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Abstract

In tree-based genetic programming (GP) there is a tendency for the pro-
gram trees to increase in size from one generation to the next. If this in-
crease in program size is not accompanied by an improvement in fitness
then this unproductive increase is known as bloat. It is standard prac-
tice to place some form of control on program size. This can be done
by limiting the number of nodes or the depth of the program trees, or
by adding a component to the fitness function that rewards smaller pro-
grams (parsimony pressure) or by simplifying individual programs using
algebraic methods. This thesis proposes a novel program simplification
method called numerical simplification that uses only the range of values
the nodes take during fitness evaluation.

The effect of online program simplification, both algebraic and numer-
ical, on program size and resource usage is examined. This thesis also ex-
amines the distribution of program fragments within a genetic program-
ming population and how this is changed by using simplification.

It is shown that both simplification approaches result in reductions in
average program size, memory used and computation time and that nu-
merical simplification performs at least as well as algebraic simplification,
and in some cases will outperform algebraic simplification. This reduction
in program size and the resources required to process the GP run come
without any significant reduction in accuracy. It is also shown that al-
though the two online simplification methods destroy some existing pro-
gram fragments, they generate new fragments during evolution, which
compensates for any negative effects from the disruption of existing frag-
ments.



It is also shown that, after the first few generations, the rate new frag-
ments are created, the rate fragments are lost from the population, and the
number of distinct (different) fragments in the population remain within
a very narrow range of values for the remainder of the run.
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Chapter 1

Introduction

1.1 Genetic Programming

Genetic programming (GP) [30, 31, 33, 52] is a method for automatically
generating programs to solve a given task. It is based on the Darwinian
ideas of evolution and survival of the fittest. This is accomplished by tak-
ing an initial population of programs, evaluating the fitness (goodness) of
each program, then producing the next generation by various operations
where the chance of a program contributing to the next generation is de-
pendent on that program’s fitness.

There are various forms of GP, but this thesis concerns itself with the
most common form, tree-based GP. In this form, the programs are tree struc-
tures and can be expressed as LISP1 expressions. The nodes of the tree each
take a single floating point value. The leaf nodes are either feature val-
ues from the input data, or ephemeral constants. These constants are as-
signed a random value when they are created and then remain unchanged.
The internal nodes are operators such as multiplication or addition. GP
has been successfully applied to many tasks, particularly symbolic regres-
sion [31] and both binary [55, 62] and multi-class [35, 61] classification.

1LISP is a symbolic programming language often used for AI
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2 CHAPTER 1. INTRODUCTION

Because the tree structured program is not constrained in either shape
or size, the program can evolve into whatever form is required to solve the
task. This is a great strength of GP compared with many other evolution-
ary methods which require the form of the solution to be known before
hand. This strength also contains a weakness. The programs can, and
usually do, continue to grow in size as the run proceeds through the gen-
erations. If this increase in size does not bring an improvement in fitness
then this unwanted growth is called bloat [3, 64].

Bloat causes a number of problems. It increases the memory required
to store the population of programs and if the memory required becomes
too large it may prevent the run completing. This limits the maximum
population size that a particular hardware environment can support, and
population size often has a critical influence on the success or otherwise of
a GP run. Bloat increases the amount of CPU time required to calculate the
program’s value and therefore the time taken to evaluate the program’s
fitness. Fitness evaluation is usually the most time consuming part of a
GP run so this is an important issue. If the amount of code in the program
becomes much larger than that required for a good solution, there is a
danger that the program may start to overfit the training data. This may
cause misclassifications in classification tasks, and is a particular problem
with symbolic regression tasks, when testing on unseen examples.

There have been a number of approaches used to control or prevent
bloat. A hard limit can be placed on program size, either in number of
nodes or in depth [31]. This will prevent bloat, but because the program is
no longer free to take any size or shape it may inhibit or prevent the solu-
tion taking the form required for a good solution. The evolution process
can be manipulated to disadvantage large programs, either by penalis-
ing fitness [31, 45, 81] (parsimony pressure), or by changing the selection
process as in the double tournament method [36]. The tarpeian method [51]
removes randomly selected over-large programs from the population. An-
other approach is to try and prevent bloat using modified genetic opera-
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tors [32, 46, 3, 1]. The programs can also be simplified by removing re-
dundant subtrees. A rules based approach [22] has been proposed. The
motivation was to prevent overfitting. This objective was achieved but the
approach was too expensive computationally to show any reduction in re-
source usage. Algebraic simplification [86] is a simpler approach using the
standard algebraic rules and has been shown to reduce bloat and resource
usage without significant reduction in accuracy, but the algorithm is fairly
complex and not easy to use.

1.2 Goals

This thesis proposes a new method for online simplification of programs
in tree based GP that is simpler to use than algebraic simplification with
the goal of significantly reducing program sizes and computational cost
without deterioration in the effectiveness2. This method is called numerical
simplification.

Most datasets include a noise component. This may be the result of
restricted measurement accuracy, or because of physical phenomena such
as thermal noise, or the inclusion of data that does not assist in forming a
good solution. The inspiration for numerical simplification came from the
idea of treating two values or sets of values whose differences are within
the noise level of the input data as being equal for the purpose of deciding
if simplification should occur.

This thesis examines the performance and behaviour of numerical sim-
plification and compares it to both canonical (standard) GP and the alge-
braic simplification method [86].

2This thesis uses the term effectiveness to mean the root mean square (RMS) error for a
regression problem and the classification error rate on the test set for classification prob-
lems.
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The specific questions examined are:

1. Can numerical simplification help control bloat, thereby reducing re-
source requirements without significantly reducing the effectiveness
of the GP search? This question is broken down into the following
sub-questions and is answered in chapter 4.

• Will the numerical simplification method produce smaller pro-
grams than canonical (standard) GP with no simplification?

• Will the numerical simplification method reduce memory usage
and shorten computation run times compared to canonical GP
with no simplification?

• Will the numerical simplification method affect the system ef-
fectiveness?

• How does numerical simplification perform compared to alge-
braic simplification?

2. Is there a relationship between the optimum value for the simplifica-
tion threshold3 in numerical simplification and the amount of noise
in the input data? This question is broken down into the following
sub-questions and is answered in chapter 5.

• Is there an optimal value for the simplification threshold?

• If there is an optimal value for the simplification threshold, is
there a relationship between that optimal value and the amount
of noise in the input data?

• If this relationship exists then what is it?

3The simplification threshold is the maximum difference that can be treated as zero
for simplification purposes.
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3. Do the numerical and algebraic simplification methods change the
pattern of fragments4 within the GP population? This question is
broken down into the following sub-questions:

• How are the fragments are spread through the population in the
two simplification methods and canonical GP with no simplifi-
cation?

• Do the two simplification methods destroy existing fragments?

• Do the two simplification methods generate new fragments?

• Do the more general fragments analysed in this thesis behave
differently from the simple fragments (numerical/“constant”
terminals only) analysed by Wong [78], and if so then how do
they differ.

These are answered in chapter 6 using images to show the distri-
bution of fragments within the population, and within the search
space, as the GP run progresses through the generations. These im-
ages show the distribution of fragments for single GP runs. Chap-
ter 7 uses statistical methods to examine these questions for sets of
GP runs.

1.3 Major Contributions

This thesis makes the following major contributions to Genetic Program-
ming:

1. Numerical simplification, a new method for online program simpli-
fication is proposed. This uses numerical significance to drive de-
cisions about program simplification during the evolutionary pro-
cess. The results on a number of classification and regression tasks

4This thesis uses the term fragment for a subtree of fixed depth that occurs at some
point within the larger tree structure that is the program.



6 CHAPTER 1. INTRODUCTION

show that this method significantly reduces program sizes and con-
sequently memory usage and CPU run times without significant loss
of accuracy.

Part of this work has been published in:

• David Kinzett, Mengjie Zhang and Mark Johnston. “Using Nu-
merical Simplification to Control Bloat in Genetic Programming”
Proceedings of the 7th International Conference on Simulated Evolu-
tion And Learning (SEAL ’08). Lecture Notes in Computer Science.,
Vol. 5361, Springer 2008. pp. 493–502.

• David Kinzett, Mark Johnston and Mengjie Zhang. “Numerical
simplification for bloat control and analysis of building blocks
in genetic programming”. (Journal of) Evolutionary Intelligence,
Volume 2, Number 4, pp. 151–168; DOI 10.1007/s12065-009-
0029-9. Springer Berlin/Heidelberg Dec 2009

2. This thesis postulates that the optimal value for the simplification
threshold will be related to and of the order of the noise amplitude
in the input data. The results on two regression tasks show that while
there is no clear optimum value for the threshold, there is a thresh-
old above which the error rises sharply. The simplification threshold
where this increase starts is between 3.5 and 10.0 times the maximum
amplitude of the noise component in the input data.

Part of this work has been published in:

• David Kinzett, Mengjie Zhang and Mark Johnston. “Investiga-
tion of Simplification Threshold and Noise Level of Input Data
in Numerical Simplification of Genetic Programs”. Proceedings
of 2010 IEEE Congress on Evolutionary Computation. Barcelona,
Spain. 2010. IEEE. pp. 3065–3072.
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3. A visualisation scheme is introduced that allows the distributions
of program fragments up to three levels deep to be qualitatively as-
sessed. This is achieved by encoding the program fragment into an
integer, such that similar fragments generally encode to similar in-
tegers. These encodings are used to create images to show the dis-
tribution of fragments for individual GP runs, and how these distri-
butions change through the evolutionary process. This thesis is able
to use these images to show that numerical simplification and algebraic
simplification make little or no qualitative change to the distribution
of fragments.

Part of this work has been published in:

• David Kinzett, Mark Johnston and Mengjie Zhang. “How On-
line Simplification Affects Building Blocks in Genetic Program-
ming” Proceedings of the 11th Annual conference on Genetic
and Evolutionary Computation (GECCO 2009), ACM Press, 2009,
pp. 979–986. ISBN:978-1-60558-325-9

4. A third encoding scheme is introduced that allows three level deep
fragments to be described more precisely than the two encoding schemes
used in the qualitative examination. This encoding scheme is used
with statistical methods to confirm the results obtained using the vi-
sualisation scheme.

The results also show that after the first few generations the rate at
which new fragments are added to, or removed from, the population
is nearly constant. The number of distinct fragments present in the
population at any generation in the run is also nearly constant. Nu-
merical simplification reduces the number of distinct fragments in the
population thus in some sense reducing the overall diversity within
the population but, at least for the datasets used in these experi-
ments, this loss of diversity has not adversely affected the accuracy.
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Part of this work has been published in:

• David Kinzett, Mengjie Zhang and Mark Johnston. “Analysis of
Building Blocks with Numerical Simplification in Genetic Pro-
gramming”. Proceedings of the 13th European Conference on Ge-
netic Programming, Istanbul, Turkey. Springer 2010. pp. 289–
300.

1.4 Structure

The remainder of this document is structured as follows.
Chapter 2 provides background information for the work presented in

this thesis. This chapter includes a full description of the algebraic simpli-
fication which is used for comparison purposes throughout much of this
work. The experimental setup and the datasets used for the experiments
are described in chapter 3.

A full description of numerical simplification is presented in chapter 4
along with experimental results comparing this method with both algebraic
simplification and canonical GP. These results show the effect on program
size and shape, resource usage, and the effectiveness of the GP run.

Chapter 5 presents an investigation of the relationship between the op-
timum value for the simplification threshold and the level of random noise
in the input data.

The next two chapters present an investigation of the effect on frag-
ment distribution. The first of these, chapter 6, presents a method for
encoding the fragments that allows the distribution to be displayed as an
image. Chapter 7 furthers this work by using statistical methods on a finer
grained version of the encoding scheme used in chapter 6.

The conclusions plus discussion and future work are then presented in
chapter 8.



Chapter 2

Literature Survey

This chapter presents the background information for the detailed chap-
ters that follow, starting with a definition of artificial intelligence and pro-
ceeding through ever more specialised fields of study to genetic program-
ming, which is the subject of this thesis. General principals are outlined
and standard terms and practices defined. This is followed by an outline
of existing work and methods for control of bloat in genetic programming,
a description of the algebraic simplification method used as a comparison
point in this thesis, and finally some background to the non-parametric
statistical methods used in this thesis.

2.1 Artificial Intelligence

Ever since the beginning of the computer age, people have wondered and
speculated about the concept of machines having intelligence. A major
early worker in this area was the cryptologist Alan Turing, particularly
his 1950 paper “Computing Machinery and Intelligence“ [70]. At a time
when computers were a primitive novelty, in a 1948 report ”Intelligent
Machines“ [69], he proposed networks similar to neural networks, what
he called a ”B-type unorganised machine”. In [70] Turing suggests that
programming a machine to act like an adult human brain is too large a

9
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job, instead he suggests programming a machine to be like a child’s brain
and then having it learn. Drawing parallels with evolution, he likened the
structure of the machine to the hereditary material, changes to the machine
to be mutations and natural selection being provided by the judgement of
the experimenter.

There are many different definitions of artificial intelligence. They fall
into two main categories.

1. Machines thinking or behaving like humans. In 1950 Alan Turing
proposed his now famous test in which a human observer conducts
a conversation, via a keyboard, with a machine and a human. If the
observer cannot reliably distinguish which respondent is which then
the machine is deemed to be displaying intelligence [70].

In 1983, in a talk AI, Where it has been and where is it going [59], Arthur
Samuel offered the following definition of artificial intelligence:

“. . . to get machines to exhibit behaviour which, if done
by humans, would be assumed to involve the use of intel-
ligence.”

2. Machines exhibiting rational thought or behaviour. This approach
emphasises pure logic and rational thought rather than mimicking
natural processes. John McCarthy [39, 40] was an early proponent of
this approach. In a paper [29] in Science, Kolata quotes McCarthy as
writing:

“This is AI, so we don’t care if it’s psychologically real.”

a position McCarthy repeated at a conference in 2006 when he said:

“Artificial intelligence is not, by definition, simulation
of human intelligence.”
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2.2 Machine Learning

The earliest work in artificial intelligence focused on reasoning and deduc-
tion, but very soon Arthur Samuel [57, 58] started investigating the idea
of machines learning from experience, either their own or as supplied by
knowledgeable humans. This is the field known as machine learning [42].
Samuel used the game of checkers1 as his research vehicle and in 1961 his
program beat an expert human player in a widely publicised match.

There are many applications for these techniques, including but not
limited to:

Speech Recognition - Recognising spoken speech, usually trained using
the intended operator’s voice.

Computer Vision - This includes both object recognition, and object lo-
calisation/detection (finding the object(s) of interest against an often
noisy background).

Time-series Prediction - This includes tasks like weather forecasting and
prediction of financial markets.

Game Playing - Checkers and chess.

Natural Language Processing - Extracting meaning from written natural
language, for translation or inputting question or search criteria.

Medical Diagnosis - Medical diagnosis normally requires human exper-
tise, but machine learning techniques can be valuable for tasks like
evaluating mass screening tests. In this application there are a very
large number of tests to evaluate, most of which will be routine.
Those that the machine learning algorithm cannot produce a clear
decision on can still be referred to a human expert.

1also known as draughts.
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Machine learning uses a set of supplied examples we call training data
or the training set. The objective is to develop an algorithm, or a set of
parameters for a pre-defined algorithm, that learns from the training data,
allowing previously unseen data (the test set or test data) to be correctly
processed. There is further explanation of this and the other optional sets
of examples later in this chapter. Machine learning has three main subdi-
visions depending on the way in which the program learns.

2.2.1 Supervised Learning

In supervised learning [68], the training data includes the desired output
value for each example. This is used to provide feedback for the learn-
ing process. The machine learning algorithm produces a function/rule
set/model that allows it to predict the supplied output value from the
input data. This learned function/rule set/model is then used to make
predictions from previously unseen data.

2.2.2 Unsupervised Learning

Unsupervised learning uses only the training data with no supplied an-
swers. The task is to find patterns in the training data. Examples of this
are clustering, and finding and extracting tabular data in web pages.

2.2.3 Reinforced Learning

In reinforced learning the correct output values are not supplied with the
training data, but there is some other method of rewarding correct be-
haviour. This often the case with game playing. It is not generally pos-
sible to assign a true value to intermediate games positions, but humans
can supply a general indication with the final game result the ultimate
validation, or not, of the choices the program may have made.

This thesis uses only supervised learning.
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2.2.4 Datasets

In supervised learning the available input data is split into two or some-
times three sets as follows:

Training Set

The training set is used to induce/generate/produce or otherwise learn a
hidden pattern ( or classifier or model etc). It is always required.

Validation Set

This is an optional set of data. It is used in the learning process to help
decide when to finish training, and to help detect overfitting. Overfitting
is where the learned process follows the smallest variations in the input
data (which may well be noise) too closely, which results in poor generali-
sation, that is poor performance on data that was not in the training set. A
validation set is not used in this work.

Test Set

The test set is a set of data that has not been seen during the training pro-
cess. After training has finished, the learned pattern (classifier, model etc)
is then tested on the data in the test set. It is this score, (classification error
rate, RMS error or other measure) that is the final measure of accuracy for
the learned pattern.

n-Fold Cross Validation

When the amount of data available is not large enough to form separate
training and test sets of sufficient size then this technique can be used.
The most common value for n is 10 and this is the value used in this work.
In 10-fold cross validation [28] the available data is split randomly into
10 sets (folds) as equal in size as possible. The experiment is then run 10
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times with each of the 10 sets being used in turn as the test set, with the
remaining 9 sets combined to form the training set. The final test result is
the average of the 10 individual test scores.

2.2.5 Main Paradigms in Machine Learning

There have been many different approaches to machine learning. The fol-
lowing sections introduce the most important paradigms in the field.

Instance Based Learning

In instance based learning there is no explicit learning algorithm in the
sense that most machine learning paradigms have a learning algorithm.
Instead, each previously unseen item is compared directly with the train-
ing data. A common algorithm is the nearest neighbour algorithm [7] that
uses a distance measure of some kind to determine the item in the training
data that is most like (nearest) the previously unseen item. The answer is
then taken from that ”nearest“ training item. In the k-nearest neighbour
algorithm the answer is taken from the k nearest items in the training data.
If it is a classification task then the result is a vote between these k items, if
it is a regression task then some form of weighted average is used.

Induction Learning

The main induction learning algorithm is decision trees [4, 25]. The deci-
sion tree is a series of questions or conditions in a tree structure and is
navigated starting from the root, with the final answers being the leaves
of the tree. Decision trees have the advantage of being easy for human be-
ings to understand the results, and they are very flexible in that they can
handle categorical and Boolean data as well as numeric. They can how-
ever be prone to overfitting and finding the optimum decision tree for any
given problem is known to be NP-complete [23].
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Statistical Based Learning

These methods use statistical or probabilistic analysis of the training data
to develop a classifier. The best known algorithm of this type is Naive
Bayes [82].

Typically, naive bayes classifiers are boolean in nature, giving a simple
true/false answer but in principal they can be multi-class. If we have a
class variable C with two or more states then a classifier based on proba-
bility could be expressed as:

p(C|F1, . . . , Fn)

Where F1 to Fn are the n features of the training data.

Using Bayes’ theorem, this becomes:

p(C|F1, . . . , Fn) =
p(C)p(F1, . . . , Fn|C)

p(F1, . . . , Fn)

p(C) and p(F1, . . . , Fn) can easily be calculated from the training data. The
naive bayes algorithm makes the assumption that the feature probabilities
are independent of each other. This allows the p(C)p(F1, . . . , Fn|C) term
to be expanded out into n separate terms, one for each feature, which can
be easily calculated from the training data. The resulting classifier is fast
to evaluate, and in spite of the assumption about feature independence,
works well on many real-world problems. Many email spam detectors use
naive bayes based on word counts. It functions well on this problem and
it adapts well to changing patterns because the underlying word counts
are easily updated based on user feedback on any mistakes the classifier
may make.

Connectionist Learning

This paradigm includes neural networks and related algorithms. Neural
networks [60] are inspired by the neurons of the human brain and are a
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connected network of neurons. Each neuron (or perceptron) has one or
more inputs that it combines in some fashion (in the canonical case it is by
weighted sum). This result may either be used directly, or more commonly
transformed using a sigmoid type function that has the properties of being
contiguous and everywhere differentiable, but outside a narrow central
range quickly converges to one of two values (usually either 0 and 1 or -1
and 1).

The canonical/standard neural network is a feedforward network, that
is, it is an acyclic graph. More recently there has been a lot of research
into recurrent neural networks [71], which include feedback loops. These
can mimic short term memory (to allow time series analysis), or provide
resonant behaviour for recognition, particularly in vision processing.

In the canonical feedforward network the weights on the neuron inputs
are learnt using back propagation. This is an iterative process where the
difference between network output and the desired result is propagated
back through the network to adjust the weights. The weights can also
be learned by many of the other machine learning paradigms, including
genetic algorithms (GA), genetic programming (GP) and particle swarm
optimisation (PSO).

Support Vector Machines

A support vector machine [6] is a binary classifier in which the training
data is mapped on to a space with at least as many dimensions as the
training data has features. A hyperplane is then constructed such that the
two classes are separated either side of the hyperplane with as large a gap
between them as possible, or if that is not possible, then to minimise the
number of classification errors.
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Evolutionary Computation

The inspiration for evolutionary computation [13] comes from the evolu-
tionary theories of Charles Darwin. In particular his idea of survival of
the fittest. The following section describes this paradigm in more detail,
including genetic programming which is the basis of this thesis.

2.3 Evolutionary Computation

The following few sections describe the basic concepts common to all evo-
lutionary computation methods. The details vary according to the partic-
ular algorithm and will be addressed later in this chapter.

2.3.1 Population of Individuals

Evolutionary computation uses a population of individuals. Most methods
proceed in a series of generations, although some methods process one se-
lected individual at a time with no explicit partition into generations. At
each generation a new population is created using selection and a set of ge-
netic operators on the current generation, hypothetically producing better
performance on the assigned task with each new generation. The proba-
bility of a particular individual member of the population contributing in
some way to the next generation depends on that individual’s fitness.

2.3.2 Measuring Fitness

The method used to measure an individual’s fitness is critical to the suc-
cess of any computational evolutionary method. There are many different
ways of measuring fitness, but the two used in this thesis are described
below.
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Error rate

In classification tasks using supervised learning a common method to as-
sign fitness is to measure the classification error rate on the training set.
The lower the error rate, the better the fitness. This is often expressed as
(1− error) and called accuracy.

RMS error

In symbolic regression tasks a common method is Root Mean Squared (RMS)
Error. √∑n

i=0(Pi − Ti)
2

n

where Pi is the output of the program for the ith instance of the training
set and Ti is the target value of the same instance given by the training set.
The training set contains n examples/instances.

2.3.3 Fitness Selection

There are a number of methods used for selecting individuals based on
fitness [41]. The two most commonly used are described below.

Roulette Wheel

Also called fitness proportionate selection in genetic programming. The prob-
ability of an individual being selected is proportional to its fitness relative
to the rest of the population. That is, the probability of the ith individual,
with fitness Fi being selected from a population of n individuals is:

Pi =
Fi∑n
j=1 Fj
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Tournament

In tournament selection, a number of individuals are chosen at random.
The individual with the best fitness is the tournament winner. The bet-
ter an individual’s fitness is, the better their chance will be of winning a
tournament for which they have been selected. The larger the number
of individuals chosen (the tournament size), the lower the chance of an
individual with poor fitness being the tournament winner. This allows
the level of selection pressure to be easily adjusted. Too low a pressure
and convergence to a solution is too slow, too high a pressure and conver-
gence is likely to be to a local optima and the globally best solution will be
missed. Tournament sizes are normally in the range 4− 11.

Tournament selection is used throughout this work.

2.3.4 Creating a New Generation

The next generation is created by selecting individuals based on their fit-
ness and modifying them in some way using what are known as genetic
operators. These modified individuals, usually referred to as children, make
up the new population.

Because this process is stochastic, there is a non-zero probability that
the fittest individual in the population could be lost. For this reason, elitism
is normally used. This involves transferring a small number of the fittest
individuals unmodified directly into the new population. This is often
called the reproduction operator in GP. All of the experiments reported in
this work used an elitism rate of 5%.

The other two most commonly used genetic operators, and used in this
work, are crossover and mutation.

The crossover operator takes two selected individuals, selects a portion
of each, then swaps these portions into the other selected individual. This
therefore produces two children for the next population. The details of
how this is done depends on the evolutionary algorithm being used.



20 CHAPTER 2. LITERATURE SURVEY

The mutation operator takes a single selected individual and replaces
some portion of it with a new randomly generated portion. As with the
crossover operator, the details vary according to the algorithm being used.

The details for the genetic programming method used for the experi-
ments reported in this work are given later in this chapter.

2.3.5 Major Methods in Evolutionary Computation

There have been many evolutionary methods proposed, the most com-
monly used ones are detailed in the following sections. A major differ-
ence between them is the way the individuals are represented. They fall
into two broad groups, evolutionary algorithms such as genetic algorithms,
genetic programming, evolution strategies, evolutionary programming, learning
classifier systems, evolutionary multi-objective optimisation and swarm intel-
ligence such as particle swarm optimisation and ant colony optimisation.

Genetic Algorithms

Genetic algorithms [41] was developed by John Holland [21] in the mid
1970s. In genetic algorithms the form of the solution needs to be known, or
at least a reasonable estimate, and the free parameters of that solution are
encoded into a bit-string usually known as the chromosome or genome. It
is this bit string that crossover and mutation are performed on.

Genetic Programming

In canonical (standard) genetic programming (GP), the individuals are tree
structured programs. The interior nodes are arithmetic operators of some
kind, for example addition, multiplication or cosine, and the leaf nodes
are either features from the input data, or constants. In canonical GP the
nodes all take a real floating point value.

Strongly-typed GP [43] functions the same as canonical GP, except that
the nodes can take forms other than real numbers, and care is taken when-
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ever programs are created, or modified, that all operators have the appro-
priate argument types, or at least ones that can be meaningfully converted.
In particular, this allows the tree to be a mixture of arithmetic calculations
and logical expressions. In some problem domains it can be very useful
to have the nodes take complex values because of their ability to represent
phase as well as magnitude.

In linear GP [2], the programs take the form of a linear sequence of
programming instructions whose arguments can be features, ephemeral
constants or a register. The output is also to one of a number of registers.
The final program output is taken from a predefined register or registers.
This ability to return more than one value is a strength of this method
when solving multi-class classification problems.

Grammar-based GP [74, 73] uses a formal grammar to describe the
allowable forms a program may take. This extends further the idea of
strongly-typed GP, but allowing much more flexibility in what is permit-
ted.

Evolution Strategies

In evolution strategies [54] the individuals in the population can be repre-
sented in any way that is natural to the problem. In the canonical form,
only selection and mutation are used, with selection using the fitness rank
rather than the absolute fitness value. Populations are usually very small
with children only being added to the next generation if they have better
fitness than their parent. There is no elitism.

Evolutionary Programming

Evolutionary Programming [15] was one of the early evolutionary methods.
It was originally based on finite state machines but is now very similar to
Evolution Strategies.
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Learning Classifier Systems

In a learning classifier system(LCS) [21] the population is a set of rules. These
are evolved using any of the evolutionary methods. The LCS also learns
to make better use of the rule sets it has by using re-enforcement learning
as it uses the rule sets to make decisions and interacts with its environ-
ment [20].

Evolutionary Multi-Objective Optimisation

Most evolutionary processes assume the fitness can be expressed as a sin-
gle value, and that if there is more than one objective, they can be com-
bined in some fashion. An example of this is parsimony pressure (sec-
tion 2.5.2, which combines fitness and program size. Multi-objective op-
timisation [9, 10] uses the concept of non-dominance. Solution A and so-
lution B are non-dominant if neither of them has higher fitness than the
other on all objectives. Most evolutionary methods can be used, and the
result is a pareto front of non-dominant solutions. The expectation is that
some agent (typically human) will decide between the final solutions on
the pareto front.

Particle Swarm Optimisation

Particle swarm optimisation (PSO), like the other swarm intelligence meth-
ods [12, 27], has a population of potential solutions that can be expressed
in terms of a location in n-dimensional space. The solution is a point or
possibly a surface within this space. The individuals in the population
move through this space and cooperate in some way with the other mem-
bers of the swarm.

In PSO [26], the individuals (particles) have velocity as well as position.
They are updated to form the next generation using some combination of
their own position and velocity, the best position they have found so far,
and the best position found so far by other members of the swarm.
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Ant Colony Optimisation

In ant colony optimisation(ACO) [11] the individuals (ants) record their po-
sition and fitness. The other ants then use this information, much like real
ants use pheromone trails left by fellow ants. ACO is useful in problems
where the task is to find an optimum route of some kind.

Differential Evolution

In differential evolution [53, 66], children are created by combining in some
way the positions of two parent individuals. If the resulting child has bet-
ter fitness than the parents it is accepted into the population for the next
generation. It is therefore a continuous improvement algorithm, but un-
like gradient descent or hill climbing it does not require the solution space
to be either contiguous or differentiable. However it is not guaranteed to
find a good solution.

2.4 Genetic Programming

Canonical GP, with the addition of online program simplification as de-
scribed in chapter 4, is the evolutionary method used throughout this
thesis. This section describes some aspects of canonical GP in more detail.
The interior nodes of the tree are arithmetic operators or functions of some
kind, for example addition, multiplication or cosine, and the leaf nodes are
either features from the input data, or ephemeral constants. Ephemeral
constants are values that are assigned a random value when created (com-
monly on a range of −1.0 to +1.0), then retain that value for the rest of
the evolutionary process. In canonical GP the nodes all take a real floating
point value. Figure 2.1 shows an example tree that is three levels deep,
various arithmetic operators on the interior nodes and features and con-
stants as leaves.
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Figure 2.1: Example GP program tree.

2.4.1 Creating the Initial Population

There are two commonly used methods to generate the program trees,
with a number of variations.

Full

In the the full method, all the trees have the same number of levels, and are
full trees, that is, all the nodes in the bottom level are terminals (features
or constants) and the rest are operators. The tree shown in figure 2.1 could
have been created using the full method.

Grow

In this method each node is randomly chosen to be either an operator or
a terminal. Usually there will also be a maximum depth set. Trees created
using this method have a range of branch lengths within the tree, rather
than every branch having the same length as in the full method. The trees
in the bottom row of figure 2.2 show this sort of form.

Ramped

This method creates its trees using the full method, but with a range of
tree depths.
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Ramped Half-and-half

This method [31] seeks to maximise the variety of tree sizes and shapes by
creating half the population using the ramped method, and half using the
grow method.

2.4.2 Creating the Next Generation

Each new generation is created using a mixture of reproduction, crossover
and mutation.

Elitism

To avoid the loss of the current fittest program, elitism is usually used with
the best 1% to 5% of the current population being transferred unmodified
directly into the next generation. In the experiments used in this work an
elitism rate of 5% was used.

Crossover

There have been many different ways of performing crossover proposed
in the literature. What is described here is the standard/canonical form
and is what was used in all of the experiments reported in this work.

The two parents are selected using whatever fitness based selection
method is being used (tournament selection in the case of the experiments
in this thesis). The crossover points are selected at random. Figure 2.2
shows two example trees in the top row. The crossover points chosen are
shown. The two subtrees below these crossover points are then exchanged
between the two programs. The bottom row of trees in figure 2.2 show the
resulting children which are then added to the population for the next
generation.
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Figure 2.2: Example of crossover on program trees. The first row is the two
selected programs with the crossover points indicated. The second row is
the resulting children after the two subtrees have been exchanged.

Mutation

Mutation only requires one parent and this is selected using the fitness
based selection method. The mutation point is chosen at random and the
subtree below this point is discarded. This is then replaced by a new sub-
tree generated by one of the methods described in section 2.4.1. The left-
hand tree in figure 2.3 shows a selected program with its chosen mutation
point. The right-hand tree in that figure shows the child program that
results from the subtree being replaced by a newly generated subtree.
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Figure 2.3: Example of tree mutation.

2.5 Background Relating to Bloat

In tree based Genetic Programming (GP), as the run proceeds through the
generations the average program size usually increases. If this increase
is not accompanied by an improvement in fitness then this unproductive
increase is known as bloat [64, 65, 3, 31]. Bloat has a number of undesirable
effects:

• Increased memory use because of the larger program trees.

• Increased computation time because fitness evaluation takes longer
on the larger trees.

• Programs that are much larger than they need to be for their fitness
may overfit the training data, reducing their ability to generalise and
therefore reducing the performance on unseen data.

• Standard practice is to give all nodes some chance of being the crossover
point. Hence, as the programs become deeper (in levels), the average
depth of the crossover point also becomes deeper and the crossover
is less likely to create a child with a significantly improved fitness,
and the overall efficiency of the GP search is reduced.
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2.5.1 Causes of Bloat

The cause of bloat is still an open question. There has been a lot of research
done on this question but with conflicting results and conclusions.

Langdon and Poli [32] showed that without fitness pressure there is no
bloat. They tested GP with both no selection based on fitness, and starting
with fitness pressure and then removing it part way through the run. In
both cases, when there was no fitness pressure, the mean program size
remained constant although the spread of program sizes became wider.

Streeter [67] suggested that large programs are more likely to have bet-
ter fitness, and fitter programs propagate through the population as evolu-
tion proceeds, therefore large programs come to dominate the population.

Nordin and Banzhaf [45] suggested that destructive crossover causes
bloat because large trees are less likely to have their fitness reduced by
crossover than small trees are. This provides an evolutionary pressure
favouring large trees. This is similar to the intron theory that says that re-
dundant code (introns) are beneficial because they protect against destruc-
tive crossover.

Soule [63, 65] also emphasises the role of introns, suggesting that there
are two stages to the evolutionary run. The first stage evolves a near op-
timum solution, the second stage increases robustness by increasing pro-
gram size by adding introns.

2.5.2 Control of Bloat

A number of strategies have been proposed to combat bloat. Some place
hard limits on size, others penalise the fitness of over-large programs.
Other strategies include trying to prevent, or at least delay, the creation of
over-large programs or removing unproductive portions of the program
tree so that the size is more appropriate for the level of fitness.
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Size Limits

A limit can be placed on program size, limiting either the number of nodes
or the depth of the tree [31, 2, 85]. This approach prevents bloat, but has
some limitations:

• It is very difficult to set a good limit without prior knowledge. The
limit needs to be small enough to control bloat, but large enough
that the optimum solution can still be found. It is only bloat if the
program size increases without an improvement in fitness. If the
problem is not already well understood, then a series of trials will
be required to establish what a good limit would be. This can be a
significant extra computational cost in finding a solution.

• When performing a crossover, trimming the subtrees being exchanged
to fit the limit discards genetic material that may be important [2, 77].

• While this approach limits the growth in size, the program trees may
still contain a large number of nodes that make no meaningful con-
tribution to the solution. This may still be true even if the optimum
solution is evolved. This requires that the limit still be somewhat
larger than that required by the optimum solution, even though the
size or form of the optimum solution is not known.

Parsimony

A component can be added to the fitness function, or the selection pro-
cess, that rewards smaller programs, a practice known as parsimony pres-
sure [31, 45, 50, 81, 84, 37]. This approach can be successful in many prob-
lems. A high fitness program will survive in the population regardless of
size, therefore parsimony pressure avoids the loss of good programs that
can occur with hard limits. It can be difficult to tune the combination of
fitness and program size to provide sufficient bloat control without exces-
sive bias towards small programs. With a difficult task, the size penalty
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can dominate the selection process in the early generations because it may
take many generations to evolve a solution of high enough fitness to over-
come the selection pressure for small size. There are a number of reports
that show this approach results in a deterioration in fitness [31, 45].

Instead of combining fitness and program size in a single objective,
it is possible to use multi-objective methods [16]. In can work well but
there are reports of problems, particularly if high fitness individuals take
too many generations to form, when it can fail badly with all programs
reducing to trivial sizes [8].

Better Operators

Another approach is to try and prevent bloat from occurring. There are
several schemes that focus on the genetic operators, particularly the crossover
operator [3, 1, 32]. Explicitly defined introns [46] controls the probability of
particular nodes being chosen as the crossover point in an attempt to pre-
vent destructive crossover.

Other Indirect Mechanisms

There are other approaches that penalise large programs while trying to
avoid the problems of parsimony pressure. In double tournament selec-
tion [36] a series of tournaments are run using program size to determine
the winner, the winners of these tournaments then contest a final tourna-
ment using fitness to determine the winner. In the tarpeian method [51]
a random subset of above average sized programs are simply eliminated
from the population. In the waiting room method [49], newly created pro-
grams do not enter the population until after a number of generations pro-
portional to their size. The idea being to give smaller programs a chance to
spread through the population before being overwhelmed by their larger
brethren. A recent article [72] reports success by placing the population on
a torus, with selection defined by a Moore neighbourhood and local elitist
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replacement.

Simplification

All the methods described so far indirectly control, or delay the production
of, bloat. However, they do not directly eliminate bloat after redundant
code has been created. Simplification aims to achieve this.

A program can be simplified algebraically during the run. A rules-
engine approach [22] has been used to prevent overfitting. This used over
200 rules and was selectively applied during the run. It was successful
in reducing bloat and overfitting but did not reduce execution time as the
algorithm was computationally quite expensive. A simpler scheme [77,
78] reduced the resource usage while still reducing bloat, and it is this
scheme that this thesis uses for algebraic simplification. However, evalu-
ating whether two subtrees are equivalent still becomes computationally
expensive as the size of the subtrees increases. The algorithms necessary
to address this are complex, and Wong [77, 78] uses efficient hashing tech-
niques. This approach is however not easy to implement, and the hash
algorithms are not infallible as, like all hash techniques, collisions are pos-
sible. The implementation used in the experiments for this thesis is de-
scribed in more detail in the next section.

Chapter 4 introduces a novel approach to program simplification called
numerical simplification. Other researchers [44, 24] have used simplification
as a post-processing technique to reduce the size of the final solution.

2.6 Algebraic Simplification

The algebraic simplification method is an implementation of the work of
Phillip Wong [77]. It makes the kind of algebraic simplifications that a
human might do based on a set of rules. It leaves the program function-
ally the same as before simplification, that is, the new program produced
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by the simplification process will produce exactly the same result as the
original program.

This method is motivated by the algebraic nature of programs using
the canonical GP functions (+,−,×,÷) and uses a set of algebraic simpli-
fication rules to remove redundancies. These rules consist of two parts, a
precondition which represents the state of the surrounding nodes that must
be present for the rule to be applied, and a postcondition that represents
the state that the surrounding nodes are in after additions and deletions
are made. These rules make up the rule-set for the simplification method.
Table 2.1 shows the particular rule-set used in this work.

Table 2.1: Simplification rules. Lower case letters represent numerical
constants, while the upper case letters represent variable/feature termi-
nal nodes or subtrees.

Precondition Postcondition
a+ b → c, c = a+ b

a− b → c, c = a− b

a× b → c, c = a× b

a÷ b → c, c = a÷ b

A÷ 1 → A

A÷ A → 1

0÷ A → 0

0× A = A× 0 → 0

A× 1 = 1× A → A

A+ 0 = 0 +A → A

A− 0 → A

A− A → 0

A hashing algorithm is used to simplify the check on subtree equality.
Each operator has a hash value, and each feature has a hash value based
on the feature number. Ephemeral constants have a hash value based on
the value of the constant. These are combined using a “shift and xor” al-
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gorithm to generate the hash for their parent node. If two subtrees have
the same hash value, they are considered equivalent. In the implementa-
tion used in this thesis the hash calculations and rule evaluations are per-
formed by the operator objects. This means that the hash calculation can be
aware of whether the operands need to be ordered or not, and that only
those simplification rules that apply to that operator need to be checked.

To simplify a program, the program tree is recursively traversed in a
bottom-up fashion. For each node it checks the precondition of each rule
in the rule-set. If any rule matches, then it is applied to that portion of
the tree. The algorithm continues to check preconditions until none of the
rules in the rule-set can be applied, at which point it moves on to the next
node.

An example of the method is given in Figure 2.4. In this example, F1
has been randomly assigned the hash value 6, while F2 has been assigned
the hash value 7. For the ‘+’ nodes, the operator is aware that order is not
important therefore the hash values calculated on the two ‘+’ nodes will
be the same. For the root node ÷, the rule A ÷ A → 1 is found to apply,
since both left and right child nodes have the same hash value. The rule is
applied and the result is a single numerical-node, with a value of 1.

F2F2 F1

/

++

F1

1.0

Figure 2.4: An example of a subtree matching the pre-condition for alge-
braic simplification using the rule: A ÷ A → 1. It will be replaced by a
single numerical node with the value 1.0
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2.7 Non-Parametric Statistics

This section gives some background to the statistical techniques used in
much of this thesis. Non-parametric methods are not very well known, so
the following sections outline what parametric and non-parametric statis-
tics are, and the limitations of the parametric methods that are more com-
monly used.

2.7.1 Parametric Statistics

The statistical measures familiar to most people are mean and standard de-
viation. These are the parameters of the normal distribution. They completely
describe a normal distribution as defined by equation 2.1. There are other
distributions that are also defined in terms of parameters in this way, such
as the poisson distribution, the log-normal distribution, the pareto distri-
bution and many others.

There are many statistical tests [18] that assume the normal distribution
and are derived mathematically using the probability distribution func-
tion and defined in terms of the parameters µ (the mean) and σ (the stan-
dard deviation).

f(x) =
1√
2πσ2

e

(x− µ)2

2σ2 (2.1)

Limitations of Parametric Statistics

The parametric methods are only valid if the data they are being used on
conforms sufficiently closely with the distribution the method is based on.
Student’s t-test is a well known test for significance that is parametric and
as such relies on the distribution being tested conforming to the normal
distribution. If the distribution being tested is not normal then the signifi-
cance test may give a misleading result.
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The parametric methods are susceptible to outliers, data-points that
have extreme values [5, 19], particularly if there are more than a very small
number of them. This is because the large values distort the calculation of
the mean and standard deviation and therefore any results that are based
on them. The CPU time required for GP experiments is a distribution that
almost always includes outliers. This situation becomes even worse when
the distribution being tested is the difference between two sets of run-
times.

The parametric methods require the data to be continuous, at least in
principal. They are not valid for discrete data such as many survey results
that have yes/no or graded 1− 5 type answers.

2.7.2 Non-Parametric Measures

The non-parametric methods [5, 19] were developed to handle data that
cannot satisfy the requirements of the parametric methods. This can be
because the data is badly skewed, has many outliers, or is discrete.

The main principal of them is that they are concerned only with the
order of the data, and whether one data point is larger or smaller than
another. The absolute value or magnitude of the data is not considered.
This allows them to handle outliers because it does not matter how large
the largest value is, it is still just larger than all the other data-points. They
can handle discrete data, as long as it is possible to define an ordering,
such as with 1− 5 or strongly-disagree to strongly-agree type survey data.

The methods described in the following paragraphs all involve sorting
the data and assigning each data-point a rank. The data-point with the
smallest value has rank 1 through to the largest having a rank equal to the
sample size. If there is a group of two or data-points with the same value
then they all take a rank that is the average rank of that group.
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Measures of Central Tendency / Alternatives to the Mean

The usual alternative to the mean is the median. That is that data value
that has half the sample with lower values and half the sample with higher
values. If the size of the sample is even, then the median is the mean of
the two middle values. In the example in table 2.2 the median is 14.5 being
the mean of 13 and 16.

Measures of Dispersion / Alternatives to the Variance

The range of ranks is split into equal sized groups, usually either four or
ten. The experiments in this thesis use four and the measures quoted are
the 1st quartile and the 3rd quartile. The 1st quartile is larger than the
smallest one quarter of the data-points and is smaller than the remaining
three quarters. The 3rd quartile is larger than the smallest three quarters of
the data-points and smaller than the remainder. As with the mean, if the
boundary between quartiles falls between data-points then the quartile
value is the mean of the two adjacent data-points. If the data is split into
ten groups, they are called deciles, or percentiles in which case they are
numbered 10 to 90 rather than 1− 9. Sometimes the 1st and 9th deciles are
used as alternatives to the mean plus or minus two standard deviations.

In table 2.2 there are 20 data-points so the quartiles each have 5 points
in them. The first quartile is 8.5 being the mean of 8 and 9 because the
boundary between quartiles falls between two data-points.

Measures of Significance / Alternatives to the t-Test

Whenever experimental results suggest that a change of behaviour is oc-
curring, or that two algorithms produce different results it is very impor-
tant to know whether this is significant or is merely the result of random
chance. In particular, what we test is that the probability of the observed
behaviour being due to chance is less than some threshold. This threshold
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Table 2.2: Data for non-parametric statistics examples.

Data Value Rank
41 20
27 19
25 17.5
25 17.5
21 16

3rd quartile
20 15
18 13
18 13
18 13
16 11

median
13 10
12 8.5
12 8.5
10 7

9 6
1st quartile

8 5
7 4
6 3
3 2
1 1
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is usually taken to be 0.05 or 5% and this is the standard used in this thesis.
This is often expressed as a confidence level of 95%.

When two samples are being compared in this way they can either be
independent or paired. In a paired test there is a correlation between the
two samples. The significance tests presented in this thesis are all of the
paired variety, where pairs of experiments are performed with the same
training data and the same initial population, differing only in some detail
of the evolutionary algorithm. The purpose of the test is then to check if
any observed difference is due to the difference in algorithm or only due
to chance.

The standard parametric test is Student’s t-test. The most common
non-parametric test for independent samples is the Mann-Whitney U test
which is also known by the name Wilcoxon rank-sum test. For paired tests,
the usual non-parametric test is the Wilcoxon signed-rank test [75, 34], and
this is the test used in this thesis.

Measures of Correlation / Alternatives to Pearson’s Correlation Coeffi-
cient

Another common statistical test is for correlation. This tests how closely
the data can be fitted to a straight line. The parametric measure is Pearson’s
correlation coefficient and the non-parametric near-equivalent is Spearman’s
rank correlation coefficient.

2.8 Chapter Summary

This chapter has outlined the background for the detailed chapters that
follow. In particular genetic programming, which is the evolutionary al-
gorithm used in the experiments presented in the following chapters, and
the concept of bloat with the existing control measures and their limita-
tions. It is the control of bloat, or unproductive code growth, that is the
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primary motivation for this work.
The existing methods, as outlined in this chapter, focus on prevent-

ing bloat. It has however been shown [32] that the combination of fitness
based selection and variable length representation (such as the trees used
in GP) causes bloat. Therefore the focus of this thesis is on online simplifi-
cation methods that can remove redundant code from the trees after it has
been created.

In particular, chapter 4 proposes a novel method (numerical simplifica-
tion) of simplifying the program trees using only the values the tree nodes
take during fitness evaluation. Chapter 5 then analyses the dependence
on the key parameter of the method. Chapters 6 and 7 analyse the effect of
online simplification on the distribution of program fragments within the
population.



40 CHAPTER 2. LITERATURE SURVEY



Chapter 3

Datasets and Experimental
Configuration

3.1 Experimental Datasets

This thesis uses three classification tasks and two symbolic regression tasks
in the experiments.

3.1.1 Coins Classification

This dataset [77] consists of a series of 64×64 pixel images of New Zealand
five cent pieces against a random noisy background, see Fig 3.1 for exam-
ple head and tail images plus an example of the background with no coin.
There are 200 each of heads, tails and background only.

Figure 3.1: Example images of the coin head, tail and background with no
coin.

41
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The fourteen features used were based on a discrete cosine transform
of the image. A discrete cosine transform is calculated over the whole
image, using an algorithm based on a Fast Fourier Transform for square
images [38] where the width is a power of 2. The resulting 64× 64 matrix
of spectral coefficients contains both frequency and directional informa-
tion. The directional information is then removed by reducing the matrix
to a one dimensional array by averaging each diagonal to give a one di-
mensional array of 127 non-directional frequency coefficients which are in
order from the lowest frequency to the highest. If Ti,j is a coefficient in the
64 × 64 matrix output by the cosine transform, then the non-directional
frequency coefficients C0 to C63 are given by:

Ci =

∑i
j=0 Ti−j,j

i+ 1
(3.1)

and C64 to C127 by:

Ci =

∑127−i
j=0 T63−j,i−64−j

128− i
(3.2)

These are then combined into bands to form the features. If Ci is the
ith coefficient and Ci:j is the average of coefficients i through j, then the
features are C0, C1, C2, C3, C4, C5:6, C7:8, C9:10, C11:18, C19:26, C27:34, C35:42,
C43:50, C51:126.

Note that these features were chosen because they achieved reasonably
good results in preliminary trials. As the goal of this work is to investigate
the effect of program simplification rather than to achieve the best absolute
performance on any particular task, they were used here. This considera-
tion also applies to the other datasets described below.

3.1.2 Wine Classification

This dataset [17] is the result of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars. The anal-
ysis determined the quantic ties of thirteen constituents found in wines
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from each of the three cultivars. These thirteen constituents are the fea-
tures and the three classes are the cultivar from which the wine comes.
This dataset was sourced from the Weka project described in [76]. There
are 59 examples of class 1, 71 examples of class 2 and 48 examples of class 3,
a total of 178 examples. It became apparent during testing that this dataset
is quite sensitive to the split into training and test data. There appears to
be some important characteristics that are represented in only a few ex-
amples. If there are too few of these in the training data then the resulting
classifier performs poorly on the test set. This affects the overall classifi-
cation accuracy figures from the ten-fold cross validation as in many runs
one or two of the folds will have poor performance. As the goal is to com-
pare the relative performance of different methods, this is not a big issue
for this work.

3.1.3 Face Recognition/Classification

This is the ORL face data set [56], from which only four individuals were
used. Therefore the set was four classes with ten examples of each. This is
a rather small number of examples and makes evolving a good classifier
difficult. Sample images for the first individual are shown in Figure 3.2.

Figure 3.2: Example images from the ORL face dataset.

Simple pixel statistics [83] were used to create 8 features. Figure 3.3
shows the four regions used. The mean and standard deviations were cal-
culated on the pixel values for each of the four regions. These eight values
were the features used for this dataset. The size of the face and its posi-
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Figure 3.3: Regions used to generate pixel statistics for the faces dataset.

tion in the frame are not constant across all the images, so these regions
were not chosen with a view to measuring any particular facial feature or
features. As with the other datasets, it is only the relative performance be-
tween methods that is important. These features allowed at least moderate
differentiation between classes and they were not optimised any further.

3.1.4 Symbolic Regression Task One

This dataset serves two roles in the thesis. The first is to provide a task
that is easy enough that good results can usually be obtained under all
conditions. The second is to provide a platform for investigating the re-
lationship between the noise level in the data and the threshold used in
numerical simplification (this is described to chapter 5). The noise level in
the above classification tasks is unknown, and will be unknown in most
other classification tasks. A regression task allows the noise level to be set
when the data is generated.

The function used is:

f(x) = −2.0× x2 +
0.3

1.05 + x
+ 1.0 (3.3)

The values for x are randomly generated from the range [−1.0, 1.0], 200
examples for the training set with random noise added where required,
and 200 examples for the test set without noise.
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3.1.5 Symbolic Regression Task Two

This second regression task is intended to be much more difficult for the
GP system to solve. For the experiments on the relationship between the
noise amplitude and the optimum value for the simplification threshold,
noise is added in the same way as with the first symbolic regression task.

The function used is:

f(x) = sine(x× π) (3.4)

The values for x are randomly generated of the range [−2.0, 1.0], 200
examples for the training set and 200 examples for the test set.

This problem is much more difficult as it uses the sine function which
is not included in the available operators (function set). To get a good fit to
this function over one and half cycles requires a seventh order expansion
of the Taylor series for the sine function. Some runs do well but success is
generally more limited.

3.2 Experimental Design

This thesis directly compares the results from canonical GP and two differ-
ent online simplification methods. This comparison is made easier if the
experiments are all conducted with population parameters as similar as
possible. Initial runs established a set of parameters that gave reasonable
performance without making too great a demand on memory resources
for the canonical GP (no simplification) case. This set of values for popula-
tion size, initial program size and tournament size was then used through
all of the runs. In general the only variation was the number of generations
and the population size. The ORL face dataset required some differences
to get reasonable performance. Details of this will be described in later
chapters.
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3.2.1 Operators

All of the experiments in this thesis use the four arithmetic functions: ad-
dition, subtraction, multiplication and protected division. No if function
was used because it creates unnecessary complications for fragment en-
coding schemes used for the fragment analysis in chapters 6 and 7.

3.2.2 Generating the Initial Population

The population size was 1000 for the coin and wine datasets, 5000 for
the faces dataset and 2000 for the regression tasks. Initial programs were
five levels deep using the full method. Ramped or ramped-half-and-half
would be more common ways to create the initial population, but because
the purpose of these experiments is to compare program sizes between
algorithms and between runs, the consistent starting program size of the
full method was felt to be more appropriate.

3.2.3 Selection

Tournament selection was used with a tournament size of four, which is
commonly used in GP. [80, 14]

3.2.4 Genetic Parameters

The experiments used 40 generations for the coin dataset, 200 generations
for the wine dataset, 100 generations for the faces dataset and 30 genera-
tions for the two regression tasks.

Two sets of parameters were used for the genetic operators: one 5%

reproduction, 85% crossover, 10% mutation; and one 5% reproduction,
15% crossover, 80% mutation. A high crossover rate is standard practice,
but early experiments suggested the the low crossover, high mutation rate
may give better results with the simplification methods so the experiments
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were run with both sets of parameters to check if this observation was
more generally true.

Ten-fold cross validation was used on the classification tasks. Each
class was evenly distributed (as far as was possible) between the folds.
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Chapter 4

Numerical Simplification

4.1 Introduction

This chapter introduces a new method of online program simplification
called numerical simplification. Existing methods for program
simplification [22, 77, 86] replicate the algebraic simplifications that a hu-
man might do. This approach can work well and is used as a comparison
point in the results reported in this chapter. There are two weaknesses to
this approach that numerical simplification aims to address.

1. An algebraic equivalence may exist that is too complicated for the
simplification algorithm being used.

2. The algebraic equivalence may be very close, but one or more of the
constant values may be very slightly different, or there may be an ex-
tra term that always has a very small value. Algebraic simplification
can never deal with this situation.

Numerical simplification considers only the actual numeric values the
tree nodes take as the fitness is evaluated. No matter how complicated the
algebraic equivalence may be, the appropriate node values will be equal,
or very close to it as numerical inaccuracies may introduce very small er-
rors, and simplification can proceed as if they are equal.

49
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4.2 Chapter Goals

This chapter addresses the first of the research questions from chapter 1,
namely:

Whether numerical simplification can help control bloat, thereby re-
ducing resource requirements without seriously reducing the effective-
ness1 of the GP search. This question is broken down into the following
sub-questions:

1. Will the numerical simplification method produce smaller programs
than the standard GP system with no simplification?

2. Will the numerical simplification method shorten computation run
times compared with the standard GP system with no simplification?

3. Will the numerical simplification method affect the system effective-
ness?

4. How does numerical simplification perform compared to algebraic
simplification?

4.3 Numerical Simplification

The idea of numerical simplification is to consider the numerical contribu-
tion that a node or subtree makes to the output of its parent node, remov-
ing those nodes and subtrees whose impact on the result is too small to
make much difference to the program result. The motivation here comes
from the fact that most data includes a noise component. Instead of trying
to fit to this noise, two values whose difference is smaller than the noise
are considered to be equal. For efficiency reasons, this implementation ad-
dresses only the local effect of simplification at each node in the program

1This work uses the term effectiveness to mean the root mean square (RMS) error for a
regression task and the classification error rate on the test set for classification tasks.
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tree. There will be cases where it does affect the system performance of the
whole program, but the aim is to keep this to a minimum. It may be easiest
to think of numerical simplification as a kind of lossy compression (such
as the jpeg algorithm for images), where the aim is to get useful reductions
in program size without obvious loss in quality.

Note that numerical simplification is only applicable to tree based rep-
resentations. The algebraic method used in this work as a comparison
point also requires a tree based representation. Linear GP programs can
be represented as a set of parallel interconnected trees and it should there-
fore be possible to apply numerical simplification to the trees, but this has
not been attempted in this work as this is beyond the scope of this thesis.

As the fitness is evaluated across the training set, a record is kept of the
minimum and maximum function values for each node in the program
tree. A simplification threshold is chosen, which can be the result of prelim-
inary trials, or if there is enough knowledge of the dataset then a good
starting point will be the noise floor in the data. This work uses 0.001

in most of the experiments as a result of early trials. All of the features
are normalised on the range [-1.0, +1.0] so this represents a noise level
of about 0.1%, which seems reasonable without better information on the
source data.

The simplification process is performed from the bottom up. For addi-
tion and subtraction operators, a child node or subtree whose range of val-
ues is less than the threshold times the parent’s minimum absolute value
is discarded. Figure 4.1(a) gives an example of such a kind. The range for
Node B is 0.027 − 0.020 = 0.007. The minimum absolute value for its par-
ent Node A is 7.3. Since 0.007 < 0.001 × 7.3, the subtree headed by Node
B will be discarded, and Node A will be replaced by Node C. Also, if the
range of values a node takes is less than the threshold times its own min-
imum absolute value, the node is replaced by a constant terminal taking
its average value. Figure 4.1(b) gives an example of this kind. The range
for Node D is 2.0015 − 2.0000 = 0.0015. The minimum absolute value for
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Node D is 2.0000. Since 0.0015 < 0.001 × 2.0000, the subtree headed by
Node D will be discarded, and Node D will be replaced by a constant ter-
minal with the value 2.00075. Note that the second type of simplification
takes precedence over the first.

Max Val = 0.027 Max Val = −7.33

Min Val = −10.02Min Val = 0.020

Addition

Node A

Min Val = −10.0
Max Val = −7.3

Node C

Min Val = −10.02

Max Val = −7.33

Node CNode B

(a)

Max Val = 4.031 Max Val = 2.015

Min Val = 2.014Min Val = 4.030

Node E Node F

Node D

Constant Val = 2.00075

Node D

Division
Min Val = 2.0000
Max Val = 2.0015

(b)

Figure 4.1: Example trees used to explain numerical simplification.

The numerical simplification method described here has the advantage
that it is very simple, both in implementation and execution. The neces-
sary information is gathered as part of the fitness evaluation and the com-
putational cost is very small. The simplification process then requires one
further traversal of each program tree after fitness evaluation is complete.
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4.4 Experimental Results

Each experiment was run 200 times, in the results that follow for program
size in nodes and depth they are grouped in sets of 20 runs, with the re-
sults averaged over each of these 20 runs. The intention is to show both
average behaviour and also the variation in those averages. Where sim-
plification was used, it was performed after the first generation, and ev-
ery fourth generation thereafter. This results in a periodic behaviour in
program sizes as will be seen on the graphs. Note that there is no limit
imposed on program size as one of the goals is to investigate whether
simplification is sufficient to manage program bloat.

4.4.1 Program Size - Number of Nodes

Figure 4.2 shows the number of nodes per program at each generation for
the coin dataset. These graphs show the minimum, mean and maximum
program sizes in nodes for each generation in the run. Each curve shows
the mean value for that metric across one set of twenty runs. Note that
the minimum is small and with little variation. The maximum program
size however shows wide variation. Individual runs had maximum pro-
gram sizes that varied from not much larger than the mean, up to 3, 500

(sic) in one run with the 85% crossover rate. Program sizes are generally
larger with the 85% crossover rate, and continue to grow even with sim-
plification albeit more slowly than without simplification. Program sizes
are smaller with the lower 15% crossover rate, and level off to a steady
state with simplification, allowing the possibility of longer runs without
the program sizes growing out of control. This difference in performance
is likely to be because the replacement subtrees used by the mutation op-
erator are limited to a maximum depth of five levels and most are three
or four levels. In contrast, the replacement subtree used by the crossover
operator gets larger, on average, as the program becomes deeper. There-
fore as the program depth increases, mutation is likely to produce smaller
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Figure 4.2: Program size (number of nodes) for the coin dataset. In each
graph, the maximum, mean and minimum program size is shown. Each
line is the average of 20 runs.

offspring than the crossover operator. In both cases, the program sizes
are generally smaller with simplification than without. The results for the
wine and faces datasets show a very similar pattern, so are not shown in
detail here.

Figure 4.3 shows the mean program sizes for all three methods and
for all three classification datasets. With the coin dataset the reduction in
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Figure 4.3: Mean program size (number of nodes) for the coin dataset (top
row), wine dataset (middle row) and the faces dataset (bottom row). For
each level of simplification, the mean program size is shown for 10 replica-
tions, each of which is the average of 20 runs. Note the periodic nature of
the simplification lines due to simplification only being run at every fourth
generation.

program sizes as a result of simplification can be clearly seen. While both
simplification methods show about a 40% reduction over no simplifica-
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Figure 4.4: Mean program size (number of nodes) for the two regression
tasks. For each level of simplification, the mean program size is shown for
10 replications, each of which is the average of 20 runs. Note the periodic
nature of the simplification lines, this is due to simplification only being
run every fourth generation.

tion, there are no noticeable differences between algebraic and numerical
simplification. Note the periodic nature of the curves, as a result of apply-
ing simplification every fourth generation. The results for the wine dataset
are very similar to those for the coin dataset. With this dataset there is a
small but noticeable advantage to numerical simplification over algebraic
for at least the 85% run. The faces dataset shows a lot more variation than
the other two datasets but still shows a considerable reduction in program
sizes with simplification. There is no clear difference between the two
simplification methods in the 85% crossover case but the program sizes
are noticeably smaller on average with numerical simplification than they
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are with algebraic simplification when the crossover rate is 15%.

Figure 4.4 shows the program sizes for the two regression tasks. The
results here are less clear-cut than with the classification tasks. As with
the classification tasks the program sizes tend to be larger and there is
much more variation in results with the 85% crossover rate than with the
15% rate. On the first regression task there are no clear differences be-
tween methods. The second task shows a tendency for simplification to
produce smaller programs, but this is less clear cut than with the classifi-
cation tasks. In the 15% crossover case there might be a slight advantage
to numerical simplification over algebraic simplification but this might not
be significant. Neither of these two regression tasks show the pronounced
cyclic behaviour because of the simplification being performed every four
generations that is so evident in the classification tasks.

The distribution of differences in program sizes is not a normal distri-
bution as there are long tails, and in many cases the distribution is badly
skewed. This rules out the use of the standard student T–test. Instead
a non-parametric test called the Wilcoxon Signed-Rank test [75, 34] was
used to test the significance of the reductions in program sizes with the
two simplification methods. This test does not require that the distribu-
tions are normal and it uses only the order of the results, not the mag-
nitude. It does require the distributions to be symmetrical and this re-
quirement can be met by testing the medians rather than the means of the
differences distributions. The results are presented in table 4.1. For the dif-
ference lines, the third column gives the Z score. Note that these are for a
directional test, that is the displayed Z values indicate the confidence that
the simplification method results in programs having fewer nodes than
no simplification or that numerical simplification results in programs having
fewer nodes than algebraic simplification. Where the Z score is better than
the 95% confidence level, the fourth and fifth columns show the 95% con-
fidence interval expressed as the percentage reduction in the number of
nodes. The fifth column shows an * for > 95% confidence, ** for > 99%,
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and *** for > 99.9%.
Each set of four lines gives the following:

1. The median number of nodes per program in the no simplification
runs.

2. The reduction in node count in the algebraic simplification runs com-
pared with the no simplification runs.

3. The reduction in node count in the numerical simplification runs com-
pared to the no simplification runs.

4. The reduction in node count in the numerical simplification runs com-
pared to the algebraic simplification runs. If this is negative than the
numerical simplification runs had larger programs than the algebraic
simplification runs.

It can be seen that for the reduction in program sizes (in nodes) is
highly significant for both simplification methods on all of these tasks ex-
cept for the first regression task where the result for numerical simplifica-
tion of 1.56 falls short of the 95% significance level, which for a directional
test such as this is 1.65. This is only just short and may be significant with
more experiments.

In most cases numerical simplification resulted in smaller programs
than algebraic simplification, but this was not always significant. As ex-
pected, this was not significant for the coins dataset. The apparent ad-
vantage on the wine dataset with 85% crossover turned out to be non-
significant but that the small difference for the 15% crossover rate was. In
both cases on the faces dataset numerical simplification produced slightly
smaller programs than algebraic, but this difference was highly signifi-
cant. On the regression tasks only the 15% crossover rate on the second
task shows a difference that is significant to the 95% level.
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Table 4.1: Significance scores and confidence intervals for the differences
in the program sizes in nodes.

% Reduction in number
of nodes

Median Z Min Max
Coins 15% Crossover with no simplification 97.2

Reduction with Algebraic simplification 33.0 9.13 28.4 41.5 ***
Reduction with Numeric simplification 32.3 9.87 28.8 41.5 ***
Difference between Algebraic and Numeric 1.8 0.63

Coins 85% Crossover with no simplification 113.4

Reduction with Algebraic simplification 40.4 9.53 36.2 55.5 ***
Reduction with Numeric simplification 41.5 8.95 34.0 52.4 ***
Difference between Algebraic and Numeric −1.4 1.02

Wine 15% Crossover with no simplification 66.3

Reduction with Algebraic simplification 31.8 15.55 44.0 52.6 ***
Reduction with Numeric simplification 33.7 16.4 48.2 56.3 ***
Difference between Algebraic and Numeric 1.5 2.42 0.6 5.9 **
Wine 85% Crossover with no simplification 62.5

Reduction with Algebraic simplification 31.5 14.4 51.0 64.8 ***
Reduction with Numeric simplification 30.7 14.3 48.9 61.6 ***
Difference between Algebraic and Numeric 0 0.03

Faces 15% Crossover with no simplification 51.3

Reduction with Algebraic simplification 19.2 10.6 35.9 51.7 ***
Reduction with Numeric simplification 24.7 13.9 52.0 70.2 ***
Difference between Algebraic and Numeric 6.5 7.14 11.7 20.7 ***
Faces 85% Crossover with no simplification 56.7

Reduction with Algebraic simplification 23.0 12.36 41.5 56.6 ***
Reduction with Numeric simplification 28.0 14.70 51.9 67.5 ***
Difference between Algebraic and Numeric 7.3 6.52 9.2 16.8 ***

Regression one 15% Crossover 129.0

Reduction with Algebraic simplification 21.9 2.73 5.4 32.9 **
Reduction with Numeric simplification 13.9 1.56

Difference between Algebraic and Numeric 6.0 1.25

Regression one 85% Crossover 154.0

Reduction with Algebraic simplification 26.4 2.45 5.8 57.8 **
Reduction with Numeric simplification 27.5 2.59 7.0 60.3 **
Difference between Algebraic and Numeric 1.9 0.39

Regression two 15% Crossover 122.9

Reduction with Algebraic simplification 13.9 2.35 2.6 30.8 **
Reduction with Numeric simplification 33.6 4.91 19.0 43.3 ***
Difference between Algebraic and Numeric 9.7 2.14 0.9 23.1 *
Regression two 85% Crossover 247.0

Reduction with Algebraic simplification 38.3 2.50 5.3 51.6 **
Reduction with Numeric simplification 33.4 2.58 6.2 51.9 **
Difference between Algebraic and Numeric 11.4 0.71
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4.4.2 Program Size - Tree Depth
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Figure 4.5: Mean tree depth for the coin dataset (top row), wine dataset
(middle row) and the faces dataset (bottom row). Again these are 10 repli-
cations (curves), each of which is the average of 20 runs.

Figure 4.5 shows the mean tree depth by generation for the three clas-
sification datasets. The wine and faces datasets show the simplification
methods produce shallower trees, which is as expected given the lower
number of nodes. The coins dataset shows a much smaller difference with
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Figure 4.6: Mean tree depth for the two regression tasks. Again these are
10 replications (curves), each of which is the average of 20 runs.

a 15% crossover rate and maybe none at all with the higher 85% crossover
rate. In all six cases, the difference in tree size between simplification and
standard GP is more pronounced as a node count than it is in tree depth.
This suggests that the shape of the tree is being changed, not just its size.
This is examined in more detail in the next section.

Figure 4.6 shows the mean tree depth by generation for the two regres-
sion tasks. The results for the number of nodes showed that simplification
produced a small reduction in tree size on the second task but no clear
difference on the first task. The tree depth shows the same pattern, al-
though the differences are smaller and less obvious, as they are with the
classification tasks.
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4.4.3 Tree shape

Figures 4.3 to 4.6 show a much larger reduction in the number of nodes
than in the depth of the trees. This suggests that the reduction in the num-
ber of nodes in the tree was primarily due to thinning of the tree (reducing
the number of nodes at each level) rather than reducing the depth of the
tree. An additional series of experiments was performed with extra data
collection to verify this. There were 50 runs for each method. The coin and
faces datasets plus the second regression task were examined. Figure 4.7
shows the resulting average number of nodes at each level (depth) for the
coins dataset. Figures 4.8 and 4.9 show the results for the faces dataset and
the second regression task respectively. Each set of four graphs show the
data at four different generations spaced through the run.

The total number of nodes in the population is proportional to the area
under the curves so it is how the shape of the curves change that is of pri-
mary interest. It can be seen that the curves broaden as the run proceeds
through the generations because of the increase in the average program
depth; this is also true for the runs with simplification. This effect is very
small for the faces dataset but more pronounced with the other two, par-
ticularly the regression task. This is as expected from figures 4.5 and 4.6
which show rate of increase in depth levelling off with the classification
tasks but continuing to increase throughout the run with the regression
tasks. It can also be seen that the area under the curve increases through
the runs showing the increase in the number of nodes, although the ef-
fect is small for the classification tasks in the second half of the runs. on
the faces dataset there is a slight tendency for simplification to move the
curves to the left indicating a reduction in tree depth. With the other two
tasks however the effect of simplification is to just reduce the height of the
curve, rather than to narrow it or to move the peak towards a lower level.
This shows that simplification is reducing the average number of nodes in
the middle levels of the tree, rather than reducing the depth of the tree.
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Figure 4.7: The average number of nodes at each level at four different
generations on the coins dataset.
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Figure 4.8: The average number of nodes at each level at four different
generations on the faces dataset.
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Figure 4.9: The average number of nodes at each level at four different
generations on the second regression task.
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4.4.4 Analysis of Resource Usage

Coin Dataset Wine Dataset Faces Dataset
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Figure 4.10: CPU used. The boxplots on each graph are (left to right) 85%
crossover with no simplification, algebraic simplification, and numerical
simplification, then 15% crossover with no simplification, algebraic sim-
plification and numerical simplification.

Figure 4.10 shows boxplots for CPU time used. The plots show a wide
variation in results but there is a pattern here, with simplification giving a
noticeable reduction in CPU usage. The work described above shows the
basic behaviour of the two simplification methods on three classification
datasets and two regression tasks. It indicates that there are differences
in program sizes and resource usage but does not give any indication of
significance. The correlation between the starting points for the different
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Figure 4.11: Differences in CPU resource used for the three classification
datasets. The top row is for 15% crossover and the bottom row is for 85%
crossover. In all graphs the first box is the difference between no simplifi-
cation and algebraic simplification, the second is the difference between no
simplification and numerical simplification and the third is the difference
between algebraic and numerical simplification.

simplification approaches has been maximised by making each set of three
experiments (one for each of no simplification, algebraic simplification and nu-
merical simplification) use the same initial population, and the same split of
the training set into folds for the classification tasks. Figure 4.11 shows box
plots for the differences in CPU time for the different classification datasets
and simplification methods. There is a clear advantage (differences > 0) to
the two simplification methods with all datasets. The advantage is greater
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Figure 4.12: Differences in CPU resource used for the two regression tasks.
The top row is for 15% crossover and the bottom row is for 85% crossover.
In all graphs the first box is the difference between no simplification and
algebraic simplification, the second is the difference between no simplifi-
cation and numerical simplification and the third is the difference between
algebraic and numerical simplification.

on the wine and faces datasets, particularly the latter. On the coins and
wine datasets there is little difference between algebraic and numerical
simplification, but on the faces dataset numerical simplification shows a
marked reduction in CPU time compared to algebraic simplification. Fig-
ure 4.12 shows the differences for the two regression tasks. As with the
classification tasks both simplification methods clearly use less time than
standard GP. There is no clear difference between the two simplification
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methods.
As with the program sizes, the significance of the CPU reductions was

tested using the Wilcoxen signed ranks test. Table 4.2 shows the me-
dian values for the CPU time used by the various experiments. For the
difference rows, the third column gives the Z score calculated using the
Wilcoxon Signed-Rank test. Note that these are for a directional test. That
is the displayed Z values indicate the confidence that the simplification
method uses less CPU than no simplification or that numerical simplification
uses less CPU than algebraic simplification. Where the Z score is better than
the 95% confidence level, the fourth and fifth columns show the 95% con-
fidence interval expressed as the percentage reduction in CPU time used.
The fifth column shows an * for > 95% confidence, ** for > 99%, and ***
for > 99.9%.
Each set of four lines gives the following:

1. CPU time used by the no simplification runs.

2. The reduction in CPU used by the algebraic simplification runs com-
pared to the no simplification runs.

3. The reduction in CPU used by the numerical simplification runs com-
pared to the no simplification runs.

4. The reduction in CPU used by the numerical simplification runs com-
pared to the algebraic simplification runs.

It can be seen that for numerical simplification and 15% crossover on the
coin data set the Z score is just under the 95% confidence level. All the
other differences between simplification and no simplification are significant
to at least 99% confidence. The differences between the two simplification
methods show no meaningful significance for the coin dataset, and for 85%
crossover on the wine dataset. The differences between them is however
highly significant for 15% crossover on the wine dataset and for both cases
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Table 4.2: CPU time used in seconds for the coins, wine and faces datasets,
and the two regression tasks.

% CPU Reduction
Median Z Min Max

Coins 15% Crossover with no simplification 1622

Reduction with Algebraic simplification 518 2.58 12 56 **
Reduction with Numeric simplification 444 1.59

Difference between Algebraic and Numeric 34 0.15

Coins 85% Crossover with no simplification 2420

Reduction with Algebraic simplification 468 2.49 6 62 **
Reduction with Numeric simplification 798 2.64 7 60 **
Difference between Algebraic and Numeric 11 0.03

Wine 15% Crossover with no simplification 2390

Reduction with Algebraic simplification 1009 4.75 24 51 ***
Reduction with Numeric simplification 976 5.51 31 57 ***
Difference between Algebraic and Numeric 90 2.15 1 10 *
Wine 85% Crossover with no simplification 2116

Reduction with Algebraic simplification 1254 5.07 43 99 ***
Reduction with Numeric simplification 1207 4.25 34 91 ***
Difference between Algebraic and Numeric −1 0.82

Faces 15% Crossover with no simplification 2374

Reduction with Algebraic simplification 782 4.03 22 78 ***
Reduction with Numeric simplification 1160 5.93 41 99 ***
Difference between Algebraic and Numeric 315 4.51 11 31 ***
Faces 85% Crossover with no simplification 2808

Reduction with Algebraic simplification 1104 3.01 21 81 ***
Reduction with Numeric simplification 1495 4.84 40 97 ***
Difference between Algebraic and Numeric 390 3.69 7 24 ***

Regression One 15% Crossover 114

Reduction with Algebraic simplification 24 11.90 21 23 ***
Reduction with Numeric simplification 21 7.74 6 9 ***
Difference between Algebraic and Numeric −2 1.21
Regression One 85% Crossover 113

Reduction with Algebraic simplification 31 11.10 28 38 ***
Reduction with Numeric simplification 38 9.84 30 37 ***
Difference between Algebraic and Numeric 4 5.15 3 6 ***

Regression Two 15% Crossover 122

Reduction with Algebraic simplification 27 12.34 23 34 ***
Reduction with Numeric simplification 37 12.35 31 43 ***
Difference between Algebraic and Numeric 10 11.88 8 9 ***
Regression Two 85% Crossover 182

Reduction with Algebraic simplification 73 12.12 33 40 ***
Reduction with Numeric simplification 57 11.25 32 39 ***
Difference between Algebraic and Numeric 4 3.85 1 3 ***
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on the faces dataset. On the two regression tasks the differences between
the two simplification methods are small but highly significant in three of
the four cases.

4.4.5 Analysis of Effect on Accuracy

85% Crossover 15% Crossover
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Figure 4.13: Classification performance for the coin dataset (top row), the
wine dataset (middle row) and the faces dataset (bottom row).
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Figure 4.14: Test set performance for the two regression tasks.

Reducing the program size and computational effort is of little benefit
if the accuracy suffers badly. Figure 4.13 gives the mean classification error
rate on the test set for the program with the best fitness at each generation
for the coin, wine and faces datasets, again showing 10 replications, each
of which is the average of 20 runs. There is no noticeable difference in
performance between the three levels of simplification on the coin dataset.
The wine dataset shows similar results but with more variation in clas-
sification performance. The average performance for the wine dataset is
a classification error rate of between 15% and 20%, but some individual
runs produced classifiers with zero error rate. The classification perfor-
mance also appears to be sensitive to which examples are included in the
test set. The results for the faces dataset show a much wider variation in
classification performance, but there appears to be very little difference
between the three methods.
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Note that with all three datasets, and both simplification methods, the
15% crossover case produces both smaller programs and lower classifica-
tion error rates on the test set than the 85% case. This may be because of
the smaller program sizes, or some other effect of the difference in genetic
operators. More targeted experiments will be needed to establish this.

Figure 4.14 gives the mean RMS error for the program with the best fit-
ness at each generation for the two regression tasks. There is considerable
variation in results, particularly with the second task. This is expected be-
cause this is a much more difficult task than the first, and only some runs
produced good results. There does not appear to be any difference be-
tween methods on the first task, although a few of the simplification runs
have clearly produced poor results. The 15% crossover case on the second
task also shows no clear difference between methods, but the number of
poor performances of the simplification runs can be clearly seen with the
85% crossover rate.

These results were tested for significance and there is no statistically
significant difference in effectiveness between the the three methods ex-
cept for the second regression task with a 85% crossover rate, where both
of the simplification methods had a marginally higher error rate than stan-
dard GP that was significant just beyond the 95% level. This regression
task requires a seventh order polynomial for a good solution and it the
simplification may have been a little too aggressive as while some runs
performed well there was a larger number of runs that failed to find a
reasonable solution than was the case in standard GP without any simpli-
fication.

4.5 Chapter Summary

The goal of this chapter was to investigate whether numerical simplifica-
tion could produce smaller programs than the standard GP system with no
simplification, whether it would shorten computation run times compared
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with the standard GP system with no simplification, whether it would af-
fect the system effectiveness and how numerical simplification performs
compared to algebraic simplification.

Three classification and two regression tasks were used to investigate
program sizes both in total number of nodes and in tree depth. The ef-
fect on the shape of the program trees was also examined. The amount
of CPU used by the GP runs was examined and the classification perfor-
mance/RMS error was examined. The experiments were organised in cor-
related sets that allowed easy comparison of differences in size, perfor-
mance or resources used. Any differences observed were tested for statis-
tical significance.

Overall, the two simplification methods almost always resulted in smaller
programs and used much shorter evolutionary training times to produce
similar classification performance. Numerical simplification performs at least
as well as algebraic simplification and in some cases performs better than al-
gebraic simplification.

The next chapter examines whether there is an optimum value for the
simplification threshold, and if is, what relationship it may have to the
noise level in the input data.



Chapter 5

Simplification Threshold and the
Noise Level

5.1 Introduction

The motivation for numerical simplification came from the idea of treating
values less than the noise component of the input data as being zero. This
chapter aims to establish whether the expected relationship between the
noise amplitude and the optimum value for the simplification threshold
does in fact exist.

5.2 Chapter Goals

This chapter investigates the second goal of this thesis, namely:

Is there a relationship between the optimum value for the simplifi-
cation threshold in numerical simplification and the amount of noise in
the input data? This question is broken down into the following sub-
questions:

1. Is there an optimal value for the simplification threshold?

75
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2. If there is an optimal value for the simplification threshold, is there a
relationship between that optimal value and the amount of noise in
the input data?

3. If this relationship exists then what is it?

5.3 Datasets and Experimental Setup

The amount of noise in the input data for a classification task is not usually
known, therefore this chapter uses the two symbolic regression tasks de-
tailed in chapter 3. This allows complete control over the amplitude and
distribution of the noise in the input data.

Each of the training and test datasets contain 200 points randomly se-
lected from the given range. The test set contains exact values and the
training set has noise randomly added up to the noise level. If the noise
level is 0.01 then each function value in the training set has a random num-
ber from the range [−0.01, 0.01] added to it.

There are many possible sources of noise in input data, which include
(but are not limited to):

1. A feature may be a combination of real world variables for which we
do not have individual values, some of which do not contribute to
forming a good solution. For example, a feature f() may in reality be
a sum of two other lower level features that we do not have values
for f() = g()+h(). g() may be important for evolving a good solution
but h() is not. In this situation h() is effectively just noise.

2. A feature may be a measurement of a physical quantity that includes
noise due to thermal effects or background radiation such as EMF
interference.

3. A feature may be the result of a physical measurement with restricted
resolution or accuracy.
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In the first case, the distribution of the noise component could be al-
most anything. If the feature is to be of value in forming a solution then
the noise can not be too large in size but that is all that can be concluded.
In the second case the noise distribution usually approximates a normal
distribution. In the third case the noise is the measurement uncertainty,
and is bounded with a distribution that is at least close to being uniform.
For these experiments, having the noise amplitude bounded makes it eas-
ier to draw firm conclusions and therefore this is the distribution used in
this thesis. The noise added is uniformly distributed over an interval that
is a parameter of the experiment.

The fitness function is the root mean squared error (RMS error):

fitness =

√∑n
i=0(Pi − Ti)

2

n

where Pi is the output of the program for the ith row of the training set
and Ti is the target value given by the training set. The final test score is
the RMS error calculated on the test set.

The terminal set consists of the single x feature and random “constant”
numbers. The function set consists of the four standard arithmetic func-
tions (addition, subtraction, multiplication and protected division). The
population size is 2000. Initial programs are four levels deep. Tournament
selection is used with a tournament size of four. All experiments were
run for 30 generations. Initial tests showed that there was little or no im-
provement past this number of generations. These parameter values were
determined using heuristic guidelines and preliminary trials.

These experiments required a very large number of GP runs, therefore
only the standard higher crossover rate set of evolutionary parameters
was used: 5% reproduction, 85% crossover and 10% mutation. Simplifi-
cation is performed after the first generation, and every fourth generation
thereafter. Note that there is no maximum program size.

The runs were done in sets, each set contained a number of individ-
ual runs with different values for the simplification threshold. All of the
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runs within a set used the same starting population and the same starting
seed. This was done to allow significance tests to be performed between
pairs of experiments within the set if this was required. Experiments were
run with two different noise levels 0.001 and 0.01 for each of the two re-
gression tasks. For each of these noise levels experiments were run with
a roughly logarithmic series of values for the simplification threshold as
follows: 0.0001, 0.00017, 0.00035, 0.0006, 0.001, 0.0017, 0.0035, 0.006, 0.01,
0.017, 0.035, 0.06, 0.1
Each combination of task, noise level and simplification threshold was run
100 times.

5.4 Experimental Results

The results from these experiments have many outliers and deviate sub-
stantially from the normal distribution. Therefore the results are presented
using the median rather than the mean, and the first and third quartiles in-
stead of the standard deviation. In the graphs that follow in this chapter,
the solid black line shows the median value for the quantity being dis-
played. The error bar style vertical bars show the first and third quartiles
and the red horizontal line shows the median value for the same experi-
ment without simplification.

5.4.1 Regression Task One

This task is a fairly straight forward one, and good solutions are consis-
tently found.

Noise Level = 0.001

The program sizes in both levels and total number of nodes are shown in
figure 5.1. These figures show very little variation, either as the simplifica-
tion threshold is changed or between simplification and no simplification.
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Figure 5.1: Program sizes for a noise level of 0.001. The left-hand graph
shows the program size in nodes and the right-hand graph shows the
depth of the program tree. The error bars show the first and third quartiles
at that point.

The range of variation is very wide. Figure 5.2 shows the CPU time in
seconds taken by the runs. Again there is little difference between the two
methods, but in general numerical simplification takes a little less time
than without simplification.

Figure 5.3 shows the fitness and test scores for this task and noise level.
The fitness scores for the numerical simplification case are equal to, or bet-
ter than, the scores without simplification but the variation in scores is
very large. The test scores show a more interesting pattern. There is lit-
tle variation in test scores until the simplification threshold reaches 0.01,
at this point the test scores start to get worse, with the median and the
quartiles all getting worse as the simplification threshold continues to in-
crease. This suggests that useful information is starting to be lost in the
simplification and the resulting programs are loosing accuracy.

For this task and error level there does not appear to be an optimum
value for the simplification threshold, although the test scores would sug-
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Figure 5.2: CPU usage for a noise level of 0.001. The error bars show the
first and third quartiles at that point.
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Figure 5.3: Program effectiveness for a noise level of 0.001. The left-hand
graph shows the fitness values. The right-hand graph is the RMS error on
the test set. The error bars show the first and third quartiles at that point.

gest that it should not be larger than 0.01.
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Noise Level = 0.01
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Figure 5.4: Program sizes for a noise level of 0.01. The left-hand graph
shows the program size in nodes and the right-hand graph show the depth
of the program tree. The error bars show the first and third quartiles at that
point.

The noise level is now increased by an order of magnitude to 0.01 on
the same regression task. Figure 5.4 shows the program size for this noise
level. At this noise level there is a clear difference between the two meth-
ods. The program sizes for the numerical simplification method are sim-
ilar to the lower noise level given earlier(figure 5.1), but the sizes with-
out simplification have increased considerably. The CPU usage figures
are given in figure 5.5. These show the same substantial increase for the
standard GP case. This is as expected given the increase in program sizes.
There is still no indication here of any pattern that might indicate an opti-
mum value for the simplification threshold.

The fitness and test scores for this noise level are shown in figure 5.6.
The fitness values show very similar results both with and without simpli-
fication although there appears to be a slight rising trend. The test scores
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Figure 5.5: CPU usage for a noise level of 0.01. The error bars show the
first and third quartiles at that point.
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Figure 5.6: Program effectiveness for a noise level of 0.01. The left-hand
graph shows the fitness values. The right-hand graph is the RMS error on
the test set. The error bars show the first and third quartiles at that point.

show little variation with simplification threshold up to the 0.035 when
they start to rise until at 0.1, where they are 50% higher (greater error) than
the median value from the runs with no simplification. This is the same
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pattern that was seen with the lower noise level. The rise is not as pro-
nounced but it occurs at a higher value of the simplification threshold. As
with the lower noise level there is no clear optimum value for the simpli-
fication threshold. At this noise level there is a clear advantage in the CPU
time required and in program size and therefore memory requirements,
but this advantage is already present at the smallest threshold tested. As
with the lower noise level there does however appear to be an upper limit
before the error on the test set starts to rise. This was 0.01 on the low noise
case and 0.035 with the higher noise level.

5.4.2 Regression Task Two

This task requires a larger program than the first task for good results and
is therefore more difficult to evolve a good solution. Good solutions are
possible but many runs do not find one and this is reflected in the results
that follow.

Noise Level = 0.001

Figure 5.7 shows the program sizes for this task with the low noise level.
As expected the median program sizes are larger than they were with the
first task, but with this task there is a fairly consistent downward trend in
program sizes as the simplification threshold is increased, although there
is a sharp increase in sizes between the first point at 0.0001 and the sec-
ond point at 0.0002. Why this might be the case is unclear but it may
be just chance as the first and third quartiles do not show as clear an in-
crease. This reduction in program sizes as the simplification threshold is
increased suggest that extra simplification opportunities are being found
as the threshold is relaxed. This did not happen with the first regression
task. The CPU run times are shown in figure 5.8. As expected these show
the same downward trend as the simplification threshold increases. As
with the higher noise level on the first regression task, the program sizes
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Figure 5.7: Second regression task program sizes for a noise level of 0.001.
The left-hand graph shows the program size in nodes and the right-hand
graph shows the depth of the program tree. The error bars show the first
and third quartiles at that point.

and CPU times are much lower with numerical simplification than the
median values from the runs with no simplification.
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Figure 5.8: Second regression task CPU usage for a noise level of 0.001.
The error bars show the first and third quartiles at that point.
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Figure 5.9: Second regression task program effectiveness for a noise level
of 0.001. The left-hand graph shows the fitness values. The right-hand
graph is the RMS error on the test set. The error bars show the first and
third quartiles at that point.

The fitness and test scores are shown in figure 5.9. In the first regres-
sion task these stayed essentially stayed flat until about 0.01, but in this
task there is a slight rising trend. This may indicate that the reduction in
program size is resulting in a slight loss in accuracy. The most interest-
ing point is the test results. There is again a sharper increase in test error
from a simplification threshold of about 0.01 but the error is considerably
smaller with simplification than without, even though there is little differ-
ence between the fitness scores. This suggests that without simplification
there is over fitting occurring. The much smaller programs resulting from
numerical simplification are avoiding that problem.

This task and noise level again shows no strong indication of an op-
timum value for the simplification threshold, although as with this noise
level on the first regression task, 0.01 would appear to be a practical upper
limit. Below this level there is a very slight advantage in resource usage at
higher values and a very slight advantage in test error at the smaller end
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of the range.

Noise Level = 0.01

Again the noise level is raised to 0.01, and figure 5.10 shows the program
sizes. This shows a very similar pattern as the lower noise case on this
task. There is the same trend of falling program sizes as the simplifica-
tion threshold is increased and the sizes are much smaller than without
simplification. The CPU used is shown in figure 5.11 and shows the same
reducing trend as would be expected.
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Figure 5.10: Second regression task program sizes for a noise level of 0.01.
The left-hand graph shows the program size in nodes and the right-hand
graph shows the depth of the program tree. The error bars show the first
and third quartiles at that point.

The fitness and test scores with this noise level are shown in figure 5.12.
Compared to the lower noise case the fitness scores have risen slightly, but
there is still little difference between whether numerical simplification is
used or not, and there is little variation across the range of values for the
simplification threshold. The test scores again show over fitting in the runs
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Figure 5.11: Second regression task CPU usage for a noise level of 0.01.
The error bars show the first and third quartiles at that point.
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Figure 5.12: Second regression task program effectiveness for a noise level
of 0.01. The left-hand graph shows the fitness values. The right-hand
graph is the RMS error on the test set. The error bars show the first and
third quartiles at that point.

without simplification. The numerical simplification runs show test scores
much closer to the fitness scores and with little change as the simplification
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threshold increases until a threshold of 0.035 when, like the first regression
task, the error on the test set shows a marked increase as the threshold
continues to increase.

5.5 Chapter Summary

This chapter investigated the second goal of this thesis. That is, whether
there is an optimum value for the simplification threshold in numerical
simplification, and if there is, what the relationship is between that opti-
mum value and the amount of noise in the input data.

Experiments were performed on two regression tasks, with two noise
levels used on each task. The results show that there is no clear optimum
value for the simplification threshold. For three of the four cases examined
there were clear advantages in program size and and CPU used when nu-
merical simplification was used, and on the second regression task numer-
ical simplification substantially reduced the over fitting that was occurring
in the runs using standard GP with no simplification. These advantages
were already present with the smallest simplification threshold used and
did not improve in any significant way as the threshold was increased.
However there does appear to be an upper limit on the threshold. This
is to be expected, if the simplification threshold is too large then detail
will be discarded that is required to form a good solution. In general,
the program size and run times reduce very slightly as the simplification
threshold is increased. Then, at a simplification threshold of somewhere
between 0.01 and 0.04 the RMS error rate on the test set rises sharply, and
continues to rise as the simplification threshold continues to increase. This
point where error sharply increases appears to be related to the noise level
in as much as it was 0.01 for the lower noise level of 0.001 and rose to about
0.035 when the noise level was 0.01. For practical purposes, a conservative
choice would be 0.0001, there is little to gain from using a larger value and
some risk unless the dataset is well understood.



Chapter 6

Fragment Analysis using Images

6.1 Introduction

The previous two chapters have presented the numerical simplification
method and examined the effect it has on program sizes and effectiveness.
This chapter and the following chapter investigate whether simplifying
programs during the GP run changes the nature of the GP population and
whether the simplification process has changed how the evolutionary pro-
cess functions. This has been accomplished by considering the fragments
that make up the programs in the population, their distribution both in fre-
quency of occurrence and in coverage of the search space, and how these
distributions change through the generations. This thesis uses the term
fragment to mean a subtree of fixed depth, which can occur at any position
in the program tree therefore the leaves of the fragment are not neces-
sarily terminals. This chapter uses images to visualise the distribution of
fragments by generation within the population. Two different encoding
schemes are developed that allow the distribution of two or three level
deep fragments to be displayed as images.

Wong and Zhang [79] examined the effect of algebraic simplification
on fragments (they used the term building blocks) by tracking just the
numeric terminals in the population. They showed that while algebraic

89
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simplification does disrupt fragments (building blocks) by destroying or
changing constants, it is also capable of creating new values that were not
originally present and some of these new values became established in the
population thus contributing to the final solution.

6.2 Chapter Goals

The goal of this chapter is to show the distribution of fragments within a
population and to show if the nature of this distribution is changed by sim-
plifying programs during the run. It examines the fragment distributions
of canonical GP with no simplification and compares this to the distribu-
tions resulting from using the numerical simplification method and the
algebraic simplification method. The specific research objectives are:

• How the fragments are distributed in canonical GP with no simplifi-
cation and the two simplification methods;

• Whether the two simplification methods destroy existing fragments;

• Whether the two simplification methods generate new fragments;

• Whether and how the general fragments (subtrees) analysed in this
chapter behave differently from the constant terminals analysed in [79].

6.3 Encoding Schemes

In any practical problem, the number of possible fragments is huge. What
is needed is a way of showing the distribution of the fragments present
in the population with an indication of relative frequency. The require-
ment is to show both the distribution relative to the other fragments in the
population and also the coverage across the whole search space. This is a
non-trivial problem, particularly as the size of the fragments increase.
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To deal with this problem, each fragment is encoded into a bit string.
The distribution of the encoded fragments is then converted into a two-
dimensional image, with fragment encodings on the vertical axis and gen-
erations on the horizontal axis. The encoding is done in such a way that
similar fragments generally result in similar encodings, which allows the
resulting image to show the coverage of the search space. To make the
presentation of the images practical, the resulting image is to be less than
a page in size while still having at least one print dot per possible encod-
ing. Even at 1200dpi there are a very limited number of pixels and there-
fore bits available for encoding the fragments. The encoding process will
therefore simplify the description of the nodes to keep the size of the bit
string manageable. The larger the fragments being examined, the larger
the number of possible different fragments and the greater the simplifica-
tion that will be required to keep the resulting bit string small enough to
be displayed using an image.

6.3.1 Encoding Three Level Deep Fragments

A fragment that is three levels deep, with all operators having two ar-
guments, has five nodes if one of the second level nodes is a terminal and
seven nodes otherwise. At a print resolution of 1200dpi an encoding 13bits
long would result in an image 6.83 inches (173.5mm) high. That would al-
low about two bits per node. This encoding scheme can therefore give
only the most general indication of the structure of the fragments.

With two bits per node there are four available encodings for each
node, which have been used as follows:

00 — addition or subtraction operator

01 — multiplication or division operator

10 — input feature

11 — numeric terminal (ephemeral constant)
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Figure 6.1: An example tree of three levels deep.

Because the root node of a fragment at least two levels deep must be
an operator, the first bit will always be zero leaving 13 bits describing a
three deep fragment, and an image 6.83 inches (173.5mm) high at 1200dpi
which is feasible for printing on an A4 page.

At each generation all the programs in the population are traversed,
encoding all fragments that are three levels deep. In each case the nodes
are encoded one level at a time, starting from the root, and from left to
right within the level. Any missing nodes in the five node tree are encoded
as 00 without loss of generality. Figure 6.1 shows an example three-deep
subtree. In this example the order the nodes would be encoded is × − +

− F2 0.3 F3. This would be encoded as [1] [00] [00] [00] [10] [11] [10], i.e.,
1000000101110.

At the end of the run an image is created with a height of 213 = 8192

pixels, one for each possible encoding and the width being a convenient
multiple of the number of generations. All non-zero counts are normalised
on to a range 0–191 with the highest count being assigned a pixel value of
0 (pure black) and 191 being the lowest non-zero count. All encodings
with a zero count take a pixel value of 255 (pure white). This makes a clear
visual greyscale distinction between a low count and zero. Examples of
these images are given in figure 6.4.

Obviously this is a very coarse and simplistic representation, and there
are a number of weaknesses. No account is taken of the operators + and
× having symmetric arguments. The communicative nature of these op-
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erators mean that there may two different encodings from different frag-
ments that are algebraically equivalent. Another problem is that this en-
coding scheme does not distinguish between addition and subtraction or
between multiplication and division. There is no distinction between fea-
tures or between different constants. It does however allow three deep
fragments to be encoded and their distributions visualised.

6.3.2 Encoding Two Level Deep Fragments

To overcome the limitations of the 2 bit encoding scheme described in the
previous section, while still limiting the length of the encoding to no more
than 13 bits, the fragment being encoded has to be reduced in size to only
two levels deep which, for binary operators, has only three nodes. There
are then more bits available to describe each node. The root node is always
an operator and uses two bits with the values:

00 — addition operator

01 — subtraction operator

10 — multiplication operator

11 — division operator

The two child nodes each have five bits, used as follows.

1 followed by four bits is a feature, with the four bits being the fea-
ture number.

01 followed by three bits is an ephemeral constant with the absolute
value used to map the interval [0.0, 1.0] onto the integer range [0, 7]

allowed by the three available bits. If C is the absolute value of the
constant, then it is encoded as follows:
C < 1.0 ⇒ C ∗ 8.0 truncated to an integer
C ≥ 1.0 ⇒ 7
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So a value of 0.32 is encoded as 2, being 0.32 × 8.0 = 2.56 truncated
to an integer.

000 followed by two bits is an operator, enumerated as for the root
node.

This encoding scheme allows more information about the fragment to
be included in the encoding than was the case for the three level deep
fragments, but still keeps the resulting image to a size that is feasible for
printing at just 212 = 4096 pixels in height.

0.3 F3

/

Figure 6.2: An example tree of two levels deep.

In the example of Figure 6.2, the order of encoding is / 0.3 F3 where
F3 is the third input feature. This then encoded as [11] [01 010] [1 0011],
i.e., 110101010011.

Note that there is still some redundancy due to the symmetry of the
× and + operators. As long as the dataset does not have more than 16

features then the encoding is a complete description of the operators and
features, with only the constant terminals having some loss of precision.

6.4 Experimental Setup

The coins, wine and faces datasets were used in these experiments. The
terminal set for each dataset consisted of the features used in that dataset
and random “constant”numbers. The function set for all datasets con-
sisted of the four standard arithmetic functions (addition, subtraction, mul-
tiplication and protected division). The fitness function used the error rate
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on the training set. Experiments are all conducted with the same set of
population parameters. The parameters were set after some initial trial ex-
periments and were chosen to provide reasonably good results across all
the datasets and methods rather than being optimised for any one dataset
or method. The population size was 200. Initial programs were five levels
deep. Tournament selection was used with a tournament size of four. The
coin dataset was run for 40 generations, the wine dataset for 200 genera-
tions and the faces dataset for 100 generations. As with the experiments
in the earlier chapters, two sets of parameters were used when creating
the next generation. One set of experiments used 5% reproduction, 85%
crossover and 10% mutation; the second set of experiments used 5% re-
production, 15% crossover and 80% mutation. Where simplification was
used it was performed after the first generation, and every fourth gener-
ation thereafter. Note that there was no limit on the maximum program
size. The runs were done in sets of three, one for each of no simplification,
algebraic simplification, and numerical simplification. Because fragment dis-
tributions are being compared between the three runs in each set, the three
runs in each set used the same starting population. The three runs for the
same set used the same starting seed, with each set using a different seed.

6.5 Results and Discussion

The particular runs and their associated images that are presented here
are representative of the behaviour observed across many other similar
runs. The images have been stretched in width to make them easier to see,
so each generation for the coins dataset is 15 pixels wide, 3 pixels for the
wine dataset and 6 pixels for the faces dataset, this gives a common size of
image. Similarly the images for the two level fragments have been scaled
vertically to match those for three level fragments.



96 CHAPTER 6. FRAGMENT ANALYSIS USING IMAGES

6.5.1 Three Level Fragments

Figure 6.4 shows three images for the coins dataset using a crossover rate
of 85%, one example individual run from each of (no simplification, algebraic
simplification and numerical simplification). The three runs all used the same
initial population. They also used the same seed for the random number
generator. The horizontal axis represents the 40 generations, and the ver-
tical axis represents each of the possible 8192 encodings. Where one of the
two second level nodes is a terminal (either a feature or a constant) there
is a small block of encodings that do not describe a valid subtree because
these second level terminal nodes can not have child nodes. These ar-
eas are labelled with an X. In all these figures, continuous solid lines show
fragments retained during evolution, while discontinuous “lines” (or scat-
tered dots/short lines) indicate fragments were disrupted. The darkness
of the lines/dots indicate the relative frequency of occurrence of the frag-
ment within the population.

Enlarged views of a densely populated area and a sparsely populated
area from one of the numerical simplification runs are shown in Figure 6.3.
These two views clearly show some behaviours that are common through-
out the runs that follow. In Figure 6.3(a) there are three solid dark lines
that start early in the run and are then present throughout the remaining
generations. These show fragments that occur frequently in the popula-
tion (dark line), and remain present throughout the remaining generations
without being disrupted (continuous line). There is also one grey solid line
that shows a less common fragment that remains in the population with-
out disruption.

There are groups of lines close together vertically with some breaks in
the lines. These show groups of similar fragments. They probably differ in
only one of the third level nodes. They are less common, as shown by their
grey colour, and there is occasional disruption shown by the breaks in the
lines. These changes in the third level are then often reversed only one or
two generations later. Elitism is being used, in these experiments the fittest



6.5. RESULTS AND DISCUSSION 97

5% of the population automatically form part of the next generation, so
the fact that these fragments momentarily disappear from the population
indicates that they are not part of the fittest individuals in the population.

There are many fragments in the initial population that disappear after
the first generation. This is common in most of the runs using simpli-
fication and indicates fragments that either can be simplified into a dif-
ferent fragment, or in the case of numerical simplification, provide little
contribution to the result of their parent node and are therefore simplified.
The first simplification occurs after the first generation. Similarly there are
many other fragments that are created at the same point as a result of these
simplifications. This behaviour is not seen on the wine and faces datasets
when there is no simplification, but the removal of many fragments after
the first generation does still occur on the coin dataset without simplifica-
tion. The most likely explanation is that these fragments occurred only in
low fitness individuals that did not win a tournament and therefore could
not pass their fragments on to the next generation.

Figure 6.3(b) shows a sparsely populated part of the search space. There
are few fragments and the light grey colour shows that they are not com-
mon. The lines are all short. This implies that the program or programs
they were part of had low fitness, because they have not contributed to the
next generation, and the fragments concerned have therefore disappeared
from the population.

Figure 6.4(a) shows an example run on the coins dataset without sim-
plification. Fragments that remain in the population from early in the run
can be seen in areas B, C, D, E, F and G. Areas E and F show large num-
bers of related fragments, a few of which remain for extended periods
but most only survive a few generations before being removed from the
population. This is a pattern of behaviour that is typically caused by the
crossover operator swapping parts of the fragments, generally at the third
level. Similarly in areas B, E and F there are equally spaced groups of three
or four lines that are periodically disrupted. The lines in the group differ
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(a) (b)

Figure 6.3: An enlarged view of (a) a densely populated area and (b) a
sparsely populated area.

in only one particular third level node.

The most important thing in these figures is the differences in behaviour
between canonical GP with no simplification and the two simplification
methods. The three runs shown in figure 6.4 all have the same initial pop-
ulation, so the differences are due to the algorithm and the stochastic na-
ture of the GP process. Region A in all three runs shows only a very small
number of scattered fragments none of which remain in the population
for more than a few generations. Region B in the canonical GP run has
one long lived fragment and several related fragments. These are much
more fragmented in the numerical simplification run in image (c). Region
C has only a few fragments, although one of them is quite persistent al-
beit not common, as shown by the line being light grey in colour. This
fragment has remained in the population continuously in the canonical
GP run but has been disrupted and re-established at different generations
in the two simplification runs. Region D is similar in all three runs while
region E shows a similar pattern to region B with fewer fragments in the
simplification runs including the loss of the one persistent fragment in the
canonical GP run. Region F has a large number of different fragments in
the canonical GP run but only one is common (black line) and they do
not survive for many generations at a time. The simplification runs show
fewer fragments in this region but several of them remain in the popula-
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tion for more generations at a time then was the case in the canonical GP
run. Regions G and H have only a few, generally long lived, fragments.
The two simplification runs have actually created several extra long lived
fragments in these regions.

In summary, most regions show a similar pattern between the three
runs and while some regions show the two simplification methods reduc-
ing significantly the number of different fragments, very few of them were
either common or remained in the population for more than a few gener-
ations. Simplification has removed a couple of long lived fragments, par-
ticularly in regions B and E, but has created others in regions G and H.

Figure 6.5 shows the same three runs but using a 15% crossover rate.
There are many more different fragments in these runs than with the 85%
crossover runs. The high mutation rate in these runs has clearly produced
a lot more diversity, but in region A the simplification methods have again
removed many of them as being redundant. Again some long lived frag-
ments have been lost due to simplification, but it has also created others,
there are examples in regions D and E.

Figures 6.6 and 6.7 show the images for the wine dataset for the three
methods. These show similar patterns of behaviour to the coins dataset.
There are some long lived fragments in the canonical GP runs that are re-
moved by simplification, see area E in figure 6.6(a) and area C in figure 6.7.
The simplification runs also create several new long lived fragments, ex-
amples can be seen in area D in figure 6.6(b), area C in figure 6.6(c), areas B,
D and H in figure 6.7(b) and areas B and H in figure 6.7(c). These new frag-
ments contribute to solving the problem, so the classification performance
is retained.

Figures 6.8 and 6.9 show the images for the faces dataset. Except for the
numerical simplification run with the 85% crossover rate, these show the
same pattern of behaviour as the other two datasets, with some fragments
being destroyed or disrupted and other new ones being created. The 85%
crossover rate numerical simplification run however has removed almost
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all of the fragments in the population. Most of the fragments are removed
at the first simplification, which occurs after the first generation. There
are only a few left to continue the evolutionary process, but several new
fragments are created mid run, most of which remain continuously in the
population through to the end of the run and form a solution with at least
reasonable performance.

6.5.2 Two Level Fragments

The three level deep fragments do not distinguish between addition and
subtraction or between multiplication and division. They also do not dif-
ferentiate between different features or different values of the constant ter-
minals. To make these distinctions the behaviour of two-level deep frag-
ments was checked to see whether the conclusions remain valid.

Figures 6.10 and 6.11 show the images for two level fragments for the
coin dataset using the three methods. These results show a very similar
pattern to those on the three-level fragments in the previous subsection
with the simplification methods both removing fragments and creating
new ones. There are a larger number of different fragments in the pop-
ulation than with the 3-level encoding scheme. This is not unexpected
because the greater ability of the 2-level scheme to differentiate between
similar fragments means that similar fragments may result in two or more
closely spaced encoding in the 2-level scheme but be encoded the same in
the 3-level encoding scheme.

Figures 6.12 and 6.13 show the images for two level fragments for the
wine dataset. These show the same pattern as the previous runs. On this
dataset there is a more obvious reduction in the number of the fragmented
short lived fragments that remain in the population in the simplification
runs, particularly with a crossover rate of 85% (figure 6.12(a) and (b)). This
reduction has been particularly severe on the numerical simplification run.
There is clearly a greater number of different fragments in the high muta-
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tion rate 15% crossover runs than in the 85% runs. This was true across all
three datasets. Across all the experiments conducted as part of this work
the high mutation runs generally produced better accuracy and shorter
programs than the high crossover rate runs. Further testing is required
to establish whether there is any relationship between this and the higher
diversity that is seen in these images for the 15% crossover runs.

Figures 6.14 and 6.15 show the images for two level fragments for the
faces dataset. These show a similar pattern as the previous runs, although
there appears to be less difference between the three methods. There are
also a larger number of long lived fragments in all of the runs for this
dataset than there was for the other two datasets. It is not clear why this
might be the case. This dataset does not generally produce a really good
classifier and it may be that the input data does not allow the GP process
to converge on a single good solution.

While the two and three level deep fragments behave differently from
the numerical constant terminals investigated by Wong and Zhang in [79],
the main conclusions remain the same: the two program simplification al-
gorithms destroy existing fragments but generate new fragments to main-
tain the diversity, at least for those fragments that remain in the population
for many generations, and the contributions of the new fragments suffi-
ciently compensates for the negative aspects of the disruption of existing
fragments.

One observation from these new results is that many existing frag-
ments are preserved during evolution. Wong and Zhang’s analysis on
numeric/constant terminals did not clearly show this. This is perhaps be-
cause the format of the numeric terminals is a single floating point number
and is too simple to show this pattern.
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6.6 Chapter Summary

The goal of this chapter was to show the distribution of fragments within
a population and to examine if the nature of this distribution is changed
by simplifying the programs during run. The results and analyses have
revealed that although the two online simplification methods destroyed
some existing fragments, they also generated additional new fragments
during evolution, which sufficiently compensated for the negative effect
from the disruption of fragments. These findings further confirmed the
early hypothesis and results made by Wong and Zhang [79], where the
analysis was based only on the simplest form of building blocks (frag-
ments), being numerical constants, on two simple regression tasks. These
findings are more general than [79].

The results presented in this chapter are based on individual GP runs.
They were chosen as being representative. The next chapter uses statistical
techniques to investigate the fragment distribution over multiple runs to
check whether this chapter’s conclusions remain true over a large number
of runs, and whether any differences are statistically significant.
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Figure 6.4: Three-level deep frag-
ments for the coins dataset with
85% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.5: Three-level deep frag-
ments for the coins dataset with
15% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.6: Three level deep frag-
ments on the wine dataset with
85% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.7: Three level deep frag-
ments on the wine dataset with
15% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.8: Three level deep frag-
ments on the faces dataset with
85% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.9: Three-level deep frag-
ments for the faces dataset with
85% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.10: Two-level deep frag-
ments for the coins dataset with
85% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.11: Two-level deep frag-
ments for the coins dataset with
15% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.12: Two-level deep frag-
ments on the wine dataset with
85% crossover (a) no simplifica-
tion, (b) algebraic simplification
and (c) numeric simplification.
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Figure 6.13: Two-level deep frag-
ments on the wine dataset with
15% crossover (a) no simplifica-
tion, (b) algebraic simplification
and (c) numeric simplification.
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Figure 6.14: Two-level deep frag-
ments for the faces dataset with
85% crossover. (a) no simplifi-
cation, (b) algebraic simplification
and (c) numerical simplification.
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Figure 6.15: Two-level deep frag-
ments on the faces dataset with
15% crossover (a) no simplifica-
tion, (b) algebraic simplification
and (c) numeric simplification.



Chapter 7

Fragment Analysis using
Statistics

7.1 Introduction

The previous chapter used images to visualise the distribution of two and
three level deep fragments. These images showed that a few fragments
remained in the population for a substantial part of the run, while a much
larger number of fragments were created, remained for a few generations
and were then removed from the population. While the two online sim-
plification methods destroyed some existing long lived fragments, they
generated additional long lived fragments during evolution, which suffi-
ciently compensated for the negative effect from the disruption of existing
fragments. The requirement for the images to be printable on an A4 page
restricted their size in pixels, and meant that the encoding scheme used
was a very coarse representation of the three level deep fragments. Each
image could only illustrate a single run and the images presented were
chosen from a set of runs as being typical. While this allowed qualitative
differences to be observed, no clear claim could be made about the signif-
icance of the differences observed.
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7.2 Chapter Goals

This chapter aims to extend the analysis of the previous chapter by de-
veloping a more descriptive encoding scheme for the fragments and us-
ing statistical techniques across multiple runs to examine whether the be-
haviours observed using images are present across a much larger set of
runs with the more descriptive encoding.

The numerical simplification method is used, and compared with canon-
ical GP with no simplification. The specific research questions are similar
to the previous chapter:

1. How are the fragments distributed as the evolution proceeds through
the generations?

2. How does numerical simplification change this distribution?

3. Does the simplification process affect the overall diversity of frag-
ments within the population?

7.3 Fragment Encoding Scheme using 8 Bits per

Node

In this chapter, the behaviour of three level deep fragments is examined.
These are large enough to be useful while keeping the encoding length
within manageable bounds. In the three level deep encoding scheme used
in the previous chapter there were many different fragments that pro-
duced the same encoding. This was necessary because of the restrictions
imposed by using images as the presentation medium. This chapter presents
a new encoding scheme with a much more precise description of the three
level deep fragments. The new encoding is too long to present the re-
sults as images because even on a high definition printer the image would
be much longer than any practical page size. Instead the encodings are
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analysed using statistical measures. The previous chapter also examined
two level deep fragments, but this was to avoid the limitations of the very
coarse encoding scheme required in order to display the results as printed
images. The encoding scheme developed in this chapter does not suffer
from this limitation so it is not necessary to examine the simpler two level
deep fragments in this chapter.

As with the encoding schemes presented in the previous chapter, the
nodes are encoded one level at a time, starting from the root, and from
left to right within each level. Figure 7.1 shows a three level deep subtree.
In this example the order the nodes would be encoded is × − + −
F2 0.3 F3.

−

0.3 F3F2

+

x

−

Figure 7.1: An example tree to illustrate the encoding order.

A three level deep tree with all operators having no more than two
operands has a maximum size of seven nodes. If eight bits are used to
describe each node then the fragment can be encoded in 56 bits. A 64 bit
integer is then used to sufficiently hold the encoding.

• The operators are encoded as 111 followed by five bits identifying
the operator. For these experiments this results in the following:

1. 11100000 — addition operator.

2. 11100001 — subtraction operator.

3. 11100010 — multiplication operator.

4. 11100011 — division operator.
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• A feature is encoded as 10 followed by six bits identifying the feature,
this allows up to 64 features, and more could be handled by using
part of the encoding space allocated to operators.

• An ephemeral constant is encoded as 0 followed by seven bits which
are a signed integer that maps [-1.0,1.0] on to the range [-64,63], that
is:

C < −1.0 ⇒ −64

−1.0 ≤ C ≤ 1.0 ⇒ C ∗ 64 truncated to an integer
C ≥ 1.0 ⇒ 63

So a value of 0.32 is encoded as 20, being 0.32× 64 = 20.48 truncated
to an integer.

All of the operators and the feature terminals are completely described.
It is only the ephemeral constants that lose some precision. There are
large gaps in the encoding space that do not correspond to a valid frag-
ment, but that does not cause any problem for our statistical analysis.
In the example of Fig. 7.1, the order of encoding is [×] [−] [+] [−] [F2]
[0.3] [F3], which is encoded as [11100010] [11100001] [11100000] [11100001]
[10000010] [00010011] [10000011], the resulting encoding is then:
11100010111000011110000011100001100000100001001110000011 or in hexadec-
imal E2E1E0E1821383.

7.4 Experimental Setup

This chapter uses the coins, wine and faces datasets as in the previous
chapter. The function set for all the datasets consists of the four standard
arithmetic functions (addition, subtraction, multiplication and protected
division). The fitness function uses the error rate on the training set. Ex-
periments are all conducted with the same set of parameters. The popula-
tion size is 200. Initial programs are five levels deep. Tournament selection
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is used with a tournament size of four. The coin dataset was run for 40 gen-
erations, the wine dataset for 200 generations, and 100 generations for the
faces dataset. These parameter values were determined using heuristic
guidelines and preliminary trials to obtain good results for these datasets
without being optimised for any one dataset or either canonical GP or the
numerical simplification method.

Two sets of parameters were used for the genetic operators: one 5% re-
production, 85% crossover, 10% mutation; and one 5% reproduction, 15%
crossover, 80% mutation. Ten-fold cross validation was used and where
simplification is used it is performed after the first generation, and every
fourth generation thereafter. The runs are done in pairs, one for each of
no simplification and numerical simplification. Because comparisons are be-
ing made between the two runs in each pair, both runs in the pair use the
same starting population, the same folds, and the same starting seed. Each
pair was run 50 times.

7.5 Results and Discussion

To investigate the distribution of fragments as the run proceeds, three level
deep fragments are used, with the eight bits per node encoding described
above in section 7.3. This section examines:

• the lifespan of fragments;

• the rate at which new fragments are added to the population;

• the rate at which fragments are removed from the population;

• the number of distinct fragments;

• the distribution of fragment counts(frequencies).
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7.5.1 Fragment Lifetimes

If, at a given generation, a fragment (encoding) is present in the popula-
tion, and at the previous generation it was not, then this is a creation. If, at
a given generation, a fragment (encoding) is not present in the population,
and at the previous generation it was, then this is a destruction.

Each time a destruction event occurs the number of generations that
the fragment was in the population is recorded. This is a lifespan. At the
end of the run the lifespan for each of the fragments still in the population
is also recorded. The number of lifespans is then plotted against the lifes-
pan in generations. The two different GP methods have different average
program sizes and therefore different numbers of fragments in their pop-
ulations. Therefore the plots express the lifespan counts as a percentage of
the total number of lifespans in the population for that run and method.

Figure 7.2 shows the lifespan distributions for the three datasets over
50 runs. The range of lifespan counts is very large and so these graphs
use a logarithmic scale for the percentages. 1 was added to each count to
avoid any problem with log(0). A small difference can be seen between the
three methods for short lifespans. However all the lifespan percentages for
lifespans of greater than 10 generations are very small. This confirms the
observations from examining the images of chapter 6.

Figure 7.3 shows an expansion of just the lowest frequencies for the
85% crossover rate. In the coins dataset the small number of fragments
with long lifespans can be clearly seen; they are harder to observe for the
other datasets but they are present. The 15% crossover rate runs show the
same pattern.

The statistical significance of the differences between the methods was
tested using the Wilcoxon Signed-Rank non-parametric test [75, 34]. Fig-
ure 7.4 shows the Z scores from these tests. The red lines show the signifi-
cance of the differences between algebraic simplification and no-simplification,
the green lines show the significance of the differences between numeric
simplification and no-simplification and the black lines show the signifi-



7.5. RESULTS AND DISCUSSION 115

Coins Wine Faces

 0.01

 0.1

 1

 10

 100

 5  10  15  20  25  30  35  40

P
er

ce
nt

ag
e 

of
 T

ot
al

Lifetime in Generations

none
algebraic
numeric

 0.01

 0.1

 1

 10

 100

 20  40  60  80 100 120 140 160 180 200

P
er

ce
nt

ag
e 

of
 T

ot
al

Lifetime in Generations

none
algebraic
numeric

 0.01

 0.1

 1

 10

 100

 10  20  30  40  50  60  70  80  90 100

P
er

ce
nt

ag
e 

of
 T

ot
al

Lifetime in Generations

none
algebraic
numeric

 1

 10

 100

 5  10  15  20  25  30  35  40

P
er

ce
nt

ag
e 

of
 T

ot
al

Lifetime in Generations

none
algebraic
numeric

 0.01

 0.1

 1

 10

 100

 20  40  60  80 100 120 140 160 180 200

P
er

ce
nt

ag
e 

of
 T

ot
al

Lifetime in Generations

none
algebraic
numeric

 0.01

 0.1

 1

 10

 100

 10  20  30  40  50  60  70  80  90 100

P
er

ce
nt

ag
e 

of
 T

ot
al

Lifetime in Generations

none
algebraic
numeric

Figure 7.2: Distribution of fragment lifespans for the coin dataset (left),
wine dataset (middle) and the faces dataset (right). The top row is for a
crossover rate of 85% and the bottom row a rate of 15%.
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Figure 7.3: Distribution of fragment lifespans with 85% crossover for the
coin dataset (left), wine dataset (middle) and the faces dataset (right).
These show only the lowest frequencies to show more clearly the small
number of fragments with a long lifespan.
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cance of the the differences between numeric simplification and algebraic
simplification. The horizontal line is for 1.96 which is the 95% confidence
level. It can be clearly seen that there is no significance in the small differ-
ences seen in Fig. 7.2.
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Figure 7.4: Z scores from significance tests on the differences in fragment
lifetimes between no-simplification, algebraic simplification and numer-
ical simplification for the coin dataset (left), wine dataset (middle) and
the faces dataset (right). The red lines show the significance of the dif-
ferences between algebraic simplification and no-simplification, the green
lines show the significance of the differences between numeric simplifica-
tion and no-simplification and the black lines show the significance of the
the differences between numeric simplification and algebraic simplifica-
tion.The top row is for the 85% crossover rate and the bottom row is for
the 15% rate.
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7.5.2 Creation and Destruction Rates

The rate at which new fragments are added to the population (creation)
and the rate at which fragments are removed from the population (de-
struction) are now examined. Figure 7.5 shows the creation rates and fig-
ure 7.6 the destruction rates. Note that the periodic oscillations in the
simplification lines are due to simplification being done every four gen-
erations. It can be seen that after the first one or two simplifications the
numerical simplification method has consistently lower rates, for both cre-
ation and destruction, than the no-simplification case. After the first few
generations the creation and destruction rates show remarkably little long-
term variation.
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Figure 7.5: Fragment creation rates for the coin dataset (left), wine dataset
(middle) and the faces dataset (right). The top row is for a crossover rate
of 85% and the bottom a rate of 15%.
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Figure 7.6: Fragment destruction rates for the coin dataset (left), wine
dataset (middle) and the faces dataset (right). The top row is for a
crossover rate of 85% and the bottom a rate of 15%.

7.5.3 Number of Distinct Fragments

Figure 7.7 shows the number of distinct fragments, and the total number
of fragments in the population. The lines for the total number of fragments
have been divided by 5 to allow them to be more easily shown on the same
graph. It can be seen that in all cases the total number of fragments tend
to rise through the run as the number of generations increases. There are
many small variations, but most of this growth (and occasional fall) is in
a number of discrete steps. It is not easily seen on these graphs but these
steps are two or three generations long. Note that there is no correspond-
ing step in the number of distinct fragments. One possible explanation for
this effect is that when a genetic operation creates a program that is both
larger than average and of high fitness, this program will often be the tour-
nament winner and the fragments in this program will propagate through
the population causing both an increase in the average program size and
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an increase in total number of fragments. The creation of such programs
only occurs every few generations resulting in this stepped behaviour.
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Figure 7.7: The solid lines show the number of distinct fragments in the
population. The dashed lines show the total number of fragments divided
by 5. The left column is the coin dataset, the middle column is the wine
dataset and the right hand column is the faces dataset. The top row is the
for a crossover rate of 85% and the bottom a rate of 15%. Note the periodic
nature of the simplification lines, this is due to simplification only being
run every fourth generation.

The first one, or sometimes two, rounds of simplification reduces the
number of distinct fragments. It starts to rise again and then the next
round of simplification reduces it. The long term trend remains nearly
constant throughout the rest of the run. As with the creation and destruc-
tion rates, the number of distinct fragments is clearly lower for numerical
simplification than for no simplification.

These results are not what might have been expected. The number
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of crossover and mutation operations per generation is constant at one
per program in the population. For a given number of distinct fragments
already present in the population, the chance of a fragment being created
that is not already in the population is likely to also be constant. Therefore
if the population size is large enough the creation rate will probably also be
approximately constant. What is not obvious is why the destruction rate
and the number of distinct fragments should remain constant or nearly so.
This will be examined further in section 7.5.5.

The consistency of the patterns shown in figures 7.5 and 7.7 would
suggest that they are statistically significant. The significance of the differ-
ences between numerical simplification and no simplification was tested
using the Wilcoxon Signed-Rank non-parametric test. Because of the pe-
riodic nature of the numbers, the significance testing was done using av-
erages over four successive generations, this being the number of gen-
erations per simplification. The significance was tested at the beginning
and end of the run, and at three points in between. Table 7.1 shows the
Z scores. The five columns being for the four generations starting at,
0, 12, 20, 28, 36 for the coins dataset, 0, 48, 96, 144, 196 for the wine dataset,
and 0, 24, 48, 72, 96 for the faces dataset. Z scores of 1.96 or better indicate
95% confidence and are in bold, 2.576 indicates 99% confidence.

The Z scores show that for all three datasets, the numerical simplifi-
cation method has significantly lower creation and destruction rates than
the no simplification case. The same pattern is seen with the number of dis-
tinct fragments. Most of the scores show a significance level of higher than
99%.

The number of distinct fragments is significantly smaller for the nu-
merical simplification method than for canonical GP. Chapter 4 showed
that there was no loss of classification accuracy with simplification meth-
ods. Table 7.2 shows the means and standard deviations of the test ac-
curacy for this chapter’s experiments. The differences are very small and
much smaller than the standard deviations. Tests showed that there is no
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Table 7.1: Significance scores for the differences between numerical sim-
plification and no simplification in terms of creation rate, destruction rate,
and the number of distinct fragments.

Start 1st Qtr Mid 3rd Qtr Final

Coins Dataset
Creation Rate 5.55 4.08 4.45 4.35 4.08
Destruction Rate 5.18 4.17 4.29 4.01 3.91
Distinct Fragments 5.28 3.83 4.21 4.37 3.89
Wine Dataset
Creation Rate 3.33 3.38 3.04 2.98 3.16
Destruction Rate 3.29 3.43 2.88 2.75 3.00
Distinct Fragments 3.19 2.95 2.50 2.67 2.53
Faces Dataset
Creation Rate 4.94 5.81 5.53 5.84 5.71
Destruction Rate 5.87 5.92 5.98 5.84 5.79
Distinct Fragments 5.43 5.82 5.40 5.61 5.44
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Table 7.2: Classification accuracy (as a percentage) on the test set of the
two methods.

No Simplification Numerical Simplification
Mean StdDev Mean StdDev

Coins Dataset 93.9 3.0 93.0 3.1
Wine Dataset 97.9 4.2 97.9 5.1
Faces Dataset 66.1 6.3 65.8 6.2

statistical significance to these differences.

7.5.4 Fragments Belonging to the Final Solution

The number of unique fragments is one possible measure of diversity in
the population. This having a significantly lower value for the numerical
simplification method poses an important question:

If the diversity is lower, how is it that the effectiveness (accuracy) is not
adversely affected?

One possible answer would be that the fragments being lost are only
those being deleted by the simplification process as being redundant and
are not contributing to the final solution. If this is true then those frag-
ments used by the final solution should not be being affected by simplifica-
tion. Fragments that contribute usefully to high fitness individuals should
not be being destroyed because of the 5% reproduction rate, so the creation
and destruction rates are of little use in verifying this. As a first attempt
those fragments that are part of the final solution were examined, and the
generation in which they first enter the population recorded. For each run
the median was calculated for the generation at which those fragments
entered the population for the final time.

The results are shown in table 7.3. It shows the minimum, first quartile,
median, third quartile and maximum value for these median values.
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Table 7.3: Generation at which fragments that were part of the final fittest
program entered the population..

Earliest 1st Qtr Median 3rd Qtr Latest
Coins Dataset
No Simplification 0 2 9 20 39
Algebraic simplification 0 2 9 21 39
Numeric simplification 0 3 9 19 39
Wine Dataset
No Simplification 0 3 29 108 197
Algebraic simplification 0 2 18 75 198
Numeric simplification 0 5 35 86 199
Faces Dataset
No Simplification 0 0 1 11 98
Algebraic simplification 0 1 2 18 99
Numeric simplification 0 2 21 52 99
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In all cases the earliest generation was the initial population and the lat-
est was very near the end of the run, the number of generations being 40

for the coins dataset, 200 for the wine dataset and 100 for the faces dataset.
The first quartile generation was also very early. The median numbers
however show much more variation, both between datasets, and between
no simplification and the two simplification methods. The wine dataset in
particular has at least half of the fragments in the final solution not enter-
ing the population until the 20th generation. There are some differences
between methods, but are they significant? The significance of the dif-
ferences between the median generations was tested using the Wilcoxon
Signed-Rank non-parametric test.

Table 7.4 shows the Z scores for these differences. As would be ex-
pected from an examination of the figures in Table 7.3 the only differ-
ences that show significance are the median and third quartile for the faces
dataset.

7.5.5 Distribution of Fragment Counts

In section 7.5.2 it was noted that the number of distinct fragments remain
constant, or very nearly so, as the run proceeds through the generations.
Intuitively it would be expected as the run proceeds and the fragments
in the high fitness individuals start to dominate the population, that the
number of distinct fragments in the population would drop. This is clearly
not the case. It may be that it is only the distribution amongst the frag-
ments that changes. To test this, the fragments were sorted in order of
their frequency in the final population. The results are plotted in 3D in fig-
ure 7.8. These graphs are the average of 50 runs using a crossover rate of
85%. The quantity rank axis is the frequency order at the end of the run. 1
at the back is the fragment (encoding) with the highest number present in
the final population. 2 is the second most numerous and so on. There are
100–200 different fragments present at any one time but the plots show just
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Table 7.4: Z scores for the differences between methods of the median gen-
eration at which those fragments that are part of the final solution enter the
population. Those scores that indicate a confidence level of 95% or better
are in bold.

85% Crossover
Coins Dataset
Algebraic simplification 0.12
Numeric simplification 0.22
Difference between Algebraic and Numeric 0.39
Wine Dataset
Algebraic simplification 1.66
Numeric simplification 0.80
Difference between Algebraic and Numeric 1.15
Faces Dataset
Algebraic simplification 2.05
Numeric simplification 4.64
Difference between Algebraic and Numeric 3.18
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the 20 most common in the final population as most of the fragments are
present in only small numbers. In general only about twenty have more
than ten copies in the population at any one generation. Each slice parallel
to the generation axis is the same fragment, showing the number present
in the population at each generation. Figure 7.9 shows the same data for a
crossover rate of 15%.
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Figure 7.8: The distribution of fragments through the run for a crossover
rate of 85%. The top row is the coins dataset, the middle row is wine
dataset and the bottom row is the faces dataset.

The two graphs for the coins dataset show a clear tendency for the most
numerous fragments to become an even larger percentage of the total pop-
ulation as the run proceeds. The other two datasets do not show this effect
as clearly but there is still some indication of it occurring. What is clear in
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Figure 7.9: The distribution of fragments through the run for a crossover
rate of 15%. The top row is the coins dataset, the middle row is wine
dataset and the bottom row is the faces dataset.

all six graphs is that those fragments that are common at the end of the run
were in most cases among the most common at all generations in the run.
Some small ridges in the surface can be seen, particularly in the early part
of the run. These are caused by fragments becoming slightly more or less
common with respect to those near them, but very few fragments change
their ranking by more than a few places.

During the runs the genetic operators have moved fragments between
programs and they have slowly been organised into the most advanta-
geous arrangement, but the majority of common fragments remain com-
mon. The fragments that are being removed from the population as in
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Fig. 7.6 were never common. Even those fragments that are part of the
final fittest program, and were created late in the run are not among the
most common fragments.

7.6 Chapter Summary

This chapter has shown that there are many short lived fragments that are
created in small numbers and within one or two generations have been
deleted from the population. There are also a much smaller number of
fragments that remain in the population for 60% or more of the genera-
tions in the run. This confirms the results from the image based encoding
methods of chapter 6. Numerical simplification does not appear to change
that pattern.

It has shown that after the first few generations the rate at which new
fragments are added to, or fragments removed from, the population varies
only by very small amounts with no clear trend to either increase or de-
crease as run proceeds through the generations. The number of distinct
fragments present in the population at any generation in the run is also
nearly constant. The number of distinct fragments in the population is
reduced by numerical simplification. This was not clear from the images
used in the previous chapter, although those images did show that sim-
plification often reduced the number of the short-lived fragments. This
reduction in the number of distinct fragments means that in some sense
at least, the numerical simplification process reduces the overall diversity
of fragments within the population. These experiments were able to show
that at least for these three datasets this loss of diversity has not adversely
affected the classification accuracy.



Chapter 8

Conclusions

This overall goal of this thesis was to develop a novel approach to online
simplification of programs in tree based GP where the simplification deci-
sions are based solely on the values nodes take during fitness evaluation.
This goal was achieved by developing a method called numerical simpli-
fication. The performance and behaviour of numerical simplification was
examined and compared to both canonical GP and to the algebraic simplifi-
cation method [86].

The conclusions reported in this chapter have been split into two sec-
tions. The first section details those conclusions that answer the research
questions posed in chapter 1. The second section reports other conclu-
sions that arose out of the experiments performed and the analysis of their
results but do not directly address the research questions. These are fol-
lowed by a section on possible future work.
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8.1 Main Conclusions

8.1.1 Effect of Simplification on Program Size and Resources

Used

The numerical simplification method (chapter 4) was introduced and its
performance on three classification datasets and two symbolic regression
tasks was examined. The effect of simplification on program sizes, both
in total number of nodes and tree depth, was examined. The experiments
were organised in correlated sets that allowed easy comparison of differ-
ences in size, performance or resources used. Any differences observed
were tested for statistical significance. Both numerical simplification and
algebraic simplification methods produced smaller programs than canoni-
cal(standard) GP in all of the experiments. The reduction in program sizes
was shown to be statistically significant in all cases except with high mu-
tation on the first regression task. In that case the Z score fell just short of
that required for a 95% confidence level. This was probably because that
task was a fairly simple one and therefore the evolved solutions were al-
ready small. All of the remaining results were significantly better, at least
to 95% with most at 99% or higher. The confidence intervals indicate that
reductions in program size of between 30% and 40% can be expected in
most cases. The percentage reduction in the depth of the program trees
was smaller than the percentage reduction in the number of nodes. Tar-
geted experiments confirmed this reduction in bushiness in the program
trees with more terminals at higher levels in the tree.

The differences in program sizes between the numerical simplification
method and algebraic simplification were smaller than the differences be-
tween either simplification method and canonical GP. In most cases nu-
merical simplification produced smaller programs than algebraic simplifi-
cation, but this difference was significant in only 40% of the cases. When
it was significant, the reduction in program size, in nodes, was an extra
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10% to 20%.
These reductions in program size were reflected in the amount of CPU

time and memory required to evolve the solutions. The reductions in CPU
time required were smaller than the reductions in program size because of
the overhead of performing the simplification, and were not statistically
significant in all cases. The results indicate a likely reduction of between
25% and 30% for the simplification methods over canonical GP and be-
tween 2% and 12% for numerical simplification over algebraic simplifica-
tion.

8.1.2 Effect of Simplification on Effectiveness

These reductions in program size, CPU and memory requirements did not
cause any statistically significant increase in classification error rates on
the classification tasks or RMS error on the regression tasks. The second
regression task showed a marginally significant increase in RMS error but
this was because the task was a difficult one and the distribution of RMS
error rates was skewed by a number of very poor results from unsuccess-
ful runs. If only successful runs are considered then there is no statistically
significant difference between the three methods.

8.1.3 Sensitivity of Simplification Threshold

The relationship between optimum values of the simplification threshold,
if any, and the noise level in the input data was investigated (chapter 5).
Experiments were performed on the two regression tasks, with two dif-
ferent noise levels used on each task. The results show that there is no
clear optimum value for the simplification threshold. Numerical simpli-
fication reduced the program sizes and the run times, and in the case of
the second, more difficult, regression problem reduced overfitting. These
advantages were already present with very small simplification thresholds
and did not improve in any significant way as the threshold was increased.
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However there does appear to be an upper limit on the threshold. If the
simplification threshold is too large then important detail is discarded that
is required to form a good solution. This limit appears to be related to the
noise level in as much as the upper limit was 0.01 for the lower noise level
of 0.001 and the limit rose to 0.035 when the noise level was 0.01 for these
problems.

8.1.4 Fragment Distributions

Whether simplification altered the distribution of fragments in the popu-
lation was investigated (chapters 6 and 7). Fragments were encoded into
bit strings using three different encoding schemes. Their distributions,
both across the generations and within the search space, were examined
in chapter 6 using images to display two of the encodings, and in chapter 7
using statistical techniques to display the third, more detailed, encoding.

The images used to display the results in chapter 6 showed that there
where a few fragments that remained in the population for most of the
run, and that these were generally among the most common fragments in
the population. The rest of the fragments were less common and in most
cases did not remain in the population for more than a few generations
at a time. The simplification methods did not appear to change this pat-
tern. While they did disrupt some of the long lived fragments from the
canonical runs, they also created new fragments that then remained in the
population through the remainder of the run.

Chapter 7 used statistical techniques and a more detailed encoding
than was possible when using images to display the fragment distribu-
tions. This made possible quantitative results for the fragment distribu-
tions. These results echoed the results from chapter 6 in showing the small
number of long-lived fragments with much larger numbers of fragments
that exist in the population for only a few generations at a time. They also
showed that after the first few generations, the rate at which new frag-
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ments entered the population, and the rate at which fragments where lost
from the population, showed very little long-term variation. In most cases
these rates where lower for both simplification methods than they were
for the canonical runs. In many cases these creation and destruction rates
were lower for numerical simplification than they were for algebraic sim-
plification.

The number of distinct fragments in the population also showed little
long-term variation and in many cases were lower for the two simplifica-
tion methods than for the canonical GP runs. This reduction in the number
of distinct fragments was statistically significant for the numerical sim-
plification method in all cases. In spite of this reduction in the diversity
of fragments in the population, all differences in classification accuracy
between the three methods were very small and had no statistical signif-
icance. This suggests that the fragments removed by the simplification
methods were playing no useful part in the process of evolving a good
solution.

The most important fragments in the population are those that make
up the final fittest program. The generation at which these fragments en-
tered the population was also examined. On the faces dataset a greater
number of these entered late in the run than was the case with the canon-
ical GP runs. This only affected about half these fragments, the rest still
entered the population early in the run. On the other two datasets there
was no significant difference in the pattern of entry generations between
the three methods. This suggests that those fragments required by the final
solution are not being adversely affected by the simplification process.

Therefore the major conclusion of this thesis is that online simplifi-
cation methods produce substantial reductions in average program sizes
with no adverse impact on the effectiveness of the GP search or the accu-
racy of the resulting fittest program. Numerical simplification performed
at least as well as algebraic simplification and in some cases produced sig-
nificantly smaller programs. Numerical simplification is also much easier
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to implement then algebraic simplification and is not dependent in any
way on the function set used.

8.2 Other Conclusions

It was noted that early trials indicated that high mutation rates often gave
better performance and less bloat than high crossover rates, in spite of a
high crossover rate being standard practice (chapter 3). For this reason,
many of the experiments in this thesis used two different sets of evolu-
tionary parameters, one using a high crossover rate and one using a high
mutation rate. In general the high mutation rate runs produced slower
growth in program sizes, i.e. less bloat, and the simplification methods
often succeeded in stabilising the average program size after a number of
generations.

There are few, if any, major changes to the distribution of fragments in
the population as the run proceeds through the generations (Chapter 7).
Those fragments that were common in the initial population remain com-
mon and few, if any, fragments that were either uncommon or not present
at all in the initial population become very common by the end of the run.
Even where a fragment is created part way through the run and becomes
part of the final fittest program, it is preserved by the reproduction opera-
tor (elitism) but usually does not become very numerous.

After the first few generations, the rate new fragments are created, the
rate fragments are lost from the population, and the number of distinct
fragments in the population show very little long term variation, that is
the rates remain within a narrow range of values (Chapter 7).

8.3 Discussion and Future Work

The effect of simplification on the shape of the tree as well as its size was
examined (Chapter 4). It was found that the tree became more sparse (less
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bushy) as a result of simplification. The experiments in this thesis all used
the full method for creating the initial population of programs. This ap-
peared to result in a notch (a drop in the number of programs of a particu-
lar size) in the distribution of program sizes. More experiments are needed
with other methods for creating the initial population, both to check the
cause of that anomaly and to verify if this pattern of reducing bushiness
rather than depth is still true if the initial programs are more varied in
structure.

Many of the experiments in this thesis were run with both high mu-
tation and high crossover rates. In all cases, the high mutation rate runs
produced less bloat, and in many cases better accuracy. This is only an
indication, as only one type of mutation operator was used, and it may be
biased to producing smaller changes to the programs than was happen-
ing on average with the crossover operator. More investigation is required
into the effect of varying the crossover rate versus mutation rate when
using simplification.

Langdon and Poli [32] showed that bloat is an inevitable consequence
of fitness based selection with variable length representations. It is there-
fore not unique to tree based genetic programming. While simplification,
as described in this thesis, applies only to tree structured representations,
it may be possible to construct equivalent algorithms for other variable
length representations. The programs in linear GP are variable in length
and can be rearranged to form several parallel interconnected trees (usu-
ally one for each output register). Developing a version of the numerical
simplification method for these trees is one possibility.

Feature selection is usually an explicit operation, removing features
from the training data because they are redundant (highly correlated with
one or more other features) or because they do not contribute to forming
a good solution. The “lack of contribution” has been determined by other
researchers using ideas like information gain, or entropy or directly from
trial runs with various combinations of features. Some of the experiments
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reported in this thesis suggest that numerical simplification may provide
a degree of feature selection as a consequence of its actions. In particular,
numerical simplification produced much smaller programs than algebraic
simplification with the faces dataset. If the features in a particular subtree
do not contribute to forming a good solution, then that subtree is likely to
be making little or no contribution to its program and might therefore be
removed by the numerical simplification process. Similarly, features that
are highly correlated will generally be treated as equal by numerical sim-
plification. Expressions involving differences or ratios will often be suffi-
ciently close to being constant that the simplification process will replace
them by a constant. This is certainly no substitute for more sophisticated
feature selection methods but, with some datasets at least, may provide
some help. More targeted experiments are needed to investigate this ef-
fect.

The building block hypothesis [21] was proposed by Holland in the 1970s
to explain how genetic algorithms worked. The basic idea is that crossover
combines small fragments of the genome that have good fitness into larger
fragments with better fitness. The GP version [47] uses subtrees. While
this hypothesis is widely quoted it has its critics [48] that criticise it for a
lack of theoretical basis and because of experimental evidence that appears
to contradict it.

The experiments in chapter 7 show that the distribution of three-level
deep fragments in the population changes very little during a GP run.
While these fragments are not subtrees, because they do not necessar-
ily extend to the leaves of the tree, these results do still suggest that the
crossover operator is not creating new (and fitter) subtrees in the way that
the building block hypothesis would suggest. If these new, fitter, subtrees
are being constructed then they certainly do not appear to dominate the
population in later generations.

It is possible to create longer length encodings similar to that used in
chapter 7, or to use a suitable hash function to describe larger fragments,
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and in particular to describe true subtrees that are large enough to have
good fitness in their own right. This would allow some more experiments
to be run, with full subtrees rather than fixed depth fragments, to check
whether subtrees are being built up from smaller pieces as per the building
block hypothesis.

Rather than the building block approach, the experiments in chapter 7
suggest that the genetic operators are just re-arranging the existing frag-
ments to optimise the program fitness. What would happen if the frag-
ments from the final fittest individual were removed from the starting
population and the run then repeated? Would a good solution still be
found? If it is, were the removed fragments recreated, or did the evolu-
tionary process find a different solution using the genetic material it was
given? Some more experiments to investigate this may add to our knowl-
edge of how GP actually creates solutions.
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