the current world state. In the aircraft domain we could
imagine a number of different actions that affect the fuel level either di-
rectly (such as mid-flight refuelling) or indirectly via the fuel consump-
tion rate (such as increasing speed). Careful consideration must be given
to concurrent effects when representing actions in this way.

Fig 2.5 illustrates a PDDL 2.1 style durative action. s’ is the state with
start effects applied. The dotted transition represents an arbitrary number
of intermediate states with ongoing effects applied. s” is the final state
with the specified end effects applied.

2.1.4 Concurrent Actions

Many problem domains assume that actions do not occur concurrently,
this is an unrealistic assumption for real world applications, especially in
environments where multiple agents are operating (e.g. robots in a fac-
tory). A fully expressive action description language must specify how
the world changes if two actions are being executed concurrently. This is
further complicated when durative actions are allowed because they may

specify different effects are different times during their execution.

2.1. REPRESENTING ACTIONS 17

Adurative

C start : 3/+eﬁects(a, telapsed) »@

| |
[I
duration(a)

Figure 2.5: A durative action modelled with a fixed duration and interme-

diate effects.

A simple solution to concurrency is to specify that the world state is
undefined when actions occur simultaneously, obviously the quality of
this solution degrades as the frequency of concurrent actions increases.
Another simple solution is to specify that the effects of both actions be
applied in some arbitrary order. This works in many cases but fails when
the effects of actions interact (i.e. the effects of one action can ‘undo’ the
effects of the other).

PDDL 2.1 allows its durative actions to execute concurrently. Start and
end effects are prevented from occurring concurrently, however the inter-
mediate effects are allowed to interact. For example, the effect of concur-
rently applying two heat sources as part of two different boil water actions
causes the duration of the actions to be reduced.

An alternative approach used in [24] is to allow for all possible combi-
nations of effects resulting from concurrent actions to remain valid. Pre-
dicting the result of concurrent execution leads to not just one state but a
set of possible states. The uncertainty can be resolved when the actions

are actually executed.

18 CHAPTER 2. RELATED WORK

2.1.5 Delayed and Hidden Effects of Actions

The effects of some actions are not immediately observable (if at all) to
an agent. For example, the effect of turning off an outside light using
an inside switch, may not be directly observable by the agent at the time
of executing the action. The agent can of course subsequently observe
the change by moving outside. Action representations do not explicitly
model the fact that an action effect may be hidden to the agent. This is
because either problem domains are restricted to being fully observable
(or at least the subset of the world affected by the current action is fully
observable), or it is assumed that any effect may be hidden and therefore
appropriate mechanisms are in place to deal with this, outside of the action
representation.

‘Delayed’ effects are closely related to hidden effects. A delayed ef-
fect is an observable effect that reliably occurs sometime after an action
is executed, and is a direct consequence of some hidden effect of the ac-
tion. For example, the act of poisoning some weeds may have no directly
observable consequences, however the weed dying after some delay is re-
liably observable due to the hidden effects of the action. Delayed effects
need not be represented explicitly since they are an indirect consequence
of an action and can be inferred from knowing the direct effects of the ac-
tion (i.e. we can determine the fact that the weeds will die from the fact
that they are poisoned regardless of how the poison got there). It could
be argued that explicit representation of delayed effects would be useful
however there do not appear to be any examples of this in existing action

description languages.

2.1.6 Probabilities in Actions

Many actions have uncertain outcomes. For example, the act of throwing
a paper ball into a bin may or may not result in the paper ball ending up in

the bin. Given enough information the outcome could be calculated to a

2.1. REPRESENTING ACTIONS 19

high degree of certainty (information such as the precise speed and move-
ment of the throwing arm, the current air speed, etc), however this kind
of calculation will always be impractical for some applications. Action
representations can model uncertainty by giving probabilities to different
outcomes. Oates” MSDD learning system [31] uses a type of probabilistic
action outcome in a propositional domain. The outcome of each action is
given a probability of success depending on the state in which in the ac-
tion is executed. The action can either succeed or fail, so the probability of
failure for a given pre-condition is 1 — p(success). The following schema is

an example of a probabilistic action using MSDD'’s representation:

<pickup, gripper_dry, not_hold_block, hold_block, 0.98>
<pickup, gripper_wet, not_hold_block, hold_block, 0.49>

This action states that a block will be picked up successfully 98% of the
time if the gripper is dry. Conversely, if the gripper is wet then the block
will be successfully picked up only 49% of the time.

A limitation of MSDD’s action representation is that it only distin-
guishes between success and failure of an action, rather than a range of
possible outcomes. This is addressed by the representation used in Zettle-
moyer et al’s more recent learning system which is described in [45]. Their
representation allows for an arbitrary number of different outcomes for a
given action and pre-condition. Further, they allow for a special ‘noise’
outcome which is used to represent the possibility of unusual outcomes
in which the world state is difficult to model. In these cases the subse-
quent world state becomes unknown; noise outcomes are considered rare
enough to allow for the occasional unpredictable outcome. The following

schema is an example rule from [45]:

pickup(X) : {Y :on(X,Y), Z : table(Z)}

inhand-nil

20 CHAPTER 2. RELATED WORK

80 : —on(X,Y), inhand(X), ~inhand-nil, clear(Y")
10 —on(X,Y),on(Z, X), clear(Y)
.05 : no change

.05 : noise

This pickup action has four possible outcomes: an 80% chance of correctly
picking up the block; a 10% chance of dropping the block on the table; a
5% chance of the block remaining in its current position; and finally, a 5%
chance of something unusual happening (perhaps the gripper arm knocks
several blocks onto the floor).

Figure 2.6 illustrates probabilistic actions, of the type just described,
using a state transition diagram. An arbitrary number of transitions are
each given a probability which sum to 1. The state marked ‘?" represents
a noise outcome. A ‘no change’ outcome is shown as a self loop with a

specified probability.

Qprobabilistic

Pno_change D1

Figure 2.6: State transition diagram illustrating probabilistic action out-

comes.

2.1. REPRESENTING ACTIONS 21

2.1.7 Modular Actions

Many actions share common features, for example, walking, climbing and
driving a car all involve moving from one place to another. These actions
could all be thought of as special cases of a more general ‘move’ action.
Modular action representations attempt to exploit this commonality by
modelling collections of reusable general actions which are ‘inherited? by
specialized actions.

General or ‘parent” actions describe preconditions and effects as nor-
mal, these will be automatically included by any inheriting ‘child” actions.
The child actions specify further preconditions and effects, and these may
reference objects that are bound to objects in the parent action. Bruce et al
[7] were first to apply these types of actions to a STRIPS planning domain.
The following schema are examples of specifying inheritance using their

representation:

put(Obj, Container): isa moveThruPortal (Obj, Portal)
where portal (Container , Portal)

get(Obj, Container): isa moveThruPortal (Obj, Portal)
where portal (Container ,Portal)

The two actions get and put model the actions of putting an object Obj
into a container and removing it. By themselves, they do not model the sit-
uation in which the container has a lid which can be opened or closed. This
could be remedied by creating new actions with additional preconditions
and effects, alternatively the actions can inherit from a moveT hruPortal
parent action (as is the case in the example above). moveT hruPortal speci-
fies the additional precondition that the opening of Portal (bound to Container)

must be open. Thus creation of entirely new actions is avoided.

2The term ‘inheritance’ is used in this context in much the same way as it would be
in the world of software engineering (from which modular representations take inspira-
tion).

3The term ‘component’ is also used.

22 CHAPTER 2. RELATED WORK

A similar style of modularisation is used in the Modular Action De-
scription language [25], in which modularity is added to the C'+ causal
action language. Although the action descriptions are somewhat different
to STRIPS, the modularity aspect is applied in much the same as way as
the example above.

In general, modular representations allow large action sets to be repre-
sented efficiently, this is especially true when attempting to represent very
general actions (such as “put’) where the number of different preconditions
and effects is virtually unbounded. Another advantage is that modularity
allows knowledge from one problem domain to be easily transferred to an-
other. The author of the Modular Action Description language describes
it succinctly as “[a mechanism for] factoring out the common elements of

specific action domains”.

2.2 Learning Actions

This section describes published work regarding systems that learn the
effects of symbolic actions. An action learning algorithm addresses the
problem of extracting a set of action schema from a set of observations,
which are usually in the form of example action executions. A particular
algorithm is shaped by a combination of three factors: the action repre-
sentation used, the complexity of the environment from which examples
are drawn, and the types of observations provided. These constraints to-
gether determine the difficulty of the learning of the learning task. An ac-
tion learning task can be made trivial in a highly constrained environment,
equally, the task can be made very difficult in a relatively unconstrained
environment. Creating an agent that can learn expressive actions, in un-
constrained environments is the overall goal of the research presented in
this section. However, given the difficulty of this task, current algorithms
typically allow only a few constraints to be dropped, for example, hidden

effects may be allowed but not probabilistic effects.

2.2. LEARNING ACTIONS 23

Learning symbolic action effects in complex environments is non-propositional
or ‘relational” in nature. This is in contrast to the majority of machine learn-
ing research in which patterns must be discovered from propositional ex-
amples described in terms of a fixed set of features. Relational learning
requires extracting patterns where each example involves an arbitrary of
number of ‘entities’, which are described using their individual attributes
and also their relationships with other entities; relational data is typically
expressed in first-order logic. When applied to learning action models, the
entities are the objects in the environment on which an agent can act, or
which can be affected by actions. Learning relational models in uncon-
strained environments is an unsolved problem and active area of research
in artificial intelligence. The algorithms presented in this section derive
from generic approaches to relational learning but are adapted to the spe-
cific problem of learning action models.

An important distinction in action learning systems is made between
those that learn autonomously and those that are guided. Guided learners
may rely on instructions or demonstration from a teacher, while others use
expert planning information. Obviously this extra input is advantageous
to learning but may not always be available depending on the particu-
lar problem domain. On the other hand fully autonomous learners rely

purely on their own actions and observations.

Examples of action learners include OBSERVER [40] which adapts ver-
sion space learning [28] to the task of learning the preconditions of actions.
The SLAF algorithm [2] also uses a form of version space learning to learn
about actions with hidden effects. In this case the version space becomes
the set of possible action-state transition sequences. A statistical relational
learning approach is taken by Zettlemoyer et al [45] to learn probabilistic
action outcomes. The algorithm combines inductive logic programming
[30] concepts with Bayesian statistical learning. A form of reinforcement
learning [41] is used by Thomaz [38] to ‘teach” an agent when to apply cer-
tain actions. The remainder of this section describes these action learning

24 CHAPTER 2. RELATED WORK

systems and others in greater detail.

2.2.1 Probabilistic outcomes in a simulated 3D world

Zettlemoyer et al. [45] describe a method for learning extended STRIPS
like rules in a noisy stochastic world. An agent is situated in a simulated
3D world with realistic physics. The world contains a number of blocks
of various sizes and the agent must learn the effects of manipulating them
with its gripper arm. The task is difficult because there are multiple pos-
sible outcomes for a given action, e.g. blocks may fall over when stacked
or the gripper may accidentally drop a block. However the learning task
is simplified by making certain assumptions: the world is completely ob-
servable; the world can only be changed by the agent’s own actions; ac-
tions are atomic, i.e. each action has only a small number of discrete effects
that are observed simultaneously and immediately after the action.

A probabilistic action representation is used to represent the effects of
actions. The extended rules incorporate deictic references, probabilistic ef-
fects and noise outcomes (see section 2.1.6 for further detail). The actions
are used to model the inherit uncertainty of interactions in the simulated
world. Action preconditions are described in first-order logic, with the
addition of a counting quantifier and a transitive closure operator. These
additions are used for defining derived predicates. For example, the con-
cept of an object being ‘above’ another can be derived from the transitive

closure of ‘on’” and is written:
above(X,Y) :=on* (X,Y)

Similarly, a “height” predicate is derived by counting the number of blocks
below the block of interest. This is written as follows using the counting

quantifier ‘#":

height(X) := #Y.above(X,Y)

2.2. LEARNING ACTIONS 25

Derived predicates such as these give the rule language greater expressive-
ness and allow it to represent useful collections of relations more concisely.

The system discovers action models using a learning algorithm which
attempts to find the best set of rules given a set of training examples. Each
example contains an action and the (fully observable) world states directly
before and after the action (written as a triple (s, a, s’) where ¢’ is the state
directly after the action a is applied in state s). The algorithm starts with a
single default rule that predicts only noise, and performs a greedy search
through the space of possible rule sets. A rule set is heuristically scored
according to a metric based on a MAP (Maximum A Posteriori) estimation
of the probability of the rule set given the examples (the rule-set’s prior is
determined by the complexity of the rule-set, therefore favouring concise
rule sets). The score of an individual example (s, a, s’) against a given rule
set is calculated as the log of the probability specified for s" in r, where r is

the rule that matches s and a.

A key component of the algorithm is the group of search operators that
create new candidate rule sets by inventing, dropping or modifying exist-
ing rules. New rules are created by taking unexplained examples from
the training set and creating specific rules to cover them. Rules are gen-
eralized or specialized by arbitrarily dropping or adding components to
rule preconditions and inferring new outcomes. Finally, entire rules can

be arbitrarily dropped during the search.

A significant limitation of the learning procedure is that it relies on
the fact there are a limited number of objects. For example, one method
for creating new rule candidates is to add references to arbitrary objects,
which makes sense in a world with a small number of objects but not in a
realistic world where there are an unbounded number of objects to choose

from.

The quality of the learned rules was assessed by applying them to a
problem task (building towers in this case), rather than comparing them to

some idealised hand crafted model as is done for some other algorithms.

26 CHAPTER 2. RELATED WORK

Notwithstanding the restricted problem domain, the agent successfully
learns rules that perform as well as hand constructed rules provided by
an ‘expert’ (a human adult). The learned rule set was used by a planner
to build high stacks of blocks, and it achieved stacks of over 15 blocks tall.
The following is an example learned rule:

putOn(X) : {Y : topstack(Y, X), Z : inhand(Z), T : table(T)}

size(Y)< 2
62 :0n(Z,Y)
A2 :0n(Z,T)
) 04 on(Z,T),on(Y,T),—on(Y, X)
.22 : noise

The example shows that the agent has learned that placing blocks on stacks
in which the top block is small (< 2), is not a very reliable action as approx-
imately 1 in 3 attempts are unsuccessful.

An interesting result is that the algorithm is much more effective when
noise outcomes are allowed (the outcomes which specify a rare and diffi-
cult to model action result). The learner avoids over-fitting when it is not
required to explain every possible outcome. Another interesting result is
that the use of derived predicates (e.g. above and height) was essential for
generating successful rules.

Overall, the agent can learn good quality rules in a world which sim-
ulates some specific complexities found in a realistic world (noisy, proba-
bilistic outcomes) but relies on a number of simplifying assumptions with
regards to the environment, it does not have to deal with large numbers of

objects, other agents, hidden effects, or delayed effects.

2.2.2 SLAF: learning in a partially observable world

The ‘SLAF’ (Simultaneous Learning And Filtering) algorithm [2] addresses
the problem of learning in a partially observable world. The goal of the
system is to learn the deterministic direct effects of actions even when they

2.2. LEARNING ACTIONS 27

are not immediately observable. A typical scenario involves a number of
light switches in a room that control light bulbs in other rooms; the agent
cannot determine the effect of using a switch without moving to the other
rooms and observing the actual state of the associated light bulb.

The SLAF algorithm resembles version space learning. The algorithm
maintains a set of valid action descriptions that are consistent with the set
of possible transition belief states (where a transition belief state is a se-
quence of world states with an action associated to each transition). The
algorithm works in an on-line manner by adding to or deleting from the
set of belief states for each new observation. For example, consider the
following sequence: the agent flips the switch, the agent moves to the lit
room, the agent observes the bulb is on. The agent can now safely elimi-
nate the belief state in which the ‘flip” and ‘move’ actions result in the bulb
being off. Finding an accurate belief state is simple for small state spaces
but soon becomes intractable. To overcome this Amir introduces a more
compact rule based representation for belief states that allows for efficient
evidence based update. The rules used are similar to STRIPS rules but
allow hidden effects to be included as part of the description.

The algorithm successfully learned a number of rules in a partially ob-
servable domain. It demonstrated that on-line incremental refinement of
action models, as evidence is encountered, is a valid approach to learn-
ing in non-trivial domains. However, the system is limited to solving the
single issue of partial observability, it fails to address issues such as prob-
abilistic action effects. The algorithm is also particularly dependent on the
assumption that there are no other agents that can make changes in the
world. Consider an example in which a second agent turns off a light in
another room. The first agent will maintain the transition belief state that
includes a sequence of events in which its actions cause the light to be off.
This invalid transition belief state will in turn result in the learned rules
allowing for the incorrect effect of the light being off. Clearly this prob-

lem gets much worse as the number of agents and their level of activity

28 CHAPTER 2. RELATED WORK

increases.

It is not obvious how the effects of such exogenous actions would be
excluded from the transition belief states. One possibility is to include ad-
ditional frequency data in the transition belief states. This would allow
culling of sequences that appear infrequently (i.e. the ones in which other
agents actions are causing confusion). The drawback of this approach is
that learning would require a greater amount of experimentation (i.e. the
agent would have to perform the switch light on — move to room — observe
light sequence several times before it is used as evidence of a hidden ef-
fect).

2.2.3 MSDD: probabilistic outcomes with exogenous events

Oates and Cohen [31] present an agent capable of learning in a world with
probabilistic effects, context-dependent effects, and exogenous events (i.e.
events caused by other agents). The learning scenario involves a robot
with two arms painting blocks. The robot has a fixed number of input
sensors (e.g. the agent can sense that block ‘X’ is painted) and actions (e.g.
paint block “X’). The learning task is to create STRIPS-like operators for
each action where an operator describes the probable outcomes given the
current state of the world. Each operator assigns an estimated probability
to each possible outcome (see section 2.1.6 for details of the action repre-

sentation).

The ‘MSDD’ algorithm finds operators by performing a best first search
through the space of all possible contexts and effects starting with a most
general operator (i.e. the operator specifies that: ‘any sensor can take any
value’, given the precondition that: ‘any sensor has any value’). An ob-
servation trace of actions and world state transitions is used to evaluate
operators. The operators are heuristically scored by counting how often
the context and effect occur together, plus a bonus for a frequently occur-

ring context. The search space is pruned by removing illegal and duplicate

2.2. LEARNING ACTIONS 29

operators. High scoring operators are output along with a probability of
success (the probability is simply calculated from the number of successes
in the observation trace). New search nodes are generated by adding new

operators that are specializations of existing operators.

The agent was able to learn a full set of operators for the simple blocks
painting world using the algorithm described. It was able to do this even
when a number of exogenous actions were included in the observation
trace. Exogenous actions are modelled as ‘noise” streams in which ran-
dom observations are added to the world state. These noise streams are
not a realistic model of exogenous actions for two reasons: first, actions by
other agents are not simply random (note that the search algorithm uses
frequency of pre/post state correlations to guide the search); and secondly,
actions by other agents should be able to interact with the same objects as
the learning agent (this too will have an impact on the correlation heuris-
tic). Both of these limitations make the learning domain a less realistic
model of real world complex environments, and certainly simplifies the
learning task.

The agent’s fixed number of actions and sensors was very limited (less
than 10 of each) and can be considered a classic ‘micro-world’. The au-
thors suggest that the search time grows linearly as the number of noise
streams increases. The claim is supported empirically for upto 20 noise
streams. There is no additional evidence to suggest that this will be true if
the number of sensors is increased significantly into the thousands (a real

world environment can easily generate this number of observables).

Other limitations of MSDD (as applied to learning actions) are the as-
sumptions that effects occur immediately after an action and that the world
is completely observable; this precludes the agent from learning about ac-
tions with delayed or hidden effects.

30 CHAPTER 2. RELATED WORK

2.2.4 EXPO: detecting and refining incomplete actions

Gil [18] describes a proactive experimental approach to learning action
operators. The problem addressed is that of refining incomplete STRIPS
rules that have missing preconditions or effects, for example, an ‘open
door” action is missing a precondition such that the door must be unlocked
for successful execution. The system, named ‘EXPO’, works in an online
manner by selectively and continuously monitoring the world during plan
execution (plans are created and executed within the PRODIGY [39] agent
architecture). The agent is monitoring for either of two kinds of failures
that indicate that an action rule is incorrect. One such event is observing
an unexpected outcome immediately after an action execution, e.g. an
open action was executed and the door didn’t open as expected. In this case
EXPO attempts to find a new precondition for the action. The precondition
is found by drawing up a list of candidates (derived from successful past
executions) and experimenting with each to discover the correct one.

The second type of failure is observed when a precondition for the cur-
rent action (as predicted in the plan) is false. In this case EXPO determines
that a previously executed action has a missing effect involving the pred-
icate specified in the required precondition. The action with the missing
effect is found by experimenting with all the actions executed since the
predicate was last observed. The incorrect action is then refined by adding
the predicate as an effect. In this manner EXPO incrementally refines its
action rules.

This technique was successfully applied to a small deterministic prob-
lem domain with many incorrect rules. One advantage of EXPO is that
it only refines rules for situations that are actually encountered (because
learning is triggered during plan execution). This allows EXPO to avoid
having to create action schema for every situation in which a rule might
be used. A general purpose action, such as put on, has a potentially un-
bounded number of rare and esoteric situations for which pre-conditions

and effects must be specified in order to learn a ‘perfect’ model. An un-

2.2. LEARNING ACTIONS 31

guided learner may learn a number of rules that are correct but never ac-
tually used.

The concept of incremental refinement through experimentation that
is guided by plan execution failure has some advantages over off-line
and unguided approaches to learning in complex environments. Unfor-
tunately, the EXPO system makes a number of assumptions that limit its
particular implementation to micro worlds. For example, introducing ex-
ogenous events would confuse EXPO (and cause it to learn incorrect rules)
because it expects only its actions to affect the world. Another weakness
is that EXPO requires approximately correct rules to begin with, it cannot
learn from zero knowledge of actions, unlike some other action learning
systems.

2.2.5 OBSERVER: learning from plans and experiments

Wang [40] describes an action learning system called “‘OBSERVER’. It uses
a combination of domain expert traces (a sequence of actions with pre and
post states performed by a human with knowledge of the problem do-
main) and simple experimentation to learn STRIPS-like rules. The task
for OBSERVER is to learn new operators along with their preconditions,
effects and conditional effects. The scenario presented is that of a manufac-
turing plant containing various tools, objects and actions for manipulating
them.

OBSERVER learns the action preconditions and action effects separately.
Preconditions are learned by incrementally refining a most general and a
most specific set of preconditions for the given operator (similar to version
space learning). The final precondition is found when the two sets con-
verge. Effects are learned by incrementally generalising the delta states
(the post-state minus the pre-state) of a given action. Conditional effects
are learned when literals in a delta state cannot be unified with those in

the effects (the algorithm assumes that all changes in any delta state must

32 CHAPTER 2. RELATED WORK

be included in the action effects).

An individual pre-condition from the most specific pre-condition is
generalized if it can be matched to exactly one assertion from an obser-
vation pre-state. Matching is restricted to unification of only a single con-
stant from each pre-condition. This is done to reduce the complexity of
the finding potential matches in large states (with the penalty that some
potential matches may be missed). Pre-conditions are removed from the
most specific pre-condition if they cannot be matched to any assertions in
the pre-state.

The most general pre-condition is specialized by adding ‘necessary’
and ‘critical” pre-conditions. Necessary pre-conditions are generated from
the most specific pre-condition, whereas critical pre-conditions are gener-
ated from example pre-states. Necessary conditions are found when an
action fails and only a single (necessary) assertion from the most specific
pre-condition is not met in the pre-state. Critical pre-conditions are found
by comparing the pre-states of an action failure and success. If there is only
a single assertion from the most specific pre-condition, which is true when
the action succeeds, yet false when the action fails, then it is considered
critical.

OBSERVER demonstrated that it can learn rules that are equally as use-
ful as a set of hand coded expert rules. Interestingly, the expert observa-
tions alone were not sufficient to learn good rules, it was only after refine-
ment by simple experimentation that the rules were sufficiently improved.
Despite this success, the problem domain for observer is one of the more
limited described so far. For example, it lacks probabilistic effects, noisy

observations, delayed effects and other agents actions.

2.2.6 LIVE: integrating learning and problem solving

Shen’s learning system [36], unlike most other action model learners, in-

tegrates problem solving and learning into a single process. The agent

2.2. LEARNING ACTIONS 33

uses STRIPS-like rules to create plans that will achieve its goals. When the
plans fail or a plan cannot be constructed, the agent will refine its model.
The model is refined in an incremental manner by creating new rules or
adjusting preconditions and effects. The algorithm has been applied to a
number of limited abstract problems, the famous Tower of Hanoi puzzle

for example.

The agent employs a series of different stages to learn its rules. The first
is rule creation, followed by rule refinement and lastly term construction.
Initial approximate rules are constructed by exploring. Exploration is di-
rected by choosing actions that either affect features used in the agent’s
current goal, appear to have no effect, or are simply randomly chosen
from a pre-defined list. New rules are naively constructed by observing
the effects of these exploratory actions. The new rules are then used in the

agent’s plans.

If an action execution fails then the associated rule is revised. This is
done by first creating a ‘sibling” rule based on the failing rule, but with
a different precondition and the unexpected effects. The sibling’s pre-
condition is found by searching a history of rule executions for differences
between the pre-state of previous successful executions and the current
world state. The two rules are then revised together. Revisions are made
by generalising the condition of the new specific rule sibling and special-

ising the condition of the old rule.

The final stage of learning is that of term construction. This allows the
agent to create derived predicates using the agent’s ‘innate mental rela-
tions” such as ‘=" and “>’. For example, a non-directly observable rela-
tion ‘SIZE>’ can be derived from the directly observable ‘SIZE’ predicate
and ‘>’ operator. Furthermore, the agent has some ability to create terms
where there is no observable discriminating predicate. For example, in the
Tower of Hanoi domain, LIVE can create a pre-condition that corresponds
to “‘the most recent disk put on post X’. This is achieved by detecting se-

quences of actions that imply the pre-condition is satisfied. For example,

34 CHAPTER 2. RELATED WORK

the action pickup(X, Post) can have the pre-condition: ‘disk X was the
most recent disk put on the Post’, because it has access to the history of
‘put on” actions that led to the current state.

LIVE’s method of learning is robust in some ways and brittle in others.
Its robustness arises from the ability to learn autonomously while achiev-
ing goals, its ability to invent new terms for use in preconditions, and the
fact that rules are gradually refined over time. Its brittleness comes from a
number of simplifying assumptions about the problem domain: the effects
of actions must be deterministic; the number of objects and observable fea-
tures is limited; there can be no noise in the observations. However, the ap-
proach of combining exploration, experimentation and incremental model
refinement is quite powerful since it gives the agent a level of autonomy
that other action learners do not have. The agent also does not require out-
side direction (from a teacher for example) when deciding which actions

to employ in order to improve its rules.

2.2.7 ARMS: learning from plans with incomplete obser-

vations

All of the agents previously described rely on observations of the world
before (pre-state) and after (post-state) action execution (where the world
is either partially or fully observable). The ARMS algorithm [44] takes a
different approach by learning an action model from plan examples where
only the pre/post states are known for the plan as a whole. No intermedi-
ate observations are required. The motivation for ARMS comes from a
requirement to learn from experts where actions are easily recorded but
world states are not.

The algorithm generates a complete set of action pre-conditions and
effects. It learns from a set of example plans (action sequences) along with
initial and goal states. The algorithm works by casting the problem as
a weighted propositional satisfiability (SAT) problem. The SAT is con-

2.3. REPRESENTING QUALITATIVE BEHAVIOUR 35

structed using constraints to represent preconditions and effects, the fixed
structure of action models, and constraints imposed by the plan. Some ex-
ample constraints are: ‘all actions must have at least one effect’, ‘clear(x)
is a precondition of lift(x)’, ‘the final action in a plan must have one of
the goal predicates as an effect’. Fully solving the SAT is computationally
hard so constraints are weighted to prioritise actions and predicates that
occur frequently together in the plan examples. The algorithm proceeds
by generating a subset of likely actions by partially solving the weighted
SAT. The algorithm then updates the plan examples by executing the ac-
tions discovered so far. The process is repeated with the now shorter plan
examples until all action rules are found.

ARMS is able to learn basic STRIPS rules (i.e. no conditional effects, no
probabilistic effects, etc) from sets of example plans, however the learned
action models are imperfect and include some incorrect preconditions and
effects. ARMS is also limited to off-line operation because it requires a sub-
stantial number of example plans to learn from. It is not clear how ARMS
could be used in an on-line scenario where action models must be refined
incrementally as new evidence is encountered. The ARMS approach does
however raise the interesting question of what other types of evidence can
be used to construct action models, when complete action sequences with
pre and post states are not available.

2.3 Representing Qualitative Behaviour

This section describes qualitative representation, an area of artificial intel-
ligence that is concerned with reasoning about complex systems without
using quantitative data or formulae. Qualitative models are specified in
terms of qualitative variables. The range of a qualitative variable is a di-
vision of the space of real numbers into contiguous ranges. All of the real
values falling within each range are treated together as a single qualitative

value. This is in contrast to a quantitative model in which every possi-

36 CHAPTER 2. RELATED WORK

ble real number is treated as distinct. The number of possible values for a
given variable is finite and usually quite small. Although this quantization
loses information, the precision can be sacrificed without losing the ability
to model interesting behaviour. Obviously, what is ‘interesting” depends
on the particular problem domain, and there are of course many problems
for which qualitative modelling is not sufficient.

Qualitative models allow variables to have qualitative relationships
or constraints. These describe how a change in one qualitative variable
will affect another, but only in qualitative terms. For example, it can be
stated that one qualitative variable increases monotonically with another;
however, the precise (quantitative) increase cannot be calculated from the
qualitative relationship. A group of interacting qualitative variables and
constraints can be used to specify a qualitative process. The behaviour
of a process can be simulated by starting with an initial state and itera-
tively growing a graph of qualitative state transitions. The graph is grown
by adding all successor states that are consistent with the specified con-
straints (for example, a system cannot transition to a state in which two

inversely proportional variables are both increasing).

A qualitative simulation can be used to predict the possible state tran-
sitions that can occur within a system and under which circumstances.
If the qualitative ranges for variables are well chosen then it is possible
to simulate complex systems, and discover interesting behaviour, without
resorting to quantitative methods.

There are two primary motives for choosing qualitative over more pre-
cise quantitative modelling. The first motive is that for some problem do-
mains, quantitative analysis is either impossible or too difficult. One rea-
son for this may be that sufficiently precise measurements cannot be ob-
tained for the system under analysis. For example, in one domain it may
not be possible to measure the speed of an object exactly enough to cal-
culate the resulting behaviour. In this case, simpler qualitative measure-

ments, such as the speed being greater than zero, can be used to predict

2.3. REPRESENTING QUALITATIVE BEHAVIOUR 37

more abstract behaviour. Similarly it may be the case that precise quanti-
tative relationships are not known. For example, the precise quantitative
formula describing the effect of air temperature on the speed of a plane
may be unknown. In this case a qualitative relationship may be used in its
place. Finally, even if accurate quantitative measurements and formulae
are available, it may be too computationally expensive to simulate the sys-
tem’s behaviour accurately. In this case a more computationally efficient

qualitative simulation may be the only option.

The second motive for choosing qualitative modelling is that quantita-
tive precision may not be required. Qualitative results may be sufficient
for the problem domain in question. One reason for this is that only qual-
itative results are of interest. For example, a pipeline designer may wish
to be assured that flow can only ever occur in one direction between two
points and never the other way around. A qualitative simulation could
answer this question even though it could not calculate the exact quanti-
tative amount of contra-flow (if any exists). Similarly, it may be the case
qualitative methods are sufficient for spotting anomalies which are then
analysed quantitatively in isolation (this may be more efficient than per-
forming a full quantitative analysis on an entire system). Finally, qualita-
tive methods may be considered ‘good enough’ for common sense reason-
ing in everyday environments. People perform many complex tasks and
analysis without resorting to complex quantitative analysis. The process
of cooking some spaghetti can be achieved without calculating the precise
heat flow from the stove to the water. A full quantitative analysis may
make the process a little faster (knowing exactly when the water will boil,
using precisely enough water for the spaghetti to cook) but is not neces-

sary in this problem domain and others like it.

Qualitative Process Theory [14] was an early formalisation of qualita-
tive modelling concepts, it brought together three inter-related streams of
qualitative research: common sense reasoning, as described in the naive

physics manifesto [20], representation of quantity in symbolic reasoning,

38 CHAPTER 2. RELATED WORK

and finally, simulating qualitative behaviour through ‘envisionment’ [10].
The theory has subsequently been used to model a multitude of different
systems and draw useful conclusions about their behaviour. The remain-
der of this section describes the main techniques used to represent quali-
tative systems.

2.3.1 Quantities, Constraints and Processes

Qualitative models are represented in terms of qualitative variables, con-
straints and processes. A qualitative variable is specified using a quantity
space. A quantity space is a ‘finite, totally ordered set of symbolic land-
mark values representing qualitatively important values in the real num-
ber line. The value of a qualitative variable at any given point in time, is
either a landmark value or a region between landmark values. A simple
quantity space can be constructed using the landmark values —oo, 0 and
+00. This quantity space has five legal values: exactly —oo, between —oo
and 0, exactly 0, between 0 and +oo, and exactly +o0o. Figure 2.7 illus-
trates the landmarks and regions used in this example. A qualitative vari-
able also has an associated qualitative derivative that represents its rate
of change. The qualitative derivative is also expressed using a quantity
space which normally corresponds to the values: ‘increasing’, ‘decreasing’
or ‘steady’.

The “U-tube’ system shown in Figure 2.8 is a common example used
to illustrate qualitative representation [22]. Two tanks containing water,
‘A’ and ‘B’, are connected by a tube allowing water to flow between the
tanks. The system includes a number of qualitative variables and asso-
ciated quantity spaces. The flow between the tanks is modelled with a
quantity space using the landmarks —oo, 0 and +oo. The pressure in a
tank is modelled using the landmarks 0 and +oc. The amount of liquid in
A has the landmarks 0 and mazCapacity A, similarly 0 and mazCapacity B

are used for the amount of liquid in B.

2.3. REPRESENTING QUALITATIVE BEHAVIOUR

quantity space

landmark value

Figure 2.7: A quantity space with 3 landmarks and 5 legal values.

A B

Figure 2.8: The “U-tube” system.

39

40 CHAPTER 2. RELATED WORK

Qualitative relations are used to model constraints between qualitative
variables. These relations represent the types of constraints that would
normally hold between quantitative variables, but they are interpreted in
qualitative terms. Two important types of qualitative relation are qualita-
tive proportionalities and qualitative influences. A qualitative proportion-
ality between two qualitative variables specifies that they monotonically
change with respect to each other. That is, if the real value of one vari-
able increases, then the other always decreases or always increases. A
qualitative proportionality does not specify by how much the other value
changes — the relationship may be linear, polynomial or some arbitrary
function, so long as monotonicity is maintained. In the ‘U-tube” example,
a negative qualitative proportionality can be specified between the vari-
ables representing the amount of liquid in each tank. It states that if the
amount of water in tank A increases then the amount of water in tank B
will decrease and vice versa. It does not state by how much the water
in either tank changes. This rule applies whatever the shape of the tank.
Other qualitative proportionalities could be specified for the U-tube sys-
tem, including: between the amount of water in a tank and the pressure at
the point where the tube meets the tank; and between the pressure differ-
ential and the flow rate between the tanks.

The other important type of qualitative relation is qualitative influence.
Qualitative influences are used to represent what can cause a quantity to
change. Influences can be positive or negative depending on whether they
cause a quantity to increase or decrease. A variable is a positive influence
on another if a non-zero value of the former causes the later to increase
(given the absence of any other active influences), and vice versa. The
state of an influenced variable can be determined by inspecting all of its
influences: if they are all positive then the variable is increasing. If both
positive and negative influences are active then the state is ambiguous: it
may be increasing, decreasing or steady (the influences cannot be added
since their quantitative values are not known). In the U-tube example, the

2.3. REPRESENTING QUALITATIVE BEHAVIOUR 41

amount of flow from A to B could be represented as a positive influence
on the amount of water in tank B.

A qualitative process or system is a defined set of qualitative variables
and constraints. A process is used to model the behaviour of an isolated set
of objects. The process is not influenced by any outside conditions unless
specifically allowed. A process is stateful, where a state is an assignment

of each qualitative variable to a value.

The behaviour of a qualitative process or system can be discovered
through simulation. A simulation starts with an initial assignment of vari-
ables and proceeds by adding all possible transitions to new states, with
respect to the system constraints. This process is iterated until there are
no further new transitions. The resulting behaviour graph can be used to
predict the possible qualitative behaviours of a system. Properties of sim-
ulation algorithms vary depending on the types of constraints allowed.
The QSIM simulation [23] for example is guaranteed to find all possible
behaviours of a given system, however it is not guaranteed that all be-
haviours it predicts are valid. Tractability is also a problem given that the
number of states is exponential in the number of variables. An ‘envision-

ment’ of a process is a directed graph of all reachable states and transitions.

2.3.2 Spatial Representation

Qualitative spatial reasoning is the sub-field of qualitative reasoning con-
cerned with representing and reasoning about how objects occupy space
and how they are spatially related to each other. Spatial reasoning can be
applied in up to 3 dimensions depending on the problem domain. Surveys
of qualitative spatial representations [8] [37], show that the 2-dimensional
case is the most developed; the 3-dimensional case is usually considered
as an orthogonal extension to a 2D representation if it is considered at all.
Finding a useful general purpose spatial representation is currently an un-

solved problem, however various representations have been successfully

42 CHAPTER 2. RELATED WORK

‘AHB‘ ‘AlB‘

A left of B A touching B

Figure 2.9: Example spatial relations used in the rectangle calculus.

applied to specific problem domains.

The rectangle algebra [19] is a typical qualitative spatial calculus. Its
representation extends a 1-dimensional temporal representation based on
intervals (Allen’s ‘Interval Calculus’ [1]) to a domain with rectangular ob-
jects. Rectangles are specified according to their relationships with other
rectangles. For example, rectangle A can be specified as left of rectangle B,
or alternatively A could be attached to B. These relationships are illustrated
in figure 2.9. Given a group of objects and relationships, further relation-
ships can be inferred transitively, for example, if it is known that A is left
of B and B is left of C, then A is left of C can be inferred. To represent the
same situations quantitatively, a significant amount of extra information
is required: a co-ordinate system to locate the rectangles absolutely, and
precise co-ordinates for the corner of each rectangle.

It is believed that there is no general purpose (i.e. problem indepen-
dent) purely qualitative spatial representation; this is known as the ‘Poverty
Conjecture’ [16]. Forbus et al. argue that at some level of description, nu-
merical values are required to fully predict the spatial interaction of ob-
jects. They site an example of two wheels rolling against each other, one
with a ‘notch” and the other a ‘bump’; knowing whether or not the two

wheels will roll smoothly without catching requires numeric information

2.3. REPRESENTING QUALITATIVE BEHAVIOUR 43

about the size and position of the irregular surfaces. They argue the solu-
tion to this problem is to ground the qualitative description “place vocabu-
lary” in a low level quantitative description ‘metric diagram’. Ambiguities
at the qualitative level would be resolved by reference to the quantitative
values.

2.3.3 Actions in Qualitative Systems

Qualitative simulation predicts the possible behaviours of a system ac-
cording to changes inferred from qualitative relationships between the ob-
jects. It does not consider changes that occur because of actions affecting
objects within the system. For many problem domains such as robot plan-
ning it would be desirable to model both qualitative behaviour and actions
simultaneously. Two possible approaches to integrating actions with qual-
itative processes have been proposed: domain compilation [21], in which the
qualitative knowledge is compiled into a form for use with temporal plan-
ning systems; and action-augmented envisionment [15], in which qualitative
envisionments are allowed to include states in which the fixed background
assumptions are allowed to change.

Domain compilation involves creating planning rules from qualitative
constraints. The compiled rules can be used in conjunction with action
operators to predict new world states. The action operator predicts what
will change, while the qualitative rules predict the indirect consequences
of the changes according to qualitative constraints. A qualitative rule has
antecedents and consequents that work in a similar way to action pre-
conditions and effects (i.e. the antecedents must be true for the qualitative
constraint to apply; the consequents will become true when the constraint
is applied). The following rule taken from [21] is an example of a compiled

qualitative constraint:

RULE
Antecedents:

44 CHAPTER 2. RELATED WORK

(CONTAINED_LIQUID ?X) $c1l

(INCREASING (AMOUNI-CF ?X) ?CAUSE) $inc
Temporal Conditions:

Exists (INTERSECTION $cl1 $inc) called $int
Consequents:

(INCREASING (LEVEL ?X) ?CAUSE) $int

The rule specifies that the level of a contained liquid is rising if something
is causing the amount of liquid to increase. Action compilation allows
qualitative processes to be used in planning algorithms, however, a signif-
icant problem with this approach is that interacting influences can lead to
contradictions. For example, a contradiction is created when a container
has a simultaneous inflow and outflow (such as when a sink has water
flowing in from a tap and out from the plug hole). Qualitative simulation

does not have this problem since ambiguous states are allowed.

Action-augmented envisionment takes the complementary approach
to domain compilation by allowing qualitative models to include STRIPS
like actions. Normally, a qualitative process requires a number of assump-
tions to hold for the predicted behaviour to be valid. An action-augmented
envisionment allows actions to change the value of these assumptions. A
new envisionment can be constructed that includes transitions that are the
result of actions as well as the usual transitions caused by qualitative con-

straints.

A draw back of including actions is that construction of complete en-
visionment is difficult for non-trivial domains. The envisionment also re-
quires simplifying assumptions such that actions only ever occur singly

and that actions never coincide with qualitative transitions.

2.4. LEARNING QUALITATIVE MODELS 45
24 Learning Qualitative Models

A variety of systems have been developed that apply machine learning
methods to the task of learning qualitative models. There are two main
learning problems associated with learning qualitative models. The first
problem is that of learning an appropriate variable quantisation from quan-
titative example data. This involves learning the real valued numbers that
correspond to landmark values for a given quantity space. A good learn-
ing algorithm will find the landmarks that distinguish between interest-
ing qualitative behaviours, for a given domain. Poorly chosen landmark
values can lead to redundant qualitative states (and therefore increase the
amount of computation required to simulate and envision), overly general
states (in which useful qualitative distinctions are missing), and inaccurate
states (in which a system does not behave as the qualitative model predicts
it should).

The second problem is that of finding the qualitative constraints that
hold between qualitative variables. The constraints can be learned from
either quantitative or qualitative examples. A good learning algorithm
with find enough constraints such that the qualitative behaviour of the
variables involved can be accurately predicted. Missing or incorrect con-
straints will cause incorrect states to be found during simulation or envi-
sionment.

The remainder of this section describes a number of exemplar systems
for learning qualitative models. It includes systems that address both of
the main learning problems described previously — learning landmark
values from quantitative data, and learning constraints from quantitative

and/or qualitative data.

2.4.1 Robotic arm control in a 3D simulated world

Mugan and Kuipers [29] describe a simulated ‘robot baby’ that learns qual-
itative rules for controlling its arm. This research is particularly relevant

46 CHAPTER 2. RELATED WORK

to this thesis because it addresses a similar problem, that of learning qual-
itative action outcomes within a 3D simulated environment with realistic
physics. However it differs significantly in its objectives because it does
not attempt to learn high level models of complex mechanisms. It instead
focuses on learning a low level skill, that of moving the robot’s arm, and
does so in an extremely simple world that contains only the arm, a table
and a block. The learning system does not assume that such basic skills
have already been learned.

The input to the robot’s learning algorithm is a time sequenced obser-
vation trace of a number of real valued variables. The variables represent
the exact position of the arm, the position of the block, the closeness of the
arm to the block, and the amount of power applied to the motors control-
ling the arm. It is assumed that the agent has a sensory system capable of
observing the objects in this manner. Its vision system provides individ-
uation of objects, tracking of objects and quantitative descriptions of the
objects.

The learning mechanism attempts to find rules that reliably predict
qualitative changes in state between variables. This includes creating land-
mark values to improve the reliability of the rules. A typical learned rule

is written as:
motorX—(302.23, +00) = arm_speedX—(0, +00)

This rule specifies that the qualitative state on the right side of the expres-
sion will reliably occur soon after the state on the left side has occurred.
This particular example rule can be read as: “activating ‘motorX” with
power greater than 302.80 will cause the arm to move in a positive direc-
tion along the x-axis”. The rules are learned by first creating candidate
rules based on changes in qualitative state that have a high likelihood of
occurring together in the observation traces. The candidate rule is then re-
fined by introducing landmark values and context variables that specialise

the rule and increase its observed reliability.

2.4. LEARNING QUALITATIVE MODELS 47

The algorithm explores some interesting ideas: using closely occurring
qualitative state changes to infer a causal relationship; making a distinc-
tion between causal (i.e. ‘happens soon after’) and simultaneous state
change rules; and creating new landmarks to increase the reliability of pre-
dictive rules. These are applied to create an agent which can learn accurate
descriptions of low-level qualitative actions. Some of these ideas may be
applicable to learning action models in a more complex world, however,
the current system assumes a very limited environment with just a small

set of observables.

2.4.2 Predicting qualitative physical interactions

Boxer [5] describes a system that learns to predict qualitative state changes
in a simulated environment with realistic physics. The goal of the system
is to learn three specific naive physics rules by observing the movement
of objects in a 2D world. The world is simple and contains only a wall
(stationary) and some billiard balls that move and collide. It aims to learn a
model that captures the following common-sense knowledge: ‘objects are
solid’, ‘objects must touch to affect each other” and ‘objects move along
continuous paths’. This is the kind of knowledge that an agent would
require to act intelligently in a variety of physical environments.

A simple qualitative spatial representation is used to represent the world
states. Objects are observed in terms of their qualitative spatial relation-
ship to each other. For example, a ball A may be to the left of another ball
B, and at the same time moving to the right (i.e. away from B) at some
speed greater than 0. State transition probabilities are represented using a
Bayesian Network, figure 2.10 shows the structure of the network. Nodes
in the network represent the current object (‘reference object’), a second
object (‘located object’) and the current spatial relationship between them;
the dependent node represents the next spatial relationship. Learning is
achieved by updating the network with changes in qualitative state be-

48 CHAPTER 2. RELATED WORK

- ~
REFEREM CURRENT Y

ORIECT ' | |
OBIECT | FELATION |

\E_PE A\ / o

|" NEXT <|

Figure 2.10: Bayesian network for qualitative state changes.

tween adjacent time frames. After enough trials the network is able to
accurately predict the ‘next relation” of the objects such as balls moving
away from each other after a collision. The system functioned well in sim-
ple trials but was unable to cope with a trial containing multiple balls and
interactions.

This system demonstrates that it is possible to learn simple qualitative
state changes using a Bayesian network in a simulated physical environ-
ment. However, the system only worked when interactions were easily
isolated and involved only two objects. It is not clear how such an ap-
proach could be scaled up to be useful in a more complex environment.

2.4.3 QUIN: inducing a qualitative decision tree

The final system in this section learns qualitative rules from numeric data.
The rules are used in a software system that controls physical processes.
The motivation for the research comes from a requirement to reverse en-
gineer the control mechanism used by a gantry crane. The crane has a

control mechanism that safely lifts heavy objects to and from trucks. The

2.4. LEARNING QUALITATIVE MODELS 49

50 -

¥ ¥
) =)/ =)

Iy
3 E]

<0 AN o |
VAR N
EZ=M"X Y) Z=MIX.Y) Z=MYHX, Y) L=aMX, X)

Figure 2.11: Example learned qualitative tree.

learning algorithm is called QUIN [6] (short for QUalitative INduction).
QUIN creates ‘qualitative trees’ that are similar to decision trees but have
qualitative constraints at their leaves. Figure 2.11 shows the output from
QUIN for a noisy data set of points {X, Y, Z} where Z ~ X? — Y. The tree
in figure 2.11 shows how Z is qualitatively constrained when X and Y are
in particular qualitative states. For example, when X is positive and Y is
negative the constraint ‘Z = M**(X,Y)" holds. This constraint states that
Z monotonically increases in both X and Y.

The algorithm learns in a similar manner to normal decision tree in-
duction. However, the qualitative constraints (that take the role of classes)
and discriminating thresholds are not fixed beforehand. When splitting on
a node, all possible thresholds and constraints are considered. Constrain-
t/threshold combinations are selected by searching for those that are most
consistent with the observed data.

QUIN is useful for finding the qualitative relationship between vari-
ables in situations where finding a precise quantitative function is not pos-
sible. This type of approach could be used in conjunction with a relational
decision tree learner (the TILDE [4] system for example) to learn qualitatve
models of relational domains. However the problem of learning from un-

bounded problem domains would still have to be addressed.

50 CHAPTER 2. RELATED WORK

2.4.4 INTHELEX: learning naive physics

Esposito et al. [12] describe the application of the INTHELEX learning
system to the problem of learning naive physics. The goal of the system is
to replicate the kind conceptual theory revision observed in small children.
For example, in early childhood, the concept of ‘force’ is explained as an
innate property of big or heavy objects (they are hard to move, so they
have force), as the child develops the concept is revised as an acquired
property of moving objects (moving objects are given force by the agent
that set them in motion).

INTHELEX is an ILP engine that learns hierarchical concepts as logic
programs. The system incrementally refines concepts by matching exam-
ples to existing concepts and then, if required, specializing in the case of
negative examples and generalzing in the case of positive examples. The
system retains all examples it has been shown and ensures that learned
concepts are consistent with them all.

The system was provided with a number of positive and negative ex-
amples constructed from qualitative predicates such as weight_low, weight_medium,
and weight_high (note that the qualitative values ‘low’, ‘medium’, and

‘high” are arbitrarily chosen). The following is a typical training example:

has_innate_force(s,t) - stone(s), size_high(s), weight_high(s)
man(m), size_high(m), weight_high(m)
stationary(s,t), stationary(m,t),

pushes(m, s, t)

It represents the concept that ‘a large stone has innate force because it re-
mains stationary after a large man pushes it’.

The system was able to learn general concepts for both innate and ac-
quired force, which it is argued, are similar to those adopted by children.

The following is an example learned rule:

has_innate_force(X,T) :- size_high(X), weight_high(X)
stationary(Y,T), stationary(X,T),

2.4. LEARNING QUALITATIVE MODELS 51

pushes(Y, X, T)

The approach gives some insight into how child-like learning of qual-
itative models could be used as a template for intelligent agent learning.
However, the rules were learned from examples drawn from a very sim-
ple world in which only the relevant objects exist. Learning such rules in
a more complex environment would be significantly more difficult. The
system also assumes that the examples are noise free; that both positive
and negative examples are avaible from which to learn; and that perfect
qualitative landmarks have been discovered.

52

CHAPTER 2. RELATED WORK

Chapter 3
Q-Systems

Knowledge representation is a key component of an intelligent agent sys-
tem. The representation must be sufficiently expressive to enable the agent
to represent, and to reason with, the knowledge it needs to achieve its
goals. It is therefore highly dependent on the types of tasks the agent is re-
quired to achieve and the types of environments the agent will operate in.
An agent that must operate in a wide variety of unforeseen environments
requires a more expressive representation than an agent which operates in
a highly constrained environment; similarly a more expressive representa-
tion is required if an agent is to describe and achieve arbitrary goals rather
than some pre-determined set of tasks.

The choice of representation will not only affect the agent’s operational
effectiveness but also its ability to learn new knowledge. A more expres-
sive representation can be more difficult to learn because it includes more
types of things and describes them in greater detail. A good representa-
tion balances the level of description (expressiveness) with the ability of
the agent to learn (learnability). Furthermore, an overly expressive rep-
resentation is not only detrimental to learning but can also lead to overly
detailed models of behaviour which can make the task of planning more
difficult.

This chapter describes the ‘Q-System’ representation, a novel represen-

53

54 CHAPTER 3. Q-SYSTEMS

tation which describes ‘systems’ of interacting objects. The representation
is designed to enable an agent to operate at a human (‘common sense’)
level in arbitrary everyday environments. Q-Systems are based on non-
deterministic finite state machines and aim to combine an expressive ac-
tion representation with qualitative process modelling. The resulting inte-
grated representation can describe both action effects and qualitative be-
haviour. The following sections describe the design goals, the representa-
tion details, a Q-System notation, and finally a discussion of the important

design decisions.

3.1 Goals

The representation has several goals that follow from the overall goals of
this research. The primary goal of the representation is to enable the agent
to learn models that can be used to achieve arbitrary tasks in a wide vari-
ety of everyday environments. Therefore the representation must be inde-
pendent of any single problem domain and expressive enough to model
arbitrary unforeseen situations. A key idea is to partition the world into
independent systems of interacting objects, and this must be supported by
the representation.

To achieve these goals a number of desirable features are considered es-
sential characteristics of a successful representation. Conversely, a number
of limitations are tolerated, either due to practical reasons or to constrain
the scope of the research. The essential features and tolerable limiations
are related to three distinct areas of the representation: those that apply
to the representation of world state, those that apply to representation of
state change, and those that apply to the representation as a whole. The

teatures and limitations applicable to the representation of world state are:

o The state of the world should be represented in terms of objects and

discrete properties. It is assumed that a vision system has already

3.1. GOALS 55

determined what objects exist and can observe their properties and
relationship to each other.

e It should be possible to model arbitrary information about objects.
This follows from the goal of learning in arbitrary environments. The
representation should not be limited to a specific set of observable
features derived from a single problem ddomain. The representation
cannot make any assumptions about the specific features that objects
may have.

e Real valued variables should be represented qualitatively. This fol-
lows from the assumption that real valued variables cannot be di-
rectly observed and that qualitative measurements are used in their
place. It is a goal of this research to show that qualitative descrip-
tions are sufficient for everyday problem domains.

e The representation should support descriptions of generalized mod-
els which can be matched to specific situations. Therefore the rep-
resentation must have some way of referring to generalized objects
using variables.

e The representation should allow explicit representation of groups of
objects. It is assumed that the vision system can distinguish interest-
ing groups of objects. Groups of objects also have properties and can
behave as a single object.

e The representation should support representation of partial world
states. A goal of this project is to learn models in an ‘open world’. It
is unrealistic to assume that world states are completely observable

and therefore the representation should support partial states.

The features and limitations applicable to the representation of state

change are:

56

are:

CHAPTER 3. Q-SYSTEMS

e The representation should represent qualitative world dynamics, i.e.

how the qualitative state of the world changes under different condi-
tions (especially with regard to the agent’s actions). This will allow
the agent to plan by calculating future states that satisfy its goals.

Actions will be represented atomically in terms of how states change
when they are executed. This limitation is a simplifying assumption
that allows the effects of actions to be the primary focus of learning
rather than their execution.

The distinction between changes resulting directly from actions and
changes resulting from world dynamics should be represented ex-
plicitly. To plan effectively an agent must have knowledge of how
the world changes ‘by itself” without intervention from the agent.

Observable non-qualitative changes in real valued variables will be
represented. Certain changes in the environment will not result in
a change of state because real valued variables are abstracted into
discrete quantity spaces. However, these changes can be important
to understanding a process and, since they can often be observed,
should be explicitly representable as effects of actions.

The probability of a given state transition will be represented. A
given action may result in several different outcomes; probabilities

on the various outcomes will allow the agent to plan more effectively.

The features and limitations applicable to the representation as a whole

e Isolated groups of objects interacting together as a system should be

explicitly represented. This follows directly from one of the overall
project goals which is to investigate the usefulness of such partition-

ing.

3.2. THE Q-SYSTEM REPRESENTATION 57

e The representation should be optimized for on-line learning from
small numbers of examples. This limits the scope of the research to
a particular type of autonomous agent architecture. These limita-
tions are realistic for an agent that must learn quickly in new envi-

ronments.

3.2 The Q-System Representation

The Q-System representation has been designed to fulfil the goals outlined
in the previous section. The representation defines ‘systems” which are fi-
nite state machines representing the qualitative behaviour of a group of
related objects. The representation builds on ideas from qualitative rea-
soning and action description languages by integrating an expressive ac-
tion description language with a qualitative behaviour graph (also known
as an envisionment). The remainder of this section describes the compo-

nents of the representation in detail.

3.2.1 Objects

The representation models the world in terms of objects. An object is a part
of the world that has been identified as an object by the vision system.
Objects are uniquely identified, exclusively occupy space, are described
by their properties and the context of their relationships with other ob-
jects. Over time objects can change as they interact with other objects. It
is the job of the vision system to identify such objects and track them over
time (determining what exactly is and is not an object is non-trivial and is
discussed in following sections).

Objects can be either individuals or compositions of other objects. The
representation puts no constraints on how object composition hierarchies
are organized. This means scenes can be observed in different ways de-

pending on the particular compositions used. For example, the vision sys-

58 CHAPTER 3. Q-SYSTEMS

tem may perceive a chair as an individual object, or alternatively, it could
perceive the individual component objects (wheels, base, seat and back;
but not the chair as an object itself), and finally, it could perceive both the
component objects and the chair as a composition of them. It is assumed
that the vision system can identify and construct an appropriate level of

composition for a given scene.

Properties describe objects and have a discrete range of possible val-
ues. Exactly one value is assigned to each property of an object. For ex-
ample, an object may have the property ‘colour” and it may be assigned
the value ‘blue’ (it cannot be assigned two values, say ‘green’” and ‘blue’
to represent turquoise, an explicit ‘turquoise” value would be required to
represent this). The actual properties for a given object are determined by
the vision system.

Qualitative properties are special properties that describe real valued
measures in discrete terms. Qualitative properties take two discrete val-
ues: a qualitative value from an ordered quantity space and a qualitative
derivative describing the rate of change of the underlying real value. Ev-
ery qualitative property has its own quantity space, for example, a quali-
tative height-of-water property of a cup object may have a quantity space
containing values: [0, 0-FULL, FULL]. All qualitative derivatives are as-
signed a value from the range: [decreasing, steady, increasing] (or ‘dec’,
‘std’, “inc” for short).

Relationships describe how two objects relate to each other. An object
with properties is just an object but an object with relationships becomes
part of a scene. The precise values of the relationships describe the context
of the object within the scene. Relationships specified between two objects
are assigned a discrete value. For example, if two objects are touching then
the value of the ‘touching’ relationship between the objects is ‘yes’. Rela-
tionships can take any value but are typically boolean. The relationships

in which an object participates are determined by the vision system.

Relationships can be either symmetric or asymmetric. The relation-

3.2. THE Q-SYSTEM REPRESENTATION 59

ship ‘on’ is asymmetric because X-on-Y is a different assertion to Y-on-X.
However, X-touching-Y is a symmetric relationship because X-touching-Y
implies Y-touching-X. Asymmetric relationships may be constrained, for
example, X-on-Y implies that Y-on-X is false.

Groups of Objects

The representation explicitly represents special groups as a special kind
of composite object. Group objects are sets of objects that are grouped
according to some identified common property. Group objects have prop-
erties and relationships just like normal objects. An example of a group
is a stack of boxes. The defining common property of the member objects
is that they are of the same type and are vertically aligned. The stack of
boxes may have a qualitative height property and/or relationships with
surrounding objects. The stack may have the top box and bottom box
identified as ‘special’ member objects. It is assumed that the vision system
identifies group objects, either by noticing shared properties and relation-

ships or when trying to match a scene to a description of a group object.

3.2.2 States

A ‘state’ in a Q-System is a conjunction of assertions about objects. The
assertions represent a particular configuration of objects, for example it
might describe the part of the world observable to the agent at a given
point in time. An assertion is an assignment of a value to a fluent (i.e.
object property or relationship). If a particular fluent is not assigned any
value in a state then the value is either unknown or unspecified depending
on the context in which the state is being used. States used in system
descriptions use unassigned fluents to indicate “‘unspecified” in the sense
that the state is compatible with a world state in which the fluent can take
any value. On the other hand, world states observed by the vision system

use unassigned fluents to indicate ‘unknown’ in the sense that the value

60 CHAPTER 3. Q-SYSTEMS

of the fluent cannot be observed at this time.

Observed world states are normally partial states. They do not include
all assertions that are true of the world when it was observed. This is a
limitation of a realistic vision system. It is not possible to always observe

every property of every observable object.

3.2.3 State Transitions

Transitions represent how states change over time, either due to an agent’s
action or the underlying world dynamics. Actions are represented by a
type identifier that uniquely identifies the type of action (e.g. put-on), the
target objects on which the action is executed, a frequency count, a set
of qualitative deltas, and finally a ‘pre” and one or more ‘post’ states. The
post-states of an action represent the possible outcomes of the action when
it is executed in the specified pre-state. The frequency count of a tran-
sition represents the number of times this particular transition has been
observed. It can be used as a rough probability estimate of the actual post
state when a given action has a set of different possible outcomes.

A transition’s qualitative deltas represent changes to qualitative prop-
erties that are observable but not significant enough to result in a qualita-
tive change of state. For example, the water level in a cup may increase but
does not change enough to be move into a new qualitative state (e.g. from
‘0-FULL’ to “‘FULL). In this case the property’s delta is given the value ‘in-
creased’ for the transition. Qualitative deltas take the values: ‘increased’,
‘not changed’, or “decreased’. Qualitative deltas, like actions, are not part
of the state because they are transient. They are observed to have hap-
pened since the last observation but say nothing about the current state of
the world as they are not currently happening.

Non-actions are represented in the same way as actions except they are
assigned a special ‘time-passes’ action type and do not have target objects.
Time-passes transitions represent world dynamics in action. For example,

3.2. THE Q-SYSTEM REPRESENTATION 61

when a falling object hits the floor it stops moving and the state of the
world changes. The observed transition from moving object to stationary
object on the floor can be represented as a time-passes transition.

A transition does not specify a length of time over which the transition
occurs. The transition represents an arbitrary amount of time sufficient for
the transition to occur. This is assumed to be a short amount of time (de-
termined by the vision system), typically under a second, however certain
actions may take longer in which case the representation allows for them
to be consistent with the model. Enforcing a fixed time interval would re-
quire modelling durative actions which is beyond the scope of this project

as actions are assumed to be atomic.

3.2.4 Systems

Systems of interacting objects are represented using a Q-System. A Q-
System consists of two parts: a context and a behaviour. A system’s con-
text defines what must be true of a set of objects for the system to be ap-
plicable. For example, the system in figure 3.1 requires a spout above a
sink with a tap and plug controls to be applicable. The context is the pre-
condition of the system and is true in all the system’s states. A system’s
behaviour is a finite state machine describing the possible states that the
system can be in and the possible transitions between states. The system,
if applicable, is in one of the states described in its behaviour. State transi-
tions are either actions or time-passes transitions as described previously.
The ‘scope’ of a system is the set of objects described in the system’s con-
text.

A system’s action transitions only describe the effects on the system’s
objects. Objects outside of the system may be affected but the explicit ef-
fects are not defined in the system. It is assumed that the effects are not
important to the working of the system at hand.

Figure 3.1 shows the behaviour graph of an example tap and sink sys-

62 CHAPTER 3. Q-SYSTEMS

tem modelled using the Q-System representation. The system involves
several objects, a tap, a sink, a plug and an handle. The system is a model
of a real tap and sink which is controlled using the handle and plug ob-
jects. Rotating the handle left or right affects the flow of water coming
from the tap. The plug object controls the drain: inserting it will close the
drain to prevent water escaping; removing it will open the drain allowing
water to leave the sink. The system has several states which can be ex-
plored by operating the controls and allowing the water to fill and drain
away. Individual states are described using the qualitative properties of
the tap and sink objects, their water-height, flow-rate etc. (Note that not
all possible states and transitions are modelled, for example inserting the
plug before the water has fully drained).

The tap and sink system’s context describes the required components
and their configuration. It requires that the objects must be the appropriate
type, that the tap must be located above the sink, etc. The context of the

example system is:

Wasa = plug

X.isa = tap
Yisa = handle

Z.isa = sink
Z.hasDrain = yes
X.connected.Y = yes
X.above.Z = yes
X.unobstructedPath.Z = vyes

Note that in this particular context all the objects are defined as variables.
This need not necessarily be the case, specific objects may also be identified
in the context. Table 3.1 lists some of the transitions of the tap and sink

system (the seven transitions involving states 4, b, ¢, and d).

3.2. THE Q-SYSTEM REPRESENTATION

H: 0, std H: 0...MAX, dec
F: 0, std F: 0, std
P: no P: no
wait
insert
plug remove remove
plug plug
H: 0, std H: 0...MAX, std H: MAX, std
F: 0, std F: 0, std F: 0, std
P: yes P: yes P: yes
turn turn turn turn
left right left right
turn turn
left left/right
H: MAX, std
wait F: 0...MAX, std
H: 0...MAX, inc P:yes
F: 0...MAX, std
P: yes
turn turn turn turn
left right left right

H: 0...MAX, inc H: MAX, std
F MAX, std wait F: MAX, std
P: yes P: yes

Figure 3.1: Part of Behaviour Graph for Simple Sink System. The values for

H, F, and P correspond to the variables water-height, flow-rate and plug-

in respectively. The sink is empty in states 2 and c; the sink contains water

in states d and ¢; the sink is filling in states f and &; the sink is overflowing

in states ¢ and i; and the sink is draining in state b.

64

CHAPTER 3. Q-SYSTEMS

pre-state action post-state deltas
height: | 0..MAX, dec wait 0, std dec
flow-rate: 0, std 0, std
plug-in: no no
height: 0, std insert-plug 0, std
flow-rate: 0, std 0, std
plug-in: no yes
height: | 0..MAX, std remove-plug 0..MAX, dec
flow-rate: 0, std 0, std
plug-in: yes no
height: | MAX,std remove-plug 0..MAX, dec dec
flow-rate: 0, std 0, std
plug-in: yes no
height: 0, std turn-left 0..MAX, inc inc
flow-rate: 0, std 0..MAX, std inc
plug-in: yes yes
height: | 0..MAX,std turn-left ~ 0..MAX,inc inc
flow-rate: 0, std 0..MAX, std inc
plug-in: yes yes
height: | 0..MAX,inc turn-right 0..MAX, std
flow-rate: | 0..MAX, std 0, std dec
plug-in: yes yes

Table 3.1: Example Tap and Sink System Transitions

3.3. NOTATION 65

Some actions have no qualitative effect on the state of the system (e.g.
rotating the handle when the tap is already on, see state f in the dia-
gram). They do however have a qualitative delta annotation indicating
that there was actually some change (e.g. the flow-rate changed), just not
a qualitatively observable change. Notice also that the system has non-
deterministic actions because there is insufficient information in the quali-
tative state to determine the outcome of the action (e.g. again, rotating the

handle when the tap is on, see state f).

3.3 Notation

A simple short-hand notation is used to refer the components of a Q-
System. The remaining chapters use the notation described below.
A Q-System is a three-tuple describing its context scone.t, the set of

system states S and the set of transitions of the system 7™
system = < Scontest) Sa T>

Transitions are five-tuples describing the before state s,,. € S, the action
type ayype, the list of action targets a;q,4et5, the after state s, € S, and the
set of qualitative deltas D:

transition = < Spre; Qtypes Atargetss Spost D >

A common transformation is to substitute variables for object identifiers.
This is indicated using the “/” operator. The following example denotes
that the a new system has been defined by applying the variable substitu-
tion sub to the system system:

newSystem = system/sub

Variables are distinguished from object identifiers by using uppercase let-
ters. So "X’ denotes a variable and ‘obj1” denotes an actual object.

66 CHAPTER 3. Q-SYSTEMS

3.4 Design Considerations

This section discusses the important considerations taken into account
when designing the representation.

What is a System?

The Q-System representation uses the notion of a system which is a group
of interrelated objects with a behaviour. The intuition behind this abstrac-
tion is that knowledge about how the world works is more useful and can
be learned more easily when it is modularized; organizing knowledge as
systems is a type of modularization. Modularization allows knowledge
to be learned more easily because the number of objects operating in the
system is restricted, there are far fewer interactions to explain. The mod-
ularized knowledge can be more useful because the scope of the world
is limited to relevant objects. For example, a system encapsulates some
planning knowledge simply by discarding many possible but irrelevant
consequences. If a system happens to contain both the start and goal state
in a planning problem, then planning becomes a trivial task of navigating
the system.

Systems can vary in scope considerably. The simplest ‘system’ is just
a single transition (which is equivalent to a single action description rule)
but systems can be arbitrarily complex. An aim of this research is to find a
good heuristic for deciding what is the most useful size for a given system.
Le. when should objects and transitions be included and when should
they be omitted?

Intuitively, systems would appear to be a natural way of usefully stor-
ing knowledge and it is the purpose of the learning system to show that
this is the case.

3.4. DESIGN CONSIDERATIONS 67

Extending Action Description Languages

The Q-System representation uses ideas from action description languages
such as STRIPS [13]. Q-Systems describe actions in terms of a pre-state,
which is like a STRIPS precondition, and a post-state, which is similar to
STRIPS add and delete lists. Furthermore, each transition in a Q-System
has a frequency count which is similar to probabilistic action rules (such
as those used by Zettlemoyer et al. [45]).

Despite these similarities there are some key differences between Q-
Systems and action description type languages. A key difference is that
systems allow action pre-conditions to be learned within the scope of a
group of objects with interrelated behaviour. This is in contrast to action
description languages in which pre-conditions of an action are learned in
an unrestricted scope. This means that revising an action involves con-
sidering all possible applications of a particular action. Consider the very
generic ‘push’ action: there are a huge number of possible situations in
which the action applies and a similarly large number of possible out-
comes. Learning the action as part of a system restricts the possible situ-
ations and outcomes to only those involving the objects of the particular
system. The system approach also allows a group of actions to have a
shared pre-condition via the system context. This means that revising the
system context will revise the pre-conditions of a number of actions simul-
taneously. This can be more efficient than learning them all individually.

Q-Systems also include the addition of qualitative deltas to each transi-
tion. The qualitative delta provides extra information about the effects of
an action that cannot be captured in the (qualitative) state description. The
deltas were added to solve the problem of actions apparently not having
any effect when the effect was too small to constitute an observable qual-
itative change. Q-Systems also differ from other action languages in that
they explicitly represent qualitative variables. This allows the learning
and planning systems to make use of the special properties of qualitative

variables. For example, the quantity spaces used by qualitative variables

68 CHAPTER 3. Q-SYSTEMS

are ordered and variables must transition through each possible value in
order. This information can be used to make inferences about incomplete
observations for example.

Another difference between Q-Systems and action description languages
is that world dynamics and action effects are represented in the same
way (as state transitions). This is in contrast to action description lan-
guages which focus only on actions and rely on world dynamics being
represented as part of the ‘domain knowledge’. This leads to actions and
world dynamics being treated as two distinct learning problems. The in-
tegrated Q-System representation is specifically designed to allow both to
be learned simultaneously.

Black Box Vision System

The Q-System representation has been designed with the assumption of a
sophisticated vision system that provides an object orientated view of the
world. The vision system provides a service which supplies regular snap-
shots of the world to the learning system. The learning system requires no
knowledge of how the vision system works (it is a ‘black box"). This sepa-
ration reflects an architectural decision to keep the vision and “high-level’
learning systems distinct and focus on the learning system alone. This
restricts the scope and difficulty of the problem addressed by this thesis.

The obvious alternative architecture is based on integrated vision and
learning systems in which the functionality of the vision system and high-
level learning system interact. In such an architecture the task of learn-
ing a high-level model of how a toaster (for example) behaves may be
performed simultaneously with the task of determining exactly what con-
stitutes a toaster. The representation used by an integrated architecture
would potentially need to be much richer than the type of representation
built with a black box vision system in mind. So to a certain extent the
design of the Q-System representation can be simpler because of the ar-
chitectural decision to treat the vision system as a black box.

3.4. DESIGN CONSIDERATIONS 69

Lack of Quantitative Variables

The representation does not include quantitative variables. This decision
was made in order to explore the power of qualitative abstraction over
quantitative modelling and investigate questions such as: Is it possible
to learn sufficiently useful models without quantitative information? This
restriction is somewhat artificial because a vision system that provides rel-
atively accurate quantitative measurements is quite possible. However,
there are a variety of circumstances in which qualitative abstraction is re-
quired which means it cannot be assumed that quantitative information
is always available. For example, it is difficult to estimate the speed of an
object that is moving towards the viewer. A qualitative observation that
the object is moving at some speed greater than zero is easier to observe.

The lack of quantitative variables and formulas means that the repre-
sentation is unable to model certain behaviours as accurately. This sac-
rifice of expressivity has been made in order to reduce the scope of the
research problem. It would be more challenging to learn both qualitative
and quantitative models and also determine when each is appropriate for
a given process. Ideally an agent would have both types of representation
available for building models of observed behaviour.

Object Orientated State Descriptions

The representation describes world states in terms of discrete objects in
which every object is unique and indivisible.! This is a simplifying as-
sumption as it forces a partitioning of the world into objects when it is
not always obvious how to do so. A tree for example can be viewed in
a variety of different ways and using different objects, depending on the
level of detail required. The tree can viewed as a single tree object, or a

combination of trunk and branch objects, or trunk and branch and leaf

ndivisible in the sense that if an object (such as a plate) is broken then the resulting
parts become new objects.

70 CHAPTER 3. Q-SYSTEMS

objects, etc... This can be taken to the extreme by considering individual
cells as objects, which maybe an appropriate level of detail if analyzing the
chemical interactions within the tree.

A richer representation would include a more flexible notion of object
that can more accurately describe the tricky situations where object par-
titioning is not obvious. Such a representation might include hierarchies
of objects. A hierarchy would allow objects to be viewed simultaneously
at multiple levels of detail. Another strategy is to relax the discreteness
requirement on objects. For example, consider an oil slick in the ocean, a
certain area of the oil slick could be said to be 90% oil slick “object” and 10%
ocean ‘object’. This would enable reasoning about different areas within
the defined bounds of an object.

Addressing these issues is considered outside the scope of this project.
It is assumed that the vision system has partitioned the world into appro-
priate objects and the representation reflects this.

Chapter 4

Simulation, Vision System &
Skill System

Ideally the learning system presented in this thesis would be developed,
tested and evaluated using a physically embodied agent with the ability
to interact with and observe the physical world. Unfortunately, such an
agent with the required high-level symbolic vision system does not yet
exist and it would be a major undertaking to develop one from scratch.
Therefore the only feasible alternative is to use a simulated world and an
agent with simulated vision and skill systems. Learning algorithms are
developed and assessed within the simulation which acts as substitute for
the physical world. This chapter describes the goals and implementation
details of the simulation, skill and vision systems that were created for this
thesis.

The simulation is designed to be complex enough such that many chal-
lenging real world learning problems can be replicated. The following
properties of the real world contribute to the difficulty of learning about
the world, and therefore it is important that the simulated world shares

these properties:

Intractability, the simulation should be intractable in the sense that an

agent could not learn a complete model of its environment by ex-

71

72

CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

ploring every possible state of the world and remembering every-
thing about each state. In particular the world must contain enough
objects such that exploring all possible states is not computationally
feasible. The simulation must require the agent to perform filtering
and generalisation in order to create good quality, useful models.

Stochasticity, the simulation should allow the agent to observe random-

ness in the interactions between objects. This means two sets of ob-
jects in the same state can be observed on different occasions transi-
tioning to different states.! The outcomes for a given interaction are
not arbitrary, they are governed by some probability distribution.
(Note that stochasticity is distinct from partial observability which is
a property of the vision of the system. In the later case, outcomes ap-
pear random because of missing information rather than underlying

true non-determinism.)

Diversity, the simulation should allow the agent to learn in a diverse

set of scenarios. A key goal of the agent is to perform domain-
independent learning, therefore the simulation should not be con-
strained in the number and types of scenarios it can provide. The
more diverse the environments in which the agent can be shown to
learn successfully, the stronger it can be argued that the learning is
generally applicable to learning in the real world.

Richness, the simulation should exhibit sufficient complexity in object in-

teractions such that qualitative abstraction will be an advantage for
an agent with limited vision capabilities and limited time to explore
the environment. This supports one of the key goals of this research

which is to demonstrate the usefulness of qualitative abstraction.

!'Whether true randomness exists is a problem we will leave to the physicists. It is as-

sumed that the resolution of agent’s vision is sufficiently limited that apparently random

events occur.

73

The simulation should allow objects to interact in subtle and com-
plex ways that would require non-trivial quantitative formula if they
were to be modelled precisely.

A simulation exhibiting all of these properties presents a learning prob-
lem that is difficult in many of the same ways as the real world is difficult
for physical agents.

The properties described so far are desirable in order to create a simula-
tion of sufficient complexity, the following additional requirements allow
for greater flexibility in the types of learning scenarios that can be inves-
tigated. Firstly, the simulation should support optionally turning on or
off the various complexities described. This allows learning to be assessed
under different conditions and also allows the effect of particular complex-
ities to be isolated. Secondly, the simulation should support ‘teaching’ the
agent. A human teacher should be able to execute actions within the sim-
ulation and have them observed by the agent. The actions performed by
the teacher should be of the same type as those performed by the agent.

The goal of the agent’s vision system is to describe the world at an ab-
stract level in terms of objects in such a way such that it could plausibly be
implemented in a physical agent. Describing the world at an abstract level
involves partitioning the environment into discrete objects and uniquely
identify them. The identified objects must then be described in terms of
‘observables’ that support creating models using the Q-System represen-
tation (see chapter 3). The vision system is shaped by the representation
which dictates the types of observables that can be observed: simple prop-
erties, qualitative properties, relationships, etc. For each scenario or world
that is created the vision system will implement a variety of instances of
these types. For example in a world containing moving objects, the vision
system may implement a ‘speed-of-object” observable as an instance of a
qualitative property.

It would be unrealistic to allow the vision system to have a complete

view of every object in the world. Both humans and physical agents only

74 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

ever see a small subset of the complete state of the world at any given
time. Therefore the vision system is limited in that it is possible for objects
(and individual properties) to be unobserved at a particular point in time
and for them to potentially become observed at a later time. For example,
putting an object into a cupboard hides it from view and it becomes tem-
porarily unobserved. It is also possible for some objects/properties to be
totally unobservable (i.e. they can never be directly observed). For exam-
ple, the weight of an object can inferred in several ways but never directly
observed (at least visually).

A realistic vision system is ‘noisy” in the sense that it is possible for the
agent’s vision system to make incorrect observations (i.e. assert something

is true about the world when it is not).

Finally the vision system must work in discrete time so that the world
is observed as a series of discrete states progressing over time. This is sim-
plifying assumption that supports modelling the world in terms of dis-
crete state transitions. A real time system is plausible but would be more
difficult to implement. Also the additional fine grained information would
be of limited use to a qualitative vision system where changes in state are
discrete (compared with a quantitative vision system where change is con-

tinuous).

The agent’s skill system has a similar goal to the vision system. The
goal of the skill system is to execute abstract actions that affect target ‘ob-
jects” in such a way that they could be plausibly implemented in a physical
agent. The agent’s skills are assumed to be have been already learned by
the agent (e.g. the agent can pick an object up, it does not need to learn
the precise control over each finger required to do so successfully). The
actions are learned sufficiently well such that they affect the world in a re-
liable way (although not perfectly reliably). Actions can involve multiple
objects and the skill system supports an arbitrary number of target objects.

Actions are executed atomically. This is a simplifying assumption that
allows the learning system to focus on learning the effects of actions rather

4.1. EXPERIMENTAL SETUP 75

actions teacher
/—\ actions
Skill /
System
Simulated

Environment

Vision
System

observations

Figure 4.1: Conceptual Architecture

than their implementation. The set of actions available to the agent are pre-
configured, this thesis does not attempt to address the problem of how the
agent learns what actions it can execute or how they are executed. Finally,
the agent’s skill system is ‘noisy’, meaning it can incorrectly perform ac-

tions (i.e. does not change the world in the way it is meant to).

4.1 Experimental Setup

This section describes the conceptual components and software imple-
mentation of the complete agent system. The system provides a test bench
on which to run experiments with learning algorithms and associated rep-
resentations.

The diagram in figure 4.1 shows the conceptual architecture of the

agent system. The system has the following components:

76 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

Agent The agent interacts with the simulation using its skill and vision
systems. It receives high-level abstract observations from the vision
system. It can request its skill system to execute a high-level abstract
action. The agent implements a learning algorithm that constructs

models that the agent can use to predict future states.

Simulation The simulation implements an environment with which the
agent can interact. It receives low-level instructions from the agent’s
skill system to modify the current state of the world. It provides low-
level object data to the agent’s vision system. The simulation’s state
changes over time according to action executions and the particular
world dynamics of the simulated environment.

Skill System The skill system transforms high-level abstract actions into
low-level instructions that can be executed by the simulation to change
the current world state. The skill system is not perfect and may in-

correctly execute an action.

Vision System The vision system transforms low-level abstract data about
simulation objects into high-level abstract observations. The vision

system may introduce noise into the observations.

Teacher The teacher is a human operator who can interact with the sim-
ulation by executing actions in the same manner as the agent. The

teacher is an optional component.

This architecture can be compared with a physical agent in which the sim-
ulation is replaced with the real world and the agent replaced by a robot.
In this case the architecture could remain the same with the exception that
the physical agent’s skill and vision systems would be far more sophis-
ticated. If such sub-systems existed then the algorithms internal to the
physical agent could be identical to those used by the simulated agent.

This would only be the case if the simulation used to develop the learning

4.1. EXPERIMENTAL SETUP 77

algorithm was sufficiently realistic, otherwise the learning may be signifi-
cantly less effective.

Note that because the teacher is exogenous to the simulation (i.e. the
teacher does not ‘inhabit’ the agent’s environment) the agent perceives
the actions of the teacher as though it had executed them itself. A more
realistic architecture would include the teacher as part of the simulation,
along with a mechanism for allowing the agent to observe the teacher’s
actions as ‘special’ for the purpose of learning; however the exogenous
approach was taken to simplify implementation of both the simulation

and learning algorithm.

41.1 Software Architecture

This section describes the technical details of how the conceptual archi-
tecture was implemented as a software system. The agent system is im-
plemented using a 3D game engine. The system runs as two independent
asynchronous software processes, one for the agent and one for the sim-
ulation itself. Figure 4.2 shows the main software components and how
they interact. In the diagram software components are shown as blocks
(sub-components are shown as blocks within parent components). Imple-
mentation languages are shown in brackets. A block on top of another
indicates a runtime dependency. Arrows represent the flow of data (ob-
servations and actions) between the two processes.

The agent process is implemented using the Scala programming lan-
guage and runs on the open-source Scala runtime?. The skill and vision
system are not located in the agent process as might be expected because
it is more convenient to implement them within the simulation where they

have direct access to the data structures used by the simulation.

?Scala is a hybrid object-functional language implemented on the Java Virtual Ma-
chine. The Scala runtime consists of a Java virtual machine and Scala libraries. See
www.scala-lang.org for details.

78 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

4 . N
user 3D Environment
input (.blend)

() \
Agent i Vision & Skill
Syst
(scala) (pﬁhir:)
> < dump G E . <
Scala file ame engine
Runtime [3D][Phys.ics][Pyth_on\
¢ y Renderer|| Engine Runtlme)
agent simulation
process process

Figure 4.2: Software Architecture

The simulation process is implemented using the Blender Game En-

gine program.’

The game engine executes a custom designed environ-
ment. The environment is a data file (or ‘blend’) created in a 3D graphics
package. It contains information about a particular scene in which the
agent can interact (a kitchen for example). The data file specifies what ob-
jects are in the scene, their properties and how they interact with the agent

and with each other.

Embedded within the environment is custom code for observing and
interacting with objects, it implements the agent’s vision and skill systems.
These sub-systems are written in the Python programming language using
a game engine API for accessing object data and events (such as object
position and object collisions). The Python code is executed by a Python

3Blender is an open-source 3D graphics and game engine software package. See
www.blender.org for details.

4.1. EXPERIMENTAL SETUP 79

runtime embedded within the game engine.*

The game engine simulates an environment in real time. Objects are
constantly modified according to the rules of environment. A physics en-
gine (‘Bullet Physics™) is integrated into the game engine and is used to
calculate rigid body physical interactions. The physics engine simulates
various physical phenomena including gravity, friction, inertia and resti-
tution.

An environment can be visualized in real-time using a 3-dimensional
renderer also embedded within the game engine. The renderer allows
a human teacher to observe and interact with the scene in real time (as
though playing a computer game).

The agent and simulation use inter-process communication (‘ipc’) to
send and receive observation and action information. The communica-
tion is implemented using network sockets in which the game engine acts
as a server and the agent as its client. At any time the agent can asyn-
chronously send an action to the environment and it will be executed at
the next available opportunity. In response, the game engine is constantly
generating and sending snapshots of world observations, taken at regu-
lar intervals, back to the agent. This communication mechanism makes
it possible for the agent to implement an interactive and online learning
algorithm. The simulation can also receive action instructions from a user
via keyboard and mouse commands. The actions are executed as though
the agent had sent the action request.

The vision system can optionally output serialized observations to a
‘dump file” as an alternative to real time communication with the agent.
In this case the game engine continues to construct regular snapshots but
stores them directly in a file rather than sending them to the agent. The
agent can then be made to process the observations at a later time. Ob-

viously, using the dump file prevents the agent from interacting with the

4Python is a general purpose scripting language. See www.python.org for details.
SBullet is an open-source physics library. See www.bulletphysics.org for details.

80 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

simulation while it is learning. However, the dump files have several prac-
tical advantages: they allow sequences of snapshots to be run multiple
times against different learning parameters in order to compare results;
they can run significantly faster than the real time simulation; and finally,
they avoid the problem of the simulation crashing (which occasionally oc-

curs on longer runs) while the agent is learning.

4,2 Simulation

Simulated environments are executed using the Blender game engine. The
game engine uses a combination of custom code and the built in physics
engine to simulate world dynamics. Each environment is constructed by
hand using a 3-dimensional graphics package. Constructing an environ-
ment involves specifying the objects contained within it, including their
shape and physical properties (e.g. weight), along with code that specifies
any custom behaviour or interactivity. It is possible to construct many dif-
ferent environments, for example, figure 4.3 shows an everyday kitchen
environment with various working devices. There are also a number of
pre-constructed environments available in the form of games that could
be modified to work with the skill and vision system.

The game engine executes an environment by recalculating the state of
the world at regular fixed length intervals. The time between updates, or
‘simulation interval’, determines the precision of the physics simulation.
Decreasing the interval improves precision but reduces the available cpu
time for competing threads which impacts on interactivity and rendering

frame rate.

4.2. SIMULATION

Figure 4.3: A Simulated Kitchen Environment

81

82 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

simulation interval

v

simulation f—
UpdateS ® 6 6 6 6 o o o o o o o o

.)
time

A new world state is calculated by updating each object in the environ-
ment. The physical properties of each object are updated according to its
previous state and any collisions that may have occurred since the previ-
ous state. Dynamic physical properties include: location, rotation, velocity
and torque. The simulation also updates any custom properties that have
been specified as part of the object’s state. The simulation state can also be
updated externally via the skill system.

4.21 Rigid Bodies

The physics engine implements a simulation of rigid body physics. The
shape of each rigid body object is specified as 3-dimensional triangle mesh.
The surface of the mesh is used as the physical bounds of the object for cal-
culating collisions with other objects. The following describe how physical
phenomena are simulated by the physics engine:

Inertia is simulated by maintaining an object’s momentum in the absence
of any force acting on it. The physics engine allows objects to specify
linear and rotational dampening, which can be used to approximate

air drag or enforce a maximum velocity.

Dry Friction is simulated by applying a resisting force on objects as they
slide against each other. Objects have zero friction by default but
may be flagged as causing friction and given a custom relative co-
efficient. This allows similar shaped objects of varying materials to

behave differently during a simulation, e.g. objects can be pushed

4.2. SIMULATION 83

across a polished floor more easily than across a carpeted floor. Other
types of friction (e.g. lubricated friction) are not simulated but can be
roughly approximated by reducing an object’s dry friction coefficient
appropriately.

Restitution is simulated by applying force to an object subsequent to a
collision. Each object has a custom value representing its ‘bounci-
ness’. Restitution allows objects such as bouncing balls to be simu-
lated.

Gravity acts on objects pulling them in the direction of the negative z-
axis (i.e. the environment’s center of gravity is at —oo). Gravity can

be reduced to simulate ‘weightless” environments.

Collisions are detected by calculating surface intersections. Object colli-
sion meshes may be concave or convex. Objects can be flagged as
‘static’ in which case they can collide with other objects but are fixed

in position.

Impulses simulate a directional force being applied to an object. A linear
or rotational impulse may be applied to an object at any time. An ob-
ject’s mass property is used to calculate the object’s resulting velocity
and torque. Impulses can be used to represent an agent ‘pushing’ an
object with its manipulator.

Linkages allow objects to be joined with specified degrees of freedom.
Objects can be joined with ball, hinge and generic (up to 6 degrees of
freedom) linkages. The linkage restricts the movement of the object
relative to the other. Linkages allows realistic modelling of mecha-
nisms such as cupboard doors.

The physics engine supports soft-body simulation to a limited extent,
but at the time of writing it was too unstable to be usefully used in this

project.

84 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

Figure 4.4: Approximating Liquid Flow with Particles

4.2.2 Liquids

Liquids occur in many everyday environments and are important aspect
of naive physics. Unfortunately the Bullet physics engine does not sup-
port real-time simulation of liquids because algorithms that provide visu-
ally attractive results are too computationally intensive. Fortunately it is
possible to crudely approximate liquids using a particle system and rigid
body physics. The resulting simulation is not visually attractive, but the
behaviour is sufficiently realistic for the purposes of extracting qualitative
observations.

Liquids are simulated as a group of rigid body spherical objects. The
spheres move freely and flow in a similar manner to a liquid. The ‘liquid’
‘pools’ in containers and will ‘flow” from one container to another when
‘poured’. Figure 4.4 illustrates some liquid in the process of being trans-
ferred from one container to another. The size of the spheres determines
the quality of the simulation, smaller spheres are more realistic but require
more computation to execute the simulation.

Collision detection can be used to allow other objects to “absorb” a lig-
uid. The absorbing object is flagged as ‘wet” or ‘saturated” and the collid-
ing sphere is removed from the simulation as it is consumed.

Liquid sources are modelled by making a special object which gener-

4.3. VISION SYSTEM 85

ates spheres at a specified rate. This allows the modelling of objects such as
taps. Similarly, special sphere consuming objects can be created to model
drains.

4.2.3 Devices

Devices are objects that have some state that is updated using custom logic
written specifically for the particular environment. A example of a sim-
ple device is a light bulb, it has two states: lit or unlit. The simulation
executes custom logic to update the state of the bulb, for example, a con-
nected switch may be flicked causing the simulation to toggle the state of
the bulb.

A group of devices can be combined to create more complex compos-
ite objects, for example an electric oven can be modelled as a variety of
switches and heating elements. The state of the oven at any given time is
determined by the custom logic controlling the devices.

Device objects are also physical objects and therefore interact with the
physics engine as normal.

4.3 Vision System

The vision system is designed to fulfill the requirements outlined at the
beginning of this chapter, it is high-level, object based, plausible and as-
sumes an open-world. The vision system is built using the game engine’s
api, which gives access to low-level object information. The object infor-
mation is transformed by the vision system into high-level abstract ‘ob-
servables’, for example, a set of 3-dimensional co-ordinates describing an
object’s surface mesh can be used to calculate if two objects are ‘touching’
one another or not. The agent observes that the objects are touching but is
oblivious to the co-ordinate information used to construct the observation.

A set of observations made at a particular moment in time is called an

86 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

observation interval

observation | I
snapshots ® ° * * ¢ *
smlégattégn 00000000000000000000000000
>
time

Figure 4.5: Observation Interval

observation snapshot. The vision system provides a series of observation
snapshots made at regular intervals. Figure 4.5 shows the observation in-
terval in relation to the simulation interval. The observation interval is sig-
nificantly longer than the simulation interval, this allows the world state
to change many times a second, whereas snapshots may be observed only
once or twice a second.

The temporal resolution of the vision system presents a trade-off be-
tween computation time and observation continuity (qualitative states can
be missed if there are multiple transitions between adjacent observation
snapshots). Missing occasional transitions is acceptable because it is an
expected feature of a plausible vision system used on a physical agent (es-
pecially because multiple transitions can occur instantaneously, for exam-
ple, when a measure passes through a landmark value). Missing small
numbers of transitions is not problematic for learning: some missing tran-
sitions can be inferred from the adjacent snapshots or they can be found by
re-observing the process in question. A long enough interval will degrade
learning significantly but this would have to be an unrealistically long gap
between snapshots. Figure 4.6 illustrates a missed qualitative state due to
multiple transitions between snapshots.

Observation snapshots generated by the vision system represent only
a partial state of the world. Objects may be hidden from view (this is im-
plemented by flagging objects that cannot be seen). Additionally, objects

4.3. VISION SYSTEM 87

unobserved qualitative state

N

qualitative
value

observation
snapshots

.)
time

Figure 4.6: Multiple Transitions Between Snapshots

may have properties that are flagged as ‘unobservable” which the vision
system simply ignores.

An important aspect of the design of the vision system is deciding what
is observable in a given environment. Ideally the agent would learn what
are the useful features of the environment that should be observed. This
is a difficult task and is therefore outside the scope of this thesis which
focuses on learning the behaviour of the world once suitable observable
features have been identified. Given the conceptual architecture of the
learning system there is no objective way to choose what properties and
relationships of objects should be observable. Therefore, observables are
chosen arbitrarily for each environment using rules of thumb which are in-
tended to help avoid artificially simplifying the learning problem. Simpli-
fication of the learning problem is the main concern when choosing rather
than learning the environment’s observable features. Observables are cho-

sen using the following rules of thumb:

e Include a variety of observables that are irrelevant to the behaviour
being learned. Obviously the task of identifying relevant properties

and relationships is much simpler if all observables are relevant.

e Avoid unrealistic or implausible observables. The chosen observ-
ables should reflect the limitations of a plausible robotic vision sys-

tem. For example the ability to directly observe the coefficient of

88 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

friction of a material is not realistic, whereas the ability to observe

the material’s colour is.

e Observe qualitative observables in terms of ‘natural” quantity spaces.
Qualitative variables are specified in terms of a quantity space which
describes the possible values that the variable can take. Choosing
natural landmarks as qualitative comparison points avoids choos-
ing arbitrary comparison points which may be tailored to a specific
behaviour and therefore simplify the learning task. For example,
‘above’, ‘level’ and ‘below’ is a natural way of measuring relative
position because the influence of gravity. These types of comparison
points are chosen in preference to values such as ‘20cm to the right
of” or “10cm behind” which have no obvious justification.

4.3.1 Implementing Observables to Support the Q-System

Representation

The types of observables produced by the vision system are specified by
the Q-System representation. Figure 4.7 shows the hierarchy of types used
in the Q-System. The two main branches ‘fluents” and ‘events’ are distin-
guished by their temporal behaviour with respect to the vision system’s
snapshots. Fluents represent state as it currently exists at the time of the
snapshot. Fluents will change state instantaneously between snapshots;
they cannot be observed between states. Events are the counterpart to flu-
ents: they occur between snapshots and are not part of the current world
state; instead they are transient and observed to have occurred between the
previous and current snapshots.

The following list describes how each observation type is implemented

in the vision system:

Existence observations represent the existence of an object in the agent’s

tield of view. Existence observations have no value, they are present

4.3. VISION SYSTEM 89

observables

[|
fluents events

f T | T 1 /—l—\

existence simple qualitative relation action qualitative
property property delta

Figure 4.7: Hierarchy of Observables

in the observation snapshot or omitted if the object is hidden or de-
stroyed. Each object in the simulation is assigned an identifier which
is used by the vision system to track objects between snapshots. This
follows from a principle of the representation that individual objects
can be tracked across time. Object ‘trackers” Kuipers et al. [29] are
an example of how this ability could be implemented in a real vision
system.

Properties are discrete valued variables describing some aspect of an ob-
ject. Property values are calculated by the vision system and inserted
into observation snapshots. An example property is ‘colour” which
takes a value from a fixed set of colours.

Relations are discrete variables describing some aspect of how two ob-
jects relate to each other. The vision system calculates values for all
pairs of observable objects. An example relation is ‘touching” which
takes the values ‘yes” or 'no’.

Qualitative Properties are discrete variables that have two components:
a qualitative value from a quantity space and a qualitative deriva-
tive describing the underlying variable’s qualitative rate of change
(increasing, decreasing or steady). The vision system calculates the

qualitative value using the underlying real value, which is normally

90

CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

available from the simulation (an object’s velocity for example). Fig-
ure 4.8 illustrates how changes in a simulated real valued variable
are observed qualitatively over time. The variable starts at 0 and af-
ter a pause increases before finally leveling off. Three observation
snapshots are shown along with the resulting qualitative observa-

tions.

Qualitative derivatives are calculated by either recording the under-
lying value from the previous simulation update and then compar-
ing with the current value; or alternatively the value can be inferred
from known influences (for example, an isolated object travelling
over a surface can be assumed to be decreasing in speed due to fric-

tion).

Qualitative Deltas are events that represent how a qualitative property

has changed between snapshots (cf. a qualitative derivative which
specifies how a qualitative property is currently changing). The vi-
sion system calculates qualitative delta observations by recording
the value of each qualitative property at each snapshot and compar-
ing with the previous snapshot’s value. The delta is assigned a value
of increased, decreased or unchanged.

Action Events are events that represent an action having occurred be-

tween snapshots. The vision system reports any action executions
including the target object(s). If multiple actions occur during an ob-
servation interval then they are all included in the observation snap-
shot, but no information is observed regarding the order in which
they occurred. Some actions take longer than a single observation
interval to execute in which case the vision system is paused until
the action completes, thus fulfilling the assumption of atomic action

execution.

4.3. VISION SYSTEM 91

real value f
0

simulated
value
0

observed

R 0, stead >0, increasing >0, stead
alitative Y Y
qu value unchanged increased increased
observation T
snapshots ¢ i i
time

Figure 4.8: Qualitative Observations of a Simulated Variable

4.3.2 Observing Qualitative Shape

Qualitative shape is an important aspect of interpreting everyday environ-
ments. For example, we can deduce that a tennis ball will roll much better
than a brick because of their respective shapes. The vision system im-
plements a selection of qualitative shape observations which describe the
objects in the simulation. The purpose of the observations is to allow some
‘interesting” behaviour in the simulation to be observed qualitatively.
There are many ways to model shape qualitatively and there is no
widely accepted general purpose representation, therefore a novel set of
shape observations has been implemented in the vision system.® Because
there is no requirement for the observations to be rich enough to describe
all nuances of dynamic behaviour 7, the shape observations are incomplete
in this sense. Similarly, there is no requirement for the shape representa-

tion to be particularly efficient (either in terms of computational require-

®Cohn [8] provides a survey of the many approaches to modelling qualitative space

and shape.
7In fact the poverty conjecture (see section 2.3.2) suggests that is a not even a possibil-

ity to describe all behaviour with purely qualitative information.

92 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

ments or in terms of representational conciseness and redundancy) so long
as it is practical. Despite these relaxed requirements, the chosen observa-
tions must be sufficient for the agent to learn a ‘naive’ behavioural model
of object interactions; therefore, the types of shape observations have been
arbitrarily selected with this goal in mind.

The observable qualitative shape properties are arranged in a hierarchy
in which each shape class inherits shape properties from those above and
implements some new properties of its own. Figure 4.9 shows the shape
hierarchy implemented in the vision system. Each object in the simula-
tion is assigned to a shape class which determines the observations that
may be made about the object’s shape. The following shape classes are

implemented in the vision system:

Shape objects have two observables: ‘centroid-supported” and ‘centroid-
vertically-aligned’. Every object is assigned a ‘centroid” which roughly
locates the center of the volume of space occupied by the object (e.g.
the center of a sphere). Centroid-supported is a property and is
true whenever the surface directly beneath the centroid is touching
another object. Centroid-vertically-aligned is a relation that is true
whenever two objects’ centroids are directly aligned along the Z axis.

All other classes inherit from the Shape class.

Convex-Regular objects are convex and have no curves.® They have 2
properties: ‘flat-top” and ‘flat-bottom’. Flat-top is true if the highest
face of the object is orthogonal to the Z axis; flat-bottom is true if the
lowest face of the object is orthogonal to the Z axis. Convex-Regular

objects inherit from the Shape class.

Cuboid objects have six orthogonal flat faces and have the property ‘ori-
entation” which can take the values ‘big-face-up’, ‘middle-face-up’,

8Technically none of the simulated objects have curves because they are all con-
structed using triangle meshes, however, the shape hierarchy uses ‘curve-like triangle
mesh’ as an abstraction of truly curved.

4.3. VISION SYSTEM 93

Shape
|
I | |
Convex-Regular Sphere Irregular

|
Cuboid

|
Cube

Figure 4.9: Hierarchy of Shape Classes

‘small-face-up’. The property is determined by finding the face which
is closest to orthogonal with the Z axis. The ‘size’ of a face corre-
sponds to its surface area, so a cuboid shaped book is small-face-up
when stacked on a book shelf and big-face-up when laying flat on a
desk. Cuboids inherit from the Convex-Regular class.

Cube objects have six equal sized orthogonal flat faces. The orientation

value of a cube is always large-face-up. Cube objects inherit from
the Cuboid class.

Sphere objects are (approximately) spherical. Spheres inherit from the
Shape class.

Irregular objects all objects which do not fit the requirements of any other
class. Irregular objects inherit from the Shape class.

The object shape properties are calculated using the object location and

orientation information provided by the simulation api.

4.3.3 Observing Qualitative Liquids

Liquids can be qualitatively observed in terms of flow rates, contained

amounts and height levels. Observations about liquids are assigned to

94 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

the objects generating and containing them rather than creating a ‘liquid
object’” instance and assigning properties to it. This avoids the difficult
problem of determining the existence and extent of liquid objects. For
example, is the water in a pipe an object, is it ‘connected” to the water
flowing from the pipe, or are they the same object? *

Flow rates are observed as qualitative variables with a quantity space
of [0,00] (i.e. the value can be 0 or >0). Flow rates are observed by in-
specting the water sphere generator within the simulation. The flow rate
property is assigned to the generating object (a tap for example).

Container objects such as basins have two qualitatively proportional
properties describing the liquid inside them. The ‘amount-of-liquid” and
‘liquid-height” properties represent the amount of liquid in the container
and how high the water has risen from the bottom. They both use the
quantity space [0,MAX] (giving possible values 0, 0-to-MAX, and MAX).
The values are calculated by counting the liquid spheres known to be
within the confines of the container object. Containers can overflow when
they are full, leading to liquid spheres escaping the container and collect-
ing elsewhere. The liquid observables are not affected by overflows (i.e.
the amount-of-liquid and liquid-height continue to be observed as MAX

while a container is overflowing).

Calculating the qualitative derivative of the liquid-height and amount-
of-liquid must be done by inferring the instantaneous change from the
known influences (i.e. any inflows or drains). This is because a continuous
influence may be generating or consuming discrete spheres at a rate of less
than one per simulation update, thus making the usual comparison of ad-
jacent simulation states inaccurate (e.g. no sphere appeared between up-
dates indicating the water level is steady when it should be rising). Figure
4.10 illustrates the problem of incorrectly calculating a qualitative deriva-
tive of liquid height using adjacent simulation updates.

9See Davis[9] for a detailed investigation of these issues.

4.3. VISION SYSTEM 95

continuous

L increase
real liquid \
height

sphere

simulated added
liquid height \
AN

derivative incorrectly
calculated as 'steady'

simulation
updates ® 00000000 O0COCOGCEOGEOGOEOGEEOSOO

>
time

Figure 4.10: Incorrect Calculation of Liquid-Height Derivative

4.3.4 Observing Qualitative Kinetics

The qualitative movement of objects is observed by the vision system us-
ing two directional properties, vertical-movement and horizontal-movement,
and a single object-speed property. The vertical-movement property takes
the values UP, DOWN and NONE. The horizontal-movement property
takes the values YES or NO, indicating whether it is moving in the XY
plane. Together these properties give an object six possible absolute direc-
tions in which to travel.

The object-speed property is a qualitative variable which takes values
of either 0 or >0. The speed observation is calculated directly from the
simulation’s object velocity attribute. The qualitative derivative (i.e. accel-
eration) is calculated by comparing speed at adjacent simulation updates

to provide an ‘instantaneous’ (at least in the agent’s mind) rate of change.

Relative movement can be observed using relationships between ob-
jects. For example, the relationship distance-between-objects takes the
values increasing, decreasing or not changing. Also, the relationship on-
collision-course can be used to indicate when two objects are expected to

collide if neither of them change speed or direction.

96 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

4.4 Skill System

The skill system implements a high level action interface that allows an
agent (or user) to request atomic action executions on target objects and
have them realised in the simulation using low level api calls. The require-
ments of the skill system are that it executes actions atomically (i.e. actions
are executed between observation snapshots and never across them), that
it executes ‘high level” actions which are assumed to have been previously
learned (i.e. the agent can request a “pick up object X" action and not be
concerned with the underlying fine level control of arm and gripper actu-
ators), and that the outcome of actions is non-deterministic (for example,
if the agent pushes a stack of objects, sometimes they fall over and some-
times they do not). The agent is assumed to have a skillful manipulator

arm that can interact with objects in a similar manner to a human.

The skill system is implemented as an independent thread within the
simulation process, this allows it to execute actions asynchronously with
respect to simulation updates and observation snapshots. Semaphores
are used to communicate with the observer thread, allowing the timing
of observation snapshots and action executions to be co-ordinated when
required. The skill system acts as a listener and waits for action execution
requests. The requests can come from either the agent process or directly
from user input. The actual execution of an action and its subsequent ob-
servation is identical whether the requests was generated by the agent or
a user. This enables the user to guide the agent by effectively choosing
actions for it. The skill system implements action execution requests by
using the simulation’s api to move, apply force to, or update the internal

state of objects.

Actions may be executed at any time during the simulation but they
are prevented from occurring simultaneously, the agent cannot multi-task.
Some actions may be implemented as composite actions, for example the

put-on action is implemented as a sequence of pick-up, move and put-

4.4. SKILL SYSTEM 97

down actions. This composition is useful for implementation purposes
but it is not visible to the agent. The agent is not aware that a put-on action
is implemented as a decomposition, however there is nothing preventing
the agent from learning and implementing its own action compositions if

required.

To ensure atomicity actions are always completed before the next ob-
servation snapshot. This normally requires the observation snapshot to be
delayed because actions typically are longer than the observation interval.
The delay has does not need to be explicitly observed by the agent because

it assumes a similar but non-fixed interval between states.

Non-deterministic outcomes are implemented by two mechanisms, firstly
by ensuring certain actions are executed slightly differently every time,
and secondly by relying on the non-determinism of object interactions in
the underlying simulation. The ‘move” action is an example of an action
that is executed slightly differently each time because the object is moved
to the approximate target location rather than the precise location. This
can lead to different outcomes depending on the other objects in the vicin-
ity of the target location.

Occasionally invalid actions will be requested. This can happen if a
target object has ceased to exist in the time between choosing an action
and its execution. In these cases no action is performed and no action is
observed. Invalid actions are distinct from actions which ‘fail” in some
way, such failing actions are observed normally and not explicitly flagged
as failed. For example, a pick-up action may fail when it drops the target
object during the action execution; in this case the agent will observe a

‘successful’” action with an unusual outcome.

Multiple actions are allowed to occur between snapshots but this rarely
happens because most actions are longer than the observation interval. If
the situation does arise then the all actions are observed in the following
snapshot as having occurred ‘simultaneously” but they are not ordered.

The agent is unable to observe the order of events at a resolution greater

98 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

transition because
all water has drained

insert-plug
water action
height i
observation
snapshots i i i
>
time

Figure 4.11: Simultaneous Observation of Dynamic Transition and Action

than the observation interval. This lack of temporal resolution results in
misleading observations when action executions occur coincidentally at
the same time as qualitative state transitions generated from the simula-
tion dynamics. There is insufficient information in the snapshots to enable
the observer to disambiguate the causal effects of the action and the on-
going effects of the underlying world dynamics (this is a similar problem
to the problem of missed qualitative states discussed in section 4.3). Figure
4.11 illustrates an example of this problem with respect to action timing.
The scenario involves a sink that is emptying of water through a drain.
The insert-plug action is executed coincidentally during the same obser-
vation interval as the last of the water drains from the sink. The resulting
observation snapshot indicates that inserting the plug caused the sink to
become empty. These misleading observations must be resolved by the

agent if it is to learn useful models.

4.4.1 Example Action Implementation

This section describes a typical action execution in detail to show how the
simulation api is used to execute the action. The example action is the
put-on action which has two target objects, the object to move ‘X’, and the
object on which it will be placed “Y’. The following steps are carried out to

execute the action:

4.4. SKILL SYSTEM 99
1. The observation thread is paused.

2. Object X is grabbed by the agent. This involves changing X from a
dynamic object which responds to physical forces that act upon it, to
a static object which collides with and moves other objects but cannot
be moved itself by the physics engine. Making the object static sim-
ulates the effect of the agent holding the block securely. (The physics
engine is suspended while the object is changed, this is to avoid un-
realistic interactions between objects when X is suddenly replaced
by a new static version with different physical properties.)

3. Object X is picked up. This involves moving the static object at a con-
stant rate to until a specified height is reached. Any objects on top of
X are picked up with it. A timer is started to periodically check if the
object is in the approximate location. The use of the timer introduces
some imprecision in the action because there is some variability in

the delay between position checks.

4. The centroid of object X is aligned above object Y. Again a timer is
used to check when the object is in position. During this process the
object may collide with other objects, also any objects on top of X
may fall off due to the effects of momentum (and also dependent on
the amount of friction between the objects).

5. Object X is lowered until it is close to touching an object. It cannot be
lowered all the way because X is still a static object and this would be
equivalent to the agent moving X down with zero give, causing the
underlying object to be forced away (explosively due to limitations
in the physics engine).

6. Object X is dropped. X is changed back from a static object to a dy-
namic object. Gravity takes effect and X falls the remaining short
distance to land (hopefully) on top of Y.

100 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

7. The observation thread is restarted. The put-on action event is added

to the current observation snapshot.

It can be seen from the example that the actual outcome of the put-on
action is dependent on a variety of complex interactions between control

commands, other objects, and the physics engine dynamics.

4.5 Test Environments

Two detailed test environments have been created for the purpose of de-
veloping and testing learning algorithms based on the Q-System represen-
tation. The environments are a kitchen world containing various devices
found in everyday kitchens and a toy world containing various differently
shaped toy blocks. These environments were chosen because they exhibit
quite different sorts of behaviours, the kitchen world contains controllable
devices and liquids, whereas the toy world contains objects which interact

in complex ways.

The agent can interact with and observe the objects in the environments
using the vision and skill systems previously described. The environments
are created using a 3-dimensional graphics package and incorporate cus-
tom code that implements the behaviour of devices. The game engine
executes the environments as described in section 4.1.1.

The environments have been designed to simulate the various types
of observable behaviours and interactions that make learning in realistic
worlds difficult. Some of the features can be turned on or off depending on
the particular learning scenario. This allows each environment to exhibit
a variable level of learning difficulty. For example the weight of objects,
which is normally a hidden variable, can be made observable if required.

4.5. TEST ENVIRONMENTS 101

Figure 4.12: Kitchen Environment Tap and Sink System

4.5.1 Kitchen World

The kitchen world has been designed to allow an agent to explore a typ-
ical kitchen environment, and in particular the various types of stateful
‘systems’ that can be found in them. Many kitchen devices are stateful, for
example an oven has a variety of controls that determine which elements
are heating.

The environment contains a tap and sink system with a working simu-
lation of water flow and water containment (implemented using the sphere
approximation technique, see section 4.2.2 for details). The agent or teacher
can turn the tap clockwise or anti-clockwise to affect the rate of flow. A
plug can be inserted or removed allowing water to drain. The sink can
overflow and spill water onto the surrounding bench and floor. Other
containers such as a cup can be placed beneath the flow to allow them to
be also filled with liquid. The tap and sink system is shown in figure 4.12.

Objects in the kitchen world can be moved around by the agent from

102 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

location to location. For example, a pan can placed on a hob on the oven
top. Also, the kitchen world can be reconfigured to give the agent differ-
ent learning scenarios in the same environment. For example, the type of
tap can be changed from one with a single control to one with multiple
controls. This gives the agent the opportunity to generalize similar but
different systems.

4.5.2 Toy World

The toy world has been designed to allow an agent to explore rigid body
kinetics in terms of qualitative space and shape. The world contains a
variety of objects including blocks, planks, balls, cones, hoops as well as
more irregular objects. The toys are all observed using qualitative shape
descriptions described in section 4.3.2. The behaviour of the objects is sim-
ulated very realistically by the physics engine which results in subtle and
complex observable behaviour. Figure 4.13 is a screenshot of the toy world
simulation.

Several manipulative actions are available to the agent in the toy world.
These include: grabbing and releasing objects; picking up objects and
dropping them; stacking objects on another; pushing objects laterally (ei-
ther away from the agent or towards another object); throwing objects
(again, either away from the agent or towards others). Toy world sup-
ports learning about various scenarios. There are many possibilities but
typical examples range from exploring the effects of momentum and col-
lisions on moving objects, to building complex structures from stacks of
blocks.

The environment is similar to the long standing artificial intelligence
test environment known as ‘blocks world’. Blocks world has been used
as a learning environment since the inception of the research field, classic
examples include Winograd’s SHRDLU [42] and Winston’s arch learner

[43]. The toy world environment differs from these classic environments

4.5. TEST ENVIRONMENTS 103

Figure 4.13: Interactive Toy World Simulation

in several important ways: it supports an effectively unlimited numbers of
objects, imprecise actions, hidden state, stochastic effects, unlimited object
shapes, and finally, much richer/finer object simulation. The later is par-
ticularly significant because the required computational power and real-
time physics simulation software has been unavailable to the majority of
researchers until relatively recently. Freely available software and modern
graphics/physics co-processors has enabled more interesting and difficult
problems like this to be approached.

104 CHAPTER 4. SIMULATION, VISION SYSTEM & SKILL SYSTEM

Chapter 5
Histories

Recording of histories is a key step in learning generalised Q-Systems.
This chapter describes what histories are and how they are used by the
learning system. It also describes how histories are extracted from the
simulation and describes some examples in detail. Finally the chapter
describes the heuristics used by history recorder and how they affect the

types of histories that are extracted.

5.1 What is a History

Histories are snippets of world behaviour as observed by an agent. They
are temporally and contextually restricted sets of observed state transi-
tions. The temporal restriction limits a history to a certain time frame dur-
ing which a limited number of transitions occur. Without this restriction,
histories would grow endlessly as the agent continues adding transitions
as it observes the world. The temporal restriction is used to delimit the
start and end of an “interesting” or useful (with respect to the learning al-
gorithm) sequence of behaviour.

The contextual restriction limits a history to a group of specific objects.
Each state in the history contains assertions about objects in the context

only, assertions concerning other observable objects are removed from the

105

106 CHAPTER 5. HISTORIES

history. The contextual restriction allows a history to be focused on a
small group of objects and their behaviour, thus significantly reducing the
number of observations involved. This is necessary because the agent can
observe an effectively unlimited number of features in the world, which
means working with complete world states is not practical.

The purpose of recording histories is to generate specific examples of
world behaviour which can be generalised into useful Q-System models.
The transitions in a history are identical to those used in the Q-Systems
representation (they are annotated with the actions, or absence of actions,
that occurred between states). This means a history is a simple Q-System
which describes the behaviour of some specific objects. The Q-System con-
text is simply the set of assertions which do not change in any of the his-
tory’s states.

A set of histories is used as a dataset for the Q-System generalizer. Typ-
ically the generalizer will process histories by replacing specific objects
with variables, dropping irrelevant assertions from the context, and com-
bining states from several histories to produce a more complete picture of

system behaviour.

Datasets of Histories vs Datasets of Individual Transitions

Typically, existing action learning systems use sets of individual transi-
tions as datasets (where a transition is a pre-state, an action, and a post-
state). These transitions can be thought of as histories which are tem-
porally restricted to a single time step but contextually unrestricted (i.e.
states are descriptions of the entire world). Such learning systems assume
that the observable world is restricted to relevant objects only or that com-
plete world descriptions are small enough to be processed efficiently. In
the context of learning in complex realistic worlds, these assumptions ig-
nore a vital component of a complete learning system and are unrealistic.

Including a history generation step with contextual restriction is one

way to address the problem of determining which objects in the world

5.2. EXAMPLE HISTORIES 107

should be included in generalised models and avoids the problem of pro-

cessing complete world descriptions.

5.2 Example Histories

Histories are generated from the simulation by recording sequences of
transitions. The agent connects to the simulation, observes actions being
executed (either by itself or an instructor) and builds histories in real time.
At each discrete time step the agent can start a new history, update any
previously started histories, or stop any previously started histories. This

section describes some example histories generated from the simulation.

Rolling Ball Example

This example illustrates how the agent observes the simple behaviour of
an object as a history. The scenario involves a simulated object responding
to the actions of the agent. The history is generated from the simulation
which executes a detailed realistic approximation of a ball rolling over a
surface after having some lateral force applied (i.e. it was pushed by the
agent). The agent records the state of the ball at each observation snapshot
provided by the simulated vision system. In this instance the history’s
context is restricted to just the ball and the time-frame is restricted to just
before and just after the ball was moving. The resulting system is shown
in figure 5.1. Table 5.1 shows the qualitative deltas (see section 3.2.3) asso-
ciated with the transitions in the rolling ball system (note that *..." is used

to indicate the ‘time passes’ transition, i.e. the absence of an action).

The rolling ball system has three states. The ball is stationary to begin
with (state a). It is then pushed by the agent which causes it to start rolling

(state c). After some time, the ball slows to a point where it is just barely

108 CHAPTER 5. HISTORIES

ball. PUSH

Figure 5.1: Behaviour Graph of System Generated from Observing and
Interacting with a Rolling Ball. The system has three states: a. the ball is
stationary; b. the ball is moving but its effective speed is zero; c. the ball is

moving with non-zero speed (see text for explanation).

transition deltas
a— —a
a — ball.PUSH — ¢ ball.speed +
b — —a
b— —b
c— —b
C — — C
c— —C ball.speed -

Table 5.1: Transitions from Rolling Ball History

5.2. EXAMPLE HISTORIES 109

moving, at this point the vision system has trouble discerning if the ball
is actually stopped and interprets this as the ball having some horizontal
movement but effectively 0 speed?, state b. Eventually the ball is quiescent
and returns to its original state.

The system has several time-passes-and-nothing-(qualitative)-changes tran-
sitions. These are represented in the diagram as self-loops with no action.
Such transitions are included in the system to distinguish between tran-
sient and persistent states. All the states in the ball system are persistent
indicating that they were observed in at least two consecutive observation
snapshots. State ¢ has two such transitions. It can be seen from the tran-
sition table that these are distinguished by the qualitative deltas observed
coinciding with them. One of the self-loops was observed with a qualita-
tive delta indicating that the speed of ball slowed between snapshots. The
other self-loop has no qualitative delta associated with it, this is because
the ball was moving too slowly for a change in speed to be observed.

The rolling ball system highlights the subtlety of interaction between
the vision system and simulation. Together they have generated a se-
quence of observations that has led to an unexpected state (b) and an un-
expected transition (the self-loop on ¢ with no delta) which would not be
included in a ‘clean’ or idealised model of the rolling ball system. A clean
model, the kind that might be expected to be observed, would include
only two states a and c.

This ‘unexpected” state shows that the simulated vision system has
some realistic properties. A real (artifical or human) vision system would
make the same kinds of mistakes. For example, humans have limited pre-
cision when recognizing movement and sometimes will not notice that
a moving object is actually moving (albeit very slowly). Eventually, the
fact that the object did move might be inferred by some other means (by

IThe speed of the ball is not actually zero but it is not significant enough for the vision
system to report it as non-zero. Note that speed and horizontal movement are calculated
independently and therefore state b is not an invalid state.

110 CHAPTER 5. HISTORIES

noticing its position relative to other objects for example). The use of a
simulated vision system is given extra justification because it makes sub-
tle perceptual mistakes that real systems also make.

The system in figure 5.1 is just one instance of a variety of different
behaviours that the agent may observe when it pushes the ball. At times
the agent will observe the ‘clean’ version and at others it will observe some
other subtly different behaviour. However, the observed behaviours will
all be consistent in the sense that the ball will always transition through the
moving state and eventually return to the stationary state. An automated
procedure could be developed to remove predictable unusual states (such

as state b) and this may simplify the learning task.

Tap and Sink Example

The tap and sink system is an example of a more complex history gener-
ated from the tap and sink simulation (the tap and sink system is described
in section 4.5.1). The system behaviour is shown in figure 5.2; it has a to-
tal of 10 states and 49 transitions. The states of the system are described
in table 5.2. The behaviour graph was generated by turning the tap lever
anti-clockwise and clockwise (‘ON’" and ‘OFF’), and by pressing the button
that controls the plug. Note that the state of the plug can be configured to
be observable or hidden. In this instance the state of the plug is observ-
able which leads to fewer ambiguous transitions, however there are still a

significant number of these present.

State j is the state in which the tap is on, the plug is open, and the water
level is relatively steady (the outflow from the plug is approximately equal
to the inflow from the tap). A large number of transitions emanate from

this state, 14 in total. The only unambiguous action is to insert the plug

5.2. EXAMPLE HISTORIES 111

Press

\d/ Press -w

oM +f-r OFF -f4r OFF -f+r

OFF f+r
OFF -f+r OFF f+r+w
oM +f-r y OFF f+r-w
e W .
? +W J}:ﬁ W
? v W

OM +f-r+w

OM +f-r-w

OFF -f+r oM +f-r
OM +f-r

Lo PN

oM +f-r . OM +f-rew
I L. HW

ON Turntap lever anti-clockwise to increase flow.

OFF Turntap lever clockwise to decrease flow.

Press Press the plug button to insert or remove plug.
No action (time passes).

? Multiple actions ohserved.

f Tap flow rate qualitative delta.

r Tap lever rotation qualitative delta.

W Water level in sink qualitative delta.

Figure 5.2: Observed Tap and Sink Behaviour

112 CHAPTER 5. HISTORIES

State Description

a Sinkis empty, plug is in.

Sink is empty, plug is out.

Sink is emptying.

Sink has water, no inflow or outflow.
Sink is emptying, tap is on.

Sink is filling, tap is fully on.

Sink is filling, tap is fully on, plug is out.

50 -~ 0 A o

Sink is filling.
i Sinkis filling, plug is out.

j Water level is steady, tap is on, plug is out.

Table 5.2: Observed Tap and Sink States

which moves the system into a state in which the water level is increasing.
The remaining actions, increasing or decreasing flow and ‘time-passes’,
are all ambiguous. The time-passes transitions are all self-loops which in-
dicates that state j is stable (i.e. it will not spontaneously transition to a
new qualitative state). However three different sets of deltas are observed
coinciding with the time-passes transition. The water level is observed as
rising or decreasing by some amount or remaining level. This is expected
behaviour because the inflow and outflow vary slightly over time and are
rarely exactly equal. At any given time in this state the water level is nor-
mally slightly rising or falling.

The decrease flow action ('OFF’) from state j has various different ob-
served outcomes. The transitions which return to state j are similar to
those of the time-passes transitions: the flow rate always decreases and the
rotation of the tap lever always increases, but the change in water level has
various outcomes (increase, decrease or stay the same). In this case how-
ever the water level is far more likely to decrease (because the inflow has
decreased) and therefore this will become the expected transition once the

agent has observed enough instances to identify the trend. The other tran-

5.3. HISTORY GENERATING ALGORITHM 113

sitions caused by the OFF action are as might be expected: a transition to
state ¢ (where the level is falling) occurs when the inflow has been cut off
completely, a transition to state e occurs if the inflow is reduced (but not
cut off) such that the water level is now falling rather than steady (i.e. the
qualitative derivative of the water level is less than 0).

As can be seen from the two examples presented in this section ob-
served histories can uncover some unexpected states and transitions in the
behaviour of relatively simple systems. These are born of a combination
of imprecision in the vision system and the ambiguity inherent in qualita-
tively abstracted action outcomes. Many of the more unusual transitions
occur rarely and as such are candidates for removal from generalised mod-
els, assuming the agent has made a sufficient number of observations to
do so.

The examples also show the necessity of including qualitative deltas
in action descriptions. Without the deltas a number of the actions would
have no observable effect. Furthermore, a representation in which actions
do not have qualitative deltas would have to model actions at a higher
level of abstraction (e.g. ‘turn the tap clockwise” would have to become
something similar to “turn to position X" where X is some pre-determined
interesting concrete value). The deltas allow otherwise identical actions to

be distinguished without resorting to quantitative techniques.

5.3 History Generating Algorithm

The purpose of the history generating algorithm is to create a sequence
of histories from a sequence of snapshot observations in real-time. The
snapshot observations are produced by the agent’s vision system. The
generated histories will be used to create generalised models of observed
behaviour. The algorithm is used in a pipeline in which the snapshots ar-
rive asynchronously (i.e. at any time) and completed histories are passed

on to one or more listeners, also asynchronously. An outline of the history

114 CHAPTER 5. HISTORIES

generator is specified in Algorithm 1.

Algorithm 1 GenerateHistories

histories « ()
loop
observations < get_snapshot()
if start_ new_history(observations) then
add new _history() to histories
for h in histories do
if stop_history(h, observations) then
alert_listeners(i)
remove h from histories
else
newObjects « find_new _objects(observations)
update_with_new_objects(i, newObjects)
newTransition < filter(observations, h.objects)

add newTransition to h

GenerateHistories continuously processes observation snapshots while
maintaining and updating a set of active histories. For each snapshot a
check is made to see if a new history should be started. A history can be
started for a variety of reasons; this might include observing a significant
change in the environment or an instructor explicitly signalling.? If a new
history is required it is added to the set of active histories. The algorithm
then proceeds by iterating through each active history. A check is made to
see if the history should be stopped at this point. Again there are a variety
of reasons why this might be the case, for example, no new behaviour has

been observed for a significant amount of time. If the history is stopped

2GenerateHistories uses only the current set of observations to make a decision on start-
ing a new history. It could be adapted to use other information, such as the current set of
active histories, if a particular heuristic required it.

5.3. HISTORY GENERATING ALGORITHM 115

then it is removed from the set of active histories and sent to any listeners
(typically the system generalizer). The start and stop functions control the
temporal context of the histories produced by the generator.

If a history is not stopped then it gets updated. This involves expand-
ing the context with any new ‘relevant’ objects and adding a new transi-
tion created from the latest snapshot. There are different options for deter-
mining which objects are added to the history’s context. For example, one

way is to add any objects which have recently changed to the context.

Adding new objects to an active history’s context requires the history’s
existing transitions to be updated with information about the new objects.
This is trivial if it is possible to go back in time and extract the object in-
formation from the relevant observation snapshots, however this is not
necessarily possible so some assumptions may be required to fill-in the

new objects’ prior state.

Finally a new transition is added to the history. It is created by filtering
the latest observation snapshot so that it only includes assertions about
objects in the history’s context.

5.3.1 History Generation Heuristics

The algorithm described in the previous section provides an outline of
the history generator. As has been noted there are a variety of options
for implementing key steps in the process and these have not yet been de-
scribed in detail. For example, the test for when an active history should be
stopped and removed from the set of active histories. Each of these func-
tions plays an important role in determining the types of histories that are
generated. The ability of the generalizer to find good models will depend
on how these heuristic functions are implemented. This section describes
the heuristics of the generator and the different options for implementing
them.

116 CHAPTER 5. HISTORIES

Temporal Restriction: Starting New Histories

This function is called for every snapshot and returns true if a new history
should be started. It implements part of a history’s temporal restriction.
The following methods are used to determine if a new history should be

started:

e Every Snapshot: a simple implementation is to start a new history on
every new snapshot. This has the advantage of avoiding the problem
of missing useful transitions. However it can be computationally
intensive, especially if histories are quite long (in which case there
will be many histories active simultaneously).

e Always Exactly One: an alternative is to ensure that there is always
a single active history by only starting a new one when the previ-
ous one finishes. Like the 'Every Snapshot” approach this approach
ensures that no potentially useful transitions are missed, however it
does preclude simultaneous active histories (which may have differ-

ing contextual restrictions, i.e. focused on different sets of objects).

e Wait for Event: this method starts a new history whenever some-
thing ‘interesting’ is observed. An interesting event may be the agent
performing an action or it might be a change in the environment in-
volving multiple objects. This method has the advantage of only
starting histories when there is something worthwhile to learn. Po-
tentially this makes the job of the generalizer easier since it has fewer
histories to learn from. However, it has the disadvantage that useful
transitions can be missed. This trade-off is determined by the precise

definition of an interesting event.

o Teacher Initiated: a signal from the teacher can be used to start a new
history. In this case the agent is relying on the teacher to ensure that

no interesting behaviour is missed. The advantage to this method is

5.3. HISTORY GENERATING ALGORITHM 117

that histories should be more useful training examples. The disad-
vantage of this approach is that the agent loses some autonomy.

Temporal Restriction: Stopping Histories

This function is called for every active history at every snapshot to de-
termine if the history should be terminated. It implements part of the
history’s temporal restriction. The following methods can be used to de-
termine if an active history should be terminated:

e Fixed Time Limit: this method stops the history after a fixed dura-
tion. It is a trivial method of preventing histories from becoming too
long. The length of time for which the history is active can be mea-
sured in either snapshots or action executions. For example, termi-
nate the history if the agent has executed 10 actions since the history
was initiated.

e Limit Size of History: stop the history once it has reached a certain
size. The ‘size’ of a history can be measured in the following ways:
the number of transitions, the number of states, the number of cy-
cles, or the number of objects. This method has the advantage that
the structure of histories can be made to be similar to the desired
structure of generalised models (assuming there is a desirable struc-
ture for generalised models). Note that restricting the history size to
a single transition results in a dataset that is similar to those used in

many existing action learning systems (see section 2.2).

e No New Interesting Observations: stop the history if no new “inter-
esting” observations have occurred for a fixed duration. Interesting
observations are those that add something new to the history. These
include: transitions to new states, new transitions between previ-
ously observed states, and the addition of new objects to the context
of the history. Potentially this method can make learning more effi-

cient by automatically stopping histories when an observed system

118 CHAPTER 5. HISTORIES

has been ‘explored” to the extent that observing new behaviour is
unlikely. This is dependent on the particular system being observed
and the precise definition of what is an interesting observation. The
duration for which no new interesting observations are observed can

be measured in elapsed actions or snapshots.

e Teacher Terminated: a signal from the teacher can be used to ter-
minate a history. This has the advantage that the teacher can steer
learning towards desired goal systems by limiting histories to rel-
evant episodes of agent interactions. The disadvantage of this ap-
proach is that the agent loses some autonomy.

Another possible heuristic ‘context failure’ uses a partially learned model
when deciding to stop a history. In this case the history is stopped when
the context of the learned model is no longer applicable to (satisfied by) the
current world state. This would enable histories to discover new states not
included in the model and automatically stop when this is no longer pos-
sible. The context failure heuristic is not implemented in this experiment
because the focus is on stand alone history generation, however it would

make a good candidate for an integrated learner and history generator.

Contextual Restriction: Adding New Objects

The contextual restriction of a history determines which objects are con-
sidered a part of the system under observation. A history only contains
information about objects in its context and disregards the rest. The con-
text is constructed by checking each snapshot to see if any new objects
should be added. The following methods can be used to determine the
result of the ‘find_ new_objects” function and hence which objects should

be added to the context for a given history:

o All Objects: assume all observable objects are relevant to the system

being observed. This approach is only feasible in trivial worlds with

5.3. HISTORY GENERATING ALGORITHM 119

only a few observable objects. It is useful for generating complete
histories from a micro-world which can be used for comparison with
the contextually restricted histories generated from complex worlds.

e Any Objects That Change: if an object changes then it gets added
to the current context. This approach ensures that anything directly
affected by the observed system will definitely be included in the
history. It has the disadvantage that objects affected by events ex-
ogenous to the system will also be included. Objects are considered
to have changed if a property changes or a relationship with another
object changes.

e Any Relevant Objects That Change: if an object changes and it is
in some way relevant to the current context then it gets added to
the current context. This approach addresses the issue of avoiding
adding objects to the context which have been affected by exogenous
events. It does so by using a relevancy test to determine if a chang-
ing object is likely to be part of the system under observation. The
relevancy test is implemented in various ways, for example, objects
are considered relevant if they are in close proximity to an object al-
ready in the system context. Stricter tests include requiring that the
object is touching or connected to a context object. A disadvantage
of this approach is that a poorly chosen relevancy test will exclude
important objects from a system history.

Updating Existing Transitions

The history generator constructs histories incrementally by adding new
transitions as they are observed. When a new transition contains new ob-
jects to be added to the history’s context then the history’s existing transi-
tions must be updated with the state of the new objects. This ensures that

histories are complete descriptions of observed systems over some time

120 CHAPTER 5. HISTORIES

period. The following methods can be used to update existing transitions
with new context objects:

e Use Buffer: buffer sufficient snapshots such that the state of objects
in previous transitions can be found by inspecting the buffer. This
method ensures that the previous state of objects is correctly recorded.
The disadvantage of this approach is that it is only feasible if certain

unrealistic restrictions are made on the vision system and simulation.

o Assume Not Changed: assume that objects not previously included
in the context have not changed since the history began. This ap-
proach is implemented by copying the object state from the most
recent snapshot to the existing transitions. A problem with this ap-
proach is that the assumption that new objects have not changed
may not be true. This depends on the rules used to add new ob-
jects to the history. If they have indeed changed then the history will
contain false information on the state of some objects. This problem
is avoided when using the “Any Objects That Change” method for
finding new context objects.

e Leave Unknown: leave values for objects in previous transitions as
unknown. This approach has the advantage that it avoids making
any false assumptions about object states. It has the disadvantage

that the history will contain transitions with ambiguous states.

5.4 Effect of Heuristics on History Construction

This section describes the results of experimenting with the history gen-
erator’s heuristics. The purpose of the experimentation was to discover
the general properties of the datasets generated by the GenerateHistories
algorithm and use this information to assess their suitability as input to a
generalising algorithm. The algorithm’s heuristics described in the previ-
ous section are varied and their effects observed.

5.4. EFFECT OF HEURISTICS ON HISTORY CONSTRUCTION 121

5.4.1 Generating Datasets

Datasets are sets of histories output by the GenerateHistories algorithm.
They are created by starting the simulation, executing actions, and then
observing the objects in the environment. The resulting observations are
then used as input to the GenerateHistories algorithm. Each run is spec-
ified by the duration the simulation is run for, a strategy for choosing ac-

tions, and finally the heuristics used.

For each dataset the simulation is run for a fixed duration measured
in terms of observation snapshots. The longest runs are 1000 snapshots
which is sufficient to execute over 100 actions and for many different object
interactions to be observed. These runs take approximately 90 minutes
to execute; the majority of this time is taken up executing actions which
typically take 1 to 10 seconds to complete (note that the vision system is
paused while actions are executed to preserve their atomicity property, see

section 4.3).

The precise actions chosen by the agent will affect the output of the His-
toryGenerator. For example, if the agent executes the same action on the
same object over and over, then the resulting histories will be very similar.
In this experiment, two action strategies are used in generating the history
datasets. The first is to choose actions randomly from a restricted subset
of action types and target objects, thus allowing the agent to explore a par-
ticular domain. The second strategy is to allow an instructor to execute
all actions. The instructor chooses actions which they feel demonstrate a

particular mechanism or mechanisms.

The heuristics are varied for each run to observe their effect. The four
heuristics are: the history starter, history stopper, the context updater, and

the existing transitions updater.

122 CHAPTER 5. HISTORIES

5.4.2 Results

This section presents the results of running the simulation with various
combinations of heuristics. The purpose of the experiment to establish
which combinations of heuristics are most likely to generate examples of
the types systems that the agent will find useful. The toy world environ-
ment was used for this experiment (see section 4.5.2). In this particular
environment the agent should be able to learn simple systems that de-
scribe basic physical interactions (such as pushing a ball) and also more
complex systems involving multiple objects (such as building a tower of
blocks). To learn these types of models the generated examples must have
a structure that is similiar to the these models.

Results were assessed by calculating various properties of the gener-
ated histories and also by manually inspecting the resulting histories. The

following properties were calculated for each run:

e Total number of histories generated. A sufficient throughput of his-
tories is required for the agent to learn effectively. A low number
indicates that either the histories are too large or that useful obseva-

tions are being discarded.

e Minimum, median and maximum size of histories (measured in num-
ber of states). Models generated from the toy world should not be
greater than about 10 states. More complex systems will be difficult

to apply to new situtations.

e Average transition density (transitions per state). A higher transition
density indicates that the behaviour of systems is being more thor-
oughly explored. This is good for learning as fewer histories will be

required to learn a complete model of behaviour.

e Average number of objects in the context. If the average number of
objects is very high then it indicates the history generator is explor-

ing systems that are too large. Histories with more objects are less

5.4. EFFECT OF HEURISTICS ON HISTORY CONSTRUCTION 123

desirable because they are less likely to be applicable to other situa-

tions.

e Average number of assertions in the context. The context assertions
are used to create the context of the generalized models. A small
value may indicate that important constraints are not being recorded

in the histories.

e Total number of histories containing at least 1 cycle. Many useful
systems are cyclic, therefore a higher number of histories with cycles
is desirable.

Table 5.3 shows the results of varying the heuristic used to stop active
histories. The simulation was run for a duration of 1000 observations and
the agent executed random actions from a limited set. The agent executed
around 260 actions during each run. The other heuristics were fixed at the
following values: starter - maintain at least 1 active history unless nothing
is happening; context updater - add any objects that change to the context;
states updater - assume new objects have not changed when updating ex-
isting states. The results were averaged over 3 independent runs.

Four different mechanisms for stopping histories were tested. These
were: stopping after a fixed number of snapshots; stopping after a fixed
number of actions; stopping the history if it contained a cycle (i.e. returned
to a previous recorded state); and finally, stopping if the history’s context
reached a certain number of objects.

Table 5.4 shows the results of varying the mechanism used to start new
histories. Two mechanisms were tested: ensuring that a single history was
always active (by starting a new one as soon as the active history finishes);
and ensuring that a single history was always active unless nothing is hap-
pening (i.e. don’t start a new history if there are no changes or actions
currently occurring).

Table 5.5 shows the results of varying the mechanism used to add new

objects to the history’s context. Two mechanisms were tested: add any ob-

124 CHAPTER 5. HISTORIES

States
History Stopper | Histories Min Med Max Density Objects Context Cycles
after 10 snapshots 82 1 5 11 1.37 8.8 110 32
after 20 snapshots 45 4 9 18 1.51 13.1 191 29
after 5 actions 52 3 8 19 143 12.1 170 30
after 10 actions 26 9 15 33 1.55 17.5 281 22
limit 1 cycle 53 2 6 49 141 9.5 131 53
limit 3 objects 215 2 5 0.75 49 48 25
limit 5 objects 147 2 0.95 6.6 72 28

Table 5.3: Results of Changing the History Stopper

States
History Starter ‘Histories Min Med Max Density Objects Context Cycles
always 1 (if event) 82 1 5 11 1.37 8.8 110 32
always 1 90 2 5 10 1.35 8.2 101 33

Table 5.4: Results of Changing the History Starter

5.4. EFFECT OF HEURISTICS ON HISTORY CONSTRUCTION 125

jects which change to the context, and add any objects which qualitatively

change to the context (i.e. ignore non-qualitative changes).

States
Context Updater ‘Histories Min Med Max Density Objects Context Cycles
any changed objs. 82 1 5 11 1.37 8.8 110 32
ignore non-qual. 83 1 5 11 1.39 8.5 109 33

Table 5.5: Results of Changing the Context Updater

Table 5.6 shows the results of varying the mechanism used to update
existing states when the context is expanded. Three mechanisms were
tested: assume that the new objects have not changed until they were
added to the context; use a vision system buffer to fill-in the correct state
of the objects in prior states; and finally, leave the state of the new objects

unknown in previous states.

States
State Updater Histories Min Med Max Density Objects Context Cycles
assume no change 82 1 5 11 1.37 8.8 110 32
use buffer 83 1 5 11 1.38 8.7 110 33
leave unknown 82 2 8 15 1.02 8.8 27 30

Table 5.6: Results of Changing the Existing States Updater

5.4.3 Analysis

This section describes some of the interesting results that can be observed
from experiments with the history generator. Overall the results give a
good indication of the kinds of histories that can be generated from an
autonomous agent making symbolic observations of a 3D environment.
This information can be used to guide the choosing of a history generator’s

heuristics when it is being used in conjunction with a system generalizer.

126 CHAPTER 5. HISTORIES

The results from the experiments were very consistent. The data tables
show the average values for each test over 3 independent runs. Each of
the 3 runs uses identical heuristics with the only change being the actions
which were chosen by the agent. Despite each run having different actions
(and therefore very different sequences of events), there was very little
variation in the measured values between runs. This can be attributed to
the tests being executed in a single domain (the toy world) with similar
objects and hence the same types of sequences of object behaviour were
observed. However there was significant variation when the generator’s

heuristics were varied.

The ‘history stopper” heuristic was varied the most with 7 different
values tested (table 5.3). As expected, the number of histories generated
was inversely proportional to the size of the histories themselves. Results
ranged from 26 large histories to 215 small histories. This ratio can be
directly controlled using the “after X snapshots/actions” history stopper.
The larger histories not only had more states but also more objects. Ideally
histories will be an almost complete set of transitions describing the be-
haviour of a small number of objects. This will aid the generalizer because
it will require fewer histories to build a complete picture. Unfortunately
the results show that larger histories are also correlated with more objects

which indicates a better strategy for choosing actions is required.

The median number of states varied from 2 to 15 per history. An ‘ideal’
number of states will vary depending on the target models and on the rich-
ness of the observations. The ‘push ball” system (see section 5.2) requires
only 3 states compared with 10 or more required by the ‘tap and sink’
system. Also, a richer set of qualitative observations will lead to more
detailed sequences of behaviour with more states. Given this variation
it seems that the maximum history size is more important than the typi-
cal size. Ensuring an appropriately high maximum will prevent histories

from being cut short before a system has been fully explored.

The completeness of a history’s description of a system behaviour is

5.4. EFFECT OF HEURISTICS ON HISTORY CONSTRUCTION 127

given not only by the number of states but also by the number of transi-
tions. This is because there can be multiple transitions between the same
two states. The completeness of history is roughly measured using tran-
sition density (the number of transitions per state). Varying the history
stopper heuristic did not have much effect on transition density unless
the ‘limit to X objects’ strategy was used. This dropped the density from
around 1.5 down to less than 1. Visual inspection showed that the com-
bination of a few objects and random actions resulted in histories where
states were not revisited and hence each new transition also led to a new

state.

Cycles is histories indicate that a previously visited state has been re-
turned to. Cycles are desirable in histories because most useful systems,
especially more complex ones, will contain at least 1 cycle. Setting the
stopper heuristic to halt after a cycle is discovered resulted in the most
histories with cycles. Otherwise, the percentage of cycles was roughly
correlated with the size of the histories produced. Larger histories were
more likely to find a cycle. Many of the cycles involved just 2 states and
some of these were the result of the vision system noticing a ‘wobble’, e.g.
a non-moving object may be momentarily mistaken as moving. A better
cycle metric for histories would eliminate these anomalies as they are not

indicative of a system-like cycle of behaviour.

The largest history generated by the cycle limited stopper had 49 states,
which is far larger than those generated by any of the other stopping mech-
anisms. This indicates that it might be useful to include an abort mecha-
nism with the cycle limiter to prevent histories from becoming too large.
A 49 state system is unlikely to be a useful system because it will be more

difficult to apply it to new situations.

Two history starters were compared. One ensures a single history is al-
ways active, the other only starts a new history if there is no active history
and an ‘interesting” event occurs (i.e. something qualitatively changes in

the environment). The histories generated are very similar (see table 5.4),

128 CHAPTER 5. HISTORIES

the only difference is that the interesting event starter generated approxi-
mately 10% fewer histories over the same period. This is because a fixed
length history stopper was used and the generator was active for a fewer
overall number of snapshots. This reduction could be used to improve the
computational performance of the learning system by reducing the num-
ber of histories that must be processed.

The context updater is used to determine which objects get added to a
history’s context. Two context updaters were compared, one adds objects
which change in any way, the other adds objects which change qualita-
tively only (i.e. it ignores qualitative deltas, see section 3.2.3). Very little
difference can be observed in the types of histories generated using these
two updaters. This is because objects which change non-qualitatively will
soon change, or have recently changed, qualitative state.

The existing state updater is used to fill in the previous state of objects
newly added to a history. The ‘assume no change” and ‘use buffer’ tech-
niques resulted in the output of similar histories. The ‘leave unknown’
technique resulted in larger histories with smaller contexts. The increase
in states occurred because a variable with an unknown value is treated as
a distinct state from a variable with a fixed value. Therefore returning to
a previously visited state with new objects in the context is not recognised
as the same state since the history’s recorded state is ambiguous with re-
gard to the new context objects and therefore cannot be matched to the
currently observed state.

Ideally the generalizer would learn from unambiguous and correct his-
tories. The buffer approach to updating existing states is the only tech-
nique to guarantee this but it makes unrealistic assumptions about the vi-
sion system. These assumptions can be side-stepped in the simulation but

not in a real embodied agent.®> Therefore the realistic options for generat-

3An embodied agent can record large amounts of raw visual input but it cannot go
back in time and move its head or change its focus to an object on which it wasn’t fo-
cussing at the time.

5.4. EFFECT OF HEURISTICS ON HISTORY CONSTRUCTION 129

ing histories are to either assume the object has not changed, or to leave the
objects previous state as ambiguous. The former introduces errors (which
could be considered a type of noise) into the histories; the latter requires
the generalizer to directly resolve the ambiguities.

Overall the results show that suitable histories can be generated from a
complex simulated environment. A number of effects of changing the his-
tory generator’s heuristics have been observed and their potential impact
on a system generalizer have been assessed. It is not clear what precise
combination of heuristics will lead to successful learning. This can only
be assessed in conjunction with the actual system generalizer and by di-
rectly observing its performance. However the results obtained so far have
provided a better understanding of the process of generating histories and
therefore of how to configure the generator to produce the particular types
of histories which may be desired. This in turn will aid the process of dis-
covering a generalizer that produces good system models.

The results have also shown that a random action strategy produces
histories that can be used for learning small systems. However, it is clear
that autonomous learning of larger systems will be almost impossible un-
less a heuristic strategy that ensures actions are relevant to the system at
hand is used (or alternatively a teacher is used to guide the agent’s ac-

tions).

130 CHAPTER 5. HISTORIES

Chapter 6

Using Q-Systems in Learning &

Planning

This chapter describes an implementation of the Q-System representation
in an autonomous agent system that performs basic learning and plan-
ning. The primary purpose of the system is to demonstrate the use of Q-
Systems as a suitable representation for learning complex world dynamics
and action outcomes. A second purpose is to discover any limitations or
issues that would need to be addressed by a more sophisticated agent.
The algorithms described in this chapter are not considered robust with
respect to their application in a complex environment, however they do
enable the agent to learn simple generalised models and also to achieve

basic goals.

The algorithms include a matcher which can map the objects and states
in one system to those of another, a learner which generalises example sys-
tems, and a planner which chooses actions that lead the agent towards a
specified goal. Section 4 of the chapter describes an integrated implemen-
tation of the algorithms followed by a demonstration of its application in
the simulated environment. The last section discusses the major limita-

tions of the algorithms.

131

132 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

6.1 Matching

Matching is used in planning to map abstract models to concrete world
states, thus enabling an agent to predict the behaviour of matched objects
on the basis of knowledge in the model. Matching is also used in model
refinement to map abstract models to other abstract models. If the mod-
els are a good fit they may be considered different instances of the same
system and subsequently merged and generalised.

Matching involves finding a good mapping between the objects in one
description and the objects in another. Each individual pairing of object to
object specifies that the two objects play the same role in the two descrip-

tions.

Finding a good match can be considered a type of search problem in
which the search space is all possible mappings of objects. Naive search is
not practical because the search space grows exponentially with the num-
ber of objects. Therefore, the algorithm presented here uses a score based
heuristic to find good individual object pairings (i.e. disregarding the con-
straints that the pair may place on other possible object pairings). The set
of individual scores can be calculated in polynomial time which is practi-
cal for the numbers of objects typically used in Q-Systems.

Scores are based on a similarity metric which considers the properties,
relationships and behaviour of the two objects being compared. Objects
with more in common will score higher than those with less. Once all ob-
ject pairs have been scored, constructing a complete match requires find-
ing the highest scoring set of pairs.

An important consideration in matching is whether an object can be
mapped to exactly one object or may be mapped to more than one object
or mapped to none at all. An “unconstrained” matching allows objects on
either side of the match to be paired with any number of objects, i.e. a
‘many-to-many’ relationship. Conversely, a fully constrained matching

ensures each object is only paired with one other, ‘one-to-one’. A semi-

6.1. MATCHING 133

constrained matching allows objects on only one side to match multiple
objects on the other, ‘one-to-many’. When an object is mapped to multiple
objects the match represents the object playing multiple roles. In a good
matching the object should play the role of all the objects it is mapped to
simultaneously.

Matching can be performed on both individual states and entire sys-
tems. Individual state matching is used when matching a system context
to a concrete world state. Whole system matching is used when match-
ing models to histories. Matching of systems requires finding not only a
match between objects but also a match between two systems’ states. This
results in a search space that is exponential in both the system objects and
the system states. The approach used in the following algorithm simplifies
the problem by recognising that an object matching heavily constrains the

number of possible state matchings.

6.1.1 System Matching Algorithm

The section describes the algorithm used to match systems to other sys-
tems for use in the system generalizer. State to state matching uses a sim-
plified version of the same algorithm. Pseudo-code for the system matcher
is shown in Algorithm 2. The goal of the algorithm is produce a ‘good’
(rather than best possible) matching of objects and states. The matcher has
two main stages: firstly, finding a good object match between the two sys-
tems’ contexts; and secondly, finding a consistent state match based on the
object mapping.

The matcher begins by scoring all possible pairs of individual object
matches. Pairs of objects are scored by their similarity in the system con-
text and by the similarity of the transitions in which they are involved.
The two parts of score are normalised (in the range 0 to 1), then weighted

(context can be given more importance than behaviour or vice versa), and
finally added.

134 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

Algorithm 2 MatchSystems(src, tgt)

// Find a good object matching between system contexts...
objMatch — empty mapping of src to tgt objects
candidate Pairs < apply score function to elements of src.objects x tgt.objects
sort candidate Pairs by score
for (srcObj, tgtObj, score) in candidate Pairs do
if srcObj not matched then
if all tgt.objs are matched then
add (srcObj, tgtObj) to obj M atch
else if tgt.obj is not matched then
add (srcObj, tgtObj) to obj M atch

until all src.objects are matched

// Match identical states...
stateMatch «— empty mapping of src to tgt states
for (srcState, tgtState) in src.states X tgt.states do
if substitue(srcState, objMatch) = tgtState then
add (srcState, tgtState) to state M atch

return (objMatch, state Match)

6.2. GENERALISING 135

The next step is to create a mapping by selecting the highest scoring
pair for each object in the source system and adding the pair to the match.
The algorithm will create a one-to-one mapping if possible (when the tar-
get has the same number or more objects than source), otherwise it will
create a many-to-one mapping by pairing the additional source objects to
already matched target objects.

After finding an object mapping the matcher creates a state mapping.
This is achieved by finding states that are identical when the object map-
ping is used to substitute variables in the source system. Because the
matcher only creates either fully or semi-constrained mappings the substi-
tution for the source objects is unambiguous. If the mapping were allowed
to be unconstrained (many-to-many) then the substitution would be much
more problematic.!

Finally, the result is returned as a tuple containing the object and state
match.

6.2 Generalising

This section describes a basic algorithm for learning generalised Q-Systems.
The purpose of the learning system is to transform a series of observed
example concrete systems into a set of generalised systems that are appli-
cable to analogous situations. This enables the agent to use its experience
of the world to predict and plan for the behaviour of objects in new and
unfamiliar situations.

A good learning algorithm will produce models that are not over gen-
eralised. Over generalised models will apply to many situations but will
not correctly predict behaviour. Similarly a good learner will not under
generalise by missing opportunities to merge examples describing similar
systems.

For example, how should a substitution be resolved if a source object is paired with
two target objects that have conflicting assertions?

136 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

The core of the learning algorithm works by matching systems that
have similar contexts and replacing them with a new system. The new
system context is the intersection of the two contexts - the assertions that
are common to both systems, however, the behaviour of the new system is
the union of the behaviour of both systems (the learner assumes that be-
haviour observed in one example and not the other was missed and could
have been present in both examples given enough observations). The
learner applies a combination of operations to convert a system includ-
ing: replacing concrete objects with abstract variables, dropping assertions
from the context, adding states to the behaviour, and, adding transitions
to the behaviour. This is described in section 6.2.1.

Before the learner can generalize the systems it must select which sys-
tems are to be generalised. The algorithm ‘LearnSystems’ determines the
systems that should be generalised and constructs a match between them

for use in model refinement. It is described in section 6.2.2.

6.2.1 Model Refinement Algorithm

The purpose of the model refinement algorithm is to create a generalised
system from an existing model system and a newly observed example sys-
tem (a history). The algorithm takes three inputs: the model, the history,
and a matching from one to the other. The matching is assumed to be the
best available matching between the two systems. Pseudo-code for the
model refiner is shown in Algorithm 3.

The algorithm starts by using the object match to find a substitution
for each input system that maps objects to the new general system. This
is a form of ‘anti-unification” in which paired objects are replaced by new
variables (unless both objects are the same constant in which case they are
not replaced by variables). The resulting “unifier” contains two mappings
of objects, one for each input system. Next, the new system’s context is
calculated by finding assertions that are common to both the example and

6.2. GENERALISING 137

Algorithm 3 RefineModel(model, history, match)

uni fier < antiunify(match.objMatch)

context < union(model.context /uni fier, history.context /uni fier)

behaviour < ()
for (Spmodeis Shistory) i match.stateMatch do

add union(s,,oder / uni fier, spisiory/uni fier) to behaviour
for each unmatched state s do

add s/unifier to behaviour

return new_system(context, behaviour)

model contexts, given the substitution.

The behaviour of the new system is built by iterating through the tran-
sitions in both the model and example systems. If a state in one system
is matched to a state in the other, then the two states are generalised in a
similar way to the context generalisation. If a state is not matched, then
it is simply added to the new system. All transitions in both systems are
added to the new system.

Finally, the new system with the generated context and behaviour is

returned.

6.2.2 Model Selection Algorithm

The purpose of the model selection algorithm is to process an endless se-
ries of example systems (‘histories”) and maintain a knowledge-base in the
form of a set of generalised systems. The algorithm uses the RefineModel
program described in the previous section. Pseudo-code for the learner is
shown in Algorithm 4.

The learner has two parameters: a set of weights for use in system

138 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

similarity scores (these can be used to change the relative importance of
transition, state and context similarities), and a threshold for use in decid-
ing whether or not two systems are similar enough to be generalised (the
threshold can be used to make the learner a more or less ‘eager’ general-

izer).

Algorithm 4 LearnSystems(weights, threshold)

systems «— null
loop
history < get_next_history()

// Match and score existing systems to new system...
matchings < apply MatchSystems to each system in systems
scores «— ()
for s, m in systems, matchings do
score «— (transition_score(s, history, m) x weights.transition) +
(state_score(s, history, m) x weights.states) +
(context_score(s, history, m) x weights.context)

add (score, s) to scores

/ / Refine best match and add to knowledge base...
if scores.mazx > threshold then
newSystem «— RefineModel(scores.best, history)
remove scores.best from systems
add newSystem to systems
else
add history to systems

The learner begins with an empty set of systems. It then enters an
infinite loop and waits for new histories. For each new history the learner
finds a matching and a similarity score (based on the matching) for each

of the systems in its knowledge base.

6.3. A PLANNER 139

If the highest scoring match is above the generalising threshold, then
the best matched system and the history are generalised to create a new
system. The new system replaces the existing system. If on the other
hand, the highest score is not above the threshold, then the example it-
self is added to the knowledge base. This is done in the expectation that it
will at some point be generalised.

Similarity scores are calculated by combining scores for the systems’
transitions, states and the contexts. Transitions count towards the score if
both ends (i.e. the pre and post states) are matched and they are the same
action type. Matched states are scored for each assertion common to both
systems. System contexts are scored according to the fraction of assertions
that are common to both systems.

6.3 A Planner

This section describes a simple planner that uses Q-Systems to achieve
goals. The purpose of the planner is demonstrate how Q-Systems can be
used to achieve goals. The planner attempts to find and execute a series of
actions that will change the current state of the world to one that satisfies
a set of goal assertions. The planner is given a goal which is typically a
small number of assertions (and therefore a partial description of a world
state). Pseudo-code for the planning algorithm is shown in Algorithm 5.

The planner works by searching its knowledge base for a Q-System
that matches the current world state and contains a reachable state which
satisfies the goal. It then prunes the system of all states from which the
goal state cannot be reached. The resulting pruned system is then used to
choose which actions to execute. The planner only executes plans based
on a single system; it cannot chain multiple systems together to form more
elaborate plans.

Once a pruned model has been found the planner executes actions that

lead towards the goal state (i.e. actions that reduce the distance between

140 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

Algorithm 5 AchieveGoal(goal, knowledge Base)

model < null
loop
observation «— get_snapshot()
if goal not achieved then
if model = null then

// Try to find a suitable model...

for system in knowledge Base do
match « greedy_search_matching(observation, goal, system)
if match # null then

pruned «— system.removeStatesNotOnPathToGoal()
model «— (pruned, match)
else

// Execute an action to get closer to the goal...

model.update M atching(observation.newObjects)

currentState < model. findCompatibleState(observation)

if currentState = null then
// The world is in an unexpected state so find a new model...
model «— null

else
goalState — model. findCompatibleState(goal)
action «— model.shortest Path(currentState, goalState).head

execute_action(action)

6.4. LEARNING & PLANNING IN THE SIMULATED WORLD 141

the current and goal state, where ‘distance” is the minimum number of
actions to get from one to the other). The planner continuously executes
actions until the goal is reached, at which point it stops and waits for a
new goal. If at any stage the agent observes a world state which is not
compatible with the state(s) predicted by the pruned model, then the plan-
ner discards the current model and ‘re-plans’ by searching the knowledge
base once more.

One property of Q-Systems is that the outcomes of actions are often
ambiguous. This may be because the action itself is inherently non-deterministic
(e.g. throwing a ball into a bin will sometimes land in the bin and some-
times not), or the ambiguity may be the result of qualitative abstraction?.
The planner assumes that the outcome with the highest probability will
occur when calculating shortest paths from the current state to the goal.
Then, while executing, if by chance the actual outcome is not the most
likely outcome then the planner simply continues from the state it is now
in.

Another property of Q-Systems is that some system objects only exist
in some of a system’s states, since objects are sometimes created or de-
stroyed by actions within the system. The presence of these objects forces
the planner to recompute its model-to-world object matching whenever
new objects appear in the world, but does not affect the planning algo-

rithm.

6.4 Learning & Planning in the Simulated World

This section describes an integrated implementation of the algorithms de-
scribed in the preceding sections. The algorithms are used to create a
learning and planning agent that exists in the simulated toy world; the

2This is because a single qualitative value represents a whole range of real values, but
the outcome of an action may depend on the precise value of the variable. Exact (quanti-
tative) values cannot be observed directly and therefore the outcome is ambiguous.

142 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

agent interacts with the world using the skill and vision systems described
in previous chapters. The system learns simple generalised models from
examples and uses them to achieve instructor specified goals. The ques-
tion of how the quality of the models output by the learner is measured is
open-ended. In this project a combination of task performance and man-

ual assessment is used.

6.4.1 Agent Implementation & Performance

The agent has two modes: a learning mode and a planning mode. The
modes are mutually exclusive so at any one time the agent is either learn-
ing or planning but not both (note, a more sophisticated agent might learn
from experience while simultaneously executing a plan). While in the
learning mode the agent builds its knowledge base of Q-System models
using the learning algorithm described in section 6.2. During the planning
mode the agent accepts goals from the instructor and attempts to achieve
them using the planning algorithm, described in section 6.3.

The learning system is implemented using a pipeline architecture in
which each component receives input (asynchronously) from its predeces-
sor. The input is then processed and the output is sent to the next compo-
nent in the pipeline. The learning system has 4 components in its pipeline:
the simulation, the vision system, the history generator, and finally the
generalizer. The simulation generates raw simulation data based on phys-
ical interactions of objects. The vision system takes the raw simulation
data and extracts qualitative observation snapshots. The history genera-
tor creates histories from sequences of observation snapshots. Finally, the
generalizer uses histories to update its knowledge-base of model systems.

The agent was run in the simulated toy world and was set the task of
building a small tower of blocks. During the learning phase it observed the
instructor interacting with the blocks. The demonstration involved con-

structing towers, knocking them down and then rebuilding them (some-

6.4. LEARNING & PLANNING IN THE SIMULATED WORLD 143

PA.PUT_ON.7B

Figure 6.1: Behaviour Graph of a Generalised 2 Block System. The system
has four states: a. block ?A is falling; b. block ?A is partially on block ?B
but teetering on the edge; c. block ?A is on block ?B, forming a group ?G;
d. blocks ?A and ?B are on the floor.

times with different objects and sometimes with the same objects). The
agent created several histories of constructed towers from the observa-
tions.

Using the histories generated from observation snapshots the agent
was also able to create generalised models of the behaviour of small tow-
ers that were 2 or 3 blocks high. Figure 6.1 shows an example generalised
model produced by the agent describing the process of constructing a 2
block tower where the agent can put one block on another and can push it
off. The transitions of the model are shown in table 6.1.

The generalised model uses appropriate variables: specific block iden-
tifiers have been replaced with variables; the floor object has not been
replaced by a variable because the agent only ever observed the system
in action while on the floor. The model contains no anomalous states or
transitions that are obviously incorrect. It has also included two different
ways in which the top block can fall to the floor once it has been pushed

144 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

(either falling straight to the floor or teetering on the edge before falling
to the floor). Note that not all possible transitions have been observed -
the agent has not seen the teetering block actually falling and therefore a
transition from state b to a is missing. This transition could be added after

further observations.

transition deltas
a— —d
b — —d
c— —C
d— —d
c— ?2APUSH —c
c— ?2APUSH —a ?G.height -

c— ?APUSH —b
d — ?A.PUT_.ON.?B — ¢

Table 6.1: Transitions of a Generalised 2 Block System. (?G is an identifier
for the group object formed by blocks ?A and ?B)

The agent also learned similar but more complex models for towers
with more blocks, an example is shown in figure 6.2. These were used as
the agent’s knowledge-base when it was given the task of constructing a
tower using its planning algorithm.

The agent was able to successfully build small towers of blocks by find-
ing a good match from the systems it had learned. For each task, the agent
was able to find a system with a context that was applicable to its current
world state and also had a state which satisfied the goal state.

The agent was able to recover if something went wrong during the
execution of a plan. Occasionally an action would not have its intended
effect (a block is not put in the correct place). Also the instructor would
sometimes execute actions which undid the agent’s actions. In these cases
the agent was able to continue acting using its original plan (albeit from an

unexpected state), or if the system was no longer applicable, then the agent

6.5. LIMITATIONS OF THE AGENT 145

sis M

.‘7

‘WSH ?B.PUSH

?A.PUSH

E El
el —» 1cJ
B PAPUT_ON.?B

?B.PUT_ON.?C

-, 888

2A.PUSH

I %USH J”B PUSH \ J ?A.PUSH
_ A a % @'"G
Al 1]
Figure 6.2: Behaviour Graph of a Generalised 3 Block System.

was able to construct an entirely new plan and proceed from there. In all
cases, the persistent nature of the planning algorithm always ensured that
the tower was eventually constructed.

6.5 Limitations of the Agent

The matching, model refinement and planning algorithms presented in
this chapter have significant limitations. Their primary purpose is demon-
strate that the Q-System representation is suitable for use by an autonomous
agent in the complex tasks of learning and planning. Their secondary pur-
pose is to explore the types of problems that will be encountered when
developing a more advanced agent. This section describes the most sig-
nificant limitations that would need to be addressed in order to create an
agent that could operate effectively and robustly in a complex environ-
ment.

146 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

The Matcher

The matcher is currently limited in the extent to which object relationships
are inspected when scoring the similarity of objects. The matcher only
checks that objects have similar relationship types (e.g. they both have an
‘on’ relationship with some other object). It does not measure the simi-
larity of the object on the end of the relationship or any properties of the
relationship itself. This will cause the matcher to perform badly in certain
situations where properties of related objects are important in defining the
role of the object.

When matching entire systems the matcher requires that states must
be identical to be matched. This approach is problematic where the scope
of the two systems being matched is significantly different. If one system
describes a sub-system of a larger system then it may describe fewer ob-
jects in its states than a model of the complete system. However the states
in the smaller system should still be able to match to those of the larger

system (they are subsets of the larger systems states).

The Learner

A major limitation of the learner is that its parameters are set arbitrarily.
These include the generalisation threshold and also the weights used to
score system matchings. These parameters are critical in shaping the types
of models that the learner produces. An analysis of the effect of these
parameters on models is required to understand how they affect learning.
Ideally they be would assessed using task performance of the agent over
a variety of different tasks. However this approach is difficult because
the overall task performance of the agent is dependent on the integrated
result of several complex systems (i.e. the vision, history generating and
planning system), not just the learner itself.

Another issue with the learner is that it has no way of removing spu-

rious actions and states that have been recorded by the history genera-

6.5. LIMITATIONS OF THE AGENT 147

tor. The learner includes all observed transitions in the combined models.
Transitions that ideally shouldn’t be in the system (such as the effects of
another agent’s actions) should be removed. If the agent has access to a
large number of observations, then this could be achieved by implement-
ing a statistical significance test that would remove any transitions that
fall below a certain threshold of significance. This would solve the prob-
lem but would have to be done carefully to avoid removing rarely seen

transitions which should be part of the observed system.

The Planner

The main limitation of the planner is that it can only plan using a sin-
gle system. Therefore to achieve a goal the agent must have a system in
its knowledge-base that includes both its current state and the goal state.
The planner could achieve many more tasks if it were able to plan across
multiple systems. This could be achieved by coupling together multiple
systems. Systems would be coupled by finding compatible states and al-
lowing world objects to play roles in both systems simultaneously. This
would allow the planner to work across multiple coupled systems by ‘ex-
iting” one system and ‘entering” another at compatible states.

Another limitation of the planner is the way in which it handles am-
biguous action effects by always expecting the most likely outcome. This
approach is problematic when the most likely outcome is a self-loop (in
which the action returns the system to the current state). In these cases the
planner should recognise that repeating the action will normally cause the
system to transition to a new state eventually.®> Also the planner can fail if

3This an area that could also be improved in the Q-System representation itself. Sys-
tems could distinguish between self-loop actions that always eventually exit and those
that sometimes do not. In fact, this technique is just one of a number of ideas that have
been investigated in a recent research project [3]. It focused on how Q-Systems can be
used for planning in qualitative domains. It found that the limitations described in this
section can be overcome with some small extensions to the Q-System representation.

148 CHAPTER 6. USING Q-SYSTEMS IN LEARNING & PLANNING

an ambiguous action leads to an unexpected state in which the goal can-
not be reached. Ideally the planner would distinguish between safe and
unsafe routes through the system. A ‘safe’ route would avoid any actions
in which the agent could end up in dead end state.

The planner is also limited to relying on a naive search when matching
systems to the world state. This will not work if there are a large number
of objects in the world to match against. A better approach is to begin by
matching objects from the current goal and then to search for objects based

on their context in the candidate system.

(Note, the honours project was focused purely on planning whereas the work in this

thesis focused on development of a learnable representation.)

Chapter 7
Conclusion

Overall the project has achieved its goals of creating an integrated action
and qualitative process representation, constructing a rich simulation for
the purpose of testing the representation on real problems, and evaluating
the representation in terms of its suitability for use in learning and plan-
ning in complex worlds.

This chapter summarises these contributions. It also draws together
several insights regarding the issues of creating and learning the represen-
tation that were discovered during the project. The chapter finishes with a
discussion of possible next steps in the development and evaluation of an

integrated learning system.

Representation

Q-Systems (chapter 3) is a novel symbolic level representation which in-
tegrates two important existing representational frameworks: action de-
scription languages (section 2.1) and qualitative process modelling (sec-
tion 2.3). It allows world dynamics to be modelled in a new way that
enhances the ability of an agent to learn and plan.

One way in which Q-Systems extends action description languages is
that instead of just focusing on the effects of individual actions, Q-Systems

149

150 CHAPTER 7. CONCLUSION

allows multiple actions to be combined into an encapsulated subset of
world behaviour. This encapsulation allows an agent to focus on small
numbers of interrelated objects when learning. This modular approach
is similar to the concept of qualitative process models [14], however a Q-
System model explicitly enumerates the states and transitions in the sys-
tem whereas qualitative models infer the state from qualitative relation-

ships. Also, actions are not represented in qualitative process models.

All the actions and transitions in a Q-System share the same context
which acts as a pre-condition. This means that when an action is being
learned, it need only be learned in its current context. Other action learn-
ing systems [35][40][45] attempt to learn a complete model of an action, i.e.
the effects of an action in all possible situations in which it might be used.
This makes it very difficult to learn a correct model for a generic action
because there are so many different situations in which it can be applied.
This is in contrast to Q-Systems in which the effects of an action need only

be specified for very specific situations.

Because Q-Systems integrates both actions and qualitative behaviour
it is possible to learn both simultaneously, which means learning can be
achieved in a single process instead of two independent processes. Action
learning systems typically focus on actions only and treat world dynamics
as a separate problem. This divided learning approach is an un-natural
way of tackling the problem, because actions and world dynamics can
both be considered instances of the same thing: ‘an event which changes
the current state of the world’. The Q-System representation models them
in this way and this allows a learner to take advantage of the similarities
between the two types of transition (action or world dynamic) when con-

structing models.

Uncertainty in action outcomes has to be represented if models are to
be useful in realistic environments. Q-Systems include a simple way of
modelling probabilities of action outcomes. A state with many outgoing

transitions all using the same action would be very difficult to plan with

151

without knowing which outcomes are more likely. Q-Systems uses a fre-
quency count on each transition to indicate the likelihood of a particular
transition occurring. This is similar to methods used in other action de-
scription languages [31][45]. Q-Systems also allow for the introduction of
hidden variables which can be used to disambiguate states in which the
action outcome depends on the hidden variable.

Q-Systems introduce the notion of adding ‘qualitative deltas’ to action
models. Qualitative deltas help to bridge the gap between the qualita-
tive and quantitative worlds without having to resort to fully quantitative
modelling. A Q-Systems qualitative delta represents an observation that
a measure has changed (increased or decreased) even though the quali-
tative value of the measure is still the same. This information is vital to
modelling certain processes because actions may have no observable effect
other than qualitative deltas. If deltas were not modelled then such actions
would be incorrectly learned as having no effects (an example is the action
of reducing the flow from a tap, the qualitative state of the world has not
changed but there was an effect). No other action description language
uses qualitative deltas.

A goal of this project was to determine if a purely qualitative approach
was sufficient in realistic environments. Q-Systems have shown that us-
ing only qualitative information in action models allows many interesting
mechanisms to be modelled. However, there are some situations in which
at least an estimate of quantitative information is required. For example,
states within the sink system (see section 4.5.1) cannot distinguish between
a sink that is filling with a dribble of water and a sink that is filling with
a reasonable amount. In this situation, having quantitative information
about the flow rate would enable the agent to estimate how long the sink
will take to fill and therefore take action to speed up the process if re-
quired. A possible solution to this problem is discussed in the section on
future work.

152 CHAPTER 7. CONCLUSION

Simulation

A simulation framework and two richly simulated interactive worlds were
created for this work. The simulated worlds provided realistic qualitative
observations of complex behaviour in real-time. These were used to de-
velop the Q-System representation and learning system.

The simulation framework was built using a commercial physics game
engine that generated the complex physical interactions between objects.
This type of framework has been used in symbolic level agent research
before [45], however, the framework presented in this work (see chapter
4) implements a number of features that have not been used in previous
work on action learning systems. These include: observation of qualitative
variables and shape descriptions, simulation and observation of liquids,
and observation of ‘group’ objects. This richness of the state description
allows more interesting behaviours to be explored and learned. Overall,
the simulation adequately generated the types of complex behaviours that
the agent was required to learn about. It was able to simulate a range
of real world complexities such as hidden state, unbounded numbers of
objects, multiple actors, etc.

The simulation’s vision system had to be carefully constructed to en-
sure that the observations it generated were consistent with what a real
vision might be plausibly expected to produce. It was found that subtle
interactions between the timing of updates within the simulation and vi-
sion system could create artifacts that would not be expected in a ‘perfect’
vision system. Such timing issues could cause the vision system to miss
a qualitative transition or incorrectly attribute effects to an action (these
are explained in section 4.3). But these types of mistakes are the kind that
would be expected in a real ‘imperfect’ vision system. Therefore they were
not removed from observation snapshots, but were passed on to the learn-
ing system which had to account for them when creating models.

A key part of the vision system was observations of qualitative shape

and space. In fact these were critical to the types of behaviour that could

153

be learned about. For example, learning about a see-saw mechanism was
impossible unless the agent could observe the difference between an object
simply being ‘on” another and an object that is on another at a specific
location (e.g. the end, or the middle).

The vision system uses a basic set of qualitative shape and space de-
scriptors which allows the agent to learn a number of interesting mecha-
nisms. However, ideally it would use a more powerful set of descriptors.
This would allow a wider range of mechanisms to be modelled at a level
of detail sufficient for predicting their important behaviour. What a suffi-
ciently powerful representation of shape and space would look like is an
open research question [8].

The simulation, vision and skill systems will be made available elec-
tronically for other researchers to use.

Histories

This thesis proposes a two stage learning mechanism. The first stage is
to extract ‘histories” from real-time observations - short sequences of con-
text restricted observations. The second stage is to construct generalized
models from the histories.

The use of histories is a departure from other action learning systems
which learn from observations of individual transitions rather than from
sequences of transitions with a common context, as is the case with his-
tories. This is an important difference because it makes learning easier
in two ways. Firstly, histories allow the cause of hidden variables to be
identified from previous actions. In the case of learning from individual
transitions, hidden variables are problematic because they manifest them-
selves as two (or more) examples in which an identical state and action
lead to two different states. By using histories the cause of this ambiguity
can potentially be resolved by examining the transitions which lead up to
the before state. If it is the case that particular prior actions always cause
the ambiguous action to have a certain outcome, then this can be exploited

154 CHAPTER 7. CONCLUSION

by a system which learns from histories.

The second benefit of learning from histories is that they reduce the
size of the states that are used by the generaliser. Histories are constructed
over a duration of several snapshots and are therefore able to identify rel-
evant objects and remove unrelated observations. Other action learning
systems which do not filter in this way must limit the size of their state
descriptions. This is often achieved by reducing the number of objects in

the world to an unrealistically small amount.

It was shown that with appropriate heuristics for controlling the con-
textual and temporal scope, histories can be automatically generated that
are appropriate for learning subsets of world behaviour as Q-Systems. The
types of histories generated were instances of the types of models that

would be expected to be useful for planning.

Two types of heuristics were experimented with: temporal and con-
textual. The temporal heuristics were used to control the points at which
histories started and stopped. They used mechanisms such as identifying
interesting events, counting actions elapsed, or counting system cycles to
trigger the start or end of a particular history. Using a simple mechanism
such as counting the number of actions elapsed was sufficient to create
isolated pieces of behaviour that could be used to generate a full system
model if several histories were observed and combined. However, more
sophisticated heuristics will be required to generate histories that are likely
to contain most states and transitions of a target system. Histories with
a more complete description will improve learning since fewer histories
will be required to complete a model. How significant an improvement
this might be is an open research question.

The contextual heuristics were based on identifying objects that change
and their relationship with objects already being tracked. Using a naive
approach of including any object which changes was sufficient in a re-
stricted environment. This approach will break down in a realistic en-

vironment with lots of simultaneously changing objects (caused by other

155

agents and processes). To address this problem a ‘relatedness” heuristic
was introduced which estimated how likely it is that a changing object is
actually part of the currently observed system.

The history generator was evaluated by generating lots of histories and
looking at statistics such as the average number of states, context objects,
etc. Also the generated histories were compared with the types of sys-
tems that would be expected to be useful in the particular domain. This
was sufficient to show that the histories being generated were appropri-
ate for learning. However it could not be determined which combinations
of heuristics were better than others for use in learning. This could be
achieved by using the histories as input to a learner, and then assessing
the resulting models with respect to task achievement.

Learning & Planning

A complete agent that can learn generalised models and use them to plan
and achieve goals was implemented and tested using the simulation. It
demonstrated that Q-Systems can be used successfully in generalisation
and planning. However, the algorithms were somewhat limited in the
types of models that can be constructed and also in the sophistication of
the resulting plans. Improving the performance of these algorithms is an
area of future work (some preliminary ideas are discussed in section 7.1).
This section describes some of the issues encountered during development
of the learner and planner.

Matching was identified as a critical component in generalising. Gen-
eralizing with Q-Systems requires entire system matching, which involves
systems’ contexts, states, and transitions. The problem of searching the ex-
ponential search space of possible matchings was addressed and a polyno-
mial time ‘good enough’ algorithm (see section 6.1.1) was developed and
applied with promising results.

Q-Systems make planning easier by constraining the search space of

possible actions. Planning with a single system was found to be mostly

156 CHAPTER 7. CONCLUSION

trivial (except for the problem of resolving ambiguous actions). The plan-
ner worked by constructing a subset of an applicable system with the
property that the goal can be reached from all states. It then performed
a straightforward shortest path search to the goal.

A more difficult problem was that of finding a system that is applicable
to the agent’s current situation (i.e. matching abstract generalized models
to concrete situations). A naive search was used by the agent presented in
section 6.3. However, because this is a type of matching problem a more
efficient solution could be developed by re-using the ideas developed for
the learner’s matcher (described in section 6.1).

A problem that is particular to planning with Q-Systems is that achiev-
ing more complex goals will require the ability to chain multiple systems
together. The obvious solution is to bind objects in different systems and
then to plan across the systems as though each system were a large com-
posite action (similar to Erol et al.[11]). How this mechanism would work
in practice needs to be further explored.

Q-Systems have been shown to work with an integrated history gen-
erating, learning and planning agent in a complex world. However a lim-
itation of this thesis is it has not shown in a quantitative experiment that
this approach is better at solving particular tasks or dealing with certain
environmental complexities when compared with existing action repre-
sentations. It is clear that the representation can express more than what
an action representation or qualitative process representation alone can
express, however a task orientated experiment comparing the approaches
side-by-side would help identify the particular strengths and weaknesses

that cannot be seen when assessing the representation in isolation.

7.1 Future Work

There are three related areas of work that would benefit from further in-

vestigation: improving the representation, improving the integrated learn-

7.1. FUTURE WORK 157

ing system, and finally, development of better means to evaluate different

representations and learning systems.

The representation could be improved by adding extra information to
the system models. One kind of extra information, ‘entry” and ‘exit” ac-
tions, relates to how Q-Systems are used in planning. Adding additional
annotated actions of this type would make planning across multiple sys-
tems easier. The actions would represent the actions that normally make
the system applicable or not applicable (i.e. they complete or invalidate
a system’s context). This information could be obtained by observing the
action that enter or exit a system and finding which ones happen most fre-
quently. Planning across multiple systems would be made easier because
the entry and exit actions can be prioritized when searching for actions

that join systems.

A second improvement to the representation would be to introduce
a limited amount of quantitative information. Q-Systems were designed
to make full use of qualitative information especially in situations where
quantitative information is unavailable. However, quantitative informa-
tion will be sometimes available; extending Q-Systems with quantitative
information would allow an agent to take full advantage of all its observa-
tional capabilities.

One way to introduce quantitative information into systems would
be to annotate qualitative deltas with an estimated amount of change.
This would solve the problem in which there is sometimes no observable
qualitative difference between deltas which are in fact significantly dif-
ferent. For example, the qualitative observation of turning a lever by a
small amount is identical to the observation of turning a lever by a large
amount. The difference would be captured by the representation if the ac-
tion’s qualitative delta had a quantitative estimate of how far the tap was

turned.

dentical if we assume that no natural comparison points exist and that arbitrary
landmarks have not been set.

158 CHAPTER 7. CONCLUSION

A complication of introducing quantitative estimates is that actions
may need to be quantitatively parameterized in order to allow the quan-
titative estimates to be used effectively in reasoning. For example, the
‘turn_lever” action would need to become ‘turn_lever_X_degrees’. This ap-
proach would allow an agent to model behaviour more precisely than with

purely qualitative information.

The second significant area of future work is to improve the overall
learning system of the agent such that it is still effective when additional
complexities are introduced into the environment. Two particular issues
are how to learn about hidden variables and also how to learn when mul-
tiple other agents and processes are present. Q-Systems support the in-
troduction of hidden variables into states, but the current learning system
does not take advantage of this. A mechanism for identifying hidden vari-
ables could make use of the temporal aspect of example histories. If cer-
tain ambiguous actions outcomes are always preceded by the same actions
then the histories will show this. Correctly modelling hidden variables
would improve models and the plans that are generated from them.

Learning can also be improved by filtering out the changes to the en-
vironment that are unrelated to the agent’s current focus. These changes
arise from other agents” actions and also other naturally occurring pro-
cesses. The current heuristics used in the history generator assume that
no other agents or processes are present. Ideally the ‘relatedness’ measure
would ensure that unrelated objects are not included in the current history.

The best way to achieve this is not obvious.

The final area of future work is development of a robust means of com-
paring different representations and learning systems against fixed bench-
marks.

The learning system presented in this thesis is composed of several in-
tegrated sub-systems. The performance of each sub-system is dependent
on a particular configuration of heuristics, parameter settings and other

design decisions. Assessing the effect of changing a single design deci-

7.1. FUTURE WORK 159

sion (swapping one heuristic for another for example) must be measured
by the performance of the learning system as a whole. A good way to
assess overall learning performance is to use benchmark tasks which re-
flect the types of tasks the agent should be able to achieve. One such task
is the building towers task (see section 6.4). This is a good benchmark be-
cause performance can be unambiguously assessed (e.g. what is the tallest
tower that was built) and also because it involves complex qualitative be-
havioural dynamics. Future work would focus on measuring the effect of
various heuristics and other design decisions on the ability of the agent to
perform well on this and other benchmarks.

The benchmarks would also be used to compare Q-Systems with ex-
isting representations and learning systems. Ideally these other systems
would already be documented using comparable benchmarks; however
this is not the case. Some systems use superficially similar scenarios, e.g.
the tower building task, but the environments in which the task is exe-
cuted are significantly different and therefore a direct comparison is not
possible. To make direct comparison possible the existing systems would
have to be reimplemented and applied to identical tasks in the same envi-

ronment.

160 CHAPTER 7. CONCLUSION

Bibliography

[1] ALLEN, J. F. Maintaining knowledge about temporal intervals. Com-
mun. ACM 26, 11 (November 1983), 832-843.

[2] AMIR, E. Learning partially observable action models, 2005.

[3] BEBBINGTON, J. Multi system qualitative planner. Tech. rep., En-

gineering and Computer Science, Victoria University of Wellington,
2010.

[4] BLOCKEEL, H., AND RAEDT, L. D. Top-down induction of first-order
logical decision trees. Artificial Intelligence 101, 1-2 (1998), 285 — 297.

[5] BOXER, P. A. Towards learning naive physics by visual observation:
Qualitative spatial representations. In Al ‘01: Proceedings of the 14th
Australian Joint Conference on Artificial Intelligence (London, UK, 2001),
Springer-Verlag, pp. 62-70.

[6] BRATKO, I., AND Suc, D. Learning qualitative models. AI Mag. 24, 4
(2004), 107-119.

[7] BRUCE, P. C., PORTER, B., AND BATORY, D. A compositional ap-
proach to representing planning operators. Tech. rep., University of
Texas, 1996.

[8] COHN, A. G., AND HAZARIKA, S. M. Qualitative spatial represen-

tation and reasoning: An overview. Fundam. Inform. 46, 1-2 (2001),
1-29.

161

162 BIBLIOGRAPHY

[9] DAvIs, E. Pouring liquids: A study in commonsense physical rea-
soning. Artificial Intelligence 172, 12-13 (2008), 1540 — 1578.

[10] DE KLEER, J. Qualitative and quantitative knowledge in classical me-
chanics, technical report 352. Tech. rep., MIT Al Lab, 1975.

[11] ErROL, K., HENDLER, J., AND NAU, D. S. Htn planning: Complexity
and expressivity. In In AAAI-94 (1994).

[12] EsPOSITO, F., SEMERARO, G., FAN1ZzZ1, N., AND FERILLI, S. Concep-
tual change in learning naive physics: The computational model as a
theory revision process. In AI*IA (2000), vol. 1792 of Lecture Notes in
Computer Science, Springer, pp. 214-225.

[13] FIKES, R., AND NILSSON, N. Strips: A new approach to the appli-

cation of theorem proving to problem solving. Artificial Intelligence 2
(1971), 189-208.

[14] ForBus, K. D. Qualitative process theory. Artificial Intelligence 24, 1-3
(1984), 85 — 168.

[15] FORrBUS, K. D. Introducing actions into qualitative simulation. In
Proceedings of the Eleventh International Joint Conference on Artificial In-
telligence (San Mateo, California, 1989), N. S. Sridharan, Ed., Morgan
Kaufmann, pp. 1273-1278.

[16] FOrBUS, K. D., NIELSEN, P., AND FALTINGS, B. Qualitative kine-
matics: a framework. In I[JCAI'87: Proceedings of the 10th international
joint conference on Artificial intelligence (San Francisco, CA, USA, 1987),
Morgan Kaufmann Publishers Inc., pp. 430—435.

[17] Fox, M., AND LONG, D. PddI2.1: An extension to pddl for express-
ing temporal planning domains. Journal of AI Research. 20 (2003).

BIBLIOGRAPHY 163

[18] GIL, Y. Learning by experimentation: incremental refinement of in-
complete planning domains. Proceedings of the Eleventh International
Conference on Machine Learning (1994).

[19] GUESGEN, H. W. Spatial reasoning based on allen’s temporal logic.

Tech. rep., International Computer Science Institute, 1989.

[20] HAYES, P.]J. The second naive physics manifesto. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1990, pp. 46-63.

[21] HOGGE, J. C. Compiling plan operators from domains expressed in
qualitative process theory. In AAAI (1987), pp. 229-233.

[22] KUIPERS, B. Qualitative reasoning: modeling and simulation with incom-
plete knowledge. Massachusetts Institute of Technology, Cambridge,
Mass., USA, 1994, ch. 2.

[23] KUIPERS, B. J. Qualitative simulation. Artificial Intelligence 29 (1986),
289-338.

[24] L1, R., AND PEREIRA, L. M. Representing and reasoning about con-
current actions with abductive logic programs. Annals of Mathematics
and Artificial Intelligence 21, 2-4 (1997), 245-303.

[25] LIFSCHITZ, V., AND REN, W. A modular action description language.
In AAAI'06: Proceedings of the 21st national conference on Artificial intel-
ligence (2006), AAAI Press, pp. 853-859.

[26] MCCARTHY, J., AND HAYES, P.]J. Some philosophical problems from
the standpoint of artificial intelligence (1969). - (1987), 26-45.

[27] MCDERMOTT, D. Pddl — the planning domain definition language,
1998.

[28] MITCHELL, T. M. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1997, ch. 2.

164 BIBLIOGRAPHY

[29] MUGAN, J., AND KUIPERS, B. Learning to predict the effects of ac-
tions: synergy between rules and landmarks. In IEEE International
Conference on Development and Learning (ICDL-07). (2007).

[30] MUGGLETON, S. Inductive Logic Programming. New Generation Com-
puting 8,4 (1991), 295-318.

[31] OATES, T., AND COHEN, P. R. Searching for planning operators
with context-dependent and probabilistic effects. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence and the Eighth In-
novative Applications of Artificial Intelligence Conference, Vol. 2 (Menlo
Park, California, 1996), H. Shrobe and T. Senator, Eds., AAAI Press,
pp- 865-868.

[32] PEDNAULT, E. P. D. Adl: exploring the middle ground between strips
and the situation calculus. In Proceedings of the first international con-
ference on Principles of knowledge representation and reasoning (San Fran-
cisco, CA, USA, 1989), Morgan Kaufmann Publishers Inc., pp. 324—
332.

[33] PEDNAULT, E. P. D. Adl and the state-transition model of action.
Journal of Logic and Computation 4, 5 (1994), 467-512.

[34] REITER, R. A logic for default reasoning. Artificial Intelligence 13, 1-2
(1980), 81 —132.

[35] SHAHAF, D. Learning partially obserevable action schemas. In Pro-
ceedings of the Twenty-First AAAI Conference on Artificial Intelligence
(2006).

[36] SHEN, W.-M. Discovery as autonomous learning from the environ-
ment. Machine Learning 12 (1993), 143-165.

[37] STEINHAUER, H. J. A Representation Scheme for Description and Recon-
struction of Object Configurations Based on Qualitative Relations. PhD

BIBLIOGRAPHY 165

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

thesis, Linkping UniversityLinkping University, CASL - Cognitive
Autonomous Systems Laboratory, The Institute of Technology, 2008.

THOMAZ, A. L., AND BREAZEAL, C. Teachable robots: Understand-

ing human teaching behavior to build more effective robot learners.
Artif. Intell. 172, 6-7 (2008), 716-737.

VELOSO, M., CARBONELL, J., PREZ, A., BORRAJO, D., FINK, E., AND
BLYTHE,]. Integrating planning and learning: The prodigy archi-
tecture. Journal of Experimental and Theoretical Artificial Intelligence 7
(1995), 81-120.

WANG, X., SIMON, H. A., LEHMAN, J. F., AND FISHER, D. H. Learn-
ing planning operators by observation and practice. In Proceedings
of the Second International Conference on Al Planning Systems, AIPS-94
(1996), pp. 335-340.

WATKINS, C.J. C. H., AND DAYAN, P. Technical note: Q-learning.
Mach. Learn. 8, 3-4 (1992), 279-292.

WINOGRAD, T. Procedures as a representation for data in a computer
program for understanding natural language. Tech. rep., MIT Al Lab,
MAC-TR-84, 1971.

WINSTON, P. H. Learning structural descriptions from examples.
Tech. rep., MIT, Cambridge, MA, USA, 1970.

YANG, Q., WU, K., AND JIANG, Y. Learning action models from
plan examples with incomplete knowledge. In Proceedings of the 2005
International Conference on Automated Planning and Scheduling, (ICAPS
2005) Monterey, CA USA (2005), pp. 241-250.

ZETTLEMOYER, L. S., PASULA, H., AND KAELBLING, L. P. Learning
planning rules in noisy stochastic worlds. In AAAI (2005), pp. 911-
918.

